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Preface

Data assimilation (DA) seeks to find the best available estimation of a state by
combining all the available information, such as the dynamic models, the observa-
tions, and the associated error statistics, using one of the many algorithms based on
modern estimation theory. DA has been used to provide the numerical model with the
best initial conditions in the early days of numerical weather prediction (NWP). It has
become one of the cornerstones in giving state estimations and numerical forecasts
in various earth science disciplines such as oceanography and hydrology.

Since June 2005, we have convened a recurring session, titled “Data Assimila-
tion for Atmospheric, Oceanic and Hydrologic Applications,” at the Asia Oceania
Geosciences Society (AOGS) annual meetings. We added the “Sasaki Symposium”
to the session title in June 2007 to honor Prof. Yoshi K. Sasaki of the University of
Oklahoma for his life-long contributions to DA in geosciences. At the 5th AOGS
Annual Meeting held in Busan, Korea, in June 2008, we realized the need for a book
in DA that can include the fundamentals of DA theory, development, applications,
and notable recent advances in the field. Right after the AOGS meeting in Busan,
we prepared the book; at that time, we had never thought or planned to publish the
books in a series. Since then, we have successfully published three volumes of the
book.

Volume Iwas published inMarch 2009with 27 chapters, including notable invited
ones and some selected ones from the previous symposiums. Among them, “Data
Assimilation for Numerical Weather Prediction: A Review” by Ionel M. Navon
provided a thorough review on 4DVar and recorded the highest citations among
all the volumes in this series (171 times as of February 2021 from Google Scholar).
“Real Challenge of Data Assimilation for Tornadogenesis” was authored by Yoshi
himself, proposing a new theory based on the entropic balance.

Volume II was published in May 2013, again with 27 chapters, by collecting
both invited papers and selected papers from the previous symposiums held in 2009
(Singapore, Singapore), 2010 (Hyderabad, India), and 2011 (Taipei, Taiwan). The
volume included excellent overviews on estimation theory, nudging and variational
methods, andMarkov chainMonteCarlomethods.Most prominently,Yoshi extended
his entropy balance theory for tornado DA and contributed a chapter titled “Entropic
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Balance Theory and Radar Observation for Prospective Tornado Data Assimilation,”
which became his last contribution to this series.

Volume III was published in December 2016 with 24 chapters with a special
dedication section, titled “In Memory of Yoshi,” by collecting memories on and
photos of Yoshi from several authors. The volume included excellent overviews on
variationalDA(LeDimet et al.),DAfor coupledmodeling systems (MilijaŽupanski),
representer-based variational DA (Chua and Xu), soil moisture DA (Maggioni and
Houser), and surface DA over complex terrain (Zhaoxia Pu), to mention a few, as
well as updates on a wide range of other DA topics.

Since Volume III’s publishing, many advances have been made in various parts
of geoscientific data assimilation. In January 2020, we thought it was the right time
to publish Volume VI to provide our readers with the needed updates in the recent
advances of DA theories and applications. We surveyed many well-known leading
data assimilation experts in their respective specialty areas regarding theirwillingness
to contribute to Volume IV. Encouraged by the overwhelmingly positive responses
from the survey,we officially started the process of publishingVolume IV in February
2020. Despite all the challenges associated with the COVID-19 pandemic during the
past year, we completed the new volume thanks to the authors’ and anonymous
reviewers’ tireless efforts.

Volume IV contains 26 chapters contributed by experts from universities and
operational centers around the world. It includes an excellent overview of the funda-
mentals and the applications of the GNSS-RO sounding in the troposphere and
stratosphere (Ruston et al.), a must-have resource on all things associated with the
assimilation of in situ observations in numerical weather predictions at ECMWF and
NRL (Pauley and Ingley), some theoretical considerations regarding the observation
network design (Lewis et al. and Lakshmivarahan et al.), a sparsity-based Kalman
filter algorithm to reduce computational requirement (Kang andXu),modeling obser-
vation error through statistical parameter estimation (Satterfield et al.), an excellent
review of the second-order methods in variational data assimilation (Le Dimet and
Shutyaev), the strongly coupled data assimilation (Wu et al. and Zhaoxia Pu), sensi-
tivity analysis in ocean acoustic propagation (Ngodock et al.), and recent progress
at the operational centers (Baker et al., Bouyssel et al., Lee and Huang, Martet et al.,
and Shin et al.) among other progresses in the DA community.

This book will be useful to individual researchers and graduate students as a
reference to the most recent data assimilation progress in geosciences. We dedicate
this volume to Yoshi Sasaki and Anna Trevisan for their monumental contributions
to data assimilation. Yoshi’s journey into and contribution to DA was well described
in “Sasaki’s Pathway to Deterministic Data Assimilation” in Volume I, authored by
JohnM. Lewis. Anna was a pioneer working at the crossroad between the dynamical
system and data assimilation: she invented a new DA concept that was based on the
dynamical properties of underlying systems, paving the way toward efficient DA and
deployment of adaptive observations. “Data Assimilation for Chaotic Dynamics” in
this volume, by Carrassi et al., can be considered as Anna’s legacy.

Lastly, we are deeply saddened by the passing of Prof. François-Xavier Le Dimet,
an eminent scientist who made significant contributions to the data assimilation
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community. He had also served as a co-convener of the Sasaki symposiums and
contributed several chapters to our book series, including two chapters in this volume.
He will be greatly missed.

Seoul, Korea (Republic of)
Monterey, USA
March 2021

Seon Ki Park
Liang Xu
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Data Assimilation for Chaotic Dynamics

Alberto Carrassi, Marc Bocquet, Jonathan Demaeyer, Colin Grudzien,
Patrick Raanes, and Stéphane Vannitsem

Abstract Chaos is ubiquitous in physical systems. The associated sensitivity to
initial conditions is a significant obstacle in forecasting the weather and other geo-
physical fluid flows.Data assimilation is the processwhereby the uncertainty in initial
conditions is reduced by the astute combination of model predictions and real-time
data. This chapter reviews recent findings from investigations on the impact of chaos
on data assimilation methods: for the Kalman filter and smoother in linear systems,
analytic results are derived; for their ensemble-based versions and nonlinear dynam-
ics, numerical results provide insights. The focus is on characterizing the asymptotic
statistics of the Bayesian posterior in terms of the dynamical instabilities, differen-
tiating between deterministic and stochastic dynamics. We also present two novel
results. Firstly, we study the functioning of the ensemble Kalman filter in the context
of a chaotic, coupled, atmosphere-ocean model with a quasi-degenerate spectrum of
Lyapunov exponents, showing the importance of having sufficient ensemble mem-
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bers to track all of the near-null modes. Secondly, for the fully non-Gaussian method
of the particle filter, numerical experiments are conducted to test whether the curse of
dimensionality can be mitigated by discarding observations in the directions of little
dynamical growth of uncertainty. The results refute this option, most likely because
the particles already embody this information on the chaotic system. The results also
suggest that it is the rank of the unstable-neutral subspace of the dynamics, and not
that of the observation operator, that determines the required number of particles.We
finally discuss how knowledge of the random attractor can play a role in the develop-
ment of future data assimilation schemes for chaotic multiscale systems with large
scale separation.

1 Introduction

This chapter attempts a unified and comprehensive discussion of a number of studies
that in about a decade have contributed to shape our nowadays’s understanding of
the implications, impacts and consequences for data assimilation when is applied to
chaotic dynamics. The chapter presents a review of the essential results appeared in
different studies, but for the first time together in a coherent treatment. In addition
we present new original findings addressing two key aspects that were not covered
in previous studies. The first treats the impact of data assimilation on a chaotic
and multiscale system, the second concerns the consequences for nonlinear, non-
Gaussian, data assimilation (a particle filter) in face of the chaotic nature of the
underlying dynamics.

The exposition is organised as follows. We first discuss, in Sect. 2, the chaotic
character of atmospheric and oceanic flows, and provide a treatment of the key
mathematical concepts and tools that allow for characterising chaos and to “measure”
the degree of instabilities. In doing so, we review classical results from dynamical
system theory, including themultiplicative ergodic theorem and associated definition
of Lyapunov (forward, backward and covariant) vectors and exponents.

Section3 analyses how a chaotic dynamics impacts data assimilation. Our focus
is on Kalman filter (KF) and smoother (KS) in Sect. 3.1, and on their ensemble-
based formulations, the ensemble Kalman filter (EnKF) and smoother (EnKS), in
Sect. 3.2. Section3.1 contains primarily analytic results and treats KF and KS in
linear systems, either purely deterministic (Sect. 3.1.1) or with stochastic additive
noise (Sect. 3.1.2). Section3.2 is dedicated to nonlinear systems (deterministic, in
Sect. 3.2.1 and stochastic in Sect. 3.2.2) and on how the EnKF (Evensen 2009a) and
the extended Kalman filter (EKF, Ghil and Malanotte-Rizzoli 1991) works in this
scenario. In Sect. 3.2.1 we present original results on the impact of chaos on the
performance of the EnKF in a coupled atmosphere-ocean model which possesses a
degenerate-like spectrum of Lyapunov exponents, disentangling on the role of the
quasi-null exponents.

Section4 reverses the perspective and instead of studying the effect of chaos on
data assimilation, reports on how properties of the dynamics have been used to devise
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adaptive observation strategies and ad-hoc data assimilation methods. In particular,
in Sect. 4.2, we succinctly review the assimilation in the unstable subspace (AUS,
Palatella et al. 2013), a known approach that exploits the unstable-neutral subspace
of the dynamics to perform the analysis. Remarkably, AUS was conceived before
the findings reviewed in Sect. 3. The latter work was inspired by these early studies,
and the need to provide mathematical rigor to clarify the mechanisms that made
these early studies successful. In turn, the later work has furthermore provided the
framework to generalize these early ideas to a variety of other types of dynamics.

Section5 presents what we consider two main areas of future developments. In
Sect. 5 the paradigm ofAUS is incorporatedwithin a fully nonlinear data assimilation
scheme, the particle filter (Van Leeuwen et al. 2019). It is shown that observing in
the directions of instabilities is effective but also that it is not deleterious to observe
the stable directions. As opposed to the data or model sizes, our results suggest that
the number of particles required to achieve good results scales with the size of the
unstable-neutral subspace. Section5.2 discusses how the concept of random attractor
can offer novel ways to handle the data assimilation problem in stochastic chaotic
multi-scale systems with large scale separation. It also treats the implications of the
numerical scheme on the output of the data assimilation cycle and ensemble-based
forecasts, as well as poses some key questions for future studies.

Final conclusions and a summary are drawn in Sect. 6.

2 Chaos in Atmospheric and Oceanic Flows

The atmosphere and the ocean are fluids that are described by the set of classical
conservation laws of hydrodynamics, including the conservation ofmass,momentum
and energy (Vallis 2017). For the atmosphere, these are often complemented by the
conservation ofmoisture present in the air. These laws lead to a set of local dynamical
equations describing themotion of each parcel of fluid. Given that these equations are
nonlinear with complex interactions with the boundaries, realistic solutions cannot
be obtained analytically and one must rely on numerical simulations starting from
appropriate initial conditions.

Numerical simulations are based on discrete approximations in space and time of
the dynamical equations, and are often accompaniedwith simplifications of the equa-
tions in order to describe appropriately the scales of interest. One of the most famous
approximations is the geostrophic approximation which assumes a balance between
the horizontal velocity field and the horizontal pressure gradient. Geostrophic bal-
ance is a good approximation for both the ocean and the atmosphere albeit at different
spatial scales. The geostrophic approximation is at the basis of the models that will
be used later in Sect. 3.2.1.

Whatever the scale at which the atmospheric or the ocean fluids are observed,
they display an apparently erratic evolution. This erratic behavior is also present
in atmospheric, ocean and climate models when appropriate forcing are imposed.
This feature should not be confused with randomness as most of the models used
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since the start of numerical modelling were purely deterministic. Lorenz (1963)
showed in a simple low-order model that this erratic behavior is concomitant with
the property of sensitivity to initial conditions, bywhichwhatever small an error in the
initial condition is, it will increase rapidly in time. This property implies that given
the inevitable error in the initial conditions, any forecast will ultimately become
useless as the error finally reaches an amplitude of the same order as the natural
variability of the variable considered. The sensitivity to initial conditions and the
consequent erratic-like evolution are the key properties of deterministic dynamical
systems displaying chaos.

This behaviour has been found in many atmospheric, oceanic and climate models
(see e.g., Vannitsem 2017, for a review). In particular, a detailed investigation of the
chaotic nature of the coupled ocean-atmosphere system thatwill be used in Sect. 3.2.1
has been performed by Vannitsem et al. (2015).

2.1 Measuring Sensitivity to Initial Conditions

The notion of sensitivity to initial conditions of dynamical solutions was already dis-
covered and studied in a mathematical context by Poincaré (1899). In the second half
of the 20th century, this property was discovered in models of atmospheric and cli-
mate relevance (Thompson 1957; Lorenz 1963). Its important practical implications
drove the regain of interest in developing the appropriate mathematics in support of
its description and understanding. These efforts culminated with the development
of the ergodic theory of deterministic dynamical systems and chaos theory. In the
following we shall briefly summarise what we consider to be the key developments
that led to the definition of Lyapunov exponents and vectors.

The importance of these mathematical objects stands on their ability to “measure”
the degree of instabilities and thus to quantify the aforementioned sensitivity to initial
conditions.Whilemore rigorousmathematical treatments can be found in appropriate
mathematical literature (see e.g., Pikovsky and Politi 2016, and references therein),
and we will invoke that rigour to a certain extent in the following sections, here
we approach the discussion with a physical and intuitive angle. Further details can
also be found in Legras and Vautard (1996), Barreira and Pesin (2002), Kuptsov and
Parlitz (2012).

Let us write the evolution laws of a deterministic dynamical system in the form
of a set of ordinary differential equations (ODEs),

dx
dt

= f(x, σ ), (1)

where x is a vector containing the entire set of relevant variables x = (x1, . . . , xn) and
σ represents a set of parameters. The discussion that follows holds also when system
(1) explicitly depends on time, thus being non-autonomous, provided it remains
ergodic.
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Since the process of measurement is always subject to finite precision, the initial
state is never known exactly. To study the evolution and the implications of such an
error, let us consider an initial state displaced slightly from x0 by an initial error δx0.
The perturbed initial state, x0 + δx0, generates a new trajectory in phase space and
one can define the instantaneous error vector as the vector joining the representative
points of the reference trajectory and theperturbedone at a given time, δx(t). Provided
that this perturbation is sufficiently small and smooth, its dynamics can be described
by the linearized equation,

dδx
dt

≈ ∂F
∂x|x(t)

δx, (2)

with a formal solution,
δx(t) ≈ M(t, x(t0))δx(t0). (3)

ThematrixM is referred to as the “fundamentalmatrix” and is the resolvent of Eq. (2),

i.e.M(t, x(t0)) = e
∫ t
t0

∂F
∂x |x(t)dt . The fundamentalmatrix contains the information on the

amplification of infinitesimally small perturbations.
In the context of the ergodic theory of deterministic dynamical systems, the

Oseledets theorem (Kuptsov and Parlitz 2012) shows that the limit of the matrix
(M�M)1/[2(t−t0)], for time going to infinity, exists; let us refer to this limiting matrix
as S. The logarithm of its eigenvalues are called the Lyapunov exponents (LEs),
whereas the full set of LEs is called the Lyapunov spectrum, and is usually repre-
sented in decreasing order. The eigenvectors of S, which are local properties of the
flow (they change along the trajectory thus being time-dependent) and depend on the
initial time t0, are called the forward Lyapunov vectors (FLVs) (Legras and Vautard
1996).

The LEs are a powerful tool to “measure” chaos and to characterise the degree
of instability of a system. For instance, LEs are averaged (asymptotic) indicators of
exponential growth (LE > 0) or decay (LE < 0) of perturbations under the tangent-
linear model. A deterministic chaotic system is uniquely characterised by having at
least its leading LE larger than zero, i.e. LE1 > 0. The sum of the LEs is equal to the
average divergence of flow generated by Eq. (1) (see e.g. Pikovsky and Politi 2016).
This means that in dissipative (conservative, e.g. Hamiltonian) systems the sum of
the LEs is negative (zero): volumes in the phase space of a dissipative (conservative)
dynamics reduce (are conserved) on average with time. Furthermore, autonomous
continuous-in-time systems generally possess at least one LE = 0, unless they con-
verge to a motion-less state. This null exponent is related to perturbations aligned to
the system’s velocity vector (i.e. δx = f), so although they shall fluctuate depending
on the local flow, theywill not on average decay nor growth. These last two properties
can also be used as a check for numerical accuracy when computing the LEs.

The multiplicative ergodic theorem (MET) (Barreira and Pesin 2002, Theorem
2.1.2) guarantees that, under general hypotheses, the eigenvalues of the matrix
(M�M)1/[2(t−t0)] obtained for t → ∞ are equivalent to the ones of the matrix
S′ = (MM�)1/[2(t−t0)] when t0 → −∞. The equivalence of the spectrum of S and S′
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is not generically true for the fundamental matrix of an arbitrary, linear dynamical
system; however, the MET guarantees that this is a fairly generic property of the
resolvent of the tangent-linear model of a nonlinear dynamical system. If the flow
of the time derivative f is a C1 diffeomorphism of a compact, smooth, Riemannian
manifold M , then the MET assures that the LEs are defined equivalently by the log-
eigenvalues of S or S′ for any initial condition x(t0) and that the LEs are unique on a
subset of M of full measure with respect to any ergodic invariant measure μ of the
flow. Note that, without the condition of ergodicity ofμ, the LEsmay bewell-defined
point-wise, but the specific values and their multiplicity may depend on the initial
condition x(t0).

The matrices S and S′ are symmetric. However, contrary to the eigenvalues, the
eigenvectors of these twomatrices are not equivalent due to the asymmetric character
of the fundamental matrix M in forward- and reverse-time. The eigenvectors of the
latter are called the backward Lyapunov vectors (BLVs). Theoretically, each matrix
can be evaluated at the same place along the reference trajectory x(t) and their
orthogonal eigenvectors can be computed as Lf,i

t and Lb,i
t for S and S′, respectively,

where it is understood that the time-dependenceon t iswith respect to the linearization
of the dynamics at x(t). There exist Oseledet subspaces Wi

t ,

Wi
t = Lb,1

t ⊕ · · · ⊕ Lb,i
t ∩ Lf,i

t ⊕ · · · ⊕ Lf,N
t , (4)

with ⊕ being the direct product (Ruelle 1979), that have the important properties of
being invariant under the effect of the fundamental matrix, such that

M(τ, x(t))Wi
t = Wi

τ . (5)

Due to their orthogonal nature, the FLVs and the BLVs require by definition the
choice of a norm and of an inner product. Nevertheless, the Oseledet subspaces
themselves do not have this dependence; in this way, they can be considered to embed
more invariant information about the dynamics. The decomposition of the tangent-
linear space into these covariant subspaces is commonly known as the “Oseledet
splitting” or decomposition. The classical form of the MET thus guarantees that the
Oseledet splitting is well-defined and consistent with probability one over all initial
conditions of the attractor, with respect to the invariant, ergodic measure. Other
covariant splittings of the tangent-linear model, such as by exponential dichotomy,
exist under more general forms of the MET (Froyland et al. 2013).

When the Lyapunov spectrum is non-degenerate, one can define a time-varying

basis, subordinate to the Oseledet spaces, Wi
t = span

{
Lc,i
t

}
, such that

M(τ, x(t))Lc,i
t = αi (τ, x(t))Lc,i

τ , (6)

where ‖ Lc,i
t ‖=‖ Lc,i

τ ‖, and αi (τ, x(t)) ∈ R describes an amplification factor. The
vectors Lc,i

t are known as the covariant Lyapunov vectors (CLVs). In the long-time
limit, the amplifications αi (τ, x(t)) can be associated to the LEs as,
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± λi = lim
τ→±∞

1

τ
ln |αi (τ, x(t))| = lim

τ→±∞ λτ
i (x(t)) (7)

where we indicate by λτ
i (x(t)) the average of the growth rate taken over a time

window τ starting at t at position x(t)), and are commonly known as the local
Lyapunov exponents (LLEs) (Pikovsky and Politi 2016, see Chap.5).

Throughout the chapter we will denote the matrix with columns corresponding to
the full tangent linear space ordered basis of BLVs/FLVs/CLVs at time t asLe

t for e ∈
{b, f, c} respectively. A sub-slice of this matrix of Lyapunov vectors corresponding,
inclusively, to columns i through j will be denoted Le,i : j

t . In the following, the
relationships between these Lyapunov vectors and their asymptotic dynamics will
be key to understanding the predictability of chaotic systems. For this purpose, we
will largely use the BLVs and the CLVs, and to a lesser extent the FLVs.

Note that the basis
{
Lc,i
t

}Nx

i=1
is not orthogonal in general and, in fact, the angles

between any two Oseledec subspaces Wi and Wj are not in general bounded away
from zero in their limits in forward- or reverse-time. For this reason, coordinate
transformations to covariant Oseledet bases are not generally numerically well-
conditioned asymptotically, and therefore hard to compute. The property of integral
separation (Dieci and Van Vleck 2002), describing the stability of the Lyapunov
spectrum under bounded perturbations of the tangent-linear equations, ensures that
the angles between the covariant subspaces will remain bounded away from zero,
but this is a strong condition and it is not as generic of a property as the existence of
the Oseledet decomposition under the MET. However, if a dynamical system is inte-
grally separated as above, there exists a well-defined, numerically well-conditioned
transformation of coordinates of the tangent-linear model for which the action of the
resolventM can be expressed as a block-diagonal matrix with each block describing
the invariant dynamics of a single Oseledet space. For degenerate spectrum, these
blocks may be upper-triangular, but for non-degenerate spectrum this representation
of the resovlent becomes a strictly diagonal matrix; see Theorem 5.4.9 of Adrianova
(1995) for the classical result, or Theorem 5.1 of Dieci and Van Vleck (2007) and
Froyland et al. (2013) for more recent extensions.

3 Data Assimilation in Chaotic Systems—How the
Dynamics Impacts the Way We Assimilate Data

The high sensitivity of a chaotic dynamical system to the initial condition makes it
hard to forecast it, even when their evolution equations are perfectly known. Indeed
the typical error grows exponentially over time with a rate given by the largest
positive LE. With a view to forecasting, one has no choice but to regularly correct
its trajectory using information on the system state obtained through observations.
This is the primary goal of data assimilation (DA) and has been key to the success
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of numerical weather forecasting. We refer to Kalnay (2003), Asch et al. (2016) and
references therein for textbooks and reviews on geophysical DA.

When framed in a Bayesian formalism, the goal of DA is to estimate the condi-
tional probability density function (pdf) of the system state knowing observations
of that system. For high-dimensional systems, only approximations of this pdf can
be obtained, among which the Gaussian approximation is the most practical and
common (Carrassi et al. 2018). In the case of Gaussian statistics of the error and
linear dynamics, the conditional pdf can be obtained analytically: it is Gaussian, and
can be sequentially computed using the Kalman filter (KF) (Kalman 1960). Directly
inspired from the Kalman filter, the extended Kalman filter (EKF) offers an approx-
imate DA scheme when the operators are nonlinear (Ghil and Malanotte-Rizzoli
1991). However, it can hardly be used in the context of high-dimensional systems,
where it has to be replacedwith the ensembleKalman filter (EnKF) (Evensen 2009b).
In the EnKF, the covariance matrices are represented by state perturbations which
are representative of the errors and, together with the state mean, form a limited-size
ensemble of state vectors.

Understanding how the ensemble of the EnKF evolves under the action of the
DA scheme and the forecast model dynamics is important. Several numerical results
suggest that the skills of ensemble-based DA methods in chaotic systems are related
to the instabilities of the underlying dynamics (Ng et al. 2011). Numerical evidences
exist that some asymptotic properties of the ensemble-based covariance matrices
(rank, span, range) relate to the unstable modes of the dynamics (Sakov and Oke
2008a; Carrassi et al. 2009). Nevertheless, a better, more profound, understanding of
these results was needed to aim at designing reduced rank, computationally cheap,
formulations of the filters.

Analytic results that have shed lights on the behaviour of filters and smoothers
on chaotic dynamics, and explained the numerically observed properties, have been
obtained for linear dynamics. Section3.1.1 reviews those findings in the case of
deterministic systems without model error, based on the work by Gurumoorthy et al.
(2017) and Bocquet et al. (2017). Section3.1.2 treats their extension to the case of
stochastic systems, following the work by Grudzien et al. (2018a), Grudzien et al.
(2018b). In the case of nonlinear dynamics, robust numerical evidences will be
described by the original experiments in Sect. 3.2, that extent the previous findings
by Bocquet and Carrassi (2017).

3.1 Linear Dynamics: The Effect of Chaos on the Kalman
Filter and Smoother

3.1.1 Perfect and Deterministic Dynamics

At time tk , let xk ∈ R
Nx and yk ∈ R

Ny be the state and observation vector, respectively.
Let us assume linear evolution model dynamicsMk and observation model Hk such
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that

xk = Mkxk−1 + wk, (8a)

yk = Hkxk + vk . (8b)

The model and observation noises, wk and vk , are assumed mutually independent,
zero-mean Gaussian white sequences with statistics

E[vkv�
l ] = δk,lRk, E[wkw�

l ] = δk,lQk, E[vkw�
l ] = 0 . (9)

In the Kalman filter, which yields the optimal DA solution with such assumptions,
the forecast error covariance matrix Pk satisfies the recurrence

Pk+1 = Mk+1 (I + Pk�k)
−1 PkM�

k+1 + Qk+1, (10)

where
�k ≡ H�

k R
−1
k Hk, (11)

is the precision matrix of the observations mapped into state space. In the absence
of model error, i.e. Qk ≡ 0, Gurumoorthy et al. (2017) proved rigorously that in the
full-rank KF (in particular P0 is full rank), Pk collapses onto the unstable-neutral
subspace.

We shall summarise in the following some key results that apply to the full-rank
but also to the degenerate case, i.e. even if P0 is of arbitrary rank and the initial errors
of the DA scheme only lie in a subspace ofRNx . In particular they apply to the EnKF
if the dynamical and observations operators are both linear. We recall them here, but
readers can find full details in Bocquet et al. (2017), Bocquet and Carrassi (2017).

Result 1: Bound on the free forecast error covariance matrix

Let us define the resolvent of the dynamics from tl to tk asMk:l = MkMk−1 · · ·Ml+1,
with the convention thatMk,k = I. The first key result is the following inequality in
the set of the semi-definite symmetric matrices:

Pk ≤ Mk:0P0M�
k:0 + �k =: Pfree

k , (12)

where

�0 ≡ 0 and for k ≥ 1 �k ≡
k∑

l=1

Mk:lQlM�
k:l, (13)

is known as the controllabilitymatrix (Jazwinski 1970), and the suffix “free” is used
to refer to the forecast error of the system unconstrained by data. In the absence of
model noise (Qk ≡ 0 for the rest of this section), it reads

Pk ≤ Mk:0P0M�
k:0. (14)
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Assuming the dynamics to be non-singular, the column subspace of the forecast error
covariance matrix satisfies

Im(Pk) = Mk:0 (Im(P0)) . (15)

If n0 is the dimension of the unstable-neutral subspace of the dynamics, it can further
be shown that

lim
k→∞ rank(Pk) ≤ min {rank(P0), n0} , (16)

which is a first proof of the collapse of the error covariance matrix (actually its
column space) onto the unstable and neutral subspace of the dynamics.

Result 2: Collapse onto the unstable subspace

Let σ k
i , for i = 1, . . . , Nx denote the eigenvalues ofPk ordered as σ k

1 ≥ σ k
2 · · · ≥ σ k

Nx
.

It was shown that
σ k
i ≤ βi exp

(
2λk

i k
)
, (17)

for some βi > 0, where λk
i is a log-singular value of Mk:0 that converges to the LE

λi . This gives an upper bound for all eigenvalues of Pk and a rate of convergence for
the Nx − n0 smallest ones. Moreover, if Pk is uniformly bounded, it can further be
shown that the stable subspace of the dynamics is asymptotically in the null space
of Pk , i.e.,

lim
k→∞

∥
∥
∥PkL

b,i
k

∥
∥
∥ = 0 (18)

for all i > n0; this extends to any norm and linear combination of these vectors.

Result 3: Explicit dependence of Pk on P0

To study the dependence of Pk on P0, it has been shown that the forecast error
covariance matrix can be written as

Pk = Mk:0P0M�
k:0

(
I + �kMk:0P0M�

k:0
)−1

, (19)

where the matrix

�k ≡
k−1∑

l=0

M−�
k:l �lM−1

k:l , (20)

is known as the information matrix and it measures the observability of the system
by propagating the precision matrices �l up to tk .

An alternative formulation of Eq. (19) is

Pk = Mk:0P0 [I + �kP0]
−1 M�

k:0, (21)

where
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�k ≡ M�
k:0�kMk:0 =

k−1∑

l=0

M�
l:0�lMl:0, (22)

is also an information matrix, directly related to the observability of the DA system,
but pulled back at the initial time t0. Equation (21) is of key importance because it
allows to study the asymptotic behaviour of Pk , i.e. the filter “believed” error, using
the asymptotic properties of the dynamics.

Result 4: Asymptotics of Pk

For Pk to forget about P0 as k tends to infinity, it was shown that one can impose the
following sufficient conditions:

• Condition 1: Recall that the FLVs at t0 associated to the unstable and neutral
exponents are the columns ofLf,1:n0

0 ∈ R
Nx×n0 .Moreover, let us define the anomaly

matrix X ∈ R
Nx×n0 such that P = XXT. The condition reads

rank
(
X�

0 L
f,1:n0
0

)
= n0. (23)

In practice the initial ensemble anomalies X0 projects onto the first n0 FLVs at t0.
• Condition 2: The model is sufficiently observed so that the unstable and neutral
directions remain under control, i.e., there exits ε > 0 such that

(
Lb,1:n0
k

)�
�kL

b,1:n0
k > εI. (24)

• Condition 3: Furthermore, for any neutral BLV we have

lim
k→∞

(
Lb,n0
k

)�
�kL

b,n0
k = ∞, (25)

implying that the neutral direction is well observed and controlled.

Under these three conditions, we obtain

lim
k→∞

{

Pk − Lb,1:n0
k

[(
Lb,1:n0
k

)�
�kL

b,1:n0
k

]−1 (
Lb,1:n0
k

)�
}

= 0. (26)

Hence, the asymptotic sequence does not depend on P0, but only on �k , i.e. on
the dynamics and observations. It can also be shown that the neutral modes have
a peculiar role and a long lasting influence: their influence on the current estimate
decreases sub-exponentially.

Result 5: From the degenerate KF to the square-root EnKF and EnKS

The recurrence Eq. (21) can be reformulated in a factorised form which is suited to
the square-root EnKF. The standard perturbation decomposition of the forecast error
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covariance is
Pk = XkX�

k , (27)

whereXk is thematrix of centred perturbations (the anomalymatrix aforementioned).
A right-transform update formula can then be obtained from (21):

Xk = Mk:0X0
[
I + X�

0 �kX0
]−1/2

ϒk, (28)

where ϒk is an arbitrary orthogonal matrix such that ϒk1 = 1, where 1 is the vector
[1 . . . 1]� defined in the ensemble subspace. It is equivalent to the left-transform
update formula

Xk = [
I + Mk:0P0M�

k:0�k
]−1/2

Mk:0X0ϒk . (29)

The importance of Eqs. (28) and (29) stands on the fact that with linear models,
Gaussian observation and initial errors, the (square-root) degenerate KF (with X ∈
R

Nx×n and n < Nx ) is equivalent to the square-root EnKF and can serve as a proxy
to the EnKF applied to nonlinear models.

All of these results can be generalised to linear smoothers. In particular, the
smoother forecast error covariance matrix is similar to that of the filter, i.e. given by
(19), or (21) but with the following modified information matrix:

�̂k = �k +
k+L−S∑

l=k

M−T
k:l �kM−1

k:l , (30)

where L is the lag of the smoother (how far in the past observations are accounted
for) and S tells by how many time steps the smoother’s window is shifted between
two consecutive updates. Note that �̂k ≥ �k (using the Loewner order on the set of
semi-definite positive matrices) reflecting the general higher amount of information
incorporated within a smoother update relative to a filter. Therefore the asymptotic
sequences for the filter (right-hand side) and smoother (left-hand-side) follow the
inequality:

Lb,1:n0
k

[(
Lb,1:n0
k

)�
�̂kL

b,1:n0
k

]−1 (
Lb,1:n0
k

)� ≤

Lb,1:n0
k

[(
Lb,1:n0
k

)�
�kL

b,1:n0
k

]−1 (
Lb,1:n0
k

)�
.

(31)

The linear smoothers can serve as a proxy to the ensemble Kalman smoother
(Evensen 2009b) or the iterative ensemble Kalman smoother (IEnKS) (Bocquet and
Sakov 2014) applied to nonlinear models (Bocquet and Carrassi 2017). With the
IEnKS, where the true state trajectory is even better estimated and the errors are
reduced, the collapse of the perturbations onto the unstable and neutral subspace is
expected to be even faster.
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3.1.2 Stochastic Dynamics

The above perfect-deterministicmodel configuration demonstrates how chaos shapes
the inferences of the posterior. Asymptotic statistics are determined by the ability of
the filter to control the growth of initial error in the unstable-neutral subspace with
respect to its sensitivity to observations therein. However, in realistic DA, additional
forecast errors are introduced throughout the forecast cycle due to the inadequacy
of numerical models in representing reality. One classical approach to treat these
model errors is to represent them as additive ormultiplicative noise (Jazwinski 1970).
Oseledet’s theorem and the Lyapunov spectrum are also formulated for such systems
of stochastic differential equations (SDEs) and discrete maps.

Suppose {vi }di=0 is a collection of C3 vector fields onM ⊂ R
Nx , a smoothmanifold

without boundary. Define {Wi
t }di=1 where eachW

i
t is an independent Wiener process

defined on the probability space (
,F , P). This describes a generic Stratonovich
SDE,

dx
dt

= f(x, σ , ω) � v0 (x, σ ) +
d∑

i=1

vi (x, σ ) ◦ Wi
t (ω). (32)

For fixed σ , if {vi }di=1 span the tangent space TxM for each x ∈ M , then the system
of SDEs gives rise to a unique probability measure μ on M that is invariant with
respect to the random flow induced by the system of SDEs. For μ × P almost every
(x, ω) ∈ M × 
, the Lyapunov exponents and their multiplicity are defined and only
depend on x (Liu and Qian 2006, Theorem 2.1). For the SDE, f(x, σ , ω), the tangent
linear model is once again defined as in Eq. (2) fromwhich the exponents and vectors
can be computed as usual (Pikovsky and Politi 2016, chaps. 2 and 8).

The analysis from perfect-deterministic models thus extends to stochastically
forced models as in Eq.8a, but with key differences. Firstly, the forecast error covari-
ance can generally be considered to be of full rank due to the injection of the stochastic
forcing wk into arbitrary subspaces; the standard controllability assumption actually
guarantees that it is of full rank after a sufficient lead time (Jazwinski 1970, Lemma
7.3). Stochastic perturbations wk are, moreover, subject to growth and decay rates
of the LLEs, λτ

i of Eq. (7). These LLEs are distributed about the LE such that even
asymptotically stable modes may have transient periods of rapid growth.

To make the analysis tractable, assume that the dynamics are stationary in the
sense that the recursive QR algorithm (Shimada and Nagashima 1979; Benettin et al.
1980) converges uniformly to the theoretical LEs uniformly in number of iterations
from any initial time. While the forecast error covariance is not generally reduced-
rank, the stable dynamics is actually sufficient to uniformly bound the forecast error
variances in the stable subspace without any assimilation.

Result 6: Uniform bounds on the variance of errors in the stable subspace

Recall that Lb,i
k is the i-th BLV and that Pfree

k is the free forecast error covariance
(e.g. without DA). For λi < 0, define ε > 0 such that exp {2λi + ε} < 1. By the
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stationarity assumed above, there exists Nε such that if k − l > Nε , then

−ε <
1

k − l
log

(
‖ M�

k:lL
b,i
k ‖

)
− λi < ε. (33)

Assuming that the system is uniformly completely controllable and Qk ≤ qsupIn <

∞ for all k, the controllability matrix, Eq. (13), is uniformly bounded above by
CNε

In . A variation on Eq. (12) can be used to obtain a uniform bound on the i-th
variance of Pfree

k in the basis of the BLVs as

lim sup
k→∞

(
Lb,i
k

)�
Pfree
k Lb,i

k ≤ CNε
+ qsup exp {2(λi + ε)Nε + 1}

1 − exp {2(λi + ε)} . (34)

This bound represents the competing forces of the transient growth rates of
recently introduced perturbations in the controllability matrix, and perturbations that
adhere to their aysmptotic log-average rate of decay in the stable subspace within
a margin of ε (Grudzien et al. 2018a, Proposition 2 and Corollary 3). This demon-
strates that, if assimilation prevents error growth in the span of the unstable-neutral
BLVs, errors in the span of the stable BLVs can be neglected without relinquishing
filter boundedness. However, this does not state whether the error in the span of the
stable subspace will remain within tolerable bounds.

Redefineqsup such thatPfree
0 ,Qk ≤ qsupIn for all k. The variance of the free forecast

in the i-th BLV is bounded directly as

(
Lb,i
k

)�
Pfree
k Lb,i

k =
(
Lb,i
k

)�
Mk:0Pfree

0 M�
k:0L

b,i
k +

k∑

l=1

(
Lb,i
k

)�
Mk:lQlM�

k:lL
b,i
k

≤ qsup

k∑

l=0

(
Lb,i
k

)�
Mk:lM�

k:lL
b,i
k = qsup

k∑

l=0

‖ (
T�
k:l

)i ‖2,
(35)

where ‖ (
T�
k:l

)i ‖ is the normof the i-th rowofTk:l in the recursiveQRdecomposition

of the propagator, Mk:l = Lb
kTk:l

(
Lb
l

)�
. The sum

 i
k �

k∑

l=0

‖ (
T�
k:l

)i ‖2 (36)

describes the invariant evolution for the i-th variance of the free forecast error covari-
ancematrix in the basis of BLVs. In the case thatQk = qIn for all k, Eq. (35) becomes
an equality and i

k can be interpreted as the evolution of the i-th variancewhen q = 1.

As k − l grows ‖ (
T�
k:l

)i ‖ converges exponentially to zero while for k − l close to
one this describes transient dynamics in the basis of the BLVs. Although  i

k is guar-



Data Assimilation for Chaotic Dynamics 15

Fig. 1 Upper: time series of 5
k and 6

k as defined in Eq. (36). Lower: LLEs of Lb,5 and Lb,6.
Adapted from Grudzien et al. (2018a)

anteed to be uniformly bounded in k (Grudzien et al. 2018a, Corollary 3), numerical
simulations demonstrate how this uniform bound can be extremely large.

Figure1, presents an example from Grudzien et al. (2018a) of the free forecast
error variance, i

k , over 10
4 forecast cycleswhere themodel propagatorMk is defined

by the evolution of the tangent linear model of the Lorenz-96 system (Lorenz 1996)
in Nx = 10 dimensions, with an interval between observations of 0.1, andQk � INx .
Although this model is generated from the underlying nonlinear Lorenz system, the
state model for the experiment is treated as a discrete linear model using only the
tangen-linear resolvent as above. This model has three unstable, one neutral and six
stable LEs. While λ5 and λ6 are negative, L

b,5
k and Lb,6

k experience frequent transient
instabilities in the timeseries of their LLEs (see bottom row in Fig. 1). The LLEs of
Lb,5
k have more intense growth, reflected in the differences between 5

k and 6
k (top

row): the maximum of 6
k is on the order of O(102) and the mean is approximately

28; for 5
k the max is of O (

103
)
and the mean is approximately 808. This suggests

that, as opposed to the case of deterministic dynamics, for successful DA in stochastic
systems with additive model error, it is necessary to control the growth of forecast
errors also in the span of weakly stable BLVs. While errors in this span will not grow
indefinitely and remain bounded, if those directions are left uncontrolled their error
bounds can be practically too large for any meaningful state estimation purposes.

Result 7: The unfiltered-to-filtered error upwell and the need for inflation

Motivated by the results above, suppose that an approximate, reduced-rank Kalman
estimator is defined such that the resulting forecast error covariance and the Kalman
gain have image (column) spaces constrained to the span of the leading r ≥ n0
BLVs,Lb,1:r

k . For perfect and deterministic dynamics, this estimator is asymptotically
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equivalent to the optimal Kalman filter by the results of Sect. 3.1.1. On the other hand,
Result 6 establishes that, in the presence of additive model errors, the variance of
the unfiltered error in the span of the trailing Nx − n0 BLVs will remain finite, albeit
bounded as per Eq. (35). When r > n0 this reduced-rank Kalman filter will correct
the r − n0 stable modes in addition to unstable-neutral modes, thereby reducing the
variance of the free forecast errors below the bounds pictured in Fig. 1.

Grudzien et al. (2018b) derive the full forecast error covariance dynamics for the
reduced-rank Kalman estimator described above. Note that, as opposed to the free
forecast error covariance described in relation toResult 6, the discussion pertains now
to the forecast error covariance cycledwithin theKF.While the standard reduced-rank
KF formalism would write the recursion for the forecast error covariance entirely
within the span of Lb,1:r , it is proven in Grudzien et al. (2018b) that forecast errors in
the column span of trailingLb,r+1:Nx

k (those left “uncorrected” byDA) are transmitted
into the column span of Lb,1:r

k . This “error upwell” is a consequence of the KF rank-
reduction within the first r BLVs and is driven by the upper triangular dynamics of
the BLVs in the recursive QR algorithm. Therefore, neglecting the contribution of
the “upwelling” of error from the trailing to the leading BLVs, as in the standard
recursion, leads to a systematic underestimation of the true forecast error in the
presence of additive noise. Furthermore, because the leading r BLVs share the same
span as the leading r Oseledet spaces, Eq. (4), the upwelling of errors from the span
of the trailing BLVs to the leading BLVs holds for any estimator that is restricted to
the span of the leading r covariant subspaces.

Figure2 presents an example from Grudzien et al. (2018b), using the same tan-
gent linear model from the 10-dimensional Lorenz-96 system as in Fig. 1, and fixing
each of Hk = Rk = Qk = I. In each window, the eigenvalues of the forecast error
covariance matrix of the optimal full-rank KF (yellow) and of the “exact”, reduced-
rank estimator (red) are averaged over 105 analysis cycles and plotted with triangles.
By exact it is meant here that the full covariance equation is evolved analytically,
including the covariance within the unfiltered trailing BLVs and their cross covari-
ances with the leading filtered modes. The rank, r , of the reduced-rank estimator is
varied to examine the differences between the forecast error covariances arising from
the optimal KF and the reduced-rank one when only the unstable-neutral subspace
is corrected by the gain (r = n0 = 4), the first stable mode is corrected by the gain
(r = 5) and so on. As suggested by Fig. 1, correcting the first stable mode reduces
the leading eigenvalue of reduced-rank estimator’s forecast error covariance by an
order of magnitude versus the case when only the unstable-neutral subspace has been
corrected (cf the red curves between the two top windows).

In eachwindow the projection coefficients of the reduced-rank estimator’s forecast
error covariance into the basis of BLVs are also plotted (green line). For the full-rank
optimal KF, the projection coefficients closely follow the eigenvalues and this is not
shown due to redundancy. By contrast, it is clear that for the reduced-rank estimator
the leading eigenvector is typically close to the first BLV that is contained in the
null space of the reduced-rank gain, i.e. the first among the unconstrained directions.
Figure2 demonstrates thus a fundamental difference between the perfect model and
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Fig. 2 Eigenvalues of the KF and the reduced-rank estimator covariances plotted with triangles.
Projection coefficients of the reduced-rank estimator covariance plotted with X’s

stochastically forced model configurations: in stochastic systems, using a reduced-
rank n0 ≤ r < Nx Kalman estimator, the leading order forecast errors can actually
lie in the stable, unfiltered modes. Those modes must be taken thus into account
in the DA procedure by, for instance, appropriately enlarging the ensemble size or
otherwise augmenting the span of the ensemble-based gain.

The exact recursion for the reduced-rank gain (red lines in Fig. 2) requires resolv-
ing the full error covariance dynamics and therefore cannot be used practically for
DA. Nevertheless, it was used here to render apparent, the upwelling phenomena: a
fundamental source of uncertainty that is not captured by the standard reduced-rank
KF (and thus almost all EnKF) recursion. This mechanism is ubiquitous when-
ever one solves for a reduced rank estimator and is present whenever the fore-
cast error evolution can be well approximated by the tangent-linear dynamics (see
Sect. 3.2.2). Notably, it also provides one basic, mathematically grounded, justifica-
tion for using covariance inflation (Grudzien et al. 2018b), a powerful common fix
used in ensemble-based DA (that are commonly rank-deficient by construction) to
mitigate for sampling, and sometimes model, error (see e.g., Carrassi et al. 2018,
their Sect. 4.4.2 and references therein). Finally, the exact recursion also demon-
strates the asymptotic characteristics of the forecast error covariance when using a
reduced-rank gain, in the absence of sampling error. It is extremely important to note
that in the exact error dynamics for the reduced rank estimator, the leading order
forecast errors lie in the directions that are asymptotically stable but unfiltered. This
also highlights the importance of localization (Sakov and Bertino 2011) and gain-
hybridization (Penny 2017) as effective means for preventing the growth of forecast
errors that lie outside of the ensemble span in the EnKF.
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3.2 Nonlinear Dynamics: The Effect of Chaos
on the Ensemble Kalman Filter

3.2.1 Perfect and Deterministic Dynamics

The performance and the functioning mechanisms of the EnKF in nonlinear systems
are studied with the aid of numerical simulations performed using the qgs code
platform (Demaeyer et al. 2020; Demaeyer and De Cruz 2020).

We consider first a spectral 2-layer channel quasi-geostrophic atmospheric model.
The Fourier modes decomposition is truncated at wavenumber 2 in both meridional
and zonal directions on a beta-plane, leading to a set of 20ODEs for the time evolution
of the first 10 components of the atmospheric streamfunction ψ , and temperature
θ (Reinhold and Pierrehumbert 1982). The model dimension is Nx = 20 and its
spectrum of LEs includes 3 positive and one neutral exponents, so that n0 = 4.

Themodel is integratedwith a time stepof approximately 15min and is spun-up for
3 years to ensure the solution has reached the model attractor. Afterward we initialise
the DA experiments with the following protocol: a “true” trajectory is computed for
4, 6 years, and synthetic observations are generated by first sampling this trajectory
at regular analysis time tk , each separated by a time interval �t , tk+1 = tk + �t .
The observations are then obtained by adding a zero mean Gaussian random error
sampled from N (0,R), with R being the (assumed to be known) observation error
covariancematrix. It is assumed that we observe the spectral components directly and
that the full system is observed, implying that the observation operator is the identity
matrix,H = INx ∈ R

Nx×Nx . Although the former hypothesis cannot bemet in practice
(instrumental devices do not observe the spectral modes) and the latter rarely holds
in high-dimensional applications, they are done here for the sake of clarity and will
facilitate the study of the dynamical behaviour we intend to discuss. Furthermore,
observational error is supposed to be spatially (in spectral space) uncorrelated with
an amplitude proportional (with factor σ%) to the corresponding model variable’s
standard deviation, σ i

md, i = 1, . . . , Nx . These imply R = σ%diag(σ 1
md, . . . , σ

Nx
md ).

Data assimilation is performed using the EnKF-N, hereafter simply referred to
as EnKF (Bocquet 2011). This EnKF belongs to the family of deterministic filters
but it furthermore possesses the appealing property that the ensemble covariance
multiplicative inflation is computed automatically as part of the DA process. Infla-
tion is one of the unavoidable feature making the EnKF methods suitable for high
dimensional problems (Carrassi et al. 2018). It comes under two ways known as
multiplicative and additive inflation, that are often used together. We shall use mul-
tiplicative inflation alone because, as opposed to the additive version, it does not
change the rank and span of the ensemble error covariance but it only inflates the
matrix entries amplitude. This allows us to study the effect (if any) on the ensemble
subspace (reflected into the ensemble covariance rank and span) that comes from
the dynamics, without artifacts from the DA procedure. At each analysis step, the
forecast anomaly matrix is inflated as αXf ← Xf , α ≥ 1.
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Fig. 3 Atmospheric quasi-geostrophic model. Time- and ensemble-averaged angle, from Eq. (37)
(in degree), between the anomalies of the EnKF and the unstable-neutral subspace (left panel,
shadow colours, in degree), and time averaged normalised RMSE of the EnKF analysis (right
panel, shadow colours), both on the plane (x, y) = (�t, σ%). The set-up is H = Id , R =
σ%diag(σ 1

md, . . . , σ
Nx
md ) and N = 10. Note that the logarithmic scale is used on the right panel

We will study the properties of the EnKF ensemble subspace, its dimension and
alignment to the unstable subspace of the underlying dynamics, and will investigate
how thosewill relate to the skill of the EnKF. FollowingBocquet andCarrassi (2017),
at each analysis time tk , the alignment between the ensemble and the unstable-neutral
subspaces, Uk , is computed as

cos2(θ i
k) =

n0∑

p=1

cos2(θ i,p
k ) =

n0∑

p=1

{
(up

k )Tvik
}2

∥
∥vik

∥
∥2 1 ≤ i ≤ N , (37)

where θ i
k ∈ [0, π ] is the angle between the anomaly vik and Uk , u

p
k is the p-th BLV,

and N is the number of ensemble members.
The RMSE of the EnKF analyses and the angle θ i

k are shown on the plane
(x, y) = (�t, σ%) in Fig. 3. Values are averaged over 4 years of simulated time
after discarding the first 200 analyses. The RMSE of the analyses is also averaged
over all model variables, once the error on each variable is normalised with respect
to the corresponding standard deviation σmd. The number of ensemble members is
set to N = 10.

Figure3 immediately shows the strong resemblance of patterns between the angle
and the RMSE. In practice, whenever the observation time interval �t and error σ%

are small enough then the angle between the two subspaces get smaller and the
RMSE decreases. Similarly to what is discussed in Bocquet and Carrassi (2017),
we also see here how increasing observation frequency is more effective in reducing
the RMSE than reducing the observation error (see discussion in the Appendix of
Bocquet and Carrassi 2017). This result also suggests that the use of a large number
and frequent observations, like the ones produced by non-conventional systems (e.g.
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Fig. 4 Atmospheric quasi-geostrophic model. Time- and ensemble-averaged angle, Eq. (37) (in
degree), between the ensemble anomalies of the EnKF and the unstable-neutral subspace as a
function of the ensemble size N (left y axis), and the corresponding time-averaged RMSE of the
EnKF (right y axis). The set-up is H = INx , R = σσT with σ% = 0.08 and �t = 12.11 h

crowdsourcing) has the potential for improving analyses, despite that observational
errors may be larger than in conventional measurement systems (Nipen et al. 2019).

A complementary picture of the relation between the filter skill and the subspaces
alignment is provided in Fig. 4, that displays the angle (left y-axis) and RMSE of
the EnKF analysis (right y-axis) both against the ensemble size N . The remain-
ing experimental set-up is H = INx , R = σσ T with σ% = 0.08 and �t = 12.11 h.
Recalling that the unstable-neutral subspace has dimension n0 = 4, Fig. 4 shows that
as soon as N ≥ n0 + 1, i.e. the ensemble fully spans the unstable-neutral subspace,
the RMSE suddenly reduces to very small values and it does not further decrease
when N is increased beyond n0 + 1. The fact that the convergence occurs for n0 + 1
instead of n0 is due to the ensemble anomalies subspace to be at most of rank N − 1
because one degree of freedom is removed when computing the ensemble mean.
The behavior depicted in Fig. 4 is peculiar of the EnKF applied to chaotic dynamics
and suggests a natural way to reduce computational cost by applying the EnKF with
“only” N = n0 + 1 members.

At the convergence, the angle between the ensemble andunstable-neutral subspace
(of dimension n0 = 4) is about 10 degrees (see Fig. 4): a remaining small portion of
the ensemble subspace is projecting outside the unstable-neutral space. To investigate
how large is such a portion,we compute the angle between an ensemble subspacewith
fixed N = 10 and a Lyapunov/Oseledets subspace of increasing dimension beyond
n0 + 1; results are shown in Fig. 5. The angle between the two subspaces decreases
monotonically with the size of the subspace, eventually reaching zero once the full
phase space (n = 20) is considered. Interestingly, the rate of convergence is initially
faster until approximately dimension 10, and slower afterwards. This indicates that
the additional projection beyond the asymptotic unstable-neutral subspace is largely
confined to the less stable (i.e. close to neutral) directions, those that can often be
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Fig. 5 Atmospheric quasi-geostrophic model. Time- and ensemble-averaged angle (in degree)
between the ensemble anomalies of the EnKF with N = 10 members, and subspaces spanned by
the BLVs of increasing dimensions. These subspaces are constructed by starting from the unstable-
neutral subspace (n0 = 4) and adding one by one stable directions ordered decreasingly by their
Lyapunov exponent. The set-up is H = Id , R = σσT with σ% = 0.08 and �t = 12.11 h

locally unstable. This mechanism is a reminiscent of what was shown by Grudzien
et al. (2018b) for stochastic systems and reviewed in Sect. 3.1.2. It suggests that the
addition of few ensemblemembers beyond n0 + 1may lead tomodest improvements
in the filter skill, even though the long term performance is not much impacted.

To discuss the impact of multiple timescales on the ensemble Kalman filtering, we
consider now the addition of a shallow-water ocean component to the previous atmo-
spheric model. The atmospheric and oceanic models are coupled together through
wind and radiative forcing as well as through heat exchanges, yielding the Modu-
lar Arbitrary-Order Ocean-Atmosphere Model MAOOAM (De Cruz et al. 2016).
MAOOAM has the same 20 ODEs of the atmospheric quasi-geostrophic model, and
additional 16 ODEs for the ocean. Amongst these 16 equations, the first 8 govern
the time evolution of the first eights components of the oceanic streamfunction ψo,
while last 8 are relative to the first eights components of the oceanic temperature
anomaly δT o. The model dimension is thus Nx = 36 and its parameters are cho-
sen such that a decadal low-frequency variability appears as a consequence of the
coupling (Vannitsem et al. 2015; De Cruz et al. 2016).

The model is integrated with a time step of approximately 15 min and is spun-up
for as many as 18,500 years to ensure the solution has reached the model attractor,
given the low-frequency (i.e. slow time-scale) of themodel. From this spun-up trajec-
tory we start DA experiments using the EnKF-N with the same protocol used for the
atmospheric model detailed above. In this case the true trajectory lasts 185 years, and
it is again assumed that we observe the spectral components directly and completely.
The EnKF is used in a strongly-coupled DA mode (see e.g. Penny and Hamill 2017)
so that, at analysis steps, atmospheric data can impact the ocean and vice-versa.
MAOOAM has been already used as a prototypical coupled model to study cou-
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Fig. 6 MAOOAM coupled Ocean-Atmosphere model. Time-averaged Lyapunov exponents in
days−1 computed along the true trajectory of the DA experiments

pled DA by Penny et al. (2019), Tondeur et al. (2020). Again, observational error is
assumed to be spatially (in spectral space) uncorrelated with an amplitude propor-
tional to the corresponding model variable’s standard deviation, σ i

md, i = 1, . . . , Nx .
These imply R = σ%diag(σ 1

md, . . . , σ
Nx
md ).

The spectrum of LEs of MAOOAM is displayed in Fig. 6 and presents some key
features.

With some arbitrariness, it can be decomposed into three subsets. A first subset
of LEs corresponds to the unstable (λi > 0) and neutral (λn0 = 0) directions. The
dimension of the subspace spanned by these directions is n0 = 6. A second subset
of small negative LEs (λi ∈ [−5 × 10−3, 0[ day−1) corresponds to nearly neutral
directions. The subspace they span has dimension n1 = 10 and we hereafter define
theunstable-near–neutral subspace as the one spanned by thefirstn0 + n1 directions.
The presence of these nearly-neutral directions amounts as a form of degeneracy of
the neutral direction. Although the model is theoretically possessing only one single
neutral mode (cf Sect. 2), it is computationally extremely difficult to distinguish
it from other nearly neutral ones, and the model can be said to degenerate in the
neutral direction in any practical sense. We shall see how this feature has important
consequences on the functioning andperformanceofDA.Finally, after a clear gap, the
nearly neutral Lyapunov exponents are followed by the remaining stable directions
which form the last subset of the spectrum.

Similarly to Fig. 3, we study the filter performance along with its ensemble sub-
space alignment to the unstable subspace in Fig. 7. The figure shows the RMSE of the
EnKF analyses and the angle θ i

k given by Eq. (37), between the ensemble subspace
and the unstable-neutral (left) and unstable-near–neutral (middle) subspace. Values
are averaged over 185 years of simulated time after discarding the first 100 analyses.
RMSE of the analysis is also averaged over all model variables, once the error on
each variable is normalised with respect to the corresponding standard deviation σmd.
The number of ensemble members is set to N = 20.

In contrast to what was observed in Fig. 3, we see here that the pattern of the
RMSE does not longer resemble the pattern of the angle between the ensemble and
unstable-neutral subspace (cf left and right panels in Fig. 7). Nevertheless, it bears
great similarities with the pattern of the angle between the ensemble and unstable-
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Fig. 7 MAOOAM coupled Ocean-Atmosphere model. Time- and ensemble-averaged angle given
by Eq. (37) between the anomalies of the EnKF and the unstable-neutral subspace (left panel,
shadow colours, in degree) or the unstable-near–neutral subspace (mid panel, shadow colours,
in degree). The time averaged normalised RMSE of the EnKF analysis is also depicted (right
panel, shadow colours). All the figures are on the plane (x, y) = (�t, σ%). The set-up isH = INx ,
R = σ%diag(σ 1

md, . . . , σ
Nx
md ) and N = 20.Theunstable-near–neutral subspace is defined as follows:

it includes the subspace spanned by the unstable and neutral n0 = 6 directions, but also an additional
n1 = 10 stable but near–neutral directions with LEs λi ∈ [−5 × 10−3, 0[ day−1

Fig. 8 MAOOAM coupled Ocean-Atmosphere model. Time- and ensemble-averaged angle (in
degree) between the ensemble anomalies of the EnKF and the unstable-neutral subspace or
the unstable-near–neutral subspace as a function of the ensemble size N (left y axis), and
the corresponding time-averaged RMSE of the EnKF (right y axis). The set-up is H = INx ,
R = σ%diag(σ 1

md, . . . , σ
Nx
md ) with σ% = 0.08 and �t = 1.68 days

near–neutral subspace (cf mid and right panels in Fig. 7), suggesting that it is now
this larger subspace (that includes the n1 weakly stable modes) that contains most of
the error.

This is further confirmed by looking at Fig. 8 that, similarly to Fig. 4, shows the
angle (left y-axis) and RMSE of the analysis (right y-axis) against the ensemble
size N . The set-up is H = INx , R = σ%diag(σ 1

md, . . . , σ
Nx
md ) with σ% = 0.08 and

�t = 1.68 days.
The critical role of the n1 weakly stable modes appears now evident when looking

at Fig. 8 (cf green and blue lines). As opposed to the behaviour of the EnKF applied to
the atmospheric model alone, or to the single scale Lorenz96 system used by Bocquet
and Carrassi (2017), we see that the ensemble subspace does not longer project much
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onto the unstable-neutral subspace (blue line with solid circles markers): when N =
n0 + 1 the angle reaches its minimum at around 20 degrees (recall that it was about
10 degrees for the atmospheric model, Fig. 4), and it even further increases when
N > n0 + 1, indicating the presence of non-negligible projections outside the n0 = 6
unstable-neutral directions. However, when the angle is computed with respect to the
larger unstable-near–neutral subspace (green line with solid triangle markers), we
retrieve the match with the RMSE curve (orange line with solid squares markers).
A closer inspection further reveals that the angle decreases (the projection grows)
fast until N = n0 + 1: the first unstable-neutral n0 = 6 modes still span most of
the error. After this initial fast decrease, the angle keeps decreasing at a slower, yet
monotonic, rate until approximately N = 15 and stays almost constant afterwards.
This result demonstrates undoubtedly the importance of the n1 near–neutral modes.
Althoughpossibly asymptoticallyweakly stable, these directions span a small portion
of the filter error that, if included in the ensemble subspace (by properly enlarging
the ensemble size) leads to further improvement of the filter performance. This is
finally emphasized in Fig. 9, which shows the decrease of the ensemble-averaged
angle between an ensemble of N = 10 members and the subspaces of increasing
dimension beyond the unstable-neutral one. In contrast to Fig. 5, it indicates that the
addition of n1 extra ensemble members may lead to RMSE improvement that is far
from negligible. Also, the gap observed around the value n0 + n1 + 1 = 17 clearly
shows that adding more members beyond the range of the near-neutral stability does
not bring any benefit. This is a strong indication in favor of a cautious assessment of
the ensemble size when working with coupled multi-scale dynamics and performing
strongly-coupled DA. Furthermore, as elucidate by Vannitsem and Lucarini (2016)
and Tondeur et al. (2020), the near-neutral part of the spectrum in MAOOAM is
directly connected to the coupling: including those directions within the ensemble
subspace is paramount to propagate the data information content between ocean and
atmosphere. This subspace also proved to be key in producing reliable ensemble
forecasts in coupled ocean-atmosphere systems (Vannitsem and Duan 2020).

3.2.2 Stochastic Dynamics

Results in Sect. 3.1.1 show that the optimal KF and the reduced-rank KF with gain
restricted to the leading BLVs are asymptotically equivalent for linear, perfect-
deterministicmodels.Moreover, results inSect. 3.2.1 demonstrate that inweakly non-
linear error dynamics, with a perfect-deterministic model, these conclusions largely
extend to the EnKF. Yet the exact reduced-rank recursion introduced in Sect. 3.1.2
evidenced important differences between the optimal and the reduced-rank formula-
tions in the presence of model error for linear models. In this case, stochastic noise
injected in asymptotically stable directions is not entirely damped out and remains
finitely bounded. In addition, the upwelling process, albeit inherent to the reduced-
rank formulation and not a consequence of model error, will move the constantly
injected model noise from unfiltered to filtered directions.
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Fig. 9 MAOOAM coupled Ocean-Atmosphere model. Time- and ensemble-averaged angle (in
degree) between the ensemble anomalies of the EnKF with N = 10 members, and subspaces
spanned by the BLVs of increasing dimensions. These subspaces are constructed by starting from
the unstable-neutral subspace (n0 = 6) and adding one by one stable directions ordered decreasingly
by their LE. The set-up is H = INx , R = σσT with σ% = 0.08 and �t = 1.68 days

It is of interest thus to compare the differences between the full rank Kalman
estimator, and both the standard and the exact reduced-rank KF recursions in a
stochastically forced, nonlinear models. As a prototype, we use the model defined
by the nonlinear flow of the Lorenz-96 (Lorenz 1996) system with additive noise,
and Nx = 40. Suppose that tk+1 = tk + �t , so that the flow map taking all initial
conditions to time +�t is defined φ�t (xk) = xk+1. If xtk represents the true physical
state at time tk , we define the dynamical model analogously to Eq. (8a) as a discrete,
nonlinear map, xtk+1 = φ�t

(
xtk

) + wk .
To avoid the interplay and superposition between sampling and model errors, and

to be able to focus on the latter alone, instead of the EnKF we use here the EKF (see
Sect. 3 and Jazwinski (1970)). The EKF estimates the forecast distribution for xtk via
the equation, xfk+1 = φ�t

(
xak

)
, taking the analysis mean at time tk to the forecast

mean at time tk+1, and by the linearized forecast equation for the covariance. In the
following, the EKF propagates the full-rank covariance equation via the tangent-
linear model defined along the mean equation and assimilates observations in all
state components. On the other hand, both the standard and the exact reduced-rank
formulations restrict the assimilation so that the image space of the gain is equal
to the span of the leading r BLVs defined along the tangent-linear model of the
mean equation. The difference between the standard and the exact formulation is
as follows: the standard formulation only estimates the error covariance in the span
of the leading r BLVs while the exact formulation simulates the entire covariance
equation, estimating the free forecast covariance in the trailing modes and including
its upwelling in the estimate of the uncertainty in the span of leading BLVs (Grudzien
et al. 2018b, see Proposition 1)

Figure10, adapted from Grudzien et al. (2018b), illustrates the differences in per-
formance between the above described schemes. On the left, the average RMSE of
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Fig. 10 Left: RMSE of the full-rank, standard reduced-rank and exact reduced-rank EKF. The
correction rank of the reduced-rank estimators is varied in the horizontal axis. Right: RMSE of
the full-rank, standard reduced-rank and exact reduced-rank EKF. Rank is fixed at r = 17 and
multiplicative inflation in the standard reduced-rank recursion is varied in the horizontal axis

the (i) full-rank, the (ii) standard reduced-rank and the exact reduced-rank EKF for-
mulations are plotted versus the rank of the reduced-rank gain over 105 analyses. The
model possesses 13 positive LEs, therefore the reduced-rank EKFs under considera-
tion have at least r ≥ n0 + 1 = 14. The system is fully observed with R = 0.25INx .
As r approaches Nx = 40, the two reduced rank formulations converge to the full
rank EKF, with performance considered optimal for a filter in this system. However,
for correction rank r ≤ 20, there are substantial differences in performance between
the standard formulation and that which includes the effect of the upwelling of error
from the trailingBLVs: the exact formulation reaches both adequate and near-optimal
performance with smaller r than the standard recursion.

On the right, Fig. 10 demonstrates the effect of multiplicative inflation on the
standard recursion when the correction rank is fixed at r = 17. While multiplicative
inflation greatly improves the performance of the standard recursion, this perfor-
mance is actually bounded below by the RMSE of the exact formulation. This exam-
ple shows that, in addition to sampling error, multiplicative inflation can be used
to remedy the inadequacies of the standard reduced-rank formalism which neglects
the effects of dynamic upwelling. This dynamic upwelling is a direct byproduct of
the estimator being restricted to the span of the leading BLVs. Such an estimator
arises when, e.g., the ensemble span aligns with the span of the leading BLVs in
the EnKF, as demonstrated in Sect. 3.2.1. The efficacy of dynamic, multiplicative
covariance inflation for treating the effect of model error separately from sampling
error has also been demonstrated with statistical and optimization methods by, e.g.,
Mitchell and Carrassi (2015), Raanes et al. (2015), Raanes et al. (2019), Sakov et al.
(2018), Fillion et al. (2020). The dynamical upwelling derived in Grudzien et al.
(2018b) provides an explanation of one of the mechanisms responsible for the need
for covariance inflation.
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4 Data Assimilation for Chaotic Systems—How Chaos
Becomes an Opportunity

We present here two areas where the knowledge about the chaotic nature and prop-
erties of the model dynamics, have been used pro-actively to achieve a better track
of the system of interest and to reduce the forecast error. There have been two ways
how this has been accomplished. The former has to do with the design of methods to
inform where and when additional fewer data would lead to a major improvement in
the analysis and forecast skill. This is usually referred to as “adaptive observation”
or “target observation”, and is the content of Sect. 4.1. The second has to do with
incorporating, within the DA process itself, the information about the unstable sub-
space, with the goal of achieving a computational economy while maximising the
error reduction. This gave raise to a family of DA methods known as “assimilation
in the unstable subspace”, summarised in Sect. 4.2.

Our treatments here are intentionally succinct and have the character of a review,
but interested readers will find all the appropriate references to the original works.

4.1 Targeting Observations Using the Unstable Subspace

Historically, one very important development in this type of dynamical analysis of
the climate predictability/DA problem arose from the question of how to generate
adaptive observation systems. By “adaptive observations” is meant here observa-
tions whose locations, time and type is chosen such that their impact on the state
estimate or on the forecast skill is the largest. It was well understood at the time
that the growth of forecast errors was confined to a lower dimensional subspace of
rapidly growing perturbations (Trevisan and Legnani 1995). The Fronts and Atlantic
Storm Track (FASTEX) program (Snyder 1996), a multinational collaboration to
investigate the growth and development of frontal cyclones, in particular was moti-
vated by these dynamical approaches to generate adaptive observation schemes that
would target regions of rapid forecast error growth. Other similar international efforts
have followed, some of them including actual field campaign of measurements: the
THORPEX (Fourrié et al. 2006) and the Winter Storm Reconnaissance programs
(Szunyogh et al. 2002; Hamill et al. 2013). Two main approaches were considered,
the forced singular vectors (Buizza et al. 1993; Palmer et al. 1998), and the bred vec-
tors (Toth and Kalnay 1993, 1997), to identify the sensitivity areas of high forecast
uncertainty.

Forced singular vectors are generated by the right singular vectors of the forward-
in-time, tangent-linear model resolventM. It can be seen from the earlier discussions
in Sect. 2 that the singular vectors can be interpreted as a finite-time approximation
of the FLVs along a model forecast. They therefore indicate region where error will
grow. On the other hand, the bred vectors are an ensemble-based approach to identify
sensitivity regions. Particularly, the breeding scheme simulates how the modes of



28 A. Carrassi et al.

fast growing error are maintained and propagated through the successive use of short
range forecasts in weather prediction. The bred vectors are formed by initializing
small perturbations of a control trajectory and forecasting these in parallel along the
control. By successive rescaling of the perturbations amplitude back to a small value,
this mimics the evolution of small perturbations under the tangent-linear model, and
the span of these perturbations generically converges to the leading BLVs. Both of
these approaches represent an early and intuitive way to utilizing the ergodic theory
of chaotic dynamical systems in designing an effective adaptive observation scheme
by targeting an unstable subspace in some form.

Trevisan and Uboldi (2004a), Uboldi and Trevisan (2006) utilized the bred vec-
tors/BLV analysis of Toth andKalnay (1993, 1997) and explicitly linked themethod-
ology to Lyapunov stability theory. Importantly it was recognised that, instead of
mimicking the error growth of the unforced (free) forecast, it was important to track
the errors that develop within the DA cycle. This led to a modified version of the
breeding approach known as Breeding on the Data Assimilation System (BDAS)
Uboldi et al. (2005), Carrassi et al. (2007). The BDAS scheme for adaptive observa-
tions is based on the principle of the support of the forecast error lying primarily in
the span of the BLVs, with the bred vectors acting as a proxy for the explicit decom-
position. In practice the locations of few adaptive observations were selected to be
in the areas where the leading BDAS modes attained their local maxima. In experi-
ments with an atmospheric quasi-geostrophic model, BDAS was used successfully
to locate one additional observation at each analysis time of a 3DVar cycle, leading to
a dramatic improvement of the analysis skill, compared to cases where either a fixed
or a randomly located adaptive observation was assimilated Carrassi et al. (2007).

4.2 Assimilation in the Unstable Subspace

Data assimilation has long been studied with the trade-off between accuracy and
numerical efficiency as a goal. To this end a natural choice has been that of devising
reduced-order schemes that focus the observational constraint on smaller, albeit cru-
cial, part of the full dynamics. One of the most celebrated among those approaches is
the assimilation in the unstable subspace (AUS) where the DA procedure is explic-
itly designed to track and control the unstable manifold of the dynamics, usually
of much smaller dimension of the full phase space, thus aiming to a reduction in
computational cost (Palatella et al. 2013).

We have seen in Sect. 2 that the full phase space of a chaotic dissipative dynamical
system can be seen as split in a (usually much smaller) unstable-neutral subspace
and a stable one (Kuptsov and Parlitz 2012). For instance, Carrassi et al. (2007) have
shown how a quasi-geostrophic atmospheric model of O(105) degrees of freedom
possesses an unstable-neutral subspace of dimension as small as n0 = 24.

We have furthermore seen that, in deterministic chaotic systems and under the
linear regime of error evolution, the uncertainty in the state estimate converges to
zero outside of the unstable-neutral subspace. This phenomenon was at the core
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of the idea of AUS, whereby the unstable-neutral subspace (or a suitable numerical
approximation of it) is explicitly used in theDAscheme to parametrise the description
(both temporally and spatially) of the uncertainty in the state estimate (Trevisan and
Uboldi 2004b; Uboldi and Trevisan 2006; Carrassi et al. 2008a).

The AUS concept has been since then applied to different model scenarios and
embedded within either KF-like or variational methods (Palatella et al. 2013). Car-
rassi et al. (2008b) pluggedAUS into a 3DVar cycle in such away that the observations
in the proximity of the leading BDAS mode’s maximum were assimilated by impos-
ing that the analysis increment follows the BDAS mode. This implied that the larger
the estimated error growth with BDAS, the larger the analysis correction. The com-
bined 3DVar-AUS was extraordinarily more accurate than the 3DVar when the same
amount of data were assimilated. AUS was subsequently generalised and embedded
into 4DVar (4DVar-AUS, Trevisan et al. 2010), and in an EKF, (EKF-AUS, Trevisan
and Palatella 2011). The forecast error covariance was projected so as to confine the
analysis correction to the unstable-neutral subspace. Remarkably both reduced-rank
formulations, 4DVar-AUS and EKF-AUS, showed superior skills than their full-rank
counterparts.

AUS relied on the assumption that errors evolve linearly. Going beyond this,
Palatella and Trevisan (2015) presented an original way of mixing the contributions
from the various Lyapunov vectors such that a quadratic expansions of the error is
considered. This improved the performance of the standard EKF-AUS particularly
in regimes of increasing nonlinearities. It remains however to be seen to which extent
AUS concept could be used within fully nonlinear DA schemes. This is the subject
of Sect. 5.1 and of the references therein. Although AUS has been largely used in a
perfect model scenario, Palatella and Grasso (2018) proposed a suitable modification
that allows for incorporating parametric model errors. As proved in Grudzien et al.
(2018b) and detailed in Sects. 3.1.2 and 3.2.2 the use ofAUS in chaotic systems forced
by additive stochastic noise would necessarily require the additional inclusion of the
asymptotically weakly stable modes.

A key caveat in all of the aforementioned applications of AUS is that one needs to
compute in real time theBLVs tobeused in the analysis. Therefore,whileAUSproved
capable to improve accuracy, it did not accomplishes a computational economy,
unless the BLVs were all pre-computed and stored. Note however that the latter
is not just a technological challenge given that the BLVs depends on the system’s
state and vice-versa if BLVs are to be used in the analysis update. Thus it is not
straightforward to decouple their online estimation and use within the analysis. At
the same time however, as we have seen in Sect. 3, AUS concept proved to be very
powerful to understand, design and interpret the functioning of the KF and EnKF in
chaotic systems.
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5 Forward Looking

5.1 AUS in a Non-Gaussian Filter?

In this subsection we attempt to improve the performance of the (bootstrap) parti-
cle filter (PF, Farchi and Bocquet 2018) by AUS. The underlying hypothesis is that
observational components in the stable subspace contribute little in the way of pre-
cision (since nearby orbits within the stable subspace converge), but a lot of noise.
Therefore, the investigation will explore whether discarding observational informa-
tion outside of the unstable subspace can mitigate the acute collapse of weights
experienced by PFs in high-dimensional systems, manifesting the “curse of dimen-
sionality”. If so, this could be used to reduce the number of particles required, which
scales exponentially with some measure of the system size (Snyder et al. 2008). A
secondary objective is to investigate the effectiveness of a few different methods of
targeting observing systems to the unstable subspace, potentially also reducing costs.

We perform synthetic DA experiments with the Lorenz-96 system. The state size
is set to Nx = 10 and there is no dynamical noise (Q = 0). Four different obser-
vation configurations targeting the unstable subspace are tested. For each of them,
observations are taken 0.2 apart in time, with independent noise of variance 1.5.
Each experiment lasts for 105 analysis cycles. The RMSE averages of each method
are tabulated for a range of ensemble sizes and observation operator ranks, Ny , and
plotted as curves in Fig. 11. The plotted scores represent the lowest obtained among
a large number of tuning settings, selected for optimality at each point. For the PF
the tuning parameters are: (i) the threshold for (universal) resampling, which is trig-
gered if the threshold is larger than the effective ensemble size, ‖w‖−2, wherew is the
vector of weights, and (ii) the bandwidth (scaling) of the regularizing post-resample
jitter, whose covariance is computed from the weighted ensemble. For comparison
the (symmetric square-root) EnKF (Hunt et al. 2004) is also tested. Its tuning param-
eters are (i) the post-analysis inflation factor and (ii) whether or not to apply random,
covariance-preserving rotations (Sakov and Oke 2008b).

The top-left panel Fig. 11 shows that the error decreases monotonically in Ny

when the observation operator are rows of the identity. The top-right panel shows,
by contrast, that when observing the BLVs, Lb

k , the PF with the largest ensemble
levels off at near-optimal performance with as few as Ny = n0 = 4 observations,
only improving marginally thereafter. The same trait can also be noted for lower
N , albeit less clearly. Also recall that a similar “levelling off” of RMSE around n0
occurred in Fig. 4 of Sect. 3.2.1, whose x-axis is N (rather than Ny , as here). This
result demonstrates that targeting observations to the directions of dynamical growth
of the uncertainty is efficacious. Interestingly, the performance of any given DA
method is nearly independent of the observing system (i.e. panel) for Ny = 10. This
makes sense considering that all of I, Lb

k , Vk+1, and Uk are orthogonal, i.e. equal
up to a rotation.

In all panels of Fig. 11, the RMSE score of the PF (as well as that of the EnKF), for
any ensemble size, never degrades by the inclusion of more observations (except for
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Fig. 11 Benchmarks of filter accuracy (RMSE) from synthetic DA experiments on the Lorenz-
96 system, plotted as functions of the observation dimension (Ny). Specifically, the observation
operator consists of the Ny leading rows of the transpose of the identity matrix (top-left), the BLV
matrix, Lb

k , computed by recursive QR decompositions (top-right), the 1-cycle forward singular
vectors,Vk+1 (bottom-left), and 1-cycle backward singular vectors,Uk (bottom-right), all of which
are defined via the fundamental matrix of the orbit of the (supposedly unknown) truth. The number
of members/particles used for the ensemble Kalman filter (EnKF, dashed) and Particle filter (PF,
solid) is tagged above each line. No further improvement is obtained by increasing the ensemble
size beyond N = 30 for the EnKF and N = 800 for the PF, for which the PF achieves better
accuracy than the EnKF, as expected for nonlinear systems. The greyscale, dotted lines, included
for context, show the performance of baseline methods, whose analysis estimates, xa, are given by
x for Climatology (black), x + K(C) [y − x] for Optimal interp. (dark grey), xf + K(cI) [y − xf ]
for 3D-Var (light grey). Here, x andC are the mean and covariance of the (invariant measure of the)
system dynamics,K(C) = CH�(HCH� + R)−1 is a gain matrix, xf is the forecast of the previous
xa, and c is a scaling factor subject to tuning. The plots show that targeting observations to the
directions of dynamical growth of the uncertainty is efficacious and that, for this task, Lb

k and Uk
are similarly effective, and superior to Vk+1. Moreover, the RMSE performance of any method,
also for the PF (which is our focus), never degrades with the inclusion of more observations
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what we adjudge to be noise). This feature was also found in experiments with even
smaller ensembles than shown, and experiments with larger observation errors. Thus
it seems that the curse of dimensionality is not mitigated by discarding observations.
Hence there is little to gain by eliminating observation components outside of the
unstable-neutral subspace, apart for the potential computational efficiency in the case
that the unstable-neutral has been pre-computed.

It should be noted that this finding runs counter to that of Maclean and Vleck
(2019), Beeson and Namachchivaya (2020), Potthast et al. (2019), all of which report
success in mitigating weight collapse by reducing the observations to the leading
components of Lb

k or some related matrix. Beeson and Namachchivaya (2020) also
tested observation operators given by time-local backward and forward Lyapunov
vectors, defined through the singular value decomposition of the resolvent: Mk =
Uk
kV�

k . They reported better targeting results with Vk+1 than with Uk , which in
turn was more effective than Lb

k . Our results similarly show Uk (bottom-right panel)
to be slightly more effective for targeting observations than Lb

k (top-right panel),
albeit only for intermediate ensemble sizes. Both, however, are more effective than
Vk+1 (bottom-left). Moreover, also for Vk+1 and Uk , we never observe lower RMSE
scores when using fewer observation components. There are some differences in the
experimental setting; notably our system is deterministic, and the jitter we apply is
restricted to the ensemble subspace. It is unclear if these differences can account for
the disparity in conclusions.

Why does PF performance not suffer from the inclusion of further, visibly redun-
dant, observations (contrary to our initial expectation)? Consider the likelihood (i.e.
weighting) of particle n ∈ [1, . . . , N ], at a given (implicit) time:

p(y|xn) = φ
(‖y − Hxn‖2R

)
, (38)

where the norm is defined as ‖y‖2R = y�R−1y, and φ is a radial density such that
Eq. (38) represents an elliptical distribution, for example a Gaussian. Suppose for
the sake of simplicity that both the observation operator and its error covariance are
identity, i.e. H = R = I, and let � be the matrix of orthogonal projection onto the
unstable-neutral subspace. Now, assuming the PF controls the error in the unstable-
neutral subspace, it seems reasonable to assume, given the results for linear systems
of Sect. 3, that the particles will converge onto the unstable-neutral subspace: (I −
�)(xn − x) → 0, at least as a first-order approximation. Supposing this, and by
decomposing the norm into two orthogonal components, it can be shown that

‖y − Hxn‖2 = ‖�(y − Hxn)‖2 + ‖(I − �)v‖2 , (39)

where v is the observation noise. Thus, projecting the observations onto the unstable-
neutral subspace, which would eliminate the last term of Eq. (39), merely reduces
the data mismatch by a constant (with respect to n, the particle index). Thus
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p(�y|xn) = c p(y|xn) , (40)

for some c > 0 which is rendered inconsequential by the subsequent weight nor-
malization. Hence, the inclusion of the remaining observation (outside the unstable-
neutral subspace), does not cause a higher variance in the weights, nor the associated
tendency to collapse/degeneracy.

The essence of the above reasoning is that the PF prior has zero support, i.e.
uncertainty, in the stable subspace, and therefore ignores observational components,
including the noise, in that subspace. This should be contrasted with the situation for
dynamical noise (model error), which is “up-welled” from the stable to the unsta-
ble subspace, as per Sect. 3.1.2. This distinction exemplifies the difference between
uncertainty addition (by dynamical noise) and subtraction (by likelihood updates).

For nonlinear dynamical systems, as illustrated in Sect. 3.2, the particles do not
neatly align with the unstable-neutral subspace. Capturing this nonlinear aspect of
the flow is generally seen as an advantage of the PF. It might be argued, though, that
the observation noise is likely large compared to the spread of the prior particles in
the stable subspace, and therefore the observations should be reduced by discarding
the corresponding components. However, as highlighted above, the observational
noise is constant in the particle index, and therefore its amplitude does not constitute
a particular source of weight variability. Instead, the weight variability originates in
the prior, which was assumed to have low variability in this scenario.

The analysis resulting in Eq. (40) assumed that H = R = I followed by H = �.
In the case of the observation operator consisting of the leading Ny ≥ n0 rows of the
transposed BLV matrix, Hk = (Lb

k)
�
1:Ny

, the same conclusion can be derived along
similar lines. In the general case, for any H, it is not obvious how to reduce the
observations so as to only measure the unstable-neutral subspace. To accomplish
this, both Maclean and Vleck (2019) and Beeson and Namachchivaya (2020) apply
the pseudo-inverse H+ before their reduction. This can be costly if H is large. A
more practical approach is to reduce the observations as ŷ = (HQ̂)+y, or ŷ = �y
with� = (HQ̂)(HQ̂)+, with Q̂ = (Lb

k)
�
1:Ny

In any case, re-doing the samederivation,
Eq. (40) again follows, including the same implications for the weights.

In summary, discarding observational information outside of the unstable sub-
space does not yield improvements in the PF because it already embodies this
“flow-dependent” information. A similar conclusion was also drawn for the iter-
ative ensemble Kalman smoother by Bocquet and Carrassi (2017). Thus, while AUS
is a powerful explanatory and diagnostics tool, it is not obvious if it can be used to
combat the curse of dimensionality for PFs.

Lastly, this section adds some clarification to the influential paper by Snyder et al.
(2008), whose conclusion is sometimes taken to be that the required ensemble size
for PFs scales exponentially with observation size. Our results rather indicate that
the performance of a well-tuned PF will not deteriorate with the inclusion of more
observations (even if they are redundant). In other words, that the required ensemble
size depends on the rank of the state space, or more precisely for chaotic dynamics,
the rank of the unstable-neutral subspace. Snyder et al. (2015) points out that the
“effective dimension” may be limited by the observation size if this is smaller than
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the state size. However, in case Ny < n0, no filtering system using flow-dependent
priors will be able to achieve satisfactory performance, because the system is not
sufficiently observed. Of course, the question of observability is complicated by
considering time-dependent observation networks, while localization can also be
applied to alleviate the curse of dimensionality (Farchi and Bocquet 2018).

5.2 Data Assimilation and Random Attractors

AUS and its theoretical extensions provide a framework to interpret the asymptotic
inferences of the EnKF. Provided that the forecast anomalies can be considered to
be perturbations of the true physical state, and if their evolution can be approxi-
mated by the tangent-linear model along the true trajectory, the dynamics of the
EnKF anomalies can be decomposed along the Oseledec spaces of the true physical
state. The stability and accuracy of the EnKF is largely determined by the ability
of the ensemble-based gain to correct the growth of forecast errors in the unstable-
neutral subspace, with respect to the uniform-complete observability of these modes.
Additive noise complicates the description of the asymptotic forecast uncertainty as
uncorrected forecast errors in the span of the stable BLVs may be bounded but
impractically large. The upwelling of such errors into the ensemble span further-
more necessitates covariance inflation to rectify the systematic underestimation of
the forecast uncertainty in the standard KF-AUS recursion.

Model stochasticity arises systematically in multiscale climate dynamics where
there are large scale-separations between resolved and unresolved dynamic pro-
cesses. In the asymptotic limit of scale-separation, unresolved dynamics can be
reduced to additive Gaussian noise due to the Central Limit Theorem; finite scale-
separation in reality leads to non-Markovian memory terms in addition to additive
stochastic forcing in the exact model reduction of a multiscale model, as in Mori-
Zwansig formalism (Gottwald et al. 2015). Several mathematically rigorous frame-
works have been developed to model and simulate the effect of small-scale dynamics
on the large-scale dynamics with stochastic parameterization, including averaging
methods, perturbation methods and combinations of the two—see, e.g., the survey
of approaches by Demaeyer and Vannitsem (2018).

The theory of random dynamical systems offers a novel means of analysis of the
DA cycle for multi-scale chaotic systems with large scale separations and model
reduction error. Characterizing the asymptotic Bayesian posterior in terms of the
properties of a random, nonlinear and ergodic attractor is a natural step forward in
the philosopy of AUS. Recent work suggests that the support of the posteriormeasure
of the DA cycle can be asymptotically bounded by the support of the SRBmeasure in
deterministic, nonlinear dynamical systems (Oljača et al. 2018).While this is an intu-
itively appealing result, the existence of an SRB measure in deterministic dynamics
usually requires a hyperbolicity assumption whichmay not be appropriate in weather
and climate, e.g. Vannitsem and Lucarini (2016). However, many of the theoretical
challenges in showing the existence of SRB measures in deterministic dynamics are
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relaxed in a random dynamical systems setting. Indeed, the Pesin entropy formula
holds under very general assumptions for stochastic flows of diffeomorphisms (Liu
and Qian 2006, Theorem 3.1 and discussion on page 127), establishing the link once
again between the observed instability in the dynamics and the statistical properties
of the invariant measure.

For such a dynamical interpretation of the DA cycle to be credible, the correct
specification of random models in stochastic-physical systems is a primary concern;
stochastically reduced models should be specified to preserve conservation laws
and the original model’s dynamics (Cotter et al. 2019). In addition to the correct
stochastic model specification, important differences in the statistical properties of
model forecasts of stochastic dynamical systems have been observed due to the
discretization errors of certain low-order schemes. For example, Frank and Gottwald
(2018) develop an order 2.0 Taylor scheme to correct the bias in the drift term
induced by the Euler-Maruyama scheme in their study system. Grudzien et al. (2020)
likewise find that the bias due to discritization error of the Euler-Maruyama scheme
can be sufficient to cause filter divergence of the EnKF in the stochastically forced
Lorenz-96 model. Grudzien et al. (2020) emphasize the important role of efficient,
weak numerical schemes for the simulation of ensemble-based forecasts. Unlike
strong convergent schemes, numerical schemes that converge in the weak sense can
make reductions in the complexity of simulation by emphasizing the accuracy of the
convergence of the ensemble to the forecast distribution rather than the accuracy of
any individual ensemble member.

6 Summary and Conclusion

Chaos is ubiquitous in natural, physical and laboratory systems. Scientists have long
copedwith this whenever attempting tomodel, predict or control such systems. Com-
bining and confronting models with data is common in science and data assimilation
(DA) is the term coined in the context of numerical weather prediction science to
encompass the methods that perform such a combination. The outputs of DA is the
improved representation of the system under study, and an estimate of the associated
uncertainty.

Inevitably, the sensitivity to initial conditions of chaotic systems, including state-
dependence of the directions of error growth, is a challenge for DA. On the other
hand, the energy dissipation typical of real systems implies a “dimension reduction”
in that errors are confined within a subspace of the full system’s phase space.

The DA process requires furnishing a prior distribution, whose specification is
a severe difficulty in high dimension. Gaussian methods reduce the complexity to
that of estimating the prior mean and covariance. Yet, with the exceptionally high-
dimensions of geophysical problems, a proper estimate, and storage of the prior
covariance matrices is still challenging. Thus, suitable reduced-rank formulations
should be used to lower the computational load while maintaining a good description
of the errors about the full system.
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In chaotic dissipative systems this goal can be achieved by monitoring the
unstable-neutral subspace of the model dynamics and performing DA only within
that subspace. This is the idea at the basis of the class of methods known as assim-
ilation in the unstable subspace (Palatella et al. 2013), that were developed mainly
in the years between 2004 and 2015; we reviewed them in Sect. 4. Despite reducing
the problem size to that of the unstable-neutral subspace (of dimension n0 � Nx ),
AUS methods proved aptly skillful, very close to those of their more costly full-rank
competitors.

However, the reduction of cost achieved at the analysis steps is offset by the addi-
tional cost of monitoring and tracking the unstable-neutral subspace. This requires
computing the Lyapunov vectors (usually the backward Lyapunov vectors), which
implies computing the tangent linear model (or alternatively evolving an ensemble
of bred perturbations mimicking the evolution under the tangent linear model) and a
repeated QR matrix decomposition. For specific purposes, one can opt for tracking
only a few dominant unstable modes. This was the case for early adaptive (targeted)
observation results (Carrassi et al. 2007) or when AUS was used to complement a
classical DA method (Carrassi et al. 2008b).

In parallel to the early developments of AUS, several studies with ensemble DA
methods in chaotic dissipative systems were suggesting that a number of their key
properties were related to the model instabilities, including the rank and span of
the ensemble-based forecast error covariance, as well as the skill of the analysis
(Sakov and Oke 2008b; Carrassi et al. 2009; Ng et al. 2011; Bocquet and Sakov
2014). These results indicate that the ensemble anomalies automatically align with
the unstable-neutral subspace, thus resulting in the analysis to be confined to it.

To put this mechanism on a more rigorous theoretical footing, a stream of works
have studied the relation between the unstable-neutral subspace in linear systems
using the Kalman filter (KF) and Kalman smoother (KS) (Gurumoorthy et al. 2017;
Bocquet et al. 2017; Bocquet and Carrassi 2017). These works, reviewed in Sect. 3.1,
have provided analytic proofs that the span of the error covariance matrices of the
KF and KS tends asymptotically to the unstable-neutral subspace, independent of
the initial condition (i.e. no matter the number of the ensemble members, provided
it exceeds the size of the unstable-neutral subspace). For stochastic systems with
additive noise it was proved that asymptotically weakly stable modes, that one might
discard in deterministic systems, must be included and analytic bounds for the error
were provided (Grudzien et al. 2018a).

Howdo these results hold for nonlinear systems? In the case of chaotic determinis-
tic systems, this was studied in Bocquet and Carrassi (2017) and further in Sect. 3.2.1
of this chapter. It was numerically showed that an ensemble comprising at least as
many members as the size of the unstable-neutral subspace plus one (N ≥ n0 + 1)
is needed to achieve satisfactorily skill with the ensemble Kalman filter (EnKF).
Section3.2.1 also considered the case of a coupled multiscale system with a quasi-
degenerate spectrum of Lyapunov exponents. This originates in the presence ofmany
close-to-zero exponents that are related to the coupling mechanisms (Vannitsem and
Lucarini 2016). It is shown that their full inclusion in the ensemble design is needed
to reduce the EnKF analysis error to a satisfactorily low level.
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The case of nonlinear stochastic chaotic systems with additive noise was studied
in Grudzien et al. (2018b) and reviewed in Sect. 3.2.2. The section explains the role
of the weakly stable modes already identified in linear systems, but also discovered
the upwelling mechanism for which uncertainty is upwelled from unfiltered (stable)
modes to filtered (unstable) ones. The upwelling phenomenon is not exclusive of
nonlinear systems and it is in fact present in linear systems too. It provides an addi-
tional rationale to the use ofmultiplicative inflation, otherwise known by numerically
evidence to be needed for a proper functioning of reduced-rank filters even in perfect
model scenarios (see e.g., Raanes et al. 2019).

An outlook at how this research may evolve is given in Sect. 5. In particular in
Sect. 5.1weprovide original results on the use of theAUSapproach, i.e. exploiting the
unstable-neutral subspace, in particle filters (PFs), a fully non-Gaussian DAmethod.
Results indicate that targeting observations within the unstable-neutral subspace is
very effective.However, by analogywithwhatwas proved for theEnKF inSect. 3.2.1,
adding observations along the stable modes does not deteriorate the analysis. In
the particle filter too, the particles automatically align along the unstable-neutral
subspace so that the contribution fromobservations in its complement stable subspace
is negligible. Our results shed also new insight on the scaling of the particle numbers
needed to reach convergence. It is shown to depend on the size of the unstable-neutral
subspace rather than the observation vector size. In Sect. 5.2 we surveyed how the
novel concept of random attractors could offer new ways to further exploit the idea
behind AUS on stochastic multi-scale systems with large scale separation.Moreover,
we also described how to amendnumerical integration schemeswhendoing ensemble
DA on such systems, as a trade-off between accuracy and computational cost.

It is important to recall that all of the results with the EnKF and PF that we
have presented are obtained without the use of localization (see e.g. Carrassi et al.
2018, their Sect. 4.4, and Farchi and Bocquet 2018 for localisation in the EnKF
and PF, respectively). While we are well aware of the dramatic positive impact
of localization on the filters’ skill, we intentionally did not use it as it artificially
changes the ensemble-covariance rank and span, thus making it impossible to link
them exclusively to the model instabilities.

The use of the time-dependent unstable-neutral subspace to represent uncertainty
in dynamical systems is still very appealing and potentially prone to success in a
wider area than explored so far. For instance, in a recent work by Bocquet et al.
(2021) model error arise from parameter mispecification and the EnKF is applied
to estimate simultaneously the (chaotic) model state and Np parameters. The EnKF
is used in the state-augmentation formulation and the standard persistence model is
adopted for the parameter dynamics. It was shown that the bound for the necessary
ensemble size becomes N ≥ n0 + Np + 1: Np additional members are required to
infer the Np parameters. While the linear one-to-one relation between the number
of parameters and that of the additional members is a consequence of the choice of
a persistence model and will change if a different parameters dynamics is in place,
this result further highlights how much the design of the EnKF is, and can be tied to
the properties of the dynamical model.
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Future developments along these lineswill unavoidably have to tackle the obstacle
of the computing cost of the unstable-neutral subspace. We speculate that recent
progress in the area of machine learning (Goodfellow et al. 2016) may help. Neural
network surrogate models of chaotic systems have shown capabilities to reproduce
the spectrum of the asymptotic Lyapunov exponents fairly well (Pathak et al. 2017;
Brajard et al. 2020). It is matter of future investigations to explore the possibilities of
machine learning algorithms that learn about the time-dependent instabilities from
offline long model simulations and then assist the model in the prediction mode by
providing a proxy of the unstable-subspace at each analysis time.
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Multifidelity Data Assimilation
for Physical Systems

Andrey A. Popov and Adrian Sandu

Abstract Multifidelity methods aim to leverage the availability of models at dif-
ferent levels of fidelity describing the same physical phenomena and are receiving
growing attention in computational science. One field that can considerably benefits
from statistical multifidelity approaches is data assimilation. This chapter presents a
broad overview of multifidelity methods in data assimilation for hierarchies of mod-
els and hierarchies of observations.We introduce the theoreticalmultifidelityKalman
filter, and discuss its practical implementation using an ensemble-based framework
as the multifidelity ensemble Kalman filter (MFEnKF). The discussion builds upon
the theory of linear and nonlinear control variates. Numerical examples compare the
multifidelity and the traditional EnKF.

1 Introduction

An often ignored principle in Bayesian inference is that the inference requires the uti-
lization of all available knowledge and all the relevant information available (Jaynes
2003). In the context of data assimilation, especially for physical systems, one often
has access to hierarchies of multiple models, each one more accurate than its prede-
cessor in the hierarchy; higher resolution models can be obtained by simply refining
the simulation grid or step-size, or through the ability to more accurately capture the
underlying physical phenomena. In addition, one frequently has access to observa-
tions of the same physical variable through different types of sensors. The principle
of Bayesian inference asks to not discard this information, but to incorporate it when-
ever possible.

Multifidelity data assimilation refers to methods that merge information about the
same underlying natural truth obtained through the use of multiple models or obser-
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vation operators at different levels of fidelity. For a survey of general multifidelity
methods and types of multifidelity models see Peherstorfer et al. (2018).

First introduced by Giles (2008) and then later more formally defined in Giles
(2015) the ‘multilevel’ Monte Carlo filter describes the optimal linear coupling
between different ‘levels’ of simulations (which we generalize to calling fidelities).
Here we aim to generalize the notion of levels to fidelities. We introduce a formal
notion of structure in the relation between fidelities, and also within the structure
that optimally combines the information contained therein.

This chapter is organized as follows. The rest of the introduction is concerned
with describing the data assimilation problem, and the idea of multifidelity models.
Control variate theory is introduced in Sect. 2. The problem of multifidelity inference
is introduced in Sect. 3, with the multifidelity Kalman filter discussed in Sect. 3.1 and
the multifidelity ensemble Kalman filter in Sect. 3.2. We then introduce the concept
of multifidelity observations in Sect. 4. A trivial numerical example with the Lorenz
’96 system is shown in Sect. 5. We conclude with some remarks in Sect. 6.

1.1 Notation

Consider a random variable χ . The distribution of χ is denoted by πχ , and an
ensemble representing N samples from the distribution by Eχ = [χ (1), . . . ,χ (N )].
We (exact) denote the mean by μχ , and the empirical sample mean by μ̃χ . The
covariance between random variables χ and υ is denoted by �χ,υ , and the empirical
sample covariance by ˜�χ,υ .

1.2 The Data Assimilation Problem

We seek to model the state X of a dynamical system with an imperfect model,

Xi = Mi (Xi−1) + �i , (1)

where the model errors at different times �i are independent of each other. We
assume the errors have mean zero, μ�i = 0, and covariances ��i ,�i .

Observations of the true state Xt
i are available at discrete time moments i :

Yi = Hi (X
t
i ) + ηi , (2)

where we again assume that the observation errors ηi at different times are indepen-
dent of each other, have mean zero, μηi = 0, and covariances �Yi ,Yi .

Given prior information Xb
i about the state at time i , and noisy observations of

the truth, the filtering problem consists of sequentially computing the posterior, Xa
i

in some (usually Bayesian) inference sense.
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Explicitly, the Bayesian formulation (Reich and Cotter 2015) aims to find

π(Xa
i ) = π(Xb

i |Yi ) = π(Yi |Xb
i )π(Xb

i )

π(Yi )
, (3)

in some approximate way, as the problem, more often than not, is computationally
intractable.

1.3 Multifidelity Models

The focus of multifidelity data assimilation is to compute the inference (3) using
not a single model (1), but leveraging a hierarchy of models at different fidelities.
Consider two levels of fidelity, and assume that our high fidelity state variable is X
and coarse fidelity variable is U . The two models that propagate these quantities in
time are:

Xi = MX
i (Xi−1), (4)

Ui = MU
i (Ui−1). (5)

The goal of multifidelity data assimilation is to make use of these different models
to incorporate as much information as possible.

An important aspect of multifidelity models, which is a generalization of multi-
level hierarchies, is that the the state spaces of the different models do not necessarily
have to be the same. In fact, we will assume that the fine fidelity model state can be
embedded into Rn and that the coarse fidelity model state can be embedded into Rr ,
where typically r < n, though this is not necessarily the case.

Alternatively, we can think of the word ‘model’ as describing the operator about
which we are optimizing. In a data assimilation context this will often be our obser-
vations. Assume that there exist two ways of obtaining observations (2) of the same
fundamental phenomenon, one defined by a fine fidelity operator Hχ , and the other
defined by a coarse fidelity observation operator,Hυ , such that,

Y χ = Hχ (Xt ) + ηχ , (6)

Y υ = Hυ(Xt ) + ηυ, (7)

wherein the goal would shift to either combining and utilizing the observations
in some optimal way without loss of information, but also without duplication of
information.
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2 Control Variates

The linear control variate technique (Rubinstein and Marcus 1985) is a method for
reducing the variance of an estimator by making use of highly correlated data about
which additional information is known. Assume our quantity of interest is described
by the distribution of the principal variateχ . The distribution of the highly correlated
control variate υ̂ describes information in an alternate way (such as in a different
space), and the distribution of an independent (or more weaker, uncorrelated) ancil-
lary variate υ describes information related to that of the control variate and shares
the same mean, μυ̂ = μυ . The linear control variate approach builds a total variate
ζ

ζ = χ − S(υ̂ − υ), (8)

where the free parameter S, known as the gain operator, is chosen to minimize the
generalized variance of ζ . The three variates that make up the total variate will be
collectively called the constituent variates.

Theorem 1 (Unbiased nature of linear control variates)Without proof, the mean of
the total variate equals the mean of the principal variate,

μζ = μχ . (9)

Theorem 2 (Optimal gain for linear control variates) The optimal gain matrix S that
minimizes the trace of the covariance of (8) is

S = �χ,υ̂

(

�υ̂,υ̂ + �υ,υ

)−1
. (10)

Proof Observe that the covariance of (8) is

�ζ,ζ = �χ,χ − S�υ̂,χ − �χ,υ̂ST + S�υ̂,υ̂ST + S�υ,υST . (11)

Taking the derivative with respect to S of the trace of (11),

∂

∂S
tr

(

�ζ,ζ

) = −2�χ,υ̂ + 2S
(

�υ̂,υ̂ + �υ,υ

)

, (12)

the local minimum is found at (10), as required.

Corollary 1 By simple manipulation, the covariance of the total variate under the
optimal gain from Theorem 2 is:

�ζ,ζ = �χ,χ − �χ,υ̂

(

�υ̂,υ̂ + �υ,υ

)−1
�υ̂,χ , (13)

from which it is clear that�ζ,ζ ≤ �χ,χ in the symmetric semi-positive definite sense.
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The linear control variate technique can be derived in a parallel but completely
alternateway.Taking the principal, control, and ancillary variates asGaussian random
variables, the total variate is the solution to the Bayesian inference problem,

π(ζ ) = π(χ |υ̂, υ). (14)

which is a well-known result due to Kalman (1960).
Following Nelson (1987) we now attempt to introduce the idea of non-linear

control variates. Instead of searching for function approximations that follow a set of
rules, we will instead view the problem of finding the total variate ζ in terms of the
principal, control, and ancillary variates as an inference problem, generalizing (14)
to arbitrary distributed variables. Specifically, we seek to cast the general inference
problem (and specific approximations thereof) into an application of some problem-
specific transform,

ζ = T (χ, υ̂, υ), (15)

with the function T represents a distribution transformation on the principal variate,
built making use of the information given by the control and ancillary variates.

For the remainder of this chapter we will assume that the control variate is related
to the principal variate through a deterministic function (coupling),

υ̂ = θ(χ), (16)

which implies that there is necessarily some loss of information from the space of
the total and principal variates to the space of the control and ancillary variates.

An important generalization of the control variate concept is its ability to be
applied in a nested form. This means that the total variate ζ can itself be an
ancillary variate for a finer fidelity principal variate. Assume that we have
to have F fidelities, with υF being the coarsest fidelity ancillary variate. Its
corresponding control variate is υ̂F , and its principal and total variates are on
levelF − 1: χF−1 and ζF−1. The total variate is then also the ancillary variate
for the next set,

υF−1 ←− ζF−1, (17)

which can be generalized all the way up the chain, until we reach the the
constituent variates χ1, υ̂2, and υ2, that represent the full information content
through the total variate ζ1. Explicitly, fromPopov et al. (2020), the total variate
for F fidelities and the corresponding optimal gain matrices can be written as,

ζ = χ −
F

∑

f =1

S f
(

υ̂ f − υ f
)

, S f =
f

∏

ψ=1

Sψ. (18)
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2.1 Ensemble Control Variates

Instead of employing the exact distribution of a random variable, which usually is
considered to be an intractable task, an ensemble of samples is typically used.

We will discuss the ways in which ensemble multifidelity inference is performed
in a later section. Here we concern ourselves with the problem of finding an ensemble
representation of the total variate (8) given an ensemble of Nχ samples of the principal
variate Eχ = [χ (1), . . . χ (Nχ )] and corresponding pairwise samples of the control
variate Eυ̂ = [υ̂(1)

, . . . υ̂
(Nχ )]. We seek to find an ensemble of the total variate Eζ =

[ζ (1), . . . ζ (Nχ )].
We will define the ensemble means as

μ̃χ = 1

Nχ

Eχ1Nχ
∈ �n, μ̃υ̂ = 1

Nχ

Eυ̂1Nχ
∈ �r , (19)

and the anomalies as,

Aχ = Eχ − μ̃χ1
T
Nχ

∈ �n×Nχ , Aυ̂ = Eυ̂ − μ̃υ̂1
T
Nχ

∈ �r×Nχ . (20)

Assume that we are given either the mean and covariance of the ancillary variate
(μυ and�υ,υ), or that we are able to derive empirical approximations μ̃υ and ˜�υ,υ an
ensemble of Nυ samples of υ, Eυ . In the first approach we utilize the linear control
variate framework (8).

There are numerous ways in which to derive the ensemble of the total variate.
One way is to create a synthetic ensemble of Nχ samples of the ancillary variate
sampled from its known distribution. Denote this ensemble ˜Eυ . Under the linear
control variate approach,

Eζ = Eχ − S(Eυ̂ − ˜Eυ), (21)

where the optimal gain is approximated by

˜S = ˜�χ,υ̂

(

˜�υ̂,υ̂ + �υ,υ

)−1
. (22)

The astute reader will recognize this as the ‘perturbed observations’ ensemble
Kalman filter (Houtekamer and Mitchell 1998).

An alternate formulation that does away with the synthetic ensemble assumes a
Gaussian prior on the ancillary variate, and uses the optimal empirical gain,

Eζ = μ̃χ1
T
Nχ

+ AχT
(

INχ
− 1

Nχ − 1
TTAT

υ̂ �−1
υ,υ(μ̃υ̂ − μυ)1TNχ

)

, (23)

T =
(

INχ
− 1

Nχ − 1
AT

υ̂

(

˜�υ̂,υ̂ + �υ,υ

)−1
Aυ̂

) 1
2

, (24)
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which the astute reader will recognize as the ensemble transform Kalman filter
(ETKF) (Bishop et al. 2001).

Note that if it is not possible to represent the covariance of the ancillary variate
exactly, then one needs to compute the optimal gain in alternate ways.

Another interesting approach to ensemble inference is the importance sampling
optimal transport procedure (Reich 2013). In essence, one constructs the posterior
mean from the importance sampling procedure,

μζ = Eχw, (25)

[w]i ∝ πυ(υ̂
(i)

). (26)

The anzatz is made that the optimal transportation into an equally weighted ensemble
with the same mean defines an ensemble with the same empirical moments as those
defined by the importance sampling weights,

Eζ = EχT∗, (27)

where the optimal transport is defined in the Monge-Kantorovich sense,

T∗ = argminT
∑

1≤i, j≤Nχ

[T]i j
∥

∥χ (i) − χ ( j)
∥

∥

2

2

subject to: T1Nχ
= Nχw, TT 1Nχ

= 1Nχ
, [T]i j ≥ 0,

(28)

which ensures that the weights of the new posterior ensemble are equal.
Second order accurate (preserving the weighted ensemble covariance) extensions

to this formulation exist (Acevedo et al. 2017) and should be used if thismethodology
is to be attempted operationally.

3 Multifidelity Filtering

For ease of exposition we primarily focus on the case of two fidelities; multifidelity
extensions will be described separately.

Assume now that the state of a dynamical system is our quantity of interest, and
that there are two different fidelities in which we can represent it: fine and coarse.
Let the distribution of the principal variate Xb represent the prior information about
the state at fine fidelity. Let Û b be its corresponding control variate, and Ub be the
ancillary variate, the distributions of which describe information about the state at
coarse fidelity.
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Assume that the prior total variate Zb represents the general posterior of the
multifidelity inference procedure (14). Note that it is possible, with some abuse of
notation, to represent the inference as an application of some nonlinear function,

Zb = C(Xb, Û b,Ub), (29)

with the function C defining an implicit assumption about the relationship between
the four variates, such as the linear control variate assumption (8) or an optimal
transport based assumption (27) if our variates are represented by ensembles. In the
most general sense, C can represent some non-linear variance reduction technique
that is informed by the distributions of the constituent variates (Nelson 1987).

The prior total variate is Zb and the posterior total variate is Za , defined by the
same function applied to its component variates:

Za = C(Xa, Û a,Ua). (30)

The inference step from the prior total to the posterior total variates is a filtering
step which explicitly combines information,

Za = F(Zb,H(Zb),Y ), (31)

with the function F standing in for some filter, such as the Kalman filter.
The principal variate can be propagated by some constituent filter,

Xa = ˜F Z
X (Xb,H(Xb),Y ), (32)

which is dependent on Zb, Za and the filter F that is implicitly applied between
them. Similar formulations can be made for the other constituent variates.

Note that the goal of one step of a multifidelity filter is not to find the posterior
total variate Za , but rather to find posteriors of its constituent variates, Xa ,
Û a , and Ua . In fact, as the total variate is merely a synthetic construction,
the multifidelity inference reduces to performing virtual inference on the total
variate by manipulating the principal, control, and ancillary variates. In this
way the explicit filtering of the total variate (31) is not performed, but only the
constituent filtering problems (32) are explicitly solved.

While the general problem of finding the analysis principal variate Xa given only
the analysis total variate Za is not well posed, the combined problem of finding the
distributions of Xa , Û a , and Ua may be posed in terms of a minimum cross entropy
problem:

Xa, Û a,Ua = argminXa ,Û a ,Ua H(Xb, Xa) + H(Û b, Û a) + H(Ub,Ua), (33)
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subject to the constraints,

Za = C(Xa, Û a,Ua), Za = F(Zb,H(Zb),Y ), (34)

E[Û a] = E[Ua], Û a = θ(Xa), (35)

from which the constituent filters (32) are implicitly defined.

A powerful assumption that can be made is that the same control structure
imposed on the prior is also imposed on the posterior. We call this the ‘control
structure consistency assumption’. One way in which this holds in the linear
control variate approach is:

Zb = Xb − Sb(Û b −Ub), (36)

Za = Xa − Sa(Û a −Ua), (37)

where the we impose the assumption that the (approximately) optimal prior
and posterior gains are equivalent,

Sb = Sa, (38)

meaning that we restrict all possible posterior constituent variates to ones that
obey the same structure as their prior counterparts. One way in which this is
achieved is by assuming a particular structure on the relationship between the
principal and control variate (16) from Popov et al. (2020).

3.1 Multifidelity Kalman Filter

We now introduce the multifidelity Kalman filter (MFKF), fleshed out from Popov
et al. (2020). AsGaussian random variables can be trivially combined through known
formulas involving their means and covariances, the MFKF is not an algorithm that
needs to exist for the purposes of practical implementation, but merely needs to exist
to explain derivations of practical extensions thereof.

We restrict ourselves to a linear principal-control variate coupling (16),

Ûi = θ(Xi ) = �Xi , (39)

with � a projection operator from the n-dimensional space of the principal variate
onto the r -dimensional space of the control variate. The corresponding interpolating
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operator is denoted� (such that�� = Ir ). We decompose the principal variate into
its control variate and residual variate components:

Xi = � Ûi + Xi . (40)

Additionally, as is canonical, we restrict ourselves to the case of a linear observa-
tion operator Hi .

For the rest of this chapter we assume that we seek to propagate the total variate,

Zi = Xi − Si (Ûi −Ui ), (41)

through both a dynamical model (forecast step), and through the analysis step con-
ditioned by observations.

We express the moments of the total variate in terms of the moments of the
corresponding constituents:

μZi = μXi − Si (μÛi
− μUi ), (42)

�Zi ,Zi = �Xi ,Xi + Si�Ûi ,Ûi
ST
i + Si�Ui ,UiS

T
i − Si�Ûi ,Xi

− �Xi ,Ûi
ST
i . (43)

We are now ready to look at theMFKF. For the forecast step, assume that we have
a linear fine fidelity modelMX

i , and a linear coarse fidelity modelMU
i . Assume that

the error �i of the fine fidelity model is unbiased and is known to have covariance
��i ,�i . Assume additionally that the coarse fidelity model has no error in the coarse
subspace in relation to the truth. This could be because the coarse fidelity model was
built to capture this error through data driven closures.

Assume that we have the posterior information at the previous step i − 1 about the
principal, control, and ancillary variates, and that the relation between the principal
and control variate (39) holds. We propagate the means as follows:

μXb
i

= MX
i μXa

i−1
, (44)

μÛ b
i

= MU
i μÛ a

i−1
, (45)

μUb
i

= MU
i μUa

i−1
, (46)

with the covariances propagated as,

�Xb
i ,X

b
i

= MX
i �Xa

i−1,X
a
i−1
MX,T

i + ��i ,�i , (47)

�Xb
i ,Û

b
i

= MX
i �Xa

i−1,Û
a
i−1
MU,T

i , (48)

�Û b
i ,Û b

i
= MU

i �Û a
i−1,Û

a
i−1
MU,T

i , (49)

�Ub
i ,Ub

i
= MU

i �Ua
i−1,U

a
i−1
MU,T

i , (50)
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We note that unless the principal variate residual is not propagated in control
space by the fine fidelity model,

�MX
i Xa

i−1 = 0, (51)

then the abovepropagationwill violate (39). Therefore, as a useful heuristic, the
propagation of the control variate moments can be replaced by the propagation
of the projected principal variate moments in order for the relation (39) to hold
more strongly at each step,

μÛ b
i

= MU
i �μXa

i−1
, (52)

�Xb
i ,Û

b
i

= MX
i �Xa

i−1,X
a
i−1

(

MU
i �

)T
, (53)

�Û b
i ,Û b

i
= MU

i ��Xa
i−1,X

a
i−1

(

MU
i �

)T
. (54)

This is especially useful if the models are non-linear, generalizing to the mul-
tifidelity extended Kalman filter, or in the case of the multifidelity ensemble
Kalman filter later in the chapter in Sect. 3.2.

Lemma 1 The fine fidelity model, coarse fidelity model, posterior optimal gain at
step i − 1, and prior optimal gain at time i are related as follows:

MX
i S

a
i−1 = Sbi M

U
i . (55)

Proof By simple manipulation,

MX
i S

a
i−1 = MX

i �Xa
i−1,Û

a
i−1

(

�Û a
i−1,Û

a
i−1

+ �Ua
i−1,U

a
i−1

)−1
(56)

= �Xb
i ,Û

a
i−1
MU,T

i

[

MU
i

(

�Û a
i−1,Û

a
i−1

+ �Ua
i−1,U

a
i−1

)

MU,T
i

]−1
MU

i (57)

= �Xb
i ,Û

b
i

(

�Û b
i ,Û b

i
+ �Ub

i ,Ub
i

)−1
MU

i = Sbi M
U
i , (58)

as required.

Theorem 3 The MFKF forecast is the total variate forecast:

μZb
i

= MX
i μZa

i−1
, (59)

�Zb
i ,Z

b
i

= MX
i �Za

i−1,Z
a
i−1
MX,T

i + ��i ,�i . (60)
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Proof Using lemma 1, manipulate the formulation for the mean of Z in (42),

MX
i μZa

i−1
= MX

i μZa
i−1

, (61)

= MX
i μXa

i−1
− MX

i S
a
i−1(μÛ a

i−1
− μUa

i−1
), (62)

= μXb
i
− Sbi M

U
i (μÛ a

i−1
− μUa

i−1
), (63)

= μXb
i
− Sbi (μÛ b

i
− μUb

i
) = μZb

i
, (64)

as required. A similar manipulation can be performed for the covariance.

In order to obtain an efficient implementation of the analysis step in theMFKF,we
need to restrict the projection operator (39) to a class that has ‘nice’ properties. We
assume that the joint variability of the principal variate in the orthogonal complement
space and control variate is negligible,

�X,Û ≈ 0, (65)

or alternatively that the projection operator � captures the dominant linear modes
of the variability in the dynamics of X . Common methods by which such operators
can be obtained are POD and DMD, and variants thereof (Brunton and Kutz 2019).

Theorem 4 If the first twomoments of the control and ancillary variate are identical,
and assumption (65) holds, then the optimal gain is,

S = 1

2
�. (66)

Proof Observe by Theorem 2 and (65),

S = �X,Û

(

�Û ,Û + �U,U
)−1 = 1

2
��Û ,Û�−1

Û ,Û
= 1

2
�, (67)

as required.

If we choose a projection operator for which (65) holds, then the optimal gain is
constant and does not have to be estimated. Moreover this provides for a clear rela-
tionship between the projection operator� and the optimal gain, such that�S = 1

2 Ir .
For the rest of this section we assume that S is constant.

We next discuss the analysis step of the MFKF. Note first that the Kalman gain
is the optimal gain when the principal variate is the prior information about the state
of the dynamics, the control variate is that information cast into observation space,
and the ancillary variate are the independent observations. Assume that the arbitrary
variateWb

i represents some prior information, wewrite theKalman gain as a function
of Wb

i ,

KWb
i

= �Wb
i ,Hi Wb

i

(

�Hi Wb
i ,Hi Wb

i
+ �Yi ,Yi

)−1
. (68)
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The standard Kalman filter analysis step applied to the total variate, as described
by (31):

Za
i (KZb

i
) = Zb

i − KZb
i
(Hi Z

b
i − Yi ), (69)

can be decomposed into its constituent variates:

Xa − S(Û a −Ua) = Xb − S(Û b −Ub) − KZb
i

(

H
(

Xb − S(Û b −Ub)
)

− Y
)

.

(70)
Taking the ‘natural’ decomposition of this relation into components leads to, the
constituent filters (32):

Xa = Xb − KZb
i

(

HXb − Y
)

, (71)

Û a = Û b − �KZb
i

(

H�Û b − Y
)

, (72)

Ua = Ub − �KZb
i

(

H�Ub − Y
)

, (73)

which assumes that the control and ancillary variates do not carry any additional
information from the orthogonal complement space of the principal variate.

The authors conjecture that the decomposition (71) approximately minimizes
the cross entropy functional (33) out of all such decompositions, though there
is no strong evidence for this claim as of yet.

The propagation of the total mean through its constituent variate means is:

μXa = μXb − KZb
i
(HμXb − y) (74)

μÛ a = μÛ b − �KZb
i

(

H�μÛ b − y
)

, (75)

μUa = μUb − �KZb
i
(H�μUb − y) . (76)

The corresponding covariance update formulas are:

�Xa
i ,X

a
i

=
(

I − KZb
i
H

)

�Xb
i ,X

b
i

(

I − KZb
i
Hi

)T + KZb
i
�Yi ,YiK

T
Zb
i
, (77)

�Xa
i ,Û

a
i

=
(

I − KZb
i
Hi

)

�Xb
i ,Û

b
i

(

I − �KZb
i
Hi�

)T
, (78)

+KZb
i
�Yi ,Yi

(

�KZb
i

)T
, (79)

�Û a
i ,Û a

i
=

(

I − �KZb
i
Hi�

)

�Û b
i ,Û b

i

(

I − �KZb
i
Hi�

)T
(80)

+�KZb
i
�Yi ,Yi

(

�KZb
i

)T
, (81)
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Fig. 1 A diagram of the
MFKF computations,
including the heuristic
re-correlation of the principal
and control variates (52), and
the assumed relation between
the forecast variates (16)
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Ûa
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i

Θ

KZb
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i

ΘKZb
i

�Ua
i ,Ua

i
=

(

I − �KZb
i
Hi�

)

�Ub
i ,Ub

i

(

I − �KZb
i
Hi�

)T
(82)

+�KZb
i
�Yi ,Yi

(

�KZb
i

)T
. (83)

The inner working of the MFKF is illustrated in Fig. 1.

Theorem 5 Without proof, if the optimal gain interpolation projection step does not
remove additional information from the control and ancillary variate (that is (65) is
exact), then the ‘natural’ decomposition (71) is exact, thus the linear control variate
combination of the mean is the total variate analysis mean,

μZa
i

= μXa
i
− S(μÛ a

i
− μUa

i
). (84)

Similarly for the covariances.

Theorem 6 Without proof, if S is the optimal gain (Theorems 2 and 4), then the
simple relation between the covariances of the principal and total variates is,

�Zi ,Zi = (In − S�)�Xi ,Xi . (85)

Thus we are able to obtain a covariance for the total variate by only knowing the
covariance of the principal variate.
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Analternate decomposition forwhichTheorem5 is exactwithout qualification,
that we will not be analyzing is:

Xa = Xb − KZb
i

(

HZb − Y
)

, (86)

Û a = Û b − �KZb
i

(

HZb − Y
)

, (87)

Ua = Ub − �KZb
i

(

HZb − Y
)

, (88)

These formulas, however, are difficult to implement using ensembles.

We show next how the variability of the total variate Za
i (KZb

i
), the principal variate

Xa
i (KZb

i
), and the principal variate analyzed by itself Xa

i (KXb
i
) are related.

Theorem 7 The covariances of Za
i (KZb

i
), Xa

i (KZb
i
), Xa

i (KXb
i
) are such that:

�Za(KZbi
),Za(KZbi

) ≤ �Xa(KXbi
),Xa(KXbi

) ≤ �Xa(KZbi
),Xa(KZbi

). (89)

Proof By the optimality of the Kalman gain KZb
i
in Theorem 2,

�Za(KZbi
),Za(KZbi

) ≤ �Za(KXbi
),Za(KXbi

), (90)

and by the optimality of the control variate relation S from Corollary 1,

�Za(KXbi
),Za(KXbi

) ≤ �Xa(KXbi
),Xa(KXbi

). (91)

The second inequality similarly relies on the optimality of the Kalman gain
KXb

i
.

Theorem 7 shows that the principal variate covariance is an upper bound on the
covariance of the total variate.

Relations (89) in Theorem 7 are valid only when the means of the constituent
variates are roughly equivalent. This is especially important in the ‘extended’
and ‘ensemble’ extensions to theMFKF. To achieve this, at each step we apply
the following heuristic correction:

μXa
i

←− μZa
i
, μÛ a

i
←− �μZa

i
, μUa

i
←− �μZa

i
, (92)

which additionally enforces the control variate relation (39), ensures that the
principal and total variate means are equivalent, and that the control and ancil-
lary variate means are equivalent.
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3.2 Multifidelity Ensemble Kalman Filter

Following Popov et al. (2020), we present the multifidelity ensemble Kalman filter
(MFEnKF).

Assume now that instead of manipulating the first two moments of our variates,
we manipulate ensembles. Assume that we have NX pairwise correlated samples of
the principal and control variates (X(i),OU(i)) represented by the ensembles EX and
EÛ , respectively, and NU ≥ NX samples of the ancillary variate U(i), represented by
the ensemble EU . We wish to construct practical ensemble-based generalizations to
the MFKF.

The forecast step, similar to the standard EnKF, and MFKF ((44) and (47)),
propagates the ensemble members individually through their respective models,

Xb,( j)
i = MX

i (Xa,( j)
i−1 ) + ξ

( j)
i , 1 ≤ j ≤ NX (93)

Ûb,( j) = MU
i (Ûa,( j)

i−1 ), 1 ≤ j ≤ NX (94)

Ub,( j) = MU
i (Ua,( j)

i−1 ), 1 ≤ j ≤ NU , (95)

where each ξ
( j)
i is a random sample accounting for the fine fidelity model error. The

coarse fidelity model bias is accounted for by the propagation of both the control
variate ensemble and ancillary ensemble through the coarse fidelity model.

Assume that the sample means, anomalies, and covariances are readily available
for the three constituent ensembles, from which it is possible to derive the empirical
estimates of the first two moments of the total variate,

μ̃Zi
= μ̃Xi

− Si (μ̃Ûi
− μ̃Ui

), (96)

˜�Zi ,Zi = ˜�Xi ,Xi + Si˜�Ûi ,Ûi
ST
i + Si˜�Ui ,UiS

T
i − Si˜�Ûi ,Xi

− ˜�Xi ,Ûi
ST
i , (97)

where once again we assume that the optimal gain is constant (66) from Theorem 4.
Similar to the standard EnKF, it is not explicitly required to compute the full total

background covariance, but merely the related cross-covariances with respect to the
observation operator:

˜�Zb
i ,Hi Zb

i
= ˜�Zb

i ,Z
b
i
HT

i , (98)

˜�Hi Zb
i ,Hi Zb

i
= Hi˜�Zb

i ,Z
b
i
HT

i , (99)

which can efficiently be computed by utilizing the observation ensemble anomalies.
From this the sample Kalman gain can be computed.

Applying the MFKF formulas (71) to the MFEnKF statistics it is possible to gain
access to the corresponding empirical Kalman gain,

˜KZb
i

= ˜�Zb
i ,Hi Zb

i

(

˜�Hi Zb
i ,Hi Zb

i
+ �Yi ,Yi

)−1
, (100)
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and the corresponding analysis of the anomalies,

AXa
i

= AXb
i
− ˜KZb

i
(AHi Xb

i
− EX

Yi ), (101)

AÛ a
i

= AÛ b
i
− �˜KZb

i
(AHi�Û b

i
− EÛ

Yi ), (102)

AUa
i

= AUb
i
− �˜KZb

i
(AHi�Ub

i
− EU

Yi ), (103)

where each EYi is an ensemble of perturbed observations. In Popov et al. (2020)
it was shown that there is no unique ‘nice’ solution to the problem of perturbed
observations in the MFEnKF, thus we will leave this discussion aside in this chapter.

In order to get an ensemble of Za , we can look towards the ensemble transform
Kalman filter, specifically at the ‘left transform’ variant (Sakov and Bertino
2011). Using known properties of thematrix shift lemma (Asch et al. 2016) and
the linearity of the control variate relation (39) one canwrite the transformation
of the ensemble of Xa into anomalies of Za given by the ETKF (23) as:

EZa = μ̃Za1TNX
+ (In − S�)

1
2AXa , (104)

which can be implemented in any number of computationally efficient ways
(Allen et al. 2000) beyond the scope of this chapter.

Note however that thismethodology relies on the equality of the covariances
of the control and ancillary variates, which especially in the ensemble case will
be violated.

We now discuss the main advantage of the MFEnKF: utilizing the same amount
of samples of the fine fidelity model as the standard EnKF, the MFEnKF provides a
more accurate mean analysis.

Theorem 8 Assume that we have access to the exact Kalman gains KZb
i
, KXb

i

from (68), of the theoretical Kalman filters. The variance of the empirical mean
of the analysis total variate computed with the total variate Kalman gain is less that
the variance in the empirical mean in the analysis principal variate computed with
the principal variate Kalman gain,

�μ̃Zai (K
Zbi

),μ̃Zai (K
Zbi

)
≤ �μ̃Xai (K

Xbi
),μ̃Xai (K

Xbi
)
. (105)
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Proof Assuming again that NU ≥ NX , and by Theorem 7,

�μ̃Zai (K
Zbi

),μ̃Zai (K
Zbi

)
≤ N−1

X �Za
i (KZbi

),Za
i (KZbi

) (106)

+(N−1
U − N−1

X )S�Ua
i (KZbi

),Ua
i (KZbi

)ST , (107)

≤ N−1
X �Xa

i (KXbi
),Xa

i (KXbi
), (108)

= �μ̃Xai (K
Xbi

),μ̃Xai (K
Xbi

)
, (109)

as required.

The perturbed observations MFEnKF is similar to a typical EnKF algorithm
in the way in which inflation and B-localization can be applied. An important
salient difference is that there is now an additional hyperparameter, namely the
inflation factor for the ancillary ensemble αU . Inflation for the principal and
control ensembles αX should be the same in order to keep them highly corre-
lated. As optimal inflation is known to depend on the ensemble size (Popov
and Sandu 2020), it should generally be the case that αU < αX .

3.3 Other ‘Multi-x’ Data Assimilation Algorithms

In this section we discuss other data assimilation algorithms in the ‘multi-’ family
that do not, as-of-now, have rigorous multifidelity counterparts.

3.3.1 Particle Filters

In Giles (2008, 2015), Giles discusses ‘multilevel’ Monte-Carlo simulations. The
case of projection and interpolation is ignored, and the optimal gain is explicitly set
to be identity. The author examines the component variates as being coupled through
their differences, which in a two-level control variate framework is equivalent to
examining the variates:

{

U

X − Û
, (110)

treating each as an independent source of information, with means:

{

μU

μX − μÛ

. (111)
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The implicit assumption is that the only important source of information is the mean-
estimate, and that μU carries negligible uncertainty. The intended use of such algo-
rithms is in small-dimensional cases where large ensembles on coarse fidelitymodels
can be created, thus this is not an unreasonable assumption.

In Gregory et al. (2016), Gregory and Cotter (2017), Gregory and co-authors
propose ‘multilevel’ ensemble transform particle filters (ETPF). The authors again
employ a linear control variate structure where the optimal gain is assumed to be the
identity, and in which all variable operations are performed on the same empirical
measures. The authors pay attention to the need for their principal and control variate
ensemble to be related, but do not pay attention to the optimality of the couplings.
Furthermore the authors utilize a coupling that is optimal for Gaussian random vari-
ables; an optimal coupling based on optimal transport could be utilized, while at the
same time performing transformations between ensembles through optimal transport
techniques.

It is of independent interest to develop more rigorous ‘multifidelity’ generaliza-
tions of such algorithms using the couplings outlined in this chapter.

3.3.2 Ensemble Kalman Filters

In Chernov et al. (2017), Hoel et al. (2016), the authors propose a ‘multilevel’ EnKF.
The authors extend the empirical measures (110) to spatial relations. In a two-level
framework the authors analyze the variables

{

U

X − �Û
, (112)

again treating each as an independent source of information, with the means:

{

μU

μX − �μÛ

, (113)

and the signed empirical measure covariance estimates:

{

�U,U

�X,X − ��Û ,�Û

. (114)

This covariance estimate is not guaranteed to be semi-positive definite. Additionally,
no attention is paid to utilize an optimal gain linear control variate structure, and the
enforcement the principal-control variate relation.
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4 Multifidelity Observations

We now discuss an optimal way in which to combine observations from different
sources at roughly similar physical locations of the same phenomenon. In operational
literature this is commonly dubbed ‘super-observations’ (Cummings 2005; Oke et al.
2008), though such formulations are largely heuristic in that they take naive averages
of interpolations of similar observations. The chief reason why observations are
combined instead of used separately is to reduce the observation space dimension,
making similar information represented in a denser format.

Assume that the true state is Xt , and recall the multifidelity observation defini-
tion (6) where the observations Y χ and Y υ have the observation errors ηχ , and ηυ that
are assumed to be unbiased and independent. We make the additional assumption
that the fine fidelity and coarse fidelity observation operators are deterministically
related by the coupling

Hυ(x) = θ(Hχ (x)), (115)

similar to the state relation assumed in (16).
The truth in observation space is assumed to be the expected value of the obser-

vation for each fine and coarse observation. This can be alternatively reformulated
as the truth in observation space is distributed according to a distribution with mean
Yχ and Yυ for the fine and coarse observations respectively.

A canonical way of dealing with such a scenario is by ‘stacking’ the observations,
and creating the observation operator

H(X) =
[Hχ (X)

Hυ(X)

]

. (116)

We will not pursue this approach, as it increases the dimensionality of the observa-
tions without increasing the information content.

Under the linear control variate approach the total variate observation mean is
defined to be:

μY ζ = μY χ − S(θ(μY χ ) − μY υ ), (117)

where one implicitly assumes that E[θ(Y χ )] = E[Y υ]. The optimal gain is,

S = �Y χ ,θ(Y χ )

(

�θ(Y χ ),θ(Y χ ) + �Y υ ,Y υ

)−1
, (118)

with the new covariance of the total observation given by

�Y ζ ,Y ζ = �Y χ ,Y χ − �Y χ ,θ(Y χ )

(

�θ(Y χ ),θ(Y χ ) + �Y υ ,Y υ

)−1
�θ(Y χ ),Y χ . (119)

Evaluation of this formula, however, requires knowledge of both �Y χ ,θ(Y χ ) and
�θ(Y χ ),θ(Y χ ), which might not be readily available.
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An alternate approach is to utilize the importance sampling framework. Assume
we have an ensemble of perturbed observations, EY χ = [

Yχ,(1), . . . ,Yχ,(M)
]

, rep-
resenting M independent samples from the assumed distribution of the fine fidelity
observation πY χ . Apply the importance sampling procedure to generate the weights:

[w]i ∝ πY υ

(

θ
(

Yχ,(i)
))

. (120)

The unbiased mean and covariance estimates of the total observation are given by

μ̃Y ζ = EY χw, ˜�Y ζ ,Y ζ = M

M − 1
EY χ

(

diag(w) − wwT
)

ET
Y χ . (121)

Alternatively, an ensemble of equally weighted perturbed observations to be used
with a perturbed observations EnKF can be derived by the optimal transport frame-
work,

EY ζ = EY χT∗, (122)

given by (27).
As many of these methods rely on empirical estimates of the total observation

covariance matrix, methods such as localization can trivially be applied, especially
since in most operational algorithms for physical systems the observation covariance
is typically assumed to be diagonal.

5 Numerical Experiments

For the sake of completeness we provide a simple twin experiment on a simple
dynamical system to test a two-fidelity MFEnKF.

For the fine fidelity model we use the 40-variable Lorenz ’96 system (Lorenz
1996), posed as an ODE:

x′
i = fX (x) = −xi−1(xi−2 − xi+1) − xi + 8, 1 ≤ i ≤ 40, (123)

where x0 := x40, x−1 := x39 and x41 := x1.
We use the method of snapshots (Sirovich 1987) to construct linear projection

and interpolation operators, � and �, utilizing 20000 snapshots over an expressive
time interval of 1000 units.

For the coarse fidelity we consider a reduced order model built using a naive
approach, where we evaluate the derivative in the full space and then project onto
the reduced space:

u′ = fU (u) = � fX (�u). (124)

For the Lorenz ’96 system this can be written equivalently as a multivariate quadratic
equation.
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Fig. 2 Comparison of the
analysis empirical mean
RMSE of a localized
perturbed observations
MFEnKF with a localized
perturbed observations
EnKF, for various fine
fidelity (full order) model
ensemble sizes
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The Lorenz ’96 system is known to have a Kaplan-Yorke dimension of 27.1
(Popov and Sandu 2019). For this reason we take r = 28 reduced modes to describe
the whole system (though this is only possible non-linearly). In the reduced model,
this represents about 90% of the total energy of the system, as represented by the
ratio of the captured eigenvalues to the total eigenvalues. In this context it is actually
relatively difficult to build a reduced order model for the Lorenz ’96 system.

We compare the algorithm to the standard perturbed observations ensemble
Kalman filter. Both algorithms will use forecast anomaly inflation and Gaspi-Cohn
covariance localization (Gaspari and Cohn 1999).

We observe every other variable every t = 0.05 time units, with a Gaussian
error (2) of �Y,Y = I20.

We perform localization and inflation as follows. For forecast anomaly inflation
for the full system we will take αX = 1.1 and for the coarse system αU = 1.00 as
the reduced order model is less stable than the full order model, thus not requiring
inflation. To retain an undersampled ensemble for the ancillary variate, we choose
an ensemble size of NU = 25. The inner parameter of the localization function is
selected to match that of a Gaussian kernel, and set the radius to be equal to 4 (Petrie
and Dance 2010).

Figure2 shows the relationship between the principal variate ensemble size and the
spatio-temporal RMSEof the empirical analysismean of theMFEnKF and the EnKF.
As can be seen, the problem is comparatively difficult for the EnKF, as it requires
at least 18 fine fidelity ensemble members for a stable behavior. The same RMSE
can be achieved with less than 10 fine fidelity ensemble members in the MFEnKF
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framework. Assuming the coarse fidelity model runs are significantly cheaper (not
true in this trivial contrived example) then the MFEnKF is clearly superior.

We note that there is some loss of accuracy in the results, due in part to several
assumptions that are violated. One is that the orthogonal complement space is uncor-
related with that of the full space (65). As we are capturing 90% of the energy of the
system, the rest of the energy is not that negligible, and is no doubt highly correlated
with the what is captured. Methods to diminish the influence of this error, would be
needed for operational systems.

6 Discussion

Multifidelity data assimilation, andmultifidelity inference in general, seek to leverage
the availability of information about reality at multiple resolution levels. The field is
still in its infancy, but the multifidelity methods are highly promising. This chapter
provides a general philosophical and theoretical framework for the development of
suchmethods. Newmultifidelity data assimilation approaches should utilize efficient
coarse fidelity models to speed up high fidelity inference. The new methods should
be grounded in sound statistical and probabilistic theory.

In this chapter we focus on the multifidelity stochastic EnKF. Variational mul-
tifidelity approaches have been developed in Stefanescu et al. (2015). Square root
multifidelity Kalman filters, analogues to the perturbed observations MFEnKF, must
be developed in the future. Particle filters that are appropriate for non-Gaussian
probability densities, or even hybrid EnKF-PF systems where different variates are
assimilated with different algorithms, might provide an avenue for development
of multifidelity particle filtering. Multifidelity hybrid data assimilation, that com-
bines multifidelity EnKF and multifidelity variational methods, are also a promising
future venue. Finally, the construction of a hierarchy of coarser models to support
data assimilation should be carefully investigated. For example, methods based on
machine learning (e.g., as discussed in Moosavi et al. 2018a, b, or non-linear projec-
tions using autoencoders) are of considerable interest.
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Filtering with One-Step-Ahead
Smoothing for Efficient Data
Assimilation

Boujemaa Ait-El-Fquih and Ibrahim Hoteit

Abstract State-space systems arise in many applications in signal processing and
data assimilation. In this context, the main goal is to estimate online the state of
the system based on available observations, the so-called filtering problem. Standard
filtering solutions are computed recursively as successive cycles of alternating time-
update (forecast) and observation-update (analysis) steps. This path is however not
the only recursive way to compute the filtering solution. In this context, new one-
step-ahead smoothing (OSAS)-like filtering schemes have been introduced, revers-
ing the order of the observation-update and the time-update steps. These involve
two Bayesian-like update steps based on the same (present) observation: one for
smoothing the previous state and one for analyzing the present one. These include
new variants of Kalman filters (KF-OSAS), particle filters (PF-OSAS) and ensemble
Kalman filters (EnKF-OSAS), depending on the size and the linear-Gaussian char-
acter of the underlying state-space system. While the standard KF and KF-OSAS
provide the same (exact) estimator, the use of the same data twice in the estimation
process generally leads to improved trade-off between estimation quality and compu-
tational burden for the PF-OSAS and EnKF-OSAS. This chapter offers a comprehen-
sive presentation of the OSAS-like filtering algorithms, reviewing their derivations,
detailing algorithmic and practical differences and similarities with their classical
counterparts, and discussing their relevance for both small- and large-dimensional
applications.

1 Introduction

The estimation of the state of a dynamical system based on incoming observations
that are distributed in time has long been an active area of research (Hoteit et al.
2018; Chui and Chen 1999; Harvey 1989; Anderson and Moore 1979; Evensen
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2006). This is often formulated as the so-called state-space system composed by two
stochastic equations: one describes the evolution of the state, called the dynamical
model, and the other one maps the state into the observations’ space through the
so-called observational model. In the context of state-space systems, combining all
available information from prior (initial) state and observations has proven to be the
most viable approach to determine the best estimates of the state of an underlying
physical system, a process that can be achieved through filtering or optimization
approaches—often referred to as data assimilation (DA).

The theoretical framework of DA is now well-established, mostly based on the
deterministic variational (optimization) theory or the statistical estimation (filtering)
theory. Variational methods seek to fit the state model’s trajectory to available obser-
vations by adjusting a well-chosen set of control parameters (Le Dimet and Tala-
grand 1986), whereas in the filtering methods the state of the system is estimated
sequentially as the observations become available (Jazwinski 1970; Künsch 2001).
More specifically, in the filtering framework, the estimation problem is typically split
into successive cycles of alternating time-update (forecast) then observation-update
(analysis) steps (Künsch 2001). The time-update step computes the forecast proba-
bility density function (pdf) of the state given past observations, by integrating the
previous analysis pdf with the dynamical model. The forecast pdf is then updated in
the observation-update step with the incoming observations, through Bayes’ rule, to
obtain the analysis pdf of the state given all observations up to the current time. The
analysis pdf is conditioned on all available observations and as such, it provides any
type of state estimates as for instance the posterior mean (PM), the optimum solution
according to several criteria including the well-known mean-squared error (MSE)
minimization (van Trees 1968; Sherman 1955).

In practice, however, analytic calculation of the forecast and analysis distribu-
tions, and associated estimates, is not straightforward unless the state-space system
is linear and Gaussian, in which case the aforementioned generic forecast and analy-
sis steps are reduced to the well-known Kalman filter (KF) (Kalman 1960; Jazwinski
1970; Anderson andMoore 1979; Ait-El-Fquih and Desbouvries 2006). The particle
filter (PF)1 is the most prominent among the vast toolbox of approximate numerical
methods that have been proposed for nonlinear/non-Gaussian systems (Gordon et al.
1993; Doucet et al. 2001; Cappé et al. 2005). It is a sequential Monte Carlo (MC)
algorithm that provides an approximation of the (continuous) forecast and analysis
distributions by empirical (discrete) distributions of random samples, called parti-
cles. The theory behind PF ismathematically sound and its asymptotic (in the number
of particles) convergence properties are well established (Doucet et al. 2001; Crisan
and Doucet 2002). However, due to the finite number of particles that is used in prac-
tice, the weights of particles usually exhibit variances that increase exponentially in
time, which may strongly limit the filter performances. Indeed, after few assimila-

1 Without loss of generality, throughout the chapter PF refers to the particular bootstrap algorithm
of Gordon et al. (1993), which is commonly used in geophysics problems. Sequential Importance
Sampling (SIS) or Sampling Importance Resampling (SIR) algorithms will designate the other
importance sampling (IS)-based algorithms.
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tion cycles only, all but a few particles will have negligible weights, leading to the
so-called weights’ degeneracy phenomenon (Liu and Chen 1998; Doucet et al. 2001;
Snyder et al. 2008; van Leeuwen 2009; Desbouvries et al. 2011). This happens in part
because the incoming observations are not used to update the particles in the analy-
sis step, but only their weights (Hoteit et al. 2008; van Leeuwen 2009; Hoteit et al.
2012). A standard solution to mitigate the degeneracy phenomenon is resampling,
which basically consists of drawing “new” particles by duplicating those with large
weights and abandoning those with low weights (Rubin 1988; Gordon et al. 1993;
Liu and Chen 1998; Doucet et al. 2001; Lamberti et al. 2017). The PF with resam-
pling has been proven to perform well for low-dimensional systems (Kivman 2003;
Subramanian et al. 2012), but is still inefficient for large-dimensional systems due
to the need of a prohibitive number of particles to sufficiently sample the state space
(curse of dimensionality); with the number of particles needed scaling exponentially
with the system dimension (Crisan and Doucet 2002; Snyder et al. 2008).

Despite the promising PF-based strategies that have recently been proposed to
cope with the curse of dimensionality in large-dimensional systems (e.g., Spiller
et al. 2008; Husz et al. 2011; Morzfelda et al. 2012; Ades and van Leeuwen 2013;
Djuric and Bugallo 2013; Ait-El-Fquih and Hoteit 2015; Septier and Peters 2015;
Ait-El-Fquih and Hoteit 2016), the ensemble Kalman filtering (EnKF) is still the
most popular and most efficient framework for large-dimensional systems, e.g., in
atmosphere, ocean, hydrology, etc. (Evensen 1994, 2006; Hoteit et al. 2015; Asch
et al. 2016; Hoteit et al. 2018; Carrassi et al. 2018). EnKF is a MC implementation
of the KF. It shares the same forecast step with the PF, but uses an analysis step that
is derived from that of the KF based on the Gaussian assumption on the joint state-
observation forecast pdf. In the EnKF analysis step, the analysis particles (called now
“analysismembers”) can be sampled either by updating the forecastmembers directly
with the KF correction step based on stochastically perturbed observations (referred
to as the stochastic EnKF, e.g., Burgers et al. 1998; Houtekamer and Mitchell 1998;
Evensen 2006), or through an update of the mean and a square-root form of the
covariance of the forecast ensemble exactly as in the KF, without perturbing the
observations (known as the deterministic EnKFs, e.g., Pham 2001; Bishop et al.
2001; Anderson 2001; Hoteit et al. 2002; Tippett et al. 2003; Hunt et al. 2007;
Hoteit et al. 2015). Though the problem of weights’ degeneracy is circumvented,
these filters often suffer from the so-called filter inbreeding problem, in which the
ensemble variance is increasingly under-estimated over time (Furrer and Bengtsson
2007;Hendricks Franssen andKinzelbach 2008). Thismostly happenswhen the filter
is implemented without accounting for the various systematic errors in the system
(mostly the dynamical model errors and those related to the Gaussian assumption),
and sampling errors (Whitaker and Hamill 2002; Houtekamer and Mitchell 2005;
Whitaker et al. 2008). Efficient auxiliary techniques have been introduced, most
notably inflation (Anderson 2001; Ait-El-Fquih and Hoteit 2020) and localization
(Houtekamer and Mitchell 1998) (see also Kivman 2003; Hoteit et al. 2008). With
more studies demonstrating the efficiency of the EnKF in various applications, other
EnKF-like extensions were introduced. These include the use of the less restrictive
Gaussian mixture assumption (e.g., Hoteit et al. 2008; Stordal et al. 2011; Hoteit
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et al. 2012; Frei and Künsch 2013; Liu et al. 2015); the development of ensemble
Kalman smoothing algorithms (e.g., Evensen and van Leeuwen 2000; Dunne et al.
2007; Dreano et al. 2017); and the extension of the EnKF to the framework of
state-parameters filtering problems (e.g., Moradkhani et al. 2005; Annan et al. 2005;
Chen and Zhang 2006; Aksoy et al. 2006; Bellsky et al. 2014; Gharamti et al. 2014;
Rasmussen et al. 2015; Ait-El-Fquih and Hoteit 2018).

Recent studies have investigated a reversed filtering path, i.e., “observation-update
then time-update” to compute the analysis pdf recursively (Desbouvries and Ait-El-
Fquih 2008;Desbouvries et al. 2011). This resulted in a new set of filtering algorithms
that involve computing a one-step-ahead smoothing (OSAS) pdf between two suc-
cessive analysis pdfs, within a fully consistent Bayesian framework. Starting from
the analysis pdf at the previous time, the observation-update step aims at updat-
ing (constraining) this pdf with the current observation, using a (new) transformed
observational model linking this observation with the previous state. This yields the
so-called OSAS pdf of the previous state (i.e., given the history of observations,
including the current one). The time-update step then integrates the resulting OSAS
pdf with a (new) updated dynamical model linking the current state with the previous
state and the current observation, which leads to the analysis pdf of the current state.
The two “new” models are defined through a combination of the original dynam-
ical and observational models. This means that the OSAS-like filtering algorithms
involve the use of the original models twice (i.e., two integration and two update
steps with the newest observation). At every assimilation cycle, this roughly doubles
the overall computational cost of the standard filtering algorithms, but also exploits
the available information twice in an attempt to enhance the filters performances
(e.g., Desbouvries et al. 2011; Ait-El-Fquih et al. 2016; Raboudi et al. 2018).

Apart from the (exact) OSAS-likeKF (KF-OSAS) (Desbouvries andAit-El-Fquih
2008), several studies have suggested throughnumerical experiments that the recently
introduced (approximate) OSAS-like PF (PF-OSAS) and EnKF (EnKF-OSAS) may
provide a better trade-off between computational burden and estimates accuracy,
mainly under challenging assimilation scenarios as for instance strong nonlinearities,
sparse observational networks, large assimilation windows, etc. (e.g., Desbouvries
et al. 2011; Ait-El-Fquih et al. 2016; Raboudi et al. 2018, 2019). This makes the
OSAS formulations of the PF and EnKF promising approaches for deriving efficient
schemes for large-dimensional nonlinear data assimilation problems (e.g., Desbou-
vries et al. 2011; Ait-El-Fquih et al. 2016; Raboudi et al. 2018, 2019, 2020). In
such filters, a smoothing ensemble is first sampled, then forwarded in time with the
new dynamical model, which also involves the newest observation. The smoothing
ensemble is sampled in PF-OSAS according to weighting-resampling steps, and in
EnKF-OSAS according to a Kalman-like update step.

This chapter aims at providing a general overview of the OSAS-like filtering
methods, and discussing in particular their algorithmic and practical differences and
similarities with their standard counterparts. It will also discuss the potential use
of these filters with small- and large-dimensional problems. The remainder of this
chapter is organized as follows. Section2 recalls the Bayesian filtering problem and
reviews its standard formulation. Section3 introduces the generic formulation of
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the OSAS-like filters, then design the associated “new” dynamical and observational
models from the original ones. Section 4 discusses the implementation of the generic
OSAS filtering schemewith small-dimensional models, including the KF-OSAS and
PF-OSAS algorithms. Section 5 focuses on the large-dimensional systems, present-
ing the stochastic EnKF-OSAS, then discussing the key steps of its deterministic
variants and also extending it to the more general state-parameters filtering frame-
work. Concluding remarks are offered in Sect. 6.

2 Problem Formulation

Let x = {x0, x1, . . . , xN } and y = {y0, y1, . . . , xN }, with xn ∈ R
nx and yn ∈ R

ny ,
denote a discrete-time (unknown) state process and an observation process, respec-
tively. In many DA applications, such as for instance geophysical fluid dynamics
(Evensen 1994, 2006; Anderson 2009;Mandel et al. 2009; Yardim et al. 2011; Hoteit
et al. 2018; Hoteit et al 2020), target tracking (Chui and Chen 1999; Bar-Shalom et al.
2001; Arulampalam et al. 2002; Yardim et al. 2011), navigation (Bar-Shalom et al.
2001; Durrant-Whyte and Bailey 2006; Gustafsson 2010), and wireless communi-
cations (Djuric et al. 2002; Ephraim and Merhav 2002; Haykin et al. 2004), these
processes are related following a state-space system of the form:

{
xn = fn−1 (xn−1) + un−1,

yn = Hnxn + vn; (1)

fn−1(.) being a (possibly nonlinear) dynamical operator2 integrating the state of the
system from time tn−1 to tn , and Hn an observational operator at time tn , assumed
linear here for simplicity (the OSAS filtering schemes can be easily extended to
the nonlinear case). The state noise process, u = {un}n∈N, and the observation noise
process, v = {vn}n∈N, are assumed to be independent (i.e., time-wise independent),
jointly independent and independent of the initial state, x0. Also let x0, un and
vn be Gaussian with means x̂0, 0 and 0, and covariances P0, Qn and Rn , respec-
tively. Throughout this chapter, x0:n = {x0, . . . , xn}, y0:n = {y0, . . . , yn}, and p(ξ)

and p(ξ |μ) denote the pdf of a random variable ξ , and the conditional pdf of ξ

given a realization of another random variable μ, respectively. Such independence
properties yield,

2 Without loss of generality, the term g(m) in any modeling equation d = g(m) + noise, will be
called operator, whereas the whole equation will be called model, i.e., equations in (1) refer to as
dynamical and observational models; ditto for those in (25).
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p(xn|x0:n−1) = p(xn|xn−1), (2)

p(y0:n|x0:n) =
n∏

k=0

p(yk |x0:n), (3)

p(yk |x0:n) = p(yk |xk), k = 0, 1, . . . , n, (4)

which suggests that system (1) is a (continuous state) hidden Markov chain (HMC)
of transition pdf p(xn|xn−1) and likelihood p(yn|xn) (Künsch 2001; Ait-El-Fquih
and Desbouvries 2006). The aforementioned Gaussian assumptions, in turn, entail

p(xn|xn−1) = N xn (fn−1(xn−1),Qn−1), (5)

p(yn|xn) = Nyn (Hnxn,Rn), (6)

where Nx(m,C) stands for a Gaussian pdf of argument x and parameters (m,C).
It is worth noticing from Eqs. (5)–(6) that the transition and likelihood laws are
probabilistic formulations of the dynamical and observational models, respectively.

The Bayesian filtering problem consists of estimating the value taken by xn , at
every time tn = t0, . . . , tN , from all available observations, y0:n . The posterior pdf,
p(xn|y0:n), known as the analysis pdf, is a key quantity of such a problem, as it
summarizes the entire information about xn knowing y0:n , and allows one to compute
any type of estimator depending on the choice of the optimization criteria. The PM
estimator, which has the advantage to be the solution for a wide class of criteria,
including the well-known MSE minimization, is the most popular (van Trees 1968;
Sherman 1955). In a HMC, it is possible to calculate the analysis pdf in a recursive
(efficient) way based on the transition and likelihood laws (Künsch 2001). Clearly,
the recursivity is inherited from the equalities,

p(xn|x0:n−1, y0:n−1) = p(xn|xn−1), (7)

p(yn|x0:n, y0:n−1) = p(yn|xn), (8)

which, indeed, follow from (2)–(4) (Ait-El-Fquih and Desbouvries 2006). More pre-
cisely, the path from p(xn−1|y0:n−1) to p(xn|y0:n) can be achieved with a succession
of a Markovian step (or integration) where the transition pdf is used to obtain the
forecast pdf,

p(xn|y0:n−1)
(7)=

∫
p(xn|xn−1)p(xn−1|y0:n−1)dxn−1, (9)

and a Bayesian step (or correction) in which the likelihood is combined with the
forecast pdf using Bayes’ rule,

p(xn|y0:n) ∝ p(yn, xn|y0:n−1), (10)
(8)∝ p(yn|xn)p(xn|y0:n−1). (11)
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In the linear-Gaussian systems, (9)–(11) can be computed exactly by KF tech-
niques (Kalman 1960; Anderson and Moore 1979; Kailath et al. 2000). In a general
system, however, calculating p(xn|y0:n) analytically is most often not possible.Many
approximate techniques such as the sequential Monte Carlo (SMC) methods, most
notably SIRs/PF (e.g., Gordon et al. 1993; Doucet et al. 2001) and EnKFs (e.g.,
Evensen 1994, 2006; Hoteit et al. 2015), which aim at providing MC approxima-
tions of p(xn|y0:n) have been developed. In this chapter we do not aim to modify
the standard (“time-update then observation-update”-like) KF, PF or EnKF algo-
rithms. We focus instead on the alternate estimation path “observation-update then
time-update” to revisit new filtering algorithms, which involve the computation of
an OSAS pdf between two successive analysis pdfs.

3 One-Step-Ahead Smoothing (OSAS) Formulation
of Bayesian Filtering

The classical “time-update then observation-update” path (9)–(11) is not the only
one to compute the analysis pdf p(xn|y0:n) from p(xn−1|y0:n−1). One indeed may
reverse the order of the time- and observation-update steps, without requiring any
further assumptions (Desbouvries et al. 2011).

3.1 The Generic Algorithm

3.1.1 The Observation-Update Step

Constraining p(xn−1|y0:n−1) by the current observation, yn , is performed using
Bayes’ rule, which results in the one-step-ahead smoothing pdf p(xn−1|y0:n) (Des-
bouvries et al. 2011):

p(xn−1|y0:n) ∝ p(yn|xn−1)p(xn−1|y0:n−1). (12)

Equation (12) holds under the condition p(yn|xn−1, y0:n−1) = p(yn|xn−1), which is
already fulfilled from (7)–(8). Unlike the classical Bayesian step (11), which makes
use of the likelihood p(yn|xn), defined in (6), p(yn|xn−1) is not known and needs to
be calculated before applying the Bayesian step (12). This can be achieved following
an integration based on the original transition and likelihood laws (Desbouvries et
al. 2011):

p(yn|xn−1) =
∫

p(yn|xn)p(xn|xn−1)dxn. (13)
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3.1.2 The Time-Update Step

Given the set of observations y0:n , this step leads to move from the law of xn−1 (i.e.,
from the resulting smoothing pdf p(xn−1|y0:n)) to the law of xn (i.e., to the analysis
pdf of interest p(xn|y0:n)), hence the term “time-update”. This can be done through
the integration (Desbouvries et al. 2011),

p(xn|y0:n) =
∫

p(xn|xn−1, yn)p(xn−1|y0:n)dxn−1. (14)

Equation (14) holds under the condition p(xn|xn−1, y0:n) = p(xn|xn−1, yn), which is
already fulfilled from (7)–(8). Noticing that (14) shares a similar structure with the
standard integration step (9), with (14) coinciding with (9) “given the observation
yn”, step (14) will henceforth be referred to as the conditional integration step (driven
by the conditional transition density, p(xn|xn−1, yn)). Unlike the (original) transition
density in (9), the conditional transition density is not known and its calculation is
required before applying the conditional integration step (14). This can be achieved
using a Bayesian mechanism based on the original transition and likelihood laws
(Desbouvries et al. 2011):

p(xn|xn−1, yn) ∝ p(yn|xn)p(xn|xn−1). (15)

In summary, the OSAS-like filtering approach has a similar structure as the clas-
sical filtering one, with each assimilation cycle involving a Bayesian step and an
integration step. The key difference lies in the fact that the likelihood and transition
densities that govern these steps are known in the classical approach, but are unknown
in the OSAS formulation, a reason for which further integration- and Bayesian-like
steps arise to calculate them.

3.2 State-Space Transform

Substituting (5)–(6) in (13) and (15), this results in “new” transition and likelihood
laws that are also Gaussian with,

p(xn|xn−1, yn) = Nxn (f̃n−1(xn−1, yn), Q̃n−1), (16)

p(yn|xn−1) = Nyn (h̃n−1(xn−1), R̃n), (17)

where,
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f̃n−1(xn−1, yn) = fn−1(xn−1) + Gn(yn − Hnfn−1(xn−1)), (18)

h̃n(xn−1) = Hnfn−1(xn−1), (19)

R̃n = HnQn−1HT
n + Rn, (20)

Gn = Qn−1HT
n R̃

−1
n , (21)

Q̃n−1 = Qn−1 − GnHnQn−1. (22)

As will be further discussed hereafter, (16) and (17) are probabilistic representa-
tions of “new” dynamical and observational models.

3.2.1 The New Dynamical Model

As can be seen from (16), (18), updating the Gaussian prior pdf (5) with the Gaussian
likelihood (6) following the Bayesian update (15), amounts to update the moments
of this prior with the observation yn and the original observational model following
a Kalman-like update with a gain Gn as in (21). One can then easily show that the
resulting conditional (posterior) transition pdf (16) is a probabilistic formulation of
the “new” dynamical model,

xn = f̃n−1 (xn−1, yn) + ũn−1; ũn−1 ∼ N (0, Q̃n−1), (23)

which, as can be seen from (18), is, somehow, a Kalman-like update of the original
dynamical model based on the observation yn and the original observational model.
The correction terms, Gn(yn − Hnfn−1(xn−1)) in (18) and GnHnQn−1 in (22), make
the new model computationally more expensive than the original one. However,
because of its fully consistent Bayesian derivation, the new model should be “more
informative”.

3.2.2 The New Observational Model

As can be seen from3 (13) and (17), (19), “averaging” the likelihood p(yn|xn) w.r.t.
p(xn|xn−1) to obtain p(yn|xn−1) amounts to “fix” the variable xn in the observa-
tional model, replacing it by the mean of p(xn|xn−1) (which turns Hnxn in (6) into
Hnfn−1(xn−1) in (17), (19)), and to inflate the likelihood covariance additively by
a factor HnQn−1HT

n (which turns Rn in (6) into R̃n in (17)). This inflation of the
covariance comes from the fact that p(yn|xn) is nothing but p(yn|xn−1), constrained
with “more information” that is contained in xn , i.e.,

3 Notice that (13) is simply an “averaging” of p(yn |xn) w.r.t. p(xn |xn−1) to obtain p(yn |xn−1), i.e.,

p(yn |xn−1)
(13)= Ep(xn |xn−1)[p(yn |xn)].
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p(yn|xn)︸ ︷︷ ︸
posterior

= p(yn|xn, xn−1),

∝ p(xn|xn−1, yn)︸ ︷︷ ︸
likelihood

× p(yn|xn−1)︸ ︷︷ ︸
prior

.

On the other hand, one can also show that the new likelihood (17) is a probabilistic
representation of a new observational model,

yn = h̃n−1(xn−1) + ṽn; ṽn ∼ N (0, R̃n), (24)

which, unlike the linear original model, maps non-linearly the previous state to the
current observation. However, since R̃n has been already calculated to build the new
dynamical model, no additional computations are needed compared to the original
observational model.

3.2.3 The New State-Space System

Grouping together the new models leads to a new state-space system,4

{
yn = h̃n(xn−1) + ṽn,
xn = f̃n−1 (xn−1, yn) + ũn−1,

(25)

where the associated noise processes, ṽ = {ṽn}n∈N and u = {ũn}n∈N, are Gaussian,
independent, jointly independent and independent of the initial state, x0. Defining ṽn
and ũn−1 as,

ṽn = Hnun−1 + vn, (26)

ũn−1 = [Inx − GnHn]un−1 − Gnvn, (27)

one can easily show that these Gaussian and independence properties follow from
those of the “original” noises, u and v (see Sect. 2). More specifically:

• Gaussianity. un−1 and vn are independent and Gaussian variables with zero means
and covariancesQn−1 and Rn , respectively, implies that ṽn and ũn−1 are Gaussian
with zero means and covariances R̃n (20) and Q̃n−1 (22), respectively.

• Independence of the noises. u and v are independent and jointly independent
processes, implies that ṽ and ũ are independent, i.e.,E

[
ṽn ṽT�

] = 0 andE
[
ũnũT

�

] =
0 for any n, � ∈ N and n �= �.

• Joint independence between the noises. u and v are independent and jointly inde-
pendent processes, implies that ṽ and ũ are jointly independent, i.e.,E

[
ṽnũT

�

] = 0

4 Recall that the OSAS-like filter reverts the order of the time-update and observation-update steps
(i.e., step (12) then (14)), involving the use of the new likelihood before the new transition density.
Thus, for the sake of consistency, we revert the conventional order of the models in the new system.



Filtering with One-Step-Ahead Smoothing for Efficient Data Assimilation 79

for any n, � ∈ N. This include the particular case in which the noises ṽn and ũn−1

in (25) are independent. More specifically, the independence between un−1 and vn
implies that E

[
ṽnũT

n−1

] = 0, which means that ṽn and ũn−1 are independent.
• Independence between the initial state and the noises. u and v are independent
of x0, implies that ṽ and ũ are independent of x0, i.e., E

[
ṽn(x0 − x̂0)T

] = 0 and
E

[
ũn(x0 − x̂0)T

] = 0 for any n ∈ N.

The new state-space system (25), and equivalently the associated conditional tran-
sition and likelihood laws (16)–(17), establish the context in which implementations
of the observation-update step (12) and the time-update step (14) of the generic
OSAS-like filter are performed. This is presented in details in the next Sections,
including KF-OSAS and PF-OSAS for DA into small-dimensional systems, and
(stochastic) EnKF-OSAS and its deterministic variants as well as its extension to
state-parameters filtering framework for DA into large-dimensional systems.

4 OSAS-Like Filtering for Small-Dimensional Systems

As shown in Desbouvries and Ait-El-Fquih (2008), Desbouvries et al. (2011), KF-
OSAS is an exact implementation of the generic OSAS filter (12)–(15) in the partic-
ular case of linear-Gaussian systems,5 and PF-OSAS is an approximate implemen-
tation in the general case of nonlinear systems.

4.1 The OSAS-Based Kalman Filter (KF-OSAS)

Considering linear dynamics for the state process, i.e., fn−1(xn−1) = Fn−1xn−1, this
makes the transformed system (25) linear-Gaussian, a case in which the forecast,
analysis and smoothing pdfs of interest are Gaussian and are thus entirely described
by their first two moments (Desbouvries and Ait-El-Fquih 2008). Let hereafter for
any time tn , x̂

f
n , x̂an and x̂sn denote the (true) mean respectively of the forecast pdf,

p(xn|y0:n−1), the analysis pdf, p(xn|y0:n), and the smoothing pdf, p(xn|y0:n+1). The
associated covariances are further denoted by P f

n , Pa
n and Ps

n , respectively.

4.1.1 The Observation-Update Step (Smoothing)

The Bayesian step (12) that calculates p(xn−1|y0:n) from p(xn−1|y0:n−1) based on
the likelihood (17), reduces to a Kalman-like correction that calculates (x̂sn−1,P

s
n−1)

5 Notice that another OSAS-like KF has been introduced in Ait-El-Fquih and Hoteit (2015), but is
left out in this chapter. Its difference with the KF-OSAS lies in the fact that (i) it does not follow
from the generic filter (12)–(15), but from splitting the state vector using the variational Bayesian
approach, and (ii) it only computes an approximation of the analysis and smoothing pdfs.
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from (x̂an−1,P
a
n−1) based on the observational model (24). Denoting H̃n = HnFn−1

one has (Desbouvries and Ait-El-Fquih 2008; Desbouvries et al. 2011):

υn = yn − H̃n x̂an−1, (28)

Vn = H̃nPa
n−1H̃

T
n + R̃n, (29)

Ks
n−1 = Pa

n−1H̃
T
n V

−1
n , (30)

x̂sn−1 = x̂an−1 + Ks
n−1υn, (31)

Ps
n−1 = Pa

n−1 − Ks
n−1H̃nPa

n−1. (32)

KF-OSAS and KF are algorithmically different. However, their observation-
update steps share a common structure, and both are driven by the same so-called
innovation process υn (28) and associated covarianceVn (29). This can be shown by
inserting the forecast equations of the standard KF in (28) and (29), which leads to
(Anderson and Moore 1979):

υn = yn − Hn x̂ f
n , (33)

Vn = HnP f
n H

T
n + Rn, (34)

the innovation parameters of the standard KF. The common (Kalman-type) structure
of the observation-update steps of the two filters stems from the fact that these steps
originate from:

p(xn−1|y0:n) smoothing(12)= p(xn−1, yn|y0:n−1)

p(yn|y0:n−1)
, (35)

p(xn|y0:n) standard KF= p(xn, yn|y0:n−1)

p(yn|y0:n−1)
, (36)

which share a common Bayesian structure. Furthermore, the common evidence
(denominator) in (35) and (36),

p(yn|y0:n−1) ∝ e− 1
2 υT

n V
−1
n υn , (37)

explains why these steps use the same innovation parameters (υn,Vn).

4.1.2 The Time-Update Step (Analysis)

The integration step (14) that calculates p(xn|y0:n) from p(xn−1|y0:n) based on the
conditional transition density (16) reduces to a Kalman-like integration step that
computes (x̂an,P

a
n) from (x̂sn−1,P

s
n−1) based on the dynamical model (23). One has

(Desbouvries et al. 2011):
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x̂an = Fn−1x̂sn−1 + Gn(yn − H̃n x̂sn−1)︸ ︷︷ ︸
νn

, (38)

= F̃n−1x̂sn−1 + Gnyn, (39)

Pa
n = F̃n−1Ps

n−1F̃
T
n−1 + Q̃n−1, (40)

where F̃n−1 = Fn−1 − GnH̃n .
As can be seen, the time-update steps of KF and KF-OSAS have a common struc-

ture, which consists in a linear propagation of the means and a quadratic propagation
of the covariances, based on the original dynamical model (for KF) and the new
dynamical model (for KF-OSAS). The aforementioned Kalman-like update in the
new dynamical model shows up in the KF-OSAS analysis mean (i.e., term νn in
(38)). On the other hand, as discussed in Desbouvries et al. (2011), such a term can
be expressed as, νn = Q̃n−1HT

n V
−1
n υn , suggesting that the analysis mean (38), in

turn, involves the innovation parameters (υn,Vn), i.e.,

x̂an = Fn−1x̂sn−1 + Q̃n−1HT
n V

−1
n υn, (41)

just as the KF-OSAS smoothing mean (31) and the standard KF analysis mean.

4.2 The OSAS-Based Particle Filter (PF-OSAS)

Consider now a nonlinear dynamical model, fn−1(xn−1). In such a case, the posterior
pdfs are no longer Gaussian and KFs can no longer be applied. PF-OSAS is a MC
implementation of the generic algorithm (12), (14) in the transformed system (25),
or equivalently the new transition and likelihood laws (16)–(17) (Desbouvries et al.
2011). Let u and Pu respectively denote the ensemble mean and covariance for an
ensemble {um}m . Starting from a set of analysis particles {xa,m

n−1}Mm=1 independently
and identically distributed (iid)6 of p(xn−1|y0:n−1), the PF-OSAS computes a sample
{xa,m

n }Mm=1 of p(xn|y0:n) as described below.

4.2.1 The Observation-Update Step (Smoothing)

The Bayesian step (12) that calculates p(xn−1|y0:n) from p(xn−1|y0:n−1) based on the
likelihood (17), consists of a weighting step with this likelihood then a resampling
step, resulting in a smoothing ensemble {xs,mn−1}Mm=1 (of p(xn−1|y0:n)).

6 Without abuse of language, we use iid throughout the chapter even though this is true only asymp-
totically (inM). Indeed,withfiniteM , the particles are identically distributed (id) from the associated
density, but not independent.
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• Weighting (W) step: The normalized weight of each particle, xa,m
n−1, is computed

based on the likelihood (17) as,7

ws,m
n ∝ p(yn|xa,m

n−1)︸ ︷︷ ︸
Nyn (Hn fn−1(x

a,m
n−1),R̃n)

; with
M∑

m=1

ws,m
n = 1. (42)

• Resampling (R) step: The resulting weighted ensemble is next (re)sampled with
replacement to obtain the smoothing ensemble, i.e.,

xs,mn−1 ∼
M∑

�=1

ws,�
n δ(xn−1 − xa,�

n−1), (43)

where δ(. − xa,�
n−1) stands for the Dirac mass at point xa,�

n−1.

4.2.2 The Time-Update Step (Analysis)

The propagation step (14) that calculates p(xn|y0:n) from p(xn−1|y0:n) based on the
conditional transition density (16), reduces to a sampling, according to this density,
of an iid analysis ensemble {xa,m

n }Mm=1, given the smoothing one, {xs,mn−1}Mm=1. This

amounts to integrate {xs,mn−1}Mm=1 with the new dynamical operator in (23) as,

xa,m
n = fn−1(x

s,m
n−1) + Gn(yn − Hnfn−1(x

s,m
n−1)) + ũm

n−1, (44)

with ũm
n−1 being a sample of N (0, Q̃n−1). Once the M particles (44) are sampled,

ensemble-based approximations of the analysis PM estimate x̂an (38) and associated
covariance Pa

n (40) are then obtained as xan and Pa
xn , respectively.

Remark 1 According to the expression (27) of ũn−1, sampling (44) can be imple-
mented differently, in two steps:

• Pseudo-forecast step: The smoothing ensemble is first integrated forward in time
with the original dynamical operator, which results in a pseudo-forecast ensemble:

ξm
n = fn−1(x

s,m
n−1) + um

n−1; um
n−1 ∼ N (0,Qn−1). (45)

• Correction step: The resulting ensemble is then updated based on perturbed obser-
vations, which yields the analysis ensemble:

xa,m
n = ξm

n + Gn(yn − ỹ f,m
n ); (46)

ỹ f,m
n = Hnξ

m
n + vmn , and vmn ∼ N (0,Rn). (47)

7 The term p(yn |xa,m
n−1) in (42) is not a probability density function, but the value of this function at

point yn (i.e., the observed data).
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As will be seen in the next section, such pseudo-forecast and correction steps are
actually nothing but those of EnKF-OSAS analysis step in the particular case of
linear-Gaussian systems.

Linking this with the KF-OSAS analysis step in the linear case, it follows that
the equations of the mean x̂an (38) and the members xa,m

n (46) suggest similar forms.
Indeed, both share the same correction mechanism with a gain Gn , with the former
updating the mean ξ̂ n = Fn−1x̂sn−1 based on yn and the latter updating the members
ξm
n based on perturbed yn , ymn = yn − vmn , using the sameGn . Furthermore, averaging

(46) yields a similar correction mechanism operating on the empirical means, i.e.,

xan = ξ n + Gn(yn − ỹ
f
n ), (48)

and which is an ensemble-like variant of (38).

4.2.3 Similarities and Differences with Other Standard Filtering
Algorithms

• PF-OSAS is a natural implementation (using classical hierarchical and Rubin
sampling tools, e.g., Desbouvries et al. 2011) of the “observation-update then time-
update” path (12)–(15). The observation-update turns into a weighting-resampling
(W, R) step and the time-update turns into a sampling (S) step, thereby leading
to a (W, R, S) scheme. In contrast, the (bootstrap) PF, which originates from
the “time-update then observation-update” generic path (9)–(11), suggests a (S,
W, R) scheme, in which sampling is done before (W, R)-like update. As is well
known, the sampling in the PF is performed according to the (prior) transition
pdf, p(xn|xa,m

n−1), and the particles’ weights are given by the original likelihood,

i.e., wa,m
n ∝ p(yn|x f,m

n ). These laws have the advantage to be available and easy
to sample (in particular p(xn|xn−1)), which explains the widespread popularity
of the PF. Nevertheless, in this algorithm, the particles are sampled (in S step)
blindly with regard to the observation, yn , which is indeed exploited solely in the
computation of the weights (in step W). In PF-OSAS, however, the observation is
exploited explicitly both in W and S steps, which should lead to higher accuracy
(as has been numerically shown, e.g. in Desbouvries et al. 2011). Concretely,
the information from yn that is exploited in W step spreads through R step then
the pseudo-forecast step (45), yielding a constrained background, {ξm

n }m , which, in
turn, is linearly updated in S step with yn , as in (46), to obtain the analysis particles
of interest, {xa,m

n }m . As a matter of fact, unlike the PF, the analysis particles are
sampled in an optimal way in PF-OSAS, in the sense that they lead to weights
with minimum variance conditionally on the observations, y0:n , and past samples,
xa,m
0:n−1. More precisely, for each trajectory m, the conditional (posterior) transition
sampling density, p(xn|xa,m

n−1, yn) (which is equal to p(xn|xa,m
0:n−1, y0:n)), leads to

weights,ws,im
n , with im satisfying xs,imn−1 = xa,m

n−1 (R step), that are deterministic given
(xa,m

0:n−1, y0:n) and thus with zero variance.
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• PF-OSAS turns out to be a particular case of the well-known auxiliary particle
filter (APF) (Pitt and Shephard 1999; Desbouvries et al. 2011). To show that, let
us first briefly recall how does APF sample the analysis pdf p(xn|y0:n). Replacing
in (14) p(xn−1|y0:n) by its expression (12), then p(xn−1|y0:n−1) by its MC approx-
imation

∑M
m=1 1/Mδ(xn−1 − xa,m

n−1), one obtains a continuous finite mixture pdf
approximating p(xn|y0:n):

pc(xn|y0:n) =
M∑

m=1

ws,m
n p(xn|xa,m

n−1, yn). (49)

If direct sampling (of particles xa,m
n ) from pc is not straightforward, one could

approximate pc by a mixture pdf,

q(xn) =
M∑

m=1

λm
n q̃(xn|xa,m

n−1, y0:n), (50)

sample from q (the so-called first-stage weights λm
n and pdf q̃ are degrees of

freedom used for designing importance density q), and use importance sampling
(IS). Since the target density pc in (49) and the importance density q in (50) are
both mixture densities, the (so-called second-stage) weights computed by this IS
method would be the ratio of a sum of M terms over another sum of M terms. APF
circumvents this drawback by using data augmentation, which consists in sam-
pling (jointly) both from q and from the index of the mixture in q, and taking the
marginal, according to the hierarchical sampling mechanism (e.g., Ait-El-Fquih
and Hoteit 2016), i.e., im ∼ p(m|y0:n), ximn ∼ q(xn|m = im), then take ximn as sam-
ple from q(xn). Based on (50), sampling of im and ximn read im ∼ {m, λm

n }Mm=1

and ximn ∼ q̃(xn|xa,im
n−1, y0:n). Now, to link this with PF-OSAS, one can see that

this algorithm is a particular case of APF when q = pc (i.e., λm
n = ws,m

n and
q̃(xn|xn−1, y0:n) = p(xn|xn−1, y0:n)).

• Looking at the filtering problem in a batch way, one can see that, by con-
struction, each trajectory zm0:n−1, with zmn−2:n−1 = (xs,mn−2, x

a,m
n−1), is sampled from

p(x0:n−1|y0:n−1). This suggests that PF-OSAS can be interpreted as a batch IS
algorithm for which the (joint) target pdf plays the role of importance density,
i.e., q(x0:n−1|y0:n−1) = p(x0:n−1|y0:n−1). However, as stated above, the sequential
version of this algorithm (i.e., PF-OSAS) involves a scheme (W, R, S), which dif-
fers from that of existing sequential IS (SIS, or SIR) algorithms. The key reason
of such a difference is that SIR algorithms are founded based on the (sufficient)
condition

q(x0:n|y0:n) = q(xn|xn−1, y0:n)q(x0:n−1|y0:n−1), (51)

whereas, by nature, PF-OSAS is a direct MC implementation of the recursion
(remember that q = p in PF-OSAS),
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q(x0:n|y0:n) = p(xn|xn−1, y0:n) ×
[
p(yn|xn−1, y0:n−1)

p(yn|y0:n−1)
q(x0:n−1|y0:n−1)

]
,

︸ ︷︷ ︸
p(x0:n−1|y0:n)

(52)

which involves an extra term, p(yn|xn−1, y0:n−1)/p(yn|y0:n−1), compared to (51).
More precisely, PF-OSAS is a reordering of the SIR algorithm with optimal con-
ditional importance density (CID), q(xn|xn−1, y0:n) = p(xn|xn−1, y0:n), and with
systematic resampling (Doucet et al. 2000; Ades and van Leeuwen 2013). How-
ever, these two algorithms are not simply related through a shift in time. Indeed,
SIR with CID (SIR-CID) involves a (S, W, R) scheme, or equivalently8 (W, S, R),
suggesting that some (not necessarily all) particles zmn that are sampled in S step
with p(xn|zmn−1, y0:n) can be taken as approximate analysis particles, after that W

and R steps are achieved (i.e., {xa,m
n }Mm=1 ≈ {zimn }Mim=1, with im being the indexes

sampled in R step). This is clearly different from the (W, R, S)-like PF-OSAS
algorithm, in which all particles zmn are exact analysis samples (i.e., xa,m

n = zmn ,
for any m). Furthermore, each old particle zmn−1 is taken uniformly into account
in S step of SIR-CID, whereas only those with high weights do contribute to the
updated trajectory in PF-OSAS.

5 OSAS-Like Filtering for Large-Dimensional Systems

In large-dimensional systems, KF-OSAS becomes impractical because of the pro-
hibitive computational cost,O(n3x), required for the calculations of the error covari-
ance matrices. PF-OSAS also becomes impractical as it would require a prohibitive
number of particles to overcome the curse of dimensionality. EnKF-OSAS can tackle
these issues with reasonable-size ensembles, as it avoids explicit computations of the
covariancematrices andmitigates for the curse of dimensionality through an efficient
Gaussian sampling of the state-space.

5.1 The OSAS-Based Ensemble Kalman Filter
(EnKF-OSAS)

EnKF-OSAS is a Gaussian-basedMC implementation of the generic algorithm (12),
(14) in the transformed system (25) (Ait-El-Fquih et al. 2016; Raboudi et al. 2018).
Similarly to the standard EnKF, its derivation is founded on the assumption that
p(xn−1, xn, yn|y0:n−1) is Gaussian.

8 Steps W and S commute in SIR-CID since the weights do not depend on the new particles zmn .
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5.1.1 The Observation-Update Step (Smoothing)

The Bayesian step (12) that calculates p(xn−1|y0:n) from p(xn−1|y0:n−1) based on the
likelihood (17), reduces to a Kalman-like correction that computes {xs,mn−1}Mm=1 from

{xa,m
n−1}Mm=1 based on the observational model (24) as,

xs,mn−1 = xa,m
n−1 + K

s
n−1(yn − y f,m

n ), (53)

with9

y f,m
n = h̃n−1(x

a,m
n−1) + ṽmn , (54)

and ṽmn are samples fromN (0, R̃n). Samples y f,m
n represent the forecast members in

the observation space (∼ p(yn|y0:n−1)), which, based on (19)–(20) and (26), can be
also computed from the state forecast members, x f,m

n , in a similar way as the standard
EnKF, i.e., (54) is equivalent to set,

x f,m
n = fn−1(x

a,m
n−1) + um

n−1, (55)

y f,m
n = Hnx f,m

n + vmn , (56)

where um
n−1 and vmn are samples respectively from N (0,Qn−1) and N (0,Rn). The

matrix K
s
n−1 is an ensemble-based approximation of the Kalman gain (30), which

can be written as (Ait-El-Fquih and Hoteit 2020),

Ks
n−1 = cov[xn−1, yn|y0:n−1] × cov[yn|y0:n−1]−1, (57)

= cov[xn−1, xn|y0:n−1]HT
n × (

Hncov[xn|y0:n−1]HT
n + cov[vn]

)−1
, (58)

= cov[xn−1, rn|y0:n−1]HT
n × (

Hncov[rn|y0:n−1]HT
n + cov[ṽn]

)−1
, (59)

with rn = fn−1(xn−1), and cov[ξ ] and cov[ξ ,μ] respectively denote the covariance
of ξ and the cross-covariance between ξ andμ. More precisely, expressions (58) and
(59) coincide with (30) using the forms (34) and (29), respectively, of the innova-
tion matrix, Vn . Denoting by Pξ ,μ the sample cross-covariance between ensembles
{ξm}Mm=1 and {μm}Mm=1, K

s
n−1 can be written as

K
s
n−1 = Pxan−1,y

f
n
P−1
y f
n
, (60)

if (57) is used,

9 It follows from (54) that yn − y f,m
n = yn − ṽmn − h̃n−1(x

a,m
n−1), suggesting that the Kalman cor-

rection in (53) is based on observations perturbed with −ṽmn ∼ N (0, R̃n). Similarly to the classical
EnKF, perturbing the observations for each ensemble member enables matching with the error
statistics in the KF-OSAS smoothing step when the state-space system is linear-Gaussian.
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K
s
n−1 = Pxan−1,x

f
n
HT

n ×
(
HnPx f

n
HT

n + Rn

)−1
, (61)

if (58) is used, or as

K
s
n−1 = Pxan−1,rnH

T
n ×

(
HnPrnH

T
n + R̃n

)−1
, (62)

with rmn = fn−1(x
a,m
n−1), if (59) is used instead. The expressions (61) and (62) are gen-

erally more suitable in practice than (60) because they involve less sampling errors,
especiallywhen dealingwith small ensembles. This is because cov[xn, vn|y0:n−1] and
cov[vn] are set in (61) and (62) to their exact values, 0 and Rn , respectively, while
(60) rather uses ensemble-based estimates of these quantities. In turn, (62) should
be, to some extent, more suitable than (61), as the former (inherently) uses the true
value of cov[un−1],Qn−1, whereas the latter uses an ensemble-based approximation
of it through the samples um

n−1, that are used to generate the forecast members x f,m
n

(see (55): x f,m
n = rmn + um

n−1).
In large-dimensional systems, the explicit computation of the nx × nx ensemble-

based covariance matrices Pxan−1,x
f
n
and Px f

n
in (61), or Pxan−1,rn and Prn in (62), is not

possible. One could instead follow the classical EnKF and use the nx × M (square-
root) ensemble perturbation matrices of these (cross-)covariances, to respectively
compute (61) and (62) (e.g., Hoteit et al. 2018).

Once the M members (53) are sampled, an ensemble-based approximation of the
smoothing PM estimate x̂sn−1 (31) can then be computed as xsn−1; the associated error
covariance Ps

n−1 could be also estimated, if the computational cost allows it.

Remark 2 Similarities arise between the expressions of the mean x̂sn−1 (31) and
members xs,mn−1 (53). Indeed, both share the same Kalman-like mechanism, with the
former updating the mean x̂an−1 based on yn and using the gain Ks

n−1, whereas the
latter updating the members xa,m

n−1 based on perturbations of yn , ymn = yn − ṽmn , and
using an ensemble approximation of Ks

n−1, K
s
n−1. As such, similarly to x̂sn−1, the

updates xs,mn−1 are nudged via the innovation members, υm
n = ymn − Hnrmn , and asso-

ciated covariance10 Pυn , i.e., for m = 1, · · · , M ,

xs,mn−1 = xa,m
n−1 + K

s
n−1υ

m
n . (63)

Furthermore, averaging (63) leads to a similar process operating on the empirical
means (i.e., involving . instead of .m), which is an ensemble-like implementation of
(31). Finally, one may notice that the same reasoning holds for the analysis steps of
the standard KF and EnKFs; in particular,

10 Note that members υm
n correspond to (28) and their covariance, Pυn , is an ensemble-based

approximation of the form (29) of the innovationmatrixVn . One could also perturb the observations
by vmn instead of ṽmn (i.e., ymn become ymn = yn − vmn ); in this case the members υm

n become υm
n =

ymn − Hnx
f,m
n (which correspond to the form (33) of the innovation) and their covariance, Pυn ,

corresponds to the form (34) of Vn .
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xa,m
n

EnKF= x f,m
n + Px f

n
HT

n × P−1
υn︸ ︷︷ ︸

K
a
n

×υm
n , (64)

xan
EnKF= x f

n + K
a
n × υn, (65)

x̂an
KF= x̂ f

n + P f
n H

T
n × V−1

n︸ ︷︷ ︸
Ka

n

×υn. (66)

5.1.2 The Time-Update Step (Analysis)

As discussed in Remark 1, the integration step (14) that calculates p(xn|y0:n) from
p(xn−1|y0:n) based on the conditional transition density p(xn |xn−1, yn), given in (16),
can be reduced into a two-step sampling (pseudo-forecast and correction steps (45)–
(47)) of an analysis ensemble {xa,m

n }Mm=1 from the smoothing one, {xs,mn−1}Mm=1. This
amounts to sample the members xa,m

n from p(xn|xs,mn−1, yn) as in (44), which can be
also directly obtained via Property 1 in Appendix. However, unlike in Remark 1, the
state dimension nx is assumed here to be large, making the computation cost of the
gainGn (21) prohibitive.Oneway to avoid this problem is to seek a different sampling
strategy from p(xn|xs,mn−1, yn) to avoid the explicit computation of Gn . Noticing that

ξm
n (45) and ỹ f,m

n (47) are respectively samples of p(xn|xs,mn−1) = p(xn|xs,mn−1, y0:n−1)

and p(yn|xs,mn−1) = p(yn|xs,mn−1, y0:n−1), one can use Property 2 in Appendix to show
that

xa,m
n = ξm

n + cov[xn, yn|xs,mn−1, y0:n−1] cov[yn|xs,mn−1, y0:n−1]−1︸ ︷︷ ︸
Ln

(
yn − ỹ f,m

n

)
, (67)

are samples of p(xn|xs,mn−1, yn) = p(xn|xs,mn−1, y0:n), and then Property 1 to show that
these are also samples of p(xn|y0:n), i.e., analysismembers. In practice, for eachmem-
berm, the (cross-)covariances in (67) can be estimated based on ensembles, {ξm, j

n }Jj=1

and {ỹ f,m, j
n }Jj=1, respectively sampled from p(xn |xs,mn−1, y0:n−1) and p(yn|xs,mn−1, y0:n−1)

as,

ξm, j
n = fn−1(x

s,m
n−1) + u j

n−1, (68)

ỹ f,m, j
n = Hnξ

m, j
n + v j

n,

= Hnfn−1(x
s,m
n−1) + Hnu

j
n−1 + v j

n︸ ︷︷ ︸
ṽ j
n

, (69)

with u j
n−1 ∼ N (0,Qn−1) and v

j
n ∼ N (0,Rn). The gainLn can be then approximated

by,

Ln = P
ξ n ,ỹ

f
n
P

−1
ỹ f
n

= Pun−1,ṽnP
−1
ṽn , (70)
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where the sample (cross-)covariances P
ξ n ,ỹ

f
n
and Pỹ f

n
, both independent of m, are

computed from {ξm, j
n }Jj=1 and {ỹ f,m, j

n }Jj=1, while Pun−1,ṽn and Pṽn are computed from

{u j
n−1}Jj=1 and {ṽ j

n}Jj=1.As such,Ln is equal to theKF-OSASgainGn , as can be shown
from (70) when J goes to infinity. Therefore, the discussion about the similarities
with the KF-OSAS in Sect. 4.2.2 remains valid here.

After sampling the M members xa,m
n , one can compute ensemble-based estimates

of the analysis PM estimate x̂an (38) and eventually its associated error covariance
Pa
n .

Remark 3 (Ait-El-Fquih et al. 2016; Raboudi et al. 2018) approximated Ln by

L̃n = P
ξ n ,ỹ

f
n
P−1
ỹ f
n
, based on the ensembles {ξm

n }Mm=1 (45) and {ỹ f,m
n }Mm=1 (47), instead

of (70). The analysis step then becomes,

xa,m
n = ξm

n + L̃n
(
yn − ỹ f,m

n

) ; m = 1, · · · , M. (71)

While in the linear-Gaussian systems the gain L̃n coincides with Ln , in the limit
of large ensembles, its derivation in the nonlinear systems considers the members
xs,mn−1 as samples from p(xn−1|y0:n−1), which holds under the assumption11 that xn−1

and yn are independent conditionally on y0:n−1. Despite its empirical nature in the
nonlinear systems, this analysis step may have some practical advantages in realistic
large-scale DA problems. In such applications, the state noise covariance, Qn−1, is
usually not known and often ignored. If so, the correction term in (67) vanishes (as
Ln = 0), and therefore this second update step will no longer be needed. One may
recover (71) (Ait-El-Fquih et al. 2016; Raboudi et al. 2018) by taking Qn−1 as a
fraction of the ensemble covariance matrix of {ξm

n }m , Pξ n , which could be considered
as some sort of parameterizing the state noise with an inflation term (Pham et al.
1998). This form of the second update step was indeed shown to improve upon the
performances of the standard EnKFs especially in challenging settings (e.g. strong
nonlinearities, poorly known state noises, small ensembles, sparse observations, etc.).
It may further provide a good approximation in the case of a non-additive state noise
that is accounted for through sampled noise in the dynamical operator.Moreover, and
as argued by Pham et al. (1998), even in the situation of a perfect dynamical operator
(free of state noise), it is always beneficial to err on the safe side and add some state
noise, which could partly account for various approximations in the filtering process.

5.1.3 Discussion

In the context of large-dimensional applications, the EnKF-OSAS suggests an effi-
cient Gaussian-based sampling scheme of the analysis pdf of interest, as well as
the forecast and OSAS ones. Given the analysis ensemble, {xa,m

n−1}m , the smoothing

step starts by computing the forecast ensemble, {x f,m
n }m , as in (55), then updating

11 This assumption was forgotten in Ait-El-Fquih et al. (2016), Raboudi et al. (2018).
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it based on the current observation, yn , following a Kalman-like correction (53), to
obtain the smoothing ensemble, {xs,mn−1}m . The analysis step then takes place, starting
from an integration of the resulting smoothing members in the (original) dynamical
operator as in (45) to obtain a pseudo-forecast ensemble, {ξm

n }m ; the latter is then
updated based on the same observation following a Kalman-like correction as in
(71), which results in the analysis ensemble of interest, {xa,m

n }m . Thus, compared
to the standard EnKF, the EnKF-OSAS not only introduces another Kalman-like
update of the state, but also involves a (new) smoothing step that constraints the
ensemble sampling with the future observation. This should provide an improved
background ensemble, {ξm

n }m , in the analysis step, as it includes more information in
the estimation process that may help mitigating for the suboptimal character of the
EnKF, usually implemented with limited ensembles and crude noise statistics (see
e.g. (Raboudi et al. 2018) which investigated the benefit of the improved background,
{ξm

n }m , with extensive numerical experiments).
In terms of computational complexity, the EnKF-OSAS is roughly twice more

expensive than the EnKF, as it involves two “forecast” steps with the (original)
dynamical model (to compute {x f,m

n }m and {ξm
n }m), and twoKalman-like update steps

(to compute {xs,mn−1}m and {xa,m
n }m). Nevertheless, results of numerical experiments

have suggested that exploiting the information in the observation more efficiently,
enhances the ensemble filter’s performance even in situations in which both schemes
are implemented at comparable computational costs (Raboudi et al. 2018).

Deterministic OSAS-like ensemble filters have been also recently introduced. The
goal is to build efficient schemes that combine the benefits of the OSAS-like filtering
approach in exploiting the data twice to obtain improved backgrounds, with those of
the deterministic EnKF-formulation in avoiding the undersampling of observational
errors, that typically arise in the stochastic ensemble formulation when dealing with
small ensembles (Bishop et al. 2001; Anderson 2001; Tippett et al. 2003; Hoteit
et al. 2015). In particular, two deterministic schemes have been derived, a singular
interpolated ensembleKalman-like filter (SEIK-OSAS) (Raboudi et al. 2018), and an
ensemble transformKalman-like filter (ETKF-OSAS) (Raboudi et al. 2019), generat-
ing smoothing and analysis ensembles deterministically, following moments match-
ing procedures. These algorithms, in which the observations are not perturbed, were
derived based on square-root formulations of the KF-OSAS, under the assumption
that the pseudo-forecast error (xn − ξ̂ n) is uncorrelated with the observation noise
vn , and following exactly the same reasoning with which their standard counterparts
were derived from the standard KF.

5.2 State-Parameters Estimation with OSAS-Based Ensemble
Filtering

Dynamical models are often functions of poorly known parameters, θ , and are there-
fore expressed here as, fn−1(xn−1, θ). Estimating the values of these parameters along
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with the state should provide improved filtering results, and is therefore of great inter-
est in many applications. Several studies argued that concatenating the state and the
parameters as, ϑn = [xTn , θT ]T , then applying the EnKF on the augmented system
(ϑ, y), the so-called joint-EnKF, can lead to inconsistency between the estimated
state and parameters that could degrade the filter performance (e.g., Moradkhani
et al. 2005; Chen and Zhang 2006; Wen and Chen 2007). One classical technique
that has been proposed to tackle this issue is the so-called dual EnKF, which succes-
sively updates the parameters and the state using two interactive (sub-)EnKFs, one
acting on the parameters and the other on the state conditioned on the solution of the
former (Moradkhani et al. 2005). In other words, the state filter uses in its forecast
step the output of the parameters’ filter, θa,m

n (∼ p(θ |y0:n)), and not θa,m
n−1 as does the

joint EnKF, i.e.,

x̃ f,m
n

dual EnKF= fn−1(x
a,m
n−1, θ

a,m
n ) + um

n−1; um
n−1 ∼ N (0,Qn−1). (72)

This suggests that updating x̃ f,m
n in the analysis step, following aKalman-like update,

to obtain xa,m
n , leads to a two fold exploitation of yn . Such a dual update was indeed

proven to provide more accurate state and parameters’ estimates than the joint EnKF
(Gharamti et al. 2014). However, the dual EnKF has been introduced as a heuris-
tic scheme and is not consistent with the Bayesian filtering framework (Hendricks
Franssen and Kinzelbach 2008). The so-called joint EnKF-OSAS of Gharamti et al.
(2015) has thus been proposed in an attempt to built a Bayesian consistent dual-like
filter, and was derived in the context of the augmented system (ϑ, y), under the
assumption,

p(xn|ϑn−1, yn) = p(xn|ϑn−1), (73)

the goal of which is to avoid the Kalman-like update in the time-update (analysis)
step.As such, the jointEnKF-OSAScorresponds to the aboveEnKF-OSASalgorithm
(Sect. 5.1), when replacing x by ϑ and ignoring the second Kalman-like update, in
which case xa,m

n = ξm
n .

The joint EnKF-OSAS shares the same parameters’ filter with the standard dual
EnKF, but has a different state filter involving, among others, an additional Kalman-
like update of the state (i.e., smoothing of xn−1 based on yn). More precisely, the dual
EnKF integrates first the members (xa,m

n−1, θ
a,m
n ) with the dynamical operator (as in

(72)) before updating the resulting members x̃ f,m
n with the observation yn , whereas

the joint EnKF-OSAS updates first the members xa,m
n−1, which provides the smoothing

samples xs,mn−1, before integrating (xs,mn−1, θ
a,m
n )with the dynamical operator.Motivated

by the good results provided by the joint EnKF-OSAS, a more general algorithm, a
dual EnKF-OSAS, has subsequently been introduced in Ait-El-Fquih et al. (2016)
(see also Khaki et al. 2020) by relaxing the assumption (73) and assuming instead

p(ϑn−1|y0:n) = p(ϑn−1|y0:n−1) (74)
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in the derivation step of the Kalman gain when the system is nonlinear (see Remark
3); it actually coincides with the EnKF-OSAS (in Remark 3) when x is replaced by
ϑ . In the dual EnKF-OSAS, accounting for the conditional dependence between xn
and yn given ϑn−1 (by relaxing (73)), introduces one more Kalman-like update of
the state (in the analysis step), even under (74), which should generally enhance the
estimation accuracy compared to the joint EnKF-OSAS.

6 Summary

This chapter reviewed the one-step-ahead smoothing (OSAS) formulation of the
Bayesian filtering problem both for small- and large-dimensional state-space sys-
tems. After describing the standard filtering algorithms, which involve a “time-
update (forecast) then observation-update (analysis)” path at each assimilation cycle,
we presented an overview of alternative OSAS-like filters, which are based on the
reversed “observation-update then time-update” path. The new formulation involves
two Bayesian-like update steps based on the same (current) observation: one for
smoothing the previous state and one for analyzing the current one. The OSAS-like
filters, including new variants of Kalman filters (KF-OSAS), particle filters (PF-
OSAS) and ensemble Kalman filters (EnKF-OSAS), depending on the size and the
linear-Gaussian character of the underlying state-space system, were then derived
and reviewed. While the standard KF and KF-OSAS provide the same (exact) esti-
mator, exploiting the data twice in the estimation process generally leads to a better
trade-off between estimation quality and computational burden for the PF-OSAS
and EnKF-OSAS, compared to their standard counterparts. Deterministic variants of
EnKF-OSAS and extensions to the more general state-parameters’ filtering problem
were also discussed.

Future work will investigate the unsupervised framework in which one or some
hyper-(statistical) parameters of the system, as for instance the observational or
dynamical noise statistics, are not well known. Another interesting direction is to
explore the use of the OSAS-based ensemble strategy in the context of Gaussian
mixture filtering, which was suggested to be suitable for strongly nonlinear large-
dimensional models.

Appendix

Property 1 (Hierarchical sampling Ait-El-Fquih et al. 2016) Assuming that one
can sample from p(x1) and p(x2|x1), then a sample, x∗

2, from p(x2) can be drawn as
follows:

1. x∗
1 ∼ p(x1);

2. x∗
2 ∼ p(x2|x∗

1).
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Property 2 (Conditional sampling Ait-El-Fquih et al. 2016) Consider a Gaussian
pdf, p(x, y), with Pxy and Py denoting the cross-covariance of x and y and the
covariance of y, respectively. Then a sample, x∗, from p(x|y), can be drawn as
follows:

1. (x̃, ỹ) ∼ p(x, y);
2. x∗ = x̃ + PxyP−1

y [y − ỹ].
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Sparsity-Based Kalman Filters for Data
Assimilation

Wei Kang and Liang Xu

Abstract Several variations of the Kalman filter, such as the extended Kalman fil-
ter (EKF) and the unscented Kalman filter (UKF), are widely used in science and
engineering applications. However, traditional UKFs or EKFs cannot assimilate big
data sets associated with models that have high dimensions, such as those in opera-
tional numerical weather prediction. In this chapter, we introduce two sparsity-based
Kalman filters, namely the sparse-UKF and the progressive-EKF. The filters are
designed specifically for problems with high dimensions. Different from ensemble
Kalman filters (EnKFs) in which the error covariance is approximated using a set
of dense ensemble vectors, the algorithms developed in this chapter are based on
the sparse matrix approximation of error covariance. The new algorithms enjoy sev-
eral advantages. The error covariance has full rank without being limited within a
subspace generated by a set of ensembles. In addition to the estimated states, the
algorithms provide updated error covariance in every assimilation cycle. Taking the
advantage of sparsity, the required memory size and computational load can be sig-
nificantly reduced.

1 Introduction

For dynamical systems, data assimilation is a process that integrates observational
data with a numerical model for the purpose of estimating the system’s state. Data
assimilation is essential to numerical weather prediction (NWP). The estimate of the
state value is used as the initial condition for weather forecast. If the dimension is
relatively low and the data set is small, various linear and nonlinear estimators can
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be found in the literature that have optimal or suboptimal performances. However,
to assimilate big data sets with models that have high dimensions, such as those in
operational NWP systems with tens of millions of variables, achieving reliable state
estimation and error probability distributions is a challenging problem that have been
studied for decades with a huge literature.

There are two categories of methods widely used in NWP, namely the variational
method and the ensemble Kalman filter (EnKF) (Xu et al. 2005; Houtekamer and
Zhang 2016). The former is based on a weighted least-square optimization, such as
the four dimensional variational data assimilation (4D-Var) in a fixed time window
or the three dimensional version (3D-Var) that excludes the time variable. The EnKF
algorithm is based on the Kalman filter except that the error covariance is approx-
imated using a set of ensembles. 4D-Var methods are used in operational NWP
systems by many meteorological centers. While it serves as an effective method of
data assimilation, 4D-Var algorithms have difficulty to explicitly track the evolution
of error covariance within its estimation process due to high computational costs
and input/output (I/O) loads required by the process of high dimensional matrices.
EnKF, on the other hand, updates information about the error covariance in the form
of ensembles. However, it is common in practical applications that the number of
vectors in an ensemble is significantly smaller than the number of state variables.
As a result, the rank deficiency of error covariance tends to deteriorate the integrity
of the estimation process unless remedies to the algorithm, such as localization and
covariance inflation, are applied.

Different types of Kalman filters have been developed and widely used in science
and engineering applications, such as the EnKF, the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF). In this chapter, we introduce two sparsity-
based Kalman filters, namely the sparse-UKF and the progressive-EKF. The goal
of the work is to explore innovative ideas that take the advantage of the sparsity
structure of matrices so that analysis and error covariance can be updated effectively
and efficiently without the drawback of rank deficiency. The filters are developed
specifically for problems with high dimensions. Different from EnKFs in which the
error covariance is represented by a set of dense vectors in an ensemble, the new
algorithms in this chapter are based on a sparse but full rank matrix as an approxima-
tion of the error covariance. This is made possible because of two assumptions: (a)
the error covariance is approximately a sparse matrix; (b) the system model is com-
ponent based, i.e. the state vectors are divided into components that can be computed
independently in parallel. In Sect. 2, analysis is provided to justify that assumption
(a) is expected to hold for a large family of system models. Assumption (b) is about
the numerical method used for the system model, a topic that is not addressed in
this chapter. In Sect. 3, the sparse-UKF is introduced. Its performance is exemplified
using a Lorenz-96 model. In Sect. 4, the progressive-EKF is introduced and exempli-
fied using the same Loren-96 model as in Sect. 3. In all examples, the new estimation
methods developed in this chapter are compared to an EnKF as well as a traditional
UKF with a full rank dense covariance.
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Fig. 1 Examples of Kalman filter error covariance

2 The Sparsity of Error Covariance

Shown in Fig. 1 are two error covariance matrices of Kalman filters, one for a linear
system of ordinary differential equations and the other for a discretized shallowwater
equation. The dimensions of the state spaces are n = 150 and n = 350, respectively.
The x- and y-axes represent row and column indices, i and j ; the z-axis represents the
absolute value of the error covariance, |Pi j |. Both matrices are approximately sparse,
i.e., the majority of entries are relatively small. The matrices have peak value around
one or multiple diagonals only. Approximating the covariance using a sparse matrix
by setting all small entries to zeros, one can significantly reduce the computational
cost, I/O loads and the amount of memory usage.

The approximate sparsity shown in Fig. 1 is not unusual. In fact, a theorem inKang
and Xu (2021) indicates that this type of sparse covariance is expected for a family of
dynamic systems. In the following, a matrix A is said to be banded with bandwidth
s ≥ 0 if Ai j = 0 whenever |i − j | > s. If s = 0, then the matrix is diagonal. We say
that a symmetric matrix P is less than or equal to another symmetric matrix G, or
P ≤ G, ifG − P is positive semidefinite. Consider the following system of ordinary
differential equations (ODEs)

ẋ(t) = Ax(t) + η(t), x, η ∈ R
n,

y(t) = Hx(t) + δ(t), y, δ ∈ R
m (1)

where x is the state variable, ẋ represents its time derivative, y is the observation
variable, η and δ are zero-mean Gaussian white noise with covariances Q and R,
respectively.

Theorem (Kang and Xu 2021) Suppose that A and Q in (1) are banded. Let P(t)
be the error covariance of the Kalman filter that estimates x(t). Then

0 ≤ P(t) ≤ eAt P(0)eA
T t + GC(t) (2)

where GC(t) is a symmetric matrix. Its entries have an upper bound
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|(GC(t))i j | ≤ Ḡα(|i− j |+β)/γ

((|i − j | + β)/γ )(|i− j |+β)/γ

for some constants Ḡ, α, β, and γ . The upper bound decreases at a rate greater than
exponential as |i − j | → ∞.

This result implies that |(GC(t))i j | is almost zero when |i − j | is large. Although
|i − j | is bounded by n − 1, the result is applicable if n is significantly larger than
the bandwidth of the banded matrices A and Q. In this case, GC is approximately a
sparse matrix. For the term of initial error covariance, eAt P(0)eA

T t , it can be proved
that this matrix is also approximately sparse if P(0) is banded with a bandwidth sig-
nificantly smaller than n. If the ODE in (1) is the discretization of partial differential
equations, which is the case in many NWP problems, then A is banded provided
that local discretization algorithms are used. Inspired by this theorem, we assume in
the following sections that the covariance of Kalman filters can be approximated by
a sparse matrix. We present two new algorithms of data assimilation in which the
matrix of error covariance is computationally tractable.

3 Sparse-UKF

Consider a dynamical system model in which the state variable is x(t), where t =
1, 2, 3, . . . represents time steps. The value of observation at t = k is denoted by
y(k). The system model is defined as follows,

x(k) = M(x(k − 1)) + ηk−1, x(k), ηk−1 ∈ R
n,

y(k) = H(x(k)) + δk, yk, δk ∈ R
m,

(3)

where ηk−1 is a random variable representing the model error. Its covariance is Q.
The observational error, δk , has a covariance R. In data assimilation, the goal is to
estimate the value of x(k) given the observations y(1), y(2), . . . , y(k) and the model
(3). If (3) is linear and if all random variables are Gaussian, then the Kalman filter
is an optimal state estimator. For nonlinear systems with non-Gaussian randomness,
various types of Kalman filters exist in the literature with successful applications in
science and engineering. If a system has a very high dimension, the conventional
form of Kalman filter based on a dense error covariance is not applicable. In this
section, we introduce an algorithm that is a variation of UKF for problems with
approximately sparse matrices of covariance.
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3.1 Sparse Matrix Algebra

In a sparse matrix, most entries are zeros. For some dense matrices in which most
entries are relatively small, we approximate them using sparse matrices. In this
chapter, we use an underbar to represent an operator that maps a vector or matrix to
a sparse one. For instance, given a vector x ∈ R

n . Let Nsp be an integer representing
the size of the sparsity and

I = {i1, i2, . . . , iNsp }

be an index consisting of a sequence of integers. Then the underbar operator maps x
to a vector x ∈ R

Nsp in which

xk = xik for k = 1, 2, . . . , Nsp.

It is equivalently to say that x is obtained from x by removing all xi if i /∈ I. Usually,
the removed entries are either zeros or relatively small (in absolute value). We would
like to emphasize that, although x is formally a vector inRNsp , it is treated as a vector
in Rn by setting the i th entry zero if i /∈ I. This vector in Rn is, in general, different
from the original vector, x , if the latter is a dense vector that is only approximately
sparse.

Similarly, we can define the underbar operator for matrices. Given P ∈ R
n×n . Its

columns may have different numbers of nonzero, or relatively large, entries. The
largest such number is denoted by Nsp. Then P is a set of vectors associated with
index sets

P = {P1, P2, . . . , Pn}, sparsity index set I = {I1, I2, . . . , In} (4)

where Pi associated with Ii is the sparse vector approximation of the i th column of
P . In all algebraic derivations, P is treated as a matrix in R

n×n in which all entries
are zeros except for those included in I.

In sparsity-based algorithms, a full model evaluation is not always necessary.
Using a component-basedmodel can significantly reduce the computational load. In
the notation, a component-based model has three inputs: state variable (either dense
or sparse), its index, and the index of the output state. More specifically,

x(k) = M(x(k − 1); I1; I2), (5)

where I1 is the index set of the sparse vector x(k − 1) and I2 is the index set of x(k).
The model evaluates only the entries with indices in I2, setting all other entries as
zeros. The indices in I2 represent those entries in x(k) that are most sensitive to the
variation of the entries in x(k − 1) with indices in I1. For instance, a discretization
of PDE using finite difference results in a model,M, such that each entry in x(k) is
sensitive only to the variation of its adjacent entries in x(k − 1). If the input vector,
x(k − 1), is dense, we omit I1 in the notation, i.e.
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Table 1 Notations

Notation Definition Notation Definition

x State variable y Observation variable

M Model function H Observation operator

n State space dimension t = 1, 2, . . . (Discrete) time
variable

xσ
i i th σ -point

xbi i th background state ybi Output of observation
operator H(xbi )

x̄b Average of xbi ȳb Average of ybi
Pb Background error

covariance

xa Analysis—state vector Pa Analysis–error
covariance

x(k) = M(x(k − 1); I), (6)

where I is the same as I2 in (5).
Additions and multiplications of vectors/matrices, in both dense and sparse for-

mats, are carried out in their original spaces, Rn or Rn×n . For instance,

P x or Px

are both evaluated using matrix multiplication inRn in the dense format. If one needs
the value at only a sparse set of locations, it is denoted by another underbar mapping

(Px)

Similarly, the summation of a dense vector and a vector in sparse formatmakes sense.
For instance,

x + x

is a vector inRn in which all entries of x is unchanged except that those with indices
in I are doubled. A new operation, called merging, between a sparse vector and a
dense vector is defined as follows,

z = x � w,

{
i th component of z = i th component of x, if i ∈ I.

i th component of z = i th component of w, if i /∈ I.
(7)

A summary of notations is listed in the following Table 1.
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3.2 UKF

The unscented Kalman filter has been increasingly popular in engineering applica-
tions since its introduction about twenty years ago (Julier et al. 2000; Julier and
Uhlmann 2004). In a UKF, the error covariance is propagated with the dynamics
using a set of vectors, or σ -points denoted by xσ . Their definition is given in (8)–
(9). The σ -points are computed at each time step using a square root of the error
covariance. In most UKF applications, σ -points are computed using either Cholesky
factorization or matrix diagonalization. In the notation, a variable with a superscript
‘a’, such as xa , represents the analysis value of the variable, i.e., the updated value
based on observations. A variable with a superscript ‘b’, such as yb, represents the
background, i.e., the propagated value of analysis using the system model. The algo-
rithm is summarized as follows. At t = k − 1, suppose we have the analysis and
error covariance as well as its square root

xa(k − 1), Pa(k − 1),
Xa(k − 1) = √

(n + κ)Pa(k − 1),
(8)

where κ is a scaling factor for the fine tuning of the higher order moments of the
approximation error (Julier et al. 2000). How to tune the value of κ for a sparsity-
based UKF is an open problem that needs further study. In this chapter, κ = 0 is used
in all examples. A set of σ -points is generated as follows,

xσ
0 (k − 1) = xa(k − 1),
xσ
i (k − 1) = xa(k − 1) + Xa

i (k − 1), 1 ≤ i ≤ n,

xσ
i (k − 1) = xa(k − 1) − Xa

i (k − 1), n + 1 ≤ i ≤ 2n.

(9)

where Xa
i (k − 1) is the i th column vector of Xa(k − 1). The next step is to propagate

the σ -points, which represent the background at t = k. For simplicity of notations,
the time variable ‘k’ in the kth time-step is omitted.

xbi = M(xσ
i (k − 1)), ybi = H(xbi ), 0 ≤ i ≤ 2n,

x̄ b =
2n∑
i=0

wi x
b
i , ȳb =

2n∑
i=0

wi y
b
i ,

(10)

where the weights are defined as follows

w0 = κ

n + κ
, wi = 1

2(n + κ)
, (11)

for i = 1, 2, . . . , 2n. Define the variations

Xb
i = xbi − x̄ b, Y b

i = ybi − ȳb. (12)
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The background covariances are

Pb =
2n∑
i=0

wi X
b
i (X

b
i )

T + Q,

Pxy =
2n∑
i=0

wi X
b
i (Y

b
i )T ,

Pyy =
2n∑
i=0

wi Y
b
i (Y b

i )T + R.

(13)

The Kalman gain, K , satisfies the following equation,

K Pyy = Pxy . (14)

The analysis is updated as follows

xa = x̄ b + K (yo − ȳb),

Pa = Pb − K (Pxy)
T ,

(15)

where yo is the observation at t = k. This completes one iteration of the filter. For
the next step, t = k + 1, go back to (8) replacing the analysis by the updated value
of xa and Pa .

3.3 Sparse-UKF

The square root factorization of a matrix is not unique. For large and sparse matrices,
various algorithms and their implementations on different computing platforms have
been studied for many years. The literature can be traced back to the early days of
electronic computers (Davis et al. 2016). In the case of Cholesky factorization, the
square root of a sparse matrix is still sparse, although the computation may require
larger amounts of processor memory than the original matrix (Davis 2006; Rozin
and Toledo 2005).

A dense error covariance is intractable in computation for global models used
in NWP. In the following approach, we assume that P and

√
P are approximately

sparse. In the algorithm, they are replaced by their sparse approximations, P and
(
√
P). Their sparsity index sets are denoted by I and Iσ , respectively. When prop-

agating the σ -points using a component-based model, only a sparse subset of the
elements is computed. The indices of the subset form an index set, Ib. How to deter-
mine the index sets for sparse vectors and matrices is discussed later in this section
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Algorithm I (sparse-UKF)
Given the initial analysis,

xa(k − 1), Pa(k − 1). (16)

Step 1. σ -points and forecast

Xa(k − 1) = √
(n + κ)Pa(k − 1), sparsity index set Iσ (17)

For i = 0,
xb0 = M(xa(k − 1)), yb0 = H(xb0 ). (18)

For i = 1, 2, 3, . . . , 2n,

xσ
i (k − 1) = xa(k − 1) + Xa

i (k − 1), 1 ≤ i ≤ n,

xσ
i (k − 1) = xa(k − 1) − Xa

i (k − 1), n + 1 ≤ i ≤ 2n.

xbi = M(xσ
i (k − 1); Ib

i ), ybi = H(xbi � xb0 ), 1 ≤ i ≤ 2n.

(19)

Step 2. Background covariances

x̄ b = w0xb0 +
2n∑
i=1

wi (x
b
i � xb0 ), ȳ

b =
2n∑
i=0

wi y
b
i (20)

Pb = w0(x
b
0 − x̄ b)(xb0 − x̄ b)T

+
2n∑
i=1

wi (x
b
i � xb0 − x̄ b)(xbi � xb0 − x̄ b)T + Q, sparsity index set I,

Pxy = w0(x
b
0 − x̄ b)(ybi − ȳb)T +

2n∑
i=1

wi (x
b
i � xb0 − x̄ b)(ybi − ȳb)T ,

Pyy =
2n∑
i=0

wi (y
b
i − ȳb)(ybi − ȳb)T + R.

(21)

Step 3. Kalman gain and analysis

K Pyy = Pxy,

xa = x̄ b + K (yo − ȳb),

Pa = Pb − K (Pxy)
T + γ I, sparsity index set I.

(22)

The constant term γ I in (22) is a diagonal matrix. The value of γ is selected
so that Pa is positive definite, which is guaranteed if γ is larger than the smallest
negative eigenvalue of

Pb − K (Pxy)
T . (23)
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If this matrix is positive definite, then γ = 0. In the case that a fixed lower bound
of eigenvalues is unknown, the value of γ can be adaptively changed in every cycle
depending on the smallest negative eigenvalue of (23). Numerical algorithms of find-
ing the smallest eigenvalue for high dimensional matrices is needed for the determi-
nation of γ . Studies about this problem is out the scope of this paper. A survey on
this topic can be found in Davidson (1989).

How to determine the index sets for sparse vectors/matrices? This is a problem
for which we do not have a complete answer. The selection of I for Pa is a trade-
off between the computational cost and the approximation accuracy. If |I| is small
(highly sparse), Pa may not be a good approximation of Pa because too many
nonzero entries are set to zero; if |I| is large, it increases the computational cost.
The sparsity index set, Iσ , of (

√
Pa) is determined by the sparsity of

√
Pa . If the

square root is the Cholesky factorization, this matrix is already sparse. The number
of nonzero entries in

√
Pa is larger than the size of I (Rozin and Toledo 2005).

However, one may use a smaller set as Iσ to speed up the computation. Once again,
this is a trade-off between computational cost and accuracy. In (19), Ib

i is the index
set of xbi , which is the propagation of the i th σ -point. The indices in Ib

i represent
those entries in xbi that are most sensitive to the variation of the entries of xσ (k − 1)
with indices in Iσ

i . Or equivalently, x
b
i contains those entries of x

b
i that have relatively

large change when the value of Xa
i is changed. In general, these sparsity index sets

are different from each other. However, as a means of reducing computational loads,
we may use one index set for all three, Ii , Iσ

i and Ib
i . This idea is tested in the next

section on a Lorenz-96 model.
In the sparse-UKF, the assumption is that Pa can be approximated by a sparse

matrix Pa . Although the σ -points in the algorithm play a similar role as that of
ensembles in EnKF, using sparse-UKF one can avoid the problem of rank deficiency.
For systems with very high dimensions, the number of ensemble members used in an
EnKF is much smaller than the dimension. As shown in Fig. 2 (left plot), the narrow
and tall matrix of ensemble vectors makes EnKF fundamentally a rank deficient
approach. In contrast, the block diagonal matrix Pa shown in Fig. 2 (middle plot) as
a sparse approximation of Pa has full rank.

The computational load required by (19) in Step 1 is extremely high if full state
vectors are computed. Thanks to the sparsity, we only need to compute the entries
with indices in Ib. For a sparse-UKF to be successful for high dimensional problems,
it is critical to have component-based numerical models so that only the entries with
indices in Ib are computed; and most entries of the state vector are not evaluated at
all. It is also important to point out that individual terms for i = 1, 2, . . . , 2n in (19),
(20) and (21) can be computed independent of each other, making the computation
perfectly parallel. Because matrices of covariance are symmetric, the memory size
and I/O usage for the computation of covariance can be significantly reduced. For
instance, the number of nonzero entries in the upper half of Pa is less than or equal to

n

(
Nsp − 1

2
+ 1

)
(24)
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Fig. 2 Patterns of ensemble vectors and sparse error covariances

If Nsp is an integer close to the ensemble size of an EnKF, then (24) is smaller than the
number of entries in the ensemble matrix, which is dense and nonsymmetric. Shown
in Fig. 2 (middle and right plots) are the sparsity patterns of Pa and

√
Pa that we find

in some examples. Note that the number of nonlinear entries in each column may
vary. An advantage of the sparse-UKF is the capability of easily assigning different
sparsity to different columns in Pa by using the index sets Ii , Iσ

i and Ib
i .

3.4 Lorenz-96 Model

In this section, we use a Lorenz-96 model that was first introduced in Lorenz (1996)
to test the performance of the sparse-UKF. Consider

dxi
dt

= (xi+1 − xi−2)xi−1 − xi + F, i = 1, 2, . . . , n,

xn+1 = x1,

n = 40,

	t = 0.025,

F = 8.

(25)

The system has chaotic trajectories as shown in Fig. 3, a plot of x1(t), x2(t), x3(t).
The simulations are conducted based on a 4th-order Runge-Kutta discretization. The
trajectories are used as the ground truth. The sparsity pattern for Pa and

√
Pa are

assumed to be centered along the diagonal line with a fix length. The total number
of nonzero entries in each column is Nsp. We would like to point out that the sparse
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Fig. 3 A chaotic trajectory
of the Lorenz-96 model,
x1(solid), x2(dash), x3(dot)
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matrices are approximations of the true error covariance and its square root. The true
sparsity pattern of

√
Pa is, in fact, different from that of Pa . In the approximation,

however, we ignore the difference and use the same sparsity pattern for both. This
idea of simplifying index sets works fine for the Lorenz-96 model. A systematic way
of choosing the sparsity pattern for

√
Pa based on given Pa is an open problem that

needs further study.
The numerical experimentation is based on N = 1000 uniformly distributed ran-

dom initial states in [−1 1]. The time step size is 	t = 0.025. The total number
of time steps for each simulation is Nt = 4000. The number of observations at any
given time is m = 20, i.e. every other state variable is measured,

y(k) = [
x1(k) x3(k) x5(k) · · · x39(k)

]T
. (26)

The observational error has the Gaussian distribution. Its covariance is R = I , the
identity matrix. The initial background error covariance is Pb(0) = 0.2I . The esti-
mation error is defined by the following RMSE

RMSE =
√√√√ 1

n(Nt + 1)

Nt∑
k=0

||xa(k) − xtruth(k)||22. (27)

For comparison, an EnKF is also applied to the same data set. The localization radius
is ρ = 4 and the inflation factor is

√
1.08. A full scale UKF based on dense error

covariance is applied as the best estimator in the study. The number of nonzero entry
evaluations in the computation of Pa and

√
Pa , an indicator of computational load,

is
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Table 2 Summary of simulation results

Filter Size Nonzero Entries Error Error Error

Entries EVAL Median Mean STD

EnKF Nens = 10 400 in
ensemble

400 0.3462 1.0741 1.0652

S-UKF Nsp = 7 160 in Pa 600 0.3061 0.3067 0.0071

S-UKF Nsp = 11 240 in Pa 920 0.2691 0.2691 0.0048

UKF Full
covariance

820 in Pa 3200 0.2358 0.2360 0.0039

Fig. 4 Boxplot of RMSE
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2nNsp + n (28)

Reducing the number of entries being evaluated, such as using a smaller set of σ -
points, and testing the impact of Cholesky factorization on the efficiency of UKF are
ongoing research topics not addressed in this chapter.

Shown in Table2, the EnKF has Nens = 10 ensemble vectors with a total of 400
nonzero entries. In comparison, the sparse-UKFs with Nsp = 7 and 11 have much
smaller numbers of nonzero entries to be evaluated and stored in memory. A smaller
number is desirable because it implies reduce I/O load and the amount of memory
usage. In terms of computational load, the number of entry evaluations for the sparse-
UKFs are higher. This is mainly due to the propagation of the 2n σ -points. Studies
show that reducing the number of σ -points to n is possible. However, its impact on
the estimation accuracy has to be studied case by case, which is beyond the scope
of this chapter. In the columns under error median and mean, the numbers show that
both sparse-UKFs achievemore accurate estimation than EnKF. Themost significant
advantage of sparse-UKFs are the small variation of estimation error. In Table2, the
error standard deviation of the sparse-UKFs are 0.0071 and 0.0048, which is in
sharpe contrast to 1.0652 of EnKF. The error of EnKF has large variation due to the
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method’s high dependency on the subspace in which the ensembles are selected. This
problem does not exist for the sparse-UKF because Pa has full rank. The variation of
errors is clearly shown in the boxplot in Fig. 4. On each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points the algorithm considers to be not outliers, and the
outliers are plotted individually. For comparison, the error boxplot of the full size
UKF is included in Fig. 4.

4 Progressive-EKF

In a sparse-UKF, the σ -points are computed by taking a square root of the error
covariance, such as the Cholesky factorization. In this section, we propose a pro-
gressive algorithm of approximating error covariance without taking square roots.

4.1 Basic Ideas

The main assumption for this algorithm is the following progressive relationship

Mk−1Pa(k − 1)MT
k−1 = Pa(k − 1) + 	Pb, (29)

where	Pb is assumed to be small. In (29), Mk−1 is the Jacobian ofM at xa(k − 1).
Similarly, the Jacobian of H is Hk . To estimate 	Pb, assume

Mk−1 = I + 	Mk−1. (30)

where we assume that 	Mk−1 is small. If the system model is based on the dis-
cretization of a differential equation with a small time step size, then

M(x(k − 1)) = x(k − 1) + O(	tα), α > 1. (31)

The Jacobian of Ok−1(	tα) in space variables is expected to have small value if 	t
is small, which makes (30) a reasonable assumption. Then we have

Mk−1P
a(k − 1)MT

k−1

= (I + 	Mk−1)P
a(k − 1)(I + 	MT

k−1)

= Pa(k − 1) + 	Mk−1P
a(k − 1) + (

	Mk−1P
a(k − 1)

)T
+ 	Mk−1P

a(k − 1)	MT
k−1

≈ Pa(k − 1) + 	Mk−1P
a(k − 1) + (

	Mk−1P
a(k − 1)

)T
.

(32)
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This is in consistent with (29). It can be computed using a tangent linear model. Or
it can be approximated using the dynamical model

Mk−1P
a(k − 1)MT

k−1

= (I + 	Mk−1)P
a(k − 1)(I + 	MT

k−1)

≈ (M(x(k − 1) + δPa(k − 1)) − M(x(k − 1))
)
/δ

+ (M(x(k − 1) + δPa(k − 1)) − M(x(k − 1))
)T

/δ − Pa .

(33)

where δ > 0 is the step size of a finite difference approximation of 	Mk−1Pa . Its
value should be determined depending on the numerical model and its linearization.
In (33), a vector and matrix summation is a new matrix resulting from adding the
vector to every column in the matrix. Applying an operator to a matrix is to apply
the operator to every column in the matrix.

4.2 Progressive-EKF

The column vectors in the matrices in (32) and (33) are sparse. However, the number
of column vectors equals n, which can be as high as 106−107 for some atmospheric
models. Applying a full model to all the vectors is impractical because of the high
computational and I/O loads. Similar to the idea that we used in sparse-UKF, we
approximate the error covariance using a given sparsity, i.e., only a small portion of
the entries in each column vector is evaluated. Evaluating the entire state vector is
unnecessary. This is the reason we need a component-based model. Then the algo-
rithm of progressive-EKF is summarized as follows.

Algorithm II (progressive-EKF)
Given the initial analysis at t = k − 1,

xa(k − 1) and Pa(k − 1). (34)

Step 1. Forecast
xb = M(xa(k − 1)),
yb = H(xb).

(35)

Step 2. Background error covariance

Pb = (M (
xa(k − 1) + δPa(k − 1), I) − xb

)
/δ

+ (M (
xa(k − 1) + δPa(k − 1), I) − xb

)T
/δ − Pa + Q.

(36)

Step 3. Kalman gain and analysis
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K = PbHT
k (Hk P

bHT
k + R)−1,

xa = xb + K (yo − yb),

Pa = (I − K Hk)P
b.

(37)

Different from the sparse-UKF, this algorithm avoids the computation of matrix
square roots. However, the algorithm requires that 	Pb in (29) can be approximated
effectively. From (31), the method is expected to work better for a small time step-
size. If 	t is large, 	Mk−1 in (30) may not be small enough. A remedy is to use a
refined step-size in an inner-loop computation. More specifically, the discrete model
is a discretization of a continuous-time model. The discrete time moment k − 1
corresponds to the continuous time moment (k − 1)	t . We refine the step size by
dividing the time interval into np subintervals. In our examples, we choose np = 2.
The refined time steps are

(k − 1)	t, (k − 1)	t + 	t

n p
, . . . , (k − 1)	t + s

	t

n p
, . . . , k	t, 0 ≤ s ≤ np

(38)
For the inner loop, one can compute a sequence of backgrounds, x̃ b(s).

ts = (k − 1)	t + s
	t

n p
,

x̃ b(s) = M̃ts (x
a(k − 1)), s = 1, 2, . . . , np.

(39)

where M̃ts represents the refined model function in the time interval from t = (k −
1)	t to t = ts . In Step 2, repeat (36) np times along the sequence of background
states, x̃ b(s), without adding Q until the last round. This refined Step 2 increases the
computational load, while improving the accuracy of the progressive estimation.

4.3 Examples

In the following, we apply the progressive-EKF to the Lorenz-96 model using the
same parameters given in (25). The analysis is based on the simulation data using
N = 1000 random initial states, in which the value of each state variable is uni-
formly distributed in [−1, 1]. The error covariance is approximated using sparsity
matrices with Nsp = 7, 11, 17. For Nsp = 11, we tested the idea of refining step-size
using np = 1 and np = 2. The results are summarized in Table3. The boxplots of
error variation are shown in Fig. 5. Comparing to EnKF, the error variations of the
progressive-EKFs are significantly smaller. If Nsp = 7, which is smaller than the
ensemble size Nens = 10, the median value of estimation error is larger than that of
the EnKF. The median error for Nsp = 11 is comparable to that of the EnKF. If a
refined step-size in (39) is applied, for instance np = 2, the median estimation error
is further reduced. Comparing to the performance of the sparse-UKF in Table2, the
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Table 3 Summary of simulation results

Filter Size Nonzero Entries Error Error Error

Entries EVAL Median Mean STD

EnKF Nens = 10 400 in
ensemble

400 0.3462 1.0741 1.0652

P-EKF Nsp = 7
Np = 1

160 in Pa 320 0.3845 0.3846 0.0055

P-EKF Nsp = 11

Np = 1

240 in Pa 480 0.3455 0.3458 0.0050

P-EKF Nsp = 11

Np = 2

240 in Pa 480×2 0.3041 0.3041 0.0044

P-EKF Nsp = 17

Np = 3

360 in Pa 720×2 0.2872 0.2873 0.0046

Fig. 5 Boxplot of RMSE.
For Prograssive-KF, Nsp = 7,
11, and 17

EnKF PKF(7) PKF(11) PKF(11) PKF(17) UKF
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0.5

0.55

R
M
S
E

EnKF vs Progressive-KF

error variations are similar. However, the estimation error of the sparse-UKF has a
smaller median in all cases. For example, to achieve a similar performance as the
sparse-UKF when Nsp = 11, one has to use a larger sparsity index Nsp = 17 for the
progressive-EKF.

5 Conclusions

Two Kalman type filters, sparse-UKF and progressive-EKF, based on sparse error
covariances are introduced. They are tested using the Lorenz-96 model with 40 state
variables and chaotic trajectories. Both algorithms share the same basic idea: the
error covariance is approximated using a sparse matrix. Thanks to the sparsity, the
required memory size is significantly reduced. The symmetry of the error covariance
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can potentially reduce the I/O load. The analysis error covariance can be updated as a
sparse matrix in each cycle using a deterministic process, either a square root matrix
or a progressive algorithm. The updated sparse matrix is then used as the background
error covariance for the next cycle. Relative to EnKFs, the main advantage of the pro-
posed methods is that the estimation process do not need an ensemble; and the error
covariance has a full rank. The algorithms do not suffer issues of rank deficiency as
in EnKFs. As a result, the variation of analysis error is constantly small in all exam-
ples. Techniques of localization and covariance inflation are unnecessary. Relative to
4D-Var methods, the proposed algorithms are highly parallel in computation. They
provide not only the estimate of states but also the analysis error covariance. For
the purpose of scalability, we suggest that the proposed methods are applied with
component-based numerical models. From the examples, the sparse-UKF has better
accuracy than the progressive-EKF. On the other hand, the progressive-EKF is a
simple algorithm that avoids taking square roots of large matrices, provided that the
progressive approximation of error covariance is adequately accurate. The limited
number of examples in this chapter is not enough for drawing a comprehensive com-
parison between the two filters. More numerical experimentations and further study
of the methods using different types of system models are main topics of our future
work.
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Perturbations by the Ensemble
Transform

Kazuo Saito, Le Duc, Takumi Matsunobu, and Takuya Kurihana

Abstract In the ensemble data assimilation, the background error covariance is
estimated from perturbations of the ensemble forecast, while characteristics of the
ensemble forecast strongly depend on how the initial ensemble is generated. The
ensemble transform is a popular perturbationmethod that widely used as an ensemble
perturbation generator, however, linear combinations of different perturbations in the
ensemble transform (off-diagonal components of the transform matrix) may harm
the global balance of the meteorological field. In this paper, we discuss this issue and
show the structure of initial perturbations. Results of forecast experiments using the
local ensemble transform Kalman filter (LETKF) for a simplified global model and
a regional NWP model are shown. The spin-up issue in a cloud resolving model is
shown with the comparison to an alternative method (diagonal LETKF).
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1 Introduction

Ensemble data assimilation (DA) methods (e.g., LETKF,1 EnKF,2 EnVAR3) are
becoming widely used as the analysis methods for research and operational NWP.
Ensemble DA methods have an advantage against the variational (VAR) methods
in terms of the development cost where the adjoint models are not necessary.
In ensemble DA, magnitudes of forecast error are locally estimated from the
ensemble forecast, reflecting the flow-dependent uncertainty of the first guess.
Their performances, however, are still arguable and likely have a room for further
improvement.

It is well known that characteristics of the ensemble forecast error strongly depend
on how the initial ensemble is generated. In the current most ensemble DA methods
including LETKF and EnVAR, the ensemble transform (ET; Bishop et al. 2001;
Wang et al. 2004), the eigen-decomposition of the analysis error covariance matrix
in ensemble space, is widely used for generating the initial ensemble perturbation. ET
corresponds to the principal component analysis and initial ensemble perturbations
are given by a linear combination of forecast perturbations obtained in the former
DA cycle. On the other hand, another perturbation scheme, the breeding growing
mode (BGM) method scales the bred vectors to a certain magnitude, where pertur-
bations are composed by the diagonal components only in terms of the transform
matrix (Bowler et al. 2008). The ET method has an advantage where the magnitudes
of perturbations (initial ensemble spreads) reflect the magnitudes of the analysis
error. Another advantage is that the orthogonalization of perturbation vectors is not
required. In case of BGM, the bred vectors tend to converge to the first Lyapunov
vector through the breeding cycles (Toth and Kalnay 1997).

On the other hand, it is known that the growth of theLETKFperturbations is slower
than other perturbation methods. Figure 1 shows time evolution of ensemble spreads
of 500 hPa height field (Z) andmeridionalwind (V) by different perturbationmethods
in the same regional EPS (Saito et al. 2011). During the 36-h simulation period, the
global singular vector (GSV) method showed the largest growth rate of the ensemble
spreads. Growths of ensemble spreads in LETKF (LET) and downscale of global
ensemble (WEP) were rather sluggish among the five perturbation methods. Other
perturbation methods based on the mesoscale model SV (MSV), mesoscale BGM
(MBD) show similar tendency, but the growth of LETKF was relatively sluggish.

Figure 2 indicates root mean square errors (RMSEs) of the ensemble mean fore-
casts at FT = 24 for height (Z), meridional winds (V), temperature (T) and relative
humidity (RH) at 500 hPa level and the Receiver Operating Characteristics (ROC)
Area Skill Scores for 6-h precipitation. Again, performances of the forecast from
LETKF perturbations were not necessarily best compared with other perturbation
methods. The tendency of forecasts from the LETKF perturbations (LET) is similar

1 Local ensemble transform Kalman filter.
2 Ensemble Kalman filter.
3 Ensemble-based variational method.
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Fig. 1 Growth of ensemble spread by different perturbationmethods in a regional EPS for theWord
Weather Research Programme Beijing 2008 Olympics Research and Development Project. WEP;
downscale of global ensemble, GSV; Global SV, MSV; mesoscale model SV, MBD; mesoscale
model BGM, LET; mesoscale model LETKF. After Saito et al. (2011)

to that of mesoscale breeding (MBD) but the performance of LET is slightly worse
than MBD in several cases.

Figure 3 compares time evolutions of central pressures of cycloneNargis predicted
by regional EPSs. In downscale ensemble from global BGM perturbations (Fig. 3a;
Saito et al. 2010), about a half of perturbed members predicted the TC stronger than
the control run (non-perturbedmember), while in the LETKF ensemble (Fig. 3b), TC
intensities in the most perturbed members were weaker than the control run (LETKF
analysis).

Reich et al. (2011) pointed-out that those properties of ensemble transform pertur-
bations in LETKF induce an initial imbalance in analysis ensemble members. The
Relaxation-to-prior-perturbations (RTPP; Zhang et al. 2004a, b) method corresponds
to increasing the diagonal components in ET. Ota et al. (2019) added singular
vectors to perturbations of LETKF in the operational global EPS at JMA to inflate
perturbations in the ensemble forecast.

Required conditions of initial perturbations in ensemble DA may be listed as
follows:

• Zero-mean at initial (mean-preserving property) and no biases in forecast.
• Forecast perturbations express the forecast error.
• Magnitude of perturbations reflects the analysis error.
• Good orthogonality to assure that the perturbations compose the basis to span the

space of a large freedom.
• Accuracy of the ensemble mean is good.
• Performance of the forecast by each perturbed member is not poor, so that each

forecast can be regarded as a possible scenario of the future states.
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Fig. 2 a RMSE of ensemble mean (FT= 24) with various perturbation methods for 500 hPa height
field (Z50), meridional wind (V50), temperature (T50) and relative humidity (RH50). b ROC Area
Skill Scores for 6-h accumulated precipitation. After Saito et al. (2011)

• Good growth rates of perturbations.

As for orthogonality, Table 1 shows orthogonality of perturbation vectors (simi-
larity index) of BGM (upper) and LETKF (lower) perturbations with and without
lateral boundary perturbations (LBPs) for the case of a regional ensemble prediction
system (EPS) (Saito et al. 2012). Here, p1–p5 are positive perturbations and m1–m5
are negative perturbations. In this table, upper triangular matrix components indi-
cate the case without LBPs in the breeding cycles, whereas lower triangular matrix
components indicate the case with LBPs in breeding cycles. In BGM (Table 1a),
about 30% of bred vectors (12 of 40) were similar to each other in case without
LBPs, and the number of such similar vector pairs decreased to 10% (4 of 40) with
LBPs. In LETKF (Table 1b), orthogonality between the initial perturbations was
generally good even without LBPs in the ensemble Kalman filter data assimilation
cycles.

Recently, Duc et al. (2020a) presented the mathematical proof of derivation of ET
matrix in the sense of the Frobenius norm. They showed that the positive symmetric
square root of the analysis error covariance is the closest matrix to the identity I, and
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Fig. 3 Time evolution of central pressures of cyclone Nargis predicted by regional EPSs. a Down-
scale ensemble from global EPS perturbations. b Same as in a but for ensemble forecast from
NHM-LETKF perturbations. After Duc et al. (2015)
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Table 1 Orthogonality of perturbation vectors (similarity index) of BGM (upper) and LETKF
(lower) with and without LBPs. After Saito et al. (2012)

(a)

p1 p2 p3 p4 p5 m1 m2 m3 m4 m5

p1 1.00 0.25 0.50 0.18 0.21 −1.00 −0.25 −0.49 −0.18 −0.21

p2 0.09 1.00 0.04 0.02 0.62 −0.25 −0.99 −0.03 −0.01 −0.61

p3 0.39 0.28 1.00 0.65 −0.05 −0.49 −0.03 −0.99 −0.64 0.06

p4 0.21 0.03 0.20 1.00 −0.18 −0.18 0.00 −0.64 −0.98 0.19

p5 −0.07 0.53 0.00 0.25 1.00 −0.20 −0.61 0.06 0.19 −0.99

m1 −0.99 −0.08 −0.37 −0.21 0.07 1.00 0.25 0.50 0.19 0.21

m2 −0.08 −0.98 −0.25 −0.0 2 −0.52 0.08 1.00 0.03 0.00 0.62

m3 −0.37 −0.26 −0.97 −0.19 0.01 0.37 0.27 1.00 0.65 −0.06

m4 −0.20 −0.02 −0.18 −0.99 −0.24 0.21 0.02 0.19 1.00 −0.19

m5 0.07 −0.52 0.02 −0.24 −0.99 −0.07 0.53 −0.01 0.24 1.00

(b)

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

M1 1.00 0.07 −0.23 −0.18 0.01 0.09 −0.03 −0.46 −0.30 −0.19

M2 −0.10 1.00 −0.11 −0.07 0.01 0.12 −0.31 −0.22 −0.33 −0.36

M3 0.19 −0.51 1.00 −0.06 −0.40 −0.34 −0.12 −0.03 0.27 0.03

M4 −0.18 −0.25 0.01 1.00 −0.22 −0.23 −0.02 −0.11 0.03 −0.15

M5 −0.10 0.32 −0.37 −0.26 1.00 0.06 −0.16 −0.01 −0.25 −0.02

M6 −0.56 0.12 −0.19 −0.02 0.06 1.00 −0.11 −0.07 −0.36 −0.18

M7 −0.01 −0.07 −0.07 −0.11 −0.17 −0.09 1.00 −0.14 0.10 −0.07

M8 0.03 −0.14 0.07 −0.10 −0.17 −0.17 −0.31 1.00 0.00 0.11

M9 −0.02 −0.27 0.09 −0.07 −0.15 −0.20 −0.20 −0.17 1.00 −0.02

M10 −0.23 −0.07 −0.26 −0.03 −0.14 0.07 0.00 −0.22 0.04 1.00

discussed the diagonally predominant property. In this study, we show detailed struc-
tures of the LETKF perturbations in NWP models and test results on the potential
application of the diagonal ET in LETKF. In Sect. 2, we first refer to mathemat-
ical treatment of ET and refer to the diagonally predominant property discussed
in Duc et al. (2020a). Section 3 discusses characteristics of ET perturbations in a
simple global model and regional NWP model. Section 4 shows spin-up aspect of
ET perturbations with deep convection in a cloud resolving model and cycle DA test.
Verifications of precipitation forecasts using the fraction skill score are also shown.
Summary and concluding remarks are given in Sect. 5.
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2 Ensemble Perturbations and Ensemble Transform

In theLETKF, analysis perturbations are obtained by applying a linear transformation
on background perturbations. In this section, we remind mathematical treatment of
ET and decomposition of ETM according to Duc et al. (2020a). Denoting analysis
and background perturbations by n × k matrices Xa and Xb, respectively, ET is
represented by a right-multiplication of Xb by a k × k matrix T:

Xa = XbT, (1)

where n is the size of the state vectors, and k is the ensemble size. Here each column
of Xb represents the difference xb − xb between each forecast member xb and the
ensemble mean xb calculated from all forecast members. A similar definition is
applied for the columns of Xa.

The matrix T is ETM, and it is formulated so that the analysis error covariance
Pa = Xa(Xa)T/(k − 1) obeys the Kalman filter equation:

Pa = (I − KH)Pb = Pb − PbHT(HPbHT + R
)−1

HPb, (2)

where R is the observation error covariance,H is the observation operator, and Pb =
Xb(Xb)T/(k − 1) is the background error covariance. Using background perturbations
in observation space Yb = HXb, Pa can be rewritten as

Pa = Xb
(
I + (

Yb)TR−1Yb/(k − 1)
)−1(

Xb)T
/

(k − 1). (3)

Suppose that the eigen-decomposition of YbTR−1Yb/(k − 1) is given by C�CT,
where the orthogonal matrix C contains the eigenvectors in its columns, and the
diagonal matrix � contains the eigenvalues γi on its diagonal. Since C is orthogonal,
we have I = CCT, P̃a = (I + (Yb)TR−1Yb/(k − 1))−1 is simplified as

P̃a = C(I + �)−1CT. (4)

Wang et al. (2004) pointed out that the positive symmetric square root Ts = C(I
+ �)−1/2CT is the ETM which possesses the mean-preserving property.

Duc et al. (2020a) presented the mathematical proof of derivation of Ts, showing
that for all ETMs S the squared distance in Frobenius norm attains its minimum
when S is the positive symmetric square root of P̃a

∥∥Ts − I
∥∥2
F =

∑
(λi − 1)2, (5)
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where λi are the eigenvalues of P̃a . They extended this proof to another minimization
problem for the squared distance ‖S − αI‖2F, by introducing a new variable α. They
found that S resembles a scalar multiple of I most when the scalar multiple of I is
λ. This result suggests that we can decompose Ts into the sum of a diagonal matrix
D and a perturbation matrix P

Ts = D + P = λI + P, (6)

where the Frobenius norm of D is
√
kλ̄, and the typical magnitudes for the entries

of of P are estimated by σλ/
√
k (σλ is the standard deviation of λ).

Upper panel of Fig. 4 shows entries of three 50 × 50 Ts matrices computed at
three different grid points obtained fromanLETKFexperimentwith real observations
using 50 ensemble members (Duc et al. 2015). Diagonal terms are dominant over

Fig. 4 Entries of 50 x 50 ET matrix at different grid points obtained from an LETKF experiment
in the region a with dense observations and b far from observations, c and d the same as in a and
b, respectively, but for the perturbation matrix P. Note that the numbers at color bars are multiplied
by 10. Editing from Duc et al. (2020a)
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non-diagonal terms. In Fig. 4b, the average value of the diagonal terms is about 0.99
at a grid point in an observations sparse area. This value in Fig. 4a is 0.39, at a grid
point in the region with dense observations. The typical magnitudes for the entries
of P in Fig. 4c, d are as 0.0235 and 0.0031, respectively.

Figure 5 shows an example of, background, perturbation, and analysis of surface
(mean sea level) pressures in an LETKF analysis for a case of typhoon. Here, upper
panels show result of normal LETKF which employs full matrix of Ts, while lower
panels are result when Ts is replaced by D (‘diagonal LETKF’). Perturbations by
full-T LETKF (Fig. 5b) are noisier than those of diagonal LETKF (Fig. 5e) due to the
mixture of off-diagonal perturbations, and two pressure minimums are seen in the
resultant analysis (Fig. 5c). In case of diagonal LETKF, the perturbation is a simple
dipole pattern which adjusts the position of TC center southwest ward.

After the next section, we show detailed structures of the LETKF perturbations
in NWP models comparing with those from diagonal LETKF.

3 Perturbations in LETKF in NWP Models

3.1 Cases of SPEEDY-LETKF

In order to check the problem of ET, a test of LETKF using the “simplified parame-
terization primitive-equation dynamics” global model (SPEEDY;Molteni 2003) was
conducted. The SPEEDY model is an atmospheric global circulation model with a
T30L7 resolution (represented by 96 × 48 × 7 grid points), and the model variables
are zonal andmeridional winds (u, v), temperature T, specific humidity q, and surface
pressure ps. These variables are also used as control variables in assimilation with
LETKF (SPEEDY-LETKF; Miyoshi 2005; Yokota et al. 2016). Adaptive inflation
(Miyoshi 2011) is used and the number of ensemble members is 20. Different hori-
zontal localization scales with 500, 750, 1000, and 2000 km were tested with 0.1 (ln
p) vertical localization.

Pseudo sonde observation data with errors followed by a Gaussian distribution set
for observation system simulation experiment (OSSE) are assimilated with 40 days
spin-up from January 1 1982. Figure 6a, b shows the analysis field of 500 hPa (level
4) geopotential height (Z) and wind speed of zonal wind (U) for 9 February 1982.
Figure 6c shows perturbation of horizontal winds at level 2 (835 hPa) of member 01
for the case of horizontal localization of 750 km. Figure 6d, e indicate perturbation
vectors reproduced from diagonal and off-diagonal components of the ET matrix.
By the diagonal predominant property, the perturbation produced by the diagonal
components is similar to the original perturbation, while the one produced by the
off-diagonal part appears noisy. Inconsistency of off-diagonal perturbations is also
clear vertically. Figure 6f–h show corresponding horizontal wind perturbations at
685 hPa (level 3). Even 685 hPa is just adjacent level above level 2, the horizontal
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a b

c

d

e

f

g

h

Fig. 6 Analysis fields and perturbation vectors by speedy LETKF for 9 February 1982 for a height
field at 500 hPa, b zonal wind speed, and c perturbation of horizontal winds at level 2 (835 hPa)
of member 01, d and e are the same as in c but for diagonal and off-diagonal components in the
ensemble transform, respectively, f, g and h are the same as in c, d and e, respectively, but for level
3 (685 hPa). Note that the vector scale is enlarged 10 times

pattern of the off-diagonal perturbation (Fig. 6h) shows a quite different appearance
from that at level 3 (Fig. 6e).

Figure 7a depicts power spectra of LETKF perturbation vectors for meridional
winds at level 3 (685 hPa) for member 01 with various horizontal localization scales.
Spectral powers decreasewithwave numbers. Power spectra of diagonal components
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Fig. 7 Power spectra of perturbation vectors for meridional winds at level 3 (685 hPa) for member
01 with various horizonal localization scales for a full matrix, b diagonal components, and c off-
diagonal components in the ensemble transform, d is the same as in c but for mean power spectra
for all 20 members

(Fig. 7b) is similar to those in Fig. 7a, while power spectra of off-diagonal part
(Fig. 7c) differ depending on the horizontal localization scales. When a smaller
localization scale (e.g., 500km)was applied, powers in smallwavenumbers relatively
decrease and powers in large wave number relatively increase, which means that
perturbations by off-diagonal components are noisier in smaller localization scales.
Figure 7d showsmeanpower spectra for all 20members for off-diagonal components.
The same tendency is seen in the mean power spectral.

Figure 8 indicates root mean square errors (RMSEs) and ensemble spreads of
horizontal wind by the 48-h extended ensemble forecast from LETKF analyses. In
this experiment, RMSEs of the ensemble mean were slightly larger than the control
run. RMSE of each perturbed member is much larger than that of the control run.
RMSEs of the control run, the ensemble mean and most perturbed members increase
at the first 6 h and then slightly decrease at FT = 12. After that RMSEs gradually
increase with time. The ensemble spreads decrease at the first 6 h and then gradually
increase after FT=12. These behaviors of RMSEs and ensemble spreads suggest a
spin-up problem in the forecasts from ET perturbations.
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Fig. 8 RMSEs of control
run (black), ensemble mean
(red) and perturbed members
(green) and ensemble spread
(blue) for horizontal winds
(U) at level 3 (685 hPa) for
the case of horizontal
localization scale of 2000 km

3.2 Case of NHM-LETKF

A similar tendency as described in the former subsectionwas confirmed by an experi-
ment using a regional NWPmodel. The JapanMeteorological Agency (JMA) nonhy-
drostaticmodel (Saito et al. 2006, 2007; Saito 2012) and its LETKF version (Miyoshi
and Aranami 2006; Kunii 2014; Yokota et al. 2018) were used. In this subsection,
first we show the result with a horizontal resolution of 15 km. The horizontal domain
size of the JMA-NHM is 4,080 km × 3,300 km and the number of vertical levels is
50. The 3-ice bulk cloud microphysics scheme which predicts six water species and
the Kain-Fritsch (K-F) convection parameterization scheme were simultaneously
employed as the precipitation process.

Specification of NHM-LETKF is 15 km 50 layers with 20 members. Real obser-
vations similar to the JMAoperational mesoscale DA system except for satellite radi-
ance and precipitation analysis were assimilated. NHM-LETKF system was started
from Aug 1st, 2016 with 6 hourly DA cycles, using the JMA operational global EPS
as the very initial and lateral boundary perturbations. Relaxation to prior spread is
employed as the inflation method. Different horizontal localization scales with 100,
200, and 400 km were tested with 0.1 (ln p) vertical localization.

Height and temperature fields at 500 hPa at 0000 UTC 5 August 2016 are shown
in Fig. 9. Figure 10a, b show horizontal wind fields at z = 5721 m at the same
time analyzed by NHM-LETKF (CNTL and member 01, respectively). The analysis
perturbation of member 01 is shown in Fig. 10c. Figure 10d, e indicate the diagonal
(D = λ I) and perturbation (P) components of analysis perturbations. As similar to
the SPEEDY-LETKF case, perturbations by the D components (Fig. 10d) represent
most part of the total analysis perturbations (Fig. 10c), and the residual part, the P
components (Fig. 10e) are noisy. Figure 10f shows the P part perturbations at z =
6665 m. Again, vertical inconsistency of P part is evident.

Figure 10g, h show the P perturbations by experiments with different horizontal
localization scales. With a small localization scale (Fig. 10g), P perturbations are
unevenly distributed mainly only around land area suggesting that the diagonal



128 K. Saito et al.

Fig. 9 Height and temperature field at 500 hPa at 0000 UTC, 5 Aug 2016

components are dominant over the sea, in the region far from observations (see
Fig. 4b, d). When a larger localization scale is applied, P part increases according to
the increase of assimilated data (Fig. 10h).

A similar property of ensemble perturbations shown above is also seen in the
vertical motion, but in 15 km NHM-LETKF, vertical motion is generally small
because deep convection is suppressed by the cumulus parametrization scheme
(not shown). Vertical inconsistency of off-diagonal perturbations is likely more
problematic when penetrative deep convection exists in the analysis field.

4 Perturbations by Ensemble Transform in a Cloud
Resolving Model

4.1 2 km NHM-LETKF

In this section, we focus more on the detailed structures of the ET perturbations
and check spin-up of cloud resolving models after LETKF analysis. High-resolution
(2 km) version of NHM-LETKF is used, and its domain size is 240 × 240 km. Spec-
ification of NHM-LETKF is 50 layers with 20 members. The system is nested with
the 15 kmNHM-LETKF described in the former section. To permit deep convection,
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Fig. 10 a Horizontal wind field at z = 5721 m on 5 Aug 2016 by NHM-LETKF analysis with the
horizontal localization scale of 200 km. b Same as in a but for member 01. c Analysis perturbation
of member 01. d Diagonal (D = λ I) components of analysis perturbation in Eq. (6). e Same as
in d but for P components. f Same as in e but for z = 6665 m. g Same as in e but the horizontal
localization scale is 100 km. h Same as in e but the horizontal localization scale is 400 km
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the K-F cumulus parameterization scheme was switched off. Real observations same
as in the 15 km NHM-LETKF were assimilated. The 2 km LETKF was started from
1200 UTC 2 August, 2016 with 3 hourly DA cycles, targeting on analysis at 1800
UTC 2 August, using 15 km NHM-LETKF results as the very initial and lateral
boundary perturbations. Relaxation to prior spread or multiplicative inflation is used
as in the 15 km NHM-LETKF. Horizontal localization scale was fixed to 200 km,
while vertically, 0.2, 0.1 and 0.05 (ln p) vertical localizations were tested.

Figure 11a–c showobserved horizontal surfacewinds and three-hour accumulated
precipitation from 1500 to 2100 UTC 2 August 2016. After 1800 UTC, an area of
intense local rain is seen around Tokyo. Corresponding forecasts by 15 km NHM-
LETKF and 2 km NHM-LETKF are indicated in Fig. 11d–i, respectively. 15 km
NHM-LETKF generally well reproduced the southeasterly surface wind field but
tended to miss the intense rains. The 2 kmNHM-LEKF reproduces localized intense
rains around Tokyo for some extent at 1800 and 2100 UTC.

Figure 12 indicates horizontal wind field at 24th level at 1500 UTC 2 Aug 2016
by 2 km NHM-LETKF. At this height (z = 5276 m), southwesterly winds prevailed
suggestingwarmand humid air advection over theKanto area.Analysis perturbations
(Fig. 12c) and its diagonal (D) components (Fig. 2d) are very similar. Perturbations
by P components (Fig. 12e) are much smaller than D components and noisy.

Figure 13 indicates vertical wind field at the same level. The vertical motion in
the control analysis (Fig. 13a) is weak because of the ensemble mean. In the analysis
field of member 01 (Fig. 13b), spots of intense updrafts are seen in the southwest
of Tokyo, which corresponds to deep convection bred in the guess forecast. Several
weak spots of up/down drafts are reflection of the off-diagonal components. These
randomly distributed spots of up/down drafts are distinct in the perturbations by P
components (Fig. 13e).

Figure 14a–c show the vertical cross-section of vertical winds of member 14 by
2 km NHM-LETKF along a north–south plane from 34.8 N to 35.8 N through a
convective cell in different vertical localization scales. Here, we show the result of
member 14 as an example which showed intense rains near Tokyo in both full-T
LETKF and diagonal LETKF (see Fig. 16). Intense upward motions are analyzed
corresponding to deep convection at the guess field. Seemingly, these analyses are
similar each other, but perturbations by P components (Fig. 14d–f) are very different
depending on the vertical localization scale. In case of a small vertical localization
scale (Fig. 14d; 0.05 ln(p)), the patterns are noisywhile in case of a larger localization
(Fig. 14f; 0.2 ln (p)), the perturbation patterns have longer structure in vertical. The
small-scale perturbations vanish rapidly when the model time integration started. At
FT = 2 min, the patterns in three figures become somewhat similar (Fig. 14g–i).

Figure 15a shows time evolutions of the maximum horizontal divergence at 19th
level (Z = 3321 m) in full-T LETKF (blue) and in diagonal LETKF (red) in member
14 by 2 km NHM-LETKF. Maximum values of horizontal divergence in full-T
experiment tend to be larger than those in diagonal LETKF, suggesting the start-up
stirring in the full-T LETKF. Figure 15b shows time evolutions of the maximum
updraft for entire model domains. The maximum updrafts in full-T LETKF tend to
be larger than that of diagonal LETKF at the first 35 min.
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Fig. 11 Observed horizontal surface winds and three-hour accumulated precipitation at a 1500
UTC, b 1800 UTC, and c 2100 UTC on 2 August 2016. d, e and f are the same as in a, b, and c,
respectively, but for forecast by the 15 km NHM-LETKF, g, h and i are the same as in d, e and f,
respectively, but for the 2 km NHM-LETKF

4.2 Cycle Experiments and Verification

Next, we conducted cycle DA experiments with full-T and diagonal LETKF.
Ensemble forecast with 2 km started at 1800 UTC 1 August using downscale of
the 15 km NHM-LETKF ensemble as the initial conditions. Then, analyses of the
cycle DA were conducted eight times from 2100 UTC 1 August to 1800 UTC 2
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Fig. 12 Horizontal wind field at 24th level (z = 5276 m) at 1500 UTC 2 Aug 2016 by 2 km
NHM-LETKF. a Control analysis. b Analysis of member 01. c Analysis perturbation of member
01. d Diagonal (D = λ I) components of analysis perturbation in Eq. (6). e Same as in d but for P
components

August. Other specifications of JMA-NHMand LETKF are the same as in the former
subsection.

Figure 16 shows precipitation forecast by the two LETKFs (member 14).
Figure 16a, c show three-hour precipitation by 2 km full-T LETKF at 1800 UTC and
2100 UTC, respectively, and Fig. 16b is one-hour precipitation from 1500 to 1600
UTC to show the initial spin-up after the analysis at 1500 UTC. Corresponding fore-
casts by the diagonal LETKF are shown in the lower panels (Fig. 16d–f). Comparing
with the observed three-hour precipitation on the day (Fig. 11b, c), the diagonal
LETKF better reproduced the rainfall around Tokyo. The large difference between
the two LETKFs is in the precipitation amount at spin-up period. In the forecast from
full-T LETKF (Fig. 16b) rainfall amount in the initial 1-h is smaller than diagonal
LETKF (Fig. 16e).

Figure 17a, b show composite of time evolutions of precipitation intensity for
every time step at nine forecast cycles (colored) and their average (bold black) by
the full-T and diagonal LETKFs. Here, time evolutions of precipitation intensity in
member 14 for every forecast cycle are superimposed and the average is plotted by
a black line. In case of full-T LETKF (Fig. 17a), precipitation intensities change
rapidly within the first 10 min just after the model start-up with a small bump and
then precipitation tends to decrease after that in many DA cycles. Similar tendency
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Fig. 13 Same as in Fig. 12 but for vertical wind field at 24th level (z = 5276 m)

is also seen in some members in the diagonal LETKF (Fig. 17b), but generally the
change of precipitation at the model spin-up is small and the average precipitation
intensity (MEAN) is more constant than that in full-T LETKF. As for period 1500
UTC to 1800 UTC (brown), difference of rainfall amount in the first one-hour shown
in Fig. 16 is evident. Difference in the average precipitation (black) is not large
but the decrease of rainfall in the model spin-up in full-T LETKF is observable.
Figure 17c, d show the verification of precipitation forecast against the radar-rain
gauge precipitation analysis of JMA. Here intensity-scale diagrams for fraction skill
scores (FSS;Ebert 2008;Duc et al. 2013) for three-hour accumulated precipitations in
the forecast period are indicated. Difference of the performances of the two LETKFs
is evident especially for weak to moderate rains on 0.1–10 mm/h (Fig. 17e).

Figure 18 is precipitation forecast at 1800 and 2100 UTC by the two LETKFs for
control run. Different from the forecast inmember 14 shown in Fig. 16, the difference
between the full-TLETKFand the diagonal LETKF is not large. Precipitation amount
at the first one hour by the diagonal LETKF (Fig. 18e) for 1800 to 1900 UTC is
still slightly larger than that by the full-T LETKF (Fig. 18b). Figure 19a–c show
composites of time evolution of precipitation intensity for every time step at nine
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Fig. 14 Vertical (north–south) cross-section of verticalwinds ofmember 14 by2kmNHM-LETKF:
analysis at 1500 UTC 2 Aug 2016 for the case of a vertical localization 0.05 ln(p), b vertical
localization 0.1 ln(p), and c vertical localization 0.2 ln(p), d, e and f are the same as in a, b and
c, respectively, but for perturbations by P components, g, h and i are the same as in d, e and f,
respectively, but for the forecast at 2 min

DA cycles and verification scores in the two LETKFs for control forecast. The large
difference in precipitation intensity from Fig. 17 is the decrease of precipitation
intensity after the spin-up. This depression of precipitation comes from the lack of
the intense updraft in the initial condition (Fig. 13a),where the ensemblemean is used
in the first guess. Fukui et al. (2018) pointed out lack of intense rains from LETKF
analysis using ensemble mean for first guess. They attributed this property to the
lack of high wave number spectra in the ensemble mean, and used the deterministic
forecast as the background (first guess) field to increase rainfall in their regional
reanalysis. The depression of initial rains is seen both in full-T and diagonal LETKFs,
because even the diagonal LETKF, the ensemble mean was used as the first guess
in our experiment. Figure 19c, d show the FSS verification results for control run.
Differences of FSSs in the twoLETKFs are also small but diagonal LETKF (Fig. 19d)
was slightly better than the full-T LETKF (Fig. 19c) for weak to moderate rains
(Fig. 19e).

Recently, Duc et al. (2020b) proposed a unifying theory for covariance inflation
in the ensemble Kaman filter, and discussed an inflation function which transforms
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Fig. 15 Time evolution of a the maximum horizontal divergence (in s−1) at 19th level, and b the
maximum updraft (in ms−1) for entire model domains, from the full-T LETKF (blue) and the
diagonal LETKF (red) in member 14 by the 2 km NHM-LETKF. Horizontal axes indicate the
forecast time (in min)

background perturbations to analysis perturbations. They compared several covari-
ance inflation methods as the response function which reduces factors of background
singular values in analysis, and pointed out that RTPP is a mixture of the diagonal
ETKF and RTPS and puts more inflation on large-scale processes, while RTPS puts
more inflation on small-scale processes. Diagonal ETKF is the constant inflation
function and has a similar inflation property to RTPS in terms of the response func-
tion. In our experiments, we applied diagonal LETKF with RTPS but this inflation
property of diagonal LETKF likely influenced the results. Additional experiments
with multiplicative inflation and without inflation were conduct with full-T and diag-
onal ETM. In this case, even no inflation did not yield filter divergence because
the computational domain is small and the meteorological field is restricted by the
boundary condition.

Figure 20 shows time evolutions of ensemble spreads of meridional winds in eight
DAcycles from2100UTC1August to 2100UTC2August in the 2 kmNHM-LETKF
by six experiments using different inflation methods (RTPS, multiplicative, and no
inflation) with diagonal and full-T ETM. Ensemble spreads decrease at analyses
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Fig. 16 a Three-hour accumulated precipitation at 1800 UTC, b one-hour precipitation for 1500 to
1600 UTC, and c three-hour accumulated precipitation at 2100 UTC on 2 August 2016 by member
14 in the 2 km LETKF for the cycle experiment. d, e and f are the same as in a, b and c, respectively,
but for the 2 km diagonal LETKF

and in the most DA cycles, they increase with time except RTPS after 0900 UTC 2
August. Ensemble spreads of diagonal LETKF are always larger than full-T LEKF
because of covariance inflation property in the diagonal LETKF. Verifications of
QPF performance were checked but there were no large differences in diagonal and
full-T LETKF for multiplicative inflation (figure not shown).

5 Summary and Concluding Remarks

We checked analysis perturbations in LETKF of SPEEDY and JMA-NHM and
confirmed that most part of the perturbations are from diagonal part of ETM, due to
the diagonally predominant property discussed by Duc et al. (2020a). Off-diagonal
part is spatially noisy both in horizontally and vertically, depending on the local-
ization scales. Power spectrum of the off-diagonal perturbation indicated that the
power of higher wave numbers were relatively higher in small horizontal localiza-
tion scales. This tendency suggests that the off-diagonal perturbations do not hold
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Fig. 17 a Composite of time evolution of precipitation intensity for every time step at nine DA
cycles (colored) and the average (bold black) in the 2 km LETKF. Horizontal axis indicates the
forecast time from analysis (in hour:min).bSame as in a except for the diagonal LETKF. c Intensity-
scale diagram on fraction skill scores for three-hour accumulated precipitations in the DA cycle
period. Horizontal axis is thresholds of rain intensity and vertical axis indicates spatial scales which
allow positional lags. d Same as in d except for the diagonal LETKF. e Difference of c and d

the global structures of the meteorological field and may be harmful for the model
spin-up and the succeeding forecast.

Vertical structures of ensemble perturbations in a cloud resolving model (2 km
resolution JMA-NHM) and model spin-up were checked. Small scale noises in the
initial perturbation rapidly vanish after the model start, but the horizontal divergence
and vertical updraft of full-T LETKF tended to be larger than the diagonal LETKF
until 30 to 40 min after the model start. Verification of precipitation shows that
rainfalls at the very first one hour in DA cycles of full-T LETKF are smaller than
diagonal LETKF and the FSS of diagonal LETKF was better than full-T LETKF for
a specific perturbed member. This difference was much smaller in the control run.

As pointed out by Duc et al. (2020b), diagonal LETKF has inflation effect. Thus,
evaluation of the diagonal LETKF likely should be done in a situation of well-tuned
inflation, ormore sophisticated experimental setting.Diagonal LETKFmay be useful
at least as a perturbation generator for extended runs because it removes the global
inconsistency in the meteorological field, but for DA cycles, orthogonal property
must be secured by other methods (e.g., lateral boundary perturbations in a regional
model). Side effect of the full-T ETMmay be reduced in a system of the large number
of ensemble member, because we can apply a longer localization scale in such the
system. Further studies are needed to evaluate ET perturbations.
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Fig. 18 Same as in Fig. 16 except for control run

Fig. 19 Same as in Fig. 17 except for control run
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Fig. 20 Time evolution of ensemble spreads of meridional winds in eight DA cycles from 2100
UTC 1 August to 2100 UTC 2 August in the 2 km NHM-LETKF. ‘RTPS’, ‘MULTI’, and ‘NOINF’
before underbars indicate inflationmethod usingRTPS,multiplicative, and no inflation, respectively.
‘DIAG’ and ‘FUL’ after underbars mean the diagonal LETKF and the full-T LETKF, respectively
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Stochastic Representations for Model
Uncertainty in the Ensemble Data
Assimilation System

Sujeong Lim and Seon Ki Park

Abstract The ensemble data assimilation system is beneficial to express flow-
dependent model errors. Furthermore, the effectiveness of this system depends on
the accuracy of the flow-dependent background error covariance. However, the back-
ground error covariance is often underestimated due to limited ensemble size, sam-
pling errors andmodel errors, which causes a filter divergence problem—the analysis
state diverges from the nature stage ignoring the observation influence. As one of
the remedies to solve this problem, the stochastic representations address the model-
related uncertainties by perturbing the model tendency or parameters using a random
forcing to replenish the insufficient model errors. In this study, we implemented a
stochastic perturbation hybrid tendencies (SPHT) scheme, which perturbs both phys-
ical tendency and dynamical tendency using the random forcing, and assessed its
impact on the spread of ensemble forecast and ensemble mean error.

1 Introduction

Ensemble data assimilation (EnsDA) finds the best initial conditions of the numerical
weather prediction (NWP) model using model forecasts and their error covariance as
well as observations Evensen (1994). In particular, it describes the flow-dependent
forecast error covariance through an ensemble of the model forecasts. Therefore, it
contains uncertainties in both the initial conditions and the model. Model uncertainty
representations can be distinguished from actual model errors: the former samples
model perturbations from some distribution while the latter presents only one real-
ization per model and forecast Leutbecher et al. (2017). In this study, we focus on
the model uncertainty in the EnsDA system using the stochastic representations that
simulate the errors of model tendencies from random components.
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In EnsDA, themodel uncertainty is used in the ensemble background error covari-
ance (BEC) through the 6-h forecasts. However, it is found to be underdispersive due
to the limited ensemble size, sampling error, and imperfect model parametrization,
resulting in over-confidence in ensemble forecasts Buizza et al. (2005). This prob-
lem is usually covered by covariance inflation, e.g., multiplicative inflation Anderson
and Anderson (1999), additive inflation Mitchell and Houtekamer (2000), combined
multiplicative and additive inflation Whitaker and Hamill (2012), relaxation to the
prior Zhang et al. (2004), multischeme ensembles Meng and Zhang (2007), and so
on.

In general, the ensemble BEC, composed of an ensemble spread (σ (x)), i.e., the
standard deviation to the ensemble mean (x̄), should reflect the ensemble mean error
(e(x̄)) because the ensemble spread distribution determines the analysis status (see
Fig. 1). Here, themodel error is expressed by the distance between the ensemblemean
and the observation while the ensemble spread is represented by the pre-described
ensemble distribution. The optimal ensemble spread is expected to have a spread
similar to the ensemble mean (Fig. 1a), i.e.,

σ(x) ≈ e(x̄); (1)

then, the analysis includes reliable information from the model and observations.
The underdispersive ensemble members show a smaller ensemble spread compared
to the model error, i.e.,

σ(x) � e(x̄), (2)

where the analysis ignores the observation and trusts the model more due to small
ensemble BEC (Fig. 1b). The overdispersive ensemble members show the larger
ensemble spread compared to the model error, i.e.,

σ(x) � e(x̄). (3)

In this case, the analysis ignores the model errors and relies more on the observation
due to the larger ensemble BEC (Fig. 1c).

To remedy the general problem of the underdispersive model error, various
stochastic schemes can be used, e.g., Buizza et al. (1999), Shutts (2005), Palmer et al.
(2009). It is based on the fact that the NWP models represent the physical process
with simplifications and approximations due to incomplete knowledge and computa-
tional costs. The European Centre for Medium-RangeWeather Forecasts (ECMWF)
developed the original version of the Stochastically Perturbed Parametrization Ten-
dencies (SPPT) scheme—called the Buizza-Miller-Palmer (BMP) scheme Buizza
et al. (1999)—for the first time and introduced the stochastic representation of model
uncertainty that perturbs the total parametrized physics tendencies using the random
forcing. After major revisions on random patterns and distribution of perturbations in
2009 Palmer et al. (2009), the BMP scheme has evolved into the SPPT scheme. Since
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Fig. 1 Schematic diagram of the ensemble spread, σ(x), and the ensemble mean error, e(x̄):
a optimal ensemble spread, b underdispersive ensemble spread, and c overdispersive ensemble
spread

then, the SPPT scheme has been employed by many operational NWP centers, e.g.,
Environment Canada (EC), Japan Meteorological Agency (JMA), the United States
National Centers for Environmental Prediction (NCEP), and the United Kingdom
Met Office (UKMO), for their global prediction systems Charron et al. (2010), Leut-
becher et al. (2017). It has also been implemented in regional prediction systems,
e.g., the Application of Research to Operations at Mesoscale convection-permitting
model (AROME) of Meteo-France Bouttier et al. (2012) and the Weather Research
and Forecasting (WRF) model Romine et al. (2014), Berner et al. (2015).

Afterward, the Stochastic Kinetic Energy Backscatter (SKEB) scheme was intro-
duced to represent the model uncertainties for scale interactions what is absent in a
truncated numerical model by randomly perturbing the stream function and poten-
tial temperature tendencies Shutts (2005). The SKEB has also been used for global
ensembles in many operational center, e.g., ECMWF, EC, and UKMOCharron et al.
(2010), Tennant et al. (2011), Sanchez et al. (2016) as well as regional ensembles
(e.g., WRF) Berner et al. (2011), Berner et al. (2015). Recently, a stochastic convec-
tive backscatter scheme has been introduced Shutts (2015).

Alternately, the Stochastically Perturbed Dynamical Tendencies (SPDT) scheme,
which perturbs the total dynamical tendencies using the random forcing, was intro-
duced: the scheme proved to be effective in global ensemble forecasting Koo and
Hong (2014), e.g., in the Global/Regional Integrated Model system (GRIMs) Hong
et al. (2013). By combining the SPDT and SPPT schemes, Lim et al. Lim et al. (2020)
devised the stochastic perturbation hybrid tendencies (SPHT) scheme to improve the
underestimated BEC in the EnsDA system of the Korean Integrated Model (KIM)
Hong et al. (2018)—a global model developed at the Korea Institute of Atmospheric
Prediction System (KIAPS).
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In this study, we introduce the SPHT scheme in the EnsDA system as a covariance
inflation method in order to solve the underestimated ensemble BEC by taking into
account that model variables are integrated by changes in physical and dynamic
tendencies every time. Themethodology is described in Sect. 2, and the experimental
designs and results are in Sects. 3 and 4, respectively. Section5 provides the summary
and suggests the direction to further development.

2 Methodology

2.1 Local Ensemble Transform Kalman Filter (LETKF)

Weemploy the EnsDA system ofKIAPS,which is a four-dimensional local ensemble
transform Kalman filter (4D-LETKF). The analysis is obtained by assimilating the
available observations within a local region Hunt et al. (2007), Shin et al. (2016),
Shin et al. (2018). This LETKF also provides ensemble perturbations to the hybrid
four-dimensional ensemble-variational (H4DEV) system, another data assimilation
systemoperated byKIAPS. In this study,we use the LETKF results just to distinguish
the changes of ensemble BEC.

The control variables are zonal wind, meridional wind, potential temperature,
mixing ratio, and surface pressure. The KIM Package for Observation Process-
ing (KPOP) provides quality-controlled real observations to the data assimilation
system Kang et al. (2018), including the sonde, surface, aircraft, Global Position-
ing System-Radio Occultation (GPS-RO), Infrared Atmospheric Sounding Inter-
ferometer (IASI), Advanced Microwave Sounding Unit-A (AMSU-A), Cross-track
Infrared Sounder (CrIS), Microwave Humidity Sounder (MHS), Advanced Tech-
nology Microwave Sounder (ATMS), Atmospheric Motion Vectors (AMVs), and
tropical cyclone initialization.

In resolving the filter divergence problems in LETKF, three approaches used to
be applied in terms of ensemble size, localization, and inflation method, which are
specified below for this study:

1. Ensemble size: Increasing the ensemble size is commonly limited due to compu-
tational costs. At the early stage of developing LETKF, we used an ensemble size
of 30 members, which is now increased to 50 members and is used in this study.

2. Localization:We implemented both horizontal and vertical localizations. The hor-
izontal localization is expressed by a Gaussian-like piecewise fifth-order rational
function Gaspari and Cohn (1999), Miyoshi (2011) varying from 660 to 1800km
depending on vertical levels Kleist and Ide (2015). The vertical localization varies
depending on the observational types (e.g., conventional versus satellite data). For
conventional data, it is defined by a Gaussian-like rational function, represented
by 2

√
10/3 · σv where σv is chosen to be 0.2 ln p for wind and surface pressure

and 0.1 ln p for mass variables. For the satellite radiance data, the vertical weight-
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ing function is defined by the gradient of transmittance of the measured radiance
Thépaut (2003).

3. Inflation method: We used two inflation methods in this study. The additive infla-
tion adds the perturbations randomly sampled from the bias-corrected lagged
forecast differences to each ensemble member after the analysis step Whitaker
et al. (2008). The relaxation to prior spread (RTPS) relaxes the ensemble standard
deviation of analysis back to the background Whitaker and Hamill (2012). How-
ever, the LETKF still requires additional inflation method to make a sufficient
ensemble BEC: we will cover it through the stochastic representation method in
this study.

2.2 Numerical Weather Prediction (NWP) Model

We employ the KIM, a global NWP model developed at KIAPS Hong et al. (2018),
which has recently been operationally implemented in the Korea Meteorological
Administration (KMA). It is a non-hydrostatic model on a cubed sphere with state-
of-the-art physics parametrization packages—including radiation, gravitywave drag,
vertical mixing, convection, cloud physics, and so on.

Since our concern is a BEC in the data assimilation process, we only deal with
the 6-h forecast (prior) results. The ensemble size is 50 members and the horizontal
resolution for the ensemble forecast is 50km. The initial conditions of the ensemble
forecast have been generated by the lagged forecast difference samples, which are
used to generate the static BEC in H4DEV Kwon et al. (2018).

2.3 Stochastic Perturbation Hybrid Tendencies (SPHT)
Scheme

In this study, we introduce a stochastic perturbation hybrid tendencies (SPHT)
scheme that perturbs the dynamic tendency

(
∂x
∂t

)
dyn

and the physical tendency
(

∂x
∂t

)
phy

of the model variables x at each time step n using the multiplicative random
forcing (r):

xn∗ = xn + (1 + μr)

(
∂xn

∂t

)

dyn

�t

xn+1 = xn∗ + (1 + μr)

(
∂xn∗

∂t

)

phy

�t (4)
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where μ ∈ {0, 1} represents the vertical tapering function (eη−1) in the generalized
vertical coordinate η. The model variable x consists of temperature and humidity
mixing ratio only. Note that in the KIM, physics and dynamics are coupled by time-
splitting method; thus, this approach differs from the method of perturbing total
model tendency by simply adding up perturbations of two tendencies, i.e.,

(1 + μr)

[(
∂x
∂t

)

dyn

+
(

∂x
∂t

)

phy

]

.

Here, r is a 2-dimensional value following the Gaussian distributed zero-mean per-
turbation considering spatial and temporal correlation. Occasionally, μ is applied to
perturbations for the upper model levels to avoid the instability issue. The amplitude
is determined by the standard-deviation (σ ), and the length and time scales are based
on the decorrelation lengths (L) and times (t), respectively.

The SPPT assumes that the model errors from the parametrized physical tendency
are proportional to the total physical tendency Buizza et al. (1999), Palmer et al.
(2009) while the SPDT assumes that the model errors from the dynamic tendency
concern with the computational representations of the underlying partial differential
equations Koo and Hong (2014). Since both methods deal with the model tendency,
we devised a hybrid stochastic scheme (i.e., SPHT) by combining the two pertur-
bation tendencies based on Eq. (4). The SPHT scheme is applied to the ensemble
forecasting in LETKF to obtain an ensemble BEC.

3 Experimental Designs

To identify how the SPHT scheme increases the ensemble spread, we designed two
experiments: CTRL (representing the control run) is without the SPHT scheme and
STOC (representing the stochastic run) uses the SPHT scheme to perturb the model
variables (e.g., temperature and specific humidity). To avoid instability due to exces-
sive inflation, we suppressed perturbation of wind variables. To test the effectiveness
of the inflation method, the warm cycle is started from 1200 UTC 22 June 2018 and
ended on 1200 UTC 7 July 2018.

The random forcing in both SPPT and SPDT is described in Fig. 2. The SPPT
(Fig. 2a) has horizontal correlation scales of 500km (mesoscale), decorrelation times
of 6h, and standard deviations of 1.0. On the other hand, the SPDT (Fig. 2b) has
horizontal correlation scales of 500km, decorrelation times of 3h, and a standard
deviation of 0.5. The SPDT especially used a tapering function that decreased expo-
nentially with height (e.g., in the upper level) to prevent instability. It is designed to
generate a smaller random forcing to ensure stability because the dynamic tendency
variability is sensitive to r .
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Fig. 2 Randompatterns of (a) SPPT and (b) SPDT atmodel 90-th level, represented as an ensemble
mean of the 6-h forecast initiated from 1200 UTC 6 June 2018

4 Results

We have evaluated the SPHT scheme through the root-mean-square difference
(RMSD) and ensemble spread. The RMSD represents the model error while the
ensemble spread explains the model uncertainty. Here, we assume that the true state
is the ECMWF Integrated Forecast System (IFS) analysis, which is well known for
high forecast skill. To identify the vertical distribution of ensemble mean spread
and ensemble mean error globally, we analyzed the zonal mean during the experi-
ment periods, excluding the spin-up. The STOC, including both SPPT and SPDT,
increases the ensemble spread below 700 hPa in the troposphere and above 10 hPa
in the stratosphere (Fig. 3).

Increase in ensemble spread is evident because the model variables are perturbed
by the random forcing. Therefore, it is essential to check if the increase in ensem-
ble spread induces reduction in ensemble mean error: if the ensemble mean error
increased, the ensemble spread increase is ineffectual. The augmented ensemble
spread reduces the ensemble mean RMSD as well, mostly in the tropical troposphere
for wind and in the low to mid-troposphere for temperature and specific humidity
(Fig. 4).

Fig. 3 The difference of zonal mean ensemble spread (STOC − CTRL) for the prior for (a)
temperature (in K), (b) specific humidity (in g kg−1), and (c) zonal wind (in m s−1), averaged
for the period of 1800 UTC 25 June – 1800 UTC 7 July 2018. Black dots indicate 95% statistical
significance based on two-tail t-test
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Fig. 4 Same as in Fig. 3 but for the difference of zonal mean RMSD against IFS analysis

Fig. 5 Time series of the globally-averaged ensemble mean spread (dotted line) and the ensemble
mean RMSD (solid line) in the prior for STOC (red) and CTRL (black) for (a) temperature (in K),
(b) specific humidity (in g kg−1), and (c) zonal wind (in m s−1)

We also have assessed the performance of the SPHT scheme, which is applied to
the KIM global model, by evaluating the ensemble quality via the globally-averaged
RMSD and ensemble spread. The global performance at each prior (the 6-h back-
ground) is evaluated with regard to the vertically-averaged RMSD from 1000 hPa to
10 hPa over the globe (see Fig. 5). As shown in Fig. 5, the ensemble spread augmenta-
tion obviously brought on the RMSD reduction during the whole experiment period.
For temperature, the ensemble mean RMSD decreased by 1% when the ensemble
mean spread increased by 3.7%; for specific humidity, the former decreased by 0.65%
when the latter increased by 2.0%.

5 Summary

We implemented the stochastic perturbation hybrid tendencies (SPHT) scheme per-
turbing both the physical tendency and the dynamic tendency in a global numer-
ical weather prediction model—the Korean Integrated Model (KIM)—which has
recently been operational in the Korea Meteorological Administration. The SPHT
scheme inflates the insufficient ensemble background error covariance coupled with
the local ensemble transform Kalman filter system: it leads to an increase in ensem-
ble spread as well as a decrease in the ensemble mean errors, thus improving the
ensemble background error covariance and ensemble prediction.
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The stochastic schemes can be used in various fields as the demand for ensem-
ble systems increases. Recently, Ollinaho et al. Ollinaho et al. (2017) developed the
stochastically perturbed parametrizations (SPP) scheme to perturb the parameters
and variables in physical parametrizations. For example, many physical processes,
including turbulent diffusion, sub-grid orography, convection, cloud, large-scale pre-
cipitation, and radiation, used to be perturbed to cover the model uncertainty in
the European Centre for Medium-Range Weather Forecasts (ECMWF). As demon-
strated, we can extend the use of the stochastic perturbation schemes on demand to
overcome underestimation of model uncertainty.
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Second-Order Methods in Variational
Data Assimilation

François-Xavier Le Dimet and Victor Shutyaev

Abstract The chapter presents the second-order methods in variational data assim-
ilation. The algorithms to compute the Hessian of the cost function are discussed, the
second-order adjoint method among them. General sensitivity analysis for the opti-
mality system is presented. Using the Hessian, the sensitivity of the optimal solution
and its functionals is studied with respect to observations and uncertainties in model
parameters. Numerical examples for joint state and parameter estimation for a sea
thermodynamics model are presented.

1 Introduction

The methods of data assimilation (DA) have become an important tool for analysis
of complex physical phenomena in various fields of science and technology. These
methods allow us to combine mathematical models, data from observations and a
priori information.

Currently, there is an increasing interest in computational technologies that com-
bine the flows of real data and hydrodynamic forecasts using mathematical models.
This is especially true for 4D technologies - the combination of the flows of obser-
vational data and forecasts in a certain spatio-temporal domain. These methods have
received the greatest applications in meteorology and oceanography, where obser-
vations are assimilated into numerical models. Geophysical flows are governed by
equations derived from fluid dynamics: a set of nonlinear partial differential equa-
tions of the first order with respect to time. Formally, it is a Cauchy problem, and an
initial condition is necessary to integrate these equations, to carry out a prediction.
The purpose of assimilation procedures is to construct or refine the initial and bound-
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ary conditions (or other model parameters) to improve the accuracy of a prediction
model Le Dimet and Talagrand (1986), Asch et al. (2016), Fletcher (2017), Carrassi
et al. (2018).

At present, two main approaches are well known for the assimilation of obser-
vational data in models of geophysical hydrodynamics and oceanography. The first
is the Statistical approach which is based on the methods of probability theory and
mathematical statistics. Historically, its rigorous justification and limits of applicabil-
ity were given by Markov (1900) and Kolmogorov (1946). From a methodological
point of view, this method gave rise to the methods of optimal interpolation, the
Kalman filter methods and their subsequent modifications, widely used in various
fields of science and technology. This approach is used to estimate unknown quanti-
ties from measurement data, taking into account the random nature of measurement
errors.

The second approach is based on the methods of calculus of variations, optimal
control (see, e.g., Lions (1968), Pontryagin et al. (1964)) and the theory of adjoint
equations (see Marchuk (1995)). Compared to the statistical method, the variational
method has greater versatility. It allows, on a unified methodological basis, to solve
the problems of initializing hydrophysical fields, assessing the sensitivity of a model
solution, identifying model parameters, etc. The variational approach can be applied
by assimilating information of various types and measuring systems. In this case
this approach is reffered to as variational data assimilation (VDA) Le Dimet and
Talagrand (1986), Asch et al. (2016), Fletcher (2017), Carrassi et al. (2018). The
main idea of the method is to minimize some functional that describes the deviation
of themodel solution from the observational data, and theminimumof this functional
is sought on themodel trajectories, in otherwords, in the subspace ofmodel solutions.

Basically, as seen as a problemof optimal control,VDA is anoptimization problem
and as such we need to exhibit a necessary optimality condition derived from the
evaluation of the gradient of the cost function, which should be zero at the optimum.
Information on the gradient of the cost function (first-order information) is used to
construct the optimality system (OS). To this aim and for the numerical solution of the
optimization problem, the representation of the gradient through adjoint equations
(first-order adjoint problem) is often used Le Dimet and Talagrand (1986), Marchuk
(1995). In the case of discontinuous processes in the physics (rain, deep convection,
etc.) the cost function is no longer differentiable and the formal application of the
adjoint operator will evaluate a sub-gradient.

To study the variational data assimilation problem (as an optimal control prob-
lem) and to develop efficient algorithms for its numerical solution, second-order
information is needed. This is information about the Hessian of the cost function. A
necessary and sufficient optimality condition is to get the Hessian positive definite
at the optimum; therefore, a second-order analysis must be carried out. Often, to
construct the Hessian, it is necessary to differentiate the optimality system. In this
case, a second-order adjoint problem arises Le Dimet et al. (2002). The investigation
of the second-order adjoint equations and the Hessian of the cost functional plays an
important role in the study of the solvability of the variational assimilation problem,
the construction of algorithms for its numerical solution based on the modification
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of Newton type methods, the identification of model parameters, and the study of the
sensitivity of the optimal solution and its functionals. These issues are the subject of
this chapter.

2 Variational Data Assimilation

Variationalmethodswere introduced inmeteorology in 1958 by Sasaki (1958). These
methods consider the equations governing the flow as constraints and the problem
is closed by using a variational principle, e.g. the minimization of the discrepancy
between the model and the observations. Using Optimal Control Techniques (Lions
(1968))was proposedbyLeDimet (1982), LeDimet andTalagrand (1986), Talagrand
and Courtier (1987), Penenko and Obraztsov (1976), Marchuk et al. (1978).

Consider the mathematical model of a physical process that is described by the
nonlinear evolution problem

{
∂ϕ
∂t = F(ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

(1)

where the initial state u is supposed to be from a Hilbert space X , the unknown
function ϕ = ϕ(t) belongs to Y = L2(0, T ; X) with the norm ‖ϕ‖Y = (ϕ, ϕ)

1/2
Y =

(
∫ T
0 ‖ϕ(t)‖2Xdt)1/2, F is a nonlinear operator mapping Y into Y , f ∈ Y . We suppose

that for given u ∈ X, f ∈ Y there exists a unique solution ϕ ∈ Y to (1) with ∂ϕ
∂t ∈ Y .

Often, the the initial state u is supposed to be unknown, and one would like to
find it using the information from observations. Let us introduce the cost function as
a functional on X in the form

J (u) = 1

2
(V1(u − ub), u − ub)X + 1

2
(V2(Cϕ − ϕobs),Cϕ − ϕobs)Yobs , (2)

where ub ∈ X is a prior (background) function, ϕobs ∈ Yobs is a prescribed function
(observational data), Yobs is a Hilbert space (observation space), C : Y → Yobs is a
linear bounded operator (observation operator), V1 : X → X and V2 : Yobs → Yobs
are symmetric positive definite bounded operators. Usually, V1, V2 are chosen as
inverse covarianvce operators of background and observation errors, respectively,
Asch et al. (2016), Carrassi et al. (2018).

Let us consider the following data assimilation problem with the aim to find the
initial value u: for given f ∈ Y, ϕobs ∈ Yobs, ub ∈ X , find u ∈ X and ϕ ∈ Y such
that they satisfy (1), and on the set of solutions to (1), the functional J (u) takes the
minimum value, i.e.
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⎧⎪⎨
⎪⎩

∂ϕ
∂t = F(ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

J (u) = inf
w∈X J (w).

(3)

This is a so-called hind-cast (initialization) variational DA problem, a typical
DA problem often considered in numerical weather prediction and oceanographic
applications Le Dimet and Talagrand (1986), Asch et al. (2016), Fletcher (2017),
Carrassi et al. (2018). We suppose that the solution of (3) exists. To derive the
optimality system, we assume the solution ϕ and the operator F(ϕ) in (1)–(2) are
regular enough, and for u, w ∈ X introduce the directional (Gâteaux) derivative with
respect to u in the direction w (Gâteaux differential):

d J (u, w) = lim
τ→0

J (u + τw) − J (u)

τ
= d

dτ
J (u + τw)

∣∣∣∣
τ=0

.

If d J (u, w) is linear with respect to w, then it may be represented as follows:

d J (u, w) = J ′(u)w,

where J ′(u) is the gradient of J with respect to u. From (1)–(2) we get

d J (u, w) = (V1(u − ub), w)X + (C∗V2(Cϕ − ϕobs), φ̃)Y , (4)

where φ̃ is the solution to the tangent linear problem:

{
∂φ̃
∂t = F ′

ϕ(ϕ)φ̃, t ∈ (0, T ),

φ
∣∣
t=0 = w.

(5)

Here F ′
ϕ(ϕ) : Y → Y is the Fréchet derivative ofFMarchuk et al. (1996)with respect

to ϕ, and C∗ is the adjoint operator to C defined by (Cϕ,ψ)Yobs = (ϕ,C∗ψ)Y , ϕ ∈
Y, ψ ∈ Yobs .

Let us introduce the adjoint operator (F ′
ϕ(ϕ))∗ : Y → Y and consider the adjoint

problem: {
∂ϕ∗
∂t + (F ′

ϕ(ϕ))∗ϕ∗ = C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0.

(6)

The problem (6) is adjoint with respect to the linearized (tangent linear) problem (5),
therefore, it is also linear in ϕ∗, however, it is still nonlinear in ϕ.

In the below consideration, we assume that the direct and adjoint linear problems
of the form {

∂φ
∂t − F ′

ϕ(ϕ)φ = p, t ∈ (0, T )

φ
∣∣
t=0 = q,
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{
−∂φ∗

∂t − (F ′
ϕ(ϕ))∗φ∗ = g, t ∈ (0, T )

φ∗∣∣
t=T = 0

with p, g ∈ Y, q ∈ X have the unique solutions φ, φ∗ ∈ Y and ∂φ
∂t ,

∂φ∗
∂t ∈ Y .

From (4)–(6) we get

d J (u, w) = (V1(u − ub), w)X − (ϕ∗∣∣
t=0, w)X . (7)

The relation (7) exibits the linear dependence of d J (u, w) with respect to w. Thus,
d J (u, w) = J ′(u)w, and the gradient of J with respect to u is defined by

J ′(u) = V1(u − ub) − ϕ∗∣∣
t=0.

The necessary optimality condition Lions (1968) is J ′(u) = 0. From (3)–(7) we
obtain the Optimality System :

{
∂ϕ
∂t = F(ϕ) + f, t ∈ (0, T ),

ϕ
∣∣
t=0 = u,

(8)

{
∂ϕ∗
∂t + (F ′

ϕ(ϕ))∗ϕ∗ = C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0,

(9)

V1(u − ub) − ϕ∗∣∣
t=0= 0. (10)

It worth to point out that there is no approximation in the derivation of the opti-
mality system and the only assumption is the differentiability of the operator of the
model. Some authors consider, at this level, a so-called "linear tangent approxima-
tion", it is fully unnecessary.

We suppose that the system (8)–(10) has a unique solution ϕ, ϕ∗ ∈ Y, u ∈ X . The
system (8)–(10) may be considered as a generalized model of the form A(U ) =
0 with the state variable U = (ϕ, ϕ∗, u), and it contains the information on the
observation data ϕobs ∈ Yobs . The optimality system plays a fundamental role in
studying the solvability of the original data assimilation problem, searching efficient
algorithms for its solution, and studying the sensitivity of the optimal solution with
respect to observations.

3 Computing the Hessian

Consider the Hessian H(u) of the functional (2); it depends on u ∈ X (which may
be the exact solution, the optimal solution, or some arbitrary function u ∈ X ). For a
fixed u ∈ X the Hessian H(u) is defined by the successive solutions of the below-
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formulated problems. First we find ϕ and ϕ∗ by solving the direct and adjoint prob-
lems (like in the optimality system):

{
∂ϕ
∂t = F(ϕ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

(11)

{
−∂ϕ∗

∂t − (F ′(ϕ))∗ϕ∗ = −C∗V2(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0.

(12)

Note that here u is not necessarily the optimal solution from the optimality system
(8)–(10); it is just somefixed function atwhichwewould like to compute theHessian.
(Hence, in general, the functions ϕ and ϕ∗ do not satisfy the optimality system). Note
also that (11)–(12) are usual two stepswhenwe compute the gradient of the functional
J (u) (at the point u) using the adjoint problem. If for a fixed u the functions ϕ, ϕ∗
are computed from (11)–(12), the gradient of J with respect to u is defined by

J ′(u) = V1(u − ub) − ϕ∗∣∣
t=0. (13)

To find the Hessian we should differentiate (11)–(13) with respect to u. Then,
the action of the Hessian H(u) on the function v ∈ X is defined by the successive
solutions of the following problems:{

∂ψ
∂t − F ′(ϕ)ψ = 0, t ∈ (0, T ),

ψ |t=0 = v,
(14)

{
−∂ψ∗

∂t − (F ′(ϕ))∗ψ∗ = (F ′′(ϕ)ψ)∗ϕ∗ − C∗V2Cψ, t ∈ (0, T )

ψ∗∣∣
t=T = 0,

(15)

H(u)v = V1v − ψ∗|t=0. (16)

Here ϕ and ϕ∗ are involved, being taken from (11)–(12). The problem (15) is a
so-called second-order adjoint problemLeDimet et al. (2002). It involves the second
derivative F ′′(ϕ) of the model operator F(ϕ) and depends on the solution ϕ∗ of the
first-order adjoint problem (12).

If u is the optimal solution, then ϕ and ϕ∗ are exactly the functions from the
optimality system (8)–(10).

Formulas (11)–(16) may be used to compute the Hessian of the original cost
functional. To solve the second-order adjoint problem (15), no additional software
is needed to be developed. To this aim, one can use the existing code for the first-
order adjoint problem (12), taking into account the new right-hand side involving
the term (F ′′(ϕ)ψ)∗ϕ∗. An alternative method to compute the Hessian H is the
method of finite differences described in Gill et al. (1981). However, this method
is not sufficiently accurate due to truncations used in a local Taylor expansion and
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is expensive for practical implementation. The sensitivity matrix method Thacker
(1989) is computationally efficient if the dimension of the observation vector is
much smaller than the dimension of the state vector, and so is feasible mainly for
the 3D-VAR applications. It requires full storage of the resulting matrix. The above-
formulated second-order adjoint method allows the actionHv to be computed, thus
does not require full storage of H.

In the finite-dimensional space,H(u) is a matrix. To obtain the first column of this
matrix, one can choose v in (14)–(16) to be the first basis vector v = (1, 0, . . . , 0).
To obtain the second column of this matrix, one can choose v in (14)–(16) to be the
second basis vector v = (0, 1, 0, . . . , 0), and so on.

In the linear case, the solution is unique if the Hessian is positive definite. In
this case, the necessary optimality condition given by the optimality system is also
a sufficient condition. From a general point of view the information given by the
Hessian is important for theoretical, numerical and practical issues. For operational
models it is impossible to compute the Hessian itself, as it is a square matrix with
around 1018 terms, nevertheless themost important information can be extracted from
the spectrum of theHessianwhich can be estimatedwithout an explicit determination
of this matrix. This information is of importance for estimating the condition number
of the Hessian for preparing an efficient preconditioning.

The above-obtained system with the second order adjoint is used to compute the
product of the Hessian by any vector. Of course, if we consider all the vectors of the
canonical base, then it will be possible to get the complete Hessian.

The determination of this product permits to access some information. So, by using
Lanczos type methods and deflation, it is possible to compute the eigenvectors and
eigenvalues of the Hessian. Also, to solve the variational data assimilation problem,
second-order optimization methods of Newton-type are used for equations of the
form:

J ′ (u) = 0.

The iterations are
un+1 = un − H−1 (un) J

′ (un) ,

whereH is the Hessian of J , or its approximation. At each iteration a linear system
should be solved. This is done by carrying out some iterations of a conjugate gradi-
ent methods which require computing the Hessian-vector product. To construct an
approximation of the inverse Hessian, the quasi-Newton BFGS algorithm may be
used Polak (1997). This algorithm generates H−1 in the course of a minimization
process.

In some applications (such as sensitivity analysis) one needs to solve the system of
equations in the formH(u)v = p. In this case, computing theHessian-vector product
by (11)–(16) may be efficient for using iterative algorithms. The following directions
to construct a specialized solver for the equation H(u)v = p could be considered:
the use of a multi-grid strategy; the use of reduced order models (Proper Orthogonal
Decomposition) or local approximations (splines, wavelets); decomposition of the
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spatial domain by the ‘region of influence’ principle, hence decomposition of a global
DA problem into a set of local open boundary DA problems.

The inverseHessian or its approximationsmay be used also to estimate the optimal
solution error covariances Gejadze et al. (2008, 2011, 2013), Shutyaev et al. (2012).
Assuming the so-called tangent linear hypothesis (TLH), the covariance is often
approximated by the inverse Hessian of the objective function. In practice, the same
approximation could be valid even though theTLH is clearly violated.However, often
we deal with such a highly nonlinear dynamics that the inverse Hessian approach
is no longer valid. In this case a new method for computing the covariance matrix
named the ‘effective inverseHessian’method can be used Shutyaev et al. (2012). This
method yields a significant improvement of the covariance estimate as compared to
the inverse Hessian. The method is potentially feasible for large-scale applications
because it can be used in the multiprocessor environment and operates in terms of the
Hessian-vector products. The software blocks needed for its implementation are the
standard blocks of any existing 4D-Var system. The results given by the method are
consistent with the assumption on a ‘close-to-normal’ nature of the optimal solution
error. This should be expected taking into account the consistency and asymptotic
normality of the estimator and the fact that the observation window in variational
DA is usually quite large.

4 Parameter Estimation

We shouldmention the importance of the parameter estimation problem itself. A pre-
cise determination of the initial condition is very important in view of forecasting,
however the use of variational data assimilation is not limited to operational fore-
casting. In many domains (e.g. hydrology) the uncertainty in the parameters is more
crucial that the uncertainty in the initial condition (e.g. White et al. (2003)). In some
problems the quantity of interest can be represented directly by the estimated param-
eters as controls. For example, in Agoshkov et al. (2015) the sea surface heat flux is
estimated in order to understand its spatial and temporal variability. The problems
of parameter estimation are common inverse problems considered in geophysics and
in engineering applications (see Alifanov et al. (1996), Sun (1994), Zhu and Navon
(1999), Storch et al. (2007)). Last years an interest is rising to the parameter esti-
mation using 4D-Var (Bocquet (2012), Schirber et al. (2013), Smith et al. (2013),
Yuepeng et al. (2018), Agoshkov and Sheloput (2017)).

We consider a dynamic formulation of variational data assimilation problem for
parameter estimation in a continuous form. Of course, the initial condition function
may be also considered as a parameter, however, in our dynamic formulation we
have two equations for the model: one equation for describing an evolution of the
model operator (involving model parameters such as right-hand sides, coefficients,
boundary conditions etc.), and another equation is considered as an initial condition.

Let the model be governed by the evolution problem of the form (1):
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{
∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

(17)

where F is a nonlinear operator mapping Y × Yp into Y , Yp is a Hilbert space (space
of control parameters, or control space). Suppose that for given u ∈ X, f ∈ Y and

λ ∈ Yp there exists a unique solution ϕ ∈ Y to (17) with ∂ϕ
∂t ∈ Y . The function λ is

an unknown model parameter.
Let us introduce the cost function

J (λ) = 1

2
(V1(λ − λb), λ − λb)Yp + 1

2
(V2(Cϕ − ϕobs),Cϕ − ϕobs)Yobs , (18)

where λb ∈ Yp is a prior (background) function, ϕobs ∈ Yobs is a prescribed func-
tion (observational data), Yobs is a Hilbert space (observation space), C : Y → Yobs
is a linear bounded observation operator, V1 : Yp → Yp and V2 : Yobs → Yobs are
symmetric positive definite bounded operators.

Let us consider the following data assimilation problem with the aim to estimate
the parameter λ: for given u ∈ X, f ∈ Y , findλ ∈ Yp andϕ ∈ Y such that they satisfy
(17), and on the set of solutions to (17), the functional J (λ) takes theminimum value,
i.e. ⎧⎪⎪⎨

⎪⎪⎩
∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

J (λ) = inf
v∈Yp

J (v).

(19)

We suppose that the solution of (19) exists. Let us note that the solvability of
the parameter estimation problems (or identifiability) has been addressed, e.g., in
Chavent (1983), Navon (1998). To derive the optimality system, we assume the
solution ϕ and the operator F(ϕ, λ) in (17)–(18) are regular enough, and for v ∈ Yp

find the gradient of the functional J with respect to λ:

J ′(λ)v = (V1(λ − λb), v)Yp + (V2(Cϕ − ϕobs),Cφ)Yobs

= (V1(λ − λb), v)Yp + (C∗V2(Cϕ − ϕobs), φ)Y , (20)

where φ is the solution to the problem:

{
∂φ
∂t = F ′

ϕ(ϕ, λ)φ + F ′
λ(ϕ, λ)v,

φ
∣∣
t=0 = 0.

(21)

Here F ′
ϕ(ϕ, λ) : Y → Y, F ′

λ(ϕ, λ) : Yp → Y are the Fréchet derivatives of F
Marchuk et al. (1996) with respect to ϕ and λ, correspondingly, and C∗ is the adjoint
operator to C defined by (Cϕ,ψ)Yobs = (ϕ,C∗ψ)Y , ϕ ∈ Y, ψ ∈ Yobs .
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Let us consider the adjoint operator (F ′
ϕ(ϕ, λ))∗ : Y → Y and introduce the

adjoint problem:

{
∂ϕ∗
∂t + (F ′

ϕ(ϕ, λ))∗ϕ∗ = C∗V2(Cϕ − ϕobs),

ϕ∗∣∣
t=T

= 0.
(22)

Then (20) with (21) and (22) gives

J ′(λ)v = (V1(λ − λb), v)Yp − (ϕ∗, F ′
λ(ϕ, λ)v)Y =

(V1(λ − λb), v)Yp − ((F ′
λ(ϕ, λ))∗ϕ∗, v)Yp ,

where (F ′
λ(ϕ, λ))∗ : Y → Yp is the adjoint operator to F ′

λ(ϕ, λ). Therefore, the gra-
dient of J is defined by

J ′(λ) = V1(λ − λb) − (F ′
λ(ϕ, λ))∗ϕ∗. (23)

From (20)–(23)we get the optimality system (the necessary optimality conditions,
Lions (1968)): {

∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T ),

ϕ
∣∣
t=0 = u,

(24)

{
∂ϕ∗
∂t + (F ′

ϕ(ϕ, λ))∗ϕ∗ = C∗V2(Cϕ − ϕobs),

ϕ∗∣∣
t=T = 0,

(25)

V1(λ − λb) − (F ′
λ(ϕ, λ))∗ϕ∗ = 0. (26)

We assume that the system (24)–(26) has a unique solution. The system (24)–
(26) may be considered as a generalized model A(U ) = 0 with the state variable
U = (ϕ, ϕ∗, λ), and it contains information about observations.

If the observation operator C is nonlinear, i.e. Cϕ = C(ϕ), then the right-hand
side of the adjoint equation (25) contains (C ′

ϕ)∗ instead of C∗ and all the analysis
presented below is similar.

To compute the Hessian H(λ) of the cost function (18) one should differentiate
(24)–(25) and (23)with respect toλ, following Sect. 3. Then, the action of theHessian
H(λ) on a function w ∈ Yp is defined by the successive solutions of the following
problems: {

∂φ
∂t − F ′

ϕ(ϕ, λ)φ = F ′
λ(ϕ, λ)w, t ∈ (0, T )

φ
∣∣
t=0 = 0,

(27)
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{
−∂φ∗

∂t − (F ′
ϕ(ϕ, λ))∗φ∗ − (F ′′

ϕϕ(ϕ, λ)φ)∗ϕ∗ = (F ′′
λϕ(ϕ, λ)w)∗ϕ∗ − C∗V2Cφ,

φ∗∣∣
t=T = 0,

(28)
H(λ)w = V1w − (F ′′

ϕλ(ϕ, λ)φ)∗ϕ∗ − (F ′′
λλ(ϕ, λ)w)∗ϕ∗ − (F ′

λ(ϕ, λ))∗φ∗. (29)

The definition of the HessianH(λ) by (27)–(29) involves the second-order deriva-
tives of the model operator F with respect to ϕ and λ.

Numerical examples for computing theHessian for the parameter estimation prob-
lems are presented in Gejadze et al. (2010).

5 Sensitivity Analysis

In the environmental sciences the mathematical models contain parameters which
cannot be estimated precisely, because they are used to parametrize some subgrid
processes and therefore can not be physically measured. Thus, it is important to
be able to estimate the impact of uncertainties on the outputs of the model after
assimilation. The optimal solution depends on the parameters, which may contain
uncertainties, and for the forecasts it is very important to study the sensitivity of
the optimal solution and its functionals with respect to these parameters Marchuk
(1995), Cacuci (1981), Dontchev (1983), Griesse and Vexler (2007).

The necessary optimality condition is related to the gradient of the original cost
function, thus to study the sensitivity of the optimal solution, one should differentiate
the optimality system with respect to imprecisely known parameters. In this case, we
come to the second-order adjoint problem Le Dimet et al. (2002). The first studies of
sensitivity of the response functions after assimilation with the use of second-order
adjoint were done by Le Dimet et al. (1997) for variational data assimilation problem
aimed at restoration of initial condition, where sensitivity with respect to model
parameters was considered. The equations of the forecast sensitivity to observations
in a four-dimensional (4D-Var) data assimilation were derived by Daescu (2008).
Based on these results, a practical computational approach was given by Cioaca
et al. (2013) to quantify the effect of observations in 4D-Var data assimilation.

Sensitivity of the optimal solution is related to its statistical properties (seeGejadze
et al. (2008, 2011, 2013), Shutyaev et al. (2012)). General sensitivity analysis in
variational data assimilation with respect to observations for a nonlinear dynamic
model was given in Shutyaev et al. (2017)–Shutyaev et al. (2018) to control the
initial-value function and the model parameters.

Consider the mathematical model of a physical process that is described by the
evolution problem of the form (17):

{
∂ϕ
∂t = F(ϕ, λ), t ∈ (0, T )

ϕ
∣∣
t=0 = u.

(30)
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Suppose that for given u ∈ X and λ ∈ Yp there exists a unique solution ϕ ∈ Y to
(30).

We introduce the functional

J (u) = 1

2
(V1(u − u0), u − u0)X + 1

2
(V2(Cϕ − ϕobs),Cϕ − ϕobs)Yobs , (31)

where u0 ∈ X is a prior initial-value function (background state), ϕobs ∈ Yobs is a
prescribed function (observational data), Yobs is a Hilbert space (observation space),
C : Y → Yobs is a linear bounded operator, V1 : X → X and V2 : Yobs → Yobs are
symmetric positive definite operators.

Consider the variational data assimilation problem with the aim to identify the
initial condition: for given λ ∈ Yp find u ∈ X and ϕ ∈ Y such that they satisfy (30),
and on the set of solutions to (30), the functional J (u) takes the minimum value, i.e.

⎧⎪⎨
⎪⎩

∂ϕ
∂t = F(ϕ, λ), t ∈ (0, T )

ϕ
∣∣
t=0 = u,

J (u) = inf
v

J (v).

(32)

The necessary optimality condition reduces the problem (32) to the optimality
system: {

∂ϕ
∂t = F(ϕ, λ), t ∈ (0, T )

ϕ
∣∣
t=0 = u,

(33)

{
−∂ϕ∗

∂t − (F ′
ϕ(ϕ, λ))∗ϕ∗ = −C∗V2(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0,

(34)

V1(u − u0) − ϕ∗∣∣
t=0= 0 (35)

with the unknowns ϕ, ϕ∗, u, where (F ′
ϕ(ϕ, λ))∗ is the adjoint to the Frechet derivative

of F with respect to ϕ.
We assume that the system (33)–(35) has a unique solution. The system (33)–

(35) may be considered as a generalized model F(U, λ) = 0 with the state variable
U = (ϕ, ϕ∗, u), and it contains all the available information. All the components of
U depend on the parameters λ ∈ Yp, which may contain uncertainties. An impor-
tant issue is to study the sensitivity of this generalized model with respect to the
parameters.

Let us introduce a response function G(ϕ, u, λ), which is supposed to be a real-
valued function and can be considered as a functional on Y × X × Yp. We are inter-
ested in the sensitivity ofG with respect to λ, with ϕ and u obtained from the optimal-
ity system (33)–(35). As is knownMarchuk (1995), Cacuci (1981), Dontchev (1983),
sensitivity is defined by the gradient of G with respect to λ, which is a functional
derivative:
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dG

dλ
= ∂G

∂ϕ

∂ϕ

∂λ
+ ∂G

∂u

∂u

∂λ
+ ∂G

∂λ
. (36)

If δλ is a perturbation on λ, we get from the optimality system:

{
∂δϕ
∂t = F ′

ϕ(ϕ, λ)δϕ + F ′
λ(ϕ, λ)δλ, t ∈ (0, T )

δϕ
∣∣
t=0 = δu,

(37)

{
−∂δϕ∗

∂t − (F ′
ϕ(ϕ, λ))∗δϕ∗ − (F ′′

ϕϕ(ϕ, λ)δϕ + F ′′
ϕλ(ϕ, λ)δλ)∗ϕ∗ = −C∗V2Cδϕ,

δϕ∗∣∣
t=T = 0,

(38)
V1δu − δϕ∗∣∣

t=0= 0, (39)

and (
dG

dλ
, δλ

)
Yp

=
(

∂G

∂ϕ
, δϕ

)
Y

+
(

∂G

∂u
, δu

)
X

+
(

∂G

∂λ
, δλ

)
Yp

, (40)

where δϕ, δϕ∗ and δu are the Gâteaux derivatives of ϕ, ϕ∗ and u in the direction δλ

(for example, δϕ = ∂ϕ

∂λ
δλ).

To compute the gradient ∇λG(ϕ, u, λ), let us introduce three adjoint variables
P1 ∈ Y , P2 ∈ Y and P3 ∈ X . By taking the inner product of (37) by P1, (38) by P2
and of (39) by P3 and adding them, we obtain:

(
δϕ,− ∂P1

∂t
− (F ′

ϕ(ϕ, λ))∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)

∗ϕ∗ + C∗V2CP2

)
Y

+
(

δϕ
∣∣
t=T , P1

∣∣
t=T

)
X
+

+
(

δϕ∗, ∂P2
∂t

− F ′
ϕ(ϕ, λ)P2

)
Y

+
(

δϕ∗∣∣
t=0, P2

∣∣
t=0−P3

)
X
+

+
(

δu,−P1
∣∣
t=0+V1P3

)
X

+
(

δλ,−(F ′
λ(ϕ, λ))∗P1 − (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

)
Yp

= 0. (41)

Here we put

−∂P1
∂t

− (F ′
ϕ(ϕ, λ))∗P1 − (F ′′

ϕϕ(ϕ, λ)P2)
∗ϕ∗ + C∗V2CP2 = ∂G

∂ϕ
,

and

−P1
∣∣
t=0+V1P3 = ∂G

∂u
, P1

∣∣
t=T= 0,

∂P2
∂t

− F ′
ϕ(ϕ, λ)P2 = 0, P2

∣∣
t=0−P3 = 0.

Hence, we can exclude the variable P3 by
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P3 = P2
∣∣
t=0

and obtain the initial condition for P2 in the form:

V1P2
∣∣
t=0=

∂G

∂u
+ P1

∣∣
t=0.

Thus, if P1, P2 are the solutions of the following system of equations

⎧⎪⎨
⎪⎩

−∂P1
∂t − (F ′

ϕ(ϕ, λ))∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)∗ϕ∗ + C∗V2CP2 = ∂G

∂ϕ
, t ∈ (0, T )

P1
∣∣
t=T = 0,

(42)⎧⎪⎨
⎪⎩

∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

V1P2
∣∣
t=0 = ∂G

∂u + P1
∣∣
t=0,

(43)

then from (41) we get

(
∂G

∂ϕ
, δϕ

)
Y

+
(

∂G

∂u
, δu

)
X

=
(

δλ, (F ′
λ(ϕ, λ))∗P1 + (F ′′

ϕλ(ϕ, λ)P2)
∗ϕ∗

)
Yp

,

and the gradient of G is given by

dG

dλ
= (F ′

λ(ϕ, λ))∗P1 + (F ′′
ϕλ(ϕ, λ)P2)

∗ϕ∗ + ∂G

∂λ
. (44)

We get a coupled system of two differential equations (42) and (43) of the first
order with respect to time. One equation has a final condition (backward problem)
while the other has an initial condition (forward problem) depending on the initial
value for the first equation: it is a non-standard problem.

Let us represent the non-standard problem (42)–(43) in an equivalent form:

⎧⎪⎨
⎪⎩

−∂P1
∂t − (F ′

ϕ(ϕ, λ))∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)∗ϕ∗ + C∗V2CP2 = ∂G

∂ϕ
, t ∈ (0, T )

P1
∣∣
t=T

= 0,
(45)⎧⎪⎨

⎪⎩
∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

P2
∣∣
t=0 = v,

(46)

V1v − P1
∣∣
t=0=

∂G

∂u
. (47)
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Herewe have three unknowns: v ∈ X, P1, P2 ∈ Y . Let uswrite (45)–(47) in the form
of an operator equation for v. We define the operator H by the successive solution
of the following problems:

⎧⎪⎨
⎪⎩

∂φ
∂t − F ′

ϕ(ϕ, λ)φ = 0, t ∈ (0, T )

φ
∣∣
t=0 = w,

(48)

⎧⎪⎨
⎪⎩

−∂φ∗
∂t − (F ′

ϕ(ϕ, λ))∗φ∗ − (F ′′
ϕϕ(ϕ, λ)φ)∗ϕ∗ = −C∗V2Cφ, t ∈ (0, T )

φ∗∣∣
t=T = 0,

(49)

Hw = V1w − φ∗∣∣
t=0. (50)

Then (45)–(47) is equivalent to the following equation in X :

Hv = F (51)

with the right-hand side F defined by

F = ∂G

∂u
+ φ̃∗∣∣

t=0, (52)

where φ̃∗ is the solution to the adjoint problem:

⎧⎪⎨
⎪⎩

−∂φ̃∗
∂t − (F ′

ϕ(ϕ, λ))∗φ̃∗ = ∂G
∂ϕ

, t ∈ (0, T )

φ̃∗∣∣
t=T = 0.

(53)

It is easily seen that the operator H defined by (48)–(50) is the Hessian of the
original functional J considered on the optimal solution u of the problem (33)–(35):
J ′′(u) = H. Under the assumption that H is positive definite, the operator equation
(51) is correctly and everywhere solvable in X , i.e. for every F there exists a unique
solution v ∈ X and

‖v‖X ≤ c‖H‖X , c = const > 0.

Therefore, under the assumption that J ′′(u) is positive definite on the optimal
solution, the non-standard problem (42)–(43) has a unique solution P1, P2 ∈ Y .

Based on the above consideration, we can formulate the following algorithm to
solve the non-standard problem:

(1) For ∂G
∂u ∈ X, ∂G

∂ϕ
∈ Y solve the adjoint problem
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⎧⎪⎨
⎪⎩

−∂φ̃∗
∂t − (F ′

ϕ(ϕ, λ))∗φ̃∗ = ∂G
∂ϕ

, t ∈ (0, T )

φ̃∗∣∣
t=T = 0

(54)

and put

F = ∂G

∂u
+ φ̃∗∣∣

t=0.

(2) Find v by solving
Hv = F

with the Hessian of the original functional J defined by (48)–(50).
(3) Solve successively the direct and adjoint problems

⎧⎪⎨
⎪⎩

∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = 0, t ∈ (0, T )

P2
∣∣
t=0 = v,

(55)

⎧⎪⎨
⎪⎩

−∂ P̃1
∂t − (F ′

ϕ(ϕ, λ))∗ P̃1 − (F ′′
ϕϕ(ϕ, λ)P2)∗ϕ∗ + C∗V2CP2 = 0, t ∈ (0, T )

P̃1
∣∣
t=T = 0,

(56)
and put

P1 = P̃1 + φ̃∗.

Thus, we obtain P1, P2 ∈ Y as the solutions to the non-standard problem (42)–
(43), which determine the sensitivity of the response function with respect to impre-
cisely known parameters according to (44).

6 Sensitivity with Respect to Observations

In geophysical applications a usual request is the estimation of the sensitivity with
respect to observations Langland and Baker (2004), Daescu and Langland (2013),
Kalnay et al. (2012), Godinez and Daescu (2009). What will be the impact of an
uncertainty on the prediction? It is clear that observations are not directly used in
the forward model, they are involved only as a forcing term in the adjoint model.
Therefore to apply the general formalism of sensitivity analysis we should apply it
not to the model itself but to the optimality system, i.e. the model plus the adjoint
model. A very simple example with a scalar ordinary differential equation is given
in Le Dimet et al. (2002) showing that the only model is not sufficient to carry out
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sensitivity analysis in the presence of data. Differentiating the optimality systemwill
introduce second order derivatives.

Consider the mathematical model governed by the nonlinear evolution problem
of the form (17): {

∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u.

(57)

We suppose that for given u ∈ X, f ∈ Y and λ ∈ Yp there exists a unique solution

ϕ ∈ Y to (57) with ∂ϕ
∂t ∈ Y . The function λ is an unknown model parameter, and we

suppose that the initial state u is also unknown, so we will consider joint parameter
and state estimation problem.

Let us introduce the cost function as a functional on X × Yp in the form

J (u, λ) = 1

2
‖V 1/2

1 (u − ub)‖X + 1

2
‖V 1/2

2 (λ − λb)‖Yp + 1

2
‖V 1/2

3 (Cϕ − ϕobs)‖Yobs ,
(58)

where u ∈ X, λb ∈ Yp are prior (background) functions, ϕobs ∈ Yobs is a prescribed
function (observational data), Yobs is a Hilbert space (observation space), C : Y →
Yobs is a linear bounded operator (observation operator), V1 : X → X, V2 : Yp → Yp

and V3 : Yobs → Yobs are symmetric positive definite bounded operators.
Let us consider the following data assimilation problem with the aim to find the

initial value u and the parameter λ: for given f ∈ Y, ϕobs ∈ Yobs , find u ∈ X, λ ∈ Yp

andϕ ∈ Y such that they satisfy (57), and on the set of solutions to (57), the functional
J (u, λ) takes the minimum value, i.e.⎧⎪⎪⎨

⎪⎪⎩
∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T )

ϕ
∣∣
t=0 = u,

J (u, λ) = inf
w∈X,v∈Yp

J (w, v).

(59)

We suppose that the solution of (59) exists. The necessary optimality condition
reduces (59) to the optimality system:

{
∂ϕ
∂t = F(ϕ, λ) + f, t ∈ (0, T ),

ϕ
∣∣
t=0 = u,

(60)

{
∂ϕ∗
∂t + (F ′

ϕ(ϕ, λ))∗ϕ∗ = C∗V3(Cϕ − ϕobs), t ∈ (0, T )

ϕ∗∣∣
t=T = 0,

(61)

V1(u − ub) − ϕ∗∣∣
t=0= 0, (62)

V2(λ − λb) − (F ′
λ(ϕ, λ))∗ϕ∗ = 0. (63)
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Here F ′
ϕ(ϕ, λ) : Y → Y, F ′

λ(ϕ, λ) : Yp → Y are the Fréchet derivatives of F with
respect to ϕ and λ, correspondingly, and C∗ is the adjoint operator to C defined by
(Cϕ,ψ)Yobs = (ϕ,C∗ψ)Y , ϕ ∈ Y, ψ ∈ Yobs .

Supposing that the system (60)–(63) has a unique solution ϕ, ϕ∗ ∈ Y, u ∈ X, λ ∈
Yp, we will study the sensitivity of functionals of the optimal solution with respect
to the observation data ϕobs .

We introduce a response function G(ϕ, u, λ), which is supposed to be a real-
valued function and can be considered as a functional on Z = Y × X × Yp. We
are interested in the sensitivity of G with respect to ϕobs , with ϕ, u and λ obtained
from the optimality system (60)–(63). By definition, the sensitivity is defined by the
gradient of G with respect to ϕobs :

dG

dϕobs
= ∂G

∂ϕ

∂ϕ

∂ϕobs
+ ∂G

∂λ

∂λ

∂ϕobs
+ ∂G

∂u

∂u

∂ϕobs
, (64)

where ∂G
∂ϕ

: Z → Y, ∂G
∂λ

: Z → Yp,
∂G
∂u : Z → X , and ∂ϕ

∂ϕobs
, ∂λ
∂ϕobs

, ∂u
∂ϕobs

are

the Gâteaux derivatives of ϕ, λ, u with respect to ϕobs .
Let δϕobs be a perturbation on ϕobs , then we obtain from the optimality system

(60)–(63): {
∂δϕ
∂t = F ′

ϕ(ϕ, λ)δϕ + F ′
λ(ϕ, λ)δλ, t ∈ (0, T )

δϕ
∣∣
t=0 = δu,

(65)

⎧⎪⎨
⎪⎩

−∂δϕ∗
∂t − (F ′

ϕ(ϕ, λ))∗δϕ∗ − (F ′′
ϕϕ(ϕ, λ)δϕ)∗ϕ∗ = (F ′′

ϕλ(ϕ, λ)δλ)∗ϕ∗

−C∗V3(Cδϕ − δϕobs),

δϕ∗∣∣
t=T

= 0,

(66)

V1δu − δϕ∗∣∣
t=0= 0, (67)

V2δλ − (F ′′
λϕ(ϕ, λ)δϕ)∗ϕ∗ − (F ′′

λλ(ϕ, λ)δλ)∗ϕ∗ − (F ′
λ(ϕ, λ))∗δϕ∗ = 0, (68)

and (
dG

dϕobs
, δϕobs

)
Yobs

=
(

∂G

∂ϕ
, δϕ

)
Y

+
(

∂G

∂λ
, δλ

)
Yp

+
(

∂G

∂u
, δu

)
X

, (69)

where δϕ, δϕ∗, δλ, δu are the solutions of (65)–(68).
Following the methodology presented in Sect. 5, we obtain the gradient of G

through solutions of a non-standard problem.
Let P1, P2 ∈ Y, P3 ∈ Yp, P4 ∈ X be the solutions of the following systemof equa-

tions
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⎧⎪⎨
⎪⎩

−∂P1
∂t − (F ′

ϕ(ϕ, λ))∗P1 − (F ′′
ϕϕ(ϕ, λ)P2)∗ϕ∗ = (F ′′

λϕ(ϕ, λ)P3)∗ϕ∗ − C∗V3CP2

+∂G
∂ϕ

,

P1
∣∣
t=T = 0,

(70){
∂P2
∂t − F ′

ϕ(ϕ, λ)P2 − F ′
λ(ϕ, λ)P3 = 0, t ∈ (0, T )

P2
∣∣
t=0−P4 = 0,

(71)

V1P4 − P1
∣∣
t=0=

∂G

∂u
, (72)

V2P3 − (F ′′
ϕλ(ϕ, λ)P2)

∗ϕ∗ − (F ′′
λλ(ϕ, λ)P3)

∗ϕ∗ − (F ′
λ(ϕ, λ))∗P1 = ∂G

∂λ
, (73)

where ϕ, ϕ∗ ∈ Y, u ∈ X, λ ∈ Yp are the solution of the optimality system (60)–(63).
Then the gradient of G with respect to ϕobs is given by

dG

dϕobs
= V3CP2. (74)

We obtain a coupled system of two differential equations (70) and (71) of the first
order with respect to time, with additional conditions (72)–(73). To study this non-
standard problem (70)–(73) with mutually dependent initial conditions for P1, P2,
we reduce it to a single operator equation involving the Hessian of the original cost
function J (u, λ).

The Hessian H : X × Yp → X × Yp acts on U = (w, v)T ∈ X × Yp and is
defined by the successive solution of the following problems:{

∂φ
∂t − F ′

ϕ(ϕ, λ)φ = F ′
λ(ϕ, λ)v, t ∈ (0, T )

φ
∣∣
t=0 = w,

(75)

{
−∂φ∗

∂t − (F ′
ϕ(ϕ, λ))∗φ∗ − (F ′′

ϕϕ(ϕ, λ)φ)∗ϕ∗ = (F ′′
λϕ(ϕ, λ)w)∗ϕ∗ − C∗V3Cφ,

φ∗∣∣
t=T = 0,

(76)

HU =
(
V1w − φ∗∣∣

t=0, V2v − (F ′′
ϕλ(ϕ, λ)φ)∗ϕ∗ − (F ′′

λλ(ϕ, λ)w)∗ϕ∗ − (F ′
λ(ϕ, λ))∗φ∗

)T

,

(77)
where λ, u, ϕ and ϕ∗ are the solutions of the optimality system (60)–(63). It is easily
seen that (70)–(73) is equivalent to the following equation in X × Yp:

HU = F (78)

with some F ∈ X × Yp.
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Under the assumption that H is positive definite, the operator equation (78) is
correctly and everywhere solvable in X × Yp, i.e. for every F there exists a unique
solution U ∈ X × Yp and the estimate is valid:

‖U‖X×Yp ≤ c‖F‖X×Yp , c = const > 0.

Therefore, under the assumption that J ′′(u, λ) is positive definite on the optimal
solution, the non-standard problem (70)–(73) has a unique solution P1, P2 ∈ Y, P3 ∈
Yp, P4 ∈ X .

Based on (70)–(74),we can formulate the following algorithm to compute the
gradient of the response function G:

(1) For ∂G
∂λ

∈ Yp,
∂G
∂ϕ

∈ Y, ∂G
∂u ∈ X solve the adjoint problem

⎧⎨
⎩−∂φ̃∗

∂t − (F ′
ϕ(ϕ, λ))∗φ̃∗ = ∂G

∂ϕ
, t ∈ (0, T )

φ̃∗∣∣
t=T = 0

(79)

and put

F =
(

∂G

∂u
+ φ̃∗∣∣

t=0,
∂G

∂λ
+ (F ′

λ(ϕ, λ))∗φ̃∗
)T

.

(2) Find U = (w, v)T by solving

HU = F

with the Hessian of the original functional J defined by (75)–(77).
(3) Solve the direct problem

{
∂P2
∂t − F ′

ϕ(ϕ, λ)P2 = F ′
λ(ϕ, λ)v, t ∈ (0, T )

P2
∣∣
t=0 = w.

(80)

(4) Compute the gradient of the response function as

dG

dϕobs
= V3CP2. (81)

The last formula allows us to estimate the sensitivity of the response functions
related to the optimal solution after assimilation, with respect to observation data.
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7 Application for a Sea Thermodynamics Model

We consider the sea thermodynamics problem in the form Marchuk et al. (1987):

Tt + (Ū ,Grad)T − Div(âT · Grad T ) = fT in D × (t0, t1),

T = T0 for t = t0 in D,

− νT
∂T

∂z
= Q on 
S × (t0, t1),

∂T

∂n
= 0 on 
w,c × (t0, t1), (82)

Ū (−)
n T + ∂T

∂n
= QT on 
w,op × (t0, t1),

∂T

∂n
= 0 on 
H × (t0, t1),

where T = T (x, y, z, t) is an unknown temperature function, t ∈ (t0, t1), (x, y, z) ∈
D = � × (0, H), � ⊂ R2, H = H(x, y) is the function of the bottom releif,
Q = Q(x, y, t) is the total heat flux, Ū = (u, v, w), âT = diag((aT )i i ), (aT )11 =
(aT )22 = μT , (aT )33 = νT , fT = fT (x, y, z, t) are given functions. The boundary
of the domain
 ≡ ∂D is represented as a union of four disjoint parts
S ,
w,op,
w,c,

H , where 
S = � (the unperturbed sea surface), 
w,op is the liquid (open) part of
vertical lateral boundary, 
w,c is the solid part of the vertical lateral boundary, 
H is
the sea bottom, Ū (−)

n = (|Ūn| − Ūn)/2, and Ūn is the normal component of Ū . The
other notations and a detailed description of the problem statement can be found in
Agoshkov et al. (2008).

Problem (82) can be written in the form of an operator equation:

Tt + LT = F + BQ, t ∈ (t0, t1),

T = T0, t = t0,
(83)

where the equality is understood in the weak sense, namely,

(Tt , T̂ ) + (LT, T̂ ) = F(T̂ ) + (BQ, T̂ ) ∀T̂ ∈ W 1
2 (D), (84)

in this case L , F , B are defined by the following relations:

(LT, T̂ ) ≡
∫
D

(−TDiv(Ū T̂ ))dD +
∫


w,op

Ū (+)
n T T̂ d
 +

∫
D

âTGrad(T ) · Grad(T̂ )dD,

F(T̂ ) =
∫


w,op

QT T̂ d
 +
∫
D

fT T̂ dD, (Tt , T̂ ) =
∫
D

Tt T̂ dD, (BQ, T̂ ) =
∫
�

QT̂
∣∣
z=0d�,
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and the functions âT , QT , fT , Q are such that equality (84) makes sense. The prop-
erties of the operator L were studied in Agoshkov et al. (2008).

Problem (82) is linear in T, Q, however, written in the form (83), it is a particular
case of theoriginal problem (57), and all the reasoning and themethodologypresented
in Sect. 6 are easily transferred to the case of problem (83), understood in a weak
sense (83).

We consider the data assimilation problem for the sea surface temperature (see
Agoshkov et al. (2008)). Suppose that the functions Q ∈ L2(� × (t0, t1)) and T0 ∈
L2(D) are unknown in problem (82). Let also Tobs(x, y, t) ∈ L2(� × (t0, t1)) be the
function on � obtained for t ∈ (t0, t1) by processing the observation data, and this
function in its physical sense is an approximation to the surface temperature function
on �, i.e. to T

∣∣
z=0. We admit the case when Tobs is defined only on some subset of

� × (t0, t1) and denote the indicator (characteristic) function of this set by m0. For
definiteness sake, we assume that Tobs is zero outside this subset.

Consider the data assimilation problem for the surface temperature in the follow-
ing form: find T0 and Q such that

⎧⎪⎪⎨
⎪⎪⎩

Tt + LT = F + BQ in D × (t0, t1),

T = T0, t = t0

J (T0, Q) = inf
w,v

J (w, v),

(85)

where

J (T0, Q) = α

2

t1∫
t0

∫
�

|Q − Q(0)|2d�dt + β

2

∫
D

|T0 − T (0)|2dD+

+ 1

2

t1∫
t0

∫
�

m0|T
∣∣
z=0 − Tobs |2d�dt, (86)

and Q(0) = Q(0)(x, y, t), T (0) = T (0)(x, y, z) are given functions, α, β = const >

0.
For α, β > 0 this variational data assimilation problem has a unique solution.

The existence of the optimal solution follows from the classic results of the theory
of optimal control problems Lions (1968).

The optimality system determining the solution of the formulated variational data
assimilation problem according to the necessary condition gradJ = 0 has the form:

Tt + LT = F + BQ in D × (t0, t1),

T = T0, t = t0,
(87)
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−(T ∗)t + L∗T ∗ = Bm0(Tobs − T ) in D × (t0, t1),

T ∗ = 0, t = t1,
(88)

α(Q − Q(0)) − T ∗ = 0 on � × (t0, t1), (89)

β(T0 − T (0)) − T ∗∣∣
t=0= 0 in D, (90)

where L∗ is the operator adjoint to L .
Here the boundary-value function Q plays the role of λ from Sect. 6, ϕ = T , the

operator F has the form F(T, Q) = −LT + BQ, and F ′
T = −L , F ′

Q = B. Since
the operator F(T, Q) is linear in this case and F ′′

T T = F ′′
QT = F ′′

QQ = 0, the Hessian
H acting on someU = (w,ψ)T ,w ∈ L2(D), ψ ∈ L2(� × (t0, t1)) is defined by the
successive solution of the following problems:

{
∂φ
∂t + Lφ = Bψ, t ∈ (t0, t1)

φ
∣∣
t=t0

= w,
(91)

{
−∂φ∗

∂t + L∗φ∗ = −Bm0φ, t ∈ (t0, t1)
φ∗∣∣

t=t1
= 0,

(92)

HU = (βw − φ∗∣∣
t=0, αψ − B∗φ∗)T . (93)

To illustrate the above-presented theory, we consider the problem of sensitivity of
functionals of the optimal solution T0, Q to the observations Tobs . Let us introduce
the following response function:

G(T ) =
t1∫

t0

dt
∫
�

k(x, y, t)T (x, y, 0, t)d�, (94)

where k(x, y, t) is aweight function related to the temperature field on the sea surface
z = 0. For example, if we are interested in the mean temperature of a specific region
of the sea ω for z = 0 in the interval t̄ − τ ≤ t ≤ t̄ , then as k we take the function

k(x, y, t) =
{
1
/

(τmes ω) if (x, y) ∈ ω, t̄ − τ ≤ t ≤ t̄

0 else,
(95)

where mes ω denotes the area of the region ω. Thus, the functional (94) is written in
the form:

G(T ) = 1

τ

t̄∫
t̄−τ

dt

(
1

mes ω

∫
ω

T (x, y, 0, t)d�

)
. (96)
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Formula (96) represents the mean temperature averaged over the time interval t̄ −
τ ≤ t ≤ t̄ for a given regionω. The response functions of this type are ofmost interest
in the theory of climate change (Marchuk (1995), Marchuk et al. (1996)).

In our notations the functional (94) may be written as

G(T ) =
t1∫

t0

(Bk, T )dt = (Bk, T )Y , Y = L2(D × (t0, t1)).

We are interested in the sensitivity of the response function G(T ), obtained for
T after data assimilation, with respect to the observation function Tobs .

By definition, the sensitivity is given by the gradient of G with respect to Tobs :

dG

dTobs
= ∂G

∂T

∂T

∂Tobs
. (97)

Since ∂G
∂T = Bk, then according to the theory presented in Sect. 6, to compute

the gradient (97) we need to perform the following steps:
1) For k defined by (95) solve the adjoint problem

⎧⎨
⎩−∂φ̃∗

∂t + L∗φ̃∗ = Bk, t ∈ (t0, t1)

φ̃∗∣∣
t=t1

= 0
(98)

and put � = (φ̃∗∣∣
t=0, B

∗φ̃∗)T .

2) FindU = (w, v)T by solvingHU = �with the Hessian defined by (91)–(93).
3) Solve the direct problem

{
∂P2
∂t + LP2 = Bv, t ∈ (t0, t1)

P2
∣∣
t=t0

= w.
(99)

4) Compute the gradient of the response function as

dG

dTobs
= m0P2

∣∣
z=0. (100)

The last formula allows us to estimate the sensitivity of the functionals related to
the mean temperature after data assimilation, with respect to the observations on the
sea surface.

For numerical experiments have used the three-dimensional numerical model of
the Baltic Sea hydrothermodynamics developed at the INM RAS on the base of the
splitting method Zalesny et al. (2017) and supplied with the assimilation procedure
Agoshkov et al. (2008) for the surface temperature Tobs with the aim to reconstruct
the heat fluxes Q and the initial state T0.
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The parameters of the considered domain of the Baltic Sea and its geographic
coordinates can be described as follows: σ -grid is 336 × 394 × 25 (the latitude,
longitude, and depth, respectively). The first point of the "grid C" Zalesny et al.
(2017) has the coordinates 9.406◦ E and 53.64◦ N. The mesh sizes in x and y
are constant and equal to 0.0625 and 0.03125 degrees. The time step is �t = 5
minutes. The assimilation procedure worked only during some time windows. To
start the assimilation procedure, the function T (0) was taken as a model forecast for
the previous time interval.

The Baltic Sea daily-averaged nighttime surface temperature data were used
for Tobs . These are the data of the Danish Meteorological Institute based on mea-
surements of radiometers (AVHRR, AATSR and AMSRE) and spectroradiometers
(SEVIRI and MODIS) Karagali et al. (2012). Data interpolation algorithms were
used Zakharova et al. (2013) to convert observations on computational grid of the
numerical model of the Baltic Sea thermodynamics. The mean climatic flux obtained
from the NCEP (National Center for Environmental Prediction) reanalysis was taken
for Q(0).

Using the hydrothermodynamics model mentioned above, which is supplied with
the assimilation procedure for the surface temperature Tobs , we have performed cal-
culations for the Baltic Sea area where the assimilation algorithm worked only at
certain time moments t0; in this case t1 = t0 + �t . The aim of the experiment was
the numerical study of the sensitivity of functionals of the optimal solution T0, Q to
observation errors in the interval (t0, t1).

We use the discretize-then-optimize approach, and for numerical experiments
all the presented equations are understood in a discrete form, as finite-dimensional
analogues of the corresponding problems, obtained after approximation. This allows
us to consider model equations as a perfect model, with no approximation errors.

Let us present some results of numerical experiments.
The calculation results for t0 = 50h (600 time steps for the model) are presented in

Fig. 1 showing the gradient of the response functionG(T ) defined by (96) and related
to themean temperature after data assimilation,with respect to the observations on the
sea surface, according to (98)– (100). Here ω = �, τ = �t , t̄ = t1, α = β = 10−5

(Fig. 1).
We can see the sub-areas (in red) in which the response function G(T ) is most

sensitive to errors in the observations during assimilation. The largest values of the
gradient ofG(T ) correspond to the points x, y with a small depth (cf. sea topography,
Fig. 2). Thus, the considered functionalG(T ) of the optimal solution turned out to be
themost sensitive to observation errors at surface points near these regions. This result
is confirmed by the direct computation of the response function G(T ) according to
(96) obtained after assimilation, by introducing perturbations into the observation
data Tobs .

The above studies allow to determine the sea sub-areas in which the response
function related to the optimal solution is most sensitive to errors in the observations
during variational data assimilation.
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Fig. 1 The gradient of the response function G(T )

8 Conclusions

Variational data assimilation is an efficient method in modeling the large-scale geo-
physical flows, with the main difficulty being linked to the nonlinearity of the gov-
erning equations. This method allows to combine the observational data and the
model forecasts. From the mathematical point of view, we have to deal with the
initial-boundary-value control problems for a nonlinear evolution model governed
by partial differential equations. The necessary optimality condition is defined by the
optimality system which is based on the gradient of the cost function and involves
forward and adjoint equations. To study the variational data assimilation problem
as an optimal control problem and to develop efficient algorithms for its numerical
solution, second-order information is needed. This is information about the Hessian
of the cost functional. To construct the Hessian, it is necessary to differentiate the
optimality system and derive a second-order adjoint problem. The investigation of
the second-order adjoint equations and the Hessian of the cost function plays an
important role in the study of the solvability of the variational assimilation problem,
the construction of algorithms for its numerical solution based on the modification
of Newton type methods, the identification of model parameters. The Hessian allows
to study the sensitivity of the optimal solution and its functionals with respect to
observations and uncertainties in parameters.
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Fig. 2 Baltic Sea topography
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Abstract Data assimilation schemes blend observational data, with limited
coverage, with a short term forecast to produce an analysis, which is meant to be the
best estimate of the current state of the atmosphere. Appropriately specifying obser-
vation error statistics is necessary to obtain an optimal analysis. Observation error can
originate from instrument error as well as the error of representation. While repre-
sentation error is most commonly associated with unresolved scales and processes,
this term is often considered to include contributions from pre-processing or quality
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control and errors associated with the observation operator. With a focus on practical
operational implementation, this chapter aims to define the components of observa-
tion error, discusses their sources and characteristics, and provides an overview of
current methods for estimating observation error statistics. We highlight the implicit
assumptions of these methods, as well as their shortcomings. We will detail current
operational practice for diagnosing observation error and accounting for correlated
observation error. Finally, we provide a practical methodology for using these diag-
nostics, as well as the associated innovation-based observation impact, to optimize
the assimilation of meteor radar observations in the upper atmosphere.

1 Introduction

Initial conditions for a numerical weather forecast are calculated using Data Assim-
ilation (DA) which blends previous model forecast data with atmospheric observa-
tions to provide the best estimate of the current atmospheric state. In the assimilation
process, the observations and prior model data, also known as the background, are
weighted by their respective uncertainties; hence, the accurate specification of the
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observation and background error uncertainties is imperative if an optimal analysis
is to be obtained. Until recently, more emphasis had been placed on understanding
and correctly representing the background error statistics, with observation errors
assumed to be uncorrelated. However, as observing systems become more complex,
we are able to observe more complex variables from which meteorological informa-
tion can be derived. As we need to assimilate observations with higher spatial and
temporal frequencies and try to use observations previously deemed too difficult to
assimilate, it is essential that the observation error statistics are also well estimated
and correctly utilized in the assimilation scheme. This means moving away from
the assumption of diagonal error covariance matrices that neglect observation error
correlations. Instead, it will be necessary to use error statistics that accurately repre-
sent the error correlations, be they spatial, temporal, or inter-channel, along with
consistent error standard deviations.

1.1 Definitions, Sources, and Characteristics

In data assimilation the observation error, εo, not only accounts for errors inherent
in the observing instrument, εi , but also from the fact that the observation, yo, must
be compared to a model equivalent of the observation which has been mapped from
a discrete model using a forward operator,H; hence, all observations will be subject
to some form of uncertainty. In other words,

εo = εi + εr , (1)

where εr denotes the error of representation which arises from the incompatibility
between model grids and observation states: for example, observations of higher
resolution than themodel state estimate. This termmust be included in the observation
error due to the fact that we aim for an analysis that provides the best initial conditions
in model space. If the analysis included information from unresolved scales, such
information would result in noise once the model was integrated forward in time.
Each observation type will have its own specific observation error sources, though
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in general, it is possible to assign each contribution to one of four main sources
(Janjic et al. 2018): the instrument error, observation operator error, preprocessing
(or quality control) error and the error due to unresolved scales and processes.

The instrument error is the error related to the precision and accuracy of the
measuring device; this error is independent of how the observation is used in the
data assimilation process. The observation operator, preprocessing and unresolved
scales errors all contribute to the error of representation and will all be dependent
on the specific settings of the assimilation system. The observation operator error
arises due to approximations in the forward model used to map the model variables
into observation space. These errors can be as simple as those introduced when
interpolating from one location to another or may be far more complex due to the
approximation of observation geometries or the misspecification of parameters in
the forward models (e.g., the misrepresentation of gaseous constituents in a radiative
transfer model.) The preprocessing, or quality control, error arises if an observation
is not accurately handled by the quality control procedure or if the observation is
processed prior to the assimilation. For example, a cloudy observationmay somehow
pass a cloud screening process and be assimilated as a cloud-free observation, even
though it is not. Distinguishing between observation operator, and preprocessing
error is not always straightforward, since for our example of the cloudy observation
the failure could be seen to be the observation passing quality control, or the inability
of the forward operator to simulate the cloudy observation. The final general source
of error is the error due to unresolved scales and processes; this error arises when
the observations and the model into which they are assimilated represent different
spatial and temporal scales. The sum of the instrument, preprocessing, observation
operator, and unresolved scales errors provides the total observation error. It is the
statistics of these errors that are required for the data assimilation system.

1.2 Error Correlation

Each of the error sources has the potential to give rise to error correlations. It has
long been assumed that the instrument error would be uncorrelated and unbiased.
Although this may be true for conventional observations, which directly measure
model variables, it has been shown that observational errors of remotely sensed
observations, such as satellite observations can indeed be correlated (e.g. ATMS,
IASI; e.g. Stewart et al. 2009,Bormann et al. 2010,Campbell et al. 2017). It is perhaps
more intuitive that the error of representation can give rise to correlated observations
errors, and that it is often the dominant contributor to error correlations (Hodyss
and Satterfield 2017). Any approximation in the observation operator for a given
observation type will result in a correlated error since the approximation is applied
when calculating each of themodel equivalent observations. For example, neglecting
beam broadening in the forward operator for radar observations results in correlated
observation errors; the error correlation length scale increases with distance from the
radar as the observation operator becomes more approximate (Waller et al. 2016b;
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Waller et al. 2019). Similarly, all observations that are subject to the same errors in
quality control or preprocessing will exhibit error correlations (e.g., Bormann et al.
2003; Cordoba et al. 2017). The error due to unresolved scales is also expected to be
correlated due to its dependence on the state of the geophysical system. It has been
shown that the scalemis-match errors exhibit larger correlationswhen the scales in the
observations are poorly resolved by the underlying model (Waller et al. 2014a). Prior
to their use in the data assimilation system the observation uncertainties, including the
error correlations must be specified (Gustafsson et al. 2018).While instrument errors
are normallywell characterized,with estimates given from instrumentmanufacturers,
the contribution from the error of representation is complex and much harder to
quantify. Furthermore, since we never have information about the true atmospheric
state, the observation error statistics cannot be calculated directly. Instead, they must
be estimated in a statistical sense. How these error statistics can be estimated is
discussed in detail in Sect. 2.

1.3 Operational Treatment

Once the observation uncertainties have been specified, they must be incorporated
in the data assimilation system correctly for the output of the assimilation system to
be optimal. The observation error covariance matrix can be defined as

R = E
[
εo(εo)T

]
. (2)

Until relatively recently the observation error covariance matrices used in opera-
tional data assimilation were assumed diagonal. Although the error correlations were
ignored, there were attempts to improve the assumption of uncorrelated error by
means of observation thinning or observation averaging (Daley 1991;Whitaker et al.
2008). If correlated errors were still expected to exist, then they were often compen-
sated via the technique of variance inflation (Lahoz and Ménard 2010). However,
since theoretical work has shown that even the inclusion of approximate observation
error correlations can have a benefit (Healy and White 2005; Stewart et al. 2013),
there has been a recent effort to improve the treatment of observation uncertainties
in operational data assimilation. A review of the estimation and treatment of obser-
vation uncertainties in operational practice is given in Sect. 2. To date, the inclusion
of observation error correlations in data assimilation has been shown to improve the
analysis and the skill of operational forecasts (Weston et al. 2014; Bormann et al.
2016; Campbell et al. 2017). Furthermore, the accurate uncertainty specification can
improve the representation of small scale features which is of particular importance
for convective scale forecasting (Rainwater et al. 2015; Fowler et al. 2018; Simonin
et al. 2019; Bédard and Buehner 2020).
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1.4 Outlook

This chapter provides an overview of observation error statistics in data assimi-
lation and how they may be practically estimated and included in an operational
setting. Section 2 reviews methods that may be used to estimate observation error
statistics. We highlight the assumptions of each of the methods along with their
benefits and shortcomings. We provide an overview of the use of these methods to
estimate error statistics for atmospheric observations; in addition, we discuss how
the estimated error correlations are used in current operational practice. In Sect. 3 a
practical application of observation uncertainty estimation is illustrated with Meteor
Radar Assimilation. We describe the Meteor Radar observations and assimilation
and provide the estimated error statistics. We then systematically investigate the
estimated uncertainties by considering how the estimates vary by station and how
inflating the background, B, and observation, R, error covariance matrices change
the estimated statistics. The observation influence metrics and temporal correlations
are also calculated. Finally, we summarize our findings and conclude in Sect. 4.

2 Diagnosing Observation Error Including Error
of Representation

In this section, we review current statistical methods to recover observation error
uncertainties as well as their underlying assumptions. We also provide an overview
of current operational practice. Since this chapter is aimed at providing a practical
methodology for operational systems, we focus mainly on the methods which have
been implemented operationally. However, we briefly review more recent methods
that have not been widely used in operations, either due to nascence, algorithm
complexity, or computational cost.

2.1 Innovation Based Estimation Methods

The method introduced by Desroziers et al. (2005) has been used widely at opera-
tional centers, due to both the algorithm’s simplicity and its computational efficiency.
The method uses standard outputs of data assimilation (innovations, increments and
analysis residuals) as inputs and provides estimates of the observation error covari-
ance, as well as observation space estimates of both the analysis and background
error covariance. First, we define the analysis residual, do

a , as the difference between
the observation and the analysis in observation space,

do
a = yo − Hxa . (3)
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The innovation, do
a , and increment, dab , can be defined similarly as the difference

between the observation and the forecast in observation space and the difference
between the analysis and the background in observation space, respectively,

do
b = yo − Hxb, (4)

dab = Hxa − Hxb. (5)

This Desroziers method relies on the classical innovation relationship: the
expected value of the outer product of the innovation vectors is equal to the sum
of the observation space representation of the background error covariance matrix
and the observation error covariance matrix. In other words,

E[do
b(d

o
b)

T ] = HBHT + R. (6)

This relationship assumes linearity of the expectation operator and mutually
uncorrelated observation and background errors. The Desroziers methods recovers
the observation error covariance by taking the expected value of the outer product of
the analysis residual (do

a , observationminus analysis) and innovation (do
b, observation

minus forecast),

E[do
a(d

o
b)

T ] = R. (7)

The background error covariance matrix is similarly obtained by taking the
expected value of the outer product of the analysis increment and the innovation,

E[dab(do
b)

T ] = HBHT . (8)

Although this method is easy to implement, it can result in erroneous estimates
when the data assimilation system used to make the analysis uses inaccurately spec-
ified background and observation covariance matrices (e.g. Ménard 2016; Waller
et al. 2016a; Waller et al. 2017, amongst others). The Desroziers method is often
thought of as a “consistency check”, as the method should return the same value of
observation variance used in the data assimilation system if all covariance matrices
are correctly specified. Therefore, this method will produce errors due to inaccura-
cies in the prescribed error covariancematrices and a computationally costly iterative
procedure may be required. Waller et al. (2016a) showed that, although the output
provided by this method is subject to prescribed background and observation covari-
ance matrices, a useful solution can often be obtained in a single iteration even when
iterative techniques cannot be expected to converge.

Another commonly used method to diagnose observation errors is that of
Hollingsworth and Lönnberg (1986). This method bins innovation statistics by sepa-
ration distance and forms a histogram of innovation covariance. This method also
relies on the innovation relationship in (6) and assumes that observation errors are
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spatially uncorrelated beyond zero separation distance. Under this assumption, the
relative contributions of observation and background error covariance can be sepa-
rated by fitting a correlation function and extrapolating to zero separation. This
method has been extended,with additional assumptions, to provide estimates of inter-
channel correlation for satellite radiances (e.g. Bormann et al. 2010, amongst others).
Both the Desroziers algorithm and the Hollingsworth and Lönnberg algorithm are
computationally efficient, enabling on-line or off-line variants.

The innovations used in these diagnostics can also be used to provide information
on the observation impact. The actual and theoretical observation impact diagnostics
are described in Fowler et al. (2020) and can be computed as,

OI T H = trace

(

E

[
d̂a
b

(
d̂o
a

)T
](

E

[
d̂o
b

(
d̂o
a

)T
])−1

)

, (9)

OI AC = trace

(
E

[
d̂o
a

(
d̂o
a

)T
])

, (10)

where OI T H and OI AC represent the theoretical and actual observation impact
respectively, and d̂ = R−1/2d, here we use d generically and it can refer to either
an increment or a residual These two measures provide us with an additional metric
to assess the optimality of the data assimilation system and the specification of the
observation and background error covariance matrices. To simplify the calculation
and reduce the sensitivity of the estimate to sampling noise it is possible to assume
that the errors are uncorrelated and calculate a ‘diagonal only’ approximation of
Eq. (6).

2.2 Ensemble Methods

Ensemble DA systems rely on ensembles of short-term background forecasts to
provide the background error covariance. Variants of the Desroziers method that
also make use of the ensemble of background forecasts have been recently imple-
mented.Miyoshi et al. (2013) andWaller et al. (2014b) introduced time variant inline
estimates using the Desroziers method within ensemble transform Kalman filters.
Karspeck (2016) suggested using the innovation relationship defined in (6), and esti-
mating the observation error covariance by removing an ensemble based estimate
of the background error covariance, after suitably tuning the ensemble. Satterfield
et al. (2017) explored using the ensemble variance as a flow dependent predictor of
observation error variance.
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2.3 Representation Error

Hodyss and Nichols (2015) and Hodyss and Satterfield (2017) showed that innova-
tion based methods would include a contribution from representation error when the
observations were of higher resolution than themodel state. However, it is often diffi-
cult to determine the contributions of errors stemming from incompatibility between
model grids and observations. Several data driven methods have been introduced
that aim to do just that. Oke and Sakov (2008) and Forget and Wunsch (2007) aver-
aged observations to model resolution. After interpolating to observation location
and subtracting the raw observations the associated error of representation could be
estimated. Hodyss and Satterfield (2017) performed similar computations using high
resolution model fields and spectrally truncated variants. Such data driven methods
rely on assumptions of ergodicity and produce static estimates which are averaged
over a specified time period. However, since representation error depends on the
background flow, it is expected to show temporal variation. Frehlich (2006) used
estimates of local turbulence to introduce a flow-dependent component of observa-
tion error. As mentioned in the previous subsection, Satterfield et al. (2017) used the
ensemble variance as a predictor of observation error variance, under the assumption
that the portion of observation error variance that varied as a function of the ensemble
spread was due to representation error.

2.4 Sensitivity Diagnostics

Anumber of forecast sensitivity basedmethods have recently emerged and have been
used to guide tuning of the observation and background error covariance matrices.
Such sensitivity metrics are based on an error norm in a short term forecast and can
be implemented in either variational or ensemble frameworks. Daescu and Todling
(2010) explored using adjoint based sensitivity tools to estimate the forecast sensi-
tivity to observation and background error covariance parameters. Daescu and Lang-
land (2013) extended this work to the Naval Research Laboratory Atmospheric Vari-
ational Data Assimilation System–Accelerated Representer (NAVDAS-AR) system.
Techniques to evaluate the observation sensitivity without an adjoint model in an
Ensemble Kalman Filter framework were discussed in Liu and Kalnay (2008) and
Hotta et al. (2017).

2.5 Other Methods

There are a variety of methods that have not been readily adapted to the opera-
tional framework, due to either newness or algorithm complexity. Many of these
recent methods have been applied within an ensemble data assimilation framework.
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A recent review paper by Tandeo et al. (2020) provides a detailed overview of some
of these methods defining the key families of methods as moment based, using
lag-innovations, or Maximum likelihood, which includes Bayesian inference and
Maximization of the total innovation likelihood.

As discussed in Tandeo et al. (2020), the use of “lag”, or current and past, innova-
tions for covariance estimationwas introduced byMehra (1970) andBélanger (1974).
The key idea behind using lag innovations is that the innovation based diagnostics can
be extended to the case of model error. Recent work using lag innovations includes
Berry and Sauer (2013), Harlim et al. (2014), Zhen and Harlim (2015), amongst
others. Various lag times have been explored to optimize the estimation within a
toy model framework. As with online variants of the Desroziers algorithms, such
methods also usually involve some level of temporal smoothing to avoid estimates
changing too rapidly over time.

Maximum likelihood based methods are aimed at deriving parameters of obser-
vation error covariance matrices that will maximize the observation likelihood.
Such methods include Bayesian inference or Maximization of the total likelihood.
Bayesian methods, such as the one proposed by Ueno and Nakamura (2016), allow
one to incorporate knowledge of the prior distribution. Typically, these parameters
are estimated, through state augmentation, where the state and parameters are esti-
mated jointly, or through Bayesian inference as a secondary filter. A recent review
paper by Janjić et al. (2018) detailed state augmentation for including errors due to
unresolved scales and processes and observation operator error in the Kalman filter
algorithm. Additionally, one can maximize the total innovation likelihood using iter-
ative procedures such as the Expectation-Maximization algorithm, as detailed in
Dreano et al. (2017), Pulido et al. (2018) amongst others (see Tandeo et al. 2020 for
a more complete discussion). Maximum likelihood approaches require assumptions
about the prior and posterior distributions in order to make the problem practicable.
In addition, typically the number of parameters to be estimated must be limited,
which requires further assumptions about the accuracy of the prescribed parameters,
which are not estimated.

2.6 Current Operational Practice

The innovation based methods discussed at the beginning of this section have proven
the most popular for use in operational settings. They have been used to estimate
and tune the observation error variances for a wide variety of observations including
those from satellite instruments, aircraft, scatterometers and GNSS-RO (e.g. Lange
and Janjić 2016; Valkonen et al. 2017; Bowler 2020). The use of innovation based
methods has not been restricted to numerical weather prediction; they have been
extensively used to estimate observation error variances in many other geophysical
models: e.g. oceanography, hydrology, atmospheric chemistry and the carbon cycle
(Hoffman et al. 2013; Pinnington et al. 2016; Waller et al. 2018; Merchant et al.
2020). However, it is only more recently that the methods have been used to provide
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information on the observation error correlations and that these correlations have
been utilized in operations. Below we discuss the operational use of inter-channel
and spatial correlations; we do not include temporal correlations as, to date, they have
received little attention and have not been incorporated in operational assimilation.

2.7 Inter-Channel Radiance Assimilation

Undoubtedly, to date, it is the inter-channel error correlations in radiances acquired
from operational satellite nadir sensors that have received the most attention and
hence have been successfully incorporated into operational NWP systems. The inter-
channel correlations arise between neighboring channels that have similar spectral
resolutions and similar sensitivities to temperature and atmospheric gases. Among
the first instruments to have their error correlations characterized were the Atmo-
spheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferom-
eter (IASI) (e.g. Garand et al. 2007; Bormann et al. 2010; Stewart et al. 2009,
2013). Results showed that water vapor sensitive channels, along with channels
sensitive to the skin temperature exhibited some of the largest correlations. Due
to the limited number of channels and single location of each observation profile
the inclusion of these correlations in operational systems is fairly straight forward.
Furthermore, the inclusion of inter-channel error correlations has been shown to
improve forecast skill and hence a number of operational centers now use inter-
channel error correlations for a variety of instruments including IASI (Weston et al.
2014; Bormann et al. 2016), the Cross-track Infrared Sounder (CrIS; Eresmaa et al.
2017), and the Advanced Technology Microwave Sounder (ATMS; Campbell et al.
2017). Following the success of accounting for inter-channel correlations it has
become common for these uncertainties to be estimated as newobserving instruments
come online, such as Himawari-8 and the Chinese FengYunMicrowave Temperature
Sounder and Microwave Humidity Sounder (Honda et al. 2018; Wang et al. 2018).

As well as leading to increased analysis accuracy and improved forecast skill, the
accurate specification of inter-channel correlations has improved the assimilation
of cloudy observations. Geer and Bauer (2011) showed that the observation error
variance is larger when a radiance observation is assimilated in a cloudy region in
comparison to a clear sky observation. Subsequent work by Okamoto et al. (2019)
and Geer (2019) shows that the inter-channel correlations are also much stronger in
cloudy, compared to clear, skies suggesting that scene dependent error specification
may be necessary for all-sky assimilation.

2.8 Spatial Correlations

Therewere some early attempts to estimate spatial observation error correlations (e.g.
Bormann et al. 2003; Garand et al. 2007), though the complexity of using spatial
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correlationsmeant theywere never considered for usewithin the assimilation system.
However, with the move towards higher resolution convection permitting data assim-
ilation, there is a need to assimilate dense data with likely spatial correlations and
hence the interest in spatial correlations has been reignited. Spatial error correla-
tions have recently been estimated for the Doppler radar wind, SEVIRI radiance,
atmospheric motion vector and GNSS Zenith Total Delay observations assimilated
into the Met Office’s high resolution limited area model and results have shown that
spatial correlations can be significant (Waller et al. 2016b, 2016c; Cordoba et al.
2017; Bennitt et al. 2017). GNSS Zenith Total Delay observation uncertainties have
also been estimated for observations assimilated into the central Europe AROME
model (Mile et al. 2019); however, it has been shown that it is the temporal, rather
than spatial, error correlations that are likely to be the most important for this obser-
vation type (Bennitt et al. 2017; Macpherson and Laroche 2019). In some cases, the
estimated statistics have been used to inform spatial thinning distances to ensure that
the assumption of uncorrelated observation errors is accurate (Cotton et al. 2018;
Mile et al. 2019). However, if the correlations can be accounted for in the assimi-
lation system then an understanding of the uncertainties allows denser observations
to be assimilated. The work of Simonin et al. (2019) provided a strategy for incor-
porating spatially correlated observation errors into an operational data assimilation
system. The technique was then applied to Doppler radar radial wind observations
and results showed that the assimilation of dense data, whilst accounting for their
correlated errors, leads to more small-scale information in the analysis and has a
positive impact on the forecast skill. As a result, spatially correlated observation
errors for Doppler radial winds are explicitly accounted for in the Met Office limited
area model.

3 Practical Application: Application to Meteor Radar
Assimilation

In this section we detail how in an operational system, inadequacies in prescribed
error parameters can lead to suboptimal assimilation of observations. We outline
a practical methodology to use diagnostic estimates to modify error parameters in
an operational framework, employing the use of observation impact described in
Sect. 2.1. Our ultimate goal is to improve the assimilation of meteor radar observa-
tions for prediction in the 70–100 km altitude range using a new high altitude global
data assimilation framework.
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3.1 Meteor Radar Observations

At upper atmospheric levels, where observations are sparse compared to the tropo-
sphere, meteor radars could potentially provide a valuable observational data set for
a model correction. Since ionization trails produced by ablating meteors drift with
local neutral winds at ∼70–100 km altitude due to high plasma-neutral collision
frequencies, radar tracking of meteor trails can be used to infer winds at these alti-
tudes, year-round, both day and night. This technique has been refined over many
years and extensively validated, to the point where meteor winds are now a widely
accepted independent validation standard for other emerging wind measurement
techniques at these altitudes (e.g., Jones et al. 2003; Wilhelm et al. 2017). For these
reasons, new high-altitude reanalysis systems have used them as a validation stan-
dard for analyzed winds at these altitudes (e.g., McCormack et al. 2017; Eckermann
et al. 2018; Stober et al. 2019) and are just beginning to explore their value for
direct assimilation into research and ultimately into operational systems. Here we
explore winds acquired from a network of radars, shown in Fig. 1 and initial efforts
to assimilate these observations into a high-altitude version of NAVGEM. For the
experiments that follow, we assimilated all available data from the stations shown in
Fig. 1 except Davis and Buckland Park, which were inadvertently excluded owing to
an internal error. Additionally, we note that there were data gaps for McMurdo and
Cariri over the periods considered.

Several data processing algorithms are used to derive these winds. The Buckland
Park, Beijing, Davis Station, King Sejong Island, Kunming, Mengcheng, Mohe,
Svalbard and Wuhan sites use the method described in Holdsworth et al. (2004).
Briefly, given a set of meteor echo radial drift velocities (V_r) and AOA direction

Fig. 1 Ground locations of the 23 meteor radars acquiring winds in the 70–100 km range, which
we assimilate using NAVGEM and analyze using DA methods discussed in the text
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cosines (l,m,n), the two-dimensional wind velocity (u,v) is estimated by applying a
least squares fit of the form V_r = ul + vm, with the implicit assumption that the
vertical velocity w = 0. The data are grouped into height/time bins of 2 km and
1 h. A minimum of six echoes in each height/time bin are required to compute a
velocity estimate. An additional 15 quality controls are then applied as described in
Holdsworth et al. (2004), who also describe the same basic radar type as all of these
radars except for the Buckland Park radar. This radar is described by Spargo et al.
(2019) and references therein.

The method described in Fritts et al. (2012) and Iimura et al. (2015) uses a least
squares fit to the measured radial velocities of meteor trails when a minimum of 57
meteors are present in each time-altitude interval. Vertical profiles of hourly zonal
and meridional winds are produced by assigning wind estimates with an altitude
resolution of 2 km centered at 80, 82, 84, 86, 90, 92, 94, 96, 98 and 100 km to the
middle of each time-altitude interval (altitude intervals are 75–80, 80–84, 84–86,
86–88, 88–90, 90–92, 94–96, and 96–100 km). This method is used for the Eureka,
Esrange, Cariri, Cachoeira Paulist, King Edward Point, McMurdo, Trondheim, Bear
Lake, Ascension Island, Tierra del Fuego and Rothera station sites shown in Fig. 1.

A third method is based on an updated version of Hocking et al. (2001). Details
about the algorithm are presented in Stober et al. (2018). The fitting algorithm obtains
the instantaneous three-dimensional wind vector V = (u, v, w) using a constrained
least squares solution, where the vertical and time derivatives of each wind vector
component are assumed to be constant between adjacent time and altitude bins. The
vertical wind is assumed small, a good assumption for an observation volume of 400–
600 km diameter. A minimum of 5 m within each time-altitude interval is required.
This method is used to produce wind retrievals, at 2 km intervals, from the Andenes,
Juliusruh, and Collm sites shown in Fig. 1 and from the CanadianMeteor Orbit Radar
(CMOR), located near Tavistock, Ontario, Canada.

3.2 Assimilation System

The assimilation system used in this study is a high altitude NWP system based on
the operational semi-Lagrangian, semi-implicit global spectral model, part of the
Navy Global Environmental Model (NAVGEM) system described in Hogan et al.
(2014), but extended to a 74-level (L74) configuration with a top pressure of 6 ×
10−5 hPa (∼116 km altitude) and a vertical resolution of ∼2 km in the stratosphere,
increasing to ~3–5 km in the 70–100 km altitude range spanned by the meteor wind
observations (see Fig. 3b of Eckermann et al. 2018). We will refer to the high altitude
version as NAVGEM-HA (for details see Eckermann et al. 2018).

For assimilation, we implement a hybrid 4DVAR algorithm, which linearly
combines a static background error covariance estimate with covariances derived
from an 80-member flow-dependent ensemble of instantaneous 6-h forecasts, as
described in Kuhl et al. (2013). Ensembles for this system are generated with the
ensemble transform method described in McLay et al. (2010). The relative lack of
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observations in the stratosphere andmesosphere compared to the troposphere empha-
sizes the need for the improved background covariance estimates that this hybrid
approach provides. For the experiments that follow we use a weighting parameter,
α = 0.25 for the ensemble covariance and (1− α) = 0.75 for the static component.
We note that, since this system is relatively new, as a starting point, the ensemble
methodology and the static background error component used for tropospheric assim-
ilation were simply extended to upper atmospheric levels, but the error statistics have
yet to be adequately tuned.

3.3 A First Look at Error Estimates

We applied the Desroziers diagnostics, described in Sect. 2.1, to the output of a
cycling hybrid 4DVARDArun (as described in the previous section) using aT119L74
version ofNAVGEM.For this system, theDesroziers estimates of the observation and
observation spaced background error standard deviation profiles are important for
several reasons. First, the background error statistics of the systemhave not been fully
tuned. Second, we knowwewill have additional components to the observation error
statistics due to the observation operator, which interpolates the model background
to observation space. In the horizontal, the observation volume for meteor radars
is about 500 km in diameter. The smallest resolvable scales in the model are about
4 grid points. The spatial averaging of the meteor radars may remove the smallest
scales that are resolved with NAVGEM T119 (~90 km), depending on diffusion
(see, e.g., Fig. 13a of Eckermann et al. 2018 and Fig. 2 of Stober et al. 2019). The
vertical resolution of the meteor radar observations is higher than that of the model.
Additionally, variations in retrieval algorithms and vertical-temporal intervals will
add components to the observation interval. For these reasons, simply assigning
an instrument error is insufficient as such a value would be too low for practical
use in an assimilation system. For the initial assimilation experiments, a vertically
varying fraction of the background error variance was used as a proxy for observation
variance. In this system, observation errors are currently treated as uncorrelated,
which can also lead to the need for further inflation.

Prior to the Desroziers computation, a mean bias, computed as a function of pres-
sure level, is removed from each innovation, increment and analysis residual. For our
statistics, we include all meteor radar wind observations, but limit the data to only
those that were assimilated and to measurements provided on the hour (half-hourly
measurements are ignored). It is important to note that the innovation check, which
acts to filter observations with innovations larger than a threshold value, was turned
off for the initial control experiments. Figure 2 shows the estimated (solid lines) and
prescribed (dashed lines) background and observation error standard deviations, in
observation space, based on zonal wind observations and computed using Eqs. (7)
and (8). Our findings indicate that the current prescribed observation error standard
deviation is too low and should be increased (red curves) and that the current back-
ground error standard deviation should be reduced (blue curves). The static (dashed
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Fig. 2 Vertical profiles of the Desroziers diagnostic (top row) for SON 2017 (left) and October
(2017) (right) for observations of zonal wind. The Desroziers estimates of observation (red) and
background (blue) error variances are shown in solid lines, while the prescribed hybrid and observa-
tion error are shown as dashed lines. The static (dashed line with squares) and ensemble components
(dashed line with triangles) of the background error variance are also shown. Data counts are shown
on the bottom row

line with squares) and flow dependent (dashed line with triangles) components of the
hybrid background error covariance are shown separately. While the static portion
of the covariance needs to be reduced, the ensemble is under dispersive, which ulti-
mately is acting to produce an effective hybrid weighting parameter which is much
lower than the prescribed 0.25. Overall these results indicate that the analysis is
drawing too closely to the meteor radar wind observations.

Focusing on zonalwindswe looked at a seasonal comparison (not shown) between
December–February (DJF) 2017–2018 and September–November (SON 2017). The
results indicate only slight seasonal variation, so as a first approximation we can
assume that the statistics will not have large seasonal variations. Since the error in
the Desroziers based estimation can originate from a variety of sources, applying a
standard error is not informative. Instead, we simply compare a one month estima-
tion to a seasonal estimation to confirm stable statistics (Fig. 2). We find that the
estimates for a single month (October 2017, right hand side of figure) are consis-
tent with the other time periods (in particular SON 2017 shown on left hand side of
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Fig. 3 Desroziers correlationmatrix for SON2017 (left) andOctober (2017) (right) for observations
of zonal wind

figure), indicating that a single month provides sufficient data for stable estimation
parameters.

In addition to investigating estimates of error variance, we also look at estimates
of the full matrix. Currently, observation errors formeteor radars are treated as uncor-
related (diagonal matrix). Figure 3 shows that the correlation structure, by vertical
level (x and y axes), has a strong block diagonal component, indicating the correlation
between neighboring levels. This correlation may arise from the radar vertical range
gate being wider than the 2 km resolution of the wind retrieval or from temporal
smoothing resulting from the retrieval algorithm assigning wind estimates to the
middle of each time-altitude interval. Implementing a block diagonal component in
the assimilation of these observations would potentially offer benefit. Waller et al.
(2016a) showed that inconsistencies in the prescribed covariance matrices, such as
ignoring correlations or over/under specified error variances, can lead to inaccuracies
in the Desroziers diagnostic. We proceed by comparing several experiments where
corrections are made to the background error variances, the observation error vari-
ances and finally both the background and observation error variances to attempt to
disentangle the contributions of these components.

3.4 Differences By Station

Many differences between stations may lead to differing observation errors. Such
differences include differences in instrumentation, environment dependent instru-
ment error, operator error, as well as differences in the wind fitting algorithms.
Additionally, the prescribed error covariance matrices used in the data assimila-
tion algorithmmay be more or less optimal at different locations. As a control group,
we use meteor winds from 3 radar stations shown in Fig. 1, Andenes, Juliusruh and
Collm (red curves in the left panel of Fig. 4), the same stations used in McCormack
et al. (2017), but limited to a single wind fitting algorithm to allow for homogeneous
statistics. Figure 4 shows the Desroziers estimates of observation error variance by
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Fig. 4 Desroziers estimates of observation error standard deviation by station (red and grey lines)
for SON 2017 for observations of zonal wind. The solid black lines shows the mean of the specific
stations highlighted in red. The revised observation error (solid black line with triangles) and the
mean over all stations (solid black line with circles) are also shown

the station. All stationswith enough assimilated observations in the SON2017 period
to provide an error variance estimate at all atmospheric levels are plotted. Although
in some cases/levels the data counts are low enough that the Desroziers estimate may
not be reliable, it is useful to define a set of stations over which we find the estimates
to be suitably homogeneous to define a subgrouping (red lines in the right panel of
Fig. 4). The solid black curve in Fig. 4 shows the mean of all stations highlighted in
red. The mean over all stations plotted is also shown (solid black line with circles).
To revise the observation error variances, we created a functional fit based on pres-
sure level to the Desroziers estimates. The function was assumed quadratic above the
0.004 hPa level (roughly 84 km in altitude), and constant below. The functional fit is
shown by the solid black line with triangles in Fig. 4, for simplicity we will refer to
this revised estimate as the ‘quadratic model’. It is worth noting that, although there
was some station to station variation, each station considered showed a similar block
diagonal correlation structure as shown in Fig. 3 (not shown for individual stations).

3.5 Experiments with Inflated Ensemble Variance
and Inflated Observation Error Variance

It is useful to explore the impact that the inaccuracies in the prescribed background
error variances have on the Desroziers estimates. To this end, we performed a set
of three additional experiments: the observation error variance is adjusted to match
the quadratic fit shown in Fig. 4, the ensemble sample error covariance is inflated
globally and multiplicatively by a factor of two, and combined observation and
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ensemble covariance inflation. For all experiments with inflated observation error,
all meteor radar observations are impacted. These three additional experiments are
comparedwith the “control” experiment,whichwas discussed in the previous section.
Since the innovation check is disabled, these adjustments do not impact the number
of rejected observations. We also note that adding the block diagonal structure to
R is left to future experiments. In these experiments, although a hybrid-4DVAR
DA system is employed, we do not attempt to optimize the relative static and flow
dependent contributions or their respective correlations.

Figure 5 shows the prescribed and estimated observation and background error
variance for each of the four experiments considered for the period of October 2017.
The control experiment shows an under dispersive ensemble; however, hybridization
compensates, to some extent, for the static components which overestimate the error
variance. When the ensemble error variance is inflated (Fig. 5, Panel 5b), the hybrid
variance is now even more of an overestimate. The estimated background error vari-
ances increase with greater overestimation in the prescribed values and the estimates
of the observation error variances are reduced to compensate. When we modify the
observation error variance according to the quadratic model (Fig. 5, Panel 5c), we see
that the prescribed values are still smaller than the Desroziers estimate, although they

Fig. 5 Same presentation as in the top row of Fig. 2, but showing results for October 2017 for
the control experiment (a), inflated ensemble (b), modified observation error (c) and modified
observation error with ensemble inflation (d)
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are an improved approximation. The Desroziers estimate remains fairly stable with
only the observation error adjustment. However, since the prescribed background
variances are too high, we expect the Desroziers estimate to be an underestimate. We
see that when both the ensemble inflation and quadratic observation error model are
used (Fig. 5, Panel 5d), the observation error is comparable to the Desroziers esti-
mate. Since the impact of underestimating the observation error and overestimating
the background error both lead to the analysis drawing too close to the observation,
we expect the observation impact to be too large. We plan to implement a more
reasonable ensemble inflation and appropriately handle inflation to the static compo-
nent through hybrid weighting factors. After the adjustment to the background error
covariance, we will be better able to adjust the observation error variance values
based on station subgroupings.

3.6 Observation Impact

Figure 6 shows the results of the observation impact metrics (Eqs. 9 and 10) for the
four experiments considered. In the control experiment the theoretical observation
impact has (unitless) values ~0.1 with highest values in the upper levels, where there
are very few observations. We note that the values ~0.1 are fairly typical and these
values should not be interpreted as a measure of the quality of the observation, but
rather the relative values of theoretical and actual observation impact that can, in turn,
provide information on how these new observations can best be exploited within an
assimilation system. In an optimal system, the actual and theoretical observation
impacts would be in agreement. The diagonal only computation is shown in solid
black linewith triangles and indicates that the observation impact is reducedwhen off
diagonal components are considered. For the control experiment, the actual observa-
tion impact is much higher, with the greatest values at upper levels. These findings
are in agreement with Fig. 5, which shows that the observation error is underesti-
mated, more so at upper levels. The overestimation of the hybrid error covariance
adds to the issue of the actual impact being higher than the theoretical value for these
observations. When the observation error is increased following the quadratic model
(Fig. 6, Panels c and d), the actual impact is significantly reduced and the theoret-
ical slightly decreased, likely due to an improved prescribed observation error. In
the experiments which inflate the ensemble (Fig. 6, b and d), the actual impact is
reduced, but this originates from the reduction of observation error due to greater
overestimation in the hybrid background (shown in Fig. 5, panels b and d). The ratio
of theoretical to actual impacts is much improved when the quadratic observation
error model is used. Although the ensemble inflation also acts to improve the ratio,
we find that improvement is stemming from errors in the prescribed variances.
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Fig. 6 Theoretical (solid black line) and actual (dashed black line) observation impact. The diagonal
only estimates of the theoretical observation impact are also shown (solid black line with triangles).
Results are shown for October 2017 for the control experiment (a), inflated ensemble (b), modified
observation error (c) and modified observation error with ensemble inflation (d)

3.7 Root-Mean-Squared Error (RMSE)

Up to this point, we have focused on innovation-based diagnostics. Now we want to
consider howwell our innovation based covariance estimates and observation impact
project onto forecast skill. To achieve this, we compare three experiments: the obser-
vation error variance increased following the quadratic model, inflated ensemble
with original observation error variance and both increased observation error and
inflated ensemble. Our findings thus far have indicated that the analysis is drawing
too close to the observations, due to both the prescribed observation error variance
being too low and the prescribed hybrid background error variance being too high.
Our hypotheses are that (1) the quadratic observation error model will improve upon
the originally prescribed error variances and (2) ensemble inflation will result in
degradation due to a further increase in the hybrid variance pushing the analysis too
close to the observations. We note that in the experiments which use ensemble infla-
tion, the originally under variant ensemble becomes over variant at analysis time.
The over variant analysis ensemble may act to optimize spread at longer lead times,
but combined with an over-prescribed static component, further leads to the issue
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Fig. 7 Global RMSE computed for zonal wind (m s−1) with forecast lead times of 24-h (left
column) and 120-h (right column). The time series shows valid dates between 00Z 09 October
2017 and 00Z 30 November 2017. Plots are shown at 0.0005 hPa (top) and 0.005 hPa (bottom).
Results are shown for experiments using the quadratic observation error model (blue line), ensemble
inflation (red line) and both ensemble inflation and the quadratic error model (green line). The box
and whisker plots to the right of each figure show the summary statistics over the time period, where
the box represents the interquartile range (IQR)

of the analysis drawing to close to the observations. Figure 7 shows a time series of
global RMSE computed for zonal wind with forecast lead times of 24 and 120-h. The
time series shows valid dates between 00Z 09 October 2017 and 00Z 30 November
2017. Plots are shown at 0.0005 hPa and 0.005 hPa (we note that the highest and
lowest levels in which meteor radar observations were assimilated were 0.00018 hPa
and 0.0109 hPa respectively.) For verification we use self-analysis. For both the 24
and 120-h lead times, all levels we investigated showed significantly lower RMSE
for the experiment without ensemble inflation. The experiments using the quadratic
observation error variance model either showed improvement over the experiment
with the originally prescribed observation error variance or no significant difference.
These results were similar for meridional wind (not shown).



Statistical Parameter Estimation … 207

Fig. 8 Desroziers temporal correlation matrix for SON 2017 (left) and the corresponding data
count (right) for observations of zonal wind for the stations highlighted in red in Fig. 4

3.8 Temporal Correlation

The previous section illustrated how the theoretical observation impact could be
reduced when off diagonal terms were considered. In section d (Fig. 3) we explored
the block diagonal structure of the pressure level based correlation matrix. We now
turn our attention to temporal correlations, which are typically overlooked in data
assimilation.

To apply the Desroziers algorithm to temporal bins, we define a subset of stations
which were shown to have consistent error statistics (red curves on the right panel
in Fig. 4). These ten stations were grouped together and innovation statistics were
binned as a function of time within the 6-h data assimilation window, with the
analysis centered in the window (e.g. 0-h). Figure 8 shows the temporal correlation
structure by the hour. Since this wind fitting algorithm operated over temporal bins, it
is not surprising that the temporal correlation also shows a block diagonal structure,
with a correlation between neighboring hours. For data such as these, accounting for
the temporal correlation within the observation error covariance matrix may prove
beneficial.

4 Discussion and Conclusions

In this chapter, we have provided an overview of the methods used to estimate obser-
vation error statistics in operational data assimilation and discussed their underlying
assumptions. We demonstrated the application of one of these methods to the assim-
ilation of high-altitude (70–100 km) meteor radar wind observations, which provide
important observational information at atmospheric levels where observations are
sparse compared to the troposphere. To achieve this, meteor radar observations were
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assimilated using a hybrid-4DVAR scheme recently implemented in NAVGEM. We
systematically investigated the estimated errors by considering how the estimates
varied by the station and how inflating the background, and observation error covari-
ance matrices changed estimated statistics. Additionally, we explored vertical and
temporal correlations in the observation errors. The recently developed observation
influence metric was used to quantify the observation impact.

Our main findings indicated that the analysis was drawing too close to the obser-
vations. The issue was determined to be due to an under dispersive ensemble as well
as under estimated observation error statistics. No strong seasonal variation was seen
in theDesroziers diagnostic results and onemonth of datawas found to provide stable
reproducible statistics. The Desroziers estimates indicated block diagonal correla-
tion structures between neighboring vertical levels and temporally between adjacent
observation times. The Desroziers estimates indicated variability between stations,
which could be attributed to include differences in instrumentation, environment
dependent instrument error, operator error, as well as differences in the wind fitting
algorithms. However, this diagnostic also indicated a set of stations over which the
statistics were suitably similar to be treated homogeneously. Additionally, the block
diagonal vertical correlation structure was consistent over all stations considered.

In future work we will implement a block diagonal correlation structure within
the observation error covariance inflation and use the information provided from
these statistics to guide ensemble inflation and to form a more appropriate static
component of the background error covariance upper atmospheric assimilation. We
also plan to use these diagnostics to guide optimal hybridization, followingSatterfield
et al (2018).
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Observability Gramian and Its Role
in the Placement of Observations
in Dynamic Data Assimilation

S. Lakshmivarahan, John M. Lewis, and Sai Kiran Reddy Maryada

Abstract A method of data assimilation that is complementary to traditional 4D-
Var (4D-Var) has been developed. 4D-Var has appealed to scientists because of the
efficiency with which it determines the cost function gradient with respect to control
and available observations. Then through use of any of the gradient-based optimiza-
tion algorithms, the minimum is iteratively found. The alternate methodology does
not depend on available observations; rather, the methodology determines placement
of observations that avoid flatness of the cost functional about the operating point
in control space. Avoidance of flat patches by bounding the norm of the gradient
away from zero fundamentally depends on the dynamics of forecast sensitivities to
control that are found through differentiation of the governing constraint equations
and coupled solution to these equations and the basic constraint equations. These
sensitivities are used to define a linear transformation which turns out to be the
observability Gramian (symmetric positive semi-definite matrix) G that maps con-
trol error (initially unknown) to the cost-function gradient (as a function of space and
time and an arbitrary starting operating point). With observations taken at optimal
locations defined by (a) the maxima of the diagonal elements of G or (b) that of
the trace of G, gradient-based optimization schemes are used to locate cost-function
minimum. The methodology is tested on an air-sea interaction model where results
indicate that judicious placement of observations avoiding flatness in control space
give good results whereas placement that leads to small absolute-valued gradients
produce poor results. The theory also gives guidance on the minimum number of
observations necessary to achieve success in locating the cost-function minimum.
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1 Introduction

Estimation of the unknown initial condition and/or model parameters that control
the evolution and behavior of the solution of a deterministic, dynamic model of a
physical phenomenon has been the central theme of the 4-dimensional variational
(4-D VAR) approach to dynamic data assimilation (DDA). Basic to any estimation
is the availability of “relevant” data—a data set containing information about the
unknowns being estimated. In the context of the 4-D VAR framework, it is assumed
that we are given a collection of noisy observations at N distinct times. An observa-
tion, in general, is a (scalar or vector valued) function of the true state of the physical
phenomenon being modeled. The function that maps the state to an observable is
called the forward operator in geosciences and output function in Systems and Con-
trol theory. Its form—linear/nonlinear, scalar/vector valued, depends on the type of
sensors—satellite, radar, lidar, thermometer, pressure gauge, to name a few, used by
the observing system.

Given the functional form of the forward operator, by running the model forward
in time starting from an arbitrary (incorrect) value of the control consisting of the
initial conditions and parameters, we can generate the model counterpart of the
observations. The difference between the given noisy observation and its model
counterpart at a given time is called the innovation or the forecast error. Following
the well-established practice in feed-back and adaptive Control Theory where a
function of the error is used to achieve the desired goal (refer to Appendix for an
overview of the principles of Control Theory), we seek to minimize a cost functional
which is the weighted sum of squared forecast errors, using the model equations as
the equality constraint since the above minimization is carried out along the model
solution.

This equality constrained minimization can be formulated in one of two ways—
either as a strong constrained problem solved using the classical Lagrangian multi-
plier method (LeDimet and Talagrand 1986; Lewis and Derber 1985) or as a weak
constrained problem (Lakshmivarahan 2016). In this paper, we follow along the clas-
sical 4-D VAR method that relies on the strong constrained formulation. The utility
and the strength of this approach lies in the resulting recursive framework, called the
adjoint method, for efficiently computing the gradient—also known as the adjoint
gradient/sensitivity of the cost functional with respect to the control. Once the adjoint
sensitivity is available, it can be used in conjunction with one of many well-known
minimization algorithms (Chaps. 10–12, Lewis et al. 2006) to obtain an improved
estimate of the control. These two steps—computing the adjoint gradient and the sub-
sequent update of the control are repeated until a desired accuracy, measured, say,
by the square of the norm of the current forecast error, is achieved. Refer to Chaps.
22–24, (Lewis et al. 2006) for more details on the mechanics of this methodology.

4-D VAR based method for forecasting has been the workhorse of the meteo-
rological prediction centers around the world for well over three decades and has
enjoyed great success in improving the quality of short-term weather forecasting
(Lewis and Lakshmivarahan 2008). However, the cost functional is quadratic in the

http://dx.doi.org/10.1007/978-3-030-77722-7_10
http://dx.doi.org/10.1007/978-3-030-77722-7_12
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unknown control and unimodal only in a special casewhen themodel and the forward
operator are both linear. When the model and the forward operator are nonlinear, we
virtually do not know anything about the shape—number and the distribution of crit-
ical points including the maxima, minima, and saddle points, of the cost functional
in the control space. The only computable information about the cost functional in
this general case is the local information given by the adjoint gradient. Consequently,
4-D VAR based methodology can only ensure convergence to a local minimum that
is close to the initial (incorrect) controls. Further, it is well documented that the
magnitude of the adjoint sensitivity essentially control the march towards the local
minimum and these control iterates can becomemarooned in the region of the control
space, known as flat patches, where the magnitude of the gradient is very small. To
date, the important question of how to avoid the flat patches in the control space by
selecting the number and the distribution of observations in time (and space) has not
received any attention and the 4-D VARmethodology itself is silent on this question.

In a recent paper, (Lakshmivarahan et al. 2020a) (hereafter referred to as LLH
(2020a)), have developed an off-line strategy based on the forward sensitivity of the
model solution to address this question. In this and in the companion paper (Lewis
et al. 2020b) we further analyze and illustrate this new methodology.

Following LLH (2020a), in this paper we examine the factors affecting the shape
of the cost functional in two steps. In the first step we derive a new class of linear
transformations defined by a matrix G that directly maps the error in the control
into the adjoint gradient. It is shown that this matrix G is, in fact, the observabil-
ity Gramian developed in the control literature. Refer to Appendix A for a short
summary of the role of observability in state and parameter estimation in dynamic
systems. In the second step we examine the conditions under which this observability
Gramian is positive definite which in turn guarantees the existence and uniqueness
of the optimal estimates of the control. For a given model map and forward operator
pair, this condition naturally leads to the minimum number of observations needed
for estimation. It is further shown that we can control the condition number of G
by distributing these observations in locations close to the maxima of the certain
functions of the forward sensitivity of the model solution.

Historical remarks: Within the framework of the classical observability devel-
oped by Kalman (1960a), a system is either observable or not depending on whether
the observability Gramian is positive definite or not. However, theoretically a matrix
can be positive definite while its smallest eigenvalue may be very small and pos-
itive. In such cases, we will encounter major difficulty to numerically invert the
Gramian. To describe and distinguish such cases, Krener (2008a, b), Krener and Ide
(2009) introduced the notion of strong and weak observability depending on when
the smallest eigenvalue of the Gramian is large or small. Subsequently, in a series of
papers Kang and Xu (2012, 2014), King et al. (2015) examined the the variation of
the smallest eigenvalues of the Gramian resulting from the distribution of observa-
tions in space and time to make the system as strongly observable as is feasible. In
this paper, however we, advocate placing the observations at locations where (a) the
diagonal elements, Gii attain their maxima or (b) the trace of G (sum of the diagonal
elements of G attains its maxima. The basic goal of these strategies is to place the
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observation that will render the columns of the observability matrix, G to be linearly
independent. To avoid weak observability, we can further examine the variation of
the condition number of G with respect to the distribution of observations to pin
down that distribution that has a lower value for the condition number as illustrated
in Sect. 6.

From the early 1990s there is a growing body of work within the meteorological
literature on targeted or adaptive observations. The primary goal in this area is to
adaptively decide on the number and placement of new observations that will fur-
ther reduce the analysis error and hence the subsequent forecast error. This literature
examines a variety of tools including statistical experimental design, adjoint sensitiv-
ity to observations, ensemble transform filter-based approaches, ensemble sensitivity
and more recently, observability Gramian (Yoshimura et al. 2020). A discussion of
this body of literature is contained in the introduction to LLH (2020a). For more
details, refer to the literature cited in LLH (2020a).

This paper is an extension of LLH (2020a) and differs from those in the literature,
both in the methodology and goal. Our goal is to find out the minimum number of
observations and their distribution for effective estimation of both the initial condition
andmodel parameters.Whilemost of the papers in this literature deal with estimation
of initial states, we treat the initial state and parameter estimation on the same footing.

A summary of the model equations—linear and nonlinear, observations described
by linear and nonlinear forward operators, innovation/forecast error, cost functional
and the statement of the problem along with the basic notations are given in Sect. 2.
Section3 provides a short summary of the dynamics of evolution of forward sensi-
tivities. Section4 examines the structure of the linear transformation given by the
matrix G and the conditions for it to be positive definite when the model map, for-
ward operator- (M, H) pair is linear, and its nonlinear counterpart is covered in
Sect. 5. These two sections develop the basic conditions for the positive definiteness
of the matrix G and further examines the role of distribution of observations and
its impact on controlling the condition number of G. In Sect. 6 we illustrate the key
points of the approach using a simple 1-D problem known as the air-sea interaction.
Concluding summary along with the guidelines for the distribution of observations
is given in Sect. 7. Appendix A provides an overview of the role of observability in
state and parameter estimation and Appendix B contains some of the results from
matrix theory that are critical to developments in this paper andAppendix C develops
a set of conditions for observability. Further illustrative examples are contained in
the companion paper by Lewis et al. (2020b) in this volume.

2 Notations and Statement of Problem

In this section we start by describing the key players in the game of dynamic data
assimilation—model, observation, innovation and the cost functional. Refer to Table
1 for details.
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2.1 Model

Let Rn be the state space and x(k) = (x1(k), x2(k), . . . , xn(k))T ∈ Rn be the state
of a deterministic, discrete time, dynamic model where the time index k takes values
over the non-negative integers starting at k = 0, the initial time and x(0) ∈ Rn is the
initial condition. Let Rp be the parameter space and α = (α1, α2, . . . , αp)

T ∈ Rp be
a vector of model parameters.

We consider two versions of the model equations-linear and non-linear. Let M :
Rn × Rp → Rn be the given one step state transition map of the non-linear model
whereM(x, α) = (M1(x, α), M2(x, α), . . . Mn(x, α))T ∈ Rn . LetM ∈ Rn×n be the
given one step state transition matrix for the linear model. The structure of the
governing equations for both the models are given in Table1.

The solution of the non-linear model starting from x(0) as the initial state and α

as the parameter is denoted by x(k) = x(k, x(0), α). In the linear case, for simplicity
it is assumed that the matrix M is known and the solution in this case is denoted
by x(k) = x(k, x(0)). If some of the elements of M are not known in advance, we
can indeed treat these as the elements of the unknown parameter vector α. Since
the evolution of the solution x(k) depends on the initial condition x(0) and/or the
parameterα, the pair c = (xT (0), αT )T ∈ Rn × Rp is called the control and Rn × Rp

is called the control space. By definition, each point in the control space defines a
particular instant of the model and so a model, by definition, represents a class of
models, one for each allowed pair c.

The need and the rationale for parameterizing a model stems from the nature
and type of the physical phenomenon it is meant to capture. Certain natural phe-
nomenon such as the dynamics of motion of the planets around the sun has remained
invariant over time and so these models enjoy the luxury of having a small set of
known parameters. On the other hand, there are examples of natural phenomenon
that exhibit natural variation depending on the season and/or geographical location.
The problem of hurricane prediction is an example of the second kind. Hurricanes in
the south China sea, sea of Japan, Bay of Bengal and in the mid-north Atlantic have
their differences based on the configuration of land masses adjoining the respective
oceans and differing general circulation patterns. While barotropic vorticity equa-
tion is the basis of all hurricane track prediction, it is often advisable to account
for smaller-scale non-conservative process by parameterizing them in terms of large
scale forcing. Henceforth, it is assumed that we are given a class of models faithful
to the phenomenon whose parameters can be fine-tuned to capture the evolution of
the process at a given season and location in question.

The first step in the development of the model based predictive science is to
‘instantiate’ the model by estimating the unknown control. This is accomplished by
using the observations from the phenomenon of interest.
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Table 1 Model, observation and cost function

Model Linear x(k + 1) = Mx(k), x(0) - I.C.

x(k) = Mkx(0), control c =
x(0)

Non-linear x(k + 1) = M(x(k), α), x(0) -
I.C.

control c = (xT (0), αT )T

Observation Linear z(k) = Hx̄(k) + ξ(k)

Non-linear z(k) = h(x̄(k)) + ξ(k)

Observation noise ξ(k) ∼ N (0, R), temporally
uncorrelated

Covariance R ∈ Rm×m is a known SPD
matrix

Innovation ē(k) Linear ē(k) = z(k) − Hx(k)

Non-linear ē(k) = z(k) − h(x(k))

Initial error in control Linear δc = δx(0) = x̄(0) − x(0)

Non-linear δc = (δxT (0), δαT )T

δx(0) = x̄(0) − x(0), δα =
ᾱ − α

Induced variation δx(k) Linear δx(k) = x̄(k) − x(k) =
U (k)δx(0)

= Mkδx(0)

Non-linear δx(k) = x̄(k) − x(k)

δx(k) = U (k)δx(0) + V (k)δα

Cost functional Je(c) Je(c) =
1
2

∑N
k=1 ē

T (k)R−1ē(k)

2.2 Observations

Let c̄ = (x̄ T (0), ᾱT )T be the true but unknown control and let x̄(k) be the resulting
true state of the phenomenon under study. More often than not, we may not be able to
observe this true state directly, but only a (scalar or vector valued) function of it. Let
z(k) = h(x̄(k)) be the observation where z(k) ∈ Rm and h : Rn → Rm is called the
forward operator and h(x) = (h1(x), h2(x), ..., hm(x))T . In the special case, when
h(x) is a linear function, then z(k) = Hx̄(k) where H ∈ Rm×n . In general, observa-
tions are corrupted by additive, temporally uncorrelated, Gaussian noise with zero
mean and known covariance matrix R ∈ Rm×m which is assumed to be symmetric
and positive definite. Refer to Table1 for further details.
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2.3 Innovation/Forecast Error

Given the model equation and a finite set of observations, our goal is to estimate
the true but unknown control c̄. To this end, we pick an arbitrary control c and run
the model forward to obtain the solution x(k). Let h(x(k)) be the model counterpart
of the observation. The difference between z(k) and h(x(k)) is called the innova-
tion/forecast error (refer to Table1) which is a measure of the difference between the
chosen control c and the true control c̄.

2.4 Cost Functional

Since the components of the innovation vector ē(k) can be positive or negative, in the
spirit of the principles of feedback control (Appendix A), we define a scalar valued
cost functional which is the weighted sum of squared forecast errors as shown in
Table1. Consequently, we have reduced the problem of estimating the true control c̄
to one of minimizing the cost functional, Je(c) in Table1.

2.5 Statement of Problem

Given a model-forward operator combination—either (M, h) or (M, H) pair and
the second order properties of the noise corrupting the observations, an important
design question is: how to control the shape of the cost functional in the control space
to avoid flat patches by bounding the magnitude of the adjoint sensitivity (gradient
of the cost functional) away from zero by suitable placement of observations in the
spatio-temporal domain of the model.

In a recent paper, LLH (2020a), we have answered this question in the affirmative
by developing a two step procedure. In the first step, we derive a basic linear map that
maps the error in control to the adjoint sensitivity. Since this matrix G is additive in
the number of observations, it will be shown that the minimum requisite number of
observations is determined by the positive definiteness ofG—that is, by sequentially
adding observations one at a time, there comes a point when the G matrix becomes
positive definite and that determines the minimum number of observations. Further,
placement of these observations following one of the two strategies outlined in Sect. 5
and demonstrated in Sect. 6 leads to the determination of the strategywith the smallest
condition number.

Remark 1 It is important to identify the philosophical difference between the
method proposed in this study and the traditional 4D-VAR. The 4-D VAR approach
concentrates on efficiently computing the adjoint gradient that serves as input to
any of the gradient based optimization schemes which in turn iteratively proceed
toward the minimum of the cost functional. It is predicated on the key assumption
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that we are given a set of observations with a prespecified distribution in the spatio-
temporal domain that contains the model solution. In this paper, however, we are
interested in the complementary design question: how to distribute the observations
so as to avoid the occurrences of flat patches in the control space. Consequently, in
the following analysis there is no need to have any observations on hand. All that is
needed are (1) the knowledge of the (M, h) or (M, H) pair and (2) the covariance
matrix, R of the observation noise.The output of our analysis is a recommendation
for the number and placement of observations that will guarantee that norm of the
adjoint gradient is bounded away from zero. Once the number and the distribution
are known, we can then commence the iterative process of finding the minimum of
the cost functional using the forward sensitivity since all the relevant quantities -
forecast sensitivity to control, covariance of observation error, and the innovations
are in hand (Lakshmivarahan et al. 2017).

In the following sections, we further elaborate on the results in LLH (2020a) and
extend it to linear dynamics and relate the properties ofGmatrices to the observability
Gramian described in Appendix A.

3 Dynamics of Evolution of Forward Sensitivities

Our approach to the problem of placement of observations is closely linked to the
properties of the (forward) sensitivity of the model solution x(k)with respect to both
the initial condition and parameters. Refer to Table2 for the definition of U (k), the
forward sensitivity of x(k)with respect to the initial condition x(0) andV (k) thatwith
respect to the parameter α. This Table2 also contains the definitions of all related
Jacobians that control the evolution of U (k) and V (k). The linear, time varying,
discrete time dynamics ofU (k) and V (k) are given in Table3. For a derivation of the
dynamics in Table3, refer to Lakshmivarahan and Lewis (2010) and the monograph
by Lakshmivarahan et al. (2017).

4 Relation Between Adjoint Sensitivity and Initial Control
Error: Linear Case

Consider a linear model with known one step state transition matrix, M ∈ Rn×n and
the observation defined by the linear, forward operator, H ∈ Rm×n defined in Table1.
This combination is called the (M, H) pair. Recall that since M is assumed to be
known, the solution of the model is controlled only by the initial condition, c = x(0).

The model solution x̄(k) and x(k) starting from the unknown true state c̄ = x̄(0)
and an arbitrary initial state c = x(0) are given by

x̄(k) = Mkx̄(0) and x(k) = Mkx(0). (1)
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Table 2 Jacobians of model, observations and state

Model Jacobian w.r.t x Non-linear DM (k) = [ ∂Mi (x(k),α)
∂x j (k)

] ∈
Rn×n

Linear DM (k) = M ∈ Rn×n

Model Jacobian w.r.t α Non-linear Dα
M (k) = [ ∂Mi (x(k),α)

∂α j
] ∈

Rn×p

Jacobian of forward operation Non-linear Dh(k) = [ ∂hi (x(k))
∂x j (k)

] ∈ Rm×n

Linear DH (k) = H ∈ Rm×n

Forward sensitivity w.r.t x(0) Non-linear U (k) = [ ∂xi (k)
∂x j (0)

] ∈ Rn×n

Linear U (k) = [ ∂xi (k)
∂x j (0)

] = Mk

Forward sensitivity w.r.t α Non-linear V (k) = [ ∂xi (k)
∂α j

] ∈ Rn×p

Table 3 Dynamics of evolution of U (k) and V (k) where In is the identity matrix of order n

Non-linear U (k + 1) = DM (k)U (k), I.C.,U (0) = In
U (k) = DM (k − 1)DM (k − 2) . . . DM (0) = DM (k − 1 : 0)
V (k + 1) = DM (k)V (k) + Dα

M (k), I.C., V (0) = 0

Linear U (k + 1) = MU (k), I.C.,U (0) = In
U (k) = Mk

The difference δc = c̄ − c = is called the initial control error. From (1), the
induced error δx(k) in the state x(k) at time k is given by

δx(k) = x̄(k) − x(k) = Mkδc. (2a)

Alternatively, referring to Tables1 and 3, sinceU (k) = Mk , from the first principles,
we obtain the same expression

δx(k) =
[

δx(k)

δx(0)

]

δx(0) = U (k)δc = Mkδc. (2b)

Further, the expression for the innovation/forecast error in Table1 takes the form

ē(k) = z(k) − Hx(k) = H(x̄(k) − x(k)) + ξ(k) = HU (k)δc + ξ(k). (3)

Substituting (3) in the expression for the cost functional in Table1, we obtain

Je(c) = 1

2

N∑

k=1

(δc)T
[
(U (k)T H̄U (k)

]
δc = 1

2
(δc)T Gδc (4)

where the matrix G is given by
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G =
N∑

k=1

[
(U (k)T H̄U (k)

] ∈ Rn×n (5)

and H̄ = HT R−1H. Comparing this expression with that in (76) in Appendix A, it
follows that this G matrix is indeed the observability Gramian for the (M, H) pair
when the observations are noisy. Since δc = c̄ − c, by direct differentiation of (4)
we get a new expression for the adjoint gradient given by

∇c Je(c) = −Gδc. (6a)

By way of simplifying the notation, define

g = −∇c Je(c) and f = δc. (6b)

Then, (6) becomes
g = G f (7)

which is the sought after relation between the control error f and the negative of
the adjoint gradient, g. Recall that a Gramian by definition is a symmetric, positive,
semi-definite (SPSD) matrix (Meyer 2000). Consequently, if G is SPSD, then it has
a null space, Null(G) such that

dim(Null(G)) = n − dim(Range(G)) > 0

and for any vector f ∈ Null(G),G f = 0 and the adjoint gradient vanishes. Thus,
Je(c) is identically zero in the Null(G). Hence, a necessary and sufficient condition
for the existence and uniqueness of the minimizer of Je(c) is that the Gramian G in
(7) must be positive definite, that is,G is a SPDmatrix.We now explore the condition
on (M, H) pair that will guarantee that G is SPD. Since the observation covariance
R is assumed to be positive definite, so is R−1 and it is well known that there exists
an upper triangular matrix W called the square root of R−1 such that R−1 = WTW
(Chap. 9, Lewis et al. (2006). Accordingly, the expression (5) for G can be written as

G =
N∑

k=1

(EU (k))T (EU (k) (8)

where for simplicity in notation E = WH and H̄ = ET E .Define, sinceU (k) = Mk ,

L =

⎡

⎢
⎢
⎢
⎣

EM
EM2

...

EMN

⎤

⎥
⎥
⎥
⎦

∈ RNm×n . (9)
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It can be verified that
G = LT L . (10)

Again, from Appendix A, it is well known that G is SPD if and only if L is a full
rank matrix with Rank(L) = n. Stated in the other words, for a given R−1 and W ,
this rank condition on L translates into conditions on the (M, H) pair.

This condition is further examined in Appendix C. It immediately follows from
Corollary C.3 in this Appendix that L is of full rank exactly when the energy in E as
measured by its Frobenius norm, ||ET ||F is distributed across all the eigen directions
of the matrix MT . A demonstration of this condition is contained in the following:

Example 1 Consider the (M2, H2) pair from the Appendix A. In this case n = 2,
m = 1, R−1 = I = W and N = 2 where

M2 =
[
1 0
1 2

]

and H2 = [
1 0

]
.

It is easy to check that the eigenvalues of MT
2 are 1 and 2 and the corresponding

eigen vectors are (1, 0)T and ( 1√
2
, 1√

2
)T . Since HT

2 lies along the eigenvector (1, 0)T ,
it follows from Appendix C that this (M2, H2) is not observable. We further examine
the properties of the corresponding L and G.

It can be verified that L =
[
H2M2

H2M2
2

]

=
[
1 0
1 0

]

and G = LT L =
[
2 0
0 0

]

which is a rank one matrix. Let c̄ = (c̄1, c̄2)T and c = (c1, c2)T . Then δc = (c̄1 −
c1, c̄2 − c2)T and Q = (δc)T Gδc = 2(c̄1 − c1)2. Hence ∇cQ = (4(c̄1 − c1), 0)T

and Q is a constant along the second dimension and consequently this pair (M2, H2)

is not observable. We leave it to the reader to verify that if we consider a new pair
(M2, H3) with H3 = (0, 1), then

L =
[
1 2
3 4

]

and G =
[
10 14
14 20

]

which is positive definite. Hence (M2, H3) is observable.
It is instructive to examine the interplay between M and H to see why (M2, H2)

is not observable. The model equations with M2 as the state transition matrix are

x1(k + 1) = x1(k)

x2(k + 1) = x1(k) + 2x2(k).

It then follows that x2(k + 1) being a linear combination of x1(k) and x2(k) has
information on both the components but x1(k + 1) does not have any information on
x2(k). Consequently, for the (M2, H2) pair with the observation z(k) = H2x(k) =
x1(k), is not observable. But for the (M2, H3) pair, the with observation z(k) =
H3x(k) = x2(k) is observable.

We now explore the consequences of G being positive definite besides being
symmetric.



226 S. Lakshmivarahan et al.

1. From (4) it follows that Je(c) is quadratic and is unimodal in c with the minimum
located at c̄, the unknown true state. Further, it can be verified thatG is theHessian
of Je(c) at c̄, andG is additive in the number N of observations. As the number of
observations increases, while the location, c̄ of the minimum remains the same,
the curvature of Je(c) at c̄ asmeasured by theHessian increases and function Je(c)
as a whole is increasing pointwise. However, more observations also increases
the computational time.

2. A visual presentation of the intrinsic relation in (7) in given in Fig. 1. Referring
to this Fig. 1, let f̂ and ĝ be the unit vectors in the direction of f and g and are
given by

f̂ = f

|| f || , ĝ = g

||g|| = G f

||G f || . (11)

Let f ⊥ denote the direction that is orthogonal to f . Now we can resolve g into
two components, gp and g⊥ along f̂ and f ⊥ respectively where

g = gp + g⊥ (12)

that is, gp and g⊥ are the orthogonal projection of g along f̂ and f ⊥. Thus

gp =< f̂ , g > f̂ =< f̂ ,G f > f̂ =< f̂ ,G f̂ > || f || f̂ =< f̂ ,G f̂ > f (13)

where the Rayleigh coefficient

< f̂ ,G f̂ >> 0 (14)

since G is SPD. Let θ be the angle between g and f . Then

cosθ =< f̂ , ĝ >=< f̂ ,
G f

||G f || >= < f̂ ,G f̂ >

(
||G f ||
|| f || )

. (15)

Since G is symmetric

||G f ||2
|| f ||2 = < f,G2 f >

|| f ||2 =< f̂ ,G2 f̂ > . (16)

Combining, referring to Sect. B.4 in Appendix B, it can be verified that

cosθ = < f̂ ,G f̂ >

< f̂ ,G2 f̂ >
1
2

≤ 1. (17)

Hence, |θ | ≤ 900 and ||gp|| ≥ 0. That is, g has a non-negative projection along
f .
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Fig. 1 A pictorial view of
the relation between f and g
where gp is the orthogonal
projection of g onto f. That
is, gp = f̂ < f̂ g >= Pf g

3. The goal of DDA is to move the current control c towards the minimum c̄ itera-
tively by moving along the negative of the adjoint gradient. Recall that g = G f
is the negative of the adjoint gradient and the new control cn is given by

cn = c + βG f (18)

where f = c̄ − c and the scalar, β > 0 is the step length parameter. Then,

f n = c̄ − cn = (c̄ − c) − βG f = (I − βG) f. (19)

Since Je(c) is quadratic, the optimal value of the step length β (refer to Chap.10,
Lewis et al. 2006) is given by

β = gT g

gTGg
= f T G2 f

f T G3 f
. (20)

Referring to Sect. B.5 in Appendix B, it can be verified that the spectral radius of
(I − βG) are less than 1 and hence

|| f n|| < || f ||. (21)

That is, cn is closer to c̄ than c and convergence is guaranteed.We can also rewrite
(17) as follows:

cn = c + βG(c̄ − c) = (I − βG)c + βGc̄ (22)

which in turn implies that cn lies in the line segment joining c and c̄ and cn is a
convex combination of c and c̄
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5 Relation Between Adjoint Sensitivity and Initial Control
Error: Non Linear Case

Consider a given (M, h) pair where M is a non-linear one step state transition map
that defines a discrete time dynamic model and h is a non-linear forward operator.
Refer to Table1. It is assumed that the model map is known up to a set of p unknown
model parameters represented by the vectorα ∈ Rp. In addition, the initial condition,
x(0) ∈ Rn is also not known in advance. The combined vector c = (xT (0), αT )T ∈
Rn+p is called the control vector. We are given a set S = {z(ki ) : 1 ≤ i ≤ N } of N
observations at times k1 < k2 . . . kN . Our goal is to estimate the unknown control
based on S.

Assumption 1 Non-degeneracy of (M, h) pair: Referring to Table2, it is assumed
that the pair (M, h) is non-degenerate in the sense that their Jacobians DM(k) ∈
Rn×n , Dα

M(k) ∈ Rn×p and Dh(k) ∈ Rm×n respectively are full rank matrices along
the model solution for all initial conditions and allowed set of parameter values.

Let c̄ = (x̄ T (0), ᾱT )T be the true but unknown control from which the true states,
x̄(k), k > 0 are generated. Let x(k) be the model solution starting from an erroneous
control δc = (xT (0), δαT )T where

δx(0) = x̄(0) − x(0) and δα = ᾱ − α. (23)

The induced error in x(k) is then given by

δx(k) = x̄(k) − x(k). (24)

The first step is to relate δx(k) to δc. To this end, recall that from first principles, we
get (refer to Table1).

δx(k) =
[
∂x(k)

∂x(0)

]

δx(0) +
[
∂x(k)

∂α

]

δα

= U (k)δx(0) + V (k)δα, (25)

whereU (k) ∈ Rn×n and V (k) ∈ Rn×p are forward sensitivities of themodel solution
with respect to x(0) and α respectively.

Referring to the dynamics of evolution of forward sensitivities in Table3, the non-
degeneracy assumption guarantees that U(k) and V(k) are full rank matrices for all k.

Consequently, the exact expression for the innovation or forecast error is given
by (refer to Table1)

ē(k) = Z(k) − h(x(k)) = h(x̄(k)) − h(x(k)) + ξ(k). (26)
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Expanding h(x̄(k)) in the first-order Taylor series around the known forecast x(k)
using (24), we get a first-order approximation

e(k) = Dh(k)δx(k) + ξ(k) (27)

to ē(k)where Dh(k) is the Jacobian of h (Refer to Table2) which by Assumption 5.1
is a full rank matrix for all k. We hasten to add that when M and h are both linear
e(k) = ē(k) and (27) is exact. (Refer to Sect. 4). But, when M and h are strongly
nonlinear (as measured by the curvature), we can improve the approximation in (27)
by adding the second-order correction term (Lakshmivarahan et al. 2003), Chapter7
in Lewis et al. (2006).

Substituting (25) in (27) and simplifying, we get a fundamental expression that
directly relates the innovation e(k) to the initial control error δc:

e(k) = Dh(k)F(k)δc (28)

where the combined forward sensitivity matrix F(k) is given in the partitioned form
as

F(k) = [U (k), V (k)] ∈ Rn×(n+p). (29)

Now replacing ē(k) by e(k) in Je(c) inTable1,we get a corresponding local first-order
approximation, J (c) to Je(c) given by

J (c) = 1

2

N∑

k=1

[Dh(k)F(k)δC]T R−1[Dh(k)F(k)δc] = 1

2
(δC)T G(δc) (30)

where the Gramian G is a sum of the Gramians G(k) given by

G =
N∑

k=1

G(k),

G(k) = FT (k)H̄ F(k) ∈ R(n+p)×(n+p),

H̄(k) = DT
h (k)R−1Dh(k) ∈ Rn×n = ET (k)E(k)

(31)

with E(k) = WDh(k) ∈ Rm×n where W ∈ Rm×m is the square root of R−1 defined
in (8)

Remark 2 It is interesting to note that in (31) the component matrix F(k) depends
purely on the model through the forward sensitivities, U (k) and V (k) of the model
solution and the matrix H̄ depends purely on the observation system through the
Jacobian of the forward operator and covariance of the observation noise. In other
words, the product structure of the Gramian G(k) brings out the inherent natural
separability of the effect due of themodel and the observation system.Also notice that
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in computingG(k)we do not need to have any knowledge of the actual observations.
The role of actual observation comes into play only at the time of data assimilation.

The fine structure of the Gramian G(k) in (31) is given by

G(k) = FT (k)H̄ F(k) =
[
UT H̄U UT H̄V
V T H̄U V T H̄V

]

, (32)

where we have dropped the time k to avoid cluttering. Clearly,G is a sum of matrices
of the type given in (32).

Since δc = c̄ − c, by direct differentiation of (30), we get sought after expression
for the adjoint gradient.

g = G f (33)

where, as in Sect. 4,
g = −∇c J (c) and f = δc. (34)

We now examine the conditions for the existence and uniqueness of the minimum
of J (c) in (30). To this end, it is useful to divide the discussions into three cases.

Case 1: α = ᾱ and x(0) is not known: In this case, δα = 0 but δx(0) 
= 0. Hence,
the error in control δc = δx(0). Further, F(k) = U (k) and from (5.9).

G(k) = [E(k)U (k)]T [E(k)U (k)].

Now, define,

L =

⎡

⎢
⎢
⎢
⎣

E(k1)U (k1)
E(k2)U (k2)

...

E(kN )U (kN )

⎤

⎥
⎥
⎥
⎦

∈ RNm×n . (35)

It can be verified that
G = LT L ∈ Rn×n . (36)

Clearly, G in positive definite if and only if Rank(L) = n, for some N ≥ ⌈
n
m

⌉
.

Since (M, h) is non-degenerate, both E(k) andU (k) are full rankmatrices. Refer-
ring to Appendix B,

Rank(E(k)) = m ∧ n = min (m, n)

Hence, when m > n, using N = 1 observation z(k) ∈ Rm , it can be verified that

Rank(L) = Rank(E(k1)U (k1)) = n (37)

and hence G = G(k1) is positive definite. On the other hand, when m < n, referring
to the results in Sects. B.2 and B.3 in Appendix B, with N ≥ ⌈

n
m

⌉
observations,
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dependingon the functional formofMand ,wecanguarantee the positive definiteness
of G. Refer to Example 4.1 and Appendix A to get a flavor of this dependence on
the functional form of M and h.

In fact, we can develop an analogous version of the Corollary C.3 in Appendix C
which may be stated as follows. If the energy in ET (k) is distributed across all the
eigen directions ofUT (k), uniformly for all k, then L in (35) will be of full rank and
G in (36) will be positive definite.

Against this backdrop,we nowdescribe amethod for distributing the observations.
To this end, consider the column partition of U (k) given by

U (k) = [U1(k),U2(k), . . . ,Un(k)] (38)

where by definition (refer to Table2)

Ui (k) = ∂x(k)

∂xi (0)
∈ Rn (39)

is the forward sensitivity of the model solution with respect to xi (0), 0 ≤ i ≤ n.
Then, G(k) can be expressed as an outer product matrix:

G(k) =

⎡

⎢
⎢
⎢
⎣

[E(k)U1(k)]T
[E(k)U2(k)]T

...

[E(k)Un(k)]T

⎤

⎥
⎥
⎥
⎦

[
E(k)U1(k), E(k)U2(k), . . . , E(k)Un(k)

]
. (40)

Consequently, the diagonal element of G(k) is given by

Gii (k) =< E(k)Ui (k), E(k)Ui (k) >= ||E(k)Ui (k)||2. (41)

It can be verified that

tr(G(k)) =
n∑

i=1

Gii (k) =
n∑

i=1

||E(k)Ui (k)||2 = ||EU (k)||2F (42)

where ||A||2F is the Frobenius norm of A.
Accordingly, we suggest two strategies for the distribution of observations:
Strategy I – Coarse granularity: Place the required number N of observations

at times where the tr(G(k)) attains maximum values, for 1 ≤ k ≤ N .
Strategy II – Finer granularity: Place the required number N of observations at

times where the diagonal elements Gii (k) attains a maximum ‘individual’ as shown:
‘the individual diagonal’.

The use and effectiveness of these strategies are illustrated in Sect. 6. We hasten
to add that Strategy II in addition to guaranteeing that the columns are linearly
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independent, it has an additional effect of controlling the condition number of G as
illustrated in Sect. 6.

Case 2: x(0) = x̄(0) and α is not known: In this case δx(0) = 0, δα 
= 0, δC =
δα and F(k) = V (k) ∈ Rn×p. Hence,

G(k) = [E(k)V (k)]T [E(k)V (k)]. (43)

Define

L =

⎡

⎢
⎢
⎢
⎣

E(k1)F(k1)
E(k2)F(k2)

...

E(kN )F(kN )

⎤

⎥
⎥
⎥
⎦

∈ RNm×p. (44)

Then
G = LT L ∈ Rp×p. (45)

From Corollary C.4 in Appendix C, it can be verified that

(m ∧ n) + (n ∧ p) − n ≤ Rank(E(k)V (k)) ≤ m ∧ n ∧ p. (46)

Assume that p < (m ∧ n). Then, when m > n, we get

Rank(E(k)V (k)) = p

and in this case with N = ⌈
n
m

⌉ = 1 observation, L is of full rank and G = G(k1) is
positive definite. On the other hand, when m < n, it follows from (41) that

p − (n − m) ≤ Rank(E(k)V (k)) ≤ p. (47)

In this latter case, in view of the results in Sects. B.2 and B.3 in Appendix B and
depending on the functional form of M and h, with N ≤ ⌈

n
m

⌉
observations, we can

achieve positive definiteness of G. As we did in case 1, let

V (k) = [V1(k), V2(k), . . . , Vp(k)] (48)

be the column partition of V(k) where

Vi (k) = ∂x(k)

∂αi
∈ Rn (49)

is the forward sensitivity of the solution x(k) with respect to αi , 1 ≤ i ≤ p. Then,
the elements of G(k) in (39) is given by the outer product.
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G(k) =

⎡

⎢
⎢
⎢
⎣

[E(k)V1(k)]T
[E(k)V2(k)]T

...

[E(k)Vn(k)]T

⎤

⎥
⎥
⎥
⎦

[
E(k)V1(k), E(k)V2(k), . . . , E(k)Vp(k)

]
. (50)

The diagonal element Gii (k) is then given by

Gii (k) =< E(k)Vi (k), E(k)Vi (k) >= ||E(k)Vi (k)||2. (51)

Again,

tr(G(k)) =
p∑

i=1

Gii (k) =
p∑

i=1

||E(k)Vi (k)||2 = ||EV (k)||2F . (52)

We can now consider the analog of the two strategies described above to place N
observations in this case.

Case 3: x(0) 
= x̄(0) and c 
= c̄: In this case δx(0) 
= 0 and δα 
= 0 and F(k) =
[U (k), V (k)] ∈ Rn×(n+p). Hence

G(k) = [E(k)F(k)]T [E(k)F(k)] ∈ R(n+p)×(n+p) (53)

L =

⎡

⎢
⎢
⎢
⎣

E(k1)V (k1)
E(k2)V (k2)

...

E(kN )V (kN ),

⎤

⎥
⎥
⎥
⎦

∈ RNm×(n+p) (54)

and
G = LT L ∈ R(n+p)×(n+p). (55)

From Appendix C, it can be verified that (since p>0)

Rank(E(k)F(k)) = m ∧ n. (56)

Let
F(k) = [F1(k), F2(k), . . . , Fn+p(k)] (57)

be the column partition of F(k) where

Fi (k) = Ui (k), i f 1 ≤ i ≤ n, (58)

Fi (k) = Vi (k), i f n + 1 ≤ i ≤ n + p. (59)

Then, G(k) in (43) is given by the outer product
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G(k) =

⎡

⎢
⎢
⎢
⎣

[E(k)F1(k)]T
[E(k)F2(k)]T

...

[E(k)Fn+p(k)]T

⎤

⎥
⎥
⎥
⎦

[
E(k)F1(k), E(k)F2(k), . . . , E(k)Fn+p(k)

]
. (60)

The diagonal elements

Gii (k) =< E(k)Fi (k), E(k)Fi (k) >= ||E(k)Fi (k)||2 (61)

and

tr(G(k)) =
n+p∑

i=1

||E(k)Fi (k)||2 = ||E(k)F(k)||2F . (62)

Again, in the light of the discussions in Sects. B.2 and B.3 in Appendix B, we can
invoke the two strategies described above to place the required number of observa-
tions such that G is SPD.

6 Air-Sea Interaction Example

An important practical problem in air sea interaction is the return-flow phenomenon
that takes place over the Gulf of Mexico in the cool season (November – April).
During that time, cold fronts pass over the Gulf and the cold continental air is mod-
ified, warmed and moistened, through interaction with the warm sea surface.This
modified air returns to the US coastal plain over a period of 2–3 days in response
to low-level wind-direction changes associated with the eastward movement of the
attending large scale anticyclone. A good example of the low-level air modification
is seen in Fig. 2 that tracks cold air from its entry into the Gulf and its anticyclonic
turning as it heads back to the coastal plain over a period of 2d. The data displayed
here came from a return flow episode in March 1988. The relatively cold continental
air entered the Gulf just east of New Orleans, LA, and 2d later it resided over the
western Gulf just east of Brownsville, TX. The air temperature rose from 47◦F to
69◦F in the presence of sea surface temperatures that rose from 69◦F to 77◦F just
south of 25◦N latitude before it began to decrease to 72◦F at the terminal point of
the trajectory.

The example we choose is a simplification of the process displayed in Fig. 2, but
it contains essential physics–namely, a boundary condition related to sea-surface
temperature, an initial condition related to low-level air temperature when the con-
tinental air begins its journey over the Gulf, and the turbulent transport of heat from
ocean to air at the interface. In this model, the independent variable is time and the
dependent variables are air temperature and sea-surface temperature, x(t) and θ (a
constant), respectively, along with a constant turbulent-transfer coefficient κ . These
quantities are made non dimensional with scaling for temperature (1◦C) and scaling
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Fig. 2 A trajectory of low-level air that enters the Gulf just east of New Orleans and ends up
off the coast of southern Texas 2-days later is representative of air movement during return flow
events. Measurements of air temperature and seas surface temperature (SST) were made at 6-hour
intervals and the location of these measurements are denoted by sequentially numbered dots along
the trajectory. This return-flow event took place during the field phase of project GULF-MEX (Gulf
of Mexico Experiment)

for time (1 hour). The governing non dimensional equation takes the form

dx(t)

dt
= k (θ − x(t)) (63)

where x0 = x(0) is the initial temperature, turbulent transfer coefficient κ > 0, and
the physical basis for air temperature change is a forcing governed by the positive
air/sea temperature difference, θ − x(t). The solution is given by

x(t) = (x0 − θ) e−kt + θ (64)

where the control elements are (x0, θ, κ) = (10, 20, 0.25 ). In dimensional form,
these elements of control are 10◦C, 20◦C, and 0.25 h−1, respectively. The forecast is
based on non dimensional controls

(
x ′
0, θ ′, κ ′) = (11, 19, 0.30 ). The difference

between true-state evolution and forecast evolution, i. e., forecast error, is shown
in Fig. 3. Both states asymptotically approach the separate sea surface temperature
controls.

The sensitivities of the air temperature to control are given by the formulas listed
below:
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Fig. 3 The true and
forecasted state of low-level
air temperature as a function
of time

∂x

∂x0
= e−kt ,

∂x

∂θ
= 1 − e−kt ,

∂x

∂k
= t (θ − x0)e

−kt . (65)

The structure of these sensitivities based on forecast control are displayed in Fig. 4.
In practice, true controls are unknown and sensitivities are expressed in terms

of forecast controls. The strongest temperature sensitivity to x0, θ , and k occur at
early times, late times and intermediate times, respectively (relative to steady-state
at t ∼= 15 − 20h).

Based on an overlay of forecast error and the various sensitivities, those places
in time where sensitivities coincide with large error are ideal places to make obser-
vations. This assumes that the model is faithful to the phenomenon and errors are
not due to the absence of important physical processes in the governing constraint.
It is clear from evolution of sensitivities that correction of controls through data
assimilation will benefit from an observation at an early time (to recover the initial
condition), an observation at the intermediate time to recover the turbulent transfer
coefficient, and an observation at a late time to recover the sea surface temperature.

A significant advantage of G-matrix method for choosing observation sites is the
unification of sensitivities in the norm of G rather than trying to consider sensi-
tivities separately. However, the primary advantage of the G-matrix method is that
determination of observation sites that bound the gradient away from zero at the
operating point in the space of control is its independence of available observations.
The method strictly depends on forecast sensitivity to controls in a unified manner.
Another characteristic is that since G has an additive structure, the potential obser-
vation sites in space and time can be considered separately. That is, the forecast
sensitivity at a particular point in control space and at a specific time determines one
row in the sensitivity matrix, the F matrix. Thus, the G matrix can be constructed
sequentially, one row at a time, or it can be constructed with all rows considered
collectively.

Data Assimilation Experiments The Gramian G matrix is formed from the sen-
sitivity matrix F and its transpose FT . The forecast sensitivities depend on forecast
control and time and were displayed earlier in Fig. 4. These sensitivities determine
the F matrix, in this case an arbitrary observation location in time given by a 1× 3
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Fig. 4 Forecast sensitivity
to the three elements of
control: x0 (initial
temperature), θ (sea surface
temperature), and turbulent
transfer coefficient (κ)

row vector with elements given by the three sensitivities at this arbitrary time. The
G matrix is the product of FT F , a 3× 1 column vector multiplied by a 1× 3 row
vector, and G is therefore a 3× 3 matrix, each element a function of time alone.
The diagonal elements are the squares of the sensitivities–( ∂x(t)

∂x0
)
2
, ( ∂x(t)

∂θ
)
2
, ( ∂x(t)

∂κ
)
2
.

From this matrix, we consider two strategies to choose observation sites: Strategy I:
observations are chosen in the zone where Norm of G is large. In Strategy II, obser-
vations are chosen where the diagonal elements of matrix G are separately large.
For each experiment, three observation locations at times t1, t2, t3 are chosen. From
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Fig. 5 G-matrix Norm as a
function of time

these observation locations, a 3× 3 sensitivity matrix F and its transpose FT can be
found for each strategy–each row of F associated with sensitivities at one of the three
times. And from the resulting 3× 3 Gmatrix, its positive definiteness and associated
condition number can be found. As developed in foregoing theory of matrix G and
its role in locating observation sites, these characteristics of the matrix are central
to finding the observation locations that bound the cost-function gradient away from
zero.

The air temperature observations at each location site are found by using true
control in the analytic solution with added noise–normally distributed random error
withmeanvalue zero and standard deviation0.1 (non-dimensional). The cost function
is one-half the sumof squared differences between the forecasts (functions of forecast
control once the three times are specified) and the numerical values of observations
denoted by Z1(t1), Z2(t2), Z3(t3). The cost function takes the form

J (x0, θ, κ) = 0.5
3∑

i=1

( x f (ti ) − Z (ti ) )2)

where x f (ti ) and Z (ti ) are the forecast and observation, respectively, at t = ti .
The cost function is minimized using gradient-based optimization–in particular, the
Newton method that uses both gradient and Hessian at the sequence of operating
points. Minimization of this cost function leads to forecast control adjustment, iter-
ative adjustment starting at the forecast control point.

Strategy I: Norm of G used to locate observation sites The norm of G based
on the arbitrary time version of FT F is shown in Fig. 5. This unification of the three
separate sensitivity functions is intuitively expected. The structure basically cautions
against choosing all observations at the very early times and/or very late times (that
is, don’t choose all observations at t ≤ 0.1 or t ≥ 15, for example). Accordingly,
we choose observations at t=1, 4, 8. In this case, the eigenvalues of the G matrix
are 163, 0.43, and 0.09, giving a condition number ∼= 2.103. The 3-D cost function
is displayed in Fig. 6 and the gradient-based optimization locates the minimum at
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Fig. 6 Cost Function for
Strategy I (a), Observations
at t = 1, 4, 8

(x0, θ, κ) = (10.3, 21.0, 0.20) which reduced the cost function value from 0.584
to 5.10−6, essentially zero.

When observations were taken at t = 12, 13, and 14, the eigenvalues of the associ-
ated Gmatrix were 17, 0.08, and 6.10−8 giving a condition number of 3.108. The 3-D
structure of the cost function is shown in Fig. 7 where there is no obvious minimum
in the presence of contours in the form of nearly parallel sheets (Fig. 8).

Interestingly, if the observation site at t = 12 is replaced by one at t = 4, the result
is improved significantly. In this case, the eigenvalues are 101, 1.32, and 5.10−5 so
the condition number is only smaller by two orders of magnitude, but the structure
of the cost function shown in Fig. 9 clearly indicates a minimum at (x0, θ, κ) =
(14.7, 31.2, 0.03) and a reduction in cost function value from 0.84 to 0.23.

Strategy II: Observation locations based on diagonal elements of G Plots of
the diagonal elements of the arbitrary time version of FT F are shown in Fig. 10.

The striking difference in the plots is the magnitude of ( ∂x(t)
∂κ

)
2
compared to

the magnitudes of ( ∂x(t)
∂x0

)
2
and ( ∂x(t)

∂θ
)
2
–a 4 order of magnitude difference. One can

work with a different scaling of parameters to bring the squares of the sensitivities
more in line with one another, but the end result from the data assimilation step
will not change with a change of scaling. And there is no loss of information in
the present scheme where location sites are based on structure of diagonal elements

separately. Thus, we choose sites at t= 0.5 (for the structure of ( ∂x(t)
∂x0

)
2
), t =20 (for
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Fig. 7 Cost Function for Strategy I (b), Observations at t = 12, 13, 14

Fig. 8 Cost Function for Strategy 1 (c), Observations at t = 4, 13, 14
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Fig. 9 Time evolution of
matrix G’s diagonal elements
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Fig. 10 Cost Function for Strategy II, Observations at t = 0.5, 3.0, 20.0

the structure of ( ∂x(t)
∂θ

)
2
) and t = 3 (for the structure of ( ∂x(t)

∂κ
)
2
). The choices of t are

t1, t2, t3 = 0.5, 20.0 and 3.0. The eigenvalues of the G matrix are 108.09, 0.96,
and 0.45 that yields a condition number of 240.

The plot of the 3-D cost function in this case is found in Fig. 10. where
the gradient-based optimization procedure located the minimum at (x0, θ, κ) =
(9.95, 19.89, 0.27). The cost-function reduction went from 0.800 to 0.002.

7 Conclusions

The earlier work by Lakshmivarahan et al. (2020a) developed a theory for observa-
tion placement in dynamic data assimilation—a sensitivity-based methodology. The
current work is an extension of this earlier study. The difference between 4D-Var
(Four-Dimensional Data Assimilation) and this sensitivity-based approach is essen-
tially philosophical where the mechanics of the two methods have much in common
and should be viewed as complementary as opposed to competitive.

In 4D-Var, all available observations are used to determine the cost function
gradient in a most efficient manner based on the adjoint method. Once the gradient
is found at a guessed operating point in control space, the standard gradient-based
optimization schemes are used to iterate toward the cost function minimum.
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In the sensitivity-based methodology, observation locations are first identified
through examination of the G-matrix norm where elements of this matrix are func-
tions of control elements, space, and time. Specification of the forecast control ele-
ments (the first operating point in the space of control) delivers a G-Norm that is
a function of space and time. Those locations in space and time where the norm
exhibits the largest values are the best locations for observations. Note that actual
observations, if available, are not used in this first step. In the second step, observa-
tions are chosen sequentially, one at a time since the construction of the G matrix is
additive–all possible observations can be considered simultaneously, or one at a time.
The advantage of examining the G matrix in the additive mode, i.e., one at a time, is
that the condition number and positive-definiteness of the matrix can be examined
sequentially.When thematrix becomes positive definite, theminimum required num-
ber of observations is determined. Thus, the sensitivity-based methodology delivers
placement of observations and the minimum requisite number of observations that
hold promise for finding the minimum of the cost functional through gradient-based
optimization as used in 4D-VAR or another minimization-search method. The com-
plementarity of 4D-Var and the sensitivity-based method is established.

The principles underlying this sensitivity-based approach to data assimilation
are tested on an air-sea model where the interplay between an initial condition, a
boundary condition, and an empirical parameter gives substance to the assimilation
process. In a series of numerical experiments that choose observation sites with large
and small gradients about the operating points, the results convincingly show that
location choices that avoid flat zones in the gradient of the cost function deliver good
results whereas choices that allow small gradients around the operating point face
difficulty that can only be alleviated by including an observation that contributes to
a larger gradient. Further numerical investigations of the theory developed here are
contained in the companion paper by Lewis et al. (2020b) in this volume. Based on
these encouraging results, there is a current plan to use this methodology in real-time
forecasting of return flow in the Gulf of Mexico. Preliminary results for a historical
case of return flow has produced excellent results where the optimal observation
locations are found to be those over the warmest SST’s in the Gulf (Lewis et al.,
2020a, b).

In addition to the numerical experiments, this study also included a theoretical
component that investigated the intrinsic connection between the concept of Observ-
ability in control theory and dynamic data assimilation.
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Appendix A Role of observability in Estimation

A.1 Historical Background

Kalman is a series of papers (Kalman 1960a, 1963) and Kalman et al. (1969)
laid the foundations of the state space approach to modern Control/Systems The-
ory by introducing several basic concepts - controllability/reachability, observabil-
ity/constructability, realizability and stability, all related to the analysis, design and
(optimal) control of engineering systems. This Appendix provides a short summary
- a bird’s eye view, of the role of observability in state/parameter estimation problem
that is critical to both Control Theory and Dynamic Data Assimilation. For a more
elaborate treatment of these concepts and their applications refer to the two volumes
by J. L. Casti - Casti (1977) for linear analysis and Casti (1985) for the nonlinear
counterpart.

It is useful to broadly divide the problems in Control Theory into two classes:
open-loop and closed-loop/feedback control. Many of the household appliances -
washer/dryer, microwave owen, light bulb, bread toaster, to name a few, implement
the open loop control strategy where the control action is limited to a simple on or
off switch to execute a preprogrammed task.

Feedback control, on the other hand, involves comparing the current state of a
system with a prespecified reference value. If the error = (reference - current state) is
positive, the controller generates an extra input/forcing that forces the current state
towards the reference. If the error is negative, then the controller lets the system
relax to the reference, without any extra forcing. Examples of feedback controlled
devices are too numerous-the fly ball governor in SteamEngines, the pressure cooker
in the kitchen, cruise control in automobiles, thermostat control of temperature in a
building, sophisticated avionics in aircraft flight control, etc.

From the above discussion, it should now be obvious that a fundamental require-
ment in the design of feedback control relates to the ability to measure the current
state of a system being controlled. However, except in special cases, the current
state may not be directly observed but can measure only certain (scalar or vector
valued) functions - called output in Engineering and observations in geosciences,
of the state in question. Roughly speaking, observability relates to the ability to
estimate/reconstruct a past state from the future observations or outputs.

Despite its origin in Control/Systems theory, observability plays an important role
in the estimation of the initial conditions and parameters of a dynamical model that
arise within the context of the 4-dimensional variational (4-D VAR) approach to
dynamic data assimilation, which is our primary interest.
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A.2 Observability: Linear, Deterministic, Time Invariant
Model

We follow the notations laid out in the main body of the paper. Consider a linear,
deterministic, time invariant, discrete time model given by

x(k + 1) = Mx(k) (66)

with x(0) is the unknown initial condition, where M ∈ Rn×n is the one step state
transition matrix, assumed to be non-singular. Solving (66), it is obvious that

x(k) = Mkx(0). (67)

Let H ∈ Rm×n and
z(k) = Hx(k) = HMkx(0). (68)

be the noiseless observations of the state x(k).
It is assumed that we have a set S = {z(1), z(2), . . . , z(N )} of N outputs and our

goal is to estimate x(0) using S. To this end, we stack the N output vectors in a
column to create a new vector z(1 : N ) ∈ RNm given by

z(1 : k) =

⎡

⎢
⎢
⎢
⎣

z(1)
z(2)

...

z(N )

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

HM
HM2

...

H(MN )

⎤

⎥
⎥
⎥
⎦
x(0) = Lx(0) (69)

where L ∈ RNm×n . By Cayley-Hamilton theorem, since Mn can be expressed as
linear combinations of Mk for 0 ≤ k < n, we only need to consider N < n.

A necessary and sufficient condition for the existence and uniqueness of the solu-
tion x(0) satisfying (69) is that the matrix L must be a full rank matrix, that is,
rank(L) = n. In this case, we say that the matrix pair (M, H) is observable and we
can recover x(0) exactly by solving

G(N )x(0) = LT z(1 : k) (70)

where G(N ) = (LT L) ∈ Rn×n is called the observability Gramian and is given by

G(N ) =
N∑

k=1

(MT )k(HT H)Mk . (71)

Indeed, this GramianG(N ) is symmetric and positive definite when L is of full rank,
and the solution, x(0) is given by
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x(0) = (LT L)−1LT Z(1 : k) (72)

We leave it to the reader to verify the following claims by computing H =
[
HM
HM2

]

Claim 1: LetM1 =
[
1 1
0 2

]

, H1 = [
1 0

]
. ThenH1M1 = (1, 1) andH1M2

1 = (1, 3) and
[

H1M1

H1(M1)
2

]

=

[
1 1
1 3

]

which is of rank = 2 and hence (M1, H1) is observable.Refer to

Example 4.1 in Sect. 4 for more details.

Claim 2: Let M2 =
[
1 0
1 2

]

and H2 = (1, 0). Then H2M2 = (1, 0) and H2M2
2 =

(1, 0). Then

[
H2M2

H2(M2)
2

]

=

[
1 0
1 0

]

which is of rank = 1. Hence, (M2, H2) is not

observable.We leave it to the reader to verify that with H3 = (0, 1), the pair (M2, H3)

is observable.

A.3 Generalizations

For completeness, we now enlist several extensions of the above result as Remarks
with citations to the appropriate literature.

Remark 3 Linear time invariant model with noisy observation: Consider the
model in (66) but the observations are subjected to additional Gaussian noise where

z(k) = Hz(k) + ξk (73)

where ξk ∼ N (0, Rk) and ξk is temporally uncorrelated. In this case. the least squares
solution is obtained by minimizing the weighted sum of the squared errors, given by

J (x(0)) =
N∑

k=1

[z(k) − HMkx(0)]T R−1
k [z(k) − HMkx(0)]. (74)

It can be verified (Chap.5, LLD (2006)) that the minimizer x̂(0) is obtained as the
solution of the linear system.

G(N )x(0) =
N∑

k=1

MkHT R−1
k Z(k) (75)

when the observability Gramian G(N) is given by

G(N ) =
N∑

k=1

(MT )k)[HT R−1
k H ]Mk (76)
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is positive definite where (Mk)T = (MT )k .

Remark 4 Linear, deterministic, time varying system with noiseless observa-
tions: This case is treated in full in Chap.4, Casti (1977) where several examples
are also given. Extension to noisy observations can be easily obtained by following
along the strategy described in Remark 3.

Remark 5 Non-linear deterministic systems–Local observability: While the
observability analysis of linear model is intrinsically global (no constraint on x(0)),
that of nonlinear system can be viewed from a local or a global point of view. Both
of these cases are treated in Chap.5 of Casti (1985). Local analysis relies on the
observability of the first-order variational equation and applying the conditions in
Chap.4 of Casti (1977) referred to in Remark 4. To wit, let

x(k + 1) = M(x(k)) (77)

be the nonlinear model with x(0) as the initial condition and

z(k) = h(x(k)) (78)

be the observation.

One approach is to linearize (77)—(78) about a base trajectory starting from an
arbitrarily chosen initial state y(0). Let δx(0) = x(0) − y(0) be the perturbation
super imposed on y(0). Then the dynamics of δx(k) = x(k) − y(k) is given by
variational equation which is linear, time varying dynamics:

δx(k + 1) = DM(k)δx(k) (79)

with δx(0) as its initial condition and the induced variation in z(k) is given by

δz(k) = Dh(k)δx(k) (80)

where DM(k) and Dh(k) are the Jacobians of M(y(k)) and h(y(k)). It can be verified
that δx(0) can be estimated by minimizing a sum of squared error criterion similar
to (74). The resulting δx(0) is obtained by solving

G(N )δx(0) =
N∑

k=1

DT
h (k)DM(k)δz(k) (81)

where

G(N ) =
N∑

k=1

DT
M(k)[DT

h (k)Dh(k)]DM(k) (82)

is the required Gramian. Indeed, we can recover δx(0) provided G(N ) in (82) is
positive definite.
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Remark 6 Nonlinear deterministic system: Global observability: Analysis of
global observability of a non linear model is considerablymore involved and requires
concepts and tools from differential geometry. An exquisite expose’ of this topic is
contained in Casti (1985) and in Chap.7, Vidyasagar (2020). For more detailed
treatment, refer to Isidori (1985) and Nijmeijer and van der Schaft (1990).

Remark 7 Linear and non-linear filtering:Kalman in another epochmakingpaper
(Kalman (1960b)) developed a sequential method of estimating the state of a stochas-
tic, linear, dynamical model when the observations are linear but noisy, called the
Kalman filtering. Extensions to non-linear stochastic models with noisy nonlinear
observations are known since the early 1960s. Refer to Kushner (1964a, b, 1967)
and Chap.5, Casti (1985) for a quick summary of results in nonlinear filtering. The
handbook on"Nonlinear Filtering" by Crisan and Rozovskii contains a comprehen-
sive treatment of this and related topics.

Appendix B Results from matrix theory

For completeness and ease of reference,we collect a set of results fromMatrix Theory
that are basic to the developments in this paper. For detailed proofs refer to Meyer
(2000); Bapat (2012).

B.1 Solution of linear systems: Let A ∈ Rm×n be a linear map from Rn to Rm .
The range of A, denoted by Range(A), is the subspace of Rm generated by the linear
combination of the columns of A. Thus, Range(A) ⊆ Rm and

Range(A) = {y ∈ Rm |y = Ax , x ∈ Rn}. (83)

The null space of A, denoted by Null(A) is the set of vectors in Rn annihilated
by A. That is, Null(A) ⊆ Rn and

Null(A) = {x ∈ Rn|Ax = 0}. (84)

The rank of A, denoted by Rank(A), is the number of linearly independent columns
or equivalent by the number of linearly independent rows of A. Clearly,

Rank(A) ≤ m ∧ n = min (m, n) (85)

If equality holds in (85), then A is said to be of full rank, otherwise, it is rank deficient.
In the following, we catalog the conditions for the existence and uniqueness of the
solution of the linear system.

Ax = b (86)

where x ∈ Rn and b ∈ Rm . The system (86), given A and b, is said to be consistent
if there exists a vector x ∈ Rn that satisfies (86), otherwise, it is inconsistent. For



Observability Gramian and Its Role in the Placement of Observations … 249

example, the homogeneous system.

Ax = 0 (87)

is always consistent, since x = 0 satisfies it. But the non-homogeneous system in
(86), depending on the properties - relative location of b in Rm , may or may not be
consistent.

If the system is consistent (b ∈ Range (A)), then we can talk about the solution
in the traditional sense where the residual, r(x) = b − Ax = 0. On the other hand, if
(86) is inconsistent (b /∈ Range (A)), then we have to contend with the so called least
squares solution—that minimizes the square of the length of the non-zero residual
vector r(x).

The functional form and uniqueness of the solution of (86) critically depends on
two factors: (a) relative values ofm and n and (b) the rank of A. For brevity, we only
consider the case when A is of full rank.

Case B.1.1: Let m = n and Rank(A) = n. Then, A is non-singular and the solu-
tion of (86) is given by

x = A−1b. (88)

Case B.1.2: Let m > n and Rank(A) = n. In this case unique solution of (86) is
given by

x = A+b (89)

where
A+ = (AT A)−1AT ∈ Rn×m (90)

called the generalized or Moore-Penrose inverse of A that satisfies the following
conditions:

AA+A = A, (A+A)T = A+A

A+AA+ = A+, (AA+)T = AA+.
(91)

The matrices AT A ∈ Rn×n and AAT ∈ Rm×m are called Gramians of A. When
Rank(A) = n, (AT A) is a symmetric and positive definite matrix. It can be verified
that A+A = In and AA+ = A(AT A)−1AT is the orthogonal projection matrix onto
the range of A.

Case B.1.3: Let m < n and Rank(A) = m. In this case, there are infinitely many
solutions of (86) and the one with minimum norm is given by

x = A+b (92)

where
A+ = AT (AAT )−1 ∈ Rn×m (93)
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is the generalized inverse of A that satisfy (91). It can be verified AA+ = Im and
A+A = AT (AAT )−1A is the orthogonal projection onto the range of AT .

B.2: Rank of the partitioned matrix G: We start by stating a general result
relating to partitioned symmetric matrices. Let

S =
[
A B
BT C

]

(94)

be a symmetric matrix with both A ∈ Rq×q andC ∈ Rr×r symmetric and B ∈ Rp×q .
Let A be non-singular. If IK denotes an identity matrix of order K , then

P =
[

Ip 0
−BT A−1 Iq

]

(95)

is non-singular, since Det (P) = 1. By direct multiplication, it can be verified that

PSPT =
[
A 0
0 C − BT A−1B.

]

(96)

whereC − BT A−1B is called the Schur Complement of A in S. The following claim
is easily proved. (Chap. 3, Bapat (2012))
Claim

1. If S is SPD, then so is C − BT A−1B.
2. Let S be symmetric. If S is positive definite then so are A and C − BT A−1B
3. Det (S) = Det (A)Det (C − BT A−1B).

Now consider the symmetric matrix G ∈ R(n+p)×(n+p) in its partitioned form
given by

G =
[
UT H̄U UT H̄V
V T H̄U V T H̄V .

]

. (97)

Recall that H̄ = DT
h R

−1Dh is symmetric where Dh ∈ Rm×n and R−1 ∈ Rm×m is
assumed to be non-singular. Under the assumptions m ≥ n and Dh is of full rank, it
follows that H̄ is non-singular. If in addition,U is non-singular then, A = UT H̄U is
symmetric, positive definite and hence non-singular. Then identifying B = UT H̄V
and C = V T H̄V , it can be verified that the Schur Complement of A = UT H̄U in
G reduces to a zero matrix of size r × r . That is, the matrix on the right hand side of
(B.14), becomes

PGPT =
[
UT H̄U 0

0 0

]

(98)

which is a matrix of rank n. That is, G(k) ∈ R(n+p)×(n+p) of the forward sensitivity
matrices U (k), V (k) and the Jacobian Dh(k) at time k, is a rank deficient matrix of
rank n.
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B.3. Rank of the sum
∑t

k=1 G(k), for some integer t>0:
Let G ∈ R(n+p)×(n+p) be a symmetric matrix of rank n. Then there exists are

orthogonal matrix Q ∈ R(n+p)×(n+p) such that

QTGQ =
[
D 0
0 0

]

(99)

where QQT = QT Q = In+p, D = diag(α1, α2, . . . , αn) with

α1 ≥ α2 ≥ . . . ≥ αn > 0 (100)

Now we can build a matrix Ḡ as

Ḡ = Q

[
0 0
0 Ip

]

QT . (101)

Then, it can be verified that

QT (G + Ḡ)Q =
[
D 0
0 Ip

]

Hence,

(G + Ḡ) = Q

[
D 0
0 Ip

]

QT

is a full rank matrix of rank(n + p). Stated in other words, by adding a suitably
designed matrix Ḡ of rank p to the matrix G, we can create a matrix of full rank.

Recall that Gramian G by definition is SPSD and in general Null(G) 
= ∅ and
DIM(Range(G)) + DIM(Null(G)) = n.

B.4. Verification of (4.17):
If G is SPD, then there exists an eigen decomposition of G given by

G = QDQT (102)

where Q is an orthogonal matrix of eigenvectors and D = diag(d1, d2, d3, . . . , dn)
is a diagonal matrix of the corresponding eigenvalues of Gwhere QT Q = QQT = I
and

d1 ≥ d2 . . . ≥ dn > 0. (103)

It then follows from (102) that for k ≥ 1

Gk = QDkQT . (104)

Now define η = QT f̂ . Then, since Q is orthogonal, we get
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n∑

i=1

η2
i = ||η||2 = ||QT f̂ ||2 = || f̂ ||2 = 1. (105)

Thus, we can interpret {η2
i } as the probability distribution of a random variable d

where
Prob[d = di ] = η2

i (106)

Consequently,

< f̂ ,Gk f̂ >=< f̂ , QDkQT f̂ >=< η, Dkη >=
∑

η2
i d

k
i = μk (107)

the kth (non-central) moment of the random variable d. Since

Var(d) = μ2 − μ2
1 ≥ 0,

we get μ1/2
2 ≥ μ1. Consequently, from

μ1

μ
1/2
2

= < f̂ ,G f̂ >

< f̂ ,G2 f̂ >

1/2

≤ 1,

claim (17) follows.
B.5. Spectral Radius of (I − βG) in (19)
From (20), using (104) and (107), we get

β = f T G2 f

f T G3 f
= f̂ T G2 f̂

f̂ T G3 f̂
=

∑
η2
i d

2
i∑

η2
i d

3
i

. (108)

Hence, using (108), from

[I − βG] = [I − βQDQT ] = Q[I − βD]QT ,

it can be verfied that the eigenvalues of [I − βG] are

1 − βdi = 1 − di

∑
η2
i d

2
i∑

η2
i d

3
i

(109)

The spectral radius, inview of (103), is

ρ(I − βG) = max{1 − di

∑
η2
i d

2
i∑

η2
i d

3
i

} ≤ 1 − dn

∑
η2
i d

2
i∑

η2
i d

3
i

≤ 1 (110)

since
dn

∑
η2
i d

2
i ≤

∑
η2
i d

3
i .
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Appendix C Conditions for the Matrix L in (9) to be of full
rank

Let A ∈ Rn×n be a non-singular, diagonalizable matrix. Let Q = [q1, q2, . . . , qn] ∈
Rn×n and D = Dia(d1, d2, . . . , dn) ∈ Rn×n be the matrices of eigenvectors and the
corresponding eigenvalues of A. Then, by definition

AQ = QD (111)

and the columns of Q are linearly independent and constitute a basis for Rn .
Let b ∈ Rn and define the Krylov sequence.

Kp(A, b) = {b, Ab, A2b, . . . , Ap−1b} (112)

for 1 ≤ p ≤ n. The space generated by the columns in Kp(A, b) is called Krylov
subspace and is denoted by Span{Kp(A, b)}. Let

[Kp(A, b)] = [b, Ab, A2b, . . . , Ap−1b] ∈ Rn×p (113)

be corresponding Krylov matrix. Let

Sk = {qi1 , qi2 , . . . , qik } (114)

be a k-subset of eigenvectors of A, for 1 ≤ k ≤ n. Then, DIM(Span(Sk)) = k and
the Span{Sk} is an invariant subspace of A. That is, if b ∈ Span{Sk} then so is Ab.
It can be verified that if y ∈ Sk , that is, y an eigenvector of A then, from

Span{Kp(A, y)} = Span{y} (115)

it follows that the dimension of the Krylov subspace is one. Stated in words, if b is an
eigenvector of A, since the vector Ab is a constant multiple of b, the the dimension
of the Krylov subspace in (115) is one.

Let the energy in a vector b ∈ Rn , be measured by the square of its norm:

||b||2 =
n∑

j=1

b2j . (116)

Let b̄ ∈ Rn be the new coordinates representation of b in the new basis defined by
the eigenvectors of A. That is

b = Qb̄ (117)

If, for some 1 ≤ j ≤ n, b̄ j = 0, then we say that b has no energy along the j th eigen
direction q j of A. That is, b belongs to the invariant subspace of dimension (n − 1)
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defined by the rest of all eigenvectors, qi 
= q j . Stated in other words, if b̄ has no
zero (row) element, then the energy in b is distributed across all the eigen directions
of A. This discussion leads to the following:

Property C.1: Expanding Krylov Subspace:
If b = Qb̄ is such that b̄ has no zero (row) element, then for 1 ≤ p ≤ n

DI M{Span{Kp(A, b)}} = p. (118)

By way of generalizing the above property, now consider

B = [b1, b2, . . . , bm] ∈ Rn×m (119)

a full rank matrix for some 1 ≤ m ≤ n. Then, we can extend the Krylov subspace
using B in place of b as

Kp(A, B) = {B, AB, A2B, . . . , Ap−1B}. (120)

Clearly
Span{Kp(A, B)} = ∪m

j=1SpanKp(A, b j ). (121)

Let B̄ ∈ Rn×m be such that
B = QB̄ (122)

and let B̄ has no rows of zeros. Then, it can be easily verified that the total energy in
B as measured by the Frobenius norm

||B||2F =
m∑

j=1

||b j ||2

is distributed across all eigen directions of A. This leads to the following:
Property C.2: Expanding Krylov subspace: If B ∈ Rn×n is such that B = QB̄

and B̄ has no zero rows, then

DIM{Span{Kp(A, B)}} = mp (123)

for 1 ≤ p ≤ � n
m �. That is, for p = � n

m �, the dimension of the Krylov subspace
Kp(A, b) is n.

Obserability of (M, H)- pair: Now consider the observability matrix L ∈
RNm×n given in (4.9). Then LT is related to a Krylov matrix given by

LT = MT KN (MT , ET ) (124)

where
KN (MT , ET ) = [ET , MT ET , (MT )2ET , . . . , (MT )N−1ET ]. (125)
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Then Property C.2 immediately suggests an answer to the question: when is L in
(4.9) a full rank matrix?.

Corollary 1 Let ET be such that its total energy is distributed across all of the eigen
directions of MT . Then, setting p = N, A = MT , and B = ET in (123), it follows
from (123) that

Rank(KN (MT , ET )) = Nm (126)

for some N in the range 1 ≤ N ≤ � n
m �

Corollary 2 Rank of product matrices (Meyer (2000), Chap.4) If B ∈ Rm×n and
C ∈ Rn×p then

Rank(B) + Rank(C) − n ≤ Rank(BC) ≤ Rank(B) ∧ Rank(C). (127)

Using the fact that Rank(MT ) = Rank(M), it immediately follows that the Rank of
KN (MT , ET ) for N = � n

m � is n. Hence, by the Property C.4, the observability matrix
LT and its transpose, L are of full rank. Consequently, the observability Gramian
G = LT L in (10) is symmetric and positive definite (SPD). Stated in other words, the
condition for G to be SPD rests entirely on the choice of the E (with respect to M)
in the sense that the distribution of the total energy in all of the columns of ET must
be spread across all the eigen directions of MT . Clearly the choice of E depends on
the forward operator H and the noise covariance, R as defined in (8)-(9). From (9)
and (10), recall that

G = LT L =
N∑

k=1

G(k) (128)

where
G(k) = (EMk)T (EMK ). (129)

Now, column partition EMK as

EMK = [η1(k),η2(k), . . . ,ηn(k)] (130)

where ηi (k) ∈ Rm. Then, it can be verified that the (i, j)th element of the outer
product matrix G(k) is given by

[G(k)]i j =< ηi (k),η j (k) > . (131)

Consequently, the diagonal elements of G are given by

[G]i i =
N∑

k=1

||ηi (k)||2. (132)
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Special Case: Setting H = In , and R = In , we get E = I and G(k) = (MT )kMk =
UT (k)U (k). In this case, ηi (k) = Ui (k), the i th column of the forward sensitivity
matrix U (k). Consequently,

[G]i i =
N∑

k=1

||Ui (k)||2. (133)

Now recall that Ui (k) = ∂x(k)
∂xi (0)

∈ Rn is the vector of sensitivity of x(k) with respect
to the i th component of the initial condition. From (133) it immediately follows that,
by placing the observations where the sum in (133) is a maximum with respect to k,
we can indeed control the condition number of G.
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Placement of Observations
for Variational Data Assimilation:
Application to Burgers’ Equation
and Seiche Phenomenon

John M. Lewis, S. Lakshmivarahan, and S. K. R. Maryada

Abstract Observation placement in variational data assimilation determines cost
function structure in the space of control. The presence of flatness in the cost
function’s gradient presents problems in the iterative passage to the cost function’s
minimum.Determination of observation placement that avoids these flat zones gener-
ally permits expeditious passage to the cost function minimum. A contribution to
this volume (Lakshmivarahan S, Lewis JM, Maryada SKR (2020b) Observability
Gramian and its role in the placement of observations in dynamical data assimila-
tion. In: Data assimilation for atmospheric, oceanic, and hydrologic applications.
Springer Pub. Co., New York) has theoretically determined methodology that iden-
tifies observation placement that avoids these flat zones. The placement relies on the
norm of a semi-definite positive Gramian matrix G—a matrix derived from forecast
sensitivity to control. Two dynamical systems are tested with this methodology: (1)
Burgers’ Equation, and (2) Seiche phenomenon, the normal mode oscillations in
lakes. Analytic solutions to both constraints have been found. For each dynamical
system, two sets of observation placement are considered: one where observations
locations correspond to placeswhere the normofG is large, and onewhere the norm is
small. Results indicate that observation placement where the norm of Gwas large led
to well-defined structure of the cost function at the operating point in control space,
a structure where the cost-function gradient was bound away from zero, whereas
choices for observation locations where the norm of G was small-magnitude led
to troublesome cost function structure, a structure where small-magnitude gradient
presented difficulty in advancing toward the cost-function minimum.

1 Introduction

In Lakshmivarahan et al. (2020a), guidance on placement of observations in data
assimilation has been presented with the goal of correcting model controls which
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in turn minimize the squared distance between forecast and observations. Central to
the theme is realization that observation placement directly determines cost function
structure in the space of control. And a structure that avoids flatness in the cost-
function gradient about the operating point in control space allows for more assured
passage to the cost-function minimum.

Determination of these optimal placements depends on forecast sensitivity to
control. In fact, overlay of forecast error and forecast sensitivity to control intuitively
identifies places where observations are most valuable. But in the absence of suffi-
cient observations to identify these places, a method that depends only on forecast
sensitivity is most valuable. In effect, an overlay of forecast sensitivity to control and
forecast error in the form of a first-order Taylor expansion about control has been
developed in Lakshmivarahan et al. (2020a). The process relies on the structure of
a positive semi-definite Gramian matrix labeled G that is derived from the forecast
sensitivity matrix and its transpose. It is shown that the cost function gradient in
control space is the product of G and δc where δc is the distance between the yet
unknown optimal control and the forecast control. The norm of G identifies locations
in space and time that avoid flatness in the cost function gradient about the oper-
ating point in control space and thereby supports passage toward the cost-function
minimum by gradient-based optimization techniques. The mathematical foundation
underpinning the methodology is found in Lakshmivarahan et al. (2020a, Sect. 4).

The strategy described above is applied to: (1) Burgers’ Equation where a sinu-
soidal wave steepens to an infinite slope in a relatively short period of time, and
(2) the normal mode oscillation of gravity waves in a lake (seiche) where nonlinear
interaction between control elements presents a challenge.

2 Burgers’ Equation

Johannes Burgers (1895–1981) was a physicist who studied under Paul Ehrenfest
at the University of Leiden and completed a dissertation on the Rutherford–Bohr
model of the atom in 1918 (Burgers 1975). He professionally migrated from atomic
physics into fluid dynamics in October 1918 when he accepted a newly created
faculty position in fluid mechanics at Technical University of Delft. He became
especially interested in turbulence, both theoretical and experimental, and is credited
with using simplified models of turbulence to more fundamentally understand its
behavior (Burgers 1939). The well-known equation that bears his name takes the
form

∂q

∂t
+ q

∂q

∂x
= v

∂

∂x

(
∂q

∂x

)
, (1)
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an equation that describes nonlinear advection of the quantity q while being subjected
to turbulent diffusion. This dynamical equation has enjoyed widespread use in fluid-
flow problems and applied mathematics (for example, see Benton and Platzman
1972). Burgers immigrated to the United States from the Netherlands in 1955 and
worked at the Institute for Fluid Mechanics and Applied Mathematics, University
of Maryland, for the remainder of his life. A photograph of Burgers working at the
institute is shown in Fig. 1.

In our study of observation placement to correct errors in dynamical prediction,
we use the form of Burgers’ Equation that follows:

Fig. 1 Photograph of J. M. Burgers working at the Institute for Fluid Dynamics and Applied
Mathematics, University of Maryland (Courtesy Univ. Maryland)
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∂q

∂t
+ b sin(x)

∂q

∂x
= a q. (2)

where a and b are positive constants and the solution domain is 0 ≤ x ≤ 2 π and
t ≥ 0.The linear termon the right-hand-side of this equation is consistentwithEq. (1)
when the solution is a sinusoidal function, but a > 0 leads to amplification instead
of damping. This equation is quasi-linear in view of its advection velocity b sin(x),
a function of the spatial coordinate x instead of a strict function of q(x, t). The
analytic solution to this equation is found by the method of characteristics (Carrier
and Pearson 1976) and takes the form

q(x, t) = 2 b sin(x)e(a+b)t

1 + e2bt + cos(x)
(
e2bt − 1

) (3)

where the initial condition is q(x0, 0) = b sin(x0), 0 ≤ x0 ≤ 2π , and the
characteristics are given by

1 + cos(x)

1 − cos(x)
e2bt = 1 + cos(x0)

1 − cos(x0)
. (4)

A plot of five characteristics is shown in Fig. 2 when a = 0.1 and b = 1. These
characteristics emanate from x0 = π

2 ,
3π
4 , π , 5π

4 , and 3π
2 . They present a physical

view of the problem where, for example, the characteristic emanating from x0 = π
2

Fig. 2 Five characteristics for the Burgers’ equation constraint
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Fig. 3 Evolution of q(x) at 4 times proceeding from the sine curve at t = 0 to the progressively
steeper and amplifying curves at t = 1, 2, and 3

indicates that the crest of the sinewavewith amplitude b sin
(

π
2

) = b at t= 0moves to
a value of x → π by t = 4. Analogously, the characteristic emanating from x0 = 3π

4

with amplitude b sin
(
3π
4

) =
√
2
2 b moves just to the right of the crest position at t

= 4. And along each characteristic the value of q(x, t) = b sin(x0)eat indicating
amplification of its value at t = 0. The interpretation is progression and steepening
of the initial sine wave as it moves from left and right toward x = π through the
action of advection and amplification where the slope of the wave at x = π → ∞
as time → ∞. This effect can be seen with the plot of the solution at various times
as shown in Fig. 3.

3 Data Assimilation Experiment with Burgers’ Equation

Using Eq. (2) and it closed-form solution Eq. (3) as constraint, a variational data
assimilation problem is posed where the central theme is choice of observation loca-
tions that hold promise for creating a cost function whose gradient is bounded away
from zero.

In the experiments to follow, the true controls are chosen to be (a ∗ , b∗) =
(0.10, 1.00) while forecast controls are (a, b) = (0.20, 0.80). Observations are
created from true controls with added normally distributed noise with zero mean
and standard deviation equal to 10% of the true state. Determination of observation
placement is based on locating the values of x and t where the norm of matrix G is
greatest. For this task the sensitivities are needed. These are displayed in Fig. 4. The
elements of this 2 × 2 G matrix take the form
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Fig. 4 Forecast sensitivity to controls a and b at t = 2

G =
⎡
⎣

(
∂q
∂a

)2
∂q
∂a

∂q
∂b

∂q
∂b

∂q
∂a

(
∂q
∂b

)2

⎤
⎦, (5)

functions of controls a and b, space (x), time (t). G’s norm is the sum of the squared
elements. The G norm is a function of x, t after forecast controls a, b are substituted
into the expression and it is displayed in Fig. 5. This norm is symmetric about x = π

with lobes of largest values aside the symmetry point. The values are very small in
the vicinity of x = 0, π , and 2π .

We create observations at t = 2, a time when the crest of the initial sine curve
has steepened, amplified and moved from x = π to x = 2.74. The structure of
norm G at t = 2 is displayed in Fig. 6. The two spikes in this plot are positioned
very close to the crest and trough of the wave at t = 2. The G-norm values drop off
rapidly in both directions away from these spike maxima. Norm values are small at
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Fig. 5 G-Norm for Burgers’
equation as function of (x, t)
where details of contour
structure are shown in the
lower panel

values x < 2, x > 4.5 and values of x adjoining the symmetry point. Two sets of
observations are separately examined: set I in a range of x-values where G-norm is
very large, and set II in a zone where G-norm has small values. Since observations
will be made at t = 2, forecasts at that time are functions of x and the controls
a and b. Three observations are created for each set. The forecast takes the form
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Fig. 6 The G-Norm for Burgers’ equation is shown as a function of x at t = 2

q(x , 2) = 2b sin(x)e2(a+b)

1 + e4b + cos(x)
(
e4b − 1

) (6)

The cost functional J follows

J (a, b) = {
(q(x1, 2) − Obs1)

2 + (q(x2, 2) − Obs2)
2 + (q(x3, 2) − Obs3)

2
}
(7)

where observations Obsi 1 ≤ i ≤ 3 are known from the true control and added
noise.

Observations for set I are chosen to be x1 = 4π
5 , x2 = 9π

10 , x3 = 19π
20 . Obser-

vations for set II are located at x1 = 0.57 π (= 1.8), x2 = 0.64 π (= 2.0), x3 =
0.70 π (= 2.2). These locations reside in that zone where G-norm is relatively small
but on the rise. Contours of J when observation set I is used in the data assim-
ilation exercise are shown in Fig. 7. Gradient-base optimization, specifically the
Newton method, is used to locate the minimum at (a, b) = (0.121, 0.928) rela-
tively close to the true controls. For set set II observations, the minimum is found at
(a, b) = (0.293, 0.577) quite far from true control. When observations are chosen in
the zone below x = 2, the results are physically unreasonable with very large values
of both parameters.

4 Seiche Dynamics

Lakewater set inmotion due to strongwinds and downdrafts from squall line passage
or strong gusty winds accompanying a front can lead to a phenomenon called seiche,
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Fig. 7 Cost function
contours for Burgers’
equation constraint when
observations were chosen at
(x, t) = (x, 2) locations where
G-Norm had large values

a word in the French language meaning “to sway back and forth”. It is a most
appropriate word to describe the oscillations of lake water after being disturbed by
external forces such as those mentioned. The wavelengths and periods of oscillation
fundamentally depend on lake dimensions. Once started, these oscillations continue
for relatively long periods of time just like a pendulum.

Investigation of these oscillations in an elongated rectangular lake (length �
breadth) is a good way to gain fundamental understanding of the phenomenon. The
dynamics underpinning these oscillations has been clearly presented in the dynamic
oceanography textbook (Proudman 1963, Chap. XI). Let the x-axis measure distance
along the lake’s length (x= 0 and x=L at lake’s beginning and end). No lake is in the
exact shape of an exact rectangular solid, but we assume it can be well approximated
by mean dimensions: mean length L, mean breadth b, and mean depth D̄ where
we will assume that the length and breadth can be determined with great accuracy
but where the depth varies significantly along the x-axis and is subject to error in its
measurement. This inaccuracywill come into play in the data assimilation component
of the problem. Governing dynamic equations for the seiche, coupled equations for
momentum and mass conservation take the form

∂Q

∂t
= −gb D̄

∂h

∂x
(8)

∂h

∂t
= −1

b

∂Q

∂x
, (9)

respectively, where physical variables are
Q (x, t): flux of water through the cross section of area bD̄
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u (x, t): horizontal current related to mass flux by Q = bD̄u (x, t)
h (x, t): perturbation in water level relative to the mean depth D̄.

T1: primary period of oscillation (called the Merian period), T1 = 2L
/√

gD̄, g

the acceleration of gravity.
Since no transport of water takes place at the lake’s end points in the x-direction,

the boundary conditions on flux are Q(0) = Q(L) = 0 and the initial condition is
h(x , 0) = h0. It is assumed that the initiating external force causes the lake’s surface
to deviate from themean height, and in turn this creates a horizontal pressure gradient
force within the water mass that initiates a horizontal current. Thus, at t = 0, there
is an initial height perturbation h0 that generates currents at times t > 0.

The solution to the coupled equations takes the form

Q = b
√
gD̄h0 sin

rπx

L
sin

2π t

T

or u(x , t) = h0

√
g

D̄
sin

rπx

L
sin

2π t

T

and h(x , t) = h0 cos
rπx

L
cos

2π t

T
(10)

where T = Tr ≡ T1
r , r an integer that determines the various modes of oscillation;

r = 1 a unimodal solution (Merian mode), r = 2 a bimodal solution etc. For each
mode, there are specific places where no rise or fall of water at the lake’s surface takes
place—along lines perpendicular to the x-axis. There are r such lines for the r thmode
and they are found at values of x where cos rπx

L vanishes. Graphs of time-dependent
heights and currents for the unimodal (r = 1) and bimodal (r = 2) oscillations are
shown in Figs. 8 and 9. Generally all modes of oscillation are active once the lake
is disturbed, and since the governing equations are linear, the complete solution
is the sum of the various modes. However, the initial height of each mode must
be determined by a Fourier decomposition of the lake’s spatial structure at time
of disturbance initiation. This problem bears a strong similarity to the vibrating
string problem encountered in mechanics. The boundary conditions, for the string
connected at both ends, and in this problem where the flux vanishes at both ends,
permits only a select set of wavelengths and periods called normal modes. Since all
circumstances of the r-mode motion are assumed to repeat after intervals of time
T = Tr , it is sufficient to consider one interval of time from t = 0 to Tr for the rth
mode.

When solutions to the seiche equations are used as constraints in the variational
data assimilation problem, the variables must be made non-dimensional so that mini-
mization of the cost function is not biased. That is, the squared terms in the cost func-
tion should have the same order of magnitude; otherwise, the largest terms undergo
more adjustment than the smaller terms in a minimization process. The hat symbol
( )
∧

will be used to denote non-dimensional forms of variables. The non-dimensional
forms follow:
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Fig. 8 The evolution of unimodal water height and currents in a rectangular lake that extends from
x̂ = 0 to x̂ = 1 (nondimensional length scale) at equally spaced intervals of time

(
�t̂ = 1/4

)
covering the period of seiche oscillation from t̂ = 0 to t̂ = 1 (dimensional period = 3 h). Currents
are displayed as vectors pointing in the direction of water movement and magnitude proportional
to arrow length where the dot (·) indicates current = 0. The dimensional height of the wave is 4 ft
and the dimensional current is 4 f t · s−1
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Fig. 9 Same description as found for Fig. 8 except the dimensional period is 3/2 h

h(x , t) = H̄ ĥ
(
x̂ , t̂

)
u(x , t) = Ū û

(
x̂ , t̂

)
D = D̄d̂

h0 = H̄ ĥ0
x = Lx̂

t = Tr t̂ (11)
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where

Tr = 2L

r
√
gD̄

When the estimated mean depth of water is different from D̄, call it D as defined
above with d̂ 
= 1, then the period of oscillation is not Tr , but

T = 2L

r
√
gD̄d̂

= Tr√
d̂

(12)

Governing equations for height and current become

ĥ
(
x̂ , t̂

) = ĥ0 cos
(
rπ x̂

)
cos

(
2π t̂

√
d̂
)

û
(
x̄ , t̄

) = N
ĥ0√
d̂
sin

(
rπ x̂

)
sin

(
2π t̂

√
d̂
)

(13)

where the non-dimensional coefficient N = H̄
Ū

√
g
D̄
.

4.1 Data Assimilation for Seiche

We assume the constraint is the unimodal oscillation (r = 1). Let us specify themean
values used in the non-dimensional process:

H̄ = 4 f t

Ū = 4 f t · s−1

D̄ = 50 fathoms (ftm) = 300 f t

L = 100 mi

T = 2L√
gD̄

= 3 hours (14)

The equations governing the oscillation take the form of Eq. (13) with r = 1.
Errors in height and current prediction are due to inaccuracy in the lakes mean

depth and amplitude of the initial height perturbation. All other parameters are known

exactly. Thus, the control vector takes the form
(
C = ĥ0, d̂

)
. Both control-vector

components are the order of 1. We will assume the true control vector is Ctrue =
(1, 1). Thus, the dimensional true initial height amplitude is 4 feet and the true mean
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depth is 50 ftm. The forecast control is erroneous and given by C f cst = (0.9, 1.1)
so that the initial dimensional estimates of forecast control are 3.6 feet and 55 ftm.

To determine the optimal placement of observations, we need to calculate the
forecast sensitivity to the elements of control, viz., ∂ ĥ

∂ ĥ0
, ∂ û

∂ ĥ0
, ∂ ĥ

∂ d̂
, ∂ û

∂ d̂
. And from

these sensitivities we can calculate the 2× 2Gramianmatrix G using forecast control
C f cst as follows:

G =

⎡
⎢⎢⎣

[(
∂ ĥ
∂ ĥ0

)2 +
(

∂ û
∂ ĥ0

)2
] [

∂ ĥ
∂ ĥ0

∂ ĥ
∂ d̂

+ ∂ û
∂ ĥ0

∂ û
∂ d̂

]
[

∂ ĥ
∂ d̂

∂ ĥ
∂ ĥ0

+ ∂ û
∂ d̂

∂ û
∂ ĥ0

] [(
∂ ĥ
∂ d̂

)2 +
(

∂ û
∂ d̂

)2
]

⎤
⎥⎥⎦ (15)

The G-norm as a function of (x, t) is displayed in Fig. 10. The norm is symmetric
about x̂ = 0.5, lake’s midpoint 50 miles from each end of the lake, and it features
maxima near the lakes end points x̂ = 0, 1 (x = 0 and 100 miles dimensionally)
and at t̂ = 3/4 (2.25 h dimensionally). Based on these results, one set of observations
will be taken at t̂ = 3/4 and near one end of the lake, near x̂ = 0, and the associated
data assimilation experiment is labeled Experiment I. The other set of observations
will be taken at the same time but near the center of the lake where small values of G-
normare found and the associated data assimilation experiment is labeledExperiment
II. To get a better view of G-norm at the planned observation time t̂ = 3/4, Fig. 11
shows G-norm over the length of the lake at this time.

Experiment I takes observations at x = 0.1, 0.2, and 0.3 (height observations at
0.1 and 0.3 and a current observation at t= 0.2). In Experiment II, observations were
taken at x = 0.48, 0.50, and 0.52, again with height observations at bounding values
of x and a current observation at the mid-point in x. Normally distributed random
error is added to observations—zero mean and standard deviation equal to 10% of
the typical values of height and current. The cost function for Experiment I is shown
in Fig. 12 where the Newton method found the minimum at control point CExp I =
(1.106, 0.998). The cost function for Experiment II is shown in Fig. 13 where the
Newton method found the minimum at control point CExp I I = (1.050, 1.189). In
this case, the location of observations at small values of norm G gave reasonable
results, not expected. Further investigation revealed that the negative gradient of
the cost function at the operating point was indeed very small, but it was precisely
directed toward the minimum.

5 Conclusions

The two dynamical constraints used to explore the value of the G-matrix method of
locating observation sites to be used in data assimilation and thereby correct forecasts
have validated the usefulness of this methodology. Burgers’ Equation was a quasi-
linear constraint and the seiche dynamics were linear, but the forecast sensitivities
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Fig. 10 G-Norm for seiche
dynamics as function of
nondimensional space

(
x̂
)

and time
(
t̂
)
where details of

contour structure are shown
in the lower panel

to control in both cases were highly nonlinear which is often a barrier or difficulty
in finding cost-function minima.

TheG-normstructures for bothdynamical systemswere appealing—the structures
made sense physically. In the case of Burgers’ Equation, the choice sites were near
the symmetry point but not at the symmetry point—close to the steep gradient zone
where sensitivity is large and forecast errors are relatively large and away from the
spatial end pointswhere sensitivity is small andwave amplitude becomes vanishingly
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Fig. 11 Profile of G-Norm at nondimensional time
(
t̂
) = 0.75

Fig. 12 Cost function for
seiche constraint when
observations were chosen at
locations

(
x̂ , t̂

) = (
x̂ , 0.75

)
where G-Norm had large
values

small as time increases. For the seiche dynamics, the choice points were removed
from that point in space where the water level never changed (at the mid-point of
the lake for the unimodal mode). The choice points were near the lake’s end points
where the oscillations were largest. There was a revealing fact that emerged in the
seiche dynamics case. That is, even if the G-matrix method identifies observation
locations where the cost-function gradient is vanishingly small, it is not necessarily
true that choosing observations at these points will produce very poor results. They
did not produce poor results in our Experiment II for seiche dynamics. On the other
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Fig. 13 Cost function for
seiche constraint when
observations were chosen at
locations

(
x̂ , t̂

) = (
x̂ , 0.75

)
where G-Norm had small
values

hand, the G-matrix method steers one away from observation sites that would be
associated with extremely small gradients at the operating point, and by so doing it
is faithful to its claim that it is best to choose sites where the G-norm is large.

Acknowledgements Course material on the dynamical constraints used in this data assimilation
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Analysis, Lateral Boundary,
and Observation Impacts in a Limited
Area Model

Clark Amerault

Abstract Impacts from analysis and lateral boundary updates as well as the assim-
ilation of observations are investigated using the forecast sensitivty to observation
impact framework in a limited-area atmospheric model. High temporal frequency
estimates of forecast error are produced using aircraft observations for validation.
Using these estimates, forecast error reduction between background and analysis tra-
jectories is shown to decrease through the first 24h of forecast time. The increasing
importance of lateral boundary updates in decreasing forecast error with forecast
lead time is presented. However, the ability of the adjoint forecast model to attribute
forecast error reduction to analysis and lateral boundary updates decreases as fore-
cast length increases. The relative distributions of the largest observation impacts for
different lead times are similar. This means that impacts for shorter forecast lengths
are a good proxy for impacts on longer forecasts, thereby mitigating some of the
problems in long adjoint model integrations. Finally, a metric that measures fore-
cast error against radiosondes is introduced and produces different distributions of
observation impact importance.

1 Forecast Sensivity to Observation Impact

Arobust procedure for quantitatively evaluating the impact of an observation’s assim-
ilation on short term forecast error utilizing the adjoint observation sensitvity frame-
work Baker and Daley (2000) was developed by Langland and Baker (2004). The
terminology for this procedure has evolved to be known as forecast sensitivity to
observation impact (FSOI) and has been implemented for global atmospheric mod-
eling systems Langland (2005); Gelaro and Zhu (2009); Cardinali (2009) as well as
limited-area models Amerault et al. (2013); Jung et al. (2013); Zhang et al. (2015).
The FSOI framework developed by Langland and Baker (2004) is the focus of this
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chapter, so its details are summarized below alongwith additional information unique
to its application in limited-area models.

The error of two forecasts of lengths f and g can be measured against an analysis
xt available at verification time t in an inner product 〈, 〉 using the following two
equations,

e f = 〈
(x f − xt ),C(x f − xt )

〉
, (1)

and,
eg = 〈

(xg − xt ),C(xg − xt )
〉
. (2)

The coefficients in C weight the model fields so that the error is measured in an
energy norm (the inner product has units of energy). The forecast for g begins at an
earlier time than f , and a short termfield from the g forecast serves as the background
field xb in the analysis procedure to produce xa for the f forecast. The value of e f is
generally less than eg due to the assimilation of observations y to update xb. In the
remainder of this chapter, the combination of xa and the resulting forecast xf will
also be referred to as the analysis trajectory. Conversely, the background trajectory
will refer to the combination of xb and xg.

To quantify the value of observations in reducing forecast error, an equation for
the difference in e f and eg is defined,

Δegf = e f − eg. (3)

The quantity Δegf is known as the forecast error reduction (FER). Using the adjoint
forecast model, Δegf can be mapped backward in time to analysis space. To do
this, two cost functions are defined along with their corresponding first derivatives,
which will serve as input for two adjoint model integrations along the forecast and
background trajectories,

J f = 1

2
e f , (4)

Jg = 1

2
eg. (5)

∂ J f

∂x f
= C(x f − xt ), (6)

∂ Jg
∂xg

= C(xg − xt ). (7)

Eqs. 1-2 and 6-7 can be used to rewrite Eq.3 as,

Δegf =
〈
(x f − xg),

∂ J f

∂x f
+ ∂ Jg

∂xg

〉
. (8)
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The difference between forecast trajectories f and g at the analysis time is the
increment (xa − xb). The adjoint model maps ∂ J f

∂x f
to ∂ J f

∂xa
and ∂ J f

∂xg
to ∂ J f

∂xb
. Assuming

that the analysis increment evolves approximately tangent linearly, then an estimate
of Δegf in analysis space δegf can be written as,

δegf =
〈
(xa − xb),

∂ J f

∂xa
+ ∂ Jg

∂xb

〉
+

〈
(la − lb),

∂ J f

∂la
+ ∂ Jg

∂lb

〉
, (9)

where la and lb are lateral boundary conditions along the analysis and background
trajectories, respectively. The first term on the right hand side of Eq.9 is due to the
analysis impacts and is present in all FSOI systems. The second term arises from
the lateral boundary conditions and is only found in FSOI for limited-area models
Amerault et al. (2013). As the adjoint forecast model marches backward in time,
some of the gradient information is passed to the lateral boundaries. This term must
be included, especially at longer forecast lead times, to better account for the FER
(more explantion of lateral boundary impacts are provided in Sect. 2.3). Together,
the analysis and lateral boundary impacts are known as model space impacts. Even
after accounting for the lateral boundaries, these impacts in model space δegf are not
an exact match to the FER (Δegf ) because the adjoint forecast model is linear and is
usually lacking some of the physical processes of the nonlinear model.

The impacts in observation space are determined by using only the analysis
impacts (first term on the right hand side of Eq. 9) and replacing the analysis incre-
ment with the data assimilation solverK and the innovation vector (y − Hxb) in the
following manner,

δegf =
〈
K(y − Hxb),

∂ J f

∂xa
+ ∂ Jg

∂xb

〉
. (10)

Using the properties of an adjoint operator in an inner product, the following expres-
sion in observation space,

δegf =
〈
(y − Hxb),KT

(
∂ J f

∂xa
+ ∂ Jg

∂xb

)〉
, (11)

is obtained. The observation impacts are a product of the innovation vector com-
ponents and the vector obtained from the adjoint data assimilation process KT. The
inner product in Eq.11 gives a total estimate for all observations, but the inner product
can be paritioned into any particular subset of interest.

Unique aspects of FSOI in a limited-area model pertaining to lateral boundary
conditions were previously presented Amerault et al. (2013). Here, we continue the
investigation of FSOI in a limited-area model. The modeling system and domain is
presented in Sect. 2. Forecast error reduction (Sect. 3), model space impacts (Sect. 4),
and observation impacts (Sect. 5) follow. A summary is provided in Sect. 6.
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2 COAMPS and NAVDAS

Results presented in this chapter were obtained from an FSOI system developed for
the Naval Research Laboratory’s (NRL) limited-area model. The system includes
the Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS®)1 atmo-
spheric model and its accompanying data assimilation component, the NRL Atmo-
spheric Variational Data Assimiliation System (NAVDAS). Brief descriptions of
these components and the FSOI system are provided below.

2.1 COAMPS Atmospheric Model

The COAMPS atmospheric model is a limited-area, relocatable, grid point model.
The model is non-hyrdostatic and contains predictive equations for zonal wind u,
meridional wind v, vertical velocityw, the dimensionless Exner pressure function π ,
the potential temperature θ , water vapor qv , and turbulent kinetic energy e. The bulk
cloud microphysics scheme calculates the source and sink terms in the prognostic
equations for cloud droplets qc, cloud ice qi , rain water qr , snow qs , and graupel qg .
The other parameterizations in the model for subgrid scale processes are turbulent
mixing, surface fluxes, cumulus convection, and radiation. The vertical coordinate
of the model is a terrain following σz defined as

σz = zt(z − zs)

zt − zs
, (12)

where the constant zt is the depth of themodel domain and zs is the terrain height. Lat-
eral boundary conditions are provided from the Navy Global Environmental Model
(NAVGEMHogan et al. (2014)). Tendencies are computed from the NAVGEMfields
and applied to the COAMPS forecast fields on the outermost gridpoints throughout
the model’s integration. This process forces the COAMPS forecast fields to the same
values as NAVGEM on these outermost grid points. A more detailed description of
COAMPS is given in Hodur Hodur (1997).

2.2 NAVDAS

COAMPS atmospheric analysis fields are produced by NAVDAS Daley and Barker
(2001). It is a three dimensional variational system that includes a geostrophic balance
constraint and uniform analysis length scale. NAVDAS assimilates conventional and
aircraft observations, cloud feature track satellite winds, satellite total precipitable
water and temperature retrievals, and scatterometer and passive microwave derived

1 COAMPS® is a registered trademark of NRL.
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Table 1 Observation types assimilated by NAVDAS. The identifier used in the impact figures in
this chapter are given in the left column and descriptions are provided in the right column

Observation type Description

RADIOSONDE Radiosonde measurement

CLD_WIND Polar satellite feature track wind

leogeo WIND Composite satellite feature track wind

AMDAR Aircraft instrument

MDCRS Aircraft instrument

ACARS Aircraft instrument

AIREP Aircraft instrument

MIL ACAR Military aircraft instrument

LandSfc Surface observation over land

ShipSfc
Surface observation over water

SSMIS SFC WIND Surface wind from SSM/I

SSMI-PRH Moisture retrieval from SSM/I

ASCAT SFC WIND Surface wind vector from ASCAT

WINDSAT SFC WIND Surface wind from WNDST

WINDSAT-PRH Moisture retrieval from WNDST

HDOB High density hurricane hunter aircraft

TC Synth Synthetic TC data

ATOV RET ATOVS temperature retrieval

SFMR SFMR wind

DROPSONDE Dropsonde measurement

PIBAL Piloted balloon measurement

AMSUA AMSUA radiances (not assimilated)

surfacemarinewinds. Satellite sounding radiances are not currently assimilated in the
system. A full list of assimilated intrument types is given in Table1. The observations
will be grouped by these types in Sect. 5 when discussing their impact.

2.3 COAMPS FSOI and Lateral Boundary Impacts

The COAMPS FSOI system includes adjoint components of the COAMPS atmop-
sheric forecast model Amerault et al. (2008) and NAVDAS Amerault et al. (2013).
As was discussed in Sect. 1, analysis and lateral boundary impacts are produced by
the COAMPS atmospheric adjoint model. Lateral boundary impacts are unique to
limited-area models that use global model forecast fields (not analyses) to compute
lateral boundary tendencies (LBTs). For each forecast cycle, the LBTs are updated
using the latest global model fields which will have less error than the fields used in



282 C. Amerault

Fig. 1 Schematic of the flow of information between the global model (NAVGEM) and COAMPS
atmospericmodel through the first twoLBTs. The black (red) arrows indicate the flowof information
in the nonlinear (adjoint) model. Time increase from top to bottom

the previous cycle. Therefore, the updates to the LBTs can contribute to FER along
with the assimilation of observations.

Figure1 is a schematic of the flow of information between COAMPS and
NAVGEM in the nonlinear and adjoint models. For simplicity, only the first two
lateral boundary tendency (LBT) calculations are shown. In this study, the LBT is
updated every 3h, so this schematic is valid for the first 6h of the forecast. The first
lateral boundary tendency (LBT) 0–3 h is calculated from the COAMPS analysis
and a NAVGEM forecast. The inputs to all subsequent LBTs from 3–6 h and beyond
are NAVGEM forecasts. In the forward nonlinear integrations, the LBTs are applied
to the COAMPS forecast fields on the outermost grid points. In the adjoint model
integrations, gradient information flows from the interior of the model’s domain
onto the outermost grid points and then onto the adjoint LBT variable. This infor-
mation is then pushed into NAVGEM space, except during the LBT window closest
to the analysis time where some of the infomation remains in COAMPS space. The
information in NAVGEM space comprises the lateral boundary impacts, while all
the information in COAMPS space makes up the analysis impacts, which are then
passed to the adjoint of NAVDAS to produce observation impacts.

2.4 Forecast Domain

The forecast domain for the experiment is shown in Fig. 2. All experiments were
performed on a single domain with 45km horizontal grid spacing and 60 vertical
levels because the adjoint model does not use nests in the FSOI framework. The inner
box indicates the area over which the forecast error was calculated. A dry energy
norm was used to compute Δegf . Forecasts and impact calculations were conducted
from March 1–14 2020.
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Fig. 2 COAMPS atmospheric forecast domain used in this study. The inner box indicates the area
where forecast error was calculated

3 Forecast Error Reduction

As outlined above, the driver of an FSOI system is the difference in forecast error
between analysis and background trajectories. An artistic rendition of forecast error
temporal evolution is provided for these trajectories in Fig. 3 of Langland and Baker
(2004). In this sketch, the initial difference at the analysis time is relatively small, it
then grows slightly with time, followed by a contraction. This means that the analysis
impacts would be greatest during the intermediate forecast hours if this sketch is an
accurate representation of reality. Here, we will estimate the temporal evolution of
the forecast error along the analysis and background trajectories to better understand
the relative impact of analysis and lateral boundary updates as forecast lead time
increases.

The root mean square of forecast error with respect to aircraft observations
(MDCRS, ACARS, AIREP) normalized by the observation error assigned by NAV-
DAS is shown in Fig. 3 for the analysis and background trajectories over the two
weeks of interest. To calculate this error, the forecast trajectories are output every
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15minutes and the NAVDAS observation operators are used to compute the obser-
vation minus forecast values. Aircraft observations were used because they are well
distributed with respect to forecast lead time (bottom panel of Fig. 3). The initial
time bin spans from 15min before to 15min after the analysis time. All other time
bins are 15min in length. Therefore, the number of observations in the initial bin
is roughly two times as large as any other bin. Vertical lines were drawn at 6, 12,
and 24h to highlight the estimate of FER at these leads times for which observation
impacts will be calculated.

The largest difference in error between the analysis and background trajectories is
at the analysis time. The error of the analyis trajectory grows relatively rapidly with
respect to the background during the first 6h of the forecast and then only slightly
faster through 24h. This means that the difference in forecast error between the two
trajectories decreases during the first 24h. If this is a good proxy for FER, then
FER would also decrease during this time. Therefore, observation impacts would
be expected to decrease with forecast lead time. Past 24h, the difference in error is
roughly constant to slightly increasing. In other words, the assimilation of observa-
tions has its greatest impact in reducing forecast error at the analysis time, and this
impact generally decreases through the first 24h of the forecasts.

Aircraft observations primarily sample the atmosphere at flight levels above
30,000 ft. Measurements are also taken during ascents and descents that provide
some information on error throughout the depth of the troposphere. Although this
analysis is not an optimal recreation of FER, it is an improvement on the hypothetical
sketch provided in Langland and Baker (2004).

4 Model Space Impacts

Analysis and lateral boundary impacts were previously compared for various areas
over which the forecast error was calculated Amerault et al. (2013). Here, we will
investigate how model space (analysis and lateral boundary) impacts vary with fore-
cast lead time (6, 12, and 24h).

The ratio of analysis and lateral boundary impacts to FER for 6, 12, and 24h
(vertical lines in Fig. 3) are shown in Fig. 4. The red portion of the bars correspond
the reduction in forecast error due to analysis updates, while the black portion is
due to lateral boundary updates. A combined value of 1.0 for the red and black bars
(analysis and lateral boundaries) would mean that the COAMPS atmospheric adjoint
model was able to properly attribute all FER to the analysis and lateral boundary
fields. In general, these ratios are less than 1.0 because the linear adjoint model is
not able to account for all of the nonlinear model’s error reduction.

For 6h forecast error (Fig. 4a), the combined impact of analysis and lateral bound-
ary updates generally accounts for more than 80% of the FER. This value is similar
to the ratio of analysis impacts to FER in global FSOI systems which do not have
lateral boundary considerations. The analysis impacts are much greater than those
for the lateral boundaries, which are generally below 10% of the the FER.
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Fig. 3 Average model forecast error out to 42h measured against aircraft observations for March
1–14 2020. The number of observations used in the error calculation for every 15min interval is
shown in the bottom panel

At 12h, the ratio of the combined impacts to the FER is generally below 80%. The
relative impact of lateral boundaries is greater when compared to 6h and generally
ranges from 10–30% of the FER. The range of ratios shown in the figure fall between
0 and 1. However, for some dates the ratios fall outside of this range. For ratios greater
than 1, the FER is usually positive. This means the error in the backgroud trajectory is
less than the error in the analysis trajectory and the adjoint estimate grows. For ratios
less than 1, the FER is typically a relatively small value and the loss of information in
the adjoint model causes the impact estimate and ratio to change sign. These are not
uncommon occurrences in a limited-area model where the error is calculated over a
much smaller area compared to a global system.

Finally for 24h, even more ratios fall outside of the figure range, meaning there
are more cases with little to no error reduction between trajectories when compared
to the 6 and 12h verification times. However, for those dates where the ratios do
fall within the figure bounds, the lateral boundary impacts can be just as large and
for some forecast cycles, larger than the analysis impacts. The area and time of
interest (midlatitudes winter for this experiment) is expected to effect the ratio of
analysis to lateral boundary impacts. Furthermore, the impact based on location of
the boundary (north, south, east, or west) with respect to the area over which the
error was calculated is interesting, but beyond the scope of this study.
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Fig. 4 Ratio of δegf to Δegf
for each forecast cycle from
1–14 March 2020. The red
(black) portion of the bar
indicates the analysis (lateral
boundary) impact
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5 Observation Impacts

Observations impacts were calculated for the three cases discussed in Sect. 4 by
feeding the analysis impacts into the adjoint of theNAVDAS solver. The total impacts
grouped by observation type for the 6, 12, and 24h verification times are shown
in Fig. 5. Aircraft observations are the most impactful for each verification time
followed by satellite feature track winds. These are also the most plentiful types
of observations in NAVDAS over the open ocean area covered by the verification
box (Fig. 2). ATOVS retrievals and radiosondes measurements are the next most
important types, but their relative rank depends on the verification time. Beyond
that, the impacts are substantially lower, owing to lower observation counts. The
observation types with zero impact also have zero observations counts over this
domain and time period. Furthermore, there is more variability in the relative ranks
of observation types below the top four. However, the relative ranks for the bulk of
the impacts are similar between verification times. In other words, observations types
that are important in reducing error at 6h, are also important in doing the same at
12 and 24h. Therefore, 6h impacts can be as informative as 24h impacts with less
concern for the model space impacts being able to account for the nonlinear FER.

Additionally, the total impacts (sum of the blue bars in each figure) decreases as
the verification time increases. This validates what was seen in the FER (Sect. 3). As
the forecast time increases (through 24h), the FER decreases and the corresponding
observation impacts also decrease. Although it is important to note that some of the
observation impact decrease can also be attributed to the decreasing ability of model
space impacts to match FER as forecast lead time increases.

5.1 Radiosonde Verification

As noted above, the relative rank of observation impacts largely reflect the relative
number of an observation type in a given domain of a limited-area model. Tomitigate
some of this effect, the ability to calculate the forecast error against radiosonde
observations (as opposed to self-analyses as was done in the previous experiments)
was added to the COAMPS FSOI system. To do this, Eqs. 1 and 2 were recast in
observation space using the NAVDAS operators to go from COAMPS model space
to observation space. The forecast error was computed at all radiosonde locations
inside the forecast domain. The metric was computed in terms of dry energy using
only the wind and temperature observations. The adjoint of the NAVDAS operators
were used to cast the error information from observations space back onto COAMPS
model space.

The impacts for this new metric along with the traditional metric are shown in
Fig. 6. Radiosondes are only available at 0000 and 1200 UTC so impacts were only
calculated every 12h, as opposed to every 6h in the previous results. The difference
between Fig. 6(b) and Fig. 5(b) is that the impacts at 0600 and 1800 UTC have been
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Fig. 5 Observation impacts
for (a) 6, (b) 12, and (c) 24h
lead times. The number of
assimilated observations for
each cycle is indicated in the
histogram below each plot
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Fig. 6 Observation impacts using (a) radiosonde observations and (b) self-analyses for verifcation.
The number of assimilated observations for each cycle is indicated in the histogram below each plot
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removed. Radiosondes have the greatest impact in reducing forecast error when
they are also used as truth. Aircraft and satellite feature track winds continue to
be important and rank second and third respectively. ATOVS retrievals, which are
roughly as important as radiosondes in the self-analysis case, fall to seventh when
radiosondes are used as truth. Also to note, in the self-analysis case, when the off
times are removed, satellite feature track winds are slightly more impactful than
aircraft observations.

6 Summary

Impacts in analysis, lateral boundary, and observation space were investigated with
a limited-area FSOI system. As forecast lead time increases, FER decreases and
the relative impact of the lateral boundaries increases. The ability of the COAMPS
atmospheric adjoint model to capture the FER also decreases with increasing lead
time. However, it may not be necessary to compute observation impacts for longer
lead times, because those observations that are important to reducing forecast error
for shorter lead times are also important at longer lead times. The additional ability to
compute forecast error against radiosondes was presented and resulted in a different
ranking of observation types. This ability will be useful in future studies for different
model domains.
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Assimilation of In-Situ Observations

Patricia M. Pauley and Bruce Ingleby

1 Introduction

In-situ observations have been used in the initialization of model forecasts since the
inception of operational NWP in the 1950s (see the Appendix for acronym defini-
tions). While in those early days in-situ observations were the only ones available
for use, in the present day remote sensing provides roughly 90% of the observations
assimilated in operational global models. Even so, in-situ observations provide a
larger impact in NWP forecasts than one might expect. For example, radiosonde,
surface, and aircraft data together comprised 9% of the observations assimilated in
ECMWF’s IFS (11% for the U.S. Navy’s global model NAVGEM) in January 2020,
but provided 26% of the error reduction in 24-h IFS forecasts (29% for NAVGEM
24-h forecasts), based on Forecast Sensitivity to Observation Impact (FSOI; Lang-
land and Baker 2004; Cardinali 2009). The impact of in-situ observations can also be
evaluated through Observing System Experiments (OSEs); a recent OSE performed
at ECMWF found that denying in-situ observations (together with Doppler wind
profiler observations) had the greatest effect for the Northern Hemisphere out of
all the observation groups examined, with the day 3 forecast error increased by
10% (Bormann et al. 2019). Similar results were obtained for the Arctic in an OSE
where only polar in-situ data were denied, despite the comparative paucity of such
observations poleward of 60° (Lawrence et al. 2019). Although some limited-area
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Fig. 1 Observation types available for use in NWP. In-situ observations come from radiosondes
(from land and ship platforms), surface platforms (automatic and manual land surface stations,
ships, and buoys), and aircraft (WMO)

atmospheric data assimilation systems use extra information from surface reports and
ocean data assimilation systems use additional surface and sub-surface information
from buoys and other ocean-going platforms, this chapter will focus on the use of
in-situ observations in current operational atmospheric global NWP. Figure 1 shows
the wide variety of observations currently available for use in NWP.

In addition, in-situ observations are important to NWP for reasons that extend
beyond their direct impact in data assimilation. They are widely used in the verifi-
cation of NWP forecasts, and they also serve as anchor observations (Eyre 2016) in
variational bias correction (VarBC) schemes (Derber and Wu 1998) used to counter
biases present in satellite radiances. While FSOI only measures the direct impact,
OSEs can measure the total impact including bias correction effects. Bormann et al.
(2019) found that denying in-situ observations led to not only the increase in random
forecast error mentioned above but also changes in mean analyses and in the bias
corrections produced by VarBC.

Assimilating in-situ observations is straightforward in some respects since the
instruments measure model or analysis control variables (such as temperature,
humidity, and wind) more or less directly, as detailed in subsequent sections. This
means that the observation operator (using the nomenclature from Ide et al. 1997) is
often a simple interpolation in space and in time. Converting wind speed and direc-
tion to u and v wind components and converting humidity from the observed to the
analysis variable are typically done as part of the observation pre-processor rather
than the observation operator. In addition, observation errors must be specified in the
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data assimilation system, since they are used in weighting observations from a given
instrument type relative to observations from other types. The observation error must
account for instrument error as well as representation error, which is often greater in
magnitude than instrument error (Janjic et al. 2018). Representation error includes
error due to unresolved scales/processes as well as error due to inadequacies in the
observation operator and in preprocessing/quality control. The observation error is
typically assumed to be Gaussian, unbiased, and uncorrelated in time and space and
with themodel background. Difficulties with these assumptions as applied to specific
in-situ observations will be discussed later in this chapter.

In-situ observations themselves can be very messy, in part a result of approxi-
mately 200 NMSs providing in-situ reports. The same observation can be dissemi-
nated in multiple formats on the GTS (Global Telecommunication System, a WMO-
governed service that enables the sharing of near-real-time meteorological observa-
tions among member countries (WMO 2020a), now regarded as part of the WMO
Information System (WIS).) The older WMO formats are commonly referred to
as TAC (Traditional Alphanumeric Codes) and are forms of packed ASCII, while
the newer WMO format is BUFR (Binary Universal Format for the Representation
of meteorological data) and is a binary format as its name specifies. At present,
many in-situ observations are encoded in both TAC and BUFR with differing preci-
sion and vertical/temporal resolution, necessitating some form of duplicate checking
that extends beyond searching for exact matches. In addition, individual countries
can differ in their interpretation of the WMO rules governing data formats, even
sometimes misinterpreting the rules and so introducing errors in the observations.
Originally, all in-situ observations were measured, encoded, and transmitted manu-
ally, but there has been increasing automation of these processes so that most aircraft
and radiosonde reports are now automated. Some countries have largely automated
their surface observations whereas others still rely heavily on human observers. Even
well trained and motivated observers make occasional mistakes such as mistyping
a digit or transposing two digits. There are even stories of observers fabricating a
sequence of observations at the start of their shift so as to do something else (such
as sleep during a night shift). In general, automation has led to improved quality of
observations, but checks are still needed to detect errors.

Observation quality control and monitoring

Effective quality control (QC) is critical for in-situ observations given the issues
mentioned above. One important quantity used in QC is Observation minus Back-
ground (O-B) departures (also referred to as observation increments or innovations).
The background here is a short-term forecast from the NWP model used in the data
assimilation system. Defining background values can range from simply interpo-
lating a six-hour (or twelve-hour) forecast to the observation location, to including
time interpolation using three-hourly forecasts, all the way to using the background
value determined by 4DVAR with even finer time resolution (e.g., 15–30 min at
ECMWF).

Oneuse ofO-Bdepartures is to estimate the observation error.Assuming that spec-
ified observation and background errors are correct, uncorrelatedwith each other, and
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unbiased, the root-mean-square (RMS) difference can be estimated as
√
<(O-B)2>

∼= √
<(σo

2 + σb
2)>, where σo is the standard deviation of the observation error, σb is

the standard deviation of the background error, and <…> indicates an average over a
suitable sample. This provides an upper bound for σo; sometimes a simple fraction of
theRMSdifferencewill be used for the estimate.Hollingsworth andLönnberg (1986)
provided amore sophisticatedmethod for use with a network of observations that can
be assumed to have the same error characteristics, but to be uncorrelated with each
other. Cross-correlations (or cross-covariances) are calculated and then extrapolated
to zero distance: the spatially correlated part is taken to be the background error and
the uncorrelated part the observation error. Another approach is based on the work
of Desroziers et al. (2005) who used the covariances of O-B departures with O-A
(Observation minus Analysis) departures to improve the estimates of observation
error covariances. Even when the assumption that observations are given the correct
weight in the assimilation only approximately holds, this diagnostic can give useful
information (Waller et al. 2016).

Another use of O-B departures is to reject (or downweight) observations that are
far from the background value. A simple background check might reject a value if
|O-B|2 > k2(σo

2 + σb
2), where k is a constant, often between 3 and 5. There is often

also a “buddy check” comparing an observation with its neighbors, largely in case
the background is worse than usual. This can be put on a more theoretical basis by
assuming that with probability (1-PG) the observation error comes from a Gaussian
distribution with standard deviation σo and that with probability PG it comes from a
much broader distribution. In the latter case, it is said to have a gross error and should
be rejected/ignored in the assimilation step. This construct makes it is possible to use
a variational framework to iteratively improve QC decisions (Ingleby and Lorenc
1993; Andersson and Järvinen 1999). While variational QC is very useful, it cannot
easily cope with correlated observation errors. Tavolato and Isaksen (2015) took
a further step, incorporating the Huber norm where observations with large O-B
departures have a gradually reduced weight rather than a sharp accept/reject cutoff.
The actual proportion of gross errors amongst in-situ observations is only about 1%
or less, but decisions on ‘borderline’ cases can be quite important—a large departure
might indicate that an observation is bad or that the forecast has underestimated a
cyclogenesis event.

In the 1980s, it was realized that statistics from data assimilation systems could be
used to detect systematic problems from certain observing stations (Hollingsworth
et al. 1986). One notable problem revealed with this method was a wind direction
bias of over 12° from a very isolated radiosonde station. The station operators were
contacted and confirmed the error and “the necessary corrective action was taken”.
This has been the model for feedback of observation quality problems since then,
for all types of observations. Typically, statistics are produced for a calendar month,
particular stations with data that seem problematic are noted, and two actions may be
taken: (1) the problematic data are added to a reject list within the data assimilation
system (e.g., Haiden et al. 2018), and (2) the data producer may be provided with a
summary of the evidence and asked to investigate the issue. Of course, NWP systems
also have biases/problems, and so sometimes results are compared from two or more
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NWP systems before contacting the observation provider. However, it can be difficult
to knowwho to contactwhen a problemhas been identified, and there is awide variety
of responses, fromhelpful cooperation (and even then it can take awhile for a problem
to be resolved) to no response at all (possibly language problems or a reluctance to
acknowledge observation errors). EUMETNET (a consortium of European NMSs)
has been providing NWP feedback on observation errors and missing observations
for over a decade, and this has been successful in maintaining or even improving
the observation quality. More recently, theWIGOS Data Quality Monitoring System
(WDQMS) has been working on a similar global system, and WMO is establishing
Regional WIGOS Centers (RWC) to help with the process. The authors have also
been involved with reporting errors more informally.

In addition to using monthly O-B statistics as the basis for defining station reject
lists, these statistics can be used to define both a list of platforms having a significant
bias and a list of corrections that can be applied to handle that bias. This tech-
nique has been successfully applied to surface pressure observations, where the bias
often results from incorrect metadata for the station elevation (e.g., Ingleby 1995).
Details about these and other QC considerations are discussed for each type of in-situ
observations in the following sections.

Metadata and documentation

While nearly all TAC reports from land surface and radiosonde stations do not include
position metadata (i.e., latitude, longitude, and station elevation), the corresponding
BUFR reports do include the position metadata but with occasional errors, bringing
up yet another problem for QC. OSCAR/Surface (https://oscar.wmo.int/surface/#/)
is the official WMO repository of metadata for all surface-based observing stations
and platforms (replacing WMO Publication 9 Volume A). (In this context, “surface-
based” includes platforms such as radiosondes and aircraft that originate at and
return to the surface but make upper-air observations, in contrast with space-based
platforms (i.e., satellites) that are described in OSCAR/Space (https://www.wmo-
sat.info/oscar/spacecapabilities#/).) In practice, NWP centers maintain local lists
of station positions based on OSCAR/Surface (possibly supplemented with other
information) to provide the positions of TAC reports and, in some cases, to check
the positions reported in BUFR.Wrong/inconsistent positions are more of a problem
than one might expect, sometimes due to rounding or mistyping (including wrong
sign of latitude/longitude), sometimes due to a station relocation (or station identifier
reassignment) not reflected in themetadata, and at other times due to a surface station
and radiosonde station sharing the same WMO identifier but being more than a few
kmapart or having elevations that differ by 5mormore. Problems can also exist when
OSCAR/Surface is not updated in a timely fashion or has incomplete information. At
times, correct values for station metadata can be virtually impossible to determine,
making the data from that station unusable. Examples of problems associated with
metadata errors are discussed in Appendix 2.

While documentation about in-situ observations can in some cases be diffi-
cult to find, the WMO has made available a lot of useful information from the
WMO Instruments and Methods of Observation Program (IMOP) (https://com

https://oscar.wmo.int/surface/%23/
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munity.wmo.int/activity-areas/imop). In particular, the Guide to Instruments and
Methods ofObservation, published asWMO-No. 8 (WMO2018a and other volumes,
which are updated every two years), discusses instrument principles and achievable
accuracy for all sorts of in-situ instruments. The IOM Report Series (https://com
munity.wmo.int/activity-areas/imop/publications-and-iom-reports) includes instru-
ment/system intercomparisons and presentations from technical conferences, which
may also be of interest. The WMO Information System (WIS) (https://commun
ity.wmo.int/activity-areas/wmo-information-system-wis) provides information on
WMO codes and other data management aspects. And finally, the WMO Opera-
tional Information Service (OIS) (https://community.wmo.int/activity-areas/operat
ional-information-service) provides information on operational aspects of the World
Weather Watch (WWW). Documentation specific to particular observing systems is
mentioned in the sections below.

The remainder of this chapter is organized in sections that describe the primary
types of in-situ observations used in operationalNWP—radiosonde data, surface land
and marine data, and aircraft data—as well as considerations to take into account in
their assimilation. A final section will look at the importance of in-situ observations
in NWP systems, including the impact of the recent COVID-19 drop in aircraft data.

2 Radiosonde Observations

Radiosondes are a major source of in-situ profile data for NWP, providing observa-
tions of geopotential height, wind speed and direction, temperature, and humidity
as a function of pressure (or height) by means of a small balloon-borne instru-
ment package. There are about 800 land stations worldwide providing near real-time
reports; 175 of these are designated as GUAN (GCOS upper air network) stations,
which have a commitment to certain standards and long-term operation. About 20
are GRUAN stations (GCOS reference upper air network, https://www.gruan.org/);
these also produce delayedmode reports including uncertainty profiles. These sound-
ings include data from the earth’s surface through the lower half of the stratosphere,
often up to 10 hPa (approximately 30 km).Most stations report nominally at 0000 and
1200 UTC, although some report only at one of those times and a fewmake reports at
0600 and 1800 UTC as well. Unlike some in-situ observations, radiosonde measure-
ments are filtered or corrected in various ways before they are provided to users;
Dirksen et al. (2014) provide insight into the types of processing applied and also
into the accuracy achievable. Radiosonde data are also widely used in verification
and validation, not only of NWP analyses and forecasts but also of other observa-
tion types, such as satellite-derived winds; they are also valuable for climate change
monitoring. And, radiosonde data together with GNSS radio-occultation data are the
primary sources of anchor observations for the bias correction of satellite radiance
data (e.g., Cucurull et al. 2014).

While radiosondes have been in widespread operational use since the 1940s, they
have undergone considerable improvement over the intervening years, not only in

https://community.wmo.int/activity-areas/imop
https://community.wmo.int/activity-areas/imop/publications-and-iom-reports
https://community.wmo.int/activity-areas/wmo-information-system-wis
https://community.wmo.int/activity-areas/operational-information-service
https://www.gruan.org/
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instrumentation but also in automation. Pettifer (2009) describes the entirely manual
process used in the 1940s and 1950s, where after the radiosonde launch, an analyst
plotted the incomingdata, converted the units, selected significant levels, and encoded
the observation as the radiosonde ascended, all with the goal of having the message
ready to transmit within a fewminutes of balloon burst 1–2 h after launch.Most of the
computational tasks were automated by the 1980s (Madonna et al. 2020), but until
recently personnel were still required to perform the radiosonde ground checks and
physically launch the balloon. Three manufacturers nowmake automatic radiosonde
launchers that operate hands-off except for stocking the launcher with radiosondes
and balloons once or twice per month. These are in operational use at roughly 90
sites and have a performance similar to manually launched radiosondes (Madonna
et al. 2020). However even with these technological advances, radiosondes in current
operational use have characteristics that vary widely and that affect their use in NWP
(e.g., Ingleby 2017).

The following section describes the characteristics of each of the measurements
made by a radiosonde, as well as related observation types and aspects about
processing radiosondedata. Tokeep thediscussionmore focused, statistics aremainly
given for the Vaisala RS92 radiosonde and its successor, the Vaisala RS41. These
radiosondes are in use by many countries across the world, accounting for a large
fraction of radiosondes currently in use, including by GRUAN stations, and have
been more carefully studied than other radiosonde types. However, many different
radiosonde types are in use across the world, some of which are used only in certain
countries or regions (Fig. 2).Details ofO-B statistics by radiosonde type are discussed
in Ingleby (2017), with temperature statistics for Northern Hemisphere midlatitudes
shown in Fig. 3 as an example of the variability among radiosonde types.

Measurement characteristics

Pressure/height: The vertical coordinate in radiosonde profiles has historically
been supplied by pressure measurements, with geopotential height computed from
measured pressure, temperature, and humidity via the hydrostatic equation. Solid-
state pressure sensors are widely used in current radiosondes with an uncertainty,
1 for example, of 1 hPa at 850 hPa decreasing to 0.4 hPa at 10 hPa for the Vaisala
RS92 (see Nash 2015 for a comparison of uncertainty for various pressure sensors).
However, many radiosondes do not have pressure sensors, including the RS41 in
its most commonly used configuration; geometric height is measured instead and
converted to geopotential height. Pressure can then be computed hydrostatically
from the geopotential height, temperature, and humidity, or alternatively, height can
be used as the vertical coordinate for NWP.

1 “Uncertainty” is defined in theWMOGuide toMeteorological Instruments andMethods of Obser-
vation (WMO 2018a, Sect. 1.6.2) as a quantitative measure of accuracy related to both random
variations and any systematic error left after corrections have been applied. For a large number of
observations, the uncertainty is expressed as k σ/

√
n, where σ is the standard deviation, n is the

number of observations, and k = 2 for a 95% confidence interval. The true value of the observation
is expected to be within ± the uncertainty of the mean of the measured values.
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Fig. 2 Distribution of radiosonde types reporting in August 2020. The color coding indicates the
radiosonde type (or group of related types) as indicated in the legend, which also gives the number
of stations in each group

The two main ways of measuring height in current use are secondary radar and
GPS (more generically termed GNSS). Secondary radars are in widespread use in
Russia and China (although Chinese radiosondes typically also include a pressure
sensor). These radars send a pulse that triggers a response from a transponder on the
radiosonde. The time between the transmission of the pulse and the receipt of the
response is used to calculate the slant range to the radiosonde, which is combined
with themeasured elevation angle to compute height (Zaitseva 1993), typicallywith a
constant correction for refractivity and the earth’s curvature (Ingleby 2017). However
as the wind becomes strong, the elevation angle becomes small, and the radar height
becomes less accurate.A1989 radiosonde intercomparison (Ivanov et al. 1989) found
geopotential height differences (relative to theVaisalaRS80) for twoRussian systems
of 30–40 m below 100 hPa and 100–200 m at 10 hPa, consistent with height O-B
statistics shown in Ingleby (2017). Radar height measurements are also sensitive to
alignment/leveling errors, which can lead to systematic height errors (WMO 2018a,
Sect. 12.3.7.2).

A more accurate means of measuring the geometric height of a radiosonde is
through GPS technology. However, the GPS height is given relative to a reference
ellipsoid and so must be converted first to height above mean sea level and then to
geopotential height (WMO 2018a, Sect. 12.3.6.2; Dirksen et al. 2014); differences
between geopotential and geometric height can exceed 200m at heights above 30 km.
In an intercomparison of data from RS92 and RS41 radiosondes flown together,
Edwards et al. (2014) found that flight-by-flight differences in GPS-derived heights
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Fig. 3 ECMWF temperature (°C) O-B mean (dashed lines) and RMS (solid lines) statistics for
2015 and 2016 at mandatory pressure levels (hPa) for major radiosonde types for the Northern
Hemisphere midlatitudes. The numbers of reports in hundreds are listed with the radiosonde types;
only types with at least 2000 reports are shown. The types shown include Vaisala RS92 and RS41,
Lockheed Martin LMS6, Modem M10, Graw DFM-09, Shanghai GTS1-1 (“Shan”), and JinYang
(“JinY”). Various Russian types are combined and labeled “Russ”, and various Meisei types are
combined and labeled “Meis”. Vaisala RS92 radiosondes using the U.S. NWS ground stations are
labeled “NGP”, and stations not reporting a radiosonde type (“***”) are shown in grey (From
Ingleby 2017, Fig. 3.1)

had standard deviations less than 1.4m for the RS92 and less than 0.8m for the RS41.
In contrast, flight-by-flight differences in RS92 pressure-derived heights increased
with height to yield standard deviations of 20m at 20 km and 140m at 33 km, a rather
dramatic increase in the stratosphere. Accurate GPS heights require using the correct
height for the ground station’s GPS antenna relative to the surface pressure sensor
(e.g., Fig. 9.2.1 in Nash et al. 2011). The accuracy of GPS heights is also affected
by the quality of the GPS receiver, the availability of GPS signals, and the degree to
which GPS signals are reflected by the ground and delayed in the ionosphere (Vaisala
2017).

GPS-derived heights together with measured temperature and humidity can be
used to compute pressure hydrostatically. Uncertainty analyses for pressure derived
from GPS height from Nash (2015) for the RS92 and Lehtinen et al. (2016) for
the RS41 gave similar results, with uncertainties of 1 hPa or greater in the lower
troposphere (mainly due to uncertainty in height), decreasing to 0.05 hPa at 10 hPa.
However, even larger errors in GPS-derived pressure can occur under highly non-
hydrostatic conditions. For example, Lehtinen et al. (2016) show 4.5–5.5 hPa
peak differences in the mid-troposphere between RS92 sensor pressure and GPS-
derived pressure for soundings from Taiwan during a typhoon passage. Given these
measurement characteristics, the processing for RS92s used in theGRUAN reference
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radiosonde network (Dirksen et al. 2014) combines heights derived from pressure at
low levels with GPS heights to form an optimal height profile that is then converted
to geopotential height and pressure.

Temperature: Radiosonde temperatures are important in global NWP not only as
assimilated data, but also as anchor observations in VarBC, as verification for fore-
casts, and for deducing andmonitoring climate change.However, themeasurement of
temperature is not without problems. One of the key factors in accurately measuring
temperature is the rate of response of the sensor (Nash 2015); the sensormust respond
quickly as the balloon ascends at approximately 5 m/s. The platinum resistor used in
the Vaisala RS41 has time constants 2 similar to the RS92’s thermocapacitor (ranging
from about 0.5 s at 1000 hPa, to 3.0 s at 10 hPa). Note that some radiosonde ground
stations apply proprietary time-lag corrections, including that used for the RS41
(Vaisala 2017).

A greater factor in measuring temperature accurately is either accounting for or
preventing radiative heating/cooling of the sensor, which is primarily an issue in
the stratosphere. Most radiosondes use an exposed temperature sensor to minimize
sensor lag, but this also exposes the sensor to solar and infrared radiation, which
can lead to significant temperature errors when uncorrected (Nash 2015). Sensor
coatings can essentially eliminate infrared cooling (although not all radiosondes use
this technology). For example, the uncertainty for nighttime temperature for the
RS92’s thermocapacitor and the RS41’s resistive platinum sensor is less than 0.6 K
(Nash 2015; Jauhiainen et al. 2014). However, solar heating of the temperature sensor
is a problem in the stratosphere regardless of sensor type; therefore, the uncertainty of
stratospheric radiosonde temperature is larger in daylight than at night (Dirksen et al.
2014, Fig. 10). Many manufacturers make proprietary solar radiation corrections,
typically as a function of pressure (or altitude) and solar elevation angle, although
factors such as ventilation speed, angle of exposure of the sensor, and clouds play
a role. Nash (2015) lists the daytime uncertainty for RS92 corrected temperatures
as up to 0.9 K. The Vaisala RS41 proprietary correction is larger than the RS92’s,
increasing from 0.44 K at 100 hPa to 1.14 K at 10 hPa for a solar elevation angle of
60° (Vaisala 2017).

Raw temperature profiles can contain spikes that are usually warmer than the
baseline temperature and aremore common in daylight. These are generally removed
by processing (e.g., Dirksen et al. 2014) and are likely due to the radiosonde passing
through the wake/shadow of the balloon as it swings in pendulum motion on its
~30 m tether, thermal contamination from the radiosonde packaging, and the change
in illumination as the radiosonde spins on its tether (Shimizu and Hasebe 2010;
Dirksen et al. 2014). While changing the sensor mount can mitigate the effect of the
radiosonde packaging, Shimizu and Hasebe (2010) found that a radiation correction
that relies only on the solar zenith angle cannot completely correct for the other two
effects. In addition, cloud effects (shadowing beneath/within clouds or backscattered
radiation from clouds below the radiosonde) can only be handled in an average sense

2 Sensor lag is typically phrased in terms of a time constant, the time the sensor needs to respond
to a sudden change by 1 – 1/e (approximately 63%) of its asymptotic value.
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in radiation correction schemes (Dirksen et al. 2014). The inability of manufacturer-
specified radiation corrections to counteract solar heating completely as well as the
use of country-specified corrections for some radiosonde types has led some NWP
centers to use bias correction techniques to make further adjustments to radiosonde
temperatures.

As an example, the operational ECMWF radiosonde bias correction scheme
(Agustí-Panareda et al. 2009; Ingleby 2017) uses O-B statistics for the previous
year to calculate bias corrections as a function of radiosonde type, pressure, and
solar elevation angle and are updated once per month. Currently, nighttime data for
RS92s and RS41s are assumed to be without bias and are used to estimate the model
bias, which is then subtracted from the O-B statistics for each radiosonde type. For
good modern radiosondes, the temperature and humidity corrections are quite small;
in fact, ECMWFswitched off humidity bias corrections for RS41s, since they seemed
to be doing more harm than good. This scheme is also used in the ERA5 reanalysis
for recent years, although different methods are used for earlier years (Hersbach et al.
2020). An examination of the ECMWF results shows that one particular radiosonde
type has a relatively large temperature bias correction related to a small proportion
of profiles with a large bias that often increases with height. There is some circum-
stantial evidence that mishandling during the launch is the main cause of the bad
profiles.

Humidity: Measuring humidity is much more difficult than measuring temperature.
Specific humidity/mixing ratio varies over a large dynamic range—four to five orders
of magnitude between observed values in the lower troposphere and the stratosphere.
Relative humidity constrains this variation, but introduces a temperature dependence
that brings its own set of problems. And, humidity is typically reported as dewpoint
temperature or dewpoint depression, so problems can arise in converting from the
measured variable to the reported variable. Note that relative humiditymeasurements
are reported with respect to saturation over a planar water surface regardless of
temperature. WMO (2018a, Chapter 12) states, “The saturation with respect to water
cannot be measured much below -50 °C, so manufacturers should use one of the
following expressions for calculating saturation vapor pressure relative towater at the
lowest temperatures—Wexler (1976, 1977), Hyland and Wexler (1983), or Sonntag
(1994).” We recommend that NWP centers also use one of these formulae when
converting reported dew point temperatures to another humidity variable.

Sensor lag is an even greater issue for humidity than for temperature. Time
constants for humidity sensors are generally given as a function of temperature,
with the response of the sensor slowing down at very cold temperatures. Widely
used capped thin-film capacitors have a time constant of 15–20 s at -40 °C and 150–
300 s at -70 °C. The exposed twin thin-film capacitor used in the Vaisala RS92 and
the RS41’s heated single thin-film capacitor are faster, with time constants of 10 s
at -40 °C, and 80 s at -70 °C (Nash 2015; Edwards et al. 2014). Time-lag correc-
tions for humidity sensors have been extensively studied (e.g., Miloshevich et al.
2004; Dirksen et al. 2014) and are widely used in operational radiosonde systems,
but should be used only for time constants less than 2–3 min (Nash et al. 2011).
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Wetting/icing of the temperature and humidity sensors in a cloud layer can lead to
sensor failure (e.g.,Wang et al. 2003; Liu and Tang 2014) ormore commonly to “wet-
bulbing”—evaporative cooling decreasing the temperature to the wet-bulb temper-
ature and the presence of liquid water or ice increasing the relative humidity (Nash
2015). In some cases, wet-bulbing can lead to superadiabatic lapse rates right above
the cloud layer (Hodge 1956; Dirksen et al. 2014). Vaisala’s use of a hydrophobic
coating on the RS92’s sensors allows the temperatures and humidity to recover more
quickly than the other radiosonde types examined in Nash et al. (2011). The Vaisala
RS41 has even better performance under these conditions (Edwards et al. 2014). The
impact ofwetting/icing on temperature and humidity is typically not corrected—even
the detailed RS92 GRUAN processing lacks such a correction (Dirksen et al. 2014).
However, QC checks can be used to mitigate sensor failure and excessive relative
humidity above a cloud layer (Wang et al. 2003; Liu and Tang 2014; Ingleby and
Edwards 2015, Appendix S1).

Various biases in humidity measurements have also been documented. A dry
bias for the RS92 results from daytime solar heating of the sensor leading to a
decrease in relative humidity (Vömel et al. 2007).Dirksen et al. (2014) andWang et al.
(2013) have devised corrections for this bias, but residual biases can still exist when
conditions differ from those assumed in the correction (e.g., a residual moist bias
when cloudiness decreases the solar heating). The RS41 requires no solar radiation
correction, since it uses temperature from an on-chip sensor in its relative humidity
calculation (Jauhiainen et al. 2014). On the other hand, a moist bias is often seen
in the upper troposphere and lower stratosphere, in some cases resulting from the
slow response of humidity sensors at cold temperatures, but in other cases reflecting
adjustments used by some manufacturers to artificially reduce relative humidity to a
“reasonable” value above the temperature-derived tropopause (Nash et al. 2011). As
a result, ECMWF (and other centers such as FNMOC) only use radiosonde humidity
for temperatures warmer than -40 °C or pressures greater than 300 hPa by default,
but use humidity for Vaisala RS92 and RS41 down to -80 °C, reflecting that humidity
from the best radiosondes is usable up to the tropopause. Jauhiainen et al. (2014) cite
an uncertainty of 4%RH for the RS41 and 5%RH for the RS92. At low temperatures,
it also matters which saturation vapor pressure equation is used. ECMWF recently
changed to use the Sonntag equation (one of those recommended by WMO); this
reduced O-B biases for the RS41 in the upper troposphere (Ingleby 2017).

Winds: Traditionally, winds have been determined by measuring the drift of the
balloon over time and assuming that the balloon is drifting with the wind. This
is done using tracking devices to determine the balloon’s azimuth, elevation,
and range, either following the balloon visually using an optical theodolite, by
following the radiosonde’s radio signals using a radiotheodolite, or by following
the balloon/radiosonde itself using radar as previously described (WMO 2018a).
While radar techniques explicitly calculate the slant range to the radiosonde, optical
theodolites and radiotheodolites infer slant range from geopotential height computed
from thermodynamic measurements and measured elevation angle (WMO 2018a).
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Tracking errors vary among these methods. Using a radiotheodolite provides
advantages over optical tracking in that radio direction finding is typically automated,
more precise, and can occur in the presence of clouds that obscure visual tracking
of the radiosonde. However at low elevation angles, multipath interference can lead
to wind errors when reflections of the radiosonde’s signal from nearby surfaces are
received in addition to the direct signal (WMO 2018a). In this case, the strongest
signal does not point to the radiosonde andwind errors can exceed 10m/s, sometimes
leading to large outliers that must be removed (Houchi et al. 2015). The theoretical
vector wind error increases with height and with the ratio of wind speed to rate of
ascent for both radar and radiotheodolite systems, but the increase is much larger
for radiotheodolites; consequently, vertical resolution in the upper-troposphere and
lower stratosphere is often decreased by increasing the time interval to avoid having
the measurement swamped by error (WMO 2018a). Estimates of typical random
vector errors obtained in the 1989 WMO radiosonde intercomparison were 2.6 m/s
for a Russian secondary radar and 4.8 m/s for a portable radiotheodolite, both at
18 km for relatively light winds—only three times the balloon ascent rate. In addi-
tion to tracking errors, both radiotheodolite and radar winds can have a bias in wind
direction if the radar itself is not correctly aligned (WMO 2018a).

GPS (or genericallyGNSS)windfinding is now used by almost 70%of radiosonde
stations worldwide (Ingleby, 2017, Fig. 5.1). The process of determining winds
using GPS for most modern radiosondes is fundamentally different from tracking
the radiosonde/balloon. Typically, GPS signals from a minimum of four satellites
are received by both the radiosonde itself and by the ground station. While some
signal processing is performed on board the radiosonde, the main signal processing
is performed in the ground station, where the GPS information from the radiosonde
is differenced from similarly processed information from the ground station for each
satellite. This removes errors that are common to both sets of signals and isolates the
Doppler shifts associated with the motion of the radiosonde, which are then used to
compute wind speed and direction (WMO2018a; Kaisti et al. 1994). Highly accurate
latitudes, longitudes, and heights are also provided by the differential GPS calcu-
lations. GPS windfinding can be done at a much higher resolution than traditional
methods and so is able to capture the 10–15 s period of the radiosonde’s pendulum
motion (WMO 2018a). Differences in algorithms to filter out this motion lead to
small differences among GPS radiosonde winds (Nash et al. 2011); some of these
algorithms may oversmooth. An example of raw and filtered wind data is shown in
Fig. 4. The “noise” varies not only within the profile but also day-to-day. Sometimes
gravity wave activity in the stratosphere can add to the representation error.

Errors for GPS windfinding are smaller than those for windfinding by radio-
theodolite or radar and have much less variation with height. GPS windfinding is not
subject to errors at small elevation angles as viewed from the launch point and can
give high quality winds at the large wind speeds that give small elevation angles, so
long as no RF interference is present and a sufficient number of GPS satellites are
available. However, poor GPS reception does occasionally lead to missing winds,
at times with bad winds near the gaps. The estimated random vector error for GPS
winds in the 2010 WMO radiosonde intercomparison using 2-min averaging (2 km)
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Fig. 4 Profiles of u- and v-component winds from aGRUANVaisala RS92 sounding from Payerne,
Switzerland (06010) for 0000 UTC 4 December 2013. Note that 40 m/s was added to the v-
component to separate the profiles on the graph. Raw GPS-derived winds are shown in gray, while
the filtered wind is shown in red

was 0.15–0.4 m/s above 17 km (Nash et al. 2011; WMO 2018a). This is roughly an
order of magnitude smaller than the values for secondary radar and radiotheodolite
from the 1989 WMO radiosonde comparison. This estimated random vector error
increased with decreasing averaging period, with 30-s averaging (300 m) roughly
doubling and 10 s averaging (100 m) roughly tripling the values for 2-min averaging
above 17 km (WMO 2018a). The UK Met Office comparison of RS92 and RS41
radiosondes (Edwards et al. 2014) found that flight-by-flight differences were only
1–2 cm/s with standard deviations generally less than 10 cm/s.

Related observing systems

Ship radiosondes: There are usually between 3 and 10 ships launching radiosondes
on any given day, mostly in the North Atlantic through the E-ASAP (EUMETNET
Automated Shipboard Aerological Program) ships. As of 2018, there were 18 E-
ASAP ships that provided 85% of ship soundings (Krockauer and Prates 2018).
While specialized equipment is often used to launch the radiosondes, the radiosondes
themselves are the same types as used for land radiosondes. As a result of constraints
imposed by satellite communications from the ships, BUFR messages are avail-
able on the GTS typically at medium resolution with levels reported every 10 s,
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compared to typically 2 s for land radiosondes. While inexperienced crew members
and challengingweather conditions contribute to higher failure rates than are seen for
land-based radiosondes, ship-based soundings have proven to be valuable in NWP
and research for providing soundings in oceanic regions.

Radiosonde descents: Most of the time “radiosonde data” refers to
radiosonde/balloon ascents. However, the Vaisala RS41 and a couple of other
radiosonde systems can be configured to provide data after balloon burst as the
radiosonde descends. Real-time descent reports are currently available from a few
countries, mainly in Europe (Ingleby and Edwards 2018). Descents occur more
rapidly than ascents, especially right after balloon burst where the air density is low
and descent rates can exceed 50 m/s. Depending on the balloon weight, tropospheric
descent rates are generally about 10 m/s or less when a parachute is used, but
13–15 m/s with no parachute (compared to a typical ascent rate of 5 m/s). Ingleby
and Edwards (2018) found that the O-B statistics in descents were similar to those
for ascents, except at the highest levels where descent data are closest in space and
time to ascent data and so could be easily excluded (a practice in use at FNMOC
and ECMWF). They also found that descent winds were smoother than ascent
winds. The digital filter designed to remove pendulum motion from ascent winds is
applied to descent winds as well, where it might be less appropriate. The data from
descent soundings can end well above the surface as the radiosonde descends behind
the horizon/mountains (Ingleby and Edwards 2018). More recent work suggests
that descents with a parachute and a pressure sensor are higher quality than those
without either. Descents are offset in time and to some extent in space from their
corresponding ascents, in effect providing two soundings for the cost of one.

Pilot balloons: Wind-only profiles can be made using pilot balloons and are some-
times referred to as pibals. There is no instrument package suspended beneath the
balloon so no thermodynamic observations are made; wind observations are made by
tracking the balloon, usually with an optical theodolite. Since no height observations
are available, heights are estimated by assuming an ascent rate for the balloon and
measuring the time elapsed fromballoon launch.Departures from the assumed ascent
rate therefore lead to errors in the estimated heights (WMO 2018a), and wind errors
result from limitations in the tracking technique as described above for radiosondes.
As a result, these wind profiles often do not extend as high as radiosonde wind
profiles. Pilot balloon observations were first routinely made in the early twentieth
century (Douglas et al. 2008); at present there are approximately 100 stations mainly
in Asia providing wind-only profiles from pilot balloons.

Dropsondes: Another radiosonde variant is the dropsonde—an instrumented
package that takes observations as it falls beneath a parachute after being ejected from
an aircraft. These are deployed mostly for operational monitoring and forecasting
from reconnaissance aircraft near or in tropical cyclones threatening landfall, espe-
cially along the U.S. East and Gulf Coasts. They are also used in field experiments
such as recent campaigns to study North Pacific atmospheric rivers (e.g., Ralph
et al. 2017). The unmanned NASA Global Hawk was outfitted with a dropsonde
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launcher developed by the National Center for Atmospheric Research (NCAR) for
special campaigns in 2011–2017 to fly high-altitude missions primarily over hurri-
canes (Holger Vömel, personal communication). Other countries such as Taiwan,
Hong Kong, Japan, Germany, and the UK also have aircraft capable of deploying
dropsondes.

Although the sensor housing for a dropsonde is tube-shaped rather than box-like,
the same sensors are used in dropsondes as in radiosondes. NCAR has developed
dropsondes since the 1960s, first using radar tracking and then radio navigation
(Holger Vömel, personal communication), but using GNSS since the mid-1990s
(Hock and Franklin 1999). The “RD94” dropsonde was developed in 2008 using
sensors mostly from the Vaisala RS92 (Ikonen et al. 2010); a miniaturized version
was used in the NASA Global Hawk campaigns (Wick et al. 2018). The latest gener-
ation of NCAR dropsondes is designated “RD41”, which is built by Vaisala using
the same sensors as their RS41. NCAR has also developed the Airborne Vertical
Atmospheric Profiling System (AVAPS—https://www.eol.ucar.edu/content/avaps-
aircraft-data-system), which includes the aircraft-based equivalent of a radiosonde
ground station that receives and processes the data. The Atmospheric Sounding
Processing Environment (ASPEN) is the component of AVAPS that performs data
quality control and generates formatted reports. High-resolution nativeBUFR reports
were first generated and disseminated in real-time on the GTS in Fall 2018 and were
put into operational use at ECMWF in September 2019 (Ingleby et al. 2020b).

TheU.S. National HurricaneOperations Plan (OFCM2020a) outlines operational
flight patterns used by the NOAA and USAF hurricane reconnaissance aircraft; these
include synoptic surveillance missions to measure the large-scale environment as
well as flight patterns designed to locate the tropical cyclone center and determine
its intensity. While dropsondes from synoptic surveillance missions are typically
made in a large-scale grid around the storm and are quite helpful for global NWP,
dropsondes near the hurricane center have a large representation error as shown by
very large O-B values, and so are challenging to use in data assimilation. Bonavita
et al. (2017) show an example of a dropsonde from Hurricane Matthew that was
released in the eyewall at 700 hPa and was carried roughly one-quarter of the way
around the eye. The use of BUFR dropsonde data should help address this problem—
having locations at each level rather than assimilating the data at its launch location
should provide a more dynamically consistent analysis. But Bonavita et al. (2017)
take a more fundamental approach, similar to Tavolato and Isaksen (2015), using an
adaptive observation error model subsequently implemented at ECMWF. Thismodel
accounts for the greater representation errors for tropical cyclone observations aswell
as the larger observation operator error in mapping background values to observation
locations in or near the extreme conditions in a tropical cyclone; this is done by using
the background error variance derived from the Ensemble of Data Assimilations
(EDA, Isaksen et al. 2010). This approach downweights the observations in the
immediate vicinity of a tropical cyclone center.

Driftsondes: NCAR has also developed a balloon-borne gondola capable of
deploying dropsondes when suspended below a long-duration stratospheric balloon

https://www.eol.ucar.edu/content/avaps-aircraft-data-system
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such as developed by the French Centre National d’Études Spatiales (CNES). This
balloon/gondola system can carry as many as 54 miniaturized dropsondes and has
been deployed for field experiments such as the African Monsoon Multidisciplinary
Analysis (AMMA, Redelsperger et al. 2006) and Concordiasi (Rabier et al. 2010).
The superpressure balloons used for driftsondes are made of polyester rather than
latex and are designed to become neutrally buoyant at approximately 20 km, where
they drift with the wind for days to months (Cohn et al. 2013). Observations are
transmitted from the sonde back to the gondola and from there to the ground using
satellite communications, allowing the driftsonde observations to be put on the GTS
in near real-time. Since driftsondes are essentially dropsondes deployed from strato-
spheric balloons rather than aircraft, the characteristics of the observations are the
same as for dropsondes. In addition, GPS measurements of the balloon’s motions
provide valuable in-situ wind observations.

Data formatting

TAC formatting considerations: The alphanumeric TEMP code (designated by
WMO as FM-35) represents radiosonde data as a series of numeric groups without
decimal points or negative signs. It is a direct descendent of the code developed for
the era of 300 baud teletypes (e.g., U.S. Weather Bureau 1949; WBAN 1957, 1963).
Current details about formatting radiosonde data in TEMP messages are given in
Vol. I.1 of the WMO Manual on Codes (WMO 2019a). While these details are not
important in the current context, there are aspects of the code that do affect their use
in NWP.

First of all, a full radiosonde profile from a particular station requires four TEMP
messages (or parts). Parts A and B include mandatory- and significant-level data,
respectively, below 100 hPa; Parts C and D include mandatory- and significant-level
data, respectively, above 100 hPa. Mandatory levels (also called standard levels) are
pressure levels that are required to be reported for each sounding. WMO (2019a)
specifies these as 1000, 925, 850, 700, 500, 400, 300, 250, 200, 150, and 100 hPa for
Part A and 100, 70, 50, 30, 20, and 10 hPa for Part C; the surface level, tropopause
level, and the level of maximumwinds are also required levels. Mandatory-level data
are widely used in model verification since each sounding includes these levels.

Many countries routinely extrapolate heights below ground to mandatory levels,
which is done by assuming some sort of hypothetical (virtual) temperature distribu-
tion below ground, the details of which are not reported. While these heights can
be useful if the extrapolation is only over a short distance, they can be a problem if
the extrapolation is over a significant depth. Ingleby et al. (2016b, Fig. 8) show an
example for station 04417 in central Greenland where the surface pressure is close
to 700 hPa. The 925 hPa heights have roughly a 60 m negative bias compared to the
ECMWF background; the 1000 hPa heights have a bias so large that it is off-scale in
these diagrams. These fictitious heights should not be used for model verification!

Significant levels are pressure levels that give the change points in a piecewise
linear depiction of the sounding, typically linear in the logarithm of pressure. The
line segments are chosen to represent the sounding within a certain tolerance (e.g.,
1 °C for temperature below 100 hPa). This leads to a representation of a sounding
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as the 16 or so mandatory levels plus typically 30–100 significant levels. However,
using significant levels directly in an NWP system without interpolation is less than
optimal, since these levels are chosen to represent local extrema in the sounding
(Ingleby et al. 2016a). Comparing TEMP observations from German radiosondes
to ECMWF background values, significant levels have RMS O-B values that are
greater than those for mandatory values by more than 0.5 K near the surface and
in the stratosphere. Ingleby and Edwards (2015, Appendix S1) describe the practice
at the UK Met Office of averaging values over the model layer to better match the
observations to the model variables.

Secondly, not all variables are reported at all levels. Geopotential height (or
surface pressure), temperature, dewpoint depression (temperature minus dewpoint
temperature), wind speed, and wind direction are reported for mandatory levels. The
data reported at significant levels only include pressure, temperature, and dewpoint
depression; a separately chosen set of significant level winds and corresponding
pressure values can also be included at the end of the TEMP Part B and Part D
messages.

Third and perhaps most important from an NWP perspective, observations are
truncated or rounded to fit within the format—only 2 or 3 digits are used for each
variable. In the case of geopotential height, leading digits are also omitted to fit the
value in 3 digits. The details of the rounding are given in Table 1. Ingleby et al.
(2016b) show a jump in RMS O-B for heights at 500mb in TEMP reports which
results from the change in precision from 1 to 10 m at that level. Also, note that
the sign of temperature is inferred from the tenths digit, with even tenths used for
positive and odd tenths for negative temperatures. The “rounding down” prescribed
by theWMO leads to an average offset of -0.05 °C for temperatures measured to one
decimal place. But, the average offset is -0.095 °C for radiosonde systems (e.g., the
RS92DigiCORA III) that measure temperature to two decimal places and truncate to
one decimal place before “rounding down” to achieve the 0.2 °C precision (Ingleby
and Edwards 2015). These offsets appear as a bias in TAC-reported temperatures.

Table 1 Reporting precision used in TEMP and BUFR radiosonde Messages

Variable TEMP precision “Native” BUFR precision

Pressure 1 hPa 0.1 hPa (0.01 hPa in new template)

Geopotential height 1 m at and below 500 hPa
10 m at and above 500 hPa

1 m

Temperature 0.2 °C
(even tenths => positive values;
odd tenths => negative values)

0.01 K

Dewpoint Dewpoint depression (DD)
0.1 °C for DD <= 5.0 °C
1.0 °C for 6 °C <= DD <= 49 °C
(DD > 49 °C not representable)

Dewpoint temperature
0.01 K

Wind direction 5° 1°

Wind speed 1.0 m/s or 1.0 kts, as specified 0.1 m/s
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Finally, station metadata (i.e., latitude, longitude, and elevation) are not included
in radiosonde messages from land stations, although they are in messages from
mobile stations, ships, and dropsondes. NWP centers must therefore maintain a local
station list to provide the station metadata, which is yet another source of error. This
is discussed in more detail in Appendix 2.

One other TAC code form requires some attention—the “PILOT” code (desig-
nated by WMO as FM-32) is used for wind profiles. PILOT messages are defined
in the same four parts as TEMP messages and are used for pilot balloon data,
where significant level winds are typically presented at geopotential height levels
in 300m increments. The PILOT code form is also used by some countries such as
the U.S. and Canada to disseminate radiosonde significant-level winds. It should be
noted that even though a 300 m increment is listed in reports for U.S. radiosonde
winds, a 1000 ft increment is actually used, requiring a correction (Table 5.2, OFCM
1997). The use of PILOTmessages for significant level winds from radiosondes is an
unnecessary complication for NWP, since these winds could be included in TEMP
messages. However, this practice will (thankfully!) die out as the migration to BUFR
proceeds. In NWP systems where the vertical coordinate is a function of pressure,
the reported geopotential height must be converted to pressure. While this often uses
the standard atmosphere relationship between geopotential height and pressure, the
conversion can instead use the model background field to provide a local geopoten-
tial height-pressure relationship, as is done at ECMWF, FNMOC, and the UK Met
Office (Ingleby and Edwards 2015, Appendix S1).

BUFR formatting considerations: The WMO undertook a migration from TAC
code forms such as TEMP and PILOT to the binary code form BUFR,3 with the
original goal of completing the migration in November 2010 and stopping parallel
distribution of data in TAC formats in November 2014 (see various documents
describing the migration at https://community.wmo.int/activity-areas/wmo-codes/
mtdcf and the summaries given in Ingleby et al. 2016a, b). Although progress has
been slow, well-formatted BUFR reports are now being produced at the majority
of radiosonde stations (Fig. 5). Parallel distribution of TEMP messages is ongoing
at most stations although some countries (notably China and some European coun-
tries) have discontinued TAC. The BUFR format is described in Vol. I.2 of theWMO
Manual on Codes (WMO 2019b).

BUFR has the disadvantage of not being human readable, although given the
complexity of the TEMP format, only the well-initiated can actually “read” those
messages. The advantages of well formatted BUFR for radiosonde data are: (1) the
full sounding is available in a single message, (2) all variables (geopotential height,
temperature, dewpoint temperature, wind speed, and wind direction) are provided

3 A distinction needs to be drawn between WMO BUFR and NCEP prepBUFR. While both are
variants of the BUFR format originally developed in the 1980s,WMO’s implementation of BUFR is
used for the international exchange of “raw” observations, typically using standardized templates as
described in WMO (2019b). NCEP’s prepBUFR, on the other hand, is an implementation of BUFR
used to hold decoded conventional observations before and after quality control, with the post-QC
files used not only for operational data assimilation at NCEP but also as a source of conventional
data used widely in the U.S. research community.

https://community.wmo.int/activity-areas/wmo-codes/mtdcf
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Fig. 5 Progress of TAC to BUFR migration for January 2015 (top) and January 2020 (bottom).
Filled circles are shownat station locations,with coloring indicating the report format–TEMPreports
only (white), reformatted BUFR (orange), high-resolution native BUFR (blue), and low-resolution
native BUFR (cyan)
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at all levels, (3) the reporting precision for a given variable is the same throughout
the profile and is typically better than the TAC (Table 1), and (4) metadata including
latitude, longitude, station elevation, radiosonde release height, radiosonde type, and
radiation correction type are given in each message. (See Appendix 2 for a discus-
sion of issues with BUFR station metadata, including the upcoming switchover
to WIGOS Station Identifiers.) Note that two messages are distributed for each
radiosonde release: an “early”message that contains the data from launch to 100 hPa,
and a “late” message that contains the data from launch to balloon burst. The latter
message is the only one needed for NWP, so long as the data cutoff time (when the
data preprocessors are run) is sufficiently late to allow receipt of these messages.

Well formatted BUFR reports as described above are what Ingleby et al. (2016a)
term “native” BUFR reports—those generated directly from the more-or-less raw
radiosonde data,4 with this process performed in the radiosonde ground station.
Native BUFR reports can be high resolution, with observation intervals ranging
from 1 to 2 s up to 10 s (~400 to ~6000 levels), or low resolution, with the number
of levels similar to TEMP. In May 2020, roughly 45% of stations were providing
high-resolution native BUFR and another 27% were providing low-resolution native
BUFR. Figure 6 shows a time series of the availability of high-resolution and low-
resolution native BUFR radiosonde temperatures at ECMWF. The jump in high-
resolution data in early 2019 reflects the newly available Russian data, which are
currently monitored at ECMWF with Russian TAC data used operationally. The
larger jump in low-resolution data in late 2019 reflects the newly available Chinese
data, which were put in operational use at ECMWF a few months later prior to
the discontinuation of Chinese TAC data in January 2020. Regardless of resolution,
native BUFR nearly always includes balloon drift information, with time, latitude,
and longitude offsets (relative to the launch time and location) provided for essentially
every level. When soundings are encoded in both TAC and BUFR, the native BUFR
version should generally be given preference over the TAC version (as is done at
FNMOC), perhaps after monitoring the native BUFR from a given station/country
to assess its quality (as is done at ECMWF).

However, not all BUFR radiosonde data are given in well-formatted
messages.”Reformatted” BUFR reports are generated from TEMP reports and so
have the same levels and usually the same precision and no balloon drift informa-
tion. Since TEMP reports for land radiosonde stations lack station metadata, the
station latitude, longitude, and elevation in reformatted BUFR must be copied from
a station list, which can be a significant source of error (Appendix 2). Some of
these reformatted BUFR reports use a message-by-message translation, with each
TEMP part having a separate BUFR part. Such “BUFR-by-parts” was common in the
early days of the BUFR migration but does not conform to WMO BUFR regulations

4 “Native” BUFR messages are generated after previously discussed corrections are made. These
corrections include such things as time-lag and radiation corrections for temperature and RH,
filtering to remove pendulum effects on winds, and the conversion of radar or GPS heights from
geometric heights to geopotential heights.
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Fig. 6 Time series of stations providing high-resolution (blue) and low-resolution (green) native
BUFR temperature observations. Solid lines are the number of stations available; dashed lines are
the number of stations assimilated operationally at ECMWF. The lag between when data become
available and when they are assimilated reflects the period during which data are monitored for
quality. Recent changes include the provision of high-resolution native BUFR from Russia in early
2019 (which is still being monitored) and the provision of low-resolution native BUFR from China
in late 2019 (which went into operational use a few months later). The decrease in the number of
stations reporting high-resolution BUFR in Spring 2020 resulted from the COVID-19 crisis

(Ingleby et al. 2016a). Since reformatted BUFR has no advantage over TEMP and
may contain errors, TEMP should generally be given preference in this case.

The availability of drift offsets in “native” BUFR messages both simplifies and
provides more accuracy in accounting for the change in time and location. A
radiosonde ascent takes roughly one hour to reach 100 hPa and nearly another hour
to reach 10 hPa, during which time the balloon can travel 250 km or more when
winds are strong (Seidel et al. 2011). While many NWP centers simply assimilated
radiosonde data as instantaneous vertical profiles prior to the availability of native
BUFR reports, some NWP centers such as NCEP accounted for balloon drift based
on data fromTEMP/PILOTmessages. In this process, the reported heights andwinds
are used to estimate both the mean wind vector in a layer and the time for the balloon
to travel through the layer, assuming an ascent rate of 5 m/s (Keyser 2000). The
product of the mean wind vector and the estimated time gives a displacement vector
that can be converted to latitude and longitude offsets. Similarly, Environment and
Climate Change Canada (ECCC) estimated drift using the mean wind vector and the
mean elapsed ascent time, but as a function of pressure rather than height (Larouche
and Sarrazin 2013); they still use this method for TAC soundings (Judy St. James,
personal communication). The relatively coarse vertical resolution and rounding used
in TEMP and PILOT messages, plus any departure of the balloon ascent rate from
5 m/s all contribute to errors in the drift offsets and therefore the location and time
assigned to each level of observations. At present, ECMWF, the UKMet Office, and
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Fig. 7 Standard deviation (solid lines) and mean (dashed lines) radiosonde observation-minus-
background (O–B) statistics for European stations with (red) and without (black) drift processing
for (a) temperature (b) zonal wind and (c) meridional wind, for November 2016 to February 2017
(From Ingleby et al. 2018)

FNMOC among others use BUFR-reported drift time and location offsets in their
operational systems. FNMOC applies the drift offsets prior to thinning the number
of levels, while ECMWF splits radiosonde profiles into 15-min intervals in which
observations are treated as vertical and instantaneous. The UK Met Office uses drift
locations in determining where the radiosonde profile crosses model levels in the
interpolation of the model background (Ingleby and Edwards 2015, Appendix S1).
Tests at ECMWF showed that using BUFR-reported drift improved O-B standard
deviations by 5–10% at stations reporting drift and that biases were also improved
especially for stratospheric winds (Fig. 7). ECMWF’s treatment of radiosonde drift
went into their operational system in June 2018; FNMOC’s went into use December
2019.

Preprocessing and quality control for NWP

Collins (2001) describes three categories of data errors: generally small randomerrors
that are essentially independent in space and time; “rough” errors that are relatively
infrequent but have a particular cause; and systematic errors that are usually small
but persist in time or space. Random errors are handled by the formulation of the
data assimilation system itself and reflected in the assigned observation errors. If
necessary, systematic errors are handled by bias correction schemes as discussed
earlier. Therefore, quality control is designed primarily to handle rough/gross errors,
ideally in such a way as to minimize both the number of good observations that are
rejected and the number of bad observations that are retained (Eskridge et al. 1995).

While much radiosonde QC hinges on O-B tests as described in the introduction,
there are other means of testing for large errors with a low risk of rejecting a good
observation. A physical limits test is often performed to screen out any “unphysical”
observations (e.g., wind directions greater than 360°, relative humidity greater than
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100% or less than zero). While O-B checks would usually reject the same observa-
tions, those checks are often applied inside the data assimilation system rather than as
part of the data preprocessor. It is typically necessary to take physically unrealistic
observations out of consideration before other preprocessor calculations, such as
converting wind speed and direction to u and v components or performing humidity
conversions.

Reject listing can be an effective if extreme measure; it is useful for stations with
long-term issues that have no quick fix, but it has a higher risk of rejecting good
observations. Some stations need to be rejected because of siting issues such as radar
alignment. Problems with station metadata can also become intractable when BUFR
and OSCAR/Surface values conflict or appear to be in error but no alternate source
for the metadata is found. The use of a reject list should be accompanied by regular
evaluations to look for stations that should be removed from the list since they no
longer produce bad data, as well as stations that should be added to the list since they
have started producing bad data.

In contrast to these all-or-nothing checks, the Complex Quality Control (CQC)
algorithm developed at NCEP by Collins and Gandin (e.g., Collins 2001) makes use
of hydrostatic and other checks to detect (and in some cases correct) errors in TEMP
messages, especially those that were manually encoded. The results of the checks
are combined in a decision-making algorithm to make a final accept/reject/correct
determination that is less susceptible to rejecting good observations or accepting
bad ones than individual checks. The CQC system and its predecessors have been
used operationally at NCEP since 1988 and at other NWP centers, including at
FNMOC since the 1990s. An interesting case showing the impact of CQC in the
NCEP-NCAR 50-year reanalysis is described in Kistler et al. (2001). They show a
sharp increase in the number of hydrostatic error corrections in 1973 that coincided
with the introduction of the “Office Note 29” (ON29) internal format used to store
observations. The operational forecast skill had deteriorated for a few years after
the introduction of ON29, while bugs were worked out of that code (Kalnay 2003,
p. 201). However, the use of the CQC system in the reanalysis counteracted many
of the early ON29 problems; Kistler et al. (2001) show that skill improved during
those same years as a result of corrections by the CQC system.

While these CQC and similar UKMet Office checks (Ingleby and Edwards 2015,
Appendix S1) are primarily useful for TEMP soundings, native BUFR soundings still
benefit fromQCmeasures. For example, FNMOCreceived corrupted soundings from
a handful of stations along with uncorrupted duplicates during a period in 2016. The
corrupted files contained many nonsensical values that were rejected by physical
limits checks, as well as disconnected geopotential heights and pressures that a
hydrostatic check flagged.A useful process for dealingwith issues like this is to reject
all values for a particular variable when more than a certain percentage are rejected.
Nevertheless, well formatted data from high-quality radiosondes like the RS92 and
RS41 seldom have “bad” data, although they can at times have unrepresentative data.

A final aspect of the radiosonde preprocessing for high-resolution BUFR
radiosonde data is thinning or averaging the data to reduce the number of levels
and the possibility of correlated error between levels. Using thinned/averaged levels
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Fig. 8 30-day mean (light colors) and 360-day mean (dark colors) for the standard deviation of
O-B for radiosonde temperature data used in ERA-Interim (blue) and ERA5 (red) within ±25 hPa
of 50 hPa (top), 850 hPa (middle), and 400hPa (bottom). BUFR radiosonde temperature data were
used in ERA5 beginning with 1 January 2015 (vertical black line) (From Fig. 14a, Hersbach et al.
2020, ©2020 Quarterly Journal of the Royal Meteorological Society, licensed under CC)

rather than significant levels should also provide a more representative profile, since
as previously described, significant levels are chosen at local extrema in temperature,
humidity or winds. Figure 8 (from Hersbach et al. 2020, Fig. 14a) shows a decrease
in the standard deviation of O-B temperatures when BUFR was introduced in the
ERA5 reanalysis in 2015. Before 2015, ERA5 assimilated standard/mandatory and
significant level data, similar to the pre-BUFR practice at ECMWF. The UK Met
Office averages temperatures and winds within a model layer (Ingleby and Edwards
2015, Appendix S1), ECMWF thins BUFR profiles to roughly 400 levels keeping a
roughly constant number of levels within a model layer (Ingleby et al. 2016a), and
FNMOC thins to approximately 130 m spacing.

3 Surface Observations

Surface observations include data from both land-based and marine platforms and
have provided the earliest quantitative meteorological observations, dating back as
far as the seventeenth century (Eden 2009). In a sense, the modern era began in
the mid-1800s, with a conference of meteorologists in Cambridge in 1845 that
discussed meteorological data exchange, the founding of the International Mete-
orological Organization in 1873, the establishment of networks of surface stations,
and the distribution of their data in common formats via teletype starting in the
1870s (Thorne et al. 2017; Eden 2009, Fiebrich 2009). Ship observations also gained
a more quantitative footing when the Brussels Maritime Conference of 1853 stan-
dardized logbook entries and observation practices (Brohan et al. 2009). Today’s
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Fig. 9 Availability of SYNOP reports at ECMWF forAugust 2020 (10013 stations in total) showing
the status of migration to BUFR. Counts and percentages for each category are shown in the legend.
Position differences between TAC and BUFR are shown in red. Note that current plots of data
coverage are available from https://www.ecmwf.int/en/forecasts/quality-our-forecasts/monitoring-
observing-system

near real-time surface observations used in global NWP include land-based obser-
vations for meteorology (SYNOP) and aviation (METAR), ship-based observations,
and various networks of buoys, including near-shore and deep sea moored buoys as
well as drifting buoys.

For global NWP the most important variable from surface reports is the surface
pressure (Psfc), also sometimes called station pressure, which gives the mass of the
atmosphere in a column above the station. Psfc is an assimilated variable in most
data assimilation systems, typically after an adjustment to account for the difference
between the station elevation and the model representation of terrain at that point
(e.g., Ingleby 2015). Reasonably successful reanalyses are possible just using surface
pressure reports with monthly averages of sea surface temperature and sea ice extent
(Compo et al. 2011; Poli et al. 2016). In contrast, mean sea level pressure (Pmsl)
is the pressure hydrostatically extrapolated to sea level from the surface pressure
and station elevation (e.g., Ingleby 1995; Pauley 1998) and is widely used to show
the evolution of synoptic weather patterns in the extratropics. As such, charts of
Pmsl (with other surface data) were the keystone of weather forecasting in the pre-
NWP era (e.g., Benjamin et al. 2018; Mitchell and Wexler 1941). Surface reports
can contain many other variables: wind, temperature, humidity, and precipitation, as
well as cloud and visibility data (although these latter two are not strictly in-situ).

Figures 9, 10 and 11 show typical data coverage; the inhomogeneity of the data
density is immediately apparent. Some continental areas are very well observed but

https://www.ecmwf.int/en/forecasts/quality-our-forecasts/monitoring-observing-system
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Fig. 10 Availability of BUOY andMETAR reports for August 2020. Buoys are plotted at their last
reported position in the month and blue/cyan symbols indicate the availability of pressure or not

Fig. 11 Location of SHIP reports (BUFR and TAC) for a 7-day period. There were 1916 identifiers
reporting in this period, 2537 for the whole month. There are some position errors—evident in
reports that are well inland
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there are gaps in some desert and mountain regions and also some areas with poor
infrastructure (notably parts of Africa). For the USA the coverage ofMETAR reports
is better than that of SYNOP reports (these types are described below). Figure 9 also
shows that the SYNOPmigration to BUFR is incomplete, some stations do not report
BUFR (grey dots) whereas some report BUFR at lower frequency (cyan dots, often 6-
hourly BUFR versus 3-hourly TAC). Also clear is that data coverage over the oceans
is generally worse than over land. The BUOYmigration to BUFR is almost complete
(Fig. 10), although Canadian and UK moored buoys still report in TAC SHIP code.
Because ships move (and considerably faster than drifting buoys) SHIP positions are
shown for a week (Fig. 11)—distinct ‘shipping lanes’ are clearly visible and about
half of the reports are relatively close to land. There is a seasonal cycle in ship reports
because of the cycle in sea ice and the generally rougher weather in winter.

Data sources

Land stations: Surface land stations generally consist of a group of sensors that
vary according to the requirements of their parent network, with siting requirements
also varying among networks. In general, sensors include a barometer to measure
surface pressure (often located inside a building and sometimes above the ground
floor), temperature and humidity sensors (usually at a height of 2 m above ground
level) and wind speed and direction sensors (usually at a height of 10 m above
ground level). Airport stations typically report altimeter setting rather than station
pressure, and add visibility and ceiling (the height of the cloud base); their sensors
are sited to give the best measurement of runway winds–typically near large areas
of concrete. Other networks are deployed for specialized needs that might be less
useful or less available for global NWP. For example, agricultural stations may also
measure evaporation and solar radiation and are sited in grassy areas. Fire weather
stations such as RAWS (Remote Automated Weather Stations) can measure fuel
temperature and fuel moisture in addition to standard meteorological parameters
and are typically located in complex terrain. And, automated mesoscale networks
(“mesonets”) are being increasingly deployed, often by local governments (e.g., the
120 station Oklahoma mesonet, Brock et al. 1995). The discussion here will focus
on synoptic and airport stations as shown in Figs. 9 and 10, which are the best suited
to global NWP both in terms of global coverage and data availability.

There are about 10000 active synoptic stations reporting using WMO SYNOP
code and about 5000 airport stations reporting in ICAO METAR format. METAR
reports are sent hourly or more frequently; SYNOP reports can be 6-hourly, 3-hourly,
or hourly (with somemanned stations having a gap overnight). In many cases, hourly
SYNOP reports are available within a particular country; the WMO is now encour-
aging the global exchange of hourly reports, which would improve NWP forecasts. A
comparison of units and precisions for SYNOP and METAR variables of interest to
global NWP is given in Table 2. Rounding is not necessarily performed uniformly;
the altimeter setting in U.S. METARs is currently rounded to the nearest 0.01 in
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Table 2 Units and precision used in SYNOP and METAR reports

Variable TAC SYNOP BUFR SYNOP TAC METAR

Identifier 5-digit WMO
block-station number

Block-station number
or WIGOS identifier

4-letter ICAO identifier

Pressure Psfc or Pmsl in
0.1 hPa (leading “1”
omitted for pressure
>= 1000 hPa)

Psfc or Pmsl in
0.1 hPa

Altimeter setting
(QNH)
(a) 0.01 inch Hg, or
(b) 1.0 hPa rounded

down

Temperature 0.1 °C 0.01 K 1.0 °C

Dewpoint temperature 0.1 °C 0.01 K 1.0 °C

Wind direction 10° 1° 10°

Wind speed 1.0 knots or m/s 0.1 m/s 1.0 knots or m/s

Hg but will be truncated (i.e., rounded down) in the next surface observing system
deployment (Chet Schmitt, personal communication).

Almost half of METAR stations also produce SYNOP reports (Ingleby 2015),
but not necessarily independently. For example, the U.S. (and likely other coun-
tries) generate SYNOP reports by reformatting METAR reports. This conversion
requires a station list that matches the WMO five-digit block-station numbers used
in SYNOP reports with the ICAO four-letter identifiers used in METAR reports
and provides station (field) elevations that are used in converting METAR altimeter
settings (“QNH”) to SYNOP surface pressures. Altimeter setting is a form of sea-
level pressure, with the temperatures in the below-ground hydrostatic extrapolation
provided by standard atmosphere values. The formula for computing surface pres-
sure from altimeter setting therefore only requires the specification of the station
(field) elevation (e.g., Pauley 1998). Errors in surface pressure resulting from errors
in either station identifier match-ups or station elevation are difficult to discern since
the station list used in the METAR-to-SYNOP converter is unknown; even so, these
errors have the potential to yield surface pressure biases. (See Appendix 2 for an
example of this type of error.)

Both SYNOP and METAR codes indicate whether the reports are automated or
not; in practice a range of semi-automation is possible, with some variables auto-
mated and others, such as cloud and visibility, input manually. ECMWF and some
other NWP centers specify a lower observation error for pressure from automated
stations reflecting an overall feature of the O-B statistics. Over time automation is
increasing; one factor in this is the Minamata convention to phase out the use of
mercury in civil applications. The WMO International Conference on Automatic
Weather Stations (ICAWS-2017) (https://community.wmo.int/activity-areas/imop/
icaws-2017) is a good starting point to learn more about automation.

In addition to the standard FM-12 SYNOP format that does not include station
metadata (latitude, longitude, and elevation), relatively small numbers of stations
report in FM-14 ‘MOBILE SYNOP’ format which does include station metadata
(WMO 2019a). These stations typically use alphanumeric identifiers and are often

https://community.wmo.int/activity-areas/imop/icaws-2017
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not truly mobile; this includes, for example, automatic weather stations in Antarctica
that may be relocated from time to time.MOBILE SYNOP reports are also generated
and put on the GTS by stations temporarily set up for field experiments. Ingleby
(2015) provides more details of reporting practices and assimilation. The impact
of migration to BUFR as well as details about the different variables are discussed
below.

Buoys and ships: For global NWP the most important marine data are the surface
pressure reports from drifting buoys, because they sample some very data sparse
areas. It is unfortunate that about 50% of drifting buoys do not have a pressure
sensor (Ingleby and Isaksen 2018), as shown in Fig. 10. As the name suggests these
buoys drift with the near-surface ocean currents; they are not usually deployed in
semi-enclosed seas because of the increased risk of beaching. Typically, a drifting
buoy uses GNSS for location and will report data for about two years. Early systems
suffered from occasional position errors, but since about the year 2000 these have
been less of a problem.

Moored buoys come in two main categories: coastal (North America, Europe
and some other areas) and open-ocean tropical arrays (TAO/TRITON, PIRATA and
RAMA). The tropical buoys also usually report ocean variables at several depths,
although unfortunately they typically are not equipped with a barometer. More infor-
mation is available from the following websites: Global Drifter Program (https://
www.aoml.noaa.gov/phod/gdp/);Global TropicalMooredBuoyArray (https://www.
pmel.noaa.gov/gtmba/); and the National Data Buoy Center, both for details about
global moored buoys (https://www.ndbc.noaa.gov/) and metadata for global moored
buoys (https://www.ndbc.noaa.gov/station_metadata.txt).

Ship reports have a long history (e.g., Brohan et al. 2009), although the number
of Volunteer Observing Ship (VOS) reports has declined by half from a peak in
the late 1980s (Kent et al. 2007). Over time the ships have also become bigger and
measurement heights have increased as a consequence (Kent et al. 2007), which
in some cases makes the observations less representative of the adjacent sea areas.
There is also a trend towards automation; as for land stations, this generally improves
quality. Formanual reports, position errors are still a problem,making track checking
an important component of quality control (e.g., the Ingleby and Huddleston (2007)
track check algorithm originally developed for sub-surface reports). A problem that
has been increasing in recent years is the number of reports that either use “SHIP”
as their identifier (and so cannot be track-checked) or use anonymized identifiers; in
either case, the metadata describing the ship cannot be retrieved from standard ship
metadata lists.5 The use of external metadata lists is needed for reports in FM-13
SHIP format, since that format does not provide a means of reporting barometer or
anemometer height (WMO 2019a). In principle, BUFR SHIP format allows these
sensor heights to be reported, but they often are not. However, if the ship reports both
surface pressure and sea level pressure, those can be used to hydrostatically estimate

5 Ship metadata used to be provided by WMO Publication 47 (https://www.wmo.int/pages/prog/
www/ois/pub47/pub47-home.htm) but are now available from JCOMMOPS (http://sot.jcommops.
org/vos/resources.html).

https://www.aoml.noaa.gov/phod/gdp/
https://www.pmel.noaa.gov/gtmba/
https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/station_metadata.txt
https://www.wmo.int/pages/prog/www/ois/pub47/pub47-home.htm
http://sot.jcommops.org/vos/resources.html
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a barometer height. Ingleby (2010) looked at the quality of reports as a function of
ship type and provides more background. It should be noted that coastal moored
buoys and oil rigs also provide reports using either FM-13 or BUFR SHIP formats
(Ingleby 2010).

One problem area with ship reports is the reporting of winds. Traditionally the
wind was estimated from the sea state using the Beaufort scale (e.g., NWS 2010a),
but more often now it is measured by an anemometer (after subtracting the ship
velocity). For assimilation, either the speed is adjusted to a standard height (usually
10 m) or the wind is used at the (actual or estimated) anemometer height. For ships,
the anemometer can be up to about 60 m high; for oil rigs it can be more than 100 m
but some adjust to 10 m. For most moored buoys, the anemometer is between 3
and 5 m, but large buoys have it at 10 m. Drifting buoys are too small to have a
conventional anemometer.

Observations and assimilation considerations

Pressure: Most SYNOPs include both Pmsl and pressure at the barometer height
(Psfc). In principle, it is better to assimilate the measured quantity, Psfc, but one has
to know the barometer height to do this. Unfortunately, some heights are incorrect,
giving rise to pressure biases (Ingleby 1995). The measurement uncertainty should
be around 0.3 hPa, and so as not to increase this, the height should be accurate to 1
or 2 m. With modern GNSS systems, accurate surveying of land stations should be
easier. However two problems exist: a) a simple GNSS fix is probably not accurate
enough, although time averaging or other methods can be used to improve the height
measurement; and b) GNSS systems use a reference ellipsoid, and so the ‘undulation
of the geoid’ must be taken into account to get heights relative to sea level. (Appendix
2 describes a nearly 40 m error at a radiosonde site where this was not taken into
account.) SomeNWP centers apply pressure bias corrections to a subset of stations to
compensate. Operationally ECMWF uses the system described by Vasiljevic (2006)
although changes are planned.

As described above, METAR reports provide altimeter setting rather than surface
pressure, and so a conversion is required, which only requires knowledge of the
elevation (e.g., Pauley 1998). While the barometer height is the appropriate elevation
to use when assimilating SYNOP surface pressure, the airport field elevation is more
appropriate for use both in converting METAR altimeter setting to surface pressure
and in assimilating that converted surface pressure. This follows from the basic
definition of altimeter setting (“QNH”) as the value that is entered into a pressure
altimeter to cause the altimeter to read the field elevation (height above mean sea
level) while the aircraft is on the ground. However, this choice is much less critical
than the correct choice of elevation for SYNOP Psfc.

Winds: At SYNOP stations the standard anemometer height is 10 m; for marine
stations it varies as described above. Some global NWP systems have assimilated
marine winds but not winds over land. Ingleby (2015) modified the UK Met Office
global system to use winds over land but found various problems with speed biases,
notably over the Indian subcontinent. Over land, mean 10 m wind speeds are about
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Fig. 12 Mean wind speed as a function of distance offshore for April 2011 to March 2013 for
SYNOPs, METARs, manual/automated ship reports, and buoys reporting in SHIP code. Marine
speeds were adjusted to 10 m as appropriate. A ~10 km land-sea mask was used with negative
values over land. Statistics are given in 20 km bins within 100 km of the coast, then in 50 km bins
out to 300 km. Reports further from the coast are plotted at ± 300 km and reports over the ‘wrong’
surface are plotted at 0 km (From Fig. 7 of Ingleby (2015) © British Crown copyright, Met Office)

2.5 m s-1, and over the ocean they are about 7 m s-1 as shown in Fig. 12. One should
therefore not assimilate land winds at a model ocean grid-point or vice versa; this is
one form of representation uncertainty caused by approximations in forecast models.
U.S. C-MAN (Coastal-Marine Automated Network) stations are typically located
right at the shoreline or even on small offshore islands; their winds are therefore
subject to this sort of representation error. Even with various exclusions, it can be
difficult to get much of a positive impact from 10 m winds over land. Physically one
would prefer winds at 100 m or more, which are less affected by surface friction, but
observations fromwind farms are not generally available. Bédard et al. (2015) used a
geo-statistical observation operator to improve the impact but this adds complexity.

Screen temperature: Temperature is usually measured in a screen between 1.25 and
2 m above the land surface. The screen temperature is a major climate variable. In
most conditions, this works well, but in calm, sunny conditions the air in the screen
can be warmer than the air outside by up to one or two degrees. Some stations (e.g.,
in the U.S.) use a fan to draw the air across the sensor (aspirated sensors) to avoid
this issue, but it seems that most SYNOP stations rely on natural ventilation. Ingleby
(2015) found a clear benefit from assimilating screen temperature and humidity
in the UK Met Office global system. Recent research at ECMWF has given a more
mixed signal, with some problems at high latitudes in winter, particularly at night. At
nighttime in winter there can be large surface inversions, and in these conditions one
would want very little vertical spreading of the increments from screen temperature.
In neutral or unstable conditions, temperature will be reasonably well mixed through
the boundary layer and the analysis increments should reflect this.
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Fig. 13 Schematic of the
adjustments needed in going
from model values—on blue
levels with thick blue line the
model surface—to the actual
screen value (at ‘s’) just
above the real surface—thick
black line (Fig. 5 of Ingleby
(2015) © British Crown
copyright, Met Office)

he
ig

ht

x

s
Zstn

m
Z*

t

model

actual

In general, it is necessary to adjust the temperature for the difference between the
station height and the model height at that location. Ingleby (2015) used a climato-
logical lapse rate of 6.5 °C/km but noted that this was slightly higher than the data
suggested. Dutra et al. (2020) suggest a lapse rate of 4.5 °C/km. Figure 13 shows a
schematic of the situation. Note that there is also a model diagnostic to derive the
temperature at a height of 2 m above the model surface from the lowest model level
(typically at 10 m or more) and also the skin temperature of the model surface. This
diagnostic can be considered as part of the observation operator.

Screen humidity: Humidity is usually measured in the same screen as temperature.
Traditionally awet bulb thermometerwas used, but this is notwell suited to automated
systems. As a result, there is a trend towards the use of capacitive humidity sensors,
with some implications for non-homogeneity in the records (Ingleby et al. 2013).
Individual capacitive sensors generally drift towards reporting higher values over
a year or so and consequently need replacing or recalibrating; drift seems to be
worse in damp climates. ECMWF assimilates daytime screen humidity values in its
atmospheric 4DVAR. At night, relative humidity values tend to bunch up towards
100%RH (e.g., Fig. 3 of Ingleby 2015) which tends to reduce the difference between
observations and forecast.

Surface analysis and soil moisture: Soil moisture affects medium range forecasts,
so there has been work at various centers to improve its modelling and initializa-
tion. There are some local measurements of soil moisture, but these are not currently
included in SYNOP reports. Several centers perform a surface analysis using screen
temperature and humidity and use this, sometimes combined with satellite measure-
ments, to update the model soil moisture (see review by de Rosnay et al. 2014). Note
that the 2 m temperature and humidity fields available for ERA5 (Hersbach et al.
2020) come from the surface analysis.

Snow depth: Snowmakes a large difference to surface energy exchanges; de Rosnay
et al. (2014, 2015) outline work on snow depth analysis at ECMWF and elsewhere.
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Since about 2010 there have been efforts to improve snow depth reporting—it can
be reported in SYNOP messages, and there is also now a separate BUFR template
that just contains snow depth. Traditionally, snow depth is measured manually using
a snow board or similar device (e.g., NWS 2013), although there has been some
work with ultrasonic snow depth sensors (Ryan et al. 2008). Satellites also provide
an indication of snow cover (in the absence of clouds) and this is merged with the
in situ information in snow data assimilation schemes.

Rainfall: Over the U.S., ECMWF assimilates a field of 6-h rainfall accumulations
that contain information from both rain gauges and radar precipitation estimates
(Lopez 2011). High-resolution limited area assimilation systems tend to use radar
reflectivity more directly (e.g., Benjamin et al. 2016; Zhao et al. 2008).

Clouds and visibility: Cloud and visibility data are used in the UK Met Office
high-resolution UKV assimilation system (see Milan et al. 2019 and references).
Cloud information is taken from both surface cloud base reports and cloud tops from
geostationary satellite data (in an earlier version of the system Dow andMacpherson
(2013) found that the impact of the cloud data was mixed). Visibility is linked to both
aerosol concentration and humidity with the humidity dependence being particularly
marked near 100 % RH. Clouds and visibility are also assimilated in NCEP’s High-
Resolution Rapid Refresh (HRRR) system (Benjamin et al. 2016).

GroundbasedGNSSobservations: The time delay ofGNSS signals at fixed stations
depends on the surface pressure and on the integrated water vapor (IWV) above the
station. The latter is assimilated in many limited area forecasting systems and some
global ones (e.g., Poli et al. 2007)—these data are monitored at ECMWF but not
assimilated. There is an assimilation issue in that the IWVmust be split into a profile
of humidity increments; this can be problematic with sharp vertical gradients of
humidity, notably at the boundary layer top, especially if combined with biases from
the observations or from the model.

Other considerations

Verification: Surface reports are used extensively in the verification of NWP fore-
casts (e.g., Haiden et al. 2018). In addition to the variables already mentioned, wind
gusts and solar radiation are also used. Wind gusts are linked to damage to build-
ings/infrastructure and closure of transport routes. Unfortunately, different countries
use different reporting practices for wind gusts (and a few don’t report gusts) making
verification more difficult. Verification of forecast solar radiation has increased in
importance as its use in electricity generation has increased. In the past this has
used the research BSRN network—with about eight stations in Europe and data only
available in delayed mode. Hundreds of SYNOP stations, mainly in Europe, now
report hourly solar radiation measurements in their real-time SYNOP messages and
some use is being made at ECMWF. We would encourage other countries to report
radiation measurements if they are made.

Migration to BUFR and WIGOS identifiers: As previously discussed, a migra-
tion from alphanumeric to binary (BUFR) codes is ongoing. In August 2020, about
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90% of SYNOP stations were providing BUFR (Fig. 9), although 5% of these
provided BUFR at lower temporal frequency. WMO is now recommending that
hourly reports should be exchanged globally. Some countries have taken the move
to BUFR as an opportunity to send data from more stations, which is welcome.
To encourage exchange of data from additional networks (not operated by NMSs),
WMO is promoting a change from 5-digit identifiers to much more complicated
WIGOS identifiers (e.g., Camborne, UK, changes from 03808 to 0-20000-0-03808
(see Appendix 2); the last part is allowed to be up to 16 characters long). This is
a challenge for NWP centers because all their systems have to change, from data
ingest, preprocessing, bias correction, assimilation to monitoring and verification.
By comparison, the buoy change a few years ago from 5-digit to 7-digit identifiers
was much easier to cope with. Virtually all ships and buoys now report in BUFR,
most ships and moored buoys also report in TAC, and only a small number of drifting
buoys currently report in TAC.

Many of these BUFR SYNOP reports have been reformatted from TAC (FM-12)
SYNOP reports; reformatting in this case is more acceptable than for radiosonde
data, since the basic character of the SYNOP data is the same in TAC and BUFR
(Table 2). However, the problems related to using an internal station list to provide
the latitude, longitude, and station elevation for BUFR reports are the same as for
radiosonde data (see Appendix 2 for an example of a large error in BUFR elevation).

Migration to IWXXM: While the WMO has been carrying out the migration from
TAC toBUFR formats, ICAOhas also embarked on amajor format change from their
TAC formats (METAR, SPECI, etc.) to IWXXM (ICAOWeather Exchange Model),
an xml-based format formally described in ICAO Annex III and WMO Pub 306,
I.3 (WMO 2020b). IWXXM is much less compact than METAR and is intended to
be a machine-to-machine format like BUFR. The current schedule for the migration
requires all countries to produce messages in IWXXM by November 2020 and to
discontinue METARs in 2026 (Murphy 2019). At least initially, many countries
(including the U.S.) will be generating IWXXMmessages from METAR messages.
(See Appendix 2 for a discussion of station metadata for METAR/IWXXM reports.)

Crowd sourced observations: The use of citizen or crowd-sourced observations has
generated interest in recent years. Nipen et al. (2020) and their references provide
an insight into the potential and the problems: quality control is important, and
traditional monitoring methods may not work if the data has been anonymized.
Private weather stations seem the easiest citizen observations to use. The use of
smartphone pressures raises more issues: obtaining accurate height metadata and
dealing with biases. The height issue is somewhat easier for vehicles. Hintz et al.
(2019) review recent work.
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4 Aircraft-Based Observations

Aircraft-based observations (ABO) have been in use by the operational meteorology
community since the post-WorldWar I era. In the early days, aircraft soundings were
made by fastening an “aerometeorograph” (chart recorder) to the wing struts of a
biplane; the chart recorded pressure, temperature, and relative humidity andwas used
to generate “APOBs” (airplane observations) (Moninger et al. 2003). Starting in 1931,
these flights were done each day at a network of Army, Navy, and Weather Bureau
stations (Marks 1940), but they were replaced by radiosondes by 1939 (Benjamin
et al. 2018). Radiosonde data were initially validated by comparison with APOBs
(Diamond et al. 1938).

From the early days of commercial aviation, meteorological information has
also been passed along by pilot voice reports to air traffic control (ATC) and from
there encoded for dissemination in both the aviation and meteorological commu-
nities. AIREPs are routine over-ocean reports that include temperature and winds
at cruising altitudes and are the voice reports of most interest to NWP.6 Although
their main purpose is to provide position reports for aircraft out of radar range, they
have been used by meteorologists since at least 1965 (Chadsey et al. 1967). Over the
past 15 years, voice AIREPs have been increasingly replaced by automated ADS-C
reports.

The modern era of automated reporting for ABO began with FGGE (First GARP
(Global Atmospheric Research Program) Global Experiment) in 1978–1979. Wide-
body aircraft of that era used Inertial Navigation Systems (INS), which made wind
speed and direction measurements practical (Sparkman et al. 1981). Two different
efforts were launched, both of which accessed the aircraft’s avionics for position and
meteorological data—ASDAR, which transmitted observations via geostationary
meteorological satellites, and ACARS, which transmitted observations via VHF
or HF radio (and eventually commercial satellites) (WMO 2017). The first gener-
ation ASDAR system was fielded on 17 aircraft in time to participate in FGGE
and provide real-time observations to the GTS (Sparkman et al. 1981). Although a
second-generationASDARprogramwas operational during 1991–2007, theACARS
approach soon gained ascendency since airlines were installing that system to gather
data from aircraft in flight for their own purposes. Starting with the ACARS installa-
tions on11B-747 aircraft reported bySparkmanet al. (1981), virtually all commercial
aircraft flying today are equipped with ACARS.

Automated meteorological reports transmitted via ACARS and disseminated
using WMO data formats (either TAC or BUFR) are referred to generically as
AMDAR (Aircraft Meteorological Data Relay) reports. Australia was the first
country to establish an AMDAR program with observations beginning in 1986. The
U.S. AMDAR program (MDCRS) began operation in 1991 with data initially from

6 Since the 1930s, PIREPs (Pilot Reports) have provided information about hazardous weather
(especially icing and turbulence) encountered in flight over the U.S. and Canada (Petersen 2016);
these typically do not contain information usable for global NWP but they can be important for
verification of flight hazards.
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Fig. 14 ABO data coverage for observations received at FNMOC between 0900 and 1500 UTC 7
January 2020. a AIREP-format observations with known ADS-C reports (red) and other AIREPs
(blue); b non-standard BUFR AMDAR (red) and text AMDAR (green); and c standard BUFR
AMDAR from programs in the U.S. (black), Europe (blue), Mexico (magenta), LATAM (green),
and Argentina (red)

three airlines (Homans 2007) expanding to nine by 2016. European programs began
with KLM in 1993; currently 14 airlines participate in the EUMETNET E-ABO
program (EUMETNET 2020). Other AMDAR programs have been established in
Asia (China, Hong Kong, Japan, and South Korea), South America (Argentina and
LATAM), North America (Canada and Mexico), New Zealand, and South Africa
(Stringer 2020). An example of ABO coverage for data received at FNMOC is shown
in Fig. 14. Note that coverage varies not only geographically, with fewer observa-
tions over oceans and in the Southern Hemisphere, but also by time of day and day
of week (not shown), with fewer observations during the night and on weekends.

Moninger et al. (2003, Fig. 2) shows the increase in aircraft wind observations that
occurred leading up to FGGE,with a peak of roughly 6000 per day during FGGE. The
number of reports per day increased sharply during the 1990s to nearly 35,000 per
day by 1999. Figure 15 shows the ongoing increases since then in terms of observa-
tions used in the ECMWF analysis,7 with more aircraft from more countries/airlines
providing data, especially in the past decade. At the end of 2019, roughly 1.9 M
data values were used in the ECMWF analysis, which corresponds to over 600,000
reports per day—roughly 100 times as many as in the NCEP reanalysis for the FGGE
year.

7 In this graph, temperature, humidity, u-wind, and v-wind count as individual measurements. Since
humidity observations are relatively few in number, the values here can be divided by 3 to give a
report count for comparison with the Moninger et al. (2003) values.
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Fig. 15 Average number of aircraft measurements assimilated per day at ECMWF as a function
of year. Note that temperature, u-wind, and v-wind count as separate measurements (as does the
relatively small number of humidity measurements). ECMWF currently uses approximately 75%
of AMDAR and AIREP reports received (Figure courtesy of Lars Isaksen)

Measurement Characteristics

Aircraft observations have a more complex relationship between sensor systems and
meteorological variables than radiosonde and surface data. Ignoring humidity for the
moment, there are two fundamental sensors in use—the pitot-static probe and the
total air temperature (TAT) probe. The pitot-static probe measures total air pressure
(static plus dynamic) and static air pressure. Values from the aircraft’s navigation
system are also required, not only for the location of the observations, but also
for the determination of winds. A thorough description of the interplay in these
measurements in driving meteorological variables is given in Chapter 3 of WMO
(2018b) and summarized here.

Airpressure: Static pressure is converted to pressure altitude in the aircraft’s avionics
by assuming standard atmosphere conditions. If the aircraft’s altimeter was set to the
standard atmosphere value of 1013.25 hPa (referred to as “QNE”), then pressure
altitude is a function only of pressure. This is the case for most AMDAR reports—
WMO (2018b, p. 59) in fact states, “The pressure altitude reported by the AMDAR
on-board software should always be with respect to ICAO mean sea-level pressure
[QNE] only.”

At the same time, most countries require smaller aircraft to use either the altimeter
setting “QNH”, a form of sea level pressure based on the standard atmosphere, or
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“QFE” the observed surface pressure at the airport’s field elevation. If QNH is used,
the altimeter displays the field elevation while the aircraft is on the ground, while
if QFE is used, the altimeter displays an altitude of zero while the aircraft is on the
ground. The baseline value QNH or QFE must be known to convert pressure altitude
to pressure below the transition level. Above the “transition level” (which varies
by country (e.g., 18000 ft in the U.S.)—see https://www.skybrary.aero/index.php/
Transition_Altitude/Level), all aircraft set their altimeters to the standard pressure
QNE. From an aviation perspective, altitudes above the transition level are referred
to as flight levels (“FL”) and are generally reported in hundreds of feet—18000
ft becomes FL180. However, the terms “pressure altitude” and “flight level” are
often used interchangeably. Regardless of which term is used, the important thing
to know when using ABO data is whether data below the transition level use QNE
or QNH/QFE as a reference, although nearly all AMDAR observations use QNE.
The simplest way to clear up any confusion would be to have data providers convert
pressure altitudes to pressure, taking QNH/QFE into account as necessary!

In order to meet aviation requirements, the pressure uncertainty must be 1.5 hPa
or less, but the uncertainty in pressure computed from pressure altitude can be larger
at low levels if pressure altitudes in the downlinked messages (or the final formatted
AMDARmessages) are reported in hundreds of feet. Pressure altitudes are currently
reported in the downlinked messages in tens of feet (WMO 2018b).

Temperature: Total air temperature is defined as the temperature that would result
fromcompressional heating if the airflowaround the aircraftwere completely brought
to rest. Tomimic this, themost commonly usedTATprobe slows down the flow inside
the probe to just a few m/s before measuring the temperature (WMO 2018b). The
static or ambient temperature is then computed from the probe temperature, theMach
number, and the probe recovery factor, which is typically 0.98 (WMO 2018b). For
an aircraft cruising at Mach 0.85, the difference between the probe temperature and
the ambient temperature is over 30 K. In principle, theMach number is defined as the
true airspeed divided by the speed of sound in free air and so is itself a function of the
static air temperature. In practice, the Mach number is derived from measurements
of static pressure and total air pressure from the pitot-static probe (e.g.,WMO2018b,
p. 60, Eq. 3.5). The uncertainty of the temperature measurement ranges from 0.3 K
at low Mach numbers to 0.4 K at Mach 0.8. Sources of error include evaporative
cooling of up to 3 K after the sensor has been wetted in cloud, and a loss of accuracy
at very low airspeeds (e.g., prior to take-off). Drüe (2011) also discusses a possible
dependency on pitch angle.

Bias is a significant issuewithABO.Dee andUppala (2009) found a small positive
global mean O-A for aircraft data at 200 hPa in the ERA-Interim reanalysis that was
accompanied by a small negative O-A for radiosonde data at that level; the latter
began in about 1999 when the numbers of aircraft data increased sharply. Ballish
andKumar (2008) similarly found positivemonthly averageO-B values for AMDAR
data in the 300–200 hPa layer, in contrast to negative values for radiosonde data in
the same layer. The ABO temperature biases varied by aircraft type, pressure, and
flight phase, with aircraft descents tending to be colder than ascents. These results led

https://www.skybrary.aero/index.php/Transition_Altitude/Level
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Fig. 16 Average bias
correction applied at
ECMWF in ERA5. The use
of AIREP temperatures was
stopped in 2018, and the
format for MDCRS data was
changed to use the AMDAR
BUFR template version 7
(“new format”) in 2017.
AMDAR averages are larger
for pressures less than
300 hPa, but with a lot of
variability (SD ~0.4 K)
(Courtesy of Lars Isaksen)

Ballish and Kumar (2008) to propose airframe- and pressure-dependent corrections
of roughly -0.5 to -1.0 K at cruising altitudes (300–150 hPa) for most airframe types
studied. Drüe et al. (2008) also looked at airframe-dependent temperature biases in
a special dataset containing high-resolution Lufthansa descents into the Frankfurt’s
Rhein/Main airport. The systematic deviation of temperature (relative to the mean
profile) varied from near zero for A330 andA340 aircraft to roughly+0.3K forA319
and A321 aircraft and -0.5 K for A320 aircraft. The differences in the latter three are
noteworthy since these aircraft types are part of the same family with essentially the
same nose section where the sensors are located but a difference in overall length.

Performing a bias correction is therefore an important factor in assimilating
aircraft temperature data, especially for the large amount of data at cruising alti-
tudes that can dominate the analysis in regions with heavy aircraft traffic. Isaksen
et al. (2012) and Ingleby et al. (2018) describe the application of the ECMWF vari-
ational bias correction (VarBC) scheme to correct data from individual aircraft. The
bias correction uses a constant that is a function of aircraft registration number
(implemented in 2011), with additional terms based on ascent rate and descent rate
(implemented in 2018). Isaksen et al. (2012) showed that this scheme led not only
to improving the fit of the background and analysis to the aircraft observations, but
it also improved the fit to radiosonde temperatures and GPS radio occultation data.
A bulk bias correction of AIREP data (which do not generally report registration
numbers) was tested at ECMWF and reduced the 200 hPa warm bias in the anal-
ysis and forecasts over the North Atlantic. Although it was not used operationally
(Ingleby et al. 2018), this overall bias correction scheme is used in the ERA5 reanal-
ysis (Hersbach et al. 2020), with average bias corrections by year and data format
shown in Fig. 16. Note that ECMWF decided to stop assimilating AIREP temper-
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atures in 2018, given the availability of higher-precision ADS-C data through the
MDCRS data stream (Ingleby et al. 2019).

Other centers also apply a temperature bias correction to aircraft data. ECCC uses
a static correction as a function of pressure that ranges from 0.1 K for the 700–
500 hPa layer to 0.5 K for the 300–100 hPa layer (Buehner et al. 2015). The UK
Met Office also uses a static approach, but they base their corrections on monthly
O-B statistics in three pressure layers for individual aircraft (Colin Parrett and Adam
Maycock, personal communication). In this scheme, corrections are only applied
to aircraft with a bias greater than 0.5 °C, which results in corrections to roughly
40% of aircraft temperatures. NCEP followed the ECMWF strategy in using VarBC
to determine corrections using registration number and ascent/descent rates, but
correcting AIREP-formatted data without reference to registration numbers. The
NCEP scheme also uses a tension-spline algorithm to better define the time used in
computing the ascent/descent rates (Zhu et al. 2015).

However, the ideal solution for NWP would be to correct the tempera-
ture bias at the source in the onboard software, as discussed at the 2020
ECMWF/EUMETNET Workshop on Aircraft Weather Observations and Their
Use (https://www.ecmwf.int/en/learning/workshops/workshop-aircraft-weather-obs
ervations-and-their-use). This would require addressing any truncation of values in
both the onboard software and the downlink format, as well as other sources of
bias. For example, ECCC worked with FLYHT (data provider for First Air and
Canada North airlines) to correct a configuration-related problem that had led to
differences of up to 4 °C between mid-tropospheric ascent and descent temperatures
(Zaitseva 2020). A 1-min mismatch between temperature and altitude had resulted
from the use of 64-s reporting; switching to 1-s reporting removed this problem
(Frédéric Lenormand, personal communication). In addition to timing differences,
de Haan et al. (2020) found that biases also result from corrections applied to pres-
sure altitude without the modified pressure altitude being used in turn to modify the
temperature. They devised a process usingNWP temperatures and indicated airspeed
measurements from Mode-S EHS observations (see discussion below) that success-
fully corrects the bias in AMDAR temperatures. If the temperature bias from these
sources could be remediated in the onboard software for at least some aircraft, then
temperatures from those aircraft would not only be more valuable to data assimila-
tion, but they could be used as additional anchor observations in theVarBC correction
of radiance biases (Eyre 2016). At present, using VarBC to correct aircraft tempera-
ture biases is an imperfect solution with a residual bias remaining for some aircraft
tracks (Ingleby et al. 2020a).

Wind speedanddirection: Fundamentally, thewind vector is computed as the vector
difference between the airspeed vector (the motion of the aircraft relative to the air)
and the groundspeed vector (the motion of the aircraft relative to the ground). Since
these two vectors are much larger than the wind vector, they must be measured to a
high degree of accuracy. Lenschow (1986) presents the full equations to compute the
three-dimensionalwind fromaircraftmeasurements, taking into account the aircraft’s

https://www.ecmwf.int/en/learning/workshops/workshop-aircraft-weather-observations-and-their-use


334 P. M. Pauley and B. Ingleby

attitude (three-dimensional orientation). In commonusage, this is reduced to a simpli-
fied two-dimensional solution for the horizontal wind components, assuming that the
aircraft is perfectly aligned with the airstream, and in straight and level flight (WMO
2003, 2018b). These assumptions are most often violated when the aircraft executes
a turn, so the AMDAR formats include a flag to indicate when the roll angle exceeds
a rather conservative 5°. In principle, pitch angle can also come into play, but it is
not reported.

The airspeed vector is defined as the motion of the aircraft relative to the air; it
is given by the heading and true airspeed of the aircraft. Heading is defined as the
angle between the longitudinal axis of the aircraft and true north; it is measured by
the aircraft’s navigation system, which in most aircraft reporting AMDAR is given
by an inertial reference system (IRS), GNSS, or a combination. True airspeed is
determined from (dry) static temperature and Mach number, although Lenschow
(1986) and Khelif et al. (1999) show that a significant error in true airspeed can
occur by neglecting humidity effects in very moist air such as in the tropics. The
groundspeed vector is defined as the motion of the aircraft relative to the ground,
given by the track angle (with respect to true north) and the speed of the aircraft
relative to the earth. These are determined either from a succession of locations of
the aircraft from the aircraft’s navigation system or by integrating the accelerations
measured by the IRS.

The uncertainty of the wind then depends on the uncertainty in the basic measure-
ments of static and dynamic pressure and total air temperature and in the values
provided by the navigation system. In the absence of gross temperature errors, the
uncertainty in true airspeed is dominated by the uncertainty in Mach number, which
itself depends on the uncertainty in the basic pressure measurements (WMO 2018b).
An uncertainty in Mach number of 0.2% would yield an uncertainty in airspeed of
roughly 0.5 m/s. Uncorrected IRS drift can also lead over time to errors in loca-
tion and therefore wind that are a function of flight duration. Departures from the
assumptions made in deriving the two-dimensional horizontal wind equation include
significant side slip, roll angle, or pitch angle, but these are typically counted more
as error than uncertainty. Overall, WMO (2018b) cites a typical vector uncertainty
of 2–3 m/s.

Drüe et al. (2008) looked at wind errors in an aircraft-relative reference frame,
projecting the wind into longitudinal (along-fuselage) and lateral (cross-fuselage)
components. Their estimate of the random component of the error was similar
between these two components, ranging from 0.6 m/s below 1 km to roughly 1.5 m/s
at 4 km. The longitudinal systematic component of the error comes primarily from
the measurement of true airspeed and was estimated to be close to zero for A300 and
A319 aircraft, but with biases of -0.6 m/s for A320 and +0.3 m/s for A321 aircraft
(except at lowest levels). A330 and A340 aircraft had biases of -0.5 m/s. The lateral
systematic component of the error depends primarily on roll angle.

Some large non-random errors in aircraft winds have been present at times. In
2011, systematic wind direction errors of 180° were found in ADS-C reports over
the North Atlantic from Gulfstream aircraft. A different airframe/airlines-dependent
180° wind error is documented in Pauley (2002); these errors are isolated and occur
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only when the actual wind direction is precisely 0° (or 180°) but is reported as 180°
(or either 0° or 360°). This rare error is still seen in current data and presumably
results from either an arctangent error or an averaging artifact in the onboard soft-
ware. A more serious wind direction error occurs when the sign of the v-component
of the wind is reversed in ADS-C reports from B787 aircraft for southerly flow
(Fig. 17). Based on the characterization of the error by Hill (2020), Ingleby and
Isaksen (2020) switch the sign of the v-component for AIREP- and BUFR-formatted
ADS-C winds when this gives a significantly better fit to the background (“vswitch”
check). Detecting aircraft-type dependent errors, reporting them to the source, and
devising means of correcting or rejecting erroneous data would be greatly simplified
if the aircraft type and airline were provided as metadata, as discussed at the 2020
ECMWF/EUMETNET Workshop on Aircraft Weather Observations and Their Use
(see link above).

Humidity: The only humidity sensor currently used on board AMDAR-reporting
aircraft is the WVSS-II (Water Vapor Sensing System, second generation), which as

Fig. 17 Aircraft winds (in blue) in the 175–225 hPa over the North Atlantic for layer for 0000
UTC 28 May 2020 with erroneous winds as detected (imperfectly) by the ECMWF “vswitch”
check (where the v-component of the wind is flipped under certain conditions) shown in red. The
blue arrow at the bottom represents 25 m/s
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of 2016 had been fielded on 148 aircraft mostly flying U.S. domestic routes (Petersen
et al. 2016). The WVSS-II uses a laser diode system that senses the water vapor
absorption in a narrow band of wavelengths centered on 1.37 μm. This measure-
ment is used to derive water vapor concentration (ppmv), which is then combined
with WVSS-II-measured pressure and temperature to yield water vapor mixing ratio
(WMO 2018b).

Anumber of comparisons havebeenmade to assess the performanceof theWVSS-
II. Helms et al. (2010) describe chamber tests by both NWS and Deutscher Wetterdi-
enst (DWD) that demonstrated a relative uncertainty of 5–10% for WVSS-II mixing
ratios from 20 to 0.05 g/kg and pressures greater than 200 hPa. These tests suggest a
detection limit of 0.02 g/kg. Vance et al. (2015) performed flight tests comparing two
WVSS-II sensors with three chilled-mirror sensors and found good agreement, espe-
cially with theWVSS-II fedwith a Rosemount inlet (such as commonly used for TAT
probes) rather than the standard flush-mount inlet (“air sampler”) which had a moist
bias at the lowest mixing ratios. However, the flush-mount inlet performed better in
the presence of liquid water in cloud and had the fastest response time of the five
sensors in the test. A comparison was also made between special RS92 radiosonde
launches and WVSS-II profiles (Petersen et al. 2016). The overall mean difference
between the radiosonde and WVSS-II measurements below 400 hPa was 0.15 g/kg
with a standard deviation of 0.62 g/kg; aircraft-to-aircraft differences were even
smaller, suggesting that the WVSS-II performs at least as well as RS-92 humidity
sensor. Further information on testing is summarized in WMO (2019d).

While these studies demonstrate the overall high quality of theWVSS-II humidity
observations, Pauley andBaker (2014) show an example of a pathology that can occur
in this system. A particular aircraft gave humidity values that increased with height
to 11 g/kg at 200 hPa, which equates to a relative humidity of over 20000%. A
supersaturation check would reject all of the observations above roughly 700 hPa
in this case, but the values below that level also increased with height, compared
to the decrease with height seen in a nearby radiosonde sounding. According to
Bryce Ford (SpectraSensors, personal communication), this behavior in the WVSS-
II mixing ratios would result from either a blocked air sampler or an incorrectly
installed one-way hose between the air sampler and the laser diode chamber. In
either case, surface air would be trapped within the chamber leading to the wildly
incorrect mixing ratio measurements. Rejecting the entire humidity profile when
more than 1/3 of the observations are rejected can handle this pathology.

TheWVSS-II humidity is provided with quality flags that indicate potential prob-
lems with the data; these should be utilized even though very few values are flagged
as bad. Mixing ratios of 0.000 g/kg are present in current data without being flagged
as bad—these should not be assimilated. Consideration should be given to excluding
values less than the notional detection limit of 0.02 g/kg.

Turbulence:Although aircraft reports of turbulence are not assimilated in operational
NWP systems, they are important for verification of turbulence forecasts (e.g., Storer
et al. 2019). Twomeasures are currently in use—DEVG (Derived Equivalent Vertical
Gust) and EDR (Eddy Dissipation Rate), both of which are aircraft-independent
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turbulence measures. As of February 2020, over 200 aircraft were reporting EDR
with an average of roughly 17000 reports per day, and approximately 350 aircraft
were reporting DEVG with an average of roughly 20000 reports per day (Taylor
2020).

Related Observing Systems

ADS-C: Over the past approximately 15 years, voice AIREPs have largely
been replaced by automated ADS-C (Automatic Dependent Surveillance-Contract)
reports for over-ocean position reports required for ATC. These are provided by
contract between a given aircraft and an Air Navigation Service Provider (ANSP)
that can optionally require temperatures and winds (Williard 2020). Starting in the
mid-2000s, ADS-C reports encoded in AIREP format have been disseminated on
the GTS, especially over the North Atlantic (Fig. 14a). Although ADS-C reports
from a subset of airlines were included in MDCRS starting in 2014, a much larger
set of ADS-C reports started being disseminated on the GTS as part of MDCRS in
2017 (e.g., the tracks that stop abruptly south of the main North Atlantic routes in
Fig. 14c). As of February 2020, 38 out of the 65 ANSPs required meteorological data
in ADS-C position reports (Williard 2020). In a study of KLM ADS-C reports over
a 76-day period, de Haan et al. (2013) found that ADS-C reports were comparable
in quality to AMDAR reports. However, they are not without problems as seen in
the previous discussion of wind errors.

ADS-B: Another type of report downlinked for ATC purposes is ADS-B: Auto-
maticDependent Surveillance-Broadcast. These reports are broadcast by commercial
aircraft and can be used by ATC as a replacement for secondary radar and can also
be received by other aircraft for situational awareness. These reports are mandated in
some regions/countries; they include location but not meteorological data. However,
Stone and Kitchen (2015) developed a technique for using ADS-B-reported pres-
sure altitude and pressure-altitude correction (defined as the difference between the
GNSS altitude and the pressure altitude) to define a layer-mean temperature.

AFIRS AMDAR: FLYHT Aerospace Solutions, Ltd. has developed AFIRS (Auto-
mated Flight Information Reporting System), a satellite communications system that
provides an alternate to ACARS and can also provide ABO (WMO 2017, 2018b).
The meteorological data from AFIRS have the same characteristics as AMDAR,
and are available in some otherwise data sparse regions. These data are commer-
cially available and have been in use at NCEP by contract, but they had not gained
widespread use in NWP prior to FLYHTmaking the data freely available to the NWP
community during the COVID-19 crisis.

TAMDAR: TAMDAR (Tropospheric Airborne Meteorological Data Reporting) had
its genesis in a NASA project to develop electronic pilot reporting capability in
conjunction with AirDat LLC, who developed a combined sensor that can measure
temperature, relative humidity, static and dynamic pressure, and icing and from those
compute pressure altitude, indicated/true airspeed, turbulence, and winds (Daniels
et al. 2004). The TAMDAR electronics also includes GPS capability for time and
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geometric altitude and includes its own satellite communications. TAMDAR instal-
lations have been primarily on regional carriers, which make shorter flights often
into smaller airports; as a result, TAMDAR complements AMDAR. TAMDAR is
currently operated by FLYHT Aerospace Solutions, Ltd., and a description of the
TAMDAR measurements is given in WMO (2018b).

While the performance and benefits for TAMDAR have been well studied (e.g.,
Moninger et al. 2010; Ingleby et al. 2019), these data have not gained widespread
use in global NWP (with the exception of NCEP) because of their cost. However, the
current owner, FLYHT Aerospace Solutions, Ltd., has made TAMDAR data freely
available to the NWP community during the COVID-19 crisis, which has led many
centers to implement it to helpmitigate the substantial decrease in aircraft data related
to COVID-19.

HDOB: In addition to dropsonde data, the NOAA and U.S. Air Force hurricane
hunter aircraft also have been providing “high-density high-accuracy” flight-level
winds, temperatures, and humidity since the 2007 hurricane season. These so-called
HDOB observations use a 30-s time interval and 30 s averages, with the exception
of peak values that use 10 s averages. Each report includes time, latitude, longitude,
static pressure, geopotential height, extrapolated sea level pressure (or D-value), air
temperature, dewpoint temperature, flight-level wind direction and speed, plus peak
flight-level wind speed, peak SFMR surface wind speed, SFMR-derived rain rate,
and QC flags. The ASCII code form for these observations is described in Appendix
G of the National Hurricane Operations Plan (OFCM 2020a). HDOB data have been
assimilated in the HWRF system since 2017 (Tong et al. 2018).

Mode-S: An entirely different means of obtaining meteorological information from
aircraft is commonly called “Mode-S”. These data are derived from information
automatically downlinked from an aircraft’s transponder in response to being queried
by ATC radars operating using Mode-S Enhanced Surveillance (EHS) and are very
dense in space and time for regions covered by these radars, not only because the
queries are made frequently (every 4–6 s), but also because all aircraft respond to
the queries. One advantage these data have over AMDAR data is that they have
no communication costs, since Mode-S data are already being downlinked for ATC
purposes (EUMETNET 2015). The communication costs for AMDAR and ADS-C
data are typically shared in some way with NMSs such as NOAA or organizations
such as EUMETNET.

There are several different variants of Mode-S data. Arguably, the simplest to
use is Mode-S MRAR (Meteorological Routine Air Report) data, which contain
temperature and wind observations, but which are provided by only a small fraction
of aircraft. Collocations showed that these data are very similar in quality toAMDAR
data (Strajnar 2012), but like AMDAR data need a temperature bias correction (de
Haan 2014).

Temperatures and winds can also be derived from the downlinked Mode-S data
related to the aircraft sensor data. The process used by EMADDC (EuropeanMeteo-
rological Aircraft Derived Data Center) at KNMI is described below (EUMETNET
2015; Sondij 2020). EMADDC processes data from several sources, including ATC
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centers, NMS-operated ADS-B receivers (e.g., UK Met Office), and commercially
operated ADS-B receivers (e.g., Air Support) (Ingleby and Isaksen 2020). Data
coming from ATC radars use the radar-observed slant range and azimuth to the
aircraft to determine the latitude and longitude of the observation, while data coming
fromADS-B receivers (that receive bothADS-B andMode-S reports) use theADS-B
locations. The aircraft providing Mode-S data responds to a radar query by down-
linking altitude, roll angle, true track angle, groundspeed, either track angle rate
or true airspeed, magnetic heading, indicated airspeed and/or Mach number, and
climb/descent rate (EUMETNET 2015).

These parameters require careful processing to accurately determine meteorolog-
ical variables. The groundspeed vector specified by the true track angle and ground
speed is quite accurate. The airspeed vector requires the conversion of magnetic
heading to true heading (i.e., with respect to true north). The magnetic heading is not
measured but rather is determined on board the aircraft from the true heading output
by the navigation system and a magnetic declination table, which may be out-of-
date and is unknown. EMADDC determines a heading correction for each aircraft
based on an estimated date of the magnetic declination table; different estimation
methods are used, some of which use NWP winds (Sondij 2020). Temperature was
originally derived from the Mach number and true airspeed, but a more accurate
method was defined based on the indicated airspeed and static pressure that is in use
in the EMADDC test system. After averaging over 20 s, these temperatures have a
standard deviation close to that for AMDAR and near-zero bias.

Data from the EMADDC test systemwas offered to the operational NWP commu-
nity in April 2020 to help offset the loss in aircraft data associated with COVID-19.
ECMWFbegan testing these data inMay 2020 and found that temperatures computed
from indicated airspeed and static pressurewere essentially unbiased but had standard
deviations that were a bit larger than bias-corrected BUFR AMDAR temperatures
(Ingleby and Isaksen 2020). One aspect of using Mode-S data in a global model
that needs to be addressed is data thinning, since these data are very dense in space
and time over Europe. After applying their standard thinning, ECMWF assimilated
only 5% of the available Mode-S data (Fig. 18). These data gave improvements
mostly in the upper troposphere–a 6% improvement in 12-h wind forecasts and a 3–
4% improvement in temperature compared to European radiosondes (Ingleby et al.
2020c). ECMWF began assimilating Mode-S winds in their operational system on
28 July 2020, and now uses more Mode-S than AMDAR reports—remarkable given
that Mode-S data are currently only available over Europe.

UAV: Using Unmanned Aerial Vehicles (UAVs) to obtain meteorological obser-
vations has been gaining attention in recent years (e.g., WMO 2019e), although a
number of problemsmust be resolved before they canbe used operationally, including
airspace restrictions, autonomous operations, and data formatting and sharing. Pilot
projects have demonstrated the ability of UAVs to provide boundary layer profiling
and air quality monitoring among other uses.
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Fig. 18 Distribution of Mode-S aircraft reports (red) after ECMWF thinning for 2100 UTC 9May
to 0900 UTC 10 May 2020. Other aircraft types assimilated at ECMWF are shown for comparison,
including AIREP (cyan), TACAMDAR (yellow), TAMDAR (magenta), and BUFRAMDAR (dark
blue). The numbers of reports for each category are shown in the legend

Data Formatting

Downlink formatting considerations: The specification for the current downlink
format is the AMDAR Onboard Software Functional Requirements Specification
(AOSFRS) (WMO 2014), which is based on the older ARINC 620 format described
inAppendix II of theAMDARReferenceManual (WMO2003).TheAOSFRSspecifi-
cation provides for latitude and longitude to be reported in degrees-minutes-seconds,
and time in seconds into the month (although not all airlines have the software capa-
bility to report seconds (Stewart Taylor, personal communication). The precision
of the meteorological variables is listed in Table 3. Most airlines have versions of
ARINC 620 that allow for “up-linking” to the aircraft, i.e., to select data in defined
geographic boxes, specified flight phases, and reporting resolution at airports. This
capability is used by the E-AMDAR program in its E-AMDAR Data Optimization
System (E-ADOS) to reduce communication costs by, for example, reducing the
number of profiles downlinked at busy airports (WMO 2012b).
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Table 3 Reporting precision used in ABO messages

Variable AIREP precision AOSFRS
precision
(downlink)

FM-42 AMDAR
precision

BUFR precision
AMDAR template
v7

Pressure altitude
(or flight level)

100 ft 10 ft 100 ft 1 m

Temperature 1.0 °C 0.1 °C 0.1 °C 0.1 °C
(after conversion
from K in 0.01 K)

Humidity – Mixing ratio
0.001 g/kg

– Mixing ratio
0.001 g/kg

Wind direction 1° 1° 1° 1°

Wind speed 1.0 kt 1.0 kt 1.0 kt 0.1 m/s

AOSFRS uses a single format for all flight phases, but varies the temporal reso-
lution according to the uplinked configuration. Ascent and descent observations can
use either a pressure-based reporting scheme (e.g., every 25 hPa) or a time-based
reporting scheme (e.g., every 20 s), with the ascents split into a higher resolution “part
1” and a lower resolution “part 2”. The default configuration settings in E-ADOS are
(1) ascent part 1: 10 s interval for 150 s; (2) ascent part 2: 50 s interval for 1050 s;
(3) en-route: 7 min interval; (4) descent: 40 s interval starting at FL180 (Stewart
Taylor, personal communication). However, some aircraft use the older ARINC 620
specification and provide a time and location only for the first observation in ascent
part 1, and time only for the first observation in ascent part 2. In this case, times are
computed using the specified time intervals; locations in part 1 are often interpolated,
but sometimes are set to the initial location. These are what Drüe (2011) refers to as
“faked positions”.

TAC FM-42 formatting considerations: The TAC format in use for AMDAR data
is specified as FM-42 (WMO2019a), with the reporting precision for meteorological
variables shown in Table 3. One of the deficiencies of this format is that it does not
specify the month or the year, instead only giving the day of the month and the time.
There have been cases where month-old data have been retransmitted on the GTS
(Brad Ballish, personal communication—see the example in Pauley et al. 2014, slide
19). When this occurs, nothing in the report alerts the user to its age; both current
and old observations can be present from the same aircraft, potentially separated by
unrealistic distances.

In terms ofmetadata, aircraft identifiers are registration or “tail” numbers that have
typically been anonymized using 5–8 character combinations of letters and numbers.
Some AMDAR programs use the first two characters to indicate the program (e.g.,
AU0171 for an Australian aircraft). Latitudes and longitudes are given in degrees
and minutes. The flight phase is indicated as ascent, descent, level, or unsteady, with
the latter indicating that the roll angle threshold (usually 5°) has been exceeded and
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that the winds are therefore suspect. Unfortunately, there is no means of reporting
airframe type in FM42.

FM-42 provides two variables for pressure altitude, which can be confusing since
they are both named “pressure altitude”. The pressure altitude reported in Sect. 2 of
the observation is definedwith respect to the standard pressureQNE (WMO2019a, p.
A-194), while the pressure altitude reported in Sect. 3 is defined with respect to QNH
(WMO2019a, p. A-77). The regulation for the latter states that reports at 700 hPa and
below use pressure altitude derived from QNH and the field elevation, while heights
above 700 hPa use pressure altitude based on QNE. As an example, Japan makes use
of this to report pressure altitudes below 1000’ (305 m) that reference a local QNH
in Sect. 3 (with the pressure altitude in Sect. 2 set to missing), and pressure altitudes
at 1000’ and above that reference QNE in both Sects. 2 and 3.

BUFR formatting considerations: Roughly 98% of the ABO currently available
for NWP (disregarding Mode-S) are made available in BUFR using the AMDAR
template version 7 (WMO 2019b), referred to here as “standard” BUFR. A small
number of observations are also provided in “non-standard” BUFR, for example,
data from the Canadian AMDAR program, AFIRS AMDAR, and TAMDAR. This
discussion will focus on the characteristics of standard AMDAR BUFR, with the
precision for meteorological variables given in Table 3.

Both flight numbers and registration numbers are available in standard BUFR, but
the flight number is usually only populated for MDCRS data. European AMDAR
registration numbers are anonymized as “EU” followed by a four-digit number, with
some reports repeating the registration number for the flight number, while MDCRS
uses 8-character combinations of letters and numbers in their anonymization for
both registration number and flight number, with no obvious pattern. Latitude and
longitude are given in degrees to five decimal places inBUFR, although the functional
precision is often three decimal places. Dates are given as year, month, and day and
times are given as hours, minutes, and seconds, but seconds are set to zero for most
observations. Only a single pressure altitude variable is used in standard AMDAR
BUFR; it is referred to as “flight level” in most of the documentation and is assumed
to be pressure altitude based on the standard pressure QNE. This variable should be
consistent with the Sect. 2 pressure altitude in FM42.

Over the past few years, increasing numbers of ADS-C reports have been made
available through the MDCRS data stream. These can only be distinguished from
AMDAR reports by the GTS bulletin header used for their dissemination, although
identifying the ADS-C reports inside the BUFR messages was recommended at the
2020 ECMWF/EUMETNETWorkshop on Aircraft Weather Observations and Their
Use.

TAC AIREP formatting considerations: The AIREP format is governed by ICAO
rather than WMO. Most AIREP documentation describes pilot procedures rather
than the code format, but a brief description of the format is given in the U.S. FAA
publication on Aviation Weather Services (FAA 2019) and a somewhat longer one
in the publication on Flight Services (FAA 2020). In principle, ICAO TAC codes are
being transitioned to IWXXM, but at present, there is no clear picture on whether
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AIREP will be transitioned to IWXXM or whether the ADS-C reports currently
being converted to AIREPs will be provided in BUFR via MDCRS instead.

Since AIREPs are provided primarily for position reports for ATC, the aircraft
identifier (“call sign”) is a flight number rather than a registration number (although
someADS-C reports also include a registration number in the comments at the end of
the message). This means that reject listing and bias correction are difficult at best for
AIREP data as previously described. Voice reports, which are no longer prevalent,
often gave locations with respect to waypoints which required a dictionary to convert
them to latitude and longitude; incorrect locations at times resulted from ambiguous
waypoint namesor out-of-datewaypoint dictionaries (BradBallish, personal commu-
nication). If locations are given as latitudes and longitudes, they are given in degrees
and minutes. Prior to roughly 2005, voice reports were made every 10° longitude
across the North Pacific and North Atlantic, often with locations and meteorological
variables heavily rounded. At present, nearly all observations provided in AIREP
format are ADS-C reports, typically cruise-level reports provided at roughly 15 min
intervals with precision as shown in Table 3.

Preprocessing and quality control for NWP

There are a number of unique challenges involved in preprocessing ABO data.
Duplicate removal is complicated by the anonymization of identifiers. The same
aircraft can report in AIREP using a plain-text flight number, in AMDAR using
the country/region-specific anonymization, and in Mode-S, using yet another
anonymization (Ingleby and Isaksen 2020). Such cross-type duplicates are diffi-
cult to detect, especially since units and reporting precisions differ between types.
Using plain-text aircraft registration numbers would circumvent this problem,
if the airlines and employee representatives would agree. If not, the 2020
ECMWF/EUMETNET Workshop on Aircraft Weather Observations recommended
that common anonymization tables be used, at least between AMDAR and Mode-S
reports.

Track-checking is recommended to ensure that valid locations, times, and pres-
sure altitudes are assigned to each observation. However, this can be difficult when
seconds are not reported for ascent/descent observations and when ascent part 1
observations are given the same location. Additional QC tests can be applied by
comparing neighboring observations in a particular flight. For example, sometimes
values for time, latitude, longitude, or meteorological variables can become “stuck”
partway through a flight (or for a whole flight) and report constant values.

Thinning is also important for ABO data. FNMOC applies along-track thinning
especially for en-route reportswith small time differences. ECMWF rejects data from
the lowest 30 hPa in ascents and descents due to large biases, especially for temper-
atures. They also apply thinning for each aircraft to 35 km horizontally and 7.5 hPa
vertically (Ingleby et al. 2018), which removes roughly 25% of AMDAR/AIREP
reports and 95% ofMode-S reports, primarily near airports. The UKMet Office thins
ABO to an even greater extent, using only about one-quarter of the AMDAR/AIREP
data used by ECMWF. NCEP is testing a process that uses a Hilbert curve projection
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to determine areas of high ABO density; the observations in that region are then
downweighted rather than thinned (Hill 2020).

5 Summary and Discussion

As described in detail in the previous sections, the primary in-situ observations
currently used for NWP originate from radiosondes, surface platforms (including
land stations, buoys, and ships), and aircraft. Each of these provides a heterogeneous
dataset, with random and systematic errors that vary in the details of instrumen-
tation, degree of automation, and data format. Metadata must also be correct and
correctly accounted for—location metadata are more problematic than one might
expect (Appendix 2). The data formats make provision for radiosonde type (although
it may be missing), but not for aircraft type; both affect the error characteristics for
that platform. To summarize, in-situ observations are messy and require care to be
used optimally in data assimilation.

Radiosondes: There is a migration to binary codes underway with increased
reporting of high vertical resolution data; by August 2020, 44% of stations were
providing high resolution profiles. The reporting of position information at each
level enables a better comparison of radiosonde and forecast background values
at upper levels. In addition, some radiosonde systems allow data to be transmitted
while the radiosonde is descending. The data from some radiosonde descents, with
the exception of the topmost portion, has been shown to be of similar quality to the
data from radiosonde ascents.

Surface: Many countries make only six- or three-hourly SYNOP reports available
on the GTS; as supported by the WMO, global NWP centers would like to receive
hourly reports. More data, especially surface pressure over the oceans is also highly
desirable—this could be achieved by increasing the proportion of buoyswith pressure
sensors (currently only about 50%). Potentially there are huge numbers of other data
sources (‘crowd-sourced’ or ‘internet of things’) but these come with additional
quality issues, and may be more useful for limited area forecasting. The move to
WIGOS Station Identifiers is intended to allow for such expansion, but it imposes a
major software change for NWP centers that will also affect radiosonde observations.

Aircraft: The last two decades have seen a massive increase in the volume of
observations from commercial aircraft, at least until the COVID-19 pandemic led
to a precipitous drop in aircraft flights in March 2020. The data are very useful, but
a wind direction error affecting a small subset of reports from a particular aircraft
type has shown that basic metadata not currently provided (such as aircraft type
and airline) would be useful for QC purposes. Discussion has also started on the
possible correction of temperature biases at the source (rather than in NWP systems).
Established aircraft reports come from only a small proportion of flights; early results
from using much denser ‘Mode-S’ reports that are generated for Air Traffic Control
(currently only available over Europe) are promising.
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Not all of these characteristics are fully accounted for in data assimilation systems,
so NWP centers have developed processes to counteract many of the problems
discussed in this chapter. Observation errors are typically assumed to be Gaussian,
unbiased, and uncorrelated in time and space and with the model background. Obser-
vations that have large departures from the model background contribute to the tails
of the distribution; these observations are deleted (or downweighted) either in the
data preprocessors through specific QC checks or in O-B checks that are part of the
data assimilation system. Observation biases are addressed either through correc-
tions during preprocessing or through variational bias correction as part of the data
assimilation system. Aircraft temperatures are usually subjected to bias correction;
radiosonde temperatures and pressures from surface platforms may be as well. (The
ECMWF correction of radiosonde temperatures is updated monthly using the best
subset of radiosonde data as a reference so that the data can still be considered as
anchor measurements. ECMWF is also gradually using more profiles uncorrected.)
Surface pressure biases are typically associated with uncorrected errors in station
(barometer) height, so correcting station metadata errors can reduce the need for
surface pressure bias correction.High-resolution observations that are part of a partic-
ular radiosonde sounding or a particular aircraft flight can contain correlated error;
data thinning is often employed inmitigation.However, these processes are imperfect
at best. For example, using the model background to supply the height-to-pressure
conversion for pilot balloon winds is better than using a standard atmosphere conver-
sion, but introduces the possibility of error correlated with the model background. In
principle, however, one could directly use height as the vertical coordinate for some
or all radiosonde and pilot balloon profiles.

Even so, in-situ observations play an important role in operationalNWP. Figure 19
shows the FSOI and counts by data category for January 2020 for both ECMWF and
FNMOC. (FSOI is ameasure of the error reduction in 24-h forecasts brought about by
assimilating observations (Langland and Baker 2004) and is typically computed as
part of operational forecast systems that use 4DVAR.) There are differences between
centers in how FSOI is computed—for example, ECMWF uses a dry energy error
norm, while FNMOC uses a moist energy error norm. There are also differences in
data assimilation systems that affect the impact that observations have–for example,
ECMWF uses a 12-hr assimilation window beginning at 0900 or 2100 UTC, while
FNMOC uses a 6-h assimilation window beginning at 0300, 0900, 1500, or 2100
UTC. These differences both affect the FSOI for radiosonde data, since the direct
contribution of humidity observations is accounted for with a moist energy error
norm (but not with a dry energy error norm), and sincemost radiosondes are launched
roughly an hour before 0000 and 1200 UTC, putting them comparatively early in the
ECMWF assimilation window where observations have less FSOI impact than they
do late in the assimilation window (e.g., Ingleby et al. 2019).

Note that the volume of data assimilated is dominated by satellite observations
for both of the systems depicted in Fig. 19 for January 2020. In the ECMWF system,
satellite radiances account for 85.5% of the observations assimilated, with AMVs
contributing 2.3%, GPS-RO 1.7% and the Aeolus satellite-based wind lidar another
0.4% for a total of 89.9%. Aeolus winds and all-sky radiances are not used in the
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Fig. 19 Forecast Sensitivity to Observation Impact (FSOI) (left) expressed as a percentage of the
total and counts of assimilated observations (right) by instrument group for ECMWF’s IFS (top)
and for the U.S. Navy’s NAVGEM (bottom) for January 2020. The instrument groups are labeled
separately for the top and bottom figures according to the legend in the center. Note that the counts
for IR radiances are truncated in the top plot in order to better depict the counts for the remaining
types

FNMOCsystemand only roughly one-quarter of the number of IR radiances are used.
Even so, radiances account for 55.8% of the observations, AMVs 25.2%, and GPS-
RO 6.8%, for a total of 87.8%. In contrast, in-situ observations accounted for 9.3%
of the observations assimilated in the ECMWF system and 11.1% in the FNMOC
system. The percentages of satellite and in-situ observations are remarkably similar
between the two systems, given the large differences in types and amounts of data
assimilated. However, the impact of the in-situ observations is much greater than the
counts would suggest. In-situ observations contributed 26.2% of the error reduction
in 24-h forecasts in the ECMWF system and 29.0% in the FNMOC system. Within
this group, aircraft data play the largest role in the ECMWF system, while radiosonde
data play the largest role in the FNMOC system, in no small part because FNMOC
does not currently assimilate flight-level temperatures.

A complementary and arguably more definitive way of evaluating the influence
observations have in a data assimilation system is through data denial experiments
(OSEs). These allow the evaluation of the impact a group of observations has
throughout the forecast period, but require separate data denial and control model
runs. They measure the cumulative impact of withholding a group of observations,
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whereas FSOImeasures the impact of that group of observations on a particular fore-
cast range in the presence of all of the observations, in effect, restarting from an ‘all
data’ forecast each time. A recent set of OSEs performed at ECMWF (Bormann et al.
2019) for June–September 2016 and December 2017–March 2018 included one in
which “conventional” data were denied, with conventional data defined as the three
groups of in-situ observations described in this chapter plus wind profiler obser-
vations. In medium-range (2–10 day) forecasts, the impact from denying conven-
tional observations was greater in the Northern Hemisphere than denying microwave
(MW) radiances, infrared (IR) radiances, GPS RO, or Atmospheric Motion Vectors
(AMVs). Increases in 3-day forecast error for the summer and winter experiments
combined were 10% for 500 hPa geopotential heights, 7% for both 850 hPa and
200 hPa vector wind, 7% for 100 hPa temperature, and 5% for 850 hPa relative
humidity. Denying microwave radiances had the dominant impact for the same vari-
ables for the Southern Hemisphere, while results were more mixed in the tropics.
The impact of the data denials generally decreased with increasing forecast range.

Breaking this down a bit further, the UK Met Office performed a 90-day study
starting from 15 August 2019, where separate experiments were performed to deny
aircraft data and to deny radiosonde data (Ingleby et al. 2020d, Supplement S2). In the
experiment that denied aircraft data, forecast errors increased by the greatest amount
for short-range forecasts in the upper-troposphere, with increases for 12-h forecasts
at 250 hPa of 9% for winds, 11% for temperatures, and 8% for geopotential heights.
The UK Met Office scorecard combines numeric changes in wind, temperature, and
geopotential height at various pressure levels and forecast times for the Northern
Hemisphere, Southern Hemisphere, and tropics into a score signifying percentage
improvement. The overall score for the experiment denying aircraft data was -1.1%,
very similar to the score of -1.2% for the experiment denying radiosonde data. An
ECMWFstudy denying aircraft data for 28 January to 30April 2019 similarly showed
the greatest impact at 250 hPa and for short forecast ranges, with most of the impact
coming from aircraft winds (Ingleby et al. 2020d).

Although the focus of this chapter is on global NWP, results from data denial
experiments using the NOAA Rapid Refresh (RAP) NWP system illuminate the
importance of in-situ data for data-dense regions such as the contiguous U.S (James
and Benjamin 2017). The RAP uses an hourly update cycle in its data assimilation
system, using observations from radiosondes, aircraft, land and marine surface plat-
forms, radar, wind profilers, satellites (AMVs and radiances), as well as GPS-derived
IWV and lightning observations. A comprehensive set of data denial experiments
was performed for observations fromMay 2013, July 2014, and January 2015. Their
results showed that aircraft data were the most important observation type overall
for short-range forecasts of wind, temperature, and RH. Surface and radiosonde data
had secondary but similar impacts for winds and temperature and comparable impact
for RH.

The current COVID-19 crisis has inadvertently provided a real-time data denial
experiment, but one with no corresponding control for comparison. The decrease in
aircraft data was very dramatic in the second half of March 2020, with the counts
reaching a minimum in late April (Ingleby et al. 2020d; James et al. 2020). After
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Fig. 20 Time series of ABO counts by WMO region. Note that the Region IV numbers are plotted
against the left axis, while the other regions are plotted against the right axis (Figure courtesy of
Yulia Zaitseva, Canadian Meteorological Center)

that, counts rebounded somewhat in May through July 2020 to not quite half of
the data volume in February 2020 (Ingleby et al. 2020d). However, the decrease in
aircraft data and the rebound was not the same in all regions. Figure 20 shows the
ABO time series broken down by WMO region and clearly portrays the COVID-19
decrease in all six regions. However, the rebound has been uneven, with Europe and
North America showing the greatest recovery and other regions showing only slow
increases if that. Given this large decrease in aircraft data and the results from the
data denial studies mentioned above, did forecast skill degrade during spring and
summer 2020?

Asmentioned above, studies that deny aircraft data show increased forecast errors,
but they don’t answer the question about what happens when aircraft data are reduced
rather than eliminated. A comparison of FSOI between January 2020 (Fig. 19) and
April 2020 (not shown) from the U.S. Navy’s NAVGEM shows that average counts
for aircraft data translate to 1.03M observations per day in January but only 371K
observations per day in April. However, the FSOI did not drop quite as precipitously,
with aircraft data giving 9.5%of the 24-h forecast error reduction in January but 4.2%
of the error reduction in April. One of the interesting aspects of FSOI is its ability to
capture tradeoffs between observation types. Often, adding a new observation type
can show beneficial impact for that observation type while at the same time reducing
the beneficial impact from other observation types. The reverse happened for April
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Fig. 21 Average counts (top) and FSOI (bottom) by 5° latitude band for January 2020 (left) and
April 2020 (right) for instrument type groups used operationally in the U.S. Navy’s NAVGEM.
Averages are given per 6-h date-time-group (dtg) time window, and each variable, (temperature,
u-wind, v-wind, etc.) counts as a separate observation. Note that negative values for FSOI indicate
a reduction in 24-h forecast error and therefore beneficial impact

2020–while the beneficial impact decreased for aircraft data, it increased especially
for surface observations (from 8% in January to 10.3% in April). Global AVHRR
satellite winds include EUMETSAT single and triplet MetOp winds in polar regions
as well as dual MetOp winds with global coverage; their beneficial impact increased
from 3.6% in January to 5.3% in April.

Figure 21 shows how the FSOI and counts break down by latitude band for January
and April 2020. The sharp decrease in aircraft data counts is shown by comparing
the heavy blue lines in the top graphs, with a large peak in Northern Hemisphere
mid-latitudes that decreased roughly by half in April. However, the loss of impact of
the aircraft observations is felt more in the Southern Hemisphere mid-latitudes and
in the tropics, as can be seen by the nearly zero heavy blue line for those latitudes in
April compared to the significant impact seen in January. This agrees with the drop to
very small numbers of observations seen in Fig. 20 for South America, the Southwest
Pacific (which includes Australia and New Zealand), and Africa, and is consistent
with the significant regional impact found for aircraft data for South America by
Cotton and Eyre (2019). Data from surface platforms are depicted in Fig. 21 as heavy
red lines. Although little difference is seen in the distribution of counts, the beneficial
impact for these observations is increased in the tropics and Northern Hemisphere
mid-latitudes in April compared to January. Increased beneficial impact for Global
AVHRR winds and for radiosondes is also present in April on the north side of the
aircraft data peak. The ability of observations of different types to compensate for
the loss of aircraft data is an example of what Bormann et al. (2019) refer to as the
complementarity and resilience of the global observing system.

The impact of an observation in a data dense area is less than that of a similar
observation in a data sparse area: for example the FSOI per datum of surface pres-
sure from buoys/ships is about six times that of surface pressure from land stations
(ECMWF, January 2020 data). Table 4 summarizes results for different ‘radiosonde
types’ in January 2020. PILOT profiles contain winds only—an average of 20 levels
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Table 4 Summary of assimilated radiosonde (RS) numbers and FSOI per profile (arbitrary units)
for the ECMWF system, Jan 2020

PILOT TAC LAND RS TAC LAND RS BUFR SHIP RS BUFR

# of profiles used 14259 19954 21094 386

# data per profile 40 138 889 940

Ratio of FSOI per profile 4 10 15 30

were used (the ‘# data’ row counts u and v separately) they do not extend as high as
most radiosonde ascents. For land radiosonde reports many more levels are reported
and used from the BUFR reports, and per profile the FSOI is 50% larger than from
TAC reports. This is probably an underestimate of the impact of high-resolution
reporting for NWP because the high-resolution reports also tend to be in areas with
good spatial coverage. The numbers of reports from ships are much smaller (and
the error bars on the FSOI correspondingly larger), but the FSOI per profile is about
double that from high-resolution land reports. Figure 22 shows a breakdown in the
vertical by variable for radiosondes and aircraft—for both the wind FSOI is more
than twice the temperature FSOI (humidity FSOI is much smaller, partly due to the
use of a dry energy norm). Satellites provide a lot of temperature information but less
wind information and this is part of the reason for the dominance of wind impact.
For radiosondes there is a maximum of wind impact at 100 hPa, mainly coming
from the tropics, because of the lack of other wind data at those levels (although
ECMWF started using wind data from the Aeolus satellite on 10 January 2020). In
the extratropics background errors are somewhat larger in winter, combined with
the disproportionate number of in-situ observations in the northern hemisphere this
means that the global FSOI of in situ observations is slightly larger in the northern
winter than in the northern summer.

Ingleby et al. (2020d) examined the impact of the loss of aircraft data on model
skill in the ECMWF global system by comparing time series of model verification
statistics. Since the greatest impact of denying aircraft observations was seen in the
upper troposphere at short forecast ranges, the time series of RMS vector wind error
for 20° N–90° N in 24-h forecasts were examined at 500, 250, and 100 hPa for late
February through July for three years—2018, 2019, and 2020 (Ingleby et al. 2020d,
Fig. 3). The 250 hPa RMS vector wind errors show considerable day-to-day, week-
to-week, and even year-to-year variability, but no step increase in error corresponding
to the large drop in aircraft data is present. A comparison of 500 hPa RMS height
error and 500 hPa height anomaly correlation for 72 h forecasts for the Northern
Hemisphere extratropics from a number of operational global NWP systems from
January 2016 through July 2020 shows that the forecast skill in spring 2020 was not
unusual compared to other springs. The paper concluded that any loss of forecast
skill was too small to show up in the usual global model metrics and was partly offset
by increases in other observation types.

James et al. (2020) performed a partial data denial study in which 80% of the
aircraft data were denied over the contiguous U.S. in two 10-day experiments using
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Fig. 22 Total aircraft and radiosonde negative FSOI (top) and data counts (bottom) for January
2020 in the ECMWF system calculated in 100 hPa layers and by variable (u and v wind data counts
are identical, t—temperature, q—specific humidity)

a later version of the RAP system thanwas used in James and Benjamin (2017). Their
results showed relatively small increases in RMS forecast error compared to denying
all aircraft data. Focusing on their February 2019 experiment, the results for 3, 6, 9,
and 12-h forecasts show that denying 80% (all) of the aircraft data led to an increase
in RMS vector wind error of 0.1–0.15 m/s (0.15–0.45 m/s) and an increase in RMS
temperature error of 0.02–0.04 K (0.05–0.14 K). These results likely underestimate
the actual impact of either an 80% cut or total denial of aircraft observations, since
aircraft observations were still used in the global data assimilation system providing
lateral boundary conditions for these regional data assimilation experiments. Even
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so, the result that using only 20% of the aircraft observations still gives significant
impact is consistent with the global model results and the FSOI results described
above.

In summary, in-situ observations play an important role in global data assim-
ilation despite being heavily outnumbered by satellite observations. Observations
from radiosondes, aircraft, and surface platforms provide over one-quarter of the
error reduction (FSOI) in 24-h forecasts from roughly 10% of the assimilated obser-
vations. These data types complement each other and a degree of redundancy in
the observations compensates for both short-term data outages (such as periodi-
cally occur in operational data streams) as well as longer-term outages such as the
COVID-19 drop in aircraft data. In-situ observations also play a role in providing
anchor observations for radiance bias correction schemes. Improvements in these
observations, such as the improved precision, vertical resolution, and location infor-
mation in high-resolution BUFR radiosonde data can then play a role in improving
the accuracy of bias correction, as should future improvements such as correcting
aircraft temperature biases at the source.
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Appendix 1: Definitions of Acronyms

4DVAR 4-Dimensional VARiational data assimilation
ABO Aircraft-Based Observations
ACARS Aircraft Communications, Addressing, and Reporting System
ADS-B Automatic Dependent Surveillance—Broadcast
ADS-C Automatic Dependent Surveillance—Contract
AFIRS Automated Flight Information Reporting System
AIREP Aircraft Report
AMDAR Aircraft Meteorological Data Relay
AMMA African Monsoon Multidisciplinary Analysis
ANSP Air Navigation Service Provider
AOSFRS AMDAR Onboard Software Functional Requirements Specifica-

tion
APOB Airplane Observation
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ARINC Aeronautical Radio, Incorporated
ASAP Automated Shipboard Aerological Program
ASDAR Aircraft to Satellite Data Relay
ASPEN Atmospheric Sounding Processing Environment
ATC Air Traffic Control
AVAPS Airborne Vertical Atmospheric Profiling System
BSRN Baseline Surface Radiation Network
BUFR Binary Universal Format for the Representation of meteorological

data
C-MAN Coastal-Marine Automated Network
CNES Centre National d’Etudes Spatiales
CQC ComplexQuality Control (of radiosonde heights and temperatures)
DA Data Assimilation
DEVG Derived Equivalent Vertical Gust
DMI Danish Meteorological Institute
DWD Deutscher Wetterdienst (Germany’s National Meteorological

Service)
E-ABO EUMETNET Aircraft-Based Observations
E-ADOS E-AMDAR Data Optimization System
E-ASAP EUMETNET Automated Shipboard Aerological Program
ECCC Environment and Climate Change Canada
ECMWF European Centre for Medium-Range Weather Forecasts
EDA Ensemble of Data Assimilations
EDR Eddy Dissipation Rate
EHS Enhanced Surveillance, associated with Mode-S on ATC radars
EMADDC European Meteorological Aircraft Derived Data Center
ERA-Interim Interim ECMWF ReAnalysis, the predecessor to ERA5
ERA5 ECMWF ReAnalysis, fifth generation
EUMETNET European Meteorological Network
FGGE First GARP (Global Atmospheric Research Program) Global

Experiment
FL Flight Level (usually reported in hundreds of feet
FNMOC (U.S. Navy’s) Fleet Numerical Meteorology and Oceanography

Center
FSOI Forecast Sensitivity to Observation Impact
GCOS Global Climate Observing System
GNSS Global Navigation Satellite System (which includes GPS)
GPS Global Positioning System
GPS RO GPS Radio Occultation observations
GRUAN GCOS Reference Upper-Air Network
GTS Global Telecommunications System
GUAN GCOS Upper-Air Network
HDOB High Density (high accuracy) Observations (from hurricane hunter

aircraft)
HRRR (NCEP’s) High-Resolution Rapid Refresh model
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HWRF (NOAA’s) Hurricane Weather Research and Forecasting model
ICAMS (U.S.) InteragencyCouncil forAdvancingMeteorological Services

(formerly OFCM)
ICAO International Civil Aviation Organization
IFS (ECMWF’s) Integrated Forecasting System
IMOP WMO’s Instruments and Methods of Observation Program
INS Inertial Navigation System
IOM Instruments and Observing Methods
IRS Inertial Reference System
IWV Integrated Water Vapor
IWXXM ICAO Weather Exchange Model
KNMI Koninklijk Nederlands Meteorologisch Instituut (Royal Dutch

Meteorological Institute)
MDCRS Meteorological Data Collection and Reporting System
METAR Meteorological Terminal Air Report or METeorological Aero-

drome Report
Mode-S EHS Mode Selective Enhanced Surveillance
MRAR Meteorological Routine Air Report
NASA (U.S.) National Aeronautics and Space Administration
NAVGEM (U.S.) Navy Global Environmental Model
NCAR (U.S.) National Center for Atmospheric Research
NCEP (U.S.) National Centers for Environmental Prediction
NMS National Meteorological (or Hydrometeorological) Service
NOAA (U.S.) National Oceanic and Atmospheric Administration
NRL (U.S.) Naval Research Laboratory
NSF (U.S.) National Science Foundation
NWP Numerical Weather Prediction
NWS (U.S.) National Weather Service
O-A Observation minus Analysis
O-B Observation minus Background
OFCM U.S. Office of the Federal Coordinator forMeteorological Services

and Supporting Research, reorganized as the Interagency Council
for Advancing Meteorological Services (ICAMS)

OIS (WMO’s) Operational Information Service
ON29 Office Note 29 internal format used at NCEP (predecessor to

BUFR)
OSCAR (WMO’s) Observing SystemsCapability Analysis and Review tool
OSE Observing SystemExperiment (also called data denial experiment)
PILOT WMO TAC format for wind profiles
PIRATA Prediction and Research Moored Array in the Tropical Atlantic
PIREP Pilot Report
Pmsl Mean sea-level pressure
Psfc Surface pressure, also sometimes called station pressure
QC Quality Control
QFE Aviation “Q” code for surface pressure at the field elevation
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QNE Aviation “Q” code for the standard altimeter setting (1013.25 hPa)
QNH Aviation “Q”-code for altimeter setting
RAMA Research Moored Array for African–Asian–Australian Monsoon

Analysis and Prediction
RAWS Remote Automated Weather Station
RH Relative Humidity
RWC Regional WIGOS Center
SFMR Stepped Frequency Microwave Radiometer
SPECI “Special” METAR report, triggered when certain criteria are met
SYNOP WMO TAC format for surface data
TAC Traditional Alphanumeric Codes
TAMDAR Tropospheric Airborne Meteorological Data Reporting
TAT Total Air Temperature
TAO/TRITON Tropical Atmosphere Ocean/ TRIangle Trans-Ocean buoy

Network
TEMP WMO TAC format for radiosonde data
UAV Unmanned Aerial Vehicle
UKV UKVariable resolution component of theMetOfficeUnifiedModel
VarBC Variational Bias Correction
VOS Volunteer Observing Ship
WBAN (United States) Weather Bureau-Army-Navy
WDQMS WIGOS Data Quality Monitoring System
WIGOS WMO Integrated Global Observing System
WIS WMO Information System
WMO World Meteorological Organization
WSI WIGOS Station Identifier
WVSS-II Water Vapor Sensing System, second generation
WWW World Weather Watch

Appendix 2: Station Metadata Considerations

In order for in-situ observations to be useful for data assimilation, they need to be
accompanied by metadata that accurately describe the location of the observation.
Historically, the stationmetadata—latitude, longitude, and elevation—for radiosonde
and land surface stations were omitted from TAC-formatted observations in order to
conserve space and bandwidth. NWP centers therefore maintain local station lists
indexed by station identifiers (5-digit WMO block station numbers or 4-character
ICAO identifiers) to supply this information.Even though an advantage ofBUFR is its
inclusion of stationmetadata, a few stations havemetadata errors,making it advisable
to check the BUFR-provided values against a local station list. This is especially true
for “reformatted” BUFR, where the station metadata are provided by a station list
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that can be difficult to correct. This appendix describes some considerations about
station metadata and provides examples of errors.

Station list maintenance: Before the implementation of OSCAR/Surface in July
2016, station metadata indexed by block-station numbers were collected and
published by theWMO as Pub. 9, Vol. A. 8 Pub 9 Vol A gave latitudes and longitudes
in degrees-minutes-seconds, often with only one-minute accuracy (i.e., 0.0167°).
OSCAR/Surface uses decimal degrees, but many of the entries were converted from
the Pub 9 Vol A list and so have the same fundamental accuracy. Elevations in both
are generally given in meters. The OSCAR/Surface database (https://oscar.wmo.int/
surface/#/), however, is only as good as WMO member countries make it. While
some countries keep their entries accurate and up-to-date, other countries are slow to
make corrections and may not even provide complete metadata. For example, at least
two dozen stations that currently provide regular radiosonde reports lack elevations.

Maintaining station lists is a necessary but underappreciated activity at NWP
centers. Stations move and may or may not be given a new identifier, equipment
is modernized which may change the location or especially the elevation, and
errors in metadata are detected, requiring some detective work to determine correct
values. Ideally, WMO member countries should work to ensure the accuracy of the
OSCAR/Surface entries they are responsible for, but at the same time, NWP centers
need to have a mechanism for overriding known errors in OSCAR/Surface.

WIGOS Station Identifiers: Prior to July 2016, the WMO had assigned five-digit
“block-station” numbers as identifiers for radiosonde, pilot balloon, and surface land
stations, with the first two digits specifying a country or region and the last three
specifying a particular station. Radiosonde profiles or surface observations taken
from ships or “mobile” stations use alphanumeric identifiers that are typically 4–7
characters in length; these are not included in station lists since the SHIP andMOBIL
formats of TEMP and SYNOP include the latitude, longitude, and elevation of the
observation. Station identifiers are not used for dropsonde data, although the TEMP
DROP format does include an observation number that can be used to identify a
particular dropsonde.

The WMO has begun a migration from the legacy “block-station” identifiers
to longer WIGOS Station Identifiers (WSIs), as part of the WMO Integrated Global
Observing System (WIGOS) initiative. A description ofWSIs is given in Attachment
2.2 of the WIGOS Manual (WMO 2019c) and in OFCM (2020b). The motivation
for moving to longer identifiers was to both accommodate future high-resolution
datasets such as surface mesonets and to provide more identifiers for countries that
were running out of block-station numbers. For example, Canada started recycling
obsolete block-station numbers when they had used all the numbers in block 71,
which caused no small amount of confusion at FNMOCwhere the obsolete locations

8 WMO Pub 9 Vol A was originally provided in document form (e.g., theWMO (2012a) document)
and in flatfile form through April 2016 (https://www.wmo.int/pages/prog/www/ois/volume-a/vola-
home.htm). A “legacy” flatfile similar to the Pub 9 Vol A flatfile has been produced from the
OSCAR/Surface metadata from July 2016 through the present and is available at the Vol A website
listed here.

https://oscar.wmo.int/surface/%23/
https://www.wmo.int/pages/prog/www/ois/volume-a/vola-home.htm
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were still in their local station list. Even though the motivation is prompted more
by surface data considerations, radiosonde stations and even aircraft will also be
assigned WSIs.

WSIs are laid out in four parts:

• WIGOS Identifier Series—only series “0” has currently been defined
• Issuer of Identifier—WMO Program or Country/National Identifier (5-digit

number)
• IssueNumber—typically “0” forWMOprograms; 0–65535 for nationally defined

schemas
• Local Identifier—legacy identifier for existing stations (e.g., block-station

number); up to 16 characters (A–Z, a–z, 0–9) for nationally defined schemas

When OSCAR/Surface was set up in 2016, metadata for existing radiosonde and
surface stations with block-station numbers were imported fromWMO Pub 9, Vol A
and assigned WSIs with the Issuer of Identifier set to either 20000 (or 20001 for the
radiosonde site when an identifier has separate entries for the surface and radiosonde
sites), the Issue Number set to 0, and the Local Identifier set to the block-station
number. In searching for a particular WSI in OSCAR/Surface, the WSI is listed
with the four parts separated by dashes (e.g., the WSI 0-20001-0-72662 corresponds
to the radiosonde station using block-station number 72662). Station searches in
OSCAR/Surface can use block-station numbers or WSIs.

Note that TAC formats such as TEMP, PILOT, and SYNOP cannot use WSIs—
these older code forms can only use block station numbers. A four-part BUFR
descriptor has been established to allow the use of WSIs in BUFR messages, with
the current recommendation that stations with block-station numbers provide both
forms of the identifier in the BUFRmessage. At present, very few countries are using
WSIs, although many are making plans for their use. Further details about WSIs can
be found in WMO (2019c) for the WMO perspective and in OFCM (2020b) for the
U.S. implementation.

From the perspective of NWP, this large change in length for station identifiers is
a significant problem.While decodingWSIs fromBUFR files is not difficult, accom-
modating them in databases and using them in existing data assimilation systems is
a problem that will take considerable effort at NWP centers. Any code changes will
also need to be backward compatible to accommodate reanalyses and retrospective
studies in addition to the mix of block-station numbers and WSIs that will be in use
operationally for at least the next decade if the TAC to BUFRmigration is any indica-
tion. ECMWF is using the strategy of adding a new character variable long enough to
hold WSIs in addition to its usual eight-character identifier. If a station only reports
a WSI, a unique eight-character identifier is then generated for use within the NWP
system.

Station elevation: Elevation is a problem both because there are multiple elevations
to choose among and because small errors in elevation have a greater impact than
small errors in latitude or longitude. To be specific, an error of a few kilometers in
the location of a station can be tolerated in all but the highest resolution numerical
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models, while an error of a few meters in elevation can make the difference between
an observation being used or being rejected. An error of 8 to 9 m in elevation implies
a surface pressure error of roughly 1.0 hPa.

Using the terminology from WMO Pub 9 Vol A, there are two elevations that
are reported: “Hp” is the barometer height and “Hha” is either “H”, the ground
elevation in the vicinity of the station, or “HA”, the field elevation defined as the
official altitude for an airport station (WMO 2012a). (These two elevations are also
present in OSCAR/Surface but are neither well labeled nor easily found from the
website interface.) For radiosonde data, the desired elevation is the one that sets the
baseline with the surface pressure observation—“Hp”; this baseline is used in the
hydrostatic calculation of height (or pressure depending on the radiosonde type).
However, the U.S. practice is to modify the pressure observation to “correct” it to
the launch elevation (or release height) (Table J-1, NWS 2010b). This means that
“Hha” is the correct elevation to use for U.S. radiosonde stations. Choosing the
wrong elevation can lead to height errors in the entire sounding. Figure 23 shows
an example of Hha rather than Hp being used for a station that switched from using
RS92 to RS41 radiosondes (Ingleby et al. 2016b, Fig. 5). The switch initially led to
height O-B values increasing from 10 m or less near the surface to roughly 40 m. A
comparison of the values before (red) and after (blue) a partial correction and after

Fig. 23 Mean monthly
height O-B departures (in m)
as a function of pressure (in
hPa) color-coded by time
period for station 40417,
showing the impact of using
an incorrect station
elevation. The green lines are
for a period prior to the
switch from RS92 to RS41
radiosondes, the red lines are
for a period after the switch,
the blue lines are for a period
after a partial correction was
made, and the magenta lines
after a full correction was
made
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a full correction (magenta) demonstrates that the elevation error leads to a constant
height error.

Choosing the correct elevation is also an issue for nativeBUFR radiosonde reports.
There are several elevations included in the standard radiosonde BUFR template,
which can be a source of confusion. In principle, the most important of these is the
radiosonde release height; this should be the height corresponding to the surface
pressure and so the baseline for the hydrostatic calculation. The release height may
or may not be the same as the station height and the geopotential height reported for
the surface level in the sounding, although it should be at least close to as the latter.
The release height is also oftenmissing, in which case the station height is usually the
best choice for the baseline height. The format also allows a barometer height to be
reported, since the pressure given for the surface level is from an external barometer
and not from the radiosonde itself. However, the barometer height is often missing
and sometimes suspiciously set to the same value for a group of stations within a
particular country.

GPS elevation: Another issue with elevation data in general is the use of GPS eleva-
tions. While GPS provides an easy way to determine the station metadata for a
particular site, GPS elevations are not the same as elevations above mean sea level
and require conversion as described above in the discussion of geopotential heights.
Ingleby (2017) presents an example for radiosonde station 04417—the “Geosummit”
station in the heart of Greenland, which is operated by the U.S. National Science
Foundation in association with the Danish Meteorological Institute (DMI). A 35 m
height bias for this station with respect to the ECMWF background was noted in
early 2016 at levels between 700 and 150 hPa. An exchange of emails confirmed
that the radiosonde ground station was using an unadjusted GPS height of 3255 m,
which was changed in July 2016 to 3216 m and subsequently updated by DMI in
OSCAR/Surface. Unfortunately, the radiosonde ground stationwasmoved in August
2019 and a GPS elevation was again entered, with the height set to 3258 m. This was
corrected to 3208 m in October 2020. This cautionary tale has two conclusions: (1)
GPS is a tempting technology to determine station metadata but provides elevations
that require (and might not receive) correction and (2) metadata (and data) problems
that get fixed may not stay fixed!

Dual location stations: Some stations use the same station identifier for both a
surface station and a radiosonde station. In the U.S., surface stations are almost
always associated with airports, reflecting the practice of generating WMO SYNOP
reports from ICAOMETAR reports. Upper-air stations are almost always associated
with NWS offices, many of which were relocated in the 1990s as part of the NWS
restructuring andmodernization (National Research Council 2012). As a result, there
are some stations that use the same station identifier for a surface station and a
radiosonde station that are not collocated either in terms of location (latitude and
longitude) or elevation; these are referred to as dual location stations and are described
in more detail in OFCM (2020b). While OSCAR/Surface and even WMO Pub 9 Vol
A are capable of having separate entries for the surface and radiosonde station, at
present some U.S. dual location stations only have a single entry in OSCAR/Surface.
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The Weather Forecast Office in Tucson, AZ, is an example of a dual location station
(72274) that should have two entries but only has one. The radiosonde station is
located at the University of Arizona (32.2278° N, 110.9560° W) with radiosondes
launched from the roof of a building at an elevation of 751 m, agreeing with the
station metadata in OSCAR/Surface. The surface station is located at the airport
(32.1313° N, 110.9552° W) roughly 10 km away with a barometer height of 795 m
and a field elevation of 805 m.

Metadata considerations for radiosonde data: The station metadata provided in
“native” BUFR radiosonde reports come from information entered in the radiosonde
ground station and are generally both accurate andprecise,with latitude and longitude
typically given in decimal degrees to five decimal places and elevation given to the
nearest meter. However, problems with launch location can still occur in native
BUFR reports. The two most common errors in the early days were omitting the
negative sign for west longitude or entering latitudes/longitudes with the fractional
degrees past the decimal point set to the minutes from values specified as degrees and
minutes. At present, the errors are more subtle. For example, at least a few stations
use a low-precision launch latitude or longitude. When drift offsets obtained by GPS
are incorporated to give the actual location at individual levels in the sounding, these
stations appear to have a jump in location for the first level or two that can be as large
as a few km. However, if radar is used rather than GPS, the offsets are calculated
relative to the radar and so do not show a jump in location if the launch location
either contains error or lacks precision. So, GPS locations are self-correcting to a
certain extent, but radar systems will give no indication of an inaccurate location.

However, “reformatted” BUFR is both more susceptible to errors in station meta-
data and seemingly more resistant to correcting these errors. In the U.S., both native
and reformatted BUFR messages are generated for most NWS radiosonde stations,
but a subset of stations including military sites uses equipment that does not generate
native BUFR and so only have “reformatted” BUFR. For example, ShemyaAir Force
Base, Alaska (70414), is located far out in the Aleutian Islands past the date line.
The station list used in generating reformatted BUFR lists the longitude as 174.11°
W rather than the correct value of 174.10° E from OSCAR/Surface.

One final comment should be made in terms of the metadata provided in TEMP
DROP messages. Metadata are not only provided for the launch point, but also for
the “splash” point, and the first and last wind locations. In addition, an aircraft
identifier is provided as well as a storm name/mission name. This extra metadata
is encoded in nationally developed code groups that for the U.S. are described in
AppendixG in theNationalHurricaneOperationsPlan (OFCM2020a).NativeBUFR
dropsonde messages do not encode these extra locations; the availability of balloon
drift locations at each level make them unnecessary.

Metadata considerations for surface data: Since surface pressure is the most
important variable reported in land or marine surface data messages for data assim-
ilation, it is the one that is most important to match to an elevation. In practice,
some NWP centers use “Hha” for the elevation for SYNOP stations, although the
height of the surface pressure sensor is preferable (Ingleby 2015). BUFR SYNOP
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reports are often reformatted from TAC SYNOP, with station metadata provided by
an internal station list with the same issues described for reformatted radiosonde
data. For example, the BUFR SYNOP reports for Portland, OR, (72698) give the
station elevation as 456 m, rather than the elevation of 7m stated in OSCAR/Surface.
The elevation of 456 m is correct for Pendleton, OR, (72688); this appears to be a
simple transcription error between stations with similarWMO identifiers and names.
As for radiosonde data, the station metadata provided in BUFR SYNOP reports
should be checked against a local station list as the data are being processed for data
assimilation.

Correctly specifying station metadata is a problem with METARs that will carry
forward into the IWXXM era. Like SYNOP, the METAR format does not include
latitude, longitude, and station (field) elevation, so these must be specified from
a local station list. IWXXM can optionally include the latitude and longitude of
the “Aerodrome Reference Point”, defined as the “approximate geometric center
of all usable runways” (https://www.ngs.noaa.gov/AERO/arpcomp/arpframe.html).
Elevation will likely not be provided at least in the short term, so the need for a local
station list for METAR/IWXXM stations will continue, as will the need to check the
metadata that are provided. Determining correct values to include in a local station
list is a greater problem for METARs than SYNOPs because of the lack of an official
source for such metadata. There are online sources that give the airport name that
corresponds to a given four-letter ICAO identifier and sometimes even a latitude
and longitude for the airport, but elevations are more difficult to locate. Although
OSCAR/Surface does not index entries by ICAO identifiers, some information is
available there, indexed by city or airport name. Ingleby (2015) found that in March
2013 nearly 3% of SYNOPs were unusable because their locations were unknown,
but that number jumps to 11% for METARs.

As discussed previously, U.S. SYNOP reports are reformatted from METAR
reports using an unknown station list that can contain errors in elevation and in
matching ICAO and WMO station identifiers. An extreme example of such an error
was found in a search for duplicate reports between METARs and SYNOPs by
only using meteorological variables (Brad Ballish, personal communication). This
search revealed that the WMO identifier for Flagstaff, AZ, (72376) is being matched
to the ICAO identifier for Farmington, NM, (KFMN), over 350 km away with a
station elevation difference of roughly 500 m. While ideally this error should be
corrected at the source, it could also be corrected locally by assigning the latitude,
longitude, and elevation for KFMN (36.750°N, -108.229°E, 1678 m) to 72376 for
SYNOP data. Note that 72376 has a single entry in OSCAR/Surface that gives the
latitude, longitude, and field elevation as 35.230°, -111.822°, 2181 m, which are the
values included in BUFR SYNOP reports for this station; using the OSCAR/Surface
metadata in this case would lead to significant errors not only for surface pressure but
for temperature, humidity, and winds as well. Putting 72376 on the SYNOP reject
lists for each variable would certainly be warranted!

https://www.ngs.noaa.gov/AERO/arpcomp/arpframe.html
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GNSS-RO Sounding in the Troposphere
and Stratosphere
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Abstract TheuseofGlobalNavigationSatellite SystemRadioOccultations (GNSS-
RO) for vertical sounding of temperature and moisture in the atmospheric column
has become a standard practice of many numerical weather prediction (NWP) cen-
ters. The introduction of this observation has seen broad positive impact on analyses
and forecasts. On longer timescales the impact of the introduction of this data type
in re-analyses can be clearly seen. Further, the observations can be used without bias
correction and the consistency between sensors is very good allowing these observa-
tion to serve as anchoring observations. This is particularly helpful to constrain the
bias-correction applied to satellite radiances. In the following chapter we explore the
fundamentals of the measurement, the derivation of the typical observation which is
used in NWP, the assimilation methods and error assumptions which are used, and
finally some conjecture on the direction to improve the use of the observations and
what future measurement systems may look like.
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1 Fundamentals of the Radio Occultation Measurement

The concept radio occultation measurements was pioneered in the planetary science
community in 1960s and 1970s Kliore et al. (1965), Fjeldbo et al. (1971). The use of
radio occultation techniques to measure the Earth’s atmosphere was also discussed
during that period, but the potential costs appeared prohibitive at the timeYunck et al.
(2000). In the 1980s a team at the Jet Propulsion Laboratory (JPL) suggested making
radio occultation measurements with the Global Positioning System (GPS). This led
to the concept of Global Navigation Satellite Systems radio occultation (GNSS-RO),
and the “proof of concept” GPS-MET mission in the mid 1990s Ware et al. (1996).
A number research and operational missions followed, including CHAMP Wickert
et al. (2001), COSMIC/FORMOSAT-3 Anthes et al. (2008), Metop GRAS Luntama
(2008) and, more recently, COSMIC-2/FORMOSAT-7 Schreiner (2020). The earlier
missions used the American GPS system, but more recent missions—like COSMIC-
2/FORMOSAT-7—are also exploiting other signals such as the Russian GLONASS
system.

The GNSS-RO technique at its core is based on the simple physics of refraction.
It requires the measurement of a Doppler frequency shift of a transmitted signal by
a GNSS receiver Melbourne et al. (1994); Kursinski et al. (1997). The measurement
geometry is shown in Fig. 1. The transmitters are typically in a medium earth orbit
(with orbital periods around 12h) and the receivers typically in a low Earth orbit
(LEO). The signals propagate from the GNSS satellite to the LEO, but the path is
slightly curved as a result of refractive index gradients in both the ionosphere and
neutral atmosphere. This curvature or bending of the ray path changes the Doppler
shift of the signal, when compared with the Doppler shift that would have been
measured for a straight line path between the satellites. Most of the bending occurs
over a few hundred kilometers of the ray-path between the satellites, where the
signal is closest to the Earth’s surface. Because of the availability of precise orbital
determination (POD) and stable clocks to high precision, down to femtoseconds, this
Doppler shift is well measured and is at the core of the stability of the GNSS-RO
observation. The relative motion between the transmitter and receiver provide the
sounding through the atmosphere, producing either a rising or setting occultation
as it views the transmitter. The transmitted signal is in the microwave spectrum,
with commonly used GPS frequencies at f1 = 1.57542 GHz and f2 = 1.2276 GHz,
referred to as the GPS L1 and L2 signals. The use of relatively long wavelengths
(19.1cm forL1; 24.4cm forL2) allows the signals to pass throughEarth’s atmosphere
with little interference from particles such as aerosols or clouds.

A typical occultation sounding of the neutral atmospherewill last about one or two
minutes. Due to the satellite motions, a slice of the atmosphere is scanned, and the
LEO satellite receives signals where the ray paths have different minimum distances
to the surface, from zero up to approximately 100km. The points where the ray paths
have the minimum distance to the surface are commonly referred to as the tangent
points. The resulting occultation profile has a relatively higher vertical resolution
(about a few hundred meters, varying with heights), compared with other satellite
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Fig. 1 Schematic of GNSS geometry for a medium Earth orbit transmitter and Low-Earth Orbit
(LEO) receiver

measurements. Given the bending measurement reflects the integrated effects along
the ray-path in the atmosphere, the horizontal resolution along the ray-path is rather
coarse, typically a few hundred kilometers. However, the resolution perpendicular
to the “occultation plane” (a plane defined by the positions of a LEO satellite and
its occulted GPS satellite, and the center of the local curvature of the occultation)
remains fairly high. Themeasurement fromeachoccultation contains a slanted profile
of atmospheric states at each of the tangent points. Due to the satellite motions, the
tangent points for one occultation have horizontal shifts, these are as large as 1 degree
from the surface to about 40km (Fig. 2).

The proof of concept GPS-MET mission, led by the Universities Corporation
for Atmospheric Research (UCAR), was the first spacebourne sensor to demon-
strate the GNSS-RO technique Ware et al. (1996). A series of studies examined
data from this early mission and helped to establish the ability of radio occulta-
tion to be used for retrievals of temperature Kursinski et al. (1996); Rocken et al.
(1997) and geopotential height Leroy (1997) using retrieval techniques developed
by planetary scientists. Subsequently information content studies were run, based on
variational retieval techniques more closely related to how the measurements would
be assimilated into NWP systems. These showed that the GNSS-RO measurements
complemented the information provided by high resolution interferometers Collard
and Healy (2003), suggesting that these measurements would provide useful infor-
mation for NWP applications, particularly in the upper troposphere and stratosphere.
The key characterisistics thatmakeGNSS-ROmeasurement an important component
of the global observing system are that they can be used without bias correction Eyre
(2016), and they have excellent vertical resolution as a result of the limb geometry.

Routine operational assimilation of GNSS-RO measurements into NWP systems
began in 2006, and most centres currently assimilate either refractivity
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Fig. 2 Tangent point positions (black) as function of impact height (km) and their horizontal
projections (blue) within a latitude-longitude plane. The example data are from the COSMIC-2
mission, measured at 11:13 UTC 11 October 2019

or—increasingly—bending angles. The largest impact has generally been seen for
upper-troposheric and stratospheric temperatures, but there are some indications that
the latest missions are also having a significant impact lower in the troposphere.

2 Typical Use of GNSS-RO in NWP

2.1 GNSS-RO Processing

It is important to understand the processing of GNSS-RO observations and their
information content prior to developing an assimilation strategy. In particular, it
should be recognised that GNSS-RO observations are not direct measurements of
geophysical quantities such as temperature, pressure and water vapor, even if these
quantities can be retrieved from GNSS-ROmeasurements with a suitable processing
system Kursinski et al. (1997), Hajj et al. (2002).

Figure3 shows a schematic flowchart of the key steps in a GNSS-RO geometrical
optics (GO) processing system. The geometrical optics processing assumes that only
a single ray arrives at the receiver at a given time, but this is often not the case for ray
paths in the troposphere.More than one ray arriving at the receiver is known as “atmo-
spheric multipath”. This problem can be mitigated with “wave optics” processing



GNSS-RO Sounding in the Troposphere and Stratosphere 377

Fig. 3 Schematic flowchart
of GNSS-RO measurements
and retrievals. P, T and q
refer to the air pressure,
temperature and specific
humidity respectively

techniques, which are essentially a coordinate transforms Gorbunov and Lauritsen
(2004); Jensen et al. (2003, 2004) designed to recover the single ray path picture.

Briefly, the GO processing starts with “raw” measurements of the phase delay
of radio signals received at two GNSS frequencies during an occultation. Following
various calibration and correction procedures Hajj et al. (2002), the “excess” phase
delays are computed by subtracting the phase delays expected for a straightline path
in a vacuum. The time derivative of the excess phase delays the provide a timeseries
of Doppler shift values at both transmitted freqiencies Cucurull et al. (2015).

The total bending angle for each GNSS signal, i , αi , as a function of the impact
parameter, a, can then be derived from the Doppler shift values, by assuming that
the impact parameter, a, is a constant along the ray-path. This assumption, known
as spherical symmetry, implies that horizontal refractive index gradients are zero in
the plane of the ray-path, meaning that the refractive index, n, is assumed to be only
a function of a height variable, n(r).

The ionospheric contribution to the ray bending can be removed—or corrected—
by taking a linear combination of the bending angles at the two GNSS frequencies
Vorobev and Krasilnikova (1994). For the the GPS L1 and L2 signals this correction
can be writtens as,

α(a) = α1(a) + f 22
f 21 − f 22

(α1(a) − α2(a)) (1)
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where α1 and α2 are the bending angles for L1 and L2 signals, interpolated to a
common impact parameter value, a, and f1 and f2 are the signal frequencies.

The raw observations, of Doppler shift and time delay, are typically measured
at high temporal resolution. This corresponds with a very high vertical sampling,
much higher than the vertical resolution of NWP models. Therefore, some vertical
smoothing is applied to the bending angles and these are sub-sampled to an appro-
priate resolution in the vertical. This smoothing reduces the noise present in the
measurements at the expense of introducing vertical correlations in the errors of the
observations. The amount of smoothing applied varies between processing centres,
and there is not currently an established procedure for determining the optimal level
of smoothing in order to maximise NWP performance.

A key approximation which is often employed to use radio occultation profiles of
α(a) is that of spherical symmetry. This assumption can break down, particularly near
the surface in the presence of horizontal gradients of humidity. However, making the
assumption of spherical symmetry enables the application of an Abel transform pair,
relating α(a) to the refractive index, n, as function of a height variable Kursinski
et al. (1997). More specifically, the bending angle integral can be written as:

α(a) = −2a
∫ ∞

a

d(ln n)

dx

(x2 − a2)
1
2

dx (2)

where x = nr , with r being the radius of a point on the ray path. Conversely, the
profile of refractive index is then written as function of α(a),

n(x) = exp

[
1

π

∫ ∞

x

α(a)

(a2 − x2)
1
2

da

]
(3)

noting that the upper limit of this integral is ∞, implying some extrapolation of the
observed bending angle profile, since it usually stops around80km.The extrapolation
and smoothing of the bending angles prior to the Abel transform is combined in a
processing step known as statistical optimization Healy (2001).

In general, the atmospheric refractive index can be written as function of geo-
physical quantities via Bean and Dutton (1968); Hajj et al. (2002):

N = (n − 1)106 = a1
P

T
+ a2

Pw

T 2
+ ae

ne
f 2

+ awWw + aiWi + O( f −3) (4)

where N is known as the refractivity. The quantities on the right hand side are:
Pw=P/(0.622 + 0.378q) is the water vapor partial pressure, where P is the air
pressure, T is the temperature, q is the specific humidity; ne is the electron density
and f is the signal frequency; Ww and Wi are the liquid water and ice contents; a1,
a2, ae, aw, and ai are empirical coefficients for each term, respectively. Therefore,
refractivity has contributions from four main sources Kursinski et al. (1997), the dry
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neutral atmosphere, water vapor, free electrons in the ionosphere and scattering by
liquid water and ice particulates.

The ionospheric contribution to N can usually be ignored for NWP applications,
because it should be removed with Eq. (1) Vorobev and Krasilnikova (1994). In
addition, one can also neglect the scattering by particulates, as for the transmitter
frequencies used and for the majority of atmospheric suspensions of water and ice,
because their contribution is small comparedwith other terms in the equation Kursin-
ski et al. (1997); Solheim et al. (1999). This then leaves the dry neutral atmosphere
and water vapor terms for the atmosphere typically below about 60 km. This sim-
plifies to an equation using empirically derived constants for a1 and a2 Bean and
Dutton (1968):

N = (n − 1)106 = 77.6
P

T
+ 3.73 · 105 Pw

T 2
(5)

We note that more sophisticated expressions for refractivity are also used in GNSS-
RO data assimilation applications Aparicio and Laroche (2011).

In the stratosphere, and other regions where the contribution of water vapor to
the refractivity is small, the refractivity is proportional to density (N � 77.6 P

T ∝ ρ).
Given refractivity (or density) as a function of height, the hydrostatic equation can
be integrated downwards to give pressure as function of height. The temperature can
then be derived by applying the ideal gas law. The temperature retrieved by assuming
the humidity can be neglected is often called the “dry temperature” in GNSS-RO.

More generally, when the moisture cannot be neglected – for example in the lower
troposphere—the retrieval of T , P and q from N is an under-determined problem
and therefore a priori information (e.g., an NWP forecast state) is required to solve
the geophysical retrieval.

From a data assimilation perspective, the “dry temperature retrievals” outlined
here provide a good framework for understanding the measurement technique and
understanding assimilation options, but these retrievals are not suitable for direct
assimilation into an NWP system.

3 Assimilation Methods and Error Statistic Assumptions

The aim of data assimilation is to combine a forecast of the atmospheric state, xb,
with new observations, y in a statistically optimal way Lorenc (1986). In variational
assimilation methods this involves minimizing a cost function of the form,

J (x) = (x − xb)TB−1(x − xb) + (y − H(x))TR−1(y − H(x)) (6)

with respect to x, where B is the background-error covariance matrix, R is the
observation-error covariance matrix and H is the forward operator, mapping the
meteorological state information, x, to observation space. The analysis, xa, is the
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state which minimizes the cost function, and it should be consistent with both xb and
y, to within their expected error statistics.

Given this general framework, it is clear that the assimilation requires both a
good estimate of the GNSS-RO error statistics (R), and an accurate forward operator
(H ) to map the meteorological state to observation space. These two requirements
are not completely independent because the R matrix is usually assumed to include
contributions from both measurements errors, E, and forward model errors, F, so
R = E + F. The choice of forward model, H , usually represents a trade-off between
making F as small as possible, by including as much physics as possible to retreive
all of the available information, versus the computational cost and the timeliness
requirements of an operational NWP system.

In addition, it is now generally recognised inNWP that additional processing steps
tend to complicate the observation error statistics and correlations. For example, in
the context ofGNSS-RO, error simulation studies show that vertical error correlations
for refractivity tend to be broader than bending angles.

The additional processing steps can also introduce a priori information less accu-
rate than the NWP forecast. For example, we do not want to assimilate information
provided by a mean state climatology into NWP system. For this reason, it is usually
preferable to assimilate variables close to the raw measurement for all observation
types. As far as we are aware, no NWP centres assimilate GNSS-RO retrievals of
temperature and humidity.

3.1 Forward Operators: H(x)

Eyre (1994) was the first to discuss the GNSS-RO assimilation options in detail. The
various processing levels discussed by Eyre are the same as those shown in Fig. 3.
At present, most of the operational centres use either the ionospherically-corrected
bending angle (Eq.1) or refractivity (Eq.3) for data assimilation.

Refractivity Assimilation

When considering assimilation of refractivity, one can use the formulation in Eq (5)
as the forward operator to compute the atmospheric refractivity from the model state
(T , P , and q) as a function of geopotential height. This is a common approach which
was an option taken bymany data assimilation systems, e.g., the Gridpoint Statistical
Interpolation (GSI) systemCucurull et al. (2007) and theWeather Research and Fore-
cast model Data Assimilation (WRFDA) system. It is relatively straightforward to
account for “tangent point drift” in the horizontal planewhen assimilating refractivity
Cucurull et al. (2007). However, the forward model simulates the refractivity at the
horizontal location of the tangent point, while the retrieved refractivity will be related
to a quantity which is horizontally averaged in the occultation plane. There are “non-
local”(two-dimensional) refractivity and phase operators Syndergaard et al. (2005);
Sokolovskiy et al. (2005); Shao et al. (2009) that try account for this by simulating
horizontally averaged refractivity values in the two-dimensional occultation plane,
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but these are not currently adopted by global operational NWP centres. However,
they have been tested in limited-area models Chen et al. (2009).

When considering refractivity assimilation, it is also worth noting the “statistical
opimization” step to smooth and extrapolate the bending angles prior performing the
Abel transform, Eq.(3). This introduces a priori information and for that reason it is
advisable not to assimilate the refractivity values above 40km.

Bending Angle Assimilation

There are several ways to assimilate the GNSS-RO bending angle profiles with
varying degrees of complexity. The simplest is a one-dimensional (1D) approach
that computes the bending angle integral, Eq (2), at a single representative location
Healy (2006), ignoring the actual two-dimensional geometry. Similar to refractivity
assimilation, it is straightforward to introduce tangent point drift Poli et al. (2009);
Cucurull (2012). The 1Dbending angle assimilation technique is an approach broadly
adopted by the operational and research communities, given its simplicity and com-
putational efficiency to implement. Rennie (2010) and Cucurull et al. (2013) have
both presented experiments comparing such an operator with a refractivity operator
in their systems, before switching to the bending angle approach for operational use.

The most complex and accurate GO approach for bending angle assimilation is
to simulate bending angle via a ray-tracing method using three-dimensional (3D)
refractivity information provided by the NWP forecast. It solves a ray-trajectory
equation, which governs the behavior of the radio signal wave under the influence
of a refractivity field. The bending angle can be computed by following the ray path.
When expressed in a Cartesian coordinate, the general ray-path equation is written
as Kravtsov and Orlov (1990):

d2r
ds2

= n∇n (7)

where r is the position vector pointing from the Earth’s center to the ray trajectory in
the Cartesian coordinate, s is defined by ds = dl/n, where l is the length of the ray
path and ds is the differential displacement along the ray path. A commonly used
form of the ray equation is a set of first-order differential equations:

dr
ds

= t (8)

dt
ds

= n∇n (9)

where t defines the direction of the ray. The ray-trajectory equation can be numeri-
cally solved for any given 3D field of n, once either initial conditions (initial posi-
tion and direction) or boundary conditions (two end point positions) of the ray are
prescribed. The boundary problem may require a ray-shooting method, which is
expensive computationally and is subject to multiple solutions due to multi-path
propagations Zou et al. (1999). Therefore, it is typically solved as an initial value
problem. Over the past 20years, variants of bending angle ray-tracing operators
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have been proposed (e.g. Zou et al. (2002); Wee et al. (2010)) but they are not used
operationally at the moment.

The 3D ray-tracing method can be simplified by solving the equation in multiple
2D “occultation planes”, defined geometrically by the positions of the GNSS and
LEO satellites and the local curvature center. Such a bending angle operator is often
denoted as a 2D bending angle operator. For a two-dimensional approximation in
polar coordinates, ignoring refractive index gradients perpendicular to the GNSS-RO
occultation plane, the ray-path equations can be written as Rodgers (2000):

dr

ds
= cosφ (10)

dθ

ds
= sinφ

r
(11)

d(θ + φ)

ds
= −sinφ

n

(
∂n

∂r

)
θ

+ cosφ

nr

(
∂n

∂θ

)
r

(12)

where r and φ are the radius and the polar angle at an arbitrary point on the ray path,
respectively, θ is the local zenith angle of the ray path.

Implementation of a 2D bending angle operator in an NWP system is more chal-
lenging than the 1D operators, since it requires information frommultiple horizontal
locations of the NWP model state along the specific ray path for each bending angle
computation. One such 2Dbending angle operator is described byHealy et al. (2007).
It is also critical for operational implementation to develop an efficient parallel com-
puting scheme for computational efficiency Healy (2014). Currently, the use of 2D
bending angle operators by operational NWP centres is limited Healy (2014). With
the advance of computational resources and techniques, 2D or even 3D bending angle
assimilation—or other advanced approaches – will be more feasible for operational
implementation and research studies.

3.2 Error Statistic Assumptions

As noted above, understanding the measurement errors statistics and using a realistic
R matrix when assimilating the GNSS-RO measurements is also a key requirement
for successfully exploiting these data.

Due to the high precision of the clocks usedwithin theGNSS satellites it is possible
for the raw measurements within GNSS-RO to be very precise. Therefore, many of
the errors and uncertainties associated with GNSS-RO observations are related to the
processing of the measurements and their forward modelling in NWP. These were
dealt with in considerable detail in Kursinski et al. (1997) so a brief description will
be given here.
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At the very highest levels in the neutral atmosphere, the bending induced by the
ionosphere can play an important role. The techniques for removing these effects,
described above, are not perfect and the residual errors will affect the measured
bending angle at upper levels. In the troposphere many of the errors and uncertainties
are connected with the variation of water vapour. The calculation of a bending angle
from the raw measurement made by the satellite entail an assumption of spherical
symmetry (Sect. 2.1). This situation is compounded by many observation operators
being one-dimensional which also requires the assumption of spherical symmetry.
Although this assumption is reasonable in the stratosphere, it is a poor assumption in
the troposphere, since water vapour often varies strongly on short horizontal scales.

These are just two of the main issues which affect GNSS-RO data. Since they
affect data at high- and low-levels, GNSS-RO data generally have most impact in the
low- to mid-stratosphere. That being said, the observations still play an important
role at the other levels.

A commonly used method to estimate the uncertainties in observations is the
method of Desroziers et al. (2005).With thismethod one calculates the cross-product
between the innovations and the residuals as

E(da
o(d

b
o)

T) = Rest (13)

where db
o is a vector of the differences between the observations and the NWP back-

ground forecast (known as the innovations) and da
o is a vector of the differences

between the observations and the analysis (known as the residuals). This cross-
product provides an estimate of the observation-error covariance matrix. If the data
assimilation method used in the analysis is perfect (i.e. is provided with the correct
error-covariance matrices and finds the globally optimal solution) then this estimate
will correspond to the true observation-error covariance matrix. Thus this method
was developed as a consistency check on the inputs provided to the data assimilation.
There are other methods to estimate the observation uncertainties Hollingsworth and
Lonnberg (1986); Scherllin-Pirscher (2011); Anthes and Rieckh (2018) which may
be preferable in certain situations.

Examination of estimated observation uncertainties (the square root of the diag-
onal elements of Rest) diagnosed using the method of Desroziers indicates that they
principally vary with a small number of different quantities Bowler (2020). The key
quantities with which the uncertainties vary are the height of the observation, the
receiving satellite and the latitude of the tangent point.

The variation of the estimated uncertainty with latitude for Metop-B is shown
in Fig. 4. In this (and following figures) the estimated uncertainty has been nor-
malised by the background forecast of the bending angle. This normalisation is cho-
sen because the bending angle can vary by many orders of magnitude with height. In
the troposphere the estimated uncertainties are much larger than elsewhere. The rea-
son for this variation is well understood. The tropical troposphere has a high specific
humidity. Since water vapour is often not well modelled byNWP systems, in part due
to the small-scale variations that it displays, then there are large differences between
the observation and the background forecast. In addition the one-dimensional for-
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Fig. 4 Diagnosed uncertainties, normalised by the background bending angle, with results binned
using a range of latitudes for Metop-B. Each latitude gives the centre of a 20 degree bin, and if the
tangent-point of the observation falls within that bin, then the observation is assigned to the given
latitude. The statistics for Figs. 4, 5 and 6 are calculated using assimilation statistics from the Met
Office’s NWP system from the month of January 2020

ward models that are often used (including in the calculation of Fig. 4) make strong
assumptions about the spherical symmetry of the atmosphere. These background
and forward-modelling errors lead to the observation being ascribed as having large
uncertainties.

The variation with receiving satellite is illustrated in Fig. 5. These statistics are
calculated from observations within 10 degrees of the equator, so that different lat-
itudinal sampling does not complicate the graph. The statistics from the different
satellites are often very similar, despite large differences in the hardware and pro-
cessing software used. At high altitudes the observation uncertainty estimated for
the Metop satellites is much smaller than for the other satellites. This is due to the
receiver exhibiting a very low thermal noise and the use of an ultra-stable oscillator in
the instrument (C Marquardt, Radio occultation team leader, EUMETSAT, personal
communication, 2019).

It is also noticeable that the standard deviation estimated for FY-3C/D is large
between around 20–25 altitude. 25km is the height at which the data processing
switches from geometric optics to wave optics. For all GNSS-RO data a smoothing
is applied to the data within a vertical profile in order to reduce the noise in the data
(see Sect. 2.1). The amount of smoothing that is required differs between geometric
and wave optics processing. This increase in the standard deviations occurs because
the level of smoothing has not been well-matched between the types of processing.
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Fig. 5 Diagnosed observation uncertainties, normalised by the background bending angle, with
results binned for different satellites. Statistics calculated observations within 10 degrees of the
equator

The Metop satellites have the largest standard deviations between around 25–35.
This is due to less vertical smoothing being used generally for these satellites.

From the above examples it can be noted that both the hardware used to receive
the signals, as well as the software used to process those signals, plays a role in the
quality of the observations.

One can also note that the estimatedobservationuncertainties varywith the season.
Figure6 shows a comparison between the estimated uncertainties in the Northern
Hemisphere summer and winter for data from Metop-B. Larger uncertainties are
diagnosed in the summer troposphere than in the winter troposphere. This is likely
due to the warmer atmosphere containing more water vapour. However, above 25km
altitude the winter atmosphere has larger diagnosed uncertainties. Near the winter
pole the average bending angle at high altitudes can become very small. Since the
uncertainties are normalised by the background bending angle, this can lead to a
larger relative error.

4 GNSS-RO Impact in NWP Systems

In this section we briefly summarise the current impact of GNSS-RO measurements
in the ECMWF NWP system. These should be representative of the impact at other
NWP centres. The experiments span a 3month period from January 1 to March
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Fig. 6 Diagnosed observation uncertainties, normalised by the background bending angle for
Metop-B. Results are shown for different seasons and latitudes in the Northern Hemisphere Extra-
Tropics summer (16 June 2018 to 16 July 2018) and winter (January 2020)

31, 2020. They use the ECMWF Integrated Forecast System (IFS) cycle 47R1 in
incremental 4D-Var mode, with a 12h assimilation window. The forecast model is
run at Tco399, which is an effective grid spacing of 25km.

The GNSS-RO data are assimilated with a 2D bending operator. A global bending
angle uncertainty model is used, and the assumed uncertainty is only a function of
impact height (impact parameter minus radius of curvature). The percentage uncer-
tainty is assumed to fall linearly in impact height from 20 % at 0km to 1.25 % at
10km. Above 10km we assume a constant value of 1.25 % until this reaches a lower
limit of 3 ×10−6 rad.

The three experiments shown here are:

1. CONTROL (CTL):Uses theGNSS-ROavailable operationally at the beginning of
2020, includingMetop (A+B+C)GRAS, FY-3CGNOS, TerraSAR-X, Tandem-X
and KOMPSAT-5.

2. COSMIC-2 (C2): CTL experiment plus the COSMIC-2 measurements
3. NoRO: CTL minus ALL GNSS-RO measurements

All other observation types used operationally during this period are assimilated in
these experiments.

Figure7 shows the standard deviation of differences between short-range fore-
casts and globally-distributed radiosonde temperature profiles when the GNSS-RO
measurements are assimilated, divided by the standard deviation from the NoRO



GNSS-RO Sounding in the Troposphere and Stratosphere 387

experiment. Values less than 100 % indicate that the GNSS-RO are improving the
short-range forecasts. The GNSS-RO measurements have a clear positive impact
throughout the vertical column, but the largest impact is above 200 hPa, where the
percentage improvements exceed 2 % when the COSMIC-2 data are assimilated.

Results qualitatively similar to this have been produced at many NWP centres
(e.g., Healy (2006); Cucurull et al. (2007); Aparicio and Deblonde (2008); Rennie
(2010)), and they are broadly consistent with earlier GNSS-RO information content
studies Collard andHealy (2003), so this is a well established result. In contrast, it has
beenmore difficult to demonstrate a clear impact ofGNSS-ROon the humidity fields.
However, recent results assimilating COSMIC-2 measurements have now suggested
that GNSS-RO are also improving the short-range humidity forecasts. Figure8 shows
the globally averaged short-range forecast departure statistics for ATMS radiances.
Channels 6–15 are sensitive to temperature, but channels 18–22 are sensitive to tro-
pospheric humidity. There is a clear improvement in the humidity sensitive channels,
of around 1 % when the COSMIC-2 measurements are assimilated. This signal is
also reproduced in most other satellite and in situ data types sensitive to tropospheric
humidity, and it is an important recent result for GNSS-RO.

Figure 9 shows the combined impact of the GNSS-RO measurements on the
medium range forecast error statistics in the COSMIC-2 experiment. This is the frac-
tional change in the zonally averaged standard deviation of the geopotential forecast
errors. The forecast errors are calculated using the difference between the forecast
and the analysis for each of the experiments (with and without GNSS-RO observa-
tions). Values less than 0 (blue) indicate that the forecast errors are being reduced by
the GNSS-ROmeasurements, and hatching indicates statistical significance at the 95
% level. At forecast ranges between T+24h and T+120h there are reductions in the
forecast error at most heights and latitudes, demonstrating the broad positive impact
of these observations.

5 Future Directions for the Observation and Methods

In the previous sections we outlined some of the general principles applied for use
of GNSS-RO in numerical weather prediction in the troposphere and stratosphere.
The application described uses transmitters in medium earth orbit and receivers in
LEO orbit. However, there are future directions which could expand this network to
enhance sampling in areas deemed undersampled, or where it is assumed additional
coverage could provide the greatest benefit.

There are two concepts which could help to expand the current GNSS-RO observ-
ing network. One of these would be to use a constellation of LEO satellites where
one would act as a transmitter and another as a receiver. One such concept uses
a wave optics-based retrieval chain Benzon and Hoeg (2016), along with XK and
KM bands to probe the atmosphere, allowing for correction of water vapor content,
and the potential to explore ozone content Benzon and Hoeg (2016). A network of
LEO-LEO satellites could significantly enhance the GNSS-RO network supplying
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Fig. 7 The normalised standard deviation of short-range forecast departures from radiosonde tem-
peratures on pressure levels, for the C2 (black line) and CTL (red line) experiments. These have
been divided by the NoRO standard deviation values, and so values less than 100 % indicate that
the GNSS-RO measurements are improving the short-range forecasts

some unique information in addition to current techniques at the L band frequency.
A second way to augment the current GNSS-RO network is already being employed
which is the implementation on aircraft. This greatly increases the GNSS-RO obser-
vation density and has been used for field campaigns. Similar to space-bourne RO,
airborne radio occultation (ARO) airborne radio occultation (ARO) measures signal
propagation delay from rising and setting GNSS satellites below the local horizon
that sample the atmosphere in a region to either side of the aircraft Xie et al. (2008).
The application of these ARO could be expanded in the future, a fleet of drones
could be deployed to supplement the current GNSS-RO observing network or could
be directed for targeted work such as severe weather outbreaks, or extreme weather
events.

Another further enhancement of the GNSS-RO observing network could be the
use of small and even cube satellites. Since a cube-sat is much cheaper to develop and
launch than larger satellites a constellation of cube-sats has the prospect of providing
many more observations for a given cost. Various private companies are developing
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as a function of channel number, for the C2 (black line) and CTL (red line) experiments. These
have been divided by the NoRO standard deviation values, and so values less than 100 % indicate
that the GNSS-RO measurements are improving the short-range forecasts

such constellations with the hope of selling the observations to government agen-
cies. Preliminary results Bowler (2020); NOAA / NESDIS (2020) indicate that the
observations are of sufficient quality for use in NWP. Further, the Met Office and
ECMWF assimilated Spire observations operationally in 2020 to help mitigate the
loss of aircraft measurements as a result of the COVID-19 pandemic. Figure10 is
the time series of the adjoint based forecast sensitivity to observation impact (FSOI)
diagnostic Langland and Baker (2004); Cardinali (2009) in 2020 for the ECMWF
operational system. There are two clear jumps in the GNSS-RO (GPSRO) contri-
bution, when COSMIC-2 was assimilated on March 25, 2020 and when Spire data
became operational on May 13, 2020. In late March 2020 the contribution from
aircraft rapidly decreased as restrictions on air travel greatly reduced the number of
observations available.



390 B. Ruston et al.

−0.10

−0.05

0.00

0.05

0.10

D
iff

er
en

ce
 in

 s
td

. d
ev

. o
f e

rr
or

 n
or

m
al

is
ed

 b
y 

st
d.

 d
ev

. o
f e

rr
or

 o
f c

on
tr

ol

Change in std. dev. of error in Z (C2−NoRO)
1−Jan−2020 to 31−Mar−2020 from 162 to 181 samples. Verified against own−analysis.

Cross−hatching indicates 95% confidence with Sidak correction for 20 independent tests.

T+12 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+24 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+48 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+72 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+96 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+120 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+144 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+168 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+192 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

T+216 

−90 −60 −30 0 30 60 90
Latitude

1000

700

400

100

10

1

P
re

ss
ur

e,
 h

P
a

Fig. 9 The zonally averaged fractional change in the standard deviation of the geopotential forecast
errors shown as a function of forecast range. The results are comparing the C2 and NoRO exper-
iments, and the verification is against own analysis. The hatching indicates statistical significance
at the 95 % level. T+nnn in the figure titles refers to the forecast lead time in hours
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Fig. 10 The timeseries of relative FSOI values for the major observing systems in the ECMWF
NWP system. The results are smoothed over 4d. COSMIC-2 was assimilated fromMarch 25, 2020,
and Spire data were used from May 13, 2020

Overall, with the possible exception of 2020, there has been a relatively slow
increase in the availability of GNSS-RO measurements since 2006. If some of the
concepts described above are adopted routinely, this could increase the density of
the observing network. However, an understanding of what constitutes the optimal
spatio-temporal sampling is still lacking, and should be devised. An attempt to do just
this was done by Harnisch et al. (2013). They examined the reduction in spread of an
ensemble of data assimilations when assimilating a number of simulated GNSS-RO
observations. They found that the impact did not saturate even when using 128,000
per day. As of 2020, the number of observations routinely available for all opera-
tional weather centres is approximately 8000 occultations per day. In the Harnisch
et al. (2013) study, it was found that using approxmiately 16 000 profiles accounted
for roughly 50% of the benefit of 128 000 occultations, which led the authors to
recommend 16,000 - 20,000 occultation profiles per day as a minimum target for
future observing networks.

Another new direction being taken in GNSS-RO measurement technique is the
use of space-bourne polarametric missions such as the Radio-Occultation and Heavy
Precipitation aboard PAZ (ROHP-PAZ) Cardellach et al. (2018). The PAZ spacecraft
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has the GNSS payload enhanced to include a dual-polarization RO antenna. The
dual-polarization used by the ROHP-PAZ receiver is sensitive to heavy precipitation
events and other depolarizing atmospheric effects (e.g. cloud ice). A mission such as
this can help to quantify the intense precipitation events, which are known to account
for much of the global precipitation totals, but undersampled by the current Earth
observing system. Launched on 22 February 2018, the ROHP-PAZ data are being
evaluated and disseminated, with standard GNSS-RO profiles being used at many
operational weather centers.

Lastly, the enhanced use of the GNSS-RO, whether they are from traditional
LEO or LEO-LEO space-based, airborne, and include polarametric information need
proper characterization of the uncertainties of the observation themselves. In contrast
to radiometers, the degradation of the sensor over time due to changes in the antenna is
not present, but stability of the clocks and transmission source of the occulting signal
are key parameters which can be used to characterize the differences between the
occultations. The satellite systems of the future are likely to be more numerous, but
potentiallymore intermittent andwith shorter lifetimes. Thiswill require accurate and
voluminous meta-data on the measurements being taken. Having such information
can be used for improved analysis and understanding of the different behavoirs and
perceived accuracies. To make better use of the GNSS-RO measurements, a more
dynamic quality control procedure and observation error assignment could go a long
way to delivering the greater potential of these systems.

Acknowledgements This work was supported by funding from the PublicWeather Service (PWS)
at the Met Office, UK; and by the Office of Naval Reserach. Sean Healy thanks Dr Katrin Lonitz
(ECMWF) for help with Sect. 4.

References

Anthes R, Rieckh T (2018) Estimating observation and model error variances using multiple data
sets. Atmos Meas Techniq 11:4239–4260. https://doi.org/10.5194/amt-11-4239-2018

Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC,
Kuo YH, Liu H, Manning K, Mccormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS,
Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE,Wee TK, Yen NL, Zeng Z (2008)
The cosmoc/formosat-3—mission early results. Bull Am Meteorol Soc 89(3):313–333. https://
doi.org/10.1175/BAMS-89-3-313

Aparicio JM, Deblonde G (2008) Impact of the assimilation of CHAMP refractivity profiles in
Environment Canada Global Forecasts. Mon Wea Rev 136:257–275. https://doi.org/10.1175/
2007MWR1951.1

Aparicio JM, Laroche S (2011) An evaluation of the expression of the atmospheric refractivity for
GPS signals. J Geophys Res 116(D11). https://doi.org/10.1029/2010JD015214

Bean BR, Dutton EJ (1968) Radio meteorology. Dover Publications, New York
Benzon HH, Hoeg P (2016) Wave optics-based leo-leo radio occultation retrieval. Radio Sci
51(6):589–602. https://doi.org/10.1002/2015RS005852

BowlerNE (2020)An assessment ofGNSS radio occultation data produced by spire. Q JRMeteorol
Soc (2020). https://doi.org/10.1002/qj.3872

https://doi.org/10.5194/amt-11-4239-2018
https://doi.org/10.1175/BAMS-89-3-313
https://doi.org/10.1175/BAMS-89-3-313
https://doi.org/10.1175/2007MWR1951.1
https://doi.org/10.1175/2007MWR1951.1
https://doi.org/10.1029/2010JD015214
https://doi.org/10.1002/2015RS005852
https://doi.org/10.1002/qj.3872


GNSS-RO Sounding in the Troposphere and Stratosphere 393

Cardellach E, Tomas S, Rius A, Ao CO, de la Torre-Juarez M, Padulles R, Turk FJ, Schreiner B
(2018) Polarimetric gnss radio-occultations aboard paz: Commissioning phase and preliminary
results. In: IGARSS 2018 - 2018 IEEE International symposium on geoscience and remote
sensing IGARSS, pp. 935–937 (2018). 38th IEEE International geoscience and remote sensing
symposium (IGARSS), Valencia, SPAIN, 22–27, 2018

Cardinali C (2009) Monitoring the observation impact on the short-range forecast. Q J R Meteorol
Soc 135(638):239–250. https://doi.org/10.1002/qj.366

Chen SY, Huang CY, Kuo YH, Guo YR, Sokolovskiy S (2009) Assimilation of gps refractivity from
formosat-3/cosmic using a nonlocal operator with wrf 3dvar and its impact on the prediction of a
typhoon event. Terrest Atmos Ocean Sci 20(1):133–154. https://doi.org/10.3319/TAO.2007.11.
29.01(F3C). 6th FORMOSAT-3/COSMIC Mission Early Results Workshop, Vandenberg, CA,
APR 15, 2006

Collard A, Healy S (2003) The combined impact of future space-based atmospheric sounding
instruments on numerical weather-prediction analysis fields: A simulation study. Q J R Meteorol
Soc 129(593, B):2741–2760 (2003). https://doi.org/10.1256/qj.02.124

Cucurull L (2012) Sensitivity of nwp model skill to the obliquity of the gps radio occultation
soundings. Atmos Sci Lett 13(1):55–60. https://doi.org/10.1002/asl.363

Cucurull L, Derber JC, Purser RJ (2013) A bending angle forward operator for global positioning
system radio occultation measurements. J Geophys Res-Atmos 118(1):14–28. https://doi.org/10.
1029/2012JD017782

Cucurull L, Derber JC, Treadon R, Purser RJ (2007) Assimilation of global positioning system
radio occultation observations into ncep’s global data assimilation system. Mon Weather Rev
135:3174–3193. https://doi.org/10.1175/MWR3461.1

Culverwell ID, Lewis HW, Offiler D, Marquardt C, Burrows CP (2015) The radio occultation pro-
cessing package. ROPP Atmos Meas Tech 8:1887–1899. https://doi.org/10.5194/amt-8-1887-
2015

DesroziersG, Berre L, ChapnikB, Poli P (2005)Diagnosis of observation, background and analysis-
error statistics in observation space. Q J R Meteorol Soc 131(613, C):3385–3396 (2005). https://
doi.org/10.1256/qj.05.108. 4thWMO International Symposium on Assimilation of Observations
in Meteorology and Oceanography, Prague, CZECH REPUBLIC, APR 18-22, 2005

Eyre J (1994) Assimilation of radio occultation measurements inot a numerical weather prediction
system. Technical Report 199, European Centre for Medium-Range Weather Forecasts (1994)

Eyre JR (2016) Observation bias correction schemes in data assimilation systems: a theoretical
study of some of their properties. Q J R Meteorol Soc 142:2284–2291. https://doi.org/10.1002/
qj.2819

Fjeldbo G, Kliore A, Eshlemen V (1971) Neutral atmosphere of venus as studied with mariner-v
radio occultation experiments. Astronom J 76(2):123–124. https://doi.org/10.1086/111096

GorbunovME, Lauritsen KB (2004) Analysis of wave fields by Fourier Integral Operators and their
application for radio occultations. Radio Sci 39. https://doi.org/10.1029/2003RS002971

Hajj G, Kursinski E, Romans L, Bertiger W, Leroy S (2002) A technical description of atmospheric
sounding by gps occultation. J Atmos Solar-Terrest Phys 64(4):451–469. https://doi.org/10.1016/
S1364-6826(01)00114-6

Harnisch F, Healy SB, Bauer P, English SJ (2013) Scaling of GNSS radio occultation impact with
observation number using an ensemble of data assimilations. Mon Weather Rev 141:4395–4413

Healy S (2001) Radio occultation bending angle and impact parameter errors caused by horizontal
refractive index gradients in the troposphere: A simulation study (vol 106, pg 11,875, 2001). J
Geophys Res-Atmos 106(D20):24087. https://doi.org/10.1029/2001JD001201

Healy S, Thepaut J (2006) Assimilation experiments with champ gps radio occultation measure-
ments. Q J R Meteorol Soc 132(615, B):605–623. https://doi.org/10.1256/qj.04.182

Healy SB (2014) Implementation of the ropp two-dimensional bending angle observation operator
in an nwp system. Technical report 19, EUMETSAT ROM SAF

https://doi.org/10.1002/qj.366
https://doi.org/10.3319/TAO.2007.11.29.01(F3C)
https://doi.org/10.3319/TAO.2007.11.29.01(F3C)
https://doi.org/10.1256/qj.02.124
https://doi.org/10.1002/asl.363
https://doi.org/10.1029/2012JD017782
https://doi.org/10.1029/2012JD017782
https://doi.org/10.1175/MWR3461.1
https://doi.org/10.5194/amt-8-1887-2015
https://doi.org/10.5194/amt-8-1887-2015
https://doi.org/10.1256/qj.05.108
https://doi.org/10.1256/qj.05.108
https://doi.org/10.1002/qj.2819
https://doi.org/10.1002/qj.2819
https://doi.org/10.1086/111096
https://doi.org/10.1029/2003RS002971
https://doi.org/10.1016/S1364-6826(01)00114-6
https://doi.org/10.1016/S1364-6826(01)00114-6
https://doi.org/10.1029/2001JD001201
https://doi.org/10.1256/qj.04.182


394 B. Ruston et al.

Healy SB, Eyre JR, Hamrud M, Thepaut JN (2007) Assimilating gps radio occultation measure-
ments with two-dimensional bending angle observation operators. Q J R Meteorol Soc 133(626,
A):1213–1227 (2007). https://doi.org/10.1002/qj.63

Hollingsworth A, Lonnberg P (1986) The statistical structure of short-range forecast errors as
determined from radiosonde data 1. the wind field. Tellus A - Dyn Meteorol Oceanography
38:111–136

Jensen A, Lohmann M. Benzon HH, Nielsen A (2003) Full spectrum inversion of radio occultation
signals. Radio Sci 38:1040. https://doi.org/10.1029/2002RS002763

Jensen A, Lohmann M, Nielsen A, Benzon HH (2004) Geometrical optics phase matching of radio
occultation signals. Radio Sci 39. https://doi.org/10.1029/2003RS002899

KlioreA,CainD, LevyG,EshlemanV,Drake F, FjeldboG (1965)Mariner 4 occultation experiment.
Astronaut Aeronaut 3(7):72–73

Kravtsov Y, Orlov Y (1990) Radio meteorology. Springer Series on Wave Phenomena. Springer,
Berlin Heidelberg

KursinskiE,HajjG,BertigerW,LeroyS,MeehanT,RomansL,Schofield J,McCleeseD,Melbourne
W,ThorntonC,YunckT, Eyre J,Nagatani R (1996) Initial results of radio occultation observations
of earth’s atmosphere using the global positioning system. Science 271(5252):1107–1110. https://
doi.org/10.1126/science.271.5252.1107

Kursinski E, Hajj G, Schofield J, Linfield R, Hardy K (1997) Observing earth’s atmosphere with
radio occultation measurements using the global positioning system. J Geophys Res Atmos
102(D19):23429–23465. https://doi.org/10.1029/97JD01569

Langland R, Baker N (2004) Estimation of observation impact using the NRL atmospheric vari-
ational data assimilation adjoint system. Tellus Ser A-Dyn Meteorol Oceanogr 56(3):189–201.
https://doi.org/10.1111/j.1600-0870.2004.00056.x

Leroy S (1997) Measurement of geopotential heights by gps radio occultation. J Geophys Res
Atmos 102(D6):6971–6986. https://doi.org/10.1029/96JD03083

Lorenc A (1986) Analysis-methods for numerical weather prediction. Q J R Meteorol Soc
112(474):1177–1194. https://doi.org/10.1002/qj.49711247414

Luntama JP, Kirchengast G, Borsche M, Foelsche U, Steiner A, Healy S, von Engeln A, O’Clerigh
E,Marquardt C (2008) Prospects of the eps grasmission for operational atmospheric applications.
Bull Am Meteorol Soc 89(12):1863+. https://doi.org/10.1175/2008BAMS2399.1

Melbourne W, Davis E, Duncan C, Hajj G, Hardy K, Kursinski E, Meehan T, Young L (1994)
The application of spaceborne gps to atmospheric limb sounding and global change monitoring.
Technical Report 94-18, National Aeronautics and Space Administration

NOAA /NESDIS: CommercialWeatherData Pilot (CWDP)Round 2 Summary. https://www.space.
commerce.gov/wp-content/uploads/2020-06-cwdp-round-2-summary.pdf (2020)

Poli P, Moll P, Puech D, Rabier F, Healy SB (2009) Quality control, error analysis, and impact
assessment of formosat-3/cosmic in numerical weather prediction. Terrest Atmos Ocean Sci
20(1):101–113. https://doi.org/10.3319/TAO.2008.01.21.02(F3C). 6th FORMOSAT-3/COSMIC
Mission Early Results Workshop, Vandenberg, CA, APR 15, 2006

RennieMP (2010) The impact of gps radio occultation assimilation at themet office. Q J RMeteorol
Soc 136(646, A):116–131. https://doi.org/10.1002/qj.521

Rocken C, Anthes R, Exner M, Hunt D, Sokolovskiy S, Ware R, Gorbunov M, Schreiner W, Feng
D, Herman B, Kuo Y, Zou X (1997) Analysis and validation of gps/met data in the neutral
atmosphere. J Geophys Res Atmos 102(D25):29849–29866. https://doi.org/10.1029/97JD02400

Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. Ser Atmos
Ocean Planetery Phys. World Scientific (2000). https://doi.org/10.1142/3171

Scherllin-Pirscher B, Steiner AK, Kirchengast G, Kuo YH, Foelsche U (2011) Empirical analysis
and modeling of errors of atmospheric profiles from gps radio occultation. Atmos Meas Techniq
4:1875–1890. https://doi.org/10.5194/amt-4-1875-2011

Schreiner WS,Weiss JP, Anthes RA, Braun J, Chu V, Fong J, Hunt D, Kuo YH, Meehan T, Serafino
W, Sjoberg J, Sokolovskiy S, Talaat E, Wee TK, Zeng Z (2020) Cosmic-2 radio occultation
constellation: First results. Geophys Res Lett 47(4). https://doi.org/10.1029/2019GL086841

https://doi.org/10.1002/qj.63
https://doi.org/10.1029/2002RS002763
https://doi.org/10.1029/2003RS002899
https://doi.org/10.1126/science.271.5252.1107
https://doi.org/10.1126/science.271.5252.1107
https://doi.org/10.1029/97JD01569
https://doi.org/10.1111/j.1600-0870.2004.00056.x
https://doi.org/10.1029/96JD03083
https://doi.org/10.1002/qj.49711247414
https://doi.org/10.1175/2008BAMS2399.1
https://www.space.commerce.gov/wp-content/uploads/2020-06-cwdp-round-2-summary.pdf
https://www.space.commerce.gov/wp-content/uploads/2020-06-cwdp-round-2-summary.pdf
https://doi.org/10.3319/TAO.2008.01.21.02(F3C)
https://doi.org/10.1002/qj.521
https://doi.org/10.1029/97JD02400
https://doi.org/10.1142/3171
https://doi.org/10.5194/amt-4-1875-2011
https://doi.org/10.1029/2019GL086841


GNSS-RO Sounding in the Troposphere and Stratosphere 395

Shao H, Zou X, Hajj GA (2009) Test of a non-local excess phase delay operator for gps radio
occultation data assimilation. J Appl Remote Sens 3

Sokolovskiy S, Kuo Y, WangW (2005) Assessing the accuracy of a linearized observation operator
for assimilation of radio occultation data: Case simulations with a high-resolution weather model.
Mon Weather Rev 133(8)

Solheim F, Vivekanandan J, Ware R, Rocken C (1999) Propagation delays induced in gps signals by
dry air, water vapor, hydrometeors, and other particulates. J Geophys Res Atmos 104(D8):9663–
9670. https://doi.org/10.1029/1999JD900095

Syndergaard S, Kursinsi E, Herman B, Lane E, Flittnerm D (2005) Refractive index mapping
operator for assimilation of occultation data. Mon Weather Rev 133(11):2650

Vorobev V, Krasilnikova T (1994) USSR Phys Atmos Ocean 29
Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo Y, Meehan T, Melbourne W,
Rocken C, Schreiner W, Sokolovskiy S, Solheim F, Zou X, Anthes R, Businger S, Trenberth
K (1996) Gps sounding of the atmosphere from low earth orbit: Preliminary results. Bull Am
Meteorol Soc 77(1):19–40. https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.
CO;2

Wee TK, Kuo YH, Lee DK (2010) Development of a curved ray tracing method for modeling of
phase paths from gps radio occultation: a two-dimensional study. J Geophys Res Atmos 115.
https://doi.org/10.1029/2010JD014419

Wickert J, Reigber C, Beyerle G, Konig R,Marquardt C, Schmidt T, Grunwaldt L, Galas R,Meehan
T, Melbourne W, Hocke K (2001) Atmosphere sounding by gps radio occultation: first results
from champ. Geophys Res Lett 28(17):3263–3266. https://doi.org/10.1029/2001GL013117

Xie F, Haase JS, Syndergaard S (2008) Profiling the atmosphere using the airborne gps radio
occultation technique: a sensitivity study. IEEE Trans Geosci Remote Sens 46(11, 1):3424–3435.
https://doi.org/10.1109/TGRS.2008.2004713

Yunck T, Liu C, Ware R (2000) A history of gps sounding. Terrest Atmos Ocean Sci 11(1):1–20.
https://doi.org/10.3319/TAO.2000.11.1.1(COSMIC)

Zou X, Liu H, Anthes R (2002) A statistical estimate of errors in the calculation of radio-occultation
bending angles caused by a 2d approximation of ray tracing and the assumption of spherical
symmetry of the atmosphere. JAtmosOceanTechnol 19(1):51–64. https://doi.org/10.1175/1520-
0426

Zou X, Vandenberghe F, Wang B, Gorbunov M, Kuo Y, Sokolovskiy S, Chang J, Sela J, Anthes R
(1999)A ray-tracing operator and its adjoint for the use of gps/met refraction anglemeasurements.
J Geophys Res Atmos 104(D18):22301–22318. https://doi.org/10.1029/1999JD900450

https://doi.org/10.1029/1999JD900095
https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2
https://doi.org/10.1029/2010JD014419
https://doi.org/10.1029/2001GL013117
https://doi.org/10.1109/TGRS.2008.2004713
https://doi.org/10.3319/TAO.2000.11.1.1(COSMIC)
https://doi.org/10.1175/1520-0426
https://doi.org/10.1175/1520-0426
https://doi.org/10.1029/1999JD900450


Impact of Assimilating the Special
Radiosonde Observations on COAMPS
Arctic Forecasts During the Year of Polar
Prediction

Xiaodong Hong, James D. Doyle, and Daniel P. Tyndall

Abstract We quantify the impact of assimilating the extra radiosonde observa-
tions launched in August 2018 during the Year of Polar Prediction (YOPP) on
numerical weather prediction forecasts over the Arctic using the U.S. Navy’s
Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®). The Naval
ResearchLaboratoryAtmosphericVariationalDataAssimilation System (NAVDAS)
is used to assimilate the observations and provide the initial conditions for the
COAMPS forecasts. Four data assimilation experiments are conducted as part of
an observing system experiment (OSE) to investigate the impact of assimilating the
extra radiosonde observations on COAMPS short-term forecasts (up to 48 h). The
four experiments explore the impacts of assimilating the additional radiosonde obser-
vations in NAVDAS in cold-start or warm-start configuration. Based on the results
from the four-month-long data assimilation tests, we find that assimilating the extra
YOPP radiosonde observations improves the overall accuracy of the COAMPS short-
term atmospheric forecasts over the Arctic for both cold-start and warm-start initial-
izations. The warm-start configuration makes the most significant improvement to
the COAMPS Arctic forecasts during the test period. The domain-averaged mean
RMSE of the 48 h forecast from the warm-start assimilation is about 17% less than
that from the cold-start initialization.

1 Introduction

Accurate atmospheric forecasts over the Arctic are very challenging and are espe-
cially important during the critical ice-melting period that features substantial sub-
seasonal variabilities. The numerical weather prediction (NWP) challenges in the
Arctic region are mainly due to (1) the inability of models to represent the complex
processes accurately and (2) a paucity of observations used to generate initial condi-
tions for NWP models through data assimilation. Radiosonde observations, which
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provide highly accurate vertical profiles of temperature, humidity, and wind compo-
nents, are among some of the most important observations to data assimilation
systems, but have sparse coverage across the Arctic. Due to limited financial and
human resources, conventional observations are sparse north of 70° N (Lawrence
et al. 2019). There are only 76 sounding stations on continents and islands north of
60° N with a normal launch frequency of twice a day (Naakka et al. 2019). There
are no regular radiosondes launched over the Arctic Ocean (Naakka et al. 2019).

Previous studies have shown the utility of radiosonde observations over the Arctic
Ocean. For example, Naakka et al. (2019) found that high-quality radiosonde obser-
vations substantially improved analyses and provided observation information to the
data assimilation system that satellite observations could not provide. Other studies
suggest that the large uncertainties in Arctic weather forecasts arise partially from the
sparse nature of the observational network over the Arctic Ocean. Inoue et al. (2020)
showed that additional assimilatedArctic observations in atmospheric ensemble fore-
casts enhanced the forecast skill of weather and sea-ice forecasts during a strongwind
event. Yamazaki et al. (2015) showed that the use of additional radiosonde observa-
tions that were launched from the German icebreaker Polarstern from mid-July to
early August 2012 intensified a tropopause polar vortex in an atmospheric ensemble
reanalysis. Additionally, the ensemble prediction reproduced the formation of the
strong Arctic cyclone (named “AC12”, the strongest Arctic cyclone observed on
record) when the reanalysis was used as the initial conditions due to the improved
upper-tropospheric circulation in the Arctic region provided by assimilating the addi-
tional radiosonde observations.When the additional radiosondeswere excluded from
the assimilation, the reanalysis produced a significantly weaker cyclone, showing
that the additional radiosonde observations were indispensable for the improved
prediction of AC12.

The World Meteorological Organization (WMO) has established a ten-year Polar
Prediction Project (PPP) to significantly improve weather and climate prediction
over the Polar Regions. One of the critical activities of the PPP is the Year of Polar
Prediction (YOPP), which provided an opportunity to address the lack of obser-
vation coverage in the Arctic (Jung et al. 2016; Bauer et al. 2016). Three Special
Observing Periods (SOPs) of YOPP involve the intensive observation and modeling
campaigns in both the Arctic and Antarctic from mid-2017 to mid-2019. Additional
YOPP observations collected during the SOPs will be used to develop improved data
assimilation systems that mitigate the challenge of observational sparseness over the
Polar Regions. The enhanced observations also are extremely valuable for verifica-
tion to quantify the accuracy of current numerical models and identify systematic
model errors over the Polar Regions (Casati et al. 2017).

One of the threeYOPPSOPs took place in theArctic from July to September 2018,
with extra radiosondes launched from the locations shown in Fig. 1a (marked with
yellow dots). The majority of the extra radiosondes were released at 06Z and 18Z;
fewer were released at 00Z and 12Z (Fig. 1b). The extra radiosondes launched during
August 2018 provide about 25% more observations than the routine radiosonde
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Fig. 1 aCOAMPS domain and locations of routine (red dots) andYOPP extra radiosonde locations
(yellow dots) at 00Z on August 10, 2018. The area, enclosed by the two gray-dashed lines and the
left-and-right lateralmodel boundaries, is used for calculating the average impact for each of the data
assimilations in Sect. 4. b The total number of extra YOPP radiosondes as a function of instrument
type (radiosonde [raob] or pilot balloon [pibal]) and initialization during August 2018

launches. These special YOPP radiosonde observations were disseminated in real-
time from the radiosonde ground station through the Global Telecommunication
System (GTS) to any operational center subscribing to the observation bulletins.
Because the data was transmitted through the GTS in real-time, the Navy’s Fleet
Numerical Meteorology and Oceanography Center (FNMOC) used the additional
radiosondes as part of their routine operational forecasts.

During the July to September 2018 SOP, a typical atmospheric circulation with a
substantial variation evolved over the Arctic region through August. As noted earlier,
previous studies have examined the impacts of assimilating additional observations
on Arctic forecasts during extreme events such as strong winds or polar vortexes.
Still, the impact on forecasts during the summer months has been investigated less
frequently. In this study, we focus on quantifying the impact of assimilating the extra
radiosonde observations during YOPP on COAMPS (Hodur 1997) Arctic forecasts
using NAVDAS (Daley and Barker 2001) with an OSE methodology.

We organize the remainder of this paper in the followingway. First, we summarize
the synoptic features during the transition phase of the atmospheric circulations
during August 2018.We then provide a summary of the numerical experiment design
in Sect. 3. The discussion of the results is presented in Sect. 4. Finally, we provide a
summary and conclusions in Sect. 5.



400 X. Hong et al.

2 Synoptic Features

TheArctic sea ice extent rapidly decreased during the first twoweeks ofAugust 2018,
according to the data from the National Snow and Ice Data Center (NSIDC). Fig. 2a,
b depict the monthly sea ice extent for July and August 2018, respectively. Sea ice
extent declined at approximately 25,100 square miles per day through the first two
weeks of August, which is slightly faster than the average rate of 22,000 square miles
per day, according to NSIDC. The more rapid retreat in sea ice extent has a strong
feedback on the surface energy budget, impacts the atmospheric circulation, and
presents a significant challenge in forecasting the Arctic weather accurately during
the summer of 2018 (http://nsidc.org/arcticseaicenews/2018/08/).

The COAMPS and the European Centre for Medium Range Weather Forecasts
Reanalysis-Interim (ERAI, Dee et al. 2011) mean sea-level pressure analyses both
clearly show the substantial variation of atmospheric circulation over the Arctic
during August 2018 (Fig. 3). Both analyses contain similar features that captured
the significant weekly variability during August. During the first week of August,
a strong high-pressure center is located over the central Arctic Ocean, and low-
pressure centers are situated over the Kara Sea and northern Canada (Fig. 3a, e). Air
temperatures at 850 hPa are warmer over the central Arctic Ocean and colder over
the Beaufort Sea, corresponding to the sea-level pressure (SLP) patterns (not shown).
The warmer temperatures cause additional sea ice retreat; this would also be seen in
NWP forecasts if the atmospheric model were coupled to a sea ice model during the
forecast. In the current COAMPS configuration, the sea ice coverage is updated at
every initialization through the ocean analysis using the Navy Coupled Ocean Data
Assimilation (NCODA, Cummings 2005). During the second week of August, the

Fig. 2 a July 2018 sea ice extent (left panel). b August 2018 sea ice extent (right panel). Courtesy
from http://nsidc.org/arcticseaicenews/2018/08/

http://nsidc.org/arcticseaicenews/2018/08/
http://nsidc.org/arcticseaicenews/2018/08/
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Fig. 3 Mean sea-level pressure from COAMPS (upper panel) analyses and ERAI (lower panel) for
a and d August 1–14, b and e August 15–21, and c and f August 22–28, 2018

cyclone center over theKara Sea intensifies and begins tomergewith another cyclone
center over northern Canada (Fig. 3b, f). This process pushes the ridge axis off the
central Arctic Ocean and results in two cyclones occupying the areas during the third
week (Fig. 3c, g). Consequently, the air temperature near the surface becomes colder
than during the first week (not shown). The cyclones continue to occupy the central
Arctic Ocean and split into three weaker centers during the fourth week (Fig. 3d, h).

3 Experimental Design

In this study, we use the limited area atmospheric component of COAMPS to produce
the 48 h atmospheric numerical forecasts every 6 h throughout August over the
Arctic during the YOPP. NAVDAS, a three-dimensional variational (3DVAR) data
assimilation system, assimilates observations to produce the analysis, which is used
as the initial conditions for COAMPS forecasts. The global atmospheric forecast
fields from NAVGEM are used as the lateral boundary conditions for COAMPS.

An OSE is conducted using four experiments designed to investigate the impact
of assimilating the extra radiosonde observations obtained during August of the
YOPP on the COAMPS Arctic forecasts. Two sets of experiments are configured to
determine the impact of assimilating the additional radiosondes using NAVDAS. All
experiments use identical observation data as inputs forNAVDAS, except two experi-
ments (one in each set) withhold the additional YOPP radiosondes from assimilation.
The two sets of experiments are configured to utilize different background fields as
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Table 1 Design of four cases

YC NYC YW NYW

YOPP/NoYOPP YOPP NoYOPP YOPP NoYOPP

Warm/cold-start Cold Cold Warm Warm

inputs for NAVDAS. In two of the four experiments, the standard COAMPS initial-
ization is used, which utilizes the previous cycle’s 6 h forecast as the background
field for NAVDAS (known as a warm-start). In the other two experiments, COAMPS
is configured in a non-standard mode to cold-start the system at every forecast cycle.
When running in this mode, the NAVGEM analysis is used as the background field
for NAVDAS. The NAVGEM analysis is produced by the Navy’s operational four-
dimensional variational (4DVAR) data assimilation system, NAVDAS-AR (Xu et al.
2005). Configuration of COAMPS to cold-start every cycle is controversial, as using
theNAVGEManalysis as the background forNAVDAS introduces background errors
that have been correlated with the observation errors. Additionally, the impact of the
YOPP radiosondes in experiments that have been cold-started is further obscured, as
the NAVGEM analysis used in all experiments assimilated the YOPP radiosondes.
While the configuration of the cold-start set of experiments is less than ideal, we
believe that the differences between the two sets of experiments provide an interesting
contrast between the NAVGEM and COAMPS systems.

For simplicity, we denote the four data assimilation experiments using the nomen-
clature described in Table 1. YC (YOPP observations with a cold start) and YW
(YOPP observations with a warm start) include the routine and the extra observa-
tions. In contrast NYC (no YOPP observations and a cold start) and NYW (no YOPP
observations and a warm start) only include the routine observations.

The COAMPS Arctic model domain includes all the extra YOPP radiosonde
locations as indicated in Fig. 1a. The horizontal model resolution is 15 km with a
grid dimension of 402×402 points. There are 60 sigma levels in the vertical with
14 levels in the lowest 1000 m. We use a COAMPS model configuration that is
typical in routine operational applications to produce all of the forecasts in this study.
Analyses from the four cases are compared to ERAI reanalysis as shown in Fig. 3,
and forecasts are verified using all available surface and upper-air observations to
examine the impact of the extra observations on the forecasts.

4 Discussion of Results

This section focuses our discussions on the following diagnostics: the analysis incre-
ments, the analysis RMSE, and the COAMPS Arctic forecasts. To examine the
overall impact of assimilating the extra radiosonde observations of the YOPP on
the COAMPS Arctic forecasts, we employ various spatial and temporal averages of
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the diagnostics mentioned above to analyze the results of the four data assimilation
experiments.

(1) Impact of assimilating the extra YOPP observation on mean analysis
increments

The analysis increment is defined as the difference between the analysis and the back-
ground field. It is the data assimilation system’s correction to the background field as
informed by the observation information assimilated. NAVDAS creates the analysis
increments using a 3DVAR methodology, which utilizes a background error covari-
ance based on geostrophic and hydrostatic balance, specified observation errors, and
observation innovations, which are the differences between the observations and the
background field. Mean analysis increments can be used to help identify systematic
biases in the background field. When an OSE methodology is used, the difference
of the mean analysis increments between experiments can show the impact of the
observing system under investigation (the additional YOPP radiosondes in the case
of this study). Fig. 4 shows time and space averaged analysis increments from fore-

Fig. 4 Monthly mean analysis increments of air temperature (color shading) and dew-point depres-
sion (contours) for all model runs initialized at 06Z during August 2018 for cold-start (top panels)
and warm-start (bottom panels) experiments using the YOPP radiosondes (left panels) and with-
holding the YOPP radiosondes (middle panels), and the absolute difference between YOPP and
NoYOPP analyses (right panels). The vertical cross-section is the mean of the areas bounded by
the two gray-dashed lines in Fig. 1a. The labels of x-axes are horizontal grid points with the red
solid-line corresponding to the Arctic area
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casts initialized at 06Z over the COAMPS domain highlighted in Fig. 1a; increments
are spatially averaged along the y-direction and temporally averaged through the
entire month. Fig. 4 also shows the absolute difference in the mean analyses in each
set of experiments between experiments assimilating (YOPP) and experiments with-
holding (NoYOPP) the additional radiosondes; the absolute difference is the impact
the additional radiosondes had on the NAVDAS analysis.

In the cold-start case, the assimilation of the additional YOPP observations results
in more negative temperature mean analysis increments (Fig. 4a) and more negative
dew-point depression mean analysis increments (dashed contours in Fig. 4a) around
the 200–400 hPa layer as compared to the mean analysis increments generated from
withholding the YOPP observations. The more negative temperature and dew-point
depression increments indicate that the NAVGEM analysis was too warm and too
humid than the additional YOPP observations. Note that because we are cold-starting
in both of these experiments, the background fields used here are identical. The
absolute differences of the analyses between the YC (Fig. 4a) and no NYC (Fig. 4b)
analyses displayed in Fig. 4c further demonstrate the impact of the extra data on the
analysis increments with the cold-start data assimilation option.

For thewarm-start cases (YWandNYW), themean analysis increment differences
between the two cases are due to the additional YOPP radiosonde observations. For
the warm-start cases, there is both a direct and indirect contribution from the YOPP
radiosondes. The direct contribution comes impacts associated with the assimilation
of the radiosondes during each forecast cycle. The indirect contribution is from
the background field, which was impacted by the previous cycle’s assimilation of
the additional YOPP observations. The temperature and dew-point depression mean
analysis increments from the YW and NYW cases are depicted in Fig. 4d, e; the
absolute difference in the mean analyses between the two cases is depicted in Fig. 4f.
The experiments utilizing thewarm-starts require slightly different adjustments to the
background field than the cold-start cases: the background over most of the domain
between 400 and 300 hPa needs to be warmed and made more humid (Fig. 4d,
e). Both the warm start and cold start cases also require positive adjustments to
the background temperatures between 900 and 600 hPa; however, the increments are
more substantial for thewarm-start experiments. The differences betweenwarm-start
configured YOPP and NoYOPP cases are larger than the differences in the cold-start
case; this is likely due to the presence of YOPP observations in the NAVGEM fields
used as the background. The colocation of the significant differences between the
YOPP and NoYOPP cases in both COAMPS initializations further supports that the
additional radiosondes impact the analyses.

(2) Impact of assimilating the extra YOPP observations on the reduction in the
mean analysis RMSE

The month-long temporal and horizontal mean difference of analysis RMSE profiles
between the cases with and without assimilated YOPP radiosonde observations
(DRMSETM ) is defined as below:
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Fig. 5 Mean difference of the air temperature analysis RMSEprofiles betweenYOPP andNoYOPP
from all the cold and warm-start cases at 06Z over the August period. The RMSEs for the sum of
positive (sps), negative (sng), and the total sum of positive and negative (sum) over the whole
domain are listed on the top of each plot
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where the subscript TM is for temporal and horizontal mean difference, the outer
summation upper limit of the cycle summationT is the total number of the cycleswith
an initialization time of 06Z (31), the inner summation is for the horizontal mean,
and M is the total number of observation and analysis pairs (28). RMSE(YOPP)
and RMSE(NoYOPP)represent the temperature RMSEs for YOPP and NoYOPP
assimilations validated against radiosondes, respectively. Equation (1) is applied to
both the cold-start cases (YC and NYC) and warm-start cases (YW and NYW). The
DRMSE for each set of initialization experiments are depicted in Fig. 5a, b. The
negative values (blue color) indicates the RMSE is smaller for YOPP than NoYOPP.
The sum of positive (sps), negative (sng), and total sum of positive and negative
(sum) listed on the top of each plot are summed vertically through the depth of the
atmosphere.

The RMSEs of the analyses are calculated using only the routine observations
to avoid having the additional YOPP observations used in the verification. The
RMSE with the YOPP radiosonde observations assimilation is significantly smaller
than the NoYOPP case for both cold and warm-starts. This indicates that the extra
YOPP radiosonde observations improve the analyses used as the initial conditions
for the forecasts. The RMSE difference between the two warm-start cases (Fig. 5b)
is substantially larger than between the cold-start cases (Fig. 5a). The total sum of
RMSE from the warm-start cases is −5.64, an RMSE reduction of than more than
13 times of that (−0.41) of the cold-start cases. This result is a consequence of the
higher quality background fields used during every 6 h update cycle in the warm-start
configuration,which are partially impacted by the assimilation ofYOPPobservations
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Fig. 6 Domain mean bias as a function of forecast lead time over August for a 2 m air temperature,
b 2 m relative humidity, and c sea-level pressure

from the previous cycle. The smaller reduction between theYOPP andNoYOPP case
using the cold-start initialization is likely a consequence of the assimilation of the
YOPP radiosonde observations as part of the NAVGEM data assimilation process as
well as the significantly coarser resolution of the NAVGEM analysis compared to
the COAMPS 6 h forecast. The COAMPS warm-start experiment demonstrates that
assimilating the extra radiosondes in the data-sparse Arctic region is very beneficial
and significantly reduces the RMSE for the analyses.

(3) Impact of assimilating the extra YOPP observations on the COAMPS Arctic
forecasts

Figure 6 compares the mean biases of surface variables as a function of forecast lead
time for each of the four cases.When assimilating theYOPP radiosonde observations
for both cold- andwarm-start configurations, themean biases are consistently smaller
than their data withheld counterparts. The additional YOPP radiosonde observations’
assimilation reduceswarmbiases by about 5% for both cold andwarm starts (Fig. 6a).
The warm-start cases, in general, have smaller biases than the cold-start cases, as
expected. The reduction in bias from the warm-start cases is most significant for
the 2 m air temperature, reducing the bias by approximately 20% of the cold-start
cases. Other forecast variables shown in Fig. 6 b and c have similar bias tendencies
and reductions as the 2 m air temperature depicted in Fig. 6a. In general, the initial
biases are smaller in the warm-start cases than the cold-start cases, consistent with
the analysis errors presented in Fig. 5. The initial biases of 2 m relative humidity for
the cold-start cases are substantially larger than the warm-start cases (Fig. 6b); this is
likely due to larger biases present in the NAVGEM analyses. The COAMPS model
quickly reduces these errors within the first 6 h of the forecast as the model spins up.
Initial fields using the NAVGEM analyses as the background in the cold-start cases
result in warmer (Fig. 6a) and drier (Fig. 6b) forecast biases than using the COAMPS
6 h forecast as the background in the warm-start cases. This result is consistent with
the mean analysis increments depicted in the cold-start panels of Fig. 4.

The impact of assimilatingYOPP extra radiosondes onCOAMPS48 h forecast are
further quantified by examining the time series of the domain averaged differences
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Fig. 7 Time series of the whole model domain averaged differences of RMSE for 48 h forecasts
between YOPP and NoYOPP assimilations for air temperature for a cold-start and bwarm-start for
all data assimilation cycles. The RMSEs for the sum of positive (sps), negative (sng), and the total
sum of positive and negative (sum) are listed on the top of each plot

of RMSE between the YOPP and NoYOPP assimilation experiments. The whole
model domain averaged differences of RMSE profiles (DRMSEHM ) are defined as
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where the subscriptHM denotes the domainmean (i.e. vertical and horizontal mean).
The upper limit of the vertical summation H is the total number of vertical levels
from 1000 to 10 hPa, and M is the total number of observation and forecast pairs
across the domain. The RMSE(YOPP) and RMSE(NoYOPP) follow the convention
from Eq. (1). The sum of positive (sps), negative (sng) and total sum of positive and
negative (sum) over the whole domain are also listed on the top of each plot. The time
series ofDRMSEHM is depicted for cold-start (Fig. 7a) and warm-start (Fig. 7b) cases
for all data assimilation cycles initialized at 00Z, 06Z, 12Z, and 18Z. Negative values
(blue color) are present for themajority of the time series of the cold-start assimilation
experiments (Fig. 7a), indicating that 48 h forecast RMSE is smaller when the YOPP
radiosondes are assimilated compared to when they are withheld. The absolute value
of the total negative DRMSEHM (−1.9) is over 6 times greater than the total positive
DRMSEHM (0.33) (Fig. 7a), demonstrating a pronounced reduction of RMSE when
the additional YOPP radiosondes are assimilated. During the period between August
13 and 16, the higher pressures over the central Arctic Ocean transitioned to lower
pressures, which was a major forecasting challenge during the month. Assimilating
the additional YOPP radiosondes provided consistent RMSE reduction, showing the
value of the additional observation on reducing forecast uncertainty. Improvement in
the RMSE was also seen when the additional radiosonde observations were assimi-
lated using the warm-start configuration, as shown in Fig. 7b. The absolute values of
the total negative DRMSEHM (−2.23) is nearly 3 times greater than the total positive
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DRMSEHM (1.19). The total sum of positive and negative DRMSEHM (−2.23) from
the warm start cases is 17% more than from the cold start case (−1.9), indicated that
assimilating YOPP radiosonde observations in a warm start configuration produces
the best 48 h forecast error reduction out of all the configurations explored by this
study.

5 Summary and Conclusion

Substantial sub-seasonal variabilities during the critical ice-melting period make
atmospheric forecasts over the Arctic challenge. These challenges stem from the
inability of forecast models to accurately represent the complex processes in the
Arctic and the lack of adequate observation coverage. Forecasts during August 2018
were especially challenging due to the evolution of atmospheric circulation with
substantial variation over the month-long period. This paper quantified the impact
of additional radiosonde launches as part of YOPP on reducing COAMPS forecast
errors over the Arctic.

An OSE study was conducted to evaluate the impacts of the additional radiosonde
launches. Comparing the analysis increments between the cases with and without
the YOPP radiosonde observations in a cold-start configuration demonstrates that
the extra YOPP observations make significant adjustments to the background field.
Assimilation of the YOPP radiosonde observations results in more negative mean
temperature and dew-point depression increments around the 200–400 hPa layer
compared to the mean analysis increments generated when withholding the addi-
tional observations. The differences in the analysis increments in the warm-start
cases with and without the YOPP radiosonde observations show that they also signif-
icantly modify the COAMPS 6 h forecast background fields to generate the analysis.
Overall, using the COAMPS 6 h forecasts as the background for data assimilation
tends to result in positive temperature increments and negative dewpoint depression
increments in the boundary layer and lower portion of the atmosphere than when the
NAVGEM analysis is used as the background.

The monthly mean difference of the RMSE profiles between the cases with and
without assimilation of the YOPP radiosonde observations shows smaller RMSEs
for the analyses that assimilated the extra observations for both the cold-start and
warm-start configurations. A more significant reduction of the RMSEs due to the
assimilation of the additional YOPP radiosonde observations is apparent for the
warm-start cases. This result is due to the direct and indirect impacts of the additional
radiosondes: the direct impacts are the result of the current cycle’s assimilation of the
additional data, while the indirect impacts are the result of an improved background,
which is partially a consequence of the previous cycle’s assimilation of the data. The
improved background was also aided by its higher resolution. The smaller difference
of theRMSEprofiles for the cold-start configuration is also a result of the assimilation
of the additional YOPP radiosonde observations in the NAVGEM analysis, used as
the background in both the NYC and YC experiments.
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Verification of the near-surface variables shows consistently smaller biases
throughout the 48 h forecasts when assimilating the extra YOPP radiosonde observa-
tions in both cold and warm-start experiments. The bias is reduced by approximately
5% through the assimilation of the additional YOPP observations. The warm-start
cases, in general, have smaller biases than the cold-start cases, and the reduction of
biases can be up to 20% during the 48 h forecasts. The initial forecast biases from
using the NAVGEM analyses as the background field in the cold-start configuration
are larger than using the COAMPS 6 h forecasts as the background field in the warm-
start experiments. The COAMPS model can correct the high initial errors quickly as
the model spins up.

Based on the results from the four data assimilation tests carried out over August
2018,wefind that assimilating the additionalYOPP radiosonde observations improve
the overall accuracyof theCOAMPSshort-termatmospheric forecasts over theArctic
for both cold-start and warm-start configurations. The warm-start data assimilation
results in the most significant overall improvements in the COAMPSArctic forecasts
during the evaluation period, with a domain-averaged mean RMSE reduction of
the 48 h forecast of about 17% of the cold-start assimilation. This research shows
the beneficial impact of the extra radiosonde observations in the data-sparse Arctic
region;making these additional launches routinewould benefitCOAMPSoperational
forecasts.
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Images Assimilation: An Ocean
Perspective

François-Xavier Le Dimet, Hans E. Ngodock, and Innocent Souopgui

Abstract This paper discusses the potential benefits of images assimilation in the
context of operational oceanography, with the goal of eventually exploiting the
dynamical information contained in sequences of ocean images to improve ocean
model predictions. Successful assimilation of ocean images will provide a positive
answer to the question whether meaningful dynamical information can be extracted
from sequences of satellite ocean color images for the improvement of analyses
and forecasts of the ocean circulation. Because in situ observational campaigns are
costly and usually very limited in space and time, and satellites with visible bands
are increasing in number, coverage and providing images with very high temporal
frequency. Operational centers should consider making image assimilation an inte-
gral part of their future assimilation systems. Beyond the motivation, we also discuss
whether images should be assimilated directly or indirectly, the latter consisting of
assimilating information derived from images.

1 Introduction

Velocity is a fundamental and necessary quantity in the dynamics of any fluid. Ocean
currents are responsible for the transport of heat, salt, nutrients, and they also impact
the movement of ships, gliders, drifting buoys, waves and ice. Currents play a signif-
icant role in the variability of ocean conditions at both regional and global scales.
Accurate knowledge of ocean currents is critical for navigation, search and rescue.

The potential of ocean surface currents observations to drastically improve ocean
circulation analyses and forecasts was demonstrated in recent experiments (Carrier
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et al. 2016; Ngodock et al. 2015; Muscarella et al. 2015). Other studies have shown
improvement of ocean predictability by assimilating ocean observed velocity data
(Mariano et al. 2002; Fan et al. 2004; Taillandier et al. 2006; Nilsson et al. 2012).
However, apart from coastal high frequency (HF) radar and sparse moored buoys,
ocean currents are hardly observed.

Themajority of observations used in correcting the ocean circulation consist of sea
surface temperature (SST), sea surface height (SSH), and subsurface temperature and
salinity (T/S) profiles. Assimilation of these observations provides some correction
to the velocity field. For example, SSH assimilation provides geostrophic correction
of the velocity field for the mesoscale circulation, and T/S profiles assimilation
provides correction of the velocity field through the pressure gradient. However, the
spatial distribution of these observations does not allow a reliable reconstruction
of the velocity field, and accurate forecasts may be needed in locations where T/S
profiles cannot be sampled or in coastal waters shallower than 200 m where SSH
is not available. Thus, other types of remotely sensed observations that enable the
correction of the circulation need to be exploited.

Sequences of ocean color images from satellites can capture the dynamics of the
ocean, as they depict optical evolution of physical quantities and properties in the
ocean. For example Fig. 1 shows a couple of Gulf Stream eddies from the infrared
channel (Sea Surface Temperature) and the visible channel (Chlorophyll concen-
tration) onboard MODIS. The similarity of the structures from those two channels
shows that information from model variables (e.g. Temperature) can be obtained
from other quantities (Chlorophyll concentration). Lateral displacements of these

Fig. 1 Image of Sea Surface Temperature and Chlorophyl (Courtesy of NASA for research and
educational use, oceancolor.gsfc.nasa.gov)

http://oceancolor.gsfc.nasa.gov
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quantities are mainly due to advection from ocean currents. The evolution of images
thus contains information about ocean currents, fronts and eddies. This information
can be either extracted or exploited through the assimilation of image sequences, in
order to provide more accurate analyses and forecasts of the circulation. There are
areas where in-situ observations cannot be collected, and only satellite observations
are available. Sometimes traditional SST and SSH are not enough to constrain the
circulation, and velocity observations are not available either. Satellite images in this
case will contain information that can be used to correct model forecasts via data
assimilation.

Ocean images from satellites are abundant and not exploited for dynamical correc-
tion of the ocean circulation. Several satellites exist that provide frequent imagery
of the ocean, in different locations around the globe. They are available up to the
coast, where SSH is not reliable and in-situ observations cannot be sampled. The
assimilation of sequences of images will improve the analysis and forecast of ocean
currents, fronts and eddies, a gap that has been identified in the US Navy operations.

Prior studies show that velocity fields can be extracted from a sequence of images.
Methods of extraction ranges from the particle image velocimetry (Adrian 1991) to
the assimilation of images into simple models describing the image motion (Herlin
et al. 2006). Velocity derived by such methods can be used as observation of the
velocity; that is the case of cloud motion vector used in data assimilation for atmo-
spheric models (Schmetz et al. 1993). The drawback of such approach is that the
model considered for the image evolution is totally decoupled from the underlying
physical process, thus yield unrealistic velocities. The inferred velocity is usually
not accurate because the process of inferring the velocity is not constrained, i.e., is
detached from the dynamics of the modeled fluid.

Other studies show that images can be successfully assimilated directly into
models like the shallow water coupled with the image evolution model (Titaud 2009;
Souopgui 2010). Because of the density of velocity generated by such method, the
combination of images or velocity extracted from images, directly with observations
of other variables of the model (temperature, surface elevation, etc.) requires the
construction of cross-covariance between variables, or a data assimilation method
that can inherently handle the cross-covariances.

2 Images Source and Processing: The Ocean Example

At the present time the earth is permanently observed by a large number of satellites
in several wavelengths. For the ocean, quantities of interest captured by satellites
are sea surface temperature (SST), sea surface height (SSH), ocean color and other
quantities in the satellite visible bands, e.g. Fig. 1.

Note that images of the ocean are two dimensional signatures of three dimensional
phenomena. These images are basically a set of pixels. However, they contain visible
structures such as fronts, vortex and singularities. The information in the image is
transported by these structures. Therefore it can be considered from two viewpoints:
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the Eulerian viewpoint in which the evolution of the flow is described from a fixed
frame, and the Lagrangian viewpoint in which the description is follows the evolu-
tion of the flow). A difficulty arises when a flow may have both an Eulerian and a
Lagrangian character. Such is the case for Lenticularis clouds in the atmosphere: they
look almost steady state, but in reality they are the signature of a strong wind. If the
winds where estimated from the displacement of the lenticularis cloud then the result
will be far away from the truth. Cloud are particles of water; they are gaseous phase
near the ground, in liquid phase when they lift up and become visible, then turn back
to vapor/gaseous state again during the descent. As a consequence, it is necessary
to take into account the physics of “what is seen”. This means that images should
be assimilated directly, not the effects seen in the images. It follows that sequences
of images should be considered for assimilation rather than individual images, as
the latter contain very limited information about the underlying dynamics. Another
reason to consider sequences of images is that they contain information about the
dynamics of discontinuities such as fronts and singularities. Single or flat images do
not provide such information. It is thus important to isolate or extract the disconti-
nuities and define them in a functional space with adequate topology that allows for
variational calculus in conjunction with the dynamical model at hand. Care should
be taken so that the topology is not too regularizing, otherwise the information in the
discontinuities will be lost.

For The particular case of the ocean, images can be obtained from visible-band
imagery at high temporal frequency or geosynchronous, and at high horizontal reso-
lution from meteorological satellites. Examples of existing such satellites are listed
in Table 1.

The GOES-R series satellites are geostationary meteorological observation plat-
forms and the Advanced Baseline Imager (ABI) is the primary instrument on board.
ABI is a passive imaging radiometer with spectral bands from the visible through
the infrared. The horizontal spatial resolution is 500 m to 2 km and the observa-
tion frequency is 5 min in conus mode (GOES-East) and as high as 30 seconds in
mesoscale mode. Despite this very high temporal frequency, the obstacle for utiliza-
tion of these data for oceanographic applications has been that the ABI contains only

Table 1 examples of existingmeteorological satelliteswith visible bands that provide ocean images
at very high spatial and temporal resolution

GOES MeteoSat Himawari Geo-Kompsat

Visible bands (nm) 470, 640 600, 800 470, 510, 640, 860 470, 509, 639,
863

Frequency (mins) 5 15 2.5–10 <10

Resolution (km) 0.5 (conus mode) 3 0.5–1 0.5–1

Imager Advanced baseline
imager

SEVIRI Advanced
Himawari imager

Advanced
meteorological
imager

Owner US European Japanese South Korean
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two very broad bands in the visible (470 and 640 nm); the visible bands are not
designed for detecting the comparatively weak radiant signal emanating from the
surface ocean, also known as the water-leaving radiance (Lw).

For many coastal scenes, however, these limitations may be overcome by new
techniques that convolve the GOES-ABI visible band data with information from
coincident and dedicated ocean color radiometers (Visible and Infrared Imaging
Suite [VIIRS], and the Ocean and Land Colour Imager [OLCI], Jolliff et al. 2019).
These sensors are on board polar-orbiting satellites (NPP, NOAA-20, Sentinel 3A/B)
and thus provide only 1 image per day (barring any cloud cover), yet, the calibra-
tion/validation activities that support these sensors enable very precise determination
of Lw across the visible. When this information is used to post-process GOES-ABI
data for coastal scenes, unprecedented details on coastal circulation are immedi-
ately evident in the true color image sequences. Particularly conspicuous in the
high temporal frequency images (every 5 min) is the movement of turbidity plumes
emanating from rivers and estuaries as well as the frontal boundaries between turbid
shelf waters and the open ocean. Previous studies have shown that it is feasible to
extract ocean surface velocity estimates from ocean color image sequences (Yang
et al. 2015), but themajor obstacle to any pragmatic application has been that without
very high temporal frequency (O ~minutes) these estimates are prone to significant
errors. Ideally, the frequency of color-enhancedGOES-ABI image sequences ismore
than sufficient to overcome this obstacle. Yet, aerosol correction, ABI signal noise,
and other issues remain to be addressed and require a dedicated research effort in
order to exploit the full oceanographic potential of GOES-R datasets.

3 Methods for Image Assimilation and Their Limitations

Data assimilation is the process that minimizes any discrepancies between the
observed and modeled phenomena. It requires a direct relationship between the
observed and modeled: the model must have variables that relate to the observed.
The assimilation of images can then be classified as indirect or direct. In the indi-
rect assimilation, observations are transformed into model variables counterparts,
e.g., radiances to temperature or images to atmospheric motion vectors (AMV). In
the direct assimilation, the model variables are transformed into observations or a
common transformation (into the same metric space) is applied to both the model
variables and the images so that they can be compared.

3.1 Indirect Assimilation of Image

Velocities are first estimated from the evolution of images, then they are assimilated
as regular observations. As stated above in the introduction, the drawbacks of this
approach are that the model considered for the image evolution is totally decoupled
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from the underlying physical process, thus yields unrealistic velocities with large
observation errors in addition to being correlated. Extracting velocities assume linear
dynamics from frame to frame, different from the modeled dynamics. The inferred
velocity is usually not accurate because the process of inferring the velocity is not
constrained, i.e., is detached from the dynamics of the modeled fluid. In the general
case, transforming observations into model counterparts is an ill-posed problem
(image sequence to velocity, radiances to temperature). It should thus be avoided,
especially in the case of images, since they are two dimensional signatures of three
dimensional phenomena, and the underlying physics and dynamics are unknown.

3.2 Direct Assimilation of Images

In the direct image assimilation, no attempt is made to extract the equivalent of model
variable; rather a well-suited mathematical space of image is chosen or defined and
the calculus of variation is carried out in that space. The question here is how to
define such a space. There are three main difficulties in this process. The first is the
definition of the space of images, i.e. what is it that is really “seen” in the images:
discontinuities, fronts, vortex or singularities? The second difficulty is that images
have to be defined in a metric space so that the usual optimization procedures applied
to the assimilation or regular observations can also be carried out for the images. The
third difficulty is that the observed-modeled relationship that is fundamental to data
assimilation requires pseudo or modeled images from which the discrepancies to the
observed images are computed. The latter is an expansion of the dynamical model
that now includes a component simulating the image evolution.

3.2.1 Mathematical Spaces for Images

Images are a two-dimensional array of pixels. Dynamic information seen in a
sequence of images are located in discontinuities and their evolution. For that reason
the consideration of an image as an array of pixels is not appropriate for image assim-
ilation; this is confirmed by prior studies (Titaud et al. 2010; Souopgui 2010) and
illustrated by Fig. 2, which compares the image assimilation in the pixels and other
spaces.

The first clue in the definition of a mathematical space for image is the isolation of
discontinuities,which is a pre-processing stage for images.Titaud et al. (2010) defines
the space associated with discontinuities in the image as the “space of structures.”
Discontinuities are well characterized in spectral spaces using familiar tools such as
the Fourier, wavelet or curvelet transformations. An example of curvelets is shown in
Fig. 3. Another candidate in this category is the levelset method. The assimilation of
images then requires two additional operators: the image-to-structure operator and
the model-to-structure operator. The first operator converts the images from their
original space given by the array of pixels to the space of structures, and the second
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Fig. 2 Analyzed initial velocity field computed by direct image sequence assimilationwith different
image observation operators: Identity operator (top left); curvelet decomposition and hard thresh-
olding (top right); curvelet decomposition and scale by scale thresholding (bottom left); curvelet
decomposition and hard thresholding zeroing coarsest scale (bottom right)

operator converts the model solution to the space of structures. These two operators
enable the computation of the image innovations, i.e. the discrepancy between the
observed and modeled images, to be minimized in the cost function.

On the model side, the literature identifies three methods to define the model-to-
structure operator: advection of passive tracer, advection of structures and Lyapunov
exponents. The method of advection of passive tracer extends the model state to
include a passive tracer that is advected by the model velocity and its concentration
defines the model counterpart of the image. The image-to-structures operator is then
used as the observation operator for image observation. The method of advection of
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Fig. 3 Schematic view of a single scale approximation of a circle with multiscale decomposition
wavelet (left) and curvelet (right)

structures extends the model state with structures of interest and advects those struc-
tures with the model velocity. The Lyapunov exponents method defines Lagrangian
coherent structures (LCS, Haller, 2015) as the structures in the model and compare
them to the structures in the images. In the first two methods, the advection defines
the image model and the velocity field provides a coupling between the ocean model
and the image model. Advection is not only the coupling mechanism between image
propagation and ocean model; it is the dominant dynamical driver (Ren et al. 2011)
on the short time scales between consecutive images in a sequence of high temporal
frequency. In general, the image model is assumed to be two-dimensional because
images are assumed to be of the surface of the ocean.

The assimilation process requires the observation operator and its transpose, so
it is important to limit the degree of complexity and nonlinearity in the observation
operator asmuch as possible. Lyapunov exponents and Level sets transformations are
complex and nonlinear, and as such present a challenge for the transposition. On the
other hand, wavelets and curvelets define a linear transformation and are discussed
below. For more information on the Lyapunov exponents in image assimilation, see
(Titaud et al. 2011; Le Dimet et al. 2015). Figures 4 and 5 show the potential of
the backward Finite-Time Lyapunov Exponents (BFTLE) and the backward Finite-
Time Lyapunov Vector (BFTLV) fields (Haller 2001) in extracting structures that are
comparable to those present in images.

3.2.2 Multiscale Analysis of Images: Curvelets

Recent years have seen a rapid development of new tools for harmonic analysis. For
geophysical flows, there are coherent structures evolving in an incoherent random
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Fig. 4 Backward FTLE (day−1 (left) and corresponding Backward FTLV orientations (angular
degree) (right) computed from the surface velocity of a simulation of the North Atlantic Ocean

Fig. 5 Sea Surface Temperature field (left) and the corresponding orientations (angular degree) of
the gradients (right)

background. If the flow is considered as an ensemble of structures, then the geomet-
rical representation of flow structures might seem to be restricted to a well-defined
set of curves along the singularities in the data. The first step in using images as
observations in data assimilation is to separate the resolved structures, which are
large, coherent and energetic, from the unresolved ones, which are supposed to be
small, incoherent and bearing little energy. One of the first studies in this sense
(Farge 1992) shows that the coherent flow component is highly concentrated in
wavelet space. Wavelet analysis is a particular space-scale representation of signals
which in the last few years has found a wide range of applications in physics, signal
processing and appliedmathematics. The literature is rich regardingwavelets (Mallat
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1989; Coifman 1990; Cohen 1992) for example. A major inconvenience of wavelets
is that they tend to ignore the geometric properties of the structure and do not account
for the regularity of edges. This issue is addressed by the curvelet transform. The
curvelet transform is a multiscale directional transform that allows an almost optimal
nonadaptive sparse representation of objects with edges (Candès and Donoho 2004,
2005a, b; Candès et al. 2006). In R2, the curvelet transform allows an optimal repre-
sentation of structures withC2-singularities. As curvelets are anisotropic, e.g. Fig. 3,
they have a high directional sensitivity and are very efficient in representing vortex
edges.

A function f ∈ L
(
R2

)
is expressed in terms of curvelets as follows:

f =
∑

j,k,l

〈
f, ψ j,l,k

〉
ψl, j,k (1)

where ψl, j,k is the curvelet function at scale j, orientation l and spatial position k
(k = (k1, k2)). The orientation parameter is the one that makes the major difference
with the wavelet transform. The set of curvelet functions ψl, j,k does not form an
orthonormal basis as it is the case for some families of wavelets. However, the
curvelet transform satisfies the Parseval relation so that the L2-norm of the function
f is given by:

‖ f ‖2 =
∑

j,k,l

cl, j,k (2)

where cl, j,k = 〈
f, ψ j,l,k

〉
are the curvelet coefficients.

Figure 2 shows an illustrative comparison of the approximation of a circle by
wavelets and by curvelets. The curvelets provide a better approximation of this
perfectly anisotropic object. The convergence of curvelets is also better: the best
m-term approximation fm of a function fm has the representation error

‖ f − fm‖ ≈ m−1

for wavelets and

‖ f − fm‖ ≈ Cm−1(lnm)3

for curvelets.
Another interesting property of curvelets in the framework of variational data

assimilation is that the adjoint of the curvelet transform is the inverse of the curvelet
transform. Therefore, to represent an image, we will consider the truncation of its
curvelet development.
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3.2.3 Level-Set

The use of the level-set theory has also been proposed for assimilating the information
contained in images (Li et al. 2017). Two-dimensional shapes of features (eddies, oil
slick) on the ocean surface can be represented by a subdomain � whose boundary
is defined by the zero level-set of the mapping φ : R2 → R

∀x ∈ R2,

⎧
⎨

⎩

φ(x) < 0, x ∈ �

φ(x) = 0, x ∈ ∂�

φ(x) > 0, x /∈ �̄

(3)

with the inclusion of time, the function φ(t, x) defines the evolution of the shape as
advected by a velocity field v(t, x), following the advection–diffusion equation.

∂φ

∂t
+ v.∇φ − κ�φ = 0. (4)

The evolution of the subdomain � is thus equivalent to the evolution of a concen-
tration given an advecting velocity field. The initial condition for this equation can
either be a control variable, of which the first guess is obtained by extracting the
shapes in the first image in a sequence, given a threshold of what can be seen in
the images. The shape extraction is an “image-to-shape” process that also serves
as the “shape” observation operator, i.e. what is now assimilated is the shape or
set of shapes extracted from the image. The same process is applied to the evolu-
tion of the concentration that simulates what is seen in the images, providing the
model-to-shape process. In this case, the discrepancy between the observed and
modeled images is expressed as the discrepancy between the shapes extracted from
the observed images and those from the evolved concentration. Note that the shape
extraction in a nonlinear and non-differentiable process. Some modifications of the
process are thus necessary so that it can be linearized and transposed as required by
the formulation of the variational assimilation technique.

4 The Cost Function

Once the “image model” or “shape model” has been added to the dynamics, and the
image space and the image observation operator (i.e. the relationship between the
observed and modeled images) defined, a new cost function can be defined as the
extension of the original cost function (for assimilating regular ocean observations) to
include the discrepancies between the observed and modeled images. Images should
only be assimilated in the context of the extended cost function as it is the only
means of constraining the corrections from image observations to the regular ocean
observations and dynamics of the ocean model.
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The minimization of this cost function can be carried out with the existing algo-
rithms for the assimilation of regular ocean observations.We note here that the use of
sequential methods or filters such as the three-dimensional variational (3DVAR) or
the ensembleKalmanfilter (EnKF) should be avoided. They assume that observations
are sampled at the analysis, thus freezing the time dimension in the observations and
their underlying dynamics, which is essentially what the assimilation is seeking to
extract from images. Methods such as the four-dimensional variational (4DVAR) or
the ensemble Kalman smoother (EnKS) are therefore better suited for image assim-
ilation. In the EnKS, the time-dependent cross-correlation between variables of the
ocean and image models is inherent to the ensemble covariance and allows correc-
tions from the images to propagate through the ocean model variables and vice versa.
In 4dvar that adjoint of the image model allows the image corrections to flow back
to the adjoint of ocean model through the adjoint velocity variables, and the ocean
corrections also flow to the image model through the forward coupling by the ocean
velocity field.

The literature abounds with the formal derivations and algorithms related to the
minimization of the cost function, especially with 4DVAR. Those are not repeated
here. For detailed formulation of the 4DVAR algorithm for the minimization of
the cost function we refer the readers to an excellent academic resource, Bennett
(2002) and references therein. Li et al. (2017) also contains derivations using both
the physical and the tracer concentration evolution models.

Assimilation of image sequences with 4DVAR requires the implementation of the
image evolution model that is coupled with the ocean circulation model through the
velocity field. The lateral evolution of the image is assumed to result from advection
by the lateral velocity field. The adjoint of the image evolution model will also need
to be developed, and both the forward and adjoint of the image evolution model
will be integrated with the existing 4DVAR assimilation system. This will enable
the propagation of information from the image evolution to all other model variables
through the adjoint of the momentum equation.

The 4DVAR data assimilation system of Ngodock and Carrier (2014) is based
on the tangent linear and adjoint models of the Navy coastal ocean model (NCOM)
(Martin 2000). As a numerical model, NCOM already has components for the evolu-
tion of tracer fields such as temperature and salinity. The inclusion of an additional
tracer field for simulating the image evolution is thus straightforward in the model
dynamics, as well as in the tangent linear and adjoint models. This is how the capa-
bility of the NCOM-4DVAR system can be extended to include a tracer evolution
component that will be used assimilate ocean images directly, for the purpose of
correcting the ocean circulation. The same extension of a 4DVAR system can be
done at any research center to include image assimilation.

The assimilation of image sequences results in particular in the update of the
velocity variable at high resolution and large coverage. The resulting velocity field
can be validated against independent observations of surface currents, especially
in coastal areas where such observations are available from high frequency. And,
because velocity is correlated to other model variables through advection, the update
of velocity also contributes to the update of other model variables. This results from
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an implicit cross-correlation between the imagemodel and the dynamicalmodel vari-
ables. This cross-correlation is usually provided by the dynamics of the tangent linear
and adjoint models in 4DVAR. An interesting question is whether this dynamical
cross-correlation is sufficient to propagate dynamical information from the images to
all othermodel variables, orwhether additional constraints or regularization terms are
necessary to ensure that the assimilation of images provides dynamically consistent
corrections of other model variables besides velocity.

5 Conclusion

This paper discussed the assimilationof images, particularly in the context of 4DVAR.
The latter is better suited for image assimilation because it takes into account the
model dynamics and the timeliness of observations. Images can be assimilated
directly or indirectly. In either case, the dynamical model needs to be extended
to include an image evolution component. The study is general enough to be applied
to many fields besides oceanography. We emphasized the ocean because it is poorly
observed and thus can greatly benefit from the assimilation of images arising from
the plethora of earth observing satellites. Image assimilation should be an inte-
gral part of the future of operational oceanography because in situ observational
campaigns are costly and usually very limited in space and time, but satellites with
visible bands are increasing in number, coverage and providing images with very
high temporal frequency, especially in regions where in situ instruments cannot be
deployed. Although images are treated as two-dimensional for the ocean surface,
their assimilation within a three-dimensional ocean model yields a correction to
other ocean model variables through the coupling provided by the model velocity
field. Implementation of image assimilation can be straightforward for research and
operational centers that already have a 4DVAR data assimilation system.
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Sensitivity Analysis in Ocean Acoustic
Propagation

Hans E. Ngodock, Matthew J. Carrier, Josette Fabre, Robert Zingarelli,
Scott Smith, and Innocent Souopgui

Abstract The sensitivity of acoustic pressure to sound speed is investigated through
the application of adjoint-based sensitivity analysis using an acoustic propagation
model. The sensitivity analysis is extended to temperature and salinity, by deriving
the adjoint of the sound polynomial function of temperature and salinity. Numerical
experiments using a range dependent model are carried out in a deep and complex
environment at the frequencyof 300Hz. It is shown that through the adjoint sensitivity
analysis one can infer reasonable variations of sound speed, and thus temperature and
salinity. Successful extension of the sensitivity of acoustic pressure to temperature
and salinity implies that acoustic pressure observations in a given range-depth plane
can be assimilated into an ocean model using the acoustic propagation model as the
observation operator.

1 Introduction

The relationship between sound speed and ocean temperature variations has been
exploited over the years through acoustic tomography. Underwater acoustic propa-
gation depends nonlinearly on sound speed, which in turn is a nonlinear function of
the ocean environment variables, namely temperature and salinity (T and S). Ocean
acoustic propagation is modeled in various ways, including using parabolic equa-
tions that are generally solved in terms of acoustic pressure. This study investigates
the sensitivity of acoustic pressure to temperature and salinity, i.e. how changes in
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the latter effect the former, or equivalently how changes in the former can be linearly
related to changes in the latter.

Sensitivity analysis can be carried out in two ways: (1) the direct sensitivity
analysis method, which analyzes perturbations to the solutions of the acoustic model
resulting from perturbations of the temperature and salinity, and (2) the indirect
sensitivity method based on the adjoint of the acoustic model. Direct sensitivity
analysis is straightforward, but becomes tedious and burdensomewhen the dimension
of the fields or parameters to perturb are large, because a large number of simulations
has to be carried out, Lermusiaux et al. (2010). In contrast, adjoint-based sensitivity
analysis (Cacuci 1981) only requires a single solution of the adjoint model, when
it is available, driven by the derivative of the response function with respect to the
prognostic state variables of the modeled phenomenon, Hall (1986), Hall and Cacuci
(1983), Hall et al. (1982).

Adjoint modeling in underwater acoustics is mainly used for geoacoustic inver-
sion, Hursky et al. (2004), Meyer and Hermand (2005), Applications of adjoint
modeling for sensitivity analysis include the works of Skarsoulis and Cornuelle
(2004) who used the adjoint method to compute sensitivity of the travel times in
ocean acoustic tomography, who used the adjoint model to compute the derivatives
of a waveguide field with respect to several parameters including the sound speed,
density and frequency. In this study the adjoint sensitivity analysis is extended from
the sensitivity to sound speed back to the sensitivity to temperature and salinity, using
both the adjoint of the parabolic equation and the adjoint of the function that relates
temperature and salinity to sound speed. For that extension to occur, the ground-
work of computing the sensitivity of acoustic pressure to sound speed must first be
laid, because the extension is straightforward through the chain rule. Thus, there is
a greater emphasis on the derivation and computation of the sensitivity of acoustic
pressure to sound speed.

An adjoint model for the range dependent acoustic model (RAM) was developed
for the assimilation of acoustic pressure observations, Ngodock et al. (2017). For the
sensitivity analysis in the present study, a tangent linear and adjoint of the polynomial
function that relate temperature and salinity to sound speed (Chen andMillero 1977)
were derived analytically (see appendix) and implemented numerically.

2 The Model

We consider the range-dependent model (RAM) of Collins et al. (1996) which is
derived from the reduced wave equation in cylindrical coordinates with a harmonic
point source, removing the factor r−1/2 from the complex pressure p to handle cylin-
drical spreading, and assuming azimuthal symmetry to obtain (with a complex wave
number to include attenuation)

∂2 p

∂r2
+ ρ

∂

∂z

(
1

ρ

∂p

∂z

)
+ k2 p = 0, (1)
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where k = (1 + iηβ) ω
c(r,z) is the wave number, ω is the angular frequency, c(r, z)

is the speed of sound in range and depth, β is the attenuation coefficient and η =(
40π log10 e

)−1
. Factoring the operator in (1) yields

(
∂

∂r
+ ik0(I + X)1/2

)(
∂

∂r
− ik0(I + X)1/2

)
p = 0, (2)

with

X = k−2
0

(
ρ

∂

∂z

1

ρ

∂

∂z
+ (

k2 − k20
)
I

)
, (3)

where k0 = ω/c0, and c0 is a representative phase speed. Assuming that outgoing
energy dominates backscattered energy, (2) reduces to the outgoing wave equation

∂p

∂r
= ik0(I + X)1/2 p (4)

The formal solution of (4) is

p(r + �r, z) = exp(ik0�r(I + X)1/2)p(r, z) (5)

where �r is the range step. By applying an n term rational function to approximate
the exponential we have the Padé approximation

p(r + �r, z) = exp(ik0�r)
n
	
i=1

(
I + α j,n X

I + β j,n X

)
p(r, z) (6)

where I is the identity operator, α j,n and β j,n are pre-computed coefficients of the
split-step Padé approximation for solving the original wave equation implicitly by
separation of variables. The product form inEq. (6) can also be approximated,without
loss of accuracy, by the summation form

p(r + �r, z) = exp(ik0�r)

⎛
⎝I +

n∑
j=1

γ j,n X

I + β j,n X

⎞
⎠p(r, z) (7)

as shown by Collins et al. (1996).
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3 Sensitivity Analysis

For the sake of convenience the model (4) is written is the form

∂p

∂r
= F(X)p (8)

The form of the operator F is obvious from (4), and the dependence of (8) on
temperature and salinity comes through the sound speed c via the differential operator
X in (3). Small perturbations t ′ and s ′ of T/S lead to perturbations c′ of c, that in
turn yield perturbations p′ of acoustic pressure governed the first-order Taylor’s
expansion of (8)

∂p′

∂r
= F(X)p′ +

[
∂F

∂X

∂X

∂c
c′

]
p (9)

where c′ relates to t’ and s’ according to (A6) below. Note that in the appendix
the sound speed is denoted by U instead of c. For a given function G(p) of p, the
sensitivity G with respect to c deals with relating changes in G to changes in c, and
because c is a function of T/S, changes in G can be related to changes in T/S by
virtue of the chain rule. In sensitivity analysis G(p) is commonly referred to as the
response function. If G is a smooth function of p for which a derivative may readily
computed, then G’(p)p’ is the change in G resulting from p’, a change in p. We may
write

G ′(p)p′ = (
G ′(p), p′)

p = 〈∇G, c′〉
c (10)

where the subscripted parentheses and angled brackets represent suitable inner prod-
ucts in the spaces of acoustic pressure and sound speed respectively. Although G’
may be computed quite easily, this is not the case if one attempts to express ∇G,
since G is not an explicit function of c. In order to exhibit the linear dependence of
(10) with respect to c’, we introduce a convenient variable λp, with which we make
the inner product with (9):

(
∂p′

∂r
− F(X)p′ −

[
∂F

∂X

∂X

∂c
c′

]
p, λp

)
p

=
(

−∂λp

∂r
− [F(X)]Tλp, p

′
)

p

−
〈[

∂F

∂X

∂X

∂c

]T

λp p, c
′
〉
c

(11)

It can be shown that if λp is the solution of

−∂λp

∂r
− [F(X)]Tλp = G ′(p) (12)
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then

∇G =
[

∂F

∂X

∂X

∂c

]T

λp p (13)

The computation of ∇G in (13), based on a single solution of (12) (which is
called the adjoint model), provides the linear relationship between changes in sound
speed (c’) and changes in G. In the particular case where G is the identity, i.e. G(p)
= p, (13) shows how and where acoustic pressure is effected by changes in sound
speed, in the depth-range domain. And, considering the dependence of sound speed
on T and S, one can compute the sensitivity of acoustic pressure to T/S using the
chain rule as described in the appendix. In the following numerical examples, the
sensitivity of acoustic pressure to both sound speed (and T and S) is computed using
the adjoint model of the range dependent PE model (RAM). Note that the derivation
and development of the adjointmodel ofRAMare described inNgodock et al. (2017).

4 Numerical Experiments

Numerical experiments are carried out for one simulated radial of 40 km range using
a frequency of 300 Hz. The geographic coordinates (longitude and latitude) of the
radial are (134.98 E, 36.28 N) and (134.66 E, 36.02 N) for the source and receiver
respectively. The sensitivity described results from the integration of the adjoint
model, defined as the algebraic transpose of the tangent linear model. The latter
requires a model state or solution (also referred to as a background) around which
the linearization is performed. The sound speed needed for the background solution
is computed using temperature and salinity taken from a NCOM solution with a
horizontal resolution of 3 km, and the background solution is shown in Fig. 1, for all

Fig. 1 Sound speedprofiles along the radial (left, the black line is a sample profile), and transmission
losses (in dB, right) of the acoustic pressure solution around which the model is linearized and
transposed for the computation of the sensitivity
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three radials, as transmission loss.
The propagation of acoustic pressure along this radial is shown in Fig. 1 in terms

of transmission loss, for a source located 10 m below the surface. The sound speed
profiles along the radial are also shown inFig. 1. This case has aweak range dependent
duct, the duct is about 30 m deep at the source and weakens to ~10 between 20 and
25 km, there is a strong below layer gradient near the source, that directs the energy
towards the bottom, thus trapping little energy in the duct. As the duct weakens with
range, the duct and gradients below the duct are strong enough to keep the bottom-
bounce energy from returning to the surface. The RAM uses estimates of sound
speed, attenuation and density versus depth in the sediment (an elastic bottom) and
the attenuation is carried forward in complex wavenumber terms. The sediments
for this downslope environment are approximately 100 m thick and slightly lossy,
resulting in significant bottom bounce. The strong duct or secondary sound channel
(starting around 10 km) prevents the bottom bounce energy from returning to the
surface. Thus, a significant amount of acoustic energy is preserved out in range and
at depth.

By definition, the adjoint model is integrated backward in range, initialized by
the derivative of the response criterion (for which the sensitivity is sought) with
respect to acoustic pressure at the range-depth location where the response criterion
is defined. The acoustic pressure response is selected two locations of the range-
depth plane that are far from the source; the locations are shown as the white stars
in Fig. 1. The first location is chosen to be at the range of 35 km (range) and 1850 m
(depth). As seen in Fig. 1 this region has relatively low transmission loss of 75 dB.
Numerical results from the adjoint sensitivity of acoustic pressure with respect to
sound speed, temperature and salinity are shown in Fig. 2. Note that the sensitivity
to sound speed is recorded at the same range steps where sound speed is provided to
the acoustic model, i.e. every 2 km, resulting in a significantly low spatial resolution
in Fig. 2 compared to Fig. 1. It can be seen that the acoustic pressure sensitivity to
sound speed is confined along the path of propagation of acoustic energy, and extends
from the response region to as far as 7 km back in the range-depth domain. What is
meant by path of propagation of acoustic energy is the paths within the waveguide
with significant acoustic energy, which is not to be confused with “ray path”. The
sensitivity is mainly negative, suggesting that an increase in sound speed (along this
propagation path) would result in a decrease in acoustic pressure, or, a decrease in
sound speed would result in an increase in acoustic pressure. Also, the magnitude of
the sensitivity, e.g. 10–2 (m s−1)−1, indicates that a change of 1 m s−1 in sound speed
would cause a change of 10–2 in acoustic pressure.

In order to assess how reasonable these sensitivity estimates are we consider
a point in the range-depth domain at 10 km and 500 m. At this location the
sensitivity of acoustic pressure to sound speed is approximately –0.05, i.e. ∂p

∂c =
−0.05; likewise, the sensitivity of acoustic pressure to temperature is approx-
imately –0.2, i.e. ∂p

∂T = −0.2. By simple application of the chain rule, we

get ∂c
∂T = ∂p

∂T

(
∂p
∂c

)−1 = 4ms−1K−1. Thus, a change of 1 K in temperature
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Fig. 2 Sensitivity of sound speed (top), temperature (middle) and salinity (bottom) to acoustic
pressure at 35 km range and 1850 m depth

yields a change of approximately 4 m s−1 in sound speed, a reasonable esti-
mate that can also be computed directly from the Chen and Millero (1977)
formula, see also https://dosits.org/people-and-sound/research-ocean-physics/how-
is-sound-used-to-measure-temperature-in-the-ocean/. Therefore, the adjoint of both
the acoustic model and the sound speed formula provide an accurate estimate of the
variations of acoustic pressure with respect to sound speed, temperature and salinity.

The spatial patterns of the sensitivity of acoustic pressure with respect to tempera-
ture and salinity are nearly identical to those of the sensitivity to sound speed. This is
because the sound speed is a local function of temperature and salinity, and thus the
sensitivity to the former is computed from the sensitivity to the latter. It can also be
seen in Fig. 2 that acoustic pressure is more sensitive to temperature than to salinity,
resulting from the gradient of sound speed with respect to temperature being greater
than the same gradient with respect to salinity

A second sensitivity experiment is carried out along the same radial, with the
acoustic pressure response region being at the range of 36 km and depth of 700 m.
The transmission loss in this second region is about 100 dB, compared to 60 dB
in the first region, and the acoustic energy follows a different path of propagation
from the source to this region. Similar to the previous case, the sensitivity of acoustic

https://dosits.org/people-and-sound/research-ocean-physics/how-is-sound-used-to-measure-temperature-in-the-ocean/
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Fig. 3 Same as Fig. 2, except for the response region selected at the range of 36 km and depth of
700 m

pressure with respect to sound speed is confined along the path of propagation of
acoustic energy from the source to the response region. Compared to the first case, the
sensitivity in this second case is weaker (lower magnitude), a direct consequence of a
weaker acoustic energy signal reaching the response region. Here also the sensitivity
to temperature and salinity have the same patterns as the sensitivity to sound speed,
although the sensitivity to salinity appears to be much weaker than the sensitivity to
temperature, compared to what was seen in the Fig. 2 and 3.

5 Discussion and Summary

The derivation of the sensitivity of acoustic pressure to temperature and salinity
through adjoint modeling enables the propagation of information from observations
of the former back to the latter. Thus, in a coupled acoustics-ocean variational data
assimilation system one can infer corrections to the temperature and salinity given
observations of acoustic pressure. The corrections to temperature and salinity can be
made throughout the depth-range domain, and not only at the locationswhere profiles
of acoustic pressure are observed. This may be particularly useful in situations where
observations of temperature and salinity are not readily available.
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Simultaneous correction of the acoustic pressure and ocean environmental param-
eters is also possible when an ensemble of solutions of a coupled ocean-acoustic
model is used in the assimilation, e.g. Lermusiaux et al. (2010), because such an
ensemble contains the cross-covariance between the ocean and acoustic variables.

This study deals with theoretical derivations and numerical implementation of
adjoint sensitivity analysis of acoustic pressure with respect to sound speed. By
also deriving the adjoint of the equation of sound speed, the sensitivity analysis is
extended to temperature and salinity. It was shown that the sensitivity is usually
confined to the path of propagation of acoustic energy, and that acoustic pressure
had a higher sensitivity to temperature than salinity. Also, higher sensitivity was
detected in the response region that had a stronger acoustic energy signal (lower
transmission loss) than in the response region with weaker acoustic energy signal
(higher transmission loss). It was shown that the sensitivity computed by the adjoint
model yielded accurate estimates of the variations of acoustic pressure with respect
to sound speed, temperature and salinity. This study provides the ability to infer
corrections to temperature and salinity in a coupled ocean-acoustic variational data
assimilation system, given observations of acoustic pressure. This also implies that
acoustic pressure observations can be assimilated directly into an ocean model using
the acoustic model as the acoustic observation operator.

Acknowledgements This work was sponsored by the Office of Naval Research Program Element
0601153N as part of the “ADARDA” project. This paper is NRL paper contribution number
NRL/BC/7320-20-5022.

Appendix: Equation of Sound Speed with Its Tangent Linear
and Adjoint

The equation for the speed of sound in seawater in m s−1, given by Chen andMillero
(Chen and Millero 1977) is:

U (s, t, P) = Cw(t, P) + A(t, P)s + B(t, P)s
3
4 + D(t, P)s2 (A1)

where s is the salinity in PSS-78, t the temperaure in °C and P the water column
pressure in decibars, not to be confused with the acoustic pressure p used in the text
above. A, B, C andD are temperature- and pressure-dependent parameters. The term
Cw is defined as:

Cw(t, P) = C00 + C01t + C02t
2 + C03t

3 + C04t
4 + C05t

5

+
(
C10 + C11t + C12t

2 + C13t
3 + C14t

4
)
P

+
(
C20 + C21t + C22t

2 + C23t
3 + C24t

4
)
P2

+
(
C30 + C31t + C32t

2)P3 (A2)
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The term A is defined as:

A(t, P) = A00 + A01t + A02t
2 + A03t

3 + A04t
4

+
(
A10 + A11t + A12t

2 + A13t
3 + A14t

4
)
P

+
(
A20 + A21t + A22t

2 + A23t
3
)
P2

+
(
A30 + A31t + A32t

2
)
P3 (A3)

The term B is defined as:

B(t, P) = B00 + B01t + (B10 + B11t)P (A4)

The term D is defined as:

D(t, P) = D00 + D10P (A5)

Linearization

Note that in the derivations that follow we have neglected the variations of the water
column pressure (P) with temperature and salinity. According the first order Taylor’s
approximation, the equations (A1)–(A5) above can be linearized as follows, with the
prime symbol appended to the linearized variables:

U ′(s, t, P, s ′, t ′) = C
′
w(t, P, t ′) + A′(t, P, t ′)s + A(t, P)s ′

+ B ′(t, P, t ′)s
3
4 + B(t, P)s− 1

4 s ′ + 2D(t, P)ss ′ (A6)

C
′
w(t, P, t ′) = [(

C01 + 2C02t + 3C03t
2 + 4C04t

3 + 5C05t
4
)

+
(
C11 + 2C12t + 3C13t

2 + 4C14t
3
)
P

+
(
C21 + 2C22t + 3C23t

2 + 4C24t
3)P2

+ (C31 + 2C32t)P
3
]
t ′

(A7)

A′(t, P, t ′) = [(
A01 + 2A02t + 3A03t

2 + 4A04t
3
)

+
(
A11 + 2A12t + 3A13t

2 + 4A14t
3)P

+
(
A21 + 2A22t + 3A23t

2
)
P2

+ (A31 + 2A32t)P
3]t ′

(A8)

B ′(t, P, t ′) = (B01 + B11P)t ′ (A9)
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The Adjoint

In the following equation the * symbol is appended to the adjoint variables. Given
the adjoint of sound speed as resulting from the adjoint of the acoustic propagation
model, the adjoint variables associated to both temperature and salinity are obtained
from transposing the equations (A6)–(A9) according the L2 inner product

s∗ =
[
A(t, P) + B(t, P)s− 1

4 + 2D(t, P)s
]
U∗

B∗ = s
3
4U∗

A∗ = sU∗
C∗

w = U∗

(A10)

t∗ = t ∗ +[(
C01 + 2C02t + 3C03t

2 + 4C04t
3 + 5C05t

4
)

+
(
C11 + 2C12t + 3C13t

2 + 4C14t
3
)
P

+
(
C21 + 2C22t + 3C23t

2 + 4C24t
3
)
P2

+ (C31 + 2C32t)P
3
]
C∗

w(t, P, t ′)

(A11)

t∗ = t ∗ +[(
A01 + 2A02t + 3A03t

2 + 4A04t
3)

+
(
A11 + 2A12t + 3A13t

2 + 4A14t
3
)
P

+
(
A21 + 2A22t + 3A23t

2
)
P2

+ (A31 + 2A32t)P
3
]
A ∗ (t, P, t ′)

(A12)

t∗ = t ∗ +(B01 + B11P)B ∗ (t, P, t ′) (A13)

The coefficients for the above terms are given in Table 1 below.

Table 1 Coefficients of the polynomials (A1)—(A5)

C A B D

C00 = + 1402.388 A00 = + 1.389 B00 = −1.922E-02 D00 = + 1.727E-03

C01 = + 5.03711 A01 = −1.262E-02 B01 = −4.42E-05

C02 = −5.80852E-02 A02 = + 7.164E-05

C03 = + 3.3420E-04 A03 = + 2006E-06

C04 = −1.47800E-06 A04 = −3.21E-08

C05 = + 3.1464E-09

C10 = + 0.153563 A10 = + 9.4742E-05 B10 = + 7.3637E-05 D10 = −7.9836E-06

C11 = + 6.8982E-04 A11 = −1.2580E-05 B11 = + 1.7945E-07

C12 = −8.1788E-06 A12 = −6.4885E-08

C13 = + 1.3621E-07 A13 = + 1.0507E-08

C14 = −6.1185E-10 A14 = −2.0122E-10

(continued)
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Table 1 (continued)

C A B D

C20 = + 3.1260E-05 A20 = −3.9064E-07

C21 = −1.7107E-06 A21 = + 9.1041E-09

C22 = + 2.5974E-08 A22 = −1.6002E-10

C23 = −2.5335E-10 A23 = + 7.988E-12

C24 = + 1.0405E-12

C30 = −9.7729E-09 A30 = + 1.100E-10

C31 = + 3.8504E-10 A31 = + 6.649E-12

C32 = −2.3643E-12 A32 = −3.389E-13
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Difficulty with Sea Surface Height
Assimilation When Relying
on an Unrepresentative Climatology

John J. Osborne, Matthew J. Carrier, and Hans E. Ngodock

Abstract The United States Navy has two approaches for assimilating sea surface
height anomaly (SSHA) data, both relying on climatology. One approach is indirect,
with the construction of synthetic temperature (T) and salinity (S) profiles based on
observationally-derived climatological covariances between SSHA, T, and S. The
other approach is direct via a four-dimensional variational system, but it relies on a
mean SSH (here, one constrained by observational climatology) to enable compar-
isons between observed SSHA and model SSH. Because the approaches rely on
observational climatology, they can fail when data are outside that climatology. Such
a case is reviewed here. A recent field experiment (Borrione et al. 2017) collected
glider T/S profiles along altimeter tracks in the Ligurian Sea (northwest Mediter-
ranean Sea). While SSHA data are similar to observational climatology, T/S data are
warmer and saltier. In this study, SSHA and T/S data are independently assimilated
in separate experiments. It is found that each experiment fits its assimilated data as
expected, but the experiments fail to fit the withheld/unassimilated data. Assimila-
tion mechanisms are found to work as designed. Impacts of climatology on results
versus withheld data are discussed.

1 Introduction

Sea surface height anomaly (SSHA) observations are valuable data for ocean fore-
casting, due to global coverage, all-weather sensing capability, and the ability to infer
subsurface structure (e.g., Carnes et al. 1990; Le Traon et al. 2017). SSHA is the
only data type that can constrain mesoscale circulation (Oke et al. 2009). It informs
about subsurface temperature, salinity, and velocity through a variety of dynamical,
statistical, and/or climatological methods (e.g., Le Traon et al. 2017). Because of
SSHA’s significance, new methods for assimilating SSHA that reduce analysis and
forecast errors in SSHA and/or other variables are of interest.
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A recently introduced method for assimilating SSHA is the “direct” method of
Ngodock et al. (2016). It is implemented for theNavyCoastal OceanModel (NCOM;
Barron et al. 2006) using four-dimensional variational assimilation (NCOM-4DVAR;
Ngodock and Carrier 2014a, b). In the direct method, a mean SSH is added to SSHA
to make it comparable to model SSH. Several studies (Carrier et al. 2016a, b; Smith
et al. 2017; Ngodock et al. 2017) have used this method and produced low analysis
and forecast errors. All of the studies contained strong, non-linear currents (Gulf
Loop Current, Kuroshio, and Agulhas), so the method has been tested in dynam-
ically complex regions. However, due to lack of independent in situ observations
co-located with SSHA, none of the studies compared model temperature and salinity
with observed temperature and salinity at the time and location of SSHA observa-
tions. Carrier et al. (2016a) used an observation system simulation experiment. It
assimilated SSHA and compared experiment temperature and salinity to a nature
run. Results showed low forecast errors in temperature and salinity.) Such data are
now available in the Mediterranean and model-data comparisons are the focus of the
work presented here.

InMay and June 2016, the Long-TermGlider Mission for Environmental Charac-
terization field experiment (LOGMEC16, Borrione et al. 2017) was conducted in the
Ligurian Sea (northwestern Mediterranean Sea; Fig. 1). LOGMEC16 observations
include gliders piloted within a few kilometers of satellite altimeter tracks, typically
within five days of an altimeter pass (i.e., roughly co-located in time and space). This
kind of data is suitable for validating the subsurface results of direct SSH assimila-
tion. However, the observed temperature and salinity show phenomena that create a
challenge for validating direct SSH assimilation.

SSHA data during LOGMEC16 are near or below the 2008–2018 monthly obser-
vational climatological means for the study area (Fig. 3; see Sect. 3 for more details
on all observations). From a steric-climatological perspective, this indicates salinity
near or above climatological mean and water temperatures near or below climatolog-
icalmean. The glider data do show salinity near or above climatological mean (Fig. 4:
raw data, Fig. 5: averages), in agreement with the steric-climatological perspective.
However, glider temperatures are also near to above climatological mean (Figs. 4 and
5, raw and average, respectively), disagreeing with the steric-climatological inter-
pretation. This presents a problem, because the NCOM-4DVAR system with direct
SSH assimilation is dependent on observational climatology in two ways.

First, direct assimilation of SSH uses a mean SSH, and the mean SSH is taken
from amodel constrained by observational climatology (see Sect. 2 for more details).
In this study, the mean SSH is taken from a multi-year experiment of the U.S. Navy’s
Global Ocean Forecast System, version 3.0 (GOFS; Metzger et al. 2008, 2010).
This approach was also used in earlier studies using the direct SSH method (Carrier
et al. 2016a, b; Smith et al. 2017; Ngodock et al. 2017). GOFS 3.0 is dependent
on climatology because GOFS assimilates SSHA using the Modular Ocean Data
Assimilation System (MODAS; Fox et al. 2002), which depends on observational
climatology of temperature, salinity, and SSH. More specifically, MODAS trans-
forms SSHA into profiles of temperature and salinity by assuming SSHA is due
to steric variations about observational averages of temperature and salinity. The
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Bathymetry and Obsevation Locations
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Fig. 1 Model domain with locations of SSHA data (circles; red: assimilated, gray: unassimilated)
and glider profile locations (triangles: assimilated, thick lines: unassimilated) during the study
period. Assimilated data is mostly in the region between 9°E and 10°E and 43°N and 44°N. Gray
lines mark the 100 m, 200 m (thick) and 2000 m isobaths

temperature and salinity averages are from the Global Digital Environmental Model,
version 4.0 (GDEM, Carnes et al. 2010. “Model” is a bit of a misnomer as the
values in GDEM are derived from observations and observations alone; there is no
“model” in the sense of discretized dynamical equations.) Because GOFS assimi-
lates MODAS profiles, and MODAS profiles are variations about climatology, then
GOFS’ temperature and salinity are variations about climatology, and GOFS’ SSH
responds accordingly. The second dependency of NCOM-4DVAR on climatology
can also be traced back to GOFS: GOFS is the source of the initial conditions and
boundary conditions.

At the outset of this effort, the intent was to confirm that the direct SSH method
produces an analysis whose subsurface temperature and salinity agree with observa-
tions. That is not presented here. Instead, this work examines the ability of a method
dependent on climatology (the direct SSH method, dependent on the mean SSH and
initial/boundary conditions from a climotologically-constrained GOFS model) to
produce uncommon, far-from-climatology, in situ conditions. Unsurprisingly, there
is limited ability to do this. Subsequently, the purpose of this work is to highlight the
consequences of using an unrepresentative climatology in a method that depends on
climatology.
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This work is laid out as follows: Model and data assimilation configuration are
in Sect. 2. The observations are described in Sect. 3. Experiments and results are
presented in Sect. 4. Impacts of climatology are discussed in Sect. 5. Findings are
summarized in Sect. 6.

2 Numerical Model: NCOM-4DVAR

2.1 Forward Model

The forward ocean model used here is the Navy Coastal Ocean Model (NCOM;
Barron et al. 2006). NCOM is operationally used by the U.S. Navy for regional
domains, with resolution from 3.5 km to 500 m (Rowley and Mask 2014). It is a
baroclinic, Boussinesq, free surface, hydrostatic, primitive equation model. Turbu-
lence closure is achieved with the Mellor-Yamada 2.5 scheme (Mellor and Yamada
1982). Horizontal diffusion is handled via the Smagorinsky scheme (Smagorinsky
1963). Time stepping is done with a leapfrog scheme and an Asselin filter (Asselin
1972) to prevent time splitting. The time step used here is 120 s.

The domain covers the Ligurian Sea, 8°E to 11.2°E by 42.5°N to 44.5°N (Fig. 1;
258 km by 222 km). Model resolution is 1.5 km in the horizontal (172 by 148
points). NCOM uses a hybrid σ-z coordinate system in the vertical. This domain
has 25 terrain-following σ-layers above 126 m depth and 19 fixed z-levels below
126 m. Bathymetry is sourced from the U.S. Naval Research Laboratory’s Digital
Bathymetry Data Base, an on-going project with 2 min resolution (NRL DBDB2).
Model results are output hourly.

Based on the availability of SSHA and glider data, the study period is 8 May
through10 June 2016 (additional details in Sect. 3). Themodel is initialized on 1April
2016 and spun up through 7 May 2016. Initial and boundary conditions are sourced
fromGOFSVersion 3.1 (experiment 92.7, 1/12° horizontal resolution; Metzger et al.
2017). GOFS uses HYCOM as its ocean model (Bleck 2002). The nesting ratio is
greater than 3:1, and some error is to be expected in initial conditions and boundary
conditions, particularly in small-scale features near the boundary. GOFS assimilates
SSHA, sea surface temperature, and temperature and salinity profiles via the Navy
Coupled Ocean Data Assimilation system (NCODA; Cummings 2005; Cummings
andSmedstad 2014).GOFSusesNCODAwith a 3DVAR technique (Daley andBaker
2001) adapted for the ocean. Boundary conditions are applied every 3 h and treated
with the Flather (1976) andChapman (1985) conditions. Tides in the Ligurian Sea are
generally weak (e.g., Alberola et al. 1995; Tsimplis et al. 1995) and no tidal forcing is
applied. Forcing from the Arno River is applied (Barron and Smedstad 2002). Atmo-
spheric forcing is sourced from the Navy Global Environmental Model (NAVGEM;
Hogan et al. 2014) with 0.5° resolution and applied every 3 h. Atmospheric forcing
includes diurnal variability.
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2.2 Data Assimilation Configuration

Data is assimilated with the NCOM-4DVAR system (Ngodock and Carrier 2014a,
b), which is a weak constraint, indirect representer 4DVAR method (Bennett 1992,
2002; Chua and Bennett 2001). The system is cycled every 24 h at 0000 UTC with a
24 h forecast length. A 48 hr assimilation window (i.e., the period for the adjoint and
tangent linear model to act) is used. The data window is 120 h (all prior to the analysis
time). Data in the data window but prior to the assimilation window (i.e., data at 49
to 120 h before the analysis time) are shifted to the beginning of the assimilation
window. Combined observation and representation error is set to 0.05 m, 0.224 °C
and 0.1 PSU for SSH, temperature, and salinity respectively. For temperature and
salinity, these are mean values, with larger errors near the surface and smaller errors
at depth (Ngodock and Carrier 2014a). Using these errors, SSH innovations are
projected in the vertical via the adjoint model. Horizontal correlation length scales
are a function of the first mode Rossby radius of deformation and average 16 km
in this region. During the study period, to better isolate the impact of the data of
interest, only the data of interest are assimilated.

As discussed above, the direct SSH method requires a mean SSH to compare
SSHA observations with model SSH. The selected mean SSH must

1. Have the same vertical datum as the study area model (lest they be dynamically
unbalanced at the boundary, which then propagates into the interior) and

2. Accurately represent the response of the sea surface to circulation (including
temperature, salinity, and velocity), averaged over a long period.

Regarding the second aspect, mean SSH is like mean dynamic topography. They
should have similar gradients, representing the major circulation features of the
ocean. They are not identical, however. The mean dynamic topography is the level
of the mean sea surface (as measured by altimeters) above or below the earth’s geoid
(e.g., Le Traon 2011) while the mean SSH is in reference to a vertical datum (e.g.,
mean sea level, mean lower low water). Additionally, a mean SSH derived from
a model will be limited by factors including model resolution (and parameterized
processes at subgridscale resolution) and forcing (e.g. tides, surface forcing from the
atmosphere, and for regional models, boundary conditions).

Here, the mean SSH used is from GOFS experiment 90.9, run from January 2011
through August 2013 (https://www.hycom.org/data/glba0pt08/expt-90pt9). The first
condition on mean SSH is satisfied by construction, as both GOFS and NCOM
models are built with the same bathymetry data set (DBDB2) with the same vertical
datum (mean sea level). The second condition is also satisfied. GOFS results have low
error against profile observations (Metzger et al. 2010, 2017). For GOFS experiment
90.9, the period is relatively short (32 months) and thus possibly unrepresentative
of a long-term mean. Recently, a 22-year GOFS 3.1 re-analysis experiment became
available (experiment 53.X, Helber et al. 2013, https://www.hycom.org/dataserver/
gofs-3pt1/reanalysis). The mean SSH from experiment 90.9 and from experiment
53.X are shown for the study area in Figs. 2a and b. Also shown is the difference

https://www.hycom.org/data/glba0pt08/expt-90pt9
https://www.hycom.org/dataserver/gofs-3pt1/reanalysis
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a
b

c

Fig. 2 a Mean SSH used here for the SSH Experiment, b Mean SSH from a 1994–2015 GOFS
re-analysis experiment, and c the difference.Redmarkers indicate the positionofSSHAobservations

between them (Fig. 2c). The 90.9 mean is broadly similar to the 53.X mean. In
particular, at the SSHA observations (red markers), where the choice of mean SSH
matters, the 90.9 mean is about 2–3 cm lower than the 53.X mean. This difference is
less than the combined observation and representation error for SSH (0.05 m), and
thus relatively small. As will be discussed, the difference between the 90.9 mean and
the 53.X mean does not qualitatively change results.

3 Observations: SSHA and Glider Temperature
and Salinity

During the study period, the assimilated observations are SSHA data and in situ
temperature and salinity data from underwater gliders. The gliders were mostly
guided along satellite ground tracks (Fig. 1). Details on these observations are now
given, including the construction of a one-to-one pairing of SSHA data and glider
profiles. Observations are compared against observational climatology. It will be
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shown that SSHA is near average, but observed temperature and salinity are generally
greater (i.e., hotter and saltier) than observational climatology.

3.1 SSHA Observations

SSHA data are from Jason-2 (OSTM/Jason-2 Products Handbook) and
SARAL/AltiKa (SARAL/AltiKa Products Handbook; Verron et al. 2015). The data
are further processed by the ALtimetry Processing System (ALPS; Jacobs et al.
2002). Both altimeters are on their historic/repeat ground tracks, not moving to
geodetic orbits until July 2016 for SARAL/AltiKa and October 2016 for Jason-2.
SARAL/AltiKa data are available near the gliders on 16 May, 21 May, and 1 June
2016. Jason-2 data are available near the gliders on 8 May, 28 May, and 7 June 2016.
While Jason-2 did pass over the Ligurian Sea on 18 May 2016, no data are available
in the central part of the domain, near the gliders. Locations of SSHA data are shown
in Fig. 1, with red circles for the location of assimilated data and gray circles for
unassimilated data. Timing of altimeter passes is in Table 1, along with the number
of assimilated observations. For assimilation purposes, the time of observations is
rounded to the nearest hour.

To understand how SSHA compares against recent observational climatology, the
distribution of SSHA values assimilated in this study and the distribution of SSHA
from 2008 to 2018 are compared. ALPS data are available from 2008, following the
last update for mean range/sea level for ALPS data. Making this comparison shows
if the SSHA data are below, near, or above average. Assuming a steric relationship
between SSHA, temperature, and salinity, knowledge of SSHA also indicates if
temperature and salinity are below, near, or above average.

Distributions of study-periodSSHAand climatology are shownbymonth inFig. 3.
Seasonal variability is evident. Climatological SSHA is lowest in March and highest
in October. This is similar to results from studies of the entire Mediterranean (e.g.,
Fukumori et al. 2007; Landerer and Volkov 2013). The mean of the assimilated May
2016 observations (red) is similar to the average over May 2008–2018 (black). The
mean of the assimilated June 2016 observations is lower than the 2008–2018 June

Table 1 Timing of satellite
altimeter passes during the
study period. Number of
assimilated observations
varies between
assimilation-forecast cycles
due glider movement
(Sect. 3.3)

SSH observation date
and time (UTC)

Satellite Number of
assimilated
observations

8 May 2016 10:46 Jason 2 8–12

16 May 2016 17:58 SARAL/AltiKa 4

21 May 2016 04:50 SARAL/AltiKa 5–7

28 May 2016 06:43 Jason 2 2–9

1 June 2016 17:55 SARAL/AltiKa 3–4

7 June 2016 04:41 Jason 2 4
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Sea Surface Height Anomaly Climatology (2008-2018)
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Fig. 3 Box-and-whisker plot showing the monthly climatology (2008–2018) of SSHA [m] in the
study area (Fig. 2). Boxes show the range between the 25th and 75th percentile (with the 50th
percentile marked inside each box) and the whiskers extend to the 5th and 95th percentiles. For
May and June, the red box-and-whiskers show the range of assimilated values during the study
period

climatology by about 0.05 m. Assuming the steric relationship, these SSHA suggest
the following about sub-surface temperature and salinity near the SSHA data:

(i) In May, temperature and salinity will generally be near average, if perhaps
slightly colder and saltier than climatology

(ii) In June, temperature and salinity will generally be colder and saltier than
climatology.

These hypotheses are now checked against the glider data.

3.2 Glider Data

LOGMEC16 (Borrione et al. 2017) deployed “Slocum” gliders (e.g., Davis et al.
2003; Rudnick et al. 2004) in the Ligurian Sea from 3 May through 27 June 2016.
Gliders were rated for 900m and collected temperature and salinity data. Two gliders
were deployed from 3 May through 11 June 2016 (“Dora” and “Jade”) and piloted
along satellite altimeter tracks (Fig. 1, green and purple markers, respectively). In
Fig. 1, the location of assimilated glider profiles is shown with bold green and purple
triangles and unassimilated profile locations in muted green/purple. Glider Jade was
lost around 11 June, hence limiting the study period. For assimilation purposes,
glider data are sorted into profiles, each profile with fixed longitude, latitude, and
time. Observation times are rounded to the nearest hour, as with SSHA.

Glider-observed salinity and potential temperature are shown in Fig. 4 as func-
tions of depth and time. Figure 5 shows mean profiles ±1 standard deviation of
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Fig. 4 Potential temperature (°C) and salinity (PSU) data from gliders Jade (top two panels) and
Dora (bottom two panels). These plots included unassimilated data, which are the majority of the
data. Below 400m, there is less horizontal variability in glider observations than at shallower depths
(Fig. 5) and observations are not shown

LOGMEC16 temperature and salinity (red lines and light redfield) aswell asGDEM4
climatological mean profiles ±1 standard deviation (black lines and gray field).
GDEM4 is constructed from the U.S. Navy’s Master Oceanographic Observation
Data Set (Bauer 1982; Jugan and Beresford 1991), the World Ocean Database 2005
(Boyer et al. 2006), and ARGO profiles (as of 11 October 2007; https://www.usg
odae.org/argo/argo.html). The three data sets contain thousands of profiles in the
study area dating back to 1925. To construct the GDEM4 climatological means
and standard deviations, GDEM4 is sampled at each LOGMEC16 profile location,

https://www.usgodae.org/argo/argo.html
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Fig. 5 Panel A: Comparison of GDEM4 climatological potential temperatures (°C) at LOGMEC16
glider locations (black line showing the mean and gray showing ±1 standard deviation) and
LOGMEC16 glider temperature observations (red line showing the mean and pink showing ±1
standard deviation). Panel B: The same as A, but for salinity (PSU)

retrieving profiles of both mean and standard deviation. The profiles are then aver-
aged. Mean standard deviation is computed as the mean of the standard deviations
(not the standard deviation of the means, which have little spatial variability in this
area).

The observed mean temperature is warmer than GDEM4 climatology at all
depths, up to ~1 °C warmer. In terms of GDEM4 temperature standard deviation,
observed mean temperature is warmer than climatology by ~2 standard deviations
throughout the water column. The temperature data do not support the steric infer-
ence about temperature from SSHA, instead, the observations show below-average
SSHA generally coincident with above-average temperatures.

Observed salinities are somewhat similar to GDEM4 climatology above 200 m
(though observations have a sharper vertical gradient between 100 and 200 m depth).
Below 300 m, observed salinities are greater than GDEM4 climatology by up to ~0.1
PSU, or up to twice the GDEM salinity standard deviation (depending on depth).
The salinity data do support the steric inference about salinity from SSHA, that
below-average SSHA indicates above-average salinity.

3.3 Co-location of Assimilated Data

For assimilation experiments, data sets with comparable spatio-temporal coverage
are used. Doing so allows differences in results to be attributed to the type of data
rather than the coverage (or some combination thereof). To create the data sets,
SSHA observations and glider profiles are paired. Data pairs are within 5 km and
120 h of each other (i.e., in Fig. 1, the red circles and green and purple triangles).
No SSHA observation is matched with multiple glider profiles or vice versa; there
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Data Availiability

03 May 08 May 13 May 18 May 23 May 28 May 02 Jun 07 Jun
Day Month 2016

  48 hr. Observation Window: Data Assimilated
  48 hr. Observation Window: No Assimilation
120 hr. Observation Window: Data Assimilated
120 hr. Observation Window: No Assimilation
SSHA Data Available
SSHA Data Unavailable
Glider Data Available

Fig. 6 Time lines indicating which days have glider data (triangles, bottom row), SSHA data
(circles, second from bottom), andwhich days do/do not assimilate data (top two rows). Red squares
showwhich days assimilate data based on a 5 day observation window and maximum 5 km distance
between glider profiles and altimetry observations (filled: data, empty: no data). Blue squares are
similar, using a 2 day observation window. Due to the greater number of days with data, the 5 day
observation window is used

is a one-to-one matching. The inertial period at these latitudes is about 17.5 h and
mesoscale phenomena are not expected to significantly change during the 120 h. The
5 km proximity requirement ensures that a glider profile and an SSHA observation
are well within a first-mode baroclinic Rossby radius of each other (about 10 km
(Escudier et al. 2013)), and thus should be representative of similar phenomena.

Based on the availability of paired data, the study period is limited to 9 May
through 10 June 2016 (33 days). Figure 6 graphically represents this. Triangles
(bottom row) indicate days when gliders made observations and circles (second from
bottom) indicate days with SSHA observations. The filled and empty red squares
(second from top) indicate which days do and do not assimilate data, respectively.
On days with data, there are between 2 and 12 SSHA observations/glider profiles.
Using a shorter data window greatly reduces the number of days with collocated
observations. A 48 h data window would have just eight days with observations
between 9 May and 10 June (blue squares, filled and unfilled, top row). Conducting
assimilation experiments with so few data would not be valuable.

For some forecast cycles, the altimeter track is long enough that it takes a few
days for a glider to travel the track. This changes which observations are assimilated
from cycle to cycle. Figure 7 shows an example of this variability during 9–13 May.
During the rest of the study period, there are several other instances of this kind of
selection in assimilated data.

4 Experiment Setup and Results

In this section, results from three experiments are presented in order to understand
the impact of using an unrepresentative climatology.
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Spatio-Temporal Variaiblity of Assimilated Data
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Assimilated SSHA, 9-12 May
Assimilated Glider Profile, 9-12 May
Assimilated SSHA, 9-13 May
Assimilated Glider Profile, 9-13 May
Assimilated SSHA, 10-13 May
Assimilated Glider Profile, 10-13 May

Fig. 7 An example of how assimilated data varies between forecast cycles. Jason-2 passes over
the Ligurian Sea on 8 May 2016. Observation locations are marked with circles; only locations
near glider data are shown. Similarly, only the location of assimilated glider profiles (triangles)
near SSHA observations are shown. Glider Jade is in the vicinity of the pass on 8–10 May and
moves from south to north. Subsequently, different data are assimilated on different days. The
two green markers show the position of assimilated SSHA (circle) and assimilated glider (triangle)
observations assimilated 9–12May. Orange markers show observation locations of assimilated data
for 9–13 May and blue markers show 10–13 May. The thick gray line marks the 200 m isobath.
The thin gray lines mark the 50 m, 100 m, and 2000 m isobaths

• Experiment “SSH” assimilates SSHA data at the co-located positions and with-
holds glider data. This will show that, when using a method dependent on an
observational climatology that is unrepresentative of current conditions, there is
limited ability to produce an analysis that matches withheld data.

• Experiment “Glider” assimilates glider data at the co-located positions and with-
holds SSHA data. This tests if assimilation of temperature and salinity can
produce model SSH that matches recovered SSH (SSHA observations plus mean
SSH). This is an opportunistic experiment, with climatology’s impact on the SSH
Experiment being the focus.

• A “Free Run” experiment assimilates nothing and serves as a baseline.
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All three experiments use the same initial and boundary conditions.
Experiments are compared against data in severalways. First, as a basic diagnostic,

experiments are compared against assimilated data, to confirm that their analysis
states fit assimilated data (which they do). Second, experiments are compared against
withheld data. Accurately modeling unobserved or indirectly observed quantities is
a goal of the ocean forecasting process. In this work, the experiments do not fit
withheld data. Additional investigations are made to understand why withheld data
are not fit and how climatology plays a role.

4.1 Fit to Assimilated Data

Checking if data assimilation experiments fit assimilated data is a primary, basic
diagnostic. If the analysis does not fit assimilated data, this indicates issues with
the assimilation system. To quantify how experiments’ analysis states fit assimilated
data, the “JFit” metric is used (e.g., Carrier et al. 2016a; Ngodock et al. 2016):

JFit = 1

N

N∑

i=1

|yi − Hi X |
εi

where N is the number of observations, yi denotes the ith observation value, H the
observation operator, X is the analysis state, and ε is the observation error. JFit is
computed for each analysis cycle (daily). Values near 1 are expected, because the
assimilation is designed to fit assimilated observations within one standard deviation
of observation error.

Figure 8a shows results for the SSH Experiment (green line) and Glider Experi-
ment (orange line) using the experiments’ analysis states and assimilated data. The
SSH Experiment generally fits recovered SSH with JFit between 0.5 and 1. For the
Glider Experiment, JFit with respect to assimilated temperature and salinity varies
over time. During themiddle of the study period, JFit is near or below 1, indicating an
accurate fit to the assimilated data. During the beginning and end of the experiment,
the Glider Experiment has JFit between 1.5 and 2. These values are relatively large.
In comparison, in Ngodock et al. (2017), JFit for analysis temperature was typically
between 1 and 1.2. However, those experiments assimilated much more temperature
data, including SST and all available in situ profile data (e.g., ARGO floats). Here,
the small amount of data may be limiting results.

4.2 Fit to Unassimilated Data

To quantify how experiments fit unassimilated data, the mean absolute error metric
is used (MAE; Willmott and Matsuura 2005; Willmott et al. 2017),
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Fig. 8 Panel A (top left): JFit for SSH Experiment with respect to recovered SSH (green) and JFit
for Glider Experiment with respect to temperature (orange). Panel B (top right): Mean absolute
error with respect to recovered SSH for the SSH Experiment (green), Glider Experiment (orange),
and Free Run (blue). Panel C (bottom left): Mean absolute error in assimilated temperature. Panel
D (bottom right): Mean absolute error in assimilated salinity

MAE = 1

N

N∑

i=1

|yi − Hi X |

with variables defined as above. (MAE is JFit without error normalization. Errors
are not normalized because data has not been assimilated and no assumptions have
been made about the errors.) Here, the purpose is to see if assimilation reduces
errors relative to the Free Run, which is expected for multi-variate systems like
4DVAR. Results are shown for recovered SSH, temperature, and salinity (Figs. 8b–
d, respectively). As in Fig. 8a, the green line represents the SSH Experiment and
the orange line represents the Glider Experiment. The blue line represents the Free
Run. Table 2 summarizes the results. For a best-case/lowest-error reference, the
experiment that assimilates a given data type is also shown.

For each of the three data types, the experiment assimilating that data type has
lowest average MAE during the study period (e.g., for temperature data, the Glider
Experiment does best, Fig. 8c and Table 2). The second-lowest average MAE is
achieved by the FreeRun, regardless of data type. Finally, the experimentwith highest
average MAE is the experiment assimilating other data (e.g, against temperature, the
SSH Experiment does worst). This shows that, for this study, assimilation of one
data type does not improve errors against the withheld data type. This is unexpected,
given that NCOM-4DVAR has been shown to fit withheld data (Ngodock and Carrier
2014b).
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Table 2 Ranking of experiments by average MAE for each of the assimilated data types. Rank of
1 indicates lowest error; rank of 3 indicates highest error. For all three data types, the experiment
assimilating that data type ranks best, the Free Run is second, and the experiment assimilating other
data ranks worst

Ranking of experiments by average MAE for different data types

Rank Recovered SSH Temperature (T) Salinity (S)

1 SSH Expt., 0.04 m
Assimilates recovered
SSH

Glider Expt., 0.22 K
Assimilates T/S

Glider Expt., 0.06
PSU Assimilates T/S

2 Free Run, 0.09 m
No assimilation

Free Run, 0.55 K
No assimilation

Free Run, 0.09 PSU
No assimilation

3 Glider Expt., 0.11 m
Assimilates T/S, but
not recovered SSH

SSH Expt., 0.77 K
Assimilates recovered
SSH, but not T/S

SSH Expt., 0.11 PSU
Assimilates recovered
SSH, but not T/S

In two of the MAE data sets, there is somewhat similar variability between the
Free Run and the experiment not assimilating the given variable. For recovered SSH
MAE (Fig. 8b), the Free Run and Glider Experiment vary similarly (correlation
coefficient of r2 = 0.94). For temperature MAE (Fig. 8c), the Free Run and SSH
Experiment correlation coefficient is r2 = 0.57. The similarities in these time series
may be due to errors in initial conditions, boundary conditions, atmospheric forcing,
common across the experiments. However, the correlation coefficient is r2 = 0.20 for
the Free Run’s and SSH Experiment’s salinity MAE (Fig. 8d). This does not support
the common error hypothesis. On the other hand, the observation error is 0.1 PSU.
The Free Run’sMAE is generally below that and the SSHExperiment’s study-period
averaged MAE is 0.11 PSU, so it is relatively low. Errors for an assimilative experi-
ment are expected to be random, so it not surprising that the correlation coefficient is
low. In other words, while the direct assimilation of SSHA data is generally unable
to reduce salinity errors relative to the Free Run, the errors are relatively small to
begin with.

Some value of ocean data assimilation is in the estimation of unobserved
phenomena. This is expected for a multivariate system. Fitting the assimilated data
with low errors is expected and achieved here. Fitting unassimilated data no better
than the Free Run (true in all three comparisons here; Figs. 8b–d and Table 2) is worth
investigating, given prior results (Carrier et al. 2016a, b; Smith et al. 2017; Ngodock
et al. 2017). Results here must be considered in the context that the glider obser-
vations show water warmer than climatology (all observed depths) and saltier than
climatology (300–900 m). Investigation continues by examining the exact nature of
the misfits, the innovations, and the analysis increments.
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4.3 Direct Comparison of Experiment Results Against Glider
Jade Temperature and Salinity

To understand the SSH Experiment’s misfits to glider data, it is compared against
glider Jade data (results against glider Dora data are similar and not shown). This will
showwhere andwhen errors are being produced. For additional context, the Free Run
and Glider Experiments are also compared to observations. Comparisons are made
by (1) interpolating experiment analysis state to the glider profile locations/times and
(2) subtracting the observed temperature and salinity. Results are shown in Fig. 9.

For temperature errors, the Free Run and SSH Experiment have similar patterns
(Figs. 9a, c), with the SSH Experiment having larger error magnitudes. The similar
error patterns suggest a common cause, perhaps errors or bias in initial and/or
boundary conditions. The two experiments are generally colder than observed
throughout the water column (but not always, e.g., 17–22 May). In particular, the
SSH Experiment is up to 4.0 °C colder near 50 m depth between 2 and 10 June.
The Glider Experiment is usually colder than observed below 300 m (Fig. 9e), like
the Free Run and SSH Experiment, but not to the same magnitude nor as consis-
tently in time. Above 300 m, the Glider Experiment can be warmer or colder than
observed. This contrasts with the Free Run and SSH Experiment, which are almost
entirely colder. That all experiments, particularly the non-assimilative Free Run, are
colder than observed below 300 m suggests that the initial and boundary conditions,
identical across experiments, are colder than reality. Consistent with Fig. 8c, assim-
ilation of glider temperature data generally reduces temperature errors while direct
assimilation of SSHA generally increases such errors.

With respect to observed salinity, all experiments are broadly similar in error
patterns but with varying magnitudes (Figs. 9b, d, f): Above 200 m depth, all are
generally saltier than observed. Below 200 m depth, all are generally fresher than
observed. The Glider Experiment generally has the smallest error magnitudes (and
is assimilating some glider Jade data), the SSH Experiment generally has the largest
error magnitudes, and the Free Run is between the two. This is consistent with results
shown in Fig. 8d. Like with temperature errors, the similar error patterns between
the experiments suggests also suggests errors in the initial and boundary conditions.

Collectively, these results show that the SSH Experiment tends to amplify errors
in subsurface temperature and salinity. The Glider Experiment reduces such errors,
which is to be expected since it is assimilates subsurface temperature and salinity.

4.4 Comparison Against Recovered SSH

Figure 9 shows that the SSH Experiment is producing temperatures that are colder
than observed throughout the water column and salinities that are generally saltier
than observed above 200m and fresher than observed below 300m. Since the temper-
ature errors are relatively large, the innovations and increments that produce the
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Fig. 9 Errors in experimentswith respect to glider Jade observations (computed as observations less
experiment); top: FreeRun,middle: SSHExperiment, bottom:Glider Experiment; left: temperature,
with red indicating experiment hotter than observed; right: salinity,with green indicating experiment
saltier than observed)

temperature errors are now investigated. SSH innovations are considered from two
perspectives: First, by examining the SSH in both the background and analysis states
of a forecast cycle (Fig. 10) and, second, by direct inspection of the SSHExperiment’s
innovations (Fig. 11).
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Fig. 10 For selected forecast cycles, recovered SSH (black line, with circles marking observation
longitudes and values) and experiment SSH. The Free Run is shown in blue, the SSH Experiment
is shown in green (solid: analysis, dashed: background), and the Glider Experiment is shown in
orange (solid: analysis, dashed: background). Note that for 9 May (Fig. 10a), the Free Run is
exactly the background for the assimilation experiments. Also note that for several cycles, the
Glider Experiment background SSH is very similar to analysis SSH and may be difficult to visually
distinguish

Fig. 11 SSH Experiment innovations (light green circles; calculated as recovered SSH less experi-
ment background) and residuals (dark green diamonds; calculated as recovered SSH less experiment
analysis), plotted for every forecast cycle. For visual clarity, for each forecast cycle, innovations
are staggered slightly to the left and residuals slightly to the right. Negative values indicate that the
experiment SSH is higher than the recovered SSH
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Modeled SSH and recovered SSH are shown in Fig. 10, taken as along-track data
(recovered SSH shown as black dots). For brevity, results are shown for the first
time a particular track is assimilated (refer to Table 1 for timing details). For the
assimilation experiments, the background state and analysis state are shown to in
order to reveal the impact of assimilation on SSH (dashed line: background, solid
line: analysis; colors as before). Note that for 9 May (Fig. 10a), the Free Run is
the background state for the assimilation experiments and the dashed lines are not
shown. Figure 11 focuses solely on the SSH Experiment and shows both innovations
(light green circles) and residuals (dark green diamonds) for every forecast cycle (for
visual clarity, diamonds and circles for each forecast cycle are horizontally offset).

For the SSH Experiment, Fig. 10 generally shows that its background SSH is
persistently greater than recovered SSH (dashed light green line vs. solid black line)
and that the analysis SSH (solid green line) is closer to the observations than the
background, as expected. This is also seen in Fig. 11—the residuals are closer to zero
than the innovations. For the Free Run, its SSH is always greater than recovered SSH
(Fig. 10), again evidence of potential error in the initial and/or boundary conditions.
For the Glider Experiment, both its analysis and background SSH are greater than
observed.

To see the impact of SSH innovations on the SSH Experiment’s temperature
field, cross sections of temperature increments along altimeter tracks are shown in
Figs. 12a–f (track locations shown in Fig. 12g). Increments are shown at the time
observations are assimilated (corresponding with Fig. 10). For the 9 May analysis,
all the SSH innovations are negative and the resulting along-track temperature
increments are mostly negative (cf. Fig. 11 vs. Fig. 12a), following the covariance
between SSH and temperature provided by the 4DVAR’s linearized dynamics in the
adjoint and tangent linear models. This is seen again in subsequent analysis cycles.
For the 29 May analysis, the innovations are relatively small and have mixed sign
(Fig. 11) and the resulting temperature increments are also relatively small and have
mixed sign (Fig. 12d, observations from 28 May). For the 2 June forecast cycle, the
observations on 1 June produce mostly negative innovations (Figs. 10e and 11) and
there is cooling near the observations (Fig. 12f).

4.5 Comparison Against MODAS Profiles

An additional check of the direct SSH method is now made by analyzing the SSHA
data with MODAS (Fox et al. 2002) which produces synthetic temperature and
salinity profiles. This check is done because MODAS is in operational use by the
U.S. Navy and has been tested with NCOM-4DVAR (Smith et al. 2017). MODAS
is found to be capable of producing low errors in temperature and salinity (Metzger
et al. 2010). Thus, this check provides additional context for the direct SSH method.
MODAS profiles are computed from SSHA data used in the SSH Experiment and
SST from theSSHExperiment. Figure 13a showsmeanMODAS temperature profiles
±1 standard deviation (purple). Also shown are the SSH Experiment’s analysis state
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Fig. 12 Panels A–F: Cross sections of temperature increments for the SSH Experiment along
altimeter passes at observation times. Blue indicates negative temperature increments and red indi-
cates positive temperature increments. Black circles near 0 m depth mark observation location.
Cross sections are viewed from the south, with the west on the left and east on the right. Note that
the depth and length of each cross section varies. Panel G: Location of the altimeter track/cross
sections (red lines) and SSHA observations (black circles). Cross sections are labeled with the
corresponding panel label. Gray lines mark the 200 and 2000 m isobaths
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Fig. 13 Panel A: Similar to Fig. 5, a comparison of mean temperature profiles (line) ±1 standard
deviation (shaded field) between MODAS synthetic profiles (purple), the SSH Experiment analysis
state (green), and assimilated glider observations (orange; after vertically interpolating to the model
levels). Panel B: As in Panel A, but for salinity

mean temperature profile ±1 standard deviation (green) sampled at SSHA observa-
tion locations, and assimilated glider profiles mean temperature profile ±1 standard
deviation (orange). Figure 13b is similar, but for salinity. At most depths, the mean
MODAS profiles are colder and fresher than the SSH Experiment analysis state. This
comparison is significant in twoways. First, while the direct SSHmethod is erroneous
with respect to the glider data, theMODASsynthetic profiles are evenmore erroneous
(except for salinity above 200 m) and assimilation of them would produce a worse
result than the SSH Experiment. Second, while the direct SSH method offers some
improvement in temperature and salinity errors, both methods result in an ocean that
is like climatology (Fig. 5, black lines): colder than observed (all depths) and fresher
than observed (below 300 m). As MODAS depends on the GDEM4 climatology, it
is unsurprising that its results are also colder and fresher than the assimilated glider
data. Given thatMODAS is capable of producing low temperature and salinity errors,
the MODAS errors show that using a unrepresentative climatology will produce an
erroneous analysis.

The preceding investigation showshow the direct assimilation of SSHA isworking
in the SSHExperiment: negative SSH innovations (Fig. 11) result in (generally) nega-
tive temperature increments (Fig. 12). In the resulting analysis, SSH better matches
the observations than the background SSH (Figs. 10 and 11). However, the analysis
state is generally colder than the glider observations (Figs. 8c and 9c) and generally
increases salinity errors over the Free Run (Figs. 8d and 9b, d). For the Glider Exper-
iment, assimilation reduces errors in temperature and salinity but does not produce
an SSH that matches recovered SSH.
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5 Discussion

Observational climatologymay be affecting results in twoways, in influencing initial
and boundary conditions and in influencing themean SSH.Additionally, climatology
is unable to capture shifts in dynamics, temporary or permanent, which may be
significant for the mean SSH.

With initial and boundary condition errors, there does appear to be a cold, fresh
bias, as seen in the Free Run’s temperature and salinity errors versus glider data
(Figs. 9a, b). The conditions come from a climatologically-constrained global model
(GOFS 3.1). Using different initial and boundary conditions could provide different
results, but that would not directly test the impact of climatology on the parent
model—to test the impact of climatology, the parent model would need to be run
with a different climatology, which is not practical. Themean SSHmay be erroneous,
possibly because it is from a relative brief experiment (32 months). However, it is
similar to a 22-year reanalysis product (Fig. 2). If the mean SSHwere changed to the
re-analysis product, SSH innovations would still be negative, particularly in the first
forecast cycles. They would still produce negative temperature increments, which
would cool the model state and increase errors over the Free Run.

The mean SSH is derived from the same climatologically constrained global
model. The global model is assimilating MODAS profiles in every cycle, and
MODAS profiles are steric variations about climatological temperature and salinity
in response to an input SSHA. This forces the global model’s SSH about climatolog-
ical mean SSH, as derived from the climatological temperature and salinity. Thus, the
mean SSH is reflective of the climatology and influences every SSHA observation
assimilated by the SSH Experiment.

The mean SSH may be problematic in an additional climatologically linked way.
The SSH in the Mediterranean Sea varies across a range of time scales, both long-
term multi-year (Calafat et al. 2012), and brief few-month (Landerer and Volkov
2013) periods. These SSH variations can be up to 10 cm apiece or combined up
to 20 cm. This exceeds the difference between Free Run SSH and recovered SSH
(Fig. 10) and could account for errors in the mean SSH. While a climatology can
capture the combined range of these modes, it cannot recognize if conditions are
in some kind of low SSH mode or high SSH mode. Therefore, what may appear
to be a below-average SSHA observation can in fact be an above-average SSHA
observation, if the Mediterranean is in a low SSH mode. It is unclear what, if any,
SSH variations were present during the LOGMEC16 study period or in the GOFS
experiments supplying the mean SSH and the initial/boundary conditions. Thus, a
bias may be present between the mean SSH used here and with the “true” mean SSH
during the study period. As the Mediterranean Sea exhibits SSH variability, SSHA
observations may need to be considered in the context of low SSH and high SSH
modes, not just a long-termmean. This could be tested by adjusting the mean SSH by
the difference in SSHA observations and climatology over the entire Mediterranean,
as averaged over some time interval. Such testing is beyond the scope of this study.
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6 Summary

SSHA data have been assimilated using a direct SSH 4DVARmethod in the Ligurian
Sea. The SSHA data are co-located with temperature and salinity profiles from
gliders. The assimilation method uses inputs (a mean SSH, initial and boundary
conditions) taken from a climatologically constrained global model. While SSHA
data are near climatological mean, observed temperature and salinity are not, being
both warmer and saltier than observed.

When assimilating only SSHA data, the analysis fits the assimilated data within
1 standard deviation of observation error, which is expected. However, comparison
against withheld subsurface temperature, co-located with the SSHA data, shows
relatively large errors. The SSH Experiment is generally colder than observed. In
fact, the SSH Experiment is colder than a non-assimilative Free Run experiment.
Comparing the SSH Experiment’s salinity against co-located subsurface salinity
observations shows that the SSH Experiment is generally saltier than observed above
200 m depth and fresher than observed below. However, the salinity errors are of
similar magnitude to the Free Run.

The process by which the SSH Experiment adjusts temperature has been investi-
gated and found to operate in the appropriate manner. SSH innovations are generally
negative throughout the study period, and this results in temperature innovations that
are generally negative.

A second approach for assimilating SSHA data, MODAS, was also investi-
gated. MODAS transforms SSHA into synthetic profiles of temperature and salinity
by assuming SSHA is due to steric variations in temperature and salinity about
climatology. Here, MODAS profiles are colder than direct SSH method profiles,
and hence are even more erroneous relative to the observations. Given MODAS’
general ability to produce accurate temperature and salinity, this shows that using an
unrepresentative climatology produces an erroneous analysis.

An additional experiment has been conducted using only temperature and salinity
data co-located with SSHA data. It fit assimilated temperature and salinity between 1
and 2 standard deviations of observation error. However, it did not fit withheld SSHA
data. In fact, its SSH was more erroneous than the Free Run relative to observations.

The influence of climatology on the SSHExperiment results is identified in several
ways. The global model that provides initial/boundary conditions and the mean
SSH is climatologically constrained due its use of synthetic temperature and salinity
profiles. This results in sea surface height, subsurface temperature, and subsurface
salinity varying about climatology. Additionally, sea surface height in the Mediter-
raneanSea can vary on both decadal andmonthly time scales (accounting for seasonal
variability), at up 10 cm each, resulting in periods of SSH higher or lower than mean
SSH. The combined effect (20 cm) is greater than the difference in SSH between
the Free Run and the SSH Experiment and could account for the errors in the mean
SSH.
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Theoretical and Practical Aspects
of Strongly Coupled Aerosol-Atmosphere
Data Assimilation
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Abstract Coupled data assimilation is one of themost active research areas in recent
years because of its potential for improving the prediction of coupled modeling
systems. Among various coupling options, strongly coupled data assimilation is
the most efficient option for processing the information from observations. At the
same time, coupled aerosol-atmosphere modeling is steadily gaining more interest
due to its relevance to air quality, aviation, solar energy, and climate. It is well
known that aerosols play an important role in Earth’s radiation balance. Aerosol-
atmosphere interaction is clearly multi-scale, from large-scale stratospheric impact
to small-scale aerosol-cloud interaction. Such complex prediction system requires
advanced data assimilation methodology that can deal with multi-scale interactions
and observation information flow. In this chapter we address theoretical and practical
aspects of strongly coupled data assimilation in application to aerosol-atmosphere
coupling.Wedescribemajor aspects of developing strongly coupled data assimilation
and related challenges. We also show results from a case study using a recently
developed regional aerosol-atmosphere coupled data assimilation system. Finally,
a general discussion on the future needs of strongly coupled data assimilation is
provided.
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1 Introduction

The primary role of coupling of prediction systems is to allow more realistic interac-
tions between previously independent components, and therefore have a more accu-
rate representation of relevant dynamical and physical processes. Since data assim-
ilation has been an integral part of numerical weather prediction (NWP), there is a
need for developing data assimilation for coupled prediction systems, often referred
to as coupled data assimilation. A commonly used classification of coupled data
assimilation includes weakly and strongly coupled data assimilation (Penny et al.
2017; Zupanski 2017). In a weakly coupled system, each component (e.g., atmo-
sphere, chemistry, aerosol) has its own independent data assimilation system and
analysis. In a strongly coupled system, all coupled system components are included
in a holistic data assimilation system that can simultaneously assimilate observations
from all components.

1.1 Background on Coupled Data Assimilation System

In this chapter we are primarily interested in describing strongly coupled data assim-
ilation in aerosol-atmosphere coupled prediction system. Commonly used coupled
aerosol-atmosphere prediction systems include theGoddard EarthObserving System
Version 5 (GEOS-5), Navy Global Environmental Model/Navy Aerosol Analysis
and Prediction System (NAVGEM/NAAPS), European Centre for Medium-Range
Weather Forecasts/Copernicus Atmosphere Monitoring Service (ECMWF/CAMS),
National Oceanic andAtmospheric Administration (NOAA)Global Forecast System
(GFS), the Weather Research and Forecasting-Chemistry (WRF-Chem), and the
Regional AtmosphericModeling System (RAMS)Model (Molod et al. 2012; Hogan
et al. 2014; Morcrette et al. 2009; Putman and Lin 2007; Chen et al. 2013; Grell et al.
2005; Fast et al. 2006; Saleeby and van den Heever 2013). Although some aspects
presented here may be of general importance for data assimilation, they are mainly
relevant to commonly used variational, ensemble, and hybrid variational-ensemble
data assimilation systems (Parrish and Derber 1992; Rabier et al. 1999; Houtekamer
andMitchell 2001;Whitaker andHamill 2002;Kleist and Ide 2015). In those systems,
the background (or sometimes referred to as forecast or prior) error covariance is a key
element of successful data assimilation analysis (e.g., Lorenc 1986; Kalnay 2003),
which directly implies that coupled background error covariance plays a fundamental
role in coupled data assimilation. Further, cross-covariance between components in a
coupled system has the same relevance as the cross-covariance between variables in a
standalone system. For example, it is well known that there exists a physical relation-
ship between atmospheric temperature andwind.Data assimilation that includes such
correlations (or cross-covariance) between wind and temperature in its background
error covariance will produce more accurate analysis than a standalone data assim-
ilation for wind and for temperature. Similarly, if correlations between an aerosol
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and an atmospheric variable exist, a data assimilation that includes such correlations
in the coupled background error covariance will produce more accurate analysis.

Another benefit of strongly coupled data assimilation is that it provides a mech-
anism for transferring observation information between coupled components. This
may be especially relevant for coupled aerosol-atmosphere system. Given that there
are generally fewer aerosol observations than atmospheric observations, assimilation
of atmospheric observations can potentially improve aerosol initial conditions.Atmo-
spheric observations can also be beneficial for improving the vertical distribution of
the aerosol initial conditions, even when aerosol observations are assimilated. The
most widely available aerosol observations are in terms of Aerosol Optical Depth
(AOD), which are a vertically integrated quantity and therefore do not produce a
vertical distribution of aerosol. In that situation, using observed atmospheric profiles
can provide additional information about vertical distribution of aerosol through
strongly coupled data assimilation.

1.2 Theoretical Description of Coupled Data Assimilation
System

In order to illustrate the impact of coupled data assimilation, we consider a two-
variable, one-point, aerosol-atmosphere coupled system. As shown in Zupanski
(2017), when atmospheric component is observed under such system, the Kalman
filter analysis equation can be written as follows:

xaatm = xbatm + ε2

1 + ε2

[
yatm − xbatm

]
(1)

xaaero = xbaero + ρ

(
σaero

σatm

)
ε2

1 + ε2

[
yatm − xbatm

]
(2)

ε = σatm

ratm
(3)

In the above equations, subscripts atm and aero refer to atmospheric and aerosol
components, respectively, superscripts a and b denote analysis and background,
respectively, x is state, y is observation, σ and r denote background and observa-
tion errors, respectively, and ρ is the correlation between atmospheric and aerosol
variables. Equation (1) is a standalone analysis for the atmospheric component,which
means that when only atmospheric variables are observed, the coupled atmospheric
analysis is identical to the standalone atmospheric analysis. Equation (2) represents
the aerosol analysis, which critically depends on the correlation between atmospheric
and aerosol variables (Eq. 3).When the correlations between atmospheric and aerosol
variables are non-existent or negligible, aerosol analysis is the same as the guess,



468 T.-C. Wu et al.

meaning no change from the assimilation. However, when the correlations exist the
aerosol analysis can be updated from assimilating atmospheric observations.

The above discussion illustrates the main motivation for using the formalism
of strongly coupled data assimilation instead of weakly coupled data assimilation:
strongly coupled data assimilation is more general as it includes weakly coupled
assimilation as an option. When correlations between variables are naturally negli-
gible, a strongly coupled system will still correctly produce the analyses approx-
imately equal to standalone analyses. When correlations are relevant, the strongly
coupled systemwill update all variables, effectively increasing the utility of observa-
tions. The implied assumption for achieving the desired impact of strongly coupled
data assimilation is that the estimated cross-correlations are reliable.

One critical issue in strongly coupled data assimilation is related to spatial and
temporal scales of coupled processes. Although further understanding of the impact
of having different spatial and temporal scales between a coupled system on the
estimate of the background error covariance is necessary, it is likely that in an ideal-
ized data assimilation scenario where error covariances are exact and full-rank, all
correlations (temporal, spatial, cross-variable, and cross-components) will be accu-
rately accounted for. This is because in that situation the covariance would accurately
represent the interactions between uncertainties of coupled components, and there-
fore implicitly address the scale differences. In practical applications, however, the
coupled error covariance may not be able to account for different scales of coupled
components (e.g., aerosol and atmosphere) with sufficient accuracy, in particular the
temporal scales. While there is no commonly accepted solution to this problem, a
possible strategy in such situations could be to modify existing background error
covariance to reflect the different temporal scales between coupled components. For
example, one could enforce covariance localization in time using pre-defined char-
acteristic correlation scales or one could also use a covariance averaged over several
previous data assimilation cycles. That said, the aerosol and atmosphere time scales
may not be as different as the time scale differences between other coupled system
such as the land surface and the atmosphere. As such, accounting for temporal corre-
lations may not be a concern in an aerosol-atmosphere coupled system. In any case,
incorporating different time scales in coupled error covariance is an important next
step in making strongly coupled aerosol-atmosphere data assimilation more reliable
and effective.

When using variational data assimilation, in which error covariance is approxi-
mated by a mathematical function, satisfactory modeling the correlations between
coupled components may be difficult to achieve (Ménard et al. 2019). However,
aerosol and chemistry data assimilation with four-dimensional variational (4D-Var)
methods may offer new possibilities. For example, Hakami et al. (2005) found that
adjoint inverse modeling in 4D-Var helps in constraining various inputs for chem-
ical transport models, while Sandu et al. (2005) concluded that 4D-Var is a feasible
approach for carbon-cycle aerosol assimilation.As a smoother, 4D-Var has the advan-
tage of automatically accounting for time correlations during the data assimilation
process. On the contrary, time correlations have to be fully imposed in sequen-
tial data assimilation, i.e. filters. With that, 4D-Var can be an advantageous option
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for coupled aerosol-atmosphere data assimilation since the interaction between the
different time scales of aerosol and atmosphere will be more realistic in 4D-Var
compared to the interactions in filters. This certainly opens additional avenues for
strongly coupled aerosol-atmosphere data assimilation research directed towards
using smoothers instead of filters.

When using ensemble data assimilation, however, all correlations come natu-
rally from ensemble forecasting. A potential difficulty may be that small ensemble
size does not produce reliable estimates of correlations, which then requires addi-
tional attention. Considering the above possibilities, it seems that using a strongly
coupled data assimilation formalism has more advantages than disadvantages. Most
importantly, strongly coupled formalism potentially allows a more efficient use of
observations, eventually leading to an improved analysis and prediction.

1.3 Single Observation Experiment

One of the main advantages of using an ensemble data assimilation algorithm is
the flow-dependent background error covariance. Created by ensemble of model
forecasts it is time-dependent and includes complex correlations between variables.
For aerosol data assimilation the correlations between atmospheric and aerosol vari-
ables have the most significance. In principle, the correlations allow observations
of one component to impact the analysis of another component. This also helps in
the areas where AOD observations may have insufficient coverage, by indirectly
providing additional information through cross-correlation. Atmospheric observa-
tions also provide additional information about the three-dimensional structure of
aerosol, through the flow-dependent correlations.

To illustrate this impact, we conduct two single observation experiments using
a regional coupled chemistry-aerosol-atmosphere WRF-Chem model, with the
Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol module.
The data assimilation interval is 6 h, and model grid spacing is 9 km with a total of
50 vertical layers.

In the first experiment, we assimilate a single east–west wind component (u wind)
observation at 25°N, 53°E and near the model surface. In Fig. 1, we show the impact
of such assimilation on the DUST_3 (2.4 μm) variable from the GOCART aerosol
module. Note that in a less advanced, uncoupled data assimilation system, the impact
of assimilating a single wind observation on dust variable would be equal to zero. In
Fig. 1a, one can see negative increments of dust, in both horizontal and vertical direc-
tions, suggesting that increasing westerly wind in that area will produce a decrease
of dust concentration. In Fig. 1b, one can also notice that the impact of wind obser-
vation on dust is limited in the vertical direction and is generally confined to lower
levels where the observation was located.

In the second experiment, we assimilate a single DUST_3 observation in the same
place located at 25°N, 35°E. The impact of assimilating such observation to near-
surface wind is shown in Fig. 2. One can notice a dominant negative response, which
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Fig. 1 Analysis increments (i.e., analysis minus background) of DUST_3 (ug kg−1
dry air) in

response to a single east–west wind observation (u component wind), valid at 00 UTC on August
4, 2016: a horizontal distribution at surface and b vertical cross section along 25°N

Fig. 2 Similar to Fig. 1, except for analysis increments of u component wind (m s−1) in response
to a single DUST_3 observation, valid at 00 UTC on August 4, 2016: a horizontal distribution near
surface and b vertical cross section along 25°N

is consistent with the findings in Fig. 1. The analysis response of dust is also limited
in both vertical and horizontal directions, as anticipated due to the use of covariance
localization.

The rest of the chapter is organized as follows.We begin by describing the current
status of aerosol-atmosphere coupled data assimilation in Sect. 2, followed by aerosol
observations and observation operator in Sect. 3. Challenges of strongly coupled data
assimilation are discussed in Sect. 4, with numerical experiments of a case study and
results presented in Sect. 5. Summary and future directions are given in Sect. 6.
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2 Current Status on Aerosol-Atmosphere Coupled Data
Assimilation

Before an overview on the current status of aerosol-atmosphere coupled data assim-
ilation is given, a brief discussion on a prerequisite topic regarding online versus
offline approaches for weather and aerosol forecasting is provided herein. An offline
approach involves an aerosol model run that is driven by meteorological fields
produced by an atmospheric model run (e.g., Sekiyama et al. 2010; Rubin et al.
2017). As a result, interactions between the atmospheric and the aerosol processes
are restricted to one-way. That is, the meteorological fields from an atmospheric
model are used to initialize the aerosol model, but the outcome from the aerosol
model is not fed back to the atmospheric model. On the other hand, an online (some-
times also referred to as inline) approach involves an integrated model run of both
atmospheric and aerosol components (e.g., Liu et al. 2011; Lee et al. 2017), in which
a two-way interaction of atmospheric and aerosol components is allowed. As indi-
cated in Grell and Baklanov (2011), major advantages of using an online approach
as opposed to an offline approach include a more realistic presentation of the atmo-
sphere, a more numerically consistent treatment of both components, and improved
forecast via improved assimilation. Nevertheless, the reduced computational cost
and more flexibility in ensemble forecasting makes the offline approach still rather
appealing, especially for regulatory agencies.

As mentioned in the introduction, there exist two general approaches for aerosol-
atmosphere coupling from the data assimilation perspective. As discussed earlier,
the two approaches are (i) a weakly coupled data assimilation and (ii) a strongly
coupled data assimilation. A weakly coupled data assimilation system performs data
assimilation of each component independently, although the updated analysis of
both meteorological and aerosol fields can be used to initialize a coupled aerosol-
atmosphere forecast. Since the individual component is treated separately, there does
not exist cross-component elements in the background error covariancematrix,which
is essential for the data assimilation update. In contrast, a strongly coupled data
assimilation system performs data assimilation and forecast of both aerosol and
atmospheric components simultaneously, treating the coupled system as a single
integrated system. As such, there exist cross-component elements in the background
error covariance matrix, which allows observational information from one compo-
nent to potentially influence the other component within a coupled data assimilation
update. Based on the varying degrees of data assimilation update, weakly (strongly)
coupled data assimilation can be further classified into quasi weakly (strongly) and
weakly (strongly). Interested readers are redirected to Penny et al. (2017) and Penny
and Hamill (2017) for more details.
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2.1 Operational Centers and Research Community

With the increased computational power, many NWP centers have reconsidered the
online approach over the more common offline approach for weather and aerosol
forecasting. For example, the ECMWF Integrated Forecast System (IFS) (Morcrette
et al. 2008), the Japan Meteorological Agency (JMA) Model of Aerosol Species in
the Global Atmosphere (MASINGAR) (Tanaka and Chiba 2005), and the UK Met
Office (UKMO) Unified Model (UM) (Collins et al. 2011). Nevertheless, several
NWP centers favor the offline approach and that include the US Navy Fleet Numer-
ical Meteorology and Oceanography Center (FNMOC) Naval Research Laboratory
(NRL) NAAPS (Lynch et al. 2016) and the Météo-France Modèle de Chimie Atmo-
spherique àGrande Echelle (MOCAGE) (Guth et al. 2016). A summary of the current
status of global NWP efforts on aerosol forecasting is provided by Xian et al. (2019).
Among these efforts, the ECMWF IFS system is considered a strongly coupled
aerosol-atmosphere data assimilation system because a single data assimilation algo-
rithm is employed to update both aerosol and atmospheric states (Benedetti et al.
2009). Although the JMA MASINGAR is an inline forecast model of aerosol that
is coupled to an atmospheric model, data assimilation of aerosol into MASINGAR
is performed separately from the atmospheric data assimilation (Yumimoto et al.
2018).

In addition to operational efforts, numerous research efforts have addressed the
assimilation of aerosol and/or chemistry data into research forecast models for the
improvement of weather and air quality simulations (Collins et al. 2001;Weaver et al.
2007; Wang and Niu 2013; Zhang et al. 2014; Lee et al. 2017; Eltahan and Alah-
madi 2019). Among them, U.S. National Aeronautics and Space Administration
(NASA) Global Modeling and Assimilation Office (GMAO) provides global reanal-
ysis dataset of both atmospheric and aerosol fields using their GEOS-5 (Randles et al.
2017). Unlike GEOS-5, the WRF-Chem (Grell et al. 2005), which is developed and
maintained by the National Center for Atmospheric Research (NCAR), is a widely
used researchmodel for regional aerosol, air quality, and atmospheric studies. Similar
to WRF-Chem, the RAMS model is also a research model developed for studying
regional aerosol-atmosphere interactions.

2.2 Global Versus Regional Applications

Unlike global applications, specifying realistic lateral boundary conditions is critical
to regional simulations and data assimilation, in general (Chikhar andGauthier 2017).
A study by Tang et al. (2009) examined the impact of specifying lateral boundary
conditions from six different sources on the simulation of tropospheric ozone over
the continental U.S., which include a fixed ozone profile, three time-varying ozone
profiles derived from global models, and two time-varying ozone profiles derived
from soundings. Their results suggest that specifying lateral boundary conditions
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with those derived from global models improves the simulation most significantly;
however, they found that uncertainties associated with the global models can also
translate to the corresponding regional simulations. In addition, Chikhar andGauthier
(2017) pointed out that biases can emerge from the differences in spatial resolution
as well as physical parameterizations used between the regional model and the global
model, which provides lateral boundary conditions for the regional simulations. Such
an issue can be reduced by using a unified system where a regional model and its
global version are used together to provide lateral boundary conditions.

3 Aerosol Observation and Forward Operator

3.1 Retrievals Versus Direct Measurements

For analyses and therefore model forecasts to benefit from coupled aerosol-
atmosphere assimilation, aerosol observations must be available similarly to atmo-
spheric variables. These observations generally fall into two categories: direct assim-
ilation of aerosol-affected satellite radiances or the assimilation of retrieved aerosol
products. Both approaches carry distinct strengths and weaknesses. For example,
direct assimilation would necessitate complex radiative transfer code which would
lead to costly computational time. On the other hand, retrieved observations inher-
ently make assumptions related to the physical characteristics of aerosols. These
include species type, shape, size (bulk or binned categorization), and refractive
indices. With that, retrieved products must then be matched to a particular model.
Even with these challenges assimilation of retrieved aerosol products is the current
operational approach as it affords the availability of quality observations with esti-
mates of uncertainty. The following subsections briefly describe currently available
aerosol observations.

3.1.1 Aerosol Optical Depth

An example of a retrieved aerosol product is the aforementioned AOD. As the
name suggests, AOD is a quantity that measures the loss of light due to scattering
and absorption through a vertical column. This quantity depends on the type and
physical characteristics of the aerosols that are present. Ground-, airborne-, and
spaceborne-based AOD observations have been used in a variety of data assimila-
tion systems (variational, ensemble, hybrid) at National Center for Environmental
Prediction (NCEP), ECMWF and NRL. Liu et al. (2011) showed that 3D-Var assim-
ilation of AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS)
improved both aerosol analyses and aerosol forecasting. Further, Benedetti et al.
(2019) utilized 4D-Var to assimilate MODIS AOD observations and demonstrated
improvement in dust analyses and forecasts for up to 48 h in East Asia. Examples
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of ensemble-based assimilation of aerosols can also be seen in Pagowski and Grell
(2012), Rubin et al. (2016), and Schwartz et al. (2014). Hybrid data assimilation has
also been shown to be effective in aerosol analyses and forecasts (Schwartz et al.
2014; Choi et al. 2020).

3.1.2 Satellite Radiances Affected by Aerosols

Visible, ultraviolet (UV) and near-infrared wavelengths could very well be the future
of aerosol assimilation. This has been shown possible (Weaver et al. 2007) but several
challenges have prevented this from becoming operationally viable. These include
the speed and complexity of the available radiative transfer codes, complexity of the
model, and how polarization would be addressed. A benefit of direct assimilation
would be the ability to assimilate from different satellite instruments. Currently
attempts are underway at ECMWF to assimilate two aerosol visible radiances from
MODIS and have been shown to be effective in representing plumes in the 4D-
Var analyses comparable to the available observations. While direct assimilation of
aerosol-affected satellite radiances has been shown viable, future research is still
required for this to become operationally feasible.

3.1.3 LIDAR

Light Detection and Ranging (LIDAR) instruments use a pulsed laser to generate
three-dimensional observational imagery of the Earth’s atmosphere and surface char-
acteristics. This is done by observing the backscatter from molecules and particles.
LIDAR instruments can retrieve profiles describing the composition of atmosphere
in regard to water content and aerosols and also determine wind fields. One such
example is the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) satellite. CALIPSO utilizes LIDAR along with infrared and visible
imagers to observe clouds and aerosols and is part of the “A-Train” satellite constel-
lation. The vertical profiles retrieved by CALIPSO have been able to provide highly-
accurate cloud heights and high thin cirrus cloudswhich have been difficult to observe
previously.

Given the utility and quality of LIDAR observations, there are other space-borne
instruments that are either in the pre-launch design phase or that have recently
been launched and are now used operationally. The EarthCARE satellite is part of
the European Space Agency’s Earth Explorer Programme and scheduled to launch
in 2022. EarthCARE will carry LIDAR, radar, radiometers, and imagers with the
goal of producing high-resolution horizontal and vertical profiles of aerosols, liquid
water, cloud distribution, and atmospheric radiative heating and cooling. These
new datasets of highly-variable parameters are expected to improve forecasting and
climate modelling.

Aeolus, another space-borne satellite, was launched in 2018 and has been used
operationally at ECMWF since January 2020. Aeolus employs a LIDAR instrument
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capable of observing the Doppler shift of atmospheric molecules and particles to
retrieve highly precise wind profiles. While the wind profiles are currently used to
improve numerical weather prediction, Aeolus also has the ability to retrieve aerosol
optical properties such as extinction and optical depth. The value and use of these
aerosol profiles has yet to be fully explored.

3.1.4 AERONET

TheAERONET (AErosol RObotic NETwork) program is a network of ground-based
sun photometers capable ofmeasuring atmospheric aerosol properties. Bymeasuring
sun and sky radiances at afixednumber ofwavelengths in the visible andnear-infrared
spectrum, precipitable water and aerosol properties such as AOD, single scattering
albedo, aerosol scattering phase function, and aerosol volume size distribution can
be retrieved. This global network has grown to over 600 sites as of 2018. AERONET
thus provides a vast database of ground-truth calibration data for current and future
satellite instruments which is a crucial component of utilizing new observations in
data assimilation to improve numerical weather prediction.

3.2 AOD Observation Operator

To assimilate AOD observations a data assimilation system must include a forward
operator (also known as observation operator) that computes a model-equivalent
value of AOD. This operator will be unique to the numerical prediction model as it
depends on the represented aerosol species. Each aerosol species has specific physical
properties including effective radius andwavelength-dependent indices of refraction.
These characteristics must be known to calculate the mass extinction coefficient via
Mie theory (Bohren and Huffman 1983). To account for hygroscopic growth -Köhler
theory, Petters and Kreidenweis (2007) grows each particle to equilibrium per the
ambient relative humidity. Since the Mie calculations can be expensive, look-up-
tables can be created offline for quick reference of a species’ humidity-dependent
mass extinction coefficient (Eq. 4). This technique has been applied in this study
(see Sect. 5.3). Total-columnAOD is then computed by summing over all species and
model levels following Liu et al. (2011) and Pagowski et al. (2014). The calculation
of AOD at a given wavelength λ (nm) is expressed as

AOD(λ) = const ·
∑Naero

i=1

∑ktop

k=1
Eext (λ, nri , re f f i ) · cik · �pk

g
(4)

where AOD(λ) represents the spectrally dependent AOD operator (unit less), i is
the index for aerosol species, Naero is the total number of aerosol categories that
contribute to the AOD calculation, k is the index for model vertical levels, and ktop is
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the model top level. Eext is the spectrally dependent mass extinction coefficient (m2

g−1), which is a function of the index of refraction nr and effective radius reff (nm)
of a given aerosol species, ci, in the form of mass mixing ratio (g of aerosol/kg of
dry air). Δpk is the pressure difference (mb) between two vertical levels k and k +
1, and g is the acceleration due to gravity (m s−2). const is a constant of 105, as a
result of unit conversion (Eq. 4).

3.3 AOD Error and Bias Estimation

AODobservations include both a quality flag and a definition of an observational error
which depends on the retrieval algorithm, e.g.MODISDark Target (Levy et al. 2013)
versus Deep Blue (Hsu et al. 2006). Ideally these definitions would extend to error
covariances which would describe correlations between different aerosol products
in both space and time. Moreover, to improve assimilation of these observations, an
estimation of bias and the ability to correct for it, is also desired. These bias correction
procedures can be generally categorized as either static (offline) or variational. The
static bias correction scheme (Eyre 1992) considers differences in the observations
and the model state over a period of time and defines bias predictors using satellite
scan angle along with several atmospheric variables (e.g. skin temperature, total
column water, etc.). This is carried out offline for each satellite sensor and band
and is frequently updated. The bias correction is then applied to the observations
in the data assimilation system. Variational bias correction methods include bias
coefficients within the state vector of the minimized cost function. Therefore, these
coefficients are continuously updated, along with the state vector itself, during each
data assimilation cycle. The bias is defined as a linear combination of predictors,
similar to the static scheme, using scan angle along with atmospheric variables.
More details can be found in (Derber et al. 1991; Parrish and Derber 1992; Derber
and Wu 1998; Dee 2005; Auligné et al. 2007).

4 Challenges

4.1 Choice of Control Variables

The choice of control variables is directly related to the background error covariance,
which plays a fundamental role in data assimilation. Control variables can be defined
as a subset of variables of an NWP system that can potentially impact its prediction.
In general, control variables include not only the initial conditions of prognostic
variables of an NWP system, but also non-prognostic variables, empirical model
parameters, and model error bias. The particular choice of control variables depends
on both the feature of interest (e.g., tropical cyclones, thunderstorms, and blowing
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dust) and the type of observed data to be assimilated (e.g., satellite radiances, radar
data, and satellite retrieved quantities). Over the previous decades, research efforts
focused on improving the forecast of severe thunderstorms, as a result, doppler radar
data was assimilated; therefore, a choice of control variables would be the horizontal
component of the prognostic wind (e.g., Sun 2006; Hu and Xue 2007). Another
example of a feature of interest is blowing dust. Progress has also been made in the
assimilation of airborne dust using aerosol-atmosphere coupling.

An important aspect of a strongly coupled aerosol-atmosphere data assimilation
system is to have a set of control variables that cover the state of both components
(Pagowski et al. 2014). Control variables associated with the aerosol component
include the initial conditions of dust, sea salt, carbon particles from agricultural or
wildfire burning, and sulphate from agricultural and industrial sources, which are
some of the typical aerosol species. In addition, control variables associated with
the atmospheric component typically include the initial conditions of temperature,
pressure, all components of the three-dimensional wind vectors, and water vapor
mixing ratio. Having a set of control variables, which covers both components, allows
the information of assimilated observations to be spread into relevant variables via the
background error covariance matrix, which includes cross-component correlations
(to be discussed in Sect. 4.2).

Additional information is now given to a specific scenario: airborne dust, which
results from high winds over semi-arid surfaces. Similar to cloud microphysical
schemes, aerosol solvers/models predict moments of aerosol species. In particular, a
single-moment scheme predicts only the mass mixing ratio (ug of dust per kg of air)
of a given aerosol species (e.g., WRF-Chem; Grell et al. 2005); whereas a double-
moment scheme predicts both mass mixing ratio and number concentration (number
of dust particle per kg of air) of a given aerosol species (e.g., RAMS aerosol module;
Saleeby and van den Heever 2013). Consequently, a double-moment scheme allows
three-dimensional variability in particle size, because particle size is a function of
both mass and number concentration. Efforts to advance the field of dust assimilation
have focused on the first moment, the mass field, as a first step. After the assimilation
of dust with the first moment becomes better understood, the next step is to include
the second moment, number concentration, in the set of control variables.

There are important challenges when including only the first moment as a control
variable. As a result of altering only the first moment, during the data assimilation
process, mass may appear in a region devoid of number concentration. As previously
stated, particle size depends on both moments. Consequently, if there is a region in a
numerical domainwith non-zeromass and non-existence number concentration, then
calculation of particle size becomes problematic. An additional challenge is that a
forecast froman analysis,which contains an inconsistency between the twomoments,
will cause numerical errors. Although focus was placed on the first moment (mass)
and the secondmoment (number concentration), the above discussion applies equally
well to any double-moment prognostic variables like the first and second moments
of cloud microphysics (Cotton et al. 2003; Saleeby and Cotton 2004).

In preparation for a discussion of background error covariance (Sect. 4.2), addi-
tional care should be exercised in choosing control variables. Because the background
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error covariance matrix is computed from the set of control variables, choice of the
set of control variables has fundamental impact on the efficiency and success of
assimilation (Xie and MacDonald 2012; Sun et al. 2015).

4.2 Background Error Covariance

As mentioned in the previous section, background error covariance matrix provides
a mechanism for spreading the information from assimilated observations to control
variables represented by grid points (both horizontally and vertically) of all coupled
components (Fisher 2003). In addition, background error covariance not only allows
observation of different types to act in synergy, but also helps maintain the anal-
ysis state closer to balance (Bannister 2008a). Having chosen a set of control vari-
ables does not naturally guarantee a corresponding background error covariance
matrix that can accurately represent the associated actual error. Careful tuning and
possibly modeling of background error covariance is required for any effective data
assimilation schemes that include variational, ensemble, as well as hybrid methods.

Due to its prohibitive size (NWP system has a large dimensional state space ~
108), the use of the explicit form of background error covariance matrix is impos-
sible. Instead, several techniques have been developed to measure characteristics of
background error statistics for modeling and specifying realistic background error
covariance matrix. A review of measuring and modeling background error covari-
ance in the context of atmospheric data assimilation systems was provided in Fisher
(2003) and Bannister (2008a, 2008b). Methods to measure the background error
statistics include the following: analysis of innovations, differences between fore-
casts of different lengths that verify at the same time (i.e., theNationalMeteorological
Center (NMC)method; Parrish and Derber 1992), the lagged NMCmethods, and the
ensemble-based Monte Carlo method. In particular, the NMCmethod is widely used
by several NWP centers due to its advantage of low computational cost. However, the
NMC method was often found to overestimate covariances due to the use of longer
forecast lengths, e.g., 24 h and 48 h, to estimate errors of the background, which
is usually a 6 h forecast. Following the measurement of background error statistics,
the modeling of background error covariance can be achieved via spectral/wavelet
methods (Fisher 2006) and control variable transform (Bannister 2008b), both of
which seek to simplify the representation of the background error covariance matrix
and were developed for variational-based schemes.

Benedetti and Fisher (2007) and Kahnert (2008) were the first to apply the NMC
method to estimating background error statistics of aerosols. With that, a satisfac-
tory background error covariance matrix was constructed with the use of a wavelet
modeling approach without the need to prescribe the vertical and horizontal correla-
tion (Benedetti et al. 2009). In addition, a generalized background error covariance
matrix model was developed by Descombes et al. (2015) as a community tool to be
used beyond atmospheric applications (e.g. geophysical, chemistry, etc.).
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In the context of ensemble data assimilation, background error covariance can be
created with the use of ensemble of model forecasts. As such, the ensemble back-
ground error covariance matrix is time-dependent and includes embedded correla-
tions between control variables from the model. Nevertheless, additional care is still
required to fine tune the ensemble background error covariance to avoid filter diver-
gence as well as spurious correlation due to the use of a much smaller ensemble
(i.e., reduced rank). In general, a good practice to visualize the structure functions
of the background error covariance (Thépaut et al. 1996) can be achieved via exam-
ining analysis increments of control variables resulted from assimilating a single
observation of the kind of a control variable in a pre-specified grid point (i.e., single
observation experiment; see Sect. 1.3).

4.3 Non-Gaussianity and Non-Linearity

Many variational and ensemble-based data assimilation and retrieval systems assume
that the observational and model errors come from a Gaussian distribution. Previous
research has indicated this is not necessarily true for variables that are not from
a Gaussian distribution, e.g. variables that are positive definite such as humidity
or total precipitable water. Recent research has sought to address this limitation
by introducing a cost function based on a mixed Gaussian-lognormal distribution
(Fletcher and Jones 2014). Here the incremental 3D and 4DVAR formulations of the
mixed distribution cost function is derived and improved performance is shown with
experiments based on the Lorenz 1963 toy model. This formulation has also been
shown to improve 1DVAR water vapor mixing ratio retrievals (Kliewer et al. 2016)
as this variable is certainly positive-definite. Another recent approach that avoids
any assumption of probability distribution is with the application of particle filters
(Van Leeuwen 2010) however these methods have not been found to be operationally
viable as of yet due to their computational cost.

The non-Gaussian nature of AOD can certainly have an impact on the quality
of the coupled data assimilation. As previously described the forward operator for
AOD observations is certainly non-linear since it incorporates hygroscopic growth
as a function of relative humidity. Preliminary experiments have confirmed this by
noting that the distribution of innovations during assimilation is often positively or
negatively skewed.While this issue can have impact on the data assimilation analyses
and the subsequent NWP forecasts, this is out of the scope for what is presented here
and is not addressed within these experiments.
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4.4 Insufficient Data for Independent Verification

A standard way of measuring the success of data assimilation performance is to
compare its analysis and background in observation space against independent obser-
vations, i.e., observations not assimilated. Benedetti et al. (2018) describe several
observation types that can be used for verifying chemistry and aerosol data assimila-
tion. However, there are situations in which the number of observations available for
assimilation is limited and/or their representativeness is inadequate (a few pointwise
observations to validate global—over all points—data assimilation). This is espe-
cially relevant to aerosol data assimilation, and in particular to regional aerosol data
assimilation. Commonly used verification data include AERONET and CALIPSO.
Although proven useful, there are some concerns when using them for verification
of aerosol data assimilation, and in particular regional aerosol data assimilation,
related to their limited spatial and temporal coverage. Given that typical Gaussian
data assimilation involves some kind of optimization over all grid points and obser-
vations, having a few pointwise observations such as AERONET is not sufficient
for verifying data assimilation. Similar is true for CALIPSO, which produces a
high-resolution but narrow-swath vertical cross-section of aerosol.

One can also think of additional issues that may become important. For example,
a new satellite sensitive to a particular aerosol variable that is rarely observed is
launched with a goal of demonstrating the usefulness of new observation type in data
assimilation. Under these assumptions there are likely no other, independent obser-
vations similar to the new satellite and therefore direct verification is not possible.
Another example may be the limitation introduced by choosing the area of interest
that is sporadically observed, such as polar regions, oceans, and deserts. Without
sufficient statistically independent observations such studies may never be properly
verified. Although a particular research may be of great scientific interest, not having
independent observations to verify data assimilation performance could preclude
efforts to assimilate these observations.

Described scenarios may be more common in regional data assimilation applica-
tions, but they could happen in global applications aswell. This is because observation
operators that transform control variables to observed variables often only have local
impact, especially in the horizontal directions. Imagine a case when a special type
of observation is available and assimilated only over a small area of a global domain
while the verifying independent observations are not available, it will not be possible
to reliably assess the impact of assimilated data.

All of the above suggests that there is a need to address alternative verifications for
data assimilation in general, and particularly for aerosol, without using independent
observations. The main underlying premise of such an approach is that a data assimi-
lation algorithm contains additional information that is overlooked and consequently
not used for its verification.
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Fig. 3 Satellite imagery of the two dust plumes over the Arabian Peninsula on 4 August 2016:
a Meteosat Second Generation (MSG) imagery with dust enhancement applied (showing dust in
yellow) and b Aqua MODIS true color imagery

5 Experiments and Results

5.1 Case Study

A dust storm case over the Arabian Peninsula, one of the major dust sources of the
world and the so-called dust belt (Jish Prakash et al. 2015), occurred on 4 August
2016 (Miller et al. 2019; Saleeby et al. 2019) andwas chosen to illustrate the utility of
a strongly coupled aerosol-atmosphere data assimilation system. On 4 August 2016,
two distinct dust plumes occurred (Fig. 3), in which one plume advected offshore of
the United Arab Emirates (UAE) to the central portion of the Persian Gulf (referred
to as the Persian Plume; Fig. 3a), which was detected by the Spinning Enhanced
Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG)
- 8 imagery with dust enhancement algorithm applied, and the other plume was
located in interior regions of Saudi Arabia (referred to as the Saudi Plume; Fig. 3b),
which was detected by Aqua MODIS true color imagery. As discussed in Miller
et al. (2019), the environment of the Saudi Plume was characterized by values of
total precipitable water (TPW) less than approximately 25 mm whereas the Persian
Plume was in an environment characterized by values of TPW in excess of 45 mm.

5.2 Overview of the RAMS-MLEF System

In order to demonstrate the utility of a strongly coupled aerosol-atmosphere data
assimilation system, an NWP model was interfaced to a data assimilation system.
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That is, RAMS (Cotton et al. 2003) was interfaced with the Maximum Likelihood
Ensemble Filter (MLEF; Zupanski 2005; Zupanski et al. 2008), hereafter referred
to as the RAMS-MLEF system, to conduct experiments for the 4 August 2016 case.
Before the experimental setup is described, a brief introduction to RAMS, MLEF,
and the RAMS-MLEF system is provided.

RAMS is a multi-purpose mesoscale numerical prediction model that was devel-
oped at CSU. Throughout the years, RAMS has undergone multiple upgrades that
include improvements to its microphysics via the implementation of a bimodal and
double-moment cloud water scheme (Saleeby and Cotton 2004), an improved capa-
bility to assimilate lightning data (Federico et al. 2017), and the development of
an interactive aerosol module (Saleeby and van den Heever 2013). Of these recent
upgrades, the development of a RAMS aerosol module is directly related to the study
herein. There are a total of nine aerosol categories represented by the aerosol module
in RAMS: (i) submicrometer sulphate, (ii) supermicrometer sulphate, (iii) submi-
crometer mineral dust, (iv) supermicrometer mineral dust, (v) film-mode sea salt,
(vi) jet drop-mode sea salt, (vii) spume-mode sea salt, (viii) submicrometer regen-
erated aerosols, and (ix) supermicrometer regenerated aerosols. For each aerosol
category, the size is represented by a lognormal distribution given by

n(r) = N

r
√
2π ln

(
σg

)exp

⎡

⎢
⎣−

(
ln r

rg

)2

2ln2σg

⎤

⎥
⎦ (5)

where n(r) is number concentration of aerosols of dry radius r, N is total number
concentration of aerosols, rg is lognormal distribution geometric median radius, and
σ g is lognormal distribution geometric standard deviation. Although the shape of the
size distribution as described in Eq. (5) is fixed during a simulation, the distribution
is allowed to translate in the direction of r. That is, as a result of sources and sinks of
aerosol mass during a simulation, the size distribution given in Eq. (5) is allowed to
shift toward larger or smaller values of r. In addition, the width of the size distribution
is determined by σ g, which behaves like a dispersion parameter in a Gamma size
distribution used in microphysical development.

MLEF is a hybrid data assimilation algorithm with both variational and ensemble
features. Similar to other data assimilationmethods (e.g., Evensen 1994;Houtekamer
and Mitchell 2001; Anderson 2001; Bishop et al. 2001; Whitaker and Hamill 2002),
a generalized flow chart of MLEF also consists of a forecast step and an analysis
step. During the forecast step, MLEF generates an ensemble of forecasts to estimate
the flow-dependent background/forecast error covariance. After completion of the
forecast step, minimization of a prescribed cost function occurs during the analysis
step, see Fig. 4, where x and y represent the state vector and the observation vector,
respectively; subscript f denotes the forecast (or background) and subscript a denotes
the analysis; Pf is the flow-dependent background/forecast error covariance matrix
and Pa is the analysis error covariance matrix; superscript t denotes time; h denotes
a collection of observation operators; m represents a forecast model. Unlike pure
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Fig. 4 A flow chart of the RAMS-MLEF system. Interfaces between MLEF and RAMS are high-
lighted in the following colors: blue boxes represent interfaces for Input/Output (I/O) between
MLEF and RAMS, the green box represents the interface as a driver to call and run RAMS, and the
orange box represents the interface for observation operators, which require input from RAMS

variational methods (e.g., Parrish and Derber 1992; Zupanski 1993; Rabier et al.
1999), MLEF, a hybrid system, solves the prescribed cost function, Eq. (6), with
Hessian preconditioning in the ensemble space,

J (x) = 1

2
(x − xb)

T P−1
b (x − xb) + 1

2
[y − h(x)]T R−1[y − h(x)] (6)
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where R is the observation error covariance, which is often a diagonal matrix
following the assumption that observations are not spatially correlated. Although
any forecast model, as indicated by m in Fig. 4, can be interfaced with MLEF, this
study utilizes RAMS.

A schematic diagram shown in Fig. 4 outlines the components of the RAMS-
MLEF system. Specifically, three interfaces are implemented in MLEF and they
are (1) Input/Output (I/O) interfaces between MLEF and RAMS, (2) an interface
that acts as a driver to call and run RAMS, and (3) an interface for observation
operators that utilizeRAMSoutput to compute thefirst guess of assimilated quantities
as part of the innovation of data assimilation. In MLEF, observation operators for
atmospheric observations are adapted from the forward component of the Gridpoint
Statistical Interpolation (GSI; Wu et al. 2002; Kleist et al. 2009) through a module as
illustrated by ATM in the orange box of Fig. 4. With that, atmospheric observations
that are provided by NCEP, such as the conventional observations (e.g., radiosonde,
surface station, buoy, etc) within the NCEP Prepared Binary Universal Form for the
Representation of meteorological data (PrepBUFR) dataset and non-conventional
atmospheric observations provided by satellite radiances data fromvarious platforms,
can be assimilated byMLEF, which is consistent with operations at NCEP. However,
theAODobservation operator that is embedded in theCommunityRadiative Transfer
Model (CRTM; Han et al. 2006), which is one of the observation operators within
GSI, was specifically designed for the GOCART (Chin et al. 2000) aerosol species.
Similarly, an AOD observation operator was developed specifically for the RAMS
aerosol module within the RAMS-MLEF system.

In the RAMS-MLEF system, an observation operator for AOD specific for the
RAMS aerosol module was developed in accordance with Eq. (4). Out of the nine
aerosol categories, eight of them are used, i.e., Naero = 8, to calculate AOD for
this study. Supermicrometer sulphate is not used due to its little contribution to
the total AOD. The optical properties of the eight aerosol categories at 0.55 μm
under dry conditions are provided in Table 1. The mass extinction coefficient is
computed usingMie theory, in which the spherical assumption of aerosol particles is
required. For each of the aerosol categories, particles are first grown hygroscopically
to equilibrium with ambient relative humidity using κ-Köhler theory (Petters and
Kreidenweis 2007) and the refractive index is adjusted based on volume mixing
with water. To reduce computational expense, a lookup table of the mass extinction
coefficient as a function of ambient relative humidity (RH, %) for each of the eight
aerosol categories at 0.55μm is prepared. A 1% interval of RH is used in the lookup
table, which is plotted in Fig. 5. For a simulated RH with a value that falls between
two integer numbers (e.g., 85.6%), the integer value that is closer to the simulated
value will be used (e.g., 86%).

Configuration of the RAMS-MLEF used for this study is now described. A time-
laggedmethodology (Suzuki andZupanski 2018) is used to generate an initial set ofN
ensemble RAMS forecasts, which are valid at a prescribed initial time (0000 UTC 03
August 2016 is used for this study). As mentioned in Suzuki and Zupanski (2018),
the so-called time-lagged methodology involves running a single deterministic or
control forecast centered at the initial time (t = 0) of data assimilation, i.e., from t =
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Fig. 5 Mass extinction coefficient (m2 g−1) as a function of relative humidity (RH ; %) at 0.55 μm
for the eight RAMS aerosol categories listed in Table 1. Colored numbers on the right-hand side
of the figure indicate values of mass extinction coefficient at RH = 100%

−T to t = +T, where T is a specified assimilation window (T = 6 h is used in this
study). During this deterministic forecast, RAMS is configured to generate output at
every 2 T/N step and thus creating N + 1 output, where N denotes the size of the
ensemble (N = 32 for the August 2016 study). Out of the total of N + 1 output,
the output that is valid at t = 0 is denoted by an Mx1 column matrix xc, where M
is the total number of control variables times grid points of a RAMS domain and
c indicates the control member. The other N outputs are used to define ensemble
perturbations (pi, i = 1, N) at t = 0 by calculating pi = 1√

N
(xi-xc), where xi is the

state from an ensemble member and pi is one column of a matrix whose square is
Pf .

Each assimilation cycle of the RAMS-MLEF system begins with a 6 h ensemble
and control forecasts and ends with a control analysis along with the associated
analysis error covariance, Pa. At the end of the ensemble and control forecasts of
any cycle, Pf , which contains the cross-component ingredients for strongly coupled
data assimilation, is re-computed and used as part of the cost function for the assim-
ilation of observational data. Results at the end of a cycle include an updated xc,
i.e., the analysis field, and the associated analysis error covariance, which is used to
characterize the uncertainty of the analysis field.

Covariance inflation is used to increase the ensemble spread during each assimila-
tion cycle. Due to the use of identical lateral boundary conditions, ensemblemembers
may collapse. One way to avoid ensemble members from collapsing is to use the
covariance inflation methodologies described in Zhang et al. (2004) and Whitaker
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and Hamill (2012), which act to increase the ensemble spread in order to account for
unrepresented error of sources. In the RAMS-MLEF system, a linear combination of
these two methods are used, where 50% of weight is given to the method described
in Whitaker and Hamill (2012) and 50% of weight is given to the method described
by Zhang et al. (2004).

As mentioned earlier, success of a coupled data assimilation system is highly
dependent on the choice of control variables. A set of control variables used in the
RAMS-MLEF system includes the following: the three-dimensional wind compo-
nents (u, v, andw), perturbationExner function (pi), ice-liquidwater potential temper-
ature (θ il), water vapor mixing ratio (rv), and the mass mixing ratio of the sub- and
super-micrometermineral dust (md1mp andmd2mp). BecauseRAMSuses a leapfrog
time stepping scheme, two temporal solutions, t1 and t2, exist only for the u, v, w,
and pi prognostic variables, where an Asselin filter (Cotton et al. 2003) is used to
prevent the two temporal solutions from diverging via damping the computational
mode. In order to preserve the difference of the two temporal solutions for u, v, w,
and pi, the RAMS-MLEF system stores the differences before assimilation occurs,
and then only alters the t1 solution of u, v, w, and pi during the assimilation. After
assimilation, the t2 solution will be updated through the use of the stored differences.
As a consequence, the differences between t1 and t2 stay the same before and after
data assimilation even through both time solutions are changed. Note that the RAMS
aerosol module (Saleeby and van den Heever 2013) uses a double-moment scheme,
which predicts both mass mixing ratio and number concentration for all 9 aerosol
categories.

As stated in Sect. 4.1, prediction of both mass (first moment) and number concen-
tration (second moment) of dust may be included into a data assimilation study.
Mass and number concentration for both the sub- (md1mp and md1np) and super-
micrometer mineral dust (md2mp and md2np) are predicted by the RAMS aerosol
module. Dust mass and numbers are predicted for two different particle sizes; one for
the sub-micrometer (~ 0.41μmradius)mineral dust, second for the super-micrometer
(~ 1.74μmradius)mineral dust. In otherwords,mass andnumber for sub-micrometer
(super-micrometer) mineral dust is referred to as dust bin 1 (dust bin (2)). As stated
above, only mass in each dust bin is updated during assimilation of observed quan-
tities of dust, which results in an inconsistency between dust mass and numbers for
each dust bin of an analysis. One method to rectify the inconsistency between mass
and number in an analysis is to assume an average dust particle size for each dust
bin and recompute the number concentration of each dust bin from the updated mass
field and assumed particle size. Consequently, both mass and numbers in each dust
bin within an analysis become consistent with one another. Since u, v, w, pi, θ il , rv,
and both moments of each dust bin have been updated, the next assimilation cycle
begins with the forecast initialized from the analysis.
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5.3 Application of the RAMS-MLEF System

One RAMS-MLEF experiment named ATMAOD is carried out from 0000 UTC
03 August to 0600 UTC 04 August 2016 with a 6-hourly data assimilation cycle
(total of 6 cycles). In this ATMAOD experiment, both the conventional atmospheric
observations fromNCEPPrepBUFRdataset and the 0.55μmMODISAODretrievals
are assimilated. There is only one domain used and the domain is composed of
400 east–west, 225 north–south, and 50 vertical grid points. In Fig. 6, the NCEP
PrepBUFR dataset used in the ATMAOD experiment is displayed. Note that the
majority of the dataset is only available at the surface and is indicated by green, blue,
and orange symbols. Red symbols indicate the location of rawinsondes, which are
the only source of conventional data that provide information from the surface to
approximately the lower stratosphere of the atmosphere.

Due to the availability ofMODISdata that is used to produceAODretrievals,AOD
retrievals are only assimilated at the cycle 2 (0600 UTC 03 August), cycle 3 (1200
UTC 03 August) and cycle 6 (0600 UTC 04 August) of the ATMAOD experiment
(Fig. 7a). For the study herein, an observation error value for the AOD retrievals, a
unitless quantity, is 0.1. Similar to Remer et al. (2005) and Liu et al. (2011), AOD
observation error (Err) is increased by 5% (15%) for ocean (land) scenes (see Eq. 7).

Errocean = 0.1 + 0.05 ∗ AOD

Fig. 6 NCEP PrepBUFR dataset that was assimilated into the ATMAOD experiment over the
RAMS domain that covers the Arabian Peninsula. Topographic height (m) is plotted in gray scale
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Fig. 7 Horizontal distribution of AOD: a retrievals from MODIS and b–d RAMS simulated AOD
field computed from cycle 6 of the RAMS-MLEF ATMAOD experiment: b background, c analysis,
and d analysis increment, i.e., analysis minus background: c–b. Note that AOD is a unitless quantity.
Valid time is 0600 UTC 4 August 2016

Errland = 0.1 + 0.15 ∗ AOD (7)

In order to reduce the effects of spatially correlated observation error, data thinning
is applied to the AOD retrievals prior to the actual assimilation. For a given cycle,
AOD retrievals are first thinned such that every fifth pixel of a given retrieval image
is excluded from assimilation and used for verification. Once spatial thinning is
completed, the next step is quality control. During the quality control procedure, the
so-called gross check is applied to remove large differences (usually three times the
prescribed observation error, where observation error is one standard deviation for
the assumed Gaussian distribution) between the AOD retrievals and the first guess.

In Fig. 7, assimilated MODIS AOD retrievals (thinned and passed quality
control) are presented along with simulated AOD computed from the background
and analysis field of cycle 06 of the ATMAOD experiment along with the difference
between the analysis and background AOD (i.e. analysis increment). Both the
background and analysis appears to have captured the general distribution of AOD
(Fig. 7b, c), however, with slightly smaller magnitude compared to the retrievals
(Fig. 7a). Nevertheless, after assimilating the AOD retrievals, the representation
of the Persian plume (around 55°E and 26°N) and the Saudi Plume (from 45°E
and 18°N to 52°E and 23°N) (see Fig. 3) is improved from the background in the
analysis of ATMAOD experiment. The analysis increment of AOD further confirms
that by assimilating MODIS AOD retrievals, the magnitude of AOD of both plumes
are increased from background to analysis to reflect the assimilation.
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In addition to theATMAODexperiment, anAODONLYexperiment, inwhichonly
AOD retrievals from MODIS were assimilated, was utilized to examine the role of
assimilating atmospheric observations in the RAMS-MLEF system. TheAODONLY
experiment was performed by running a 6 h forecast from the analysis of cycle 5 of
the ATMAOD experiment, and then assimilating AOD retrievals into the 6 h forecast
valid at 0600 UTC 04 August 2016 for a resulting AODONLY analysis valid at the
same time. Another 6 h forecast was run from the AODONLY analysis and was
valid at 1200 UTC 04 August 2016. Differences between the two experiments were
examined in order to understand impact of assimilating atmospheric observations on
simulated dust; that is, variables from the AODONLY experiment were subtracted
from the same variables from the ATMAOD experiment. Specifically, total dust
(md1mp+md2mp) difference at the lowest model level between the two experiments
is shown in Fig. 8. Since there were few atmospheric observations over the region
of interest (e.g., the Saudi and the Persian plumes), their impact is limited to Persian
Gulf coastal areas. In Fig. 8a, where total dust difference at the cycle 06 analysis
is shown, one can notice a positive difference in the southeast part of the Persian
Gulf, i.e. an increase of total dust due to assimilated atmospheric observations, and

Fig. 8 Total dust (ug kg−1) difference, ATMAOD experiment minus AODONLY experiment, at
the lowest model level for a the analysis at cycle 6, valid 0600 UTC 4 August 2016 and b the 6-h
forecast initialized from the analysis valid at 1200 UTC 4 August 2016
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a negative difference in the northwest part of the Persian Gulf, indicating a decrease
of total dust due to atmospheric observations. A 6 h forecast difference valid at 1200
UTC 04 August 2016 (Fig. 8b) also shows that the analysis differences are generally
retained in the forecast. There is subtle change in the magnitude and the pattern of
the total dust difference, but it is possible to identify and follow the movement of
these changes over the 6 h time period. Such a result indicates that data assimilation
was able to transform the information from atmospheric observations to dust initial
conditions in such a way that it is supported by coupled model dynamics. More
importantly, this result suggests that ensemble cross-covariance in strongly coupled
data assimilation can have a satisfactory structure, which is encouraging for future
applications.

5.4 Synthetic Geostationary Satellite Imagery.

Since dust is included in the RAMS-MLEF system, a new way to visualize output
is needed. In Sect. 5.2, reference was made to the CRTM, which is part of GSI.
Brightness temperatures (Tbs) of NWP data, void of dust, are computed by the
CRTM,which are used byGSI in an assimilation process. However, since theRAMS-
MLEF system contains dust, an AOD observation operator, distinct from the CRTM,
was developed for the RAMS-MLEF system, which is dependent on solar reflection
at 0.55 μm (see Sects. 3.2 and 5.2). A method is sought to visualize increments,
which are independent of the AOD observation operator within the RAMS-MLEF
system. To this end, Tbs for the SEVIRI instrument onboard MSG-08 (see Sect. 5.1)
were computed, from output of the RAMS-MLEF system, with a radiative transfer
model (RTM; Grasso et al. 2008), which was designed to include both moments of
each of the two dust bins in the RAMS-MLEF system. Computed satellite imagery
hereafter is referred to as synthetic imagery.

Several variables are needed in order to compute synthetic SEVIRI imagery. For
this study, synthetic imagery was computed at both 10.80 μm and 12.00 μm, since
values of Tb(10.80 μm)–Tb(12.00 μm) are useful to examine increments of simu-
lated dust. Thus, the following two-dimensional variables were required: Latitude,
longitude, and surface temperatures of both land and water bodies. Both latitude and
longitude were used to compute the spectrally dependent two- dimensional surface
emissivity from a monthly global dataset (Seemann et al. 2008) for the two wave-
lengths 10.80 and 12.00μm. Furthermore, the following three-dimensional variables
were also required: Pressure, temperature, water vapor mixing ratio along with the
mass and number concentration of each dust bin. Although cloud condensate is
present in RAMS-MLEF, synthetic imagery will focus exclusively on dust to avoid
instances of modeled cloud layers covering and/or mixing with dust. Additional
information is also needed to compute synthetic SEVIRI imagery.

In addition to modeled variables, spectrally and size dependent optical properties
of dust were also required. Specifically, values of the complex index of refraction
of dust, at 10.80 μm and 12.00 μm, were acquired from the Aerosol Refractive
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IndexArchive (ARIA; http://eodg.atm.ox.ac.uk/ARIA/, last access: 25August 2020).
Values of the complex index of refraction were used by Mie theory (Bohren and
Huffman 1983) to compute the following optical properties for both wavelengths
and each dust bin: Mass extinction, single-scattering albedo, and an asymmetry
factor. That is, two sets of optical properties were computed; one set for md1mp and
a second set formd2mp. In order for the RTM to generate synthetic MSG-08 SEVIRI
imagery, the two sets of optical properties must be combined into one set, which will
be referred to as the bulk set of optical properties.

Use was made of the secondmoment of each dust bin in order to compute the bulk
set of optical properties. For example, the bulk single-scattering albedo, Bssa, was
computed by adding the product of the number concentration of bin 1, md1np, and
single-scattering albedo of bin 1, ssa1, to the product of the number concentration
of bin 2, md2np, and single-scattering albedo of bin 2, ssa2; the result was divided
the sum of md1np + md2np, see Eq. (8).

Bssa = md1np · ssa1 + md2np · ssa2
md1np + md2np

(8)

A similar number concentration weighted mean of the asymmetry factor resulted
in the bulk asymmetry factor. Computation of the bulk mass extinction was slightly
more involved. Values of the mass extinction coefficient for bin 1 and bin 2, from
Mie, were multiplied by the mass of dust in bin 1 and bin 2, respectively to yield
mass extinction. Bulk values of the mass extinction were then computed from a
number concentration weighting mean of the mass extinction of each dust bin. All
values of the bulk optical properties along with two- and three-dimensional variables
from RAMS-MLEF were used by the RTM to generate MSG-08 SEVIRI synthetic
imagery for each wavelength. Synthetic MSG-08 SEVIRI imagery at 10.80 and
12.00 μm was computed by the RTM for both the background and analysis fields.
One advantage of synthetic imagery is the ability to visualize increments, which is a
difference between background and analysis fields, with and without simulated dust;
something that is impossible to achieve with observed imagery.

In order to evaluate model output, a comparison of simulated RAMS output
with observations is necessary. Data from CALIOP (Winker et al. 2009), onboard
CALIPSO, was used to produce a Vertical Feature Mask (VFM), which displays
different scattering objects in the atmosphere of the Earth. For the August 2016
case herein, a descending CALIPSO ground track, white contour oriented north-
northeast to south-southwest with arrows, valid about 2225 UTC 03 August 2016, is
superimposed on true-color imagery from MODIS, valid near 2220 UTC 03 August
2016 (Fig. 9a). Corresponding to the CALIPSO ground track is the VFM, within
which different atmospheric constituents are identified, from CALIOP (Fig. 9b).
As indicated by the VFM, observed dust extended from the surface to a height of
approximately 6.0 km; which is indicated by a horizontal dashed red contour. Total
simulated dust mass, md1mp + md2mp, within a vertical cross section from RAMS,
valid 0600UTC04August 2016, green line in Fig. 9a, exhibited dust from the surface

http://eodg.atm.ox.ac.uk/ARIA/
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Fig. 9 a Composite true-color imagery from MODIS; the portion of the composite east of 45 E
is valid at approximately 2220 UTC 3 August 2016. A white line segment with arrows denotes
the ground track and motion for CALIPSO at approximately 2225 UTC 3 August 2016. A green
line segment is used to denote the location of a vertical cross section from RAMS. b VFM from
CALIOP along the CALIPSO ground track in (a); observed dust extended from the surface to about
6.0 km; a broken red line segment denotes a constant height of 6.0 km. c vertical cross section,
along the green line in a, of the total simulated dust mass, md1mp + md2mp, which extended from
the surface to about 6.0 km, valid at 0600 UTC 4 August 2016

to approximately 6.0 km (Fig. 9c). That is, the depth of observed dust supported the
depth of dust simulated by RAMS.

Physical interpretation of increments of synthetic imagery is aided by increments
of the total simulated dust mass. Dust mass ofmd1mp andmd2mp of the background
were added and then summed in the vertical throughout the depth of the simulated
domain; a similar procedure was applied to the total dust mass of the analysis.
Subtraction of the background dust field from the analysis dust field formed the dust
increment shown in Fig. 10a. Positive (negative) regions in Fig. 10a indicated regions
where dust mass was increased (decreased) as a result of the assimilation of observed
AOD from MODIS. In addition to changes in md1mp and md2mp in the RAMS-
MLEF assimilation system, the following three thermodynamic variables were also
changed as a result of assimilation of observed AOD: Pressure, temperature, and
water vapor mixing ratio (see Sect. 5.3). In order to examine the impact of increments
of the three thermodynamic variables, RTM imagery at 10.80 μm (Fig. 10b) and
12.00 μm (Fig. 10c) were first produced with dust absent. Although the patterns
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Fig. 10 Increments from RAMS-MLEF output valid at 0600 UTC 4 August 2016. Total simulated
dust mass increment is shown in a; synthetic MGS-08 SEVIRI increments at 10.80 and 12.00 μm
are displayed in b and c, respectively; increments in the dust signal are shown in d

evident in both Fig. 10b, c are similar, the amplitude of values were larger in synthetic
imagery at 12.00 μm. Note also the opposite behavior between patterns in the total
dust mass increment (Fig. 10a) and patterns in the increments of synthetic imagery at
both 10.80 μm and 12.00 μm. In particular, a decrease (increase) of total dust mass
resulted in an increase (decrease) of values of Tbs in imagery at both wavelengths.
There were, however, regions in the synthetic increments that exhibited a lack of any
relation to the dust increments; for example, central Pakistan. One possible reason
for non-zero increments in synthetic imagery, that is independent of increments in
dust, is a consequence of the background error covariance matrix. The background
error covariance matrix spreads assimilated observations across variables and model
grid points. Subsequently, increments in imagery can result as a consequence of a
change in of one or more non-dust variables.

Unlike the opposite behavior between increments in total dust and increments
in synthetic imagery, a similar behavior was evident between total dust increments
and increments in the dust signal (Fig. 10d). In order to understand the physical
interpretation of the dust signal in Fig. 10d, an explanation of how the dust signal
was computed is warranted. Values of the channel difference,�Tb=Tb(10.80μm)–
Tb(12.00μm), may be used to detect dust; however, if the clear-sky surface is desert,
then dust detection with the channel difference may be a challenge since a dust signal
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may blend in with the clear-sky desert surface. One strategy, proposed herein, to
isolate the dust signal is to subtract the clear-sky channel difference from the dust
channel difference; that is, the dust signal is equal to �Tbdust − �Tbclear−sky . As
a consequence, the increment in the dust signal is the dust signal of the background
subtracted from the dust signal of the analysis (Fig. 10d). Regions where the dust
increment in Fig. 10a increased (decreased) corresponded in an increase (decrease)
in the increment of the dust signal in Fig. 10d. In particular, when the assimilation
of observed AOD increased dust mass, there was a corresponding increase in the
dust signal; for example, along the northern coast of the Persian Gulf, interior Sadia
Arabia, border of Pakistan and India, and along the coast of Oman. In response to
a reduction of total dust mass over the border of Iran and Pakistan, values of the
dust signal decreased in the same region. There were also regions of values of the
increment of the dust signal that showed little relationship to increments in the total
dust mass. For example, there was a negative increment of the dust signal over central
Pakistan, which may be a result of the background error covariance matrix. As a way
to link this section with Sect. 5.3, patterns of increments of the dust signal (Fig. 10b)
were similar to patterns of increments in AOD (Fig. 7d in Sect. 5.3).

5.5 Model Response to Adjustments from Data Assimilation.

As discussed in Sect. 5.3, the ATMAOD experiment assimilates both atmospheric
and aerosol observations and updates a list of control variables as part of the analysis
step of each six-hourly assimilation cycle. Other RAMS prognostic variables will
respond to the changes in the control variables throughout the forecast step of the next
data assimilation cycle by the model dynamical core and physical parameterizations
(e.g. microphysical scheme, radiation scheme, etc.). With that, this section focuses
on shedding light on the following question: What is the difference between a short-
term forecast from a background initial state; that is, prior to AOD assimilation,
and a forecast from an analysis initial state; that is, after AOD assimilation? In
particular, this section discusses the influence of themodified total dustmass (md1mp
+ md2mp), which resulted from AOD assimilation, on the hydrometeor condensate
field and shortwave outgoing energy. To this end, a few definitions are in order: Two
simulations were conducted: (1) a simulation initialized from an analysis, which
resulted from the assimilation of AOD, and is referred to as the Assimilation Forecast
(AF), and (2) a simulation initialized from a background, from which an analysis is
derived, and is referred to as the Background Forecast (BF). Both the AF and BF
began at 0600 UTC 04 August 2016. Focus will be given to values of the Vertically
Integrated TotalDustMass (VITDM) of theBF subtracted fromvalues of theVITDM
of theAF (shaded in Fig. 11). Thus, positive values of theVITDM in Fig. 11 indicated
that the assimilation of AOD increased the total dust mass in the AF compared to
the BF. There are five regions in Fig. 11, within which the influence of assimilation
of AOD on total condensate is discussed presently.
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Fig. 11 Vertically integrated total dust mass (md1mp + md2mp; kg m−2) difference between the
BF and AF simulations (shaded; AF minus BF) at a 0 h forecast, b 1 h forecast, c 2 h forecast,
and d 3 h forecast initialized from 0600 UTC 04 August 2016. The two green contours are used to
indicate values of vertically integrated total condensate mass (mm) of a simulation initialized with
an analysis field: thin for 0.1 mm; thick for 1.0 mm

Two responses of the assimilation of AOD on simulated total condensate are
identified: direct and indirect. Focus will be given to regions 1, 2 (the Saudi plume
and the Persian plume, respectively (see Sects. 5.1, 5.3, 5.4, and 5.5) in Fig. 11a.
A plausible direct response occurred in regions 1, 2, 3, and 4 while a plausible
indirect response occurred in region 5.Adirect response occurred from the following:
Assimilation of AOD resulted in an increase of values of themd1mp+md2mp in the
AF, which subsequently leads to a modification of the total number concentration,
since only dust mass is a control variable (see Sect. 5.3), which then resulted in
an increase of the population of Cloud Condensation Nuclei (CCN). That is, given
a fixed dust particle size, an increase in dust mass, due to assimilation of AOD,
will cause an increase in the dust number concentration. Development of simulated
condensate occurs in RAMS when supersaturation increases above a critical value.
Supersaturation is a function of upward vertical motion; therefore, when upward
vertical motion occurs, supersaturation may increase above a critical value. Once
supersaturations increase above a critical value, a certain percentage of the CCN
population is activated to become cloud droplets, which begins a complex interaction
of simulated microphysical habit types. One simulated hour after the AF simulation
began, 0.1 mm of vertically integrated total condensate developed in regions 1, 2,
and 4 at 0700 UTC 04 August 2016 (Fig. 11b). A progression occurred in region
3 where the 0.1 mm contour moved westward, bounding a local maximum of total
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dust mass, by 0800 UTC (Fig. 11c), followed by a closed contour of 0.1 mm of
vertically integrated total condensate at 0900 UTC (Fig. 11d). Notice in Fig. 11,
region 5 was characterized by small changes in values of the VITDM. In response to
complex changes of control variables, in region 5, through the horizontal spread of
information from the flow-dependent background error covariance matrix during the
assimilation of AOD at 0600 UTC 04 August 2016, temporal changes in simulated
total condensate (Figs. 11 a–d), in region 5, occurred as an example of an indirect
response to the assimilation of AOD. In the interest of brevity, a plausible explanation
of both the direct and indirect response to the assimilation ofAODon total condensate
was provided above.

Direct and indirect responses of the assimilation ofAODon simulated solar reflec-
tion are also identified. An additional consequence of increased VITDM (Fig. 11
shaded) in the AF compared to the BF was an increase in the outgoing shortwave
energy (Fig. 12). That is, direct and indirect responses of the assimilation of AOD on
the simulated energy budget are presently discussed. Although values of the control
variable θ il are prognostic, values of surface potential temperature are diagnostic.
Consequently, a forecast must begin in order for the surface potential temperature to
be diagnosed; thus, the time of 0610 UTC in Figs. 12 a and b. This discussion will

Fig. 12 a Values of the difference of outgoing simulated shortwave energy (W m−2) computed
from the BF subtracted from the AF at 10 min forecast initialized from 0600 UTC 4 August 2016.
Positive values (red) indicatemore outgoing shortwave from theAF compared to theBF simulations.
b Values of the difference of simulated surface potential temperature (K) from the BF subtracted
from the AF also at 10 min forecast initialized from 0600 UTC 4 August 2016. Negative values
(blue) indicate cooler surface potential temperature from the AF compared to the BF simulations.
c–d same as a–b, except for 2 h forecast
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focus primarily on the Saudi plume and Persian plume, regions 1 and 2, respectively
(Fig. 12a). At 0610 UTC slight variations of outgoing shortwave energy resulted
from the assimilation of AOD (Fig. 12a). However, rather significant changes of
surface potential temperaturewere already evident tenminutes into theAF simulation
throughout the domain in regions away from 1 and 2 (Fig. 12b). As seen in Fig. 12b,
the pattern of changes in surface potential temperature exhibited little resemblance
to the pattern seen in Fig. 12a. A lack of similarity in patterns between Figs. 12a,
b suggests that the influence of the flow-dependent background error covariance
matrix may have been responsible for the patterns in surface potential temperature
differences between the AF and BF simulations; that is, an indirect response of the
assimilation of AOD on surface potential temperatures. In time, the enhanced reflec-
tion of shortwave energy from the dust mass in regions 1 and 2, evident in Fig. 12c,
caused a reduction, or cooling, of the surface potential temperature at 1800 UTC. In
other words, the loss of solar energy from the AF simulation, compared to the BF
simulation, resulted in surface cooling below the enhanced VITDM for both regions
1 and 2 (Fig. 12 d); that is, a direct response of the assimilation of AOD on surface
potential temperatures.

Although the above explanations are speculative, a more detailed analysis is,
unfortunately, beyond the scope of this chapter. That is, demonstrating a link between
cross-component control variables would require a thorough analysis on the role of
the flow-dependent background error covariance matrix, which is responsible for
updating values of control variables. That said, efforts in this section focused on
providing plausible explanations for direct and indirect responses of the conden-
sate and shortwave radiation fields to changes in total dust mass (and number
concentration diagnosed afterwards) due to the assimilation of AOD.

6 Summary and Future Directions

As pointed out in Carrassi et al. (2018), coupled data assimilation is one of the
major areas of active research in the field of geosciences and is expected to be
advanced quickly in the coming future. In this chapter, theoretical and practical
aspects of strongly coupled data assimilation with a focus on the aerosol and atmo-
sphere coupling are discussed. We began this chapter by providing an overview
and description of coupled data assimilation followed by an example from a single
observation experiment of an aerosol-atmosphere coupled data assimilation using
WRF-Chem. In Sect. 2, the current status of aerosol-atmosphere coupled data assim-
ilation in both operational and research communities are reviewed in detail. Next, a
description of available observational data of aerosols from various measurements
such as AOD, satellite radiances, LIDAR backscattering, etc., along with a discus-
sion of observational errors is given in Sect. 3. In Sect. 4, we present several major
challenges associated with coupled data assimilation with a focus on aerosol applica-
tions. For example, the choice of control variable and the associated background error
covariance is essential for the result of a successful coupled data assimilation. We
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further provide a brief discussion on extending coupled data assimilation to include
non-Gaussian and/or non-linear features as aerosols and their associated errors are
known to behave as such. In addition, unlike meteorological observations, aerosols
are under sampled. The lack of independent observations that can be used to verify
the result from assimilating available aerosol observations is an issue that remains to
be addressed by an improved observation network. Finally, we introduced the newly
developed RAMS-MLEF, a strongly coupled aerosol-atmosphere data assimilation
system, for the first time to study the impact of assimilating AOD under a strongly
coupled system. A well-explored dust storm event over the Arabian Peninsula that
occurred on 3–4 August 2016 was used as a case study to demonstrate the utility of
the RAMS-MLEF system. In addition to examining analysis increments, which is a
common practice in data assimilation, we use synthetic satellite imagery to further
highlight the impact of aerosols from the viewpoint of satellite. Since short-term
forecast is part of a typical data assimilation cycle, we also look into the response
of aerosols adjustment from data assimilation during the short-term forecast. To end
this chapter, a few future directions for research are provided.

Overall, more detailed assessments on the value of strongly coupled aerosol-
atmosphere data assimilation is required. In particular, it is important for such assess-
ments to be conducted under operational settings in order to examine more case
studies with realistic configuration. In doing so, there is an urgent need to further
address possibilities to improve the estimation of coupled background error covari-
ance. While estimating coupled background error covariance under ensemble based
framework may be straightforward, more work is required in order to accurately
represent cross-component and cross-variable correlations for the variational aspect
of hybrid based data assimilation methods (Ménard et al. 2019). In addition, using
information theory to diagnose the degrees of coupling strength between any pairs
of selected model variables within a coupled system can help choose control vari-
ables that are more relevant to the coupled system. Knowing the degrees of coupling
strength can also benefit the efficiency of coupled data assimilation via simplifying
portions of the background error covariance matrix due to low coupling strength
and thus reducing computational cost. Provided that the background error covari-
ance dictates the analysis increments, understanding the characteristics of the spatial
and temporal scales of the physical processes within a coupled system is critical for
assigning proper localization lengths between cross-component and cross-variable
terms in the background error covariancematrix. As data assimilationmethodologies
advance, observations of aerosols and their corresponding observation operators also
require more further development. For example, a recent study by Zhang et al. (2019)
explored the use of artificial light sources for aiding AOD retrievals over nighttime.
In the meantime, increasing temporal observation frequency as well as deploying
instruments that allow observations of fine vertical distribution of aerosols are of
critical values for improving our understanding of the spatiotemporal distribution of
aerosol. There also exists a need to investigate the pros and cons of assimilation of
satellite radiances sensitive to aerosols versus assimilation of retrieved quantities.
Given that Artificial Intelligence (AI) techniques have shown promising results on
emulating the atmosphere with sufficient training and data, there is potential to use
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AI to facilitate and speed up the performance of aerosol assimilation via improved
observation operators. Last but not least, verification of aerosol analysis and forecast
using independent observations will benefit most from the availability of new types
of observations and dense observational networks of aerosols.
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Improving Near-Surface Weather
Forecasts with Strongly Coupled
Land–Atmosphere Data Assimilation

Zhaoxia Pu

Abstract Near-surface weather forecasts are critical for protecting life and
human activities. However, they remain a challenging problem in modern numer-
ical weather prediction (NWP) due to difficulties in surface data assimilation and
uncertainties in representing complicated land–atmosphere interactions in numerical
models. This chapter summarizes recent developments from the author’s research
team to understand and develop effective data assimilation methods that enhance
near-surface weather forecasts. Results from several recent journal publications are
summarized and presented to introduce strongly coupled land–atmosphere data
assimilation in the context of land–atmosphere interaction. The first part of the
mentioned work evaluated the association between near-surface variables and soil
moisture with observations, coupled land–atmosphere model, and data assimila-
tion systems. Results indicated a strong coupling between soil moisture and the
low-level atmosphere, especially the atmospheric boundary layer. Then, the weakly
and strongly coupled land–atmosphere data assimilation methods were compared
regarding their influence on the prediction of near-surface atmospheric conditions.
Results showed that strongly coupled land–atmosphere data assimilation, with simul-
taneous corrections to the land and atmospheric conditions, outperformed weakly
coupled data assimilation. Finally, strongly coupled land–atmosphere data assimila-
tion in an ensemble Kalman filter data assimilation system was implemented with an
NWPmodel. Its positive impacts on predicting both atmosphere and land states were
demonstrated. The potential of strongly coupled land–atmosphere data assimilation
for future developments and applications is discussed in the concluding remarks.
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1 Introduction

Near-surface weather forecasts are critical for protecting life and property, economic
and operational activities, and routine day-to-day planning. Aviation, military, wind
energy, and energy consumption operations rely on accurate near-surface forecasts,
and even small forecast errors can have major consequences. Temperature, wind,
and precipitation are some of the more important variables to forecast, but visibility-
reducing phenomena, such as dust, fog, and smog, also need to be accurately fore-
cast. Therefore, improving forecasts for any of these near-surface variables has
far-reaching significance.

However, previous studies of numerical models have demonstrated the unavoid-
able errors of near-surface atmospheric forecasts (e.g., Liu et al. 2008a, b; Mass
et al. 2002; Zhang et al. 2013; Pu 2017). It has also been found that forecast errors in
near-surface atmospheric variables (such as 2-m temperature and 10-m winds) are
quite large, even in many cases when forecasts in the middle and upper levels of
the atmosphere are reasonable. The problem is more serious over complex terrain
(Zhang et al. 2013; Pu 2017). These uncertainties in near-surface atmospheric condi-
tions can contribute to inaccurate near-surface weather forecasts (e.g., fog, inversion,
etc.) and mesoscale/synoptic-scale weather forecasts in general. More importantly,
errors in near-surface atmospheric conditions also present a forecasting challenge at
operational NWP centers with both mesoscale and global models. Specifically, near-
surface temperature errors in NWP models have been observed in many different
modeling systems throughout the world (Werth and Garrett 2011; Viterbo and Betts
1999; García-Díez et al. 2013).

Moreover, near-surface forecast errors also make it difficult to represent land–
atmosphere interaction in numerical models, since the near-surface atmosphere
is a transition area between the land and the atmosphere. These errors in near-
surface atmospheric conditions interact with and influence both soil states and atmo-
spheric boundary layer conditions through numerical model integration processes
and contribute to the detriment of short- and medium-range weather forecasting,
as well as prediction at sub-seasonal to seasonal and climate scales for climate
models. Consequently, this prevents the use of numerical simulations to study the
processes, especially the atmospheric boundary layer processes, related to severe
weather systems. Meanwhile, it has been found that inaccurate forecasts of near-
surface variables are associated with uncertainties in soil state, such as soil mois-
ture. Commonly, uncertainties in representing land use, soil moisture, and terrain
conditions on the underlying surface, which affect the land-atmosphere interaction
directly, are identified as the major sources of error in near-surface weather fore-
casting (Massey et al. 2014; Zhang et al. 2013; Ren et al. 2018). Hence, the impacts
of underlying surface characteristics and bias corrections on NWP have been inves-
tigated in recent years (e.g., Fan and van den Dool 2011; Massey et al. 2016; Chen
et al. 2017; Lin et al. 2017). Results indicated that the bias correction of soil mois-
ture could help near-surface temperature prediction in those case studies. Moreover,
notable progress has been made recently in studying land–atmosphere interactions at
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regional and local scales as well as short-range weather forecasting (e.g., Santanello
et al. 2005, 2007, 2016, 2018). All these previous works motivate us to seek a way
to improve near-surface weather forecasting through improved representation of soil
moisture and land–atmosphere interactions in land models.

In current research and operational practices, remotely sensed soil moisture data
are typically incorporated into advanced NWPmodels under a framework of weakly
coupled data assimilation, with a land surface analysis scheme independent of
the atmospheric analysis component; thus, the land and atmospheric analyses are
performed separately (Kumar et al. 2015; Santanello et al. 2018; Xia et al. 2019). So
far, there has been limited progress in NWP models with coupled land–atmosphere
data assimilation (e.g., de Rosnay et al. 2014).

In order to improve near surface weather forecasting, the author and her research
team have made significant progress with observations, numerical simulations, and
data assimilation in understanding the correlations between soil moisture and near-
surface atmospheric variables as well as the characteristics of their error covariances
in coupled data assimilation. This chapter summarizes outcomes from a series of
those studies, mostly results from four published journal papers (Lin and Pu 2018,
2019, 2020; Liu and Pu 2019), to introduce the concept of strongly coupled land–
atmosphere data assimilation and demonstrate its promise in improving near-surface
weather forecasting. Challenges and future developments are also discussed.

2 The Relationship Between Soil Moisture
and Near-Surface Atmospheric Conditions

Although earlier studies in the community have demonstrated that soil moisture has
an influence on near-surface temperature, no study has yet made it clear whether
soil moisture and near-surface temperature are correlated or to what degree they
are associated in short-range weather prediction. In Liu and Pu (2019), the relation-
ship between soil moisture and temperature at 2-m height (2-m temperature) was
first examined with long-term meteorological and soil observations during 2008–
2016 from 16 stations over the United States in four different land cover types,
including Shrub and Grassland, Grassland, Shrubland, and Forest. Meteorological
observations included surface Mesonet data, and soundings were obtained from the
MesoWestNetwork (http://mesowest.utah.edu) andUniversity ofWyomingNetwork
(http://weather.uwyo.edu/upperair/sounding.html), respectively. Soil moisture data
included five layers (5, 10, 20, 50, and 100 cm) from in situ observations from the
Climate Reference Network and Soil Climate Analysis Network (https://www.dro
ught.gov/drought/soil-moisture-map).

With the correlation statistics and an information flow analysis method (Liang
2014, 2015; also see details in Liu and Pu 2019), we found that soil moisture at all
levels and the near-surface atmospheric temperature had weak to moderate causality
with seasonal variability. The distribution of soil moisture depended on land use and

http://mesowest.utah.edu
http://weather.uwyo.edu/upperair/sounding.html
https://www.drought.gov/drought/soil-moisture-map
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land cover, and the dependence decreased with soil depth. Although the correlations
between soil moisture and near-surface temperature wasmoderate, with a correlation
coefficient of less than 0.6, there was strong interaction between the top soil layer and
the atmosphere, implying that the impact of soilmoisture on near-surface temperature
was significant.

Two meteorological sounding stations collocated with soil moisture measure-
ments were also used to investigate the relationship between atmospheric profiles
and near-surface temperature (i.e., 2-m temperature). It was found that the causality
between wind profile and near-surface temperature was retained in most weather
conditions. Correlations between near-surface temperature and boundary layer
temperature profiles were quite strong, especially during the warm season. Mean-
while, the correlations decreased with height through the atmosphere. Furthermore,
correlations between near-surface temperature and upper atmospheric conditions had
seasonal variability and also varied with land use and land cover.

The findings from long-term observations were further proved by a series of sensi-
tivity experiments in Liu and Pu (2019) with a single column model (SCM, Hacker
et al. 2007) based on the mesoscale community Weather Research and Forecasting
(WRF) model (Skamarock et al. 2008) coupled with the Noah land surface model
(Chen and Dudhia 2001; Ek et al. 2003). The impact of changes in soil moisture
on short-range forecasts (up to 48 h) of near-surface temperature and atmospheric
profiles was examined.

A control experiment was conducted with the average soil state, and two other
sensitivity experiments were performed with an increase or decrease in soil moisture
of 25% (e.g., within the seasonal variation range of soil moisture), respectively.
Results showed that the impact of soil moisture on temperature was often focused
on the lower levels of the atmospheric boundary layer. An increase (decrease) in
soil moisture resulted in cooler (warmer) near-surface 2-m temperature through the
redistribution of surface heat flux. Meanwhile, there was seasonal variation, since
changes in temperature with soil moisture fluctuations were more obvious during
summer and autumn. In general, an increase in soil moisture caused a temperature
inversion to appear earlier and disappear later, resulting in longer inversion duration.
Adecrease in soilmoisture had the opposite effect.Moreover, changes in near-surface
temperature caused by soil moisture in all seasons were mainly from near-surface
(top) soil levels. The evolution of soil thermodynamic characteristics associated
with changes in soil moisture could affect surface energy distribution and influence
near-surface temperature directly (see details in Liu and Pu 2019).

3 Strongly Coupled Versus Weakly Coupled
Land–Atmosphere Data Assimilation

Theobservational analysis and single columnmodel studymentioned above indicated
that soil moisture and near-surface atmospheric conditions were strongly coupled
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and influenced each other. The results from Liu and Pu (2019) implied that realistic
soil moisture states in land surface models could benefit the accurate prediction
of near-surface and atmospheric boundary layer conditions. The findings from this
study encouraged us to explore using coupled land–atmosphere data assimilation to
improve numerical weather prediction.

Coupled data assimilation can be done in two different ways (Lin and Pu 2019):
weakly or strongly coupled. With weakly coupled data assimilation, assimilating
observations into a model does not affect the control states of the other coupled
model(s) during the analysis. Land data assimilation (e.g., Kumar et al. 2014, 2015)
and atmospheric data assimilation are done separately, and the analysis results are
then input into coupled land–atmosphere data and interact during model integration.
Therefore, the impact ofweakly coupleddata assimilationon the entire domain is seen
only viamodel integration. In contrast, strongly coupled data assimilation (Penny and
Hamill 2017; Penny et al. 2017; Lin and Pu 2019, 2020) requires the estimation of
error covariance of the control states in all the coupled models and the simultaneous
computation of the analysis across the entire domain. So far, most coupled land–
atmosphere data assimilation has been done with weak coupling (Mahfouf 2010;
Mahfouf and Bliznak 2011; Schneider et al. 2014; Duerinckx et al. 2017; Santanello
et al. 2016; Seto et al. 2016; Lin et al. 2017). Almost none of these studies addressed
the land–atmosphere data assimilation problems with strongly coupled data assimi-
lation before Lin and Pu (2018, 2019, 2020). However, results in Liu and Pu (2019)
indicated a strong response of atmospheric conditions to changes in soil moisture,
suggesting that strongly coupled data assimilation is necessary for land–atmosphere
data assimilation.

3.1 Characteristics of Background Error Covariance of Soil
Moisture and Atmospheric States in Strongly Coupled
Land–Atmosphere Data Assimilation

To explore the methodology of strongly coupled data assimilation, a deep under-
standing of the error covariance between soilmoisture and atmospheric stateswithin a
strongly coupled land–atmospheremodel is the first step. An early study by Zupanski
(2017) has formulated that two-component coupled system data assimilation could
be implemented through the coupled forecast error covariances cross the variables
in different coupling components (e.g., land–atmosphere or aerosol–atmosphere).
He conducted a single observation experiment to understand and illustrate the struc-
ture of forecast error covariance in both coupled land–atmosphere and atmosphere-
chemistry models. Results indicated that the cross-component correlations have a
potential to increase the utility of observations in data assimilation by spreading the
information throughout the components. Following Zupanski (2017), Suzuki et al.
(2017) investigated forecast error covariance and correlation structures between land
and atmospheric variables by applying the Maximum Likelihood Ensemble Filter
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(MLEF) data assimilation method with a coupled atmosphere–land surface model
through a series of single observation experiments. They demonstrated that coupled
error covariance methods improve the efficiency of information transfer between
the atmosphere and the land surface by allowing the well-observed atmosphere to
influence land surface variables.

Different from these previous studies, in our study, instead of using single obser-
vation experiments, we used a completed variational framework as an example to
examine the error covariance between soil moisture and atmospheric states within
a strongly coupled land–atmosphere model (see details in Lin and Pu 2018). A
classic one- and three-dimensional variational data assimilation (1D- and 3D-Var)
system computes optimal states by minimizing the following cost function (J ) in an
incremental form (Ide et al. 1997; Courtier et al. 1998):

J (δx) = 1

2
δxTB−1δx + 1

2
(Hδx − d)TR−1(Hδx − d) (1)

where δx is a vector of the analysis increment, with δxa = xa − xb at the minimum
of the cost function, in which xb and xa denote the vectors of the background and
analysis, respectively;H denotes the linear form of an operator that projects the anal-
ysis variables onto the observation space; d is the innovation vector,d = yo −Hxb,
in which yo is a vector of observations; B represents the background error covari-
ance matrix; and R is the observation error covariance matrix. For implementing
a variational method in NWP, the estimation of B is necessary and important. The
B-matrix contains information about the weights of the control states and multi-
variate error correlation, which allows the balanced spread of the information from
the observations to the control states.

In weakly coupled data assimilation, the B-matrix contains only the background
error covariance information for either soil states or atmospheric variables because
separate data assimilation procedures are used for the land and atmosphere. However,
in strongly coupled data assimilation, the B-matrix contains error covariance infor-
mation for both soil states and atmospheric variables. Let us first use top-layer soil
moisture (SM1) and bottom-layer atmospheric states (T1, Q1, U1, and V1) as an
example. With these five variables, the symmetric and positive definite B-matrix of
a given pixel can be described as follows:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ 2
ηSM1

− − − −
cov(ηT1 , ηSM1) σ 2

ηT1
− − −

cov(ηQ1 , ηSM1) cov(ηQ1 , ηT1) σ 2
ηQ 1

− −
cov(ηU1 , ηSM1) cov(ηU1 , ηT1) cov(ηU1 , ηQ1) σ 2

ηU1
−

cov(ηV1 , ηSM1) cov(ηV1 , ηT1) cov(ηV1 , ηQ1) cov(ηV1 , ηV1) σ 2
ηV1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2)

where the diagonal elements are the auto-covariance of the forecast error of the
explained variables and the off-diagonal elements are the covariance.
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Using a variational data assimilation framework and the mesoscale community
WRF model (Skamarock et al. 2008), Lin and Pu (2018) estimated the WRF-Noah
(i.e., the WRF model coupled with the Noah land surface model) background error
covariance between the surface soil moisture and atmospheric states. WRF version
3.9.1 (Skamarock et al. 2008; Powers et al. 2017), with the Advanced Research
version of the WRF (ARW) solver, was used with WRF’s CONUS physics suite.
It included the new Thompson microphysics scheme, the Rapid Radiative Transfer
Model (RRTM) longwave and shortwave schemes, the Monin–Obukhov-based Eta
similarity surface-layer scheme, the Noah land surface model, the Mellor–Yamada–
Janji´ć planetary boundary layer scheme, and the Tiedtke cumulus parameterization
scheme (see details in Skamarock et al. 2008). A single domain of the Lambert
conformal projection was configured with grid spacing of 9 km and 602× 392 grids
horizontally. The Noah land surface model had four soil layers as the default, with
thicknesses of 10, 30, 60, and 100 cm from top to bottom. Lookup tableswere used for
the prescribed parameters of land use (vegetation) and soil types. The study domain
covered the entire contiguous United States. The NMC method (Parrish and Derber
1992) was used to compute the B-matrix:

B = ηηT, (3)

where η is the difference in paired forecasts that have different initialization times
but are valid at the same time, and the overbar denotes an average of forecast error
samples. In a regional application (e.g., WRFDA), η is often obtained from paired
12 and 24 h forecasts, as follows:

η = xft+24|t − xft+24|t+12 (4)

where each of the components on the right-hand side denotes the samples of 24 and
12 h forecasts with bias adjustment with respect to each control state.

To compute the B-matrix, we initialized WRF-Noah simulations at 0000 and
1200 UTC nearly every day from 2015 to 2017 to obtain 12 and 24 h forecasts.
Every month, we computed the B-matrix by using 54 pairs of 12 and 24 h forecasts
to show the “all-time” results. For the daytime (nighttime) results, we obtained 27
pairs from forecasts valid at 00 UTC (12 UTC). The 00 UTC corresponds to 6 pm
Central Standard Time locally over the United States, and we considered that the
forecasts valid at 00 UTC would contain the model errors during the daytime from
6 am to 6 pm local time.

Detailed results are documented in Lin and Pu (2018). Notably, these results indi-
cated that the forecast errors in top-10 cm soil moisture and near-surface air poten-
tial temperature and specific humidity were correlated and relatively large during
the daytime in the summer. The magnitude of the error correlation between surface
soil moisture, temperature, and humidity was comparable, which suggests that (1)
part of the error in surface soil moisture comes from atmospheric forcing, and (2)
atmospheric initial conditions could potentially be corrected via soil moisture data
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assimilation. Specifically, the results showed a negative error correlation between
soil moisture and potential temperature but a positive correlation between soil mois-
ture and air humidity. In general, the correlation was seen nearly everywhere over
the study domain, and the daytime correlation was larger than the nighttime correla-
tion. These results not only suggested strong coupling between soil moisture and the
atmosphere, but also identified the correlation structures between soil moisture and
atmospheric variables, notably in the near-surface and boundary layer atmosphere
(see Figs. 1 and 2, also Lin and Pu 2018).

3.2 Soil Moisture Data Assimilation: Weakly Versus Strongly
Coupled Data Assimilation

In subsequent studies, Lin and Pu (2019) implemented the strongly coupled land–
atmosphere data assimilation in Lin and Pu (2018) to study the relative effect of
assimilating soil moisture data on weather forecasts under a framework of weakly
and strongly coupled land–atmosphere data assimilation. Specifically, experiments
aimed to quantify the additional impact on lower-troposphere atmospheric forecasts
via direct analysis (i.e., a strongly coupled case) relative to the impact on forecasts
via the dynamics of land–atmosphere interactions (i.e., a weakly coupled case) when
soil moisture data were assimilated. The study used the Noah land surface model
coupled with the WRF model and conducted experiments in the summer over the
continental United States. TheNASASoilMoistureActive Passive (SMAP) satellite-
derived soil moisture data products, SMAP 9 km level-2 enhanced soil moisture
retrievals (O’Neill et al. 2016), were assimilated.

In the variational data assimilation framework, strongly coupled data assimila-
tion adopted the background error covariance estimated from Lin and Pu (2018). The
results of the numerical experiments during July 2016 showed that strongly coupled
data assimilation could provide additional benefits to forecasts of air temperature and
humidity compared to weakly coupled data assimilation. Over the U.S. Great Plains,
on average, assimilation of SMAP data under weakly coupled data assimilation
reduced a warm bias in temperature and a dry bias in humidity by 7.3% and 19.3%,
respectively, while strongly coupled data assimilation contributed an additional bias
reduction of 2.2% (temperature) and 3.3% (humidity). More importantly, improve-
ments in precipitation forecasts and near-surface atmospheric conditions were also
found with strongly coupled data assimilation compared with weakly coupled data
assimilation (see details in Lin and Pu 2019).
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Fig. 1 Error correlations between top-layer soil moisture (SM) and bottom-layer a–c potential
temperature T, d–f specific humidity Q, g–i zonal wind U, and j–l meridional wind V during July
2016. The forecast samples valid at 0000 and 1200 UTC are categorized as “DAY” and “NIGHT”
results, and the “ALL” results are computed based on all the samples. Domain-mean (DM) values are
computed based on the results of warm land pixels without considering the 10-grid-wide boundary.
The 95% confidence intervals of the DM values vary from DM ± 0.001 to DM ± 0.0015 (From
Lin and Pu 2018)

4 Enhanced Near-Surface Weather Forecasts Using
Strongly Coupled Land–Atmosphere Data Assimilation

Following the outcomes from Lin and Pu (2018) and Lin and Pu (2019), a strongly
coupled land–atmosphere data assimilation system was implemented by Lin and
Pu (2020) using the U.S. National Centers for Environmental Prediction (NCEP)’s
Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter (EnKF) data
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Fig. 2 Horizontal domain mean (DM) values for the error correlation between the top-10 cm soil
moisture and atmospheric states including T, Q, U, and V during July from 2015 to 2017 (From Lin
and Pu 2018)

assimilation system (GSI-EnKF, a community data assimilation system maintained
by the NCAR Developmental Testbed Center). The model used was the WRF model
coupled with the Noah land surface model. Two unique implementations enabled the
incorporation of soil moisture observations via strongly coupled land–atmosphere
data assimilation in our system. The first step was to include soil moisture as a
control state, along with the common control analysis states in GSI-EnKF, including
potential temperature, specific humidity, zonal and meridional winds, and surface
dry air pressure. To enable soil moisture as a control state that was compatible
with GSI-EnKF localization, we set all four layers of soil moisture inside the Noah
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land surface model as a control state in the GSI analysis. In the second step, we
added soil moisture as a new type of conventional observation. Overall, this strongly
coupled land–atmosphere data assimilation could assimilate both soil moisture and
atmospheric observations simultaneously, with consistent cross-model error covari-
ance from ensemble forecasts of land and atmospheric components of the numerical
weather prediction model (e.g., WRF).

For the experiment, an ensemble size of 40 was used, as a sample size of around
40 is quite common in regional ensemble-based studies (e.g., Pu et al. 2013; Zhang
and Pu 2014; Schwartz et al. 2015; McNicholas and Mass 2018). To keep a reason-
able ensemble spread and avoid filter divergence, a tunable inflation coefficient can
be set to adjust the posterior ensemble spread to match the prior ensemble spread
(relaxation-to-prior spread; Whitaker and Hamill 2012). The inflation coefficient
ranges from 0 (no inflation) to 1 (i.e., both prior and posterior ensemble spread are
of the same magnitude). Tests with the assimilation of in-situ soil moisture data
and all other conventional atmospheric observations indicated that this GSI-EnKF
based strongly coupled data assimilation system could simultaneously adjust atmo-
spheric and soil moisture states through assimilating atmospheric observations and
soil moisture data.

Key findings included the following: (1) including soil moisture as a control vari-
able in GSI-EnKF resulted in significant reduction of analysis errors in near-surface
atmospheric variables, such as temperature and humidity; (2) with the strongly
coupled system, soil moisture analysis errors were reduced significantly when soil
moisture data were assimilated with all other available atmospheric observations; (3)
combined assimilation of soil moisture and atmospheric observations in a strongly
coupled data assimilation system resulted in improved analysis and forecasts in an
NWP framework. Specifically, strongly coupled land–atmosphere data assimilation
led to improved near-surface weather forecasting (See details in Lin and Pu 2020).

5 Discussion and Concluding Remarks

5.1 Summary and Discussion

Near-surface weather forecasts present a challenging problem in modern NWP. A
series of studies from the author’s research team, as summarized above, led to a signif-
icant understanding of the problem and made it clear that coupled land–atmosphere
data assimilation, especially strongly coupled land–atmosphere data assimilation, is
a promising way to improve near-surface weather forecasting.

In summary, the observational analyses showed significant correlations between
soil moisture in the top soil layer and surface 2-m temperature. Sensitivity exper-
iments with a single column model indicated that near-surface weather conditions
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responded to soil moisture changes, suggesting a strong coupling between soil mois-
ture and the near-surface atmosphere. Results encouraged us to assimilate soil mois-
ture data into a land model for improved near-surface weather forecasting. Strongly
coupled land–atmosphere data assimilation was then evaluated in a variational data
assimilation framework. It was found that the error covariances between soil mois-
ture and near-surface temperature and humidity were significant during the daytime
and warm season in the boundary layer. Based on the error covariance structures and
correlations, we can expect that soil moisture changes could cause adjustments in
near-surface and atmospheric boundary layer conditions. The increments in atmo-
spheric conditionswould lead to changes in soilmoisture. The subsequent data assim-
ilation with the WRF-Noah model indicated that strongly coupled land–atmosphere
data assimilation in this variational framework successfully assimilated SMAP soil
moisture data. More importantly, with simultaneous corrections in both atmosphere
and land variables, this strongly coupled data assimilation method outperformed
weakly coupled data assimilation. Finally, strongly coupled data assimilation was
implemented in an ensemble Kalman filter data assimilation system. Results proved
that this strongly coupled data assimilation could indeed improve prediction of both
soil and atmospheric states.

Although variational data assimilation is different from the ensemble Kalman
filter, both methods have proven the success of strongly coupled data assimilation.
In reality, according to Lin and Pu (2020), the structure of ensemble spreads from
the strongly coupled system in the GSI-EnKF system (Fig. 3) was very similar to the
structure in Lin and Pu (2018) (e.g., Fig. 2), implying that strongly coupled land–
atmosphere data assimilation is capable of representing the strong coupling between
soil moisture and the near-surface and boundary layer atmospheric states in the EnKF
data assimilation system; thus it has great potential to be implemented into NWP
models for many forecast applications.

5.2 Concluding Remarks

Land–atmosphere interaction is an essential process in weather and climate systems.
Coupled land–atmosphere models and land surface parameterizations are necessary
to represent land–atmosphere interactions in weather and climate models. Due to
lack of observations, our limited understanding of and capability to accurately repre-
sent land–atmosphere interaction in coupled models or parameterizations, and the
errors in initial and boundary conditions, uncertainties in weather and climate predic-
tion present significant challenges in weather forecasting and climate prediction.
Notably, the near-surface atmosphere and atmospheric boundary layer interact with
the land surface directly. Because of the complexity of the water and energy budget
in the interface of the land and atmosphere, uncertainties in numerical model param-
eterizations and initial conditions are significant. As a consequence, near-surface
weather forecasting remains a significant challenge in numerical weather prediction
(Pu 2017). In light of the strong interaction between the near-surface atmosphere
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Fig. 3 Ensemble mean and spread (SDEV or standard deviation) of atmospheric first guesses for
potential temperature (T), specific humidity (Q), zonal wind (U), and meridional wind (V) during
the study period (July 2018) (From Lin and Pu 2020)

and land surface, four research articles (Liu and Pu 2019; Lin and Pu 2018, 2019,
2020) are summarized in this chapter dedicated to understanding the fundamentals
of improving near-surface weather forecasting using coupled data assimilation.

The observational analyses showed significant correlations between soil moisture
in the top soil layer and surface 2-m temperature. However, the correlation coefficient
between soil moisture and 2-m temperature was less than 0.6, implying that soil
moisture is not the sole factor that influences near-surface weather conditions. Given
the heterogeneous nature of land use and land cover as well as soil types, there
are many other factors that could influence land–atmosphere interactions that need
to be studied in future work to examine their influence on near-surface weather
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prediction. Nevertheless, the notable correlation between soil moisture and near-
surface atmospheric conditions provides a direct way to implement coupled land–
atmosphere data assimilation. More complicated data assimilation systems are still
needed in order to fully resolve or mitigate the uncertainties associated with land–
atmosphere interactions in weather and climate models.

In addition, near-surface temperature and soil moisture could also influence the
atmospheric boundary layer, even upper atmospheric conditions. Most of this influ-
ence is in the local atmospheric boundary layer in short-range weather prediction.
However, through the integration of atmospheric models with time, the soil mois-
ture influence could propagate to the entire atmospheric column and over a large
region. Therefore, the influence of soil moisture in medium-range weather fore-
casting and sub-seasonal to seasonal climate prediction should be expected. From
these perspectives, strongly coupled land–atmosphere data assimilation should be an
active research area, not only for weather forecasting but also for climate prediction.
Nevertheless, since the temporal scales between land and atmosphere variabilities
are not the same, strategies to adjust the temporal scales of land and atmospheric
variables during the coupled data assimilation could be another important problem
to explore in future studies.

Furthermore, many severe weather and climate events are associated with land–
atmosphere interactions, such as hurricane evolution after landfall, floods, droughts,
etc. Considering the need to improve forecasts and public warnings for these high-
impact weather and climate events, we can foresee the utility of strongly coupled
data assimilation in many research applications.
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Ensemble Kalman Filter Experiments
at 112-km and 28-km Resolution
for the Record-Breaking Rainfall Event
in Japan in July 2018

Koji Terasaki and Takemasa Miyoshi

Abstract A record-breaking heavy rainfall event occurred in western Japan in July
2018, associated with an intensified Baiu front between the Okhotsk high and the
Pacific high.A cold air inflow from theOkhotsk highwas an important factor to inten-
sify the heavy rainfall. The Okhotsk high moved southward after Typhoon Prapiroon
passed through the north of western Japan. The purpose of this study is to investi-
gate the resolution dependence of the predictability of this rainfall event focusing on
the Okhotsk high. We performed data assimilation and forecast experiments using a
global numerical weather prediction system consisting of the Nonhydrostatic ICosa-
hedral Atmospheric Model (NICAM) and the Local Ensemble Transform Kalman
Filter (LETKF) at 112-km and 28-km horizontal resolution. The results showed
that both experiments successfully reproduced the heavy rain, but the 28-km fore-
cast outperformed the 112-km forecast for both location and intensity of the heavy
rainfall. The 112-km forecast showed the location erroneously shifted northward
because it failed to predict the retention of the Okhotsk high over Hokkaido. The
results suggest that the precise prediction of the Okhotsk high be essential to predict
the location of the associated Baiu front. The data assimilation cycles at 28-km reso-
lution requires about 64 times more computations than that at 112-km resolution.
Therefore, downscaled 28-km forecasts initialized by the 112-km LETKF analyses
were also performed. The results showed that data assimilation at 28-km resolution
was important in this case.
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1 Introduction

A record-breaking heavy rainfall event occurred in western Japan in July 2018, with
devastating 237 fatalities as of 9 January 2019. Figure 1 shows 72-h accumulated
rainfall obtained by the Japan Meteorological Agency (JMA)’s radar analysis from

Fig. 1 72-hour accumulated rainfall by JMA’s radar analysis from 0000 UTC 5 July 2018 to 0000
UTC 8 July 2018
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0000 UTC 5 July 2018 to 0000 UTC 8 July 2018. More detailed and accurate numer-
ical weather prediction is essential for better evacuation behaviors. JMA reported
that this extreme heavy rainfall event was caused by the following reasons:

• extremely high moisture convergence from the Pacific high and the East China
Sea,

• cold air inflow in the lower troposphere from the Okhotsk high
• enhanced convection due to the upper-level trough.

Sekizawa et al. (2019) and Shimpo et al. (2019) reported that the extremely
large moisture transport caused the heavy rainfall. Matsunobu and Matsueda (2019)
pointed out that an accurate prediction of the Pacific high was necessary for an accu-
rate prediction of the heavy rainfall. Moteki (2019) focused on the role of Typhoon
Prapiroon on the process of the Baiu front formation using the Japanese 55-year
Reanalysis (JRA-55). A Baiu front was formed between the Okhotsk high and the
Pacific high, and a cold air inflow from the Okhotsk high was an important factor
to intensify the Baiu front activities. Moteki (2019) revealed that the strong cold
air inflow from the Okhotsk high made the location of the Baiu front stationary at
approximately 35°N.

In this study, we used a global data assimilation system which comprises the
nonhydrostatic icosahedral atmosphericmodel (NICAM;Satoh et al. 2008, 2014) and
the local ensemble transform Kalman filter (Hunt et al. 2007; Miyoshi and Yamane
2007). The NICAM-LETKF system has been developed to assimilate various types
of observations including conventional observations, Global Satellite Mapping of
Precipitation (GSMaP; Kubota et al. 2007) data and satellite radiances (Terasaki
et al. 2015; Terasaki and Miyoshi 2017; Kotsuki et al. 2017a; Yashiro et al. 2016).
Based on these achievements, an operational system called NEXRA, standing for the
NICAM-LETKF JAXA (Japan Aerospace Exploration Agency) Research Analysis
(Kotsuki et al. 2019), was developed to run the NICAM-LETKF continuously in
near real time at 112-km resolution with 100 ensemble members. Using the NEXRA
system,Kotsuki et al. (2019) investigated the predictability of the heavy rainfall event
in western Japan in July 2018 and revealed that a generation of low-pressure system
in the middle of the Baiu front contributed to increasing the rainfall in western Japan
based on the ensemble correlation analysis. However, the horizontal resolution of
112 km was relatively low to represent the heavy rainfall and Baiu front.

The purpose of this study is to investigate how higher resolution at 28 km helps
improve the predictability of this heavy rainfall event, focusing on the cold air inflow
from the Okhotsk high. We performed data assimilation and forecast experiments
with the NICAM-LETKF system at 112-km and 28-km resolution and compared the
analyses and forecasts.
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2 NICAM-LETKF System and Experimental Settings

NICAM is a non-hydrostatic global atmospheric model with an icosahedral grid,
and the horizontal resolution is defined by the number of times the original icosahe-
dron is divided. In NICAM, this number is called the grid division level or simply
“glevel.” The horizontal resolution is increased by dividing one triangle into four
triangles. Table 1 shows the horizontal resolution corresponding each glevel.Glevel-0
corresponds to the original icosahedron.

The LETKF was first developed by Hunt et al. (2007). The LETKF updates
the background state at each model grid point independently, so that it is suit-
able for parallel computation. The LETKF is an advanced data assimilation method
that includes the flow-dependent error structure and generates ensemble pertur-
bations representing the analysis errors. The global numerical weather prediction
system NICAM-LETKF has been developed by combining the NICAM and LETKF
(Terasaki et al. 2015, 2019; Terasaki and Miyoshi 2017).

This study performs data assimilation and forecast experiments using theNICAM-
LETKF system at glevel-6 (112-km resolution) and glevel-8 (28-km resolution) with
38 vertical levels. The model top is set to 40 km in both experiments. The 112-km
experiment applies the prognostic Arakawa-Schubert scheme for cumulus param-
eterization (Arakawa and Schubert 1974) and the large-scale condensation scheme
formicrophysics processes. The 28-km experiment explicitly computes cloudmicro-
physics processes with a single moment bulk scheme (Tomita 2008; Roh and Satoh
2014) without any cumulus parameterization scheme.

The assimilatedobservations are conventional observations knownasPREPBUFR
from the National Centers for Environmental Prediction (NCEP) and satellite-borne
Advanced Microwave Sounding Unit–A (AMSU-A) radiances. The channels 6, 7,
and 8 of AMSU-A radiances are assimilated, which are sensitive from the middle
troposphere to the lower stratosphere. Spatial thinning is essential when the obser-
vation errors are correlated in space. In this experiment, spatial thinning is applied
to AMSU-A radiances to achieve a spatial density of 250 km.

Table 1 Horizontal
resolution for each grid
division level (glevel) of
NICAM

Glevel Horizontal resolution (km)

5 224

6 112

7 56

8 28

9 14

10 7

11 3.5

12 1.7

13 0.87
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A relaxation to prior spread (RTPS; Whitaker and Hamill 2012) with a fixed
relaxation parameter of 0.95 which was manually tuned by Kotsuki et al. (2017b)
is applied. Covariance localization is an essential technique to avoid sampling noise
due to a limited ensemble size in an ensemble Kalman filter. In this study, covariance
localization is achieved by inflating the observation error for distant observations
from an analysis grid, the method known as observation localization (Hunt et al.
2007; Greybush et al. 2011). AGaussian function is used as the localization function,
but it is replaced by zero beyond 2

√
10/3 times the standard deviation to zero-

out the distant noise. This also helps reduce the memory usage and computational
cost in the LETKF analysis computation. The optimal localization scale depends
on experimental settings such as the ensemble size, observation density, and model
resolution. The horizontal localization scale defined by the standard deviation of a
Gaussian function are chosen to be 400 km for the 112-km experiment following
Terasaki and Miyoshi (2017). As for the 28-km experiment, narrower localization
of 250 km is chosen after manual tuning. The vertical localization scale is set to 0.4
natural logarithms of pressure in both experiments.

The ensemble size is fixed at 32. The 32 initial conditions were chosen from the
NCEP FNL (Final) operational global analysis data. Here, the analyses at every other
day from 0000 UTC 1 May 2008 to 29 May 2008, from 0000 UTC 1 June 2008 to
29 June 2008, and 0000 UTC 1 and 3 May 2009 were chosen. Data assimilation
cycles are performed every 6 h from 0000 UTC 10 June 2018 to 0000 UTC 9 July
2018 at both 112-km and 28-km resolution. The ensemble forecast experiments
were initialized every day at 0000 UTC on 2–5 July 2018 for both experiments to
investigate the predictability of this heavy rainfall event during 72 h from 0000 UTC
5 July 2018 to 0000 UTC 8 July 2018. Table 2 summarizes the experimental settings.

Table 2 Experimental settings for glevel-6 and glevel-8

Horizontal resolution Glevel-6 (112 km) Glevel-8 (28 km)

Vertical resolution 38 layers (model top: 40 km)

Cumulus parameterization Prognostic Arakawa-Schubert
scheme

Not used

Cloud microphysics scheme Not used 1-moment bulk scheme

Large scale condensation scheme Used Not used

Data assimilation Local ensemble transform Kalman filter (LETKF)

Ensemble size 32

Assimilated observations Conventional observations and AMSU-A radiances

Period (DA) From 0000 UTC 10 June 2018 to 0000 UTC 9 July 2018

Ensemble forecast Initial time: 0000 UTC 2 July 2018 (6-day forecast)
Initial time: 0000 UTC 3 July 2018 (5-day forecast)
Initial time: 0000 UTC 4 July 2018 (4-day forecast)
Initial time: 0000 UTC 5 July 2018 (3-day forecast)
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The high-resolution data assimilation experiment at 28-km resolution requires
about 64 times more computations than that at 112-km resolution. It would be bene-
ficial if we have a similar forecast skill with a downscaled high-resolution forecast
initialized by a lower resolution analysis. Therefore, we perform three kinds of deter-
ministic forecast experiments initialized at 0000 UTC 4 July 2018: (1) 112-km fore-
cast initialized by 112-km analysis, (2) 28-km forecast initialized by 28-km analysis,
and (3) 28-km forecast initialized by 112-km analysis.

3 Results

3.1 Analysis

First, we compare the analysis sea level pressure (SLP) in both experiments. Figure 2
shows the analysis ensemble mean of SLP with glevel-8 (a–e) and glevel-6 (f–j).
Both experiments reproduce the location of Typhoon Prapiroon well. However, the
intensity of Prapiroon is underestimated in the 112-km experiment because it is
too coarse to resolve the typhoon structure well. Alternatively, the 28-km experi-
ment could resolve the typhoon structure better than the 112-km experiment and
improved its location and intensity. According to the JMA’s best track analysis,
the minimum SLP of Prapiroon reached to 960 hPa at 1800 UTC 2 July 2018
(obtained from https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/bes
ttrack.html). The minimum SLP of Prapiroon in the NICAM-LETKF analyses are
988.9 hPa in glevel-6 and 962.5 hPa in glevel-8. Prapiroon moves northeastward
and transforms to an extratropical cyclone at 0600 UTC 4 July 2018 before passing
through the Tsugaru Strait further northeastward. After the extratropical cyclone
moves to the east ofHokkaido, the northerlywind from thewestern side of the cyclone
brings strong cold air and moves the Okhotsk high southward. In both experiments,
the synoptic fields are generally well reproduced in the analyses.

3.2 Ensemble Forecast

Weperform ensemble forecast experiments initialized every day at 0000UTC on 2–5
July 2018 to investigate the predictability of the heavy rainfall event. The prediction of
heavy rainfall has a large uncertainty in its intensity and location. Ensemble forecasts
provide information on the predictability of the heavy rainfall. First, we look at the
ensemble-mean precipitation and the maximum precipitation in ensemble members.

Figure 3 shows the ensemble-mean forecasts of 72-h accumulated rainfall from
0000 UTC 5 July 2018 to 0000 UTC 8 July 2018 with four different initial times.
All forecasts generally show wet conditions over a broad area in Japan. In general,
forecasts initialized at earlier times show broader rainfall distributions with lower

https://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html
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Fig. 2 Ensemble-mean analysis sea level pressure (hPa: contours), temperature (K: shades), and
horizontal winds (vectors) at 925 hPa for every day at 0000UTC from2 to 6 July 2018 for a–e 28-km
and f–j 112-km experiments
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Fig. 3 Ensemble-mean forecast of 72-h accumulated rainfall from 0000 UTC 5 July 2018 to 0000
UTC 8 July 2018 for a–d 28-km and e–h 112-km experiments, initialized at a, e 0000 UTC 2 July
2018, b, f 0000 UTC 3 July 2018, c, g 0000 UTC 4 July 2018, and d, h 0000 UTC 5 July 2018
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peak values. This is reasonable since the ensemble spread is generally larger in
longer forecasts, so that ensemble averaging makes spatial patterns broader with
lower peaks. As the initial time becomes later, the rainfall distributions become
narrower with higher peak values. The forecasts initialized on 2 and 3 July 2018 at
112-km resolution (Fig. 3e, f) show that the rainfall area spreads over the Korean
Peninsula and eastern China. However, the 28-km forecasts (Fig. 3a, b) have less
rainfall in these regions, indicating the better forecast skill at 28-km resolution. The
forecasts initialized on 4 and 5 July 2018 capture the heavy rainfall in general, but the
peak location at 112-km resolution is shifted to the north compared with the JMA’s
observation and the 28-km experiment.

Using the ensemble forecasts, we investigate the maximum 72-h accumulated
rainfall among all ensemble members (Fig. 4). This shows the potential risk and
corresponds to potentially the worst-case scenario captured by the ensemble fore-
casts. The 28-km forecasts (Fig. 4a–d) show better predictions of the heavy rainfall in
its location and intensity than the 112-km forecasts (Fig. 4e–h). The forecasts initial-
ized on 2 July 2018 at 112-km resolution (Fig. 4e) fail in predicting the potential of
heavy rainfall, but those initialized on and after 3 July 2018 are improved (Fig. 4f–
h). The forecasts at 28-km resolution initialized on 2 July 2018 (Fig. 4a) predict the
possible occurrence of the heavy rainfall inwestern Japan.As the initial time becomes
later, the heavy rainfall area becomes smaller with higher peak values, indicating
more certainty of the precipitation forecast. The results suggest that the ensemble
forecasts be useful to capture the potential risk of the heavy rainfall compared with
ensemble-mean forecast.

Next, we investigate the role of the typhoon track and the Okhotsk high on the
heavy rainfall. Figure 5 shows the JMA’s best track and ensemble forecasts of typhoon
tracks. The 112-km forecasts initialized on 2 July 2018 predict the track of Prapiroon
northwestward comparedwith the best track and has significant uncertainty (Fig. 5d).
The forecasts initialized on and after 3 July 2018 at 112-km resolution improve the
typhoon track forecast. The track forecasts at 28-km resolution are more accurate
than those at 112-km resolution. Both experiments tend to predict the location of
Prapiroon eastward. According to the analysis field, Prapiroon moves to the southern
side of eastern Hokkaido around Nemuro Peninsula. Figure 6 shows the forecast SLP
fields at 0000 UTC 6 July 2018 with four different initial times on 2–5 July 2018 at
28-km resolution (Fig. 6a–d) and 112-km resolution (Fig. 6e–h). The extratropical
cyclone, which is transformed from Prapiroon, moves southeastward for the 28-km
experiment as the initial time becomes later, and it causes a southeastward shift of
the Okhotsk high. The SLP ensemble spread around the extratropical cycle is large in
the forecasts initialized on 2 July 2018 (Fig. 6a), with large uncertainties in the track
forecast. However, the ensemble forecasts become more certain with later initial
times. As the track forecast becomes better, the location of the Okhotsk high is also
predicted well.

The location and intensity of the extratropical cyclone affect the location of the
Okhotsk high and may have altered the amount of the cold air inflow toward the
Baiu front. The cold air inflow from the Okhotsk high is one of the important factors
to cause this heavy rainfall by enhancing the Baiu front activity. Figure 7 shows
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Fig. 4 Maximum 72-h accumulated rainfall from 0000 UTC 5 July 2018 to 0000 UTC 8 July 2018
among all ensemble members at a–d 28-km and e–h 112-km forecasts, initialized at 0000 UTC on
a, e 2 July 2018, b, f 3 July 2018, c, g 4 July 2018, and d, h 5 July 2018
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Fig. 5 Track forecast of Prapiroon at a–c 28-km and d–f 112-km resolution. Red line indicates the
JMA best track from 0000 UTC 30 June 2018 to 0600 UTC 5 July 2018, and blue lines indicate the
tracks of ensemble forecasts from 6 h after the initial times to 0600 UTC 5 July 2018. The forecasts
are initialized at 0000 UTC on a, d 2 July 2018, b, e 3 July 2018, and c, f 4 July 2018. Contours
show the analysis sea level pressure at 6 h later of each initial time

the time-series of the regional averaged temperature at 925 hPa around western
Japan (132.5–137.5°E, 37.5–42.5°N). To verify the accuracy of the NICAM-LETKF
analysis, we compare the results with the ERA-interim (Dee et al. 2011) andNational
Centers for Environmental Prediction (NCEP) NCEP FNL analyses. After Prapiroon
passes through the Japan islands, the cold air is brought from the Okhotsk high.
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Fig. 6 Forecast ensemblemean (contours) and spread (shades) for SLP (hPa) and forecast ensemble
mean for 925-hPa-level horizontal winds (m/s, vectors) valid at 0000 UTC 6 July 2018 for a–d 28-
km and e–h 112-km experiments. The forecasts are initialized at 0000UTC on a, e 2 July 2018, b,
f 3 July 2018, c, g 4 July 2018, and d, h 5 July 2018
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Fig. 7 Time-series of the regional averaged (132.5–137.5°E, 37.5–42.5°N) temperature at 925 hPa
for a 28-kmand b112-kmexperiments.Dashed lines indicate the forecast experimentswith different
initial dates. Thick black lines indicate the analyses temperature for a 28-km and b 112-km experi-
ments. Orange and light green lines show temperature of ERA-interim andNCEPFNL, respectively.
The gray line shows the climatology of the JRA-55

The regional averaged temperature drops to around 12 °C, much lower than the
climatology by JRA-55 (gray line in Fig. 7). There are slight differences between the
NICAM-LETKF analysis and the other reanalysis datasets. Namely, the NICAM-
LETKF system reproduces the cold air inflow from the Okhotsk high well. In both
experiments, the forecasts initialized on 2 July 2018 predict higher temperature than
the analyses. The poor forecasts of the typhoon track initialized on 2 July 2018 lead to
the poor reproducibility of the cold air inflow from the Okhotsk high. The weak cold
air inflow from the Okhotsk high characterizes a possible reason why the forecasts
initialized on 2 July 2018 fail to predict the heavy rainfall. The forecasts initialized
on and after 3 July 2018 at 28-km resolution reproduce the cold air inflow from the
Okhotsk high well. However, the 112-km forecasts show the temperature increase
after 7 July 2018 and could not predict the duration of the cold air inflow.

Figure 8 shows the forecast SLP and temperature at 925 hPa initialized at 0000
UTC 5 July 2018. The 28-km forecasts predict the location and intensity of the
Okhotsk high well (Fig. 8a–d). The Okhotsk high persistently locates over the north
of Hokkaido, and it leads to the persistent cold air inflow (purple dashed line in
Fig. 7a). The 112-km forecasts also successfully predict the Okhotsk high until 1200
UTC 6 July 2018 (Fig. 8e–f), but the Okhotsk high moves eastward from 0000 UTC
7 July 2018 (Fig. 8g–h). As a result, the 112-km forecasts could not predict the
retention of the cold air inflow from the Okhotsk high (purple dashed line in Fig. 7b).
These make the Baiu front shifted to the north and cause the northward shift of the
heavy rainfall in the 112-km forecasts. The retained Okhotsk high is a critical factor
to keep the location of the Baiu front, resulting in long-lasting heavy rainfall.
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Fig. 8 Forecast ensemble mean SLP (hPa: contours) and temperature at 925 hPa (color shades) at
a–d 28-km and e–h 112-km experiments initialized at 0000 UTC 5 July 2018 and valid at a, e 0000
UTC 6 July 2018, b, f 1200 UTC 6 July 2018, c, g 0000 UTC 7 July 2018, and d, g 1200 UTC 7
July 2018
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Fig. 9 72-h accumulated rainfall from 0000 UTC 5 July 2018 to 0000 UTC 8 July 2018 for
the ensemble mean forecasts of a 112-km resolution, b 28-km resolution, and c the experiment
downscaled from 112-km resolution to 28-km resolution initiated at 0000 UTC 4 July 2018

3.3 Downscaled Forecast

Finally, we show the results of deterministic forecasts. Figure 9 shows 72-h accu-
mulated rainfall from 0000 UTC 5 July 2018 to 0000 UTC 8 July 2018 initialized at
0000 UTC 4 July 2018. In general, the heavy rainfall was predicted well in western
Japan. The 112-km forecast (Fig. 9a) shows much lower peak rainfall than the two
28-km forecasts (Fig. 9b, c). Both Fig. 9a, c use the same initial condition at 112-
km resolution, but the downscaled forecast (Fig. 9c) shows the finer structure of
precipitation with higher peak values. However, the location of the heavy rainfall is
similar. Namely, both Fig. 9a, c shows peak rainfall areas northward compared with
the 28-km experiment (Fig. 9b). Therefore, the initial condition at 112-km resolution
would not be optimal to predict the location of the heavy rainfall accurately. This is
probably because the initial conditions at 112-km resolution make the Okhotsk high
and Baiu front shifted northwestward, while the initial conditions 28-km resolution
improve these features. In addition, the cloud physics schemes used in 112-km and
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28-km resolution are different, and the initial conditions downscaled from 112-km to
28-km resolution would not be optimal for the 28-km resolution. The results suggest
that a high-resolution data assimilation be important for accurate prediction of the
heavy rainfall in this case.

4 Summary and Concluding Remarks

This study investigated the predictability of the heavy rainfall event occurred in
July 2018 in western Japan using the NICAM-LETKF system at two different hori-
zontal resolution of 112 km and 28 km. A rare combination of various atmospheric
conditions brought this record-breaking heavy rainfall. The results indicated that
the location of the Okhotsk high and the associated cold air inflow were important
factors to determine the location and intensity of the Baiu front. The location of
the Okhotsk high was affected by the track of the extratropical cycle changed from
Typhoon Prapiroon and the northerly winds from thewestern side of the extratropical
cyclone.

According to the results of the ensemble forecast experiments, the track fore-
cast of Prapiroon was important to predict the location of the Okhotsk high. Both
experiments well reproduced the typhoon track initialized at and after 0000 UTC 3
July 2018. However, the 28-km forecasts predicted the strength and duration of the
cold air inflow from the Okhotsk high better than the 112-km forecasts. This study
also performed the downscaled forecast at 28-km resolution initialized by analysis at
112-km resolution. Running a low-resolution data assimilation cycle helped reduce
the computational cost. However, the location of the heavy rainfall was not improved
because 112-km analyses led to the northwestward shift of the Okhotsk high even
though 28-km model was used for prediction. The results suggest that running the
data assimilation cycles at high resolution be beneficial.

It is important for disaster prevention and mitigation for heavy rain events to have
a longer lead time and more accurate predictions. Besides, we performed forecast
experiments with a relatively low resolution of 28 km to resolve the torrential rainfall.
More detailed predictions at higher resolution are needed for more accurate predic-
tion and more direct link to evacuation behaviors. Lateral boundary conditions are
very important in regional numerical weather prediction. Using the ensemble predic-
tion data obtained from the global ensemble data assimilation system, it becomes
possible to performhigh-resolutionpredictionswith proper uncertainties of the lateral
boundary conditions for regional ensemble data assimilation and forecasts.
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Convective-Scale Data Assimilation
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Complex Terrain: A Thorough
Investigation with the Heavy Rainfall
in Taiwan on 16 June 2008
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Abstract Convective-scale heavy rainfall prediction in Taiwan is very challenging
due to the complexity of the precipitation systems and the topography. The WRF-
LETKF Radar Assimilation System (WLRAS) has been an important component
of convective-scale data assimilation with the purpose of short-term precipitation
prediction. This chapter reviews how assimilating radar radial velocity and reflec-
tivity data impacts the prediction of a heavy rainfall event over the coast of south-
western Taiwan on 16 June 2008 and further affect the prediction of the initialization
and development of an afternoon thunderstorm downstream over northern Taiwan.
The characteristics and attributions of the sampling error due to insufficient ensemble
members are further identified with the same case. Finally, improving the moisture
analysis accuracy is relatively restrictive in WLRAS since the moisture variable is
not directly observed in radar data. We illustrate how assimilating the ground-based
GNSS ZTD data can complement radar data in convective-scale data assimilation
and precipitation prediction.
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1 Introduction

Heavy rainfall has always been a primary concern among high-impact weather events
due to the enormous societal and economic impacts. Thus, accurate heavy rainfall
prediction is critical for disaster prevention and decision making. Combining high-
resolution numerical weather prediction (NWP) models with data assimilation (DA)
systems (Yano et al. 2018) is one of the state-of-the-art approaches to improving
heavy rainfall prediction. However, heavy rainfall prediction over complex orog-
raphy is evenmore challengingdue to the complicateddynamical and thermodynamic
processes and their interactions with the terrain. This review chapter discusses appli-
cations of the radar data assimilation to heavy rainfall prediction in Taiwan, which
has complex terrain (Fig. 1a), and the associated challenges and remedies.

DA methods, which estimate the optimal initial conditions for numerical
modeling, synergize the information provided by numerical model simulation and
observations (Kalnay 2003). For convective-scale NWP models, radar DA based on
methodologies of variational analysis or the Ensemble Kalman filter has been widely
utilized to construct a realistic convective-scale structure because of the high spatial
and temporal resolution of radar data (Sun andWang 2013; Aksoy et al. 2009; Zhang
et al. 2009; Schraff et al. 2016). With the advantage of using flow-dependent back-
ground error statistics (Chung et al. 2013; Ménétrier et al. 2014), ensemble-based
radar data assimilation (EnRDA) has been extensively applied in operational centers
and research works (e.g., Tong and Xue 2005; Gao and Xue 2008; Dowell et al.
2011; Chang et al. 2014, Wheatley et al. 2015). EnRDA has demonstrated impor-
tant applications in improving precipitation prediction accuracy (Bick et al. 2016;
Yokota et al. 2018; Gastaldo et al. 2018) and probabilistic predictions for convec-
tive storms (Snook et al. 2015; Yussouf et al. 2016; Putnam et al. 2019). Since the
milestone of the first EnRDAwork by Snyder and Zhang (2003), the use of assimila-
tion strategies and the assimilation of data from new-generation radar systems have
advanced the applications of EnRDA in convective-scale prediction. For example,
assimilating non-precipitating information suppresses spurious precipitation (Tong
and Xue 2005; Aksoy et al. 2009; Bick et al. 2016). Using rapid update cycling
with an interval shorter than one hour can capture the development of convective
systems (Bick et al. 2016). The assimilation of polarimetric radar data contributes
to improving the analysis accuracy of model variables involving cloud microphysics
(Jung et al. 2010; Li et al. 2017; Carlin et al. 2017; Putnam et al. 2019), while the
assimilation of the phase-array-radar data at a very rapid interval (less than 1 min)
can capture the development of fast-evolving convection (Miyoshi et al. 2016; Huang
et al. 2020).

Despite the success of EnRDA in convective-scale precipitation prediction, there
are also challenges since it inherits the properties of EnKF and carries the limitations
of the radar measurement. A common issue is that using an insufficient ensemble size
introduces sampling error, which can contaminate the estimation of the background
error covariance, resulting in spurious analysis corrections that degrade the perfor-
mance of EnRDA. It is essential to apply covariance localization, which tapers the
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Fig. 1 a Locations of the radar sites used in this study. Color shading indicates the topography,
and the gray line indicates the observing range of the radar (230 km). b Administrative divisions of
Taiwan
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covariance values and limits the analysis corrections at long distances, to avoid the
degradation fromsampling error (Hamill et al. 2001;Miyoshi et al. 2014).Optimizing
the use of covariance localization is critical to keep the impact of radar data, given
the consideration of the spatial characteristic of the prognostic variables (Zhang et al.
2009;Tsai et al. 2014) andmodel error (Sobash andStensrud2013).Another common
issue is the dispersiveness of the ensemble spread, whose amplitude is important to
manifest the observational impact. The covariance inflation method, such as multi-
plicative inflation, additive noise, and relaxation methods, is adopted to increase
the spread (Zeng et al. 2018; Sobash and Wicker 2015; Maldonado et al. 2020).
Under the framework of observation system simulation experiments with EnRDA,
Maldonado et al. (2020) report that the impact of horizontal localization on short-
range ensemble forecasts was larger compared to inflation. Furthermore, correcting
the unobserved variables during the assimilation process, such as the moisture and
temperature fields, is achieved through the cross-variable background error covari-
ance. The characteristics of these fields are critical for convection initialization and
development. However, the precondition of convection is not observed by conven-
tional S-, C- and X-band radars, and the data are available only after the rain starts.
Besides, there is no near-surface information due to the limitation of the scanning
angle and ground clusters. Therefore, it is restrictive to improve the initialization of
the convections by assimilating radar data alone. At last, EnKF assumes Gaussian
probability distributions for background and observation error. However, nonlinear-
ities in the dynamics of convective storms and observation operators can result in
non-Gaussian error probability distributions and may limit the effectiveness of data
assimilation techniques in convective-scale analysis and prediction (Vukicevic and
Posselt 2008; Posselt and Bishop 2012). In particular, the Gaussian framework could
be inappropriate for variables such as water vapor and other classes of hydrometeors
(Posselt et al. 2014), which are related to the radar observed quantities.

Focusing on the applications of EnRDA, this chapter reviews the performance
and challenges of EnRDA on convective-scale analysis and precipitation prediction
over complex terrain with the WRF-Radar Assimilation Local Ensemble Kalman
Filter System (WRLAS). WLRAS combines the local ensemble transform Kalman
filter (LETKF, Hunt et al. 2007) with the Weather Research and Forecasting (WRF)
model (Skamarock et al. 2008) and assimilate data from the radar network in Taiwan
(Tsai et al. 2014, hereafter TYL14). The distribution of radar systems provides good
coverage of Taiwan, and the observing range partially overlaps (Fig. 1a). Although
severe weather systems can be well observed when they approach Taiwan with heavy
precipitation, the application ofWLRAS to precipitation prediction is still very chal-
lenging given the complexity of the heavy rainfall and the topography of the Taiwan.
This chapter gives a thorough review of the impact of assimilating radar data for
predicting the heavy rainfall in Taiwan on 16 June 2008. We discuss the character-
istics and attributions of convective-scale sampling errors and a potential strategy to
modify the covariance inflation under the influence of prevailingwinds. Furthermore,
assimilating the ground-based GNSS Zenith Total Delay (ZTD), which represents
the moisture information, is proposed as a remedy for the limitation of WLRAS.
The impact of assimilating GNSS ZTD in addition to radar data is presented based
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on the prediction of two heavy rainfall events with very different synoptic weather
conditions.

The chapter is organized as follows. Section 2 briefly introduces WLRAS and
the assimilation parameters. Section 3 illustrates the impact of assimilating the radar
data on short-term precipitation prediction on 16 June 2008. Section 4 discusses the
limitations of WLRAS and the added benefit from assimilating the ground-based
GNSS ZTD observations. Finally, a summary and conclusions are given in Sect. 5.

2 WRF-Local Ensemble Transform Kalman Filter Radar
Assimilation System (WLRAS)

The WLRAS combines the radar data assimilation and high-resolution numerical
weather prediction model with the advantage of using a flow-dependent back-
ground error covariance over complex terrain. The analysis ensemble can be used
for convective-scale ensemble prediction, providing products such as probability
quantitative precipitation forecasts.

WLRAS assimilates the radar radial velocity (Vr) and reflectivity (Zh) from four
radars in Taiwan. In general, four S-band radars at Wufenshen (RCWF), Hualien
(RCHL), Chigu (RCCG), and Kent-din (RCKT) covers Taiwan well (Fig. 1a). The
horizontal scanning range at the lowest elevation is 230 km for V r and 460 km for
Zh, and there is a total of 9 scanning elevations. The radar data have been processed
with different quality control steps to consider non-meteorological echoes, such
as ground/sea clutter, beam blocking, and attenuation (Chang et al. 2009; Zhang
et al. 2011). The original resolution of the radar data is 250 m horizontally every
7.5 min. We adopt the superobbing strategy (Lindskog et al. 2004) to thin the data
and avoid spatial correlations between observations. For each radar, fan-shaped areas
are defined with 2-km and 2-degree intervals in the radial and azimuthal directions,
respectively. The center of each fan-shaped area is the location of a superobservation,
and the value is obtained by summing the radar data within this area with a distance-
based Gaussian weighting factor. The observation errors are 3 m s−1 for V r and 5
dBZ for Zh (TYL14). Note that the fan-shaped area is adjustable, depending on the
analysis grid spacing. For the assimilation interval�ta, the superobservations are
processed to be available at every �ta using the radar data spanning within a period
± �ta/2.

The observation operator for simulating Zh is in accordance with the Goddard
cumulus ensemble (GCE) microphysics scheme (Tao et al. 2003), in which rain-
water, snow, and graupel are the hydrometeor species observable by radar. In compar-
ison with TYL14, which considered only the reflectivity factor from rainwater, the
current operator incorporates the contributions of snow and graupel considers cold-
rain processes (Dowell et al. 2011) and the ice-phase hydrometeors above the bright
band can be better simulated. Thus, it is feasible to assimilate the reflectivity data
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above the melting layer (Gao and Stensrud 2012). The total reflectivity (Zh) is calcu-
lated as ten times the logarithm to base 10 of the sum of the reflectivity factors from
rainwater (Zr), snow (Zs) and graupel (Zg):

Zh = 10 log10(Zr + Zs + Zg), (1)

where the individual reflectivity factors can be derived under the single-moment
assumptions of the GCE microphysics scheme as:

Zr = 3.63 × 109(ρaqr)
1.75, (2)

Zg = 1.12 × 109(ρaqg)
1.75, (3)

Zs = 2.79 × 108 (ρaqs)
1.75, when T ≤ 0◦C. (4a)

Zs = 1.21 × 1011(ρaqs)
1.75, when T > 0◦C. (4b)

In Eqs. (2)–(4), ρa is the air density (kg m−3), and qr , qs, and qg is the mixing
ratios (kg k g−1) of rainwater, graupel, and snow from the model, respectively.

The radial velocity is calculated by summing the projections of the wind and
estimated terminal velocity from the model onto the radar beam:

Vr = [
ux + uy + (w − vt)z

]
(x2 + y2 + z2)−

1
2 , (5)

where (u, v, w) are the zonal, meridional and vertical components of the wind, vt is the
estimated terminal velocity, and (x, y, z) is the position based on the Cartesian coor-
dinates with the radar site as the origin. Vt(ms–1) is the terminal velocity calculated

by vt = 5.4(p0/p̄)
0.4(ρaqr)

0.125, where p0 is the surface pressure (Pa),
−
p is the base-

state pressure (Pa). The observation localization (R-localization, Hunt et al. 2007)
is adopted by multiplying the observation error variance with a distance-dependent
weighting function w (Eq. 6):

w = exp
(
d2
h
/
σ 2
h

+ d2
v
/
σ 2

v

)
. (6)

Here,d andσ are the distance (km)between the observation and themodel analysis
grid point, and the localization scale (km), respectively. Subscripts h and v denote
the horizontal and vertical direction, respectively. Observations located farther than
the cut-off scale (triple the value of σh or σv) from each model grid point will not be
used to update the model state.
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WLRAS has options to use different covariance inflation strategies, including
multiplicative inflation and relaxation to prior spread (RTPS, Whitaker et al. 2012).
WLRAS is performed with the rapid-update cycle with an assimilation interval
of 15 min with the consideration to capture the error growth of the convective-
scale systems. The assimilation interval is chosen to ensure dispersiveness and
flow-dependency of the ensemble.

With an ensemble size of 40 members and a typhoon-related heavy rainfall event,
TYL14 demonstrated the flow-dependency of the background error covariance in
WLRAS in relating to the development of rain band (Fig. 10 in TYL14). WLRAS
has been evaluated for rainfall prediction associated with typhoons and Meiyu cases
and has demonstrated a useful nowcasting skill (Shao 2015; Tsai et al. 2016; Cheng
et al. 2019, 2020; Yang et al. 2020).

3 Impact of Assimilating the Radar Data on Short-Term
Precipitation Prediction

a. Direct impact of the radar data assimilation

In this subsection, we demonstrate the impact of assimilating radar data on precip-
itation prediction over Taiwan and discuss how the assimilation of radial velocity
and reflectivity leads to changes in simulating the location and intensity of heavy
rainfall. The illustration case is a heavy rainfall event associated with a mesoscale
convective system (MCS) that developed during the prefrontal condition on 16 June
2008 (IOP#8 during SoMEX). This case is characterized by its long duration and
heavy precipitation near the coast of southwestern Taiwan. This event is a classical
illustration of the continuous development of strong convections under interactions
between the synoptic flow,MCS, and topography. Observation (Fig. 2a), provided by
Wind Synthesis System using Doppler Measurement (WISSDOM, Liou et al. 2012),
shows that the southwesterly wind prevails offshore southwestern Taiwan and the
wind turns southerly at the slope due to orographic blocking effects. A conver-
gence zone (shading) is established from offshore to the coast. In this area, reflec-
tivity analysis from Quantitative Precipitation Estimation and Segregation Using
Multiple Sensor (QPESUMS) from the Central Weather Bureau (CWB) exhibits a
west-oriented intense reflectivity band (Fig. 3a). Correspondingly, a near-surface
cold pool induced from evaporation cooling is established and further enhanced by
the land breeze (Tu et al. 2014). The convergence zone at the coast is sustained by
the prevailing southwesterly offshore and outflow of the cold pool at the coast, and
is the key for the long duration of heavy rainfall (Xu et al. 2012).

The ensemble for the following experiments was initialized at 1800 UTC 15
June 2008 by downscaling the 36 analysis ensemble members derived from regional
ensemble data assimilation (Yang et al. 2014). The ensemble is spun-up for 6 hours
to derive the convective-scale perturbations with a triply nesting domain, and then,
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Fig. 2 Wind at the level of 2 km from a WISSDOM, b the NoDA forecast, the c VR, d ZH, and
e BOTH analyses at 0200 UTC (last analysis cycle) 16 June 2008. Color shading indicates the
convergence

the data from the RCCG and RCKT radars were assimilated for the inner domain (3
km) every 15 minutes from 0000 UTC to 0200 UTC 16 June 2008. The horizontal
and vertical localization scales are 12 and 4 km, respectively, as suggested by TYL14
with 40 members. The VR, ZH, and BOTH experiments assimilate radial velocity,
reflectivity, and both data, respectively. Deterministic forecasts initialized from the
analysismean at 0200UTC are used to compare the impact of radar data assimilation.
A baseline taken from the forecast initialized from the ensemble mean at 1800 UTC
15 June 2008, before performing the radar data assimilation, is used to identify the
impact of radar data assimilation on the forecast skill. This experiment is referred to
as NoDA.

Without assimilating radar data, a westerly dominates offshore of southwestern
Taiwan (Fig. 2b). The simulated reflectivity is stronger but mostly appears over the
coast due to the strong westerly impinging Taiwan. Assimilating the radial velocity
corrects the wind field effectively, including the southwesterly offshore and souther-
lies at the coast. Thus, the VR and BOTHwind analyses can exhibit the convergence
(Fig. 2c, e) shown in the observation. Although positive impacts are also derived
from assimilating reflectivity, the convergence is weaker (Fig. 2d). When the reflec-
tivity data is assimilated, ZH and BOTH (Fig. 3d, e) can establish the west-oriented
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Fig. 3 Reflectivity analysis from aQPESUMS, b the NoDA forecast, the bVR, c ZH, and dBOTH
analyses at 0200 UTC 16 June 2008

intense reflectivity bandoffshore,whileVRdoes not have such a feature (Fig. 3c). The
assimilation of reflectivity provides greater adjustment to the thermodynamic fields,
including great moisture enhancement offshore of southwestern Taiwan (Fig. 4c,
d vs. Fig. 4a, b), and a stronger and broadly extended cold pool near the surface
(Fig. 5c, d vs. Fig. 5a, b), in comparison with NoDA and VR. The BOTH analysis,
that assimilates both radial velocity and reflectivity, can well capture the dynamical
and thermodynamic conditions associated with the orography effect.

The differences in the initial conditions lead to great differences in precipitation
prediction in space and time. The location of the heavy rainfall maximum in NoDA
(Fig. 6b) is south of that shown in the observation due to the lack of a southerly
component near the coast, and the heavy rainfall over southwestern Taiwan did not
last long (Fig. 7a). With more rainwater and moisture than those in VR, both the ZH
and BOTH experiments exhibit heavy rainfall over southwestern Taiwan (Fig. 6d, e).
Although the ZH experiment exhibits a reasonable precipitation prediction pattern,
most of the rain takes place during the first three hours, and the rainfall intensity
becomes very weak afterward. Such a result indicates that the rainwater brought
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Fig. 4 Total precipitable water from a the NoDA forecast, the b VR, c ZH, and d BOTH analyses
at 0200 UTC 16 June 2008

in through the assimilation of reflectivity precipitates quickly, since the dynamical
field (wind) is not adjusted correspondingly to support the mass field. VR has the
lowest skill with the least amount of rainfall over southwestern Taiwan, and the
heavy rainfall is located offshore instead of moving onshore (Fig. 6c). The hourly
rainfall rate does pick up some signal at 1500 LST (0700 UTC), but the intensity
is too weak. The later response with VR has been pointed out in TYL14, which
suggests that the response in the very short-term rainfall forecast to the adjustment
of winds is slower than the adjustment of hydrometeors. It is evident that BOTH has
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Fig. 5 Vertical cross-section of potential temperature at 0200 UTC 16 June 2008 from a the NoDA
forecast and the b VR, c ZH, and d BOTH analyses

the best forecast performance in terms of pattern and intensity. It is also the only
experiment that can simulate the rainfall at the coast. The convergence zone in the
BOTH forecast is the bestmaintained since thewind offshore of southwestern Taiwan
can be corrected by assimilating V r, and the outflow from the cold pool is enhanced
by assimilating Zh. The improvements in the dynamical and thermodynamic fields
are essential to capture the pattern and variation of heavy rainfall over the terrain.
Given that BOTH agrees very well with the observation during the first 7 hours, it
could provide very useful information for disaster prevention and decision-making
regarding the location of heavy rainfall and the corresponding temporal variations.

Figures 6 and 7a demonstrate that the assimilation of radar data can be very bene-
ficial for very short-term rainfall prediction, even only with either radial velocity or
reflectivity. However, to capture the realistic behavior, thewind andmass adjustments
need to be complementary to each other, providing proper dynamical conditions to
support the changes in moisture and hydrometeor fields over complex terrain. For
such type of a long-lived precipitation event, the moisture supply plays an important
role in the rainfall intensity and duration. If the moisture field is not updated during
the analysis step and the change in moisture is merely through model integration,
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Fig. 6 Six-hour rainfall accumulation from 0200 to 0800 UTC 16 June 2008 from a observation
(rain gauge) and the b NoDA, c VR, d ZH, e BOTH and f NoQV forecasts

the precipitation prediction ends up losing the heavy rainfall in southwestern Taiwan
(Fig. 6f), even if Zh is assimilated.

Although the impact of radar data could last for seven hours, forecast errors
of all the experiments are eventually dominated by errors in the environment of the
convection.All the forecasts have too-strongwesterlies over the coast of southwestern
Taiwan and excessively dry conditions there at later lead times. Without the required
moisture transport, the amount of precipitation after 6 hours reduces rapidly.

b. Impact of radar data assimilation on the onset of the afternoon thunderstorm

In addition to the direct impact on heavy rainfall prediction in Sect. 3 a, assimi-
lating radar data can affect the prediction of the onset of convection downstream
the observed area. On the same day, a short-lived afternoon thunderstorm developed
under an unstable thermodynamic condition over northern Taiwan, downstream of
the prevailing southwesterly (Fig. 6a). This subsection appeared in an earlier form in
Cheng et al. (2020), which investigated the sensitivity of predicting this short-lived
heavy rainfall event with the assimilation of radar data in the upstream conditions
based on the same experiments in Sect. 3 a. Although the area of interest is within
the observing range of RCWF, there is no radar data available in this area during the
initiation of the afternoon thunderstorm. Nevertheless, assimilating the radar data



Convective-Scale Data Assimilation and Precipitation Prediction … 555

Fig. 7 Time series of the hourly rainfall (mm/h) averaged over the area in a southwestern and
b northern Taiwan (the black boxes in Fig. 6 a)
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Fig. 8 Superobbed reflectivity (dBZ) at 1000 LST (0200 UTC)16 June 2008. Contours have the
same definition as in Fig. 6a. The red contour is used as the threshold of terrain height to remove
terrain-related noise

upstream (Fig. 8) does have a significant impact on precipitation prediction (e.g.,
Fig. 6b, c).

Regarding the rainfall behavior in temporal evolution and spatial distribution,
the NoDA forecast has some skill in predicting this event but is less satisfactory.
Even though RCCG and RCKT cannot directly observe the convective storms over
northern Taiwan, the intensity, location, and temporal variation of the heavy rain-
fall in this area are significantly improved (Figs. 6c, and 7b) after the model wind
field is updated by assimilating the radial velocity upstream. Compared to NoDA,
there is no rainfall simulated over the target area in the VR forecast at 1100 LST
(Fig. 9(c-1)), and the onshore flow over the upstream area is enhanced with higher Tv

(Fig. 10a vs. Fig. 10e). These differences inVR contribute greatly to better predict the
formation and development of the afternoon thunderstorm in the downstream, and
the location of the rainfall maximum in VR is closer to the observations. In contrast,
the BOTH forecast significantly underestimates the amount of precipitation over
northern Taiwan and is even weaker than that of the NoDA forecast (Figs. 7b, 9(b-3)
vs. 9(d-3)). The main improvement of the precipitation prediction for this afternoon



Convective-Scale Data Assimilation and Precipitation Prediction … 557

1000-1100 1100-1200 1300-1400 1400-1500

OBS 

CNT

VR 

TQC 

BOTH 

1500-1600
(a-1) (a-2) (a-3) (a-4) (a-5)

(b-1) (b-2) (b-3) (b-4) (b-5)

(c-1) (c-2) (c-3) (c-4) (c-5)

(d-1) (d-2) (d-3) (d-4) (d-5)

(e-1) (e-2) (e-3) (e-4) (e-5)

Fig. 9 Hourly rainfall from (1) 1000, (2) 1100, (3) 1300, (4) 1400, and (5) 1500 LST 16 June 2008.
From top to bottom rows are observations based on the rain gauge data, the CNTL, VR, BOTH,
and TQC forecasts, respectively. The black box indicates the target area, and the red circle in (d-1)
highlights the light rain in Miaoli county. This figure is reproduced from Fig. 5 in Cheng et al.
(2020)

storm event appears due to the upstreamwind adjustment from assimilating the radial
velocity, while degradation is obtained from assimilating the reflectivity.

The poorer representation of afternoon thunderstorm in BOTH is attributed to
the excessively and unrealistic early precipitation over Miaoli County (red circle
in Fig. 9(d-1)) during 1000–1100 LST. The associated evaporation causes a weak
cold pool to form near the surface (Fig. 10j) and move northward following the
environmental flow. As shown in Fig. 10k, Tv in the BOTH simulation is 3 degrees
less over the coastal area in northwestern Taiwan at 1200 LST than in the other
simulations. Being located upstream of the afternoon thunderstorm, such a cold
pool hinders the high Tv air flowing into northern Taiwan, which leads to a less
favorable condition for the development of afternoon convection.This implies that the
reflectivity over this area is contaminated by the non-meteorological related signals,
but this cannot be filtered out completely by the quality check (QC) criterion, in
which the data is recognized as topography-related noise if the wind speed is low
and reflectivity is high.

An experiment, named as TQC, that applies an additional terrain-related QC to
remove the near-surface reflectivity over the mountainous area (indicated by the
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Fig. 10 Virtual potential temperature (K) and wind (ms−1) at the lowest model level from 1000
LST (0200 UTC) to 1300 LST (0500 UTC). From top to bottom rows are results from the NoDA,
VR, BOTH, and TQC forecasts, respectively. In (a), the solid box indicates the target area (same
as in Fig. 6a), and the dashed rectangle indicates the upstream area. This figure is reproduced from
Fig. 4 in Cheng et al. (2020)

gray dots in Fig. 8) shows a great difference in precipitation. Among all experiments
using the radar data, TQC is the only experiment that resulted in a very intense
precipitation event during 1500–1700 LST and its hourly precipitation rate is the
most intense (>14.5 mm h−1), with a longer duration similar to the observations.
Therefore, by removing the near-surface reflectivity over themountainous area, TQC
avoids exhibiting the unrealistic early precipitation during 1000–1100 LST, and there
is no anomalous cold pool formed near the surface (Fig. 10 i vs. 10 m). Sufficient
warm andmoist southwesterly flows into northern Taiwan to sustain the development
of convective storms (Fig. 9(e-5)).

The accuracy of reflectivity data not only affects the hydrometer fields, but also
the thermodynamic fields, which can affect predicting the onset and development of
thunderstorms downstream the observing area. It is critical to consider the effect of
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the complex terrain with a QC algorithm more sophisticated than using a criterion
of low wind speed and high reflectivity.

4 Limitations in WLRAS

Asmentioned in the introduction, the performance ofWLRAS can be affected by the
assimilation setup, such as the ensemble size or localization. Especially, sampling
error is a major factor limiting the accuracy of the analysis. This section is an excerpt
from Wu et al. (2020) and reviews the characteristics, attributions and impact of the
sampling errors induced by using an insufficient ensemble size with WLRAS.

a. Characteristics of sampling errors

In EnRDA, model state variables can be updated directly by radar data through the
flow-dependent background error covariance (BECV) estimated by the short-term
ensemble forecast. Sampling errors affect the accuracy of the ensemble-estimated
BECV,but such impacts are different for theBECVbetween the observable andunob-
servable model states in the radar data-based convective-scale EDA. Also, sampling
errors can have a larger impact when the error correlation is weak (Houtekamer and
Mitchell 1998).Based on the sameheavy rainfall event discussed inSect. 3 a,Wuet al.
(2020) identify the attribution of sampling errors inWLRASby comparing the results
of the experimentswith small (40members) and large (256members) ensembles. The
setups of the assimilation experiments are the same as the ones used in Sect. 3, except
that the initial and boundary conditions of the ensemble are taken from the NCEP 1°
× 1° FNL (Final) Operational Global Analysis data and perturbed according to the
background error covariance constructed for the WRF-3DVAR system.

The sensitivity of background error correlation (BECR) to sampling error is quan-
tified by the resemblance between the point BECR derived from the two ensemble
sets based on the Standardized Mean Absolute Difference (SMAD) defined as

SMAD =
∑N

i=1

∣
∣CORRL

i − CORRs
i

∣
∣

N × CORRM
. (7)

The SMAD is computed in a 72 × 72 km2 area centered at the observation point
used to calculate the point BECR. In Eq. (7), superscripts L and S denote the large and
small ensembles, respectively. N is the total model grid numbers in the calculation
area. CORRi is the point BECR between observation variables at the observation
location and model states at a model grid point i. CORRM is the maximum value of
absolute BECR with either ensemble set (i.e.,Max(|CORRL

i(i = 1, …, N)|, |CORRs
i

(i = 1, …, N)|) in the area. A larger SMAD indicates that the BECR derived from
the small ensemble shows less similarity to that derived from the large ensemble,
i.e., it is more sensitive to sampling error. Figure 11 shows the SMADs computed
at different observation points between observation variables (Vr orZh) and model
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Fig. 11 The SMADs (colored points) of a CORR(Vr , U), b CORR(Vr , V ), c CORR(Vr , qv),
dCORR(Vr , qr), eCORR(Zh,U), f CORR(Zh,V ), gCORR(Zh, qv), and hCORR(Zh, qr) calculated
with super-obs points on the first PPI elevation angle (0.5◦). The triangles show the location of the
RCCG and RCKT radar sites. The red contours in (c) and (g) indicate the 40 dBZ composite
reflectivity of PM ensemble mean derived from the small ensemble at 0000 UTC 16 June 2008.
Adopted from Fig. 7 in Wu et al. (2020)

variables. The SMADpattern can be used to illustrate the hot spots of sampling errors
associated with this event.

The sampling errors associated with this event are sensitive to the relationships
between the simulated observations and model variables. This relationship is divided
into direct and indirect depending on whether the information of the model variable
will be used in the observation operator. With a direct relationship, CORR(Zhqr)
exhibits small SMADs at all observation points while the SMADs of CORR(Vr ,qr)
are generally larger (Fig. 11d vs. Fig. 11h). The relationship between Vr and the
amount of qr can be influenced by multiple processes, including but not limited to
horizontal/vertical advection, convergence, and condensation. Therefore, sampling
errors in these processes can lead to large SMADs in CORR(Vr ,qr). Given the direct
relationship between Vrand horizontal winds, the SMADs of CORR (Vr , U) and
CORR(Vr , V ) are generally small; however, they are the only two in Fig. 11 that
have much larger values at some specific azimuths of radar beams (Fig. 11a, b).
Such a characteristic is related to the fact that radar measurements cannot resolve
the wind components tangential to radar beams. When the prevailing southwest-
erly wind arrives toward the south of RCCG (offshore of southwestern Taiwan),
only the southerly component contributes to the radial wind from the RCCG radar.
Thus the radial wind has little correlation with the westerly component. Therefore,
CORR(Vr , U) over this region can be contaminated easily by sampling error. Simi-
larly, the southerly component does not contribute to the radial velocity west of
RCKT, leading to a large SMAD of CORR(Vr , V ) in that region. In contrast, the
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SMADs of CORR(Vr , V ) south of RCKT are smaller since the prevailing wind in
this region is predominantly southerly and projects strongly to the radial wind.

Unlike the SMADS for variables with direct relationships, the moisture field has
an indirect relationship with either Vr or Zhand their SMADs showmore complicated
patterns that are sensitive to the intensity of reflectivity. The SMADs of CORR(Zh,qv)
are generally larger over the intense reflectivity area (enclosed by the red contour in
Fig. 11g), while the SMADs of CORR(Vr ,qv) are larger over the area with weaker
reflectivity (Fig. 11c). When dynamic forcing dominates, such as moisture transport
and convergence in the intense reflectivity area, the wind direction is more consistent
among ensemblemembers, and CORR(Vr ,qv) can be robust and easier to estimate. In
comparison, thewind field can be impacted bymultiple factors outside the convective
cells, such as prevailing wind, offshore flow, and topography; thus, the uncertainty
of the wind direction is large there. This makes the estimation of CORR(Vr ,qv)
vulnerable to sampling error and leads to the large SMADs of CORR(Vr ,qv) in
the area outside of intense reflectivity. On the other hand, qv and Zh are implicitly
related through the nonlinear phase transition in the microphysics during convec-
tive development. The phase transition from qv to hydrometeors (i.e., Zh) is related
to the dynamical (e.g., vertical motion) and thermodynamical (e.g., temperature)
conditions, which have large uncertainties in the region of intense reflectivity. These
results imply that if only Zh is assimilated, sampling error tends to introduce erro-
neous corrections on the moisture field in the intense reflectivity area, while such a
detrimental effect will take place in the weak reflectivity area when only Vr is assim-
ilated. In other words, correcting the moisture field is restrictive by assimilating Vr

and Zh.

b. Impact of covariance localization

Covariance localization (Hamill et al. 2001) is a common strategy applied to remedy
the issues associated with sampling error in the EDA algorithms. However, improp-
erly chosen localization scales can degrade the forecast performance. How such an
issue affects precipitation prediction is highlighted by the following experiments
with different horizontal and vertical localization scales. The number in the exper-
iment name indicates the horizontal and vertical localization scales, and the first
letter indicates the small or large ensemble. For instance, S1204 is the experiment
in which WLRAS is performed with 40 ensemble members and with the horizontal
and vertical localization scale equal to 12 and 4 km, respectively.

Among the experiments with a small ensemble size, only S1204 has a root mean
square innovation (RMSI) comparable to the experiments with the large ensemble;
this justifies the choice of horizontal localization in TYL14. With large localization,
S3612 exhibits the largest RMSI in Vr and Zh at later cycles. L3612 exhibits the
smallest RMSI inZh, indicating that larger localization length scale is beneficial when
a large enough ensemble is used to better represent the flow-dependent background
error covariance.

The differences among these experiments lead to different skills in precipitation
prediction (Fig. 12). Both L1204 and S1204 capture the heavy rainfall pattern over
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Fig. 12 Accumulated rainfall from 0200 to 0700 UTC of the experiments a S1204, b S3604,
c S3612, d L1204, e L3604, and f L3612. g The accumulated rainfall from 0200 to 0900 UTC from
rain gauge observations interpolated to model grids. The dashed box in g shows the area used to
calculate verification scores. Adopted from Fig. 11 in Wu et al. (2020)

the coast of southwestern Taiwan, except that the rainfall maximum of L1204 is more
intense and extends further south.When an inadequately long horizontal localization
is used, sampling error degrades the rainfall prediction performance with a small
ensemble size, as S3604 shows a substantial reduction in rainfall intensity compared
to S1204. Such precipitation discrepancies can be attributed to the differences of the
moisture field and hydrometeors between the analysis means of L3604 and S3604
after a 2-h assimilation (Fig. 13a, c); the differences are much larger than those
between the analysis means of L1204 and S1204 (Fig. 13b, d). Therefore, sampling
errors can contaminate the distant BECV and adversely affects the moisture and
hydrometeor analysis.

Although L3604 has a better forecast skill than S3604 in terms of bias, it has
a wet bias at large thresholds (70 mm (5 h)−1). Being initialized from the analysis
adopting a larger vertical localization scale, the L3612 forecast reduces the overesti-
mation of rainfall intensity over the coastal area of southern Taiwan exhibited in the
L3604 forecast (Fig. 12f vs. Fig. 12e). Thus, the choice of the vertical localization
affects the vertical adjustment and modifies the vertical instability of the model state.
Figure 14 shows the cross-section of the BECV between the simulated Zh and the
thermodynamically-relatedmodel variables (θ orqv) derived from the large ensemble
at 0000 UTC. It is evident that there is a strong covariance between the lower and
higher levels for both themoisture and temperature fields. Such characteristics reflect
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Fig. 13 The difference of a, b precipitable water and c, d total hydrometeors between analysis
mean of a, c L3604 and S3604, and b, d L1204 and S1204 at 0200 UTC 16 June 2008. Adopted
from Fig. 12 in Wu et al. (2020)

the vertical scale of convection cells. With a shorter vertical localization (4 km), the
correction becomes more locally limited than that for 12 km (as indicated by dashed
boxes in Fig. 14), unless the observations are sufficiently dense to capture the vertical
structure. Figure 14 also implies that different vertical localizations result in different
vertical adjustments, leading to different thermodynamic conditions. Compared to
L3604, L3612 has a smaller buoyancy, given that it is cooler and drier below 5 km,
but is warmer and moister above 5 km. Thus, the atmospheric condition in L3612
is thermodynamically less unstable than that of L3604, alleviating the excessive
rainfall shown in L3604. These results also imply that using a longer vertical local-
ization in convective-scale data assimilation can better address vertical adjustment
for convective-scale thermodynamic structures. This proper adjustment in the vertical
dimension is essential for correctly representing the strength of the convections and
thus precipitation intensity.
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Fig. 14 The background error covariance between Zh at an observation point (indicated by black
x symbol) and model states a, b qv , and c, d θ over a vertical cross-Sect. (22.25 N◦) derived from
the large ensemble at 0000 UTC 10 June 2008. The observation points are located at 22.25 N◦ with
a, c 1458 m, and b, d 10,840 m height. The dashed boxes illustrate the localization range of 36 km
for horizontal and 4 or 12 km for vertical. Adopted from Fig. 16 in Wu et al. (2020)

5 Improving Heavy Rainfall Prediction in Taiwan
with WLRAS

a. Mitigating the impact of sampling error associated with non-observable tangen-
tial wind under the prevailing wind

The unique pattern of sampling errors associated with the projection ofU andV wind
in the radial direction (Fig. 11a, b) is related to the presence of strong prevailing wind
(i.e., the southwesterly), which is a very common feature when heavy rainfall events
are associated with fronts or monsoon flow. To alleviate this kind of detrimental
impact,Wu et al. (2020) proposed a strategy to lessen the corrections at these specific
locations by increasing the observation error of Vr . When updating the V wind with a
limited ensemble size, the weighting of Vrobservation error is tripled if the super-obs
is located between azimuth 60° and 120° (east of the radar) or between 240° and
300° (west of the radar). Similarly, the Vr observation error is tripled in the south and
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Fig. 15 The vertical cross-section over 22.25 ◦N of the difference in a θ and d qv between analysis
means of L3604 and L3612 at 0200 UTC 16 June 2008. Adopted from Fig. 17 in Wu et al. (2020)
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north of the radar when updating the U wind. An experiment (named LimVr), using
the same setting as S3604 but applying the strategy mentioned above, is conducted
to evaluate its relevance.

The results show a substantial difference in the wind fields between the anal-
ysis means of the two experiments at 0200 UTC, especially for the zonal wind
component (Fig. 16b). The westerly wind difference appears near the coast of south-
western Taiwan, where the intense rainfall was observed (Fig. 12g). By enhancing the
westerly wind, LimVr has a larger moisture flux into Taiwan than S3604 (Fig. 16c).
Consequently, the amount of precipitation over southwestern Taiwan becomes larger
(Fig. 16a), especially over the coastal areas. The result of LimVr suggests that such

Fig. 16 A The accumulated rainfall from 0200 to 0700 UTC of the experiment LimVr. The differ-
ence of b U wind near 1-km height and c east-westerly qv flux over the cross-section at 120.2°E
betweenLimVr andS3604’s analysismeans at 0200UTC16 June 2008. The dashed line in (b) shows
the location of the cross-section in (c). Adopted from Fig. 19 in Wu et al. (2020)
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Vrobservation error inflation method has the potential to deal with sampling errors
associated with the limitations of radial wind measurements and bring benefits to
precipitation prediction. The positive impact of applying this inflation strategy has
also been identified for other rainfall events with the prevailing wind in the environ-
ment, such as a heavy rainfall episode associated with a stationary front hovering
over northern Taiwan.

b. Additional impact from assimilating the GNSS-ZTD data

The accuracy of the moisture field is important for the initialization and develop-
ment of convections and thus affects precipitation’s occurrence, coverage, intensity,
and duration. However, it is restrictive to update the moisture field in WLRAS. As
discussed in Sect. 4 a, the correlations between the moisture and observed variables
are less direct and can be contaminated by sampling errors easily. Besides, moisture
correction at the early stage of convection development would be limited since the
reflectivity and radial velocity from the conventional radars are available only when
the rain starts.Assimilating themoisture observations additionally becomes the direct
solution to tackle this issue inWLRAS.Among the remote sensing observing systems
that provide moisture information, observations based on the global navigation satel-
lite systems (GNSS) are becoming more important for providing reliable moisture
information, such as spaceborne radio occultation (RO) (Ma et al. 2011; Yang et al.
2014; Chen et al. 2020) or ground-based zenith total delay (ZTD) (Bengtsson et al.
2003; Bauer et al. 2015). GNSS-based observations use the fact that the radio rays
emitted by GNSS satellites are bent when passing through the atmosphere, causing
signaling delays as the rays are received. The degree of bending depends on the
change in the density of the atmosphere, which is primarily related to temperature
and humidity conditions. One great advantage of GNSS observations is that radio
rays are affected little by clouds and are thus sensitive to the changes in temperature
and moisture in all weather conditions. A ground-based GNSS receiver measures the
delay in the path in receiving a signal from a GNSS satellite (Bevis et al. 1992) and
ZTD expresses this delay as the excess path length along the zenith direction. The
ZTD data are available at a high temporal frequency (30 min to one hour), filling
in the observation gaps between radiosondes and satellite measurements. Recent
studies suggest that the ZTD data have an important role in providing valuable rapid
moisture information for very short-term forecasts with rapid update analysis cycles
(de Haan 2013) and quantitative precipitation estimation (Bauer et al. 2015).

The ZTD can be considered as comprising two components (ZTD = ZHD +
ZWD): the zenith hydrostatic delay (ZHD) and zenithwet delay (ZWD).Although the
ZWDcontributes only less than 10% to the total delay, this component is an important
indicator of atmospheric water vapor variations. The total precipitable water (TPW),
related to the moisture, can be retrieved based on ZTD (Yeh et al. 2016). Previous
studies have assimilated either ground-based ZTD or TPW in the high-resolution
data assimilation framework (Shoji et al. 2011; Oigawa et al. 2018; Mahfouf et al.
2015; Yang et al. 2020) to improve the moisture analysis. Directly assimilating ZTD
rather thanTPWmaybemore desirable since derivingTPWrequires surface pressure
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information, whichmay not be measured at all GNSS ground stations (Cucurull et al.
2004).

The ground-based ZTD observation network has been established in Taiwan, and
the data can be processed at near real-time (Yeh et al. 2016). In the following, we
review the results of Yang et al. (2020), which investigates the impact of assimilating
the ZTD data in addition to the radar data on short-term precipitation prediction
over complex terrain based on a prefrontal heavy-rainfall event on 10 June 2010
in Taiwan. Figure 17a shows the locations of the ZTD stations used in Yang et al.
(2020). The ZTD observation operator simulates the ground-based ZTD value given
a model vertical profile at the observation location. As the first step, the model state
is interpolated into a vertical profile of temperature and humidity at a given ground-
based GNSS site. Information on the modeled surface pressure and surface altitude
at this location is also required. The estimation of ZHD is based on Saastamoinen
(1972), which has a very high accuracy compared to more elaborate methods (Vedel
et al. 2001). The ZWD is related to the vertical integration of water vapor. Further
corrections are required to consider the difference between the model surface height
and the altitude of the station. If the altitude of the site is higher than the model
terrain, the correction removes the extra ZTD estimation by considering the vertical
integration of the refractivity from the model terrain to this site altitude, and vice
versa.

For the R-localization in LETKF, the height of the observation is defined at the
height of the GNSS station, even though the observation is actually a vertically
integrated quantity. This assumption is reasonable since the presence of moisture
is usually greatest near the surface. The vertical localization for the ZTD data is
described by a Gaussian function with 3 km as the standard deviation (localization
scale). To consider the horizontal scale of the moisture distribution, ZTD is assimi-
lated with a horizontal localization scale of 50 km, which is one order of magnitude
broader than the one used for assimilating the radar data. In the following results,
the assimilation is performed hourly from 0000 to 1200 UTC 10 June 2012 with
an analysis grid spacing of 2 km. Results of three experiments that assimilate radar,
ZTD, and both data are presented, and they are referred to as RDA, ZDA, and BOTH,
respectively.

With the flow-dependent background error covariance, the moisture corrections
are sensitive to the characteristics of the background moisture and landcover type.
Assimilating the ZTD data has a large and dominant impact on the moisture condi-
tions in Taiwan, and thus the ZTD data can be complementary to the radar data. The
impact of assimilating the ZTD data is illustrated by the analysis increment from
RDA and BOTH at 1200 UTC (2000 LST). While there is limited radar data avail-
able over northwestern Taiwan due to non-precipitating conditions (Fig. 17b), the
ZTD data in this area provide significant moisture and southwesterly wind correc-
tions in the BOTH analyses (Fig. 18a). In particular, wind corrections with ZTD data
exhibit convergence in the coastal areawith positivemoisture increments, resulting in
broader moisture convergence in BOTH over northwestern Taiwan than that in RDA.
In this area, the amount of analysis corrections on the moisture and wind fields from
assimilating radar data is limited in the BOTH and RDA analyses (Fig. 18b, c).
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Fig. 17 a Observation locations of ZTD stations. The locations are categorized by the altitude (m)
of the station. b Superobservations of radar data at 1200 UTC (2000 LST) 10 June 2012. Adopted
from Fig. 4 in Yang et al. (2020)
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Fig. 18 Analysis increment of TPW (g kg−1) and wind (m s−1) at the level of 950 hPa at 1200
UTC 10 June. a is from assimilating ZTD data in BOTH, b and c are from assimilating radar data
in BOTH and RDA, respectively. The dashed contours denote the terrain height at 1 and 2 km.
Adopted from Fig. 10 in Yang et al. (2020)

Furthermore, near the coast of southwestern Taiwan, where radar data is abundant
and rainfall has persisted, assimilating ZTD data reduces the moisture and enhances
the onshore flow. The ZTD data provide a robust moisture correction since these
data are directly related to the moisture field, and the data are available regularly at
the GNSS stations. The dynamical relationship between moisture and wind allows
the ZTD data to provide strong wind corrections as well. It is expected that the ZTD
data assimilation modifies the conditions for convection development and thus heavy
precipitation. Assimilating radar data also provides strongwind corrections offshore,
but the moisture correction is limited.

For this event, RDA generally gives a good precipitation prediction in terms of
the precipitation amounts and locations since the synoptic weather conditions are
generally well represented in the initial conditions. However, the RDA forecast in
areas of heavy rainfall is suboptimal in several aspects but the prediction can be
improved by assimilating ZTD data additionally. The heavy precipitation in RDA
begins too early and is too strong in southern Taiwan (areas K and P in Fig. 19b, f) but
the overpredicted rainfall can be suppressed in BOTH (Fig. 19h) with the moisture
reduction provided by the ZTD data (Fig. 18a). Also, the amount of precipitation
in RDA in area N is less than the observations during the early forecast hours,
but the rainfall is significantly overpredicted at 12 h (Fig. 19n). The precipitating
process in this area is spun up in BOTH, even when there are non-precipitating
conditions initially. It is noted that ZTD data assimilation alone is also very useful
for improving short-term forecasts, and that moisture adjustment can improve the
location and intensity of heavy rainfall. The intensity and locations of heavy rainfall
generally agrees very well with the observations (Fig. 19o). However, without the
direct information of hydrometeors, the simulated rainfall intensity is weaker than
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Fig. 19 Rainfall accumulation (mm) from observation (the 1st column) andRDA, ZDA, andBOTH
(2nd to 4th columns) forecasts initialized at 1200 UTC (2000 LST) 10 June. Rainfall is accumulated
for 1, 3, 6, and 12 h. Adopted from Fig. 11 in Yang et al. (2020)
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that from RDA. Furthermore, the difference in the initialization affects the rainfall
field within a very short time frame (Fig. 19b–d), indicating that rapid updating of
the moisture field also plays an important role in very short-term rainfall predictions.

Themoisture adjustment brought by assimilating the ZTD data can also be crucial
to capture the initializationof afternoon thunderstormduring theprediction. Figure 20
is the precipitation prediction for an afternoon thunderstorm event over northern
Taiwan on 22 July 2019. Torrential rainfall took place south of Taipei at 1720 LST
(Fig. 20a). The assimilation is conducted from 1230 LST (0430 UTC) to 1430 LST
(0630 UTC), with radar and ZTD data. Unlike the results shown in previous cases,
the assimilation of radar data cannot capture the features leading to the heavy rainfall
of this event, and the rainfall amount and location are even less accurate than NoDA
(Fig. 20c vs. Fig. 20b). In contrast, the ZDA forecast exhibits a much greater amount
of rainfall than the RDA forecast. In particular, the general features in the ZDA
forecast are similar to the observations, where heavy rainfall occurs over the moun-
tainous area of the New Taipei City, Hsinchu, and Miaoli counties, even though the

Fig. 20 Rainfall accumulated from 1430 to 2030 LST (0630 to 1230 UTC) 22 July 2019. a Obser-
vation from the rain gauge, b NoDA, c RDA, and d ZDA forecasts initialized at 0200 UTC 22
July
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Fig. 21 Total precipitable water (mm) of a NoDA, b RDA, and c ZDA at 0630 UTC

rainfall in New Taipei City is overpredicted. Compared to NoDA, the ZTD assimila-
tion provides large moisture enhancement while the moisture in RDA is very limited
(Fig. 21b, c). Themoisture corrections are effective in modifying the thermodynamic
conditions and lead to great differences in precipitation prediction.

In conclusion, the ground-based GNSS ZTD data can provide rapid moisture
information that is crucial in convective-scale data assimilation for representing the
convection initialization and development.

6 Summary and Future Work

This chapter reviews the impact and challenges of applyingWLRAS for precipitation
prediction in Taiwan, which has complex terrain. The results are mainly based on a
thorough investigation of a classical heavy rainfall event in Taiwan on 16 June 2008.

For this event, the sustainability of the convergence zone is the key for producing
long-lived heavy rainfall events. The convergence zone is established by the warm
southwesterly offshore and a cold pool outflow at the coast of southwestern Taiwan,
induced by evaporative cooling from precipitation. Assimilating Vr can adjust the
dynamical field effectively but is not good enough to generate heavy precipitation at
the right location. In comparison, assimilating Zh has a direct effect on correcting the
rainfall location by adjusting the hydrometeor concentrations and indirect effects on
the moisture and temperature fields. However, without the support from the updraft,
most hydrometeors rain out during the first hour, as a feature ofmodel shock. Assimi-
lating both Vr and Zh provides good cooperation between the dynamical and thermo-
dynamic conditions at the coast with characteristics of orography effect. This leads
to the best prediction in the intensity, location, and even the heavy rainfall’s temporal
variation.

For the same case, the characteristics, attribution, and impact of sampling error are
identified by comparing the results ofWLRASwith 40 and 256members. In general,
sampling errors for this event are sensitive to the relationships between the simulated
observations and model variables. The ensemble-based estimation of BECR is less
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sensitive to the ensemble size when the relationship between variables is direct and
robust, such asZh and qr , andVr andU/V. For sampling errors arising from less-direct
relationships between variables, moisture is a particularly difficult variable to update
by assimilating V r or Zh since BECR between the simulated radar observations and
moisture is much more uncertain. In the areas where the radar beams cannot resolve
the U or V component, the BECR between the simulated Vr and model horizontal
wind is sensitive to sampling error when the projections of the U and V component
to the simulated Vr are comparable. In summary, the sampling errors in EnRDA are
greatly affected by the dynamic/thermodynamic properties of the weather systems
and the limitation of measurement simulated by the model. With a small ensemble,
the sampling errors lead to an underprediction of heavy rainfall when the horizontal
localization radius is excessively large.WhenBECR in vertical can bewell estimated
by a large ensemble, using a long vertical localization is critical to provide necessary
adjustments for representing the vertical thermodynamic structure of convection,
which further improves precipitation prediction.

On the same day, the prediction of a short-lived, intense afternoon thunderstorm
over northern Taiwan is very sensitive to the initial conditions upstream. A QC crite-
rion involving low wind speed and high reflectivity values may not completely filter
out the terrain-related noises. Assimilating these problematic reflectivities upstream
produces unrealistic outbreaks of light rain, whose evaporative cooling blocks the
transport of warm and moist air into the target (downstream) area. As a result,
this affects the initialization and development of the downstream thunderstorm.
Removing these problematic reflectivities over the mountainous region upstream,
a condition of thermodynamic instability can be established. The afternoon thunder-
storm in the target area can be triggered during the forecast, with a well-represented
location and intensity of this short-lived heavy rainfall event. A sophisticated proce-
dure to examine the data quality over the terrain area is essential for optimizing the
impact of radar data on precipitation prediction.

Assimilation of the GNSS ground-based ZTD data in Taiwan could be a remedy
to compensate for the limitation of radar data on moisture corrections because the
fast variations in the ZTD data are highly related to variations in the moisture field.
For the case that assimilating radar data has led to somewhat skillful precipitation
prediction, assimilating ZTD additionally can provide significant moisture adjust-
ment in the area where the convection is initialized and when no radar data was avail-
able; and in the area where heavy precipitation had persisted and the precipitation
is overpredicted with assimilation of radar data. For the case that assimilating radar
data does not demonstrate improvement in precipitation prediction due to its limited
moisture correction, the ZTD data assimilation can effectively modify the moisture
field, leading to a thermodynamically unstable condition favorable for developing
strong convection. For both events, the intensity and location of the heavy rainfall
are improved. In particular, the ZTD data are expected to capture the meso-alpha
scale moisture interacting with topography, such as the moisture transport during the
Meiyu season. Therefore, the horizontal covariance localization scale is chosen to
be one order of magnitude larger than what is used for radar data. With the advan-
tages of inexpensive instrumentation and easy installation, the ZTD data becomes
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an important set of observations complementary to radar data and provides a great
potential to improve very short-term predictions over Taiwan.

Several challenges with the convective-scale data assimilation system in Taiwan
need to be further tackled to improve heavy rainfall prediction. The near-surface
condition is critical for representing the thermodynamic instability over topography.
Assimilating surface observations can compensate for the limitation that the radar
data cannot observe the atmospheric condition near the surface. The advantage of
assimilating high-resolution radar data needs to be optimized by considering the
observation error correlation (Yeh et al. 2019). Finally, improving the prediction of
heavy precipitation with multi-scale interactions needs to be achieved through better
incorporation with global-scale analysis (Hsiao et al. 2015) or data assimilation
methodologies that provide multi-scale corrections (Zhang et al. 2009; Miyoshi and
Kondo 2013; Yang et al. 2020).
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Interpretation of Forecast Sensitivity
Observation Impact in Data Denial
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Abstract The U.S. Navy’s global operational data assimilation and forecast system
has significantly greater beneficial impact from the assimilation of global and polar
Atmospheric Motion Vectors (AMVs) as compared to that from other Numerical
Weather Prediction (NWP) centers. Results from an earlier multi-agency data denial
inter-comparison study, presented at the 11th International Winds Working Group
meeting (Baker et al. 2012a), demonstrated that this relatively large observation
impact for the Navy system could be attributed to the assimilation of AMVs from
multiple data providers which provided both a greater number of observations and
better spatial and temporal coverage (Merkova et al. 2012). One important conclusion
from Baker et al. (2012a) was that the interpretation of Forecast Sensitivity Obser-
vation Impact (FSOI; Langland and Baker 2004) for data denial studies can be prob-
lematic, particularly when the change to the Global Observing System is substantial
(such as denying all satellite AMVs). Typically, such comparisons between twoNWP
systems for different data assimilation experiments explicitly assume that the quality
of the two analyses are similar, and that the FSOI can be computed independently for
the control and data denial experiments. However, this assumption may not be valid
for data denial experiments with appreciable changes to the observing system. These
considerations were further explored in the Baker et al. (2012b) presentation at the
Fifth WMO Workshop on the impact of Various Observing Systems on Numerical
Weather Prediction. These implications of data denial experiments on the interpre-
tation of FSOI metrics are generally not well recognized. Additionally, the interpre-
tation of FSOI may also be problematic for any set of experiments where the quality
of the underlying analyses differ considerably from each other. In this chapter, the
previous AMV data denial experimental studies are re-examined within the context
of the implications on the interpretation of FSOI for data denial experiments.
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1 Introduction

Until recently, AtmosphericMotionVectors (AMVs) have had amuch larger adjoint-
based observation impact in the U.S. Navy’s global operational numerical weather
prediction (NWP) system compared to other global NWP centers. Conversely, the
observation impact from microwave and infrared atmospheric sounders has been
less. The total observation impact for the Navy and NASA Global Modeling and
Assimilation Office (GMAO) global NWP systems for May 2012 is summarized in
Fig. 1. The top five (six) observation categories for Navy were: AMV, radiosonde,
aircraft (AMDARandMDCRS), land surface, IASI, (SSMIS integratedwater vapor),
and AMSUA. The top five categories for GMAO are AMSUA, radiosonde, aircraft,
IASI, and AMV. The Navy system uses a moist total energy error norm, while the
GMAO system uses a dry total energy norm, and this accounts for large impact from
SSMIS integrated water vapor (which GMAO did not assimilate). A more recent

Fig. 1 Total Forecast Sensitivity Observation Impact for the a Navy system, and b NASA GMAO
system (right), for the month ending on May 28 2012, and for percent impact November 2020 for
the cNavy system, and dNASAGMAO system. The NRL observation impact is computed for each
assimilation cycle, e.g. four times per day, while the GMAO observation impact is computed only
for 00UTC. Note that the sign convention for GMAO was changed between 2012 and 2020 (cf. (d)
from https://gmao.gsfc.nasa.gov/forecasts/systems/fp/obs_impact/, last retrieved 30 May 2012.)
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comparison from November 2020 indicates that geostationary AMVs now have the
largest adjoint-based observation impact for both systems (Fig. 1c, d).

The U.S. Navy’s global operational NWP system in 2012 was composed of
NAVDAS-AR (NRL Atmospheric Variational Data Assimilation System—Acceler-
ated Representer), a 4D-Var (four-dimensional variational) global data assimilation
system in observation space (Xu et al. 2005; Xu et al. 2006; Rosmond and Xu 2006;
Chua et al. 2009), and the NOGAPS (Navy Operational Global Atmospheric Predic-
tion System), a global atmospheric model that at that time was run operationally with
a resolution of 319 spectral triangular truncation on 42 levels (Hogan and Rosmond
1991; Peng et al. 2004).

As discussed in Pauley et al. (2012), the NRL system differed from other
operational centers in the use of geostationary AMVs from multiple operational
data providers (NESDIS, EUMETSAT, and JMA), the University of Wisconsin-
Madison’s Cooperative Institute for Meteorological Satellite Studies (CIMSS), with
additional winds provided from AFWA (Air Force Weather Agency). Representa-
tive data coverage charts for these AMVs are shown in Fig. 2. Another difference
from other operational centers is that the AMVs are used as “superobs”, as described
Pauley et al. (2012).

Fig. 2 Atmospheric Motion Vector Data Coverage for May 10 2012, for
a NESDIS/EUMETSAT/JMA, b CIMSS/UW, c AFWA, and d NESDIS Hourly winds
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2 Experiment Design

The experiments used a configuration of NAVDAS-AR and NOGAPS that closely
matched the Navy’s operational configuration in use in 2012. For the assimilation
component, NAVDAS-AR was run with T319 outer loop resolution (approximately
42 km), and a T119 inner loop resolution (approximately 110 km), with 42 vertical
levels from the surface to 0.4 hPa (around 70 km). Approximately 1.1 million obser-
vations were assimilated every 6 hours for the control run, while the denial run
removed all of the geostationary and polar orbiting AMVs (see Table 1). The AMVs
were averaged to form superobs, following the procedure outlined in Pauley et al.
(2012). Approximately 175,000 superobs were assimilated for each assimilation
cycle, representing around 15%of the total observation count. TheNOGAPS forecast
model used Eulerian differencing, with the Emanuel cumulus scheme. The satellite
radiance bias correction method followed an offline two-predictor approach (Harris
and Kelly 2001) and used the previous 15 days of radiance innovations to generate
the bias coefficients, which were updated with each assimilation cycle.

The data denial experiments discussed in Baker et al. (2012a) were run for both
Northern Hemisphere (NH) winter and summer cases. Here, we focus on the NH
Summer, as the previous study found that the impact of AMVs is greatest for the
summer hemisphere,which corresponds to theNorthernHemisphere tropical cyclone
season. The control run was initialized with the 00UTC cycle on 1 August 2010,
and spun up through the 18UTC cycle on 14 August 2010. The initial conditions,
bias coefficients, and bias statistics for this date and time were archived to provide
the starting point for the AMV denial run. The first assimilation cycle with the

Table 1 Sources of AMVs, according to satellite, orbit, and frequency band and data providers.
Acronyms are defined in the Appendix

Satellite Orbit Frequency Band Data Providers

GOES-11 Geostationary IR, SWIR, WV,
WVCLD, VIS

NESDIS, CIMSS,
AFWA

GOES-13 Geostationary IR, SWIR, WV,
WVCLD, VIS

NESDIS, CIMSS,
AFWA

Meteosat-7 Geostationary IR, WV, WVCLD, VIS EUMETSAT, CIMSS,
AFWA

Meteosat-9 Geostationary IR, WV, WVCLD, VIS EUMETSAT, CIMSS,
AFWA

MTSAT-2 Geostationary IR, SWIR, WVCLR,
WVCLD, WV, VIS

JMA, CIMSS

MODIS Terra Polar IR, WV CIMSS

MODIS Aqua Polar IR, WV CIMSS

MODIS Terra/Aqua mixed Polar IR, WV CIMSS

AVHRR (NOAA
15,16,18,19), METOP-A

Polar IR CIMSS
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AMV data denial was for the 00UTC cycle on 15 August 2010. The 5-day forecasts
were initialized from the 12UTC analyses, with the final forecast on 30 September
2010. The assimilation cycles were continued for another 5 days to provide verifying
analyses for the long forecasts. This specific experiment configuration was specified
for the multi-agency data denial inter-comparison study for the 11th International
Winds Working Group meeting.

3 Northern Hemisphere Summer Forecast Verification
Results

In this section, the forecast verification results from theNorthernHemisphere summer
AMV denial experiment are summarized. The 500 hPa geopotential height anomaly
correlation die-off curves are displayed in Fig. 3. These figures suggest that the
largest impact from AMV winds is in the summer (northern) hemisphere (Fig. 3a),
with minimal impact in the winter (southern) hemisphere (Fig. 3b). The 500 hPa
geopotential height anomaly correlation scores are analogous to those presented for
the NH winter experiments (not shown; see Baker et al. 2012a), in that most of the
benefit from the AMV assimilation appears to be in the summer hemisphere, with
minimal impact in the winter hemisphere.

The impact of the AMV assimilation on the analyses (initial conditions) were
assessed by computing the mean differences between the control and denial runs
for the period from 15 August through 30 September 2010. The mean denial minus
control wind speed and vector differences at 250 hPa are plotted in Fig. 4. The
largest differences are located in the tropics, where the AMV assimilation noticeably
alters the analyzed mean wind speed and direction. Other areas with moderate wind

Fig. 3 Anomaly correlation die-off curves for 500 hPa geopotential heights for a the Northern
Hemisphere and b Southern Hemisphere for 15 August 2010 through 30 September 2010. The
forecast lead time in hours is given on the abscissa, and the anomaly correlation is given on the
ordinate. Shading indicates the 95% confidence level
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Fig. 4 a Averaged wind speed and wind vector differences at analysis time at 250 hPa. The
color shading indicates the mean wind speed difference and the arrows give the mean wind vector
difference (both in ms−1). b Distribution of radiosondes stations for 00UTC on 31 March 2010

differences tend to coincide with regions with few conventional wind observations
from radiosondes (Fig. 4b), pilot balloons, or aircraft.

The 24-hr forecast 200 and 850 hPa vector wind RMS errors for the tropics, as
verified against radiosondes, are plotted in Fig. 5. Although the differences are not
statistically significant (in part due to the limited number of radiosondes stations in
the tropics; Fig. 4b, there is a clear trend for lower vector wind RMS errors in the
forecast when AMVs are assimilated.

The homogeneous tropical cyclone (TC) track forecast errors for the control and
denial experiments are shown in Fig. 6. The storm position in the forecast was
determined by the NOGAPS tropical cyclone storm tracker which verified against
the TC warning position as opposed to the post-season best-track position. Although
there were not many individual tropical cyclones during the test period, these results
highlight the importance of AMV assimilation for improving TC track forecasts.

Fig. 5 a 200 hPa and b 850 hPa vector wind RMS errors in the tropics for the Northern Hemisphere
summer AMV control experiment (blue line; Denial) compared to the AMV denial experiment
(green line; Control), as verified against radiosondes. The forecast lead time (hours) is given on the
abscissa, and the vector wind error (m s−1) is given on the ordinate
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Fig. 6 Tropical cyclone track prediction error in nautical miles (nm; ordinate) as a function of
forecast lead time (hrs; abscissa) for 15 August 2010, through 30 September 2010. The control
experiment errors are given by blue bars, and the denial experiment errors are given by green bars.
The number of verifying storm positions for this homogeneous comparison, for each forecast lead
time is given by the number below the graph. The differences are significant for all forecast lengths
to t + 72 at the 99.0 to 99.5% confidence levels

4 Northern Hemisphere Summer Forecast Sensitivity
Observation Impact

The forecast sensitivity observation impact (FSOI; Langland and Baker 2004) was
computed for each 6-hr assimilation cycle, using a moist total energy error norm.
The observation impact for the major observing platforms/categories are presented
in Fig. 7 for the control experiment and the AMV denial experiments. These results
show that, in the absence of AMVs, other observations account for a larger share of
the computed FSOI. The largest increases in FSOI in the denial run are for the satellite
radiances and for other wind observations. For the control run, the greatest beneficial
impact overall (Fig. 8a) is from the IR winds, although on a per-observation basis
(Fig. 8b), the VIS winds provide more impact than either IR or WV winds, despite
the low observation count (Fig. 8c). The FSOI contributions due to the assimilation
of radiances for the various satellite sounders (see Appendix for the acronym list) are
presented in Fig. 9 for the control and denial experiments. Interestingly, the largest
increases in FSOI occur for the two hyperspectral IR sounders.
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Fig. 7 Percent reduction of the total FSOI for eachmajor observing category for 15 August through
30 September 2010, a for the control experiment and b theAMVdenial experiment. The observation
impact is computed every 6 h

Fig. 8 Statistics for the control run as a function of satellite and type (infrared, water vapor, visible),
for a the percent reduction of the total FSOI and b the FSOI per observation (J kg−1), and c the
number of superobs; each wind component counts as one observation
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Fig. 9 FSOI for the assimilatedmicrowave and infrared satellite sounders for a control and bAMV
denial runs. The colored bars represent the FSOI, while the black dashed lines and dots give the
total observation counts divided by 106. Note that the abscissa scales differ, and the vertical blue
line highlights the 60 J kg-1 value. These figures show that the MW and IR satellite sounders have
greater impact when AMVs are denied

5 Northern Hemisphere Summer 24-H Moist Total Energy
Error Norms

The observation impact results presented in Sect. 4 show that AMV assimilation
contributes to a large reduction in the total moist energy error norm. The 24-hr
total moist energy error norms for the control run were separated into the four main
components of temperature, humidity, vorticity and divergence (neglecting the much
smaller terrain pressure error), and averaged starting with the 00UTC cycle on 1
August 2010, and continuing through the 12UTC cycle on 9 September 2010. The
average 24-hr forecast error norm components, shown in Fig. 10, are largest in spatial
extent and magnitude for humidity followed by vorticity. The corresponding FSOI
values were computed for each of the four components of the total moist energy
error norm. According to Fig. 7a, the assimilation of the AMVs contribute around
24% to the total FSOI for all observations. Of that 24%, approximately 12% is from
the reduction in the humidity error, and 9.5% from the vorticity error, with less
than 2% each attributable to temperature and divergence (Fig. 11). To summarize,
AMVs provide the greatest percent reduction in the total moist error norm for any
observation category. The total moist error norm is dominated by humidity and
vorticity components, and the assimilation of AMVs is effective in reducing these
two components of the 24-hr total moist energy error norm.

However, reducing the difference in the twoerror norms (24-hr and30-hr) is not the
sameas reducing the total 24-hr error norm, particularlywhen the denied observations
represent a significant proportion of the observing system, or contribution to the
overall reduction in forecast error. Under these circumstances, the accuracy of the
denial run analysis can be significantly less than for the control run. If the error
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Fig. 10 Components of the averaged 24-h moist energy error norm (J kg-1), for a temperature,
b humidity, c vorticity and d divergence

-14 -12 -10 -8 -6 -4 -2 0

AMV-temperature

AMV-humidity

AMV-vor�city

AMV-divergence

Fig. 11 The percent reduction of the total FSOI for AMVs (from Fig. 7a), but computed for the
temperature, humidity, vorticity and divergence components of the total moist energy error norm
(Fig. 9)
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norms are computed relative to their own (self) analysis, then the control and denial
runs may appear to have similar 24-hr moist energy error norms. The associated
FSOI values may be similar and highly misleading. For this discussion, we note that
denying all satellite AMVs is a large change to the NRL global analysis/forecast
system, and explicitly assume that the control analyses (with AMV assimilation) are
more accurate than the analyses produced without AMV assimilation.

The 24-hr moist total energy error norms for the control and denial cases, where
both runs are verified against their own (self) analysis, are compared in Table 2.
The column labeled “Total” contains the global total 24-hr moist error norm values,
which are unexpectedly smaller (less error) for the denial run than for the control run.
To better understand this apparent discrepancy, the global errors are partitioned into
the main components of vorticity, divergence, temperature and humidity (neglecting
the much smaller terrain pressure error). The error norms for all components except
vorticity are larger for the control run than the denial run, again suggesting that
AMV assimilation increases the 24-hr error. These results are contradictory with the
forecast verification results in Sect. 3.

The 24-hr error norm values were then further stratified by region, NHEM (20-
80N), Tropics (20N-20S) and SHEM (20S-80S). For the Northern (summer) Hemi-
sphere, AMV assimilation decreases the 24-hr error norm for all components, which
is consistent with the 500 hPa geopotential height anomaly correction scores. For the
Southern (winter) Hemisphere, AMV assimilation primarily reduces the vorticity
errors, and slightly increases the humidity errors. In the tropics, however, AMV
assimilation apparently increases all components of the 24-hr error norm values.

The 24-hr moist energy error norms’ time series are plotted for 15 August through
30 September in Fig. 12. The solid green line represents the 24-hr error norm for
the control run as verified against the control analyses, while the cyan line shows
the 24-hr error norm for the denial run as verified against the denial analyses. When
verified against self-analyses, the control and denial runs have similar 24-hr moist
energy error norms. However, when verified against the control analyses, the denial
forecasts have much larger 24-hr errors using the total energy error norm, and all
components of the error norm (vorticity, divergence, temperature, humidity) are
larger when AMVs are excluded from the assimilation.

To further investigate these results, the 24-hr total moist energy error norms were
computed using (a) the control run 24-hr forecasts verified against the control anal-
yses, (b) the AMV denial 24-hr forecasts verified against the AMV denial analyses,
and (c) the AMV denial 24-hr forecasts verified against the control analyses. The
error norms were computed for every 6-hr assimilation cycle and averaged from 15
August 2010 through 26September 2010. The time-averaged 24-hr totalmoist energy
error norms for the control (Fig. 13a) and denial (Fig. 13b) runs, when computed
using their own (self) analyses, are remarkably similar in appearance (structure and
magnitude). Such similarities might lead to the erroneous conclusion that AMV
assimilation has little impact on either the forecasts or analyses.

However, when the 24-hr totalmoist energy error norms for the denial run are veri-
fied against the control analyses, the resulting plots are strikingly different (Fig. 13c).
The time-averaged error norms clearly show that the denial of the AMVs results in
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Green line: 
Control verified
against control

Cyan line: 
Denial verified 
against denial

Blue line: 
Denial verified
against control

*tape silo 

Fig. 12 Time series of 24-h total moist energy error norms (J kg−1) for the control run verified
against control (self-analyses) (green line), for the denial run verified against denial self-analyses
(cyan line), and the denial run verified against the control analyses (blue line). The spike in the cyan
line was due to tape silo issues

Fig. 13. 24-h total moist energy error norm (J kg−1) computed using a the control run 24-h forecast
verified against the control analysis,b theAMVdenial 24-h forecast verified against theAMVdenial
analysis, and c the AMV denial 24-h forecast verified against the control analysis
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large departures from the control analyses, not only in the tropics (30S-30N), but
also over the Northern Hemisphere mid-latitude ocean regions. This is consistent
with the forecast verification and FSOI results where the largest benefit from AMV
assimilation was similarly located in the tropics and for the Northern Hemisphere.

6 Summary and Discussion

TheNavy’s global operational data assimilation and forecast system has long demon-
strated significantly greater benefit from the assimilation of Atmospheric Motion
Vectors (AMVs) compared to other NWP centers. In particular, AMVs provide the
largest FSOI (around 24%) for any observing category. This has been attributed to
the assimilation of AMVs from multiple data providers that provide more observa-
tionswith better spatial and temporal coverage and the use of super-observations. The
data denial experiments presented in this chapter show that, in the absence of AMVs,
other observations (primarily satellite radiances—especially from IR sounders—and
other wind observations) largely compensate for the missing winds with respect to
the reduction in the 24-hr error norms and FSOI computations.

Typically, for data denial experiments, the comparisons between two (or more)
data assimilation experiments explicitly assume that the quality of the analyses are
similar, and that the FSOI can be computed independently for each control and data
denial experiment. However, this assumption may not be valid for data denial experi-
ments with appreciable changes to the observing system. Under these circumstances,
the accuracy of the both the denial run analyses and forecasts can be significantly
less than for the control run, and the resulting FSOI computations may be highly
misleading.

This was demonstrated by comparing time series and time-averaged spatial maps
computed using the 24-hr total moist energy error norms from the control 24-hr
forecasts and verifying analyses, and the AMV denial 24-hr forecasts and verifying
analyses. The resulting total moist energy error norms were remarkably similar in
bothmagnitude and appearance for both the control and denial runs. Such similarities
might lead to the erroneous conclusion that AMV assimilation has little impact on
either the forecasts or analyses. In contrast, when the 24-hr total moist energy error
norms for the denial run were computed using the control analyses, the resulting
time series and spatial maps were strikingly different in both magnitude and spatial
structure. In particular, these maps clearly show that the denial of the AMVs leads
to large departures from the control analyses, not only in the tropics (30S-30N), but
also over the Northern (summer) Hemisphere mid-latitude ocean regions—results
that are consistent with the FSOI and forecast verification metrics.

The fundamental conclusion from this study is that the interpretation of FSOI for
data denial studies can be problematic, and the results may be highly misleading.
This is especially true when the change to the observing system is substantial (such
as denying all satellite AMVs).
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Appendix: Definitions of Acronyms

4D-Var: 4-Dimensional VARiational data assimilation
ACARS: Aircraft Communications, Addressing, and Reporting

System
AFWA: (U.S.) Air Force Weather Agency
AIREP: Aircraft Report
AMDAR: Aircraft Meteorological Data Relay.
AMSR-2: Advanced Microwave Scanning Radiometer - 2
AMSU-A: Advanced Microwave Sounding Unit-A
AMSU-B: Advanced Microwave Sounding Unit-B
AMV: Atmospheric Motion Vector
AQUA (AIRS): Atmospheric InfraRed Sounder, flown on the NASA

Aqua satellite.
ASCAT: Advanced Scatterometer, flown on the METOP satel-

lites.
AVHRR: Advanced Very High Resolution Radiometer
CIMSS/UW: Cooperative Institute for Meteorological Satellite

Studies
CLD_WIND: AMVs from geostationary satellites (also referred to as

GEO WINDS)
CrIS: Cross-track Infrared Sounder
CrIS FSR: Cross-track Infrared Sounder, Full Spectral Resolution
EUMETSAT: European operational satellite agency for monitoring

weather, climate and the environment from space.
FSOI: Forecast Sensitivity to Observation Impact
GeoCSR: Geostationary satellite Clear Sky Radiance
GMAO: Global Modeling and Assimilation Office at NASA

Goddard.
GMI: GPM (Global Precipitation Measurement) Microwave

Imager
GOES: (U.S.) Geostationary Operational Environment Satellite
GNSS: Global Navigation Satellite System (which includes

GPS).
GPS: Global Positioning System
GPS RO: GPS Radio Occultation observations (also called GNSS

RO).
HIRS: High-resolution Infrared Radiation Sounder
IASI: Infrared Atmospheric Sounding Interferometer
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IR: Infrared.
JMA: Japanese Meteorological Agency.
LeoGeo: CIMSS AMVs determined from composite imagery

based on data from both geostationary and polar-
orbiting satellites

MDCRS: Meteorological Data Collection and Reporting System.
Meteosat: EUMETSAT geostationary satellites, abbreviated as

MET7 for Meteosat-7, MET9 for Meteosat-9, etc.
METOP: METeorological Operational (polar-orbiting) satellites,

operated by EUMETSAT.
MHS: Microwave Humidity Sensor
MODIS: ModerateResolution ImagingSpectroradiometer, flown

on the NASA Aqua and Terra satellites.
MTSAT: Multi-functional Transport Satellite, geostationary

satellites operated by JMA.
NASA: (U.S.) National Aeronautics and Space Administration
NAVDAS-AR: NRL Atmospheric Variational Data Assimilation

System—Accelerated Representer.
NESDIS: (U.S.) National Environmental Satellite and Data Infor-

mation Service.
NEXRAD: (U.S.) Next-generation Radar
NH or NHEM: Northern Hemisphere.
NOAA: (U.S.) National Oceanic and Atmospheric Administra-

tion
NOGAPS: Navy Operational Global Atmospheric Prediction

System
NRL: (U.S.) Naval Research Laboratory
NWP: Numerical Weather Prediction
OSWS: Ocean Surface Wind Speed
OSWV: Ocean Surface Wind Vector
PIBAL: Pilot Balloon
SAPHIR: SondeurAtmosphérique du Profil d’Humidité Intertrop-

icale par Radiométrie
SH or SHEM: Southern Hemisphere
SHIP-BUOY: Observations from fixed and mobile ships and buoys.
SSMIS: Special Sensor Microwave Imager Sounder
SSMIS TPW: Total Precipitable Water retrievals from SSMIS.
SSMIS SFC WIND: Ocean surface wind speed retrievals from SSMIS.
SWIR: Shortwave IR
SYNOP: WMO-format surface data, primarily from land-based

stations
TC Synth or “Synthetic”: Synthetic observations generated from TC warning

messages
TC: Tropical Cyclone.



Interpretation of Forecast Sensitivity Observation … 597

TEMP: WMO-format radiosonde data (including T (tempera-
ture), wind, and q (humidity)

TMI: TRMM (Tropical Rainfall Measuring Mission)
Microwave Imager

WINDSAT-TPW: NRLpolarimetricmicrowave satellite Total Precipitable
Water retrievals

WINDSAT SFC WIND: WindSat wind vector retrievals
VIS: Visible
WMO: World Meteorological Organization
WV: Water Vapor
WVCLD: Cloud-Top Water Vapor
WVCLR: Clear-Sky Water Vapor
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Modelling the Background Error
Covariance Matrix: Applicability Over
the Maritime Continent

Joshua Chun Kwang Lee and Xiang-Yu Huang

Abstract The background error covariancematrix is fundamental to any data assim-
ilation system. Since it cannot be explicitly specified, methods have been developed
to estimate and model it. These involve certain assumptions which may be invalid
over the Maritime Continent. In this chapter, the applicability of the main methods
employed to estimate the background covariance matrix and the validity of the main
assumptions in modelling it are explored, particularly for the Maritime Continent
context. A brief demonstration of the methods over the region, where applicable, is
provided to explore possible limitations in their conceptualisation. The manifesta-
tion of the main assumptions in the structures of the background error covariance
matrix is also demonstrated using pseudo-single observation experiments. Addi-
tional comments are included to highlight areas for further work and echo the call
for much needed research on modelling the background error covariance matrix for
the Maritime Continent.

1 Introduction

One of the most important components of any data assimilation system is the back-
ground error covariance matrix. It controls the weightage between the background
information and observational information. It also determines how observational
information may be spread spatially to other variables. However, the background
error covariance matrix is not trivial to specify. First and foremost, it is computation-
ally unfeasible to explicitly specify such a large matrix (Bannister 2008a). Consider
a limited-area numerical weather prediction (NWP) system with a square horizontal
domain of 500 by 500 gridpoints and 80 vertical levels, along with six prognostic
model variables. The background error covariance matrix would then have to be
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populated with ~1016 (10 quadrillion!) elements, which is impractical to store even
if the number is halved by taking advantage of matrix symmetry. Additionally, it is
also impossible to accurately prescribe the background errors of the NWP system
because the “true state” is unknown. Therefore, it must be estimated and modelled
(Bannister 2008a).

Most estimation and modelling methods are conceived whilst involving multiple
assumptions (Bannister 2008b), some of which may be invalid in the Tropics. This is
particularly pertinent for the Maritime Continent, where the interaction of different
weather phenomena and substantial topography can further complicate any attempt
to accurately estimate and model the background errors. The application of some
of the estimation methods may also require a dense observation network, which is
absent in this region.

These limitations have induced certain questions: (i) How applicable are the
methods employed to estimate the background errors over the Maritime Continent?
(ii) How valid are the main assumptions applied in the context of theMaritime Conti-
nent? An overview of the main estimation and modelling methods and exploration
of these key questions are provided with the aid of a convective-scale NWP data
assimilation system over the Maritime Continent (SINGV-DA; Huang et al. 2019;
Heng et al. 2020). Possible future research directions and suggestions are included,
highlighting the need for research in this specific area.

2 Estimation of the Background Errors

In the initial “calibration step”, one may employ different methods to estimate the
background error covariance matrix (B) of the NWP system. These are often based
on either existing available information such as innovation statistics, or a surrogate
quantity which have error statistics that are arguably similar to the background errors.

2.1 Innovations Method

Innovation (observation-minus-background) statistics are often used to estimate the
background errorswithout requiring knowledge of the “true state” (Rutherford 1972).
This has been implemented in many previous studies (Hollingsworth and Lönnberg
1986; Lönnberg and Hollingsworth 1986; Järvinen 2001; Xu and Wei 2001, 2002;
Xu et al. 2001, 2007), often considered the most accurate method for estimating
background errors (Xu et al. 2001) but is subject to key assumptions. The essence of
this method relies on disentangling observation errors and background errors from
the innovation statistics.

To illustrate this, consider background errors and observation errors given by:

εb = xb − xt (1)
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εo = yo − H(xt) (2)

where εb is the background error, xb is the background state vector, xt is the “true
state” which is unknown, εo is the observation error (including errors in instrument
and representativeness), yo is the observation vector, and H is the mapping to obser-
vation space. Strictly speaking, εb and xb can be continuous fields, although they are
normally represented discretely depending on the model resolution.

The unknown xt is omitted by substituting Eq. 1 into Eq. 2,

εo = yo − H(xb − εb) (3)

Linearising H about xb (denoted H),

εo ≈ yo − H(xb) + Hεb (4)

Re-arranging to get the innovation vector d,

d = yo − H(xb) ≈ εo − Hεb (5)

demonstrates its relationship with the background and observation errors.
For simplicity, consider an idealised scenario with direct observations of a single

prognostic variable geopotential height (h) at some model gridpoints. From Eq. 5,
for the model gridpoints with observations,

d(i, j, k) ≈ εo(i, j, k) − εb(i, j, k) (6)

where i, j, k are indexes in a 3-dimensional model grid (x, y, z). Typically, it is
assumed that εb and εo are unbiased, independent, and εo is uncorrelated horizontally
in space and time,

〈εb〉 = 0, 〈εo〉 = 0 (7)

〈εo(i, j, k) εb(l,m, n)〉 = 0 ∀i, j, k, l, m, n (8)

〈εo(i, j, k) εo(l,m, n)〉 = 0 for k = n and ∀i, j, l, m (9)

where l, m, n also denote indexes in a 3-dimensional model grid; k = n denotes the
same vertical level, and 〈.〉 denotes time-averaging (the assumption of ergodicity).

Using Eqs. 6 to 9, the background error autocovariance (any covariance within
the same field) matrices of h for each of the model gridpoints with observations
(which are components of the full B) can then be retrieved from the partitioning of
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the innovation statistics:

〈d(i, j, k) d(l, m, n)〉 ≈ 〈εo(i, j, k)εo(l, m, n)〉 + 〈εb(i, j, k)εb(l, m, n)〉
(10)

On the same vertical level (k = n), applying Eq. 9 implies that the first term
on the RHS is zero and the background error covariances are given fully by the
innovation covariances, therefore allowing for the derivation of the background errors
from innovation statistics. Further extension from the autocovariances, assuming the
observation errors are also uncorrelated between variables, to the height-wind cross-
covariances can be retrieved (Lönnberg and Hollingsworth 1986; Xu andWei 2002).
The cross-covariance with respect to a derived height background error h′ at a point
(i, j, k) can be computed after scaling the derived velocity background errors u′ and
v′ at (l,m, n) by a Coriolis term (see Eq. 2.1 of Xu andWei 2002) and projecting onto
the tangential t ′(l,m, n) and radial r ′(l,m, n) components relative to the direction
from point (i, j, k) to(l,m, n). The resulting h′-t ′ and h′-r ′ cross-covariances (see
Eq. 2.5a, b of Xu and Wei 2002) are then further used to represent the height-wind
cross-covariances.

Note that the above and Eq. (10) only determine the covariances between the
observation locations, which in this idealised scenario coincide with model grid-
points. Without further assumptions, it cannot be applied for all model gridpoints in
the domain. As innovation statistics are limited by the availability of observations,
the crude assumptions of isotropic and homogeneous background errors are required
for themethod to be viable in an operational setting. These assumptions are discussed
in Sect. 3.

In the context of the Maritime Continent, such a method would be challenging
to apply. In the current operational model at the Meteorological Service Singapore
(MSS), SINGV-DAonly assimilates around 10 radiosondes from theWorldMeteoro-
logical Organization (WMO)Global Telecommunication System (GTS) consistently
throughout the entire domain (Heng et al. 2020). The lack of radiosonde observa-
tions in the region presents a significant hurdle since the innovations method requires
sufficient in situ observations of all quantities in the background state for the statistics
to be sufficiently robust. While this method has been discussed, it is not practical
to apply and evaluate it in SINGV-DA. Perhaps with increased data sharing efforts
and more intensive observation period experiments conducted, such a method could
become viable for exploratory studies in the future.

2.2 ‘National Meteorological Center’ (NMC) Method

The NMC method relies on computing forecast differences between forecasts of
varying lengths but valid at the same time and using them as surrogates to estimate
the background error. Parrish and Derber (1992) first incorporated this in the NMC’s
spectral statistical-interpolation analysis system, computing the difference between
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a 24-h forecast and an initialised analysis (0-h forecast) valid at the same time. The
forecast differences were compiled over an extended period of time to produce the
climatological sample needed to estimate the background error statistics. Thismethod
has proved popular, with many studies and operational centres previously adopting
this approach to model background error covariances for their data assimilation
systems (Rabier et al. 1998; Derber and Bouttier 1999; Lorenc et al. 2000; Ingleby
2001; Barker et al. 2004, 2012; Rawlins et al. 2007; Huang et al. 2009; Buehner
et al. 2010; Heng et al. 2020; Lee and Huang 2020), and also for the generation of
reanalyses data (Onogi et al. 2007; Kobayashi et al. 2015).

Mathematically, the estimate of the background error can be illustrated by consid-
ering the difference between a 36-h forecast (x36) and a 12-h forecast (x12) which
are valid at the same time, initialised from analyses 24 h apart to eliminate the errors
in modelling the diurnal cycle. The choice of forecast length is not fixed and other
alternatives are viable (Bannister 2008a). We consider the background errors (ε36
and ε12) associated with x36 and x12 respectively without the effect of model bias,
given by:

ε36 = x36 − xt ⇒ x36 = ε36 + xt (11)

ε12 = x12 − xt ⇒ x12 = ε12 + xt (12)

As before, the unknown xt is omitted by considering the difference between the
forecasts, using Eqs. 11 to 12,

x36 − x12 = ε36 − ε12 (13)

B can then be computed over many realisations (typically a series of forecast
differences collated over an extended period of time). Previous studies have used a
sample size of around 30 to 60 to compute the statistics (Parrish and Derber 1992;
Derber and Bouttier 1999; Wu et al. 2002; Chen et al. 2013; Ban et al. 2017; Lee
and Huang 2020), although as with any statistical estimation, a larger sample is often
desirable. Over many realisations with the sample mean removed, the covariances
can be computed:

〈(x36 − x12)(x36 − x12)T〉 = 〈(ε36 − ε12)(ε36 − ε12)
T〉 (14)

Expanding the RHS, this gives:

〈(x36 − x12)(x36 − x12)T〉 = 〈ε36εT36〉 − 〈ε36εT12〉 − 〈ε12εT36〉 + 〈ε12εT12〉 (15)

Often, one crudely assumes that the background error covariances are similar for
ε12 and ε36, implying that:

〈ε36εT36〉 = 〈ε12εT12〉 = B (16)
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Using Eqs. 14 to 16, and rearranging, this gives:

B = 1
2 {〈(x36 − x12)(x36 − x12)T〉 + 〈ε36εT12〉 + 〈ε12εT36〉} (17)

Furthermore, it is often assumed that the background errors ε12 and ε36 are
uncorrelated,

〈ε36εT12〉 = 0, 〈ε12εT36〉 = 0 (18)

Strictly speaking, this is unlikely to be valid, leading to non-negligible positive
contributions as a result of the correlation and therefore a possible underestimation
of B. A crude scaling factor may then be applied to inflate or tune B depending on
the system. Even though one is able to prescribe B using this method explicitly, it
is still computationally impractical to store and further assumptions of isotropy and
homogeneity must be made to simplify it. These are discussed in Sect. 3.

Following the development of limited area models (LAMs), an alternative formu-
lation of the NMC method has been developed to handle the errors originating from
the lateral boundary conditions (LBCs) accordingly, often termed the “lagged” NMC
method as opposed to the standard NMCmethod described above. This was initially
employed in Široká et al. (2003). They found that the exclusion of error sources from
the driving model (DM), which provides the lateral boundary conditions, resulted in
sharper structures in the analysis increments corresponding to mesoscale features.
This was due to sharper correlation structures in the background error covariances,
which was deemed as beneficial for mesoscale NWP systems. Further studies have
also explored using this method over other LAMdomains (Fischer et al. 2005; Sadiki
and Fischer 2005; Berre et al. 2006; Bölöni 2006; Montmerle et al. 2006; Stanesic
et al. 2019; Lee and Huang 2020).

The approach to deriving the background errors is similar to the standard NMC
method; the state is propagated by different non-linear forecast models (LAM and
DM) for the two forecasts of varying length. The main difference between the
“lagged” and standard NMC method lies in the initial conditions (ICs) and LBCs
driving the shorter forecast, aswell as the observational information that is introduced
by the cycling DM prior to the initialisation of the shorter forecast. As a simple illus-
tration, Fig. 1 shows a 12-hourly cycling DM with the same cycle run (DM_initial)
and latest cycle run (DM_latest) providing the ICs and LBCs for the initialisation
of the shorter forecast in the “lagged” and standard NMC method respectively. For
brevity, the mathematical notations for the full non-linear forecast models are not
described.

Despite the wide acceptance of the NMC method, it is surprising that there have
been little theoretical justification and formalismon its validity. Bouttier (1996) noted
that in its early conception, it was only tested against the innovations method in a
few cases. Since then, very few studies have attempted to validate it. Horvath and
Bölöni (2004) compared the standard and “lagged” NMC methods with the innova-
tions method in the Hungarian version of the Aire Limitée Adaptation dynamique
Développement InterNational (ALADIN/HU)model and found that all threemethods
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Fig. 1 Simple schematic to show the difference between the standard NMC method and “lagged”
NMC method illustrated in an LAM. See text for abbreviations

had fairly comparable temperature autocovariances especially near to the surface, but
had large differences in the specific humidity autocovariances near the surface and in
the upper troposphere. In particular, the “lagged” NMC method exhibited an under-
estimation of both the temperature and specific humidity autocovariances compared
to the innovations method. This is consistent with Sadiki and Fischer (2005), who
hypothesised that the “lagged”NMCmethod likely underestimates the variances. In a
different approach, Errico et al. (2015) used an observation system simulation exper-
iment to validate the variance estimates from the untuned standard NMCmethod and
found that the rescaling of variances and horizontal correlation length-scales depend
both on pressure level and latitude. Particularly in the Tropics, the variances for
temperature, specific humidity, zonal and meridional wind were all underestimated
by the standard NMC method. It is unsurprising that many studies have artificially
inflated and deflated B or altered the corresponding correlation length-scales derived
using theNMCmethod (Barker et al. 2004; Chapnik et al. 2004; Gu et al. 2005; Kleist
et al. 2009; Ha and Lee 2012; Liu et al. 2015). Often, the optimal tuning factors are
only empirically determined.

Given the many assumptions in the NMC method, it is possible that some are
less valid in the Tropics. Rabier et al. (1998) noted that the NMC method is prone to
breaking down in theTropicswhere the large-scale flowhas little temporal variability.
A similar argument is presented in Žagar et al. (2005), who noted that in a data-sparse
region such as the Tropics, the two forecasts of varying lengths may tend to be very
similar and thus the NMCmethodmay underestimate the variances. Therefore, while
it is a usefulmethod to apply in a variational data assimilation system for a data-sparse
area such as the Maritime Continent, the derived Bmust be interpreted with caution.
Nevertheless, it is worth examining and more discussion is provided in Sect. 4.
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2.3 Ensemble Methods

An ensemble of forecasts can be used to generate a set of random samples for the
background state probability distribution, with B often defined around the ensemble
mean as an estimate for the “true state”which is unknown. The approach is essentially
a Monte Carlo method that was highlighted by Epstein (1969), who noted that the
deterministic trajectories from a sample of discrete initial points in phase space (of all
possible state vectors) could be used to compute and estimate the mean and variances
of the background probability distribution. Evensen (1994) first implemented this
approach, which became commonly known as the ensemble-based Kalman filter or
ensemble Kalman filter (EnKF), to estimate the background errors statistics in a two-
layer non-linear quasi-geostrophic ocean model. Since then, numerous studies have
employed ensemble-based methods. A review of the basic EnKF method is covered
in Evensen (2003). Many other modifications of the EnKF method and variations in
methods to generate an ensemble have also been developed (see Hamill 2006; Ehren-
dorfer 2007; and references therein). A comprehensive review of the most recent
developments and outstanding challenges, as well as operational implementations
are presented in Houtekamer and Zhang (2016).

The ensemble of forecasts can be generated by various approaches, through a
separate parallel-run ensemble system using either stochastic EnKF or deterministic
filters (such as those in Anderson 2001; Bishop et al. 2001; Whitaker and Hamill
2002; Tippett et al. 2003) or through the introduction of perturbations into an existing
forecast system to generate an ensemble of analyses as initial conditions for the
forecasts (Houtekamer et al. 1996; Fischer 2003; Berre et al. 2006). Buehner (2005)
compares both approaches with the NMC method. There is an added complexity
for ensemble-based methods in LAMs (see Meng and Zhang 2011; and references
therein) since additional sources of errors from the LBCs also have to be accounted
for. A widely used method to generate the ensemble for LAMs is to perform a
dynamical downscaling from a global ensemble (Hohenegger et al. 2008; Bölöni
et al. 2015; Bojarova and Gustafsson 2019). The errors in the LBCs and analysis in
the LAM are naturally derived from the global ensemble after interpolation. While it
is simple to implement, this may exclude meaningful smaller scale structures which
influence the ensemble spread and thus lead to an underestimation of the forecast
ensemble variance. For the estimation of B, the main focus is on the usage of the
ensemble forecasts, irrespective of the ensemble generation approach.

There are twomain strategies to estimateB using an ensemble of forecasts with N
members. One strategy is to approximate the “true state” using the ensemble mean.
The estimate of the background errors and the spread of the errors which define B
are given by:

εib = xib − xt ≈ xib − x̄b (19)

B = 1
N−1

∑N
i=1ε

i
bε

i
b
T (20)
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where x̄b = 1
N

∑N
i=1 x

i
b is the ensemble mean and index i represents each ensemble

member, εib is also often referred to as error modes. This strategy was suggested in
Evensen (1994) and was widely implemented in many recent studies for both global
models and LAMs (e.g. Wang et al. 2008; Storto and Randriamampianina 2010;
Clayton et al. 2013; Gustafsson et al. 2014; Montmerle et al. 2018; Caron et al.
2019).

The second strategy involves considering the ensemble perturbations about a
central forecast. The approach is similar to the NMC method for computing the
forecast differences (Eqs. 11 to 17) but computing the differences between forecasts
from each ensemble member and a central forecast instead. For clarity, the estimate
of the background errors and B derived from the ensemble is thus given by:

εib ≈ xib − xcb (21)

B = 1
2

{
1

N−1

∑N
i=1ε

i
bε

i
b
T
}

(22)

where xcb is the central forecast (which is usually the unperturbed ensemble fore-
cast). In this formulation, there is no proxy used for xt and it is assumed that the
ensemble perturbations between members are uncorrelated, which is the reason for
the additional factor of half in Eq. 22 (Berre et al. 2006). As highlighted by Bölöni
et al. (2015), the same central forecast is used for the computation, resulting in N −1
pairs. This strategy was also mentioned in Evensen (1994), and has been applied in
previous studies (Fischer 2003; Berre et al. 2006; Bölöni et al. 2015). For both strate-
gies, additional time-averaging (as denoted by 〈.〉) may not necessarily be applied
unlike in the NMC method, although it is still possible (e.g. Buehner 2005; Storto
and Randriamampianina 2010; Varella et al. 2010; Bölöni et al. 2015).

Evensen (1994) discusses how both strategies may be equally suitable in NWP
applications. It was noted that the structures of the central forecast and ensemble
mean could be similar, although the ensemble mean may reflect a lower amplitude in
the structures than the central forecast. The more appropriate method could depend
on the data availability in the region and the size of the ensemble. For operational
implementation of ensemblemethods, there also exist many variations (see Bannister
2017; and references therein).

The application of the ensemble method is particularly attractive for the Tropics,
due to the possibility of incorporating flow-dependence in the estimation of B
(Sect. 3.3). Previous studies have provided evidence of the importance of flow-
dependent covariances for data-sparse regions (Hamill and Snyder 2000; Whitaker
et al. 2004, 2008), such as over the Maritime Continent. However, no study has
explored the flow-dependence of B over the Maritime Continent. A brief illustration
of the application of the ensemble method and the resulting flow-dependent struc-
tures over the Maritime Continent are thus presented in Sect. 4. It would be useful
for future studies to investigate them further.
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3 Modelling the Background Error Covariance Matrix

Apart from estimating the background errors, one also needs to consider how to
model and prescribe a computationally feasible B in a data assimilation system. For
variational data assimilation, pre-conditioning of a cost function is required. This
involves a series of transforms (see Bannister 2008b) which determine the square
root of B. The design of these transforms may invoke further assumptions which
reduce the elements required to specify such a large matrix.

The structures ofB can be illustrated using pseudo-single observation experiments
(Derber and Bouttier 1999; Huang et al. 2009), which provide a visual demonstration
of how the main assumptions manifest themselves in the transforms. For reference,
the solution for the pseudo-single observation (Gustafsson et al. 2012) can be written
as:

δx = Bi (Bi i + Ri i )
−1di = Bi

(
σ 2
b + σ 2

o

)−1
d (23)

where δx is the analysis increments,R is the observation error covariance matrix, σb,
σo and d are the background error standard deviation, observation error and
innovation at gridpoint i respectively.

3.1 Homogeneity

The assumption of homogeneous background error statistics is often applied for the
innovations, NMC and sometimes the ensemble method. Typically, to retrieve the
horizontal autocorrelations for each model level, one must consider the correlation
between the entire two-dimensional model grid to a specific gridpoint, repeated for
each gridpoint in the domain. For the innovations method, one can only compute the
correlations between observation locations. However, invoking this assumption, one
now only needs to consider how (on average) the same correlation structure can be
used for each gridpoint or observation location in the entire domain.

The definition of homogeneity (Gaspari and Cohn 1999) applied on a two-
dimensionalmodel domain D is as follows. Consider a correlation functionC applied
on two gridpoints (x) and (y) in D, if ∀T (a horizontal translation function) of D,

C(T (x), T (y)) = C(x, y) (24)

holds, then the correlation function is homogeneous throughout D. Often, the
domain-averaged statistics are computed during the “calibration step” to be applied
for the entire domain. One may pose the question: “What is the correlation function
that best represents that for the entire domain?”
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To briefly illustrate homogeneity, pseudo-single pressure observations 100 Pa
above the background (d = 100) are inserted near the surface at model level 3 with
an observation error of 20 Pa (σo = 20) at four different points in the SINGV-DA
domain and the resulting pressure increments for the four experiments are presented
(Fig. 2). The classification of the points correspond to coastal lowland, coastal ocean,
open ocean as defined by Birch et al. (2016) and coastal highland, located along
the Sumatran mountain range. It is clear that the components of the correlation
function do not exhibit spatial variation and are thus homogeneous on each model
level (although only shown for one model level here). Other interesting features in
Fig. 2, such as wind increments, are discussed in Sect. 4.1.

Wu et al. (2002) demonstrated the importance of accounting for the latitudinal
dependence of the background error statistics, especially in the Tropics. Chen et al.
(2014) explored its impacts on typhoon forecasts. Apart from simply computing the
domain-averaged statistics, onemay instead choose to split the domain into latitudinal
bands andperformzonal averagingwithin eachband.Thehomogeneitywould thenbe
confined over each latitudinal band. However, this would still be a crude assumption,
which is likely invalid over the Maritime Continent given the spatial variation in
orography and land-sea contrast from the cornucopia of small islands. For convective-
scales, the interaction ofweather phenomena of different spatial scales over the region
also facilitates the inclusion of substantial inhomogeneity in the background error
statistics. For example, the error structures which are physically consistent with a
land-sea breezemay not be homogeneous in the domain but are aligned parallel to the
coasts instead. The error structures associated with monsoon surges over open ocean
are likely to be different from the error structures over coastal lowland where speed
convergence may occur. These expectations are consistent with Michel and Auligné
(2010), who showed that the inhomogeneity in the background error statistics over
Antarctica can be related to orography, as well as land-sea contrasts.

Also, while the discussion has beenmainly on the horizontal correlations, perhaps
another important consideration is that the vertical correlations are often also subject
to homogeneity; the vertical transforms do not varywith position.However, in reality,
the vertical covariances of the background errors are strongly dependent on posi-
tion (Bannister 2008b). Vetra-Carvalho et al. (2012) demonstrated how hydrostatic
balance in the vertical covariances can break down in regions of convection. Mont-
merle and Berre (2010) also showed how the vertical covariances may vary between
precipitating and non-precipitating regions. Given that convection, and thus precipi-
tation, is abundant in the Maritime Continent, appropriate methods for modelling B
must therefore allow for inhomogeneity.

3.2 Isotropy

The assumption of isotropy is closely linked to the assumption of homogeneity
and is also often applied for the innovations, NMC and sometimes the ensemble
method. The question to be posed is: “How should one specify the general correlation
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function?” While there are various methods one may construct, isotropy is often
assumed for simplicity and convenience.

The definition of isotropy (Gaspari and Cohn 1999) applied on a two-dimensional
model domain D is as follows. Consider a correlation function C applied on two
gridpoints (x) and (y) in D, if ∀V (orthogonal horizontal transformation function)
of D,

C(V (x), V (y)) = C(x, y) (25)

holds, then the correlation function is isotropic on D. Simply put, if the correlation
function does not change due to rotation and reflection (and thus is solely a function
of the Euclidean distance between x and y), then it is isotropic.

A simple isotropic (Gaussian) correlation function that has been used frequently
(Daley 1991) is defined as:

C(r) = e− r2

2L2 (26)

where r is the Euclidean distance between x and y, and L is a constant length-
scale which may be computed during an offline “calibration step”. Other families
of correlation functions may also be used, such as those derived from stochastic
autoregressive process representations (see Thiébaux et al. 1986). For example, the
default option in the Met Office setup uses the second order autoregressive (SOAR)
function (Lorenc et al. 2000) following Thiébaux et al. (1986), given by:

C(r) = (1 + |r |
s )e

− |r |
L (27)

in the offline “calibration step”. The SOAR is used to fit the distance-binned covari-
ances computed during the “calibration step” to determine the optimal values of L
to be eventually used in B (for the horizontal transform). Strictly speaking, a spec-
tral representation of SOAR is used in the horizontal transform. This is different
from the application of recursive filters (Purser et al. 2003), such as in Barker
et al. (2003) which allows for the inclusion of anisotropy (Barker et al. 2004). An
example is shown in Lorenc (1997). Figure 2 illustrates the isotropy prescribed using
SOAR. The circular shape of the pressure increments related to the horizontal back-
ground error autocorrelations are solely a function of distance from the point of the
pseudo-observation. Thus, the increments are invariant with respect to orientation.

Other possible methods for modelling the correlations include the application of
spectral convolutions (Courtier et al. 1998) and diffusion operators which are derived
from the integral solution of diffusion equations (Weaver and Courtier 2001). The
latter is more relevant for application in ocean models as it can account for boundary
conditions along the coast which may be difficult to treat using other methods. Apart
from these, the use of wavelets to represent local correlations has also been proposed
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Fig. 2 Pressure and horizontal wind increments as a result of a pseudo-single observation of
pressure with respect to four classification points in the domain, related to the associated modelled
background error autocovariances and cross-covariances (see Eq. 23) using the “lagged” NMC
method. Training data comprise 56 pairs of forecast differences in September 2018

(Fisher and Andersson 2001). Wavelets possess information on both geographical
position and scale; a scheme can be carefully designed to allow for the inclusion
of inhomogeneity and anisotropy. This has recently been applied in both global
models and LAMs (Fisher 2003; Deckmyn and Berre 2005; Bannister 2007; Varella
et al. 2011; Berre et al. 2015). There exist some variety in the choice of wavelet
functions and its applications. The conventional method involves the use of non-
orthogonal wavelets to capture the spatial and spectral variation in the correlations,
as demonstrated in Fisher (2003) and Bannister (2007). Bannister (2007) further
proposed another wavelet-based method as an approximation to the conventional
method. Deckmyn and Berre (2005) explored the use of orthogonal wavelets instead.
They also discuss the possible representation of local anisotropies with the wavelet
formulation.

The extent to which isotropy holds in the Maritime Continent requires further
investigation. The length-scales calibrated for the correlation functions need to be
appropriate for the scale of the phenomena, and hence background errors, expected
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over the region. One might argue that for the convective-scale, such length-scales
should be short so that the increments are relatively localised around the observations.
However, with shorter length-scales, larger scale information due to the passage
of equatorially-trapped waves or the Madden–Julian Oscillation (MJO) could be
omitted simply because the observations in the region are too sparse. With elongated
coastlines andoblong-shaped islands in the domain, prescribing isotropic correlations
in the background error statistics also appears particularly unrealistic. Sattler and
Huang (2002) previously highlighted how the presence of a land-sea contrast can
influence the validity of the isotropic assumption in the background error statistics
over Western Europe. This could be relevant in the Maritime Continent as well.

3.3 Time Stationarity

In variational data assimilation, time stationarity is another assumption usually
applied in the modelling ofB. One may be interested in the question: “How does
B change over time?” B should ideally be updated constantly in order to represent
these changes. This may be subject to computational constraints. As highlighted in
Sect. 2, the assumption of ergodicity is often invoked; the time-averaged (clima-
tological) statistics are often used to estimate the real background errors using the
innovations, NMC, and sometimes ensemble methods (e.g. Buehner 2005; Storto
and Randriamampianina 2010; Varella et al. 2011; Bölöni et al. 2015).

By definition, time stationarity simply means that the estimated background error
statistics do not change with time. The same B is used for each cycle in a data
assimilation system, often because it may be unfeasible to update such a large matrix
at every cycle. This is mainly applicable for traditional 3D-Var algorithms. Even for
4D-Var algorithms,B is evolved by the linear model within the assimilation window,
but is reset at the beginning of the next window. Only in ensemble methods (e.g.
EnKF) can this assumption be relaxed, since it is possible to update the background
errors using the analysis errors from previous windows or from the ensemble state
trajectories.

Ideally, the background errors should be dynamically consistent with the flow
conditions in the system, which is unlikely to be constant, giving rise to the term
“flow-dependence”. For the Maritime Continent, apart from the possible pres-
ence of inhomogeneity and anisotropy in the real background errors discussed in
Sect. 3.1 and 3.2, additional complexities arise due to their time dependence. On
the seasonal timescale, the intra-annual monsoon migration could play a dominant
role. For example, the error structures during the Southwest monsoon (around June
to September for Singapore) are likely to be different from the Northeast monsoon
(around November to February for Singapore). The prior is influenced by warmer
and drier air originating from Australia and more frequent squall lines while the
latter is influenced by moister and cooler air originating from the South China Sea
and possible cold surges. Even within the Maritime Continent, the diagnosed inter-
monsoon periods differ depending on latitude due to the intra-annual migration of
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the Inter Tropical Convergence Zone. On the sub-seasonal timescale, the passage
of equatorial waves and the MJO also determine the flow conditions in the system
and thus can further conflate the resulting error structures. On longer timescales, the
Quasi-Biennial Oscillation can also influence the tropical background errors (Žagar
et al. 2007). It is thus unsurprising that the assumption of time stationarity is often
invalid when applied to the Maritime Continent, especially on convective-scales.

At present, the most advanced operational systems have incorporated flow-
dependence in the background error statistics and have yielded promising results
(Bonavita et al. 2011; Clayton et al. 2013; Montmerle et al. 2018; Caron et al. 2019).

3.4 Multivariate Balance Relationships

In variational data assimilation, observational information from one variable (e.g.
wind) may be spread by the cross-covariances of B to other variables (e.g. mass). It
is assumed that there exist some statistical form of balance in the estimated back-
ground errors of the prognostic variables, which originate from balance in the real
atmosphere. Therefore, onemight consider how balance constraints (e.g. geostrophic
balance) can be exploited to increase the value of observational information while
ensuringdynamically consistent increments to the system (e.g. as illustrated inDerber
and Bouttier 1999; Kalnay 2003; Bannister 2008a). Often, a transformation (variable
transform) to a set of variables (also referred to as control variables) which implicitly
captures the multivariate aspects of the background errors is chosen. This transfor-
mation is designed based on prescribed balances between prognostic variables, to
control variables which are assumed to be uncorrelated to improve the conditioning
of the cost function. Regardless of the transformation, it is important that the resulting
implied cross-covariances of the prognostic variables should attempt to represent the
cross-covariances of the real background errors, which is not known.

Common approaches adopted by most operational systems include the use of
linear regression and the linear balance equation as mass-wind balance relations
in the variable transform (see Table 1 of Bannister 2008b for a detailed break-
down). However, linear balance breaks down near the Equator where geostrophy is
vanishing. Even in themid-latitudes, geostrophy becomes less important approaching
convective-scales (Berre 2000). These may have implications on the implied mass-
wind coupling and covariance structures. Daley (1996) demonstrated how any mass-
wind coupling could be a fallacious result of using the linear balance equation for
multivariate covariances in the Tropics. One would not expect the assimilation of
a mass observation to yield information about the wind field. However, given that
the large-scale variability in the dynamical fields over the Tropics may be explained
by convectively coupled equatorial waves (Wheeler et al. 2000), it is possible that
the covariance structures may project on and resemble these dominant modes which
exhibit mass-wind coupling.

Instead of applying a variable transform, Žagar et al. (2004) explored the use of
tropical eigenmodes which describe balanced tropical motion to model B. They



614 J. C. K. Lee and X.-Y. Huang

demonstrated the importance of Kelvin waves and mixed Rossby-gravity waves
for the horizontal structure of increments and their effect on mass-wind coupling
in the Tropics. Žagar et al. (2005) further showed that the mass-wind coupling in
the ECMWF short-range forecast errors statistics projected strongly onto the equa-
torial Kelvin wave structure. Ingleby (2001) found that the mass-wind coupling
in the Tropics was negligible using the Met Office variational data assimilation
system which applies the linear balance equation in the variable transform. Using a
convective-scale tropical configuration of the same system, Lee and Huang (2020)
found that themass-wind coupling could depend on the training data used to generate
different covariances. Some covariances had negligible mass-wind coupling while
others had structures that resembled an equatorial Kelvin wave. Using the Weather
Research and Forecasting data assimilation (WRFDA) system which applies linear
regression in the variable transform, Chen et al. (2013) found that the mass-wind
coupling yielded a collocation of the divergent wind field with an inserted mass
perturbation. This was also noted in Derber and Bouttier (1999) using the early
ECMWF system which also applies linear regression in the variable transform,
although the magnitude of the divergent wind vectors appear negligible (~0.06 m s−1

resulting from a geopotential height d of 10 m). As the real background errors and
their covariances cannot be known, it is difficult to validate the implied mass-wind
coupling structures from the application of a variable transform or other methods.
However, it is worth noting that these error structures are likely determined by the
dominant evolving modes in the Tropics.

From the diagnosis of linear regression coefficients, Chen et al. (2013) provided
evidence that the (non-negligible) contribution to the balanced mass field came
mainly from the divergent part of the wind field in the Tropics, thereby highlighting
a possible physically meaningful multivariate relationship. It is thus surprising that
even with mass-wind coupling prescribed in terms of equatorial waves in the back-
ground error covariance model, Žagar et al. (2008) showed that the analysis was still
essentially univariate. As for the linear balance equation, a key criticism is that it
excludes the divergent part of the wind field, and thus barely relates the mass and
wind field close to the equator. The background error covariance model becomes
effectively univariate; the mass control variables (e.g. unbalanced pressure in the
Met Office system) yields little information about the wind field and only recover
the prognostic mass field. Worse still, any little wind information yielded could
contaminate the analysis, following Daley (1996). Hence, while a possible mass-
wind relationship may exist, it is unsurprising that some operational centres have
treated the analysis univariately for the Tropics, such as using the linear balance
operator or as described in Courtier et al. (1998).

Recently, studies have gone one step further and explored taking an entirely
univariate approach for modelling the background errors; the variable transform
is set as the identity matrix and control variables are identical to the prognostic vari-
ables (apart from the moisture control variable). These have purportedly resulted in
a higher quality analyses in convective-scale models (Li et al. 2016; Sun et al. 2016).
A somewhat radical suggestion would be to test this approach over the Tropics
and compare verification scores with existing formulations. However, perhaps most
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importantly, effort must be placed on identifying a dominant balance relationship for
the Tropics which can be exploited. In this regard, one potential candidate would be
to derive a “weak temperature gradient balance” (personal communication) for mass
and wind variables. This originates from the application of the weak temperature
gradient approximation (Sobel et al. 2001) on the shallow water equations to retrieve
an elliptic equation to solve for a mass perturbation. Key control variables would
then be zonal and meridional wind, and unbalanced mass (personal communication),
although the extent of their correlation has not been investigated.

As the above discussion relates broadly to the Tropics, it is directly applicable to
theMaritime Continent context. The choice of control variables and the design of the
variable transform with appropriate mass-wind balance relations should be carefully
considered, yet it is not thoroughly explored. Further studies are much needed in this
aspect.

4 Comparison of Methods and Validity of Assumptions

Apart from the discussion related to the questions raised in Sect. 1, it is perhaps
more important to demonstrate the methods, where applicable, over the Maritime
Continent using SINGV-DA, and comment on the validity of the assumptions raised
in relation to the results.

For a start, it is impossible to know the real background errors because the “true
state” is unknown. It is also impractical to apply the innovations method in SINGV-
DA because of the sparsity of observations, as discussed previously. However, it is
possible to compute the raw covariances of the training data used in the “lagged”
NMC method and the error modes used in the ensemble method and compare them
with their respective modelled B. For the following section, the examples presented
are for single case events. Further research needs to be undertaken to generalise the
results or comments.

4.1 Modelled Background Error Covariance Matrix Using
the “Lagged” NMC Method

The original formulation of Lorenc et al. (2000) is applied, including the removal
of the time-mean from the forecast differences. The training data comprise 56 pairs
of forecast differences from the period of September 2018 which undergo a series
of offline “calibration steps”. Further details of the modelling process for SINGV-
DA are described in Lee and Huang (2020). The resulting covariance structures are
illustrated in Fig. 2, to demonstrate the assumptions of homogeneity, isotropy and
time stationarity. Additionally, one may also note that for this particular covariance,
themass-wind coupling appears to beweak.Although not noticeable, the largestwind
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vectors have a magnitude of around 0.1 m s−1. Other covariances exhibiting stronger
mass-wind coupling (Lee and Huang 2020) have wind vectors with magnitude of
up to 0.3 m s−1. These large wind vectors are collocated with the pseudo-single
observation.

4.2 Raw Background Error Covariance Matrix Using
the “Lagged” NMC Method

For the computation of the raw B using the same training data, Eq. 17 is applied with
the assumption of Eq. 18. For easier comparison of the raw and modelled B, the raw
B is transformed to analysis increments space (Fig. 3) through direct scaling of the

Fig. 3 Raw background error autocovariances and cross-covariances using the “lagged” NMC
method with respect to four classification points in the domain, transformed to associated pressure
and horizontal wind increments (see Eq. 23) for comparison with other figures (see text). Training
data comprise 56 pairs of forecast differences in September 2018
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associated horizontal covariance field Bi with the same d and σo (see Eq. 23) used
for Fig. 2 and the computed σb at each of the 4 classified points.

Notably, the pressure autocovariance fields of the raw B include substantial inho-
mogeneity, in contrast to Fig. 2. Over coastal lowland, the horizontal length-scales
also appear slightly longer compared to over coastal highland, possibly because of
the lack of orography. Isotropy appears to be valid to a first approximation over
coastal lowland and open ocean, but appears more elongated over coastal highland
along the coast. One might expect the inhomogeneity and anisotropy to be larger
closer to the surface (model level 3 as shown; Deckmyn and Berre 2005). It should
be noted that this elongated pattern over coastal highland extends vertically up to
model level 20 (~2 km), beyond which the horizontal length-scales decrease substan-
tially and autocovariances become more isotropic. With regards to the multivariate
aspects, the cross-covariances between horizontal wind and pressure for the raw B

Fig. 4 Raw background error autocovariances and cross-covariances using the ensemble method
with respect to four classification points in the domain, transformed to associated pressure and
horizontal wind increments (see Eq. 23) for comparison with other figures (see text). Error modes
from 50 ensemble 6-h forecasts initialised on 10 September 2018 0000UTC are used. A Gaussian
filter with a localisation length-scale of 500 km is applied
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appears to be larger than in the modelled B, particularly in the vicinity of the obser-
vation. The magnitude of the wind vectors range from 1–3 m s−1. This suggests that
there could exist some meaningful mass-wind coupling in the estimated background
errors that is perhaps smoothed by spatial averaging (application of homogeneity)
during the “calibration step”. One should also note the noise in the autocovariance
and cross-covariance fields throughout the domain. This can be potentially attributed
to sampling noise since one would not expect spurious long-range covariances in the
real background error covariances. This indicates that even with 56 pairs of forecast
differences, it may still be insufficient to address any sampling noise associated with
the rank deficiency when explicitly computing B.

4.3 Raw Background Error Covariance Matrix Using
the Ensemble Method

A widely used ensemble method for LAMs involves generating the ensemble using
dynamical downscaling from a global ensemble. As a demonstration of concept,
50 ensemble forecasts are generated for one cycle (10 September 2018 0000UTC),
downscaled fromEuropeanCentre forMedium-RangeWeather Forecasts (ECMWF)
forecasts. This case study is for demonstrative purposes and not related to any targeted
flow conditions. The computation of the raw ensemble covariance (Be) is performed
applying Eq. 20 on 6-hour LAM forecasts (or ensemble trajectories). As before for
easier comparison, the raw Be is transformed to analysis increments space (Fig. 4).
A simple Gaussian filter with a horizontal length-scale of 500 km is applied in
prognostic variable space to remove any potential spurious long-range covariances
and for easier comparisonwith the following sub-sections. This choice of length-scale
is estimated based on a Gaussian curve-fit to the distance-binned domain correlations
to the four classification points.

The raw Be generated using the ensemble method contain error structures which
are largest at the forecast validity time. It appears that the pressure autocovariance
field has generally longer horizontal length-scales compared to Fig. 3, especially
over open ocean, and over the coastal ocean and highland points along the Suma-
tran coast. This is possibly an inherent weakness of the downscaling concept; the
background error structures at forecast validity time are inherited from the large-scale
analysis error structures of the coarse resolution global ensemble (Bölöni et al. 2015).
However, the 6-hour LAM forecast (valid at 0600UTC) may still allow for the spin-
up of somemesoscale structures, which appear in the computation of the rawBe. One
can easily distinguish the strong positive pressure autocovariances with respect to
coastal ocean and highland points aligned parallel to the Sumatran coast. Following
the cross-covariances, a negative surface pressure perturbation would imply surface
convergence along the coastal regions, as expected during the typical development
of a sea breeze at 0600UTC (1300LT). It is therefore physically reasonable that there
is a larger uncertainty along the coastal regions at 0600UTC.
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It is also apparent that there exists substantial inhomogeneity and anisotropy in
the covariance fields. The large-scale covariance fields differ between classifica-
tion points and strong positive values are often aligned along the coasts instead of
being described solely as a function of distance from each classification point. It also
appears that the mass-wind coupling is not negligible in the background errors esti-
mated using the ensemble method, although the influence of sampling noise again
has to be considered.

4.4 Modelled Background Error Covariance Matrix Using
the Ensemble Method

It is possible to pass the same training data (error modes) used to compute the rawBe

through a variational data assimilation system in a so-called “EnVar” approach. This
is the same as hybrid EnVarmethods (Bannister 2017) except that full weight is given
to the implied ensemble background error covariance (modelled Be). A localisation
Schur (or Hadamard) product (Lorenc 2003) is applied on the modelled Be with a
horizontal length-scale of 500 km. A Gaussian filter similar to the one described in
Sect. 4.3 is applied, except that localisation is performed in control variable space.
Vertical localisation is also applied (see Clayton et al. 2013), although it is not
primarily relevant for this illustration.

The structures of the modelled Be (Fig. 5) are generally similar to the raw Be,
since they are closely related by definition, except that the pressure autocovariances
are smaller in magnitude. The structures are inhomogeneous and largely anisotropic.
Isotropy is only valid to a first order approximation over coastal lowland and open
ocean. As noted from the cross-covariances of raw Be, the mass-wind coupling in
the modelled Be is also not negligible.

From Sect. 3.3, it is possible to apply the ensemble method in an ergodic fashion
(through the accumulation of error modes throughout a period, time-shifted or time-
lagged) to increase the sample size and possibly reduce spurious long-range covari-
ances. However, this effectively results in a static covariance, much like in the inno-
vations or NMC method. The ensemble method can be exploited to further investi-
gate the validity of time stationarity. To illustrate the flow-dependence of the back-
ground error statistics, 50 ensemble forecasts are generated for another cycle (14
July 2019 0000 UTC), downscaled from ECMWF forecasts. The same localisation
and modelling steps are applied on the error modes as done previously to get another
modelled Be (hereafter referred to as alternate Be for convenience).

There are some distinct differences in the structures of the alternate Be (Fig. 6)
compared to the previous modelled Be. The pressure autocovariances with respect
to coastal ocean and highland points are distinctly different; the positive autoco-
variances are less widespread and negative autocovariances appear to the west of
the classification point. The horizontal wind cross-covariances are also in general
different throughout the domain. However, there are some noticeable similarities
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Fig. 5 Pressure and horizontal wind increments as a result of a pseudo-single observation of
pressure with respect to four classification points in the domain, related to the associated modelled
background error autocovariances and cross-covariances (see Eq. 23) using the ensemble method.
Error modes from 50 ensemble 6-h forecasts initialised on 10 September 2018 0000UTC are used.
See text for details of the localisation applied

between the alternate and previously modelled Be. Their pressure autocovariances
with respect to coastal ocean are both generally aligned along the Sumatran coast,
as opposed to being generally isotropic over coastal lowland and open ocean. Their
horizontal wind cross-covariances with respect to the coastal highland point both
imply the adherence to a sea breeze pattern along the Sumatran coast, as described
in Sect. 4.3. This appears to be a robust structure along the coast, although further
evidence is required to determine if there exists any intra-annual variation.

While time-stationarity is a crude assumption, theremaybe instanceswhere robust
structures can existwithin the background error statistics. Thesemayvary ondifferent
timescales so a clearer understanding on the physical processes underpinning these
error structures is required, especially for the Maritime Continent.
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Fig. 6 Pressure and horizontal wind increments as a result of a pseudo-single observation of
pressure with respect to four classification points in the domain, related to the associated modelled
background error autocovariances and cross-covariances (see Eq. 23) using the ensemble method.
Error modes from 50 ensemble 6-h forecasts initialised on 14 July 2019 0000UTC are used. See
text for details of the localisation applied

5 Concluding Remarks

In this chapter, an overview of the applicability of the main methods employed to
estimate the background covariance matrix and the validity of the main assumptions
in modelling it is discussed, particularly for the Maritime Continent context.

A brief demonstration of the methods, where applicable, is provided to illustrate
how different methods involve various quantities as surrogates for the real back-
ground errors. These may not necessarily accurately represent the structures of the
real background errors due to inherent limitations and deficiencies in the concep-
tualisation. In modelling the background error covariance matrix, certain assump-
tions applied may also be invalid because of the complexity of the background error
structures over the Maritime Continent.
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Additional comments are provided in the discussion to highlight possible areas for
further research. These include the need for more evidence to establish the validity
of the main assumptions of homogeneity, isotropy and time stationarity. It is empha-
sised that effort should be placed on developing innovative methods to relax these
assumptions and to test them over the Maritime Continent. In particular, a possible
design of a model for the multivariate component of the background error covari-
ancematrix appropriate for the Tropics ismentioned. As hybrid ensemble-variational
methods gain traction, perhaps implementation of one or more of these variants in
operational systems and assessment of their impacts would also shed insights on the
intricacies of modelling the background error covariance matrix for the Maritime
Continent.
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Abstract AROME-France is the convective-scale numericalweather prediction sys-
tem which has been running operationally at Météo-France since the end of 2008. It
uses a 3D-Var assimilation scheme to determine its initial conditions, in which radar
data have a significant impact, due to their high temporal and spatial resolutions.
Météo-France radar data are assimilated since 2008 for radial velocities and 2010
for reflectivities. Within the framework of the OPERA program, EUMETNET pro-
vides radar data from 25 countries with a common data format and a common quality
index that allows uniform use independent of country of origin. Pre-processing of
radar observations in the AROME-France data assimilation system has been updated
in order to correctly take them into account, particularly regarding to the common
quality index provided by OPERA. Monitoring experiments of these observations
versus AROME-France backgrounds show that OPERA radar data are coherent with
other radar data from the Météo-France ARAMIS network. Their assimilation has
shown positive impacts on AROME-France forecasts over a two-month trial period
and also on a specific heavy precipitation case in December 2019. Since January
2020, OPERA data from 62 radars among 9 French neighbouring countries are oper-
ationally assimilated in the AROME-France 3D-Var system.

1 Introduction

National Weather Services need to issue accurate forecasts of high impact weather
at small scale (severe thunderstorms, wind gusts, fog, ...). AROME-France is a
convective-scale numerical weather prediction system which has been running oper-
ationally at Météo-France since the end of 2008 (Brousseau et al. 2016). In order
to determine its initial conditions, radar observations (radial winds and reflectivi-
ties) are used in the 3D-Var assimilation system, in addition to conventional and
satellite observations. Due to their high temporal and spatial resolutions, they have
a significant impact on rain forecast performances.
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Since the end of 2008 for radial velocities (Montmerle and Faccani 2009) and
2010 for reflectivities (Wattrelot et al. 2014), radar data from the French network
ARAMIS (Application Radar la Météorologie Infra-Synoptique) are assimilated. A
specific product has been set up, including Plan Position Indicator (PPI) of radial
winds, reflectivity, attenuation by precipitation and an echo type discrimination using
dual-polarisation and fuzzy-logic, as described in Tabary (2007) and Tabary et al.
(2007).

In addition to the French network, assimilation of European radar data is a
challenge. In the framework of the Operational Program for Exchange of Weather
Radar Information (OPERA) within the EuropeanMeteorological Services Network
(EUMETNET), data from 164 radars originating from 25 countries are provided in
real time for numerical weather prediction (NWP) purposes (Saltikoff et al. 2019).
Unlike the Next Generation Weather Radar (NEXRAD) network over the US ter-
ritory, the European radar network is extremely heterogeneous in installation date,
manufacturers, scanning strategy, signal processing and product generation. Two
challenges are addressed within OPERA: unifying data format and dealing with data
heterogeneity. The OPERA Data Information Model (ODIM) is the common format
used within the European network. This information model describes, in general
terms, radar volume data, radar products, and the associated metadata. With this
technical uniformity, data providers send equivalent radar products, in particular
reflectivity and radial velocity. A centralised pre-processing adds a quality index in
order to provide homogeneous information for each individual radar.

The goal of this article is to describe how to efficiently assimilate OPERA radar
data in the AROME-France 3D-Var data assimilation system. A first section is dedi-
cated to OPERA radar data: these observations have specificities in terms of format,
using ODIM specifications, and also in terms of quality fields added in a centralised
processing performed byOPERAoperational service. A good understanding of these
data is required to properly use them in an assimilation system.Monitoring of the data
is also important in order to verify their quality before they are actually assimilated.

Section3 is dedicated to impacts of assimilating OPERA radar data on the per-
formances of the AROME-France data assimilation/forecast system. Scores over
a two month period are first examined in order to estimate the mean impact of
OPERA radar data assimilation in AROME-France. Then, results are compared on
a case study where the assimilation over Spain and part of the Mediterranean sea has
impacted heavy rain over South-East of France.

2 OPERA Radar Data

2.1 Description of the Data

In addition to the 31 French radars from the Météo-France network, 62 OPERA
radars, from9 countries, provide data over theAROME-France geographical domain.
As required by the OPERA program, the data providers send three different types



Operational Assimilation of Radar Data from the European … 631

of observations: radial velocity, filtered reflectivity and raw reflectivity (only noise
thresholded). A centralised OPERA processing adds homogeneous quality indices,
and more specifically a “total quality index” that gathers all quality information from
three modules applied to the PPIs (Saltikoff et al. 2019). This index is to be used in
the pre-processing of the data to discriminate observations suitable for assimilation
purposes.

The comparison of raw and filtered reflectivities provides reliable information
on non rainy areas. For OPERA radar data, a common definition of dry pixels was
needed, leading to the following definitions: “nodata” indicates that the pixel is out
of range or in a blanked sector, “undetect” means that the received radar signal is
at or below noise level. A problem occurs when ground clutters are removed and
reflectivity value is set to “undetect”. In this case, there is a risk to assimilate data
as “no rain” whereas the absence of rain is not certain. In order to discriminate dry
areas from ground clutters, the comparison between raw and filtered is performed:
if the filtered reflectivity DBZH value is “undetect”, when the raw reflectivity is also
“undetect”, we are sure it is a non rainy pixel, otherwise, the reflectivity is removed
since there is a doubt whether the pixel is rainy or not.

2.2 Pre-processing of the Data

In AROME-France, a 1D+3D-Var assimilation method is implemented for reflectiv-
ity radar data. A 1D Bayesian retrieval of relative humidity columns from reflectivity
columns has been developed upstream of the 3D-Var as explained in Wattrelot et al.
(2014). However, in OPERA data, no specifications are given on horizontal or ver-
tical resolutions. Each radar can have different elevations (numbers and angles) and
each elevation can have a different number of azimuths or gates. So, in order to be
able to consider vertical profiles of reflectivity required by the Bayesian method, a
choice has been made in the observation preprocessing software: for each radar, the
elevations with the number of azimuths with the two most “populated” are used, the
others are discarded.

Aqualitative studyhasbeenperformedon thequality index.This studyconsistsof a
visual comparisonofPPIswhere reflectivityhasbeenfilteredwithdifferent thresholds
on quality index. Three values have been considered: 0.6, 0.7 and 0.8. Figure1 gives
an example of filtered reflectivity for these thresholds.Radars fromdifferent countries
andwithvariousperformanceshavebeenstudied. Insomeareas,asatellitefilterdeletes
“true” rain in the data. Using a threshold on quality index increases this phenomenon
but gives more confidence in the fact that the reflectivity kept is really rain. On this
particular set of values, 0.6 and 0.7 seem to be acceptable thresholds but as wewant to
be sure not to use non-meteorological echoes, the highest one is preferred. After such
a qualitative study, the threshold value has been set to 0.7.

In order to assimilate “non-rainy” observations, it is important to know the min-
imum detectable signal observable by each radar. When this information is not
available in the metadata, an approximation is made using the minimum value of
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Threshold=0.6

Threshold=0.8

No threshold

Threshold=0.7

Fig. 1 PPIs fromCerceda (Spain) radar, 20/05/2019 12h00UTC, elevation 0.5◦. Reflectivities have
been filtered with different thresholds on the quality index

reflectivity observed in the PPI. If this value is available, the sensitivity threshold
is calculated, as a function of the distance, in order to assimilate the “non-rainy”
observations and to be able to dry the model where no rain is observed.

Concerning radial velocity, another constraint is that no quality index is avail-
able on this parameter as is on reflectivity. In order to be able to discriminate non-
meteorological echoes, the quality index calculated for reflectivity is also used for
radial velocity, when it is possible. This is the case when reflectivity and radial
velocity are observed during the same PPI or when a common elevation is used for
reflectivity and radial velocity (even if the time of observation is not strictly equal).
Even though this approximation is not ideal, it is the best compromise to avoid the
assimilation of radial velocities from non-meteorological echoes.

Moreover, we chose not to consider radial velocity when the Nyquist velocity
(NI) is under a threshold set to 30m/s. This value is a compromise between avoiding
aliased radial velocities and keeping data from some radars (many radial velocity
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PPIs have smaller Nyquist velocities). If the Nyquist velocity is not present in the
file metadata, the radial velocity is not considered for assimilation.

This pre-processing is specific to OPERA radar data. For Météo-France network
observations, a discrimination of ground clutters and clear sky echoes ismade at radar
level and echo type is associated with the reflectivity and radial wind observations.
Moreover, Nyquist velocity of Météo-France observations is high enough (60m/s)
to be considered in the assimilation system.

2.3 Monitoring

The first step before active assimilation ofOPERA radar data inAROME-France is to
check their quality, compared to model background (a 1h forecast from the previous
atmospheric analysis time). Thus, an experiment without radar data assimilation has
been performed. This experiment allowed the consideration of model background
fields that are not influenced by any radar data (Météo-France and OPERA radars).
A 5-day experiment has been performed between 15 and 20 October 2019, chosen
because of a favourable rainy context. The background are compared with radar data
in observation space.

Figure2 represents the number of active (i.e. that could be assimilated) obser-
vations for each parameter (relative humidity and radial winds) for both groups of
radars (Météo-France on one hand, OPERA on the other). The number of observa-
tions is dependent of the quantity of rain in particular for radial winds given that
radar can’t measure radial velocity without rain. Concerning relative humidity, the
use of “non-rainy” observations implies less variability in the number of observations
retained. When comparing the two groups of radars, the number of observations is
equivalent for relative humidity butmuch less for radial wind, OPERA radar data rep-
resenting only 20% ofMétéo-France radar data. This is due to chosen pre-processing
(described previously) that leads to the rejection of numerous data.

Figure3 represents distributions of first guess innovations for the two parameters
(radial wind and retrieved relative humidity), compared between Météo-France and
OPERA radar data. Only active data are taken into account during this 5-day experi-
ment. The four histograms show unbiased datasets and that innovation distributions
follow a Gaussian law.

This monitoring shows that the OPERA radar data quality is suitable for assimi-
lation purposes. The pre-processing developed for these observations allows quality
observations to be retained. These good quality observations will contribute to the
improvement of the AROME-France data assimilation system.
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Fig. 2 Number of active observations for relative humidity (left) and radial winds (right), Météo-
France radars in blue and OPERA radars in red, between 15 and 20 October 2019

Fig. 3 Histogram of innovations for radial winds (top) and relative humidity (bottom) for OPERA
radar data (left) and Météo-France radar data (right) between 15 and 20 October 2019



Operational Assimilation of Radar Data from the European … 635

3 Assimilation in AROME-France

3.1 AROME-France Assimilation System

The AROME–France data assimilation system is configured as a sequential 3D-Var
assimilation at the 1.3km model horizontal resolution in an hourly cycle. It takes
full advantage of the high spatial and, to some extent, temporal density of observing
systems such as automated surface stations, ground-basedGNSSdelays and radars. In
AROME–France, each 3D-Var step analyzes the two components of horizontal wind,
temperature, specific water-vapor humidity and surface-pressure fields on the model
grid at full resolution. The other prognostic model fields (turbulent kinetic energy,
pressure departure from hydrostatism, vertical divergence and specific content of
five condensed water species) are not updated by the analyses but copied from the
background. In other words, they are left to adjust to the updated model fields during
the forecast steps of the assimilation cycle (Seity et al. 2011).

In this assimilation process, radar data are well suited to provide high-resolution
information on wind and precipitation (Brousseau et al. 2014). Moreover, volumes
of radar reflectivities play a key role as they provide information on the three-
dimensional structure of precipitating systems useful for the initialization of high-
resolution models (Gustafsson et al. 2018). Concerning radial velocities, an obser-
vation operator, which allows the simulation of radial winds from model variables,
is included in the 3D-Var system. Concerning reflectivity, a one-dimensional (1D)
Bayesian retrieval of relative humidity profiles followed their assimilation in the
3D-Var is adopted. Since the early 2010s, radar data fromMétéo-France observation
network are operationally assimilated.

Since January 2020, 62 OPERA radars are also assimilated operationally in the
AROME-France system. Figure4 shows the location of these radars andwhat quanti-
ties are used by country (no data, reflectivity or reflectivity and radial wind). Adding
these observations in the assimilation system may lead to improved forecast qual-
ity, not only over areas where radar observations are available but also over French
territory, by enhancing the representation of upstream meteorological phenomena.

3.2 Performances of the Assimilation in the Observation
Space

Impacts ofOPERA radar data assimilation in theAROME-France 3D-Var system can
be assessed via statistics of observation minus background and observation minus
analysis quantities. A 10-day period is considered between 21 November and 1st
December 2019 to compare forecast performances. In the reference experiment,
only Météo-France radar data are assimilated whereas OPERA radar data are added
in the other experiment.
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Fig. 4 Location of radars used in the AROME-France assimilation system (left) and assimilated
radar data (right)

Figure5 represents root mean square error (RMS) and bias for relative humidity
and radial winds of observation minus background and observation minus analysis
quantities. The differences in the number of assimilated observations is coherent with
the monitoring experiment (see above). The vast majority of OPERA radar data are
collected at elevations lower than 4◦, corresponding to exploitation modes chosen
by the meteorological services in order to operate their radar network.

Adding OPERA radar data in the data assimilation system has a noticeable impact
on relative humidity. In terms of bias, the background has larger values at lower
elevations, linked with the added observations. The quality of the observations can
vary from a country to another, particularly for low elevations that can be affected
by ground clutter and beam blocking, leading to an increase of the background bias.
This bias decreases in the analysis when OPERA radar data are used. This reduction
underlines the benefit of assimilating these data. In terms of RMS, the assimilation
of OPERA radar data improves the quality of both background and analysis.

Concerning radial winds, bias is reduced for background, RMS and bias are
reduced both for background and analysis. This result also confirms that the data
selection in the pre-processing step is efficient to select only valuable data.

Comparison with other ground-based GNSS data or satellite channels sensitive to
humidity shows that background fields are less coherent with these observations (not
shown). This result is expected given the large number of radar data that are added
in our new configuration, radar observations represent about 75% of the assimilated
observations in rainy situations and consequently, can be slightly overfitted.
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Fig. 5 Statistics of observation minus background (line) and observation minus analysis (dotted
line) quantities for relative humidity (top) and Doppler wind (bottom) between 21 November and
1st December 2019. Reference (blue) assimilates only Météo-France radar data, experiment (red)
assimilates both OPERA and Météo-France radar data

3.3 Mean Scores

The two configurations ofAROME-France,with andwithout assimilation ofOPERA
radar data, have been compared over two months, from 21th November 2019 to
15th January 2020. Accumulated precipitation can be compared to the ANTILOPE
(ANalyse par spaTIaLisation hOraire des PrEcipitations) product: a quantitative pre-
cipitation estimation (QPE) combining radar and rain gauge data whose goal is to
provide a real-time rainfall analysis all over France with a 1km horizontal resolution
(Laurantin 2013). It is based on an algorithm of convective cells detection applied
on each 5-min radar image in order to separate the large and small scale compo-
nents of the precipitation field (corresponding respectively to stratiform rainfalls
and showers or thunderstorms). Advanced kriging techniques (including automatic
non-parametric estimation of 2D correlograms of rainfall fields) are used to combine
radar and gauges data.
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Fig. 6 Heidke Skill Score (HSS, left) and normalised difference of Fractions skill score (FSS,
right) of 6h accumulated precipitation for various threshold (0.5–10mm). Base time: from 21st
November 2019 to 15th January 2020, forecast range 6h. ANTILOPE accumulated precipitation is
the reference

Fig. 7 Heidke Skill Score (HSS, left) and normalised difference of Fractions skill score (FSS,
right) of 24h accumulated precipitation for various threshold (0.5–10mm). Base time: from 21st
November 2019 to 15th January 2020, forecast range 24 h. ANTILOPE accumulated precipitation
is the reference

If we focus on the first 6h of forecast range, the impact on precipitation perfor-
mance is noticeable. Figure6 represents the Heidke Skill Score (HSS) and Fractions
Skill Score (FSS) computed using ANTILOPE data as reference for 6h accumulated
precipitation at forecast range 6. Red circles on HSS scores highlight significant
difference, associated with a bootstrap test. Improvement is more visible for higher
thresholds (2 to 10mm). FSS normalised differences are quite neutral for 0.5 and
2mm thresholds but improvement is noticeable for 5 and 10mm thresholds.

Figure7 represents the same scores for 24h accumulated precipitation at forecast
range 24. The impact ofOPERAradar data assimilation is quite neutral at this forecast
range. This neutrality can be explained by the fact that the impact of assimilation is
visible at the first forecast ranges but decreases with time.
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Fig. 8 “ANASYG/PRESYG” describing the meteorological situation on 1st December 2019 (left)
and associated legend of the symbols (right)

In order to monitor the evolution of the quality of the AROME-France model over
time, a composite index has been developed at Météo-France (Amodei et al. 2015).
The “score indicateur” is a mean (on thresholds and neighbourhoods) of Brier Skill
Scores against persistence on various parameters: accumulated 6h rainfallRR6, aver-
aged wind gust in six hours between the six and twenty-four hours forecast ranges
FXI6. For rainfall, thresholds considered are 0.5, 2 and 5mm; for wind gusts, thresh-
olds considered are 40, 60 and 80km/h. Scores on SEVIRI brightness temperature
(channel 10.8 µm) BTP6 are also calculated. Observations are from the French
ground stations network. From this score (not shown), the impact of the assimilation
of the OPERA radar data is quite neutral but small improvements are noticed for the
highest precipitation thresholds (2 and 5mm).

Both scores confirm that the assimilation ofOPERA radar data has positive impact
on AROME-France forecast performances, specially on the first forecast ranges.

3.4 Case Study

On specific situations, the impact ofOPERA radar data assimilation can be noticeable
at longer forecast range. Our case study is a low pressure system that occurred on 1st
December 2019, named J on the “ANASYG/PRESYG” map, near the shaded blue
area (Fig. 8), as described in the Météo-France graphical summary of the synoptic
situation (Santurette and Joly 2002). The system enters West of French territory
before affecting the South-East of France. High precipitation amounts have been
observed during this event that lasts about 24h: 201mm inCannes (AlpesMaritimes)
with 103mm in 3h and 46mm in 1h, 155mm in Vidauban (Var).

In our study, this meteorological situation is particularly interesting in order to
verify if the assimilation of radar data from other European countries, and more
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Fig. 9 ANTILOPE accumulated precipitation over 24h from 1st December 2019 0 h UTC to 2nd
December 2019 0 h UTC

specifically from Spanish radars in this case, can have positive impacts on AROME-
France forecasts over the French territory. ANTILOPE data (described previously)
is be used hereafter as reference for verification of accumulated precipitation.

Figure9 represents the ANTILOPE accumulated precipitation over 24h from 1st
December 2019 0h UTC to 2nd December 2019 0h UTC. Two areas of heavy rain are
observed, identified in Fig. 9 as area “Var” (green ellipse) and area “Hautes-Alpes”
(white ellipse).

Figure10 represents 24-h accumulated precipitation for twoAROME-France con-
figurations: without OPERA data data assimilation (REF) and with these additional
data (EXPE), base time for the model experiments is 1st December 2019 0h UTC on
this illustration. The maximum rain intensity in the “Var” area is underestimated in
the EXPE forecast. Nevertheless, the geographical intensity of the maximum accu-
mulated precipitation is not properly located for both simulations. Performances of
the EXPE forecast are clearly improved over the “Hautes-Alpes” area. Indeed, both
localisation and intensity are better described in the EXPE forecast.

To confirm this qualitative comparison, Heidke Skill Score (HSS) and Fractions
Skill Score (FSS) have been computed, using ANTILOPE data as reference (Fig. 11).
Hereafter, normalised difference of FSS are represented and negative difference are
related to improvement of the forecast quality using OPERA radar data in the assim-
ilation system. These scores are calculated for rain thresholds varying from 2 to
50mm. HSS is clearly improved in EXPE. Using the same thresholds and consid-
ering window sizes from 0.1◦ to 1◦ (about 10 to 100km), FSS also confirms that
assimilating OPERA radar data improves forecast quality.
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Fig. 10 24hour accumulated precipitation in AROME-France forecast without (left) and with
(right) assimilation of OPERA radar data. Forecast time 24 h, base time 1st December 2019 0 h
UTC

Fig. 11 Heidke Skill Score (HSS, left) and normalised difference of Fractions skill score (FSS,
right) of 24h accumulated precipitation for various thresholds (2–50mm). Base time: 1st December
2019 0h UTC, forecast range 24 h. ANTILOPE accumulated precipitation is the reference

Another indication of the forecast quality is the variability from one run to the
other. Comparison on the same validity period (1st and 2nd December 2019 0h UTC)
of three model runs with different base time is displayed in Fig. 12. The results of
the three following forecasts in the EXPE configuration show a quite consistent
description of the two distinct areas of heavy precipitation. From one run to the
other, the underestimation in the “Var” area is less pronounced with the most recent
forecasts.On the contrary, a degradation is observed in theREFexperimentwithmore
recent forecast. This result indicates that taking into account radar data observations
over the Mediterranean sea, in particular from Spain, in the assimilation system
allows to better describe rainy areas over South-East of French territory, specially
during a Mediterranean event such as the one described here.



642 M. Martet et al.

Fig. 12 24hour accumulated precipitation in AROME-France forecast without (left) and with
(right) assimilation of OPERA radar data between 1st and 2nd December 2019 0h UTC. Base
hour and forecast terms vary from top to bottom: 1st December 2019 0h UTC, forecast 24h (top),
30th November 2019 18h UTC, forecast 30h minus 6h (middle), 30th November 2019 12h UTC,
forecast 36h minus 12h (bottom)

4 Conclusion

In an operational convective-scale numerical weather prediction system such as
AROME-France, the assimilation of high temporal and spatial resolution obser-
vation such as radar data has significant impact on forecast performances. Since
2008, Météo-France radar data are used in the AROME-France 3D-Var assimilation
system. Both radial winds and reflectivities are taken into account with two differ-
ent methods (3D-Var for radial winds and 1D+3D-Var for reflectivities). Additional
radar data from neighbouring countries in Europe (62 radars from 9 countries) has



Operational Assimilation of Radar Data from the European … 643

been a challenge because of the heterogeneity in the national radar networks. In this
framework, the OPERA program aims to unify data not only in terms of format but
also through the production of a common quality index. This homogeneity allows
OPERA radar data to be used uniformly, whatever the originating country.

Firstly, the OPERA radar data have been described: what data are received from
OPERA, in particular what processing are used at OPERA level and what quality
indices are produced. Then, a selection of the data has been developed in the frame-
work of AROME-France 3D-Var data assimilation system in order to keep data
according to the quality index defined at OPERA level. A monitoring experiment
of these data during 5 days has shown that OPERA radar data quality is suitable
for assimilation purposes. The pre-processing developed for these observations has
allowed quality observations to be retained. These good quality observations will
contribute the improvement of AROME-France data assimilation system.

Secondly, active assimilation ofOPERA radar data in theAROME-France 3D-Var
system has been evaluated. Comparison of experiments with and without assimila-
tion of OPERA radar data has been studied in order to quantify the impact of adding
these specific observations in the AROME-France system. Two-month experiments
with andwithout OPERA radar data assimilation have been compared. The impact of
adding these specific observations in AROME-France 3D-Var assimilation system
is globally neutral but performances on rain accumulation forecasts are improved
in short time range, when data assimilation is more efficient. In addition to this
two-month experiments, a Mediterranean case associated with heavy rain rates over
South-East of French territory has been studied in order to evaluate the impact of
OPERA radar data assimilation. In this specific meteorological case, Spanish radars
appear to have a significant impact over the French territory. For this situation, con-
sidering OPERA radar data leads to a better description of the geographic extent of
the heavy rain areas and a better quantification of rain accumulations, in particular for
higher thresholds. Moreover, the variability between model runs is reduced. These
results confirm that adding OPERA radar data in AROME-France improves forecast
quality.

Since January 2020, OPERA radar data are part of the Météo-France operational
AROME-France data assimilation system.
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Abstract The main features of the 2020 version of global Numerical Weather Pre-
diction (NWP) model ARPEGE run operationally at Météo-France are described.
This spectral model, developed in collaboration with the Integrated Forecasting Sys-
tem (IFS) of ECMWF, has a tilted and rotated horizontal grid that allows to reach a
resolution of 5km over Europe. The initial conditions are provided by an incremental
4D-Var data assimilation system with a 6-hour time window. Two inner-loops are
performed respectively at 100 and 40km. A comprehensive set of observations is
assimilated with a dominance of satellite data representing 90% of them. However
in terms of information content, conventional observations reach a fractional value
of 20%. A 50-member ensemble data assimilation system based on low resolution
4D-Var is used to estimate daily background error covariances. The most recent
improvements on this system regarding model resolutions, ensemble size and obser-
vation usage, that took place between mid-2019 and mid-2020, are presented with a
selection of evaluations in terms of analysis and forecast skill scores.

1 Introduction

Weather forecasts at various ranges (from few hours to several months) issued by
National Meteorological Services rely on outputs from Numerical Weather Predic-
tion (NWP) models that need to be accurately initialized by Data Assimilation (DA)
systems. The steadily gain in accuracy of NWP models is the result of improve-
ments on four major aspects: the increase in spatial (horizontal and vertical) model
resolutions, the more accurate description of physical processes (with frequently
additional prognostic variables), the increase in number of assimilated observations,
the improvement of DA algorithms to extract more efficiently information contained
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in observations (particularly through the use of ensembles). Each of these aspects
requires additional computational resources (CPU and memory) from High Perfor-
mance Computers (HPCs) with also increased data storage and improved database
management. Therefore major changes that take place on operational NWP systems
are very often associated with HPC upgrades.

This chapter illustrates recent changes of the global NWP DA system that took
place at Météo-France between mid-2019 and mid-2020, thereby corresponding to a
large extent to the configuration that has beenmigrated from theHPCBull DLCB710
to a new HPC Atos Sequana XH2000. The main features of the global NWP model
are summarized in Sect. 2 . TheDA system is described in Sect. 3 for the deterministic
high resolution 4D-Var system that is coupled to an Ensemble DA (EDA) system
providing background error statistics. An overview of the observational usage is also
given in this section, with a summary of recent evolutions. Then, in Sect. 4 a number
of results compare the performance of the current operational NWP system against
the previous one. Finally, conclusions and planned evolutions are summarized in the
last section.

2 Main Features of the Global NWP Model

The global NWP model run operationally at Météo-France since 1992 and named
ARPEGE (Action de Recherche Petite Echelle Grande Echelle) has been jointly
developed with the Integrated Forecasting System (IFS) of the European Centre for
Medium range Weather Forecasts (ECMWF) to foster developments on variational
data assimilation in both centers (Courtier et al. 1991). This is a spectral model in the
horizontal direction (field decomposition in spherical harmonics with a triangular
truncation) with an original grid structure allowing an increased resolution over a
specific region of the globe, by a tilted and stretched conformal mapping described
in Courtier and Geleyn (1988). The vertical is discretized in finite elements with a
staggered grid and a hybrid pressure terrain-followingη coordinate system (Simmons
and Burridge 1981). The temporal integration is performed with a two-time level
Semi-Implicit Semi-Lagrangian (SISL) scheme (Ritchie et al. 1995). The collocation
grid of the spectral transforms is a linear reducedGaussian grid as described inHortal
and Simmons (1991). At the beginning of the project, the prognostic equations of the
ARPEGE/IFS model were written with the hydrostatic assumption. Since then, they
have been generalized to the compressible Euler equations by Bubnová et al. (1995)
using the pressure coordinate change proposed by Laprise (1992). Even though not
yet adopted for the global model, it is used for convective-scale versions of the
ARPEGE/IFS code adapted to the limited area geometry as described in Termonia
et al. (2018).

The horizontal and vertical resolutions of the ARPEGE model have steadily
increased with time starting in 1992 with a resolution around 150km over France
(region with highest resolution) and 21 vertical levels. In this chapter we focus on
the current highest horizontal resolution of ARPEGE (since July 2019) over Europe
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Fig. 1 Horizontal resolution (in km) of the global model ARPEGE resulting from the tilted and
stretched grid (2020 configuration)

which is around 5kmand 105 vertical levels. The corresponding truncation is TL1798
with a stretching factor of c=2.2 leading to a resolution around24kmat the antipodes
of the numerical pole (New Zealand) as displayed in Fig. 1. This high resolution will
be compared to a coarser one (TL1198c2.2) that was operational at Météo-France
between 2015 and 2019 (the highest and lowest resolutions being respectively 7.5km
and 35km).

The ARPEGE model computes the time evolution of a set of ten prognostic
variables: logarithm of surface pressure, temperature, horizontal wind vorticity and
divergence, specific humidities for water vapor, cloud liquid water, cloud ice water,
rain water, snowwater and Turbulent Kinetic Energy (TKE). A set of parametrization
schemes describes the effects of sub-grid physical processes on resolved variables:
longwave radiation from RRTM (Mlawer et al. 1997), shortwave radiation from
an improved version of Fouquart and Bonnel (1980), deep moist convection by a
mass-flux scheme with a Kuo-type closure (Bougeault 1985), shallow convection
by a mass-flux approach (Bechtold et al. 2001), vertical diffusion by a TKE scheme
(Cuxart et al. 2000) with the mixing length formulation of Bougeault and Lacarrre
(1989), stratiform clouds and precipitation by the Kessler-type prognostic micro-
physical scheme of Lopez (2002), gravity wave drag and low level blocking effects
(Catry et al. 2008), surface processes from the SURFEX platform (Masson et al.
2013). The deep moist convection scheme, initially designed for large-scale mod-
els where cloud fraction within the grid box can be neglected, has been somewhat
adapted to the 5km grid corresponding. to the grey zone of convection In practice,
convective tendencies are modified in regions where grid-scale vertical motions are
large (removal of moisture convergence) to prevent the triggering of spurious grid-
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point storms (Marquet et al. 2019). The SISL scheme allows a model time step of
240s leading to a 4-day forecast within 70min on 30 nodes (40 CPU Intel Broad-
well cores per node) of the HPC Bull DLC B710. This rather long model time step,
compared to the scale of some microphysical processes, has required to consider
precipitation sedimentation in a statistical way (Bouteloup et al. 2011).

3 Description of the Data Assimilation System

3.1 High Resolution 4D-Var System

The ARPEGE model has a dedicated DA system to produce its initial conditions.
This is a four dimensional variational (4D-Var) system that has been developed
together with the numerical code of the model since the tangent linear and adjoint
versions were also required to solve efficiently the minimization problem (Le Dimet
and Talagrand 1986). The 4D-Var system formulation is multi-incremental as it has
been proven to be the only affordable solution of this expensive numerical problem
for operational NWP applications (Courtier et al. 1994). The minimisation is thus
performed in terms of increments (leading to a quadratic cost function) at low res-
olution with two-outer loops. Even though the geometry of the non-linear model
is tilted and stretched, it has been chosen to keep a uniform grid for the minimi-
sations. The first minimisation is performed at truncation TL224 (around 100km)
whereas the second one is done at higher resolution TL499 (around 40km). A set of
40 iterations is chosen for each minimisation (compromise between the computing
time and the convergence of the cost function). The convergence of the numerical
algorithm (conjugate gradient) is improved by a pre-conditioning using eigenvec-
tors from the previous minimisation (Lanczos algorithm). The first minimisation is
undertaken with almost adiabatic tangent linear and adjoint models (simplified ver-
tical diffusion) whereas a set of improved linearized physical parameterizations is
used in the second minimization for vertical diffusion, gravity wave drag and large
scale condensation (Janisková et al. 1999). This configuration will be compared to a
similar one but with coarser resolutions of the inner loops: TL149 (around 150km)
and TL399 (around 60km) corresponding to the operational settings between 2015
and 2019. The control of fast gravity waves is done with a Digital Filter Incremental
(DFI) constraint proposed by Gauthier and Thépaut (2001) and an external digital
filtering.

An operational version of the 4D-Var DA system is cycled every 6h: this is the
assimilation suite. For this suite the observation cut-off is long enough to collect the
vast majority of available measurements before starting the screening process (data
selection by a systematic comparison of observations with their model counterpart)
that is between 7 and 8h after analysis time. Another suite called the production suite
is runwith amuch shorter cut-off (between2 and3h) in order to provide early delivery
forecasts that are also used as boundary conditions for the convective scale model
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Fig. 2 Structure of the operational production and assimilation suites of the ARPEGE model. The
shaded areas correspond to the observation latency before launching the 4D-Var assimilation

AROME (Seity et al. 2011). The disadvantage is that not all observations are available
in the database when starting the screening, resulting in less accurate analyses and
subsequent forecasts. Therefore the production suite is not cycled meaning that the
background is taken from a 6-h forecast of the assimilation suite. The assimilation
window is set to 6h (+/- 3h around analysis time). Observations are gathered by
30min time slots except at the beginning and at the end of the window with 15min
time slots. These two suites and their interactions are displayed in Fig. 2. Forecasts
from the production suite range between 60 and 114h depending on analysis time.

Every 6h an independent surface analysis is performed based on Optimal Interpo-
lation (OI). Over oceans, a Sea Surface Temperature (SST) analysis uses BUOY and
SHIP surface reports as observations, the previous SST analysis as a background (i.e.
persistence) and a relaxation towards the daily SST analysis product OSTIA (Don-
lon et al. 2012). Over continents, screen-level temperature and relative humidity
measurements from SYNOP reports are interpolated on the model grid using an OI
scheme and 6-h forecasts of these parameters as background field. Then, the analysis
increments are converted into soil temperature and soil moisture corrections using
a method described in Giard and Bazile (2000) with a number of recent changes
available in Mahfouf et al. (2009). This simple method prevents spurious positive
feedbacks between soil moisture, surface evapotranspiration, and precipitation.
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3.2 Ensemble Data Assimilation System

An Ensemble Data Assimilation (EDA) system named AEARP (Assimilation
d’Ensemble ARPEGE) is coupled to the 4D-Var system in order to provide flow
dependent background error covariances. The method, initially proposed by Fisher
(2003), relies on an error simulation approach: observation errors are mimicked by
adding observation perturbations, which are random draws of the specified obser-
vation error covariance matrix; model errors are simulated through a multiplicative
inflation of forecast perturbations (Raynaud et al. 2012). The AEARP ensemble is
made of 50 members, using lower resolution and a simplified 4D-Var configuration,
compared to the deterministic run. To reduce the computational cost of eachmember,
the non-linear ARPEGE model is run at low resolution TL499 with a regular grid
and the 4D-Var incremental formulation is performed at TL224 with only one outer-
loop (40 iterations). The covariance matrix of background errors is decomposed in
a sequence of sparse operators (flow-dependent balance equations and multi-variate
scale-dependent regressions, error standard deviations and spatial correlations) as
formulated by Derber and Bouttier (1999). The set of perturbed short-range fore-
casts from the EDA allows to estimate local background error standard deviations
which need to be spatially filtered from noise induced by sampling errors (Berre and
Desroziers 2010). Moreover, to represent heterogenous 3D correlation functions, a
wavelet block-diagonal formulation of the correlation matrix is employed (Fisher
2003). Correlations functions are estimated from the ensemble states over the three
most recent cycles (akin to a moving time average), in order to increase sample
size (Berre et al. 2015). The previous operational configuration was made of only
25 members at lower resolution (TL479 for the trajectory and TL149 for the mini-
mization). Correlation functions were estimated through a time average over the six
most recent cycles. In order to maintain a similar execution time for each 4D-Var
task on a limited number of nodes of the HPC Bull DLC 710, the set of assimilated
observations has been reduced (the three most recent infrared hyperspectral sounders
out of six). On top of providing background error covariances to the deterministic
4D-Var, the AEARP perturbed states are also used to define the initial conditions of
the 35 member ARPEGE Ensemble Prediction System (Descamps et al. 2015) and
to provide the lateral boundary conditions of the AROME EDA system (Montmerle
et al. 2018).

3.3 The Observation Usage

3.3.1 General Features

The availability of a 4D-Var DA system at Météo-France since 2000 has allowed a
progressive increase of satellite data usage. This can be seen in Fig. 3 showing the
evolution of the number of monthly observations assimilated in the ARPEGEmodel.
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Fig. 3 Evolution of the number of observations assimilated and monitored (i.e. available) monthly
in theARPEGEmodel over the period 2002–2020 for conventional (CONV: red curves) and satellite
(SAT: blue curves) datasets

Over almost 20 years the amount of satellite data has increased by two orders of
magnitudewhereas during the same period the amount of non-satellite (conventional)
data has only increased by a factor of 10 (mostly from aircraft reports). As a result,
in the current operational 4D-Var, 93% of the observations come from spaceborne
instruments. As also shown in Fig. 3 the amount of satellite data monitored (i.e.
available) in the ARPEGE 4D-Var is considerably larger than the one effectively
assimilated by about a factor of ten (this is not a feature specific to the Météo-
France system). Therefore this one to nine ratio between conventional and satellite
observations could even be smaller if satellite data were to be used more efficiently.
On the other hand, the fraction of assimilated conventional observations with respect
to those monitored is considerably larger. Interestingly, the significant decrease of
conventional observations initiated in March 2020 comes from very limited aircraft
measurements induced by the Covid-19 worldwide pandemic.

It is known that before assimilation, data have to be carefully checked through a
number of quality controls. For example, satellite radiances are systematically com-
pared to a model equivalent in clear sky conditions using the radiative transfer model
RTTOV version 11 (Saunders et al. 2018). When the difference between observed
and simulated radiances is too large (background check) the observation is discarded
and assumed to be cloudy. For hyperspectral infra-red sounders, it is possible to
identify a cloud top and not discard the full pixel by keeping channels having most
of their weighting function above cloud top (McNally and Watts 2003). Moreover, a
CO2 slicing method allows an estimation of cloud top pressure and effective emis-
sivity to assimilate a number of infra-red radiances affected by clouds (Pangaud et al.
2009). Another important aspect of observation usage concerns the spatial sampling
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also named data thinning. This pre-processing step is necessary since horizontal
correlations of observation errors are not accounted for (both because it simplifies
the 4D-Var formulation and also because their modeling is rather complex due to
the unstructured nature of observing systems). For satellite data the spatial sampling
varies between 100 and 125km depending upon instruments. The specification of
observation errors is based on the knowledge of instrumental errors, and also from
background departure statistics. A posteriori diagnostics, as defined by Desroziers
et al. (2005a), are used for some observation types. It is also based on pragmatic
“trial and error” experiments where the improvement or the degradation of the fore-
cast scores is assessed (since an observation error inflation can partly compensate for
neglecting spatial correlations). Satellite radiances are generally affected by biases
depending on many factors (scan angle, satellite position, air mass properties, ...),
thus they need to be corrected before assimilation. With the advent of hyperspectral
sounders having thousands of channels the development of adaptive bias correc-
tion methods became necessary to replace rather tedious static methods based on
past trial periods. The ARPEGE 4D-Var system uses the variational bias correction
scheme developed by Auligné et al. (2007) where the control vector is extended to
a set of coefficients depending on predictors proposed by Harris and Kelly (2001).
Conventional observations also need to be corrected from known biases. This is
the case for radiosondes where the humidity bias is corrected using the proposal of
Agust-Panareda et al. (2009) and the temperature bias at high altitudes due to sun-
light radiative effects is removed by an empirical formulation depending upon solar
elevation and sonde type.

3.3.2 Recent Developments

Table1 summarizes the major observing systems assimilated nowadays in the
ARPEGE 4D-Var. Changes to the operational NWP system usually take place every
18 months and they include changes to the observation usage (new datasets or
improved usage of existing ones). However, during a given 18-month period, addi-
tional changes can takeplace to the global observing system that need tobe considered
before the next version of the NWP suite. A number of new observational datasets
were introduced since the implementation of the high resolution system in July 2019,
as described more precisely in the following.

In July 2019, the most important changes on observations were:

• Assimilation of a number of instruments from the EUMETSAT/ESA Metop-C
polar orbiting satellite:microwave soundersAMSU-A andMHS,GNSS-RObend-
ing angles from the receiver GRAS

• Assimilation of the microwave sounder ATMS onboard the US NOAA-20 polar
orbiting satellite

• Assimilation of ocean surface winds from the Indian Ku-band scatterometer
OSCAT onboard ScatSat-1
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Table 1 Summary of the observing systems assimilated in the 4D-Var system of the ARPEGE
model in May 2020. Instruments fromMetop-C and NOAA-20 have been introduced progressively
between July 2019 and May 2020. The maximum number of satellite channels per instrument is
given in the last column with their sensitivity to temperature (T), water vapor (WV) and ozone
(O3). Similarly, the spectral bands (VIS, IR, WV) used for the derivation of atmospheric wind
vectors are given. In-situ sensors measure surface pressure (Ps ), temperature (T), relative humidity
(RH) and winds. The ground based GNSS (GB-GNSS) receivers provide Zenith Total Delay (ZTD)
measurements informative on integrated water vapor

Observation type Instruments / Platform Comments

LEO IR radiances IASI (Metop-A/B/C) 129 channels (T, WV, O3)

CrIS (S-NPP, NOAA-20) 68 channels (T, WV)

AIRS (Aqua) 72 channels (T, WV)

GEO IR radiances SEVIRI (Meteosat-8/11) 6 channels (T, WV)

AHI (Himawari-8) 5 channels (T, WV)

LEO MW radiances AMSU-A (NOAA-15/18/19,
Aqua,
Metop-A/B/C)

9 channels (T)

ATMS (S-NPP, NOAA-20) 14 channels (T, WV)

MHS (NOAA-19,
Metop-A/B/C)

3 channels (WV)

MWHS-2 (FY-3C) 3 channels (WV)

SAPHIR (Megha-Tropiques) 6 channels (WV)

SSMI/S (DMSP F-17/18) 14 channels (T, WV)

GMI (GPM-Core) 2 channels (WV)

GNSS-RO bending angles GRAS (Metop-A/B/C) above 8km

IGOR (COSMIC-1) –

IGOR (TerraSAR-X) –

IGOR (TanDEM-X) –

Scatterometer surface winds C-band ASCAT
(Metop-A/B/C)

neutral 10-m winds

Ku-band OSCAT (ScatSat-1) neutral 10-m winds

AMVs SEVIRI (Meteosat-8/11) (WV, IR, VIS)

ABI (GOES-16/17) (WV, IR, VIS)

AHI (Himawari-8) (WV, IR, VIS)

MODIS (Terra, Aqua) (WV, IR)

AVHRR (NOAA-15, 18, 19) (IR)

Aircrafts AIREP, AMDAR (T, winds)

Sondes PILOT, TEMP, Profilers (T, RH, winds)

Surface BUOY, SHIP, SYNOP,
GB-GNSS

(Ps , T, RH, winds, ZTD)



654 F. Bouyssel et al.

• Assimilation of Atmospheric Motion Vectors (AMVs) from the US GOES 16
geostationary satellite imagery

• Assimilation of low peaking channels from IASI over continents
• Introduction of interchannel error correlations for infra-red hyperspectral sounders
IASI and CrIS

• Use of a variational bias correction scheme for ground based GNSS observations
of Zenith Total Delays (ZTD).

In October 2019, additional observations were introduced:

• Assimilation of infra-red hyperspectral sounders IASI from Metop-C and CrIS
from NOAA-20

In January 2020, a remaining instrument from Metop-C was added:

• Assimilation of ocean surface winds from the C-band scatterometer ASCAT

Finally in May 2020:

• Assimilation of AMVs from the US GOES 17 geostationary satellite imagery

We examine the proportion of observations assimilated in the ARPEGE 4D-Var
in December 2019 together with the information content quantified by the Degree
of Freedom for Signal (DFS). This diagnostic is regularly used at Météo-France to
quantify the impact of observations on ARPEGE analyses. It measures the relative
error reduction induced by the observations on the background error covariance
matrix B. If A is the analysis error covariance matrix, the DFS is written as:

DFS = Tr [(B − A)B−1] (1)

Since the analysis covariance matrix can be expressed as:

A = (I − KH)B (2)

where K is the Kalman gain of the analysis equation (link between analysis incre-
ments and background departures) andH is the tangent-linear version of the observa-
tion operator that projects the model state into the observation space, then the DFS
is simply Tr(KH) = Tr(HK). Using a randomization technique, it is possible to
obtain the DFS from a set of 4D-Var assimilations, each one being run with ran-
domly perturbed observations following the observation error covariance matrix R
as proposed by Desroziers et al. (2005b). Indeed if xa is an unperturbed analysis
obtained with an observation vector yo and x∗

a is a perturbed analysis obtained with
an observation vector y∗

o , the DFS can be approximated as:

DFS � [y∗
o − yo]T R−1[H(x∗

a) − H(xa)] (3)

since [H(x∗
a) − H(xa)] � HK(y∗

o − yo) and Tr(A) � ζ T Aζ if ζ is a Gaussian ran-
dom vector (Girard 1989).
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Fig. 4 Proportion of observations assimilated in the ARPEGE model for a 24-h period together
with their information content measured by the fractional DFS (12 December 2019). Datasets are
ranked by decreasing DFS values

In practice, a set of six 4D-Var assimilations from the deterministic high resolution
system is run over a one day period (4 analysis cycles) in order to produce robust
global diagnostics that are regularly updated on the Météo-France NWP monitoring
web site.1

Figure4 reveals that the observing system is dominated by infrared radiances
(IR) since six hyperspectral sounders are assimilated in ARPEGE from October
2020. Indeed they represent 80% of the total observations. The remaining satellite
observations come mostly from microwave radiances (9%). Winds from scatterom-
eters, satellite imagery, and GNSS signals reach only 3%. In terms of conventional
observations, aircrafts reports (AMDAR) and radiosoundings (RAOBs) represent 5%
of the total number of observations (around 42 millions per day). When examining
DFS values for the same period, this rather unbalanced observing system in terms
of numbers reveals that the information content is more evenly distributed among
the various observation types. The infrared sounders represent 45% of the total DFS
that is quite comparable to the contribution of all other satellite instruments (36%
but being dominated by microwave radiances (20%)). Despite their small percent-
age in number, conventional observations (AMDAR, RAOBs, SURF) contribute to

1 http://www.meteo.fr/special/minisites/monitoring/menu.html.

http://www.meteo.fr/special/minisites/monitoring/menu.html
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Table 2 Main features of the two versions of the ARPEGE NWPmodel with its 4D-Var determin-
istic and ensemble systems compared in Sect. 3

Operational version
before July 2019 (OLD)

Operational version
since July 2019 (NEW)

ARPEGE Deterministic TL1198c2.2L105
(7.5km Western Europe)
4D-Var inner loops
TL149c1L105 + TL399c1L105
5 forecasts per day up to 114h

TL1798c2.2L105
(5km Western Europe)
4D-Var inner loops
TL224c1L105 + TL499c1L105
5 forecasts per day up to 114h

AEARP
(EDA based on ARPEGE)

TL479c1L105; 25 members
4D-Var: TL149c1L105
Background error correlations
averaged on 1.5day
and updated every 6h

TL499c1L105; 50 members
4D-Var: TL224c1L105
Background error correlations
averaged on 0.5day
and updated every 6h

20% of the total DFS. The small value of the total DFS for a one day period (0.8
million) indicates that the observations do not contain enough information to con-
trol all degrees of freedom present in the model state vector (having a size about
100 millions). The measure of the DFS only provides information on the accuracy
of the analysis (in theory even without estimating the analysis state). However, in
practice it has been noticed that the ranking of the observing systems by DFS val-
ues is rather similar to the one obtained from Forecast Sensitivity to Observation
Impact (FSO I ) studies which examine the impact of observations on short-range
forecast accuracy, particularly when a fair contribution of humidity forecast errors
is considered (Marquet et al. 2020).

4 Behavior of the Current Operational Configuration

The high resolution ARPEGE model with significant revisions to its assimilation
system (higher resolution of minimisations and upgraded EDA) has been tested
against the Météo-France operational system over several months before becoming
the new operational system on 2 July 2019. Themain differences between this system
(namedNEWhereafter) and theprevious one (namedOLDhereafter) are summarized
in Table2. A selection of evaluations undertaken to assess the overall quality of this
new NWP DA and forecasting systems is now presented by a comparison of results
obtained with NEW and OLD.

A first assessment of the DA system is usually done by examining statistics of
observations against model counterparts in terms of short-range forecasts (back-
ground departures: OmB) and analyses (analysis residuals: OmA). This provides a
first sanity check where (OmA) values should be smaller than (OmB) ones, since the
DA system is expected to bring themodel state closer to the observations assimilated.
Then, if the (OmB) values are smaller for the experiment than for the reference, it
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reflects smaller errors of short-range forecasts towards independent observations (not
yet assimilated). Contrary to long range forecasts that need large samples to produce
statistically significant results, the global (OmB) and (OmA) statistics are often very
robust on a small sample (e.g. one week). Over a one month period, the experiment
(NEW) shows for almost all observing systems, reduced values of standard devi-
ations of (OmA) and (OmB) with respect to the reference (OLD). The systematic
reduction of (OmA) values is a consequence of the increased resolution of the anal-
ysis (TL499 vs. TL399) and of the introduction of correlated observation errors for
IASI and CrIS instruments that represented 70% of the total number of observations
in the OLD system. With correlated observation errors, the model state can slightly
reduce its fit to those observations at the benefit of other observing systems. Indeed,
variances of observation errors have not been modified when introducing interchan-
nel error correlations. This is shown in Fig. 5 for radiosounding profiles (for wind,
temperature and specific humidity) and for the microwave instrument ATMS, where
the impact is more pronounced for water vapor channels than for temperature ones.

An objective evaluation of the forecasts is performed against meteorological fields
that should represent as much as possible the true state of the atmosphere. At Météo-
France the comparison is usually performed against ECMWF analyses2 (providing
a uniform coverage) and radiosounding measurements (closer to the truth but rather
sparse over tropical regions and in the Southern Hemisphere). Similar signals with
both references increase the confidence given to the results. The root-mean square
errors (RMSE) of the OLD system are compared to the NEW system in relative
percentage (differences divided by the OLD values). Positive values indicate smaller
errors with the new (NEW) system. A statistical test allows to estimate the signifi-
cance of the differences. Such results are displayed in Fig. 6 where for temperature
and vector wind fields according to the various forecast ranges and pressure levels,
the new system performs better. A slight degradation for temperature is nevertheless
noticed in the stratosphere (Northern Hemisphere and Tropics) around 20 hPa. It
comes from the fact that the rather coarse vertical resolution at those levels has not
been modified with the model horizontal resolution increase leading there to a spu-
rious stratospheric cooling (Lindzen and Fox-Rabinovitz 1989). This weakness has
somewhat been reduced by increasing the horizontal diffusion on wind variables and
adding an iteration in the search of the origin point of the Semi-Lagrangian scheme.

Since the geometry of the ARPEGE model has been defined in order to provide
better forecasts over Europe for the short-range (up to 4 days), a specific NWP
skill index has been set-up to evaluate such performances. This NWP index named
IP18 considers three upper air parameters: 500 hPa geopotential (Z500), 850 hPa
temperature (T850) and 250 hPa wind (W250) at two forecast ranges (48 and 72h)
issued from the 00UTC analyses. For each parameter, the RMSE is computed against
radiosoundings over Europe. It is then compared and normalized by its value in 2008
as 100 × (RMSE − RMSE2008)/RMSE2008. The global NWP skill index IP18 is
obtained by an arithmetic average of the six scores. The IP18 values are displayed in
Fig. 7 together with their six components for the current operational system (NEW)

2 They are averaged on a 0.5◦ x 0.5◦ lat/lon grid.
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Fig. 5 Global standard deviations of background departures (OmB: solid curves) and analysis
residuals (OmA: dashed curves) for zonal wind component, temperature and specific humidity from
radiosoundings (RAOB), and radiances from the microwave sounder ATMS (6 to 14 : temperature
channels and 18 to 22: water vapor channels) over one month in November 2018. The red curves
correspond to the previous operational system (OLD) and the black curves correspond to the new
operational system (NEW)

and the previous one (OLD). Positive values indicate improvements with respect to
the NWP system in 2008. These values are averaged over a 5-month trial period
before going operational. The new system (NEW) that went operational in July 2019
has an IP18 value of 11% leading to a 3% increase with respect to the previous
operational system (OLD). All components of this NWP skill index are improved
but the low level temperature at 72h and the upper level winds show a larger increase
in a relative sense.
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Fig. 6 Normalized RMSE values (in percent) of temperature (left panels) and vector wind (right
panels) against ECMWF analyses between the previous operational system (OLD) and the new
one (NEW) for forecast ranges up to 102h. Positive values correspond to an improvement by the
new system (reduced errors) and negative values correspond to a degradation by the new system
(increased errors). The top row is for the Northern Hemisphere (NH), the middle row for the Tropics
and the bottom row is for the SouthernHemisphere (SH).Yellow areas indicatewhere the differences
are significant to 95% confidence level. The period ranges from January to May 2019

5 Conclusions and Planned Evolutions

The 2020 configuration of the operational global DA system run at Météo-France
with the ARPEGE model using an incremental 4D-Var has been described and its
performances assessed in terms of analysis diagnostics and forecasts scores. The
major improvement that took place in July 2019 was an increased horizontal reso-
lution of the tilted and stretched grid of the non-linear model leading to a physical
grid size about 5km over France. Additional changes were made to the DA system
with increased resolutions of the increments both in the deterministic 4D-Var and
in the EDA providing flow dependent background error statistics. Regarding this
last system, the number of members has been increased from 25 to 50 members
to provide more reliable statistics by reducing sampling noise. The observational
data usage has been significantly modified with the addition of new instruments in
particular those from Metop-C and NOAA-20 satellites and by a better usage of
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Fig. 7 Combined forecast skill scores of ARPEGE (IP18 index) over Europe for a 5month period
in 2019 for the OLD and NEW NWP systems

already available observations (variational bias correction of ground based GNSS
receivers, correlated observation errors for IASI and CrIS infrared sounders, low
peaking channels of IASI over continental surfaces). Since then, new observations
have been included such as two hyperspectral sounders (IASI on Metop-C and CrIS
on NOAA-20). All these changes led to improved forecast scores as shown by the
RMS error of the geopotential at 500 hPa at 72 h forecast range over Europe for a 8
year period compared against other global NWP models (Fig. 8). The quality of the
ARPEGE model has steadily improved since mid-2019.

A number of evolutions to this global NWP system are ongoing. Regarding the
observing systems the wind profiles from the spaceborne lidar of the satellite mis-
sion Aeolus and a set of additional GNSS-RO receivers (in particular those from the
equatorial constellation COSMIC-2A) have been recently assimilated (June 2020).
Developments on all-sky microwave radiances using a Bayesian inversion method as
described in (Duruisseau et al. 2019) are now in a pre-operational stagewith improved
analyses of humidity in clouds and more accurate forecasts of severe weather events
such as tropical hurricane trajectories. The new satellite programmes from EUMET-
SAT for both polar and geostationary orbits (EPS-SG3 and MTG4) to start in 2023

3 EUMETSAT Polar System -Second Generation.
4 Meteosat Third Generation.
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Fig. 8 Root-mean square error of the geopotential at 500 hPa at 72h forecast range over Europe
against radiosoundings (annual runningmean between 2012 and 2020) for eight globalNWPmodels
including the ARPEGE model (Météo-France)

will be carefully prepared. Indeed they will raise new challenges for exploiting their
data efficiently in the DA assimilation context due to the huge amount of addi-
tional observations they will provide and also from the novelty of some instruments
(e.g. geostationary infrared hyperspectral sounder, lightning imager, sub-millimeter
radiometer). Regarding the evolution of the DA algorithm, the 4D-Var system shall
evolve towards a 4D-Ensemble Variational (4D-EnVar) system (Desroziers et al.
2014) where the minimization is performed on a 4D state (allowing to relax the per-
fect model strong constraint) and evolved background error covariances are deduced
from the ensemble. This requires specific localisations of spatial correlations includ-
ing advection within the assimilation window (Desroziers et al. 2016), and variable
transforms (Berre et al. 2017) to account for scale-dependent and multivariate fea-
tures. With the 4D-EnVar system it will also be possible to consider new variables in
the control vector such as hydrometeors for clouds and precipitation and to avoid the
use of linearized physical parameterization schemes that have been difficult to main-
tain and develop at Mto-France over the last 15 years. With such evolution all-sky
satellite radiances should be assimilated more efficiently.
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An Overview of KMA’s Operational
NWP Data Assimilation Systems

Hyun-Cheol Shin, Ji-Hyun Ha, Kwang Deuk Ahn, Eun Hee Lee,
Chang Hwan Kim, Yong Hee Lee, and Adam Clayton

Abstract Currently, the Korea Meteorological Administration (KMA) is operating
twoglobalmodels.One is theUnifiedModel (UM)developed by theUnitedKingdom
MetOffice, and the other is theKorean IntegratedModel (KIM),whichwas developed
by the Korea Institute of Atmospheric Prediction Systems (KIAPS) during a 9-year
project funded by KMA. The UM global model has been operation since 2010,
and the KIM global model since April 2020. The plan is that KIM will be the sole
operational global model of KMA after retirement of the UM at the end of 2022.
In this chapter, we introduce the data assimilation systems used with the two global
models, and with the limited area models that are nested inside the global UM. The
UM global model uses a hybrid-4DVar data assimilation system, while the KIM
global model uses a hybrid-4DEnVar system. UM-based 1.5 km local and very short
range forecast models cycled with 3DVar are also being operated. KMA also runs
another very short range forecasting system with a 5 km grid spacing named the
Korea Local Analysis and Prediction System (KLAPS) which is also cycled with
3DVar.

1 Introduction

The UM-based numerical weather prediction (NWP) models and data assimilation
systems are introduced in Sect. 2. The main characteristics of the UM global, local,
and ensemble models are explained, along with the main steps in the global data
assimilation system.We also show the observational data used in the UM data assim-
ilation system, and introduce the hybrid-4DVar scheme that was made operational in
2013, and the variational bias correction scheme that was made operational in 2017.
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In Sect. 3, we introduce the new global model, the Korean Integrated Model
(KIM), and its hybrid-4DEnVar data assimilation system, including details of the
data assimilation algorithm, the observation types assimilated, and the observation
processing system.

The main characteristics of the very short range forecast model, the Korea Local
Analysis and Prediction System (KLAPS), are summarized in Sect. 4.

2 UM Data Assimilation

2.1 History

The accuracy of the NWP system has significantly improved since the Korea Mete-
orological Administration (KMA) introduced the Met Office’s Unified Model (UM)
in 2010. After initial implementation, KMA has regularly updated the model infras-
tructure, data assimilation, and physics schemes to keep up with the operational
NWP systems running at the Met Office, but normally running a one or two year
older version. KMA’s current (January 2021) UM-based operational systems are
illustrated in Fig. 1, and the history of the main operational changes (model and data
assimilation) is summarized in Table 1.

Fig. 1 KMA NWP Operational Models (UM based)
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Table 1 Main operational changes of the UM-based KMA NWP systems (2010 ~ 2019)

Year Operational changes

2010 Global model “GDAPS” introduced (40 km—L50, Top = 65 km)
Regional model “RDAPS” introduced (12 km—L38, Top = 45 km/cold run)

2011 Resolution change of global model (→ 25 km—L70, Top = 80 km)
Global ensemble “EPSG” introduced (40 km—L70, Top = 80 km, 24 members)
Introduction of 4DVar into the regional model
Vertical resolution change of regional model (→ L70, Top = 80 km)

2012 Local model “LDAPS” introduced (1.5 km—L70, Top = 40 km)

2013 Hybrid-4DVar for the global model

2015 Local ensemble model “LENS” introduced (3 km—L70, Top = 40 km, 13 members)

2016 Horizontal resolution change of global model (25 km → 17 km)
Upgrade of global ensemble (40 km → 32 km, 25 → 49 members)

2017 Introduction of VarBC (Variational Bias Correction) into the global model
Expansion of local model domain (Korean Peninsula → East Asia)
Very short range forecast model “VDAPS” introduced (1.5 km—L70, Top = 40 km)

2018 Horizontal resolution change of global model (17 km → 10 km)
Horizontal resolution change of local ensemble model (3 km → 2.2 km)

2019 Retirement of 12 km regional model

GDAPS:GlobalDataAssimilation andPredictionSystem;RDAPS:RegionalDataAssimilation and
Prediction System; EPSG: Ensemble Prediction System - Global; LDAPS: Local Data Assimilation
and Prediction System; LENS: Local ENSemble; VDAPS: Very short range Data Assimilation and
Prediction System

2.2 Data Assimilation for the Global Model (GDAPS-UM)

The current version of the KMA UM-based global NWP system was made opera-
tional at KMA in June 2018. The global data assimilation system consists of four
parts: (1) preparation of the observations database, (2) observation processing (OPS),
(3) surface analysis (SURF), and (4) the main variational analysis (VAR).

(1) Observations database. Various observations in ASCII, binary, or BUFR
(Binary Universal Form Representation) format are received through the
GTS or a dedicated ftp network, and ingested into a database in the ODB
(Observation Data Base) format developed by ECMWF.

(2) OPS: The OPS (Observation Processing System) software developed by the
Met Office is used to quality control and thin observations read from the ODB
database, and prepare them for use in the data assimilation system. In total 15
types of observations are currently managed by the OPS (Table 5). The quality
control step removes any observations that have gross errors, fail “buddy”
checks, or deviate too far from the background forecast. Many satellite data are
then removed through data thinning (Table 2). The biases of satellite radiance
data are corrected using parameters updated on the previous data assimilation



668 H.-C. Shin et al.

Table 2 Thinning ranges (km) of the satellite data used in UM global model

Satellite data AIRS
ATMS
CrIS

AMICSR
AHICSR
SEVIRICSR
GOESCSR

AMSR2
FY-3C

ATOVS IASI Ground-GNSS Satwind

30oS ~ 30oN 154 120 80 154 154 100 200

90oS ~ 30oS
30oN ~ 90oN

125 120 80 100 80 100 200

cycle during the late-cutoff analysis,whichmakes use of theVarBC (Variational
Bias Correction) scheme described in Sect. 2.6.

(3) SURF: Surface analysis process. This process produces analyses of soil mois-
ture, SST (Sea Surface Temperature), snow and sea ice. ASCAT superficial
soil wetness index data is assimilated using a simplified Extended Kalman
Filter (EKF) (Gómez et al. 2020, De Rosnay et al. 2013). Model snow depth is
updated based on IMS1 data, and model SST and sea ice are corrected based
on OSTIA2 (Donlon et al. 2012; Martin et al. 2019) data.

(4) VAR: Variational analysis process. The atmospheric analysis is produced here
using a hybrid-4DVar scheme (Rawlins et al. 2007; Clayton et al. 2013). To
reduce both computational costs and total run time, the minimization of the
cost function starts at lower resolution (88 km) and then proceeds to a higher
resolution (40 km). A linear “Perturbation Forecast” (PF) model and its adjoint
are included to propagate information through the data assimilation window.
Ensemble information is incorporated into the background error covariance
matrix as part of a hybrid-4DVar scheme, as described in Sect. 2.6. The control
variables are stream function, velocity potential, unbalanced pressure and the
humidity variable described in Ingleby et al. (2013). The conjugate-gradient
method is used for the minimization of an exactly quadratic cost function, but
with relinearization of the observation operators every ten iterations to allow
for some weak nonlinearity. The observation window is −3 to +3 h, with the
FGAT3 fields for the observation operators obtained by linearly interpolating
in time between fields valid at −3, 0 and +3 h relative to the nominal analysis
time. Increments to the background fields are taken from the nearest PF model
timestep.

The global data assimilation cycle is run 4 times (00,06,12,18UTC) a day. In order to
provide model results to forecasters in time, the global model run is started before all
observational data within the data assimilation window is received. This run is called
the ‘early run’. The early run starts 2 h and 40 min after the nominal analysis time
in the global model. And the global model is rerun later after a more complete set of

1 IMS: Interactive Multisensor Snow and Ice Mapping System.
2 OSTIA: Operational Sea Surface Temperature and Sea Ice Analysis
3 FGAT: First Guess at Appropriate Time.
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observational data has been received to provide a better set of background fields for
the next run. This is called the ‘late run’. The late run starts 6 h and 40 min after the
nominal analysis time in the global model. The early run uses approximately 80%
of the observational data used by the late run. A general overview of the UM-based
global model and data assimilation systems is provided in Table 3. Synop, Sonde,
Aircraft and 13 satellite observation types are assimilated in the global model, as
shown in Table 5, and illustrated in Fig. 2 for a particular 6 h period.

2.3 Data Assimilation in Local Models

KMA is also operating a local model (LDAPS) and a very short range model
(VDAPS) to forecast convective-scale severe weather events. These two models are
cycled with 3DVar. LDAPS has been operational since 2012 and VDAPS has been
operational since 2017. As shown in Tables 6 and 7, Synop, Sonde, Aircraft and
1~5 satellite observation types are assimilated in LDAPS and VDAPS. Data from
domestic weather radars is also assimilated. The radar radial velocities are assimi-
lated in 3DVar, while the radar surface rainfall rates are assimilated separately using
a Latent Heat Nudging (LHN) method (Jones and Macpherson 1997) in which latent
heating rate profiles are nudged towards target profiles by adding increments to poten-
tial temperature during the model integration (while preserving relative humidity).
VDAPS also assimilates visibility observations from automatic weather stations,
using the method of Clark et al. (2008). Note that the high nonlinearity of the visi-
bility operator requires a different minimization method—a quasi-Newton method
rather than the conjugate-gradient based method that is used with the global and
LDAPS variational data assimilation systems. General overviews of the LDAPS and
VDAPS data assimilation systems are displayed in Table 3.

2.4 Ensemble Prediction Systems (EPS)

KMA is operating global and local ensemble prediction systems. The global EPS
“EPSG” is based on the “MOGREPS-G” system (Bowler et al. 2008) that was oper-
ational at the Met Office at the time of the last major NWP upgrade at KMA (June
2018). The ensemble perturbations are updated every 6 h using a localized Ensemble
Transform Kalman Filter (ETKF) algorithm (Bowler et al. 2009). These perturba-
tions are added to the early-cutoff global deterministic analysis together with random
perturbations to the Sea SurfaceTemperatures (SSTs), soilmoisture and soil tempera-
ture to create the initial states for the ensemble forecasts. To account for model uncer-
tainties, the forecasts include stochastic perturbations to key parameters in the phys-
ical parametrization schemes, and a Stochastic Kinetic Energy Backscatter (SKEB)
scheme to account for the effect of unresolved scales in the dynamics (Tennant et al.
2011). To account for other system deficiencies—particularly in the ETKF-based



670 H.-C. Shin et al.

Ta
bl
e
3

G
en
er
al
ov
er
vi
ew

of
U
M
-b
as
ed

K
M
A
de
te
rm

in
is
tic

m
od

el
s
an
d
da
ta
as
si
m
ila

tio
n
sy
st
em

s

G
lo
ba
lm

od
el
(G

D
A
PS

)
L
oc
al
ar
ea

m
od
el
(L
D
A
PS

)
V
er
y
sh
or
tr
an
ge

fo
re
ca
st
m
od
el
(V

D
A
PS

)

M
od
el
re
so
lu
tio

n
10

km
—
L
70

1.
5
km

—
L
70

1.
5
km

—
L
70

M
od
el
to
p

80
km

40
km

40
km

Fo
re
ca
st
le
ng
th
s

28
8
h

48
h

12
h

M
od
el
do
m
ai
n

G
lo
ba
ld

om
ai
n

E
as
tA

si
a

K
or
ea
n
Pe
ni
ns
ul
a

D
A
m
et
ho
d

H
yb
ri
d-
4D

V
ar

3D
V
ar

3D
V
ar

D
A
re
so
lu
tio

n
88

km
→

40
km

2.
2
km

2.
2
km

D
A
cy
cl
e

6
ho
ur
ly

3
ho
ur
ly

1
ho
ur
ly

O
bs
er
va
tio

n
w
in
do
w

−3
to

+3
h

−1
h
30

m
in

to
+1

h
29

m
in

−4
9
m
in

to
+1

0
m
in

Fr
eq
ue
nc
y
of

FG
A
T
fie
ld
s

E
ve
ry

3
h

E
ve
ry

10
m
in

E
ve
ry

10
m
in

C
ut
-o
ff
tim

e
(e
ar
ly

ru
n)

+2
h
an
d

40
m
in

+3
h

10
m
in

(c
on
tin

ue
d)



An Overview of KMA’s Operational NWP Data Assimilation Systems 671

Ta
bl
e
3

(c
on
tin

ue
d)

G
lo
ba
lm

od
el
(G

D
A
PS

)
L
oc
al
ar
ea

m
od
el
(L
D
A
PS

)
V
er
y
sh
or
tr
an
ge

fo
re
ca
st
m
od
el
(V

D
A
PS

)

C
ut
-o
ff
tim

e
(l
at
e
ru
n)

+6
h
an
d
40

m
in

–
–

L
at
er
al
bo
un
da
ri
es

–
U
M

gl
ob
al
m
od
el

U
M

gl
ob
al
m
od
el

M
in
im

iz
at
io
n
m
et
ho
d

C
on
ju
ga
te
-g
ra
di
en
t

Q
ua
si
-N

ew
to
n

C
on
tr
ol

va
ri
ab
le
s

St
re
am

fu
nc
tio

n,
ve
lo
ci
ty

po
te
nt
ia
l,
un
ba
la
nc
ed

pr
es
su
re
,h

um
id
ity

Sa
m
e,
pl
us

lo
g 1

0
(a
er
os
ol
)

D
A
:D

at
a
A
ss
im

ila
tio

n



672 H.-C. Shin et al.

Surface Sonde Aircraft

ATOVS(MHS+AMSU-A) GNSS-RO Satwind

Scatwind AIRS AMSR

ATMS CrIS IASI

CSR - COMSClear CSR - AHIClear CSR - SEVIRIClear

Ground GNSS MWSFY3C

Fig. 2 Coverage of observations used in the 00Z late-cutoff global analysis on 1st April 2020. (The
length of the data assimilation window is 6 h.)
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Table 4 General overview of
KMA global and local
ensemble prediction systems

Global ensemble
(EPSG)

Local ensemble
(LENS)

Model resolution 32 km—L70 2.2 km—L70

Model top 80 km 40 km

Members 25 for forecast /48 for
data assimilation

13 (for forecast
only)

Forecast cycles 00Z, 06Z, 12Z, 18Z 00Z, 12Z

Forecast lengths 288 h 72 h

Model domain Global domain Korea Peninsula

perturbation update—an adaptive multiplicative inflation scheme is used to approx-
imately match the ensemble spread to the RMSE of the ensemble mean forecast
(Flowerdew and Bowler 2012). Tag-lag method was applied to EPSG in 2019 to
increase the ensemble spread and use the computational resources more efficiently.
25 ensemble members of 00 (12) UTC are generated from 13 members (including a
control member) of 00 (12) UTC and 12 members of 18 (06) UTC.

The local EPS “LENS” simply downscales a subset of the global ensemble
members but, as in the global ensemble, the forecasts include stochastic physics and
SKEB to help account for model uncertainties. Further basic details of the global
and local EPS systems are given in Table 4.

2.5 Observational Data Used in the Assimilation

The amount of observational data used for the assimilation is an important factor
for the quality of the model initial fields. Tables 5, 6 and 7 display the various
observational data which is used in the global, local area and very short range forecast
models, respectively. The distribution of observations assimilated into the global
model during a typical late-cutoff cycle is shown in Fig. 2

2.6 Hybrid-4DVAR and VarBC

The global hybrid-4DVar system, which combines 4DVar with the global ensemble
forecast system, was introduced at KMA in 2013, following the original implemen-
tation at the Met Office in 2011 (Clayton et al. 2013). This first implementation led
to significant forecast improvements in all major regions, as illustrated in Fig. 3.

In hybrid-4DVar, the background error covariance matrix B is a weighted sum of
a static “climatological” background error covariance matrix Bc and an ensemble-
based background error covariance matrix Be as follows.
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Table 5 The observations used in the global model

Observation type Instrument/Platform

Synop Surface, Ship, METAR, Buoy

Sonde TEMP, PILOT, Dropsonde, Wind profiler

Aircraft AIREPS, AMDARS

GNSS-RO Metop-A/B, Tandem-X, TerraSAR-X

Satwind GK-2A, GOES-16, MSG-1/4,
Himawari-8, Metop-A/B, Terra, Suomi NPP

Ground GNSS Ground based receivers

Scatwind ASCAT/Metop-A/B

Satellite radiances (Microwave) AMSR2 /GCOM-W1

MWHS2/FY-3C

ATMS/Suomi NPP

AMSU-A/Metop-A/B, NOAA-15/18/19

MHS/Metop-A/B, NOAA-18/19

Satellite radiances (IR) CrIS/Suomi NPP

AIRS/Aqua

IASI/Metop-A/B

Satellite radiances (CSR) Himawari-8, GK-2A, MSG-1

GK-2A: Korea’s second geostationary satellite launched in 2018; NPP: National Polar-orbiting
Partnership; GNSS: Global Navigation Satellite System; AMSR: Advanced Microwave Scanning
Radiometer; GCOM-W1: the Global Change Observation Mission-Water 1; MWHS2: MicroWave
Humidity Sounder; ATMS: Advanced Technology Microwave Sounder; AMSU: Advanced
Microwave Sounding Unit; CrIS: Cross-track Infrared Sounder; AIRS: Atmospheric InfraRed
Sounder; IASI: Infrared Atmospheric Sounding Interferometer; Clear Sky Radiance; MSG:
Meteosat Second Generation Satellite

Table 6 The observations used in LDAPS

Observation type Instrument/Platform

Synop Surface, Ship, METAR, Buoy

Sonde TEMP, PILOT, Dropsonde, Wind profiler

Aircraft AIREPS, AMDARS

Satellite radiances (Microwave) MHS/Metop-A/B

Satwind Himawari-8, COMS

Scatwind ASCAT/Metop-A/B

Satellite radiances (CSR) COMS

Ground GNSS Ground based receivers

Radar 5 South Korean weather radars (S band; dual polarization)

COMS: Communication, Ocean and Meteorological Satellite. Korea’s geostationary satellite
launched in 2010
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Table 7 The observations
used in VDAPS

Observation type Instrument/Platform

Synop Surface, Ship, METAR, Buoy

Sonde TEMP, PILOT, Dropsonde, Wind profiler

Aircraft AIREPS, AMDARS

Ground GNSS Ground based receivers

Radar 8 South Korean weather radars (S band; dual
polarization)

Visibility 200 ~ 300 Automatic Weather Stations in
South Korea

Table 8 βc
2 and βe

2 values used in the KMA global hybrid-4DVar system

Vertical
level

Below 16 km Between 16 and 21 km Above 21 km

βc
2 0.7 Changed gradually from 0.7 to 0.63 0.63

βe
2 0.3 Changed gradually from 0.3 to 0.27 0.27

Fig. 3 Percentage RMSE improvements of 5 day 500 hPa geopotential height forecasts against
ECMWFanalyses due to the change from standard 4DVar to the original 2013 hybrid-4DVar system.
The percentage RMSE improvement is defined as 100 * (RMSE_cntl—RMSE_test)/RMSE_cntl,
whereRMSE_cntl andRMSE_test are the averageRMSerrors from the control and test trials respec-
tively. The abbreviations used in the plots are as follows. NH: Northern Hemisphere (20oN~ 90oN),
TR: Tropics (20oS ~ 20oN), SH: Southern Hemisphere (20oS ~ 90oS), NHM: Northern Hemisphere
Mid–latitudes (20oN~ 60oN), Easia: East Asia (20 oN~ 55oN, 100oE ~ 150oE), Asia (25oN ~ 65oN,
60oE ~ 145oE). Mean: the global mean. Summer: June ~ July 2012, Winter: December 2012

B = β2
cBc + β2

eBe (1)

where βc
2 and βe

2 are the weights given to Bc and Be, respectively. The weights are
allowed to vary with respect to latitude and vertical level, but in the current system
made operational in June 2018 vary only in the vertical, as shown in Table 8.

The details of the current climatological (Bc) and ensemble (Be) background
covariances are as follows.
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Bc: This matrix is modelled via a series of spatial and parameter transforms to
implement a covariance matrix in which the four control variable fields (stream func-
tion, velocity potential, unbalanced pressure and humidity) are uncorrelated. For each
of these fields, independent vertical covariance matrices are used for each total hori-
zontal wavenumber, giving spatial covariances that are horizontally homogeneous
and isotropic. Geographic variations are introduced via the operator that is used to
define the balanced pressure. This is based on an analytic linear balance equation, but
includes a subsequent vertical regression procedure to further reduce average corre-
lations between full and unbalanced pressure (Sect. 6.2 of Inverarity et al. 2018).
The statistical parameters were obtained from ensemble forecasts produced during
pre-operational trials of the 4DEnVar-based global EPS (Bowler et al. 2017) that was
eventually made operational at the Met Office in December 2019. (Some postpro-
cessingwas also required to resolve issues with the global-mean unbalanced pressure
variances, as discussed in Sect. 6.4 of Inverarity et al. 2018).

Be: This matrix is constructed from fields at T+ 3 h from each of the 48 perturbed
global ensemble members. To help preserve geostrophic and hydrostatic balances,
localization is performed after transforming the ensemble perturbations to the space
of the four standard control variables, and splitting the fields into a set of four hori-
zontal wavebands in order to apply the scale-dependent localization technique of
Buehner (2012). In this method, the wavebands are treated as independent from
each other, and localized with different scales. However, for each waveband we use
common localization fields for the four control variable fields, so that inter-variable
correlations are kept within each waveband. Vertical localization is also applied,
using a common vertical localization matrix for all wavebands and variables. This
localization matrix was derived from the same database of ensemble perturbations
used to calibrate the climatological covariance matrix, using the objective method
of Ménétrier et al. (2015), as explained in Sect. 4 of Inverarity et al. (2018). The
horizontal and vertical localization details are illustrated in Fig. 4.

In 2017, VarBC (Variational Bias Correction) for satellite data was introduced
to use satellite data more effectively (Cameron and Bell 2018). In VarBC, the bias
correction parameters for satellite data (radiances) are updated every cycle during
the late-cutoff global hybrid-4DVar analysis. Figure 5 shows how VarBC can reduce
the observation increment and bias of satellite data (IASI). VarBC contributed to
improving the global model performance (Fig. 6).

3 KIM Data Assimilation

3.1 History

KMA launched a nine-year project (2011–2019) to develop a new global model—the
so called Korean IntegratedModel (KIM). The purpose of the project was to improve
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Fig. 4 Horizontal and vertical ensemble localization details for KMA’s UM-based hybrid-4DVar
system. The left-hand plot shows the horizontal wavebands and corresponding length scales L used
for horizontal localization. The horizontal localization functions are Gaussian functions of the form
exp(−z2/(2L2)), where z is the horizontal separation. The right-hand plot shows the matrix used for
vertical localization

Fig. 5 Background departure time series of satellite data (13.51μm channel from Metop-B IASI)
over a 3-month period (01 December 2015 to 01 March 2016). Red curve shows the results with
VarBC and blue curve shows the results from the traditional bias correctionwith fixed bias correction
parameters. Blue curve is derived from the operational cycle which did not use VarBC. The initial
background andbias correction parameters ofVarBCexperiment (red curve) are from the operational
cycle

the prediction accuracy of worldwide weather phenomena with a particular focus on
the Korean peninsula.

The KIM (Choi et al. 2014; Choi and Hong 2016; Choi 2018; Hong et al. 2018;
Park and Choi 2020) has been an operational global NWP model for medium-range
forecasts up to 12 days (288 h) since April 2020.

3.2 Data Assimilation for the Global Model (GDAPS-KIM)

KIM adopts the hybrid four-dimensional ensemble-variational data assimilation
scheme (hybrid-4DEnVar) for its 6 h analyses (Song et al. 2017a; Song et al. 2017b;
Song et al. 2017c; Song et al. 2018; Kwon et al. 2018). Technically, the main differ-
ence between hybrid-4DEnVar and hybrid-4DVar (as used with the UM-based global
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Fig. 6 Percentage RMSE improvement (as defined in the caption of Fig. 3) of the global model
with VarBC. Positive values indicate that the global model with VarBC gives improved forecast
results relative to the use of traditional bias corrections. The RMSE are calculated based on 5 day
forecasts of 500 hPa geopotential height (Left) and 850 hPa temperature (Right) over Northern
Hemisphere. The model forecasts were compared against radiosonde observations for August 2016

Fig. 7 Main features of the operational KIM based on a cubed-sphere grid system

model) is its use of a four-dimensional ensemble-based background error covari-
ance to directly provide ensemble-based time correlations within the assimilation
window, rather than using a linear model and its adjoint to implicitly propagate
the full covariance through the window as is done in hybrid-4DVar. In general,
hybrid-4DEnVar systems give poorer analyses than produced by a corresponding
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hybrid-4DVar system, partly because the climatological covariance remains essen-
tially time-independent, as in a 3DVar system (Lorenc et al. 2015). However, by
avoiding the linear and adjoint model integrations used in 4DVar, which have to
be run in serial, computational costs are significantly reduced, potentially freeing up
resources to run the analysis with higher-resolution ensemble data. Development and
maintenance of linear and adjoint models is also costly in terms of human resources,
so hybrid-4DEnVar was a natural choice for the first version of the KIM global DA
system.

The KIM global DA system consists of the KIM Package for Observation
Processing (KPOP; Kang et al. 2018) and a hybrid-4DEnVar system developed for
the cubed-sphere grid, referred to here as H4DEV.

(1) KPOP: KPOP prepares quality controlled observations for H4DEV in the
desired format. KPOP obtains the observation data with BUFR format and
performs quality control, cloud screening, bias corrections, and thinning. And
then, it converts quality controlled observation to netcdf format. For bias correc-
tion of radiance data, the adaptive bias correction (BC) method that calculates
BC coefficients with background at the analysis time rather than using static
BC coefficients is used (Kwon et al. 2018). The difference between adaptive
BC and VarBC is explained in Auligné et al. (2007). The system manages
observation data within the 6 h assimilation window (±3 h around the data
assimilation cycle times of 00, 06, 12 and 18 UTC). The list of observations
assimilated in the KIM DA system is given in Table 9 (Lee and Song 2018, Ha
et al. 2018).

(2) H4DEV: The H4DEV blends the ‘climatological’ background error with day-
to-day varying flow dependent background errors. The climatological back-
ground error covariance (BEC)matrix is generated by theNMCmethod, which
is based on differences between pairs of forecasts with the same validity time,
but different initial times. The ensemble BEC matrix is generated using 50
ensemble forecasts produced by an Ensemble Prediction System (EPS) based
on the Local Ensemble Transform Kalman Filter (LETKF; Hunt et al. 2007,
Shin et al. 2016, Shin et al. 2018). A weighted sum of the static and ensemble
BEC matrices gives the total BEC matrix as mentioned in Eq. (1) in Sect. 2.6.
The operational weights for the climatological and ensemble BEC in H4DEV
are set to 0.3 and 0.7, respectively, but vary according to latitude and height.
The weight of the ensemble BEC matrix is gradually decreased above 100 hPa

Table 9 Observation types assimilated in the KIM Global Data Assimilation System

Observation type Instrument/Platform

Surface Synop, METAR, Ship, Buoy

Sonde TEMP, PILOT, Windprofiler

Aircraft AMDARS, AIREPS

Satellite AMSUA, MHS, ATMS, CrIS, IASI, MWHS2, AMSR2, CSR, AMV,
Scatwind, GNSS-RO
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and varies with latitude according to a Gaussian function that is 0.7 at the poles
and 0.3 at the equator. Figure 8 shows that the impact of the ensemble BEC
matrix (in H3DEV—i.e. hybrid-3DEnVar—rather than H4DEV) on the winds
(u and v), temperature, and specific humidity in the tropics and subtropics. The
model RMSE is generally reduced after introducing the ensemble BECmatrix.

The control variables of the KIM DA system are stream function, unbalanced
velocity potential, unbalanced temperature, specific humidity and unbalanced surface
pressure, and the H4DEV performs multi-resolution four loops with 42, 85, 170,
and 170 total wave numbers (Song et al. 2018). Between the loops, the nonlinear
observation operators are re-linearized, but there is no rerun of the nonlinear model,
so these are not full outer loops (Kwon et al. 2018). For the minimization of the
cost function, preconditioning by transforming the BEC matrix to an identity matrix
using its square root form, and a conjugate gradient method is chosen (Song and

Fig. 8 Composite of analysis RMSE differences of H3DEV relative to 3DVar for (a) zonal (u)
and (b) meridional (v) winds (ms−1), (c) temperature (T; K), and (d) specific humidity (q;g kg−1).
H3DEV is similar to H4DEV except only one ensemble BEC matrix is given in the observation
window. So, H3DEV provides 3 dimensional ensemble BEC matrix, H4DEV provides 4 dimen-
sional ensemble BECmatrix, and 3DVAR does not provide any ensemble BECmatrix. The RMSEs
were calculated along longitudes for the same latitude and pressure level against ERA-Interim data.
The RMSE differences are inferred from the average of analysis RMSEs from 0000 UTC on 6 July
to 1200 UTC on 31 July 2015 in 12 h intervals. The small dots show the variables and regions in
which there are RMSE differences with 95% statistical significance, as evaluated with a two-tailed
t test. (Song et al. 2017c)
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Kwon 2015). After the minimization of the H4DEV, the ensemble mean analysis is
re-centered on the H4DEV analysis after the LETKF process. In both the H4DEV
and LETKF systems, an analysis increment at the center of the time window (from−
3 h to+3 h) is added to (or subtracted from in the case of the LETKF) the background
state using an Incremental Analysis Update (IAU) scheme (Bloom et al. 1996) so
that high-frequency gravity-inertia waves introduced by the increments are filtered
out from the forecasts.

The operational H4DEV system is cycled with a high-resolution deterministic
model having approximately 12 km grid spacing. The horizontal resolutions of the
H4DEV analysis, the ensemble model, and the LETKF analysis are 50 km, 25 km
and 25 km, respectively. There are 91 levels, with the top level at 0.1 hPa. In order
to improve the initial fields of the KIM, KMA has a plan to assimilate more satellite
observation data. As an illustration along those lines, Fig. 9 shows the impact of CSR
observational data from the GK-2A satellite. The performance of KIM is generally
improved after assimilating GK-2A CSR data. The impact is particularly clear in the
Northern Hemisphere.

Fig. 9 Percentage RMSE improvement of KIM forecasts after assimilating GK-2A CSR data.
Positive value indicates improvement. It is based on the averaged RMSE of 1–5 day forecast.
Analysis: RMSE against KIM analysis field, Sonde: RMSE against radiosondes, IFS: RMSE against
ECMWF analysis field
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4 KLAPS (Very Short Range Forecast Model and Data
Assimilation)

KMA is operating another very short range forecast system in addition to VDAPS.
It is called the Korea Local Analysis and Prediction System (KLAPS), and runs
every 10 min with a 5 km horizontal grid spacing (Albers 1995, Albers et al. 1996,
Hiemstra et al. 2006).

Its background field is generated by running the model with the initial and
boundary fields from UM global cycle as illustrated in Fig. 10. KLAPS is different
from VDAPS in that it is more focused on nowcasting and rapid update cycle. All
processes from data assimilation to model run and post processing, are executed on
a High Performance Computer in 10 min.

KLAPS has a cloud analysis package and a warm-start diabatic initialization
scheme for the quick spin-up of micro physical species through a sequential 3DVAR
(Albers et al. 1996) and shares the physics package with KIM. KLAPS produces
analyses for 8 variables (temperature, sky condition, precipitation amount, relative
humidity, wind direction, wind speed, precipitation types, and lightning) and fore-
casts for 4 variables (precipitation amount, sky condition, precipitation type, prob-
ability of lightning) at the nearest grid points from the observation stations for the
digital forecast (detailed forecast for village units), named “Dongrae forecast”.

KLAPS assimilates the various types of observation (Table 10). The fast data
assimilation system (Sequential-3DVAR (He et al. 2008)) is chosen to speed up the
cycle. Only recent observations are assimilated – specifically, those valid at or after
the analysis time that have been received by the observation cutoff time, which is
6 min after the analysis time. Thus, the observation window is +00 ~ +06 min.

In order to improve the precipitation forecast, KLAPS results are merged (as a
post-processing) with results from the algorithm MAPLE (McGill Algorithm for

Fig. 10 The structure of KLAPS cycle run which consists of KLBG* and KLFS**. *KLBG:
KLAPS run to generate the background/**KLFS: KLAPS run to generate the 12 h forecast
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MAPLE                     KLAPS              Final (KLAPS + MAPLE)

Fig. 11 Comparison betweenMAPLE,KLAPS, and the final precipitation forecast (90min forecast
issued at 20:50 KST on 3rd September 2019). The final precipitation forecast results (Right) are
obtained by merging the KLAPS forecast (Middle) with the MAPLE forecast (Left) which is
produced by extrapolating the radar echo image

Table 10 Observation types
assimilated in the KLAPS

Observation type Instrument/Platform

Surface Buoy, METAR, Automatic Weather
Station (AWS)

Upper TEMP, PILOT, Wind profiler

Aircraft AMDARS

Satellite GK-2A, Ground GNSS

Radar 10 South Korean weather radars (S band;
dual polarization)
(Radial velocity, Reflectivity)

Others Lightning*, Ceilometer, Visibility meter

*The position of lightning is used for cloud analysis

Precipitation nowcasting by Lagrangian Extrapolation, Bellon et al. 2010, Lee et al.
2010), which produces precipitation forecasts by extrapolating the radar echo image.
KLAPS is merged with MAPLE through a weighted average with weights using
a hyperbolic tangent function. The weight of KLAPS against MAPLE is zero at
analysis time and is increased as forecast hour is changed from 1 to 6 h. Finally at
6 h forecast the weight of MAPLE becomes zero.

5 Conclusion

KMA is running UM-based global and local ensemble systems. The global ensemble
provides the ensemble error covariances (from 48 members) for hybrid-4DVar, and
produces 12 d forecasts with 25 members. The UM local ensemble which has 2.2 km
grid spacing has 13 members and produces 72 h forecast.
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Table 11 Operational configuration of KLAPS as of 2019

KLAPS Run for forecast (KLFS)

Horizontal resolution 5 km

Vertical layers/Model Top 40 sigma layers/Top 50 hPa (18 km)

Number of grid-points 235 × 283

Data assimilation Sequential-3DVAR + Physical initialization

Domain distance (km) 1,170 × 1,410

Time step for integration 20 s

Cumulus parameterization Simplified Arakawa–Schubert Scheme (KSAS)
(Kwon and Hong 2017)

Boundary layer Shin–Hong PBL (Shin and Hong 2013)

Microphysics WDM7 (Bae et al. 2019)

Radiation RRTMG (Iacono et al. 2008)

Land-surface Noah LSM (Mitchell 2005)

Forecast length (Interval) 12 h
(144 times/day)
10 min interval

Observation window +00 min ~ +06 min

Cut-off time 6 min

Initial field Analysis

Background /Boundary field KLAPS Run given every 10 min (KLBG)

KSAS:AmodifiedGFSSimplifiedArakawa-Schubert scheme that enablesNSAS towork in various
model grids across gray-zone resolutions

KMA started operating the KIM NWP system developed by KMA/KIAPS in
April 2020. Thus, KMA is currently operating both the KIM global model and the
UM global model. The KIM global model is using hybrid-4DEnVar (H4DEV) as
a data assimilation system and the UM global model is cycled with hybrid-4DVar.
KIM will soon become the main global model of KMA, but the UM will continue to
be run in parallel until at least 2022. The 1.5 km UM-based local model and the very
short-range forecast model are cycled with 3DVar systems, producing forecasts for
small-scale severe weather events. A KIM regional model will be developed by 2022
and should be operational by 2023. KLAPS is the another very short range forecast
system, based on a 10-min interval RUC (Rapid Update Cycle).

TheKIMglobal ensemble system, which provides the ensemble background error
covariance data (from 50 members) for the KIM H4DEV and produces 12 d forecast
from 14 members, is being tested and will be operational with additional members
(from 14 to 26) in 2021. A KIM-based local ensemble will be completed by 2022,
and operationally launched in 2023.

KMA also runs a UM-based long range forecast system (named Glosea-5) which
has 60 km grid spacing and 85 vertical levels and is coupled to a global ocean
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model, producing 8 week sub-seasonal forecasts and 6 month seasonal forecasts (not
mentioned here).
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Symbols
1D+3D-Var
1D Bayesian retrieval
3DVAR

sequential 3DVAR
3DVar
3DVar-AUS
3DVar cycle
4-D VAR, see 4-Dimensional Variational

(4-D VAR)
4-dimensional Variational (4-D VAR)
4-dimensional variational data assimilation
4D-Ensemble Variational (4D-EnVar)

system
4D-EnVar system, see 4D-Ensemble Varia-

tional (4D-EnVar) system
4D-LETKF, see Four-Dimensional Local

Ensemble Transform Kalman Filter
(4D-LETKF)

4DVAR, see 4-dimensional variational data
assimilation

4DVar, see 4-Dimensional Variational data
assimilation

4D-Var, see 4-Dimensional Variational data
assimilation, Four Dimensional Vari-
ational data assimilation (4D-Var)

4DVar-AUS

A
Abel transform pair
ABI, see Advanced Baseline Imager (ABI)
ABO, see Aircraft-Based Observations

(ABO)
ACARS, see Aircraft Communications,

Addressing, and Reporting System

Accumulated precipitation
Acoustic pressure
Acoustic propagation
Acoustic tomography
Action de Recherche Petite Echelle Grande

Echelle (ARPEGE)
Adaptive observation
Additive inflation
Additive noise
Adjoint

adjoint equations
adjoint gradient
adjoint operator
adjoint sensitivity
first-order adjoint problem
second-order adjoint
second-order adjoint problem

ADS-B, see Automatic Dependent
Surveillance-Broadcast

ADS-C, see Automatic Dependent
Surveillance-Contract

Advanced Baseline Imager (ABI)
Advanced Microwave Scanning Radiometer

(AMSR)
Advanced Microwave Scanning

Radiometer-2 (AMSR-2)
Advanced Microwave Sounding Unit

(AMSU)
Advanced Microwave Sounding Unit-A

(AMSU-A)
Advanced Microwave Sounding Unit-B

(AMSU-B)
Advanced Scatterometer (ACAT)
Advanced Technology Microwave Sounder

(ATMS)
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AdvancedVeryHighResolutionRadiometer
(AVHRR)

AEARP, see Assimilation d’Ensemble
ARPEGE (AEARP)

Aeronautical Radio, Incorporated (ARINC)
AERONET, seeAErosol RObotic NETwork

(AERONET)
Aerosol-affected satellite radiances
Aerosol-atmosphere interaction
Aerosol-cloud interaction
Aerosol model
Aerosol observations
Aerosol Optical Depth (AOD)
Aerosol Refractive Index Archive (ARIA)
Aerosol scattering phase function
Aerosol volume size distribution
AF, see Assimilation Forecast (AF)
AFIRS, see Automated Flight Information

Reporting System
African Monsoon Multidisciplinary Anal-

ysis (AMMA)
AFWA, see Air Force Weather Agency

(AFWA)
Airborne Radio Occultation (ARO)
Airborne Vertical Atmospheric Profiling

System (AVAPS)
Aircraft-Based Observations (ABO)
Aircraft Communications, Addressing, and

Reporting System
Aircraft Report
Aircraft report
Aircraft to Satellite Data Relay (ASDAR)
AIREP, see Aircraft Report
Air Force Weather Agency (AFWA)
Air Navigation Service Provider (ANSP)
AIRS, see Atmospheric Infrared Sounder

(AIRS)
Air-sea interaction model
ALADIN/HU, see Hungarian version of the

Aire Limitée Adaptation dynamique
Développement InterNational

ALPS, see ALtimetry Processing System
(ALPS)

ALtimetry Processing System (ALPS)
AMDAR, see Aircraft Meteorological Data

Relay
AMDAR Onboard Software Func-

tional Requirements Specification
(AOSFRS)

AMMA, see African Monsoon Multidisci-
plinary Analysis (AMMA)

AMSR, see Advanced Microwave Scanning
Radiometer (AMSR)

AMSR-2, see Advanced Microwave Scan-
ning Radiometer-2 (AMSR-2)

AMSU-A, see Advanced Microwave
Sounding Unit-A (AMSU-A)

AMSU-B, see Advanced Microwave
Sounding Unit-B (AMSU-B)

AMV, see Atmospheric Motion Vector
(AMV)

Analysis
Analysis particle
Analysis residual
ANASYG/PRESYG
Ancillary variate
ANSP, see Air Navigation Service Provider

(ANSP)
ANTILOPE, see ANalyse par spaTIaL-

isation hOraire des PrEcipitations
(ANTILOPE)

AOD, see Aerosol Optical Depth (AOD)
AOSFRS, see AMDAR Onboard Software

Functional Requirements Specifica-
tion (AOSFRS)

APF, see Auxiliary Particle Filter (APF)
Application of Research to Operations at

Mesoscale (AROME)
Application Radar la Météorologie Infra-

Synoptique (ARAMIS)
A priori information
ARAMIS, see Application Radar la

Météorologie Infra-Synoptique
(ARAMIS)

Arctic cyclone
Arctic forecasts
Arctic Ocean
ARIA, seeAerosol Refractive IndexArchive

(ARIA)
ARINC, see Aeronautical Radio, Incorpo-

rated (ARINC)
ARO, see Airborne Radio Occultation

(ARO)
AROME, see Application of Research to

Operations at Mesoscale (AROME)
AROME-EDA system

AROME-France
ARPEGE, see Action de Recherche Petite

Echelle Grande Echelle (ARPEGE)
ARPEGE 4D-Var
ARPEGE/IFS
ASCAT, see Advanced Scatterometer

(ACAT)
ASDAR, seeAircraft to Satellite Data Relay

(ASDAR)
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ASPEN, see Atmospheric Sounding
Processing Environment (ASPEN)

Assimilation d’Ensemble ARPEGE
(AEARP)

Assimilation Forecast (AF)
Assimilation in the Unstable Subspace

(AUS)
Assimilation suite
Assimilation window
ATC

Air Traffic Control
Atmospheric boundary layer
Atmospheric Infrared Sounder (AIRS)
Atmospheric Motion Vector (AMV)
Atmospheric multipath
Atmospheric Sounding Processing Environ-

ment (ASPEN)
ATMS, see Advanced Technology

Microwave Sounder (ATMS)
Attenuation
AUS, see Assimilation in the Unstable

Subspace (AUS)
Autocovariance
Automated Flight Information Reporting

System
Automatic Dependent Surveillance-

Broadcast
Automatic Dependent Surveillance-

Contract
Auxiliary Particle Filter (APF)
AVAPS, see Airborne Vertical Atmospheric

Profiling System (AVAPS)
Aviation “Q”-code for altimeter setting

(QNH)
Aviation “Q” code for surface pressure at

the field elevationazimuthal direction
(QFE)

Aviation “Q” code for the standard altimeter
setting (1013.25 hPa) (QNE)

B
Background bias
Background departure
Background error
Background Forecast (BF)
Backward problem
Baiu front
Baltic Sea
Bayesian filtering
Bayesian inference
Bayesian inversion
Bayesian posterior

Bayesian step
Bayes’ rule
BC, see Bias Correction (BC)
BDAS, see Breeding on the Data Assimila-

tion System (BDAS)
Beam blocking
BEC, see Background Error Covariance

(BEC)
ensemble BEC

BECV, see Background Error Covariance
(BECV)

Bending angle
bending angle assimilation

Best track
BF, see Background Forecast (BF)
BGM, see Breeding Growing Mode (BGM)
Bias
Bias Correction (BC)

adaptive bias correction
Bimodal solution
Binary Universal Format (BURF)
BLV, see Backward Lyapunov Vector (BLV)
BMP scheme, see Buizza-Miller-Palmer

(BMP) scheme
Bred vector
Breeding cycle
Breeding Growing Mode (BGM)

mesoscale BGM (MBD)
Breeding on the Data Assimilation System

(BDAS)
Brier skill score
Bright band
Brightness temperature
Buizza-Miller-Palmer (BMP) scheme
Buoy
BURF, see Binary Universal Format; Binary

Universal Form Representation
Burgers’equation

C
Calculus of variation
CALIPSO, see Cloud-Aerosol Lidar and

Infrared Pathfinder SatelliteObserva-
tion (CALIPSO)

CAMS, see Copernicus Atmosphere Moni-
toring Service (CAMS)

Carbon-cycle aerosol assimilation
Cauchy problem
CCN, see Cloud Condensation Nuclei

(CCN)
Central limit theorem
Central Weather Bureau (CWB)
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Chaos
Chaotic dynamical system
Chaotic dynamics
Chaotic system
Chlorophyll
Cholesky factorization
CID, see Conditional Importance Density

(CID)
CIMSS, see Cooperative Institute for Mete-

orological Satellite Studies (CIMSS)
CIMSS AMVs determined from composite

imagery based on data from both
geostationary and polar-orbiting
satellites (LeoGeo)

Clear-Sky Water Vapor (WVCLR)
Climate Reference Network
Climatological covariance matrix
Climatology
Cloud
Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observation (CALIPSO)
Cloud Condensation Nuclei (CCN)
Cloud-Top Water Vapor (WVCLD)
COAMPS, see Coupled Ocean Atmo-

sphere Mesoscale Prediction System
(COAMPS®)

Communication, Ocean and Meteorological
Satellite (COMS)

Community Radiative Transfer Model
(CRTM)

Complex Quality Control (CQC)
Complex terrain
COMS, see Communication, Ocean and

Meteorological Satellite (COMS)
Conditional Importance Density (CID)
Conditional transition density
Condition number
Conjugate gradient
Conservation

of energy
of mass
of moisture
of momentum

Conservation laws of hydrodynamics
Constituent variate

posterior constituent variate
Control space
Control structure consistency assumption
Control theory
Controllability matrix
Control variate

control variate moment
cross-component control variables

Convection initialization
Cooperative Institute for Meteorological

Satellite Studies (CIMSS)
Copernicus AtmosphereMonitoring Service

(CAMS)
Correlation function
Correlogram
Cost function
Cost functional
Coupled aerosol-atmosphere modeling
Coupled atmosphere-ocean model
Coupled data assimilation

coupled land-atmosphere data assimila-
tion

strongly coupled data assimilation
strongly coupled land-atmosphere data
assimilation

weakly coupled data assimilation
Coupled land-atmosphere model
Coupled Ocean Atmosphere Mesoscale

Prediction System (COAMPS®)
Covariance inflation
Covariance localization
Covariance matrix
Covariant Lyapunov Vector (CLV)
Covariant splitting
Covariant subspace
COVID-19
CQC, see Complex Quality Control (CQC)
CrIS, see Cross-track Infrared Sounder

(CrIS)
Cross-component correlations
Cross-covariances
Cross-track Infrared Sounder (CrIS)
Cross-variable background error covariance
CTRM, see Community Radiative Transfer

Model (CRTM)
Curvelets
CWB, see Central Weather Bureau (CWB)

D
DA, see Data Assimilation (DA)
Data assimilation (DA)

atmospheric data assimilation
convective-scale data assimilation
ensemble data assimilation (EnsDA)
land data assimilation
strongly-coupled DA

Data thinning
DDA, see Dynamic Data Assimilation

(DDA)
Deep convection bred
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Degenerate spectrum
Degree of Freedom for Signal (DFS)
Dense error covariance
Derived Equivalent Vertical Gust
Desroziers
Deterministic dynamical system
Deutscher Wetterdienst (Germany’s

National Meteorological Service)
(DWD)

DEVG, seeDerivedEquivalentVerticalGust
DFI, see Digital Filter Incremental (DFI)
DFS, see Degree of Freedom for Signal

(DFS)
Diabatic initialization
Digital Filter Incremental (DFI)
Digital forecast
Direct assimilation of images
Directional derivative
Discrete approximations
Discretize-then-optimize approach
DM, see Driving Model (DM)
Doppler shift
Double-moment scheme
Drifting buoys
Driftsondes
Driving Model (DM)
Dropsonde
Dry temperature retrievals
Dual-polarization RO antenna
Dust bin
DWD, see Deutscher Wetterdienst

(Germany’s National Meteorological
Service) (DWD)

Dynamical system
Dynamic Data Assimilation (DDA)

E
E-ABO, see EUMETNET Aircraft-Based

Observations
EarthCARE
Earth Explorer Programme
EC, see Environment Canada (EC)
ECCC, see Environment and Climate

Change Canada
ECMWF, see European Centre for Medium-

Range Weather Forecasts
EDA, see Ensemble DA (EDA)
Eddy Dissipation Rate
EDR, see Eddy Dissipation Rate
EHS, see Enhanced Surveillance (EHS)
Eigen-decomposition
Eigenvalue

Eigenvector
orthogonal eigenvector

EKF, see Extended Kalman Filter (EKF)
full-rank EKF
progressive-EKF
reduced-rank EKF

EKF-AUS
EMADDC, see European Meteorological

Aircraft Derived Data Center
Enhanced Surveillance (EHS)
EnKF, see Ensemble Kalman Filter (EnKF)

multilevel EnKF
square-root EnKF

EnKS, see Ensemble Kalman Smoother
(EnKS)

square-root EnKS
EnRDA, see Ensemble-Based Radar Data

Assimilation (EnRDA)
EnsDA, see Ensemble Data Assimilation

(EnsDA)
Ensemble-based gain
Ensemble-Based Radar Data Assimilation

(EnRDA)
Ensemble DA (EDA)
Ensemble Data Assimilation (EnsDA)
Ensemble forecasting
Ensemble mean
Ensemble mean error
Ensemble member
Ensemble method
Ensemble Prediction System (EPS)
Ensemble sensitivity
Ensemble size
Ensemble spread
Ensemble subspace
Ensemble Transform (ET)
Ensemble Transform Kalman-Like Flter

(ETKF-OSAS)
Ensemble variance
Ensemble vector
EnVAR
Environment Canada (EC)
EPS, seeEnsemble Prediction System (EPS)
EPSG, see Ensemble Prediction System –

Global (EPSG)
ERA5, seeECMWFReAnalysis, fifth gener-

ation
Ergodic theory
Error correlation
Error covariance

background error covariance (BEC)
background error covariance (BECV)
flow-dependent background
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flow-dependent background error covari-
ance

forecast error covariance
observation error covariance
sparse error covariance

Error upwell
ET, see Ensemble Transform (ET)
ETKF, see Ensemble Transform Kalman

Filter (ETKF)
ETPF, see Ensemble Transform Particle

Filters (ETPF)
Eulerian
Euler-Maruyama scheme
EUMETNET Aircraft-Based Observations
EUMETNET, see European Meteorological

Network (EUMETNET)
European Centre for Medium-Range

Weather Forecasts
European Meteorological Aircraft Derived

Data Center
European Meteorological Network

(EUMETNET)
Expectation-Maximization algorithm
Exploitation mode
Exponential dichotomy
External digital filtering
Extratropical cyclone

F
FASTEX, see Fronts and Atlantic Storm

Track (FASTEX)
Feedback control
FGAT, see First Guess at Appropriate Time

(FGAT)
FGGE, see First GARP Global Experiment
Fidelity
Filter
Filter divergence
Filter inbreeding
Filtering
First Guess at Appropriate Time (FGAT)
First moment
Flatness in the cost function gradient
Flat zone
Fleet Numerical Meteorology and Oceanog-

raphy Center (FNMOC)
Flow-dependence
FLV, see Forward Lyapunov Vector (FLV)
FNMOC, see Fleet Numerical Meteorology

andOceanography Center (FNMOC)
Forced singular vectors
Forecast control

Forecast cycle
Forecast error
Forecast quality
Forecast range
Forecast sensitivity
Forecast Sensitivity to Observation Impact

(FSOI)
Forward model
Forward operator
Forward problem
Forward sensitivity
Four-Dimensional Local Ensemble Trans-

form Kalman Filter (4D-LETKF)
Four Dimensional Variational data assimila-

tion (4D-Var)
Fourier decomposition
Fractions skill score (FSS)
Fréchet derivative
Free run
Frobenius norm
Fronts and Atlantic Storm Track (FASTEX)
FSOI, see Forecast Sensitivity to Observa-

tion Impact (FSOI)
FSS, see Fractions Skill Score (FSS)
Functional

G
Gain operator
GARP, see Global Atmospheric Research

Program (GARP)
Gaspi-Cohn covariance localization
Gâteaux derivative
Gâteaux differential
Gaussian approximation
Gaussian data assimilation
Gaussian error
Gaussianity
Gaussian kernel
Gaussian random variables
Gaussian statistics
Gaussian weighting factor
GCE, see Goddard Cumulus Ensemble

(GCE)
GCOM-W1, seeGlobalChangeObservation

Mission-Water 1 (GCOM-W1)
GCOS, see Global Climate Observing

System (GCOS)
GCOS Upper-Air Network (GUAN)
GDAPS, see Global Data Assimilation and

Prediction System (GDAPS)
GDAPS-KIM
GDEM, see Global Digital Environmental

Model (GDEM)
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GeoCSR, see Geostationary satellite Clear
Sky Radiance (GeoCSR)

Geometrical Optics (GO)
GEOS-5, see Goddard Earth Observing

System Version 5 (GEOS-5)
Geostationary Operational Environment

Satellite (GEOS)
Geostationary satellite Clear Sky Radiance

(GeoCSR)
Geostrophic approximation
Geostrophic balance
GFS, see Global Forecast System (GFS)
Glevel
Glider

glider data
glider profiles

Glider experiment
Dora
Jade
Slocum gliders

Global Atmospheric Research Program
(GARP)

Global Climate Observing System (GCOS)
Global Data Assimilation and Prediction

System (GDAPS)
Global Digital Environmental Model

(GDEM)
Global Forecast System (GFS)
Global Modeling and Assimilation Office

(GMAO)
Global Navigation Satellite System (GNSS)
Global Positioning System (GPS)
Global Positioning System-Radio Occulta-

tion (GPS-RO)
Global/Regional Integrated Model system

(GRIMs)
Global Satellite Mapping of Precipitation

(GSMaP)
Global Telecommunications System (GTS)
GMAO, seeGlobal Modeling and Assimila-

tion Office (GMAO)
G-matrix
GMI, see GPM (Global Precipitation

Measurement) Microwave Imager
(GMI)

G-norm
GNSS, see Global Navigation Satellite

System (GNSS)
GNSS signal
GNSS ZTD

GO, see Geometrical Optics (GO)
GO processing

GOCART, see Goddard Chemistry Aerosol
Radiation and Transport (GOCART)

GOCART aerosol module
Goddard Chemistry Aerosol Radiation and

Transport (GOCART)
Goddard Cumulus Ensemble (GCE)
Goddard Earth Observing System Version 5

(GEOS-5)
GOES, see Geostationary Operational Envi-

ronment Satellite (GEOS)
GOFS, see Global Ocean Forecast System

(GOFS)
GPM (Global Precipitation Measurement)

Microwave Imager (GMI)
GPS, see Global Positioning System (GPS)
GPS Radio Occultation (GPS RO)
GPS RO, see GPS Radio Occultation (GPS

RO)
GPS-RO, see Global Positioning System-

Radio Occultation (GPS-RO)
Gradient

adjoint gradient
gradient of the cost function
gradient of the response function
gradient-based optimization
sub-gradient

Gramian
Gramian matrix

Gravity wave
Grey zone of convection
Gridpoint Statistical Interpolation (GSI)
GRIMs, see Global/Regional Integrated

Model system (GRIMs)
Ground clutter
GSI, see Gridpoint Statistical Interpolation

(GSI)
GSI-EnKF
GSMaP, see Global Satellite Mapping of

Precipitation (GSMaP)
GTS, see Global Telecommunications

System (GTS)
GUAN, see GCOS Upper-Air Network

(GUAN)
Guess forecast
Gulf Loop Current

H
H3DEV
H4DEV
H4DEV system, see Hybrid Four-

Dimensional Ensemble-Variational
(H4DEV) system
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HDOB, see High Density Observations
Heavy rainfall
Heidke Skill Score (HSS)
Hessian

effective inverse Hessian method
Hessian of the cost function
Hessian positive definite
inverse Hessian

Heterogeneity
Hidden Markov Chain (HMC)
High Density Observations
High frequency radar
High Performance Computer (HPC)
High-resolution Infrared Radiation Sounder

(HIRS)
Hilbert space
Himawari
HMC, see Hidden Markov Chain (HMC)
Homogeneity
HPC, see High Performance Computer

(HPC)
HSS, see Heidke Skill Score (HSS)
Hungarian version of the Aire Limitée

Adaptation dynamique Développe-
ment InterNational (ALADIN/HU)

Hybrid-4DVar
Hybrid four-dimensional ensemble-

variational data assimilation
Hybrid Four-Dimensional Ensemble-

Variational (H4DEV) system
Hybrid stochastic scheme
Hygroscopic growth

I
IASI, see Infrared Atmospheric Sounding

Interferometer (IASI)
IAU, see IncrementalAnalysisUpdate (IAU)
ICAO, see International Civil AviationOrga-

nization
ICAO Weather Exchange Model (IWXXM)
Icebreaker
Icosahedral
Identifiability
IEnKS, see iterative Ensemble Kalman

Smoother (IEnKS)
IFS, see Integrated Forecast System (IFS)
Image assimilation
Imager
IMOP, see Instruments and Methods of

Observation Program (IMOP)
Importance Sampling (IS)

importance sampling weight

sampling importance resampling (SIR)
sequential importance sampling (SIS)

IMS, see Interactive Multisensor Snow and
Ice Mapping System (IMS)

Incremental Analysis Update (IAU)
Increments
Indirect assimilation of image
Inertial Navigation Systems (INS)
Inertial Reference System (IRS)
Inflation method
Information flow analysis
Information matrix
Infrared Atmospheric Sounding Interferom-

eter (IASI)
Initial condition
Initial control error
Innovation
Innovation based diagnostics
Innovation covariances
Innovations method
Innovation vector
INS, see Inertial Navigation Systems (INS)
In-situ observations
Instruments and Methods of Observation

Program (IMOP)
Integral separation
Integrated Forecast System (IFS)
Integration step
Interactive Multisensor Snow and Ice

Mapping System (IMS)
Inter-channel error correlations
Inverse covarianvce operator
IRS, see Inertial Reference System (IRS)
IS, see Importance Sampling (IS)
Isotropy
IWXXM, see ICAO Weather Exchange

Model (IWXXM)

J
Japan Aerospace Exploration Agency

(JAXA)
Japanese 55-year Reanalysis (JRA-55)
Japan Meteorological Agency (JMA)
JAXA, see Japan Aerospace Exploration

Agency (JAXA)
Jet Propulsion Laboratory (JPL)
JFit
JMA, see Japan Meteorological Agency

(JMA)
JMA-NHM

JPL, see Jet Propulsion Laboratory (JPL)
JRA-55, see Japanese 55-year Reanalysis

(JRA-55)
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K
Kalman filter (KF)

ensemble Kalman filter (EnKF)
ensemble Kalman smoother (EnKS)
ensemble transform Kalman filter
(ETKF)

extended Kalman filter (EKF)
iterative ensemble Kalman smoother
(IEnKS)

multifidelity ensemble Kalman filter
(MFEnKF)

multifidelity extended Kalman filter
multifidelity Kalman filter (MFKF)
square root multifidelity Kalman filter
unscented Kalman filter (UKF)

Kalman gain
principal variate Kalman gain
total variate Kalman gain

Kaplan-Yorke dimension
KF, see Kalman Filter (KF)

full-rank KF
optimal KF
reduced-rank KF
standard KF

KIAPS, see Korea Institute of Atmospheric
Prediction System (KIAPS)

KIM Package for Observation Processing
(KPOP)

KIM, see Korean Integrated Model (KIM)
K-Köhler theory
KLAPS, see Korea Local Analysis and

Prediction System (KLAPS)
KLBG
KLFS
KMA, see Korea Meteorological Adminis-

tration (KMA)
KNMI, see Koninklijk Nederlands Mete-

orologisch Instituut (Royal Dutch
Meteorological Institute)(KNMI)

Koninklijk Nederlands Meteorologisch
Instituut (Royal Dutch Meteorolog-
ical Institute) (KNMI)

Korea Institute of Atmospheric Prediction
System (KIAPS)

Korea Meteorological Administration
(KMA)

Korean Integrated Model (KIM)
KPOP, see KMA Package for Observation

Processing (KPOP)
Kriging
KSAS
Kuroshio

L
Lagged NMC method
Lag of the smoother
Lagrangian
Lagrangian multiplier method
LAM, see Limited Area Model (LAM)
Land-atmosphere interaction
Land-sea breeze
LandSfc
Land stations
Latent heating rate
Latent Heat Nudging (LHN)
Lateral boundary
Lateral Boundary Condition (LBC)
Lateral Boundary Tendencies (LBT)
LBC, see Lateral Boundary Condition

(LBC)
LDAPS, see Local Data Assimilation and

Prediction System (LDAPS)
LE, see Lyapunov exponent (LE)
LENS, see Local ENSemble (LENS)
LEO, see Low Earth Orbits (LEO)
LeoGeo, see CIMSS AMVs determined

from composite imagery based on
data from both geostationary and
polar-orbiting satellites (LeoGeo)

Leogeo WIND
LETKF, see Local Ensemble Transform

Kalman Filter (LETKF)
diagonal LETKF
full-T LETKF
NHM-LETKF
SPEEDY-LETKF

Level-set
LHN, see Latent Heat Nudging (LHN)
LIDAR, see Light Detection and Ranging

(LIDAR)
Light Detection and Ranging (LIDAR)
Ligurian Sea
Likelihood
Limited Area Model (LAM)
Linear control variate assumption
Linear reduced Gaussian grid
Linear system
Linear tangent approximation
LLE, see Local Lyapunov Exponents (LLE)
Local ENSemble (LENS)
Local Ensemble Transform Kalman Filter

(LETKF)
Localization

B-localization
scale-dependent localization

Localization function
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inner parameter of the localization func-
tion

Loewner order
LOGMEC, see Long-Term Glider Mission

for Environmental Characterization
field experiment (LOGMEC)

Long-Term Glider Mission for Environ-
mental Characterization field exper-
iment (LOGMEC)

Lorenz 1963 toy model
Lorenz system
Lorenz-96 system
Low Earth Orbit (LEO)
Lw, seeWater-Leaving radiance (Lw)
Lyapunov Exponents (LE)

local Lyapunov exponents (LLE)
Lyapunov spectrum
Lyapunov Vector (LV)

backward Lyapunov vector (BLV)
leading BLV
trailing BLV

covariant Lyapunov vector (CLV)
first Lyapunov vector
forward Lyapunov vector (FLV)

M
MAE, seeMean Absolute Error (MAE)
MAOOAM, see Modular Arbitrary-

Order Ocean-Atmosphere Model
(MAOOAM)

MAPLE, see McGill Algorithm for Precip-
itation nowcasting by Lagrangian
Extrapolation (MAPLE)

Maritime Continent
MASINGAR, see Model of Aerosol

Species in the Global Atmosphere
(MASINGAR)

Mathematical spaces for images
Matrix diagonalization
Matrix shift
Maximum likelihood
Maximum Likelihood Ensemble Filter

(MLEF)
MC, seeMonte Carlo (MC)
McGill Algorithm for Precipitation

nowcasting by Lagrangian Extrap-
olation (MAPLE)

MCS, see Mesoscale Convective System
(MCS)

MDCRS, see Meteorological Data Collec-
tion andReportingSystem (MDCRS)

Mean Absolute Error (MAE)

Mean-Squared Error (MSE)
Mediterranean
Melting layer
Mesoscale Convective System (MCS)
Mesoscale model SV (MSV)
MesoWest Network
MET, see Multiplicative Ergodic Theorem

(MET)
Metadata
METAR, see Meteorological Terminal Air

Report (METAR)
Météo-France
Météo-France Modèle de Chimie Atmo-

spherique à Grande Echelle
(MOCAGE)

MeteorologicalRoutineAirReport (MRAR)
Meteorological Terminal Air Report

(METAR)
Meteorology
Meteor Radar Assimilation
MeteoSat
Meteosat Second Generation (MSG)
Met Office
MFEnKF, see Multifidelity Ensemble

Kalman Filter (MFEnKF)
MFKF, see Multifidelity Kalman Filter

(MFKF)
MHS, see Microwave Humidity Sensor

(MHS)
Microwave Humidity Sensor (MHS)
MicroWave Humidity Sounder 2 (MWHS2)
Mie theory
MIL ACAR, see Military Aircraft Instru-

ment (MIL ACAR)
Military Aircraft Instrument (MIL ACAR)
Minimization
Minimum cross entropy problem
MLEF, seeMaximum Likelihood Ensemble

Filter (MLEF)
RAMS-MLEF

MOCAGE, see Météo-France Modèle de
Chimie Atmospherique à Grande
Echelle (MOCAGE)

MODAS, see Modular Ocean Data Assimi-
lation System (MODAS)

Model error
Model of Aerosol Species in the Global

Atmosphere (MASINGAR)
Model propagator
Moderate Resolution Imaging Spectrora-

diometer (MODIS)
Mode-S EHS, seeMode Selective Enhanced

Surveillance (Mode-S ENH)
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Mode Selective Enhanced Surveillance
(Mode-S ENH)

MODIS, see Moderate Resolution Imaging
Spectroradiometer (MODIS)

Dark Target
Deep Blue
MODIS AOD

Modular Arbitrary-Order Ocean-
Atmosphere Model (MAOOAM)

Monte Carlo (MC)
Monte Carlo filter
sequential Monte Carlo (SMC)

Moored buoys
Mori-Zwansig formalism
MRAR, see Meteorological Routine Air

Report (MRAR)
MSE, seeMean-Squared Error (MSE)

MSE minimization
MSG, see Meteosat Second Generation

(MSG)
MSV, seeMesoscale model SV (MSV)
Multifidelity data assimilation
Multifidelity filtering
Multifidelity hybrid data assimilation
Multifidelity inference

ensemble multifidelity inference
Multifidelity method
Multifidelity model
Multifidelity observation
Multifidelity stochastic EnKF
Multifidelity variational method
Multi-incremental
Multiplicative Ergodic Theorem (MET)
Multiplicative inflation
Multiscale analysis of images
Multiscale system
Multischeme ensemble
Multivariate balance
MWHS2, see MicroWave Humidity

Sounder 2 (MWHS2)

N
NAAPS, see Navy Aerosol Analysis and

Prediction System (NAAPS)
NASA, see National Aeronautics and Space

Administration (NASA)
NationalAeronautics andSpaceAdministra-

tion (NASA)
National Center for Atmospheric Research

(NCAR)
National Centers for Environmental Predic-

tion (NCEP)

National Meteorological Center (NMC)
National Oceanic and Atmospheric Admin-

istration (NOAA)
National Polar-orbiting Partnership (NPP)
National Snowand IceDataCenter (NSIDC)
Native BUFR
Naval Research Laboratory (NRL)
NAVDAS, see Naval Research Labora-

tory Atmospheric Variational Data
Assimilation System (NAVDAS)

NAVDAS-AR, see Naval Research Labora-
tory Atmospheric Variational Data
Assimilation System-Accelerated
Representer

NAVGEM, see Navy Global Environmental
Model (NAVGEM)

Navy Aerosol Analysis and Prediction
System (NAAPS)

Navy Coastal Ocean Model (NCOM)
Navy Coupled Ocean Data Assimilation

system (NCODA)
Navy Global Environmental Model

(NAVGEM)
Navy Operational Global Atmospheric

Prediction System (NOGAPS)
NCAR, seeNational Center forAtmospheric

Research (NCAR)
NCEP, see National Centers for Environ-

mental Prediction (NCEP)
NCOM, see Navy Coastal Ocean Model

(NCOM)
Nearly neutral direction
Near-neutral stability
Near-surface atmospheric conditions
Near-surface weather forecasts
Neutral direction
NEXRAD, see Next Generation Weather

Radar (NEXRAD)
NextGenerationWeatherRadar (NEXRAD)
NICAM, see Nonhydrostatic ICosahedral

Atmospheric Model (NICAM)
NMC, see National Meteorological Center

(NMC)
NMC method

NOAA, see National Oceanic and Atmo-
spheric Administration (NOAA)

Noah land surface model
NOGAPS, see Navy Operational Global

Atmospheric Prediction System
(NOGAPS)

Noise covariance
Non-degenerate spectrum
Non-Gaussian
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non-Gaussian method
non-Gaussian nature

Nonhydrostatic ICosahedral Atmospheric
Model (NICAM)

Nonlinear dynamics
Nonlinear operator
Normalised difference
Normal mode oscillation
NPP, seeNational Polar-orbiting Partnership

(NPP)
NRL, seeNaval Research Laboratory (NRL)
NRL polarimetric microwave satellite

Total Precipitable Water retrievals
(WINDSAT-TPW)

NSIDC, see National Snow and Ice Data
Center (NSIDC)

Null space
Number concentration
Numerical Weather Prediction (NWP)
NWP, see Numerical Weather Prediction

(NWP)
global NWP
operational NWP

Nyquist velocity

O
Objective function
Observability

weak observability
Observability Gramian
Observational data
Observation error
Observation impacts
Observation operator
Observation placement
Observation Processing (OPS)
Observation space
Observation System Simulation Experiment

(OSSE)
Observation uncertainties
Observation-update step
Observation vector
Observation window
Observing System Experiment (OSE)
Observing Systems Capability Analysis and

Review (OSCAR)
Occultation plane
Occultation profile
Ocean acoustic
Ocean and Land Colour Imager (OLCI)
Ocean currents
Oceanography

Ocean Surface Wind Speed (OSWS)
Ocean Surface Wind Vector (OSWV)
ODE, see Ordinary Differential Equation

(ODE)
ODIM, seeOPERAData InformationModel

(ODIM)
OI, see Optimal Interpolation (OI)
Okhotsk high
OLCI, see Ocean and Land Colour Imager

(OLCI)
OPERA, see Operational Program for

Exchange ofWeather Radar Informa-
tion (OPERA)

OPERA Data Information Model (ODIM)
Operational Program for Exchange

of Weather Radar Information
(OPERA)

Operational Sea Surface Temperature and
Sea Ice Analysis (OSTIA)

OPS, see Observation Processing (OPS)
Optimal control
Optimal ensemble spread
Optimal gain

optimal gain matrix
Optimal Interpolation (OI)
Optimality condition
Optimality System (OS)
Optimal transportation
Ordinary Differential Equation (ODE)
Orthogonal complement space
OS, see Optimality System (OS)
OSAS, see One-Step-Ahead Smoothing

(OSAS)
EnKF-OSAS
ETKF-OSAS, see Ensemble Transform
Kalman-Like Filter (ETKF-OSAS)

KF-OSAS
OSAS-like filtering
OSAS pdf
PF-OSAS
SEIK-OSAS, see Singular Interpolated
Ensemble Kalman-Like Filter (SEIK-
OSAS)

OSCAR, see Observing Systems Capability
Analysis and Review (OSCAR)

OSE, see Observing System Experiment
(OSE)

Oseledet bases
covariant Oseledet bases

Oseledet decomposition
Oseledet space
Oseledet splitting
Oseledet’s theorem
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Oseledet subspaces
OSSE, see Observation System Simulation

Experiment (OSSE)
OSTIA, see Operational Sea Surface

Temperature and Sea Ice Analysis
(OSTIA)

OSWS, see Ocean Surface Wind Speed
(OSWS)

OSWV, see Ocean Surface Wind Vector
(OSWV)

P
Pacific high
Padé approximation
Parameter estimation
Partial differential equation
Particle Filter (PF)

auxiliary particle filter (APF)
ensemble transform particle filters
(ETPF)

Particle index
PAZ
Pdf, see Probability Density Function (pdf)
Persian Plume
Persistence
Perturbation Forecast (PF)
Perturbation vector
Perturbed initial state
Perturbed observations
PF, see Particle Filter (PF)
PF, see Perturbation Forecast (PF)
Phase-array-radar data
Phase space
PIBAL, see Pilot Balloon (PIBAL)
Pilot Balloon (PIBAL)
Pilot Report (PIREP)
PIRATA, see Prediction and Research

Moored Array in the Tropical
Atlantic (PIRATA)

PIREP, see Pilot Report (PIREP)
Plan Position Indicator (PPI)
PM, see Posterior Mean (PM)
PM estimator
POD, see Precise Orbital Determination

(POD)
Polarimetric radar
Polar prediction
Positive definite
Posterior Mean (PM)
Power spectra

mean power spectra
PPI, see Plan Position Indicator (PPI)

Precipitable water
total precipitable water (TPW)

Precipitation threshold
Precise Orbital Determination (POD)
Precision matrix
Preconditioning
Predictability
Prediction and Research Moored Array in

the Tropical Atlantic (PIRATA)
Pressure gradient
Principal component analysis
Principal variate

principal variate Kalman gain
principal variate moment

Probability Density Function (PDF)
Probability distribution
Probability quantitative precipitation fore-

cast
Production suite
Production suite range
Projection operator
Propagation model
Pseudo-forecast step

Q
QC, see Quality Control (QC)
QFE, see aviation “Q” code for surface pres-

sure at the field elevationazimuthal
direction (QFE)

QNE, see aviation “Q” code for the stan-
dard altimeter setting (1013.25 hPa)
(QNE)

QNH, see aviation “Q”-code for altimeter
setting (QNH)

QPE, see Quantitative Precipitation Estima-
tion (QPE)

QPESUMS, see Quantitative Precipitation
Estimation and Segregation Using
Multiple Sensor (QPESUMS)

Quality Control (QC)
Quantitative Precipitation Estimation and

Segregation Using Multiple Sensor
(QPESUMS)

Quantitative Precipitation Estimation (QPE)
Quasi-Newton BFGS
Quasi-Newton method

R
Radar

radar beam
radar DA
S-band radar
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X-band radar
Radial direction
Radial velocity
Radial wind
Radio-Occultation and Heavy Precipitation

aboard PAZ (ROHP-PAZ)
Radio Occultation (RO)
Radiosonde
Radiosonde descents
Rain gauge
RAM, see Range-Dependent Model (RAM)
RAMS, see Regional Atmospheric

Modeling System (RAMS)
RAMS aerosol module
RAMS-MLEF

Random attractor
Range-Dependent Model (RAM)
Ray path

ray-path equation
Ray-tracing method
Ray-trajectory equation
RDAPS
Receiver Operating Characteristics (ROC)
Reduced-rank estimator
Reduced-rank gain
Reference trajectory
Reflectivity

filtered reflectivity
raw reflectivity
reflectivity factor

Refractive index
Refractivity

refractivity assimilation
Regional aerosol-atmosphere coupled data

assimilation system
Regional Atmospheric Modeling System

(RAMS)
Regional WIGOS Centers (RWC)
Region of influence
Relative Humidity (RH)
Relaxation parameter
Relaxation-to-Prior-Perturbations (RTPP)
Relaxation to Prior Spread (RTPS)
Relaxation to the prior
Relinearization
Representation error
Response function

gradient of the response function
Response region
Retrieved aerosol products
RH, see Relative Humidity (RH)
Riemannian manifold
RMS, see Root-Mean Square (RMS)

RMSD, see Root-Mean-Square Difference
(RMSD)

RMSE, see Root-Mean Square Error
(RMSE)

RMSI, see Root Mean Square Innovation
(RMSI)

RO, see Radio Occultation (RO)
ROC, see Receiver Operating Characteris-

tics (ROC)
ROHP-PAZ, see Radio-Occultation and

Heavy Precipitation aboard PAZ
(ROHP-PAZ)

Root Mean Square Innovation (RMSI)
Root-Mean Square (RMS)
Root-Mean Square Error (RMSE)
Root-Mean-Square Difference (RMSD)
Rossby radius
RTPS, see Relaxation to Prior Spread

(RTPS)
Rutherford-Bohr model
RWC, seeRegionalWIGOS Centers (RWC)

S
Salinity
Sampling error
SAPHIR, see Sondeur Atmosphérique du

Profil d’Humidité Intertropicale par
Radiométrie

Satellite radiance
all-sky satellite radiance

Scanning angle
Scatterometers
Score indicateur
Screen humidity
Screening process
Screen temperature
SDE, see Stochastic Differential Equation

(SDE)
Sea ice
Sea surface heat flux
Sea Surface Height Anomaly (SSHA)
Sea Surface Height (SSH)
Sea Surface Temperature (SST)
Sea thermodynamics model
Second moment
Second Order Autoregressive (SOAR)
Seiche dynamics
Seiche phenomenon
Self-analyses
Semi-definite positive matrix
Semi-Implicit Semi-Lagrangian (SISL)
Sensitivity analysis
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Sensitivity diagnostics
Sensitivity matrix method
Sensitivity threshold
Sensitivity to initial conditions
Sequential data assimilation
SEVIRI, see Spinning Enhanced Visible and

Infrared Imager (SEVIRI)
SFMR, see Stepped Frequency Microwave

Radiometer (SFMR)
Ship radiosondes
ShipSfc
SH or SHEM

Southern Hemisphere (SAPHIR)
Shortwave IR (SWIR)
Similarity index
Simplified Parameterization Primitive-

Equation Dynamics (SPEEDY)
model

Single scattering albedo
Singular interpolated ensemble Kalman-like

filter (SEIK-OSAS)
Singular vector

forced singular vectors
SISL, see Semi-Implicit Semi-Lagrangian

(SISL)
SKEB scheme, see Stochastic Kinetic

Energy Backscatter (SKEB) scheme
SLP, see Sea Level Pressure (SLP)
SMAD, see Standardized Mean Absolute

Difference (SMAD)
SMAP, see Soil Moisture Active Passive

(SMAP)
SMC, see Sequential Monte Carlo (SMC)
Smoother
Smoothing

one-step-ahead smoothing (OSAS)
Smooth manifold
SOAR, see Second Order Autoregressive

(SOAR)
Soil Climate Analysis Network
Soil moisture
Soil Moisture Active Passive (SMAP)
Soil moisture data assimilation
Solar radiation corrections
Solvability
Sondeur Atmosphérique du Profil

d’Humidité Intertropicale par
Radiométrie

SOPs, seeSpecialObserving Periods (SOPs)
Sound speed
Southern Hemisphere (SAPHIR)
Sparsity index
Spatial correlations

SPD, see Symmetric and Positive Definite
(SPD)

SPDT scheme, see Stochastically Perturbed
Dynamical Tendencies (SPDT)
scheme

Special Observing Periods (SOPs)
Special Sensor Microwave Imager Sounder

(SSMIS)
Spectral convolutions
Spectral model
SPEEDY model, see Simplified Parameteri-

zation Primitive-Equation Dynamics
(SPEEDY) model

Spherical harmonics
SPHT scheme, see Stochastic Perturbation

Hybrid Tendencies (SPHT) scheme
Spinning Enhanced Visible and Infrared

Imager (SEVIRI)
SPPT scheme, see Stochastically Perturbed

Parametrization Tendencies (SPPT)
scheme

SPSDmatrix, see Symmetric Positive Semi-
Definite (SPSD) matrix

SSH assimilation
SSH, see Sea Surface Height (SSH)
SSHA, see Sea Surface Height Anomaly

(SSHA)
SSMIS, see Special Sensor Microwave

Imager Sounder (SSMIS)
SST, see Sea Surface Temperature (SST)
Stable subspace
Staggered grid
Standardized Mean Absolute Difference

(SMAD)
State space
State-space system
State transition matrix
State vector
Statistical opimization
Stepped Frequency Microwave Radiometer

(SFMR)
Stochastically Perturbed Dynamical

Tendencies (SPDT) scheme
Stochastically Perturbed Parametrization

Tendencies (SPPT) scheme
Stochastic convective backscatter scheme
Stochastic Differential Equation (SDE)

Stratonovich SDE
Stochastic dynamics
Stochastic forcing
Stochastic kinetic energy backscatter

(SKEB) scheme
Stochastic perturbation
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Stochastic Perturbation Hybrid Tendencies
(SPHT) scheme

Streamfunction
Strong constrained problem
Superobbing
Superobservation
Supersaturation
SURF, see Surface analysis (SURF)
Surface analysis (SURF)
SWIR, see Shortwave IR (SWIR)
Symmetric and Positive Definite (SPD)
Symmetric Positive Semi-Definite (SPSD)

matrix
SYNOP, see WMO-format surface data,

primarily from land-based stations
(SYNOP)

Synthetic observations generated from TC
warning messages (TC Synth)

T
TAC, see Traditional Alphanumeric Codes
TAMDAR, see Tropospheric Airborne

Meteorological Data Reporting
Tangent linear

tangent linear hypothesis (TLH)
tangent linear model
tangent-linear model
tangent-linear space

Target observation
Target tracking
TAT, see Total Air Temperature (TAT)
TC Synth, see Synthetic observations gener-

ated from TC warning messages (TC
Synth)

TEMP, see WMO-format radiosonde data
(includingT (temperature),wind, and
q (humidity) (TEMP)

Temporal correlation
Terminal velocity
Thermocapacitor
THORPEX
Time-lag corrections
Time stationarity
Time-update step
TKE, see Turbulent Kinetic Energy (TKE)
TLH, see Tangent Linear Hypothesis (TLH)
TMI, see TRMM (Tropical Rainfall

Measuring Mission) Microwave
Imager (TMI)

Total Air Temperature (TAT)
Total variate

posterior total variate

prior total variate
total variate Kalman gain

TPW, see Total Precipitable Water (TPW)
Traditional Alphanumeric Codes (TAC)
Transmission losses
Triangular truncation
TRMM (Tropical Rainfall Measuring

Mission) Microwave Imager (TMI)
Tropospheric Airborne Meteorological Data

Reporting (TAMDAR)
Tropospheric ozone
Turbulent Kinetic Energy (TKE)
Typhoon Prapiroon

U
UAE, see United Arab Emirates (UAE)
UAV, see Unmanned Aerial Vehicle (UAV)
UKF, see Unscented Kalman Flter (UKF)

sparse-UKF
UKMO, see United Kingdom Met Office

(UKMO)
UM, see Unified Model (UM)
Unconstrained direction
Underwater acoustics
Unified Model (UM)
Unimodal solution
United Arab Emirates (UAE)
United Kingdom Met Office (UKMO)
University of Wyoming Network
Unmanned Aerial Vehicle (UAV)
Unresolved scales
Unstable-neutral subspace
Unstable subspace
Upwelling mechanism

V
Vaisala
VAR, see Variational Analysis (VAR)
VarBC, see Variational Bias Correction

(VarBC)
Variational Analysis (VAR)
Variational bias correction scheme
Variational Data Assimilation (VDA)
Variational method
Variational retieval
VDA, see Variational Data Assimilation

(VDA)
VDAPS, seeVery short rangeDataAssimila-

tion and Prediction System (VDAPS)
Vertical Feature Mask (VFM)
Vertically Integrated Total Dust Mass

(VITDM)
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Very short range Data Assimilation and
Prediction System (VDAPS)

VFM, see Vertical Feature Mask (VFM)
VIIRS, see Visible and Infrared Imaging

Suite (VIIRS)
Visible and Infrared Imaging Suite (VIIRS)
VITDM, seeVertically Integrated Total Dust

Mass (VITDM)
Volunteer Observing Ship (VOS)
VOS, see Volunteer Observing Ship (VOS)

W
Water-Leaving radiance (Lw)
Water Vapor Sensing System, second gener-

ation (WVSS-II)
Wavelets
WDQMS, see WIGOS Data Quality Moni-

toring System (WDQMS)
Weather Research and Forecasting (WRF)

Weather Research and Forecasting
model Data Assimilation (WRFDA)

Weather Research and Forecasting-
Chemistry (WRF-Chem)

Weighted ensemble covariance
Weighted least-square optimization
Weight variability
Wet-bulbing
Wiener process
WIGOS, see WMO Integrated Global

Observing System
WINDSAT-TPW, see NRL polarimetric

microwave satellite Total Precip-
itable Water retrievals (WINDSAT-
TPW)

Wind Synthesis System using Doppler
Measurement (WISSDOM)

Winter storm reconnaissance
WIS, seeWMO Information System
WISSDOM, see Wind Synthesis System

using Doppler Measurement
(WISSDOM)

WLRAS, see WRF-LETKF Radar Assimi-
lation System (WLRAS)

WMO-format radiosonde data (including
T (temperature), wind, and q
(humidity) (TEMP)

WMO-format surface data, primarily from
land-based stations (SYNOP)

WMO, seeWorld Meteorological Organiza-
tion

World Weather Watch (WWW)
WRF, seeWeather Research and Forecasting

(WRF)
WRF-3DVAR
WRF-Chem, see Weather Research and
Forecasting-Chemistry (WRF-Chem)

WRF-LETKF
WRF-LETKF Radar Assimilation
System (WLRAS)

WRF-Noah
WRF-Radar Assimilation Local
Ensemble Kalman Filter System
(WRLAS)

WRFDA, see Weather Research and
Forecasting model Data Assimilation
(WRFDA)

WRLAS, see WRF-Radar Assimilation
Local Ensemble Kalman Filter
System (WRLAS)

WSI, seeWIGOS Station Identifier (WSI)
WVCLD, see Cloud-Top Water Vapor

(WVCLD)
WVCLR, see Clear-Sky Water Vapor

(WVCLR)
WVSS-II, seeWater Vapor Sensing System,

second generation
WWW, seeWorld Weather Watch (WWW)

Y
Year of Polar Prediction (YOPP)
YOPP, see Year of Polar Prediction (YOPP)

Z
Zenith Hydrostatic Delay (ZHD)
Zenith Total Delays (ZTD)
Zenith Wet Delay (ZWD)
ZHD, see Zenith Hydrostatic Delays (ZHD)
ZTD, see Zenith Total Delays (ZTD)
ZWD, see Zenith Wet Delays (ZWD)
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