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Preface

This book, “Studies in Evolution Equations and Related Topics” features recent
developments and techniques in Evolution Equations by world-renown experts in
the field; it will contribute to re-emphasize the relevance and depth of this important
area of mathematics, in particular, its expanding reach into the physical, biological,
social, and computational sciences. The volume provides an accessible summary
of a wide range of active research topics, along with exciting new results. Topics
include: Impulsive Implicit Caputo Fractional q-Difference Equations in Finite
and Infinite Dimensional Banach Spaces; Optimal control of averaged state of a
population dynamic model; Structural stability of nonlinear elliptic p(u)-Laplacian
problem with Robin type boundary condition; Exponential dichotomy and par-
tial neutral functional differential equations, stable and center stable manifolds
of admissible class; Global attractor in alpha-norm for some Partial Functional
Differential Equations of neutral and retarded type.

The volume’s unique feature is to gather in a single expert book the most
recent theorical developments as well as state-of-the art applications of Evolution
Equations. It will certainly serve as a useful resource for both graduate students
entering this research area and for more established researchers, including as a wide
angle snapshot of this exciting and far-reaching research domain. It also facilitates
an in-depth exchange of ideas on recent advances in the various aspects of Evolution
Equations.

As such the volume is an important part of the multidisciplinary STEAM-H
series (Science, Technology, Engineering, Agriculture, Mathematics and Health);
the series brings together leading researchers to present their work in the perspective
to advance their specific fields, and in a way to generate a genuine interdisciplinary
interaction transcending disciplinary boundaries. All chapters therein were carefully
edited and peer-reviewed; they are reasonably self-contained, and pedagogically
exposed for a multidisciplinary readership.

Contributions are invited only, and reflect the most recent advances delivered in
a high standard, self-contained in lines with the goals of the series, that is:

v
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(1) To enhance multidisciplinary understanding between the disciplines by showing
how some new advances in a particular discipline can be of interest to the other
discipline, or how different disciplines contribute to a better understanding of a
relevant issue at the interface of mathematics and the sciences.

(2) To promote the spirit of inquiry so characteristic of mathematics for the
advances of the natural, physical and behavioral sciences by featuring leading
experts.

(3) To encourage diversity in the readers’ background and expertise, while at
the same time structurally fostering genuine interdisciplinary interactions and
networking.

Current disciplinary boundaries do not encourage effective interactions between
scientists; researchers from different fields usually occupy different academic
buildings, publish in journals specific to their field and attend different scientific
meetings. Existing scientific meetings usually fall into either small gatherings
specializing on specific questions, targeting specific and small group of scientists
already aware of each other’s work and potentially collaborating, or large meetings
covering a wide field and targeting a diverse group of scientists but usually not
allowing specific interactions to develop due to their large size and a crowded
program. Here contributors focus on how to make their work intelligible, accessible
to a diverse audience, which in the process enforces mastery of their own field of
expertise.

This volume strongly advocates multidisciplinarity with the goal to generate new
interdisciplinary approaches, instruments and models including new knowledge,
transcending scientific boundaries to adopt a more holistic approach. For instance, it
should be acknowledged, following Nobel laureate and president of the UK’s Royal
Society of Chemistry, Professor Sir Harry Kroto, “that the traditional chemistry,
physics, biology departmentalised university infrastructures–which are now clearly
out-of-date and a serious hindrance to progress–must be replaced by new ones which
actively foster the synergy inherent in multidisciplinarity.” The National Institute
of Health and the Howard Hughes Medical Institute have strongly recommended
that undergraduate biology education should incorporate mathematics, physics,
chemistry, computer science, and engineering until “interdisciplinary thinking and
work become second nature.” Young physicists and chemists are encouraged to
think about the opportunities waiting for them at the interface with the life sciences.
Mathematics is playing an ever more important role in the physical and life sciences,
engineering and technology, blurring the boundaries between scientific disciplines.

The series, through contributed volumes such as the current one, is to be a
reference of choice for established interdisciplinary scientists and mathematicians,
and a source of inspiration for a broad spectrum of researchers and research students,
graduate and postdoctoral fellows; the sheer emphasis of these carefully selected
and refereed contributed chapters is on important methods, research directions
and applications of analysis including within and beyond mathematics. As such
the volume implicitly promotes mathematical sciences, physical and life sciences,
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engineering, and technology education, as well as interdisciplinary, industrial and
academic genuine cooperation.

The current book, entitled “Studies in Evolution Equations and Related Topics”,
as a whole certainly enhances the overall objective of the series, that is, to foster
the readership interest and enthusiasm in the STEAM-H disciplines (Science,
Technology, Engineering, Agriculture, Mathematics and Health), stimulate graduate
and undergraduate research, and generate collaboration among researchers on a
genuine interdisciplinary basis.

The STEAM-H series is hosted at Howard University, Washington DC, USA,
an area that is socially, economically, intellectually very dynamic, and home to
some of the most important research centers in the USA. This series, by now well
established and published by Springer a world-renown publisher, is expected to
become a national and international reference in interdisciplinary education and
research.

Washington, DC, USA Bourama Toni
March 20, 2021
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Evolution Equations: Present and Future

Gaston M. N’Guérékata and Bourama Toni

This volume features chapters that present contemporary research focus and results
in the theory of Evolution Equations and its applications in the physical and natural
sciences, in a unique combination of mathematical rigor and realistic background.
Evolution Equations, besides their theoretical interests, aim at describing the future
time behavior of systems using time differential laws given by classes of equations
that include: systems of ordinary differential equation in the form

du/dt = f (u, t), d2y/dt2 = f (u, u′, t), · · · (1)

where u(t) could be regarded as the solution of the Cauchy problem; partial
differential equations (e.g., of parabolic type for Heat conduction problems, and
of hyperbolic type for motions of elastic continua); differential-difference equations
(e.g., time-delayed finite dimensional feedback control systems in the transmission
of the control signal); functional differential equations.

The goal is to be able to use the equation to predict the future of any related
physical or natural system, given an “initial state” of the system and other
parameters affecting the system. It is expected that one must have existence and
uniqueness of forward-time solutions of all physically allowable data.

One widely studied area in the theory of Evolution Equations has been periodicity
and its generalization in the direction of almost periodicity; briefly, consider for
instance a Banach abstract space B, and a B−valued continuous function f over a
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time space G, an additive semigroup. Take here G = R. The function f is time-
almost periodic if ∀ε > 0, ∃Fε a finite subset in the algebra of B−valued bounded
continuous functions on G, such

fR ⊂ Bε + Fε (2)

where fR is the set of all translates for f, that is, fR := {fs : s ∈ R, fs(x) =
x + s}, and Bε is the ε zero neighborhood, i.e., open ball centered at 0 with
radius ε. This is equivalent to fG being relatively compact or pre-compact (compact
closure F̄R).

Almost periodicity from the earlier work by Bohr, Besicovitch, Bochner, and
von Neumann, has been extensively studied, with notable contributions from many
authors to include Corduneanu, Fink, and N’Guérékata, the current volume co-
editor. This concept was also fittingly extended to the concept of almost limit cycles
in the realm of continuous time dynamical systems to account for oscillations that
are almost self-sustained.

A noted weakness of the theory is that the classical mathematical framework
to study almost periodicity, as well as Evolution Equations, involves mostly, if not
exclusively, Archimedean spaces (e.g., Euclidean, Banach, or Hilbert spaces). These
are spaces that satisfy the Archimedean Principle in that there are all endowed
with the usual/standard Euclidean norm and its induced metric which satisfied
the triangle inequality; much of our visual and mental perception is based on the
standard Euclidean space with its perfectly straight lines and planes; we came to see
and represent the physical universe as actually Euclidean in its geometry, resulting
oftentimes in biased and not so realistic mathematic model.

Indeed the physical and natural systems that Evolution Equations aim at describ-
ing are inherently non-Euclidean, with a natural geometrical ordering that is not the
usual real line, but the more adequate hierarchical generating tree. For instance, the
usual geometrical Archimedean/Euclidean distance “suitable” for measuring spatial
location separation between human beings is less effective for the genetic distance
measuring the hierarchical kinship relations.

Fortunately, thanks to the pioneering work by Kurt Hensel in the late nineteenth
century, a new trend has been emerging in recent years studying Evolution Equations
in Non-Archimedean or p-adic spaces, endowed with the so-called ultrametrics;
ultrametrics could be induced by p-adic absolute values |.|p, for p prime, that
satisfy a more stringent inequality than the usual triangle inequality; specifically in
a non-Archimedean space K, the ultrametric distance d (or denoted dp(x, y) when
induced by the p-adic norm |.|p) satisfies the inequality

d(x, z) ≤ max(d(x, y), d(y, z)) ∀ x,y,z ∈ K. (3)

Recall that the set R of reals is the completion of the set Q of rationals by
the usual Euclidean infinite norm denoted |.|∞, which amounts to creating new
numbers as limits of Cauchy sequences that do not have rational limits. The same
construction replacing the norm |.|∞ by the p-adic norm |.|p yields a new complete
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field, analogous to R denoted Qp, for every prime p, and called the field of p-
adic numbers. Inside this field Qp of p-adic numbers lies the ring Zp of p-adic
integers whose geometry is similar to the Cantor set. The set of rationals Q is
densely contained in every Qp as it is in the set of reals R.

In short mathematical modelers of natural and physical have at their disposal
a toolbox of various fields in the so-called book structure with the rationals Q as
the book spine, and every page represents a field in which to carry mathematical
modeling, to include R = Q∞, and Qp, for every p prime.

Non-Archimedean spaces, equivalently called p-adic spaces or ultrametric
spaces, have some peculiar and important features described as follows:

• One immediate interesting fact about p-adic integers is that these integers are
bounded in the norm by 1; that is, |n|p ≤ 1, i.e., as the number tends to
infinity, its p-adic size remains less than one and tends to zero, in violation of
the Archimedean Principle.

• The topology has a basis of clopen sets, i.e., sets that are simultaneously open
and closed; so phrases such “open ball” and “closed balls” become meaningless.

• Every point in a p-adic ball is also its center. For instance, if modeled p-adically
the center of the universe could be found at the nose of the nose, as once alluded
to by the physicist Hawkins.

• Two balls are either disjoint or one within the other. This could hint toward the
notion of parallel universes.

• The spaces are totally disconnected: the connected component of every point is
the point itself. Consequently, the principle of analytic continuation is lost, as
well as the Intermediate value theorem.

• The ultrametric geometry allows only isosceles triangles.
• The geometrical ordering is not along the real line but rather on a hierarchical

generating tree. Consequently, the notion of time as we know seems to be a
purely statistical construct. Z3 for instance is homeomorphic to the fractal-like
Sierpinski Gasket.

• Convergence of p-adic series:
∑∞
n=1 an < ∞ if and only an → 0. (A calculus

student dream!)
• The most consequential outcome and challenge is the study of Evolution

Equations and their differential representations with a p-adic time instead of the
usual real time. That is, how to model a system that evolves p-adically. This is
still a hard open problem.

• Consider the following simple looking differential equations modeling so many
natural systems:

dy

dt
= ẏ = λy, (4)

and

d2y

dt2
+ ω2y = 0, (Harmonic Oscillator). (5)
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Respectively the solutions are in the formAeλx, and as level curvesH−1(c) c ∈
R≥0 of a quadratic Hamiltonian H (i.e., concentric circles in the Euclidean
plane R2).

However the p-adic exponential function expp(x) = ∑∞
n=0

xn

n! converges
only for x ∈ B(0, r), r = p1/(1−p); that is, a very small radius convergence
in contract of the standard exponential series that converges on the whole real
line R. Therefore the series

∑
n≥1

(λx)n

n! is convergent if and only if |x| <
|λ|−1p1/(1−p).

• Existence of singular function or Devil’s Staircase or Cantor function: In the
classic real analysis a function differentiable with vanishing derivative is a
constant function. In contrast there exist in the p-adic space, functions that are
non-constant, continuous, and differentiable with vanishing derivatives; these
functions are called pseudo-constants. They are used to describe situation in
which an object is known to move from point A to point B, but whenever it is
observed it appears to be at rest. “Spooky motion” Einstein would say!

• The next most consequential notion is that of periodicity. Indeed, periodicity, an
important concept in the study of Evolution Equations, is non-existent in non-
Archimedean spaces; functions cannot be non-trivially periodic; however almost
periodicity is allowed and seems to be the norm in the p-adic world. In other
words, systems modeled do not have a time-periodic behavior in their p-adic
dynamics. For instance, it has been noted (e.g., Corduneanu) that almost periodic
oscillations are much more common than the periodic ones. There has been a
tremendous amount of work in mathematical sciences involving periodicity, to
include the famous Hilbert’s 16th problem, still unsolved to this day. Therefore,
all these results on periodicity are made meaningless by just changing to the non-
Archimedean/p-adic spaces. Such a realization is humbling and should be kept
in mind when drawing conclusions based on periodicity.

In non-Archimedean/ultrametric spaces, almost periodicity is defined and under-
stood in the following sense: consider a non-trivially valued complete algebraically
closed non-Archimedean field K, and a K−valued function f over an additive
semigroup G.

The function f is said to be p-adic/non-Archimedean almost periodic function
if the set fG of all the translates of f is a compactoid in the K−Banach algebra B
of all bounded continuous functions G −→ K with respect to pointwise operations
and the supremum norm ||f ||∞ = supG |f (x)|.

That is, ∀ε > 0, ∃ a finite subset Fε ⊂ B such that

fG ⊂ Bε + aco(Fε) (6)

where aco(Fε) is the smallest absolutely convex subset containing Fε. In the classic
notion of almost periodicity, the set Fε is only required to be relatively compact/pre-
compact.

In the natural sciences ultrametricity is emerging as a consequence of random-
ness and the law of large numbers; exact in the limit N −→ ∞ for systems with
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a large number N of degrees of freedom, ultrametricity provides a more natural
type of organization. It has proven effective for studying Evolution Equations
describing neutral evolution of pseudogenes, stochastic branching processes in large
space, energy landscape of disordered frustrated systems (spin glasses, problems in
engineering and biology of combinatorial optimization), and in taxonomy where
representation is given by dendrogram of hierarchy pictured in inverted tree.
Ultrametricity serves also to better model Mental spaces, and the emerging and
evolution of languages.

The richness of non-Archimedean space allows more realistic mathematical
models for evolution equations, making it a state-of-the-art tool in the arsenal of
researchers of Evolution Equations; however, still few researchers in Evolution
Equations and its related topics have expertise in Non-Archimedean analysis. That
is, the classical, Archimedean study of Evolution Equations must be redirected
toward, for example, p-adic evolution differential and pseudo-differential equations;
indeed the non-Archimedean analogs of the Heat equation and the Schrödinger
equation are being considered.

All chapters in this volume present work done in the classic Archimedean setting;
it could be very interesting to investigate the problems described herein in a non-
Archimedean framework.

Chapter “Impulsive Implicit Caputo Fractional q-Difference Equations in Finite
and Infinite Dimensional Banach Spaces” by Alqhatani et al. uses the concept of
measure of noncompactness and the fixed point theory to prove some new results
on the existence of solutions for a class of Caputo-fractional q-difference equations
with impulses in Banach spaces.

Ezzinbi and co-authors in the chapter “Global Attractor in Alpha-Norm for
Some Partial Functional Differential Equations of Neutral and Retarded Type” study
the existence of a global attractor for some partial neutral functional differential
equations, giving the convergence of all the solutions to the attractor in terms of a so-
called alpha-norm. The global attractor is proved to exist for a compact dissipative
semigroup. Illustrative applications are taken from physical systems.

In chapter “Invariant Stable Manifolds of ε-Class for Partial Neutral Functional
Differential Equations on a Half-Line” Nguyen Thieu Huy et al. consider equations

∂Fut/∂t = B(t)Fut +�(t, ut ), t ∈ (0,∞), u0 = φ ∈ C([−r, 0], X)

and prove the existence of invariant stable and center-stable manifolds of ε−class
for solutions under some appropriate conditions; the approach to construct the
manifolds of admissible classes is based on admissibility of function spaces and
Lyapunov–Perron equations combined with fixed point arguments.

Chapter “Optimal Control of Averaged State of a Population Dynamics” by
Cyrille Kenne and Boniface Nkemzi presents a population dynamic model with age
dependence and spatial structure in a bounded domain � ⊂ R

3. The authors then
prove that the average of the state can be brought to a desired state, using Euler–
Lagrange first order optimality condition.
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In chapter “Controllability of a Cascade Model in Population Dynamics”, the
authors Maniar and Echarroudi follow the classical track of Carleman estimates and
semi-group theory to study a population dynamic cascade model with one force and
two different scattering coefficients, possible null on the left hand side of the gene
type domain.

Ouaro and Sawadogo study in chapter “Structural Stability of Nonlinear Elliptic
p(u)-Laplacian Problem with Robin Type Boundary Condition” a class of nonlinear
elliptic boundary value problem in a bounded open domain � ⊂ R

N with a
smooth boundary ∂�, and prove the existence and uniqueness of weak solution
and structural stability.

In chapter “C0-Semigroup and Stepanov-Like Almost Automorphic Functions
in Matched Spaces of Time Scales” Wang and N’Guérékata present the concepts of
C0−semigroup and Stepanov-like almost automorphic functions on a quantum time
scale and their basic properties, generalizing the results to matched spaces of time
scales.

Norouzi et al. in chapter “A Study of An Epidemic SIR Model via Homo-
topy Analysis Method in the Sense of Caputo-Fractional System” consider the
fractional-order SIR system in the sense of Caputo-fractional differential equations
to investigate the existence and local stability of equilibria; an analytic solution is
also derived using the homotopy analysis method. The feasibility and validity of the
results are illustrated in numerical simulations of three different cases. The results
also show the asymptotic stability of the system for both similar and non-similar
fractional orders at a certain limit order toward a fixed point; moreover changes in
the strength of the infection do not affect the stability of the SIR model.

Finally, chapter “A Reaction-Diffusion Model for Salmonella Transmission
Within an Industrial Hens House with Distributed Resistance to Salmonella Carrier-
State” by Zongo and Beaumont, proposes a spatio-temporal model for Salmonella
transmission within a flock of genetic heterogeneous animals with distinct levels of
genetic resistance to the infection. The authors determine an explicit formula of the
classic threshold predictor parameterR0; in particular they derive the dependence of
the severity of the disease transmission on the initial distribution of genetical fowls
within a spatially heterogeneous environment.



Invariant Stable Manifolds of E-Class for
Partial Neutral Functional Differential
Equations on a Half-Line

Thi Ngoc Ha Vu, Thieu Huy Nguyen, and Xuan Yen Trinh

2010 Mathematics Subject Classification 34K19, 35R10

1 Introduction

Consider partial neutral functional differential equation (PNFDE)

∂

∂t
Fut = B(t)Fut +�(t, ut ), t ∈ [0,+∞) (1.1)

with the initial datum u0 = φ ∈ C := C([−r, 0], X) where B(t) is a (possibly
unbounded) linear operator on a Banach space X for every fixed t ≥ 0; F : C → X
is a bounded linear operator called a difference operator; � : R+ × C → X is a
continuous nonlinear operator called a delay operator, and ut is the history function
defined by ut (θ) := u(t + θ) for θ ∈ [−r, 0].

The study of invariant manifolds is one of important directions in the research for
asymptotic behavior of solutions to evolution equations and has a long history. Early
results come back to Hadamard [11], Perron [19, 20], Bogoliubov and Mitropolsky
[2, 3] for the case of ordinary differential equations (ODE) in R

n. Daleckii and
Krein [4] proved the existence of invariant manifolds for solutions to ODE in
Banach spaces. Henry [5] extended such results to the case of parabolic partial
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complicated diffusion processes. Moreover, in [8], Huy has proved the existence of a
new type of invariant manifolds, called the invariant stable manifolds of admissible
classes. Such manifolds have been constituted by trajectories belonging to the
admissible Banach space E which can be Lp-spaces, Lorentz spaces Lp,q , or some
interpolation spaces.

For the case of partial delay functional differential equations (i.e., the special case
of (1.1) when Fut = u(t)), Minh and Wu [15] proved the existence of invariant
manifolds of solutions to delay partial differential equations (see also [22] and
reference therein for state of the art). Such results have then been extended by Huy
and Duoc [11] to the case of ϕ-Lipschitz delays.

For the case of partial neutral functional differential equations (PNFDE) in the
autonomous cases (i.e., B(t) = B and �(t, φ) = �(φ) do not depend on t), some
results on existence of invariant manifolds have been obtained by H. Petzeltová and
O.J. Staffans [18] and by R. Benkhalti, K. Ezzinbi and S. Fatajou [1]. They obtained
such results under the conditions that B generates a hyperbolic analytic semigroup,
and � is uniform Lipschitz continuous with a small Lipschitz constant.

Results on existence of invariant manifolds in the non-autonomous case for
PNFDE (i.e., B(t) and �(t, φ) depend on time t) have been obtained by Huy and
Bang under the conditions that the family (B(t))t≥0 generates the dichotomic or
trichotomic evolution family, and the delay term � is ϕ-Lipschitz, i.e., ‖�(t, φ) −
�(t, ψ)‖ ≤ ϕ(t)‖φ − ψ‖C , where φ,ψ ∈ C and ϕ(t) is a real function belonging
to certain admissible space.

The purpose of the present paper is to extend the results and methods in [10]
combining with the methods in [8] to prove the existence of invariant stable
manifolds of admissible classes (see Definition 1.2) which are constituted by
trajectories of solutions belonging to certain Banach space E which can be an Lp-
space, a Lorentz space Lp,q , or some interpolation space. We prove the existence of
such manifolds for Eq. (1.1) when its linear part (B(t))t≥0 generates the evolution
family having an exponential dichotomy or trichotomy on the half-line, and its
nonlinear term is ϕ-Lipschitz, i.e., ‖�(t, φ) − �(t, ψ)‖ ≤ ϕ(t)‖φ − ψ‖C , where
φ,ψ ∈ C and ϕ(t) is a real and positive function which belongs to admissible
function space.

As mentioned in [10], when handling with PNFDE we face a difficult fact
that the differential operators do not apply directly to u(t) but to Fut , and hence
the variation-of-constant formula is available only for Fut . Therefore, we write
F in the form F = δ0 − (δ0 − F), with Dirac distribution δ0 concentrated at
0. Furthermore, another difficulty is lying in the fact that the admissibly inertial
manifold is constituted by trajectories of the solutions belonging to (rescaledly)
general admissible function spaces (see Definition 3.1 and Remark 3.2 thereafter)
which are not necessarily L∞-spaces. Therefore, the techniques and methodology
used in the paper [10] cannot directly be applied here. Instead, we use the arguments
together with generalized Hölder inequalities to obtain necessary estimates corre-
sponding to the dichotomy of the evolution family. Then we apply our techniques
and results in [8] (see also [12]) of using admissibility of function spaces to construct
the solutions of Lyapunov–Perron’s equation which will be used to derive the
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existence of admissibly stable manifolds of E-class. Moreover, using these results
and rescaling procedures we prove the existence of center-stable manifolds of E-
class for the mild solutions to Eq. (1.1) in the case of trichotomic linear parts under
the same conditions on the nonlinear delay term � as in the dichotomic case. Our
main results are contained in Theorems 2.7, 3.3.

We now recall some notions.
Let X be a Banach space (with a norm‖ · ‖) and for a given r > 0 we denote by

C := C([−r, 0], X) the Banach space of all continuous functions from [−r, 0] into
X, equipped with the norm ‖φ‖C = supθ∈[−r,0] ‖φ(θ)‖ for φ ∈ C.

For a continuous function w : [−r,∞) → X, the history function wt ∈ C is
defined by wt(θ) = v(t + θ) for all θ ∈ [−r, 0].

An evolution family is now defined as follows.

Definition 1.1 A family of bounded linear operators {U(t, s)}t≥s≥0 on a Banach
space X is a (strongly continuous, exponentially bounded) evolution family if

(i) U(t, t) = Id and U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s ≥ 0,
(ii) The map (t, s) �→ U(t, s)x is continuous for every x ∈ X,
(iii) There are constants K, c ≥ 0 such that ‖U(t, s)x‖ ≤ Kec(t−s)‖x‖ for all
t ≥ s ≥ 0 and x ∈ X.

The notion of an evolution family arises naturally from the theory of well-posed,
non-autonomous abstract Cauchy problem

{
du
dt

= B(t)u(t), t ≥ s ≥ 0,
u(s) = x ∈ X (1.2)

Roughly speaking, the well-posedness of Problem (1.2) means that there exists an
evolution family {U(t, s)}t≥s≥0 such that the solution of (1.2) is given by u(t) =
U(t, s)u(s). For more details on the notion of evolution families, conditions for the
existence of such families, and applications to partial differential equations, we refer
the readers to Pazy [17] (see also Nagel and Nickel [16] for a detailed discussion of
well-posedness for non-autonomous abstract Cauchy problems on the whole lineR).

We then briefly recall some notions on function spaces taken from Massera and
Schäffer [13], Räbiger and Schnaubelt [21], and Huy et al. [7–12].

Definition 1.2 LetE be a Banach function space andX be a Banach space endowed
with the norm ‖ · ‖. We set

E := E(R+, C) = {f : R+ → C : f is strongly measurable and ‖f (·)‖C ∈ E}

(modulo λ-null functions) endowed with the norm ‖f ‖E = ‖‖f (·)‖C‖E . One can
easily see that E is a Banach space. We call it the Banach space corresponding to
the Banach function space E.

In case E = L∞(R+), we denote

E∞ := {f : R+ → C : f is strongly measurable and ‖f (·)‖C ∈ L∞(R+)}
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In order to study the invariant manifolds of E-class for semi-linear evolution
equations, we need some restrictions on the admissible Banach function spaces and
assume the following hypothesis.

Standing Hypothesis 1.3 Throughout this paper we consider the admissible Banach
function space E such that its associate space E′ is also an admissible Banach
function space. Moreover, for such an admissible Banach function space E we
suppose that E′ contains an exponentially E-invariant function, that is the function
ϕ ≥ 0 having the property that, for any fixed ν > 0 the function hν defined by

hν(t) := ‖e−ν|t−·|ϕ(·)‖E′ for t ≥ 0

belongs to E.

2 Stable Manifolds of E-Class

In order to prove the existence of invariant stable manifolds, we need the following
notion of exponential dichotomies of the evolution family {U(t, s)}t≥s≥0.

Definition 2.1 An evolution family {U(t, s)}t≥s≥0 on the Banach space X is said
to have an exponential dichotomy on [0,∞) if there exist bounded linear projections
P(t), t ≥ 0, on X and positive constants N, ν such that

(a) U(t, s)P (s) = P(t)U(t, s), t ≥ s ≥ 0,
(b) The restriction U(t, s)| : KerP(s)→ KerP(t), t ≥ s ≥ 0, is an isomorphism,

and we denote its inverse by U(s, t)| := (U(t, s)|)−1, 0 ≤ s ≤ t ,
(c) ‖U(t, s)x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ P(s)X, t ≥ s ≥ 0,
(d) ‖U(s, t)|x‖ ≤ Ne−ν(t−s)‖x‖ for x ∈ KerP(t), t ≥ s ≥ 0.

The projections P(t), t ≥ 0, are called the dichotomy projections, and the constants
N, ν the dichotomy constants.

Note that the exponential dichotomy of {U(t, s)}t≥s≥0 implies that H :=
supt≥0 ‖P(t)‖ <∞ and the map t �→ P(t) is strongly continuous (see [14, Lemma
4.2]). We can then define the Green’s function on the half-line as follows:

G(t, τ ) =
{
P(t)U(t, τ ) for t > τ ≥ 0
−U(t, τ )|(I − P(τ)) for 0 ≤ t < τ. (2.1)

It follows from the exponential dichotomy of {U(t, s)}t≥s≥0 that

‖G(t, τ )‖ ≤ N(1 +H)e−ν|t−τ | for all t = τ, t, τ ∈ R.

Next, using the projections (P (t))t≥0 onX, we can define the family of operators
(P̃ (t))t≥0 on C as follows:
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P̃ (t) : C → C
(P̃ (t)φ)(θ) = U(t − θ, t)P (t)φ(0) for all θ ∈ [−r, 0]. (2.2)

Then, we have that (P̃ (t))2 = P̃ (t), and therefore the operators P̃ (t), t ≥ 0, are
projections on C. Moreover,

ImP̃ (t) = {φ ∈ C : φ(θ) = U(t − θ, t)ν0 ∀θ ∈ [−r, 0] for some ν0 ∈ ImP(t)}.
(2.3)

To obtain the existence of invariant stable manifolds, we also need the following
notion of the ϕ-Lipschitz of the nonlinear delay term �.

Definition 2.2 Let E be an admissible Banach function space and ϕ be a positive
function belonging to E. A function � : [0,∞)× C → X is said to be ϕ-Lipschitz
if � satisfies

(i) ‖�(t, 0)‖ ≤ ϕ(t) for all t ∈ R+.
(ii) ‖�(t, φ1)−�(t, φ2)‖ ≤ ϕ(t)‖φ1 − φ2‖C for all t ∈ R+ and all φ1, φ2 ∈ C.
Note that if �(t, φ) is ϕ-Lipschitz, then ‖�(t, φ)‖ ≤ ϕ(t)(1 + ‖φ‖C) for all φ ∈ C
and t ≥ 0.

In the space of infinite dimension, instead of Eq. (1.1) we consider the following
integral equation:

{
Fut = U(t, s)Fφ + ∫ t

s
U(t, ξ)�(ξ, uξ )dξ for t ≥ s ≥ 0,

us = φ ∈ C.
(2.4)

We note that, if the evolution family {U(t, s)}t≥s≥0 arises from the well-posed
Cauchy problem (1.2), then the function u : [s − r,∞)→ X, which satisfies (2.4)
for some given function �, is called a mild solution of the semi-linear problem

{
∂
∂t
Fut = B(t)Fut +�(t, ut ), t ≥ s ≥ 0,
us = φ ∈ C.

The reader is referred to J. Wu [22] for detailed treatments on the relations between
classical and mild solutions of functional evolution equations.

We now give the notion of an invariant stable manifold for the solutions of the
integral equation (2.4) the next definition.

Definition 2.3 A set S ⊂ R+ × C is said to be an invariant stable manifold of
E − class for the solutions to Eq. (2.4) if for every t ∈ R+ the phase spaces C splits
into a direct sum C = ImP̃ (t)⊕ KerP̃ (t) with corresponding projections P̃ (t) and
there exists a family of Lipschitz continuous mappings

ỹt : ImP̃ (t)→ KerP̃ (t), t ∈ R+
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with the Lipschitz constants independent of t such that

(i) S = {(t, ψ + ỹt (ψ)) ∈ R+ × (ImP̃ (t)⊕ KerP̃ (t)) | t ∈ R+, ψ ∈ X̃0(t)}, and
we denote by

St := {ψ + ỹt (ψ) : (t, ψ + ỹt (ψ)) ∈ S},

(ii) St is homeomorphic to ImP̃ (t) for all t ≥ 0,
(iii) To each φ ∈ Ss there corresponds one and only one solution u(t) to Eq. (2.4)

on [s − r,∞) satisfying the conditions that ũs = φ, and the function
χ[s,∞)(t)ut , t ∈ R, belongs to E ∩ E∞ where the function ũs is defined by
ũs(θ) = Fus−θ for all −r ≤ θ ≤ 0.

(iv) S is positively F -invariant under Eq. (2.4) in the sense that if u(t), t ≥ s − r ,
is a solution to Eq. (2.4) satisfying conditions that ũs ∈ Ss and the function
χ[s,∞)(t)ut , t ∈ R, belongs to E , then we have ũt ∈ St for all t ≥ s, where the
function ũt is defined by

ũt (θ) = Fut−θ for all − r ≤ θ ≤ 0 and t ≥ 0. (2.5)

Note that if we denoted by X̃0(t) = ImP̃ (t), X̃1(t) = KerP̃ (t) and we identify
X̃0(t)⊕ X̃1(t) with X̃0(t)× X̃1(t), then we can write St = graph(ỹt ).

The following lemma gives the form of bounded solutions to Eq. (2.4). To do
this, we first recall the notion of the integral translation operators �1,�

′
ν,�

′′
ν (see

[8, Def. 2.4; Pro. 2.7]) as follows: for ϕ ∈ E, �1ϕ is defined by �1ϕ(t) :=
∫ t+1
t
ϕ(τ )dτ belong to E for all t ∈ R+; if ϕ ∈ L1,loc(R) such that ϕ ≥ 0

and �1ϕ ∈ E; ν > 0 then �
′
ν,�

′′
ν are defined by �

′
νϕ(t) =

t∫

0
e−ν(t−s)ϕ(s)ds;

�
′′
νϕ(t) =

∞∫
t

e−ν(s−t)ϕ(s)ds belong to E.

Lemma 2.4 Let the evolution family {U(t, s)}t≥s≥0 have an exponential dichotomy
with the dichotomy projections P(t), t ≥ 0, and constants N, ν > 0. Assume
Standing Hypothesis 1.3 and let ϕ ∈ E′ be an exponentially E-invariant function
defined as in that Standing Hypothesis. Let F : C → X and � : R+ × C → X

be respectively the difference and delay operators. Suppose that � is ϕ-Lipschitz,
and that u(t) is a solution to Eq. (2.4) such that, for fixed s ≥ 0 the function
χ[s,∞)(t)ut , t ∈ R, belongs to E ∩ E∞. Then, for t ≥ s the function u(t) satisfies

{
Fut = U(t, s)ν0 + ∫∞

s
G(t, τ )�(τ, uτ )dτ,

us = φ ∈ C
(2.6)

for some ν0 ∈ X0(s) = P(s)X, where G(t, τ ) is the Green’s function defined as in
(2.1).
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Proof Put

y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

∞∫
s

G(t, τ )�(τ, uτ )dτ for t ≥ s
∞∫
s

G(2s − t, τ )�(τ, uτ )dτ for s − r ≤ t < s
.

We have, for t ≥ s

‖y(t)‖ ≤
∞∫

s

N(1 +H)e−ν|t−τ |ϕ(τ)(1 + ‖uτ‖C)dτ

≤ N(1 +H)(1 + sup
ξ≥s−r

‖u(ξ)‖)
∞∫

0

e−ν|t−τ |ϕ(τ)dτ

and, for s − r ≤ t < s

‖y(t)‖ ≤
∞∫

s

N(1 +H)e−ν|2s−t−τ |ϕ(τ)(1 + ‖uτ‖C)dτ

≤ N(1 +H)(1 + sup
ξ≥s−r

‖u(ξ)‖)
∞∫

0

e−ν|2s−t−τ |ϕ(τ)dτ.

Since t + θ ∈ [−r + t, t] for fixed t ∈ [s,∞) and all θ ∈ [−r, 0], we have that

‖yt‖C = sup
θ∈[−r,0]

y(t + θ) ≤ N(1 +H)(1 + sup
t≥s

‖u(t)‖)eνr
∞∫

0

e−ν|t−τ |ϕ(τ)dτ

≤ N(1 +H)(1 + sup
t≥s

‖u(t)‖)eνr
(
�

′
νϕ(t)+�

′′
νϕ(t)

)
for t ≥ s.

Therefore, by Banach lattice properties we have that y(·) ∈ E ∩ E∞ and

‖y(·)‖E ≤ N(1+H)eνr (1+sup
t≥s

‖u(t)‖) (N1‖�1T
+
1 ϕ‖E +N2‖�1ϕ‖E)
1 − e−ν , (2.7)
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and

‖y(·)‖E∞ ≤ N(1 +H)eνr (1 + sup
t≥s

‖u(t)‖) (N1‖�1T
+
1 ϕ‖∞ +N2‖�1ϕ‖∞)

1 − e−ν

where T +
1 is defined as in [8, Def. 2.4].

On the other hand,

U(t, s)y(s) = −
∫ t

s

U(t, s)U(s, τ )|(I − P(τ))�(τ, uτ )dτ

−
∫ ∞

t

U(t, s)U(s, τ )|(I − P(τ))�(τ, uτ )dτ

= −
∫ t

s

U(t, τ )(I − P(τ))�(τ, uτ )dτ

−
∫ ∞

t

U(t, τ )|(I − P(τ))�(τ, uτ )dτ.

Therefore,

y(t) = U(t, s)y(s)+
∫ t

s

U(t, τ )�(τ, uτ )dτ.

Since ut is a solution of Eq. (2.4), we obtain that Fut−y(t) = U(t, s)(Fus−y(s)).
Put now ν0 = Fus − y(s). The boundedness of Fut and y(t) on [s,∞) implies that
ν0 ∈ X0(s) and P(s)Fus = P(s)Fφ = ν0. Therefore, Fut = U(t, s)ν0 + y(t) for
t ≥ s. ��
Remark 2.5 Equation (2.6) is called the Lyapunov–Perron’s equation. By comput-
ing directly, we can see that the converse of Lemma 2.4 is also true. This means that,
all solutions of the integral equation (2.6) satisfy Eq. (2.4) for t ≥ s.

We come to our next result on the existence and partial stability of solutions
starting from a subspace of C.
Theorem 2.6 Under the hypotheses of Lemma 2.4 let P̃ (t), t ≥ 0, be projections
defined as in (2.2). Consider functions ϕ and hν defined as in Standing Hypothe-
sis 1.3. Let F : C → X be of the form F = δ0 −� for � ∈ L(C, X) with ‖�‖ < 1,
and δ0 being the Dirac function concentrated at 0. Suppose that the delay operator
� : R+ × C → X is ϕ-Lipschitz and set

k := N(1 +H)eνr × max

{

‖hν(·)‖E, N1‖�1T
+
1 ϕ‖∞ +N2‖�1ϕ‖∞

1 − e−ν
}

(2.8)
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Then, if
k

1 − ‖�‖ < 1, there corresponds to each φ ∈ ImP̃ (s) one and only one

solution u(t) of Eq. (2.6) on [s − r,∞) satisfying the conditions that P̃ (s)ũs = φ,
and function χ[s,∞)(t)ut , t ∈ R, belongs to E ∩E∞, where the function ũs is defined
as in Definition (2.3). Moreover, the following estimate is valid for any two solutions
u(t), v(t) corresponding to different initial functions φ, ψ ∈ ImP̃ (s):

‖ut − vt‖C ≤ Cμe−μ(t−s)‖φ(0)− ψ(0)‖ for all t ≥ s ≥ 0, (2.9)

where μ is a positive constant satisfying

0 < μ < ν + ln

(

1 − N(1 +H)eνr
1 − ‖�‖ (N1‖�1T

+
1 ϕ‖∞ +N2‖�1ϕ‖∞)

)

, and

Cμ := Neνr

1 − ‖�‖ − N(1+H)eνr
1−e−(ν−μ) (N1‖�1T

+
1 ϕ‖∞ +N2‖�1ϕ‖∞)

.

Proof Firstly, to prove that there corresponds to each φ ∈ ImP̃ (s) one and
only one solution u(t) in E ∩ E∞ of Eq. (2.6) on [s − r,∞), we construct a
contraction mapping. To do this, we consider from (2.2) with φ ∈ ImP̃ (s) =
{φ(θ) = U(t − θ, t)ν0 : −r ≤ θ ≤ 0; ν0 ∈ ImP (s)}. Clearly, ν0 = φ(0).

Denote by Cb([s − r,∞),X) the Banach space of bounded, continuous, and X-
valued functions defined on [s− r,∞), which is endowed with the sup-norm ‖ · ‖∞.

We define the operator �̃ : Cb([s − r,∞),X)→ Cb([s − r,∞),X) by

[�̃u](t) =
{
�(ut ) for s ≤ t
�(us) for s − r ≤ t ≤ s. (2.10)

Because ‖�‖ < 1 we have ‖�̃‖ ≤ ‖�‖ < 1. Therefore, the operator I − �̃ is
invertible. For ν0 = φ(0) ∈ ImP(s) as above, we define a mapping F̃φ : Cb([s −
r,∞),X)→ Cb([s − r,∞),X) by

(F̃φu)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

U(t, s)ν0 +
∫ ∞

s

G(t, τ )�(τ, uτ )dτ for t ≥ s

U(2s − t, s)ν0 +
∫ ∞

s

G(2s − t, τ )�(τ, uτ )dτ for s − r ≤ t ≤ s.
(2.11)

We now put T := (I − �̃)−1F̃φ . We will prove the transformation T as above acts
from E ∩ E∞ into E ∩ E∞ and is a contraction.

In fact, putting eν(t) = e−ν|t | and we have
(
T +
s eν

)
(t) = e−ν(t−s) (see [8, Def.

2.4; Pro. 2.7])
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We have, for t ≥ s

‖(F̃φu)(t)‖

≤ Ne−ν(t−s)‖ν0‖ +
∞∫

s

N(1 +H)e−ν|t−τ |ϕ(τ)(1 + ‖uτ‖C)dτ

≤ N (T +
s eν

)
(t)‖ν0‖ +N(1 +H)(1 + sup

ξ≥s−r
‖u(ξ)‖)

∞∫

0

e−ν|t−τ |ϕ(τ)dτ,

and, for s − r ≤ t ≤ s

‖(F̃φu)(t)‖

≤ Ne−ν(s−t)‖ν0‖ +
∞∫

s

N(1 +H)e−ν|2s−t−τ |ϕ(τ)(1 + ‖uτ‖C)dτ

≤ N (T +
s eν

)
(t)‖ν0‖ +N(1 +H)(1 + sup

ξ≥s−r
‖u(ξ)‖)

∞∫

0

e−ν|2s−t−τ |ϕ(τ)dτ.

On the other hand (T u)(t) = [
(I − �̃)−1F̃φu

]
(t).

Since t + θ ∈ [−r + t, t] for fixed t ∈ [s,∞) and all θ ∈ [−r, 0], we have

‖(T u)(t)‖C ≤ 1

1 − ‖�‖
[

Neνr
(
T +
s eν

)
(t)‖ν0‖ +N(1 +H)(1 + sup

t≥s
‖u(t)‖)eνr

(
�

′
νϕ(t)+�

′′
νϕ(t)

) ]

for t ≥ s.

Therefore, by Banach lattice properties we have that T u(·) ∈ E and

‖T u(·)‖E ≤ 1

1 − ‖�‖
[

NN1e
νr‖ν0‖‖eν‖E +N(1 +H)eνr (1 + sup

t≥s
‖u(t)‖)

(N1‖�1T
+
1 ϕ‖E +N2‖�1ϕ‖E)
1 − e−ν

]

.

Similarly, we have

‖T u(·)‖E∞ ≤ 1

1 − ‖�‖
[

Neνr‖ν0‖ +N(1 +H)eνr (1 + sup
t≥s

‖u(t)‖)

(N1‖�1T
+
1 ϕ‖∞ +N2‖�1ϕ‖∞)

1 − e−ν
]

.
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Hence, the transformation T acts from E ∩ E∞ into E ∩ E∞. Next, we will prove T
is a contraction mapping.

We then estimate

‖(F̃φu)(t)− (F̃φv)(t)‖ ≤
∞∫

s

‖G(t, τ )(�(τ, uτ )−�(τ, vτ ))‖dτ

≤ N(1 +H)
∞∫

s

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖Cdτ,

≤ N(1 +H)
∞∫

0

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖Cdτ for t ≥ s,

and similarly

‖(F̃φu)(t)− (F̃φv)(t)‖ ≤
∞∫

s

‖G(2s − t, τ )(�(τ, uτ )−�(τ, vτ ))‖dτ

≤ N(1 +H)
∞∫

s

e−ν|2s−t−τ |ϕ(τ)‖uτ − vτ‖Cdτ

≤ N(1 +H)
∞∫

0

e−ν|2s−t−τ |ϕ(τ)‖uτ − vτ‖Cdτ

for − r + s ≤ t ≤ s.
Using the Neumann’s series, we then have

(T u)(t)− (T v)(t) =
[( ∞∑

n=0

�̃n
)

F̃φu

]

(t)−
[( ∞∑

n=0

�̃n
)

F̃φv

]

(t)

=
[

(F̃φu)(t)− (F̃φv)(t)
]

+
[

(�̃F̃φu)(t)− (�̃F̃φv)(t)
]

+
[

(�̃2F̃φu)(t)− (�̃2F̃φv)(t)

]

+ . . .

Next, by induction we can easily see that

‖(�̃nF̃φu)(t)− (�̃nF̃φv)(t)‖ ≤ ‖�‖nN(1 +H)
∞∫

0

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖C dτ

for t ≥ s and n ∈ N,
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and

‖(�̃nF̃φu)(t)− (�̃nF̃φv)(t)‖ ≤ ‖�‖nN(1+H)
∞∫

0

e−ν|2s−t−τ |ϕ(τ)‖uτ − vτ‖Cdτ

for −r + s ≤ t ≤ s and n ∈ N.

From the above claim, it follows that

‖(T u)(t)− (T v)(t)‖ ≤
( ∞∑

n=0

‖�‖n
)

N(1 +H)
∞∫

0

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖C dτ

for t ≥ s,

and

‖(T u)(t)− (T v)(t)‖ ≤
( ∞∑

n=0

‖�‖n
)

N(1 +H)
∞∫

0

e−ν|2s−t−τ |ϕ(τ)‖uτ − vτ‖C dτ

for − r + s ≤ t ≤ s.

Since t + θ ∈ [−r + t, t] for fixed t ∈ [s,∞) and all θ ∈ [−r, 0] we have that,

‖(T u)(t)− (T v)(t)‖C
= sup
θ∈[−r,0]

‖(T u)(t + θ)− (T v)(t + θ)‖

≤ 1

1 − ‖�‖N(1 +H)eνr
∞∫

0

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖C for t ≥ s.

Since e−ν|t−·|ϕ(·) ∈ E′, ‖uτ − vτ‖C ∈ E, and using the “Hölder’s inequality,” it
follows from the above inequality that

‖(T u)(t)− (T v)(t)‖C ≤ 1

1 − ‖�‖N(1 +H)eνr‖e−ν|t−·|ϕ(·)‖E′ ‖‖u(·) − v(·)‖C‖E

≤ 1

1 − ‖�‖N(1 +H)eνrhν(t)‖u(·)− v(·)‖E for t ≥ s.
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According to the definition (1.2), we have

‖(T u)(·)− (T v)(·)‖E
≤ 1

1 − ‖�‖N(1 +H)eνr‖hν(·)‖E‖u(·)− v(·)‖E

≤ k

1 − ‖�‖‖u(·)− v(·)‖E ,

where k is defined as in (2.8). In a similar way, we have

‖(T u)(·)− (T v)(·)‖E∞

≤ 1

1 − ‖�‖N(1 +H)eνr
(
N1‖�1T

+
1 ϕ‖∞ +N2‖�1ϕ‖∞

1 − e−ν
)

‖u(·)− v(·)‖E∞

≤ k

1 − ‖�‖‖u(·)− v(·)‖E∞ .

Next, if
k

1 − ‖�‖ < 1 the transformation T : E ∩ E∞ → E ∩ E∞ is a contraction

mapping. Thus, there exists a unique u(·) ∈ E ∩ E∞ such that T u = u. This yields
that u(t), t ≥ s − r , is the unique solution of Eq. (2.6) with

(F̃φus)(θ) = U(s − θ, s)ν0 +
∫ ∞

s

G(s − θ, τ )�(τ, uτ )dτ for all θ ∈ [−r, 0],

and P(s)Fus = ν0. Therefore, P̃ (s)ũs = φ by definition of P̃ (s) (see Equality
(2.2)).

Secondly, we now prove the inequality (2.9). Let u(t), v(t) be the two solutions to
Eq. (2.6) corresponding to different initial functions φ, ψ ∈ ImP̃ (s), respectively.
We have that

u(t)− v(t) = (T u)(t)− (T v)(t) = [(I − �̃)−1F̃φu](t)− [(I − �̃)−1F̃ψv](t).
Using Neumann’s series, we arrive at

u(t)− v(t) = [(F̃φu)(t)− (F̃ψv)(t)] + [(�̃(F̃φu)(t))− (�̃(F̃ψv)(t))]
+ [(�̃2F̃φu)(t))− (�̃2(F̃ψv)(t))] + . . . (2.12)

By definition of F̃φ the norm of the first term in (2.12) can be estimated by

‖(F̃φu)(t)− (F̃ψv)(t)‖ ≤ N(T +
s eν)(t)‖φ(0)− ψ(0)‖ +N(1 +H)

∞∫

s

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖Cdτ for t ≥ s.
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Again, by induction, the norm of the nth term in (2.12) can be estimated by

‖(�̃nF̃φu)(t)− (�̃nF̃ψv)(t)‖ ≤ ‖�‖n
[

N(T +
s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)
∫ ∞

s

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖Cdτ
]

for t ≥ s

and

‖(�̃nF̃φu)(t)− (�̃nF̃ψv)(t)‖ ≤ ‖�‖n
[

N(T +
s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)
∫ ∞

s

e−ν|2s−t−τ |ϕ(τ)‖uτ − vτ‖Cdτ
]

for s − r ≤ t ≤ s.

Again, since t + θ ∈ [−r + t, t] for fixed t ∈ [s,∞) and all θ ∈ [−r, 0], and using
(2.12) we obtain

‖ut − vt‖C ≤ 1

1 − ‖�‖
[

Neνr(T +
s eν)(t)‖φ(0)− ψ(0)‖ (2.13)

+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |ϕ(τ)‖uτ − vτ‖C dτ
]

, t ≥ s.

Put h(t) = ‖ut − vt‖C . Then,

h(t) ≤ 1

1 − ‖�‖
[

Neνr(T +
s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |ϕ(τ)h(τ) dτ
]

, t ≥ s. (2.14)

We will use the cone inequality theorem (see [9, Theorem 2.8]) applying to Banach
space E with the cone K being the set of all non-negative functions. We then
consider the linear operator A defined for g ∈ E by

(Ag)(t) = N(1 +H)eνr
1 − ‖�‖

∫ ∞

s

e−ν|t−τ |ϕ(τ)g(τ )dτ, t ≥ s.

By “Hölder’s inequality” then

‖(Ag)(t)‖ ≤ N(1 +H)eνr
1 − ‖�‖ hν(t)‖g‖E.
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By the Banach laxative property of E, we have

‖Ag‖E ≤ N(1 +H)eνr
1 − ‖�‖ ‖hν‖E‖g‖E.

Therefore A ∈ L(E) and ‖A‖ ≤ k
1−‖�‖ < 1. Clearly, the cone K is invariant under

the operator A. The inequality (2.14) can now be rewritten as

h ≤ Ah+ z for z(t) = 1

1 − ‖�‖
[

Neνr(T +
s eν)(t)‖φ(0)− ψ(0)‖

]

.

By the cone inequality theorem [9, Theorem 2.8] we obtain that h ≤ g, where g is
a solution in E of the equation g = Ag + z which can be rewritten as

g(t) = 1

1 − ‖�‖
[

Neνr(T +
s eν)(t)‖φ(0)− ψ(0)‖

+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |ϕ(τ)g(τ ) dτ
]

for t ≥ s ≥ 0. (2.15)

Next, to estimate g, we put w(t) = eμ(t−s)g(t) for t ≥ s ≥ 0. Then, we obtain that

w(t) = 1

1 − ‖�‖
[

Neνr(T +
s eν−μ)(t)‖φ(0)− ψ(0)‖

+N(1 +H)eνr
∫ ∞

s

e−ν|t−τ |+μ(t−τ)ϕ(τ )w(τ) dτ
]

for t ≥ s. (2.16)

We will find w in L∞[s,∞) which is space of real-valued functions defined and
essentially bounded on [s,∞) (endowed with the sup-norm denoted by ‖ · ‖∞). We
next consider the linear operator D defined on L∞[s,∞) as

(Dφ)(t) = N(1 +H)eνr
1 − ‖�‖

∫ ∞

s

e−ν|t−τ |+μ(t−τ)ϕ(τ )φ(τ)dτ for all t ≥ s.

By Proposition [10, Prop. 2.6], one can easily see that D ∈ L(L∞[s,∞)) and

‖D‖ ≤ N(1 +H)eνr
1 − ‖�‖ .

(
N1‖�1T

+
1 ϕ‖∞ +N2‖�1ϕ‖∞
1 − e−(ν−μ)

)

.

Equation (2.16) can be rewritten as

w = Dw + z̃ for z̃(t) = 1

1 − ‖�‖Ne
νr(T +

s eν−μ)(t)‖φ(0)− ψ(0)‖.
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We have ‖D‖ < 1 if 0 < μ < ν + ln
(
1 − N(1+H)eνr

1−‖�‖ (N1‖�1T
+
1 ϕ‖∞

+N2‖�1ϕ‖∞)). Under this condition, the equation w = Dw + z̃ has the unique
solution w ∈ L∞[s,∞) and w = (I −D)−1z̃. Hence, we obtain that

‖w‖∞ = ‖(I −D)−1z̃‖∞ ≤ Neνr

(1 − ‖D‖)(1 − ‖�‖)‖φ(0)− ψ(0)‖

≤ Neνr‖φ(0)− ψ(0)‖
1 − ‖�‖ − N(1+H)eνr

1−e−(ν−μ) .(N1‖�1T
+
1 ϕ‖∞ +N2‖�1ϕ‖∞)

:= Cμ‖φ(0)− ψ(0)‖.

This yields that w(t) ≤ Cμ‖φ(0)− ψ(0)‖ for t ≥ s. Therefore,

h(t) = ‖ut−vt‖C ≤ g(t) = e−μ(t−s)w(t) ≤ Cμe−μ(t−s)‖φ(0)−ψ(0)‖ for t ≥ s.

��
We now prove our main result of this section.

Theorem 2.7 Under the hypotheses and notations of Theorem 2.6. Put

k1 := N(1 +H)eνr
(
N1‖�1T

+
1 ϕ‖∞ +N2‖�1ϕ‖∞

1 − e−ν
)

.

Then, if max{ Nk1e
νr

1 − k1 − ‖�‖ ,
k

1 − ‖�‖} < 1 where k is defined by (2.8), then there

exists an invariant stable manifold S of E-class for the solutions to Eq. (2.4).
Moreover, every two solutions u(t), v(t) on the manifold S of Eq. (2.4) corre-

sponding to different initial functions φ,ψ ∈ Ss attract each other exponentially in
sense that, there exist positive constants μ and Cμ independent of s ≥ 0 such that

‖ut − vt‖C ≤ Cμe−μ(t−s)‖P̃ (s)φ − P̃ (s)ψ‖C for t ≥ s, (2.17)

where P̃ (t), t ≥ 0, are defined as in (2.2) and Ss is defined as in Definition (2.3).

Proof To prove the existence of an invariant stable manifold S = {(t, St )}t≥0 of
E-class for the solution to Eq. (2.4) satisfies the conditions of Definition (2.3). We
have, since {U(t, s)}t≥s≥0 has an exponential dichotomy, for each t ≥ 0 the phase
space C splits into the direct sum C = ImP̃ (t) ⊕ KerP̃ (t) where the projections
P̃ (t), t ≥ 0, are defined as in Equality (2.2). We determine the surface St for t ≥ 0
by the formula

St := {φ + ỹt (φ) : φ ∈ ImP̃ (t)} ⊂ C,

where the operator ỹt0 is defined for each t0 ≥ 0 by
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ỹt0(φ)(θ) =
∫ ∞

t0

G(t0 − θ, τ )�(τ, uτ )dτ for all θ ∈ [−r, 0],

here u(·) is the unique solution of Eq. (2.4) on [−r + t0,∞) satisfying P̃ (t0)ut0 =
φ (note that the existence and uniqueness of u(·) is guaranteed by Theorem 2.6).
On the other hand, by the definition of the Green’s function G (see Eq. (2.1)) we
have that ỹt0(φ) ∈ KerP̃ (t0). We next show that the stable manifold S satisfies the
conditions of Definition 2.3.

Firstly, we prove that ỹt0 is Lipschitz continuity with Lipschitz constant indepen-
dent of t0. Indeed, for φ and ψ belonging to ImP̃ (t0) we have

‖ỹt0(φ)(θ)− ỹt0(ψ)(θ)‖

≤ N(1 +H)
∫ ∞

t0

e−ν|t0−θ−τ |ϕ(τ)‖uτ − vτ‖C dτ

≤ N(1 +H)eνr sup
τ≥t0

‖uτ − vτ‖C
∫ ∞

t0

e−ν|t0−τ |ϕ(τ) dτ

≤ N(1 +H)eνr sup
τ≥t0

‖uτ − vτ‖CN1‖�1T
+
1 ϕ‖∞ +N2‖�1ϕ‖∞

1 − e−ν .

(2.18)

Moreover, by the Lyapunov–Perron’s equation for u(·) and v(·), for τ ≥ t0 we have

sup
τ≥t0

‖uτ − vτ‖C ≤ 1

1 − ‖�‖
[

Neνr‖φ − ψ‖C +N(1 +H)eνr

×
(
N1‖�1T

+
1 ϕ‖∞ +N2‖�1ϕ‖∞

1 − e−ν
)

sup
τ≥t0

‖uτ − vτ‖C
]

.

This follows that

sup
τ≥t0

‖uτ − vτ‖C ≤ Ne
νr‖φ − ψ‖C

1 − k1 − ‖�‖ .

Substituting this inequality to (2.18), we obtain that

‖ỹt0(φ)− ỹt0(ψ)‖C = sup
θ∈[−r,0]

‖ỹt0(φ)(θ)− ỹt0(ψ)(θ)‖ ≤ Neνrk1

1 − k1 − ‖�‖‖φ−ψ‖C .

Therefore, ỹt0 is Lipschitz continuous with the Lipschitz constant Neνr k1
1−k1−‖�‖ inde-

pendent of t0.
To show that St0 is homeomorphic to ImP̃ (t0). We define the transformation

D : ImP̃ (t0) → St0 by Dφ := φ + ỹt0(φ) for all φ ∈ ImP̃ (t0). Then, applying
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the Implicit Function Theorem for Lipschitz continuous mappings (see [15, Lemma
2.7]) we have that if the Lipschitz constant Neνrk1

1−k1−‖�‖ < 1 (equivalently k1 < (1 −
‖�‖)/(1 + Neνr)), then D is a homeomorphism. Therefore, the condition (ii) in
Definition 2.3 is satisfied.

The condition (iii) in Definition 2.3 now follows from Theorem 2.6. We now
prove that the condition (iv) of Definition 2.3 is satisfied. Indeed, let u(·) be solution
of Eq. (2.4) such that the function us ∈ Ss . Then, by Lemma 2.4, for t ∈ [s,∞) the
solution u(t) satisfies

Fut = U(t, s)ν0 +
∫ ∞

s

G(t, τ )�(τ, uτ )dτ for some ν0 ∈ ImP(s).

Thus, for t ≥ s and θ ∈ [−r, 0] we have

Fut−θ

= U(t − θ, s)ν0 +
∫ ∞

s

G(t − θ, τ )�(τ, uτ )dτ

= U(t − θ, s)ν0 +
∫ t

s

G(t − θ, τ )�(τ, uτ )dτ +
∫ ∞

t

G(t − θ, τ )�(τ, uτ )dτ

= U(t − θ, s)ν0 +
∫ t

s

U(t − θ, τ )P (τ)�(τ, uτ )dτ +
∫ ∞

t

G(t − θ, τ )�(τ, uτ )dτ

= U(t − θ, t)[U(t, s)ν0 +
∫ t

s

U(t, τ )P (τ)�(τ, uτ )dτ ]+

+
∫ ∞

t

G(t − θ, τ )�(τ, uτ )dτ for all − r ≤ θ ≤ 0.

Put z0 = U(t, s)ν0 + ∫ t
s
U(t, τ )P (τ)�(τ, uτ )dτ . We have P(t)z0 = z0, hence

z0 ∈ ImP(t). We thus obtain that the function φ(θ) := U(t − θ, t)z0, −r ≤ θ ≤ 0
belongs to ImP̃ (t) and

Fut−θ = U(t − θ, t)z0 +
∫ ∞

t

G(t − θ, τ )�(τ, uτ )dτ for all − r ≤ θ ≤ 0.

By the uniqueness of u(·) on [s− r,∞) as in the proof of Theorem 2.6 we have that
Eq. (2.4) has a unique solution u(·) on [−r + t,∞) satisfying P̃ (t)ut = φ and

Fuξ = U(2t − ξ, t)z0 +
∫ ∞

t

G(2ξ − t, τ )�(τ, uτ )dτ

for ξ ∈ [−r + t, t]. Therefore, for t ≥ s the function ũt defined as in (2.5) satisfies
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ũt (θ) = Fut−θ = U(t − θ, t)z0 +
∫ ∞

t

G(t − θ, τ )�(τ, uτ )dτ = φ(θ)+ ỹt (φ)(θ)

for all − r ≤ θ ≤ 0

where, as seen above, φ ∈ ImP̃ (t).
Hence, ũt ∈ St for t ≥ s.
Finally, the inequality (2.17) follows from inequality (2.9) in Theorem (2.6) ��
We illustrate our result by the following example.

Example 2.8 Consider the following neutral partial functional differential equation:

∂w(x, t)

∂t
− l ∂w(x, t − 1)

∂t
= a(t)

[
∂2w(x, t)

∂x2
− l ∂

2w(x, t − 1)

∂x2
+ αw(x, t)

]

(2.19)

+ b e−αt
∫ 0

−1
ln(1 + |w(x, t + θ)|)dθ

for 0 ≤ x ≤ π, t ≥ 0

w(0, t) = w(π, t) = 0 t ≥ 0

ws(x, θ) = w(x, s + θ) for all x ∈ [0, π ], θ ∈ [−1, 0],

where l and α are real constants with |l| < 1, α > 1 and α = n2,∀n ∈ N. The
function a(·) ∈ L1,loc(R+) and satisfies the condition γ1 ≥ a(t) ≥ γ0 > 0 for
fixed constants γ0, γ1 and a.e. t ≥ 0. We choose the Hilbert space X := L2[0, π ],
C := C([−1, 0], X) and let B : X→ X be defined by

B(f ) = f ′′ + αf

with the domain D(B) = H 2
0 [0, π ] := {f ∈ W 2,2[0, π ] : f (0) = f (π) = 0)}

Also define the difference and delay operators F and � as

F : C → X, F(f ) := f (0)− kf (−1)

� : R+ × C → X, �(t, φ) := b e−αt
∫ 0

−1
ln(1+|(φ(θ))(x)|)dθ, x ∈ [0, π ].

(2.20)

Note that the fact that � takes value in X = L2[0, π ] can be easily seen by using
the Minkowski’s inequality.
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Putting now B(t) := a(t)B Eq. (3.4) can now be rewritten as

{
∂
∂t
Fut (·) = B(t)Fut (·)+�(t, ut (·, θ)), t ≥ s ≥ 0,
us(·, θ) = φ(·, θ) ∈ C

where B is the generator of an analytic semigroup (T (t))t>0, with σ(B) = {−1 +
α,−4 + α, . . .}. Since α = n2∀n ∈ N we have that σ(B) ∩ iR = ∅. Applying the
spectral mapping theorem for analytic semigroups we get

σ(T (t)) = etσ (B) =
{
et(α−1), et (α−4), . . .

}

and σ(T (t)) ∩ {z ∈ C : |z| = 1} = ∅ for all t > 0. Therefore, for fixed t0, the
spectrum of the operator T (t0) splits into two disjoint sets σ0, σ1, where σ0 ⊂ {z ∈
C : |z| < 1}, σ1 ⊂ {z ∈ C : |z| > 1}. Next, we choose P = P(t0) to be the
Riesz projections corresponding to the spectral set σ0, and Q = I − P . Clearly,
P and Q commute with T (t) for all t > 0. We denote by TQ(t) := T (t)Q the
restriction of T (t) on ImQ. As well known in Semigroup Theory, in this case, the
semigroup (T (t))t>0 is called hyperbolic (or having an exponential dichotomy) and
the restriction TQ(t) is invertible. Moreover, there are positive constants N, γ such
that

‖T (t)|PX‖ ≤ Ne−γ t , ∀t ≥ 0

‖TQ(−t)‖ = ‖TQ(t)−1‖ ≤ Ne−γ t , ∀t ≥ 0.
(2.21)

Clearly, the family (B(t))t≥0 = (a(t)B)t≥0 generates the evolution family
(U(t, s))t≥s≥0 defined by the formula:

U(t, s) = T
(∫ t

s

a(τ )dτ

)

.

From the dichotomy estimates of (T (t))t>0 in (2.21), it is straightforward to
check that the evolution family (U(t, s))t≥s≥0 has an exponential dichotomy with
projections P and constants N, ν := γ γ0 by the following estimates:

‖U(t, s)|PX‖ =
∥
∥
∥T

(∫ t

s

a(τ )dτ

)

|PX
∥
∥
∥ ≤ Ne−ν(t−s)

‖U(s, t)|‖ = ‖ (U(t, s)|kerP )−1 ‖ =
∥
∥
∥TQ

(

−
∫ t

s

a(τ )dτ

)∥
∥
∥ ≤ Ne−ν(t−s)

for all t ≥ s ≥ 0.
Clearly, the difference operator F be of form F = δ0 − � for � = lδ−1 and

‖�‖ ≤ |l| < 1. We now take E = Lp(R+)1 ≤ p ≤ +∞, the delay operator
� : R+ × C → X defined as in (2.20) and check that � is ϕ-Lipschitz with ϕ(t) =
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|b|e−αt ∈ E′ = Lq(R+) for
1

p
+ 1

q
= 1. Indeed, the condition (i) in Definition 2.2 is

evident. To verify the condition (ii) in that definition we use Minkowski’s inequality
and the fact that ln(1 + h) ≤ h for all h ≥ 0. Then,

‖�(t, φ1)(x)−�(t, φ2)(x)‖2

= |b| e−αt
(∫ π

0

(∫ 0

−1
ln

1 + |(φ1(θ))(x)|
1 + |(φ2(θ))(x)|dθ

)2

dx

) 1
2

≤ |b| e−αt
∫ 0

−1

(∫ π

0
ln2

1 + |(φ1(θ))(x)|
1 + |(φ2(θ))(x)|dx

) 1
2

dθ

= |b| e−αt
∫ 0

−1

(∫ π

0
ln2

(

1 + |(φ1(θ))(x)| − |(φ2(θ))(x)|
1 + |(φ2(θ))(x)|

)

dx

) 1
2

dθ

≤ |b| e−αt
∫ 0

−1

(∫ π

0
|(φ1(θ))(x)− (φ2(θ))(x)|2dx

) 1
2

dθ

= |b| e−αt
∫ 0

−1
‖φ1(θ)− φ2(θ)‖2 dθ

≤ |b| e−αt sup
θ∈[−1,0]

‖φ1(θ)− φ2(θ)‖2.

Hence, � is ϕ-Lipschitz. In the space Lp(R+), the constants N1, N2 are defined by
N1 = N2 = 1. We have

�1ϕ(t) =
∫ t+1

t

ϕ(τ )dτ and �1T
+
1 ϕ(t) =

∫ t

(t−1)+
ϕ(τ)dτ

where (t − 1)+ = max{0, t − 1}. Hence

N1‖�1T
+
1 ϕ‖∞ +N2‖�1ϕ‖∞

1 − e−ν ≤ |b|(eα − e−α)
α(1 − e−ν) .

Also, the function hν(·) in Theorem 2.6 can be computed by

hν(t) = ‖e−ν|t−·|ϕ(·)‖Lq = |b|
(
e−νqt − e−αqt
(α − ν)q + e−αqt

(α + ν)q
) 1
q

for t ≥ 0.

Suppose that α > ν. Then, we can estimate

0 ≤ hν(t) ≤ |b|e−νt
((α − ν)q) 1q

for t ≥ 0.
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Therefore, hν ∈ Lp and

‖hν‖Lp ≤ |b|
(νp)

1
p [(α − ν)q] 1

q

.

By Theorem 2.7, we obtain that if

max

{
N2e2ν(1 +H)|b|(eα − e−α)

(1 − |l|)α(1 − e−ν)−N(1 +H)eν |b|(eα − e−α) ,

|b|N(1 +H)eν
(1 − |l|)(νp) 1p [(α − ν)q] 1

q

}

< 1

then there is an invariant stable manifold S of Lp-class for the mild solutions to the
problem (2.19).

3 Center-Stable Manifolds of E-Class

In this section, we will generalize Theorem 2.7 to the case that the evolution family
{U(t, s)}t≥s≥0 has an exponential trichotomy on R+ and the nonlinear forcing term
� is ϕ-Lipschitz. In this case, under similar conditions as in above Section we will
prove that there exists a center-invariant stable manifold of E-class for the solutions
to Eq. (2.4). We now recall the definition of an exponential trichotomy and a center-
invariant stable manifold of E-class.
Definition 3.1 A given evolution family {U(t, s)}t≥s≥0 is said to have an exponen-
tial trichotomy on the half-line if there are three families of projections {Pj (t)}, t ≥
0, j = 1, 2, 3, and positive constants N, α, β with α < β such that the following
conditions are fulfilled:

(i) supt≥0 ‖Pj (t)‖ <∞, j = 1, 2, 3.
(ii) P1(t)+ P2(t)+ P3(t) = Id for t ≥ 0 and Pj (t)Pi(t) = 0 for all j = i.
(iii) Pj (t)U(t, s) = U(t, s)Pj (s) for t ≥ s ≥ 0 and j = 1, 2, 3.
(iv) U(t, s)|ImPj (s) are homeomorphisms from ImPj (s) onto ImPj (t), for all t ≥
s ≥ 0 and j = 2, 3, respectively; we also denote the inverse of U(t, s)|ImPj (s)
by U(s, t)|, 0 ≤ s ≤ t .

(v) For all t ≥ s ≥ 0 and x ∈ X, the following estimates hold:

‖U(t, s)P1(s)x‖ ≤ Ne−β(t−s)‖P1(s)x‖
‖U(s, t)|P2(t)x‖ ≤ Ne−β(t−s)‖P2(t)x‖
‖U(t, s)P3(s)x‖ ≤ Ne α(t−s)‖P3(s)x‖.
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The projections {Pj (t)}, t ≥ 0, j = 1, 2, 3, are called the trichotomy projections,
and the constants N, α, β the trichotomy constants.

Using the trichotomy projections, we can now construct three families of
projections {P̃j (t)}, t ≥ 0, j = 1, 2, 3, on C as follows:

(P̃j (t)φ)(θ) = U(t − θ, t)Pj (t)φ(0) for all θ ∈ [−r, 0] and φ ∈ C. (3.1)

Definition 3.2 Let the evolution family {U(t, s)}t≥s≥0 have an exponential tri-
chotomy with the trichotomy projections {Pj (t)}t ≥ 0, j = 1, 2, 3, and constants
N, α, β given as in Definition 3.1.

A set S ⊂ R+ × C is said to be a center-invariant stable manifold of E-class for
the solutions to Eq. (2.4) if there exists a family of Lipschitz continuous mappings

�t : Im(P̃1(t)+ P̃3(t))→ ImP̃2(t)

with projections {P̃j (t)}, t ≥ 0, j = 1, 2, 3 defined as in Eq. (3.1), and Lipschitz
constants being independent of t such that St = graph(�t) has the following
properties:

(i) St is homeomorphic to Im(P̃1(t)+ P̃3(t)) for all t ≥ 0.
(ii) To each φ ∈ Ss , there corresponds one and only one solution u(t) to Eq. (2.4)

on [s − r,∞) satisfying e−γ (s+θ)Fus−θ = φ(θ) for θ ∈ [−r, 0] and

zt =
{
e−γ (t+·)ut (·) for t ≥ s ≥ 0

0 for t < s
belong to E∩E∞, where γ = β + α

2
.

Moreover, for any two solutions u(t) and v(t) to Eq. (2.4) corresponding to
different functions φ,ψ ∈ Ss , we have the estimate

‖ut − vt‖C ≤ Cμe(γ−μ)(t−s)‖(P̃ (s)φ)(0)− (P̃ (s)ψ)(0)‖ for t ≥ s, (3.2)

where μ, Cμ are positive constants independent of s, u(·), and v(·) and P̃ (t) =
P̃1(t)+ P̃3(t).

(iii) S is positively F -invariant under Eq. (2.4) in the sense that, if u(t), t ≥
s − r , is the solution to Eq. (2.4) satisfying the conditions that the function

e−γ (s+·)ũs(·) ∈ Ss and zt =
{
e−γ (t+·)ut (·) for t ≥ s ≥ 0

0 for t < s
belong to E ∩

E∞, then the function e−γ (t+·)ũt (·) ∈ St for all t ≥ s where ũt is defined as
in (2.5).

We come to our second main result. It proves the existence of a center-stable
manifold for solutions of Eq. (2.4).
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Theorem 3.3 Let the evolution family {U(t, s)}t≥s≥0 have an exponential tri-
chotomy with the trichotomy projections {Pj (t)}t ≥ 0, j = 1, 2, 3, and constants
N, α, β given as in Definition 3.1. Assume Standing Hypothesis 1.3 and let the
functions ϕ, hν, eν , and the operators F , � be determined as in Theorem 2.7. Set

q := sup{‖Pj (t)‖ : t ≥ 0, j = 1, 3}, N0 := max{N, 2Nq}, ν = β − α
2

and

k̃ := (1 +H)eνrN0

(
N1‖�1T

+
1 ϕ‖∞ +N2‖�1ϕ‖∞

1 − e−ν
)

. (3.3)

Then, if k̃ < (1 − ‖�‖)/(1 + N0e
νr ), for each fixed β > α there exists a center-

invariant stable manifold of E-class for the solutions to Eq. (2.4).

Proof Set P(t) := P1(t) + P3(t) and Q(t) := P2(t) = Id − P(t) for t ≥ 0. We
have that P(t) andQ(t) are projections complemented to each other on X. We then
define the families of projections {P̃j (t)}, t ≥ 0, j = 1, 2, 3, on C as in Equality
(3.1). Setting P̃ (t) = P̃1(t) + P̃3(t) and Q̃(t) = P̃2(t), t ≥ 0, we obtain that
P̃ (t) and Q̃(t) are complemented projections on C for each t ≥ 0. We consider the
following rescaling evolution family:

Ũ (t, s) = e−γ (t−s)U(t, s) for all t ≥ s ≥ 0, where γ := β + α
2
.

We now prove that the evolution family Ũ (t, s) has an exponential dichotomy with
dichotomy projections P(t), t ≥ 0. Indeed,

P(t)Ũ(t, s) = e−γ (t−s)(P1(t)+ P3(t))U(t, s)
= e−γ (t−s)U(t, s)(P1(s)+ P3(s)) = Ũ (t, s)P (s).

Since U(t, s)|ImP2(s) is a homeomorphism from ImP2(s) onto ImP2(t) and
ImP2(t)=KerP(t) for all t ≥ 0, we have that Ũ (t, s)|KerP(s) is also a
homeomorphism from KerP(s) onto KerP(t), and we denote Ũ (s, t)| :=
(Ũ(t, s)|KerP(s))−1 for 0 ≤ s ≤ t . By the definition of exponential trichotomy,
we have

‖Ũ (s, t)|Q(t)x‖ ≤ e−(β+γ )(t−s)‖Q(t)x‖ for all t ≥ s ≥ 0.

On the other hand,

‖Ũ (t, s)P (s)x‖ = e−γ (t−s)‖U(t, s)(P1(s)+ P3(s))x‖
≤ Ne−γ (t−s)(e−β(t−s)‖P1(s)x‖ + eα(t−s)‖P3(s)x‖)
= Ne−γ (t−s)(e−β(t−s)‖P1(s)P (s)x‖ + eα(t−s)‖P3(s)P (s)x‖)

for all t ≥ s ≥ 0 and x ∈ X.
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Putting q := sup{‖Pj (t)‖, t ≥ 0, j = 1, 3}, we finally get the following
estimate:

‖Ũ (t, s)P (s)x‖ ≤ 2Nqe−
(β−α)

2 (t−s)‖P(s)x‖.

Therefore, Ũ (t, s) has an exponential dichotomy with the dichotomy projections
P(t), t ≥ 0, and constants N0 := max{N, 2Nq}, ν := β−α

2 .
Put û(t) = e−γ tu(t), and define the mapping �̃ : R+ × C → X as follows:

�̃(t, φ) = e−γ t�(t, eγ (t+·)φ(·)) for (t, φ) ∈ R+ × C.

Obviously, �̃ is also ϕ-Lipschitz. Thus, we can rewrite Eq. (2.4) in the new form

{
F ût = Ũ (t, s)F ûs +

∫ t
s
Ũ (t, ξ)�̃(ξ, ûξ )dξ for all t ≥ s ≥ 0,

ûs(·) = e−γ (s+·)φ(·) ∈ C.
(3.4)

Hence, by Theorem 2.7, we obtain that, if k̃ < (1 − ‖�‖)/(1 + N0e
νr ), then

there exists an invariant stable manifold of E-class S for the solutions to Eq. (3.4).
Returning to Eq. (2.4) by using the relation u(t) := eγ t û(t) and Theorems 2.6,
2.7, we can easily verify the properties of S which are stated in (i), (ii), and (iii)
in Definition (3.2). Thus, S is a center-invariant stable manifold of E-class for the
solutions of Eq. (2.4). ��
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Global Attractor in Alpha-Norm for
Some Partial Functional Differential
Equations of Neutral and Retarded Type

Mostafa Adimy, Khalil Ezzinbi, and Catherine Marquet

1 Introduction

The existence of a global attractor is an interesting field of research in differential
equations and dynamical systems. The attractor plays a crucial role in the
asymptotic behavior of the solutions. In literature, one can find many approaches
dealing with this problem. Here we use the approach based on the asymptotically
smoothness of nonlinear semigroups to prove the existence of a global attractor for
fully nonlinear partial neutral functional differential equations in the alpha-norm.

Let X be a Banach space, L(X) be the space of bounded linear operators on X,
and α be a constant such that 0 < α < 1. The aim of this work is to show the
existence of a global attractor in the alpha-norm for the following class of partial
neutral functional differential equations (PNFDE):

⎧
⎨

⎩

d

dt
D (xt ) = −AD (xt )+ F(xt ) for t ≥ 0,

x0 = ϕ ∈ Cα,
(1.1)

where A : D(A) ⊆ X → X is a linear operator, Cα := C ([−r, 0] ;D(Aα)) ,
r > 0, denotes the space of continuous functions from [−r, 0] into D(Aα), and
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the operator Aα is the fractional α-power of A. This operator (Aα,D(Aα)) will be
described in Sect. 2. For x ∈ C ([−r, b] ;D(Aα)), b > 0, and t ∈ [0, b], xt denotes,
as usual, the element of Cα defined by xt (θ) = x(t + θ) for θ ∈ [−r, 0]. F is a
continuous function from Cα with values in X, and D is a bounded linear operator
from C := C ([−r, 0] , X) into X defined by D (ϕ) = ϕ(0) − D0 (ϕ), for ϕ ∈ C,
where the operator D0 is given by

D0 (ϕ) =
∫ 0

−r
dη(θ)ϕ(θ) for ϕ ∈ C,

and η : [−r, 0] → L(X) is of bounded variation and non-atomic at zero; that is

var
[−ε,0]
(η)→ 0 as ε→ 0.

It is well known, that if the phase space Cα is the space of all continuous
functions from [−r, 0] into X (i.e. α = 0), then Eq. (1.1) has been studied by
several authors. For more details, we refer to the book of Wu [13]. For example,
Wu and Xia considered in [14] a system of partial neutral functional differential-
difference equations defined on the unit circle S1, which is a model for a continuous
circular array of resistively coupled transmission lines with mixed initial boundary
conditions. They obtained equations of the form

∂

∂t
[x(., t)− qx(., t − r)] = K ∂

2

∂ξ2
[x(., t)− qx(., t − r)] + f (xt ) , t ≥ 0,

(1.2)

where ξ ∈ S1, K a positive constant, and 0 ≤ q < 1. The space of initial data
was chosen to be C

(
[−r, 0] ;H 1(S1)

)
. Motivated by this work, Hale presented, in

[4, 5], the basic theory of existence and uniqueness, and properties of the solution
operator, as well as Hopf bifurcation and conditions for the stability and instability
of periodic orbits for a more general class of PNFDE on the unit circle S1. For
the sake of comparison, let us briefly restate the equations considered by Hale in
[4, 5]. If ϕ ∈ C ([−r, 0] ;H 1(S1)

)
, we write it as ϕ(ξ, θ) for ξ ∈ S1 and θ ∈

[−r, 0]. For any function f̃ ∈ Ck+1 ( C ([−r, 0] ;R) ; R ), k ≥ 1, we let f ∈
Ck+1

(
C
(
[−r, 0] ;H 1(S1)

) ; L2(S1) ) be defined by f (ϕ)(ξ) = f̃ (ϕ(ξ, .)), ξ ∈
S1. Let D̃ ∈ L ( C([−r, 0] ;R) ; R ) be defined by

{
D̃ψ = ψ(0)− g̃(ψ),
g̃(ψ) = ∫ 0

−r dη(θ)ψ(θ),

where η is of bounded variation and non-atomic at 0.
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We define D ∈ L
(
C
(
[−r, 0] ;H 1(S1)

) ; H 1(S1)
)
as

D(ϕ)(ξ) = D̃ (ϕ(ξ, .)) , for ξ ∈ S1. (1.3)

Hale considered, in [4, 5], PNFDE of the form

∂

∂t
Dxt = K ∂

2

∂ξ2
Dxt + f (xt ) , t ≥ 0, (1.4)

with C
(
[−r, 0] ;H 1(S1)

)
as the space of initial data. He considered the Laplace

operator A0 = K ∂
2

∂ξ2
with domain H 2(S1), which yields an operator generating an

analytic semigroup.
In [3] and [11], Eq. (1.1) has been studied with respect to the α-norm, but in the

particular case when D0 ≡ 0. Neutral partial functional differential equations have
been extensively studied in literature, for more details for the readers, we refer to
[1, 3–6, 8, 9, 14].

Let (U(t))t≥0 denote the semigroup solution of the partial neutral functional
differential equation (1.1) and A be the global attractor of equation then the
restriction (UA(t))t≥0 of (U(t))t≥0 over A has interesting properties that are not
satisfied by (U(t))t≥0. For example if U(t) : A → A is one to one, then (UA(t))t≥0
is a group on A.

This paper is organized as follows: in the first part of Sect. 2, we recall some
preliminary results about analytic semigroups, fractional power associated with its
generator, and the smoothness of the semigroup solution. After that, we start to
prove our main results. In Sect. 3, we prove the existence of a global attractor for
equation is the alpha-norm. Finally, in Sect. 4, we propose an application.

2 Well-Posedness of Eq. (1.1) in the Alpha-Norm

We firstly recall some well-known results on the existence and uniqueness of the
mild solution for equation. Before that we give some essential assumptions. In the
next, we assume that

(H1) The operator −A is the infinitesimal generator of an analytic semigroup
(T (t))t≥0 on a Banach space X and satisfies 0 ∈ ρ(A), where ρ(A) denotes the
resolvent set of A.

We know that there exist constantsM ≥ 1 and ω ∈ R such that |T (t)| ≤ Meωt , for
t ≥ 0.

If the assumption 0 ∈ ρ(A) is not satisfied, one can substitute the operator A by
the operator (A− σI) with σ large enough such that 0 ∈ ρ(A−σI). Then, without
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loss of generality, we can assume that 0 ∈ ρ(A). This remark is valuable here only
for proving existence, uniqueness, and regularity of solutions.

We consider, see Pazy [10], the fractional power (Aα,D(Aα)), for 0 < α < 1,
and its inverse A−α . We recall the following known results.

Proposition 2.1 ([10], pp. 69–75) Let 0 < α < 1 and assume that (H1) holds.
Then,

(i) D(Aα) is a Banach space for the norm |x|α := |Aαx| for x ∈ D(Aα),
(ii) T (t) : X→ D(Aα) for every t > 0,

(iii) AαT (t)x = T (t)Aαx for every x ∈ D(Aα) and t ≥ 0,
(iv) For every t > 0, AαT (t) is bounded on X and there existsMα > 0 such that

∣
∣AαT (t)

∣
∣ ≤ Mα e

ωt

tα
for every t > 0, (2.1)

(v) A−α is a bounded linear operator on X with D(Aα) = Im(A−α),
(vi) There exists Nα > 0 such that

∣
∣(T (t)− I )A−α∣∣ ≤ Nαtα for t > 0 small enough.

We denote by Xα the Banach space (D(Aα), |·|α) and by Cα := C ([−r, 0] ;Xα)
the space of continuous functions from [−r, 0] into Xα endowed with the norm

|ϕ|α := sup
θ∈[−r,0]

|ϕ(θ)|α , ϕ ∈ Cα.

Remark that (Cα, |· |α) is also a Banach space. For the existence and uniqueness of
the mild solution, we need to assume that

(H2) |F(ϕ1)− F(ϕ2)| ≤ k |ϕ1 − ϕ2|α , for ϕ1, ϕ2 ∈ Cα , where k is a positive
constant,

(H3) If x ∈ Xα and θ ∈ [−r, 0], then η(θ)x ∈ Xα and Aαη(θ)x = η(θ)Aαx.
The assumption (H3) implies that if ϕ ∈ Cα , then D0(ϕ) ∈ Xα and AαD0(ϕ) =
D0(A

αϕ), where the expression Aαϕ is defined, for ϕ ∈ Cα and θ ∈ [−r, 0] , by

(Aαϕ)(θ) := Aα(ϕ(θ)).

Definition 2.2 Let ϕ ∈ Cα . A continuous function x : [−r,+∞)→ Xα is called a
mild solution of Eq. (1.1) if

(i) D (xt ) = T (t)D (ϕ)+
∫ t
0 T (t − s)F (xs)ds for t ≥ 0,

(ii) x0 = ϕ.
Now, we state our first result.

Theorem 2.3 Assume that (H1), (H2), and (H3) hold. Then, for ϕ ∈ Cα , Eq. (1.1)
has a unique mild solution which is defined for all t ≥ 0.
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If instead of assuming that D0 is given by a function of bounded variation and
Condition (H3), we make the assumption that

(H′
3) D0 ∈ L(Cα,Xα) and |D0|L(Cα,Xα) < 1,

then, we obtain the same result as in Theorem 2.3.

Proposition 2.4 Assume that (H1), (H2), and (H′
3) hold. Then, for ϕ ∈ Cα ,

Eq. (1.1) has a unique mild solution which is defined for all t ≥ 0.

Define the operator U(t), for t ≥ 0, on Cα by

U(t)(ϕ) = xt (., ϕ),

where x(., ϕ) is the mild solution of Eq. (1.1) for the initial condition ϕ ∈ Cα . Then,
we have:

Proposition 2.5 ([1]) The family (U(t))t≥0 is a nonlinear strongly continuous
semigroup on Cα; that is

(i) U(0) = I,
(ii) U(t + s) = U(t)U(s) for t, s ≥ 0,

(iii) For all ϕ ∈ Cα , U(t)(ϕ) is a continuous function of t ≥ 0 with values in Cα ,
(iv) For all t ≥ 0, U(t) is continuous from Cα into Cα ,
(v) (U(t))t≥0 satisfies the following translation property, for t ≥ 0 and θ ∈

[−r, 0],

(U(t)(ϕ)) (θ) =
{
(U(t + θ)(ϕ)) (0) if t + θ ≥ 0,
ϕ(t + θ) if t + θ ≤ 0.

Let C be the space of continuous functions from [−r, 0] into X provided with the
uniform norm topology and let

CD = {ϕ ∈ C : D(ϕ) = 0} .

Definition 2.6 ([6]) D is said to be stable if the zero solution of the difference
equation

{
D (yt ) = 0, t ≥ 0,
y0 = ϕ ∈ CD, (2.2)

is exponentially stable.

Proposition 2.7 ([5]) LetD(ϕ) =
p∑

k=0
akϕ(−rk). Then,D is stable iff

p∑

k=0
|ak| < 1.

In the sequel, we assume the following:

(H4) The operator D is stable.
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(H5) The semigroup operators T (t) are compact for every t > 0.

We recall this important result that is the key to get the existence of a global
attractor for equation.

Theorem 2.8 (Smoothness of the Semigroup (U(t))t≥0) Assume that (H1) ,

(H2) , (H3) , (H4), and (H5) hold. Then the semigroup (U(t))t≥0 is decomposed as
follows:

U(t) = U1(t)+ U2(t), for t ≥ 0,

where U1(t) is an exponentially stable semigroup on Cα and U2(t) is compact on
Cα for every t > 0.

For the proof, we need the following result.

Lemma 2.9 ([1]) If D is stable, then there exist positive constants a, b, c, and d
such that for any ε ∈ (0, r] sufficiently small and any continuous function h from
[0,+∞) into X, the solution v of the equation

D (vt ) = h(t), t ≥ 0, (2.3)

satisfies the inequality

|vt | ≤ e−a(t−ε)
[

b |v0| + c sup
0≤s≤ε

|h(s)|
]

+d sup
max(ε,t−r)≤s≤t

|h(s)| , t ≥ ε. (2.4)

Proof of Theorem 2.8 Without loss of generality, we can assume that there exist
positive constantsM0 and γ such that the semigroup (T (t))t≥0 satisfies

|T (t)| ≤ M0e
−γ t for t ≥ 0. (2.5)

Let U1(t) be defined by

(U1(t)ϕ) (θ) =
{
ϕ(t + θ) if t + θ ≤ 0,
v(t + θ) if t + θ ≥ 0,

where v is the unique solution of the problem

{
D (vt ) = T (t)D (ϕ) for t ≥ 0,
v(t) = ϕ for t ∈ [−r, 0] .

On the other hand, the operator D is stable. We deduce after applying the operator
Aα that

|vt |α ≤ e−a(t−ε)
[

b |ϕ|α + c sup
0≤s≤ε

|T (s)D (ϕ)|α
]

+ d sup
max(ε,t−r)≤s≤t

|T (s)D (ϕ)|α .
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So, from (2.5) we get, for some constants N and ν, that

|U1(t)ϕ|α ≤ Ne−νt |ϕ|α , for t ≥ 0.

Let U2(t)ϕ := wt = ut − vt . Then,

D (U2(t)ϕ) = D (ut )−D (vt ) =
∫ t

0
T (t − s) F (U(s)ϕ) ds.

Consequently,

⎧
⎨

⎩

D(wt) = h(t, ϕ) :=
∫ t

0
T (t − s) F (U(s)ϕ) ds, for t ≥ 0,

w0 = 0.
(2.6)

Let (ϕk)k≥0 be a bounded sequence in Cα . We will show that the family
{h(., ϕk) : k ≥ 0} is equicontinuous and bounded on C ([0, σ ] ;Xα) , for any σ > 0
fixed. Let β ∈ (α, 1) . Since A−β : X → Xα is compact, it is enough to prove that{
Aβh(t, ϕk) : k ≥ 0

}
is bounded in X, for each t ≥ 0. Since (U(t))t≥0 is locally

bounded in t and ϕ, it follows that there exists a positive constant λ such that

∣
∣Aβh(t, ϕk)

∣
∣ ≤ Mβλ

∫ t

0

eωs

sβ
ds for every k ≥ 0.

We get that {h(t, ϕk) : k ≥ 0} is compact in Xα , for each t ≥ 0. It remains to prove
the equicontinuity property in α-norm. Let t > t0. Then,

Aαh(t, ϕk)− Aαh(t0, ϕk) =
∫ t0

0
Aα (T (t − s)− T (t0 − s)) F (U(s)ϕk) ds

+
∫ t

t0

AαT (t − s) F (U(s)ϕk) ds.

Consequently,

∣
∣
∣
∣

∫ t

t0

AαT (t − s) F (U(s)ϕk) ds
∣
∣
∣
∣ ≤ Mαλ

∫ t

t0

eωs

sα
ds → 0 as t → t0 uniformly in k.

Moreover,

∫ t0

0
Aα (T (t − s)− T (t0 − s)) F (U(s)ϕk) ds = (T (t − t0)− I )
∫ t0

0
AαT (t0 − s)F (U(s)ϕk)ds.



40 M. Adimy et al.

There is a compact set K in X such that

∫ t0

0
AαT (t0 − s)F (U(s)ϕk)ds ∈ K, for all k ≥ 0.

It is well known, from Banach–Steinhaus’s Theorem, that

lim
t→t0

sup
x∈K

|(T ((t − t0)− I )x| = 0.

This implies that

lim
t→t+0

|h(t, ϕk)− h(t0, ϕk)|α = 0, uniformly in k ≥ 0.

The proof is similar for t < t0. Then, for any σ > 0, there exists a subsequence
(ϕk)k≥0 such that h(t, ϕk) converges as k → +∞ uniformly on [0, σ ] to some
function h(t) in α-norm. Let wkt be the solution of Eq. (2.6) with ϕ = ϕk . Then,

D(w
j
t − wkt ) = h(t, ϕj )− h(t, ϕk).

Consequently, there is a positive constant c such that

∣
∣
∣w
j
t − wkt

∣
∣
∣
α

≤ c sup
0≤s≤t

∣
∣h(t, ϕj )− h(t, ϕk)

∣
∣
α
.

This implies that the sequence
(
wkt
)
k≥0 is a Cauchy sequence, which proves that

U2(t) is compact in Cα .

3 A Global Attractor for Partial Neutral Functional
Differential Equations

Let Y be a Banach space and S = (S(t))t≥0 be a (nonlinear) strongly continuous
semigroup on Y.

Definition 3.1 ([4])

(i) A set B ⊂ Y is said to attract a set C ⊂ Y under S if

dist (S(t)C,B)→ 0 as t → +∞.

(ii) A set B ⊂ Y is said to be invariant under S if S(t)B = B for all t ≥ 0.
(iii) S is asymptotically smooth if for any nonempty closed bounded set B ⊂ Y for

which SB ⊂ B, there is a compact set J ⊂ B such that J attracts B.



Global Attractor in Alpha-Norm for Some Partial Functional Differential. . . 41

(iv) A compact invariant set A is said to be a maximal compact invariant set if
every compact invariant set of the semigroup belongs to A.

(v) An invariant set A is said to be a global attractor if A is maximal compact
invariant set which attracts each bounded set B ⊂ Y .

(vi) The semigroup S is said to be point dissipative (compact dissipative) if there
is a bounded set B ⊂ Y that attracts each point of Y (each compact set of Y )
under S.

Theorem 3.2 ([4]) Let S(t) : Y → Y be asymptotically smooth and S(t) is
compact dissipative. Then there is a compact invariant set which attracts compact
sets of Y .

Theorem 3.3 ([4]) If S(t) : Y → Y is asymptotically smooth, point dissipative and
orbits of bounded sets are bounded. Then there exists a global attractor which is
connected.

Theorem 3.4 Assume that (H1), (H2), (H3), (H4), and (H5) hold. Then the
semigroup (U(t))t≥0 is asymptotically smooth on Cα .

The proof is based on the following lemma.

Lemma 3.5 ([4]) Suppose that S is decomposed as follows S(t) = S1(t)+ S2(t) :
Y → Y , t ≥ 0, such that (S1(t))t≥0 is compact and there is a continuous function
u : R+ × R+ → R+ such that u(t, r)→ 0 as t → +∞ and ‖S2(t)y‖ ≤ u(t, r) if
‖y‖ ≤ r. Then, the semigroup S is asymptotically smooth on Y .

Then Theorem 3.4 is a consequence for lemma 3.5.
Consequently, we deduce the following results on the existence of a global

attractor for Eq. (1.1).

Theorem 3.6 Assume that (H1), (H2), (H3), (H4), (H5) hold and U(t) is compact
dissipative. Then there is a compact invariant set of (U(t))t≥0 which attracts
compact sets of Cα .

Theorem 3.7 Assume that (H1), (H2), (H3), (H4), (H5) hold, U(t) is point
dissipative and orbits of bounded sets are bounded. Then there exists a global
attractor A which is connected for (U(t))t≥0.

Corollary 3.8 Assume that (H1), (H2), (H3), (H4), (H5) hold, U(t) is point
dissipative and orbits of bounded sets are bounded. Moreover, if the restriction
(UA(t))t≥0 of (U(t))t≥0 over A is one to one. Then (UA(t))t≥0 is a group on A.

4 Partial Functional Differential Equations with Infinite
Delay

The aim of this section is to prove the existence of a global attractor for the following
partial functional differential equations with infinite delay:
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⎧
⎨

⎩

d

dt
x(t) = −A (xt )+ F(xt ) for t ≥ 0

x0 = ϕ ∈ B,
(4.1)

where −A generates an analytic semigroup (T (t))t≥0 on a Banach space X, B is a
Banach space consisting of functions mapping (−∞, 0] to X and satisfying some
axioms that will be introduced later. For 0 < α < 1, Aα denotes the fractional
power of A ( see definition below), we assume that F is defined on a smaller space
Bα with values in X, where Bα is defined by

Bα = {
ϕ ∈ B : ϕ(θ) ∈ D(Aα) for θ ≤ 0 and Aαϕ ∈ B

}
,

where the function Aαϕ is defined by

(
Aαϕ

)
(θ) = Aαϕ(θ) for θ ≤ 0.

We suppose that F is Lipschitz continuous with respect to the fractional power norm
of Aα. For every t ≥ 0, the history function xt ∈ Bα is defined by

xt (θ) = x(t + θ) for θ ≤ 0.

From now on, we use an axiomatic definition of the phase space B which was
first introduced by Hale and Kato in [7]. We assume that B is the normed space
of functions mapping (−∞, 0] into X and satisfying the following fundamental
axioms:

(A) There exists a positive constant N , a locally bounded function M (·) on
[0,+∞), and a continuous function K (·) on [0,+∞), such that if x :
(−∞, a] → X is continuous on [σ, a] with xσ ∈ B, for some σ < a, then
for all t ∈ [σ, a],

(i) xt ∈ B,
(ii) t → xt is continuous with respect to |·| on [σ, a],

(iii) N |x (t)| ≤ |xt | ≤ K (t − σ) sup
σ≤s≤t

|x (s)| +M (t − σ) |xσ | .

(B) B is a Banach space.

Lemma 4.1 ([8]) Let C00 be the space of continuous functions mapping (−∞, 0]
into X with compact supports and CT00 be the subspace of functions with supports
included in [−T , 0] endowed with the uniform norm topology. Then,

CT00 ↪→ B.

In the sequel, we suppose that

(H6) For some 0 < α < 1, one has
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A−αϕ ∈ B for ϕ ∈ B,

where the function A−αϕ is defined by

(
A−αϕ

)
(θ) = A−αϕ(θ) for θ ≤ 0.

Let Bα = {ϕ ∈ B : ϕ(θ) ∈ D(Aα) for θ ≤ 0 and Aαϕ ∈ B}. We provide Bα with

the following norm:

|ϕ|α = ∣
∣Aαϕ

∣
∣ for ϕ ∈ Bα.

Lemma 4.2 ([2]) Assume that (H6) hold. Then, Bα is a Banach space.

Definition 4.3 A continuous function x : (−∞,∞)→ Xα is called a mild solution
of Eq. (4.1) if

(i) x(t) = T (t)ϕ(0)+
∫ t

0
T (t − s)F (xs)ds for t ≥ 0

(ii) x0 = ϕ.
Assume that

(H7) F : Bα → X is a Lipschitz continuous function. Let k > 0 be such that

|F(ϕ1)− F(ϕ2)| ≤ k |ϕ1 − ϕ2|α for ϕ1, ϕ2 ∈ Bα.

Theorem 4.4 ([2]) Assume that (H6) and (H7) hold. Then, for ϕ ∈ Bα , Eq. (4.1)
has a unique mild solution which is defined for all t ≥ 0.

For t ≥ 0, we define the operator U(t) on Bα by

U(t)(ϕ) = xt (., ϕ),

where x(., ϕ) is the mild solution of Eq. (4.1).

Proposition 4.5 ([2]) The family (U(t))t≥0 is a strongly continuous semigroup on
Bα , that is

(i) U(0) = I,
(ii) U(t + s) = U(t)U(s), for t, s ≥ 0,

(iii) For all ϕ ∈ Bα , U(t)(ϕ) is a continuous function of t ≥ 0 with values in Bα ,
(iv) (U(t))t≥0 satisfies the translation property, that is for t ≥ 0 and θ ≤ 0, one

has

(U(t)(ϕ)) (θ) =
{
(U(t + θ)(ϕ)) (0) for t + θ ≥ 0,
ϕ(t + θ) for t + θ ≤ 0,
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(v) for all t ≥ 0, U(t) is Lipschitz continuous from Bα to Bα . Moreover, for all
a > 0, there exists a positive constant m(a) such that

|U(t)φ − U(t)ψ |α ≤ m(a) |φ − ψ |α for t ∈ (0, a].

Now, we state the following fundamental result which will play a crucial role in
studying the asymptotic behavior of solutions in the linear case.

Theorem 4.6 ([2]) Assume that (H5) , (H6), and (H7) hold. Then, the semigroup
(U(t))t≥0 is decomposed as follows U(t) = U1(t)+ U2(t), for t ≥ 0, where U2(t)
is compact on Bα for t > 0 and U1(t) is the semigroup solution of the equation

{
x′(t) = −Ax(t) for t ≥ 0,
x0 = ϕ ∈ Bα.

(4.2)

For ϕ ∈ B, t ≥ 0 and θ ≤ 0, we define

[
W̃ (t)ϕ

]
(θ) =

{
ϕ(0) for t + θ ≥ 0
ϕ(t + θ) for t + θ < 0.

Then, (W̃ (t))t≥0 is a strongly continuous semigroup on B.We set

W̃0(t) = W̃ (t)/B0 , where B0 = {ϕ ∈ B : ϕ(0) = 0} .

Definition 4.7 We say that B is a uniform fading memory space if the following
conditions hold:

(i) If a uniformly bounded sequence (ϕn)n in C00 converges to a function ϕ
compactly on (−∞, 0] , then ϕ is in B and |ϕn − ϕ| → 0 as n→ +∞,

(ii)
∣
∣W̃0(t)

∣
∣ → 0 as t → +∞.

Let ν0 = inf{ ν ∈ R such that (D) is satisfied }.
Lemma 4.8 ([9]) If B is a uniform fading memory space, then ν0 < 0.

Lemma 4.9 ([8]) If B is a uniform fading memory space, then K and M can be
chosen such K is bounded on R

+ andM(t)→ 0 as t → 0.

Let Z be a Banach space. We introduce the Kuratowski’s measure of noncom-
pactness χ (Ω) of set Ω ⊂ Z by

χ (Ω) = inf {d > 0 : Ω has a finite cover of diameter < d} .

For a bounded linear operatorH, the Kuratowski measure of noncompactness α(H)
of H is defined by

χ(H) = inf
{
η ∈ R+ : χ(H(D)) ≤ ηχ(D), for every bounded subset D of Z

}
.
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Lemma 4.10 ([2]) Suppose that (H5) , (H6), and (H7) hold. Then, for all ε > 0,
there exists Cε > 0 such that

χ(U1(t)) ≤ CεM(t − ε), for t > ε.

Let ω0(U1) be the growth bound of (U1(t))t≥0 which is defined by

ω0(U1) = inf

{

κ > 0 : sup
t≥0
e−kt |U1(t)| <∞

}

and the essential growth bound is defined also by

ωess(U1) = inf

{

κ > 0 : sup
t≥0
e−kt |U1(t)|ess <∞

}

.

Then, it is well known from [12], that ω0 = max
{
ωess, s

′(AU1)
}
, where

s′(AU1) = sup
{
Re λ : λ ∈ σ(AU1)− σess(AU1)

}
.

where σess(AU1) is the essential spectrum of the infinitesimal generator AU1 of
(U1(t))t≥0 . Note that σ(AU1)− σess(AU1) contains a finite number of eigenvalues
of AU1 .

From Lemma 4.10 we deduce that ωess(U1) < 0. Consequently, ω0(U1) < 0 if
and only if s′(AU1) < 0.

As an immediate consequence of that, we get the following results.

Theorem 4.11 If s′(AU1) < 0, then (U(t))t≥0 is asymptotically smooth on Bα.
Theorem 4.12 If (H5) , (H6), and (H7) hold, B is a uniform fading memory space
and s′(AU1) < 0. Then each of the following conditions implies the existence of a
global attractor A for Eq. (4.1).

(a) Equation (4.1) is compact dissipative.
(b) Equation (4.1) is point dissipative and orbits of bounded sets are bounded.

5 Application

As an application of our abstract result, we consider the following partial neutral
functional differential equation:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
[v(t, x)− qv(t − r, x)] = ∂2

∂x2
[v(t, x)− qv(t − r, x)]

+f
(

v(t, x), v(t − r, x) , ∂
∂x

[v(t, x)− qv(t − r, x)]
)

for x ∈ [0, π ] , t ≥ 0,

v(t, 0) = qv(t − r, 0) and v(t, π) = qv(t − r, π) for t ≥ 0,

v(θ, x) = v0(θ, x), for θ ∈ [−r, 0] , x ∈ [0, π ] ,
(5.1)

where v0 ∈ C ([−r, 0] × [0, π ] ;R) , q is a positive constant, and f : R3→ R is a
Lipschitz continuous function.

Let A be the operator defined on X := L2 ([0, π ] ;R) by
{
D(A) = H 2(0, π) ∩H 1

0 (0, π),
Ag = −g′′

, g ∈ D(A).

Then, −A generates an analytic semigroup (T (t))t≥0 on X. Moreover, T (t) is
compact on X for every t > 0. The spectrum σ(−A) of −A is equal to the point
spectrum Pσ(−A) and is given by σ(−A) = {−n2 : n ≥ 1

}
and the associated

eigenfunctions (φn)n≥1 are given by φn(x) = sin(nx), x ∈ [0, π ] . Actually, the
semigroup T (t) is explicitly defined by

T (t)y =
∞∑

n=1

e−n2t 〈y, φn〉φn for t ≥ 0 and y ∈ X.

Let α = 1

2
. From [11], we have for t ≥ 0

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A
1
2 T (t)y = ∑∞

n=1 ne
−n2t 〈y, φn〉φn for y ∈ X,

A− 1
2 y = ∑∞

n=1
1

n
〈y, φn〉φn for y ∈ X,

A
1
2 y = ∑∞

n=1 n 〈y, φn〉φn for y ∈ D(A 1
2 ).

Lemma 5.1 ([11]) If φ ∈ D(A 1
2 ), then φ is absolutely continuous and φ′ ∈ X.

Let F : C 1
2

→ X be the mapping defined by

(F (ϕ)) (x) = f
(

ϕ(0)(x);ϕ(−r)(x); ∂
∂x

[ϕ(0)(x)− qϕ(−r)(x)]
)

for x ∈ [0, π ] ,
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D : C := C ([−r, 0] , X)→ X be the bounded linear operator defined by

D(ϕ)(x) = ϕ(0)(x)− qϕ(−r)(x) for x ∈ [0, π ] ,

y : [−r,+∞)→ X be the function defined by

y(t) = v(t, ·) for t ≥ 0,

and ϕ(θ) = v0(θ, ·), for θ ∈ [−r, 0] . Then, Eq. (5.1) takes the following abstract
form:

⎧
⎨

⎩

d

dt
D (yt ) = −AD (yt )+ F(yt ) for t ≥ 0,

y0 = ϕ ∈ C 1
2
.

(5.2)

Lemma 5.2 F is Lipschitz continuous from C 1
2

into X.

Proof Let ϕ1, ϕ2 ∈ C 1
2
. Then, for x ∈ [0, π ], we have

(F (ϕ1)− F(ϕ2)) (x) = f
(

ϕ1(0)(x) ; ϕ1(−r)(x) ; ∂
∂x

[ϕ1(0)(x)− qϕ1(−r)(x)]
)

−f
(

ϕ2(0)(x) ; ϕ2(−r)(x) ; ∂
∂x

[ϕ2(0)(x)−qϕ2(−r)(x)]
)

.

Since f is Lipschitz continuous, then there exists a positive constant k such that

|F(ϕ1)− F(ϕ2)(x)| ≤ k (|ϕ1(0)(x)− ϕ2(0)(x) |
+ |ϕ1(−r)(x)− ϕ2(−r)(x) |

+
∣
∣
∣
∣
∂

∂x
[ϕ1(0)(x)−ϕ2(0)(x)−q (ϕ1(−r)(x)−ϕ2(−r)(x))]

∣
∣
∣
∣

)

.

Which implies that

|F(ϕ1)− F(ϕ2)| ≤ k
(√∫ π

0
|ϕ1(0)(x)− ϕ2(0)(x) |2 dx

+
√∫ π

0
|ϕ1(−r)(x)− ϕ2(−r)(x) |2 dx

+
√
∫ π

0

∣
∣
∣
∣
∂

∂x
(ϕ1(0)− ϕ2(0))(x)

∣
∣
∣
∣

2

dx
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+ q
√
∫ π

0

∣
∣
∣
∣
∂

∂x
(ϕ1(−r)− ϕ2(−r))(x)

∣
∣
∣
∣

2

dx

⎞

⎠ .

By Travis and Webb [11], page 141, we have for every τ ∈ [0, r]

√∫ π

0
|ϕ1(−τ)(x)− ϕ2(−τ)(x) |2 dx ≤ ‖ϕ1 − ϕ2 ‖ 1

2

and

√
∫ π

0

∣
∣
∣
∣
∂

∂x
(ϕ1(−τ)− ϕ2(−τ))(x)

∣
∣
∣
∣

2

dx ≤ ‖ϕ1 − ϕ2 ‖ 1
2
.

Which means that F is Lipschitz continuous from C 1
2
into X. ��

Consequently, we have the existence and uniqueness of mild solutions of Eq. (5.1).
In the sequel, we assume that

0 < q < 1.

This means that the operator D is stable.
For the next, we assume that

(H) |F(t, φ)| ≤ N for t ≥ 0 and φ ∈ C 1
2
.

Proposition 5.3 (U(t))t≥0 is point dissipative, and the orbits of bounded sets are
bounded. Consequently, then there exists a global attractor A for Eq. (5.1) which
is connected.

Proof Let u be a mild solution of Eq. (5.1). Then

D(ut ) = T (t)D(ϕ)+
∫ t

0
T (t − s)F (s, us)ds for t ≥ 0.

= H(t).

It is well known that there existsM ≥ 1 such that

|T (t)| ≤ Meωt for some − 1 < ω < 0.

Then it follows by taking the 1
2 -norm that for some positive constant c > 0, we have

the following estimation:

|H(t)| 1
2

≤ c
(

eωt |ϕ| 1
2

+
∫ ∞

0

eωs

s
1
2

ds

)

.
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Since the operator D is stable, then by Lemma 2.9, we deduce that there exists a
positive constant C̃ such that for any bounded set B in C 1

2
we have that

lim
t→∞ sup

ϕ∈B
|u(t, ϕ)| 1

2
≤ C̃.

Which implies that the semigroup (U(t))t≥0 is point dissipative and orbits of
bounded sets are bounded. Now the existence of the global attractor is achieved
by applying Theorem 3.7.
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A Study of an Epidemic SIR Model via
Homotopy Analysis Method in the Sense
of Caputo-Fractional System
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37N25

1 Introduction

Fractional calculus is a branch of mathematics which dates back in 1695 to the
end of the seventeenth century, when Newton and Leibniz developed the theoretical
foundations of integral and differential calculus. Leibniz introduced the symbol
∂nf (x)
∂xn

to denote the nth derivative of the function f where n ∈ N. “What if n = 1
2?”.

At that time, there were hardly any practical applications of this theory yet. The
transition from pure mathematical formulations to applications began to emerge
around 1990 when fractional differential equations appeared in several fields such
as physics, biology, mechanics [1, 7, 14, 16, 21, 22, 26, 27, 29, 31].

Because of this property, the fractional derivative is more suited to the problems
of modeling memory-dependent phenomena, especially in most biological and
physical systems. Another advantage of using a fractional derivative is broadening
of the region of stability in dynamical systems.

Mathematical modeling based on a system of differential equations can provide
a comprehensive mechanism for the dynamics of disease transmission. In epidemi-
ology, numerous works involving a fractional derivative have been carried out,
and most of them mainly concern SIR type models with a linear incidence rate
[4, 6, 8, 9, 13, 15, 23].
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Memory effects play a crucial role in the spreading of the diseases. Including
memory effects in the susceptible-infected-recovered (SIR) epidemic model which
is very interesting for an investigation. In [30], Saeedian et al. studied the memory
effect of an SIR epidemic model using the fractional derivative of Caputo. They
have proven that this effect plays an essential role in the spread of disease. Also,
they considered the SIR model on structured networks and studied the effect of
topology on threshold points in a non-Markovian dynamics.

In [4, 8, 9, 20, 23, 28], several analysis methods were applied to prove the
existence and the stabilities of the SIR models with nonlinear incidence rate. El-
Saka [9] mainly focused on fractional-order SIRS epidemic model with constant
recruitment, mass action incidence, and variable population sizes. They also inves-
tigated the stability conditions of equilibrium points of the system and presented
the numerical simulation. In [18], Li and Zhang worked on a modified SIR model
with nonlinear incidence and recovery rates. They tried to get the idea about the
influence by any government intervention and hospitalization condition variation
which affect the spread of the disease. In this way, they analyzed the existence
and stability conditions of the equilibria to investigate the bifurcation conditions.
In addition, Dubey, et al. [8] considered a global type of SIR dynamic model. They
studied some conditions of the stability of the equilibrium points by implementing
the Lyapunov function. They also investigated the Hopf bifurcation of the SIRmodel
and presented the numerical simulation. Moreover, Khan, et al. [17] by defining a
generalized incidence rate, solved the SEIR epidemic model and proved the stability
and existence of the equilibria. Also, Liu and Stechlinski [20] proposed several
cases of SIR epidemic model. One of the models was a new SIR model with time-
varying parameters and switched nonlinear incidence rate. The other model was
SIR model with pulse vaccination and pulse treatment which were applied to the
model with seasonality and switched incidence rate. They determined their success
in eliminating the disease by using the control strategies.

Overall from above, the authors studied epidemiological models with fractional-
order differential equations, from a mathematical point of view. They mainly
focused on the presentation of mathematical methods in order to solve the corre-
sponding differential equations without touching the method of homotopy analysis
which is an efficient method in solving fractional differential equations. In addition,
in these various previous works, the authors rarely discuss the effect of fractional-
order differential equations and memory on the different levels of the force of
infection that can be the cause of an outbreak in the manner of time.

In epidemiology, the number of infected individuals per unit of time is called the
incidence rate. The latter can be linear or non-linear, and depends on the different
levels of infection strength of the disease. So, whether the strength of infection is
high, medium, or low, the rate of infection in people may vary over time.

Our main motivation is to solve the Caputo-sense of fractional differential
equations by method of homotopy analysis described in [19] and to see if, memory
plays a key role on the different levels of the force of infection. In our study,
we propose the analytical solution to the fractional differential equations by using
homotopy analysis method which has not been used in epidemiology through the
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study of a SIR model with a Caputo derivation. We then prove the existence,
stability, and asymptotic behavior of the SIR fractional model, and finally, we
present an illustrative simulation of the results to validate our results.

The SIR epidemiological model is given by

⎧
⎪⎨

⎪⎩

CDαt S(t) = �− μS(t)− θβS(t)I (t)
N(t)

CDαt I (t) = θβS(t)I (t)
N(t)

− γ I (t)− μI (t)
CDαt R(t) = γ I (t)− μR(t)

(1)

Where CDαt is the Caputo-fractional derivative on order α ∈ (0, 1).
In system (1), the population is divided into three compartments: S(t), I (t), and

R(t), respectively, represent the number of susceptible become infected, exposed,
infectious and healed or recovered individuals at time t, and N(t) is the total
population size which is N = S + I + R.
� is the recruitment rate of the population, μ is the natural mortality rate, γ is

the infection-related mortality rate, β is the strength of infection force, and θ is the
recovery rate of infected.

Our paper is organized as follows. In Sect. 2, we recall some basic definitions
of fractional calculus. In Sect. 3, we propose an approximate analytical solution
of the fractional SIR system using the homotopy analysis method. The existence
of equilibria and their local stability are studied in Sect. 4. In Sect. 5, we attempt
to present the numerical simulation of fractional SIR model. Finally, in Section 6,
concluding results and comments are given.

2 Preliminaries

In this section, we present an overview of the concept of fractional calculus, and we
define some basic notions of the fractional derivative of Caputo. (See for instance:
[1, 3, 16, 26, 32])

Let I = [0, T ] where T > 0. We denote by C(I,Rn) the Banach space of all
continuous functions I −→ R

n endowed with the topology of uniform convergence
(the norm in this space will be denoted by ‖.‖)

2.1 Definition and Theorem

Definition 1 The fractional integral of order α > 0 for a function f is defined as

Iαf (t) = 1

�(α)

∫ t

0
(t − s)α−1f (s)ds (2)
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Definition 2 The fractional derivative of order α in the sense of Caputo is defined
by

C
a D
αf (x) =

∫ t

a

(t − s)n−α−1

�(n− α) f
(n)(s) ds (3)

where f (n) is the derivative of order n of the function f ∈ (C [a, b]); with α ∈
(n − 1, n) and n ∈ N such as n = [α] + 1. If α is such that [α] = 0, then any
fraction derivative of order α in the sense of Caputo will be written in the following
way:

C
a D
αf (x) =

∫ t

a

(t − s)−α
�(1 − α) f

′
(x) ds (4)

Definition 3 A real function f (t), (t > 0) is said to be in the space Cν , ν ∈ (R) if
there exists a real p > ν such that f (t) = tpg(t), where g ∈ C(R+).

Definition 4 A real function f (t), (t > 0) is said to be in the space Cnν , where
n ∈ N if f n ∈ Cν .

In the rest of our paper, Ca D
α will be simply noted as Dαt .

Theorem 1 Consider that abstract fractional functional differential equation

⎧
⎨

⎩

Dαt (x(t)+ g(t, x(t)) = Ax(t)+ f (t, x(t)), where 0 < α ≤ 1
and,

x(0) = x0
(5)

where Dαt denotes Caputo’s fractional derivative.
Then the system (5) is equivalent to

x(t) = x0 + g(0, x0)− g(t, x(t))+ 1

�(α)

∫ t

0
(t − s)α−1f (s, x(s))ds

+ A

�(α)

∫ t

0
(t − s)α−1x(s)ds

(6)

A being a closed linear operator. See [24] for more details of the proof.

Let X = R
n, with the norm ‖y‖n =

n∑

i=1
|yi | where y = (y1, y2, . . . , yn)

and let Cn(I) be the class of all continuous column vector functions Y (t) =
(y1(t), y2(t), . . . , yn(t)) defined on I , with norm:

‖Y‖n =
n∑

i=1

sup
t∈I

|yi(t)| (7)



A Study of an Epidemic SIR Model via Homotopy Analysis Method in the. . . 55

For w > 0 given, we have the following equivalent norm:

‖Y‖n,ω =
n∑

i=1

sup
t∈I
e−ωt |yi(t)|

Consider the Cauchy problem with nonlocal condition:

⎧
⎨

⎩

Dαt (yi(t)) = fi(t, yi(t)), where 0 < α ≤ 1, t ∈ (0, T ]
and,

yi(0) = y0i , where i = 1, 2, . . . , n
(8)

Where Dαt (yi(t)) is the fractional derivative of the function yi(t) in the sense of
Caputo with order 0 < α ≤ 1.

The system (8) can be reformulated as follows:

⎧
⎨

⎩

Dαt (Y (t)) = F(Y (t)), where 0 < α ≤ 1, t ∈ (0, T ]
and,

Y (0) = Y0, where Y (t) = (y1(t), y2(t), . . . , yn(t))T
(9)

By Theorem (1), we obtain the equivalent equation:

Y (t) = Y0 + IαF (Y (t)). (10)

By making the following assumptions:

H1: fi : I −→ R
+ are continuous on I and fi ∈ Cμ, where μ ≥ −1

i = 1, 2, . . . , n
H2: There exists L > 0 such that:

‖f (X(t))− f (Y (t))‖n < L‖X(t)− Y (t)‖n (11)

Theorem 2 Under the hypotheses (H1–H2), the problem with initial values (9) has
a unique one on I provided Lw−α < 1.

See [25] for the proof.

3 Homotopy Analysis Method (HAM)

The homotopy method was established by He in 1998 [11]. The method was
then developed and improved by himself. He has applied it to problems at the
limits of the nonlinear wave equation, as well as to many subjects. The homotopy
disturbance method can be considered as a universal method which is capable of
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solving different types of nonlinear functional equations. See [2, 12, 19] for more
information.

In this section, we apply the homotopy analysis method in [19] in order to obtain
an analytical solution for a fractional system defined in (1).

Using the same approach as [25], we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) = S0(t)+∑∞
m=1Xm(t)q

m

I (t) = I0(t)+∑∞
m=1 Im(t)q

m,

R(t) = R0(t)+∑∞
m=1 Rm(t)q

m

(12)

when q increases from 0 to 1.
We then take the mth-order homotopy derivative of the zero-order and obtain the

m-order deformation equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lα[Sm(t)− χm[Sm−1(t)] = h�Sm(t)

Lα[Im(t)− χm[Im−1(t)] = h�Im(t),

Lα[Rm(t)− χm[Rm−1(t)] = h�Rm(t)

(13)

With the initial conditions: Sm(0) = 0, Im(0) = 0, and Rm(0) = 0. Where,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�Sm(t) = DαCSm−1(t)−�+ μSm−1(t)+ θβSm−1(t)Im−1(t)
Nm−1(t)

�Im(t) = DαCIm−1(t)− θβSm−1(t)Im−1(t)

Nm−1(t)
+ γ Im−1(t)+ μIm−1(t),

�Rm(t) = DαCRm−1(t)− γ Im−1(t)+ μRm−1(t)

(14)

In this way, it is easy to solve the linear non-homogeneous equation (13) with
initial conditions mentioned above for all m ≥ 1 and we obtain
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(t) = htα

�(α−1) [−�+ θβS0I0
N0

− μS0]

I1(t) = htα

�(α−1) [− θβS0I0N0
+ γ I0 + μI0],

R1(t) = htα

�(α−1) [−γ I0 + μR0]

(15)

Proceeding similarly, the p-th term of the approximate solution is of the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) = S0(t)+∑p
m=1Xm(t)

I (t) = I0(t)+∑p
m=1 Im(t)

R(t) = R0(t)+∑p
m=1 Rm(t)

(16)

With S0(t) = S0, I0(t) = I0, and R0(t) = R0.

4 Equilibrium Points and Their Asymptotic Stability

In this section, we discuss the existence and the local stability of equilibria for
system (1). For this, we define the basic reproduction numberR0 of our model by

R0 = θβ

γ + μ
Thus the total population size N = S + I + R may vary in time.
To evaluate the equilibrium points, let

CDαS(t) = DαCI (t) = DαCR(t) = 0

So, we obtain two equilibrium points which are

Eeq = (Seq, Ieq, Req) =
(
�

μ
, 0, 0

)
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and

E∗ = (S∗, I∗, R∗)

which,

S∗ = �(γ + μ))
θβμ

I∗ = �(θβ − (γ + μ))
θβ(γ + μ)

R∗ = γ�(θβ − (γ + μ))
θβμ(γ + μ)

For Eeq = (Seq, Ieq, Req) = (�μ , 0, 0), we find that

J =
⎛

⎜
⎝

−μ 0 0
0 θβ�

μ
− (μ+ γ ) 0

0 γ −μ

⎞

⎟
⎠

and its eigenvalues are

λ1 = λ2 = −μ < 0

λ3 = −θβ�
μ

− (μ+ γ ) < 0

if

θβ�

μ
< (μ+ γ )

Hence the equilibrium point Eeq = (Seq, Ieq, Req) = (�
μ
, 0, 0) is local

asymptotically stable if

rβ�

μ
< (μ+ γ ) (17)

We proceed in a similar way to E∗ = (S∗, I∗, R∗).

J =
⎛

⎝
−μ− θβI∗

N
− θβS∗
N

0
θβI∗
N

θβS∗
N

− (γ + μ) 0
0 γ −μ

⎞

⎠
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A sufficient condition for the local asymptotic stability of the equilibrium point

E∗ = (S∗, I∗, R∗)

|arg(λ1)| > απ
2
,

|arg(λ2)| > απ
2
,

|arg(λ3)| > απ
2

The characteristic polynomial of the equilibrium pointE∗ = (S∗, I∗, R∗) is given
by the expression:

λ3 − tr(J )λ2 + Z(J )λ− det (J )

with

• tr(J) the trace of the matrix J;
• Z(J ) = − 1

2 (tr(J
2)− (tr(J ))2)

• det(J) the determinant of the matrix J

So we have:

• IfR0 < 1, the disease-free equilibrium point is globally asymptotically stable
and there is no endemic equilibrium point (the disease dies out).

• R0 ≥ 1, the disease-free equilibrium point is unstable and a globally asymptoti-
cally stable endemic equilibrium point exists.

5 Numerical Simulation

In epidemiology, a disease is always characterized by its force of infection (weak,
medium, or strong). Knowledge of this force of infection makes it possible to
propose a solution to control the disease during an epidemic. In our simulation,
we have the infection force β, which we are going to assign as low, medium, and
high value. Of course, from the point of view of epidemiological reality, whatever
the value of the force of infection β is, certain diseases can become epidemic in each
country. We consider the following Caputo-fractional differential system based on
the parameters in the following Table 1:
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Table 1 Biological
parameters in SIR fractional
differential model

Parameter Value/days Definition

� 0.9 Recruitment rate of the population

β 0.01 Low strength of infection

0.5 Medium strength of infection

0.99 High strength of infection

μ 0.05 Natural mortality rate

θ 0.4 Recovery rate of infection

γ 0.001 Infection-related mortality rate

⎧
⎪⎨

⎪⎩

CDα1S(t) = �− μS(t)− θβS(t)I (t)
N(t)

CDα2I (t) = θβS(t)I (t)
N(t)

− γ I (t)− μI (t)
CDα3R(t) = γ I (t)− μR(t)

(18)

where N(t) is the total population size which is N = S + I + R.
Numerical simulations are conducted on fractional orders based on the predictor–

corrector method of Adams-Bashforth-Moulton described in [5]. We implement
this method on MATLAB by using the predictor–corrector PI rules code (FDE
PI12 PC.m) by Garrappa [10] which solves the multi-order system of fractional
differential equations.

The reason we choose these parameters is that based on the SIR model, we need
to consider the rate of population recruitment, natural mortality rate, recovery rate
of infection, infection-related mortality rate, and strength rate of infection to be
between 0 and 1. We aim to investigate the behavior of the solutions of the system
(18 ) based on different rates of strength of infection and different cases of α which
is the fractional order. The time histories and phase diagrams are used to identify the
dynamics of the system. Following are the results of our investigations of various
cases studied:

Case 1: Commensurate order, α1 = α2 = α3 = 0.99, 0.5, 0.8:
This system was calculated numerically based on α1 = α2 = α3 ∈ (0, 1) and

three different values of β (0.01, 0.5, 0.99). It was found that when α1 = α2 = α3 =
0.99 which is the classic case, system (18) behaves periodically. When β = 0.01, the
number of susceptible people tends to increase quickly until S(t) stabilizes to a fixed
point. Also, the number of infected people I (t) and the number of recovered people
R(t) move smoothly as the time increases and the disease persists. In addition, in
the case of β = 0.5 and 0.99, the number of susceptible people varies quickly but
it is smoother than the classic case. The behavior of I (t) shows that it increases at
time t, and after certain point it runs smoothly to a fixed point. Also, the behavior of
R(t) is similar to the classic case.

The phase plots and time series of S(t), I (t), R(t) based on three different values
of β and α = 0.99, 0.8, 0.5 are depicted in Figs. 1, 2, and 3, respectively.

Case 2: α1 = α2 = α3
In this case, we calculate the system numerically based on the orders α1 = α2 =

0.75, α3 = 0.05. It was found that in this case, system (18) behaves periodically.
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Fig. 1 Phase portraits and time histories of S(t), I(t), and R(t) for system (18) with fractional
orders α1 = α2 = α3 = 0.99, (1a − 1b)β = 0.01, (2a − 2b)β = 0.5, (3a − 3b)β = 0.99

When β = 0.01, the number of susceptible people tends to increase quickly until
S(t) stabilizes to a fixed point at time t. Also, the number of infected people I (t) and
the number of recovered people R(t) move smoothly in a fixed behavior as the time
increases. In addition, in the case of β = 0.5 and 0.99, the number of susceptible
people varies quickly, but it is smoother than the classic case. The behavior of I (t)
shows that it increases at time t, and after certain point it runs smoothly to a fixed
point. Also, the behavior of R(t) is similar to the classic case.
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Fig. 2 Phase portraits and time histories of S(t), I(t), and R(t) for system (18) with fractional
orders α1 = α2 = α3 = 0.8, (4a − 4b)β = 0.01, (5a − 5b)β = 0.5, (6a − 6b)β = 0.99

The phase plots and time series of S(t), I (t), R(t) based on three different values
of β and α1 = α2 = 0.75, α3 = 0.05 are depicted in Fig. 4.

Case 3: α1 = α2 = α3s
In this case, we calculate the system numerically based on the orders α1 =

0.5, α2 = 0.01, α3 = 0.99. It was found that in this case, system (18) behaves
periodically in all the cases for S(t). When β = 0.01, 0.5, 099, we observe the
number of susceptible people tends to increase quickly until S(t) stabilizes to a
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Fig. 3 Phase portraits and time histories of S(t), I(t), and R(t) for system (18) with fractional
orders α1 = α2 = α3 = 0.5, (7a − 7b)β = 0.01, (8a − 8b)β = 0.5, (9a − 9b)β = 0.99

fixed point at time t similarly to the case (2). Moreover, the behavior of S(t), I (t),
andR(t) are all the same for this case such that (I t) andR(t) run smoothly to a fixed
point as time t increases and the disease persists. So, we conclude that by changing
the fractional order α in the system, the stability of the model will not be affected.

The phase plots and time series of S(t), I (t), R(t) based on three different values
of β and α1 = 0.5, α2 = 0.01, α3 = 0.99 are shown in Fig. 5.
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Fig. 4 Phase portraits and time histories of S(t), I(t), and R(t) for system (18) with fractional orders
α1 = α2 = 0.75, α3 = 0.05, (10a − 10b)β = 0.01, (11a − 11b)β = 0.5, (12a − 12b)β = 0.99

6 Conclusion

In this paper, we proposed an approximate analytical solution to Caputo-fractional
differential system of SIR epidemic model using the homotopy analysis method. We
also investigated the existence of equilibria and their local stability in SIR fractional
system. We have found that when R0 = θβ

γ+μ ≤ 1, it signifies the extinction of the
disease. However, whenR0 > 1, the disease-free equilibrium becomes unstable and
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Fig. 5 Phase portraits and time histories of S(t), I(t), and R(t) for system (18) with fractional orders
α1 = 0.5, α2 = 0.01, α3 = 0.99, (13a−13b)β = 0.01, (14a−14b)β = 0.5, (15a−15b)β = 0.99

the SIR model has an endemic equilibrium which is globally asymptotically stable.
In this case, the disease persists in the population. In addition, we provided three
different cases to illustrate the numerical simulation of the SIR model in the sense of
Caputo. Our results satisfy similar and non-similar fractional orders. For the case of
similar orders, i.e. for the same values of α (α = 0.99, 0.8, 0.05), the system showed
to be asymptotically stable for S(t) and I (t) until it reached to a fixed point. For the
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cases of non-similar orders, i.e. for the values of α to be different as we showed in
cases II and III, the system behaved roughly the same. We conclude that varying the
fractional order α or the strength of infection β does not affect the stability of the
SIR model.
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Structural Stability of Nonlinear Elliptic
p(u)-Laplacian Problem with Robin
Type Boundary Condition
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1 Introduction

In this chapter, we study a nonlinear elliptic problem of the form

{
b(u)− diva(x, u,∇u) = f in �

a(x, u,∇u).η = −|u|r(x,u)−2u on ∂�,
(1)

where � is a bounded open domain in RN with smooth boundary ∂�, η is the outer
unit normal vector on ∂� and f ∈ L1(�).

The operator diva(x, u,∇u) is called p(u)-Laplacian. It is more complicated
than p(x)-Laplacian in terms of nonlinearity. A prototype of this operator is
div

(|∇u|p(u)−2.∇u). The variable exponent p depends both on the space variable x
and on the unknown solution u.

The study of p(u)-Laplacian problem was first developed by Andreianov et al.
(see [2]). The authors established the existence and uniqueness result to the weak
solution and the structural stability result in the case of homogeneous Dirichlet
boundary condition.

The interest of the study of this kind of problem is due to the fact that they
can model various phenomena that arise in the study of elastic mechanic (see [4]),
electrorheological fluids (see [16]) or image restoration (see [8]).
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In [2], the authors used a structural stability theory to establish a new existence
result to the problem

{
b(u)− diva(x, u,∇u) = f in �

u = 0 on ∂�,
(2)

in the Banach spaceW 1,p(.,u(.))
0 (�), under the following assumptions:

(A1) f ∈ L1(�).
(A2) b is a nondecreasing, surjective and continuous function defined on R such

that b(0) = 0.

Problem (2) is adapted into a generalized Leray–Lions framework under the
assumption that a : �× (R × R

N)→ R
N is a Carathéodory function with

(A3) a(x, z, 0) = 0 for all z ∈ R, and a.e. x ∈ �,
(A4)

(
a(x, z, ξ)− a(x, z, η)).(ξ − η) > 0 for all ξ, η ∈ R

N, ξ = η,
as well as the growth and the coercivity assumptions with variable exponent

(A5)
∣
∣a(x, z, ξ)

∣
∣p

′(x,z) ≤ C1
(|ξ |p(x,z) + M(x)

)

and

(A6) a(x, z, ξ).ξ ≥ 1

C2
|ξ |p(x,z).

Here, C1 and C2 are positive constants andM is a positive function such thatM ∈
L1(�).
p : � × R → [p−, p+] is a Carathéodory function, 1 < p− ≤ p+ < ∞ and

p′(x, z) = p(x, z)

p(x, z)− 1
is the conjugate exponent of p(x, z), with

p− := ess inf
(x,z)∈�×R

p(x, z) and p+ := ess sup
(x,z)∈�×R

p(x, z).

In addition, we assume that

p− > N and p is log-Hölder continuous in (x, z) uniformly on �× [−M,M],
for allM > 0. (3)

The same authors in [2] established the structural stability results of weak solution
un of the following nonlinear homogeneous Dirichlet boundary value problem:

{
b(un)− divan(x, un,∇un) = fn in �

un = 0 on ∂�,
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where an(x, z, ξ) verifies (A3), (A4), (A5) and (A6) with variable exponent
pn(x, z) such that

1 < p− ≤ pn(., .) ≤ p+ < +∞ and fn is a sequence of data weakly convergent
to f in L1(�). In this work, instead of the Dirichlet boundary condition u = 0, we
use the Robin boundary condition a(x, u,∇u).η = −|u|r(x,u)−2u.

Here, r : ∂� × R → [r−, r+] is a Carathéodory function, with 2 < r− ≤ r ≤
r+ < ∞. Therefore, the function t �→ |t |r(x,t)−2t is continuous a.e. x on ∂�.
Furthermore, we make the following hypothesis:

(H) t �→ |t |r(.,t)−2t is increasing.

Using (A1) − (A6), we prove the existence of weak solutions when the data
are bounded, thanks to the technic of pseudo-monotone operators. In this chapter,
we consider the Robin boundary condition that brings some difficulties to treat the
term at the boundary. In order to get our main result, we define a new space that
will help us to take into account the boundary condition. This space in the context
of variable exponent was for the first time introduced by Ouaro et al. (see [14]).
We also establish the existence result of weak solutions for (1) and continuous
dependence for weak solutions, with L1− data, thanks to a priori estimates, the
Poincaré–Wirtinger inequality with constant exponent p− and the Young measure
associated with a weakly convergence method of sequence of gradients of solution
(see [9, 11]).

The remaining part of the chapter is the following: in Sect. 2, we introduce some
preliminary results. In Sect. 3, we prove the existence and uniqueness result of the
weak solution, when the data are in L1(�). In Sect. 4, we study the continuous
dependence for weak solutions.

2 Preliminary

• We will use the so-called truncation function

Tk(s) :=
{
s if |s| ≤ k
ksign0(s) if |s| > k , where sign0(s) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 if s > 0

0 if s = 0

−1 if s < 0.

The truncation function possesses the following properties:

Tk(−s) = −Tk(s), |Tk(s)| = min{|s|, k},

lim
k→+∞ Tk(s) = s and lim

k→0

1

k
Tk(s) = sign0(s).
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• We also need to truncate vector-valued function with the help of the mapping

hm : RN −→ R
N, hm(λ) =

⎧
⎨

⎩

λ, if |λ| ≤ m
m
λ

|λ| if |λ| > m, where m > 0.

As the exponent appearing in (1) depends on x and u(x), taking into account
the boundary condition, we must work in Lebesgue and Sobolev spaces with
variable exponent which are Ls(.)(∂�) and W 1,π(.)(�), where s(.) = r(., u(.))
and π(.) = p(., u(.)). For the study of problem (1), we need the Sobolev spaces
W 1,π(.)(�).

Definition 2.1 Let π : � −→ [1,+∞) be a measurable function.

• Lπ(.)(�) is the space of all measurable functions f : � −→ R such that the
modular

ρπ(.)(f ) :=
∫

�

|f |π(x)dx < +∞.

If p+ is finite, this space is equipped with the Luxembourg norm

||f ||Lπ(.)(�) := inf

{

λ > 0; ρπ(.)

(
f

λ

)

≤ 1

}

.

In the sequel, we will use the same notation Lπ(.)(�) for the space (Lπ(.)(�))N

of vector-valued functions.
• W 1,π(.)(�) is the space of all functions f ∈ Lπ(.)(�) such that the gradient of f

(taken in the sense of distributions) belongs to Lπ(.)(�). The space W 1,π(.)(�)

is equipped with the norm

||u||W 1,π(.)(�) := ||u||Lπ(.)(�) + ||∇u||Lπ(.)(�).

When 1 < p− ≤ π(.) ≤ p+ < +∞, all the above spaces are separable and
reflexive Banach spaces.

We denote πn(x) := p(x, un(x)) for all x ∈ � and sn(x) := r(x, un(x)) for all
x ∈ ∂�.
Proposition 2.1 (See [1], Proposition 2.3) For all measurable functions π : �→
[p−, p+], the following properties hold:

(i) Lπ(.)(�) andW 1,π(.)(�) are separable and reflexive Banach spaces.
(ii) Lπ

′(.)(�) can be identified with the dual space of Lπ(.)(�), and the following
Hölder type inequality holds:

∀f ∈ Lπ(.)(�), g ∈ Lπ ′(.)(�),

∣
∣
∣
∣

∫

�

fgdx

∣
∣
∣
∣ ≤ 2||f ||Lπ(.)(�)||g||Lπ ′(.)(�).
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(iii) One has ρπ(.)(f ) = 1 if and only if ||f ||Lπ(.)(�) = 1; furthermore,
if ρπ(.)(f ) ≤ 1, then ||f ||p+

Lπ(.)(�)
≤ ρπ(.)(f ) ≤ ||f ||p−

Lπ(.)(�)
;

if ρπ(.)(f ) ≥ 1, then ||f ||p−
Lπ(.)(�)

≤ ρπ(.)(f ) ≤ ||f ||p+
Lπ(.)(�)

.

In particular, if (fn)n∈N is a sequence in Lπ(.)(�), then ||fn||Lπ(.)(�) tends to
zero (respectively, to infinity) if and only if ρπ(.)(fn) tends to zero (respectively,
to infinity), as n→ +∞.

For a measurable function f ∈ W 1,π(.)(�), we introduce the following notation:

ρ1,π(.)(f ) =
∫

�

|f |π(.)dx +
∫

�

|∇f |π(.)dx.

Replacing p(x) by π(x) in [7], Proposition 2.2, we get the following result that is
fundamental in this chapter (see [18, 19]).

Proposition 2.2 If f ∈ W 1,π(.)(�), the following properties hold:

(i) ||f ||W 1,π(.)(�) > 1 ⇒ ||f ||p−
W 1,π(.)(�)

< ρ1,π(.)(f ) < ||f ||p+
W 1,π(.)(�)

;

(ii) ||f ||W 1,π(.)(�) < 1 ⇒ ||f ||p+
W 1,π(.)(�)

< ρ1,π(.)(f ) < ||f ||p−
W 1,π(.)(�)

;
(iii) ||f ||W 1,π(.)(�) < 1(respectively = 1;> 1) ⇔ ρ1,π(.)(f ) < 1(respectively =

1;> 1).

The following lemma shows that the spaceW 1,π(.)(�) is stable by truncation.

Lemma 2.1 If u ∈ W 1,π(.)(�), then Tk(u) ∈ W 1,π(.)(�).

Now, we give some embedding results.

Proposition 2.3 (See [1], Proposition 2.4) Assume that π : �→ [p−, p+] has a
representative that can be extended to a continuous function up to the boundary ∂�
and satisfying the log-Hölder continuity assumption:

∃L > 0, ∀x, y ∈ �, x = y, −( log |x − y|)|π(x)− π(y)| ≤ L. (4)

(i) Then, C∞(�) is dense inW 1,π(.)(�).
(ii) W 1,π(.)(�) is embedded into Lπ

∗(.)(�), where π∗(.) is the Sobolev embedding
exponent defined as in (5) below. If q is a measurable variable exponent
such that ess inf

x∈�(π
∗(.)− q(.)) > 0, then the embedding of W 1,π(.)(�) into

Lq(.)(�) is compact.

For a given π(.), a function taking values in [p−, p+], π∗(.) denotes the optimal
Sobolev embedding defined for any x ∈ � by
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π∗(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Nπ(x)

N − π(x) if π(x) < N

any real value if π(x) = N
+∞ if π(x) > N.

(5)

Put

π∂(x) := (
π(x)

)∂ :=
⎧
⎨

⎩

(N − 1)π(x)

N − π(x) if π(x) < N

+∞ if π(x) ≥ N.
(6)

Proposition 2.4 (See [14], Proposition 2.3) Let π(.) ∈ C(�) and p−>1. If
q(.) ∈ C(∂�) satisfies the condition:

1 ≤ q(x) < π∂(x), ∀x ∈ ∂�,

then, there is a compact embedding

W 1,π(.)(�) ↪→ Lq(.)(∂�).

In particular, there is a compact embedding

W 1,π(.)(�) ↪→ Lπ(.)(∂�).

Young Measures and Nonlinear Weak-* Convergence
Throughout the chapter, we denote by δc the Dirac measure on R

d (d ∈ N),
concentrated at the point c ∈ R

d .
In the following theorem, we gather the results of Ball [6], Pedregal [15] and

Hungerbühler [12], which is needed for our purposes (we limit the statement to the
case of a bounded domain�). Let us underline that the results of (ii), (iii), expressed
in terms of the convergence in measure, are very convenient for the applications we
have in mind.

Theorem 2.1

(i) Let � ⊂ R
N,N ∈ N, and a sequence (vn)n∈N of Rd -valued functions, d ∈ N,

such that (vn)n∈N is equi-integrable on �. Then, there exist a subsequence
(nk)k∈N and a parametrized family (νx)x∈� of probability measures on R

d

(d ∈ N), weakly measurable in x with respect to the Lebesgue measure on �,
such that for all Carathéodory function F : �× R

d → R
t , t ∈ N, we have
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lim
k→+∞

∫

�

F(x, vnk )dx =
∫

�

∫

Rd

F (x, λ)dνx(λ)dx, (7)

whenever the sequence (F (., vn(.)))n∈N is equi-integrable on �.
In particular,

v(x) :=
∫

Rd

λdνx(λ) (8)

is the weak limit of the sequence (vnk )k∈N in L1(�).
The family (νx)x∈� is called the Young measure generated by the subse-

quence (vnk )k∈N.
(ii) If � is of finite measure, and (νx)x∈� is the Young measure generated by a

sequence (vn)n∈N, then νx = δv(x) for a.e. x ∈ �⇔ vn converges in measure
on � to v as n→ ∞.

(iii) If � is of finite measure, (un)n∈N generates a Dirac Young measure (δu(x))x∈�
on R

d1 , and (vn)n∈N generates a Young measure (νx)x∈� on R
d2 , then the

sequence (un, vn)n∈N generates the Young measure (δu(x)⊗νx)x∈� on R
d1+d2 .

Whenever a sequence (vn)n∈N generates a Young measure (νx)x∈�, following
the terminology of [10], we will say that (vn)n∈N nonlinear weak-* converges,
and (νx)x∈� is the nonlinear weak-* limit of the sequence (vn)n∈N. In the case
(vn)n∈N possesses a nonlinear weak-* convergent subsequence, we will say that it is
nonlinear weak-* compact ([1], Theorem 2.10 (i)). It means that any equi-integrable
sequence of measurable functions is nonlinear weak-* compact on �.

For the proof of the following lemma, See [1], Theorem 3.11 and [2], Step 2-
proof of Theorem 2.6.

Lemma 2.2 Assume that (un)n∈N converges a.e. on � to some function u; then,

|p(x, un(x))− p(x, u(x))| converges in measure to 0 on �,

and for all bounded subset K of R
N,

sup
ξ∈K

|a(x, un(x), ξ)− a(x, u(x), ξ)| converges in measure to 0 on �.

(9)

We recall some notations.
For any u ∈ W 1,π(.)(�), we denote by τ(u) the trace of u on ∂� in the usual

sense. We will identify at the boundary u and τ(u).
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3 Weak Solution

Let fn = Tn(f ). Then, (fn)n∈N∗ is bounded. Moreover, (fn)n∈N∗ strongly
converges to f in L1(�) such that ||fn||L1(�) ≤ ||f ||L1(�). We consider the
following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Tn(b(un))− diva(x, un,∇un)− 1

n
�p+un + 1

n
|un|p+−2un = fn in �

(a(x, un,∇un)+ 1

n
|∇un|p+−2∇un

)
.η = Tn

(− |un|sn(.)−2un
)

on ∂�,

(10)
where

−�p+un := −
N∑

i=1

∂

∂xi

(∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣

p+−2
∂un

∂xi

)

.

In this part, we prove that the problem (10) admits at least one weak solution un.
We define the following reflexive space:

E = W 1,p+(�)× Lp+(∂�).

Let

X0 = {(u, v) ∈ E : v = τ(u)}.

In the sequel, we will identify an element (u, v) ∈ X0 with its representative u ∈
W 1,p+(�).

Theorem 3.1 There exists at least one weak solution un for the problem (10) in the
sense that un ∈ X0 and for all v ∈ X0,

∫

�

Tn(b(un))vdx +
∫

�

a(x, un,∇un)∇vdx +
∫

∂�

Tn(|un|sn(.)−2un)vdσ

+ 1

n

∫

�

[|un|p+−2unv + |∇un|p+−2∇un∇v
]
dx

=
∫

�

fnvdx. (11)

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.1 (see [13], Remark 2.12) Let V be a separable reflexive Banach space
and A, M: V → V ′ such that
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(i) A is a pseudo-monotone operator;
(ii) M is a bounded hemicontinuous and monotone operator;

then, A+M is pseudo-monotone.

Lemma 3.2 (See [17], Corollary 2.2) If an operator A is of type (M), bounded
and coercive on a separable Banach space to its dual, then A is surjective.

Let

< Anu, v >=< Au, v > + < Gnu, v >,

where

< Au, v >=
∫

�

a(x, u,∇u).∇vdx, < Gnu, v >= 1

n

∫

�

|∇u|p+−2∇u∇vdx

and

< Bnu, v >=
∫

�

Tn(b(u))vdx +
∫

∂�

Tn(|u|s(.)−2u)vdσ + 1

n

∫

�

|u|p+−2uvdx,

with u, v ∈ X0. Set Cn = An + Bn. The proof of Theorem 3.1 is done in three
steps.

Step 1: Cn is Bounded
By using the Hölder type inequality and (A5)with constant exponent p+, we deduce
that A is bounded. Moreover, using the same argument as in [5], Proof of Lemma
4.2, we prove that Gn + Bn is bounded.Therefore, Cn is bounded.
Step 2: Cn is of Type (M)
Let (uk)k∈N be a sequence in X0 such that

⎧
⎪⎪⎨

⎪⎪⎩

uk ⇀ u in X0

Cnuk ⇀ χ in X′
0

lim sup
k→∞

< Cnuk, uk >=< χ, u > .

We will prove that χ = Cnu.
As Tn(b(uk))uk ≥ 0, Tn

(|uk|sk(.)−2uk
)
uk = Tn

(|uk|r(.,uk(.))−2uk
)
uk ≥ 0 and

|uk|p+ ≥ 0, by Fatou’s lemma, we deduce that

lim inf
k→∞

(∫

�

Tn(b(uk))ukdx +
∫

∂�

Tn
(|uk|sk(.)−2uk

)
ukdσ + 1

n

∫

�

|uk|p+dx

)

≥
∫

�

Tn(b(u))udx +
∫

∂�

Tn
(|u|s(.)−2u

)
udσ + 1

n

∫

�

|u|p+dx.
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On the other hand, thanks to Lebesgue’s dominated convergence theorem and the
fact that |uk|p+−2uk ⇀ |u|p+−2u in Lp

′+(�), we have

lim
k→∞

(∫

�

Tn(b(uk))vdx +
∫

∂�

Tn
(|uk|sk(.)−2uk

)
vdσ + 1

n

∫

�

|uk|p+−2ukvdx

)

=
∫

�

Tn(b(u))vdx +
∫

∂�

Tn
(|u|s(.)−2u

)
vdσ + 1

n

∫

�

|u|p+−2uvdx,

for any v ∈ X0. Since t �→ |t |r(x,t)−2t is continuous a.e. x on ∂� and uk → u a.e.
on ∂�, Tn(|uk|sk(.)−2uk)→ Tn(|u|s(.)−2u) a.e. on ∂�. Therefore, for k goes to ∞,

Bnuk ⇀ Tn(b(u))+ Tn
(|u|s(.)−2u

)+ 1

n
|u|p+−2u in X′

0.

Thus, it follows that

Anuk ⇀ χ −
(

Tn(b(u))+ Tn
(|u|s(.)−2u

)+ 1

n
|u|p+−2u

)

in X′
0, as k→ ∞.

It remains to prove thatAn is of type (M). For this, we first show thatGn is bounded
monotone and hemicontinuous.

From Step 1, Gn is bounded. Let us prove that Gn is monotone. For all u, v ∈
W 1,p+(�), we have

< Gnu−Gnv, u− v >= 1

n

∫

�

(|∇u|p+−2∇u− |∇v|p+−2∇v)(∇u− ∇v)dx ≥ 0,

since ξ �→ |ξ |p+−2ξ is increasing for p+ > 2.
Moreover, Gn is hemicontinuous. Indeed, let f : t ∈ R �→ f (t) =< Gn(u +

tv), v > and t, t0 ∈ R such that t → t0. Let us set w = u + tv ∈ W 1,p+(�) and
w0 = u+ t0v ∈ W 1,p+(�). Then,

‖w − w0‖W 1,p+ (�) = ‖(t − t0)v‖W 1,p+ (�) = |t − t0|‖v‖W 1,p+ (�) → 0.

So, w→ w0 in W 1,p+(�), as t → t0, which implies that ∇w→ ∇w0 in Lp+(�),
and we infer that

|∇w|p+−2∇w→ |∇w0|p+−2∇w0 in Lp
′+(�) as t → t0.

Therefore,

|f (t)− f (t0)| = | < Gn(u+ tv), v > − < Gn(u+ t0v), v > |
≤ 1

n

∫

�

∣
∣|∇w|p+−2∇w − |∇w0|p+−2∇w0

∣
∣|∇v|dx

≤ ‖|∇w|p+−2∇w − |∇w0|p+−2∇w0‖
L
p′+ (�)‖∇v‖Lp+ (�) → 0.



Structural Stability of Nonlinear Elliptic p(u)-Laplacian Problem with Robin. . . 79

Then, we deduce that f is continuous, namely the operator Gn is hemicontinuous.
Now, we are going to prove that A is pseudo-monotone.
Let us set

a1(u, v,w) =
∫

�

a(x, u,∇v)∇wdx.

Then, w �→ a1(u, v,w) is continuous onW 1,p+(�), thus

a1(u, v,w) =
〈
A(u, v),w

〉
, A(u, v) ∈ (W 1,p+(�))′,

and verify

A(u, u) = Au.

Let us Prove That A Is of Type of Calculus of Variation
• As A(u, .) is bounded, we prove that v �→ A(u, v) is hemicontinuous from
W 1,p+(�)→ (W 1,p+(�))′.

Since a(x, u,∇(v1 + λv2) → a(x, u,∇v1) in Lp′+(�) as λ → 0 and
u, v1, v2 ∈ W 1,p+(�), then a1(u, v1 + λv2, w)→ a1(u, v1, w) as λ→ 0.

In the same manner, we prove that u �→ A(u, v) is hemicontinuous from
W 1,p+(�)→ (W 1,p+(�))′.

Moreover, for all u, v ∈ W 1,p+(�), we have

< A(u, u)− A(u, v), u− v >
=< A(u, u), u− v > − < A(u, v), u− v >
= a1(u, u, u− v)− a1(u, v, u− v)

=
∫

�

a(x, u,∇u)∇(u− v)dx −
∫

�

a(x, u,∇v)∇(u− v)dx

=
∫

�

(
a(x, u,∇u)− a(x, u,∇v))∇(u− v)dx ≥ 0.

• Let us suppose that uk ⇀ u in W 1,p+(�) and < A(uk, uk) − A(uk, u), uk −
u >→ 0. We prove that

∀v ∈ W 1,p+(�), A(uk, v) ⇀ A(u, v) in (W 1,p+(�))′.

Let us set
∫

�

Fkdx = 〈
A(uk, uk)− A(uk, u), uk − u〉.



80 S. Ouaro and N. Sawadogo

As uk ⇀ u, we have

a(x, uk,∇v) ⇀ a(x, u,∇v) in Lp
′+(�)

(see [13], Lemma 2.2 with m = 1). Therefore, A(uk, v) ⇀ A(u, v) in
(W 1,p+(�))′.

• Now, we suppose that uk ⇀ u inW 1,p+(�) and A(uk, v) ⇀ ! in (W 1,p+(�))′.
We prove that

〈
A(uk, v), uk

〉 → 〈
!,u

〉
.

Then, by using [13], Lemma 2.1, we obtain that a(x, uk,∇v)→ a(x, u,∇v) in
Lp

′+(�) and thus a1(uk, v, uk)→ a1(u, v, u).
Therefore,

< A(uk, v), uk >= a1(uk, v, uk)→< A(u, v), u > and ! = A(u, v).
Hence, A is of Calculus of variation type. Finally, by using [13], Proposition 2.6,
we deduce that A is pseudo-monotone.

Therefore, it follows from Lemma 3.1 that An = A + Gn is pseudo-monotone.
So, the operator An is of type (M) (see [13], Proposition 2.5), and we immediately
have

Au+Gnu = χ − (
Tn(b(u))+ Tn

(|u|s(.)−2u
)+ 1

n
|u|p+−2u

)
.

Therefore, we obtain Cnu = χ .
For more understanding regarding operator of “type (M),” “calculus of variation

type” and “pseudo-monotone”, see [13, 17].

Step 3: Cn Is Coercive
Using (A6) with constant exponent, we get

< Cnu, u > =
∫

�

a(x, u,∇u).∇udx +
∫

�

Tn(b(u))udx

+
∫

∂�

Tn
(|u|s(.)−2u

)
udx + 1

n

∫

�

[|u|p+ + |∇u|p+]dx

≥ 1

C2

∫

�

|∇u|p+dx + 1

n

∫

�

|u|p+dx

≥ C3||u||p+
W 1,p+ (�), where C3 = min

{
1

C2
,
1

n

}

.

We deduce that

< Cnu, u >

||u||W 1,p+ (�)
→ ∞ as ||u||W 1,p+ (�) → ∞.
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Hence, Cn is coercive. Then, according to Lemma 3.2, Cn is surjective.

Let Fn = Tn(f ) ∈ X′
0; then, there exists at least one solution un ∈ X0 of the

problem

< Cnun, v >=< Fn, v >, for all v ∈ X0.

Therefore, un is a weak solution of the problem (10). This ends the proof of
Theorem 3.1.

Remark 3.1 If un is a weak solution of the problem (10), then un ∈ W 1,πn(.)(�),
since W 1,p+(�) ↪→ W 1,πn(.)(�) continuously. Moreover, a(x, un,∇un) satisfies
(A3)− (A6) with variable exponent πn(x) := p(x, un(x)).
Now, we can introduce the notion of weak solution.

Definition 3.1 A measurable function u ∈ W 1,π(.)(�) for π(.) = p(., u(.)) is
called a weak solution of the problem (1) if b(u) ∈ L1(�), |u|s(.)−2u ∈ L1(∂�)
and for all ϕ ∈ W 1,π(.)(�),

∫

�

b(u)ϕdx +
∫

�

a(x, u,∇u)∇ϕdx +
∫

∂�

|u|s(.)−2uϕdσ =
∫

�

f ϕdx. (12)

These integrals are well defined. For the first integral and the right-hand side of
the above equality, we use the fact that ϕ ∈ L∞(�), since ϕ ∈ W 1,π(.)(�) ⊂
W 1,p−(�) ↪→ C(�), for p− > N . For the second integral, we use the growth
assumption (A5) to prove that a(x, u,∇u) belongs to Lπ ′(.)(�). Moreover, as ϕ ∈
C(�), then ϕ ∈ L∞(∂�), so, the third integral is well defined.

One of the main theorems of this chapter is the following.

Theorem 3.2 Assume that (A1)–(A6) and (3) hold. Then, there exists at least one
weak solution to the problem (1).

To prove the above theorem, we need the following two lemmas.

Lemma 3.3 Assume that (A2)–(A6) hold with variable exponent πn(.). If un is a
weak solution of (10), then, we have

∫

�

∣
∣Tn(b(un))

∣
∣dx ≤ ||f ||L1(�), (13)

∫

∂�

∣
∣Tn(|un|sn(.)−2un)

∣
∣dσ ≤ ||f ||L1(�) (14)

and

‖un‖W 1,p− (�) ≤ const
(
p−,�, f

)
. (15)
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Proof of Lemma 3.3 By taking v = Tk(un), for all k > 0, in the weak formulation
(11), we obtain

∫

�

Tn(b(un))Tk(un)dx +
∫

�

a(x, un,∇un).∇Tk(un)dx

+
∫

∂�

Tn
(∣
∣un

∣
∣sn(.)−2

un
)
Tk(un)dσ

+ 1

n

∫

�

[|un|p+−2unTk(un)+ |∇un|p+−2∇un∇Tk(un)
]
dx

=
∫

�

fnTk(un)dx. (16)

Since all the terms of the left-hand side of (16) are nonnegative, we deduce that

∫

�

Tn(b(un))Tk(un)dx ≤
∫

�

fnTk(un)dx

≤ k||f ||L1(�) (17)

and
∫

∂�

Tn
(∣
∣un

∣
∣sn(.)−2

un
)
Tk(un)dσ ≤

∫

�

fnTk(un)dx

≤ k||f ||L1(�). (18)

Dividing (17) and (18) by k and letting k goes to 0, we have

∫

�

Tn(b(un))sign0(un)dx ≤ ||f ||L1(�)

and
∫

∂�

Tn
(∣
∣un

∣
∣sn(.)−2

un
)
sign0(un)dσ ≤ ||f ||L1(�).

Therefore,

∫

�

|Tn(b(un))|dx ≤ ||f ||L1(�) (19)

and
∫

∂�

∣
∣Tn(|un|sn(.)−2un)

∣
∣dσ ≤ ||f ||L1(�). (20)
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From the relation (19), the sequence (Tn(b(un)))n∈N∗ is uniformly bounded in
L1(�). Thus, we deduce that (b(un))n∈N∗ is uniformly bounded in L1(�). As b
is continuous, nondecreasing and surjective; then, (un)n∈N∗ is uniformly bounded
in L1(�). So, there exists a positive constant C4 such that

∫

�

|un|dx ≤ C4.

Hence,

ũn := 1

meas(�)

∫

�

undx ≤ const (�).

Moreover, from the Poincaré–Wirtinger inequality:

∫

�

|un − ũn|p−dx ≤ const (p−,�)
∫

�

|∇un|p−dx,

where ũn is given by the above inequality, we deduce that

∫

�

|un|p−dx ≤ const (p−,�)
∫

�

|∇un|p−dx +
∣
∣
∣
∣

∫

�

undx

∣
∣
∣
∣

p−
.

Thus,

∫

�

|un|p−dx ≤ C5
∫

�

|∇un|p−dx + C6, (21)

where C5 = cons(p−,�) and C6 = const (p−, C4,�) are the positive constants.
Furthermore, as W 1,p−(�) ↪→ L∞(�), there exists a positive constant C7 such

that

‖un‖p−
L∞(�) ≤ C7‖un‖p−

W 1,p− (�). (22)

Using (A6) with variable exponent p(x, un(x)) on a(x, un,∇un) and Theorem 3.1,
the sequence un satisfies

∫

�

Tn(b(un))undx +
∫

∂�

Tn(|un|sn(.)−2un)undσ

+ 1

C2

∫

�

|∇un|πn(.)dx + 1

n

(∫

�

|∇un|p+dx +
∫

�

|un|p+dx

)

≤
∫

�

fnundx. (23)
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Applying Young’s inequality on the right-hand side of (23) and using (22), we get

∫

�

fnundx ≤
∫

�

|f ||un|dx
≤ ‖f ‖L1(�)‖un‖L∞(�)

=
(
2C2C7(C5 + 1)

p−

) 1
p− ‖f ‖L1(�).

(
p−

2C2C7(C5 + 1)

) 1
p− ‖un‖L∞(�)

≤ 1

p′−

(
2C2C7(C5 + 1)

p−

) p
′−
p− ‖f ‖p′−

L1(�)
+ 1

p−
p−

2C2C7(C5 + 1)
‖un‖p−

L∞(�)

≤ 1

p′−

(
2C2C7(C5 + 1)

p−

) p
′−
p− ‖f ‖p′−

L1(�)
+ 1

2C2(C5 + 1)
‖un‖p−

W 1,p− (�).

(24)

Moreover, as p− < πn(.), we have
∫

�

|∇un|p−dx ≤ meas(�)+
∫

�

|∇un|πn(.)dx. (25)

Combining (21) and (25), we get

∫

�

|un|p−dx ≤ C5meas(�)+ C5
∫

�

|∇un|πn(.)dx + C6.

We infer from the above inequality and (25) that

‖un‖p−
W 1,p− (�) =

∫

�

[|un|p− + |∇un|p−]dx

≤ (C5 + 1)meas(�)+ C6 + (C5 + 1)
∫

�

|∇un|πn(.)dx. (26)

Furthermore, using (24) and (26), we obtain

∫

�

fnundx ≤ 1

p′−

(
2C2C7(C5 + 1)

p−

) p
′−
p− ‖f ‖p′−

L1(�)
+ meas(�)

2C2

+ C6

2C2(C5 + 1)
+ 1

2C2

∫

�

|∇un|πn(.)dx. (27)
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Combining (23) and (27), we get

∫

�

Tn(b(un))undx +
∫

∂�

Tn(|un|sn(.)−2un)undσ + 1

2C2

∫

�

|∇un|πn(.)dx

+ 1

n
||un||p+

W 1,p+ (�) ≤ C8, (28)

where

C8 = 1

p′−

(
2C2C7(C5 + 1)

p−

) p
′−
p− ‖f ‖p′−

L1(�)
+ meas(�)

2C2
+ C6

2C2(C5 + 1)
.

Thus, we deduce from (28) that

∫

�

|∇un|πn(.)dx ≤ C9. (29)

Now, using (26) and (29), we infer

‖un‖W 1,p− (�) ≤ const
(
p−,�, f

)
. (30)

��
Lemma 3.4 (un)n∈N∗ converges a.e. in ∂� to v.

Proof Since (un)n∈N∗ is uniformly bounded in W 1,p−(�), then, up to extraction
of a subsequence still denoted (un)n∈N∗ , it converges a.e. in � (and also weakly in
W 1,p−(�)) to a limit u.

We know that the trace operator is compact from W 1,1(�) into L1(∂�).
Obviously,W 1,p−(�) ↪→ W 1,1(�) because p− > 1. Therefore, un → u in L1(∂�)
and a.e. in ∂�. Thus, v = u|∂� has definite meaning. ��
The following assertions are based on the Young measure and nonlinear weak-∗
convergence results (see [6, 12, 15]).

Assertion 1
The sequence (∇un)n∈N∗ converges to a Young measure νx(λ) on R

N in the
sense of the nonlinear weak-* convergence, and

∇u =
∫

RN

λdνx(λ). (31)

Proof As (un)n∈N∗ is uniformly bounded in W 1,p−(�), then, up to extraction of
a subsequence still denoted (un)n∈N∗ , un converges a.e. in � (and also weakly in
W 1,p−(�)) to a limit u.
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Therefore, ∇un weakly converges to ∇u in Lp−(�). Now, we prove that
(∇un)n∈N is equi-integrable.
(|∇un|p−)n∈N being bounded is equi-integrable. As p− > 1, then, for all subset

E ⊂ �, we obtain
∫

E

|∇un|dx ≤
∫

E

(1 + |∇un|p−)dx.

Therefore, for meas(E) small enough, (∇un)n∈N is equi-integrable on �. Then,
using the representation of weakly convergent sequences in L1(�) in terms of
Young measures (see Theorem 2.1, property (8)), we can write

∇u =
∫

RN

λdνx(λ).

��
Assertion 2

|λ|π(.) is integrable with respect to the measure νx(λ)dx on R
N × �, and

moreover, u ∈ W 1,π(.)(�).

Proof We know that πn converges in measure to π . Using Theorem 2.1-[(ii),(iii)],
(πn,∇un)n∈N converges on R × R

N to the Young measure μx = δπ(x) ⊗ νx . Thus,
we can apply the weak convergence property (7) of Theorem 2.1 to the Carathéodory
function

Fm : (x, λ0, λ) ∈ �× (R × R
N) �→ |hm(λ)|λ0,

with m ∈ N, where hm is defined in the preliminaries. We have

∫

�×RN

|hm(λ)|π(.)dνx(λ)dx =
∫

�×(R×RN)

|hm(λ)|λ0dμx(λ0, λ)dx

=
∫

�

∫

R×RN

Fm(x, λ0, λ)dμx(λ0, λ)dx

= lim
n→∞

∫

�

Fm(x, πn(x),∇un(x))dx

= lim
n→∞

∫

�

|hm(∇un)|πn(.)dx

≤ lim
n→∞

∫

�

|∇un|πn(.)dx
≤ C9.

Since hm(λ) → λ, as m → ∞ and as m �→ hm(λ) is increasing, using Lebesgue
convergence theorem, we deduce from the above inequality that
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∫

�×RN

|λ|π(.)dνx(λ)dx ≤ C9.

Hence, |λ|π(.) is integrable with respect to the measure νx(λ)dx on R
N ×�.

Now, we prove that ∇u ∈ Lπ(.)(�). Using (31), Jensen’s inequality and the last
inequality, we get

∫

�

|∇u|π(.)dx =
∫

�

∣
∣
∣
∣

∫

RN

λdνx(λ)

∣
∣
∣
∣

π(.)

dx ≤
∫

�×RN

|λ|π(.)dνx(λ)dx <∞.

Thus, ∇u ∈ Lπ(.)(�). Moreover, u ∈ Lπ(.)(�). Indeed, u ∈ W 1,p−(�) ⊂
L∞(�) ⊂ Lπ(.)(�) for p− > N . Hence, u ∈ W 1,π(.)(�). ��
Assertion 3

The sequence �n defined by �n := a(x, un,∇un) is equi-integrable on �.
Proof By using (A5) with exponent πn(.), we obtain

|a(x, un,∇un)|π ′
n(.) ≤ C1(|∇un|πn(.) + M(x)).

The above inequality give us

|a(x, un,∇un)| ≤ C((1 + |∇un|πn(.))+ M(x)
) 1
π ′
n(.)

≤ C((1 + M(x))
1
π ′
n(.) + |∇un|

πn(.)

π ′
n(.)
)

≤ C(1 + M(x)+ |∇un|πn(.)−1).

For all set E ⊂ �,
∫

E

|a(x, un,∇un)|dx ≤ C
∫

E

(1 + M(x))dx

+ C10
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣∇un|πn(.)−1

∣
∣
∣
∣

∣
∣
∣
∣
Lπ

′
n(.)(�)

||χE ||Lπn(.)(�),

where C10 = const (p−). The first term on the right-hand side of the above
inequality is small for meas(E) small enough, since 1 + M ∈ L1(�).

According to Proposition 2.1, we obtain

||χE ||Lπn(.)(�) ≤ max

{

ρπn(.)(χE)
1
p+ ; ρπn(.)(χE)

1
p−
}

= max

{

(meas(E))
1
p− , (meas(E))

1
p+
}

.
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Analogously,

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣∇un

∣
∣πn(.)−1

∣
∣
∣
∣

∣
∣
∣
∣
Lπ

′
n(.)(�)

≤ max

{(

ρπ ′
n(.)
(|∇un|πn(.)−1)

1
(p′)+

)

,

(

ρπ ′
n(.)
(|∇un|πn(.)−1)

1
(p′)−

)}

= max

{(∫

�

|∇un|πn(.)dx
) 1
(p′)+
,

(∫

�

|∇un|πn(.)dx
) 1
(p′)−

}

.

Using (29),
∫

E

|a(x, un,∇un)|dx becomes small for meas(E) small enough.

Hence, (�n)n∈N is equi-integrable. ��
Assertion 4

The weak limit � of �n (or a subsequence) belongs to Lπ
′(.)(�), and we have

�(x) =
∫

RN

a(x, u(x), λ)dνx(λ). (32)

Proof Set �̃n = a(x, u(x),∇vn) with ∇vn = ∇unχSn , where Sn = {
x ∈

�, |π(x)− πn(x)| < 1
2

}
.

We prove that �̃n is equi-integrable on �.
We applied (A5) with variable exponent π(.) on �̃n.
Let E ⊂ �, and we have

∫

E

|a(x, u(x),∇vn)|dx ≤ C
∫

E

(1 + M(x)+ |∇vn|π(.)−1)dx

≤ C
(∫

E

(1 + M(x))dx +
∫

E∩Sn
|∇un|π(.)−1dx

)

.

The first term on the right-hand side of the last inequality is small for meas(E)
small enough.

For all x ∈ Sn, π(x) < πn(x)+ 1
2 ; thus,

∫

E∩Sn
|∇un|π(.)−1dx ≤

∫

E

(

1 + |∇un|πn(.)− 1
2

)

dx

and
∫

�

|∇un|(πn(.)− 1
2 )(2πn(.))

′
dx =

∫

�

|∇un|πn(.)dx <∞,
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which is equivalent to saying |∇un|πn(.)− 1
2 ∈ L(2πn(.))′(�). Now, using the Hölder

type inequality,

∫

E∩Sn
|∇un|π(.)−1dx ≤

∫

E

(

1 + |∇un|πn(.)− 1
2

)

dx

≤ meas(E)+ 2
∣
∣
∣
∣∇un

∣
∣
∣
∣
Lπn(.)(�)

||χE ||L2πn(.)(�). (33)

According to Proposition 2.1,

||χE ||L2πn(.)(�) ≤ max

{
(
ρ2πn(.)

(
χE
)) 1

2p− ,
(
ρ2πn(.)(χE)

) 1
2p+

}

= max

{
(
meas(E)

) 1
2p− ,

(
meas(E)

) 1
2p+

}

.

The right-hand side of (33) is uniformly small for meas(E) small, and the equi-
integrability of �̃n follows. Therefore, up to a subsequence, �̃n weakly converges
in L1(�) to �̃, as n→ ∞.

Now, we prove that �̃ = �; more precisely, we show that �̃n − �n strongly
converges in L1(�) to 0.

From (29),
∫

�

|∇un|πn(.)dx is uniformly bounded, which implies that
∫

�

|∇un|dx is finite, since
∫

�

|∇un|dx ≤
∫

�

(1 + |∇un|πn(x))dx.

By Chebyshev’s inequality, we have

meas({|∇un| > L}) ≤
∫
�

|∇un|dx
L

.

Therefore, sup
n∈N
meas({|∇un| > L}) tends to 0 for L large enough. Since �̃n − �n

is equi-integrable, then for all β > 0, there exists δ = δ(β) such that for all A ⊂ �,
meas(A) < δ and

∫

A

|�̃n −�n|dx < β
4
.

Therefore, if we choose L large enough, we get

∫
�

|∇un|dx
L

< δ, so

meas({|∇un| > L}) < δ.
Hence,

∫

{|∇un|>L}
|�̃n −�n|dx < β

4
.
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By Lemma 2.2, we also have

meas

({

x ∈ �; sup
λ∈K

|a(x, un(x), λ)− a(x, u(x), λ)| ≥ σ
})

−→ 0,

as n→ ∞.
Thus, by the above equi-integrability, for all σ > 0, there exists n0 = n0(σ, L) ∈

N such that for all n ≥ n0,
∫

{
x∈�; sup|λ|≤L |a(x,un(x),λ)−a(x,u(x),λ)|≥σ

} |�̃n −�n|dx < β
4
.

Using the definition of �n and �̃n, we have

�̃n −�n = a(x, un(x),∇un)− a(x, u(x),∇un) on Sn.

Now, we reason on

Sn,L,σ :=
{

x ∈ �; sup
|λ|≤L

|a(x, un(x), λ)− a(x, u(x), λ)| < σ, |∇un| ≤ L
}

.

We get

∫

Sn∩Sn,L,σ
|�̃n −�n|dx ≤

∫

Sn,L,σ

sup
|λ|≤L

|a(x, un(x), λ)− a(x, u(x), λ)|dx

≤ σmeas(�).
We observe that

∫

Sn

|�̃n −�n|dx =
∫

Sn∩Sn,L,σ
|�̃n −�n|dx +

∫

Sn\Sn,L,σ
|�̃n −�n|dx

and

Sn \ Sn,L,σ ⊂
{

x ∈ �; sup
|λ|≤L

|a(x, un(x), λ)− a(x, u(x), λ)| ≥ σ
}

∪
{

|∇un| > L
}

.

Consequently, by choosing σ = σ(β) < β

4meas(�)
, we get

∫

Sn

|�̃n −�n|dx < β
4

+ β
4

+ β
4

= 3β

4
,
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for all n ≥ n0(σ, L). By Lemma 2.2, we also have meas({x ∈ �, |π(x)−πn(x)| ≥
1
2 })→ 0 for n large enough, which means that meas(� \ Sn) converges to 0 for n
large enough. Thus,

∫

�\Sn
|�̃n −�n|dx =

∫

�\Sn
|�n|dx ≤ β

4
.

Therefore, for all β > 0, there exists n0 = n0(β) such that for all n ≥ n0,∫

�

|�̃n −�n|dx ≤ β.
Hence, �̃n −�n strongly converges to 0 in L1(�). We prove that

�(x) =
∫

RN

a(x, u(x), λ)dνx(λ) a.e. x ∈ � and � ∈ Lπ ′(.)(�).

Notice that

lim
n→+∞

∫

�

|∇un|(1 − χSn)dx = lim
n→+∞

∫

�\Sn
|∇un|dx = 0,

since (∇un)n∈N is equi-integrable and meas(� \ Sn) converges to 0 for n large
enough.

Therefore, (∇un)n∈N and ∇unχSn converge to the same Young measure νx(λ).
Moreover, by applying Theorem 2.1-(i) to the Carathéodory function

F(x, (λ0, λ)) := a(x, λ0, λ), we infer that

�̃(x) = �(x) =
∫

RN

a(x, u(x), λ)dνx(λ) a.e. x ∈ �.

Using (A5), it follows that |a(x, u(x), λ)|π ′(.) ≤ C(M(x) + |λ|π(.)). Thus, with
Jensen’s inequality, it follows that

∫

�

|�(x)|π ′(.)dx =
∫

�

∣
∣
∣
∣

∫

RN

a(x, u(x), λ)dνx(λ)

∣
∣
∣
∣

π ′(.)
dx

≤
∫

�×RN

∣
∣a(x, u(x), λ)|π ′(.)dνx(λ)dx

≤ C
∫

�×RN

(

M(x)+ |λ|π(.)
)

dνx(λ)dx <∞.

Hence, � ∈ Lπ ′(.)(�). ��
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Assertion 5
∫

�

�.∇udx ≥
∫

�×RN

a(x, u(x), λ).λdνx(λ)dx. (34)

Proof For all ϕ ∈ C∞(�), we have
∫

�

Tn(b(un))ϕdx +
∫

∂�

Tn(|un|sn(.)−2un)ϕdσ +
∫

�

a(x, un,∇un).∇ϕdx

+ 1

n

∫

�

[|∇un|p+−2∇un∇ϕ + |un|p+−2unϕ
]
dx

=
∫

�

fnϕdx. (35)

Letting n go to ∞ in (35), we obtain

∫

�

b(u)ϕdx +
∫

∂�

|u|s(.)−2uϕdσ +
∫

�

�.∇ϕdx =
∫

�

f ϕdx. (36)

Indeed, (un)n∈N∗ is uniformly bounded in the spaceW 1,p−(�) and p− > N . Then,
by embedding result (W 1,p−(�) ↪→ L∞(�)), (un)n∈N∗ is uniformly bounded in
L∞(�). Thus, as b(.) is continuous, then, (b(un))n∈N∗ is uniformly bounded in
L∞(�). Otherwise, Tn(b(un)) converges to b(u) a.e. in �. Therefore, thanks to
Lebesgue’s dominated convergence theorem, Tn(b(un)) converges to b(u) inL1(�).
Moreover, a(x, un,∇un) = �n weakly converges to � and fn strongly converges
to f in L1(�). Furthermore, from (28), we deduce that

1

n
‖un‖p+

W 1,p+ (�) ≤ C8,

which implies that the fourth term on left-hand side of (35) goes to 0 for n large
enough.

We are now interested to the second term on the left-hand side of (35).
We know that (un)n∈N∗ is uniformly bounded in W 1,p−(�) and W 1,p−(�) ↪→

C(�) for p− > N . Therefore, (un)n∈N∗ is uniformly bounded in L∞(∂�). We
recall that t �→ |t |r(.,t)−2t is continuous a.e. in ∂�. Thus, (|un|r(.,un)−2un)n∈N∗ :=
(|un|sn(.)−2un)n∈N∗ is uniformly bounded in L∞(∂�). But

∣
∣Tn(|un|sn(.)−2un)

∣
∣ ≤ ∣

∣|un|sn(.)−2un
∣
∣;

so, the sequence (Tn(|un|sn(.)−2un))n∈N∗ is uniformly bounded in L∞(∂�). Hence,
there exists a positive constant C11 such that

∣
∣Tn(|un|sn(.)−2un)ϕ

∣
∣ ≤ C11|ϕ| a.e. in ∂�.
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Moreover, Tn(|un|sn(.)−2un)ϕ→ |u|s(.)−2uϕ a.e. in ∂�, which implies that

lim
n→∞

∫

∂�

Tn(|un|sn(.)−2un)ϕdσ =
∫

∂�

|u|s(.)−2uϕdσ,

thanks to Lebesgue’s dominated convergence theorem. On the other hand, by the
density argument, we can replace ϕ with un in (35) to get

∫

�

Tn(b(un))undx +
∫

∂�

Tn(|un|sn(.)−2un)undσ +
∫

�

a(x, un,∇un).∇undx

+ 1

n

∫

�

[|∇un|p+ + |un|p+]dx

=
∫

�

fnundx. (37)

u ∈ W 1,π(.)(�) ⊂ W 1,p−(�) ⊂ C0,α(�) and p(., .) is locally uniformly log-
Hölder continuous; then, the exponent π(.) verifies (4). Therefore, C∞(�) is dense
inW 1,π(.)(�), so we change ϕ by u in (36) to obtain

∫

�

b(u)udx +
∫

∂�

|u|s(.)dσ +
∫

�

�.∇udx =
∫

�

f udx. (38)

The sequence (Tn(b(un))un)n∈N is nonnegative. Tn(b(un))un is also measurable
and converges a.e. in � to b(u)u. By Fatou’s lemma, we get

lim inf
n→∞

∫

�

Tn(b(un))undx ≥
∫

�

b(u)udx. (39)

In the same manner,

lim inf
n→∞

∫

∂�

Tn(|un|sn(.)−2un)undσ ≥
∫

∂�

|u|s(.)dσ. (40)

Moreover, the sequence (fnun)n∈N∗ converges a.e. in � to f u and

|fnun| ≤ |f |||un||L∞(�).

(un)n∈N∗ is also uniformly bounded in L∞(�). Applying Lebesgue’s dominated
convergence theorem, we get

lim
n→∞

∫

�

fnundx =
∫

�

f udx. (41)
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By combining (39), (40) and (41), we have

lim inf
n→∞

∫

�

fnundx −
∫

�

b(u)udx −
∫

∂�

|u|s(.)dσ

≥ lim inf
n→∞

∫

�

[
fnun − Tn(b(un))un

]
dx −

∫

∂�

Tn(|un|sn(.)−2un)undσ .

By using (37), (38), the above inequality and the definition of �n, we get

∫

�

�.∇udx ≥ lim inf
n→∞

∫

�

(

�n.∇un + 1

n

[|∇un|p+ + |un|p+]
)

dx

≥ lim inf
n→∞

∫

�

�n.∇undx.

Hence,

∫

�

�.∇udx ≥ lim inf
n→∞

∫

�

�n.∇undx. (42)

By Andreianov et al. [1] Lemma 2.1, m �→ a(x, un, hm(∇un)).hm(∇un) is
increasing and converges to a(x, un,∇un).∇un for m large enough. Then,

a(x, un, hm(∇un)).hm(∇un) ≤ a(x, un,∇un).∇un.

Therefore, by using (42) and Theorem 2.1, we have

∫

�

�.∇udx ≥ lim inf
n→∞

∫

�

�n.∇undx

≥ lim
n→∞

∫

�

a(x, un, hm(∇un)).hm(∇un)dx

=
∫

�×RN

a(x, u, hm(λ)).hm(λ)dνx(λ)dx. (43)

Using Lebesgue’s dominated convergence theorem in (43), as m goes to ∞, we
get (34). ��
Assertion 6

The “div-curl” inequality holds.

∫

�×RN

(
a(x, u(x), λ)− a(x, u(x),∇u(x))(λ− ∇u(x))dνx(λ)dx ≤ 0.
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Proof We have

∫

�×RN

(a(x, u(x), λ)− a(x, u(x),∇u(x)))(λ− ∇u(x))dνx(λ)dx

=
∫

�×RN

a(x, u(x), λ).λdνx(λ)dx

−
∫

�×RN

a(x, u(x), λ).∇u(x)dνx(λ)dx

−
∫

�×RN

a(x, u(x),∇u(x)).λdνx(λ)dx

+
∫

�×RN

a(x, u(x),∇u(x)).∇u(x)dνx(λ)dx

=
∫

�×RN

a(x, u(x), λ).λdνx(λ)dx

−
∫

�

(∫

RN

a(x, u(x), λ)dνx(λ)

)

∇u(x)dx

−
∫

�

a(x, u(x),∇u(x)).
(∫

RN

λdνx

)

dx

+
∫

�

a(x, u(x),∇u(x)).∇u(x)
(∫

RN

dνx

)

dx

=
∫

�×RN

a(x, u(x), λ).λdνx(λ)dx −
∫

�

�.∇udx ≤ 0.

We pass from the first equality to the second equality by using Fubini’s theorem and
from the second inequality to the third one by using (31) and the fact that νx is a
probability measure on RN . Finally, (32) and (34) give us the desired inequality. ��
Assertion 7
�(x) = a(x, u(x),∇u(x)) a.e. x ∈ �, and ∇un converges to ∇u in measure on

�, as n→ ∞.

Proof From Assertion 6 and relation (A4), we deduce that

(
a(x, u(x), λ)− a(x, u(x),∇u(x)))(λ− ∇u(x)) = 0 a.e. x ∈ �, λ ∈ R

N.

Thus, λ = ∇u(x) a.e. x ∈ � w.r.t. νx on R
N ; therefore, νx(∇u(x)) = 1 and

δ∇u = νx . By using (32), we get

�(x) =
∫

RN

a(x, u(x), λ)dνx(λ) = a(x, u(x),∇u(x)) a.e. x ∈ �.
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Thus, Theorem 2.1-(ii) shows that ∇un converges in measure to ∇u. ��
Lemma 3.5 u is a weak solution of the problem (1).

Proof We first prove that b(u) ∈ L1(�) and |u|s(.)−2u ∈ L1(∂�).
Using Lemma 3.3 and Lemma 3.4, it follows from Fatou’s lemma that

∫

�

|b(u)|dx ≤ lim inf
n→∞

∫

�

∣
∣Tn(b(un))

∣
∣dx ≤ ||f ||L1(�)

and
∫

∂�

∣
∣|u|s(.)−2u

∣
∣dσ ≤ lim inf

n→∞

∫

∂�

∣
∣Tn(|un|sn(.)−2un)

∣
∣dσ ≤ ||f ||L1(�).

Hence, b(u) ∈ L1(�) and |u|s(.)−2u ∈ L1(∂�).
Now, by using Assertion 4 and Assertion 7, and thanks to that the density

argument (C∞(�) is dense in the space W 1,π(.)(�)), we can take ϕ in W 1,π(.)(�)

as test function in (36) to get

∫

�

b(u)ϕdx +
∫

∂�

|u|s(.)−2uϕdσ +
∫

�

a(x, u,∇u)∇ϕdx =
∫

�

f ϕdx.

Hence, u is a weak solution of (1) ��
Now, we state the uniqueness result of weak solution. This result uses the same

arguments as in [2], Theorem 2.8.

Theorem 3.3 Assume that b is strictly increasing. Assume that (A3), (A4), (A5),
(A6), (H) and (3) hold, and M is taken constant in (A5). Moreover, a satisfies that,
for all bounded subset K of R × R

N , there exists a constant C(K) such that

a.e. x ∈ �, for all (z, η), (z̃, η) ∈ K,
|a(x, z, η)− a(x, z̃, η)| ≤ C(K)|z− z̃|. (44)

Finally, suppose the following regularity property:

for all f ∈ L∞(�), there exists a weak solution of (1),

which is Lipschitz continuous on �. (45)

Then, for all f ∈ L1(�), the problem (1) admits a unique weak solution.

Remark 3.2 As in [2], Theorem 2.8, the condition (45) goes back to idea of [3].
Moreover, in Theorem 3.3, the relation (44) is used to obtain the inequality (51)
below.
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Proof of Theorem 3.3 The existence has already been proved. Now, we show the
uniqueness. For more details, see [2], Proof of Theorem 2.8.

Let u be a Lipschitz continuous weak solution of (1) with f ∈ L∞(�) and v be
a weak solution in the same sense, with f̂ ∈ L1(�).

The function φ := 1

k
Tk(u − v) is an admissible test function in the weak

formulation of u and v. Indeed, as� is bounded open domain with smooth boundary
∂�, the spaces of Lipschitz functions C0,1(�) and W 1,∞(�) are homeomorphic
and they can be identified. Moreover, φ belongs to W 1,1(�) ∩ L∞(�) and even
φ ∈ L∞(∂�). As u is bounded, we have

φ := 1

k
Tk(u− v) = 1

k
Tk(u− Tk+||u||L∞ (v)) (46)

with

|φ| ≤ 1 and ∇φ = 1

k
∇(u− v)χ[|u−v|<k]. (47)

Firstly, using the fact that ∇u is bounded and assumption (A4) of this theorem, we
get

|a(x, u,∇u)| ≤ C(|∇u|p(.,u(.)) + 1) ∈ L∞(�).

Thus, φ ∈ W 1,1(�)∩L∞(�) is admissible as a test function in the weak formulation
for the solution u, which belongs toW 1,∞(�). Secondly, if v ∈ W 1,p(.,v(.))(�), then
by (46) and Lemma 2.1 and because u ∈ W 1,p+(�) ⊂ W 1,p(.,v(.))(�), we obtain
φ ∈ W 1,p(.,v(.))(�) ∩ L∞(�) as a test function in the weak formulation for the
solution v.

Hence, φ is necessary an admissible test function for u and v. Thus, with this test
function defined in (46) and (47), we have

∫

�

b(u)
1

k
Tk(u− v)dx +

∫

∂�

|u|r(.,u(.))−2u
1

k
Tk(u− v)dσ

+ 1

k

∫

�

a(x, u,∇u).∇(u− v)χ[0<|u−v|<k]dx

=
∫

�

f
1

k
Tk(u− v)dx (48)

and
∫

�

b(v)
1

k
Tk(u− v)dx +

∫

∂�

|v|r(.,v(.))−2v
1

k
Tk(u− v)dσ

+ 1

k

∫

�

a(x, v,∇v).∇(u− v)χ[0<|u−v|<k]dx

=
∫

�

f̂
1

k
Tk(u− v)dx. (49)
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Subtracting (48) from (49), we get

∫

�

(
b(u)− b(v))1

k
Tk(u− v)dx

+
∫

∂�

(|u|r(.,u(.))−2u− |v|r(.,v(.))−2v)
1

k
Tk(u− v)dσ

+ 1

k

∫

�

(
a(x, u,∇u)− a(x, v,∇v)).∇(u− v)χ[0<|u−v|<k]dx

=
∫

�

(
f − f̂ )1

k
Tk(u− v)dx. (50)

Let us denote by I the third term on left-hand side of (50). We know that

(a(x, u,∇u)− a(x, v,∇v))∇(u− v) = (a(x, u,∇u)− a(x, v,∇u))∇(u− v)
+ (a(x, v,∇u)− a(x, v,∇v))∇(u− v)
︸ ︷︷ ︸

≥0

.

We have

I = Ik +
∫

�

(
a(x, v,∇u)− a(x, v,∇v))1

k
∇(u− v)χ[0<|u−v|<k]dx,

where

Ik =
∫

�

(
a(x, u,∇u)− a(x, v,∇u))1

k
∇(u− v)χ[0<|u−v|<k]dx.

Let us show that Ik → 0 as k→ 0. Since u is bounded, v is also bounded on the set
[0 < |u− v| < k]. Thus,

|Ik| ≤ 1

k

∫

[0<|u−v|<k]
|a(x, u,∇u)− a(x, v,∇u)||∇u− ∇v|dx

≤ 1

k

∫

[0<|u−v|<k]
C
(||u||L∞(�), ||∇u||L∞(�)

)|u− v||∇u− ∇v|dx (by using (44)
)

≤ C(||u||L∞(�), ||∇u||L∞(�)
)
∫

[0<|u−v|<k]
|∇u− ∇v|dx → 0, as k→ 0. (51)

Note that limk→0meas([0 < |u− v| < k]) = 0 and |∇u− ∇v| ∈ L1(�).
For the first term on the left-hand side of (50), one has

lim
k→0

∫

�

(
b(u)− b(v))1

k
Tk(u− v)dx =

∫

�

(b(u)− b(v))sign0(u− v)dx

=
∫

�

|b(u)− b(v)|dx. (52)
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In the same manner,

lim
k→0

∫

∂�

(|u|r(.,u(.))−2u− |v|r(.,v(.))−2v)
1

k
Tk(u− v)dσ

=
∫

∂�

(|u|r(.,u(.))−2u− |v|r(.,v(.))−2v
)
sign0(u− v)dσ

=
∫

∂�

∣
∣|u|r(.,u(.))−2u− |v|r(.,v(.))−2v

∣
∣dσ (53)

and

lim
k→0

∫

�

(
f − f̂ )1

k
Tk(u− v)dx =

∫

�

|f − f̂ |dx. (54)

Finally, one makes k go to 0 in (50), and taking into account inequalities (51), (52),
(53) and (54), we get

∫

�

|b(u)− b(v)|dx +
∫

∂�

∣
∣|u|r(.,u(.))−2u− |v|r(.,v(.))−2v

∣
∣dσ

+ lim
k→0

∫

�

(
a(x, v,∇u)− a(x, v,∇v))

× 1

k
∇(u− v)χ[0<|u−v|<k]dx

=
∫

�

|f − f̂ |dx. (55)

Since the three integrals on the left-hand side of the above equality are nonnegative,
we deduce that
∫

�

|b(u)−b(v)|dx+
∫

∂�

∣
∣|u|r(.,u(.))−2u−|v|r(.,v(.))−2v

∣
∣dσ ≤

∫

�

|f−f̂ ∣∣dx. (56)

Let us take a sequence (fi)i∈N ⊂ L∞(�) and (ui)i∈N the corresponding sequence
of Lipschitz continuous weak solutions. By (56), we have

∫

�

|b(u)− b(v)|dx +
∫

∂�

∣
∣|u|r(.,u(.))−2u− |v|r(.,v(.))−2v

∣
∣dσ

≤
∫

�

[|b(u)− b(ui)| + |b(v)− b(ui)|
]
dx

+
∫

∂�

[∣
∣|u|r(.,u(.))−2u− |ui |r(.,ui (.))−2ui

∣
∣+ ∣

∣|v|r(.,v(.))−2v − |ui |r(.,ui (.))−2ui
∣
∣
]
dσ

≤
∫

�

[|f − fi | + |f̂ − fi |
]
dx, (57)
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so that at the limit as i → ∞ in (57), using the density argument between L∞(�)
and L1(�), we infer that

b(u) = b(v) a.e. in � and |u|r(.,u(.))−2u = |v|r(.,v(.))−2v a.e. on ∂�.

Thus, using the assumption (H) and the fact that b is strictly increasing, we get

u = v a.e. in � and u = v a.e. on ∂�. ��

4 Continuous Dependence for the Weak Solution

Here, we are interested to the stability result of weak solutions to the problems

(Pn)

⎧
⎪⎪⎨

⎪⎪⎩

b(un)− divan(x, un,∇un) = fn in �

an(x, un,∇un).η = −|un|rn(x,un)−2un on ∂�.

(an)n∈N is a sequence of diffusion flux functions such that an(x, z, ξ) satisfies
(A3)− (A6) with variable exponent pn : �× R → [p−, p+], and rn : ∂�× R →
[r−, r+] is a Carathéodory function and (Mn)n∈N equi-integrable on �. In the
sequel, we make the log-Hölder continuous and convergence hypothesis.

[
pn : �× R −→ [p−, p+],with p− > N and ∀M > 0,
pn is log-Hölder continuous in (x, z) uniformly on �× [−M,M]. (58)

[
For all bounded subset K of R × R

N,

sup(z,ξ)∈K |an(., z, ξ)− a(., z, ξ)| → 0 in measure on �.
(59)

[
For all bounded subset K of R,

supz∈K |pn(., z)− p(., z)| converges to zero in measure on �.
(60)

rn(., z) converges to r(., z) a.e. on ∂�, for all z ∈ R. (61)

Finally, assume that

(fn)n∈N is a sequence of data weakly convergent to f in L1(�). (62)

The following structural stability result for weak solutions holds.

Theorem 4.1 Let un be a weak solution of (Pn).
Assume that a(x, z, ξ) satisfies (A3)–(A6) with a variable exponent p(x, z).

Assume that (A2) and (3) hold. Assume that (an)n∈N is a sequence of diffusion
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flux functions of the form an(x, z, ξ) such that (A3)–(A6) hold with pn(x, z), C
independent of n and with a sequence (Mn)n∈N equi-integrable on�. Furthermore,
let us consider the assumptions (58)–(62).

Then, there exists a measurable function u ∈ C(�) such that un converges to
u a.e. in � and a.e. on ∂� and ∇un converges to ∇u a.e. in �, as n → ∞ (up
to extraction of subsequence). The function u is a weak solution of the problem (1)
associated with the diffusion flux a(., ., .) and the source term f.

The proof is organized in several steps, and we reason up to an extracted subse-
quence of (un)n∈N still denoted (un)n∈N.

Claim 1 Let un be a weak solution of (Pn). Then,

(i) the sequence (b(un))n∈N is uniformly bounded in L1(�);
(ii) there exists a positive constant C(f, p−) such that

∫

�

|∇un|pn(.,un(.))dx ≤ C(f, p−).

Moreover, (un)n∈N is uniformly bounded inW 1,p−(�).

Proof (i) Taking ϕ = Tk(un) as a test function in a weak formulation of the
problem (Pn), where an replaces a, we get

∫

�

b(un)Tk(un)dx +
∫

∂�

|un|rn(.,un)−2unTk(un)dσ

+
∫

�

an(x, un,∇un)∇Tk(un)dx =
∫

�

fnTk(un)dx.

Since all the terms on the left-hand side of the above equality are nonnegative,
we deduce that

∫

�

b(un)Tk(un)dx ≤
∫

�

|fnTk(un)|dx ≤ k
∫

�

|fn|dx.

As (fn)n∈N converges weakly to f in L1(�), it is bounded. So, there exists a
positive constant C such that

∫

�

b(un)Tk(un)dx ≤ kC.

Dividing the above inequality by k and letting k go to 0, we get

∫

�

|b(un)|dx ≤ C. (63)
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(ii) From above inequality, we deduce that (un)n∈N is uniformly bounded inL1(�),
since b is continuous and onto. Thus, from the Poincaré-Wirtinger inequality,
we obtain

∫

�

|un|p−dx ≤ const (p−,�)
∫

�

|∇un|p−dx + C0, (64)

where C0 depends on meas(�) and p−.

Moreover, using (A6) with variable exponent pn(., un(.)) on an(x, un,∇un) (see
the reasoning that leads to (28) in the proof of Assertion 1.), the sequence (un)n∈N
satisfies the standard estimation

∫

�

b(un)undx +
∫

∂�

|un|rn(.,un)dσ + 1

2C2

∫

�

|∇un|pn(.,un(.))dx ≤ C, (65)

withC that depends on f ,meas(�) and p− but not on n. From the above inequality,
we deduce that

∫

�

|∇un|pn(.,un(.))dx ≤ C(f,�, p−). (66)

Moreover, using (64), (66) and the fact that

∫

�

|∇un|p−dx ≤ meas(�)+
∫

�

|∇un|pn(.,un(.))dx,

we obtain

‖un‖p−
W 1,p− (�) =

∫

�

[|un|p− + |∇un|p−]dx

≤ (
const

(
p−,�

)+ 1
)
[

meas(�)+
∫

�

|∇un|pn(.,un(.))dx
]

+ C0
≤ const (p−,�, f ). (67)

Therefore, (un)n∈N is uniformly bounded inW 1,p−(�) ��
From (ii), up to a subsequence, un converges a.e in � (and also weakly in

W 1,p−(�)) to u and a.e on ∂�. For this, see Lemma 3.3 and Lemma 3.4.

Claim 2 The sequence (∇un)n∈N converges to a Young measure νx(λ) on R
N in

the sense of the nonlinear weak-* convergence, and one has

∇u =
∫

RN

λdνx(λ). (68)
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Moreover, |λ|π(x) is integrable with respect to the measure dνxdx on R
N × � and

∇u ∈ Lπ(.)(�).
Proof Writing

|pn(x, un(x))− p(x, u(x))| ≤ |pn(x, un(x))− p(x, un(x))| + |p(x, un(x))
− p(x, u(x))|,

from a.e. convergence of un to u, from assumption (60) and from the Lusin theorem
applied to the map

p : � �→ p(x, .) ∈ C(R),

we deduce that pn(., un(.)) → p(., u(.)) = π(.) in measure on �. Now, using
Theorem 2.1—[(ii),(iii)], (pn(., un(.)),∇un)n∈N converges onR×R

N to the Young
measure μx = δπ (x)⊗ νx .

Thus, we can apply the weak convergence properties of Theorem 2.1-(i) to the
Carathéodory function
Fm(x, λ0, λ) ∈ � × (R × R

N) �→ |hm(λ)|λ0 with m ∈ N, where hm is defined
in the preliminaries. Then, we obtain

∫

�×RN

|hm(λ)|π(x)dνx(λ)dx =
∫

�×(R×RN)

|hm(λ)|λ0dμx(λ0, λ)dx

=
∫

�

∫

R×RN

Fm(x, λ0, λ)dμx(λ0, λ)dx

= lim
n→∞

∫

�

Fm(x, pn(x, un(x)),∇un(x))dx

= lim
n→∞

∫

�

|hm(∇un)|pn(x,un(x))dx

≤ lim
n→∞

∫

�

|∇un|pn(x,un(x))dx
≤ C(f,�, p−) (using (66)).

Since hm(λ) → λ, as m → ∞, using Lebesgue’s convergence theorem, as m �→
hm(λ) is increasing, we deduce from the last inequality that

∫

�×RN

|λ|π(x)dνx(λ)dx ≤ C(f,�, p−).

Hence, |λ|π(.) is integrable with respect to the measure νx(λ)dx on R
N ×�.
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Moreover, from the last inequality and Jensen’s inequality, we get

∫

�

|∇u|π(x)dx =
∫

�

∣
∣
∣
∣

∫

RN

λdνx(λ)

∣
∣
∣
∣

π(x)

dx ≤
∫

�×RN

|λ|π(x)dνx(λ)dx <∞.

Thus, ∇u ∈ Lπ(.)(�). ��
Claim 3

(a) The sequence (An)n∈N defined by An(x) := an(x, un(x),∇un(x)) is equi-
integrable.

(b) The weak limit A of (An) belongs to Lπ
′(.)(�), and one has

A(x) =
∫

RN

a(x, u(x), λ)dνx(λ) a.e. x ∈ �. (69)

Proof (a) Using (A5), we have

|an(x, un,∇un)|p′
n(.,un(.)) ≤ C(Mn + |∇un|pn(.,un(.))

)
.

The sequence
(|∇un|pn(.,un(.))

)
n∈N is uniformly bounded in L1(�) and Mn

is also equi-integrable on �; hence,
(|an(x, un,∇un)|p′

n(.,un(.))
)
n∈N is equi-

integrable.
Otherwise, as p′

n(., un(.)) > 1, we have

|an(x, un,∇un)| ≤ 1 + |an(x, un,∇un))|p′
n(.,un(.)).

Thus, for all subset E ⊂ �, we have
∫

E

|an(x, un,∇un)|dx ≤ meas(E)+
∫

E

|an(x, un,∇un)|p′
n(.,un(.))dx.

Thus, for meas(E) small enough, we deduce that (An)n∈N is equi-integrable.
(b) Set ∇vn := ∇unχS′

n
, and consider auxiliary functions Ãn := a(x, u,∇vn),

where

S′
n :=

{

x ∈ �, |p(x, u(x))− pn(x, un(x))| < 1

2

}

.

Let us prove that for all σ > 0,

meas
({x ∈ �, sup

λ∈K
|an(x, un, λ)− a(x, u, λ)| ≥ σ }) → 0, as n→ ∞,
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where K is a bounded subset of RN . We know that

|an(x, un, λ)− a(x, u, λ)| ≤ |an(x, un, λ)− a(x, un, λ)| + |a(x, un, λ)
− a(x, u, λ)|.

Thus, it follows from Lemma 2.2 and (59) that

sup
λ∈K

|an(x, un, λ)− a(x, u, λ)| → 0 in measure, as n→ ∞.

Now, using the same argument as in the proof of Assertion 4 to An and Ãn
instead of �n and �̃n, we get a wished result.

��
Claim 4

(a)

∫

�

A.∇udx ≥
∫

�

a(x, u(x), λ).λdνx(λ).

(b) The “div-curl” inequality holds:

∫

�×RN

(
a(x, u(x), λ)− a(x, u(x),∇u(x)))(λ− ∇u(x))dνx(λ)dx ≤ 0.

(70)
(c)

A(x) = a(x, u(x),∇u(x)) for a.e. x ∈ �,

and ∇un converges to ∇u in measure on �, as n→ +∞.
Proof We only give the proof of (a). The proofs of (b) and (c) are exactly the same
as the proofs of Assertion 6 and Assertion 7.

Let ϕ ∈ C∞(�). For n large enough, ϕ is an admissible test function in the weak
formulation of un, and we have

∫

�

b(un)ϕdx +
∫

∂�

|un|rn(.,un(.))−2unϕdσ +
∫

�

an(x, un,∇un).∇ϕdx

=
∫

�

fnϕdx. (71)
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(un)n∈N is uniformly bounded in the spaceW 1,p−(�), so it is uniformly bounded
in L∞(�). Then, (b(un))n∈N is uniformly bounded in L∞(�). Moreover, b(un)
converges a.e. in� to b(u). Therefore, thanks to Lebesgue’s dominated convergence
theorem, we have

lim
n→∞

∫

�

b(un)ϕdx =
∫

�

b(u)ϕdx. (72)

On the other hand, W 1,p−(�) ↪→ C(�) for p− > N , so (un)n∈N is uniformly
bounded in L∞(∂�). Therefore, (|un|rn(.,un)−2un)n∈N is uniformly bounded in
L∞(∂�), for 2 < r− ≤ rn(., un) ≤ r+ < ∞, since t �→ |t |rn(.,t)−2t is continuous
a.e. on ∂�. Moreover, |un|rn(.,un)−2un converges to |u|r(.,u)−2u a.e. on ∂�. Indeed,

|rn(., un)− r(., u)| ≤ |rn(., un)− r(., un)| + |r(., un)− r(., u)|.

From (61), from a.e. convergence of un to u on ∂� and the fact that r is a
Carathéodory function on ∂�× R, we deduce from the above inequality that

rn(., un)→ r(., u) a.e. on ∂�,

which implies that |un|rn(.,un)−2un converges to |u|r(.,u)−2u a.e. on ∂�. Then, by
using Lebesgue’s dominated convergence theorem, we get

lim
n→∞

∫

∂�

|un|rn(.,un)−2unϕdσ =
∫

∂�

|u|r(.,u)−2uϕdσ. (73)

We also have

lim
n→∞

∫

�

fnϕdx =
∫

�

f ϕdx, (74)

since fn ⇀ f in L1(�), as n tends to ∞ and ϕ ∈ L∞(�). It remains to prove that

lim
n→∞

∫

�

an(x, un,∇un)∇ϕdx =
∫

�

A∇ϕdx.

Let us prove that (an(x, un,∇un)∇ϕ)n∈N is equi-integrable. Let E be a subset of �
and by using Young’s inequality, we have

∫

E
an(x, un,∇un).∇ϕdx

≤
∫

E
|an(x, un,∇un)||∇ϕ|dx

≤
∫

E

1

p′
n(., un(.))

|an(x, un,∇un)|p′
n(.,un(.))dx +

∫

E

1

pn(., un(.))
|∇ϕ|pn(.,un(.))dx
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≤ C
∫

E

(
Mn(x)+ |∇un|pn(.,un(.))

)
dx +

∫

E
|∇ϕ|pn(.,un(.))dx

≤ C
∫

E

(
Mn(x)+ |∇un|pn(,un(.))

)
dx

+
∫

E∩{|∇ϕ|≤1}
|∇ϕ|πn(.)dx +

∫

E∩{|∇ϕ|>1}
|∇ϕ|pn(.,un(.))dx

≤ C
∫

E

(
Mn(x)+ |∇un|pn(,un(.))

)
dx +meas(E)+

∫

E
|∇ϕ|p+dx (75)

By using Claim 1-(ii) and the fact that (Mn)n∈N is equi-integrable,
(
Mn +

|∇un|pn(.,un(.))
)
n∈N is equi-integrable. Moreover, |∇ϕ|p+ ∈ L1(�), since ∇ϕ is

bounded. Thus, we deduce from (75) that

lim
meas(E)→0

∫

E

an(x, un,∇un).∇ϕdx = 0.

Furthermore,

an(x, un,∇un).∇ϕ→ A.∇ϕ a.e. in �.

By applying Vitali’s theorem, we obtain

lim
n→∞

∫

�

an(x, un,∇un).∇ϕdx =
∫

�

A.∇ϕdx. (76)

We can pass to the limit as n go to ∞ in (71) and taking into account the inequalities
(72), (73), (74) and (76) to obtain

∫

�

b(u)ϕdx +
∫

�

|u|s(.,u)−2uϕdσ +
∫

�

A.∇ϕdx =
∫

�

f ϕdx. (77)

By density argument, we can replace ϕ with un in (71) to get

∫

�

b(un)undx+
∫

∂�

|un|rn(.,un)dσ+
∫

�

an(x, un,∇un).∇undx=
∫

�

fnundx.(78)

Since C∞(�) is dense inW 1,π(.)(�), we replace ϕ by u in (77), and we have

∫

�

b(u)udx +
∫

∂�

|u|r(.,u)dσ +
∫

�

A.∇udx =
∫

�

f udx. (79)
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By Fatou’s lemma, we deduce

lim inf
n→∞

∫

�

b(un)undx ≥
∫

�

b(u)udx (80)

and

lim inf
n→∞

∫

∂�

|un|rn(.,un)dσ ≥
∫

∂�

|u|r(.,u)dσ. (81)

Moreover,

lim
n→∞

∫

�

fnundx =
∫

�

f udx. (82)

Indeed,

∫

�

fnundx =
∫

�

fnudx +
∫

�

fn(un − u)dx. (83)

For the first term on the right-hand side of the above equality, we have

lim
n→∞

∫

�

fnudx =
∫

�

f udx,

since fn ⇀ f in L1(�) and u ∈ L∞(�). For the second term on the right-hand
side of (83), we have, for all R > 0,

∫

�

|fn(un − u)|dx ≤
∫

{|fn|>R}
|fn|‖un − u‖L∞(�)dx + R

∫

{|fn|≤R}
|un − u|dx

≤ C
∫

{|fn|>R}
|fn|dx + R

∫

�

|un − u|dx. (84)

For all R fixed, the second term on the right-hand side of above inequality tends to
zero as n→ ∞. Since by Chebyshev’s inequality,

sup
n
meas

({|fn| > R}) ≤ supn ‖fn‖L1(�)
R

≤ C
R

→ 0, as R→ ∞

and because a weakly convergent in L1(�) sequence is equi-integrable on �, by
the choice of R, the first term on the right-hand side of (84) can be made small as
desired. Hence, we deduce that fn(un − u) goes to zero in L1(�). Thus, (82) is
justified.
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Combining (80), (81) and (82), we have

lim inf
n→∞

∫

�

fnundx −
∫

�

b(u)udx −
∫

∂�

|u|r(.,u)dσ

≥ lim inf
n→∞

(∫

�

(
fnun − b(un)un

)
dx −

∫

∂�

|un|rn(.,un)dσ
)

(85)

By using (78), (79), (85) and the definition of An, we get

∫

�

A.∇udx ≥ lim inf
n→∞

∫

�

An.∇undx. (86)

By Andreianov et al. [1], Lemma 2.1, m �→ an(x, un, hm(∇un)).hm(∇un) is
increasing and converges to an(x, un,∇un).∇un for m large enough. Then,

an(x, un, hm(∇un)).hm(∇un) ≤ an(x, un,∇un).∇un.

Therefore, by using (86) and the property (7) of Theorem 2.1, we have

∫

�

A.∇udx ≥ lim inf
n→∞

∫

�

An.∇undx

≥ lim
n→∞

∫

�

an(x, un, hm(∇un)).hm(∇un)dx

=
∫

�×RN

a(x, u, hm(λ)).hm(λ)dνx(λ)dx. (87)

Using Lebesgue’s convergence theorem in (87), as m goes to ∞, we get (a). ��
Lemma 4.1 u is a weak solution of the problem (1).

Proof Firstly, we can prove that u ∈ W 1,p(.,u(.))(�), thanks to Claim 2 and the fact
that u ∈ W 1,p−(�) ↪→ L∞(�) ↪→ Lp(.,u(.))(�). Now, we will prove the equality
(12).

Let un be a weak solution of the problem (Pn). By using (58) and the fact that
un ∈ W 1,pn(.,un(.))(�) ↪→ W 1,p−(�) ↪→ C0,α(�), C∞(�) is dense in the space
W 1,pn(.,un(.))(�). Therefore, for n large enough, we can choose ϕ in C∞(�) as a
test function in the weak formulation of the problem (Pn). Then, we obtain

∫

�

b(un)ϕdx +
∫

∂�

|un|rn(.,un(.))−2unϕdσ +
∫

�

an(x, un,∇un).∇ϕdx

=
∫

�

fnϕdx. (88)
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Currently, we are looking at the third term on the left-hand side of the above equality.
We know that (an(x, un,∇un)∇ϕ)n∈N is equi-integrable, thanks to (75). In addition,
it follows from Claim 3-(b) and Claim 4-(c) that

an(x, un,∇un)∇ϕ→ a(x, u,∇u)∇ϕ a.e. in �.

Therefore, by using Vitali’s theorem, we get

lim
n→∞

∫

�

an(x, un,∇un)∇ϕdx =
∫

�

a(x, u,∇u)∇ϕdx.

Finally using (72), (73), (74), (88) and the above equality, we get (12) for u with all
test functions inC∞(�). Moreover, b(u) ∈ L1(�) and |u|r(.,u)−2u ∈ L1(∂�), since
b(un) strongly converges to b(u) in L1(�) and |un|rn(.,un)−2un strongly converges
to |u|r(.,u)−2u in L1(∂�) (see the reasoning that leads to (72) and (73)). This is the
end of the proof of our lemma. ��
Remark 4.1 Under the assumptions (44), (45) and (H), the whole sequence
(un)n∈N converges to u a.e. in � and a.e. on ∂� and the whole sequence (∇un)n∈N
converges to ∇u a.e. on �, as n→ ∞.

Indeed, by Claim 1, we deduce that (un)n∈N converges to u a.e. in � and a.e. on
∂�, up to extraction of subsequence. From Claim 4-(c), (∇un)n∈N converges to ∇u
a.e. on �, up to extraction of subsequence.

Now, by Lemma 4.1 and the uniqueness of the weak solution to (1) done
in Theorem 3.3, we conclude that all convergent subsequences of (un)n∈N and
(∇un)n∈N converge to the same limits u and ∇u, respectively.
The proof of Theorem 4.1 ends here.
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1 Introduction

The invasive species have a real impact on communities and ecosystems. They are
viewed as a significant component of global change, and they have severe negative
consequences for biodiversity. We consider a model describing the dynamics of
an invasive species with age dependence and spatial structure, and the invasive
species are diffusing in the habitat with a diffusion coefficient depending on the
susceptibility of the habitat to invasion (ecological factors) and/or genetics factors
of the species. We then consider a population with age dependence and spatial
structure, and we assume that the population lives in a bounded domain � ⊂ R

3.

We denote by � the boundary of the domain, and we assume that it is of class C2.
For the time T > 0, the life expectancy of an individual A > 0 and θmin, θmax > 0,
we set I = (θmin, θmax), U = (0, T ) × (0, A), Q = U × �, " = U × �,
QA = (0, A) × �, QT = (0, T ) × � and Qω = U × ω, where ω is a non-empty
open subset of �. For θ ∈ I , the system reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
+ ∂y
∂a

− d(θ)�y + μy = f + vχω in Q,

y = 0 on ",
y(0, ·, ·, θ) = y0 in QA,

y(·, 0, ·, θ) =
∫ A

0
β(t, a, x)y(t, a, x, θ) da in QT ,

(1)
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where

• y = y(t, a, x, θ) is the distribution of individuals of age a ≥ 0, at time t ≥ 0 and
location x ∈ �.

• The recruitment f ∈ L2(Q) is a positive periodic function.
• The control v ∈ L2(Qω), which corresponds to the removal of the individuals in

a sub-domain ω of�, and χω denote the characteristic function of the control set
ω.

• The mortality rate μ = μ(a) ≥ 0 is a known increasing positive function which
is continuous on [0, A], whereas the fertility rate β = β(t, a, x) ∈ L∞(Q) is
known and positive.

• d(θ) > 0 is the diffusion coefficient of species dispersal in the environment and
is assumed depending on susceptibility θ ∈ I and d ∈ C(I ).

Model (1) is a system with varying parameter and our question is as follows: Let zd
be a given age-dependent distribution of species, can the average of the solution to
(1) at time t = T be steered to zd upon selecting a suitable control v corresponding
to a removal (eradication) of species on the sub-domain ω?

lim
a→A

∫ a

0
μ(s)ds = +∞,

Remark 1 Set

W(T,A) =
{

ρ ∈ L2(U ;H 1
0 (�));

∂ρ

∂t
+ ∂ρ
∂a

∈ L2
(
U ;H−1(�)

)}

. (2)

Then, we have (see [4]) that

W(T,A) ⊂ C([0, T ], L2(QA)) andW(T,A) ⊂ C([0, A], L2(QT )). (3)

Under the assumptions on the data, and for θ ∈ I fixed, (1) has a unique solution
y(θ; v) = y(t, a, x, θ; v) in W(T,A). More precisely, we are concerned in this
chapter by the following optimization problem:

inf
v∈L2(Qω)

J (v), (4)

where the cost function is given by

J (v) =
∥
∥
∥
∥

∫

I

y(θ; v)(T ) dθ − zd
∥
∥
∥
∥

2

L2(QA)

+N‖v‖2
L2(Qω)

, (5)

with zd ∈ L2(QA) and N > 0 given,
∫

I

y(θ; v)(T ) dθ ∈ L2(QA), for all v ∈
L2(Qω).

Optimal control for age-structured population was studied later by some authors
like A. Ouedrogo et al. [9]. In this paper, the authors considered a nonlinear age-
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structured population dynamics model, and they study the existence of an optimal
control making the density of the population as close as possible of some given
density. In [1], B. Ainseba et al. investigated the optimal harvesting problem for a
nonlinear age-dependent and spatially structured population dynamics model with
a constant diffusion coefficient, where the birth process is described by a nonlocal
and nonlinear boundary condition. The notion of averaged control was introduced
by Zuazua [10] to analyse the problem of controlling parameter-dependent systems.
In this notion, the aim is to find a control, independent of the unknown parameter, so
that the average of the state is controlled. For more literature on the topic, we refer,
for instance, to Lohéac and Zuazua [6], Lazar and Zuazua [5], Hafdallah and Ayadi
[2] and LU and Zuazua [7], G. Mophou et al. [8] and the references therein. In this
chapter, we are concerned with the control of a parameter-dependent age-structured
population dynamics system. The rest of this chapter is structured as follows. In
Sect. 2, we give some regularity results. In Sect. 3, we prove the existence and the
uniqueness of the control and characterize an optimality system. A conclusion is
given in Sect. 4.

2 Preliminary Results

In order to solve the optimization problem (4), we need some preliminary results.
In what follows, we will sometime adopt the following notation:

⎧
⎪⎨

⎪⎩

L = ∂
∂t

+ ∂

∂a
− d(θ)�+ μI,

L∗ = − ∂
∂t

− ∂

∂a
− d(θ)�+ μI,

(6)

where I is the identity operator.

Remark 2 From now on, we use C(X) to denote a positive constant whose value
varies from a line to another but depends on X; the positive constant d0 = inf

θ∈I d(θ)
and we will denote by (·, ·)H the scalar product in H .

Lemma 2.1 Let v ∈ L2(Qω) and y ∈ L2(U ;H 1
0 (�)) be a solution of (1); then,

we have the following estimations:

‖y‖L2(U ;H 1
0 (�))

≤ C(T , ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f ‖L2(Q) + ‖v‖L2(Qω)

)
,

‖y(T , ·, ·, θ)‖L2(QA) ≤ C(T , ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f ‖L2(Q) + ‖v‖L2(Qω)

)
,

‖y(·, A, ·, θ)‖L2(QT ) ≤ C(T , ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f ‖L2(Q) + ‖v‖L2(Qω)

)
.

Proof We proceed as in [3]. We recall that y = y(t, a, x, θ; v) is the solution of the
problem
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
+ ∂y
∂a

− d(θ)�y + μy = f + vχQω in Q,

y = 0 on ",
y(0, ·, ·, θ) = y0 in QA,

y(·, 0, ·, θ) =
∫ A

0
β(t, a, x)y(t, a, x, θ) da in QT .

By defining z = e−rt y with r > 0, we obtain that z is the solution of the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂z

∂t
+ ∂z
∂a

− d(θ)�z+ (μ+ r)z = f + vχQω in Q,

z = 0 on ",
z(0, ·, ·, θ) = y0 in QA,

z(·, 0, ·, θ) =
∫ A

0
β(t, a, x)z(t, a, x, θ)da in QT .

(7)
Multiplying the first equation of system (7) by z and integrating by parts overQ, we
get

1

2
‖z(T , ·, ·, θ)‖2

L2(QA)
− 1

2
‖z(0, ·, ·, θ)‖2

L2(QA)
+ 1

2
‖z(·, A, ·, θ)‖2

L2(QT )

− 1

2
‖z(·, 0, ·, θ)‖2

L2(QT )
+ d(θ)‖∇z‖2

L2(Q)
+
∫

Q

(r + μ)z2 dxdtda

=
∫

Q

(f + vχQω)z dxdtda.

Then, using the fact that μ ≥ 0, it follows the inequality

1

2
‖z(T , ·, ·, θ)‖2

L2(QA)
+ 1

2
‖z(·, A, ·, θ)‖2

L2(QT )
+ d0‖∇z‖2L2(Q) + r‖z‖2L2(Q)

≤ 1

2
‖y0‖2

L2(QA)
+ 1

2
‖z(·, 0, ·, θ)‖2

L2(QT )
+ 1

2
‖f + vχQω‖2L2(Q)

+ 1

2
‖z‖2
L2(Q)

. (8)

On the other hand, one can write for (t, x) ∈ (0, T )×�

z(t, 0, x, θ) =
∫ A

0
β(t, a, x)z(t, a, x, θ) da,
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then

‖z(·, 0, ·, θ)‖2
L2(QT )

≤ ‖β‖2
L2(Q)

‖z‖2
L2(Q)

.

Thus, (8) gives

1

2
‖z(T , ·, ·, θ)‖2

L2(QA)
+ 1

2
‖z(·, A, ·, θ)‖2

L2(QT )
+ d0‖∇z‖2L2(Q)

+
(

r − 1

2
‖β‖2

L2(Q)
− 1

2

)

‖z‖2
L2(Q)

≤ 1

2
‖f + vχQω‖2L2(Q)

+ 1

2
‖y0‖2

L2(QA)
.

By choosing r such that r = 1

2
‖β‖2

L2(Q)
+ 1

2
, one has

‖z(T , ·, ·, θ)‖2
L2(QA)

+ ‖z(·, A, ·, θ)‖2
L2(QT )

+ ‖z‖2
L2(U ;H 1

0 (�))

≤ C
(
‖y0‖2

L2(QA)
+ ‖f ‖2

L2(Q)
+ ‖v‖2

L2(Qω)

)
.

This implies

‖y(T , ·, ·, θ)‖2
L2(QA)

+ ‖y(·, A, ·, θ)‖2
L2(QT )

+ ‖y‖2
L2(U ;H 1

0 (�))

≤ C(T , ‖β‖L2(Q))
(
‖y0‖2

L2(QA)
+ ‖f ‖2

L2(Q)
+ ‖v‖2

L2(Qω)

)
.

So that,

‖y‖L2(U ;H 1
0 (�))

≤ C(T , ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f ‖L2(Q) + ‖v‖L2(Qω)

)
,

‖y(T , ·, ·, θ)‖L2(QA) ≤ C(T , ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f ‖L2(Q) + ‖v‖L2(Qω)

)
,

‖y(·, A, ·, θ)‖L2(QT ) ≤ C(T , ‖β‖L2(Q))
(
‖y0‖L2(QA) + ‖f ‖L2(Q) + ‖v‖L2(Qω)

)
.

�
Proposition 2.1 Let θ ∈ I , and then the map v �→ y(θ; v) is a continuous function
from L2(Qω) onto L2(U,H 1

0 (�)).

Proof Let θ ∈ I and v0 ∈ L2(Qω). We show that v �→ y(θ; v) is continuous at v0.
Set y = y(θ; v)− y(θ; v0); then, y is solution to the problem
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ly = vχQω − v0χQω in Q,
y = 0 on ",

y(0, ·, ·, θ) = 0 in QA,

y(·, 0, ·, θ) =
∫ A

0
β(t, a, x)yda in QT ,

(9)

In view of Lemma 2.1, we have that

‖y‖L2(U ;H 1
0 (�))

≤ C(T , ‖β‖L2(Q))‖v − v0‖L2(Qω).

As v → v0, we have y → 0 strongly in L2(U ;H 1
0 (�)). Hence, y(θ; v) →

y(θ; v0) strongly in L2(U ;H 1
0 (�)) as v→ v0. �

Proposition 2.2 Let λ > 0. Let v,w ∈ L2(Qω). Let also y = y(θ; v) be a solution

of system (1). Set yλ = y(θ; v + λw)− y(θ; v)
λ

, and then (yλ) converges strongly

in L2(U ;H 1
0 (�)) as λ→ 0 to a function ȳ, which is the solution of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ly = wχQω in Q,
y = 0 on ",

y(0, ·, ·, θ) = 0 in QA,

y(·, 0, ·, θ) =
∫ A

0
β(t, a, x)y da in QT .

(10)

Proof yλ is a solution to the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lyλ = wχQω in Q,
yλ = 0 on ",

yλ(0, ·, ·, θ) = 0 in QA,

yλ(·, 0, ·, θ) =
∫ A

0
β(t, a, x)yλ da in QT .

Define yλ = yλ − y, where y is a solution to (10). Then, yλ is a solution to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lyλ = 0 in Q,
yλ = 0 on ",

yλ(0, ·, ·, θ) = 0 in QA,

yλ(·, 0, ·, θ) =
∫ A

0
β(t, a, x)yλ da in QT .

(11)

From Lemma 2.1, we obtain that

‖yλ‖L2(U ;H 1
0 (�))

≤ 0. (12)
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Passing to the limit in this latter identity when λ → 0, it follows that yλ →
0 strongly in L2(U ;H 1

0 (�)). This means that (yλ) converges to y strongly in
L2(U ;H 1

0 (�)) as λ→ 0. �

3 Existence and Characterization of the Control

In this section, we will show that the optimization problem (4) has a unique solution.
Moreover, we will give the equations that characterize the control.

Proposition 3.1 There exists a unique control u ∈ L2(Qω) solution of (4).

Proof Observing that we have J (0) ≥ 0, we have that the set {J (v) : J (v) ≥
0, v ∈ L2(Qω)} is a non-empty lower bounded subset of R, and consequently α =

inf
v∈L2(Qω)

J (v) exists. Let (vn)n be a minimizing sequence such that

J (vn)→ α, when n→ +∞. (13)

Then, we have that there exists C > 0 independent of n such that for all n ∈ N,
J (vn) ≤ C; i.e.,

∥
∥
∥
∥

∫

I

y(θ; vn)(T ) dθ − zd
∥
∥
∥
∥

2

L2(QA)

+N‖vn‖2L2(Qω) ≤ C,

so

‖vn‖L2(Qω) ≤ C, (14)
∥
∥
∥
∥

∫

I

y(θ; vn)(T ) dθ
∥
∥
∥
∥
L2(QA)

≤ C. (15)

Now, yn = y(t, a, x, θ; vn) is the solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂yn

∂t
+ ∂yn
∂a

− d(θ)�yn + μyn = f + vnχQω in Q,

yn = 0 on ",
yn(0, ·, ·, θ) = y0 in QA,

yn(·, 0, ·, θ) =
∫ A

0
β(t, a, x)yn(t, a, x, θ) da in QT .

(16)
In view of (14), we obtain from Lemma 2.1 that

‖yn‖L2(U ;H 1
0 (�))

≤ C(T , ‖β‖L2(Q), ‖y0‖L2(QA), ‖f ‖L2(Q)), (17)
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‖yn(T , ·, ·, θ)‖L2(QA) ≤ C(T , ‖β‖L2(Q), ‖y0‖L2(QA), ‖f ‖L2(Q)), (18)

‖yn(·, A, ·, θ)‖L2(QT ) ≤ C(T , ‖β‖L2(Q), ‖y0‖L2(QA), ‖f ‖L2(Q)). (19)

Using (14), (17), (18) and (19), there exist u ∈ L2(Qω), y ∈ L2(U ;H 1
0 (�)),

yT ∈ L2(QA), yA ∈ L2(QT ) and extracted sequences from the sequences (vn)n,
(yn)n, (yn(T , ·, ·, θ))n, (yn(·, A, ·, θ))n still denoted (vn)n, (yn)n, (yn(T , ·, ·, θ))n,
(yn(·, A, ·, θ))n such that the following convergences hold:

vn ⇀ u weakly in L2(Qω), (20)

yn ⇀ y weakly in L2(U ;H 1
0 (�)), (21)

yn(T , ·, ·, θ) ⇀ yT weakly in L2(QA), (22)

yn(·, A, ·, θ) ⇀ yA weakly in L2(QT ). (23)

Now, let us prove that (u, y) satisfies (1). Let φ ∈ D(Q) be a test function.
Multiplying the first equation in (16) by φ and integrating by parts over Q, we
obtain

〈
yn, L

∗φ
〉 = 〈f, φ〉 + 〈vnχω, φ〉 , ∀φ ∈ D(Q). (24)

Taking the limit as n −→ +∞ in (24) and using (20) and (21) yield

〈
y, L∗φ

〉 = 〈f, φ〉 + 〈uχω, φ〉 , ∀φ ∈ D(Q);

that is

〈Ly, φ〉 = 〈f, φ〉 + 〈uχω, φ〉 , ∀φ ∈ D(Q).

Thus,

Ly = f + uχω in Q. (25)

Now, on the one hand, as y ∈ L2(U ;H 1
0 (�)), using (25), we have that

∂y

∂t
+

∂y

∂a
∈ L2(U ;H−1(�)). This implies that y ∈ W(T,A), and using Remark 1, it

follows that y(T , ·, ·, θ) and y(0, ·, ·, θ) exist and belong to L2(QA) and y(·, A, ·)
and y(·, 0, ·, θ) exist and belong to L2(QT ). On the other hand, y ∈ L2(Q)
and d(θ)�y ∈ H−1(U ;L2(�)); consequently, y|" and ∂y

∂ν
|" exist and belong,

respectively, to H−1(U ;H− 1
2 (�)) and H−1(U ;H− 3

2 (�)). Multiplying the first
equation in (16) by φ ∈ C∞(Q) such that φ = 0 on ", φ(·, A, ·) = 0 in QT and
integrating by parts over Q and using initials and boundary conditions, we obtain
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(yn(T , ·, ·, θ), φ(0, ·, ·))L2(QA) − (y0, φ(0, ·, ·))L2(QA)
− (yn(·, 0, ·, θ), φ(·, 0, ·))L2(QT ) +

(
yn, L

∗φ
)
L2(Q)

(26)

= (f, φ)L2(Q) + (vn, φ)L2(Qω)
∀φ ∈ C∞(Q), φ = 0 on ",φ(·, A, ·) = 0 in QT .

Note that

yn(·, 0, ·, θ) ⇀ y1=
∫ A

0
β(t, a, x)y(t, a, x, θ) da weakly in L2(QT ). (27)

Indeed, let φ ∈ L2(QT ), and then
∫

QT

yn(t, 0, x, θ)φ(x, t) dxdt =
∫

QT

(∫

A
β(t, a, x)yn(t, a, x, θ)da

)

φ(x, t) dxdt

=
∫

Q
yn(t, a, x, θ)ψ(t, a, x) dxdtda, (28)

where ψ(t, a, x) = β(t, a, x)φ(x, t) ∈ L2(Q). By letting n → +∞ in (28) while
using (21), we obtain

lim
n→+∞

∫

QT

yn(t, 0, x, θ)φ(x, t) dxdt

=
∫

Q

y(t, a, x, θ)ψ(t, a, x) dxdtda

=
∫

Q

β(t, a, x)y(t, a, x, θ)φ(x, t) dxdtda

=
∫

QT

(∫

A

β(t, a, x)y(t, a, x, θ)da

)

φ(x, t) dxdt.

So that (27) holds. Moreover, by taking the limit as n→ +∞ in (26) and by using
(20)–(22) and (27), we are lead to

(yT , φ(0, ·, ·))L2(QA) − (y0, φ(0, ·, ·))L2(QA)
− (y1, φ(·, 0, ·))L2(QT ) +

(
y, L∗φ

)
L2(Q)

= (f, φ)L2(Q) + (u, φ)L2(Qω) ,
∀φ ∈ C∞(Q), φ = 0 on ",φ(·, A, ·) = 0 in QT .

An integration by parts gives

(yT , φ(T , ·, ·))L2(QA) − (y0, φ(0, ·, ·))L2(QA) − (y1, φ(·, 0, ·))L2(QT )
− (y(T , ·, ·, θ), φ(T , ·, ·))L2(QA) + (y(0, ·, ·, θ), φ(0, ·, ·))L2(QA)
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− (y(·, 0, ·, θ), φ(·, 0, ·))L2(QT ) + (Ly, φ)L2(Q)
−
〈

y,
∂φ

∂ν

〉

H−1(U ;H− 1
2 ),H 1

0 (U ;H 1
2 )

= (f, φ)L2(Q) + (u, φ)L2(Qω) ,

∀φ ∈ C∞(Q), φ = 0 on ",φ(·, A, ·) = 0 in QT .

That is, in view of (25),

(yT , φ(T , ·, ·))L2(QA) − (y0, φ(0, ·, ·))L2(QA) − (y1, φ(·, 0, ·))L2(QT )
− (y(T , ·, ·, θ), φ(T , ·, ·))L2(QA) + (y(0, ·, ·, θ), φ(0, ·, ·))L2(QA)
− (y(·, 0, ·, θ), φ(·, 0, ·))L2(QT ) −

〈

y,
∂φ

∂ν

〉

H−1(U ;H− 1
2 ),H 1

0 (U ;H 1
2 )

= 0,

∀φ ∈ C∞(Q), φ = 0 on ",φ(·, A, ·) = 0 in QT . (29)

Choosing, respectively, in (29), φ such that φ(T , ·, ·) = 0, φ(·, 0, ·) = 0,
∂φ

∂ν
= 0

and φ(·, 0, ·) = 0,
∂φ

∂ν
= 0 and

∂φ

∂ν
= 0, we successively obtain

y(0, ·, ·, θ) = y0 in QA. (30)

yT = y(T , ·, ·, θ) in QA. (31)

y(·, 0, ·, θ) =
∫ A

0
β(t, a, x)y(t, a, x, θ)da in QT , (32)

and finally from (29),

y = 0 on ". (33)

By (25) and (30)-(33), it follows that (u, y) solves (1). Moreover, if we set

Vn =
∫

I

yn(T , ·, ·, θ) dθ,

then in view of (15), there exist a subsequence of the sequence (Vn)n still denoted
(Vn)n and V ∈ L2(QA) such that as n→ +∞, ∀φ ∈ L2(QA),

∫

QA

Vn(a, x)φ(a, x) dadx =
∫

I

(∫

QA

yn(T , ·, ·, θ)φ(a, x)dadx
)

dθ

→
∫

QA

V (a, x)φ(a, x) dadx. (34)
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Now, using (18) we deduce that the sequence (yn(T , ·, ·, θ))n is bounded
independently of θ . Moreover, using (22) and ((31)), it follows that

lim
n→+∞

∫

QA

yn(T , a, x, θ)φ(a, x) dadx =
∫

QA

y(T , a, x, θ)φ(a, x) dadx,

for all φ ∈ L2(QA). If we set zn =
∫

QA

yn(T , a, x, θ)φ(a, x) dadx, then using

(18), we get, for all n ∈ N,

|zn| ≤ C‖φ‖L2(QA).

It follows from the Lebesgue dominated convergence theorem that

lim
n→+∞

∫

I

zn dθ =
∫

I

lim
n→+∞ zndθ

=
∫

I

(∫

QA

y(T , a, x, θ)φ(a, x) dadx

)

dθ.

So,
∫

QA

Vn(a, x)φ(a, x) dadx converges towards

∫

I

(∫

QA

yT (a, x, θ)φ(a, x)dadx

)

dθ =
∫

QA

(∫

I

y(T , a, x, θ)dθ

)

φ(a, x)dadx,

∀φ ∈ L2(QA).

Using (34) and the uniqueness of the limit, we have that for (a, x) ∈ QA

V (a, x) =
∫

I

y(T , a, x, θ) dθ,

so we can write
∫

I

yn(T , ·, ·, θ) dθ ⇀
∫

I

y(T , ·, ·, θ)dθ weakly in QA. (35)

According to (13), from the weak lower semi-continuity of the function v �→
J (v), (20) and (35), we obtain J (u) ≤ lim inf

n−→+∞ J (vn), which implies that J (u) ≤ α.
But since α is the lower bound, we then have α = J (u). In addition, the function J
is strictly convex. Therefore, u is unique. �
We can now characterize the control u.
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Proposition 3.2 Let u be the solution of (1). Then, there exists q ∈ L2(U ;H 1
0 (�))

such that
∫

I

q(θ) dθ ∈ L2(Q) and {y, q} is a solution to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
+ ∂y
∂a

− d(θ)�y + μy = f + uχQω in Q,

y = 0 on ",
y(0, ·, ·, θ) = y0 in QA,

y(·, 0, ·, θ) =
∫ A

0
β(t, a, x)y(t, a, x, θ) da in QT ,

(36)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−∂q
∂t

− ∂q
∂a

− d(θ)�q + μq = β(t, a, x)q(·, 0, ·, θ) in Q,

q = 0 on ",

q(T , ·, ·, θ) =
∫

I

y(θ, u)(T ) dθ − zd in QA,

q(·, A, ·, θ) = 0 in QT ,

(37)

and

u = − 1

N

∫

I

q(θ) dθ in Qω. (38)

Proof We write the Euler–Lagrange first-order optimality condition that character-
izes the optimal control u.

lim
λ→0

J (u+ λv)− J (u)
λ

= 0, ∀v ∈ L2(Qω).

Let v ∈ L2(Qω) and λ > 0. We have

J (u+ λv)− J (u) =
∥
∥
∥
∥

∫

I

[y(θ; u+ λv)(T )− y(θ; u)(T )] dθ
∥
∥
∥
∥

2

L2(QA)

+N2λ2‖v‖2
L2(Qω)

+ 2Nλ
∫

L2(Qω)

uv dadxdt

+ 2

(∫

I

[y(θ; u+ λv)(T )− y(θ; u)(T )] dθ;
∫

I

y(θ; u)(T ) dθ − zd
)

L2(QA)

.

Then,

J (u+ λv)− J (u)
λ

= λ
∥
∥
∥
∥

∫

I

[
y(θ; u+ λv)(T )− y(θ; u)(T )

λ

]

dθ

∥
∥
∥
∥

2

L2(QA)



Optimal Control of Averaged State of a Population Dynamics Model 125

+N2λ‖v‖2
L2(Qω)

+ 2N
∫

L2(Qω)

uv dadxdt

+ 2

(∫

I

[
y(θ; u+ λv)(T )− y(θ; u)(T )

λ

]

dθ;
∫

I

y(θ; u)(T ) dθ − zd
)

L2(QA)

.

(39)

Let us set zλ := zλ(θ; v) = y(θ; u+ λv)− y(θ; u)
λ

; then, using Proposition 2.2,

we deduce that as λ → 0, the sequence zλ converges strongly to z(θ; v) in
L2(U ;H 1

0 (�)), where z = z(θ; v) is solution to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂z

∂t
+ ∂z
∂a

− d(θ)�z+ μz = vχQω in Q,

z = 0 on ",
z(0, ·, ·, θ) = 0 in QA,

z(·, 0, ·, θ) =
∫ A

0
β(t, a, x)z(t, a, x, θ) da in QT .

(40)

Moreover, since
∫

I

y(θ; u)(T ) dθ ∈ L2(QA), we also have
∫

I

z(θ; v)(T ) dθ ∈
L2(QA). Taking (40) into account, passing to the limit as λ→ 0 in (39) and using
the Lebesgue dominated convergence theorem, we are lead to

(∫

I

z(T , ·, ·, θ) dθ;
∫

I

y(θ; u)(T ) dθ − zd
)

L2(QA)

+N
∫

L2(Qω)

uv dadxdt = 0,

∀v ∈ L2(Qω). (41)

To interpret ((41)), we consider the following adjoint system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L∗q = β(t, a, x)q(·, 0, ·, θ) in Q,
q = 0 on ",

q(T , ·, ·, θ) =
∫

I

y(θ; u)(T ) dθ − zd in QA,
q(·, A, ·, θ) = 0 in QT .

(42)

where q = q(θ, u) is such that
∫

I

q(θ) dθ ∈ L2(Q). Since β(t, a, x) ∈ L∞(Q)

and q(·, 0, ·, θ) ∈ L2(QT ), then β(t, a, x)q(·, 0, ·, θ) ∈ L2(Q), and using that∫

I

y(θ; u)(T ) dθ−zd ∈ L2(QA), it follows that q ∈ L2(U ;H 1
0 (�)) and

∂q

∂t
+ ∂q
∂a

∈
L2(U ;H−1(�)). So, if we multiply the first equation in (40) by q solution of (42)
and integrating by parts overQ, we obtain
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(z(T , ·, ·, θ), q(T , ·, ·, θ))L2(QA) + (z(·, A, ·, θ), q(·, A, ·, θ))L2(QT )
− (z(·, 0, ·, θ), q(·, 0, ·, θ))L2(QT ) −

∫

"

q
∂z

∂ν
dσdxdt + (

z, L∗q
)
L2(Q)

= (v, q)L2(Qω) ;

that is,

(z(T , ·, ·, θ), q(T , ·, ·, θ))L2(QA) + (z(·, A, ·, θ), q(·, A, ·, θ))L2(QT )
− (z, β(t, a, x)q(·, 0, ·, θ))L2(Q) −

∫

"

q
∂z

∂ν
dσdxdt + (

z, L∗q
)
L2(Q)

= (v, q)L2(Qω) . (43)

Using (42), (43) is rewritten as

(

z(T , ·, ·, θ);
∫

I

y(θ; u)(T ) dθ − zd
)

L2(QA)

=
∫

Qω

vq dxdt; (44)

then, an integration by parts with respect to θ on J leads us to

(∫

I

z(T , ·, ·, θ) dθ;
∫

I

y(θ; u)(T ) dθ − zd
)

L2(QA)

=
(

v,

∫

I

q(θ) dθ

)

L2(Qω)

.

(45)

Combining (41) and (45), we obtain

∫

L2(Qω)

v

(∫

I

q(θ) dθ

)

dadxdt +N
∫

L2(Qω)

uv dadxdt = 0 ∀v ∈ L2(Qω);

that is,

∫

L2(Qω)

(∫

I

q(θ) dθ +Nu
)

v dadxdt = 0 ∀v ∈ L2(ωT ),

which implies that

u = − 1

N

∫

I

q(θ) dθ in Qω. (46)

�
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4 Conclusion

In this chapter, we proved that after averaging the cost function related to our model,
the system is still controllable and gives an optimal control that does not depend on
the unknown parameter.
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C0-Semigroup and Stepanov-Like Almost
Automorphic Functions in Matched
Spaces of Time Scales

Chao Wang and Gaston M. N’Guérékata
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1 Introduction

In 1935, S. Bochner introduced the concept of almost automorphic functions
referred to some research aspects of differential geometry (see [1]). As is well
known that almost periodicity is a particular case of almost automorphy. For some
main research contributions of almost automorphic functions and the applications
to dynamic equations, one may refer to the literature [2–5]. Based on these
works, some excellent contributions of generalizations such as weighted pseudo
almost automorphic functions and Stepanov-like almost automorphic functions
were achieved (see [6, 7]).

In 1988, the time scale theory was initiated by S. Hilger (see [8]) to unify the
discrete and continuous analysis (see [9]). This powerful tool was also applied to
study almost automorphic functions and dynamic equations by many researchers
(see [10–14]). In 2017, the almost periodic problems in matched spaces of time
scales were proposed and studied for the first time, which can cover the quantum
case (see [15, 16]), and then the concept of matched spaces of time scales is
introduced to enlarge the scope of suitable time scales on mathematical analysis
(see [17]), which can include the new periodic time scale initiated by M. Adıvar
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as a special case (see [18]). Based on these works, some major contributions were
achieved in relation to almost periodic and almost automorphic topic under matched
spaces and irregular time scales for the first time (see [19–23]).

This chapter mainly focuses on C0-semigroup and Stepanov-like almost auto-
morphic functions on a quantum time scale and generalizations under matched
spaces of time scales, and it is organized as follows. In Sect. 2, the C0-semigroup
on a quantum time scale is introduced and investigated. In Sect. 3, Stepanov-like
almost automorphic functions on a quantum time scale are introduced and their basic
properties are investigated. Section 4 is devoted to generalizing the quantum case to
more comprehensive irregular time scales under the theory of matched spaces of
time scales.

2 C0-Semigroup on a Quantum Time Scale

The #-semigroup for invariant under translation time scales was proposed in the
literature [24]. In this section, we will introduce the concept of C0-semigroup on a
quantum time scale and study its properties.

Let a quantum time scale be Tq = {
qn : q > 1, n ∈ Z

}
, and we introduce

the notations T −
q = {

qn : q > 1, n ∈ Z
−}, T +

q = {
qn : q > 1, n ∈ Z

+}, and
Tq = T −

q ∪ T +
q ∪ {1}.

Now, we denote T τq = {t · τ : t ∈ Tq} and T τ−1

q = {t · τ−1 : t ∈ Tq} for τ ∈ Tq .
Then, if τ ∈ Tq\{1}, then Tq = T τq , i.e., Tq coincides exactly with T τq after a shift
τ , and we say Tq is invariant with respect to the operation (·).

The following theorem is obvious through direct calculation check.

Theorem 2.1 Let Tq be a quantum time scale. Then,

(i) ∀τ1, τ2 ∈ Tq , we have τ1 · τ2 ∈ Tq .
(ii) ∀τ1, τ2, τ3 ∈ Tq , we have (τ1 · τ2) · τ3 = τ1 · (τ2 · τ3).

(iii) There exists an element e = 1 ∈ Tq , such that for all elements τ ∈ Tq , the
equation 1 · τ = τ · 1 = τ holds.

(iv) ∀τ ∈ Tq , there exists an element τ−1 ∈ Tq such that τ · τ−1 = 1, where 1 is
the identity element.

(v) ∀τ1, τ2 ∈ Tq , we have τ1 · τ2 = τ2 · τ1.

According to Theorem 2.1, the following result follows immediately.

Theorem 2.2 The pair (Tq, ·) forms an Abelian group.

Next, let X be a Banach space and Tτ : X → X be a transformation for τ ∈ Tq .
Obviously, {Tτ : τ ∈ Tq} is a set with a single parameter. Then, the multiplication
is defined as follows:

Tτ1Tτ2 = Tτ1·τ2 , (2.1)
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which yields that

Tτ1
(
Tτ2Tτ3

) = (
Tτ1Tτ2

)
Tτ3 = Tτ1·τ2·τ3 ,

I = Te is the identity, and Tτ−1 is the inverse element of Tτ . By these definitions
and notations, the following theorem is immediate.

Theorem 2.3 {Tτ : τ ∈ Tq} forms an Abelian operator group with respect to the
multiplication defined by (2.1).

In view of Theorem 2.3, we will establish some basic concepts that are necessary
to define a C0-semigroup for a quantum invariant time scale.

Definition 2.1 Let T be a quantum invariant time scale and {Tτ } be a collection of
bounded linear operators on Banach space X. If for all τ1, τ2 ∈ T +

q , the following
holds:

Tτ1·τ2 = Tτ1Tτ2 , (2.2)

then {Tτ : τ ∈ T +
q } is called a single-parameter operator semigroup; if (2.2) holds

for all τ ∈ Tq , we call {Tτ : τ ∈ Tq} a single-parameter operator group.

Definition 2.2 Let Tq be a quantum time scale and {Tτ : τ ∈ T +
q } be an operator

group on a Banach space X, i.e.,

Tτ1Tτ2 = Tτ1·τ2 , τ1, τ2 ∈ T +
q , Te = I.

Then, {Tτ : τ ∈ T +
q } is said to be the strong continuous operator semigroup or the

C0-semigroup.

In what follows, we introduce the definition of infinitesimal generator of a C0-
semigroup on a quantum invariant time scale.

Definition 2.3 Let Tq be a quantum time scale and {Tτ : τ ∈ T +
q } be a C0-

semigroup on a Banach spaceX. Let D denote a subset ofX, which has the property
that for each x ∈ D there exists a y ∈ X such that

∥
∥
∥
∥

1

q − 1
(Tq − I )x − y

∥
∥
∥
∥ = 0. (2.3)

We define A : D → X satisfying A = 1
q−1 (Tq − I ) and Ax = y, where y is fixed

by (2.3) and A is called the infinitesimal generator of the C0-semigroup.

Theorem 2.4 Let Tq be a quantum time scale, {Tτ : τ ∈ T +
q } be aC0-semigroup on

Banach space X, and A be the infinitesimal generator of the C0-semigroup. Then, A
is a closed densely defined operator, and for every x ∈ D(A), the following holds:
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dq
dq t

Tτ x = A(Tτ x) = TτAx,

that is

(Tτ x)− x =
∫ τ

1
ATsxdqs =

∫ τ

1
TsAxdqs,

where D(A) denotes the domain of the operator A.

Proof By Definition 2.3, this theorem is immediate by direct calculation. �

3 Stepanov-Like Almost Automorphic Functions
on a Quantum Time Scale

In this section, we will introduce the concept of Stepanov-like almost automorphic
functions on a quantum time scale and provide some basic properties.

Definition 3.1 A function f ∈ C(Tq,X), where X is a Banach space, is said to
be almost automorphic (a.a. for short) in Bochner’s sense if for every sequence of
(s

′
n) ⊂ Tq , there exists a subsequence (sn) such that

g(t) := lim
n→∞ f (t · sn)

is well defined for each t ∈ Tq , and

lim
n→∞ g(t · s

−1
n ) = f (t)

for each t ∈ Tq .
If the convergence above is uniform in t ∈ X, then f is almost periodic in

Bochner’s sense. We denote by AAq(X) the collection of all (Bochner) almost
automorphic functions Tq → X. Then, similar to the results from the literature
[2, 25], we have

Theorem 3.1 If f, f1, f2 ∈ AAq(X), then

(i) f1 + f2 ∈ AAq(X);
(ii) λf ∈ AAq(X) for any scalar λ;

(iii) fα ∈ AAq(X) where fα : Tq → X is defined by fα(·) = f (·α);
(iv) the range Rf := {

f (t) : t ∈ Tq
}

is relatively compact in X, and thus f is
bounded in norm; and

(v) if fn → f uniformly on Tq where fn ∈ AAq(X), then f ∈ AAq(X).
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Proof Similar to the proof process in the literature [25], one can easily prove this
theorem through replacing the operation + by ·, and it will be omitted here. �
AAq(X) equipped with the sup-norm ‖f ‖AAq(X) = supt∈Tq ‖f (t)‖ turns out to

be a Banach space. Now, we denote by AAuq(X) the closed subspace of all functions
f ∈ AAq(X) with g ∈ C(Tq,X). Equivalently, f ∈ AAuq(X) if and only if f is
almost automorphic and all convergences in Definition 3.1 are uniform on compact
intervals. Obviously, we have

APq(X) ⊆ AAuq(X) ⊂ AAq(X) ⊂ BCq(X),

where BCq(X) stands for the Banach space of bounded and continuous functions
with values in X.

Definition 3.2 The Bochner transform f b(t, s), t ∈ Tq, s ∈ [1, L]Tq , of a function
f (t) on Tq , with values in X, is defined by

f b(t, s) = f (t · s).

Remark 3.1 A function ϕ(t, s), t ∈ Tq , s ∈ [1, L]Tq , is the Bochner transform of a
certain function f (t),

ϕ(t, s) = f b(t, s),

if and only if

ϕ(t · τ, s · τ−1) = ϕ(s, t)

for all t ∈ Tq , s ∈ [1, L]Tq and τ ∈ [sL−1, s]Tq .
Definition 3.3 Let p ∈ [1,∞). The space BSpq (X) of Stepanov bounded functions,
with the exponent p, consists of all measurable functions f on Tq with values in X

such that f b ∈ L∞(Tq, Lp(1, L;X)). This is a Banach space with the norm:

‖f ‖Sp = ‖f b‖L∞(Tq ,Lp) = sup
t∈Tq

(∫ tL

t

‖f (τ)‖p
X
dqτ

) 1
p

.

Definition 3.4 The space ASpq (X) of Sp-almost automorphic functions consists of
all f ∈ BSpq (X) such that f b ∈ AAq(Lp(1, L;X)).

Definition 3.4 also has the following equivalent form.

Definition 3.5 A function f ∈ Lploc(Tq;X) is said to be Sp-almost automorphic if
its Bochner transform f b : Tq → Lp(1, L;X) is almost automorphic in the sense
that for every sequence of numbers (s

′
n) ⊂ Tq , there exist a subsequence (sn) and a

function g ∈ Lploc(Tq,X) such that
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(∫ L

1
‖f (t · sn · s)− g(t · s)‖pdqs

) 1
p → 0

and

(∫ L

1
‖g(t · s−1

n · s)− f (t · s)‖pdqs
) 1
p → 0

as n→ ∞ pointwise on Tq .

Remark 3.2 Note that if 1 ≤ p < p̂ < ∞ and f ∈ Lp̂loc(Tq;X) is Sp̂-almost
automorphic, then f is Sp-almost automorphic. Also, if f ∈ AAq(X), then f is
Sp-almost automorphic for any 1 ≤ p <∞.

Remark 3.3 Note that f ∈ AAuq(X) if and only if f b ∈ AAq(L∞(1, L;X)). Hence,
AAuq(X) can be regarded as AS∞

q (X).

Theorem 3.2 We have the following equivalent statements:

(i) f ∈ ASpq (X);
(ii) f b ∈ AAuq(Lp(1, L;X)); and

(iii) for each sequence (s
′
n) ⊂ Tq , there exists a subsequence (sn) such that

g(t) := lim
n→∞ f (t · sn) (3.1)

exists in the space Lploc(Tq;X) and

f (t) = lim
n→∞ g(t · s

−1
n ) (3.2)

in the sense of Lploc(Tq,X).

Proof (ii)⇒ (i): trivial.
(iii)⇒ (ii): Now, we prove that

lim
n→∞ f

b(t · sn, τ ) = gb(t, τ )

in C(Tq;Lp(1, L;X)). In fact,

sup
t∈[h−1,h]

‖f b(t ·sn, τ )−gb(t, τ )‖Lp(1,L;X) ≤
(∫ hL

h−1
‖f (t ·sn)−g(t)‖pdqt

) 1
p → 0.

Similarly, we have

lim
n→∞ g

b(t · s−1
n , τ ) = f b(t, τ )

in C(Tq;Lp(1, L;X)).
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(i) ⇒ (iii): Let f b(t · sn, τ ) → ϕ(t, τ ) pointwise, where ϕ is a measurable
function with values in Lp(1, L;X)). By Remark 3.1, ϕ(t, τ ) = gb(t, τ ), here,
gb ∈ Lploc(1, L;X). Let

ρn :=
∫ h

h−1
‖f (t · sn)− g(t)‖pdqt.

We will prove that ρn → 0. Indeed, assume that n̂(h−1) and n̂(h) are the positive
integers such that qn̂(h

−1) = h−1 and qn̂(h) = h; then, we have

ρn =
n̂(h)∑

k=n̂(h−1)

∫ qkL

qk
‖f (t · sn)− g(t)‖pdqt

=
n̂(h)∑

k=n̂(h−1)

‖f b(qk · sn, τ )− gb(qk, τ )‖pLp(1,L;X) → 0,

which implies (3.1).
Similarly, we can obtain (3.2). The proof is completed. �

Theorem 3.3 ASpq (X) is a closed linear subspace of BSpq (X).

Proof First, we prove that ASpq (X) is closed linear subspaces of BSpq (X). Now,
let f1, f2 ∈ ASpq (X); then, by Definition 3.3, f b1 , f

b
2 ∈ AAq(Lp(1, L;X)), so by

Definition 3.3 and Theorem 3.2, we have f b1 , f
b
2 ∈ AAq(X).

By Minkowski’s lemma, we have

‖f1 + f2‖ = ‖f b1 + f b2 ‖L∞(Tq ,Lp) = sup
t∈Tq

(∫ tL

t

‖f1(τ )+ f2(τ )‖pXdqτ
) 1
p

≤ sup
t∈Tq

(∫ tL

t

‖f1(τ )‖pXdqτ
) 1
p + sup

t∈Tq

(∫ tL

t

‖f2(τ )‖pXdqτ
) 1
p

= ‖f b1 ‖L∞(Tq ,Lp) + ‖f b2 ‖L∞(Tq ,Lp) = ‖f1‖Sp + ‖f2‖Sp .

Hence, we have f1 + f2 ∈ ASpq (X).
Moreover, it is clear that λf1 ∈ ASpq (X) for any scalar λ.
Finally, by employing again Minkowski’s lemma, we can prove that if (fn) is a

sequence in ASpq (X) that converges to f in Sp-norm, then f ∈ ASpq (X). The proof
is completed. �

The following theorem is immediate.

Theorem 3.4 Let f ∈ ASpq (X) and A ∈ L(X), the Banach algebra of all bounded
linear operators X → X. Then, Af ∈ ASpq (X).
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Now, we have the following composition theorem.

Theorem 3.5 Let F : Tq × X → X be Sp-almost automorphic. Suppose that
F(t, x) is Lipschitzian in x ∈ X uniformly in t ∈ Tq , i.e., there exists L > 0
such that

‖F(t, u)− F(t, v)‖ ≤ L‖u− v‖

for all t ∈ Tq , (u, v) ∈ X × X.
If φ ∈ ASpq (X), then ϒ : Tq → X defined by ϒ(·) := F(·, φ(·)) belongs to

AS
p
q (X).

Proof Since φ ∈ ASpq (X), for every sequence (s
′
n), there exist a subsequence (sn)

and a function ψ ∈ Lp(Tq,X) such that

(∫ L

1
‖φ(t · sn · s)− ψ(t · s)‖pdqs

) 1
p → 0, (3.3)

and

(∫ L

1
‖ψ(t · s−1

n · s)− φ(t · s)‖pdqs
) 1
p → 0 (3.4)

as n→ ∞ on Tq pointwise.
Since F : Tq × X → X, (t, u) → F(t, u) is Sp-almost automorphic in t ∈ Tq

uniformly in u ∈ X, for every sequence (σ
′
n), there exist a subsequence (σn) and a

function G(·, u) ∈ Lp(Tq;X) such that

(∫ L

1
‖F(t · σn · s, u)−G(t · s, u)‖pdqs

) 1
p → 0, (3.5)

and

(∫ L

1
‖G(t · σ−1

n · s, u)− F(t · s, u)‖pdqs
) 1
p → 0 (3.6)

as n→ ∞ on Tq pointwise for each u ∈ X.
Now, by employing Minkowski’s inequality, we have

(∫ L

1
‖F(t · sn · s, φ(t · sn · s))−G(t · s, ψ(t · s))‖pdqs

) 1
p

≤
(∫ L

1
‖F(t · sn · s, φ(t · sn · s))− F(t · sn · s, ψ(t · s))‖pdqs

) 1
p
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(∫ L

1
‖F(t · sn · s, ψ(t · s))−G(t · s, ψ(t · s))‖pdqs

) 1
p

≤ L
(∫ L

1
‖φ(t · sn · s)− ψ(t · s)‖pdqs

) 1
p

+
(∫ L

1
‖F(t · sn · s, ψ(t · s))−G(t · s, ψ(t · s))‖pdqs

) 1
p

,

and though (3.3) and (3.5), we have

(∫ L

1
‖F(t · sn · s, φ(t · sn · s))−G(t · s, ψ(t · s))‖pdqs

) 1
p → 0

as n→ ∞.
Similar to the above, by employing Minkowski’s inequality and both (3.4) and

(3.6), we can also obtain

(∫ L

1
‖G(t · s−1

n · s, ψ(t · s−1
n · s))− F(t · s, φ(t · s))‖pdqs

) 1
p → 0

as n→ ∞. This completes the proof. �

4 Weak Almost Automorphy on a Quantum Time Scale

In this section, we will introduce the concept of weakly almost automorphic
functions (in short w.a.a.) on a quantum time scale.

Definition 4.1 A weakly continuous function f : Tq → X is weakly almost
automorphic if for each sequence (s

′
n) ⊂ Tq , there exists a subsequence (sn) such

that

g(t) := weak − lim
n→∞ f (t · sn)

is well defined for each t ∈ Tq , and

weak − lim
n→∞ g(t − sn) = f (t)

for each t ∈ Tq .
Also, Definition 4.1 has the following equivalent form.
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Definition 4.2 f is weakly almost automorphic, if for every v ∈ X
∗ (dual space),

the numerical function 〈v, f 〉 is almost automorphic. f is weakly Sp-almost
automorphic, if 〈v, f 〉 ∈ ASpq ∀v ∈ X

∗.

For convenience, we denote the collection of all weakly almost automorphic
functions by WAAq(X) and the collection of all weakly Sp-almost automorphic
functions byWASpq (X).

The following relations are immediate:

AAq(X) ⊂ WAAq(X),

AAuq(X) ⊂ WAAuq(X),

AS
p
q (X) ⊂ WASpq (X).

Theorem 4.1 (i) Assume that f ∈ WAAq(X). Then, f is bounded and its range
is separable. As a consequence, f ∈ L∞(Tq,X). (ii) If f ∈ WASpq (X), then
f ∈ BSpq (X).
Proof (i). By contradiction. Suppose that supt∈Tq ‖f (t)‖ = ∞, then there exists a

sequence (s
′
n) ⊂ Tq such that limn→∞ ‖f (s ′n)‖ = ∞. Because f is weakly almost

periodic, one can extract a subsequence (s
′
n) such that

weak − lim
n→∞ f (sn) = α exists.

Then, (f (sn)) is a weakly convergent sequence, and thus it is weakly bounded
and therefore bounded; this is a contradiction. From (i), we can obtain (ii)
immediately. �
Theorem 4.2 Let X0 ⊂ X1 be a continuous and dense embedding of Banach
spaces. (i) If f ∈ L∞(Tq,X0) is a weakly continuous function and f ∈ WAAq(X1)

(respectively, f ∈ WAAuq(X1)), then f ∈ WAAq(X0) (respectively, f ∈
WAAuq(X0)).

(ii) If f ∈ BSpq (X0) and f ∈ WASpq (X1), then f ∈ WASpq (X0).

Proof

(i) The dual embedding X
∗
1 ⊂ X

∗
0 is dense and continuous. Therefore, for each

v ∈ X
∗
0, there exists a sequence vn ∈ X∗

1 such that limn→∞ vn = v in X∗
0. Since

|〈v, f (t)〉 − 〈vn, f (t)〉| ≤ ‖f ‖L∞(Tq ;X0)‖v − vn‖X∗
0
,

and all functions 〈vn, f 〉 are almost automorphic, we can obtain the desired
result.

(ii) Similar to the proof of (i), we can also obtain (ii) and do not repeat it here. �
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5 Shift-Semigroup Under Matched Spaces of Time Scales

In this section, we will generalize the results of the above sections in matched spaces
of time scales. Now, we recall the concept of matched spaces of timescales, and one
may consult [17, 19, 20] for more details.

Definition 5.1 ([17, 20]) Let #∗ be a subset of R together with an operation δ̃ and
a pair (#∗, δ̃) be an Abelian group, and δ̃ is increasing with respect to its second
argument, i.e., #∗ and δ̃ satisfy the following conditions:

(1) #∗ is closed with respect to an operation δ̃, i.e., for any τ1, τ2 ∈ #∗, we have
δ̃(τ1, τ2) ∈ #∗.

(2) For any τ ∈ #∗, there exists an identity element e#∗ ∈ #∗ such that
δ̃(e#∗ , τ ) = τ .

(3) For all τ1, τ2, τ3 ∈ #∗, δ̃
(
τ1, δ̃(τ2, τ3)

) = δ̃(δ̃(τ1, τ2), τ3
)
and δ̃(τ1, τ2) =

δ̃(τ2, τ1).
(4) For each τ ∈ #∗, there exists an element τ−1 ∈ #∗ such that δ̃(τ, τ−1) =
δ̃(τ−1, τ ) = e#∗ , where e#∗ is the identity element in#∗.

(5) If τ1 > τ2, then δ̃(·, τ1) > δ̃(·, τ2).
A subset S of R is called relatively dense with respect to the pair (#∗, δ̃) if there

exists a number L ∈ #∗ and L > e#∗ such that [a, δ̃(a, L)]#∗ ∩ S = ∅ for all
a ∈ #∗. The number L is called the inclusion length with respect to the group
(#∗, δ̃).

Definition 5.2 ([17, 20]) Let T and # be time scales, where T = ⋃
i∈I1 Ai , # =

⋃
i∈I2 Bi . If #

∗ is the largest subset of the time scale #, i.e., #∗ = #, where A
denotes the closure of the set A, and (#∗, δ̃) is an Abelian group, and I1 and I2 are
countable index sets, then we say # is an adjoint set of T if there exists a bijective
mapping:

F : T → #

A ∈ {
Ai, i ∈ I1

} → B ∈ {
Bi, i ∈ I2

}
,

i.e., F(A) = B. Now, F is called the adjoint mapping between T and #.

Definition 5.3 ([17, 20]) Let the pair (#∗, δ̃) be an Abelian group and #∗, T∗ be
the largest open subsets of the time scales # and T, respectively. Furthermore, let
# be a adjoint set of T and F the adjoint mapping between T and #. The operator
δ : #∗ × T

∗ → T
∗ satisfies the following properties:

(P1) (Monotonicity) The function δ is strictly increasing with respect to its all
arguments, i.e., if

(T0, t), (T0, u) ∈ Dδ := {
(s, t) ∈ #∗ × T

∗ : δ(s, t) ∈ T
∗},
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then t < u implies δ(T0, t) < δ(T0, u); if (T1, u), (T2, u) ∈ Dδ with T1 < T2,
then δ(T1, u) < δ(T2, u).

(P2) (Existence of inverse elements) The operator δ has the inverse operator δ−1 :
#∗ × T

∗ → T
∗ and δ−1(τ, t) = δ(τ−1, t), where τ−1 ∈ #∗ is the inverse

element of τ .
(P3) (Existence of identity element) e#∗ ∈ #∗ and δ(e#∗ , t) = t for any t ∈ T

∗,
where e#∗ is the identity element in#∗.

(P4) (Bridge condition) For any τ1, τ2 ∈ #∗ and t ∈ T
∗, δ

(
δ̃(τ1, τ2), t

) =
δ
(
τ1, δ(τ2, t)

) = δ(τ2, δ(τ1, t)
)
.

Then, the operator δ associated with e#∗ ∈ T
∗ is said to be shift operator on

the set T∗. The variable s ∈ #∗ in δ is called the shift size. The value δ(s, t) in
T

∗ indicates s units shift of the term t ∈ T
∗. The set Dδ is the domain of the shift

operator δ.

Definition 5.4 ([17, 20]) Let the pair (#∗, δ̃) be an Abelian group and #∗, T∗ be
the largest open subsets of the time scales # and T, respectively. Furthermore, let
# be a adjoint set of T and F the adjoint mapping between T and #. If there exists
the shift operator δ satisfying Definition 5.3, then we say the group (T,#, F, δ) is
a matched space for T.

Let (T,#, F, δ) be a matched space for T, and we introduce the notations#∗− ={
τ ∈ #∗ : τ < e}, #∗+ = {

τ ∈ #∗ : τ > e}, and #∗ = #∗− ∪ #∗+ ∪ {e},
where e is the identity element in#∗. For any τ ∈ #∗, we denote δ̃τ (τ ) := δ(τ, τ ),
δ̃τ 2(τ ) := δ̃(τ, δ̃(τ, τ )), . . ..

Now, we denote T
τ = {δ(τ, t) : t ∈ T} and T

τ−1 = {δ(τ−1, t) : t ∈ T} for
τ ∈ #∗. Then, if τ ∈ #∗\{1}, then if T = T

τ ∪ T
τ−1

, i.e., T coincides exactly with
T
τ , we say T is invariant with respect to the operation δ.
Let X be a Banach space and Tτ : X → X be a transformation for τ ∈ #∗.

Obviously, {Tτ : τ ∈ #∗} is a set with a single parameter. Then, the multiplication
is defined as follows:

Tτ1Tτ2 = Tδ̃(τ1,τ2), (5.1)

which yields that

Tτ1
(
Tτ2Tτ3

) = Tτ1Tδ̃(τ2,τ3) = Tδ̃(τ1,δ̃(τ2,τ3)) = Tδ̃(δ̃(τ1,τ2),τ3)) =
(
Tτ1Tτ2

)
Tτ3 ,

I = Te is the identity, and Tτ−1 is the inverse element of Tτ . By these definitions
and notations, the following theorem is immediate.

Theorem 5.1 {Tτ : τ ∈ #∗} forms an Abelian operator group with respect to the
multiplication defined by (5.1).

According to Theorem 5.1, we will introduce some basic concepts to define a
shift-semigroup for an invariant time scale.
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Definition 5.5 Let T be an invariant time scale and {Tτ } be a collection of bounded
linear operators on Banach space X. If for all τ1, τ2 ∈ #∗+, the following holds:

Tδ̃(τ1,τ2) = Tτ1Tτ2 , (5.2)

then {Tτ : τ ∈ #∗+} is called a single-parameter operator shift-semigroup; if (5.2)
holds for all τ ∈ #∗, we call {Tτ : τ ∈ #∗} a single-parameter operator shift-group.

Definition 5.6 Let T be an invariant time scale and {Tτ : τ ∈ #∗+} be an operator
group on a Banach space X, i.e.,

Tτ1Tτ2 = Tδ̃(τ1,τ2), τ1, τ2 ∈ #∗+, Te = I.

Then, {Tτ : τ ∈ #∗+} is said to be the strong continuous operator shift-semigroup.

Theorem 5.2 Let T be an invariant time scale and {Tτ : τ ∈ #∗+} be an operator
semigroup on the Banach space X, and for any x ∈ X and any ε > 0, there exists a
neighborhood U = (τ1 − δ0, τ1 + δ0) ∩#∗+ for some δ0 > 0, such that

‖T|δ̃(σ#(τ1),τ−1
2 )|x − x‖ ≤ ε for all τ2 ∈ U ; (5.3)

then, {Tτ : τ ∈ #∗+} is a shift-semigroup.

Proof For any L ∈ #∗+, we claim that

sup{‖Tτ‖ : τ ∈ [e, L]#∗} < +∞. (5.4)

In fact, for any x ∈ X, we can take, h ∈ #∗+, c > 0 such that

sup{‖Tτ x‖ : τ ∈ [e, h]#∗} ≤ c.

Now, for τ ∈ [e, L]#∗ , let τ = δ̃(δ̃hk−1(h), r), r ∈ #∗, where k ≤ δ̃(L, h−1), 0 ≤
r < h. Then, it follows that

‖Tτ x‖ = ‖Tδ̃
hk−1 (h)

Trx‖ ≤ ‖Tδ̃
hk−1 (h)

‖c.

Hence, (5.4) holds. In what follows, we letM := sup{‖Tτ‖ : τ ∈ [e, L]#∗}.
For any ε > 0, there is δ0, such that for τ2 ∈ (τ1 − δ0, τ1 + δ0)#∗+ , we have

(i) If τ2 > τ1, then σ#(τ1) = τ1, and we have

‖Tτ2x−Tτ1x‖ ≤ ‖Tσ#(τ1)(Tδ̃(τ2,σ−1
# (τ1))

−I )x+Tτ1(Tδ̃(σ#(τ1),τ−1
1 )

−I )x‖ ≤ 2Mε.

In the above, σ#(τ1) = τ1. In fact, if σ#(τ1) > τ1, then τ1 is a right-scattered
point, which implies that τ2 = τ1, and this contradicts τ2 > τ1.
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(ii) If τ2 ≤ τ1, then τ2 ≤ τ1 ≤ σ#(τ1), which yields e ≤ δ̃(σ#(τ1), τ−1
1 ) ≤

δ̃(σ#(τ1), τ
−1
2 ). Hence, we have

‖Tτ2x−Tτ1x‖ ≤ ‖Tτ2(I −T
δ̃(σ#(τ1),τ

−1
2 )
)x+Tτ1(Tδ̃(σ#(τ1),τ−1

1 )
− I )x‖ ≤ 2Mε.

Hence, for τ2 ∈ (τ1 − δ, τ1 + δ)#∗+ , the following holds:

‖Tτ2x − Tτ1x‖ ≤ 2Mε.

Hence, {Tτ : τ ∈ #∗+} is a shift-semigroup and (5.3) holds. This completes the
proof. �

In the following, the definition of infinitesimal generator of a shift-semigroup
will be introduced.

Definition 5.7 Let T be an invariant time scale and {Tτ : τ ∈ #∗+} be a shift-
semigroup on a Banach spaceX. Let D denote a subset ofX, which has the property
that for each x ∈ D , there exists a y ∈ X such that for any ε > 0, there is a
neighborhood U = (τ1 − δ0, τ1 + δ0)#∗+ for some δ0 > 0, which satisfies

‖(T|δ̃(σ#(τ1),τ−1
2 )| − I )x − y|σ#(τ1)− τ2|‖ < ε|σ#(τ1)− τ2|, τ2 ∈ U. (5.5)

For τ1 → e, we define A : D → X satisfying Ax = y, where y is fixed by (5.5). In
what follows, we call this A the infinitesimal generator of this shift-semigroup.

Remark 5.1 From Definition 5.7, we can obtain

lim
τ1→e

lim
τ2→τ1

(T|δ̃(σ#(τ1),τ−1
2 )| − I )x

σ#(τ1)− τ2 = A.

Remark 5.2 From (5.5), it follows that

lim
τ1→e

∥
∥
∥
∥
Tτ1(Tq − I )x
(q − 1)τ1

∥
∥
∥
∥ =

∥
∥
∥
∥

1

q − 1
(Tq − I )x − y

∥
∥
∥
∥ = 0,

which implies that Definition 5.7 is equivalent to Definition 2.3 when T = qZ.
Theorem 5.3 Let T be an invariant time scale, {Tτ : τ ∈ #∗+} be a shift-semigroup
on Banach space X satisfying (5.3), andA be the infinitesimal generator of the shift-
semigroup. Then, A is a closed densely defined operator, and for every x ∈ D(A),
the following holds:

(Tτ x)�# = A(Tτ x) = TτAx, (5.6)
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that is

(Tτ x)− x =
∫ τ

e

ATsx�#s =
∫ τ

e

TsAx�#s, (5.7)

where D(A) denotes the domain of the operator A and �# is the differential
operator over the time scale #.

Proof First, we show that A is a densely defined operator. Note that for any x ∈ X,
we have

∥
∥
∥
∥

∫ |δ̃(σ#(τ1),τ−1
2 )|

e

Tθ x�#θ − (|δ̃(σ#(τ1), τ−1
2 )| − e)x

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ |δ̃(σ#(τ1),τ−1
2 )|

e

(Tθ x − x)�#θ
∥
∥
∥
∥

≤ ∣
∣|δ̃(σ#(τ1), τ−1

2 )| − e∣∣ sup
e≤θ≤|δ̃(σ#(τ1),τ−1

2 )|
‖Tθ x − x‖

<
∣
∣|δ̃(σ#(τ1), τ−1

2 )| − e∣∣ε. (5.8)

Let y = ∫ τ
e
Tθ x�#θ; then,

T|δ̃(σ#(τ1),τ−1
2 )|y − y =

∫ τ

e

(T
δ̃(θ,|δ̃(σ#(τ1),τ−1

2 )|) − Tθ x)�#θ

=
∫ δ̃(τ,|δ̃(σ#(τ1),τ−1

2 )|)

|δ̃(σ#(τ1),τ−1
2 )|

Tθ x�#θ −
∫ τ

e

Tθ x�#θ

=
∫ δ̃(τ,|δ̃(σ#(τ1),τ−1

2 )|)

τ

Tθ x�#θ −
∫ |δ̃(σ#(τ1),τ−1

2 )|

e

Tθ x�#θ

=
∫ |δ̃(σ#(τ1),τ−1

2 )|

e

Tθ (Tτ x)�#θ −
∫ |δ̃(σ#(τ1),τ−1

2 )|

e

Tθ x�#θ.

Since (5.8) holds for any x ∈ X, it follows that

∥
∥(T|δ̃(σ#(τ1),τ−1

2 )|y − y)− (|δ̃(σ#(τ1), τ−1
2 )| − e)(Tτ x − x)∥∥

=
∥
∥
∥
∥

∫ |δ̃(σ#(τ1),τ−1
2 )|

e

Tθ (Tτ x − x)�#θ − (|δ̃(σ#(τ1), τ−1
2 )| − e)(Tτ x − x)

∥
∥
∥
∥

≤ ∣
∣|δ̃(σ#(τ1), τ−1

2 )| − e∣∣ε.

Therefore, y ∈ D(A), so D(A) = X.
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Next, we will show that (5.6) and (5.7) hold. Since

lim
τ2→τ1

(T|δ̃(σ#(τ1),τ−1
2 )| − I )Tτ2x

|σ#(τ1)− τ2| = lim
τ2→τ1

Tτ2(T|δ̃(σ#(τ1),τ−1
2 )| − I )x

|σ#(τ1)− τ2| = Tτ1Ax,

we have

‖Tτ1(T|δ̃(σ#(τ1),τ−1
2 )| − I )x − |σ#(τ1)− τ2|Tτ1Ax‖ (5.9)

≤ ‖Tτ1‖‖(T|δ̃(σ#(τ1),τ−1
2 )| − I )x − |σ#(τ1)− τ2|Ax‖ ≤ ‖Tτ1‖ε|σ#(τ1)− τ2|,

and so, Tτ1x ∈ D(A). From (5.9), we also have

‖(T|δ̃(σ#(τ1),τ−1
2 )| − I )x − |σ#(τ1)− τ2|Ax‖ ≤ ε|σ#(τ1)− τ2|. (5.10)

(i) If τ2 > τ1, then from (5.10) and Theorem 5.2, it follows that

‖(Tσ#(τ1) − Tτ2)x − (σ#(τ1)− τ2)Tτ1Ax‖
≤ ‖Tσ#(τ1)(I − T

δ̃(τ2,σ
−1
# (τ1))

)x − (σ#(τ1)− τ2)Tσ#(τ1)Ax
+(σ#(τ1)− τ2)Tσ#(τ1)Ax − (σ#(τ1)− τ2)Tτ1Ax‖

≤ ‖Tσ#(τ1)‖‖(τ2 − σ#(τ1))Ax − (I − T
δ̃(τ2,σ

−1
# (τ1))

)x‖
+‖Tτ1‖‖(I − T

δ̃(σ#(τ1),τ
−1
1 )
)Ax‖(τ2 − σ#(τ1))

≤ Mε(τ2 − σ#(τ1)),

where M := sup{‖Tτ‖ : τ ∈ [e, L]#∗} and L ∈ #∗ is any fixed positive
constant. In the above, it is necessary to note that σ#(τ1) = τ1, since if
σ#(τ1) > τ1, then τ1 is right scattered point, which implies that τ2 = τ1, and
this contradicts our assumption that τ2 > τ1.

(ii) If τ2 ≤ τ1, then it follows from τ2 ≤ τ1 ≤ σ#(τ1) that 0 ≤ τ1 − τ2 ≤
σ#(τ1)− τ2. Hence, from (5.10) and Theorem 5.2, we obtain

‖(Tσ#(τ1) − Tτ2)x − (σ#(τ1)− τ2)Tτ1Ax‖
≤ ‖Tτ2(Tδ̃(σ#(τ1),τ−1

2 )
− I )x − (σ#(τ1)− τ2)Tτ2Ax

+(σ#(τ1)− τ2)Tτ2Ax − (σ#(τ1)− τ2)Tτ1Ax‖
≤ ‖Tτ2‖‖(Tδ̃(σ#(τ1),τ−1

2 )
− I )x − (σ#(τ1)− τ2)Ax)‖

+‖Tτ2‖‖(I − T
δ̃(τ1,τ

−1
2 )
)Ax‖(σ#(τ1)− τ2)

≤ Mε(σ#(τ1)− τ2),
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where M := sup{‖Tτ‖ : τ ∈ [0, L]#∗}, and L ∈ #∗ is any fixed positive
constant.

Therefore, (Tτ x)�# = TτAx = ATτx. Since (5.7) is the integral form of (5.6),
we can conclude that (5.7) holds.

Finally, we show that A is a closed operator. Let xn ∈ D(A), xn → x, Axn →
y, and then by (5.10), we have

‖(T|δ̃(σ#(τ1),τ−1
2 )| − I )x − |σ#(τ1)− τ2|y‖ = lim

n→∞ ‖(T|δ̃(σ#(τ1),τ−1
2 )| − I )xn

−|σ#(τ1)− τ2|Axn‖
≤ ε|σ#(τ1)− τ2|.

Hence, x ∈ D(A) and Ax = y, that is, A is a closed operator. This completes the
proof. �
Theorem 5.4 Let T be an invariant time scale and X be a Banach space. Assume
that {Tτ : τ ∈ #∗+} is a shift-semigroup, A is the infinitesimal generator of the shift-
semigroup, and D(A) = X, eA(δ̃(τ1, τ2), e) = eA(τ1, e)eA(τ2, e) for all τ1, τ2 ∈
#∗+. Then,

Tτ = eA(τ, e), τ ∈ #∗+,

where D(A) denotes the domain of A.

Proof From Theorem 5.3, we have

(
eA(τ, e)x

)�# = AeA(τ, e)x = eA(τ, e)Ax.

Furthermore, since eA(τ, e) is �-differentiable on #, then for any ε > 0, there is a
δ > 0 such that for τ2 ∈ (τ1 − δ, τ1 + δ)#∗+ , it follows that

‖(eA(σ#(τ1), e)− eA(τ2, e))x − (σ#(τ1)− τ2)AeA(τ1, e)x‖ ≤ ε|σ#(τ1)− τ2|,
(5.11)

and hence

(i) If τ2 > τ1, then it follows from (5.11) that

‖eA(σ#(τ1), e)[I − eA(δ̃(τ2, σ−1
# (τ1)), e)x

−(σ#(τ1)− τ2)eA(τ1, σ#(τ1))Ax]‖
≤ ‖eA(σ#(τ1), e)‖‖[I − eA(δ̃(τ2, σ−1

# (τ1)), e)x

−(σ#(τ1)− τ2)eA(τ1, σ#(τ1))Ax]‖
≤ Mε|σ#(τ1)− τ2|.
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In the above, σ#(τ1) = τ1. Indeed, if σ#(τ1) > τ1, then τ1 is a righ-scattered
point, and then τ2 = τ1, which is a contradiction since τ2 > τ1.

(ii) If τ2 ≤ τ1, then it follows from τ2 ≤ τ1 ≤ σ#(τ1) that 0 ≤ τ1 − τ2 ≤
σ#(τ1)− τ2. Hence, from (5.11), we can obtain

‖eA(τ2, e)[(eA(σ#(τ1)− τ2, e)− I )x − (σ#(τ1)− τ2)Ax
+(σ#(τ1)− τ2)(I − eA(τ1, τ2))Ax]‖

≤ ‖eA(τ2, e)‖‖[(eA(δ̃(σ#(τ1), τ−1
2 ), e)− I )x − (σ#(τ1)− τ2)Ax]‖

+Mε|σ#(τ1)− τ2| ≤ 2Mε|σ#(τ1)− τ2|,

where M := sup{‖eA(τ, e)‖ : τ :∈ [e, L]#∗}, and L ∈ #∗ is any fixed positive
constant.

From (i) and (ii), we obtain

‖(eA(|δ̃(σ#(τ1), τ−1
2 )|, e)− I )x − |σ#(τ1)− τ2|Ax‖ ≤ 2Mε|σ#(τ1)− τ2|.

Therefore, A is the infinitesimal generator of {Tτ : τ ∈ #∗+}. This completes the
proof. �

Remark 5.3 Notice that if T = qZ, then

Tτ = eA(τ, 1) =
∏

s∈[1,τ )

[
I + (q − 1)As

]
.

Definition 5.8 Let A be the infinitesimal generator of the shift-semigroup. We call
ẽA(t, t0), t0 ∈ T, the exponential function generated by A on the time scale T. We
also let Tt = ẽA(t, t0) and call Tt the moving operator on T.

Let X be a Banach space, and consider the following system:

x� = Ax(t), x(t0) = x0, t0 ∈ T, (5.12)

where A is the infinitesimal generator of a shift-semigroup satisfying all the
conditions in Theorem 5.4, and x : T → X.

Theorem 5.5 The fundamental solution of the system (5.12) can be expressed as

x(t) = Tt x0.

Proof From Definition 5.8, Tt = ẽA(t, t0), and hence

x� = (Tt x0)� = ATt x(t0) = Ax(t).

Hence, Tt x0 is the fundamental solution of (5.12). This completes the proof. �
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From Theorem 5.5, the following result follows immediately.

Theorem 5.6 Let A be the infinitesimal generator of the shift-semigroup, and let
Tt be the moving operator on T. Then,

(Tt x)
� = A(Tt x) = TtAx,

that is

(Tt x)− x =
∫ t

t0

ATsx�s =
∫ t

t0

TsAx�s.

6 Stepanov-Like Almost Automorphic Functions in Matched
Spaces of Time Scales

In this section, we will introduce the concept of Stepanov-like almost automorphic
functions under matched spaces of time scales and provide some basic properties.

Definition 6.1 ([17, 19]) A function f ∈ C(T,X), where X is a Banach space,
is said to be almost automorphic (a.a. for short) in Bochner’s sense if for every
sequence of (s

′
n) ⊂ #∗, there exists a subsequence (sn) such that

g(t) := lim
n→∞ f

(
δ(sn, t)

)

is well defined for each t ∈ T, and

lim
n→∞ g

(
δ(s−1
n , t)

) = f (t)

for each t ∈ T.

If the convergence above is uniform in t ∈ T, then f is almost periodic in
Bochner’s sense. We denote by AAδ(X) the collection of all (Bochner) almost
automorphic functions T → X. Similar to the proof process in the literature
[25], the following theorem is immediate through replacing the operation + by the
operation δ.

Theorem 6.1 If f, f1, f2 ∈ AAδ(X), then

(i) f1 + f2 ∈ AAδ(X);
(ii) λf ∈ AAδ(X) for any scalar λ;

(iii) fα ∈ AAδ(X) where fα : T → X is defined by fα(·) = f (δ(α, ·));
(iv) the range Rf := {

f (t) : t ∈ T
}

is relatively compact in X, and thus f is
bounded in norm; and

(v) if fn → f uniformly on T, where fn ∈ AAδ(X), then f ∈ AAδ(X).
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AAδ(X) equipped with the sup-norm ‖f ‖AAδ(X) = supt∈T ‖f (t)‖ turns out to
be a Banach space. Now, we denote by AAδu(X) the closed subspace of all functions
f ∈ AAδ(X) with g ∈ C(T,X). Equivalently, f ∈ AAδu(X) if and only if f is
almost automorphic and all convergences in Definition 6.1 are uniform on compact
intervals. Obviously, we have

APδ(X) ⊆ AAδu(X) ⊂ AAδ(X) ⊂ BC(X),

where BC(X) stands for the Banach space of bounded and continuous functions
with values in X.

Definition 6.2 The Bochner transform f b(t, s), t ∈ T, s ∈ [e, L]#∗ , of a function
f (t) on T, with values in X, is defined by f b(t, s) = f (δ(s, t)).
Remark 6.1 A function ϕ(t, s), t ∈ T, s ∈ [e, L]#∗ , is the Bochner transform of a
certain function f (t),

ϕ(t, s) = f b(t, s),

if and only if

ϕ
(
δ(τ, t), δ̃(s, τ−1)

) = ϕ(s, t)

for all t ∈ T, s ∈ [e, L]#∗ and τ ∈ [δ̃(s, L−1), s]#∗ . In fact,

ϕ
(
δ(τ, t), δ̃(s, τ−1)

) = f (δ(δ̃(s, τ−1), δ(τ, t))
) = f (δ(s, δ(τ−1, δ(τ, t)))

)

= f (δ(s, t)) = ϕ(t, s).

Definition 6.3 Let p ∈ [1,∞). The space BSpδ (X) of Stepanov bounded functions,
with the exponent p, consists of all measurable functions f on T with values in X

such that f b ∈ L∞(T, Lp(e, L;X)). This is a Banach space with the norm:

‖f ‖Sp = ‖f b‖L∞(T,Lp) = sup
t∈T

(∫ δ(L,t)

t

‖f (τ)‖p
X
�τ

) 1
p

.

Definition 6.4 The space ASpδ (X) of S
p-almost automorphic functions consists of

all f ∈ BSpδ (X) such that f b ∈ AAδ(Lp(e, L;X)).
Definition 6.4 also has the following equivalent form.

Definition 6.5 A function f ∈ Lploc(T;X) is said to be Sp-almost automorphic if
its Bochner transform f b : T → Lp(e, L;X) is almost automorphic in the sense
that for every sequence of numbers (s

′
n) ⊂ #∗, there exist a subsequence (sn) and a

function g ∈ Lploc(T,X) such that
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(∫ L

e

∥
∥f
(
δ(sn, δ(s, t))

)− g(δ(s, t))∥∥p�#s
) 1
p → 0

and

(∫ L

e

∥
∥g
(
δ(s−1
n , δ(s, t))

)− f (δ(s, t))∥∥p�#s
) 1
p → 0

as n→ ∞ pointwise on T.

Remark 6.2 Note that if 1 ≤ p < p̂ < ∞ and f ∈ Lp̂loc(T;X) is Sp̂-almost
automorphic, then f is Sp-almost automorphic. Also, if f ∈ AAδ(X), then f is
Sp-almost automorphic for any 1 ≤ p <∞.

Remark 6.3 Note that f ∈ AAδu(X) if and only if f b ∈ AAδ(L∞(e, L;X)). Hence,
AAδu(X) can be regarded as AS∞

δ (X).

Theorem 6.2 We have the following equivalent statements:

(i) f ∈ ASpδ (X);
(ii) f b ∈ AAδu(Lp(e, L;X)); and

(iii) for each sequence (s
′
n) ⊂ #∗, there exists a subsequence (sn) such that

g(t) := lim
n→∞ f

(
δ(sn, t)

)
(6.1)

exists in the space Lploc(T;X) and

f (t) = lim
n→∞ g

(
δ(s−1
n , t)

)
(6.2)

in the sense of Lploc(T,X).

Proof (ii)⇒ (i): trivial.
(iii)⇒ (ii): Now, we prove that

lim
n→∞ f

b
(
δ(sn, t), τ

) = gb(t, τ ) = g(δ(τ, t))

in C(T;Lp(e, L;X)). In fact, for any fixed t0 ∈ T and τ0 ∈ #∗+, we have

sup
t∈[δ(τ−1

0 ,t0),δ(τ0,t0)]
‖f b(τ, δ(sn, t))− gb(τ, t)‖Lp(e,L;X)

≤ sup
t∈[δ(τ−1

0 ,t0),δ(τ0,t0)]

(∫ L

e

‖f (δ(τ, δ(sn, t)))− g(δ(τ, t))‖p�#τ
) 1
p
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= sup
t∈[δ(τ−1

0 ,t0),δ(τ0,t0)]

(∫ L

e

‖f (δ(sn, δ(τ, t)))− g(δ(τ, t))‖p�#τ
) 1
p

≤
(∫ δ(L,δ(τ0,t0))

δ(τ−1
0 ,t0)

‖f (δ(sn, s))− g(s)‖p�s
) 1
p → 0.

Similarly, we have

lim
n→∞ g

b(δ(s−1
n , t), τ ) = f b(t, τ )

in C(T;Lp(e, L;X)).
(i) ⇒ (iii): Let f b(δ(sn, t), τ ) → ϕ(t, τ ) pointwise, where ϕ is a measurable

function with values in Lp(e, L;X)). By Remark 6.1, ϕ(t, τ ) = gb(t, τ ), here gb ∈
L
p
loc(e, L;X). For any fixed t0 ∈ T and τ0 ∈ #∗+, let

ρn :=
∫ δ(τ0,t0)

δ(τ−1
0 ,t0)

‖f (δ(sn, t))− g(t)‖p�t.

We will prove that ρn → 0. Indeed, assume that n̂(τ−1
0 ) and n̂(τ0) are the positive

integers such that

τ−1
0 ≤ τ

n̂(τ−1
0 )
< τ
n̂(τ−1

0 )−1 . . . < τn̂(τ0)−1 < τn̂(τ0) ≤ τ0;

then, we have

ρn =
n̂(τ0)∑

k=n̂(τ−1
0 )

∫ δ̃(τk,L)

τk

‖f b(δ(sn, δ(τ, t)))− gb(t, τ )‖p�#τ

=
n̂(τ0)∑

k=n̂(τ−1
0 )

‖f b(δ(sn, δ(τ, t)))− gb(t, τ )‖pLp(e,L;X) → 0,

which implies (6.1). Similarly, we can obtain (6.2). The proof is completed. �
Theorem 6.3 ASpδ (X) is a closed linear subspace of BSpδ (X).

Proof First, we prove that ASpδ (X) is closed linear subspaces of BSpδ (X). Now, let
f1, f2 ∈ ASpδ (X), and then by Definition 6.3, f b1 , f

b
2 ∈ AAδ(Lp(e, L;X)), so by

Definition 6.3 and Theorem 6.2, we have f b1 , f
b
2 ∈ AAδ(X).
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By Minkowski’s lemma, we have

‖f1 + f2‖ = ‖f b1 + f b2 ‖L∞(T,Lp) = sup
t∈T

(∫ δ(L,t)

t

‖f1(τ )+ f2(τ )‖pX�τ
) 1
p

≤ sup
t∈T

(∫ δ(L,t)

t

‖f1(τ )‖pX�τ
) 1
p + sup

t∈T

(∫ δ(L,t)

t

‖f2(τ )‖pX�τ
) 1
p

= ‖f b1 ‖L∞(T,Lp) + ‖f b2 ‖L∞(T,Lp) = ‖f1‖Sp + ‖f2‖Sp .

Hence, we have f1 + f2 ∈ ASpδ (X).
Moreover, it is clear that λf1 ∈ ASpδ (X) for any scalar λ.
Finally, by employing again Minkowski’s lemma, we can prove that if (fn) is a

sequence in ASpδ (X) that converges to f in Sp-norm, then f ∈ ASpδ (X). The proof
is completed. �

The following theorem is immediate.

Theorem 6.4 Let f ∈ ASpδ (X) and A ∈ L(X), the Banach algebra of all bounded
linear operators X → X. Then Af ∈ ASpδ (X).

Now, we have the following composition theorem.

Theorem 6.5 Let F : T×X → X be Sp-almost automorphic. Suppose that F(t, x)
is Lipschitzian in x ∈ X uniformly in t ∈ T, i.e., there exists L > 0 such that

‖F(t, u)− F(t, v)‖ ≤ L‖u− v‖

for all t ∈ T, (u, v) ∈ X × X. If φ ∈ ASpδ (X), then ϒ : T → X defined by
ϒ(·) := F(·, φ(·)) belongs to ASpδ (X).

Proof Since φ ∈ ASpδ (X), for every sequence (s
′
n), there exist a subsequence (sn)

and a function ψb ∈ Lp(e, L;X) such that
(∫ L

e

‖φ(δ(sn, δ(s, t)))− ψ(δ(s, t))‖p�#s
) 1
p → 0, (6.3)

and

(∫ L

e

‖ψ(δ(s−1
n , δ(s, t)))− φ(δ(s, t))‖p�#s

) 1
p → 0 (6.4)

as n→ ∞ on T pointwise.
Since F : T × X → X, (t, u) → F(t, u) is Sp-almost automorphic in t ∈ T

uniformly in u ∈ X, for every sequence (σ
′
n), there exist a subsequence (σn) and a

function Gb(·, u) ∈ Lp(e, L;X) such that
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(∫ L

e

‖F(δ(σn, δ(s, t)), u)−G(δ(s, t), u)‖p�#s
) 1
p → 0, (6.5)

and

(∫ L

e

‖G(δ(σ−1
n , δ(s, t)), u)− F(δ(s, t), u)‖p�#s

) 1
p → 0 (6.6)

as n→ ∞ on T pointwise for each u ∈ X.
Now, by employing Minkowski’s inequality, we have

(∫ L

e

‖F(δ(sn, δ(s, t)), φ(δ(sn, δ(s, t))))−G(δ(s, t), ψ(δ(s, t)))‖p�#s
) 1
p

≤
(∫ L

e

‖F(δ(sn, δ(s, t)), φ(δ(sn, δ(s, t))))

−F(δ(sn, δ(s, t)), ψ(δ(s, t)))‖p�#s
) 1
p

(∫ L

e

‖F(δ(sn, δ(s, t)), ψ(δ(s, t)))−G(δ(s, t), φ(δ(s, t)))‖p�#s
) 1
p

≤ L
(∫ L

e

‖φ(δ(sn, δ(s, t)))− ψ(δ(s, t))‖p�#s
) 1
p

+
(∫ L

e

‖F(δ(sn, δ(s, t)), ψ(δ(s, t)))−G(δ(s, t), ψ(δ(s, t)))‖p�#s
) 1
p

,

and though (6.3) and (6.5), we have

(∫ L

e

‖F(δ(sn, δ(s, t)), φ(δ(sn, δ(s, t))))−G(δ(s, t), ψ(δ(s, t)))‖p�#s
) 1
p → 0

as n→ ∞.
Similar to the above, by employing Minkowski’s inequality and both (6.4) and

(6.6), we can also obtain

(∫ L

e

‖G(δ(s−1
n , δ(s, t)), ψ(δ(s

−1
n , δ(s, t))))−F(δ(s, t), φ(δ(s, t)))‖p�#s

) 1
p →0

as n→ ∞. This completes the proof. �
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tions, Birkhäuser, Boston, 2001.

10. C. Wang, R.P. Agarwal, Almost automorphic functions on semigroups induced by complete-
closed time scales and application to dynamic equations, Discrt. Contin. Dynam. Syst. Ser. B,
25 (2020) 781–798.

11. C. Wang, R.P. Agarwal, D. O’Regan, R. Sakthivel, Theory of Translation Closedness for Time
Scales-With Applications to Translation Functions and Dynamic Equations, Developments in
Mathematics Series, Vol. 62, Springer, Switzerland, 2020.

12. M. Kéré, G.M. N’Guérékata, Almost automorphic dynamic systems on time scales, Panameri-
can Math. J. 28 (2018) 19–37.

13. G. Mophou, G.M. N’Guérékata, A. Milcé, Almost automorphic functions of order n and
applications to dynamic equations on time scales, Discr. Dyna. Natur. Soc, 2014, 1–13.

14. G.M. N’Guérékata, A. Milcé, J.C. Mado, Asymptotically almost automorphic functions of
order n and applications to dynamic equations on time scales, Nonlinear Studies, 20 (2016)
305–322.

15. C. Wang, R.P. Agarwal, Almost periodic solution for a new type of neutral impulsive stochastic
Lasota-Wazewska timescale model, Appl. Math. Lett. 70 (2017) 58–65.

16. C. Wang, R.P. Agarwal, R. Sakthivel, Almost periodic oscillations for delay impulsive
stochastic Nicholson’s blowflies timescale model, Comput. Appl. Math. 37 (2018) 3005–3026.

17. C. Wang, R.P. Agarwal, D. O’Regan, A matched space for time scales and applications to the
study on functions, Adv. Differ. Equa. 305 (2017) 1–28.

18. M. Adıvar, A new periodic concept for time scales, Math. Slovaca, 63 (2013), 817–828.
19. C. Wang, R.P. Agarwal, D. O’Regan, Weighted pseudo δ-almost automorphic functions and

abstract dynamic equations, Georgian Math. J. (2017) DOI: https://doi.org/10.1515/gmj-2019-
2066.

20. C. Wang, R.P. Agarwal, D. O’Regan, n0-order �-almost periodic functions and dynamic
equations, Appl. Anal. 97 (2018) 2626–2654.

21. C. Wang, R.P. Agarwal, D. O’Regan, G.M. N’Guérékata, Complete-closed time scales under
shifts and related functions, Adv. Differ. Equa. 429 (2018) 1–19.

22. C. Wang, R. Sakthivel, G.M. N’Guérékata, S-almost automorphic solutions for impulsive
evolution equations on time scales in shift operators, Mathematics, 8 (2020) 1028.

23. C. Wang, R.P. Agarwal, D. O’Regan, Calculus of fuzzy vector-valued functions and almost
periodic fuzzy vector-valued functions on time scales, Fuzzy Sets and Syst., 375 (2019) 1–52.

https://doi.org/10.1515/gmj-2019-2066
https://doi.org/10.1515/gmj-2019-2066


154 C. Wang and G. M. N’Guérékata

24. C. Wang, R.P. Agarwal, D. O’Regan,#-semigroup for invariant under translations time scales
and abstract weighted pseudo almost periodic functions with applications, Dyn. Syst. Appl. 25
(2016) 1–28.

25. D. Bugajewski, T. Diagana, Almost automorphy of the convolution operator and applications
to differential and functional-differential equations, Nonlinear Studies, 13 (2006) 129–140.



A Reaction–Diffusion Model for
Salmonella Transmission Within an
Industrial Hens House with Distributed
Resistance to Salmonella Carrier State

Pascal Zongo and Catherine Beaumont

Mathematics Subject Classification (2000) 35K57, 37N25, 92D30

1 Introduction

1.1 Biological Problem

It is often said that a lack of genetic diversity results in a deleterious effect on the
risk of epizootic outbreaks. For example through a stochastic epidemiological model
of a viral pig disease (transmissible gastroenteritis), the authors [17] explored the
effect of genetic variation in the host susceptibility on probabilities and severity
of epizooty. They showed that the former was reduced by genetic variation in
susceptibility to infection but not in duration of recovery; however, it is to note
that its severity was generally lower in genetically heterogeneous populations.
Doeschl-Wilson et al. [7] note that the specific definition of heterogeneity varies
among models, which may lead to partially different conclusions as in [7, 12, 22].
For example, Lloyd-Smith et al. [12] defined heterogeneity as variation in a
continuously distributed “individual reproductive number” and predicted that the
probability of stochastic disease extinction in heterogeneous populations increases
with overdispersion (which also results in higher proportion of non-transmitting
individuals). Springbett et al. [22] considered a few genotypes with distinct levels of
resistance. They concluded that “more heterogeneous populations are not expected
to suffer fewer epidemics on average, but are less likely to suffer catastrophic
epidemics.” Doeschl-Wilson et al. [7] therefore suggests using models as close as
possible to what is known about genetic architecture of resistance. They modeled
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propagation of sheep footrope using an inverse gamma distribution to assess host
variability in response to different steps of disease and predicted a strong impact of
genetic heterogeneity on the disease risk, progression, and severity.

The goal of this model is to take profit of the numerous information on genetic
architecture of hen resistance to Salmonella propagation (see for example [3, 4]) to
develop a model as close as possible to reality, i.e., considering different resistance
traits to infection: transmission rate, excretion rate as well as duration of recovery. It
was shown that those traits had different genetic controls and that each of them was
dependent on a large number of genes, most of which having a small effect [19, 22].
They were thus modeled with continuous and independent distributions.

The effect of genetic heterogeneity was investigated since [19] showed an effect
of genetic heterogeneity considering only two subpopulations of resistant and
susceptible fowls: they observed that the level of resistance influenced kinetics
of propagation of Salmonella in comparison with what could be observed with a
homogenous population of the same mean value for epidemic characteristics.

The spatial repartition of animals (within cages) was also considered since it
was shown that the basic reproduction number R0 and the propagation speed were
increased when the spatial distribution of fowls was heterogeneous [2, 30].

In this chapter, the combined effects of genetic and spatial distributions will
be considered in order to study the impact of heterogeneities on the propagation
of Salmonella, as an extension of the model developed in [19] where only two
subpopulations were considered in a non-dependent spatial environment.

1.2 Mathematical Problem

In this chapter, the hen population is motionless since it is confined in cages, whereas
the bacteria disperse via a diffusion process within the hen house. Moreover, the
total number of hens within hen house is assumed to be constant in time and
heterogeneous in space. We point out that the solution maps associated with the
model system are not compact due to the lack of diffusion term according to the
hen component in the model. In order to overcome this difficulty, we introduce
the Kuratowski measure of noncompactness, κ (see, e.g., [5, 28, 29]), i.e., the
existence of global connect attractor can be obtained through proving κ-contraction
of the corresponding solution semiflow. Furthermore, we will prove the existence
and uniqueness of principle eigenvalue, �, corresponding to the non-compact
eigenvalue problem and discuss the propagation phenomenon with respect to the
so-called basic reproduction number, R0 := 1/�.

In addition to the threshold result, we will investigate the special case where
all the coefficients in (2.6) are independent of the spatial variable. Using a
fluctuation method developed in [24], we show that when R0 > 1 the disease will
become established and stabilize at a unique spatially homogeneous steady state.
Moreover, the positive steady state is globally attractive, and under some appropriate
conditions, it is explicitly obtained.
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This chapter is organized as follows. The next section presents the model
and well-posedness. The basic reproduction ratio and mathematical analysis are
established in Sects. 3 and 4, respectively. Section 5 is devoted to discuss the special
case with spatially independent parameters. In Sect. 6, we present some conditions
required to control Salmonella by analyzing the impact of the spatial heterogeneity
combined with repartition of heterogeneous fowls. Concluding remarks will follow
in Sect. 7.

2 The Model and Well-Posedness

2.1 Model Formulation

In order to develop the model, assume that the habitat� ⊂ R
d (d ≥ 1) is a bounded

domain with smooth boundary ∂� (when d > 1), and ν is the outward unit normal

vector on ∂ν and
∂

∂ν
means the normal derivative along ν on ∂�. Then, we propose

a reaction–diffusion model to describe the interaction between hens’ population and
living free bacteria in environment in a continuous spatial habitat.

Let θ denote the level of animal genetic resistance to Salmonella carrier state.
In what follows, we assume that θ ∈ [0,!),! > 0. Furthermore, we assume that
the rate of transmission, σ(x, θ), excretion rate in environment β(x, θ) and recovery
rate γ (x, θ) of animals are depending on their level of resistance θ ∈ J and spatially
dependent on their position x ∈ � in order to take into account the cage structure.
Here, 1/γ (x, θ) is the length of the infectious period.

Let S(t, x, θ) and I (t, x, θ) denote the densities of susceptible and infective
individuals with level of resistance θ at time t and position x ∈ �, respectively.
The total size of the population of hens at time t and position x with respect to θ
is denoted by H(t, x, θ) = S(t, x, θ) + I (t, x, θ). The density of bacteria in the
environment at time t ≥ 0 located at a position x is denoted by C(t, x). Together
with these assumptions, the model we shall consider reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂C(t, x)

∂t
= D�C(t, x)− α(x)C(t, x)+ Lβ(I)(t, x), t > 0, x ∈ �,

∂S(t, x, θ)

∂t
= −σ(x, θ)S(t, x, θ)C(t, x)+ γ (x, θ)I (t, x, θ), t > 0, (x, θ) ∈ �× J,

∂I (t, x, θ)

∂t
= σ(x, θ)S(t, x, θ)C(t, x)− γ (x, θ)I (t, x, θ), t > 0, (x, θ) ∈ �× J,

(2.1)

with Lβ(I)(t, x) denotes the flux of excreted bacteria at time t by the hens at
position x. It is defined by
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Lβ(I)(t, x) =
∫

J

β(x, θ)I (t, x, θ)dθ, t > 0, (2.2)

where the term β(x, θ)I (t, x, θ) represents the density of bacteria excreted by hens
infected with respect to their level of resistance θ at time t and position x.

We assume non-flux boundary conditions for the bacteria (reflecting the confine-
ment of the bacteria in the domain):

∂C(t, x)

∂ν
= 0, (t, x) ∈ (0,∞)× ∂�. (2.3)

This model is supplemented together with initial data

S(0, x, θ) = S0(x, θ), I (0, x, θ) = I0(x, θ), C(0, x) = C0(x), x ∈ �, θ ∈ J.
(2.4)

In the above system, the term α(x) denotes the natural mortality rate of the
bacteria at position x, D denotes the diffusion coefficient for their dispersal in the
environment, and � denotes the Laplace operator.

Before going further, we need to reformulate the problem (2.1)–(2.4). By adding
up the second and third equations in (2.1), we obtain the equation for the hens’ total
population as follows:

∂H(t, x, θ)/∂t = 0, t ≥ 0, (x, θ) ∈ �× J.

It follows that

H(t, x, θ) ≡ S0(x, θ)+ I0(x, θ) = H(x, θ), ∀t ≥ 0, (x, θ) ∈ �× J.

Thus,

lim sup
t→∞

H(t, x, θ) = H(x, θ), ∀(x, θ) ∈ �× J.

In particular, lim supt→∞ S(t, x, θ)+ I (t, x, θ) = H(x, θ) and

lim sup
t→∞

I (t, x, θ) ≤ H(x, θ) and lim sup
t→∞

S(t, x, θ) ≤ H(x, θ), (x, θ) ∈ �× J.
(2.5)

We further make the following assumption concerning the system (2.1):

Assumption 2.1 D > 0, H ∈ Cb+
(
�× J ) , α ∈ Cb+

(
�
)
, γ ∈ Cb+

(
�× J ) ,

β, and σ are assumed nonnegative continuous functions on �× J.
Here, Cb

(
"
)
denotes the Banach space of bounded and continuous functions

on " endowed with the usual supremum norm, while Cb+
(
"
)
denotes its positive

cone, consisting of the everywhere positive functions.
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Plugging H(x, θ) in (2.1) allows us to reduce the system (2.1)–(2.4) into the
following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂C(t, x)

∂t
=D�C−α(x)C+

∫

J

β(x, θ)I (t, x, θ)dθ, t > 0, x ∈ �,
∂I (t, x, θ)

∂t
=σ(x, θ)(H(x, θ)−I )C−γ (x, θ)I, t > 0, (x, θ) ∈ �× J,

∂C(t, x)

∂ν
=0, t > 0, x ∈ ∂�,

C(0, x) =C0(x), I (0, x, θ) = I0(x, θ), (x, θ) ∈ �× J.
(2.6)

2.2 Well-Posedness of (2.6)

We first show the existence of solutions to (2.6) via a semigroup approach for which
general treatments of linear or nonlinear operators in Banach spaces are given in
[14, 18].

Let X := C(�,R) be the Banach space with the supremum norm ‖.‖X and
Y = C(J,X) with the norm ‖φ‖Y = supθ∈J ‖φ(θ)‖X, ∀φ ∈ Y. Define X

+ :=
C(�,R+) and Y

+ := C(J,X+). Define K = X × Y and K
+ = X

+ × Y
+; then,

(K,K+) is a strongly ordered Banach space.

Let � be the Green’s function associated with the parabolic equation
∂v

∂t
= �v in

� subject to the Neumann boundary condition. Suppose that {T1(t)}t≥0 : X −→ X

is the C0-semigroups associated with D�− α(.) subject to the Neumann boundary
condition. It then follows that for any ϕ ∈ X, t ≥ 0,

(T1(t)ϕ)(x) = e−α(x)t
∫

�

�(Dt, x, y)ϕ(y)dy. (2.7)

From [21, Section 7.1 and Corollary 7.2.3], it follows that T1(t) : X −→ X is
compact and strongly positive, ∀t ≥ 0.

We also define {T2(t)}t≥0 : Y −→ Y the C0-semigroups generated by operators
−γ (., .)I as follows: for any ϕ ∈ Y, t ≥ 0,

(T2(t)ϕ)(x, θ) = e−γ (x,θ)tϕ(x, θ). (2.8)

Let A1 : D(A1) ⊂ X −→ X be the generator of T1 and A2 : D(A2) ⊂ Y −→
Y be the generator of T2. Then, T (t) = (T1(t), T2(t)) : K −→ K, t ≥ 0, is a
semigroup generated by the operatorA = (A1,A2) defined on D(A) = D(A1)×
D(A2).
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Define F = (F1, F2) : K+ −→ K by

F1(φ)(x) =
∫

J

β(x, θ)φ2(x, θ)dθ, (2.9a)

F2(φ)(x, θ) = σ(x, θ)(H(x, θ)− φ2(x, θ))φ1(x), (2.9b)

for all x ∈ �, θ ∈ J , and φ := (φ1, φ2)T ∈ K
+.

In order to deal with this problem of existence, we consider a subset XH in K+
defined as follows:

XH =
⎧
⎨

⎩
φ := (φ1, φ2)T ∈ K

+
∣
∣
∣
∣
∣
∣

φ1(x) ≤ βmaxHmax|J |
αmin

, ∀x ∈ �
φ2(x, θ) ≤ H(x, θ), ∀(x, θ) ∈ �× J

⎫
⎬

⎭
,

where

βmax = max
(x,θ)∈�×J

β(x, θ), Hmax = max
(x,θ)∈�×J

H(x, θ), αmin = min
x∈�
α(x),

and |J | represents the Lebesgue measure of J.
Then, System (2.6) can be written abstractly as an ordinary differential equation

in the Banach space XH as

du

dt
= Au+ F(u), t > 0 (2.10a)

u(0) = φ ∈ XH . (2.10b)

Then, (2.6) can be rewritten as the following integral equation:

u(t) = T (t)φ +
∫ t

0
T (t − s)F (u(., s)) ds. (2.11)

The following lemma states the local existence of solutions with values in XH .

Lemma 2.2 Let Assumption 2.1 be satisfied; for any φ := (C0, I0) ∈ XH ,

the system (2.6) has a unique mild solution u(t, ., ., φ) = (C(t, ., .), I (t, ., .))
on (0, τφ) with u(0, ., ., φ) = φ, where τφ ≤ ∞. Furthermore, for t ∈
(0, τφ), u(t, ., φ) ∈ XH and u(t, ., ., φ) is a classical solution of (2.6).

Proof We apply [16, Corollary 4] or [21, Theorem 7.3.1]. It is clear that since F :
XH −→ X is globally Lipschitz continuous, the Cauchy problem has at most one
solution on XH . The local existence of solutions with values in XH follows once we
have checked the subtangential conditions

lim
t→0+

1

h
d(φ + hF(φ),XH ) = 0, ∀φ ∈ XH , (2.12)
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where d(z,XH ) := inf{‖z − y‖K, y ∈ XH } is the distance from the point z to the
set XH . For any φ ∈ XH and h ≥ 0, we have

(
φ1(x)+ hF1(φ)
φ2(x, θ)+ hF2(φ)

)

=
(

φ1(x)+ h
∫
J
β(x, θ)φ2(x, θ)dθ,

φ2(x, θ)+ hσ(x, θ)(H(x, θ)− φ2(x, θ))φ1(x)
)

(2.13a)

≥
(

φ1(x)

φ2(x, θ) [1 − hσmaxφ1(x)]

)

, (x, θ) ∈ �× J,
(2.13b)

where σmax = max(x,θ)∈�×J σ (x, θ).
The above inequalities imply that φ+ hF(φ) ∈ XH when h is sufficiently small,

confirming that the subtangential condition is satisfied. ��
To proceed further, we need some information on the following scalar reaction–

diffusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂w

∂t
−D�w = A(x)− g(x)w, x ∈ �,

∂w

∂ν
= 0, x ∈ ∂�

(2.14)

where D > 0 and A and g are continuous and positive functions on �.

Lemma 2.3 System (2.14) admits a unique positive steady state w∗(.) that is
globally asymptotically stable in X. Furthermore, if g(.) ≡ g and A(.) ≡ A, then
w := A/g, is globally attractive in X

+.

The proof is similar to that given in [9, Lemma 2.2].
We further obtain the following result that solutions of system (2.6) exist globally

on [0,∞). We begin to recall that lim supt→∞ I (t, x, θ) ≤ H(x, θ) from (2.5).
Thus,

I (t, x, θ) ≤ H(x, θ), (x, θ) ∈ �× J, t ≥ 0. (2.15)

By virtue of first equation of (2.6) combined with (2.15), we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂C

∂t
−D�C ≤ βmaxHmax|J | − αminC, t > 0, x ∈ �,

∂C

∂ν
=0, t > 0, x ∈ ∂�,

C(0, x) = C0(x) ≥ 0, x ∈ �,

(2.16)
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where

βmax = max
(x,θ)∈�×J

β(x, θ), Hmax = max
(x,θ)∈�×J

H(x, θ), αmin = min
x∈�
α(x).

Thus, C(t, x, θ) is a subsolution of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂M

∂t
−D�M = βmaxHmax|J | − αminM, x ∈ �,

∂M

∂ν
=0, x ∈ ∂�,

M(0, x) = max
x∈�
C0(x) ≥ 0, x ∈ �.

(2.17)

Denote by M the unique solution of the problem (2.17). We also observe that the
positive constant

Ĉ := max

{
βmaxHmax|J |
αmin

,max
x∈�
C0(x)

}

is a supersolution of (2.17). Thus, from the well-known comparison principle for
parabolic equations, it then follows that

C(t, x) ≤ M(t, x) ≤ Ĉ, x ∈ �, t ≥ 0. (2.18)

Now we are in a position to state that solutions of the system (2.6) exist globally
for t ∈ [0,∞) in XH .
Theorem 2.4 Let Assumption 2.1 be satisfied, for any φ := (C0, I0) ∈ XH ; the
system (2.6) has a unique solution u(t, x, θ, φ) = (C(t, x), I (t, x, θ)) defined on
[0,∞) with u(0, ., .;φ) = φ and a semiflow �(t) : XH −→ XH generated by
system (2.6) that is defined by

�(t)φ = u(t, ., ., φ) := (C(t, ., φ), I (t, ., ., φ)), t ≥ 0. (2.19)

Furthermore, the semiflow �(t) is point dissipative, and positive orbits of bounded
subsets of XH for �(t) are bounded.

Proof For all (x, θ) ∈ �̄ × J and t ≥ 0, I (t, x, θ) and C(t, x) are ultimately
bounded with respect to the maximum norm from (2.15) and (2.18), respectively, for
all initial conditions (C0, I0) ∈ XH ; thus, the solution exists globally, and moreover,
the solution semiflow generated by (2.6) is point dissipative. Moreover, the positive
orbits of bounded subsets of XH for �(t) are bounded. ��

Since the second equation of (2.6) has no diffusion term, the solution map �(t)
is not compact. In order to overcome this problem, we introduce the Kuratowski
measure of noncompactness κ (see, e.g., [5, 28, 29]), which is defined by
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κ(B) := inf{r : B has a finite cover of diameter < r}, (2.20)

for any bounded set B. We set κ(B) = ∞ whenever B is unbounded. It is easy to
see that B is precompact (i.e., B is compact) if and only if κ(B) = 0. A continuous
mapping f : X −→ X is said to be κ-condensing (κ-contraction of order %, 0 ≤
% < 1) if f takes bounded sets to bounded sets and k(f (B)) < κ(B)(κ(f (B)) <
%κ(B)) for any nonempty closed bounded set B ∈ X with κ(B) > 0 (see [28,
29]). It is easy to see that a κ-contraction of order % is κ-condensing and a compact
map is a κ-contraction of order 0. It is well-known that κ-condensing maps are
asymptotically smooth (see, e.g., [10, Lemma 2.3.5]).

Then, the solution map �(t) has some partial compactness in the following
sense.

Lemma 2.5 �(t) : XH −→ XH is κ-contraction on XH in the sense that

κ(�(t)B) ≤ e−γmint κ(B) (2.21)

for any bounded set B ⊂ XH where γmin = min(x,θ)∈�×J γ (x, θ) > 0.

Proof For any φ = (φ1, φ2) ∈ XH , it follows from Theorem 2.4 that the semiflow
�(t) : XH −→ XH generated by system (2.6) with initial value condition:
C(0, x) = φ1(x), I (0, x, θ) = φ2(x, θ), (x, θ) ∈ �× J is defined by

�(t)φ = (C(t, ., φ), I (t, ., ., φ)), ∀φ ∈ XH , t ≥ 0. (2.22)

From the second equation in (2.6), it is easy to see that I (t, ., ., φ) satisfies the
following equations:

⎧
⎪⎪⎨

⎪⎪⎩

∂I (t, x, θ)

∂t
= σ(x, θ)(H(x, θ)− I (t, x, θ, φ))C(t, x, φ)

−γ (x, θ)I (t, x, θ, φ) t > 0, (x, θ) ∈ �× J,
I (0, x, θ) = φ2(x, θ) (x, θ) ∈ �× J.

(2.23)
Then, for all t > 0, x ∈ �

I (t, x, θ, φ) = T2(t)φ2(x, θ) (2.24)

+ σ(x, θ)
∫ t

0
T2(t − s) [(H(x, θ)− I (s, x, θ, φ))C(s, x, φ))] ds,

where T2(t)φ2 = e−γ (.,.)tφ2, ∀φ2 ∈ Y. Define the linear operator

L(t)φ = (0, T2(t)φ2), ∀φ = (φ1, φ2) ∈ XH
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and a nonlinear operator

N(t)φ =
(

C(t, ., φ), σ (x, θ)

∫ t

0
T2(t − s)

[

(H(x, θ)

− I (s, x, θ, φ))C(s, x, φ))
]

ds

)

, ∀φ ∈ XH ,

where

C(t, x)=T1(t)C0(x)+
∫ t

0
T1(t−s)

(∫

J

β(x, θ)I (s, x, θ)dθ

)

ds, t > 0, x ∈ �.

It is easy to see that

�(t)φ = L(t)φ +N(t)φ, ∀φ ∈ XH , t ≥ 0.

By the compactness of T1(t) and the boundedness of �, it then follows from the
expression of (2.24) thatN(t) : XH −→ XH is compact for each t > 0, and hence,
κ(N(t)B) = 0 for any bounded set B ∈ XH and t > 0.

Since

sup
φ∈XH

‖L(t)φ‖
‖φ‖ ≤ sup

φ∈XH
‖e−γ (.,.)tφ2‖

‖φ‖ ≤ e−γmint sup
φ∈XH

‖φ2‖
‖φ‖ ,

where γmin := min(x,θ)∈�×J γ (x, θ), we obtain

‖L(t)‖ ≤ e−γmint , t > 0.

Therefore, for any bounded set B ∈ XH , we have

κ(�(t)B) ≤ κ(L(t)B)+ κ(N(t)B) ≤ ‖L(t)‖κ(B)+ 0 ≤ e−γmint κ(B), ∀t > 0.

Thus, �(t) : XH −→ XH , t > 0, is κ-contraction of order e−γmint on XH . ��
Now we are ready to show that solutions of system (2.6) converge to a compact

attractor in XH .

Theorem 2.6 Let Assumption 2.1 be satisfied; �(t) : XH −→ XH , t > 0 admits a
connected global attractor on XH .

Proof By Lemma 2.5 and Theorem 2.4, it follows that �(t) is point dissipative and
κ-contracting onXH . From the proof of Theorem 2.4, we also know that the positive
orbits of bounded subsets of XH for �(t) are (uniformly) bounded. By Magal and
Zhao [15, Theorem 2.6], �(t) has a global attractor that attracts every bounded set
in XH . ��
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3 The Basic Reproduction Number

In epidemic models, the basic reproduction number R0 is the expected number
of secondary cases produced by a typical infective individual introduced into a
completely susceptible population, in the absence of any control measure. It can
be computed using the next-generation approach (see, e.g., [6, 23, 26]).

In order to define the basic reproduction ratio for model (2.6), we begin to
find the disease-free equilibrium by letting the densities of the disease-related
compartmentsC and I be zero. It is easy to see that (0, 0) is disease-free equilibrium
for model (2.6). Linearizing system (2.6) at the disease-free equilibrium, we get the
following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(t, x)

∂t
= D�u1(t, x)− α(x)u1(t, x)+

∫

J
β(x, θ)u2(t, x, θ)dθ, t > 0, x ∈ �,

∂u2(t, x, θ)

∂t
= σ(x, θ)H(x, θ)u1(t, x)− γ (x, θ)u2(t, x, θ), t > 0, (x, θ) ∈ �× J,

∂u1(t, x)

∂ν
= 0, t > 0, x ∈ ∂�,

u1(0, x) = φ1(x), u2(0, x, θ) = φ2(x, θ) (x, θ) ∈ �× J.
(3.25)

We begin to recall that K = X × Y where X := C(�,R) with the supremum
norm ‖.‖X and Y = C(J,X) with the norm ‖φ‖Y = supθ∈J ‖φ(θ)‖X, ∀φ ∈ Y.

For any ϕ̂ := (ϕ̂1, ϕ̂2) ∈ K, it is easy to see that the linear system (3.25) admits
a unique global solution

û = (̂u1(t, ., ϕ̂), û2(t, ., ., ϕ̂)) with û(0) = ϕ̂.

Denote by Q(t) : K −→ K the solution semiflow of (3.25) on K, that is defined by

Q(t)ϕ̂ = û, with û(0) = ϕ̂ ∈ K, t ≥ 0.

Since (3.25) is cooperative, Q(t) is a positive C0-semigroup on K, in the sense
that Q(t)K+ ⊆ K

+, ∀t ≥ 0. Then, Q(t) is resolvent-positive [23, Theorem 3.12],
and its generator A can be written as follows:

A =
(
D�− α(.) L0β
σ (., .)H(., .) −γ (., .)

)

,

where the operator L0β is defined as follows:

(L0β)(ϕ)(x) :=
∫

J

β(x, y)ϕ(x, y)dy, ∀ϕ ∈ Y. (3.26)
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We begin to investigate the spectral properties of the linear operator A before
defining the basic reproduction ratio.

Substituting u1(t, x) = eλtφ1(x); u2(t, x, θ) = eλtφ2(x, θ) into (3.25), we get
the following associated eigenvalue problem:

λφ1(x) = D�φ1(x)− α(x)φ1(x)+
∫

J

β(x, y)φ2(x, y)dy, x ∈ � (3.27a)

λφ2(x, θ) = σ(x, θ)H(x, θ)φ1(x)− γ (x, θ)φ2(x, θ), (x, θ) ∈ �× J (3.27b)

∂φ1(x)

∂ν
= 0 on ∂�. (3.27c)

We point out that the solution map of (3.25) is not compact due to the lack of
diffusion term in the second equation in (3.25). The following lemma concerns with
the existence of the principal eigenvalue of system (3.27).

Lemma 3.1 Eigenvalue problem (3.27) has a principal simple eigenvalue λ(H)
with a positive eigenfunction.

Proof By the same argument as Lemma 2.5, for each t > 0, the solution semiflow
Q(t) := û : K −→ K of (3.25) is κ-contraction of order e−γmint ∈ [0, 1), t > 0 on
K in the sense that

κ(Q(t)B) ≤ e−γmint κ(B), (3.28)

where γmin = min(x,θ)∈�×J γ (x, θ) > 0. Hence, Q(t) is κ-condensing, that is,

κ(Q(t)B) ≤ κ(B) (3.29)

for any bounded set B ∈ K, with κ(B) > 0, where κ is the Kuratowski measure of
noncompactness as defined in (2.20). Thus, from (3.29), it follows that the essential
spectral radius re(Q(t)) of Q(t) satisfies

re(Q(t)) < 1, t > 0.

On the other hand, the spectral radius r(Q(t)) of Q(t) satisfies

r(Q(t)) = es(A)t ≥ 1, t > 0

where s(A) is the spectral bound A. This implies that re(Q(t)) ≤ r(Q(t)) for any
t > 0. Since Q(t) is a strongly positive and bounded operator on K, therefore,
according to the generalized Krein–Rutman theorem (see, e.g., [25, Lemma 2.2]
and [11, Chapter II.14]), it follows that system (3.27) admits a principal eigenvalue
λ(H) with a positive eigenfunction (see also [25, Lemma 3.4]). ��
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Lemma 3.1 means that λ(H) is a real eigenvalue with algebraic multiplicity
one, and Re(λ) < λ(H) for any other eigenvalue λ of (3.27). Furthermore,
λ(H) has a corresponding eigenvector φH (x, θ) = (φH,1(x), φH,2(x, θ)) satisfying
φH (x, θ)" 0, and any other nonnegative eigenvector of (3.27) is a positive multiple
of φH (x, θ).

Next, we follow the framework in [13, 27] to obtain the basic reproduction
number of the model (2.6).

Let S(t) : K → K be the C0-semigroup generated by the following reaction–
diffusion system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(t, x)

∂t
= D�u1(t, x)− α(x)u1(t, x), t > 0, x ∈ �,

∂u2(t, x, θ)

∂t
= σ(x, θ)H(x, θ)u1(t, x)− γ (x, θ)u2(t, x, θ), t > 0, (x, θ) ∈ �× J,

∂u1(t, x)

∂ν
= 0, x ∈ ∂�,

u1(0, x) = φ1(x), u2(0, x, θ) = φ2(x, θ), (x, θ) ∈ �× J.
(3.30)

Then for all φ := (φ1, φ2)T ∈ K, we have

(S(t)φ)(x, θ) =
(

T1(t)φ1(x), T2(t)φ2(x, θ)

+
∫ t

0
T2(t − s)[(σH)(x, θ)T1(s)φ1(x)]ds

)T
, (3.31)

and therefore S(t) is a positive C0-semigroup on K.

Let C be the positive linear operator on K defined by

C(φ) =
(
0 L0β
0 0

)(
φ1

φ2

)

, φ := (φ1, φ2)T ∈ K, (3.32)

where the operator Lβ is defined in (3.26).
In order to define the basic reproduction number for the system model (2.6),

we assume that the state variables are near the disease-free steady state (0, 0) and
one bacterium or one infectious hen is introduced at time t = 0 and infection
occurs immediately. Then with a given initial distribution of infections described
by φ := (φ1, φ2)T ∈ K, as time evolves, those distributions reach C(S(t)φ) at time
t. Consequently, the distribution of the total new infections is

∫ ∞

0
C(S(t)φ)dt.

Let L : K −→ K be defined by the above integral, i.e.,
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L(φ) :=
∫ ∞

0
C(S(t)φ)dt = C

(∫ ∞

0
S(t)φdt

)

.

Then, L is nothing but the next-generation operator of the model system (see,
e.g.,[23, 26]).

By Diekmann et al. [6] and Thieme [23], the spectral radius of L is the basic
reproduction number for the model (2.6), that is,

R0 = r(L). (3.33)

By the general results in Thieme [23] and the same arguments as in Wang and Zhao
[26, Lemma 2.2], we have the following result.

Lemma 3.2 R0 − 1 and λ(H) have the same sign.

In order to compute the basic reproduction number R0, we begin to characterize
it in terms of the principal eigenvalue of the elliptic eigenvalue problem.

Theorem 3.3 Let � be the unique positive eigenvalue of the eigenvalue problem

⎧
⎪⎨

⎪⎩

−D�φ(x)+ α(x)φ(x) = �
(∫

J

β(x, y)σ (x, y)H(x, y)

γ (x, y)
dy

)

φ(x), x ∈ �,
∂ϕ(x)

∂ν
= 0, x ∈ ∂�

(3.34)
with a positive eigenfunction ϕ ∈ X. Then

R0 = 1

�
. (3.35)

Proof Let B be the positive linear operator on K defined by

B(φ) =
(
B11 0
B21 B22

)(
φ1

φ2

)

, φ := (φ1, φ2)T ∈ K,

where

B11(φ1) = D�φ1(x)− α(.)φ1
B22(φ2) = −γ (., .)φ2
B21(φ1) = σ(., .)H(., .)φ1.

.

It is easy to see that B is the generator of the positive C0-semigroup S(t) generated
by the system (3.30) and defined in (3.31). Then, B is resolvent-positive [23,
Theorem 3.12], and clearly, we have
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∫ ∞

0
S(t)φdt = −B−1φ, φ := (φ1, φ2)T ∈ K. (3.36)

A straightforward computation shows that

−B−1 =
( −B−1

11 0
B−1
22 B21B

−1
11 −B−1

22

)

.

Thus, the next-generation operator of the model (2.6) rewrites as follows: for all
φ := (φ1, φ2)T ∈ K,

L(φ) =C
(∫ ∞

0
S(t)φdt

)

=C
(
−B−1

)
(φ)

=
(
0 L0β
0 0

)( −B−1
11 0

B−1
22 B21B

−1
11 −B−1

22

)(
φ1

φ2

)

=
(
L0β [B−1

22 B21B
−1
11 ] L0β(−B−1

22 )

0 0

)(
φ1

φ2

)

.

Clearly, the nonzero eigenvalues of the next-generation operator L are equal to
those of L̂, where L̂ is a positive linear operator on X defined by

L̂ψ =L0β
(
B−1
22 B21B

−1
11

)
ψ

=L0β
(

1

γ (., .)
σ (., .)H(., .) [−D�+ α(.)]−1

)

ψ, ψ ∈ X.

Thus, we have

R0 := r(L) = r(L̂).

Note that for all x ∈ �, we have

L̂ψ(x) =
∫

J

β(x, y)σ (x, y)H(x, y)

γ (x, y)
[−D�+ α(x)]−1 ψ(x)dy

=F(x) [−D�+ α(x)]−1 ψ(x), ψ ∈ X,

where

F(x) =
∫

J

β(x, y)σ (x, y)H(x, y)

γ (x, y)
dy.
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By arguments similar to those in [26, Theorem 3.2], we have

R0 := r(L) = r(L̂) = r
(
F [−D�+ α(.)]−1

)
= r

(
[−D�+ α(.)]−1 F

)
= 1

�
,

(3.37)

where � is the unique positive eigenvalue of

[−D�+ α(x)]ϕ = �F(x)ϕ, ϕ ∈ X (3.38)

with a positive eigenfunction. ��
The following result gives the equivalent characterization of R0.

Corollary 3.4 Let Assumption 2.1 be satisfied; then for system (2.6), the basic
reproduction ratio R0 is equal to

R0 = sup
φ∈H 1(�),φ =0

⎧
⎪⎪⎨

⎪⎪⎩

∫

�

[∫

J

β(x, y)σ (x, y)H(x, y)

γ (x, y)
dy

]

φ2

∫
�
[D|∇φ|2 + α(x)φ2]

⎫
⎪⎪⎬

⎪⎪⎭

. (3.39)

Moreover, R0 rewrites as follows:

R0 =
∫

J

r0(y)dy, (3.40)

where

r0(y) := sup
φ∈H 1(�),φ =0

⎧
⎪⎪⎨

⎪⎪⎩

∫

�

[
β(x, y)σ (x, y)H(x, y)

γ (x, y)

]

φ2

∫
�
[D|∇φ|2 + α(x)φ2]

⎫
⎪⎪⎬

⎪⎪⎭
∀y ∈ J. (3.41)

r0(y) can be interpreted as the weight of transmission bacteria-to-hens of type y-
to-bacteria where hens of type y represent the animals having the same level of
resistance y as more thoroughly explained in the special case when all parameters
are independent of the position in Sect. 5.

Proof By virtue of the elliptic eigenvalue problem (3.34), it follows from the well-
known variational characterization of the principal eigenvalue (see, e.g., [8, 28])
that the formula (3.39) holds. After changing the order of integration (3.39), we get
(3.41). ��

The following results give some properties of the basic reproduction number R0.
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Corollary 3.5 Let Assumption 2.1 be satisfied; then for system (2.6), there hold:

(i) R0 is a monotone decreasing function of D with

lim
D→0

R0(D) = max
x∈�

{
1

α(x)

∫

J

β(x, y)σ (x, y)H(x, y)

γ (x, y)
dy

}

and

lim
D→∞R0(D) =

{
1

∫
�
α(x)

∫

�

[∫

J

β(x, y)σ (x, y)H(x, y)

γ (x, y)
dy

]}

.

(ii)

If |J |min
y∈J r0(y) > 1, then R0 > 1.

(iii)

If |J |max
y∈J r0(y) < 1, then R0 < 1.

Proof (i) directly follows by an argument similar to the one in [1, 28, Lemma 2.3].
(ii) and (iii) directly follow from the following inequality:

|J |min
y∈J r0(y) ≤ R0 ≤ |J |max

y∈J r0(y). ��

4 Threshold Dynamics

First we show the strict positiveness of solutions of system (2.6). The following
results will play a central role in establishing the persistence of system (2.6).

Lemma 4.1 Let Assumption 2.1 be satisfied; suppose u(t, x, θ, φ) is the solution of
system (2.6) with initial condition u(0, ., .;φ) := φ ∈ XH .

(i) If there exits t1 ≥ 0 such that u1(t1, ., φ) ≡ 0, then ui(t, ., φ) > 0, ∀t >
t1, i = 1, 2.

(ii) If there exits t1 ≥ 0 such that u2(t1, ., φ) ≡ 0, then ui(t, ., φ) > 0, ∀t >
t1, i = 1, 2.

Proof (i) Suppose that u1(t1, x, φ) ≡ 0, for some t1 ≥ 0. According to
Theorem 2.4 and the first equation of system (2.6), it is easy to see that
u1(t, x, φ) satisfies the following inequalities:
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⎧
⎪⎨

⎪⎩

∂u1(t, x)

∂t
−D�u1 ≥ −α(x)u1, (x, θ) ∈ �× J,

∂u1

∂ν
= 0, x ∈ ∂�.

(4.42)

Thus, from the strong maximum principle (see, e.g., [20, p. 172, Theorem 4]
and the Hopf boundary lemma (see, e.g., [20, p. 170, Theorem 3] with the
initial time at t = t1 instead of t = 0, we get u1(t, x, φ)> 0,∀t > t1 and x ∈�.

From the second equation in (2.6), u2(t, x, θ) satisfies

u2(t, x, θ, φ) =T2(t − t1)u2(t1, x, θ)+
∫ t−t1

0
T2(t − t1 − s)f (s, x, θ, φ)ds

≥
∫ t−t1

0
T2(t − t1 − s)f (s, x, θ, φ)ds,

where f (s, x, θ, φ) := σ(x, θ)(H(x, θ) − u2(s, x, θ, φ))u1(s, x, φ) ≥ 0 and
f (s, x, θ, φ) ≡ 0 for s > t1 and (x, θ) ∈ � × J. According to the positivity
of T2(t), it follows that u2(t, x, θ) > 0, ∀t > t1. The proof of the part (i) is
complete.

(ii) We consider the case where u2(t1, x, θ) ≡ 0 for some t1 ≥ 0. From the second
equation in (2.6), u2(t, x, θ) satisfies

u2(t, x, θ, φ) =T2(t − t1)u2(t1, x, θ)+
∫ t−t1

0
T2(t − t1 − s)f (s, x, θ, φ)ds

≥T2(t − t1)u2(t1, x, θ).
According to Theorem 2.4, we have u2(t, x, θ, φ) ≥ 0 and u2(t, x, θ, φ) ≡
0, ∀t > t1. The strong positivity of T2(t) implies that u2(t, ., φ) > 0,∀t > t1.

On the basis of (4.42) and from the strong maximum principle and the Hopf
boundary lemma as in (i), it then turns out u1(t, x, φ) > 0,∀t > t1 and x ∈ �. The
proof of the part (ii) is complete. ��

Now we are ready to prove the main result of this section, which indicates that
R0 is a crucial index for disease persistence.

Theorem 4.2 Let Assumption 2.1 be satisfied; suppose u(t, x, θ, φ) =
(C(t, x), I (t, x, θ)) is the solution of system (2.6) with initial condition
u(0, ., .;φ) := (C0, I0) ∈ XH . Then, the following two statements are valid:

(i) If R0 < 1, then the disease-free equilibrium (0, 0) is globally attractive in XH .
(ii) IfR0 > 1, then system (2.6) admits at least one positive steady state û(x, θ) and

there exists an η > 0 such that for any φ := (φ1, φ2) ∈ XH with φ1(0, .) ≡ 0
or φ1(0, .) ≡ 0, we have

lim inf
t→∞ u1(t, x) ≥ η, and lim inf

t→∞ u2(t, x, θ) ≥ η, (4.43)

uniformly for all (x, θ) ∈ �× J .
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Proof (i) In the case where R0 < 1,, Lemma 3.2 implies that we have λ(H) < 0.
Since λ(m) < 0 is continuous in m, hence there exists a sufficiently small positive
number ε such that λ(H + ε) < 0. Furthermore, from (2.6), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(t, x)

∂t
=D�u1(t, x)− α(x)u1(t, x)+

∫

J

β(x, y)u2(t, x, y)dy, t > t0, x ∈ �,

∂u2(t, x, θ)

∂t
≤σ(x, θ)(H(x, θ)+ ε0)u1(t, x)− γ (x, θ)u2(t, x, θ), t > 0, (x, θ) ∈ �× J,

∂u1(t, x)

∂ν
=0, t > t0, x ∈ ∂�.

(4.44)

Let ψ := (ψ1, ψ2)T be the strongly positive eigenfunction ψ corresponding to
λ(H + ε) for the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂v1(t, x)

∂t
=D�v1(t, x)− α(x)v1(t, x)+

∫

J

β(x, y)v2(t, x, y)dy, t > 0, (x, θ) ∈ �× J,

∂v2(t, x, θ)

∂t
=σ(x, θ)(H(x, θ)+ ε0)v1(t, x)− γ (x, θ)v2(t, x, θ), t > 0, (x, θ) ∈ �× J,

∂v1(t, x)

∂ν
=0, x ∈ ∂�,

(4.45)

which has a solution v(t, x, θ) = (v1(t, x), v2(t, x, θ)) = eλ(H+ε)t (ψ1(x), ψ2(x, θ))
for all t ≥ 0 and (x, θ) ∈ � × J. Since, for any given φ ∈ XH , there exists
some ζ > 0 such that (u1(0, x, φ), u2(0, x, φ)) ≤ ζ(v1(0, x), v2(0, x, θ)); by the
comparison principle, we obtain

(u1(t, x, φ), u2(t, x, θ, φ)) ≤ ζeλ(H+ε)tψ, ∀x ∈ �, t ≥ 0,

which implies limt→∞(u1(t, x, φ), u2(t, x, θ, φ)) = (0, 0) uniformly for (x, θ) ∈
�× J. Thus, part (i) is proved.

(ii) In the case where R0 > 1, we have λ(H) > 0. For any ρ ∈ [0, ρ∗), where ρ∗
is a sufficient small positive number, we consider the following eigenvalue problem:

λφ1(x) = D�φ1(x)− α(x)φ1(x)+
∫

J

β(x, y)φ2(x, y)dy, x ∈ � (4.46a)

λu2(x, θ) = σ(x, θ)(H(x, θ)− ρ)φ1(x)− γ (x, θ)φ2(x, θ), (x, θ) ∈ �× J
(4.46b)

∂φ1(x)

∂ν
= 0 on ∂�. (4.46c)
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By the same argument as in Lemma 3.1, eigenvalue problem (4.46) has a principal
eigenvalue λ(H − ρ) with a positive eigenfunction ϕρ(x, θ). Since limρ→0 λ(H −
ρ) = λ(H), we can fix a ρ0 ∈ (0, ρ∗), such that λ(H − ρ0) > 0.

Let

W0 = {φ ∈ XH : φ1(0, .) ≡ 0 and φ2(0, .) ≡ 0}

and

∂W0 = XH \ W0 = {φ ∈ XH : φ1(0, .) ≡ 0 or φ2(0, .) ≡ 0}.

By Lemma 4.1, it follows that for any φ ∈ W0, u1(t, x, φ), u2(t, x, θ, φ) > 0
for all (x, θ) ∈ �× J, namely �(t)W0 ⊆ W0, ∀t ≥ 0. Define

M∂ := {φ ∈ ∂W0 : �(t)φ ∈ ∂W0, t ≥ 0}.

Let ω(φ) be the omega limit set of the orbit γ+(φ) := {�(t)φ : ∀t ≥ 0}.
Claim 4.3 ω(ψ) = {E0} := {(0, 0)T }, ∀ψ ∈ ∂W0.

For any given ψ ∈ M∂, we have �(t)φ ∈ ∂W0,∀t ≥ 0. It then follows
that for each t ≥ 0, either u1(t, ., ψ) ≡ 0 or u2(t, ., ., ψ) ≡ 0. In the case
where u1(t, ., ψ) ≡ 0, for all t ≥ 0, in view of the u2 equation in (2.6), we see
that limt→0 u2(t, x, θ, ψ) = 0 uniformly for (x, θ) ∈ � × J. In the case where
u1(t0, ., ψ) ≡ 0 for some t0 ≥ 0, Lemma 4.1 implies that u1(t0, x, ψ) > 0, ∀t >
t0, x ∈ �. Thus, we have u2(t, ., ., ψ) ≡ 0, t ≥ t0, so ω(ψ) = {E0},∀ψ ∈ M∂.
This proves the Claim 4.3.

Claim 4.4 E0 is a uniform weak repeller forW0 in the sense that

lim sup
t→∞

‖�(t)φ − E0‖ ≥ ρ0,∀φ ∈ W0.

Suppose, by contradiction, that lim supt→∞ ‖�(t)φ − E0‖ < ρ0 for some φ0 ∈
W0. Then, there exists a t2 > 0 such that

u1(t, x, φ0) < ρ0 and u2(t, x, θ, φ0) < ρ0, ∀t ≥ t2, (x, θ) ∈ �× J.
Then, u1(t, x, φ0) and u2(t, x, θ, φ0) satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(t, x)

∂t
=D�u1(t, x)− α(x)u1(t, x)+

∫

J

β(x, θ)u2(t, x, θ)dθ, t ≥ t2, x ∈ �,

∂u2(t, x, θ)

∂t
≥σ(x, θ)(H(x, θ)− ρ0)u1(t, x)− γ (x, θ)u2(t, x, θ), t ≥ t2, (x, θ) ∈ �× J,

∂u1(t, x)

∂ν
=0, x ∈ ∂�.

(4.47)
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Let φ̃ρ0 = ˜(φ1ρ0, φ̃2ρ0)T be the positive eigenfunction associated with λρ0(H).
Then, the linear system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂v1(t, x)

∂t
=D�v1(t, x)− α(x)v1(t, x)+

∫

J

β(x, θ)v2(t, x, θ)dθ, t > 0, x ∈ �,

∂v2(t, x, θ)

∂t
=σ(x, θ)(H(x, θ)− ρ0)v1(t, x)− γ (x, θ)v2(t, x, θ), t > 0, (x, θ) ∈ �× J,

∂v1(t, x)

∂ν
=0, x ∈ ∂�,

(4.48)

admits a solution v(t, x, θ) = eλρ0 (H)t φ̃ρ0(x, θ). Since ui(t, x, φ0) > 0, i =
1, 2 for all t > 0 and (x, θ) ∈ � × J, there exists some ζ1 > 0 such
that (u1(t2, x, φ0), u2(t2, x, φ0)) ≥ ζ1(v1(t2, x), v2(t2, x, θ)); by the comparison
principle, we obtain

(u1(t, x, φ0), u2(t, x, θ, φ0)) ≥ ζ1eλρ0 (H)t φ̃ρ0(x, θ), ∀x ∈ �, t ≥ t2.

Consequently, with the aid of the positivity of λρ0(H), we obtain that u1(t, x, φ0)
and u2(t, x, θ, φ0) are unbounded, which is a contradiction. This proves the
Claim 4.4.

To go further, define a continuous function p : XH −→ [0,∞) by

p(φ) = min{min
x∈�
φ1(x), min

(x,θ)∈�×J
φ2(x, θ)}, ∀φ ∈ XH .

From Lemma 4.1, it follows that p−1(0,∞) ⊆ W0 and p has the property that
if p(φ) = 0, φ ∈ W0 or p(φ) > 0, then p(�(t)φ) > 0 for all t > 0. That is,
p is a generalized distance function for the semiflow �(t) : XH → XH (see, e.g.,
[21]). From Claim 4.3, it follows that any forward orbit of �(t) inM∂ converges to
E0.Moreover, Claim 4.4 implies that E0 is isolated in XH andWs(E0) ∩ W0 = ∅

whereWs(E0) is the stable set of E0. Furthermore, there is no cycle inM∂ from E0
to E0. It then follows from [21, Theorem 3] that there exists an η̂ > 0 such that

min
ψ∈ω(φ) p(ψ) > η̂, ∀φ ∈ W0.

Hence, lim inft→∞ ui(t, ., φ) ≥ η̂, ∀φ ∈ W0, i = 1, 2, and by Lemma 4.1, we can
choose an 0 < η ≤ η̂ such that lim inft→∞ ui(t, ., φ) ≥ η, i = 1, 2. Thus,

lim inf
t→∞ ui(t, ., φ) ≥ η, i = 1, 2, ∀φ ∈ W0.

Therefore, the uniform persistence stated in part (ii) is valid. By Magal and Zhao
[15, Theorem 3.7 and Remark 3.10], we see that �(t) : W0 → W0 admits a global
attractorA0. The solution maps�(t) are κ-condensing. Since the setW0 is convex,
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it follows from [15, Theorem 4.7] that �(t) has an equilibrium ũ ∈ W0. Clearly, by
Lemma 4.1, we conclude that ũ(.) is a positive steady state of (2.6). ��

5 A Special Case

In this section, we shall discuss a special case where all the coefficients in (2.6) are
independent of the spatial variable x, that is with the following assumption:

Assumption 5.1 For all (x, θ) ∈ �× J,

β(x, θ) ≡ β(θ) > 0, γ (x, θ) ≡ γ (θ) > 0, H(x, θ) ≡ H(θ) > 0,

α(x) ≡ α > 0, σ (x, θ) ≡ σ(θ) > 0.

5.1 The Basic Reproduction Number

By Theorem 3.3, and a similar argument as [27, Theorem 2.1], we have the
following formula for R0:

Lemma 5.2 Let Assumption 2.1–5.1 be satisfied; then for system (2.6), the basic
reproduction ratio R0 is equal to

R0 =
∫

J

r0(y)dy, (5.49)

where

r0(y) = β(y)
γ (y)

× σ(y)H(y)
α

, ∀y ∈ J. (5.50)

r0(y) describes the average number of infectious hens of type y produced by a
single bacteria introduced in the infection-free environment and is interpreted as
the weight of transmission bacteria-to-hens of type y-to-bacteria where hens of type
y represent the animals having the same level of resistance y.

The quantity Kh,b(y) := β(y)

γ (y)
represents the average number of bacteria

produced by one infectious hen of type y during its infectious period
1

γ (y)
(i.e.,

hens of type y-to-bacteria transmission).Kb,h(y) := σ(y)H(y)
α

depicts the average

number of infectious hens of type y caused by one bacterium during its lifetime
1

α
in the environment (i.e., bacteria-to-hens of type y transmission).



A Reaction–Diffusion Model for Salmonella Transmission Within an Industrial. . . 177

5.2 Global Attractivity of the Endemic Equilibrium

In addition to the threshold result in Theorem 4.2, we are able to prove the global
attractivity of the positive steady state under some appropriate conditions.

Theorem 5.3 Let Assumption 2.1–5.1 be satisfied, and let u(t, x, θ, φ) =
(C(t, x), I (t, x, θ)) be the solution of system (2.6) with initial condition
u(0, ., .;φ) := (C0, I0) ∈ XH ; then the following statement is valid:

If R0 > 1, then system (2.6) has a unique (spatially) constant steady state
u∗(θ) = (u∗1, u∗2(θ))T such that for any φ := (φ1, φ2)T ∈ XH with φ1(0, .) ≡ 0 or
φ1(0, .) ≡ 0,

lim
t→∞(u1(t, x), u2(t, x, θ)) = (u

∗
1, u

∗
2(θ))

T , (5.51)

uniformly for all (x, θ) ∈ � × J ; moreover, if γ (θ) ≡ γ > 0 and σ(θ) ≡ σ > 0,
then

u∗1 = γ
σ
(R0 − 1), and u∗2(θ) =

H(θ)(R0 − 1)

R0
. (5.52)

Proof We use a fluctuation method (see, e.g.,[13, 24]). It is easy to see from the
proof of Theorem (2.4) that the set XH is positively invariant for the solution
semiflow �(t), and every forward orbit enters into XH eventually. It is easy to see
that a positive equilibrium (v∗1 , v∗2(θ)) of (2.6) satisfies

v∗2(θ) =
σ(θ)H(θ)v∗1
γ + σv∗1

, (5.53a)

0 = −α +
∫

J

σ (y)β(y)H(y)

γ (y)+ σ(y)v∗1
dy := f (v∗1). (5.53b)

Moreover, the continuous mapping v∗1 �→ f (v∗1) from the set [0,∞) into R is
monotone decreasing with f (0) = α(R0 − 1) and limz→∞ f (z) = −α. Hence, for
R0 > 1, there exists a unique (spatially) constant endemic equilibrium u∗(θ) :=
(u∗1, u∗2(θ))T satisfying (5.53). In the special case where γ (θ) ≡ γ > 0 and
σ(θ) ≡ σ > 0, u∗ is explicitly given by (5.52).

To show that limt→∞(u1(t, x), u2(t, x, θ)) = u∗(θ), we choose a sufficiently
large number k > 0 such as the function ku1−αu1+

∫
J
β(y)u2(., y)dy is monotone

increasing in u1 for all (u1, u2)T ∈ XH . It then follows that

u1(t, x) = e−kt
∫

�

�(Dt, x, y)u1(0, y)dy +
∫ t

0
e−ks

∫

�

�(Ds, x, y)

×
[

ku1(x, t − s)− αu1(t − s, x)+
∫

J

β(y)u2(t − s, x, y)dy
]

,
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where � is the Green’s function associated with the parabolic equation
∂v

∂t
= �v in

� subject to the Neumann boundary condition.
Let

u∞1 (x) := lim sup
t→∞

u1(t, x), u1∞(x) := lim inf
t→∞ u1(t, x),

and for any θ ∈ J ,

u∞2 (x, θ) := lim sup
t→∞

u2(t, x, θ), u2∞(x, θ) := lim inf
t→∞ u2(t, x, θ).

By the uniform persistence of (2.6), there exists an η > 0 such as

u∞1 (x) ≥ u1∞ ≥ η, ∀x ∈ �

and

u∞2 (x, θ) ≥ u2∞(x, θ) ≥ η, ∀(x, θ) ∈ �× J.

Using Fatou’s lemma, we then get

u1(x) ≤
∫ ∞

0
e−ks

∫

�

�(Ds, x, y)

[

ku∞1 − αu∞1 +
∫

J

β(y)u∞2 (y)dy
]

.

Let

δ∞1 := sup
x∈�
u1(x), δ1∞ := inf

x∈�
u1(x)

and

δ∞2 (θ) := sup
x∈�
u2(x, θ), δ2∞(θ) := inf

x∈�
u2(x, θ).

Clearly,

βmaxHmax|J |
α

≥ δ∞1 ≥ δ1∞ ≥ η, ∀x ∈ �

and

H(θ) ≥ δ∞2 (θ) ≥ δ2∞(θ) ≥ η, ∀θ ∈ J.
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Since
∫
�
�(Dt, x, y)dy = 1 for all x ∈ �, s > 0, we have

δ∞1 ≤
∫ ∞

0
e−ks

[

kδ∞1 − αδ∞1 +
∫

J

β(y)δ∞2 (y)dy
]

=1

k

[

kδ∞1 − αδ∞1 +
∫

J

β(y)δ∞2 (y)dy
]

,

and hence,

0 ≤ −αδ∞1 +
∫

J

β(y)δ∞2 (y)dy. (5.54)

Similarly, we have the following inequality:

0 ≥ −αδ1∞ +
∫

J

β(y)δ2∞(y)dy. (5.55)

Using the second equation in (2.6), with arguments similar to those above, we
further obtain

0 ≤ σ(H(θ)− δ∞2 (θ))δ∞1 − γ δ∞2 (5.56a)

0 ≥ σ(H(θ)− δ2,∞(θ))δ1∞ − γ δ2∞. (5.56b)

After reorganization of (5.56), we get

δ∞2 (θ) ≤
σ(y)H(θ)δ∞1
γ + σδ∞1

(5.57a)

δ2∞(θ) ≥ σ(y)H(θ)δ1∞
γ + σδ1∞ . (5.57b)

Inserting (5.57a) into (5.54), and (5.57b) into (5.55), we get

0 ≤ −αδ∞1 +
∫

J

σ (y)β(y)H(y)δ∞1
γ (y)+ σ(y)δ∞1

dy, (5.58a)

0 ≥ −αδ1∞ +
∫

J

σ (y)β(y)H(y)δ1∞
γ (y)+ σ(y)δ1∞ dy. (5.58b)

Since δ∞1 ≥ η > 0 and δ1∞ ≥ η > 0, then it follows that

0 ≤ −α +
∫

J

σ (y)β(y)H(y)

γ (y)+ σ(y)δ∞1
dy, (5.59a)
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0 ≥ −α +
∫

J

σ (y)β(y)H(y)

γ (y)+ σ(y)δ1∞ dy. (5.59b)

Subtracting (5.59a) from (5.59b) inequality, we get

(δ∞1 − δ1∞)
∫

J

σ 2(y)β(y)H(y)

(γ (y)+ σ(y)δ1∞)(γ (y)+ σ(y)δ∞1 )
dy ≤ 0. (5.60)

Therefore, we must have δ∞1 = δ1∞.
Subtracting (5.57a) from (5.57b) inequality and since δ∞1 = δ1∞ from the above

equality, we get

− (δ2∞(θ)− δ∞2 (θ))(σδ∞1 + γ ) ≤ 0. (5.61)

Thus, we must have δ2∞(θ) = δ∞2 (θ) for all θ ∈ J. It follows that

lim
t→∞u(t, x, θ, φ) = (δ1∞, δ2∞(θ))

T , (x, θ) ∈ �× J. (5.62)

Let ω(φ) be the omega limit set of φ for the solution semiflow�(t) associated with
(2.6). For any ψ ∈ ω(φ), there exists a sequence tn → ∞ such that �(tn)φ → ψ

in XH as n→ ∞. Then,

lim
n→∞ u(tn, x, θ, φ) = ψ(x, θ), (x, θ) ∈ �× J (5.63)

uniformly for (x, θ) ∈ � × J , and by (5.62), ψ(.) = (δ1∞, δ2∞(.))T . Therefore,
ω(φ) = {(δ1∞, δ2∞)T } implying that u(t, x, θ, φ) converges to (δ1∞, δ2∞(θ))T in
XH . Since ω(φ) is invariant under�(t) for all t ≥ 0, it follows that (δ1∞, δ2∞(θ))T
is a positive (spatially) constant steady state of (2.6) under the assumption 2.1–5.1.

��

6 Impact of Heterogeneities on R0

To analyze the combined effects of genetic and spatial distributions of heteroge-
neous fowls on R0, we will assume that the domain � is a one-dimensional interval
(0, L) where L > 0.We define the spatial average and the spatial average combined
with the resistance average of a function f , respectively, by

f (θ) = 1

L

∫ L

0
f (x, θ)dx and f̃ = 1

!L

∫ !

0

∫ L

0
f (x, θ)dxdθ.

To go further, we denote by R0 and R̃0 the basic reproduction numbers of
system (2.6), where the parameters of model are replaced by their spatial average
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and their spatial average combined with their resistance average, respectively. We
aim to compare the reproduction number with the heterogeneities, R0, and the other
two means. The same annotation is used for other parameters of the model.

To simplify our analyze, we shall discuss a special case where the rate of
transmission, σ(x, θ), excretion rate in environment β(x, θ), and recovery rate
γ (x, θ) of animals are only depending on their level of resistance θ ∈ [0,!) and
thus independent of the spatial variable x, except the initial distribution of hens
H(x, θ) and the mortality rate of bacteria α(x) that depend on the position x.

Since θ represents the level of animal genetic resistance to Salmonella carrier
state on [0,!), it is reasonable to assume that the rate of transmission, σ, the
excretion rate, β, and the length of the infectious period, 1/γ, are monotonically
decreasing with respect to θ. Together with these hypotheses, we make the following
assumption for our study:

Assumption 6.1 For all (x, θ) ∈ �× J,

β(x, θ) ≡ β0

(θ + 1)
, γ (x, θ) ≡ γ0(θ + 1), σ (x, θ) = σ0

(θ + 1)
,

where β0, σ0, and γ0 are constant positive.

Clearly,

α = α̃

β(θ) = β0

(θ + 1)
and β̃ = β0 ln(!+ 1)

!

σ(θ) = σ0

(θ + 1)
and σ̃ = σ0 ln(!+ 1)

!

γ (θ) = γ0(θ + 1) and γ̃ = γ0 (!+ 2)

2
.

(6.64)

Straightforward computations show that

R̃0 := 1

α̃

β̃σ̃ H̃!

γ̃
= 1

α

β0σ0

γ0
× 2H̃ ln2(!+ 1)

!(!+ 2)
. (6.65)

Let � be the principal eigenvalue of system (2.6), and let � and �̃ be the principal
eigenvalue of system (2.6) under Assumption 6.1, where the parameters of model
are replaced by their spatial average and their spatial average combined with their
resistance average, respectively.

The following result implies that: (1) the spatial heterogeneity results in a basic
reproduction number that is larger than the value obtained when replacing the model
parameters by their spatial average. (2) The combined effects of genetic and spatial
distributions result in a basic reproduction number that is larger than the product of
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a function of the initial distribution of fowls and the value obtained when replacing
the model parameters by their spatial average.

Lemma 6.2 Let Assumption 6.1 be satisfied, for (2.6), and there hold:

(i)

R0 ≥ R0. (6.66)

(ii)

R0 ≥ R̃0F(H), (6.67)

where

F(H) = !(!+ 2)

2H̃ ln2(!+ 1)

∫ !

0

H(θ)

(θ + 1)3
dθ.

Proof The proof of (i) uses a similar argument to that given in [26, Lemma 4.4]
with some minor modifications. Dividing (3.34) by the positive eigenfunction Lφ∗
associated with � and integrating on (0, L), we have

− 1

L

∫ L

0

D�φ∗

φ∗ + α = � 1

L

∫ L

0

∫ !

0

β(θ)σ (θ)

γ (θ)
H(x, θ)dθdx. (6.68)

Using integration by parts, we further obtain

α ≥ �
∫ !

0

β(θ)σ (θ)

γ (θ)
H(θ)dθ. (6.69)

On the other hand, we obtain

α = �
∫ !

0

β(θ)σ (θ)

γ (θ)
H(θ)dθ (6.70)

and

α̃ = �̃!β̃σ̃ H̃
γ̃
. (6.71)

Combining (6.69) and (6.70) yields � ≤ �, and thus, R0 ≥ R0 and (i) holds.
To prove (ii), note that α = α̃. Thus by virtue of (6.69) combined with (6.71), we

get

α̃ = �̃!β̃σ̃ H̃
γ̃

≥ �
∫ !

0

β(θ)σ (θ)

γ (θ)
H(θ)dθ = �β0σ0

γ0

∫ !

0

H(θ)

(θ + 1)3
dθ.
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Thus using (6.64), we obtain

�̃
2H̃ ln2(!+ 1)

!(!+ 2)
≥ �

∫ !

0

H(θ)

(θ + 1)3
dθ.

The above inequality completes the proof of (ii). ��
According to (ii) of Lemma 6.2, we conclude in this section that the severity of

disease transmission is largely depending on the choice of the initial distribution H
of hens: for example, when choosing H so that F(H) ≥ 1, then R0 ≥ R̃0 implying
that the combined effects of genetic and spatial distributions produce a larger basic
reproduction number. In contrast, when F(H) < 1, then we cannot conclude in our
study about the effects of heterogeneities on the value of R0. However, it should
be possible to choose an initial distribution to obtain R0 < R̃0 implying that the
combined effects produce a smaller basic reproduction number. This choice can
be achieved by solving a problem of optimization that is beyond the scope of this
chapter.

7 Concluding Remarks

The objective of this chapter was to propose and study a reaction–diffusion model
for Salmonella transmission within an industrial hens house when hens’ distribution
within the hen house varies according to their resistance to Salmonella carrier state.
For the derived model (2.6), we introduced the basic reproduction number R0 via the
next-generation operator, and we further prove that R0 serves as a threshold index
that predicts the extinction and persistence of the disease. Furthermore, we showed
the equivalent characterization of R0 (Theorem 3.3). Furthermore, in Corollary 3.4,
R0 is rewritten as a function of the weight of transmission bacteria-to-hens of type θ -
to-bacteria, r0(θ), where hens of type θ represent the animals having the same level
of resistance θ for any θ ∈ J. In Corollary 3.5, we give some properties linking R0
and r0(θ) on the control of the disease.

In Sect. 5, we investigate the special case where all the coefficients in (2.6) are
independent of the spatial variable. Using a fluctuation method developed in [24],
we show that when R0 > 1 the disease will become established and stabilize at a
unique spatially homogeneous steady state. Moreover, the positive steady state is
globally attractive.

The impact of heterogeneities on R0 was achieved in Sect. 6. We have shown that
the severity of disease transmission is largely depending on the choice of the initial
distribution H of hens. This was achieved by comparing the basic reproduction
number of a given distribution and those when the parameters of model are replaced
by their average values. The results of this model provide useful information to
determine the optimum population distribution of heterogeneous fowls to minimize
the basic reproduction number.
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Impulsive Implicit Caputo Fractional
q-Difference Equations in Finite- and
Infinite-Dimensional Banach Spaces

Badr Alqahtani, Saïd Abbas, Mouffak Benchohra,
and Gaston M. N’Guérékata

AMS (MOS) Subject Classifications 26A33, 34G20

1 Introduction

Fractional differential equations have recently been applied in various areas;
for some fundamental results in the theory of fractional calculus and fractional
differential equations, we refer the reader to [1–3, 23, 25, 30, 31, 33, 34] and the
references therein.

Implicit fractional differential equations have also been considered by many
authors [4, 12]. Impulsive differential equations have become more important in
recent years in some mathematical models of real phenomena, especially in biolog-
ical or medical domains, and in control theory, see for example the monographs of
Abbas et al. [1, 2], Benchohra et al. [13], Graef et al. [19], and papers such as Abbas
et al. [4], Hernández and O’Regan [21] and the references therein.

In this chapter, we first discuss the existence of solutions for the following
problem of implicit fractional q-difference equations:
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⎧
⎪⎪⎨

⎪⎪⎩

(Cq D
r
tk
u)(t) = f (t, u(t), (Cq Drtku)(t)); t ∈ Jk, k = 0, . . . , m,

u(t+k ) = u(t−k )+ Lk(u(t−k )); k = 1, . . . , m,

u(0) = u0 ∈ R,

(1)

where J0 = [0, t1]; Jk := (tk, tk+1], k = 1, . . . , m; 0 = t0 < t1 < · · · < tm <
tm+1 = T ; f : Jk ×R×R → R , k = 1, . . . , m; Lk : R → R, k = 1, . . . , m are
given continuous functions, and cqD

r
tk
is the Caputo fractional q-difference derivative

of order r ∈ (0, 1].
Various classes of fractional q-difference equations have been considered in the

papers [5, 7, 8, 16–18]. Recently, in [3, 9–11, 14], the authors applied the measure
of noncompactness to the study of some classes of functional Riemann–Liouville or
Caputo fractional differential equations in Banach spaces. Motivated by the above
papers, we next discuss the existence of solutions for the problem (1), when u0 ∈
E, f : Jk × E × E → E ; k = 1, . . . , m, Lk : E → E; k = 1, . . . , m are given
continuous functions, and E is a real (or complex) Banach space with norm ‖ · ‖.

This chapter initiates the study of impulsive implicit fractional q-difference
equations in finite- and infinite-dimension Banach spaces.

2 Preliminaries

Consider the Banach space C(I) := C(I,E) of continuous functions from I :=
[0, T ] into E equipped with the usual norm

‖u‖∞ := sup
t∈I

‖u(t)‖.

In the scalar case when E = R, we replace ‖ · ‖ by | · |. As usual, L1(I ) denotes
the space of measurable functions v : I → E that are Bochner integrable with the
norm

‖v‖1 =
∫

I

‖v(t)‖dt.

Let

PC ={u : I → E : u ∈ C(Jk); k = 0, . . . , m, and there exist u(t−k )

and u(t+k ); k = 1, . . . , m, with u(t−k ) = u(tk)
}
,

be the Banach space with the norm

‖u‖PC = sup
t∈I

‖u(t)‖.
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Let us recall some definitions and properties of fractional q-calculus. For a ∈ R, we
set

[a]q = 1 − qa
1 − q .

The q-analogue of the power (a − b)n is

(a − b)(0) = 1, (a − b)(n) = #n−1
k=0(a − bqk); a, b ∈ R, n ∈ N.

In general,

(a − b)(α) = aα#∞
k=0

(
a − bqk
a − bqk+α

)

; a, b, α ∈ R.

Definition 2.1 ([22]) The q-gamma function is defined by

�q(ξ) = (1 − q)(ξ−1)

(1 − q)ξ−1 ; ξ ∈ R − {0,−1,−2, . . .}.

Notice that the q-gamma function satisfies �q(1 + ξ) = [ξ ]q�q(ξ).
Definition 2.2 ([22]) The q-derivative of order n ∈ N of a function u : I → E is
defined by (D0

qu)(t) = u(t),

(Dqu)(t) := (D1
qu)(t) =

u(t)− u(qt)
(1 − q)t ; t = 0, (Dqu)(0) = lim

t→0
(Dqu)(t),

and

(Dnqu)(t) = (DqDn−1
q u)(t); t ∈ I, n ∈ {1, 2, . . .}.

Set It := {tqn : n ∈ N} ∪ {0}.
Definition 2.3 ([22]) The q-integral of a function u : It → E is defined by

(Iqu)(t) =
∫ t

0
u(s)dqs =

∞∑

n=0

t (1 − q)qnu(tqn),

provided that the series converges.

We note that (DqIqu)(t) = u(t), while if u is continuous at 0, then

(IqDqu)(t) = u(t)− u(0).
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Definition 2.4 ([6]) The Riemann–Liouville fractional q-integral of order α ∈
R+ := [0,∞) of a function u : I → E is defined by (I 0q u)(t) = u(t), and

(Iαq u)(t) =
∫ t

0

(t − qs)(α−1)

�q(α)
u(s)dqs; t ∈ I.

Lemma 2.5 ([27]) For α ∈ R+ := [0,∞) and λ ∈ (−1,∞), we have

(Iαq (t − a)(λ))(t) =
�q(1 + λ)
�(1 + λ+ α)(t − a)

(λ+α); 0 < a < t < T .

In particular,

(Iαq 1)(t) =
1

�q(1 + α) t
(α).

Definition 2.6 ([28]) The Riemann–Liouville fractional q-derivative of order α ∈
R+ of a function u : I → E is defined by (D0

qu)(t) = u(t), and

(Dαq u)(t) = (D[α]
q I

[α]−α
q u)(t); t ∈ I,

where [α] is the integer part of α.
Definition 2.7 ([28]) The Caputo fractional q-derivative of order α ∈ R+ of a
function u : I → E is defined by (CD0

qu)(t) = u(t), and

(CDαq u)(t) = (I [α]−αq D[α]
q u)(t); t ∈ I.

Lemma 2.8 ([28]) Let α ∈ R+. Then, the following equality holds:

(Iαq
CDαq u)(t) = u(t)−

[α]−1∑

k=0

tk

�q(1 + k) (D
k
qu)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDαq u)(t) = u(t)− u(0).

From the above lemma, and in order to define the solution for our problem, we
conclude the following lemma.

Lemma 2.9 Let f : I×E×E→ E such that f (·, u, v) ∈ C(I), for each u, v ∈ E.
Then, the problem

{
(Cq D

r
0u)(t) = f (t, u(t), (Cq Dr0u)(t)); t ∈ [0.T ],

u(0) = u0,
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is equivalent to the problem of obtaining the solutions of the integral equation

g(t) = f (t, u0 + (Iαq g)(t), g(t)),
and if g(·) ∈ C(I) is the solution of this equation, then

u(t) = u0 + (Iαq g)(t).

Lemma 2.10 Let h : I → E be a continuous function. A function u ∈ PC is a
solution of the fractional integral equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t) = u0 + (qI r0h)(t); if t ∈ J0,

u(t) = u0 +
k∑

i=1

Li(u(t
−
i )+

k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)

�q(r)
h(s)dqs

+ ∫ t
tk

(t−qs)(r−1)

�q (r)
h(s)dqs; if t ∈ Jk, k = 1, . . . , m,

(2)

if and only if u is a solution of the following problem:
⎧
⎪⎪⎨

⎪⎪⎩

(Cq D
r
tk
u)(t) = h(t); t ∈ Jk, k = 0, . . . , m,

u(t+k ) = u(t−k )+ Lk(u(t−k )); k = 1, . . . , m,

u(0) = u0.
(3)

Proof Assume u satisfies (3). If t ∈ J0, then
(Cq D

r
0u)(t) = h(t).

Lemma 2.8 implies

u(t) = u0 + (qI r0h)(t).
If t ∈ J1, then

(Cq D
r
t1
u)(t) = h(t).

Lemma 2.8 implies

u(t) = u(t+1 )+ (qI rt1h)(t)
= L1(u(t−1 ))+ u(t−1 )+ (qI rt1h)(t)
= L1(u(t−1 ))+ u0 + (qI r1h)(t1)+ (qI rt1h)(t).

If t ∈ J2, then

(Cq D
r
2u)(t) = h(t).
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We obtain

u(t) = u(t+2 )+ (qI rt2h)(t)
= L2(u(t−2 ))+ u(t−2 )+ (qI rt2h)(t)
= L2(u(t−2 ))+ L1(u(t−1 ))

+ u0 + (qI r1h)(t1)+ (qI rt1h)(t2)+ (qI rt2h)(t).

If t ∈ Jk, then again from Lemma 2.8 we get (2).
Conversely, assume that u satisfies (2). If t ∈ J0, then u(t) = u0 + (qI r1h)(t).

Thus, u(0) = u0, and using the fact that Cq D
r
1 is the left inverse of qI r1 , we get

(Cq D
r
1u)(t) = h(t).

Now, if t ∈ Jk; k = 1, . . . , m, we get (Cq D
r
tk
u)(t) = h(t). Also, we can easily

show that

u(t+k ) = u(t−k )+ Lk(u(t−k )).

Hence, if u satisfies (2), then we get (3).

From the above Lemmas 2.10 and 2.9, we conclude with the following lemma:

Lemma 2.11 Let f (t, u, z) : Jk × E × E → E; k = 0, . . . , m, be a continuous
function. Then, problem (1) is equivalent to the problem of solving the equation

g(t) = f (t, u0 + (qI rtk g)(t), g(t)),

and if g(·) ∈ C(Jk), k = 0, . . . , m, is the solution of this equation, then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(t) = u0 + (qI r0g)(t); if t ∈ J0,

u(t) = u0 +
k∑

i=1

(Li(u(t
−
i ))+

k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)

�q(r)
g(s)dqs

+ ∫ t
tk

(t−qs)(r−1)

�q (r)
g(s)dqs; if t ∈ Jk, k = 1, . . . , m.

Let MX denote the class of all bounded subsets of a metric space X.

Definition 2.12 Let X be a complete metric space. A map μ : MX → [0,∞) is
called a measure of noncompactness on X if it satisfies the following properties for
all B,B1, B2 ∈ MX :
(a) μ(B) = 0 if and only if B is precompact (regularity).
(b) μ(B) = μ(B) (invariance under closure).
(c) μ(B1 ∪ B2) = max{μ(B1), μ(B2)} (semi-additivity).
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Definition 2.13 ([11]) Let X be a Banach space, and let �X be the family of
bounded subsets of E. The Kuratowski measure of noncompactness is the map
μ : �X → [0,∞) defined by

μ(M) = inf{ε > 0 : M ⊂ ∪mj=1Mj, diam(Mj ) ≤ ε} ,

whereM ∈ �E.
Properties

(1) μ(M) = 0 ⇔ M is compact (M is relatively compact).
(2) μ(M) = μ(M).
(3) M1 ⊂ M2 ⇒ μ(M1) ≤ μ(M2).

(4) μ(M1 +M2) ≤ μ(M1)+ μ(M2).

(5) μ(cM) = |c|μ(M), c ∈ R.

(6) μ(convM) = μ(M).
Definition 2.14 ([29]) A nondecreasing function φ : R+ → R+ is called a
comparison function if it satisfies one of the following conditions:

(1) For any t > 0, we have

lim
n→∞φ

(n)(t) = 0,

where φ(n) denotes the n-th iteration of φ.
(2) The function φ is right-continuous and satisfies

∀t > 0 : φ(t) < t.

Remark 2.15 The choice φ(t) = kt with 0 < k < 1 gives the classical Banach
contraction mapping principle.

For our purpose, we will need the following fixed-point theorems:

Theorem 2.16 ([15, 24]) Let (X, d) be a complete metric space and T : X → X

be a mapping such that

d(T (x), T (y)) ≤ φ(d(x, y)),

where φ is a comparison function. Then, T has a unique fixed point in X.

Theorem 2.17 (Schauder Fixed-Point Theorem [32]) Let X be a Banach space,
D be a bounded closed convex subset of X, and T : D → D be a compact and
continuous map. Then, T has at least one fixed point in D.

Theorem 2.18 (Schaefer Fixed-Point Theorem [20]) Let X be a Banach space,
and N : X→ X be a completely continuous operator. If the set
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E = {u ∈ X : u = λN(u); f or some λ ∈ (0, 1)}

is bounded, then N has fixed points.

Theorem 2.19 (Monch’s Fixed-Point Theorem [26]) LetD be a bounded, closed,
and convex subset of a Banach space such that 0 ∈ D, and let N be a continuous
mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ V is compact, (4)

holds for every subset V of D, then N has a fixed point.

3 Existence Results in the Scalar Case

In this section, we present some results concerning the existence of solutions for the
problem (1).

Definition 3.1 By a solution of the problem (1), we mean a function u ∈
PC that satisfies the condition u(0) = u0, and the equation (Cq D

r
tk
u)(t) =

f (t, u(t), (Cq D
r
tk
u)(t)) on Jk; k = 0, . . . , m.

The following hypotheses will be used in the sequel:

(H01) The function f : Jk �→ f (t, u, v), k = 0, . . . , m, is continuous.
(H02) The functions f and Lk, k = 1, . . . , m, satisfy the generalized Lipschitz

conditions:

|f (t, u1, v1)− f (t, u2, v2)| ≤ φ1(|u1 − u2|)+ φ2(|v1 − v2|)

and

|Lk(u1)− Lk(u2)| ≤ φ3(|u− u2|),

for t ∈ I and u, v ∈ R, where φi, i = 1, 2, 3, are the comparison functions.
(H03) There exists a continuous function % ∈ C(Jk,R+), k = 0, . . . , m, such

that

|f (t, u, v)| ≤ %(t)(1 + |u| + |v|), for each t ∈ Jk, and u, v ∈ R,

with

%∗ = sup
t∈I
%(t) < 1.
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(H04) There exists a constant l > 0 such that

|Lk(u)| ≤ l(1 + |u|), f or each u ∈ R.

Theorem 3.2 Assume that the hypotheses (H01) and (H02) hold. Then, the problem
(1) has a unique solution defined on I.

Proof Consider the Banach space C(I) := C(I,R) as a complete metric space of
continuous functions from I into R equipped with the usual metric

d(u, v) := max
t∈I |u(t)− v(t)|.

Transform the problem (1) into a fixed-point equation. Consider the operator N :
PC → PC defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Nu)(t) = u0 + (qI r0g)(t); if t ∈ J0,

(Nu)(t) = u0 +
k∑

i=1

Li(u(t
−
i ))

+
k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)

�q(r)
g(s)dqs

+ ∫ t
tk

(t−qs)(r−1)

�q (r)
g(s)dqs; if t ∈ Jk, k = 1, . . . , m,

(1)

where g(·) ∈ C(Jk), k = 0, . . . , m, with

g(t) = f (t, u0 + (qI rtk g)(t), g(t)).

Clearly, the fixed points of the operator N are solutions of the problem (1).
Let u ∈ PC and t ∈ J0. Then,

|(Nu)(t)− (Nv)(t)| = |(qI r0 (g − h))(t)|,

where g, h ∈ C(Jk), k = 0, . . . , m, with

g(t) = f (t, u0 + (qI r0g)(t), g(t)), and h(t) = f (t, u0 + (qI r0h)(t), h(t)).

Thus, for each u, v ∈ C(I) and t ∈ J0, we have

|(Nu)(t)− (Nv)(t)| =
∫ t

0

|t − qs|(r−1)

�q(r)
|g(s)− h(s)|dqs.

From (H02), we have

|g(t)− h(t)| ≤ φ1(|u(t)− v(t)|)+ φ2(|g(t)− h(t)|).
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Thus,

|g(t)− h(t)| ≤ (Id − φ2)−1φ1(|u(t)− v(t)|).

Hence,

|(Nu)(t)− (Nv)(t)| ≤ ∫ t
0

|t−qs|(r−1)

�q (r)
(Id − φ2)−1φ1(|u(s)− v(s)|)dqs

≤ T r

�q(1+r) (Id − φ2)−1φ1(d(u, v))

= φ(d(u, v)),
.

where Id is the identity function, and φ is the comparison function defined by

φ(t) = T r

�q(1 + r) (Id − φ2)−1φ1(t); t ∈ J0.

So, we get

d(N(u),N(v)) ≤ φ(d(u, v)).

Next, for each u, v ∈ C(I) t ∈ Jk, k = 1, . . . , m, we get

|(Nu)(t)− (Nv)(t)| ≤ T r

�q(1+r) (Id − φ2)−1φ1(d(u, v))+mφ3(d(u, v))
≤ ( T r

�q(1+r) (Id − φ2)−1φ1 +mφ3)(d(u, v))
= φ(d(u, v)),

.

where φ is the comparison function defined by

φ(t) = T r

�q(1 + r) (Id − φ2)−1φ1(t)+mφ3(t); t ∈ Jk : k = 1, . . . , m.

So, we get

d(N(u),N(v)) ≤ φ(d(u, v)).

Consequently, from Theorem 2.16, the operator N has a unique fixed point, which
is the unique solution of our problem (1) on I.

Theorem 3.3 Assume that the hypotheses (H01), (H03), and (H04) hold. If

ml + 2T r%∗

(1 − %∗)�q(1 + r) < 1,

then the problem (1) has at least one solution defined on I.
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Proof Consider the operator N : PC → PC defined in (1). Let R > 0, such that

R ≥
|u0| +ml + 2T r%∗

(1−%∗)�q(1+r)
1 −ml − 2T r%∗

(1−%∗)�q(1+r)
,

and consider the ball BR := B(0, R) = {w ∈ ‖w‖PC ≤ R}.We shall show that the
operator N : BR → BR satisfies all the assumptions of Theorem 2.17. The proof
will be given in several steps:

Step 1. N : BR → BR is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ J0, we have

|(Nun)(t)− (Nu)(t)| ≤
∫ t

0

(t − qs)(r−1)

�q(r)
|gn(s)− g(s)|dqs, (2)

where g, gn ∈ C(J0) with

g(t) = f (t, u0 + (qI r0g)(t), g(t)),

and

gn(t) = f (t, u0 + (qI r0gn)(t), gn(t)).

Since un → u as n → ∞ and f is continuous, then by the Lebesgue dominated
convergence theorem, (2) implies

‖N(un)−N(u)‖PC → 0 as n→ ∞.

Also, for each t ∈ Jk, k = 1, . . . , m, we have

|(Nun)(t)− (Nu)(t)|

≤
k∑

i=1

‖Li(un(t−i ))− Li(u(t−i ))‖

+
k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)

�q(r)
|gn(s)− g(s)|dqs

+
∫ t

tk

(t − qs)(r−1)

�q(r)
|gn(s)− g(s)|dqs. (3)

Again, by the Lebesgue dominated convergence theorem, (3) implies the continuity
of our operator N.



198 B. Alqahtani et al.

Step 2. N(BR) is bounded.
Let u ∈ BR and t ∈ J0. Then,

|(Nu)(t)| =
∣
∣
∣
∣
∣
u0 +

∫ t

0

(t − qs)(r−1)

�q(r)
g(s)dqs

∣
∣
∣
∣
∣
,

where g(·) ∈ C(I) with

g(t) = f (t, u0 + (qI r0g)(t), g(t)).

Thus,

|(Nu)(t)| ≤ |u0| +
∫ t

0

(t − qs)(r−1)

�q(r)
|g(s)|dqs

≤ |u0| + T r%∗(1 + R)
(1 − %∗)�q(1 + r)

≤ R.

Next, if u ∈ BR, and t ∈ Jk : k = 1, . . . , m, we have

|(Nu)(t)| ≤ |u0| +
k∑

i=1

‖Li(u(t−i ))‖

+
k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)

�q(r)
|g(s)|dqs

+
∫ t

tk

(t − qs)(r−1)

�q(r)
|g(s)|dqs

≤ |u0| +ml(1 + R)+ 2T r%∗(1 + R)
(1 − %∗)�q(1 + r)

≤ R.

Hence, for any u ∈ BR, and each t ∈ J, we get

‖N(u)‖PC ≤ R.

This proves that N transforms the ball BR := B(0, R) = {w ∈ ‖w‖PC ≤ R} into
itself.

Step 3. N(BR) is equicontinuous.
Let x1, x2 ∈ J0 such that 0 ≤ x1 < x2 ≤ t1 and let u ∈ BR. Then,
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|(Nu)(x2)− (Nu)(x1)|

≤
∣
∣
∣
∣
∣

∫ x2

0

(x2 − qs)(r−1)

�q(r)
g(s)dqs −

∫ x1

0

(x1 − qs)(r−1)

�q(r)
g(s)dqs

∣
∣
∣
∣
∣
,

where g ∈ C(J0) with

g(t) = f (t, u0 + (qI r0g)(t), g(t)).

Thus,

|(Nu)(x2)− (Nu)(x1)|

≤
∫ x2

x1

(x2 − qs)(r−1)

�q(r)
|g(s)|dqs

+
∫ x1

0

|(x2 − qs)(r−1) − (x1 − qs)(r−1)|
�q(r)

|g(s)|dqs

≤ %
∗(1 + R)(x2 − x1)r
(1 − %∗)�q(1 + r)

+ %
∗(1 + R)
1 − %∗

∫ x1

0

|(x2 − qs)(r−1) − (x1 − qs)(r−1)|
�q(r)

dqs.

As x1 −→ x2, the right-hand side of the above inequality tends to zero. Also, if we
let x1, x2 ∈ Jk, k = 1, . . . , m, such that tk ≤ x1 < x2 ≤ tk+1 and let u ∈ BR, we
obtain

|(Nu)(x2)− (Nu)(x1)|

≤ 2%∗(1 + R)
(1 − %∗)�q(1 + r) |x2 − x1|r

+ 2%∗(1 + R)
1 − %∗

∫ x1

0

∣
∣
∣
∣
∣

(x2 − qs)(r−1)

�q(r)
− (x1 − qs)(r−1)

�q(r)

∣
∣
∣
∣
∣
dqs.

Again, as x1 −→ x2, the right-hand side of the above inequality tends to zero.
Hence, N(BR) is equicontinuous.

As a consequence of the above three steps, together with the Arzelá–Ascoli
theorem, we can conclude that N : BR → BR is continuous and compact. From
an application of Theorem 2.17, we deduce that N has a fixed point u that is a
solution of problem (1).

Now, we use Schaefer’s fixed-point theorem to prove the following result:
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Theorem 3.4 Assume that the hypotheses (H01), (H03), (H04) and the conditions
ml < 1, and

ml + 2T r%∗

(1 − %∗)�q(1 + r) < 1,

hold. Then, the problem (1) has at least one solution defined on I.

Proof We consider the operator N : PC → PC defined in (1). As in the proof of
Theorem 3.3, we can show that N : PC → PC is continuous and compact. Now it
remains to show that the set

E = {u ∈ X : u = λN(u); f or some λ ∈ (0, 1)}

is bounded.
Let u ∈ E; then, u = λN(u), for some λ ∈ (0, 1). Thus, for each t ∈ J0, we

have

|u(t)| ≤
∣
∣
∣
∣
∣
u0 +

∫ t

1

(t − qs)(r−1)

�q(r)
g(s)dqs

∣
∣
∣
∣
∣
,

where g(·) ∈ C(I) with

g(t) = f (t, u0 + (qI r1g)(t), g(t)).

Thus,

|u(t)| ≤ |u0| +
∫ t

0

(t − qs)(r−1)

�q(r)
|g(s)|dqs

≤ |u0| +
∫ t

0

(t − qs)(r−1)

(1 − %∗)�q(r)%
∗(1 + |u(s)|)dqs

≤ |u0| + T r%∗

(1 − %∗)�q(1 + r) +
∫ t

0

(t − qs)(r−1)

(1 − %∗)�q(r)%
∗|u(s)|dqs.

We can apply a version of Gronwall’s lemma to obtain that |u(t)| ≤ M1, with
M1 > 0.

Next, for each t ∈ Jk : k = 1, . . . , m, we have

|u(t)| ≤ |u0| +
k∑

i=1

‖Li(u(t−i ))‖

+
k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)

�q(r)
|g(s)|dqs
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+
∫ t

tk

(t − qs)(r−1)

�q(r)
|g(s)|dqs

≤ |u0| +ml(1 + |u(t)|)+ 2T r%∗

(1 − %∗)�q(1 + r)

+
∫ t

0

(t − qs)(r−1)

(1 − %∗)�q(r)%
∗2|u(s)|dqs.

This implies that, for each t ∈ Jk : k = 1, . . . , m, we get

|u(t)| ≤ |u0| +ml
1 −ml + 2T r%∗

(1 −ml)(1 − %∗)�q(1 + r)

+ 2%∗

1 −ml
∫ t

0

(t − qs)(r−1)

(1 − %∗)�q(r) |u(s)|dqs.

Also, by applying a version of Gronwall’s lemma, we can obtain |u(t)| ≤ M2, with
M2 > 0. Hence, the set E is bounded. As a consequence of Schaefer’s fixed-point
theorem (Theorem 2.18), we deduce thatN has a fixed point that is a solution of our
problem (1).

4 Existence Results in Banach Spaces

In this section, we present some results concerning the existence of solutions for the
problem (1) in Banach spaces.

The following hypotheses will be used in the sequel.

(H1) The function f is continuous.
(H2) There exists a continuous function p ∈ C(Jk,R+), k = 0, . . . , m, such

that

‖f (t, u, v)‖ ≤ p(t)(1 + |u| + |v|); f or t ∈ Jk, and u, v ∈ E,

with p∗ = sup
t∈J
p(t) < 1.

(H3) For each bounded and measurable set B ⊂ E and for each t ∈ Jk, k =
0, . . . , m, we have

μ(f (t, B,Cq D
r
tk
B)) ≤ p(t)μ(B); t ∈ Jk, k = 0, . . . , m,

where Cq D
r
tk
B = {Cq Drtkw : w ∈ B}.
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(H4) There exists a constant L > 0 such that

|Lk(u)| ≤ L(1 + |u|), f or each u ∈ E.

(H5) There exists a constant l > 0 such that for each bounded set B ⊂ E and for
each t ∈ Jk, k = 0, . . . , m, we have

μ(Lk(B)) ≤ lμ(B).

Theorem 4.1 Assume that the hypotheses (H1)− (H5) hold. If

ρ := mL+ 2p∗T r

�q(1 + r) < 1, (1)

then the problem (1) has at least one solution defined on I.

Proof Consider the operator N : PC → PC defined in (1). Let R > 0, such that

R ≥
|u0| +mL+ 2T rp∗

(1−p∗)�q(1+r)
1 −mL− 2T rp∗

(1−p∗)�q(1+r)
.

Let u ∈ PC and t ∈ J0. Then,

‖((Nu)(t)‖ =
∥
∥
∥
∥
∥
u0 +

∫ t

0

(t − qs)(r−1)

�q(r)
g(s)dqs

∥
∥
∥
∥
∥
,

where g(·) ∈ C(I) with

g(t) = f (t, u0 + (qI r0g)(t), g(t)).

Thus,

‖(Nu)(t)‖ ≤ ‖u0‖ +
∫ t

0

(t − qs)(r−1)

�q(r)
‖g(s)‖dqs

≤ ‖u0‖ + T rp∗(1 + R)
(1 − p∗)�q(1 + r) .

On the other hand, if u ∈ PC and t ∈ Jk, k = 1, . . . , m, we have

‖(Nu)(t)‖ ≤ ‖u0‖ +
k∑

i=1

‖Li(u(t−i ))‖

+
k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)

�q(r)
‖g(s)‖dqs
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+
∫ t

tk

(t − qs)(r−1)

�q(r)
‖g(s)‖dqs

≤ ‖u0‖ +mL+ 2T rp∗(1 + R)
(1 − p∗)�q(1 + r) .

Hence, for any u ∈ PC and each t ∈ J , we get

‖N(u)‖PC ≤ ‖u0‖ +mL+ 2T rp∗(1 + R)
(1 − p∗)�q(1 + r) ≤ R.

This proves that N transforms the ball BR := B(0, R) = {w ∈ ‖w‖PC ≤ R} into
itself. We shall show that the operator N : BR → BR satisfies all the assumptions
of Theorem 2.19. The proof will be given in three steps.

Step 1. N : BR → BR is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ J0, we have

‖(Nun)(t)− (Nu)(t)‖ ≤
∫ t

0

(t − qs)(r−1)

�q(r)
‖gn(s)− g(s)‖dqs, (2)

where g, gn ∈ C(J0) with

g(t) = f (t, u0 + (qI r0g)(t), g(t)),

and

gn(t) = f (t, u0 + (qI r0gn)(t), gn(t)).

Since un → u as n → ∞ and f is continuous, then by the Lebesgue dominated
convergence theorem, (2) implies

‖N(un)−N(u)‖PC → 0 as n→ ∞.

Also, for each t ∈ Jk, k = 1, . . . , m, we have

‖(Nun)(t)− (Nu)(t)‖ ≤
k∑

i=1

‖Li(un(t−i ))− Li(u(t−i ))‖

+
k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)

�q(r)
‖gn(s)− g(s)‖dqs

+
∫ t

tk

(t − qs)(r−1)

�q(r)
‖gn(s)− g(s)‖dqs. (3)
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Again, by the Lebesgue dominated convergence theorem, (3) implies the continuity
of our operator N.

Step 2. N(BR) is bounded and equicontinuous.
Since N(BR) ⊂ BR and BR is bounded, then N(BR) is bounded. Next, let x1, x2 ∈
J0 such that 0 ≤ x1 < x2 ≤ t1 and let u ∈ BR. Then,

‖(Nu)(x2)− (Nu)(x1)‖

≤
∥
∥
∥
∥
∥

∫ x2

0

(x2 − qs)(r−1)

�q(r)
g(s)dqs −

∫ x1

0

(x1 − qs)(r−1)

�q(r)
g(s)dqs

∥
∥
∥
∥
∥
,

where g ∈ C(J0) with

g(t) = f (t, u0 + (qI r0g)(t), g(t)).

Thus,

‖(Nu)(x2)− (Nu)(x1)‖

≤
∫ x2

x1

(x2 − qs)(r−1)

�q(r)
‖g(s)‖dqs

+
∫ x1

0

|(x2 − qs)(r−1) − (x1 − qs)(r−1)|
�q(r)

‖g(s)‖dqs

≤ p
∗(1 + R)(x2 − x1)r
(1 − p∗)�q(1 + r)

+ p
∗(1 + R)
1 − p∗

∫ x1

0

|(x2 − qs)(r−1) − (x1 − qs)(r−1)|
�q(r)

dqs.

As x1 −→ x2, the right-hand side of the above inequality tends to zero. Also, if we
let x1, x2 ∈ Jk, k = 1, . . . , m, such that tk ≤ x1 < x2 ≤ tk+1 and let u ∈ BR, we
obtain

‖(Nu)(x2)− (Nu)(x1)‖

≤ 2p∗(1 + R)
(1 − p∗)�q(1 + r) |x2 − x1|r

+ 2p∗(1 + R)
1 − p∗

∫ x1

0

∣
∣
∣
∣
∣

(x2 − qs)(r−1)

�q(r)
− (x1 − qs)(r−1)

�q(r)

∣
∣
∣
∣
∣
dqs.

Again, as x1 −→ x2, the right-hand side of the above inequality tends to zero.
Hence, N(BR) is bounded and equicontinuous.
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Step 3. The implication (4) holds.
Now let V be a subset of BR such that V ⊂ N(V ) ∪ {0}, V is bounded and
equicontinuous, and therefore the function t → v(t) = μ(V (t)) is continuous on J.
By (H3) and the properties of the measure μ, for each t ∈ J0, we have

v(t) ≤ μ((NV )(t) ∪ {0})
≤ μ((NV )(t))

≤
∫ t

0

(t − qs)(r−1)p(s)

�q(r)
v(s)dqs

≤
∫ t

0

(t − qs)(r−1)p(s)

�q(r)
μ(V (s))dqs

≤ p∗T r

�q(1 + r)‖v‖PC.

Thus,

‖v‖PC ≤ ρ‖v‖PC.

Also, for each t ∈ Jk, k = 1, . . . , m, we get

v(t) ≤ μ((NV )(t) ∪ {0})
≤ μ((NV )(t))

≤
k∑

i=1

l∗μ(V (s))+
k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)p(s)

�q(r)
μ(V (s))dqs

+
∫ t

tk

(t − qs)(r−1)p(s)

�q(r)
μ(V (s))dqs

≤ L
k∑

i=1

v(t)+
k∑

i=1

∫ ti

ti−1

(ti − qs)(r−1)p(s)

�q(r)
v(s)dqs

+
∫ t

tk

(t − qs)(r−1)p(s)

�q(r)
v(s)dqs

≤
(

mL+ 2p∗T r

�q(1 + r)
)

‖v‖PC.

Hence,

‖v‖PC ≤ ρ‖v‖PC.
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From (1), we get ‖v‖PC = 0, that is v(t) = β(V (t)) = 0, for each t ∈ I, and
then V (t) is relatively compact in PC. In view of the Ascoli–Arzelà theorem, V is
relatively compact in BR. Applying now Theorem 2.19, we conclude that N has a
fixed point that is a solution of the problem (1).

5 Examples

Example 1 Consider the problem of implicit impulsive q-fractional differential
equation of the form

⎧
⎪⎪⎨

⎪⎪⎩

(Cq D
r
tk
u)(t) = f (t, u(t), (Cq Drtku)(t)); t ∈ Jk, k = 0, . . . , m,

u(t+k ) = u(t−k )+ Lk(u(t−k )); k = 1, . . . , m,

u(0) = 0,

(1)

where I = [0, 1], r ∈ (0, 1],

f (t, u(t), (Cq D
r
tk
u)(t)) = �q(1 + r)t2

1 + |u(t)| + |Cq Drtku(t)|

×
(

e−7 + 1

et+5

)

(2−n + un(t)); t ∈ [0, 1],

Lk(u(t
−
k )) =

1

(3e45)(1 + |u(t−k )|)
; k = 1, . . . , m.

Clearly, the function f is continuous.
For each t ∈ [0, 1], we have

|f (t, u(t), (CqDrtku)(t))| ≤ �q(1 + r)t2
(

e−7 + 1

et+5

)

,

and

|Lk(u)| ≤ 1

3e5
.

Hence, the hypothesis (H02) is satisfied with %∗ = 2e−5�q(1 + r), and (H4) is
satisfied with l = 1

3e4
.

Simple computations show that all conditions of Theorem 3.3 are satisfied. It
follows that the problem (1) has at least one solution on [0, 1].
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Example 2 Let

E = l1 =
{

u = (u1, u2, . . . , un, . . .),
∞∑

n=1

|un| <∞
}

be the Banach space with the norm

‖u‖E =
∞∑

n=1

|un|.

Consider the problem of implicit impulsive q-fractional differential equation of the
form

⎧
⎪⎪⎨

⎪⎪⎩

(Cq D
r
tk
u)(t) = f (t, u(t), (Cq Drtku)(t)); t ∈ Jk, k = 0, . . . , m,

u(t+k ) = u(t−k )+ Lk(u(t−k )); k = 1, . . . , m,

u(0) = 0,

(2)

where I = [0, 1], r ∈ (0, 1], u = (u1, u2, . . . , un, . . .),

f = (f1, f2, . . . , fn, . . .),
C
q D
r
tk
u = (Cq Drtku1,Cq Drtku2, . . . ,Cq Drtkun, . . .); k = 0, . . . , m,

fn(t, u(t), (
C
q D
r
tk
u)(t)) = �q(1 + r)t2

1 + ‖u(t)‖E + ‖Cq Drtku(t)‖E

×
(

e−7 + 1

et+5

)

(2−n + un(t)); t ∈ [0, 1],

Lk(u(t
−
k )) =

1

(3e45)(1 + ‖u(t−k )‖E)
; k = 1, . . . , m.

For each u ∈ E and t ∈ [0, 1], we have

‖f (t, u(t), (CqDrtku)(t))‖E ≤ �q(1 + r)t2
(

e−7 + 1

et+5

)

,

and

‖Lk(u)‖E ≤ 1

3e5
.
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Hence, the hypothesis (H2) is satisfied with p∗ = 2e−5�q(1 + r), and (H4) is
satisfied with L = 1

3e4
.

We shall show that condition (1) holds with T = 1. Indeed, if we assume, for
instance, that the number of impulses m = 3, and r = 1

2 , then we have

L := mL+ 2p∗T r

�q(1 + r) = e−5 + 2e−5�q(1 + r)
�q(

3
2 )

= 3e−5 < 1.

Simple computations show that all conditions of Theorem 4.1 are satisfied. It follows
that the problem (2) has at least one solution on [0, 1].
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Null Controllability of a Degenerate
Cascade Model in Population Dynamics

Younes Echarroudi and Lahcen Maniar
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1 Introduction

We consider the following coupled population cascade system:

∂y

∂t
+ ∂y
∂a

− (k1(x)yx)x + μ1(t, a, x)y = ϑχω in Q, (1.1)

∂p

∂t
+ ∂p
∂a

− (k2(x)px)x + μ2(t, a, x)p + μ3(t, a, x)y = 0 in Q,

y(t, a, 1) = y(t, a, 0) = p(t, a, 1) = p(t, a, 0) = 0 on (0, T )× (0, A),
y(0, a, x) = y0(a, x);p(0, a, x) = p0(a, x) in QA,

y(t, 0, x) =
∫ A

0
β1(t, a, x)y(t, a, x)da in QT ,

p(t, 0, x) =
∫ A

0
β2(t, a, x)p(t, a, x)da in QT ,

whereQ = (0, T )× (0, A)× (0, 1),QA = (0, A)× (0, 1),QT = (0, T )× (0, 1),
ω ⊂⊂ (0, 1), and we will denote q = (0, T )× (0, A)×ω. The quantities y(t, a, x)
and p(t, a, x) that are in interaction are the densities of populations of time t ,
age a, and gene type x. Recall that the system (1.1) above models the dispersion
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of gene in the two populations. The parameters β1(t, a, x) and β2(t, a, x) can be
interpreted as the natural fertility rates, while μ1(t, a, x) and μ2(t, a, x) are the
natural mortality rates and μ3 stands for an interaction parameter. On the other
hand, the parameters k1 and k2 are the coefficients of dispersion and depend on
the gene-type variable x; ϑ and ω are, respectively, the control that we are looking
for and the region of gene type where it acts. Such a control can be viewed in our
situation as the capture strategy and corresponds in general to an external supply or
to removal of individuals on the subdomain ω ⊂⊂ (0, 1). Besides, y0 and p0 are
the initial distributions of the two populations, whereas

∫ A
0 β1(t, a, x)y(t, a, x)da

and
∫ A
0 β2(t, a, x)p(t, a, x)da are the distributions of the newborns. Finally, the

two positive fixed constants T and A are, respectively, the time of control and the
maximal age of expectancy that we suppose here is the same of both populations. A
suitable and powerful condition will be required later on T .

The population dynamics models in their different aspects attracted many authors
and were investigated from many sides (see, for example, [4, 10, 24, 26, 27, 30, 32–
34, 36]). Among those questions, we find the null controllability or in general the
controllability problems for age- and space-structured population dynamics models
that were studied in an intensive literature like [1, 2, 5, 7]. In [1, 2], the author tried
to prove both the exact and approximate controllabilities for a population dynamics
model where the coefficient is a positive constant. More precisely, to prove the
first type of controllability, Ainseba used the mean of observability inequality that
is a consequence of Carleman estimates based on the computations done on [31]
for non-degenerate heat equation. The second result of the same paper is reached
by using an argument of density of the reachable set of states at time T on L2-
space for an age class (0, a1) where a1 < A. Notice that the exact controllability
is equivalent to the null controllability of a linear model. Based on this rule, using
again the Carleman-type inequalities and with the help of the characteristics method,
the workers in [5] proved under the assumptions of that the L∞-norm of the initial
data is small and the fact that the coefficient of dispersion is a positive function for
all points of space domain that their population model is exact controllable. Earlier
in [7], a result similar to the one in [1, 2] was shown but without calling Carleman
estimate. In fact, the method used here is a combination between a contradiction
process and the so-called Mizohata uniqueness theorem (see the reference for
further details).

Nevertheless, the previous works were established with either a space inde-
pendent or a non-degenerate dispersion coefficient contrary to our paper and the
works realized in [6, 22] whose calculus are based on the papers investigating the
degenerate heat equation (see for instance [16–21, 25]). In this context, [6, 22]
were the first to be concerned with such a problem; each of them used a different
technique and also imposed different conditions on time control T . Indeed, in [6],
the authors allowed the dispersion coefficient to depend on the variable x and verify
k(0) = 0, i.e., the coefficient of dispersion k degenerates at 0, and they tried to
obtain the null controllability in such a situation with β ∈ L∞(Q) following [9]
via a new Carleman estimate for a suitable full adjoint system and afterward his
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observability inequality. However, the main controllability result of [6] was shown
under the condition T ≥ A as in [11], and this constitutes a restrictiveness on
the “optimality” of the control time T since it means, for example, that for a pest
population whose maximal age A may equal to many days (may be many months
or years), we need much time to bring the population to the zero equilibrium. In
the same vocation and to overcome the condition T ≥ A, L. Maniar et al. in
[22] suggested the fixed-point technique implemented in [37] that requires that the
fertility rate must belong to C2(Q) and consists briefly to demonstrate in a first
time the null controllability for an intermediate system with a fertility function
f ∈ L2(QT ) instead of

∫ A
0 β(t, a, x)y(t, a, x)da and to achieve the task via the

Leray–Schauder theorem.
On the other hand, a huge amount of works are interested on the control problems

of coupled systems among which we find [3, 8, 39] and the references therein.
In [3], a coupled model is taken under a reaction–diffusion system describing
interaction between prey and predator populations. The goal is to look for a suitable
control supported on small spatial subdomain that guarantees the stabilization of
the predator population to zero. The objective of [39] was different. Actually,
an age-dependent pre–predator system was considered, and the authors proved
the existence and uniqueness for an optimal control (also called “optimal effort”)
that gives the maximal harvest via the study of the optimal harvesting problem
associated to their coupled model. Similarly to the case of one equation in the papers
[1, 2, 5, 7], [3, 39] assumed that their coefficients of diffusion are constants. We open
parentheses here to emphasize that the references [3, 39] are cited as examples of
non-degenerate coupled systems, and this does not mean that (1.1) models a prey–
predator model. The last two papers motivate Ait Ben Hassi et al. in [8] to generalize
these works specially [3] and examined semilinear parabolic cascade systems with
two different diffusion coefficients allowed to depend on the space variable and
degenerate at the left boundary of the space domain. Moreover, the purpose of that
paper was to bring out the null controllability via a Carleman-type inequality of the
adjoint problem of the associated linearized system using the results of [9] or [15]
and with the help the Schauder fixed-point theorem.

But up to now and to our best knowledge, little is known about the global null
controllability question of the age-structured population dynamics cascade systems
in both degenerate and non-degenerate cases, and the only item that deals with such
a paradigm is the one of Boutaayamou et al. in [13]. In fact, the authors assessed
(1.1) in a non-divergence form and proved its null controllability like the one in
(1.4) using the classical procedure based on the observability inequality deduced
from the weighted estimates of Carleman kind. To reach their purpose, Fragnelli et
al. require some smooth regularity on the fertility, mortality, and interaction rates.
More accurately, they assumed that such rates are continuous besides the fact that
both the natural rates of fertility satisfy the following hypothesis:

βi(a, x) = 0, for all (a, x) ∈ [0, ai] × [0, 1], i = 1; 2, (1.2)

where ai, i = 1; 2, are positive constants.
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As mentioned in the recent paper [13], the assumption (1.2) is natural from the
biological point of view, but mathematically some interesting computations will be
omitted and our work will avoid such a kind of impositions. Hence, we will address
to such a control problem described by (1.1) using a different trend from the one
of [13], and it will be a generalization of the results obtained in [6] and [22]. More
precisely, following the global techniques of [8], we expect in this contribution to
prove the global null controllability of the structured age and space system (1.1)
with one control force and when

T ∈ (0, δ), (1.3)

where δ ∈ (0, A) fixed small enough. That is, we show that for all y0, p0 ∈ L2(QA),
there exists a control ϑ ∈ L2(Q) such that the associated solution of (1.1) verifies

{
y(T , a, x) = 0, a.e in (δ, A)× (0, 1),
p(T , a, x) = 0, a.e in (δ, A)× (0, 1). (1.4)

In all domains related to the population dynamics, the conditions like (1.4) are
equivalent to say that we look for a control or strategy (suitable one) to steer the
studied population(s) from its (their) initial distribution(s) to extinction in a finite
control time T . Such a property is needed to deal with the pest populations not
against the non-harmful ones or, for example, in the context of human population.
It deserves to mention that the researched control ϑ depends on δ and the two initial
distributions y0 and p0. Returning back to the condition (1.3) imposed on the fixed
time of control T . This assumption is required not only for a technical cause but
also is meaningful in the cost of controllability in the sense that is we will be able to
drive a very wide age class of both populations to extinct fastly and quickly instead
to wait for months or years like in [6] (see also [12, 23] for a similar explanation),
and this will be an advantage on the optimality of the control ϑ . Note that in [13],
the goal (1.4) is established for any positive time control T , and in our point of view,
this implies that if T can verify (1.3), it could also be greater than age A, and this,
as explained before (and also in [13]), can involve a restrictiveness on the optimality
for our control ϑ . By the way, the null controllability property (1.4) does not allow
to control the age class of non-fertile individuals of both populations, and this can
be justified in the mathematical standpoint (see the farther proofs).

Theoretically, the result (1.4) is gotten under the conditions that all natural rates
possess an L∞-regularity (more general than the continuous one as assumed in
[13]), and this will avoid us the use of the fixed-point technique needed in [22, 37],
which imposed the C2-regularity of fertility rate β. Another striking difference
with the cited references (except [13]) is that our model is a coupled dynamics
system combining in the same time age and space structures and likewise the
degeneracy occurring for the two different dispersion coefficients k1 and k2 in
the left-hand side of the gene-type domain, that is ki(0) = 0; i = 1, 2, e.g.,
ki(x) = xα , where α can be taken in [0, 1) if we impose the Dirichlet boundary
conditions or in [1, 2) if we consider the Neumann boundary conditions (see the
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assumptions (2.5) beneath). In this case, we say that (1.1) is a degenerate population
dynamics cascade system. Genetically speaking, such a property is natural since
it means that if each population is not of a gene type, it cannot be transmitted to
its offspring. Finally, we highlight that this work can be generalized in the case of
interior degeneracy, i.e., k1(x0) = 0 and k2(z0) = 0 (e.g., k1(x) = |x − x0|α and
k2(x) = |x − z0|α, α ∈ (0, 1)), where x0, z0 ∈ (0, 1) using the results proved
in [12] that are based essentially on the method applied for controllability problem
of interior degenerate parabolic equations [28] and can also be extended to the non-
smooth case in the light of the item [29].

The remainder of this chapter is organized as follows: Sect. 2 is devoted to
discussion about the well-posedness of (1.1) and establishing a new Carleman
estimate of an intermediate adjoint system that helps us to provide an evidence
of the main Carleman-type inequality of the associated full adjoint system. As an
outcome of this latter, in Sect. 3, an observability inequality is proved with the help
of the semigroups theory that allows us to obtain non-classical implicit formulas
of the adjoint system solution (see [12, 23] for a similar procedure). The obtained
observability inequality will play a crucial role to show the main controllability
result stated in (1.4). We close this chapter in Sect. 4 that takes the form of an
appendix wherein the proofs of some basic tools are provided.

2 Well-Posedness and Carleman Estimates

2.1 Well-Posedness Result

For this section and for the sequel, we assume that the dispersion coefficients
ki, i = 1, 2, satisfy the hypotheses

{
ki ∈ C([0, 1]) ∩ C1((0, 1]), ki > 0 in (0, 1] and ki(0) = 0,
∃γ ∈ [0, 1) : xk′i (x) ≤ γ ki(x), x ∈ (0, 1]. (2.5)

The last condition on ki means in the case of ki(x) = xαi that 0 ≤ αi < 1. Similarly,
all results of this chapter can also be obtained in the case of 1 ≤ αi < 2 taking,
instead of Dirichlet condition on x = 0, the Neumann condition (ki(x)ux)x(0) = 0.
On the other hand, we assume that the rates μ1, μ2, μ3, β1 and β2 verify

{
μ1, μ2, μ3, β1, β2 ∈ L∞(Q),
μ1, μ2, β1, β2 ≥ 0 and μ3 > 0 a.e inQ,

(2.6)

Here, we open parentheses to say that contrary to some references like [1, 2, 6], we
do not require the mortality rates to satisfy

∫ A
0 μi(t − s, A− s, x)ds = +∞, i =

1, 2, since these conditions do not play any role on the well-posedness result or the
null controllability computations.
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In summary, to justify that our model (1.1) is well-posed, we will rewrite it under
an abstract Cauchy problem, and then we will combine some references namely [9,
14, 15, 23, 35, 38] to get our result. This result needs the introduction of a pertinent
framework represented by weighted Sobolev spaces defined for i = 1, 2 by

{
H 1
ki
(0, 1) = {u ∈ L2(0, 1) : u is abs. cont. in [0, 1] : √

kiux ∈ L2(0, 1), u(1) = u(0) = 0},
H 2
ki
(0, 1) = {u ∈ H 1

ki
(0, 1) : kiux ∈ H 1(0, 1)},

(2.7)
endowed, respectively, with the norms,

⎧
⎨

⎩

‖u‖2
H 1
ki
(0,1)

= ‖u‖2
L2(0,1)

+ ‖√kiux‖2L2(0,1), u ∈ H 1
ki
(0, 1),

‖u‖2
H 2
ki
(0,1)

= ‖u‖2
H 1
ki
(0,1)

+ ‖(kiux)x‖2L2(0,1), u ∈ H 2
ki
(0, 1),

with i = 1, 2 (see [9, 14, 15] or the references therein for the properties of such
spaces).

Now, put for i = 1, 2, Aiθ = (ki(x)θx)x , with ki , verify (2.5).
The domains of the operators Ai , i = 1, 2, are exactly H 2

ki
(0, 1), i = 1, 2,

given in (2.7), and it is well known that such operators are closed, self-adjoint,
and negative with dense domains in L2(0, 1), which implies that they generate C0-
semigroups in L2(0, 1) (see [9, 14, 15] for precise proofs).

On the other hand, consider the following operators Ai , i = 1, 2, defined by

⎧
⎪⎨

⎪⎩

Ai θ = − ∂θ
∂a

+ Ai θ, ∀θ ∈ D(Ai ),
D(Ai ) = {u ∈ L2(0, A;D(Ai )); ∂u

∂a
∈ L2(0, A;H 1

ki
(0, 1)); u(0, x) =

∫ A

0
βi(a, x)u(a, x)da}.

(2.8)
From [38, Theorem 4, page 23] or [38, Theorem 5, page 26] and since
(Ai , D(Ai )), i = 1, 2, are infinitesimal generators of C0-semigroups as
mentioned before, one can conclude that (Ai , D(Ai )), i = 1, 2, generate C0-
semigroups in L2(QA). In this context, we advise the reader to take a glance for a
similar discussion of the well-posedness result [23, Theorem 2.1].

Adapting these notations, the abstract Cauchy problem associated to (1.1) is
formulated as

⎧
⎨

⎩

X
′
(t) = (A + B(t))X(t)+ f (t),

X(0) =
(
y0

p0

)

,
(2.9)

where X(t) =
(
y(t)

p(t)

)

, A =
(
A1 0
0 A2

)

, D(A) = D(A1) × D(A2), B(t) =
(
Mμ1 0
Mμ3 Mμ2

)

,
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f (t) =
(
ϑχω

0

)

; with the generators Ai , i = 1, 2, are defined by (2.8),

Mμiw = −μiw, i = 1, 2, 3.

As we can see, the operator (A,D(A)) is a diagonal matrix of generators of C0-
semigroups; as a consequence, (A,D(A)) is also a generator of a C0-semigroup
in L2(Q). On the other hand, the operator B(t) can be viewed as a bounded
perturbation of A, so that one has D(A + B(t)) = D(A).

Gathering all these gadgets with the result [35, Theorem 2.1], we somehow
justify our theorem of well-posedness.

Theorem 2.1 The following points hold:

1. The operator (A + B(t),D(A)) generates a C0-semigroup in L2(Q).
2. Under the assumptions (2.5) and (2.6) and for all ϑ ∈ L2(Q) and (y0, p0) ∈
D(A1)×D(A2), the system (2.9) admits a unique mild solution X belonging to
C([0, T ];D(A1)×D(A2)) and verifies the integral equation

∀t ∈ [0, T ], X(t) = e(A+B(t))tX0 +
∫ t

0
e(A+B(t))(t−s)f (s)ds. (2.10)

Before continuing, we shall make the following remark:

Remark 2.2 Since D(Ai ), i = 1, 2, are dense in L2(QA), then Theorem 2.1 can
be extended to the space L2(QA) for the initial data (y0, p0) as well as our null
controllability result (1.4).

2.2 Carleman Inequality Results

In this paragraph, we will focus on the so-called Carleman estimates. Generally
speaking, Carleman estimate is a priori estimates for the solutions of the adjoint
systems and their derivatives. The first result of this section concerns the adjoint
system of the system (1.1). Classically, the adjoint system is derived by multiplying
the governing equations of the direct problem by Lagrange multipliers, which means
that the adjoint state is the Lagrange multiplier for the studied PDE. To obtain this
model, we afterward integrate over the domains of the existing variables (herein, the
time, the gene type, and the age variables). Note that it is not necessary to multiply
the boundary and initial conditions of the direct problem by Lagrange multipliers
because they become identically null.

In our case, the associated adjoint model of (1.1) is stated in the following
proposition:

Proposition 2.3 The adjoint system of (1.1) is given by

∂u

∂t
+∂u
∂a

+(k1(x)ux)x−μ1(t, a, x)u−μ3v= − β1u(t, 0, x) in Q, (2.11)
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∂v

∂t
+ ∂v
∂a

+ (k2(x)vx)x − μ2(t, a, x)v = −β2v(t, 0, x) in Q,

u(t, a, 1) = u(t, a, 0) = v(t, a, 1) = v(t, a, 0) = 0 on (0, T )× (0, A),
u(T , a, x) = uT (a, x); v(T , a, x) = vT (a, x) in QA,

u(t, A, x) = v(t, A, x) = 0 in QT ,

where u and v stand, respectively, for the adjoint variables of y and p.

Proof First, we define the Lagrangian L related to (1.1) by

L(y, p, u, v, ϑ, u0, v0) = J (y, p, ϑ)+
∫

Q

u

(
∂y

∂t
+ ∂y
∂a

− (k1(x)yx)x

+μ1(t, a, x)y − ϑχω
)

dtdadx (2.12)

+
∫

Q

v

(
∂p

∂t
+ ∂p
∂a

− (k2(x)px)x

+μ2(t, a, x)p + μ3(t, a, x)y
)

dtdadx

+
∫

QA

u0(y(0)− y0)dadx +
∫

QA

v0(p(0)− p0)dadx,

where the functional J is given by J (y, p, ϑ) = 1
2

∫ 1
0

∫ A
δ
(y2(T , a, x) +

p2(T , a, x))dadx + 1
2

∫
Q
ϑ2χωdtdadx.

Now, put

I1 =
∫

Q

u

(
∂y

∂t
+ ∂y
∂a

− (k1(x)yx)x + μ1(t, a, x)y
)

dtdadx

and

I2 =
∫

Q

v

(
∂p

∂t
+ ∂p
∂a

− (k2(x)px)x + μ2(t, a, x)p + μ3(t, a, x)y
)

dtdadx.

With the aid of the integration by parts technique, taking into account the first
newborns equation of (1.1) and assuming that

{
u(t, A, x) = v(t, A, x) = 0, in (0, T )× (0, 1),
u(t, a, 0) = u(t, a, 1) = v(t, a, 0) = v(t, a, 1) = 0, on (0, T )× (0, A),

(2.13)
we obtain
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I1 =
∫

QA

u(T , a, x)y(T , a, x)dadx −
∫

QA

u(0, a, x)y(0, a, x)dadx

−
∫

Q

y

(
∂u

∂t
+ ∂u
∂a

+ (k1ux)x − μ1u+ β1u(t, 0, x)
)

dtdadx (2.14)

and

I2 =
∫

QA

v(T , a, x)p(T , a, x)dadx −
∫

QA

v(0, a, x)p(0, a, x)dadx

−
∫

Q

p

(
∂v

∂t
+ ∂v
∂a

+ (k2vx)x − μ2v + β2v(t, 0, x)
)

dtdadx

+
∫

Q

μ3vydtdadx. (2.15)

Combining (2.13) with (2.14) and (2.15), we get the following formula of L:

L(y, p, u, v, ϑ, u0, v0) = 1

2

∫

QA

(y2(T , a, x)+ p2(T , a, x))dadx

+1

2

∫

Q

ϑ2χωdtdadx −
∫

Q

ϑuχωdtdadx

+
∫

QA

[u0(y(0)− y0)+ v0(p(0)− p0)]dadx

+
∫

QA

u(T , a, x)y(T , a, x)dadx

−
∫

QA

u(0, a, x)y(0, a, x)dadx

−
∫

Q

y

(
∂u

∂t
+ ∂u
∂a

+ (k1ux)x − μ1u

+β1u(t, 0, x)− μ3v
)

dtdadx

+
∫

QA

v(T , a, x)p(T , a, x)dadx

−
∫

QA

v(0, a, x)p(0, a, x)dadx

−
∫

Q

p

(
∂v

∂t
+ ∂v
∂a

+ (k2vx)x − μ2v

+β2v(t, 0, x)
)

dtdadx.
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The above expression of L can be rewritten as follows:

L(y, p, u, v, ϑ, u0, v0) =
∫

QA

(
1

2
y2(T , a, x)χ(δ,A) + u(T , a, x)y(T , a, x)

)

dadx

+
∫

QA

(
1

2
p2(T , a, x)χ(δ,A)

+v(T , a, x)p(T , a, x)
)

dadx

+
∫

Q

(
1

2
ϑ2χω − ϑuχω

)

dtdadx

+
∫

QA

y(0)(u0 − u(0, a, x))dadx −
∫

QA

u0y0dadx

+
∫

QA

p(0)(v0 − v(0, a, x))dadx −
∫

QA

v0p0dadx

−
∫

Q

y

(
∂u

∂t
+ ∂u
∂a

+ (k1ux)x − μ1u

+β1u(t, 0, x)− μ3v
)

dtdadx

−
∫

Q

p

(
∂v

∂t
+ ∂v
∂a

+ (k2vx)x − μ2v

+β2v(t, 0, x)
)

dtdadx.

Thus, for any h ∈ L2(Q), one has

dL.h = ∂L
∂y
.h+ ∂L

∂p
.h+ ∂L

∂u
.h+ ∂L

∂v
.h+ ∂L

∂u0
.h+ ∂L

∂v0
.h+ ∂L

∂ϑ
.h.

Keep in the mind that ∂L
∂u

and ∂L
∂u0

are, respectively, the main equation and the

initial condition satisfied by y and ∂L
∂v

and ∂L
∂v0

are, respectively, the main equation
and the initial condition satisfied by p.

Therefore, dL.h = ∂L
∂y
.h+ ∂L

∂p
.h+ ∂L

∂ϑ
.h.

Now, to reach an optimum ofL, one must resolve the equation dL.h = 0, ∀h ∈
L2(Q). Generally, in our situation, we will impose a sufficient condition like ∂L

∂y
.h =

∂L
∂p
.h = ∂L

∂ϑ
.h = 0.
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Actually, to attempt the formula of the adjoint system (2.11), we just need to have
∂L
∂y
.h = ∂L

∂p
.h = 0. The third equation will be used later to express the control ϑ .

On the other hand, recall that ∀h ∈ L2(Q), we have
∂L

∂y
.h =

∫

QA

(y(T , a, x)χ(δ,A) + u(T , a, x))h(T , a, x)dadx

+
∫

QA

(u0 − u(0, a, x))h(0, a, x)dadx

−
∫

Q

h

(
∂u

∂t
+ ∂u
∂a

+ (k1ux)x − μ1u+ β1u(t, 0, x)− μ3v
)

dtdadx

and

∂L

∂p
.h =

∫

QA

(p(T , a, x)χ(δ,A) + v(T , a, x))h(T , a, x)dadx

+
∫

QA

(v0 − v(0, a, x))h(0, a, x)dadx

−
∫

Q

h

(
∂v

∂t
+ ∂v
∂a

+ (k2vx)x − μ2v + β2v(t, 0, x)
)

dtdadx.

Sufficient conditions that can be applied to get both ∂L
∂y
.h = ∂L

∂p
.h = 0 are,

respectively,

⎧
⎨

⎩

u(T , a, x) = −y(T , a, x)χ(δ,A), (0, A)× (0, 1),
u(0, a, x) = u0(a, x), in (0, A)× (0, 1),
∂u
∂t

+ ∂u
∂a

+ (k1ux)x − μ1u− μ3v = −β1u(t, 0, x), inQ,
(2.17)

and

⎧
⎨

⎩

v(T , a, x) = −p(T , a, x)χ(δ,A), in (0, A)× (0, 1),
v(0, a, x) = v0(a, x), in (0, A)× (0, 1),
∂v
∂t

+ ∂v
∂a

+ (k2vx)x − μ2v = −β2v(t, 0, x), inQ.
(2.18)

Finally, the thesis follows gathering (2.13), (2.17), and (2.18) with uT (a, x) =
−y(T , a, x)χ(δ,A)(a), in (0, A)×(0, 1) and vT (a, x) = −p(T , a, x)χ(δ,A)(a),
in (0, A)× (0, 1). ��
Traditionally, the proof of the Carleman estimates of the full adjoint system

(2.11) is based tightly on the choice of the so-called weight functions. In our case,
these functions are set in the following way ∀(t, a, x) ∈ Q
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕi := !(t, a)ψi(x), i = 1, 2,
!(t, a) := 1

(t (T−t))4a4 ,
ψi(x) := λi(

∫ x
0
r
ki (r)
dr − di) i = 1, 2,

φ(t, a, x) := !(t, a)eκσ(x),
�(t, a, x) := !(t, a)�(x),
�(x) := eκσ(x) − e2κ‖σ‖∞ ,

(2.19)

where σ is the function given by

⎧
⎨

⎩

σ ∈ C2([0, 1]),
σ (x) > 0 in (0, 1), σ (0) = σ(1) = 0,
σx(x) = 0 in [0, 1] \ ω0,

(2.20)

where ω0 ⊂⊂ ω an open subset. The existence of σ is proved in [31, Lemma
1.1] using a device of differential geometry. λi, di and κ are supposed to verify the
following assumptions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d1 >
1

k1(1)(2−γ ) ,
λ1
λ2

≥ d2

d1−
∫ 1
0

r
k1(r)
dr
,

κ ≥ 4 ln(2)
‖σ‖∞ ,

d2 ≥ 5
k2(1)(2−γ ) ,

(2.21)

with λ2 ∈ I = [ k2(1)(2−γ )(e2κ‖σ‖∞−1)
d2k2(1)(2−γ )−1 ,

4(e2κ‖σ‖∞−eκ‖σ‖∞ )
3d2

), which can be shown non-
empty (see the proof of Lemma 4.3 in appendix). On the other hand, in the light of
the first and fourth conditions in (2.21) on d1 and d2, one can observe that ψi(x) <
0, i = 1, 2, for all x ∈ [0, 1] and !(t, a) −→ +∞ as t −→ 0+, T − and
a −→ 0+.

The first step to show our full ω-Carleman estimate is to show an intermediate
Carleman-type inequality stated in Theorem 2.7 beneath. To this end, one needs two
basic propositions concerned with Carleman-type inequalities in both degenerate
and non-degenerate cases for one equation model. The first one is:

Proposition 2.4 Consider the following system with h ∈ L2(Q), μ ∈ L∞(Q), and
k verifies (2.5)

∂u

∂t
+ ∂u
∂a

+ (k(x)ux)x − μ(t, a, x)u = h in Q, (2.22)

u(t, a, 1) = u(t, a, 0) = 0 on (0, T )× (0, A),
u(T , a, x) = uT (a, x) in QA,

u(t, A, x) = 0 in QT .
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Then, there exist two positive constantsC and s0, such that every solution u of (2.22)
satisfies, for all s ≥ s0, the following inequality:

∫

Q

s3!3 x
2

k(x)
u2e2sϕdtdadx +

∫

Q

s!k(x)u2xe
2sϕdtdadx

≤ C
(∫

Q

h2e2sϕdtdadx+sk(1)
∫ A

0

∫ T

0
!ux(t, a, 1)

2e2sϕ(t,a,1)dtda

)

, (2.23)

where ϕ and ! are the weight functions defined by

⎧
⎪⎨

⎪⎩

ϕ := !(t, a)ψ(x),
!(t, a) := 1

(t (T−t))4a4 ,
ψ(x) := c1(

∫ x
0
r
k(r)
dr − c2),

(2.24)

with c2 >
1

k(1)(2−γ ) , c1 > 0, and γ is the parameter defined by (2.5).

For the proof of Proposition 2.4, we refer the reader to [22, Proposition 3.1].

Proposition 2.5 Let us consider the following system:

∂z

∂t
+ ∂z
∂a

+ (k(x)zx)x − μ(t, a, x)z = h in Q1, (2.25)

z(t, a, b1) = z(t, a, b2) = 0 on (0, T )× (0, A),

whereQ1 = (0, T )×(0, A)×(b1, b2), (b1, b2) ⊂ (0, 1), h ∈ L2(Q), k ∈ C1([0, 1])
is a positive function and μ ∈ L∞(Q1). Then, there exist two positive constants C
and s0 such that for any s ≥ s0, z the solution of (2.25) verifies the following
estimate:

∫

Q1

(s3φ3z2 + sφz2x)e2s�dtdadx

≤ C
(∫

Q1

h2e2s�dtdadx +
∫

ω

∫ A

0

∫ T

0
s3φ3z2e2s�dtdadx

)

, (2.26)

where the weight functions φ, !, and � are defined by (2.19) and σ by (2.20).

For the proof of Proposition 2.5, careful computations allow us to adapt the same
procedure of [2, Lemma 2.1] to show (2.26) in the case where k is a positive general
non-degenerate coefficient, with our weight function ! given by (2.19) and the
source term h.

Besides the last two Propositions 2.4 and 2.5, we must bring out another
important result:

Lemma 2.6 Under the assumptions (2.21), the functions ϕ1, ϕ2, and � stated in
(2.19) satisfy the following inequalities:
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{
ϕ1 ≤ ϕ2,
4
3� < ϕ2 ≤ �. (2.27)

Proof By the definitions of ϕi, i = 1, 2, and � and taking into account that ! is
positive, showing the results of (2.27) is equivalent to show

{
ψ1 ≤ ψ2,
4
3� < ψ2 ≤ �. (2.28)

The first inequality in (2.28) is assured by the second assumption in (2.21), while
the second one is deduced from λ2 ∈ I and this achieves the proof. ��

Now, we are ready to provide the proof of the following theorem:

Theorem 2.7 Consider the following system:

∂u

∂t
+∂u
∂a

+(k1(x)ux)x−μ1(t, a, x)u−μ3(t, a, x)v=h1 in Q, (2.29)

∂v

∂t
+ ∂v
∂a

+ (k2(x)vx)x − μ2(t, a, x)v = h2 in Q,

u(t, a, 1) = u(t, a, 0) = v(t, a, 1) = v(t, a, 0) = 0 on (0, T )× (0, A),
u(T , a, x) = uT (a, x); v(T , a, x) = vT (a, x) in QA,

u(t, A, x) = v(t, A, x) = 0 in QT ,

where h1 and h2 are L2(Q)-functions. Assume that the dispersion coefficients
ki, i = 1, 2, satisfy (2.5) and let A, T > 0 be fixed. Then, there exist two positive
constants C and s0 such that every solution (u, v) of (2.29) verifies for, all s ≥ s0,
the following inequality:

∫

Q

(

s3!3 x
2

k1(x)
u2 + s!k1(x)u2x

)

e2sϕ1dtdadx

+
∫

Q

(

s3!3 x
2

k2(x)
v2 + s!k2(x)v2x

)

e2sϕ2dtdadx

≤ C
(∫

Q

(h21+h22)e2s�dtdadx+
∫

q

s3!3(u2+v2)e2s�dtdadx
)

, (2.30)

where all the weight functions are defined by (2.19).

Proof Let us introduce the smooth cut-off function ξ : R −→ R defined by

⎧
⎨

⎩

0 ≤ ξ(x) ≤ 1, x ∈ R,

ξ(x) = 1, x ∈ [0, 2x1+x23 ],
ξ(x) = 0, x ∈ [ 2x2+x13 , 1],

(2.31)
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where (x1, x2) ⊂ ω. Let (u, v) be the solution of (2.29) and setw := ξu and z := ξv
and put ω

′ := ( 2x1+x23 , 2x2+x13 ). Then (w, z) satisfies the following system:

∂w

∂t
+ ∂w
∂a

+(k1(x)wx)x−μ1(t, a, x)w=ξh1+μ3(t, a, x)z+ξxk1ux+(k1ξxu)x in Q, (2.32)

∂z

∂t
+ ∂z
∂a

+ (k2(x)zx)x − μ2(t, a, x)z = ξh2 + ξxk2vx + (k2ξxv)x in Q,

w(t, a, 1)=w(t, a, 0)=z(t, a, 1)=z(t, a, 0)=0 on (0, T )× (0, A),
w(T , a, x) = wT (a, x); z(T , a, x) = zT (a, x) in QA,

w(t, A, x) = z(t, A, x) = 0 in QT .

Using Proposition 2.4 for the inhomogeneous term “ξh1 +μ3(t, a, x)z+ ξxk1ux +
(k1ξxu)x ,” the definition of ξ , and Young’s inequality, we get the following
inequality:

∫

Q

(s!k1w
2
x + s3!3 x

2

k1
w2)e2sϕ1dtdadx

≤ C
(∫

Q

[ξ2(h1 + μ3(t, a, x)v)2 + (ξxk1ux + (k1ξxu)x)2]e2sϕ1dtdadx

+sk1(1)
∫ A

0

∫ T

0
!w2
x(t, a, 1)e

2sϕ1(t,a,1)dtda

)

≤ C
∫

Q

[ξ2h21 + μ23(t, a, x)z2 + (ξxk1ux + (k1ξxu)x)2]e2sϕ1dtdadx. (2.33)

Thanks again to the definition of ξ , we have

∫ 1

0
(ξxk1ux + (k1ξxu)x)2e2sϕ1dx

≤
∫

ω
′ (8(k1ξx)

2u2x + 2((k1ξx))
2
xu

2)e2sϕ1dx

≤ C
∫

ω
′ (u

2 + u2x)e2sϕ1dx. (2.34)

On the other hand, the third assumption in (2.5) implies that the function x �→ x2

k2(x)

is nondecreasing.
Keeping in the mind the first assumption on μ3 (2.6) and the fact that ϕ1 ≤

ϕ2, then with the aid of Hardy–Poincaré inequality in [9] for the function zeϕ2 we
conclude that



226 Y. Echarroudi and L. Maniar

∫ 1

0
μ23z

2e2sϕ1dx ≤ ‖μ3‖2∞
k2(1)

∫ 1

0

k2(x)

x2
(zesϕ2)2dx

≤ CHP ‖μ3‖2∞
k2(1)

∫ 1

0
k2(x)(ze

sϕ2)2xdx,

where CHP > 0 is the constant of Hardy–Poincaré.
Thus, from the definition of ψ2 in (2.19), we obtain

∫ 1

0
μ23z

2e2sϕ1dx ≤ C
∫ 1

0
k2(x)z

2
xe

2sϕ2dx + C
∫ 1

0
s2!2 x

2

k2(x)
z2e2sϕ2dx.

Hence, for s quite large, we have

∫ 1

0
μ23z

2e2sϕ1dx ≤ 1

2

∫ 1

0
s!k2(x)z

2
xe

2sϕ2dx + 1

2

∫ 1

0
s3!3 x

2

k2(x)
z2e2sϕ2dx.

(2.35)

Gathering inequalities (2.33), (2.34), and (2.35), for s quite large, the following
inequality holds:

∫

Q

(s!k1w
2
x + s3!3 x

2

k1
w2)e2sϕ1dtdadx ≤ C

∫

Q

h21e
2sϕ1dtdadx

+C1
∫

ω
′

∫ A

0

∫ T

0
(u2 + u2x)e2sϕ1dtdadx (2.36)

+1

2

(∫

Q

s!k2(x)z
2
xe

2sϕ2dtdadx +
∫

Q

s3!3 x
2

k2(x)
z2e2sϕ2dtdadx

)

.

Applying the same way with “ ξh2 + ξxk2vx + (k2ξxv)x ,” we conclude
∫

Q

(s!k2z
2
x + s3!3 x

2

k2
z2)e2sϕ2dtdadx ≤ C1

∫

Q

h22e
2sϕ2dtdadx

+C2
∫

ω
′

∫ A

0

∫ T

0
(v2 + v2x)e2sϕ2dtdadx. (2.37)

Summing side by side (2.36) and (2.37), using the fact that ϕ1 ≤ ϕ2 (Lemma 2.6),
we can see that for s quite large that

∫

Q

(s!k1w
2
x + s3!3 x

2

k1
w2)e2sϕ1dtdadx
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+
∫

Q

(s!k2z
2
x + s3!3 x

2

k2
z2)e2sϕ2dtdadx ≤ C4

∫

Q

(h21 + h22)e2sϕ2dtdadx

+C5
∫

ω
′

∫ A

0

∫ T

0
(u2 + v2 + u2x + v2x)e2sϕ2dtdadx.

In the light of the Caccioppoli’s inequality (4.148), the last inequality becomes

∫

Q

(s!k1w
2
x + s3!3 x

2

k1
w2)e2sϕ1dtdadx

+
∫

Q

(s!k2z
2
x + s3!3 x

2

k2
z2)e2sϕ2dtdadx

≤ C6
(∫

Q

(h21+h22)e2sϕ2dtdadx+
∫

q

s2!2(u2 + v2)e2sϕ2dtdadx
)

. (2.38)

Now, let W := ηu and Z := ηv with η = 1 − ξ . Then, W and Z are supported in
(x1, 1) and verify the following system:

∂W

∂t
+ ∂W
∂a

+(k1(x)Wx)x−μ1(t, a, x)W=ηh1+μ3(t, a, x)Z+ηxk1ux+(k1ηxu)x in Qx1 , (2.39)

∂Z

∂t
+ ∂Z
∂a

+ (k2(x)Zx)x − μ2(t, a, x)Z = ηh2 + ηxk2vx + (k2ηxv)x in Qx1 ,

W(t, a, 1)=W(t, a, x1)=Z(t, a, 1)=Z(t, a, x1)=0 on (0, T )× (0, A),
W(T , a, x) = WT (a, x);Z(T , a, x) = ZT (a, x) in QA,

W(t, A, x) = Z(t, A, x) = 0 in QT ,

where Qx1 = (0, T ) × (0, A) × (x1, 1). Then, the system satisfied by W and Z is
non-degenerate. Hence, applying Proposition 2.5 on the first equation of (2.39) for
b1 = x1 and b2 = 1 and h = ηh1+μ3(t, a, x)Z+ηxk1ux+(k1ηxu)x , the following
estimate occurs

∫

Q

(s3φ3W 2 + sφW 2
x )e

2s�dtdadx

≤ C
(∫

Q

(ηh1 + μ3(t, a, x)Z + ηxk1ux + (k1ηxu)x)2e2s�dtdadx

+
∫

ω

∫ A

0

∫ T

0
s3!3u2e2s�dtdadx

)

.

Accordingly, the Caccioppoli’s inequality stated in [22, Lemma 5.1], the definition
of the cut-off function η, and Young’s inequality and s quite large lead to
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∫

Q

(s3φ3W 2 + sφW 2
x )e

2s�dtdadx

≤ C̃
(∫

Q

(η2h21e
2s� + μ23Z2e2s� + (ηxk1ux + (k1ηxu)x)2e2s�)dtdadx

+
∫

ω

∫ A

0

∫ T

0
s3!3u2e2s�dtdadx

)

≤ C̃1
(∫

Q

(η2h21e
2s� + μ23Z2e2s�)dtdadx +

∫

ω
′

∫ A

0

∫ T

0
(8(k1ηx)

2u2x

+2((k1ηx)x)
2u2)e2s�dtdadx

)

+C̃
∫

ω

∫ A

0

∫ T

0
s3!3u2e2s�dtdadx

≤ C̃2
(∫

Q

(η2h21e
2s� + μ23Z2e2s�)dtdadx

+
∫

ω
′

∫ A

0

∫ T

0
(u2 + u2x)e2s�dtdadx

)

+C̃
∫

ω

∫ A

0

∫ T

0
s3!3u2e2s�dtdadx

≤ C̃3
(∫

Q

(η2h21e
2s� + μ23Z2e2s�)dtdadx

+
∫

ω

∫ A

0

∫ T

0
s3!3u2e2s�dtdadx

)

, (2.40)

where � and φ are defined in (2.19) and ω
′
is given in the beginning of this proof.

On the other hand, using the fact that x �→ x2

k2(x)
is nondecreasing, Hardy–

Poincaré inequality applied for the functionWes� and taking s quite large, the same
procedure employed to obtain (2.35) steers to

∫

Q

μ23Z
2e2s�dtdadx

≤ c
(∫

Q

k2Z
2
xe

2s�dtdadx +
∫

Q

s2!2 x
2

k2(x)
Z2e2s�dtdadx

)

≤ 1

2

∫

Q

(s3φ3Z2 + sφZ2x)e2s�dtdadx. (2.41)
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Therefore, injecting (2.41) in (2.40), we arrive to

∫

Q

(s3φ3W 2 + sφW 2
x )e

2s�dtdadx

≤ C̃4
(∫

Q

h21e
2s�dtdadx +

∫

ω

∫ A

0

∫ T

0
s3!3u2e2s�dtdadx

)

+1

2

∫

Q

(s3φ3Z2 + sφZ2x)e2s�dtdadx. (2.42)

Replying the same device for the source term h := ηh2 +ηxk2vx+ (k2ηxv)x , we
infer that

∫

Q

(s3φ3Z2 + sφZ2x)e2s�dtdadx

≤ C̃5
(∫

Q

h22e
2s�dtdadx +

∫

ω

∫ A

0

∫ T

0
s3!3v2e2s�dtdadx

)

. (2.43)

Subsequently, adding (2.42) to (2.43) side by side, we merely observe that

∫

Q

[s3φ3(W 2 + Z2)+ sφ(W 2
x + Z2x)]e2s�dtdadx (2.44)

≤ C̃6
(∫

Q

(h21 + h22)e2s�dtdadx +
∫

ω

∫ A

0

∫ T

0
s3!3(u2 + v2)e2s�dtdadx

)

.

Using the fact that u = w +W and v = z + Z, ϕ1 ≤ ϕ2 ≤ �, the estimates (2.38)
and (2.45) lead to estimate (2.30). ��

For special functions h1 and h2, Theorem 2.7 will play a crucial role to
demonstrate the following intermediate Carleman estimate:

Theorem 2.8 Assume that the assumptions (2.5) and (2.6) hold. Let T ,A > 0
fixed such that T ∈ (0, δ) with δ ∈ (0, A) fixed small enough. Then, there exist
two positive constants C (independent of δ) and s0 such that for all s ≥ s0, every
solution of (2.11) (u, v) satisfies

∫

Q

(

s3!3 x
2

k1(x)
u2 + s!k1(x)u2x

)

e2sϕ1dtdadx

+
∫

Q

(

s3!3 x
2

k2(x)
v2 + s!k2(x)v2x

)

e2sϕ2dtdadx (2.45)

≤ C
(∫

q

s3!3(u2 + v2)e2s�dtdadx +
∫ 1

0

∫ δ

0
(u2T (a, x)+ v2T (a, x))dadx

)

.
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Proof Let h1 := −β1u(t, 0, x) and h2 := −β2v(t, 0, x).
Therefore, thanks to hypotheses (2.6) on β1 and β2 and the estimate (2.30), we

have the existence of two positive constants C and s0 such that for all s ≥ s0 the
following inequality holds:

s3
∫

Q

!3
(
x2

k1(x)
u2e2sϕ1 + x2

k2(x)
v2e2sϕ2

)

dtdadx

+s
∫

Q

!(k1(x)u
2
xe

2sϕ1 + k2(x)v2xe2sϕ2)dtdadx

≤ C
(∫

Q

((β1u(t, 0, x))
2 + (β2v(t, 0, x))2)e2s�dtdadx

+
∫

q

s3!3(u2 + v2)e2s�dtdadx
)

≤ C̃7
(∫ 1

0

∫ T

0
(u2(t, 0, x)+ v2(t, 0, x))dtdx

+
∫

q

s3!3(u2 + v2)e2s�dtdadx
)

. (2.46)

Set ∀(t, a, x) ∈ Q, U(t, a, x) = u(T − t, A − a, x), and V (t, a, x) = v(T −
t, A− a, x). Then, one has

∂U

∂t
+ ∂U
∂a

− (k1(x)Ux)x + μ1(T − t, A− a, x)U + μ3(T − t, A− a, x)V
= β1(T − t, A− a, x)U(t, A, x) in Q,

∂V

∂t
+ ∂V
∂a

− (k2(x)Vx)x + μ2(T − t, A− a, x)V = β2(T − t, A− a, x)V (t, A, x) in Q,

U(t, a, 1) = U(t, a, 0) = V (t, a, 1) = V (t, a, 0) = 0 on (0, T )× (0, A),
U(0, a, x) = U0(a, x) = uT (A− a, x);V (0, a, x) = V0(a, x) = vT (A− a, x) in QA,

U(t, 0, x) = V (t, 0, x) = 0 in QT .

(2.47)

We emphasize here that similar implicit formulas of u and v given beneath are
already used in the proof of observability inequality in [23] and before in the ones
of the main Carleman estimate and the observability inequality in [12].

In fact, integrating along the characteristic lines, we get

⎧
⎪⎪⎨

⎪⎪⎩

U(t, a, .) = ∫ a
0 S(a − l)[β1(T − t, A− l, .)U(t, A, .)− μ3(T − t, A− l, .)

V (t, l, .)]dl; if t > a,

U(t, a, .) = S(t)U0(a − t, .)+ ∫ t
0 S(t − l)[β1(T − l, A− a, .)U(l, A, .)

−μ3(T − t, A− l, .)V (t, l, .)]dl; if t ≤ a
(2.48)
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and

⎧
⎨

⎩

V (t, a, .) = ∫ a
0 L(a − l)β2(T − t, A− l, .)V (t, A, .); if t > a,

V (t, a, .) = L(t)V0(a − t, .)+ ∫ t
0 L(t − l)β2(T − l, A− a, .)V (l, A, .)dl; if

t ≤ a,
(2.49)

where S(t)t≥0 and L(t)t≥0 are the bounded semigroups generated, respectively, by
the operators
A3U := −(k1(x)Ux)x + μ1(T − t, A − a, x)U and A4V := −(k2(x)Vx)x +

μ2(T − t, A− a, x)V .
On the other hand, in the light of the transformations between U and u and also

between V and v and if one replaces in the implicit formulas (2.48) and (2.49) t by
T − t and a by A− a, the functions u and v can be expressed as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(t, a, .) = ∫ A−a
0 S(A− a − l)[β1(t, A− l, .)u(t, 0, .)− μ3(t, A− l, .)

v(t, A− l, .)]dl; if a > t + (A− T ),
u(t, a, .) = S(T − t)uT (a + T − t, .)+ ∫ T

t
S(l − t)[β1(l, a, .)u(l, 0, .)

−μ3(l, a, .)v(l, a, .)]dl; if a ≤ t + (A− T ),
(2.50)

and
⎧
⎪⎨

⎪⎩

v(t, a, .) = ∫ A−a
0 L(A− a − l)β2(t, A− l, .)v(t, 0, .)dl; if a > t + (A− T ),

v(t, a, .) = L(T − t)vT (a + T − t, .)+ ∫ T
t
L(l − t)β2(l, a, .)v(l, 0, .)dl; if

a ≤ t + (A− T ).
(2.51)

Thus,

⎧
⎪⎨

⎪⎩

u(t, 0, .) = S(T − t)uT (T − t, .)+ ∫ T
t
S(l − t)[β1(l, 0, .)u(l, 0, .)

−μ3(l, 0, .)v(l, 0, .)]dl,
v(t, 0, .) = L(T − t)vT (T − t, .)+ ∫ T

t
L(l − t)β2(l, 0, .)v(l, 0, .)dl.

(2.52)
Passing to the absolute value of the first equality in (2.52), we get the following
relation:

|u(t, 0, x)| =
∣
∣
∣
∣S(T − t)uT (T − t, .)

+
∫ T

t

S(l − t)[β1(l, 0, .)u(l, 0, .)− μ3(l, 0, .)v(l, 0, .)]dl
∣
∣
∣
∣

≤ |S(T − t)uT (T − t, x)|

+
∫ T

t

|S(l − t)[β1(l, 0, .)u(l, 0, .)− μ3(l, 0, .)v(l, 0, .)]| dl.
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Combining the last inequality with the fact that (S(t))t≥0 is a C0-semigroup, we
deduce readily that

|u(t, 0, x)| ≤ |S(T − t)uT (T − t, x)|

+
∫ T

t

∣
∣
∣Meλ3(l−t) (β1(l, 0, .)u(l, 0, .)− μ3(l, 0, .)v(l, 0, .))

∣
∣
∣ dl

≤ |S(T − t)uT (T − t, x)|

+
∫ T

t

∣
∣
∣Meλ3T (β1(l, 0, .)u(l, 0, .)− μ3(l, 0, .)v(l, 0, .))

∣
∣
∣ dl,

where

M ≥ 1 and λ3 ∈ R. (2.53)

Applying Young’s inequality to last estimate, we obtain

|u(t, 0, x)|2 ≤ 2|S(T − t)uT (T − t, x)|2

+2

[∫ T

t

∣
∣
∣Meλ3T (β1(l, 0, .)u(l, 0, .)− μ3(l, 0, .)v(l, 0, .))

∣
∣
∣ dl

]2

≤ 2|S(T − t)uT (T − t, x)|2

+
∫ T

t

2TM2e2λ3T |β1(l, 0, .)u(l, 0, .)− μ3(l, 0, .)v(l, 0, .)|2 dl.

Accordingly,

|u(t, 0, x)|2 ≤ 2|S(T − t)uT (T − t, x)|2

+
∫ T

t

4TM2e2λ3T

×
[
β21 (l, 0, x)u

2(l, 0, x)+ (μ3(l, 0, x))2v2(l, 0, x)
]
dl. (2.54)

Now, we claim that

∀(t, x) ∈ (0, T )× (0, 1),

|v(t, 0, x)|2 ≤ 2(M1)
2e2λ4T |vT (T − t, x)|2 + M̃5

∫ T

t

|vT (T − s, x)|2ds,

with M̃5 is a positive constant given by (2.58) andM1 and λ4 satisfy (2.56) below.
In fact, arguing similarly to (2.54) and taking into account that (L(t))t≥0 is a

C0-semigroup, one can show via the second equality of (2.52) that
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|v(t, 0, x)|2 ≤ 2|L(T − t)vT (T − t, x)|2

+
∫ T

t

4T (M1)
2e2λ4T β22 (l, 0, x)v

2(l, 0, x)dl, (2.55)

where

M1 ≥ 1 and λ4 ∈ R. (2.56)

The Gronwall–Bellman’s lemma applied with respect to the time variable time t in
(2.55) implies

|v(t, 0, x)|2 ≤ 2|L(T − t)vT (T − t, x)|2

+
∫ T

t

8T (M1)
2e2λ4T

[
|L(T − s)vT (T − s, x)|2

]
β22 (s, 0, x)

× exp

(∫ s

t

4T (M1)
2e2λ4T β22 (τ, 0, x)dτ

)

ds,

where s is not the parameter of Carleman estimates.
Thanks to the hypotheses (2.6) on the natural rates βi, i = 1, 2, we conclude

|v(t, 0, x)|2 ≤ 2|L(T − t)vT (T − t, x)|2 + M̃5

∫ T

t

|vT (T − s, x)|2ds

≤ 2(M1)
2e2λ4T |vT (T − t, x)|2 + M̃5

∫ T

t

|vT (T − s, x)|2ds, (2.57)

with

M̃5 = 8AT (M1)
2e2λ4T ‖β2‖2∞ × exp

(
4T 2(M1)

2e2λ4T A‖β2‖2∞
)
. (2.58)

Combining inequalities (2.54) and (2.57), we deduce the following estimate:

|u(t, 0, x)|2 ≤ 2|S(T − t)uT (T − t, x)|2

+4TM2e2λ3T ‖μ3‖2∞
[

2(M1)
2e2λ4T

∫ T

t

|vT (T − l, x)|2dl

+M̃5

∫ T

t

∫ T

l

|vT (T − s, x)|2dsdl
]

+
∫ T

t

4TM2e2λ3T (β1(l, 0, x))
2u2(l, 0, x)dl. (2.59)

Subsequently, Gronwall–Bellman’s lemma again involves
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|u(t, 0, x)|2 ≤ 2|S(T − t)uT (T − t, x)|2

+4TM2e2λ3T ‖μ3‖2∞
[

2(M1)
2e2λ4T

∫ T

t

|vT (T − l, x)|2dl

+M̃5

∫ T

t

∫ T

l

|vT (T − s, x)|2dsdl
]

+
∫ T

t

4TM2e2λ3T (β1(m, 0, x))
2 × exp

(∫ m

t

4TM2e2λ3T (β1(τ, 0, x))
2dτ

)

×
[

2|S(T −m)uT (T −m, x)|2 + 4TM2e2λ3T ‖μ3‖2∞

×
(

2(M1)
2e2λ4T

∫ T

m

|vT (T − l, x)|2dl

+M̃5

∫ T

m

∫ T

l

|vT (T − s, x)|2dsdl
)]

dm. (2.60)

Consequently,

|u(t, 0, x)|2 ≤ 2|S(T − t)uT (T − t, x)|2

+M̃6

[∫ T

t

|vT (T − l, x)|2dl +
∫ T

t

∫ T

l

|vT (T − s, x)|2dsdl
]

+M̃8

∫ T

t

[

2|S(T −m)uT (T −m, x)|2 +
∫ T

m

|vT (T − l, x)|2dl

+
∫ T

m

∫ T

l

|vT (T − s, x)|2dsdl
]

dm, (2.61)

where
⎧
⎪⎨

⎪⎩

M̃6 := 4TM2e2λ3T ‖μ3‖2∞ max(M̃5, 2(M1)
2e2λ4T ),

M̃8 := max(1, M̃5, 2(M1)
2e2λ4T )M̃7,

M̃7 := 4TM2‖β1‖2∞e4T 2M2e2λ3T ‖β1‖2∞+2λ3T max(1, 4TM2e2λ3T ‖μ3‖2∞),
(2.62)

with M̃5 is given by (2.58). Recall that the variable s in inequalities (2.57), (2.59),
(2.60), and (2.61) does not represent the parameter of Carleman estimates.

Integrating inequality (2.61) over (0, T )× (0, 1), we can see that

∫ 1

0

∫ T

0
|u(t, 0, x)|2dtdx ≤ 2

∫ 1

0

∫ T

0
|S(T − t)uT (T − t, x)|2dtdx
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+M̃6

∫ 1

0

∫ T

0

[∫ T

t

|vT (T − l, x)|2dl +
∫ T

t

∫ T

l

|vT (T − s, x)|2dsdl
]

dtdx

+M̃8

∫ 1

0

∫ T

0

∫ T

t

[

2|S(T −m)uT (T −m, x)|2

+
∫ T

m

|vT (T − l, x)|2dl +
∫ T

m

∫ T

l

|vT (T − s, x)|2dsdl
]

dmdtdx. (2.63)

Set t1 = T − t , l1 = T − l, s1 = T − s, and m1 = T −m.
Hence, (2.63) becomes

∫ 1

0

∫ T

0
|u(t, 0, x)|2dtdx ≤ 2

∫ 1

0

∫ T

0
|S(t1)uT (t1, x)|2dt1dx

+M̃6

∫ 1

0

∫ T

0

[∫ T−t

0
|vT (l1, x)|2dl1 +

∫ T−t

0

∫ l1

0
|vT (s1, x)|2ds1dl1

]

dtdx

+M̃8

∫ 1

0

∫ T

0

∫ T−t

0

[

2|S(m1)uT (m1, x)|2 +
∫ m1

0
|vT (l1, x)|2dl1

+
∫ m1

0

∫ l1

0
|vT (s1, x)|2ds1dl1

]

dm1dtdx. (2.64)

Using again the fact that (S(t))t≥0 is a C0-semigroup and the hypothesis (2.53), we
can observe via (2.64) that

∫ 1

0

∫ T

0
|u(t, 0, x)|2dtdx

≤
(
2M2e2λ3T + 2M2T e2λ3T M̃8

) ∫ 1

0

∫ T

0
|uT (a, x)|2dadx

+
(
(T 2 + T 3)M̃8 + (T + T 2)M̃6

) ∫ 1

0

∫ T

0
|vT (a, x)|2dadx, (2.65)

with M̃6 and M̃8 are defined by (2.62).
Taking into account that T ∈ (0, δ), we have the existence of two positive

constants C̃8 and C̃9 such that

∫ 1

0

∫ T

0
|u(t, 0, x)|2dtdx ≤ C̃8

∫ 1

0

∫ δ

0
|uT (a, x)|2dadx

+C̃9
∫ 1

0

∫ δ

0
|vT (a, x)|2dadx, (2.66)

where C̃8 := 2M2e2λ3T +2M2T e2λ3T M̃8 and C̃9 := (T 2 +T 3)M̃8 + (T +T 2)M̃6.
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Integrating (2.57) over (0, T ) × (0, 1), arguing similarly as for (2.66), we can
prove, exploiting again the assumption T ∈ (0, δ), that

∫ 1

0

∫ T

0
|v(t, 0, x)|2dtdx ≤ C̃10

∫ 1

0

∫ T

0
|vT (a, x)|2dadx

≤ C̃10
∫ 1

0

∫ δ

0
|vT (a, x)|2dadx, (2.67)

with C̃10 := T M̃5 + 2(M1)
2e2λ4T .

Implementing (2.66) and (2.67) in (2.46), we reach the Carleman estimate (2.46).
��

Before continuing, we point out the following remark:

Remark 2.9 In general, if we want to express the implicit formula of a population
dynamics model’s solution, the characteristic method is the pertinent candidate. The
principal of this method is to write the solution of the studied model covering all the
whole (0, T )× (0, A) by deleting one of the two variables, time or age in two main
sub-parts of (0, T ) × (0, A). Classically, these sub-parts are separated via a given
line whose the equation is a = t + c, where c > 0, which is in our case equal to
A− T .

Following this, we will obtain the formula of our solution in both the two parts
a > t + c and a ≤ t + c, and this is exactly what happened in the implicit formulas
of u and v defined, respectively, by relations (2.50) and (2.51).

If A = T , i.e., (0, T ) × (0, A), is a square, we will get the classical implicit
formulas in the two parts a > t and a ≤ t by dividing the pavement (0, T )× (0, A)
with respect to the first bisector given by the equation a = t .

Since that our aim is to prove the null controllability property (1.4) for one
control force problem, one must somehow “delete” the adjoint variable to the non-
controlled solution that is in our case v from the right-hand side of Carleman
estimate (2.46). In other words, we presume that our full ω-Carleman estimate is
written as follows:

Theorem 2.10 Let the assumptions on ki, i = 1, 2, (2.5) and on the natural rates
(2.6) be verified. Let A, T > 0 be given and fixed such that T ∈ (0, δ), where
δ ∈ (0, A) fixed small enough. Assume that there exists a positive constant ν such
that

μ3 ≥ ν on [0, T ] × [0, A] × ω1 for some ω1 ⊂⊂ ω. (2.68)

Then, every solution (u, v) of (2.11) satisfies

∫

Q

(

s3!3 x
2

k1(x)
u2 + s!k1(x)u2x

)

e2sϕ1dtdadx
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+
∫

Q

(

s3!3 x
2

k2(x)
v2 + s!k2(x)v2x

)

e2sϕ2dtdadx

≤ Cδ
(∫

q

u2dtdadx +
∫ 1

0

∫ δ

0
(u2T (a, x)+ v2T (a, x))dadx

)

. (2.69)

This theorem is the novelty of this contribution and is an immediate outcome of
Theorem 2.8 applied to ω1 and the following lemma.

Lemma 2.11 Assume that (2.5) and (2.6) hold, and letA, T > 0 be given and fixed
such that T ∈ (0, δ), where δ ∈ (0, A) fixed small enough. We also suppose that
(2.68) holds.

Then, for all ε > 0, there exist two positive constants C and Mε such that for
every solution (u, v) of (2.11) the following inequality occurs:

∫

ω

∫ A

0

∫ T

0
s3!3v2e2s�dtdadx

≤ εC
(∫

Q

(

s3!3 x
2

k2(x)
v2 + s!k2(x)v2x

)

e2sϕ2dtdadx

)

+Mε
(∫

q

u2dtdadx +
∫ 1

0

∫ δ

0
(u2T (a, x)+ v2T (a, x))dadx

)

. (2.70)

Proof Let χ : R → R be the non-negative cut-off function defined as follows:

⎧
⎨

⎩

χ ∈ C∞(0, 1),
supp(χ) ⊂ ω,
χ ≡ 1 on ω1.

(2.71)

Recall that (x1, x2) ⊂ ω ⊂⊂ (0, 1). Multiplying the first equation of (2.11) by
χs3!3ve2s� and after an integration by parts, we get

∫

Q

χs3!3ve2s�utdtdadx = −
∫

Q

(3 + 2s�)χs3!t!
2uve2s�dtdadx

−
∫

Q

χs3!3uvte
2s�dtdadx.

∫

Q

χs3!3ve2s�uadtdadx = −
∫

Q

(3 + 2s�)χs3!a!
2uve2s�dtdadx

−
∫

Q

χs3!3uvae
2s�dtdadx.
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∫

Q

χs3!3ve2s�(k1ux)xdtdadx = −
∫

Q

χs3!3k1e
2s�uxvxdtdadx

+
∫

Q

s3!3k1(χe
2s�)xuvxdtdadx

+
∫

Q

s3!3(k1(χe
2s�)x)xuvdtdadx.

−
∫

Q

χs3!3ve2s�μ1udtdadx

= −
∫

Q

χs3!3μ1uve
2s�dtdadx

−
∫

Q

χs3!3ve2s�μ3vdtdadx

= −
∫

Q

χs3!3μ3v
2e2s�dtdadx.

Then, summing all these identities side by side, using the second equation of (2.11),
and integrating again by parts,

∫

Q

χs3!3μ3v
2e2s�dtdadx = I1 + I2 + I3 + I4 + I5, (2.72)

where I1 := ∫
Q
χs3!3β1vu(t, 0, x)e2s�dtdadx,

I2 := − ∫
Q
((3 + 2s�)s3!t!2 + (3 + 2s�)s3!a!2 + μ1s3!3 + μ2s3!3)χ

e2s�uvdtdadx + ∫
Q
s3!3(k1(χe

2s�)x)xuvdtdadx,

I3 := ∫
Q
χs3!3β2uv(t, 0, x)e2s�dtdadx,

I4 := ∫
Q
s3!3(k1 − k2)(x)uvx(χe2s�)xdtdadx,

I5 := − ∫
Q
χs3!3(k1 + k2)(x)uxvxe2s�dtdadx.

On one hand, we have by Young’s inequality and definition of χ

I5 ≤ ε
∫

Q

s!k2(x)v
2
xe

2sϕ2dtdadx

+ 1

4ε

∫

Q

χ2s5!5(k1 + k2)2u2xe2s(2�−ϕ2)

k2
dtdadx

≤ ε
∫

Q

s!k2(x)v
2
xe

2sϕ2dtdadx

+
max[0,1](k1 + k2)2

4εmin
ω
k2

∫

Q

χs5!5u2xe
2s(2�−ϕ2)dtdadx. (2.73)
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Put L := ∫
Q
χs5!5u2xe

2s(2�−ϕ2)dtdadx. Now, we have to find an upper bound of

L. To do this, we multiply the first equation of (2.11) by χs
5!5e

2s(2�−ϕ2)
k1

u and after
an integration by parts

∫

Q

χs5!5e2s(2�−ϕ2)

k1
uutdtdaddx

= −1

2

∫

Q

s5χ

k1
!4!t(5 + 2s(2�− ϕ2))e2s(2�−ϕ2)u2dtdadx.

∫

Q

χs5!5e2s(2�−ϕ2)

k1
uuadtdaddx

= −1

2

∫

Q

s5χ

k1
!4!a(5 + 2s(2�− ϕ2))e2s(2�−ϕ2)u2dtdadx.

∫

Q

χs5!5e2s(2�−ϕ2)

k1
u(k1ux)xdtdadx

= −
∫

Q

χs5!5u2xe
2s(2�−ϕ2)dtdadx

+ 1

2

∫

Q

s5!5

(

k1

(
χe2s(2�−ϕ2)

k1

)

x

)

x

u2dtdadx.

−
∫

Q

χs5!5e2s(2�−ϕ2)

k1
uμ1udtdadx = −

∫

Q

χs5!5e2s(2�−ϕ2)

k1
μ1u

2dtdadx.

−
∫

Q

χs5!5e2s(2�−ϕ2)

k1
uμ3vdtdadx = −

∫

Q

χs5!5e2s(2�−ϕ2)

k1
μ3uvdtdadx.

Hence, adding these equalities side by side, we get

L = L1 + L2 + L3, (2.74)

where L1 := ∫
Q
χs5!5e2s(2�−ϕ2)

k1
β1uu(t, 0, x)dtdadx,

L2 := − ∫
Q
χs5!5e2s(2�−ϕ2)

μ 3
uvdtdadx,
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L3 := − ∫
Q

(
χs5!5

k1
μ1 + 1

2
s5χ
k1
!5!t(

5
!

+ 2s(2� − ψ2))+ 1
2
s5χ
k1
!5!a

( 5
!

+ 2s(2� − ψ2))
)
e2s(2�−ϕ2)u2dtdadx

+ 1
2

∫
Q
s5!5

(
k1

(
χe2s(2�−ϕ2)

k1

)

x

)

x
dtdaddx.

The assumptions in (2.6) on β1 and μ3 together with Young’s inequality,
inequality (2.66), T ∈ (0, δ), the definitions of χ and !, the fact that the function
x �→ k2

x
is non-increasing, |!t | ≤ C!2 and |!a| ≤ C̃!2, and

sup
(t,a,x)∈Q

sr1!r1e2s(2�−ϕ2) < +∞, for r1 ∈ R, (2.75)

lead to

L1 ≤ 1

4ε

∫

Q

χs5!5e2s(2�−ϕ2)

(k1)2
u2dtdadx

+ε
∫

Q

χs5!5e2s(2�−ϕ2)(β1)2u2(t, 0, x)dtdadx

≤ K̃1

4ε

∫

Q

χs5!5e2s(2�−ϕ2)u2dtdadx

+εK1

∫ 1

0

∫ A

0

∫ T

0
χu2(t, 0, x)dtdadx

≤ K̃1

4ε

∫

Q

χs5!5e2s(2�−ϕ2)u2dtdadx

+εK2

(∫ 1

0

∫ δ

0
χu2T (a, x)dadx +

∫ 1

0

∫ δ

0
χv2T (a, x)dadx

)

, (2.76)

and

L2 ≤ ε2
∫

Q

x2

k2
s3!3e2sϕ2v2dtdadx

+ 1

4ε2

∫

Q

χ2
s7!7

(k1)2
e2s(4�−3ϕ2) K2

x2
(μ3)

2u2dtdaddx

≤ ε2
∫

Q

x2

k2
s3!3e2sϕ2v2dtdadx

+K4

4ε2

∫

ω

∫ A

0

∫ T

0
s7!7e2s(4�−3ϕ2)u2dtdadx, (2.77)

and
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|L3| ≤ K5

∫

ω

∫ A

0

∫ T

0
s7!7e2s(2�−ϕ2)u2dtdadx, (2.78)

where K4 := ‖μ3‖2∞k2(x1)
(x1)

2 min
ω
k1

. On the other hand, by second inequality of (2.27) stated

in Lemma 2.6, we have

e2s(2�−ϕ2) ≤ e2s(4�−3ϕ2). (2.79)

Then, combining relations (2.74), (2.76), (2.77), and (2.78), we conclude

L ≤ ε2
∫

Q

x2

k2
s3!3e2sϕ2v2dtdadx +Kε

∫

ω

∫ A

0

∫ T

0
s7!7e2s(2�−ϕ2)u2dtdadx

+εK2

(∫ 1

0

∫ δ

0
u2T (a, x)dadx +

∫ 1

0

∫ δ

0
v2T (a, x)dadx

)

. (2.80)

Hence, by inequalities (2.73) and (2.80), we deduce that

I5 ≤ εC
(∫

Q

x2

k2
s3!3e2sϕ2v2dtdadx +

∫

Q

s!k2(x)v
2
xe

2sϕ2dtdadx

)

+K1
ε

∫

ω

∫ A

0

∫ T

0
s7!7e2s(4�−3ϕ2)u2dtdadx

+K2

(∫ 1

0

∫ δ

0
u2T (a, x)dadx +

∫ 1

0

∫ δ

0
v2T (a, x)dadx

)

, (2.81)

where K1
ε is a positive constant depending on ε.

Similarly, we will find upper bounds of I1, I2, I3, and I4. First, we will start by
I2. One has the following relations:

∣
∣
∣
∣

∫

Q

χ(3 + 2s�)s3!t!
2e2s�uvdtdadx

∣
∣
∣
∣

≤
∫

Q

χ |3 + 2s�|s3|!t |!2e2s�|uv|dtdadx

≤ C
∫

Q

χ |3 + 2s�|s3!4e2s�|uv|dtdadx

≤ ε
∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx

+Cε
∫

ω

∫ A

0

∫ T

0
s5!5e2s(2�−ϕ2)u2dtdadx, (2.82)
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∣
∣
∣
∣

∫

Q

χ(3 + 2s�)s3!a!
2e2s�uvdtdadx

∣
∣
∣
∣

≤ ε
∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx

+C1
ε

∫

ω

∫ A

0

∫ T

0
s5!5e2s(2�−ϕ2)u2dtdadx, (2.83)

∣
∣
∣
∣

∫

Q

χ(μ1 + μ2)s3!3e2s�uvdtdadx

∣
∣
∣
∣

≤ ε
∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx

+C2
ε

∫

ω

∫ A

0

∫ T

0
s5!5e2s(2�−ϕ2)u2dtdadx, (2.84)

∣
∣
∣
∣

∫

Q

s3!3(k1(χe
2s�)x)xuvdtdadx

∣
∣
∣
∣

≤ ε
∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx

+ 1

4ε

∫

Q

s3!3 x
2

k2
(k1(chie

2s�)2x)xe
−2sϕ2u2dtdadx

≤ ε
∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx

+C2
4ε

∫

Q

s3!3 x
2

k2
(χ2 + χ2x + χ2xx)e2s(2�−ϕ2)u2dtdadx

≤ ε
∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx

+C3
ε

∫

ω

∫ A

0

∫ T

0
s3!3e2s(2�−ϕ2)u2dtdadx. (2.85)

Hence, summing inequalities (2.82)–(2.85), we obtain

I2 ≤ 4ε
∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx

+C4
ε

∫

ω

∫ A

0

∫ T

0
s5!5e2s(2�−ϕ2)u2dtdadx. (2.86)
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For the remaining integrals

I1 =
∫

Q

χs3!3β1vu(t, 0, x)e
2s�dtdadx

≤ ε
∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx

+C5
ε

(∫ 1

0

∫ δ

0
u2T (a, x)dadx +

∫ 1

0

∫ δ

0
v2T (a, x)dadx

)

. (2.87)

I3 =
∫

Q

χs3!3β2uv(t, 0, x)e
2s�dtdadx

≤ εC̃10
∫ 1

0

∫ δ

0
v2T (a, x)dadx

+ 1

4ε

∫

ω

∫ A

0

∫ T

0
s7!7e2s(2�−ϕ2)u2dtdadx, (2.88)

with C̃10 is the constant defined in inequality (2.67).

I4 =
∫

Q

s3!3(k1 − k2)(x)uvx(χe2s�)xdtdadx

=
∫

Q

s3!3(k1 − k2)(x)uvx(χx + 2s�xχ)e
2s�dtdadx

≤ ε
∫

Q

s!k2v
2
xe

2sϕ2dtdadx (2.89)

+ 1

4ε

∫

Q

s5!5 (k1 − k2)2
k2

(χx + 2s�xχ)
2e2s(2�−ϕ2)u2dtdadx

≤ ε
∫

Q

s!k2v
2
xe

2sϕ2dtdadx + C6
ε

∫

ω

∫ A

0

∫ T

0
s7!7e2s(2�−ϕ2)u2dtdadx.

Subsequently, inequalities (2.81), (2.86), (2.87), (2.88), (2.90), and again (2.79)
involve

∫

Q

χs3!3μ3v
2e2s�dtdadx

≤ εC7
(∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx +

∫

Q

s!k2v
2
xe

2sϕ2dtdadx

)
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+C8
ε

∫

ω

∫ A

0

∫ T

0
s7!7e2s(4�−3ϕ2)u2dtdadx

+C9
ε

(∫ 1

0

∫ δ

0
u2T (a, x)dadx +

∫ 1

0

∫ δ

0
v2T (a, x)dadx

)

.

Finally, the hypothesis (2.68), the definition of χ , and the relation

sup
(t,a,x)∈Q

sr1!r1e2s(4�−3ϕ2) < +∞, for r1 ∈ R, (2.90)

yield

∫

ω1

∫ A

0

∫ T

0
s3!3μ3v

2e2s�dtdadx

≤ εC10
(∫

Q

s3!3 x
2

k2
e2sϕ2v2dtdadx +

∫

Q

s!k2v
2
xe

2sϕ2dtdadx

)

+C11
ε

(∫

ω

∫ A

0

∫ T

0
u2dtdadx +

∫ 1

0

∫ δ

0
u2T (a, x)dadx

+
∫ 1

0

∫ δ

0
v2T (a, x)dadx

)

, (2.91)

which achieves the task. ��
The full ω-Carleman estimate (2.69) can be used in a standard way to obtain the

null controllability of the cascade system with one control force (1.1). This will be
reached showing a relevant observability inequality of system (2.11).

3 Observability Inequality and Null Controllability Result

3.1 Observability Inequality Result

This paragraph is devoted to the observability inequality of system (2.11).The proof
is based essentially on the semigroup approach, Carleman estimate (2.69), and with
the help of Hardy–Poincaré and Hölder inequalities.

Proposition 3.1 Assume that (2.5) and (2.6) hold. Suppose also that the assumption
(2.68) is fulfilled, and let A, T > 0 be given and fixed such that T < δ with δ ∈
(0, A) fixed small enough. Then, there exists a positive constant Cδ such that for
every solution (u, v) of (2.11) the following observability inequality is satisfied:
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∫ 1

0

∫ A

0
(u2(0, a, x)+ v2(0, a, x))dadx

≤ Cδ
(∫

q

u2dtdadx +
∫ 1

0

∫ δ

0
(u2T (a, x)+ v2T (a, x))dadx

)

. (3.92)

Proof For κ1 > 0 to be defined later, let ũ = eκ1t u and ṽ = eκ1t v, where (u, v) is
the solution of (2.11).

Then, (ũ, ṽ) verifies the system

∂ũ

∂t
+∂ũ
∂a

+(k1(x)ũx)x−(μ1+κ1)ũ=μ3ṽ−β1ũ(t, 0, x) in Q, (3.93)

∂ṽ

∂t
+ ∂ṽ
∂a

+ (k2(x)ṽx)x − (μ2 + κ1)ṽ = −β2ṽ(t, 0, x) in Q,

ũ(t, a, 1) = ũ(t, a, 0) = ṽ(t, a, 1) = ṽ(t, a, 0) = 0 on (0, T )× (0, A),
ũ(T , a, x) = eκ1T uT (a, x); ṽ(T , a, x) = eκ1T vT (a, x) in QA,

ũ(t, A, x) = ṽ(t, A, x) = 0 in QT .

Multiplying the first and second equations of (3.93) by ũ and ṽ, respectively,
integrating by parts the new equations over Qt = (0, t) × (0, A) × (0, 1), and
taking into account the rest of equations in (3.93), we get

−1

2

∫ 1

0

∫ A

0
ũ2(t, a, x)dadx + 1

2

∫ 1

0

∫ A

0
ũ2(0, a, x)dadx

+1

2

∫ 1

0

∫ t

0
ũ2(τ, 0, x)dτdx +

∫

Qt

k1ũ
2
xdτdadx (3.94)

+
∫

Qt

(κ1 + μ1)ũ2dτdadx =
∫

Qt

β1ũũ(τ, 0, x)dτdadx −
∫

Qt

μ3ṽũdτdadx

and

−1

2

∫ 1

0

∫ A

0
ṽ2(t, a, x)dadx + 1

2

∫ 1

0

∫ A

0
ṽ2(0, a, x)dadx

+1

2

∫ 1

0

∫ t

0
ṽ2(τ, 0, x)dτdx +

∫

Qt

k2ṽ
2
xdτdadx

+
∫

Qt

(κ1 + μ2)ṽ2dτdadx =
∫

Qt

β2ṽṽ(τ, 0, x)dτdadx. (3.95)
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Summing (3.94) and (3.95), we have

∫ 1

0

∫ A

0
(ũ2(0, a, x)+ ṽ2(0, a, x))dadx

+
∫ 1

0

∫ t

0
(ũ2(τ, 0, x)+ ṽ2(τ, 0, x))dτdx + 2

∫

Qt

(k1ũ
2
x + k2ṽ2x)dτdadx

+2
∫

Qt

μ1ũ
2dτdadx + 2

∫

Qt

μ2ṽ
2dτdadx + 2

∫

Qt

κ1(ũ
2 + ṽ2)dτdadx

= 2

(∫

Qt

β1ũũ(τ, 0, x)dτdadx +
∫

Qt

β2ṽṽ(τ, 0, x)dτdadx

)

+
∫ 1

0

∫ A

0
(ũ2(t, a, x)+ ṽ2(t, a, x))dadx − 2

∫

Qt

μ3ṽũdτdadx.

Thus,

∫ 1

0

∫ A

0
(ũ2(0, a, x)+ ṽ2(0, a, x))dadx

+
∫ 1

0

∫ t

0
(ũ2(τ, 0, x)+ ṽ2(τ, 0, x))dτdx + 2

∫

Qt

κ1(ũ
2 + ṽ2)dτdadx

≤ 2

(∫

Qt

β1ũũ(τ, 0, x)dτdadx +
∫

Qt

β2ṽṽ(τ, 0, x)dτdadx

)

+
∫ 1

0

∫ A

0
(ũ2(t, a, x)+ ṽ2(t, a, x))dadx − 2

∫

Qt

μ3ṽũdτdadx. (3.96)

With the help of Young’s inequality, one can check out the following relations:

2
∫

Qt

β1ũũ(τ, 0, x)dτdadx = 2
∫

Qt

β1

4
√
ε

′ ũ4
√
ε

′
ũ(τ, 0, x)dτdadx

≤ ‖β1‖2∞
16ε′

∫

Qt

ũ2dτdadx

+16ε
′
∫

Qt

ũ2(τ, 0, x)dτdadx, (3.97)

2
∫

Qt

β1ṽṽ(τ, 0, x)dτdadx ≤ ‖β2‖2∞
16ε′

∫

Qt

ṽ2dτdadx

+16ε
′
∫

Qt

ṽ2(τ, 0, x)dτdadx, (3.98)



Null Controllability of a Degenerate Cascade Model in Population Dynamics 247

and

− 2
∫

Qt

μ3ṽũdτdadx ≤ 16ε
′ ‖μ3‖2∞

∫

Qt

ṽ2dτdadx

+ 1

16ε′

∫

Qt

ũ2dτdadx. (3.99)

As a consequence of (3.96), (3.97), (3.98), and (3.99), one has

∫ 1

0

∫ A

0
(ũ2(0, a, x)+ ṽ2(0, a, x))dadx +

∫ 1

0

∫ t

0
(ũ2(τ, 0, x)

+ṽ2(τ, 0, x))dτdx + 2
∫

Qt

κ1(ũ
2 + ṽ2)dτdadx

≤
(‖β1‖2∞

16ε′
+ 1

16ε′

)∫

Qt

ũ2dτdadx +
(‖β2‖2∞

16ε′
+ 16ε

′ ‖μ3‖2∞
)

×
∫

Qt

ṽ2dτdadx + 16Aε
′
∫ 1

0

∫ t

0
(ũ2(τ, 0, x)+ ṽ2(τ, 0, x))dτdx

+
∫ 1

0

∫ A

0
(ũ2(t, a, x)+ ṽ2(t, a, x))dadx. (3.100)

For ε
′
< 1

16A , we deduce from (3.100) that

∫ 1

0

∫ A

0
(ũ2(0, a, x)+ ṽ2(0, a, x))dadx + 2

∫

Qt

κ1(ũ
2 + ṽ2)dτdadx

≤ max

((‖β1‖2∞
16ε′

+ 1

16ε′

)

,

(‖β2‖2∞
16ε′

+ 16ε
′ ‖μ3‖2∞

))

×
∫

Qt

(ũ2 + ṽ2)dτdadx +
∫ 1

0

∫ A

0
(ũ2(t, a, x)+ ṽ2(t, a, x))dadx.

Subsequently,

∫ 1

0

∫ A

0
(ũ2(0, a, x)+ ṽ2(0, a, x))dadx + 2

∫

Qt

κ1(ũ
2 + ṽ2)dτdadx

≤ max

((‖β1‖2∞
16ε′

+ 1

16ε′

)

,

(‖β2‖2∞
16ε′

+ 16ε
′ ‖μ3‖2∞

))

(3.101)

×
∫

Qt

(ũ2 + ṽ2)dτdadx +
∫ 1

0

∫ A

0
(ũ2(t, a, x)+ ṽ2(t, a, x))dadx.
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Taking now κ1 ≥ 1
2max

(( ‖β1‖2∞
16ε′ + 1

16ε′
)
,
( ‖β2‖2∞

16ε′ + 16ε
′ ‖μ3‖2∞

))
and thanks to

the definitions of ũ and ṽ, inequality (3.101) is reduced to

∫ 1

0

∫ A

0
(u2(0, a, x)+ v2(0, a, x))dadx

≤ e2κ1T
∫ 1

0

∫ A

0
(u2(t, a, x)+ v2(t, a, x))dadx. (3.102)

Integrating (3.102) over ( T4 ,
3T
4 ), we get

∫ 1

0

∫ A

0
(u2(0, a, x)+ v2(0, a, x))dadx ≤ 2e2κ1T

T

∫ 1

0

∫ A

0

∫ 3T
4

T
4

(u2(t, a, x)

+v2(t, a, x))dtdadx. (3.103)

Henceforth, the crucial step to establish the observability inequality (3.92) is to show
the existence of a positive constant Ĉ such that

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

(u2(t, a, x)+ v2(t, a, x))dtdadx

≤ Ĉ
∫ 1

0

∫ δ

0
(u2T (a, x)+ v2T (a, x))dadx. (3.104)

To this end, we will use the implicit formulas of u and v given, respectively, by
(2.50) and (2.51), the formulas of the initial datum with respect to the age (2.52).
Such a proof will be split on the cases when a > t + (A− T ) and a ≤ t + (A− T )
(see again the two references [12] and [23] for a similar argumentation and also
Remark 2.9).

In fact, if a > t + (A− T ), one has after a careful calculus
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t, a, .) = ∫ A−a
0 S(A− a − l)β1(t, A− l, .)S(T − t)uT (T − t, .)dl

+ ∫ A−a
0 S(A− a − l)

[
β1(t, A− l, .) ∫ T

t
S(m− t)(β1(m, 0, .)u(m, 0, .)

− μ3(m, 0, .)v(m, 0, .))dm
]

dl − ∫ A−a
0 S(A− a − l)μ3(t, A− l, .)v(t, A− l, .)dl,

v(t, a, .) = ∫ A−a
0 L(A− a − l)β2(t, A− l, .)L(T − t)vT (T − t, .)dl

+ ∫ A−a
0 L(A− a − l)β2(t, A− l, .)

(∫ T
t
L(m− t)β2(m, 0, .)v(m, 0, .)dm

)
dl,

(3.105)

where (S(t))t≥0 and (L(t))t≥0 are the semigroups defined after the relations (2.48)
and (2.49). Thus, we claim from (3.105) that ∃M̃3, M̃4 > 0 such that
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1
0

∫ δ− 3T
4

0

∫ 3T
4
T
4

|u(t, a, x)|2dtdadx ≤ M̃3
∫ 1
0

∫ δ
0 |uT (a, x)|2dadx

+M̃13
∫ 1
0

∫ δ
0 |vT (a, x)|2dadx,

∫ 1
0

∫ δ− 3T
4

0

∫ 3T
4
T
4
v2(t, a, x)dtdadx ≤ M̃4

∫ 1
0

∫ δ
0 v

2
T (a, x)dadx.

(3.106)

The proofs of the two last inequalities are similar, so we will restrict ourselves to
show the first one.

From the first equality of (3.105), one has

|u(t, a, .)| = |
∫ A−a

0
S(A− a − l)β1(t, A− l, .)S(T − t)uT (T − t, .)dl

+
∫ A−a

0
S(A− a − l)

[

β1(t, A− l, .)

×
∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)− μ3(m, 0, .)v(m, 0, .))dm
]

dl

−
∫ A−a

0
S(A− a − l)μ3(t, A− l, .)v(t, A− l, .)dl|. (3.107)

Subsequently,

|u(t, a, .)| ≤
∣
∣
∣
∣

∫ A−a

0
S(A− a − l)β1(t, A− l, .)S(T − t)uT (T − t, .)dl

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ A−a

0
S(A− a − l)

[

β1(t, A− l, .)
∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .))dm
]

dl

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ A−a

0
S(A− a − l)μ3(t, A− l, .)v(t, A− l, .)dl

∣
∣
∣
∣

≤
∫ A−a

0
|S(A− a − l)β1(t, A− l, .)S(T − t)uT (T − t, .)|dl

+
∫ A−a

0

∣
∣
∣
∣S(A− a − l)

[

β1(t, A− l, .)
∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .))dm
]∣
∣
∣
∣dl

+
∫ A−a

0
|S(A− a − l)μ3(t, A− l, .)v(t, A− l, .)|dl. (3.108)
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With the variable change r = A− l, (3.108) becomes

|u(t, a, .)| ≤
∫ A

a

|S(r − a)β1(t, r, .)S(T − t)uT (T − t, .)|dr

+
∫ A

a

∣
∣
∣
∣S(r − a)

[

β1(t, r, .)

∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .))dm
]∣
∣
∣
∣dr

+
∫ A

a

|S(r − a)μ3(t, r, .)v(t, r, .)|dr. (3.109)

Since (S(t))t≥0 is a C0-semigroup, then

‖S(r − a)‖ ≤ Meλ3(r−a) ≤ MeAλ3 , (3.110)

whereM and λ3 are the same in (2.53).
Hence,

|u(t, a, .)| ≤
∫ A

a

|S(r − a)β1(t, r, .)S(T − t)uT (T − t, .)|dr

+
∫ A

a

MeAλ3

∣
∣
∣
∣

[

β1(t, r, .)

∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .))dm
]∣
∣
∣
∣dr +

∫ A

a

MeAλ3 |μ3(t, r, .)v(t, r, .)|dr.

Afterward,

|u(t, a, .)|2 ≤ [
∫ A

a

|S(r − a)β1(t, r, .)S(T − t)uT (T − t, .)|dr

+
∫ A

a

MeAλ3

∣
∣
∣
∣

[

β1(t, r, .)

∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .)dm)
]∣
∣
∣
∣dr

+
∫ A

a

MeAλ3 |μ3(t, r, .)v(t, r, .)|]2dr

≤ 3

(∫ A

a

|S(r − a)β1(t, r, .)S(T − t)uT (T − t, .)|dr
)2
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+3

(∫ A

a

MeAλ3

∣
∣
∣
∣

[

β1(t, r, .)

∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .))dm
]∣
∣
∣
∣dr

)2

+3

(∫ A

a

MeAλ3 |μ3(t, r, .)v(t, r, .)|dr
)2

. (3.111)

Applying now Hölder inequality to (3.111), we obtain

|u(t, a, .)|2 ≤ 3
∫ A

a

A|S(r − a)β1(t, r, .)S(T − t)uT (T − t, .)|2dr

+3
∫ A

a

M2e2Aλ3

[

β1(t, r, .)

(∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .))dm
)]2
dr

+3
∫ A

a

M2e2Aλ3 |μ3(t, r, .)v(t, r, .)|2dr. (3.112)

On the other hand, the relation

‖S(m− t)‖ ≤ Meλ3(m−t) ≤ MeT λ3 , (3.113)

together with hypotheses (2.6) on β1 and again Hölder inequality, lead, respectively,
to the following successive estimates:

3
∫ A

a

M2e2Aλ3

[

β1(t, r, .)

(∫ T

t

S(m− t)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .))dm
)]2
dr

≤ 3AM4e2(A+T )λ3
∫ A

a

[(∫ T

t

β1(t, r, .)(β1(m, 0, .)u(m, 0, .)

−μ3(m, 0, .)v(m, 0, .))dm
)]2
dr

≤ 3AM4e2(A+T )λ3 max(‖β1‖2∞, ‖μ3‖2∞)

×
∫ A

a

(∫ T

t

β1(t, r, .)(u(m, 0, .)− v(m, 0, .))dm
)2

dr
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≤ 6ATM4e2(A+T )λ3 max(‖β1‖2∞, ‖μ3‖2∞)

×
∫ A

a

∫ T

t

β21 (t, r, .)(u
2(m, 0, .)+ v2(m, 0, .))dmdr, (3.114)

whereinM and λ3 are the same as in (2.53).
The combination between (3.112) and (3.114) steers to the following inequality:

|u(t, a, .)|2 ≤ 3
∫ A

a

A|S(r − a)β1(t, r, .)S(T − t)uT (T − t, .)|2dr

+6ATM4e2(A+T )λ3 max(‖β1‖2∞, ‖μ3‖2∞)

×
∫ A

a

∫ T

t

β21 (t, r, .)(u
2(m, 0, .)+ v2(m, 0, .))dmdr

+3
∫ A

a

M2e2Aλ3 |μ3(t, r, .)v(t, r, .)|2dr. (3.115)

On the other hand and keeping in the mind that (L(t))t≥0 is a C0-semigroup, the
relation (3.113) is applied to (L(t))t≥0, the formula of v in (2.51); a similar evidence
as the one of (3.115) leads to

|v(t, r, .)|2 ≤ 2
∫ A

r

A|L(r1 − r)β2(t, r1, .)L(T − t)vT (T − t, .)|2dr1

+2A(M1)
2e2λ4(A+T )‖β2‖2∞

∫ A

r

∫ T

t

β22 (t, r1, .)v
2(m, 0, .)dmdr1

≤ 2
∫ A

r

A|L(r1 − r)β2(t, r1, .)L(T − t)vT (T − t, .)|2dr1

+2A2(M1)
2e2λ4(A+T )‖β2‖4∞

∫ T

t

v2(m, 0, .)dm, (3.116)

whereM1 and λ4 are defined in (2.56).
Integrating over (t, T ) inequality (2.57), we get

∫ T

t

|v(m, 0, .)|2dm ≤ 2(M1)
2e2λ4T

∫ T

t

|vT (T −m, .)|2dm

+M̃5

∫ T

t

∫ T

m

|vT (T − s, .)|2dsdm

≤ 2(M1)
2e2λ4T

∫ T−t

0
|vT (m1, .)|2dm1 + M̃5

∫ T

t

∫ m1

0
|vT (s1, .)|2ds1dm

≤ 2(M1)
2e2λ4T

∫ T−t

0
|vT (m1, .)|2dm1 + (T − t)M̃5

∫ T−t

0
|vT (s1, .)|2ds1



Null Controllability of a Degenerate Cascade Model in Population Dynamics 253

≤ 2(M1)
2e2λ4T

∫ T

0
|vT (m1, .)|2dm1 + T M̃5

∫ T

0
|vT (s1, .)|2ds1, (3.117)

with m1 := T − m and s1 := T − s, M̃5 is the positive constant defined by (2.58),
and s is not the parameter of Carleman estimates.

To overcome the ambiguity, we set
∫ T
0 |vT (m1, .)|2dm1 := ∫ T

0 |vT (a1, .)|2da1
and

∫ T
0 |vT (s1, .)|2ds1 := ∫ T

0 |vT (a1, .)|2da1. Thus, (3.117) becomes

∫ T

t

|v(m, 0, .)|2dm ≤ (T M̃5 + 2(M1)
2e2λ4T )

∫ T

0
|vT (a1, .)|2da1. (3.118)

As a conclusion of inequalities (3.116) and (3.118), one has

|v(t, r, .)|2 ≤ 2
∫ A

r

A|L(r1 − r)β2(t, r1, .)L(T − t)vT (T − t, .)|2dr1

+2A2(M1)
2e2λ4(A+T )‖β2‖4∞(T M̃5 + 2(M1)

2e2λ4T )

∫ T

0
|vT (a1, .)|2da1.

(3.119)

Thanks to the same arguments used to obtain (2.65), we can show that

∫ T

t

|u(m, 0, .)|2dm ≤
(
2M2e2λ3T + 2M2T e2λ3T M̃8

) ∫ T

0
|uT (a1, .)|2da1

+
(
(T 2 + T 3)M̃8 + (T + T 2)M̃6

) ∫ T

0
|vT (a1, .)|2da1, (3.120)

with M̃6 and M̃8 are defined by (2.62).
As in the above, we will choose in the sequel of this proof the variable a1 to unify

the integral variables that are in (0, T ) and represent the age variable.
Consequently, by inequalities (3.115), (3.118), (3.119), and (3.120), it follows

that

|u(t, a, .)|2 ≤ 3A
∫ A

a

|S(r − a)β1(t, r, .)S(T − t)uT (T − t, .)|2dr

+6A2TM4e2(A+T )λ3‖β1‖2∞ max(‖β1‖2∞, ‖μ3‖2∞)

×
[(

2M2e2λ3T + 2M2T e2λ3T M̃8

)∫ T

0
|u2T (a1, .)|2da1

+((T 2 + T 3)M̃8 + (T 2 + T )M̃6 + T M̃5 + 2(M1)
2e2λ4T )

∫ T

0
|vT (a1, .)|2da1

]

+3‖μ3‖2∞M2e2Aλ3 (3.121)
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×
[

2A
∫ A

a

∫ A

r

|L(r1 − r)β2(t, r1, .)L(T − t)vT (T − t, .)|2dr1dr

+2A3(M1)
2e2(A+T )λ4‖β2‖4∞(T M̃5 + 2(M1)

2e2λ4T )

∫ T

0
|vT (a1, .)|2da1

]

.

Put
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

M̃11 := 6A2TM4e2(A+T )λ3‖β1‖2∞ max(‖β1‖2∞, ‖μ3‖2∞)(2M2e2λ3T

+2M2T e2λ3T M̃8),

M̃12 := 6A2TM4e2(A+T )λ3‖β1‖2∞ max(‖β1‖2∞, ‖μ3‖2∞)((T 2 + T 3)M̃8

+(T 2 + T )M̃6 + T M̃5 + 2(M1)
2e2λ4T )

+6A3M2(M1)
2‖μ3‖2∞‖β2‖4∞e2(A+T )λ4+2Aλ3(T M̃5 + 2(M1)

2e2λ4T ).

(3.122)
Under these notations, (3.122) becomes

|u(t, a, .)|2 ≤ 3A
∫ A

a

|S(r − a)β1(t, r, .)S(T − t)uT (T − t, .)|2dr

+6A‖μ3‖2∞M2e2Aλ3

∫ A

a

∫ A

r

|L(r1 − r)β2(t, r1, .)L(T − t)vT (T − t, .)|2dr1dr

+M̃11

∫ T

0
|uT (a1, .)|2da1 + M̃12

∫ T

0
|vT (a1, .)|2da1. (3.123)

An integration of (3.123) over ( T4 ,
3T
4 )× (0, δ − 3T

4 )× (0, 1) steers to
∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|u(t, a, x)|2dtdadx

≤ 3A
∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

∫ A

a

|S(r − a)β1(t, r, x)

×S(T − t)uT (T − t, x)|2drdtdadx

+6A‖μ3‖2∞M2e2Aλ3
∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

∫ A

a

∫ A

r

|L(r1 − r)β2(t, r1, x)

×L(T − t)vT (T − t, x)|2dr1drdtdadx

+M̃11

∫ 1

0

∫ T

0
|uT (a1, x)|2da1dx + M̃12

∫ 1

0

∫ T

0
|vT (a1, x)|2da1dx.

(3.124)
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The variable change s̃ = T − t in the right-hand side of (3.124) allows us to say that
∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|u(t, a, x)|2dtdadx

≤ 3A
∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

∫ A

a

|S(r − a)β1(T − s̃, r, x)

×S(s̃)uT (s̃, x)|2drds̃dadx

+6A‖μ3‖2∞M2e2Aλ3
∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

∫ A

a

∫ A

r

|L(r1 − r)β2(T − s̃, r1, x)

×L(s̃)vT (s̃, x)|2dr1drds̃dadx

+M̃11

∫ 1

0

∫ T

0
|uT (a1, x)|2da1dx + M̃12

∫ 1

0

∫ T

0
|vT (a1, x)|2da1dx.

(3.125)

Since T < δ, exploiting again the relation (3.113) for the C0-semigroups (S(t))t≥0
and (L(t))t≥0 (with λ4 and M1 instead, respectively, λ3 and M) and with the help
of assumptions (2.6) on β1 and β2, one can transform (3.125) into

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|u(t, a, x)|2dtdadx

≤
(

M̃11 + 3A2M4e2λ3(A+T )
(

δ − 3T

4

)

‖β1‖2∞
)∫ δ

0
|uT (a, x)|2da1dadx

+
(

M̃12 + 6A3‖β2‖2∞‖μ3‖2∞M2(M1)
4e2λ4(A+T )+2λ3A

(

δ − 3T

4

))

×
∫ δ

0
|vT (a, x)|2dadx. (3.126)

Hence,

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|u(t, a, x)|2dtdadx ≤ M̃3

∫ 1

0

∫ δ

0
|uT (a, x)|2dadx

+M̃13

∫ 1

0

∫ δ

0
|vT (a, x)|2dadx, (3.127)

where
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⎧
⎨

⎩

M̃3 := M̃11 + 3A2M4e2λ3(A+T )
(
δ − 3T

4

)
,

M̃13 := M̃12 + 6A3‖β2‖2∞‖μ3‖2∞M2(M1)
4e2λ4(A+T )+2λ3A

(
δ − 3T

4

)
,

(3.128)
and M̃11 and M̃12 are given in (3.122).

Consequently, the first relation of (3.106) is achieved. Likewise, we can prove the
second inequality of (3.106) using the same procedure as we mentioned previously
and the inequality (3.119).

Finally, the inequality (3.104) is true in the case where a > t + (A− T ).
Let us now address to the case when a ≤ t + (A− T ).
Like the first case, mixing the implicit formula (2.50) and (2.51) (in the case

when a ≤ t + (A− T )) and (2.52), we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(t, a, .) = S(T − t)uT (a + T − t, .)
+ ∫ T
t
S(l − t)β1(l, a, .)

[
S(T − l)uT (T − l, .)

+ ∫ T
l
S(r − l) (β1(r, 0, .)u(r, 0, .)− μ3(r, 0, .)v(r, 0.)) dr

]
dl

− ∫ T
t
S(l − t)μ3(l, a, .)

[
L(T − l)vT (a + T − l, .)

+ ∫ T
l
L(r − l)β2(r, a, .)v(r, 0, .)dr

]
dl,

v(t, a, .) = L(T − t)vT (a + T − t, .)+ ∫ T
t
L(l − t)β2(l, a, .)[

L(T − l)vT (T − l, .)+ ∫ T
l
L(r − l)β2(r, 0, .)v(r, 0, .)dr

]
dl.

(3.129)

Set ∀(t, a) ∈ (0, T )×(0, A), R(t, a, .):= ∫ T
t
S(l−t)β1(l, a, .)

[
S(T−l)uT (T−l, .)

+ ∫ T
l
S(r − l) (β1(r, 0, .)u(r, 0, .)− μ3(r, 0, .)v(r, 0.)) dr

]
dl

− ∫ T
t
S(l − t)μ3(l, a, .)

[
L(T − l)vT (a + T − l, .)+ ∫ T

l
L(r − l)β2(r, a, .)

v(r, 0, .)dr
]
dl.

Following this, the first solution u becomes

∀(t, a) ∈ (0, T )× (0, A), u(t, a, .) = S(T − t)uT (a + T − t, .)+ R(t, a, .).
(3.130)

If one mimics the same blend of semigroup theory and Hölder inequality used in
the computations in the case “a > t + (A− T ),” we can establish the existence of a
positive constant M̃14 and M̃15 such that

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|R(t, a, x)|2dtdadx ≤ M̃14

∫ 1

0

∫ δ

0
|uT (a, x)|2dadx

+M̃15

∫ 1

0

∫ δ

0
|vT (a, x)|2dadx. (3.131)



Null Controllability of a Degenerate Cascade Model in Population Dynamics 257

On the other hand, we can observe that

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|S(T − t)uT (a + T − t, x)|2dtdadx

=
∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|S(t̃)uT (a + t̃ , x)|2dt̃dadx

≤ M2e
3λ3T
2

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|uT (a + t̃ , x)|2dt̃dadx,

whereM and λ3 are the same of (2.53) and t̃ := T − t .
With the variable change ã = a + t̃ , it follows that

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|S(T − t)uT (a + T − t, x)|2dtdadx

≤ M2e
3λ3T
2

∫ 1

0

∫ δ− 3T
4

0

∫ a+ 3T
4

a+ T4
|uT (ã, x)|2dãdadx

≤ M2e
3λ3T
2

∫ 1

0

∫ δ− 3T
4

0

∫ δ

T
4

|uT (ã, x)|2dãdadx

≤
(

δ − 3T

4

)

M2e
3λ3T
2

∫ 1

0

∫ δ

T
4

|uT (ã, x)|2dãdx

≤
(

δ − 3T

4

)

M2e
3λ3T
2

∫ 1

0

∫ δ

0
|uT (ã, x)|2dãdx, (3.132)

and the second inequality obtained in (3.132) is an outcome of the inclusion (a +
T
4 , a + 3T

4 ) ⊂ ( T4 , δ), ∀a ∈ (0, δ − 3T
4 ).

It is clear now from (3.130), (3.131), and (3.132) that there exists a positive
constant M̃16 such that

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|u(t, a, x)|2dtdadx ≤ M̃16

∫ 1

0

∫ δ

0
|uT (a, x)|2dadx

+M̃15

∫ 1

0

∫ δ

0
|uT (a, x)|2dadx, (3.133)

accurately, M̃16 := (M̃14 + (δ − 3T
4 )M

2e
3λ3T
2 ).

In the same manner, one can bring out a similar inequality for the solution v
through the second implicit formula in (3.129), i.e., the existence of M̃17 > 0 such
that
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∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

|v(t, a, x)|2dtdadx ≤ M̃17

∫ 1

0

∫ δ

0
|vT (a, x)|2dadx. (3.134)

Hence, summing up (3.133) and (3.134), the inequality (3.104) holds in the current
case.

Abstractly,

∫ 1

0

∫ δ− 3T
4

0

∫ 3T
4

T
4

(u2(t, a, x)+ v2(t, a, x))dtdadx

≤ Ĉ
∫ 1

0

∫ δ

0
(u2T (a, x)+ v2T (a, x))dadx

is satisfied in both cases a > t+ (A−T ) and a ≤ t+ (A−T ), where Ĉ is a positive
constant.

The last inequality together with (3.103) implies that

∫ 1

0

∫ A

0
(u2(0, a, x)+ v2(0, a, x))dadx

≤ 2e2κ1T

T

∫ 1

0

∫ δ

δ− 3T
4

∫ 3T
4

T
4

(u2(t, a, x)+ v2(t, a, x))dtdadx

+Ĉ 2e
2κ1T

T

∫ 1

0

∫ δ

0
(u2T (a, x)+ v2T (a, x))dadx.

Subsequently, with the help of the Hardy–Poincaré inequality and the definitions of
ϕi, i = 1, 2, stated in (2.19), we arrive to

∫ 1

0

∫ A

0
(u2(0, a, x)+ v2(0, a, x))dadx

≤ Ĉ 2e
2κ1T

T

∫ 1

0

∫ δ

0
(u2T (a, x)+ v2T (a, x))dadx

+M̃18
2e2κ1T

T

(∫ 1

0

∫ δ

δ− 3T
4

∫ 3T
4

T
4

s!k1(x)u
2
x(t, a, x)e

2sϕ1dtdadx

+
∫ 1

0

∫ δ

δ− 3T
4

∫ 3T
4

T
4

s!k2(x)v
2
x(t, a, x)e

2sϕ2dtdadx

)

. (3.135)

The proof of observability inequality (3.92) is finished thanks to (3.135) and
applying the Carleman estimate (2.69) stated in Theorem 2.10 on the second term
in the right-hand side of last inequality. ��

With the aid of the observability inequality (3.92), we are now able to show the
result of null controllability (1.4) related to the cascade model (1.1).
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3.2 Null Controllability Result

This section is interested in the null controllability property (1.4) of system (1.1). It
is stipulated as follows:

Theorem 3.2 Assume that (2.5) and (2.6) hold. Let A, T > 0 be given and fixed
such that T < δ where δ ∈ (0, A) fixed small enough. Then, ∀(y0, p0) ∈ L2(QA)×
L2(QA), there exists a control ϑ ∈ L2(q) depending on δ such that the associated
solution (y, p) of (1.1) verifies

{
y(T , a, x) = 0, a.e in (δ, A)× (0, 1),
p(T , a, x) = 0, a.e in (δ, A)× (0, 1). (3.136)

Recall that q = (0, T )× (0, A)× ω.

Proof Let ε > 0 and consider the following cost function:

Jε = 1

2ε

∫ 1

0

∫ A

δ

(y2(T , a, x)+ p2(T , a, x))dadx + 1

2

∫

q

ϑ2(t, a, x)dtdadx.

We can prove that Jε is continuous, convex, and coercive. Then, it admits at least
one minimizer ϑε , and we have

ϑε = −uε(t, a, x)χω(x) inQ, (3.137)

with uε is the solution of the following system:

∂uε

∂t
+ ∂uε
∂a

+ (k1(x)(uε)x)x − μ1(t, a, x)uε − μ3(t, a, x)vε = −β1uε(t, 0, x) in Q, (3.138)

uε(t, a, 1) = uε(t, a, 0) = 0 on (0, T )× (0, A),

uε(T , a, x) = 1

ε
yε(T , a, x)χ(δ,A) in (0, A)× (0, 1);
uε(t, A, x) = 0 in QT ,

with vε the solution of the following system:

∂vε

∂t
+ ∂vε
∂a

+ (k2(x)(vε)x)x − μ2(t, a, x)vε = −β2vε(t, 0, x) in Q, (3.139)

vε(t, a, 1) = vε(t, a, 0) = 0 on (0, T )× (0, A),

vε(T , a, x) = 1

ε
pε(T , a, x)χ(δ,A) in QA,

vε(t, A, x) = 0 in QT ,

where (yε, pε) is the solution of (1.1) associated to the control ϑε .
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Multiplying the first equation of (3.138) by yε and integrating overQ, we obtain

∫

Q

yε

(
∂uε

∂t
+ ∂uε
∂a

+ (k1(x)(uε)x)x − μ1(t, a, x)uε − μ3(t, a, x)vε
)

dtdadx

= −
∫

Q

uε

(
∂yε

∂t
+ ∂yε
∂a

− (k1(x)(yε)x)x + μ1(t, a, x)yε
)

dtdadx

−
∫

Q

μ3(t, a, x)yεvεdtdadx +
∫ 1

0

∫ A

0
yε(T , a, x)uε(T , a, x)dadx

−
∫ 1

0

∫ A

0
yε(0, a, x)uε(0, a, x)dadx −

∫ 1

0

∫ T

0
yε(t, 0, x)uε(t, 0, x)dtdx.

(3.140)

Similarly, multiplying the first equation of (3.139) by pε and integrating overQ

∫

Q

pε

(
∂vε

∂t
+ ∂vε
∂a

+ (k2(x)(vε)x)x − μ2(t, a, x)vε
)

dtdadx

= −
∫

Q

vε

(
∂pε

∂t
+ ∂pε
∂a

− (k2(x)(pε)x)x + μ2(t, a, x)pε
)

dtdadx

+
∫ 1

0

∫ A

0
pε(T , a, x)vε(T , a, x)dadx

−
∫ 1

0

∫ A

0
pε(0, a, x)vε(0, a, x)dadx −

∫ 1

0

∫ T

0
pε(t, 0, x)vε(t, 0, x)dtdx.

(3.141)

Hence, summing side by side (3.140) and (3.141), we arrive to

∫

Q

pε

(
∂vε

∂t
+ ∂vε
∂a

+ (k2(x)(vε)x)x − μ2(t, a, x)vε
)

dtdadx

+
∫

Q

yε

(
∂uε

∂t
+ ∂uε
∂a

+ (k1(x)(uε)x)x

−μ1(t, a, x)uε − μ3(t, a, x)vε
)

dtdadx

= −
∫

Q

uε

(
∂yε

∂t
+ ∂yε
∂a

− (k1(x)(yε)x)x + μ1(t, a, x)yε
)

dtdadx

+
∫ 1

0

∫ A

0
yε(T , a, x)uε(T , a, x)dadx −

∫ 1

0

∫ A

0
yε(0, a, x)uε(0, a, x)dadx



Null Controllability of a Degenerate Cascade Model in Population Dynamics 261

−
∫ 1

0

∫ T

0
yε(t, 0, x)uε(t, 0, x)dtdx

−
∫

Q

vε

(
∂pε

∂t
+ ∂pε
∂a

− (k2(x)(pε)x)x

+μ2(t, a, x)pε + μ3(t, a, x)yε
)

dtdadx

+
∫ 1

0

∫ A

0
pε(T , a, x)vε(T , a, x)dadx

−
∫ 1

0

∫ A

0
pε(0, a, x)vε(0, a, x)dadx

−
∫ 1

0

∫ T

0
pε(t, 0, x)vε(t, 0, x)dtdx. (3.142)

Thus,

∫

Q

yε

(
∂uε

∂t
+ ∂uε
∂a

+ (k1(x)(uε)x)x − μ1(t, a, x)uε − μ3(t, a, x)vε
)

dtdadx

+
∫

Q

pε

(
∂vε

∂t
+ ∂vε
∂a

+ (k2(x)(vε)x)x − μ2(t, a, x)vε
)

dtdadx

= −
∫

Q

uεϑεχωdtdadx +
∫ 1

0

∫ A

δ

1

ε
y2ε (T , a, x)dadx

−
∫ 1

0

∫ A

0
yε(0, a, x)uε(0, a, x)dadx

−
∫ 1

0

∫ A

0

∫ T

0
β1yε(t, a, x)uε(t, 0, x)dtdadx

−
∫ 1

0

∫ A

0
pε(0, a, x)vε(0, a, x)dadx

−
∫ 1

0

∫ A

0

∫ T

0
β2pε(t, a, x)vε(t, 0, x)dtdadx

+
∫ 1

0

∫ A

δ

1

ε
p2ε (T , a, x)dadx. (3.143)

Also, one can see that

∫

Q

yε

(
∂uε

∂t
+ ∂uε
∂a

+ (k1(x)(uε)x)x − μ1(t, a, x)uε − μ3(t, a, x)vε
)

dtdadx
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= −
∫ 1

0

∫ A

0

∫ T

0
β1yε(t, a, x)uε(t, 0, x)dtdadx (3.144)

and

∫

Q

pε

(
∂vε

∂t
+ ∂vε
∂a

+ (k2(x)(vε)x)x − μ2(t, a, x)vε
)

dtdadx

= −
∫ 1

0

∫ A

0

∫ T

0
β2pε(t, a, x)vε(t, 0, x)dtdadx. (3.145)

Consequently, (3.137), (3.143), (3.144), and (3.145) lead to

∫

q

ϑ2ε dtdadx +
∫ 1

0

∫ A

δ

1

ε
y2ε (T , a, x)dadx +

∫ 1

0

∫ A

δ

1

ε
p2ε (T , a, x)dadx

=
∫ 1

0

∫ A

0
yε(0, a, x)uε(0, a, x)dadx +

∫ 1

0

∫ A

0
pε(0, a, x)vε(0, a, x)dadx.

(3.146)

Applying Young’s inequality to the right-hand side of (3.146)

∫

q

ϑ2ε dtdadx + 1

ε

∫ 1

0

∫ A

δ

(y2ε (T , a, x)+ p2ε (T , a, x))dadx

≤ 1

4Cobs,δ

∫ 1

0

∫ A

0
(u2ε(0, a, x)+ v2ε (0, a, x))dadx

+Cobs,δ
∫ 1

0

∫ A

0
(y20(a, x)+ p20(a, x))dadx

with Cobs,δ is the constant of observability inequality (3.92).
This together with observability inequality (3.92) allows us to say that

∫

q

ϑ2ε dtdadx + 1

ε

∫ 1

0

∫ A

δ

(y2ε (T , a, x)+ p2ε (T , a, x))dadx

≤ 1

4

(∫

q

u2εdtdadx +
∫ 1

0

∫ δ

0
(u2ε(T , a, x)+ v2ε (T , a, x))dadx

)

+Cobs,δ
∫ 1

0

∫ A

0
(y20(a, x)+ p20(a, x))dadx.

Since ∀(a, x) ∈ (0, δ) × (0, 1), uε(T , a, x) = vε(T , a, x) = 0, and keeping in
the mind the relation (3.137), then the last inequality reads as
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3

4

∫

q

ϑ2ε dtdadx + 1

ε

∫ 1

0

∫ A

δ

(y2ε (T , a, x)+ p2ε (T , a, x))dadx

≤ Cobs,δ
∫ 1

0

∫ A

0
(y20(a, x)+ p20(a, x))dadx.

Hence, it follows that

⎧
⎪⎨

⎪⎩

∫
q
ϑ2ε dtdadx ≤ 4Cobs,δ

3

∫ 1
0

∫ A
0 (y

2
0(a, x)+ p20(a, x))dadx,∫ 1

0

∫ A
δ
y2ε (T , a, x)dadx ≤ εCobs,δ

∫ 1
0

∫ A
0 (y

2
0(a, x)+ p20(a, x))dadx,∫ 1

0

∫ A
δ
p2ε (T , a, x)dadx ≤ εCobs,δ

∫ 1
0

∫ A
0 (y

2
0(a, x)+ p20(a, x))dadx.

(3.147)

Then, we can extract two subsequences of (yε, pε) and ϑε also denoted by (yε, pε)
and ϑε that converge weakly toward (y, p) and ϑ in L2((0, T )×(0, A),H 1

k1
(0, 1)×

H 1
k2
(0, 1)) and L2(q), respectively. Now, by a variational technique, we prove that

(y, p) is a solution of (1.1) corresponding to the control ϑ , and, by the second and
third estimates of (3.147), (y, p) satisfies (1.4). Another deduction from (3.147)
specially the first inequality is that the researched control ϑ depends on δ. ��
Remark 3.3 The result of Theorem 3.2 is important since it is equivalent to say that
we can control with one control force a very wide age class of the two coupled
populations in a minimum time of control and then with a minimum cost control
Cobs,δ .

4 Appendix

As is mentioned in the introduction, this section is devoted to the proofs of some
intermediate results useful to show the full ω-Carleman estimate associated to the
system (2.11). First, we begin by the Caccioppoli’s inequality stated in the following
lemma:

Lemma 4.1 Let ω
′

be a subset of ω such that ω
′ ⊂⊂ ω. Let (u, v) be a solution of

(2.29). Then, there exists a positive constant C such that

∫

ω
′

∫ A

0

∫ T

0
(u2x + v2x)e2sϕi dtdadx

≤ C
(∫

q

s2!2(u2 + v2)e2sϕi dtdadx +
∫

q

(h21 + h22)e2sϕi dtdadx
)

,

(4.148)

with ϕi, i = 1, 2 are defined by (2.19).
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Proof The proof of this result is similar to the one of [22, Lemma 5.1]. Indeed,
consider the smooth cut-off function ζ defined by

⎧
⎨

⎩

0 ≤ ζ(x) ≤ 1, x ∈ R,

ζ(x) = 0, x < x1 and x > x2,
ζ(x) = 1, x ∈ ω′

.

(4.149)

Put (.)l = ∂.
∂l
, where l = t, a, x.

For (u, v) solution of (2.29), one has

0 =
∫ T

0

d

dt

[∫ 1

0

∫ A

0
ζ 2e2sϕi (u2 + v2)dadx

]

dt

= 2s
∫ 1

0

∫ A

0

∫ T

0
ζ 2(ϕi)t (u

2 + v2)e2sϕi dtdadx

+2
∫ 1

0

∫ A

0

∫ T

0
ζ 2uute

2sϕi dtdadx + 2
∫ 1

0

∫ A

0

∫ T

0
ζ 2vvte

2sϕi dtdadx

= 2s
∫ 1

0

∫ A

0

∫ T

0
ζ 2(ϕi)t (u

2 + v2)e2sϕi dtdadx

+2
∫ 1

0

∫ A

0

∫ T

0
ζ 2u(h1 − ua − (k1ux)x + μ1u+ μ3v)e2sϕi dtdadx

+2
∫ 1

0

∫ A

0

∫ T

0
ζ 2v(h2 − va − (k2vx)x + μ2v)e2sϕi dtdadx.

Then, integrating by parts, we obtain

2
∫

Q

ζ 2(k1u
2
x + k2v2x)e2sϕi dtdadx

= −2s
∫

Q

ζ 2(u2 + v2)ψi(!a +!t)e2sϕi dtdadx

−2
∫

Q

ζ 2(uh1 + vh2)e2sϕi dtdadx − 2
∫

Q

ζ 2(μ1u
2 + μ2v2)e2sϕi dtdadx

+
∫

Q

(k1(ζ e
2sϕi )x)xu

2dtdadx +
∫

Q

(k2(ζ e
2sϕi )x)xv

2dtdadx

−2
∫

Q

ζ 2μ3uve
2sϕi dtdadx.

On the other hand, by the definitions of ζ given in (4.149), ψi, i = 1, 2, and !
given in (2.19), using Young’s inequality, and taking s quite large, one can prove the
existence of a positive constant c such that
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2
∫

Q

ζ 2(k1u
2
x + k2v2x)e2sϕi dtdadx

≥ 2min(min
x∈ω′ k1(x),min

x∈ω′ k2(x))
∫

ω
′

∫ A

0

∫ T

0
(u2x + v2x)e2sϕi dtdadx,

∫

Q

(k1(ζ e
2sϕi )x)xu

2dtdadx ≤ c
∫

ω

∫ A

0

∫ T

0
s2!2u2e2sϕi dtdadx,

∫

Q

(k2(ζ e
2sϕi )x)xv

2dtdadx ≤ c
∫

ω

∫ A

0

∫ T

0
s2!2v2e2sϕi dtdadx,

−2s
∫

Q

ζ 2(u2 + v2)ψi(!a +!t)e2sϕi dtdadx

≤ c
∫

ω

∫ A

0

∫ T

0
s2!2(u2 + v2)e2sϕi dtdadx,

−2
∫

Q

ζ 2(uh1 + vh2)e2sϕi dtdadx ≤ c
∫

ω

∫ A

0

∫ T

0
s2!2(u2 + v2)e2sϕi dtdadx

+c
∫

ω

∫ A

0

∫ T

0
(h21 + h22)e2sϕi dtdadx,

−2
∫

Q

ζ 2(μ1u
2 + μ2v2)e2sϕi dtdadx

≤ c
∫

ω

∫ A

0

∫ T

0
s2!2(u2 + v2)e2sϕi dtdadx,

−2
∫

Q

ζ 2μ3uve
2sϕi dtdadx ≤ c

∫

ω

∫ A

0

∫ T

0
s2!2(u2 + v2)e2sϕi dtdadx.

Combining all the previous inequalities, we reach finally the estimate (4.148). ��
Remark 4.2 In Lemma 4.1, the set ω

′
is chosen so that 0 that is exactly the point

of degeneracy of the dispersion coefficients ki, i = 1, 2, does not belong to ω′ .
More generally, if the degeneracy occurs at a point x0 ∈ (0, 1), one must take x0 out
of ω′ in the case of interior degeneracy to establish a Caccioppoli’s type inequality
(see [28] for more details in this context).

We close this section by the following result:

Lemma 4.3 Assume that the conditions (2.21) hold. Then, the interval I =
[ k2(1)(2−γ )(e2κ‖σ‖∞−1)

d2k2(1)(2−γ )−1 ,
4(e2κ‖σ‖∞−eκ‖σ‖∞ )

3d2
) is not empty.
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Proof Indeed, one has

4(e2κ‖σ‖∞ − eκ‖σ‖∞)

3d2
− k2(1)(2 − γ )(e2κ‖σ‖∞ − 1)

d2k2(1)(2 − γ )− 1

= 4(e2κ‖σ‖∞ − eκ‖σ‖∞)(d2k2(1)(2 − γ )− 1)− 3d2k2(1)(2 − γ )(e2κ‖σ‖∞ − 1)

3d2(d2k2(1)(2 − γ )− 1)

= e
2κ‖σ‖∞(d2k2(1)(2 − γ )− 4)− 4eκ‖σ‖∞(d2k2(1)(2 − γ )− 1)

3d2(d2k2(1)(2 − γ )− 1)

+ k2(1)(2 − γ )
d2k2(1)(2 − γ )− 1

= e
κ‖σ‖∞[eκ‖σ‖∞(d2k2(1)(2 − γ )− 4)− 4(d2k2(1)(2 − γ )− 1)]

3d2(d2k2(1)(2 − γ )− 1)

+ k2(1)(2 − γ )
d2k2(1)(2 − γ )− 1

.

Using the fact that d2 ≥ 5
k2(1)(2−γ ) , we can conclude that 4(d2k2(1)(2−γ )−1)

d2k2(1)(2−γ )−4 ≤ 16.

Since κ ≥ 4 ln(2)
‖σ‖∞ , then we have eκ‖σ‖∞ ≥ 16. Therefore, the previous difference is

positive and subsequently I = ∅. ��
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