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Abstract The sensitivity of acoustic pressure to sound speed is investigated through
the application of adjoint-based sensitivity analysis using an acoustic propagation
model. The sensitivity analysis is extended to temperature and salinity, by deriving
the adjoint of the sound polynomial function of temperature and salinity. Numerical
experiments using a range dependent model are carried out in a deep and complex
environment at the frequencyof 300Hz. It is shown that through the adjoint sensitivity
analysis one can infer reasonable variations of sound speed, and thus temperature and
salinity. Successful extension of the sensitivity of acoustic pressure to temperature
and salinity implies that acoustic pressure observations in a given range-depth plane
can be assimilated into an ocean model using the acoustic propagation model as the
observation operator.

1 Introduction

The relationship between sound speed and ocean temperature variations has been
exploited over the years through acoustic tomography. Underwater acoustic propa-
gation depends nonlinearly on sound speed, which in turn is a nonlinear function of
the ocean environment variables, namely temperature and salinity (T and S). Ocean
acoustic propagation is modeled in various ways, including using parabolic equa-
tions that are generally solved in terms of acoustic pressure. This study investigates
the sensitivity of acoustic pressure to temperature and salinity, i.e. how changes in
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the latter effect the former, or equivalently how changes in the former can be linearly
related to changes in the latter.

Sensitivity analysis can be carried out in two ways: (1) the direct sensitivity
analysis method, which analyzes perturbations to the solutions of the acoustic model
resulting from perturbations of the temperature and salinity, and (2) the indirect
sensitivity method based on the adjoint of the acoustic model. Direct sensitivity
analysis is straightforward, but becomes tedious and burdensomewhen the dimension
of the fields or parameters to perturb are large, because a large number of simulations
has to be carried out, Lermusiaux et al. (2010). In contrast, adjoint-based sensitivity
analysis (Cacuci 1981) only requires a single solution of the adjoint model, when
it is available, driven by the derivative of the response function with respect to the
prognostic state variables of the modeled phenomenon, Hall (1986), Hall and Cacuci
(1983), Hall et al. (1982).

Adjoint modeling in underwater acoustics is mainly used for geoacoustic inver-
sion, Hursky et al. (2004), Meyer and Hermand (2005), Applications of adjoint
modeling for sensitivity analysis include the works of Skarsoulis and Cornuelle
(2004) who used the adjoint method to compute sensitivity of the travel times in
ocean acoustic tomography, who used the adjoint model to compute the derivatives
of a waveguide field with respect to several parameters including the sound speed,
density and frequency. In this study the adjoint sensitivity analysis is extended from
the sensitivity to sound speed back to the sensitivity to temperature and salinity, using
both the adjoint of the parabolic equation and the adjoint of the function that relates
temperature and salinity to sound speed. For that extension to occur, the ground-
work of computing the sensitivity of acoustic pressure to sound speed must first be
laid, because the extension is straightforward through the chain rule. Thus, there is
a greater emphasis on the derivation and computation of the sensitivity of acoustic
pressure to sound speed.

An adjoint model for the range dependent acoustic model (RAM) was developed
for the assimilation of acoustic pressure observations, Ngodock et al. (2017). For the
sensitivity analysis in the present study, a tangent linear and adjoint of the polynomial
function that relate temperature and salinity to sound speed (Chen andMillero 1977)
were derived analytically (see appendix) and implemented numerically.

2 The Model

We consider the range-dependent model (RAM) of Collins et al. (1996) which is
derived from the reduced wave equation in cylindrical coordinates with a harmonic
point source, removing the factor r−1/2 from the complex pressure p to handle cylin-
drical spreading, and assuming azimuthal symmetry to obtain (with a complex wave
number to include attenuation)

∂2 p

∂r2
+ ρ

∂

∂z

(
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∂p

∂z

)
+ k2 p = 0, (1)
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where k = (1 + iηβ) ω
c(r,z) is the wave number, ω is the angular frequency, c(r, z)

is the speed of sound in range and depth, β is the attenuation coefficient and η =(
40π log10 e

)−1
. Factoring the operator in (1) yields

(
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)
, (3)

where k0 = ω/c0, and c0 is a representative phase speed. Assuming that outgoing
energy dominates backscattered energy, (2) reduces to the outgoing wave equation

∂p

∂r
= ik0(I + X)1/2 p (4)

The formal solution of (4) is

p(r + �r, z) = exp(ik0�r(I + X)1/2)p(r, z) (5)

where �r is the range step. By applying an n term rational function to approximate
the exponential we have the Padé approximation

p(r + �r, z) = exp(ik0�r)
n
	
i=1

(
I + α j,n X

I + β j,n X

)
p(r, z) (6)

where I is the identity operator, α j,n and β j,n are pre-computed coefficients of the
split-step Padé approximation for solving the original wave equation implicitly by
separation of variables. The product form inEq. (6) can also be approximated,without
loss of accuracy, by the summation form

p(r + �r, z) = exp(ik0�r)

⎛
⎝I +

n∑
j=1

γ j,n X

I + β j,n X

⎞
⎠p(r, z) (7)

as shown by Collins et al. (1996).
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3 Sensitivity Analysis

For the sake of convenience the model (4) is written is the form

∂p

∂r
= F(X)p (8)

The form of the operator F is obvious from (4), and the dependence of (8) on
temperature and salinity comes through the sound speed c via the differential operator
X in (3). Small perturbations t ′ and s ′ of T/S lead to perturbations c′ of c, that in
turn yield perturbations p′ of acoustic pressure governed the first-order Taylor’s
expansion of (8)

∂p′

∂r
= F(X)p′ +

[
∂F

∂X

∂X

∂c
c′

]
p (9)

where c′ relates to t’ and s’ according to (A6) below. Note that in the appendix
the sound speed is denoted by U instead of c. For a given function G(p) of p, the
sensitivity G with respect to c deals with relating changes in G to changes in c, and
because c is a function of T/S, changes in G can be related to changes in T/S by
virtue of the chain rule. In sensitivity analysis G(p) is commonly referred to as the
response function. If G is a smooth function of p for which a derivative may readily
computed, then G’(p)p’ is the change in G resulting from p’, a change in p. We may
write

G ′(p)p′ = (
G ′(p), p′)

p = 〈∇G, c′〉
c (10)

where the subscripted parentheses and angled brackets represent suitable inner prod-
ucts in the spaces of acoustic pressure and sound speed respectively. Although G’
may be computed quite easily, this is not the case if one attempts to express ∇G,
since G is not an explicit function of c. In order to exhibit the linear dependence of
(10) with respect to c’, we introduce a convenient variable λp, with which we make
the inner product with (9):

(
∂p′

∂r
− F(X)p′ −

[
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c′

]
p, λp

)
p
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′
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−
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〉
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(11)

It can be shown that if λp is the solution of

−∂λp

∂r
− [F(X)]Tλp = G ′(p) (12)
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then

∇G =
[

∂F

∂X

∂X

∂c

]T

λp p (13)

The computation of ∇G in (13), based on a single solution of (12) (which is
called the adjoint model), provides the linear relationship between changes in sound
speed (c’) and changes in G. In the particular case where G is the identity, i.e. G(p)
= p, (13) shows how and where acoustic pressure is effected by changes in sound
speed, in the depth-range domain. And, considering the dependence of sound speed
on T and S, one can compute the sensitivity of acoustic pressure to T/S using the
chain rule as described in the appendix. In the following numerical examples, the
sensitivity of acoustic pressure to both sound speed (and T and S) is computed using
the adjoint model of the range dependent PE model (RAM). Note that the derivation
and development of the adjointmodel ofRAMare described inNgodock et al. (2017).

4 Numerical Experiments

Numerical experiments are carried out for one simulated radial of 40 km range using
a frequency of 300 Hz. The geographic coordinates (longitude and latitude) of the
radial are (134.98 E, 36.28 N) and (134.66 E, 36.02 N) for the source and receiver
respectively. The sensitivity described results from the integration of the adjoint
model, defined as the algebraic transpose of the tangent linear model. The latter
requires a model state or solution (also referred to as a background) around which
the linearization is performed. The sound speed needed for the background solution
is computed using temperature and salinity taken from a NCOM solution with a
horizontal resolution of 3 km, and the background solution is shown in Fig. 1, for all

Fig. 1 Sound speedprofiles along the radial (left, the black line is a sample profile), and transmission
losses (in dB, right) of the acoustic pressure solution around which the model is linearized and
transposed for the computation of the sensitivity
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three radials, as transmission loss.
The propagation of acoustic pressure along this radial is shown in Fig. 1 in terms

of transmission loss, for a source located 10 m below the surface. The sound speed
profiles along the radial are also shown inFig. 1. This case has aweak range dependent
duct, the duct is about 30 m deep at the source and weakens to ~10 between 20 and
25 km, there is a strong below layer gradient near the source, that directs the energy
towards the bottom, thus trapping little energy in the duct. As the duct weakens with
range, the duct and gradients below the duct are strong enough to keep the bottom-
bounce energy from returning to the surface. The RAM uses estimates of sound
speed, attenuation and density versus depth in the sediment (an elastic bottom) and
the attenuation is carried forward in complex wavenumber terms. The sediments
for this downslope environment are approximately 100 m thick and slightly lossy,
resulting in significant bottom bounce. The strong duct or secondary sound channel
(starting around 10 km) prevents the bottom bounce energy from returning to the
surface. Thus, a significant amount of acoustic energy is preserved out in range and
at depth.

By definition, the adjoint model is integrated backward in range, initialized by
the derivative of the response criterion (for which the sensitivity is sought) with
respect to acoustic pressure at the range-depth location where the response criterion
is defined. The acoustic pressure response is selected two locations of the range-
depth plane that are far from the source; the locations are shown as the white stars
in Fig. 1. The first location is chosen to be at the range of 35 km (range) and 1850 m
(depth). As seen in Fig. 1 this region has relatively low transmission loss of 75 dB.
Numerical results from the adjoint sensitivity of acoustic pressure with respect to
sound speed, temperature and salinity are shown in Fig. 2. Note that the sensitivity
to sound speed is recorded at the same range steps where sound speed is provided to
the acoustic model, i.e. every 2 km, resulting in a significantly low spatial resolution
in Fig. 2 compared to Fig. 1. It can be seen that the acoustic pressure sensitivity to
sound speed is confined along the path of propagation of acoustic energy, and extends
from the response region to as far as 7 km back in the range-depth domain. What is
meant by path of propagation of acoustic energy is the paths within the waveguide
with significant acoustic energy, which is not to be confused with “ray path”. The
sensitivity is mainly negative, suggesting that an increase in sound speed (along this
propagation path) would result in a decrease in acoustic pressure, or, a decrease in
sound speed would result in an increase in acoustic pressure. Also, the magnitude of
the sensitivity, e.g. 10–2 (m s−1)−1, indicates that a change of 1 m s−1 in sound speed
would cause a change of 10–2 in acoustic pressure.

In order to assess how reasonable these sensitivity estimates are we consider
a point in the range-depth domain at 10 km and 500 m. At this location the
sensitivity of acoustic pressure to sound speed is approximately –0.05, i.e. ∂p

∂c =
−0.05; likewise, the sensitivity of acoustic pressure to temperature is approx-
imately –0.2, i.e. ∂p

∂T = −0.2. By simple application of the chain rule, we

get ∂c
∂T = ∂p

∂T

(
∂p
∂c

)−1 = 4ms−1K−1. Thus, a change of 1 K in temperature
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Fig. 2 Sensitivity of sound speed (top), temperature (middle) and salinity (bottom) to acoustic
pressure at 35 km range and 1850 m depth

yields a change of approximately 4 m s−1 in sound speed, a reasonable esti-
mate that can also be computed directly from the Chen and Millero (1977)
formula, see also https://dosits.org/people-and-sound/research-ocean-physics/how-
is-sound-used-to-measure-temperature-in-the-ocean/. Therefore, the adjoint of both
the acoustic model and the sound speed formula provide an accurate estimate of the
variations of acoustic pressure with respect to sound speed, temperature and salinity.

The spatial patterns of the sensitivity of acoustic pressure with respect to tempera-
ture and salinity are nearly identical to those of the sensitivity to sound speed. This is
because the sound speed is a local function of temperature and salinity, and thus the
sensitivity to the former is computed from the sensitivity to the latter. It can also be
seen in Fig. 2 that acoustic pressure is more sensitive to temperature than to salinity,
resulting from the gradient of sound speed with respect to temperature being greater
than the same gradient with respect to salinity

A second sensitivity experiment is carried out along the same radial, with the
acoustic pressure response region being at the range of 36 km and depth of 700 m.
The transmission loss in this second region is about 100 dB, compared to 60 dB
in the first region, and the acoustic energy follows a different path of propagation
from the source to this region. Similar to the previous case, the sensitivity of acoustic

https://dosits.org/people-and-sound/research-ocean-physics/how-is-sound-used-to-measure-temperature-in-the-ocean/
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Fig. 3 Same as Fig. 2, except for the response region selected at the range of 36 km and depth of
700 m

pressure with respect to sound speed is confined along the path of propagation of
acoustic energy from the source to the response region. Compared to the first case, the
sensitivity in this second case is weaker (lower magnitude), a direct consequence of a
weaker acoustic energy signal reaching the response region. Here also the sensitivity
to temperature and salinity have the same patterns as the sensitivity to sound speed,
although the sensitivity to salinity appears to be much weaker than the sensitivity to
temperature, compared to what was seen in the Fig. 2 and 3.

5 Discussion and Summary

The derivation of the sensitivity of acoustic pressure to temperature and salinity
through adjoint modeling enables the propagation of information from observations
of the former back to the latter. Thus, in a coupled acoustics-ocean variational data
assimilation system one can infer corrections to the temperature and salinity given
observations of acoustic pressure. The corrections to temperature and salinity can be
made throughout the depth-range domain, and not only at the locationswhere profiles
of acoustic pressure are observed. This may be particularly useful in situations where
observations of temperature and salinity are not readily available.
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Simultaneous correction of the acoustic pressure and ocean environmental param-
eters is also possible when an ensemble of solutions of a coupled ocean-acoustic
model is used in the assimilation, e.g. Lermusiaux et al. (2010), because such an
ensemble contains the cross-covariance between the ocean and acoustic variables.

This study deals with theoretical derivations and numerical implementation of
adjoint sensitivity analysis of acoustic pressure with respect to sound speed. By
also deriving the adjoint of the equation of sound speed, the sensitivity analysis is
extended to temperature and salinity. It was shown that the sensitivity is usually
confined to the path of propagation of acoustic energy, and that acoustic pressure
had a higher sensitivity to temperature than salinity. Also, higher sensitivity was
detected in the response region that had a stronger acoustic energy signal (lower
transmission loss) than in the response region with weaker acoustic energy signal
(higher transmission loss). It was shown that the sensitivity computed by the adjoint
model yielded accurate estimates of the variations of acoustic pressure with respect
to sound speed, temperature and salinity. This study provides the ability to infer
corrections to temperature and salinity in a coupled ocean-acoustic variational data
assimilation system, given observations of acoustic pressure. This also implies that
acoustic pressure observations can be assimilated directly into an ocean model using
the acoustic model as the acoustic observation operator.

Acknowledgements This work was sponsored by the Office of Naval Research Program Element
0601153N as part of the “ADARDA” project. This paper is NRL paper contribution number
NRL/BC/7320-20-5022.

Appendix: Equation of Sound Speed with Its Tangent Linear
and Adjoint

The equation for the speed of sound in seawater in m s−1, given by Chen andMillero
(Chen and Millero 1977) is:

U (s, t, P) = Cw(t, P) + A(t, P)s + B(t, P)s
3
4 + D(t, P)s2 (A1)

where s is the salinity in PSS-78, t the temperaure in °C and P the water column
pressure in decibars, not to be confused with the acoustic pressure p used in the text
above. A, B, C andD are temperature- and pressure-dependent parameters. The term
Cw is defined as:

Cw(t, P) = C00 + C01t + C02t
2 + C03t

3 + C04t
4 + C05t

5

+
(
C10 + C11t + C12t

2 + C13t
3 + C14t

4
)
P

+
(
C20 + C21t + C22t

2 + C23t
3 + C24t

4
)
P2

+
(
C30 + C31t + C32t

2)P3 (A2)



436 H. E. Ngodock et al.

The term A is defined as:

A(t, P) = A00 + A01t + A02t
2 + A03t

3 + A04t
4

+
(
A10 + A11t + A12t

2 + A13t
3 + A14t

4
)
P

+
(
A20 + A21t + A22t

2 + A23t
3
)
P2

+
(
A30 + A31t + A32t

2
)
P3 (A3)

The term B is defined as:

B(t, P) = B00 + B01t + (B10 + B11t)P (A4)

The term D is defined as:

D(t, P) = D00 + D10P (A5)

Linearization

Note that in the derivations that follow we have neglected the variations of the water
column pressure (P) with temperature and salinity. According the first order Taylor’s
approximation, the equations (A1)–(A5) above can be linearized as follows, with the
prime symbol appended to the linearized variables:

U ′(s, t, P, s ′, t ′) = C
′
w(t, P, t ′) + A′(t, P, t ′)s + A(t, P)s ′

+ B ′(t, P, t ′)s
3
4 + B(t, P)s− 1

4 s ′ + 2D(t, P)ss ′ (A6)

C
′
w(t, P, t ′) = [(

C01 + 2C02t + 3C03t
2 + 4C04t

3 + 5C05t
4
)

+
(
C11 + 2C12t + 3C13t

2 + 4C14t
3
)
P

+
(
C21 + 2C22t + 3C23t

2 + 4C24t
3)P2

+ (C31 + 2C32t)P
3
]
t ′

(A7)

A′(t, P, t ′) = [(
A01 + 2A02t + 3A03t

2 + 4A04t
3
)

+
(
A11 + 2A12t + 3A13t

2 + 4A14t
3)P

+
(
A21 + 2A22t + 3A23t

2
)
P2

+ (A31 + 2A32t)P
3]t ′

(A8)

B ′(t, P, t ′) = (B01 + B11P)t ′ (A9)
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The Adjoint

In the following equation the * symbol is appended to the adjoint variables. Given
the adjoint of sound speed as resulting from the adjoint of the acoustic propagation
model, the adjoint variables associated to both temperature and salinity are obtained
from transposing the equations (A6)–(A9) according the L2 inner product

s∗ =
[
A(t, P) + B(t, P)s− 1

4 + 2D(t, P)s
]
U∗

B∗ = s
3
4U∗

A∗ = sU∗
C∗

w = U∗

(A10)

t∗ = t ∗ +[(
C01 + 2C02t + 3C03t

2 + 4C04t
3 + 5C05t

4
)

+
(
C11 + 2C12t + 3C13t

2 + 4C14t
3
)
P

+
(
C21 + 2C22t + 3C23t

2 + 4C24t
3
)
P2

+ (C31 + 2C32t)P
3
]
C∗

w(t, P, t ′)

(A11)

t∗ = t ∗ +[(
A01 + 2A02t + 3A03t

2 + 4A04t
3)

+
(
A11 + 2A12t + 3A13t

2 + 4A14t
3
)
P

+
(
A21 + 2A22t + 3A23t

2
)
P2

+ (A31 + 2A32t)P
3
]
A ∗ (t, P, t ′)

(A12)

t∗ = t ∗ +(B01 + B11P)B ∗ (t, P, t ′) (A13)

The coefficients for the above terms are given in Table 1 below.

Table 1 Coefficients of the polynomials (A1)—(A5)

C A B D

C00 = + 1402.388 A00 = + 1.389 B00 = −1.922E-02 D00 = + 1.727E-03

C01 = + 5.03711 A01 = −1.262E-02 B01 = −4.42E-05

C02 = −5.80852E-02 A02 = + 7.164E-05

C03 = + 3.3420E-04 A03 = + 2006E-06

C04 = −1.47800E-06 A04 = −3.21E-08

C05 = + 3.1464E-09

C10 = + 0.153563 A10 = + 9.4742E-05 B10 = + 7.3637E-05 D10 = −7.9836E-06

C11 = + 6.8982E-04 A11 = −1.2580E-05 B11 = + 1.7945E-07

C12 = −8.1788E-06 A12 = −6.4885E-08

C13 = + 1.3621E-07 A13 = + 1.0507E-08

C14 = −6.1185E-10 A14 = −2.0122E-10

(continued)
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Table 1 (continued)

C A B D

C20 = + 3.1260E-05 A20 = −3.9064E-07

C21 = −1.7107E-06 A21 = + 9.1041E-09

C22 = + 2.5974E-08 A22 = −1.6002E-10

C23 = −2.5335E-10 A23 = + 7.988E-12

C24 = + 1.0405E-12

C30 = −9.7729E-09 A30 = + 1.100E-10

C31 = + 3.8504E-10 A31 = + 6.649E-12

C32 = −2.3643E-12 A32 = −3.389E-13
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