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Abstract Near-surface weather forecasts are critical for protecting life and
human activities. However, they remain a challenging problem in modern numer-
ical weather prediction (NWP) due to difficulties in surface data assimilation and
uncertainties in representing complicated land–atmosphere interactions in numerical
models. This chapter summarizes recent developments from the author’s research
team to understand and develop effective data assimilation methods that enhance
near-surface weather forecasts. Results from several recent journal publications are
summarized and presented to introduce strongly coupled land–atmosphere data
assimilation in the context of land–atmosphere interaction. The first part of the
mentioned work evaluated the association between near-surface variables and soil
moisture with observations, coupled land–atmosphere model, and data assimila-
tion systems. Results indicated a strong coupling between soil moisture and the
low-level atmosphere, especially the atmospheric boundary layer. Then, the weakly
and strongly coupled land–atmosphere data assimilation methods were compared
regarding their influence on the prediction of near-surface atmospheric conditions.
Results showed that strongly coupled land–atmosphere data assimilation, with simul-
taneous corrections to the land and atmospheric conditions, outperformed weakly
coupled data assimilation. Finally, strongly coupled land–atmosphere data assimila-
tion in an ensemble Kalman filter data assimilation system was implemented with an
NWPmodel. Its positive impacts on predicting both atmosphere and land states were
demonstrated. The potential of strongly coupled land–atmosphere data assimilation
for future developments and applications is discussed in the concluding remarks.
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1 Introduction

Near-surface weather forecasts are critical for protecting life and property, economic
and operational activities, and routine day-to-day planning. Aviation, military, wind
energy, and energy consumption operations rely on accurate near-surface forecasts,
and even small forecast errors can have major consequences. Temperature, wind,
and precipitation are some of the more important variables to forecast, but visibility-
reducing phenomena, such as dust, fog, and smog, also need to be accurately fore-
cast. Therefore, improving forecasts for any of these near-surface variables has
far-reaching significance.

However, previous studies of numerical models have demonstrated the unavoid-
able errors of near-surface atmospheric forecasts (e.g., Liu et al. 2008a, b; Mass
et al. 2002; Zhang et al. 2013; Pu 2017). It has also been found that forecast errors in
near-surface atmospheric variables (such as 2-m temperature and 10-m winds) are
quite large, even in many cases when forecasts in the middle and upper levels of
the atmosphere are reasonable. The problem is more serious over complex terrain
(Zhang et al. 2013; Pu 2017). These uncertainties in near-surface atmospheric condi-
tions can contribute to inaccurate near-surface weather forecasts (e.g., fog, inversion,
etc.) and mesoscale/synoptic-scale weather forecasts in general. More importantly,
errors in near-surface atmospheric conditions also present a forecasting challenge at
operational NWP centers with both mesoscale and global models. Specifically, near-
surface temperature errors in NWP models have been observed in many different
modeling systems throughout the world (Werth and Garrett 2011; Viterbo and Betts
1999; García-Díez et al. 2013).

Moreover, near-surface forecast errors also make it difficult to represent land–
atmosphere interaction in numerical models, since the near-surface atmosphere
is a transition area between the land and the atmosphere. These errors in near-
surface atmospheric conditions interact with and influence both soil states and atmo-
spheric boundary layer conditions through numerical model integration processes
and contribute to the detriment of short- and medium-range weather forecasting,
as well as prediction at sub-seasonal to seasonal and climate scales for climate
models. Consequently, this prevents the use of numerical simulations to study the
processes, especially the atmospheric boundary layer processes, related to severe
weather systems. Meanwhile, it has been found that inaccurate forecasts of near-
surface variables are associated with uncertainties in soil state, such as soil mois-
ture. Commonly, uncertainties in representing land use, soil moisture, and terrain
conditions on the underlying surface, which affect the land-atmosphere interaction
directly, are identified as the major sources of error in near-surface weather fore-
casting (Massey et al. 2014; Zhang et al. 2013; Ren et al. 2018). Hence, the impacts
of underlying surface characteristics and bias corrections on NWP have been inves-
tigated in recent years (e.g., Fan and van den Dool 2011; Massey et al. 2016; Chen
et al. 2017; Lin et al. 2017). Results indicated that the bias correction of soil mois-
ture could help near-surface temperature prediction in those case studies. Moreover,
notable progress has been made recently in studying land–atmosphere interactions at
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regional and local scales as well as short-range weather forecasting (e.g., Santanello
et al. 2005, 2007, 2016, 2018). All these previous works motivate us to seek a way
to improve near-surface weather forecasting through improved representation of soil
moisture and land–atmosphere interactions in land models.

In current research and operational practices, remotely sensed soil moisture data
are typically incorporated into advanced NWPmodels under a framework of weakly
coupled data assimilation, with a land surface analysis scheme independent of
the atmospheric analysis component; thus, the land and atmospheric analyses are
performed separately (Kumar et al. 2015; Santanello et al. 2018; Xia et al. 2019). So
far, there has been limited progress in NWP models with coupled land–atmosphere
data assimilation (e.g., de Rosnay et al. 2014).

In order to improve near surface weather forecasting, the author and her research
team have made significant progress with observations, numerical simulations, and
data assimilation in understanding the correlations between soil moisture and near-
surface atmospheric variables as well as the characteristics of their error covariances
in coupled data assimilation. This chapter summarizes outcomes from a series of
those studies, mostly results from four published journal papers (Lin and Pu 2018,
2019, 2020; Liu and Pu 2019), to introduce the concept of strongly coupled land–
atmosphere data assimilation and demonstrate its promise in improving near-surface
weather forecasting. Challenges and future developments are also discussed.

2 The Relationship Between Soil Moisture
and Near-Surface Atmospheric Conditions

Although earlier studies in the community have demonstrated that soil moisture has
an influence on near-surface temperature, no study has yet made it clear whether
soil moisture and near-surface temperature are correlated or to what degree they
are associated in short-range weather prediction. In Liu and Pu (2019), the relation-
ship between soil moisture and temperature at 2-m height (2-m temperature) was
first examined with long-term meteorological and soil observations during 2008–
2016 from 16 stations over the United States in four different land cover types,
including Shrub and Grassland, Grassland, Shrubland, and Forest. Meteorological
observations included surface Mesonet data, and soundings were obtained from the
MesoWestNetwork (http://mesowest.utah.edu) andUniversity ofWyomingNetwork
(http://weather.uwyo.edu/upperair/sounding.html), respectively. Soil moisture data
included five layers (5, 10, 20, 50, and 100 cm) from in situ observations from the
Climate Reference Network and Soil Climate Analysis Network (https://www.dro
ught.gov/drought/soil-moisture-map).

With the correlation statistics and an information flow analysis method (Liang
2014, 2015; also see details in Liu and Pu 2019), we found that soil moisture at all
levels and the near-surface atmospheric temperature had weak to moderate causality
with seasonal variability. The distribution of soil moisture depended on land use and

http://mesowest.utah.edu
http://weather.uwyo.edu/upperair/sounding.html
https://www.drought.gov/drought/soil-moisture-map
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land cover, and the dependence decreased with soil depth. Although the correlations
between soil moisture and near-surface temperature wasmoderate, with a correlation
coefficient of less than 0.6, there was strong interaction between the top soil layer and
the atmosphere, implying that the impact of soilmoisture on near-surface temperature
was significant.

Two meteorological sounding stations collocated with soil moisture measure-
ments were also used to investigate the relationship between atmospheric profiles
and near-surface temperature (i.e., 2-m temperature). It was found that the causality
between wind profile and near-surface temperature was retained in most weather
conditions. Correlations between near-surface temperature and boundary layer
temperature profiles were quite strong, especially during the warm season. Mean-
while, the correlations decreased with height through the atmosphere. Furthermore,
correlations between near-surface temperature and upper atmospheric conditions had
seasonal variability and also varied with land use and land cover.

The findings from long-term observations were further proved by a series of sensi-
tivity experiments in Liu and Pu (2019) with a single column model (SCM, Hacker
et al. 2007) based on the mesoscale community Weather Research and Forecasting
(WRF) model (Skamarock et al. 2008) coupled with the Noah land surface model
(Chen and Dudhia 2001; Ek et al. 2003). The impact of changes in soil moisture
on short-range forecasts (up to 48 h) of near-surface temperature and atmospheric
profiles was examined.

A control experiment was conducted with the average soil state, and two other
sensitivity experiments were performed with an increase or decrease in soil moisture
of 25% (e.g., within the seasonal variation range of soil moisture), respectively.
Results showed that the impact of soil moisture on temperature was often focused
on the lower levels of the atmospheric boundary layer. An increase (decrease) in
soil moisture resulted in cooler (warmer) near-surface 2-m temperature through the
redistribution of surface heat flux. Meanwhile, there was seasonal variation, since
changes in temperature with soil moisture fluctuations were more obvious during
summer and autumn. In general, an increase in soil moisture caused a temperature
inversion to appear earlier and disappear later, resulting in longer inversion duration.
Adecrease in soilmoisture had the opposite effect.Moreover, changes in near-surface
temperature caused by soil moisture in all seasons were mainly from near-surface
(top) soil levels. The evolution of soil thermodynamic characteristics associated
with changes in soil moisture could affect surface energy distribution and influence
near-surface temperature directly (see details in Liu and Pu 2019).

3 Strongly Coupled Versus Weakly Coupled
Land–Atmosphere Data Assimilation

Theobservational analysis and single columnmodel studymentioned above indicated
that soil moisture and near-surface atmospheric conditions were strongly coupled
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and influenced each other. The results from Liu and Pu (2019) implied that realistic
soil moisture states in land surface models could benefit the accurate prediction
of near-surface and atmospheric boundary layer conditions. The findings from this
study encouraged us to explore using coupled land–atmosphere data assimilation to
improve numerical weather prediction.

Coupled data assimilation can be done in two different ways (Lin and Pu 2019):
weakly or strongly coupled. With weakly coupled data assimilation, assimilating
observations into a model does not affect the control states of the other coupled
model(s) during the analysis. Land data assimilation (e.g., Kumar et al. 2014, 2015)
and atmospheric data assimilation are done separately, and the analysis results are
then input into coupled land–atmosphere data and interact during model integration.
Therefore, the impact ofweakly coupleddata assimilationon the entire domain is seen
only viamodel integration. In contrast, strongly coupled data assimilation (Penny and
Hamill 2017; Penny et al. 2017; Lin and Pu 2019, 2020) requires the estimation of
error covariance of the control states in all the coupled models and the simultaneous
computation of the analysis across the entire domain. So far, most coupled land–
atmosphere data assimilation has been done with weak coupling (Mahfouf 2010;
Mahfouf and Bliznak 2011; Schneider et al. 2014; Duerinckx et al. 2017; Santanello
et al. 2016; Seto et al. 2016; Lin et al. 2017). Almost none of these studies addressed
the land–atmosphere data assimilation problems with strongly coupled data assimi-
lation before Lin and Pu (2018, 2019, 2020). However, results in Liu and Pu (2019)
indicated a strong response of atmospheric conditions to changes in soil moisture,
suggesting that strongly coupled data assimilation is necessary for land–atmosphere
data assimilation.

3.1 Characteristics of Background Error Covariance of Soil
Moisture and Atmospheric States in Strongly Coupled
Land–Atmosphere Data Assimilation

To explore the methodology of strongly coupled data assimilation, a deep under-
standing of the error covariance between soilmoisture and atmospheric stateswithin a
strongly coupled land–atmospheremodel is the first step. An early study by Zupanski
(2017) has formulated that two-component coupled system data assimilation could
be implemented through the coupled forecast error covariances cross the variables
in different coupling components (e.g., land–atmosphere or aerosol–atmosphere).
He conducted a single observation experiment to understand and illustrate the struc-
ture of forecast error covariance in both coupled land–atmosphere and atmosphere-
chemistry models. Results indicated that the cross-component correlations have a
potential to increase the utility of observations in data assimilation by spreading the
information throughout the components. Following Zupanski (2017), Suzuki et al.
(2017) investigated forecast error covariance and correlation structures between land
and atmospheric variables by applying the Maximum Likelihood Ensemble Filter
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(MLEF) data assimilation method with a coupled atmosphere–land surface model
through a series of single observation experiments. They demonstrated that coupled
error covariance methods improve the efficiency of information transfer between
the atmosphere and the land surface by allowing the well-observed atmosphere to
influence land surface variables.

Different from these previous studies, in our study, instead of using single obser-
vation experiments, we used a completed variational framework as an example to
examine the error covariance between soil moisture and atmospheric states within
a strongly coupled land–atmosphere model (see details in Lin and Pu 2018). A
classic one- and three-dimensional variational data assimilation (1D- and 3D-Var)
system computes optimal states by minimizing the following cost function (J ) in an
incremental form (Ide et al. 1997; Courtier et al. 1998):

J (δx) = 1

2
δxTB−1δx + 1

2
(Hδx − d)TR−1(Hδx − d) (1)

where δx is a vector of the analysis increment, with δxa = xa − xb at the minimum
of the cost function, in which xb and xa denote the vectors of the background and
analysis, respectively;H denotes the linear form of an operator that projects the anal-
ysis variables onto the observation space; d is the innovation vector,d = yo −Hxb,
in which yo is a vector of observations; B represents the background error covari-
ance matrix; and R is the observation error covariance matrix. For implementing
a variational method in NWP, the estimation of B is necessary and important. The
B-matrix contains information about the weights of the control states and multi-
variate error correlation, which allows the balanced spread of the information from
the observations to the control states.

In weakly coupled data assimilation, the B-matrix contains only the background
error covariance information for either soil states or atmospheric variables because
separate data assimilation procedures are used for the land and atmosphere. However,
in strongly coupled data assimilation, the B-matrix contains error covariance infor-
mation for both soil states and atmospheric variables. Let us first use top-layer soil
moisture (SM1) and bottom-layer atmospheric states (T1, Q1, U1, and V1) as an
example. With these five variables, the symmetric and positive definite B-matrix of
a given pixel can be described as follows:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ 2
ηSM1

− − − −
cov(ηT1 , ηSM1) σ 2

ηT1
− − −

cov(ηQ1 , ηSM1) cov(ηQ1 , ηT1) σ 2
ηQ 1

− −
cov(ηU1 , ηSM1) cov(ηU1 , ηT1) cov(ηU1 , ηQ1) σ 2

ηU1
−

cov(ηV1 , ηSM1) cov(ηV1 , ηT1) cov(ηV1 , ηQ1) cov(ηV1 , ηV1) σ 2
ηV1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2)

where the diagonal elements are the auto-covariance of the forecast error of the
explained variables and the off-diagonal elements are the covariance.
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Using a variational data assimilation framework and the mesoscale community
WRF model (Skamarock et al. 2008), Lin and Pu (2018) estimated the WRF-Noah
(i.e., the WRF model coupled with the Noah land surface model) background error
covariance between the surface soil moisture and atmospheric states. WRF version
3.9.1 (Skamarock et al. 2008; Powers et al. 2017), with the Advanced Research
version of the WRF (ARW) solver, was used with WRF’s CONUS physics suite.
It included the new Thompson microphysics scheme, the Rapid Radiative Transfer
Model (RRTM) longwave and shortwave schemes, the Monin–Obukhov-based Eta
similarity surface-layer scheme, the Noah land surface model, the Mellor–Yamada–
Janji´ć planetary boundary layer scheme, and the Tiedtke cumulus parameterization
scheme (see details in Skamarock et al. 2008). A single domain of the Lambert
conformal projection was configured with grid spacing of 9 km and 602× 392 grids
horizontally. The Noah land surface model had four soil layers as the default, with
thicknesses of 10, 30, 60, and 100 cm from top to bottom. Lookup tableswere used for
the prescribed parameters of land use (vegetation) and soil types. The study domain
covered the entire contiguous United States. The NMC method (Parrish and Derber
1992) was used to compute the B-matrix:

B = ηηT, (3)

where η is the difference in paired forecasts that have different initialization times
but are valid at the same time, and the overbar denotes an average of forecast error
samples. In a regional application (e.g., WRFDA), η is often obtained from paired
12 and 24 h forecasts, as follows:

η = xft+24|t − xft+24|t+12 (4)

where each of the components on the right-hand side denotes the samples of 24 and
12 h forecasts with bias adjustment with respect to each control state.

To compute the B-matrix, we initialized WRF-Noah simulations at 0000 and
1200 UTC nearly every day from 2015 to 2017 to obtain 12 and 24 h forecasts.
Every month, we computed the B-matrix by using 54 pairs of 12 and 24 h forecasts
to show the “all-time” results. For the daytime (nighttime) results, we obtained 27
pairs from forecasts valid at 00 UTC (12 UTC). The 00 UTC corresponds to 6 pm
Central Standard Time locally over the United States, and we considered that the
forecasts valid at 00 UTC would contain the model errors during the daytime from
6 am to 6 pm local time.

Detailed results are documented in Lin and Pu (2018). Notably, these results indi-
cated that the forecast errors in top-10 cm soil moisture and near-surface air poten-
tial temperature and specific humidity were correlated and relatively large during
the daytime in the summer. The magnitude of the error correlation between surface
soil moisture, temperature, and humidity was comparable, which suggests that (1)
part of the error in surface soil moisture comes from atmospheric forcing, and (2)
atmospheric initial conditions could potentially be corrected via soil moisture data



514 Z. Pu

assimilation. Specifically, the results showed a negative error correlation between
soil moisture and potential temperature but a positive correlation between soil mois-
ture and air humidity. In general, the correlation was seen nearly everywhere over
the study domain, and the daytime correlation was larger than the nighttime correla-
tion. These results not only suggested strong coupling between soil moisture and the
atmosphere, but also identified the correlation structures between soil moisture and
atmospheric variables, notably in the near-surface and boundary layer atmosphere
(see Figs. 1 and 2, also Lin and Pu 2018).

3.2 Soil Moisture Data Assimilation: Weakly Versus Strongly
Coupled Data Assimilation

In subsequent studies, Lin and Pu (2019) implemented the strongly coupled land–
atmosphere data assimilation in Lin and Pu (2018) to study the relative effect of
assimilating soil moisture data on weather forecasts under a framework of weakly
and strongly coupled land–atmosphere data assimilation. Specifically, experiments
aimed to quantify the additional impact on lower-troposphere atmospheric forecasts
via direct analysis (i.e., a strongly coupled case) relative to the impact on forecasts
via the dynamics of land–atmosphere interactions (i.e., a weakly coupled case) when
soil moisture data were assimilated. The study used the Noah land surface model
coupled with the WRF model and conducted experiments in the summer over the
continental United States. TheNASASoilMoistureActive Passive (SMAP) satellite-
derived soil moisture data products, SMAP 9 km level-2 enhanced soil moisture
retrievals (O’Neill et al. 2016), were assimilated.

In the variational data assimilation framework, strongly coupled data assimila-
tion adopted the background error covariance estimated from Lin and Pu (2018). The
results of the numerical experiments during July 2016 showed that strongly coupled
data assimilation could provide additional benefits to forecasts of air temperature and
humidity compared to weakly coupled data assimilation. Over the U.S. Great Plains,
on average, assimilation of SMAP data under weakly coupled data assimilation
reduced a warm bias in temperature and a dry bias in humidity by 7.3% and 19.3%,
respectively, while strongly coupled data assimilation contributed an additional bias
reduction of 2.2% (temperature) and 3.3% (humidity). More importantly, improve-
ments in precipitation forecasts and near-surface atmospheric conditions were also
found with strongly coupled data assimilation compared with weakly coupled data
assimilation (see details in Lin and Pu 2019).
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Fig. 1 Error correlations between top-layer soil moisture (SM) and bottom-layer a–c potential
temperature T, d–f specific humidity Q, g–i zonal wind U, and j–l meridional wind V during July
2016. The forecast samples valid at 0000 and 1200 UTC are categorized as “DAY” and “NIGHT”
results, and the “ALL” results are computed based on all the samples. Domain-mean (DM) values are
computed based on the results of warm land pixels without considering the 10-grid-wide boundary.
The 95% confidence intervals of the DM values vary from DM ± 0.001 to DM ± 0.0015 (From
Lin and Pu 2018)

4 Enhanced Near-Surface Weather Forecasts Using
Strongly Coupled Land–Atmosphere Data Assimilation

Following the outcomes from Lin and Pu (2018) and Lin and Pu (2019), a strongly
coupled land–atmosphere data assimilation system was implemented by Lin and
Pu (2020) using the U.S. National Centers for Environmental Prediction (NCEP)’s
Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter (EnKF) data
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Fig. 2 Horizontal domain mean (DM) values for the error correlation between the top-10 cm soil
moisture and atmospheric states including T, Q, U, and V during July from 2015 to 2017 (From Lin
and Pu 2018)

assimilation system (GSI-EnKF, a community data assimilation system maintained
by the NCAR Developmental Testbed Center). The model used was the WRF model
coupled with the Noah land surface model. Two unique implementations enabled the
incorporation of soil moisture observations via strongly coupled land–atmosphere
data assimilation in our system. The first step was to include soil moisture as a
control state, along with the common control analysis states in GSI-EnKF, including
potential temperature, specific humidity, zonal and meridional winds, and surface
dry air pressure. To enable soil moisture as a control state that was compatible
with GSI-EnKF localization, we set all four layers of soil moisture inside the Noah
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land surface model as a control state in the GSI analysis. In the second step, we
added soil moisture as a new type of conventional observation. Overall, this strongly
coupled land–atmosphere data assimilation could assimilate both soil moisture and
atmospheric observations simultaneously, with consistent cross-model error covari-
ance from ensemble forecasts of land and atmospheric components of the numerical
weather prediction model (e.g., WRF).

For the experiment, an ensemble size of 40 was used, as a sample size of around
40 is quite common in regional ensemble-based studies (e.g., Pu et al. 2013; Zhang
and Pu 2014; Schwartz et al. 2015; McNicholas and Mass 2018). To keep a reason-
able ensemble spread and avoid filter divergence, a tunable inflation coefficient can
be set to adjust the posterior ensemble spread to match the prior ensemble spread
(relaxation-to-prior spread; Whitaker and Hamill 2012). The inflation coefficient
ranges from 0 (no inflation) to 1 (i.e., both prior and posterior ensemble spread are
of the same magnitude). Tests with the assimilation of in-situ soil moisture data
and all other conventional atmospheric observations indicated that this GSI-EnKF
based strongly coupled data assimilation system could simultaneously adjust atmo-
spheric and soil moisture states through assimilating atmospheric observations and
soil moisture data.

Key findings included the following: (1) including soil moisture as a control vari-
able in GSI-EnKF resulted in significant reduction of analysis errors in near-surface
atmospheric variables, such as temperature and humidity; (2) with the strongly
coupled system, soil moisture analysis errors were reduced significantly when soil
moisture data were assimilated with all other available atmospheric observations; (3)
combined assimilation of soil moisture and atmospheric observations in a strongly
coupled data assimilation system resulted in improved analysis and forecasts in an
NWP framework. Specifically, strongly coupled land–atmosphere data assimilation
led to improved near-surface weather forecasting (See details in Lin and Pu 2020).

5 Discussion and Concluding Remarks

5.1 Summary and Discussion

Near-surface weather forecasts present a challenging problem in modern NWP. A
series of studies from the author’s research team, as summarized above, led to a signif-
icant understanding of the problem and made it clear that coupled land–atmosphere
data assimilation, especially strongly coupled land–atmosphere data assimilation, is
a promising way to improve near-surface weather forecasting.

In summary, the observational analyses showed significant correlations between
soil moisture in the top soil layer and surface 2-m temperature. Sensitivity exper-
iments with a single column model indicated that near-surface weather conditions
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responded to soil moisture changes, suggesting a strong coupling between soil mois-
ture and the near-surface atmosphere. Results encouraged us to assimilate soil mois-
ture data into a land model for improved near-surface weather forecasting. Strongly
coupled land–atmosphere data assimilation was then evaluated in a variational data
assimilation framework. It was found that the error covariances between soil mois-
ture and near-surface temperature and humidity were significant during the daytime
and warm season in the boundary layer. Based on the error covariance structures and
correlations, we can expect that soil moisture changes could cause adjustments in
near-surface and atmospheric boundary layer conditions. The increments in atmo-
spheric conditionswould lead to changes in soilmoisture. The subsequent data assim-
ilation with the WRF-Noah model indicated that strongly coupled land–atmosphere
data assimilation in this variational framework successfully assimilated SMAP soil
moisture data. More importantly, with simultaneous corrections in both atmosphere
and land variables, this strongly coupled data assimilation method outperformed
weakly coupled data assimilation. Finally, strongly coupled data assimilation was
implemented in an ensemble Kalman filter data assimilation system. Results proved
that this strongly coupled data assimilation could indeed improve prediction of both
soil and atmospheric states.

Although variational data assimilation is different from the ensemble Kalman
filter, both methods have proven the success of strongly coupled data assimilation.
In reality, according to Lin and Pu (2020), the structure of ensemble spreads from
the strongly coupled system in the GSI-EnKF system (Fig. 3) was very similar to the
structure in Lin and Pu (2018) (e.g., Fig. 2), implying that strongly coupled land–
atmosphere data assimilation is capable of representing the strong coupling between
soil moisture and the near-surface and boundary layer atmospheric states in the EnKF
data assimilation system; thus it has great potential to be implemented into NWP
models for many forecast applications.

5.2 Concluding Remarks

Land–atmosphere interaction is an essential process in weather and climate systems.
Coupled land–atmosphere models and land surface parameterizations are necessary
to represent land–atmosphere interactions in weather and climate models. Due to
lack of observations, our limited understanding of and capability to accurately repre-
sent land–atmosphere interaction in coupled models or parameterizations, and the
errors in initial and boundary conditions, uncertainties in weather and climate predic-
tion present significant challenges in weather forecasting and climate prediction.
Notably, the near-surface atmosphere and atmospheric boundary layer interact with
the land surface directly. Because of the complexity of the water and energy budget
in the interface of the land and atmosphere, uncertainties in numerical model param-
eterizations and initial conditions are significant. As a consequence, near-surface
weather forecasting remains a significant challenge in numerical weather prediction
(Pu 2017). In light of the strong interaction between the near-surface atmosphere
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Fig. 3 Ensemble mean and spread (SDEV or standard deviation) of atmospheric first guesses for
potential temperature (T), specific humidity (Q), zonal wind (U), and meridional wind (V) during
the study period (July 2018) (From Lin and Pu 2020)

and land surface, four research articles (Liu and Pu 2019; Lin and Pu 2018, 2019,
2020) are summarized in this chapter dedicated to understanding the fundamentals
of improving near-surface weather forecasting using coupled data assimilation.

The observational analyses showed significant correlations between soil moisture
in the top soil layer and surface 2-m temperature. However, the correlation coefficient
between soil moisture and 2-m temperature was less than 0.6, implying that soil
moisture is not the sole factor that influences near-surface weather conditions. Given
the heterogeneous nature of land use and land cover as well as soil types, there
are many other factors that could influence land–atmosphere interactions that need
to be studied in future work to examine their influence on near-surface weather
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prediction. Nevertheless, the notable correlation between soil moisture and near-
surface atmospheric conditions provides a direct way to implement coupled land–
atmosphere data assimilation. More complicated data assimilation systems are still
needed in order to fully resolve or mitigate the uncertainties associated with land–
atmosphere interactions in weather and climate models.

In addition, near-surface temperature and soil moisture could also influence the
atmospheric boundary layer, even upper atmospheric conditions. Most of this influ-
ence is in the local atmospheric boundary layer in short-range weather prediction.
However, through the integration of atmospheric models with time, the soil mois-
ture influence could propagate to the entire atmospheric column and over a large
region. Therefore, the influence of soil moisture in medium-range weather fore-
casting and sub-seasonal to seasonal climate prediction should be expected. From
these perspectives, strongly coupled land–atmosphere data assimilation should be an
active research area, not only for weather forecasting but also for climate prediction.
Nevertheless, since the temporal scales between land and atmosphere variabilities
are not the same, strategies to adjust the temporal scales of land and atmospheric
variables during the coupled data assimilation could be another important problem
to explore in future studies.

Furthermore, many severe weather and climate events are associated with land–
atmosphere interactions, such as hurricane evolution after landfall, floods, droughts,
etc. Considering the need to improve forecasts and public warnings for these high-
impact weather and climate events, we can foresee the utility of strongly coupled
data assimilation in many research applications.
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