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1 Introduction

Endospore-forming bacilli constitute a prominent group of bacteria, not only for the
pathogenic species it includes (i.e., Clostridium botulinum, Clostridium difficile,
Bacillus anthracis), but also for its saprophytic (i.e., Bacillus subtilis) and industri-
ally important microorganisms (i.e., C. acetobutylicum). Additional significant
spore-forming species include the genera Desulfotomaculum, Paenibacillus, and
Alicyclobacillus. Other recently described Gram-positive bacteria such as
Caldalkalibacillus thermarum TA2.A1 (Peddie et al. 1999; Xue et al. 2006),
which is a member of alkaliphilic bacteria but otherwise related to the Bacillales
order, has been recently shown to contain at least three annotated operons involved
in spore germination (de Jong et al. 2020), including the genes gerABC and yndE.
As this alkalophilic bacterium is old in terms of evolution, it has to be assumed that
the ability of endospore-forming emerged soon in the evolution of Gram-positive
bacteria.

The bacteria exhibiting this exclusive ability, when encounter unappropriate
physicochemical conditions initiate the formation of important small molecules,
that are collectively known as “alarmones” which are part of the heat shock response
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in B. subtilis (Schäfer et al. 2020); two of them classic and well known such as
pppGpp, ppGpp, and the newest one pGpp, with at last recognized effect as
alarmone (Yang et al. 2020), all of them involved in a classical bacterial response
known as “stringent response” and recently also found in metazoan (Ito et al. 2020).
These elements (highly conserved in Nature and known for more than five decades;
Cashel and Gallant 1969) show a variety of pleiotropic effects and are involved in a
number of metabolic pathways in bacteria, including the development of endo-
spores. Therefore the alarmones represent a new way for bacterial survival
(Fernández-Coll and Cashel 2020). In addition, it has been shown recently that the
ComX quorum sensing peptide of B. subtilis positively affects the sporulation
process (Špacapan et al. 2020). Differentiation processes in B. subtilis, such as
endospore formation, involve multiple paralog Rap-Phr systems that are highly
redundant, and that according to Gastélum and colleagues in 2020, interconnect
this first-order morphogenetic event with others such as the development of
competence.

B. subtilis is, therefore, and without a doubt, the best-known Gram-positive
bacterial rod, and contains three subspecies [i.e., subtilis (Nakamura et al. 1999),
spizizenii (Nakamura et al. 1999), and inaquosorum (Rooney et al. 2009)]. These
three subspecies are so similar (they share ca 3300 ORFs) that they can only be
differentiated by phylogenetic analysis of multiple proteins, as their 16S rRNAs
exhibit an extremely high sequence identity (for a genomic insight into the taxo-
nomic status of the three B. subtilis subspecies, see Yi et al. 2014).

Although endospore-forming bacteria can exhibit different metabolic and genetic
abilities, they all belong to the phylum Firmicutes and share the capacity to survive
harsh environmental conditions via the production of highly resistant endospores;
this is a superior biological development, normally subjected to catabolic regulation
(Schaeffer et al. 1965). These highly resistant structures have been recently reviewed
from the point of view of the different technologies usable today that cause endo-
spore death (Cho and Chung 2020). Espores from B. subtilis have been used recently
in chickens with positive results as adjuvants in vaccines against the avian influenza
H9N2 orthomyxovirus (Lee et al. 2020)

Endospore formation follows the same genetic program in all bacteria, with little
variation from species to species; this fact led Hutchison and coworkers to suggest in
2014 that “a robust and sophisticated developmental framework was already in
place in the last common ancestor of all extant Firmicutes.” Nearly 90 different
bacterial genera can form endospores and, although Gram-positive microorganisms
are predominant among them, this endospore-forming group also includes many
Gram-negative species.

This survival structure was originally described by Ferdinand Julius Cohn, in
the nineteenth century (1875). The author, although a botanist, became one of the
founding fathers of modern bacteriology and microbiology by demonstrating the
ability of Bacillus to form endospores and describing the basic steps in spore
formation (Drews 2000). Cohn, due to his background in algal taxonomy, also
made a significant contribution to bacterial taxonomy, although his bacterial classi-
fication was not accepted by many of his colleagues, who still believed that bacteria
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could spontaneously arise from decaying biological matter (Cohn 1875; Drews
2000).

The number of endospores produced by bacteria can vary from one (monosporic
species), two (bisporic), or many (polysporic), and they always are genetically
identical copies of the vegetative cells. The morphogenetic process resulting in
endospore production is usually initiated by a lack of nutrients essential for vegeta-
tive growth (mainly nitrogen source depletion). This process is tightly regulated by
SPO genes and different σ factors, that define the sporulation stages, and terminates
with the formation of a multilayer, refractive, highly resistant structure that can
withstand the challenges posed by factors such as extreme temperatures and
DNA-damaging agents (Errington 2003). This survival structure is what microbiol-
ogists call “endospore,” characterized by its metabolically inactive “dormant state.”
In some bacterial groups, however, the sporulation process gives rise to multiple
intracellular offsprings, some of which do not undergo a dormancy period; many of
these spore-forming bacteria, although hard to grow axenically, were identified as
Clostridia, one of the endospore-forming bacterial group (Hutchison et al. 2014).

Unraveling the mechanism of endospore formation, triggered by starvation,
resulted not only in the understanding of this basic bacterial morphogenetic process
and in obtaining a variety of mutants with different metabolic and genetic abilities,
but also in the discovery of novel non-Firmicutes and remote bacterial strains
displaying certain characteristics of the Firmicutes. One of these traits is the resis-
tance to soil-dwelling predatory microorganisms, such as the delta proteobacterium
Myxococcus xanthus. It is well known that nondomesticated strains of B. subtilis,
capable of producing bacillaene (a polyene antibiotic), can resist the attack of the
predatory bacteria, eventually forming spores and hence becoming fully resistant to
the predator. On the other hand, laboratory strains of B. subtilis, usually unable to
produce the antibiotic, are easily predated by M. xanthus (Müller et al. 2014).

Starvation-induced sporulation is the last survival resort for some bacteria. The
sporulation process involves a cellular decision-making stage (commitment point),
that can last several hours depending on the bacterium, accompanied by the devel-
opment of actinomycin resistance (Sterlini and Mandelstam 1969). During this time,
the bacterium explores other possibilities of survival, such as the secretion of
enzymes to use alternative food sources, production of antibiotics to eliminate
competing microorganisms, and the induction of cell competence to uptake exoge-
nous DNA. Sporulation is suppressed until all other possibilities are shown inviable
and, once the commitment point is reached, sporulation is irreversible. The sporu-
lation process is spatially and temporally orchestrated and represents one of the most
thoroughly investigated cellular processes. Some of the genes involved were mapped
on the B. subtilis chromosome (Piggot and Coote 1976; Piggot and Hoch 1985) by
means of either transformation or transduction. Sporulation studies in Bacillus and
Clostridium determined that, although the process is continuous, it can be structured
into several stages. Sporulation starts with Stage 0: the decision to sporulate and ends
with Stage VI/VII: spore release (Fig. 1), as proposed by Ryter in 1965. Already in
1974, Hranueli et al. proposed that spore formation in Bacillus involves at least
37 operons. For a recent review, see Setlow and Johnson (2019).
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The years 1996 and 1997 saw the publication, in Microbiology and Nature
respectively, of first the computerized genetic map of B. subtilis (Biaudet et al.
1996) and then the complete sequence of B. subtilis genome (Kunst et al. 1997).
B. subtilis genome spans 4,214,810 base pairs, encompassing 4100 protein-coding
genes, as well as at least ten prophages or their remnants and a large number of genes
for using a variety of nutrients, many of plant origin. More recently, the publication
of complete genome sequences, such as that of Clostridium perfringens (Shimizu

Fig. 1 Sporulation stages in the Gram-positive bacteria Paenibacillus favisporus. (a, b) Fore-spore
formation; (c) spore maturation, displaying the typical surface of the spores from this species; d, e,
and f) lysis of sporangium and spore release (modified from Velázquez et al. 2004). Scale bar is
0.7 mm (a, b, c, and d) or 0.2 mm (e and f)
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et al. 2002), has permitted to carry out comparative genomics with other important
Gram-positive anaerobic sporulating rods.

Unraveling this complex genetic and biochemical pathway not only contributes to
a better knowledge of the biology of sporulating Gram-positive bacteria, but could
also result in the discovery of novel antibiotics, or even contribute to the knowledge
of associated flavors in certain beverages, such as the Chinese Maotai Liquor (Wang
et al. 2018).

Endospore formation is a major morphological feature used in bacterial taxonomy
and the characteristics of the spore, such as location within the sporangium (mother
cell), sporangium distension and number of spore per sporangium, are also important
for the classification of both aerobic and anaerobic spore-forming Gram-positive
bacilli.

Starvation is not the only trigger for sporulation, in fact, siderophore production is
another factor affecting endospore formation. Grandchamp and coworkers demon-
strated in 2017 that the production of bacillibactin facilitates sporulation, and even
enterobactin (a siderophore from E. coli) induces B. subtilis sporulation. However,
while the uptake of either siderophore involves binding to just one protein (FeuA),
the onset of sporulation in the presence of the siderophores requires a different
protein for each siderophore, such as the esterase BesA for bacillibactin and the
esterase YbbA for enterobactin (Grandchamp et al. 2017).

B. subtilis spores have recently found quite unusual applications (Sun et al. 2020).
The authors used spore coat proteins CotB and CotC as anchors for the heterogenous
antigen in a system grass carp reovirus combined with the genes cwlJ and sleB able
to control the pore germination. Heterologous antigens using this method were able
to elicit a strong humoral as well as cellular response in Ctenopharyngodon idella.

One tends to consider the SPO proteins (all those so far related to the sporulation
process) as exclusive of those bacteria able to carry on with the formation of
endospores, but the truth of the matter is that there is a large variety of bacterial
species (including Escherichia coli) that contain sporulation-related repeated
domains, known to bind peptidoglycan and also to enhance the activity of the
penicillin-binding proteins and hence of the transpeptidase activity (Pazos et al.
2020).

The study of endospore formation in B. subtilis has been an important increase of
our knowledge in terms of genetics, biochemistry, and developmental biology, but
indeed it has resulted in practical applications. One of these has been the develop-
ment of a new strain of B. subtilis that harboring the β-lactam-induced regulatory
system BlaR1/BlaI from Staphylococcus aureus, which can be used as an efficient
biosensor to evaluate the presence of β-lactams in solution (Lautenschläger et al.
2020). Another interesting application involving the spores of Bacillus subtilis is
related to the use of these spores to prepare vaccines against B. anthracis. So, Oh,
and colleagues reported in 2020 the obtention of a new B. subtilis strain that
originates spores with the anthrax protective antigen on the surface. All in all, and
as Errington and van der Aart have recently proposed B. subtilis has been and still is
a workhorse as a model for studying cellular development, including the generation
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of asymmetry, cell fate, and prokaryotic morphogenesis in general (Errington and
van der Aart 2020).

2 Genes and Factors Affecting Endospore Formation

The initiation of sporulation is a prime example of developmental biology in Gram-
positive bacteria that strongly involves biochemical and genetic factors. It occurs in
Nature constantly in this group of bacteria, when encountering inappropriate phys-
icochemical conditions, and the picture of the whole process may be altogether
blurred by the continuous growing of B. subtilis under laboratory conditions in what
has been denoted as “loss of social traits during domestication process of Bacillus
subtilis” (Barreto et al. 2020).

Endospore formation depends on a major signal transduction system known as
“the sporulation phosphorelay” that controls phosphorylation of the key Spo0A
transcription factor (Burbulys et al. 1991; Ohlsen et al. 1994; Wang et al. 2001),
as well as the synthesis of sporulation-specific sigma factors (Fimlaid et al. 2015)
involved in the subsequent sporulation stages. Most of the biochemical changes
during sporulation appear to occur during the first two “sporulation stages” men-
tioned above (0 and II); during this period, a new cell differentiates within the mother
cell and isolates itself, although it maintains a specialized connection system to the
mother cell, to receive from her a variety of nurturing compounds, such as activators
and sigma factors.

Initiation of sporulation in B. subtilis stops normal growth (stage 0; Fig. 2), this is
followed by the synthesis of a septum (stage II, see below). The Spo0A protein is
activated through phosphorylation (Sonenshein 2000) in stage 0 and is responsible
for the regulation, either directly or indirectly, of more than 500 genes (Fawcett et al.
2000). When studying the σ factors involved in the sporulation process, it soon
became clear that a single vegetative σ factor could not be responsible for the RNA
transcription carried out from a variety of promoters which, in addition, are different
from those responsible for vegetative growth and primary metabolism. Further proof
of this was provided by Linn and coworkers that, already in 1973, demonstrated that
the activity of the vegetative sigma subunit of B. subtilis RNA polymerase dramat-
ically decreases once sporulation starts, and its levels remained low throughout the
sporulation process. These findings were confirmed by Brevet the following year
(Brevet 1974).

An example of activation of sporulation-specific genes/regulons is the cascade
reaction initiated by the arbB gene, which encodes a protein (ArbB) that acts as a
repressor of spo0H expression. The gene spo0H encodes the σH protein (Weir et al.
1991), which regulates the expression of σF protein, responsible for entering spor-
ulation stage II (Wu et al. 1992; Sonoda et al. 2015). Figure 3 summarizes the
different σ factors involved in the main sporulation stages.

Briefly, the spore formation pathway mainly depends on two pivotal kinases
integrated into the phosphorelay process of sporulation. The main activators and
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repressors systems required for sporulation initiation are depicted in Tables 1, 2, 3, 4,
and 5.

Bacteria rely on histidine kinases to react to a variety of external signals, and this
also applies to sporulation. KinA is perhaps the main histidine kinase involved in the
initiation of endospore formation in the family Bacillaceae. Winnen and collabora-
tors described in 2013 that this kinase had an N-terminal region (residues 1–382)
spanning three tandem Per-ARNT-Sim (PAS) domains, believed to constitute the
sensor sporulation module. Upon nutrient starvation in endospore-forming bacteria,
KinA inhibits the antikinase activity of KipI (gene homologues of kipI are found
almost throughout all bacterial kingdom; Jacques et al. 2011a), hence allowing
sporulation. KipI and KipA are the fourth and fifth genes, respectively, of a seven-
cistron operon that is upregulated by high glucose concentrations and down-
regulated in the presence of nitrogen. The combined actions of KinA and Kipl
trigger the regulatory pathway known as the sporulation phosphorelay, which in
turn activates Spo0A (the main component of the sporulation cascade). The protein
Sda (Fig. 4) is also involved in KinA phosphorylation, as well as in replication and

Fig. 2 Key stages of the sporulation cycle in Bacillus subtilis. Sporulation phases 0 to VI are
indicated in the diagram, and the main genes involved in the process are summarized. Stage VI
represents the final events leading to spore maturation inside the mother cell, while stage VII
requires mother cell lysis for the spore to be released
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sporulation coordination (Veening et al. 2009). The gene products involved in stage
0 are depicted in Tables 1 and 2.

Sporulating stages II and III involve a differentiation program that lasts 5 hours,
and, according to Eichenberger and coworkers in 2004, it involves 383 genes
epistatically controlled by transcription factors σE, σF, σG (they activate 81 genes),
and σK. This stage is characterized by an asymmetric division that gives rise to a
sporangium, formed by the mother cell and separated from the future forespore by a
closing Z-ring that leaves a narrow tunnel, also known as the “feeding tube” (Mastny
et al. 2013) that links both compartments. The tunnel also contains a DNA filament
that extends from the mother cell. As it is, and before the beginning of the asym-
metric division to form the prospore, an axial DNA filament is formed containing
two chromosomes along the longest axis of the cell, and firmly attached to each pole

Fig. 3 Summary of sigma
factors involved in Bacillus
subtilis sporulation. SpoIIT
is involved in the activation
of σE in the mother cell,
whereas SpoIIIL is required
for σG activity in the
forespore (Meeske et al.
2016)
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Table 1 Main activator proteins involved in Bacillus (mainly subtilis) initiation of sporulation

Locus/gene/
protein activators Effect/regulation

Map position
Degrees/
coordinatese Reference

kinA (synonym
spo IIJ, spoIIF,
gsiC, scoD)d

Encodes a
68.99 kDa protein

Transfers phosphate to Spo0F and
SpoA transcription factors
Autophosphorylates

118� Wang et al. (2001)
Perego et al.
(1989)
Tojo et al. (2013)

kinB
Encodes a
47.7 kDa protein

Transfers phosphate to the Spo0F
transcription factor. Expressed and
activated before KinA

280� Dartois et al.
(1996)
Tojo et al. (2013)

kinC (synonym
ssb)
Encodes a 48.68
kDa protein

Two-component sensor kinase,
phosphorylates Spo0F and Spo0A,
part of the phosphorelay

124� LeDeaux and
Grossman (1995)
Kobayashi et al.
(1995)
Jiang et al. (2000a)

spo0A (syno-
nyms spo0C,
spo0G, spoIIL,
sof-1)
Encodes a
29.5 kDa protein

Activates sporulation-specific
genes and non-specific (>500)
Phosphorelay regulator coordinates
DNA replication and initiation of
sporulation by binding to sites close
to the oriC

217� Kudoh et al.
(1984, 1985)
Ferrari et al.
(1985)
Molle et al. (2003)

spo0B (synonym
spo0D)
Encodes a
22.40 kDa
Protein

Phosphotransferase initiation 240� Ferrari et al.
(1982)
Bouvier et al.
(1984)

spo0G (synonym
spoA)f

Not involved in competence
development

217� Ionesco et al.
(1970)
Sadaie and Kada
(1983)

spo0F
Encodes a
14.09 kDa protein

Phosphotransferase initiation 323� Shimotsu et al.
(1983)
Trach et al. (1985)

spo0D
BSU_17920

Phosphatase 240� Ionesco et al.
(1970)

spo0E
Encodes a
9.79 kDa
Protein

Spo0A-P phosphatase 115� Perego and Hoch
(1987)

spo0H (σH)
Encodes a
25.3 kDa
protein
Expression
requires
spoA expression
Regulated by
external pH
changes

Activates phrE genea (Phosphatase
RapE inhibitor)
Transcribes early stationary phase
genes, also involved in competence

11� Weir et al. (1984)
Dubnau et al.
(1987, 1988)
Cosby and Zuber
(1997)

(continued)
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Table 1 (continued)

Locus/gene/
protein activators Effect/regulation

Map position
Degrees/
coordinatese Reference

spo0J (syno-
nyms ParB,
spo0JB)
Encodes a
32.06 kDa protein

Involved in catabolite repression of
sporulation and chromosome seg-
regation
Not involved in competence
development

359� Hranueli et al.
(1974)
Sadaie and Kada
(1983)
Mysliwiec et al.
(1991)
Ireton et al. (1994)

spo0K
5 genes operon

Oligopeptide transport system
Involved also in competence
development

104� Rudner et al.
(1991)

Spo0L Spore cortex lytic enzyme 115� Kunst et al. (1997)

Spo0M (syno-
nym ygaI)
Encodes a
ca.29.5 kDa
protein.

Member of arrestin gene family
Stops pass from 0 to II stages
Phosphorylates >500 genes
Member of SigH and SigW
regulons

953373–954149 Alvarez (2008)
Sonoda et al.
(2015)
Vega-Cabrera
et al. (2018)

comA (syno-
nyms srfB,
comAA)
Encodes a
23.98 kDa protein

Activates transcription and quorum
sensing
Activates phrA

279� Guillen et al.
(1989)
Wolf et al. (2016)

sinI (second gene
of a two-gene
operon)
Encodes a
6.47 kDa protein

Antagonist of sinR. Represses
binding of SinR to aprEb and stage
II sporulation genes

219� Bai et al. (1993)
Lewis et al. (1996)

kipA (synonym
pxpC)
Encodes a
36.92 kDa
subunit of
5-oxoprolinase,
antagonist of
KipIc

Detoxification of 5-oxoproline,
control of the phosphorelay, initia-
tion of sporulation

460592–461599 Wang et al. (1997)

phrA (synonym
gsiAB)
Encodes a
4.66 kDa protein

Suppresses dephosphorylation
activity of RapA (aspartate phos-
phatase). Inhibits, control of the
phosphorelay

1316995–1317129 Perego et al.
(1996)
McQuade et al.
(2001)

phrE
Encodes a
4.72 kDa protein

Regulator aspartate phosphatase
(RapE); does not affect rapA and
rapB. Controls the sporulation
phosphorelay

2660330–2330464 Jiang et al. (2000b)
McQuade et al.
(2001)

(continued)
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thanks to proteins such as RacA, Soj, Spo0J, and MinD (Wu and Errington 2003;
Willis et al. 2020). In this way, when the prespore is finally formed, it tapes ca. 30%
of one chromosome and the remaining 70% of the chromosome relays on the feeding
tube, and particularly on the translocase SpoIIIE (Bath et al. 2000; Willis et al.
2020), which is a hexameric protein that embraces the double-stranded DNA, and
translocates each arm into the prespore, presumably through the formation of small
pores. It is known that the terminus chromosomal region in B. subtilis is comprised
between 152 and 187�, and that this region is the last one to be translocated into the
prospore (Willis et al. 2020). The feeding tube, therefore, is crucial for spore
formation and maturation, as this process requires many gene products expressed
by the mother cell genes that are transferred to the forespore through this tunnel. The
genes involved in this stage and their function are summarized in Table 3.

Sporulating stage III is characterized by the engulfment of the forespore by the
mother cell; this results in the forespore being covered by a double-membrane, inner
and outer membranes (McKenney et al. 2013), within the mother cell cytosol. This
phase is accompanied by a simultaneous synthesis of modified peptidoglycan, which
contains the modified sugar muramic-δ-lactam and a low level of peptide cross-links
between the glycan strands (Popham 2002), located between the inner and outer
membranes. Deposition of a proteinaceous layer takes place mainly externally, thus
completing the formation of the spore “cortex,” that constitutes the characteristic
structure of Stage IV (see Tables 4 and 5 for its main components and functions).

Table 1 (continued)

Locus/gene/
protein activators Effect/regulation

Map position
Degrees/
coordinatese Reference

phrH
Encodes a
6.3 kDa
Protein

Response regulator aspartate phos-
phatase (RapH), dephosphorylates
Spo0F-P, control of the
phosphorelay, sequestration of
ComA activity

752079–752252 Mirouze et al.
(2011)

aPhr pentapeptide (six aminoacids in the case of PhrH) inhibits Rap proteins. Processing of the Phr
precursor proteins into active pentapeptides is a key event in the initiation of sporulation and
competence (i.e., PhrA (ARNQT) and PhrE (SRNVT) peptides inhibit the RapA and RapE
phosphatases, respectively (Stephenson et al. 2003)
baprE gene product is a major extracellular alkaline serine protease (subtilisin E) of 39.37 kDa
cKip I is a potent inhibitor of the autophosphorylation reaction of kinase A (inhibits SpoA-P), but
does not inhibit phosphate transfer to Spo0F. The inhibitory activity of KipI is counteracted by
KipA (Wang et al. 1997)
dAutophosphorylation occurs in trans (one subunit of the multimer phosphorylates the other
subunit) within the homotetramer complex, instead of cis (one subunit of kinase phosphorylating
itself within the multimer) (Devi et al. 2015)
eWhen possible, gene mapping is expressed as degrees to honor the efforts in transducing-mapping,
since interrupted mating-mapping cannot be carried out in Bacillus
fLack of rho factor or a defective one leads in B. subtilis to activate spoA, thus initiating sporulation
cascade (Bidnenko et al. 2017)
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Table 2 Main repressors involved in Bacillus (subtilis) initiation of sporulation

Locus/gene/prot
repressors Effect/regulation

Map position
Degrees/
coordinates Reference

sda
Encodes a 6.02 kDa
protein

Blocks
autophosphorylation of
KinA. Controls the phos-
phorylation status of
Spo0A

2647456–2647614 Rowland et al.
(2004)

kipI (synonyms pxpB,
ycsJ)
Encodes a 26.57 kDa
protein

Blocks
autophosphorylation of
KinA

459867–460589 Jacques et al.
(2011a, b)

spo0A (synonyms
spo0C, spo0G, spoIIL,
sof-1)
Encodes a 29.5 kDa
protein

Main component in Bacil-
lus sporulation.
Phosphorelay regulator,
initiation of sporulation,
coordinates DNA replica-
tion and initiation of spor-
ulation by binding to sites
close to the oriC
Negatively controls tran-
scription of abrB interacts
with two sigma factors
(A and H)

217� Fujita and
Sadaie (1998)
Baldus et al.
(1995)
Strauch et al.
(1990)

sinR (synonym sin, flaD)
Encodes a binding protein
of 111 aa (binds aprEb

gene)

Represses the key sporula-
tion gene spo0A
A pleiotropic late growth
regulator

219� Bai et al. (1993)
Lewis et al.
(1996)
Mandic-Mulec
et al. (1995)

rapA (synonym gsiAA,
spo0L), rapB (synonym
spo0P, ywmE), rapE
(synonym yqcH), and
rapH (synonyms yeeH,
yzqA)
Encode 44.81 kDa,
44.88 kDa, 44.40 kDa, and
49.96 kDa proteins,
respectively

Response regulator aspar-
tate phosphatase, dephos-
phorylates Spo0F~P,
control of the
phosphorelay

115� Perego et al.
(1996)
Tzeng et al.
(1998)
Jiang et al.
(2000b)
Hayashi et al.
(2000)
Parashar et al.
(2011)

spo0E, yisI, and ynzD
Encode 9.65 kDa,
13.08 kDa, and 6.55 kDa
proteins, respectively

Dephosphorylation of
Spo0A~P, control of the
phosphorelay

1430684–1430941
1153265–1153621
1922841–1923014
respectively

Kunst et al.
(1997)
Perego (2001)

GTP-bound codY
Encondes a 28.86 kDa
protein (regulates more
than 100 genes and
operons)

Inhibits rapA-phrA
Regulation of a large
regulon (more than
100 genes and operons) in
response to branched-
chain amino acid
limitation

141� Belitsky and
Sonenshein
(2008)
Sonenshein
(2005)
Brinsmade
et al. (2014)

(continued)
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A peculiarity of B. subtilis sporulation is that there is a temporal dissociation
between the occurrence of late events and the expression of genes that determine
them (Jenkinson et al. 1980), as the proteins responsible for the changes during
stages V and VI are already synthesized by the end of stage IV. Stage V is
characterized by the formation of the spore coat, which contains approximately
70 proteins, originated from the mother cell, many of which started migrating to
the spore surface at the time of engulfment (Popham 2002). Stage VI (maturation
and sporangium lysis; summarized in Table 6) starts with the synthesis of dicarbox-
ylic dipicolinic acid (derived from L-aspartate, see Fig. 5), that chelates high amounts
of Ca++ and transforms the spore into a refractile structure containing the coat
proteins (Fig. 6), selectively stainable by malachite green at high temperature, and
thus forming a spore crust (which is the outer most layer of spores lacking sporan-
gium). The crust structure is composed of several coat proteins such as CotV, Cot W,
CotX, CotY, CotZ, and CgeA (Bartels et al. 2019), being CotY the most important in
the crust structure in terms of scaffolding and morphogenetic functions (Shuster
et al. 2019; Dubois et al. 2020) along with CoX and CotZ. In addition to these coat
proteins, the crust contains a variety of glycans with functions largely unknown,
although at least two different glycans have been proposed: one linked to the outer
coat proteins and another strictly linked to the crust (Shuster et al. 2019; Dubois et al.
2020). In this sense, the genes spsM, spsABCDEFGIJKL, yfnHGFED, ytdA-ytcABC,
and cgeAB-cgeCDE have been involved in the synthesis of the surface proteins
(Cangiano et al. 2014). Lately, it has been demonstrated (Dubois et al. 2020) that
these sps genes encode the legionaminic acid pathway that is required for crust
assembly. The legionaminic acid is a 9 carbon, beta-neuraminic acid derivative

Table 2 (continued)

Locus/gene/prot
repressors Effect/regulation

Map position
Degrees/
coordinates Reference

abrB
Encodes a
10.63 kDa protein (tran-
scriptional regulator)

Epistatic to spo0A and
spo0B mutations
General repressor of
spo0H

328� Zuber and
Losick (1987)
Perego et al.
(1988)

hpr
Encodes a 23,718 kDa
protein

Transcriptional regulator;
overexpression inhibits
sporulation

76� Perego and
Hoch (1988)
Biaudet et al.
(1996)

dnaA
Encodes a 50.70 kDa pro-
tein (AAA+ ATPase)

Overexpression of Sdaa

Affects expression of tran-
scription factors Spo0A,
AbrB, PhoP, SinR, and
RemAb

410–1750 Fukuoka et al.
(1990)
Washington
et al. (2017)

aAn inhibitor of histidine kinases that regulates initiation of sporulation in Bacillus subtilis.
bTranscriptional regulators of the extracellular matrix genes, acts in parallel to SinR, AbrB
(Winkelman et al. 2009)
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Table 3 Main genes and proteins involved in sporulation stage II

Locus/gene/
protein Effect/regulation

Map position
Degrees/
coordinates Reference

spoIIAA
Encodes a
12.85 kDa
protein

Controls sigF activity (anti-anti-
sigma factor)
Inhibitory feedback on Spo0A

211� Najafi et al. (1995)
Duncan et al.
(1996)
Arabolaza et al.
(2003)

spoIIAB
Encodes a
16.21 kDa
protein

Controls sigF (anti-sigma factor).
Also functions as a phosphokinase
on spoIIAA

211� Schmidt et al.
(1990)
Duncan and
Losick (1993)
Najafi et al. (1995)

sigF (synonym
spo II AC)
Encodes a
29.22 kDa
protein

RNA polymerase forespore-
specific (early) sigma factor Sig.
Turns on approximately 48 genes,
including the gene for RsfA,
which represses a gene in the
sigma(F) regulon

2443429–2444196 Clarkson et al.
(2004)
Camp and Losick
(2009)
Camp et al. (2011)

spoIID (syno-
nym spoIIC)
Encodes a
37.25 kDa
protein

Cell wall hydrolase (lytic
transglycosylase), required for the
complete dissolution of the asym-
metric septum

316� Gutierrez et al.
(2010)

spoIIE (syno-
nyms poIIH,
spoIIK)
encodes a
91.78 kDa
protein

A membrane serine phosphatase.
Controls SigF activity, required
for normal formation of the
asymmetric septum.
Interacts with morphogenic pro-
tein rodZ and GpsB and involved
in early stages of asymmetric sep-
tum formation.

8� Guzmán et al.
(1988)
Barák et al. (1996)
Muchová et al.
(2016, 2020)

spoIIF (syno-
nyms kinA,
spoIIJ, gsiC,
scoD)

Two-component sensor kinase
Controls spoIID

118� Louie et al. (1992)

spoIIGA
Encodes a
34.70 kDa
protein

Maturation of SigE (σE) 1603779–1604708 Jonas et al. (1988)
Peters and
Haldenwang
(1994)
Schyns et al.
(1997)

spoIIG
(spoIIGB
sigma E)
Encodes a
27.5 kDa
protein

Sigma factor 29
Produced as pre E and processed
by SpoIIGA membrane protease

135� Trempy et al.
(1985)
Imamura et al.
(2008)
Eichenberger et al.
(2003)

(continued)
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(5,7-diamino-3,5,7,9-tetradeoxy-D-glycero-beta-D-galacto-non-2-ulopyranosonic
acid), also found on the flagellin of Helicobacter pylori and Campylobacter jejuni.

Finally, the mature spore is normally released, as a dormant resistant cell, by lysis
of the sporangium wall (old mother cell’s). The spore can remain dormant for a long
period of time, many years until reactivation (germination) takes place when envi-
ronmental conditions, such as food and temperature, permit it. During the first phases
of germination, efflux of ions occurs and step by step also disassembly of the coat
proteins and the cortex; most of the previously captured calcium is released. During
all the time the spore was a dormant structure, well within the spore core there were a
variety of unaltered mRNAs. The question is, are these mRNAs functional during
germination?. This question and several others have been recently proposed by
Setlow and Christie in their recent review of 2020. The existence of fully functional
mRNAs in spores would indeed speed up the germination processes, since the
germinating spores would pass directly to translation as the ribosomes became, in
turn, functional.

Futuristically, it would be interesting if B. subtilis had receptors for
4,5-dihydroxy-2,3-pentanedione derivatives, collectively known as “autoinducers
AI-2” and involved in quorum sensing responses. This, without a doubt, would
facilitate the coordination of sporulation in an otherwise asynchronous culture
(a recent communication on the role of autoinducer AI-2 may be found in Zhang
and colleagues in 2020).

Table 3 (continued)

Locus/gene/
protein Effect/regulation

Map position
Degrees/
coordinates Reference

spoIIJ (syno-
nyms kinA,
spoIIF, gsiC,
scoD

Two-component sensor kinase
Acts on SpoOA and/or SpoOF
polypeptide
It is a “sensor” class of signal-
transducing systems in bacteria

118� Antoniewski et al.
(1990)

spoIIN (syno-
nym ftsA)
Encodes a
47.94 kDa
protein

Controls spoIID
Cell division protein, membrane
anchor for FtsZ

1596474–1577796 Louie et al. (1992)
den Blaauwen
et al. (2017)

ftsZ (synonym
ts-1)
Encodes a
40.20 kDa
protein

Cell division initiation protein
(septum formation)

1597832–1598980 Adams and
Errington (2009)
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Table 4 Main genes and proteins involved in sporulation stage III

Locus/gene/protein Effect/regulation

Map position
Degrees/
coordinates Reference

spoIIIA
Locus of a polycistronic
operon
Encodes eight proteins,
SpoIIIAA to SpoIIIAH
(contain the ring-building
motif) plus the additional
SpoIIQ

Minor role in the regulation
of prespore-specific gene
expression controlled by
sigmaE
Forms the “feeding tube”
between mother cell and
forespore
Required for SigG
activation

218� Illing and
Errington
(1990)
Illing and
Errington
(1991)
Guillot and
Moran (2007)
Zeytuni et al.
(2018)
Mastny et al.
(2013)

spoIIIC (Synonym
sigmaKC-terminal half)
Encodes a 16 kDa protein

RNA polymerase
sporulation-specific sigma
factor (SigK) (30 region of
the interrupted sigK gene),
with sigK

230� Errington
et al. (1988)
Eichenberger
et al. (2004)

spoIIIG (synonym sigG) RNA polymerase sporula-
tion forespore-specific (late)
sigma factor SigG
activated by SigmaF

135� Strauch et al.
(1988)

spoIIID
Encodes a 10.66 kDa
protein

Transcriptional regulator
(repressor or activator) of a
subset of sigma
E-dependent genes

317� Chen et al.
(2014)

spoIIIE
Encodes an 86.96 kDa
protein
Member of the sigA
regulon

ATP-dependent dsDNA
translocase. Transports the
forespore chromosome
across the sporulation
septum

149� Butler and
Mandelstam
(1987)
Wu and
Errington
(1994)
Cattoni et al.
(2014)

spoIIIJ (synonym
spo0J87)
Encodes a 29.37 kDa
protein

Sec-independent membrane
protein translocase, essen-
tial for SigG activity at stage
III, involved in the assembly
of the SpoIIIAH-SpoIIQ
complex

360� Errington
et al. (1992)
Serrano et al.
(2003)

spoIIIL (synonym yqzE)
Encodes a 9.62 kDa protein

Component of the SpoIIIA-
SpoIIQ trans-envelope
complex, required for the
activation of SigG

2555887–2556066 Meeske et al.
(2016)

gerE
Encodes an 8.43 kDa

Transcriptional regulator
(repressor or activator) of a
subset of SigK-dependent
late spore coat genes

2904727–2904951 Crater and
Moran (2002)
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3 Secondary Metabolites Produced During Endospore
Formation

3.1 Antibiotics

Spore-forming bacteria are excellent secondary metabolite producers, including
antibiotics. Bu’Lock already described in 1961 the relationship between intermedi-
ary metabolism and antibiotic synthesis (Bu’Lock 1961), while Weinberg summa-
rized the main characteristics of secondary metabolites (Weinberg 1964). According
to this author, a secondary metabolite has a restricted distribution (best if species-
specific), does not play an obvious role in general metabolism, and is rapidly
synthesized even when bacterial growth is minimal or non-existent. Sermonti con-
cluded in 1980 that secondary metabolism is a primitive type of metabolism.
Kalenova et al. (2017) recently reported that secondary metabolites produced by
Bacillus sp., isolated from late Neogene permafrost, have a very potent effect on
cytokine production by human peripheral blood mononuclear cells. These metabo-
lites induced the production of both proinflammatory (TNF-α, IL-1β, IL-8, IL-2, and
IFNγ) and anti-inflammatory (IL-4 and IL-10) cytokines, and the secretion levels of
cytokines were far higher than those induced by B. cereus, medicinal strain IP5832,
metabolites. These results propound a putative role for these secondary metabolites
in the development of immunomodulating drugs.

Fig. 4 Early events in
endospore formation,
including sporulation stages
0 and II
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Table 6 Main genes and proteins involved in sporulation stages V and VI/VII

Locus/gene/prot Effect/regulation

Map position
Degrees/
coordinates Reference

spoVAA
Encodes a 23.03 kDa
protein

Uptake of dipicolinic acid and
Ca++ into developing spores,
required for spore maturation

211� Fort and
Errington (1985)
Tovar-Rojo et al.
(2002)
Vepachedu and
Setlow (2007)
Li et al. (2012)

spoVAC
Encodes a 15.97 kDa
protein

Uptake of dipicolinic acid and
Ca++ into developing spores,
required for spore maturation

211� Tovar-Rojo et al.
(2002)

spoVAD
Encodes a 35.84 kDa
protein

Uptake of dipicolinic acid and
Ca++ into developing spores,
required for spore maturation

211� Tovar-Rojo et al.
(2002)

spoVAEA
Encodes a 22.00 kDa
protein

Uptake of dipicolinic acid and
Ca++ into developing spores,
required for spore maturation

2439804–2440415 Li et al. (2012)

spoVB (synonym
IIIF)
Encodes a 55.91 kDa
protein

Involved in spore cortex pep-
tidoglycan synthesis (member
of the MurJ superfamily, lipid
II flippase)

236� Popham and
Stragier (1991)
Meeske et al.
(2015)

spoVC (synonym
pth)
Encodes a 20.73 kDa
protein

Peptidyl-tRNA hydrolase,
involved in spore coat
formation.

7� Menez et al.
(2002)

spoVD
Encodes a 71.08 kDa
protein

Penicillin-binding protein
(spore cortex)
Transpeptidase activity

133� Daniel et al.
(1994)
Bukowska-
Faniband and
Hederstedt
(2013)

spoVE
Encodes a 39.97 kDa

Peptidoglycan
glycosyltransferase, required
for spore cortex peptidogly-
can synthesis

134� Bugaichuk and
Piggot (1986)
Theeragool et al.
(1993)

spoVF (divergon
containing (operons
spoVFAB, asd, dpaG,
and dapA)

Cortex formation
Involved in dipicolinic acid
synthesis

148� Chen et al.
(1993)
Takahashi et al.
(2015)

spoVG
Encodes a 10.75 kDa
protein

RNA-binding regulatory pro-
tein, negative effector of
asymmetric septation at the
onset of sporulation. Also
described in B. anthracis

6� Matsuno and
Sonenshein
(1999)
Chen et al.
(2020)

spoVK (synonym
spoVJ
Encodes a 36.52 kDa
protein

Spore maturation 153� Fan et al. (1992)

(continued)
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Table 6 (continued)

Locus/gene/prot Effect/regulation

Map position
Degrees/
coordinates Reference

spoVM
Encodes a 2.88 kDa
protein

Required for normal spore
cortex and coat synthesis
inhibits the proteolytic activ-
ity of FtsH

140� Levin et al.
(1993)
Kim et al. (2017)

spoVN (synonym of
ald)
Encodes a 39.53 kDa
protein

L-alanine dehydrogenase.
Required for normal
sporulation

3278325–3279461 Siranosian et al.
(1993)

spoVR
Encodes a 55.46 kDa
protein

Involved in spore cortex syn-
thesis. Expression of spoVR
initiates during the second
hour of sporulation from a
sigma E-dependent promoter

72� Beall and Moran
(1994)

spoVS
Encodes an 8.66 kDa
protein

Spore coat assembly and
spore core dehydration

150� Resnekov et al.
(1995)
Rigden and
Galperin (2008)

spoVT (synonym of
yabL)
Encodes a 19.60 kDa
protein

Transcription activator and
repressor of SigG-dependent
genes
Essential sporulation gene for
Bacillus cereus

64099 Asen et al.
(2009)
Ramirez-Peralta
et al. (2012)
Eijlander et al.
(2016)

spoVV (synonym
ylbJ)
Encodes a 44.68 kDa
protein

Transport of dipicolinic acid
across the outer forespore
membrane

1570574–1571800 Ramírez-
Guadiana et al.
(2017)

spoVID
Encodes a 64.80 kDa
protein

Spore coat morphogenetic
protein that promotes encase-
ment of the spore. Involved in
assembly of the inner and
outer spore coat layers. Inter-
acts with SafA and CotE

244� Ozin et al.
(2000)
Nunes et al.
(2018)

safA (synonym yrbA)
Encodes a 43.07 kDa
protein

Morphogenetic protein asso-
ciated with SpoVID, major
organizer of the inner spore
coat

2844675–2845838 Nunes et al.
(2018)

cotA (synonym pig)
Encodes a 58.33 kDa
protein

Spore coat protein (outer),
laccase, bilirubin oxidase

683462–685003 Imamura et al.
(2010)

cotB
Encodes a 42.81 kDa
protein

Spore coat protein (outer) 3714739–3715881 Imamura et al.
(2010)

(continued)
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Table 6 (continued)

Locus/gene/prot Effect/regulation

Map position
Degrees/
coordinates Reference

cotC
Encodes a 14.64 kDa
protein

Spore coat protein (outer) 1904995–1905195 Imamura et al.
(2010)

cotE
Encodes a 20.83 kDa
protein

Outer spore coat morphoge-
netic protein

1775067–1775612 Nunes et al.
(2018)

ytxO
Encodes a 16.41 kDa
protein

Spore coat protein (outer)
Protection of the spore

3159258–3159689 Imamura et al.
(2010)

cotD Spore coat protein (inner) 200� Henriques et al.
(1995)

cotF
Encodes an 18.58 kDa
protein

Spore coat protein (inner) 4167110–4167592 Imamura et al.
(2010)

cotS
Encodes a 40.93 kDa
protein

Spore coat protein (inner) 3159691–3160746 Takamatsu et al.
(1998)

cotT
Encodes a 15 kDa
protein

Spore coat protein (inner) 114� Takamatsu et al.
(2000)

gerQ (synonyms
ywdL, ipa-62r)
Encodes a 2013 kDa
protein

Spore coat protein, necessary
for the proper localization of
CwlJ

3893441–3893986 Ragkousi et al.
(2003)

cwlJ
Encodes a 16.22 kDa
protein

Spore germination
Spore coat protein, cell wall
hydrolase. Requires SafA
(member of the spore’s pro-
teinaceous coat) for activity

282469–282897 Ishikawa et al.
(1998)
Bagyan and
Setlow (2002)
Amon et al.
(2020)

YaaH (synonym sleL)
Encodes a 48.47 kDa
protein

General stress protein, sur-
vival during ethanol stress,
SafA-dependent protein in
inner spore coat, spore cortex
lytic protein. Involved in the
germination of spores
N-acetylglucosaminidase

23868–25151 Kodama et al.
(1999)
Lambert and
Popham (2008)
Üstok et al.
(2015)

YeeK
Encodes a 15.78 kDa
protein

Spore coat protein (inner) 753265–753702 Takamatsu et al.
(2009)

YsnD
Encodes a 11.58 kDa

Protection of the spore. Spore
coat protein

2897788–2898123 Imamura et al.
(2010)

YxeE
Encodes a 14.57 kDa
protein

Inner coat protein 4065597–4065962 Kuwana et al.
(2007)

(continued)
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Manganese and copper are two transition metals that appear to be important both
in endospore formation (Weinberg 1964; Krueger and Kolodziej 1976) and in
secondary metabolite synthesis (i.e., iron for mycobacillin or cobalt for D-glutamyl
peptide; Jansen and Hirschmann 1944; Foster and Woodruff 1946). Manganese, in
particular, appears to be essential as, according to Weinberg, no other biologically
active element can substitute it. Apart from transition metals, starvation (depletion of
a usable nitrogen source) triggers both sporulation and secondary metabolism
(including synthesis of antibiotics), originating a metabolic state known as the
“stringent response” that involves GTP and active ribosomes (Lukin et al. 1983;
Ochi and Ohsawa 1984).

Table 6 (continued)

Locus/gene/prot Effect/regulation

Map position
Degrees/
coordinates Reference

cotJB
Encodes a 11.61 kDa
protein

Polypeptide composition of
the spore coat

756139–756402 Henriques et al.
(1995)
Seyler et al.
(1997)

spoVIF (synonym
yjcC)
Encodes a 11.45 kDa
protein

Required for spore coat
assembly and resistance

1256436–1255866 Kuwana et al.
(2003)

Fig. 5 Mechanism of synthesis of dipicolinic acid by Bacillus subtilis
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We envisage that research into novel sources of antibiotics and secondary
metabolites (as well as other pharmaceutically relevant compounds) in the near
future will involve the study of yet unknown microorganisms isolated from insects,
plants, or animals. Indeed, insects represent the most diverse group of animals and
should constitute an excellent source of microorganisms capable of producing
bioactive molecules as secondary metabolites. In his review, Bode provides prime
examples of entomopathogenic bacteria as sources of secondary metabolites, these
include Bacillus thuringiensis, Pseudomonas entomophila, Xenorhabdus, and
Photorhabdus (Bode 2009).

The genus Bacillus is an eminent antibiotic producer (mostly polypeptidic), with
already 167 peptides described by Berdy in 1974 and a number of new ones
characterized since (see review by Katz and Demain 1977). The classical antibiotics
produced by B. subtilis include mycobacillin, subtilin, bacilysin, bacillomycin,
fungistatin, bulbiformin, bacillin, bacillaene, subsporin, bacillocin, mycosubtilin,
fungocin, iturin, neocidin, and eumycin. B. brevis secretes gramicidin S, tyrocidine,
linear gramicidin, brevin, edeine, eseine, bresseine, and brevistin. B. pumilus syn-
thesizes micrococcin P, pumilin, and tetain, while B. mesentericus produces esperin,
and B. licheniformis generates bacitracin, licheniformin, and proticin. Antibiotic
production in B. polymyxa includes polymyxin, colistin, gatavalin, and jolipeptin,
while B. circulans secretes butirosin, circulin, polypeptin, EM-49, and xylostatin.
B. cereus makes biocerin, cerexin and thiocillin, and B. laterosporus synthesizes
laterosporamine and laterosporin.

Those described above are all peptide antibiotics, listed by Katz and Demain in
1977, and all share the following basic properties: (1) their size is much smaller than
“normal” antibiotics; (2) they are usually produced as a close family of peptides;
(3) they can be constituted by either amino acids only, or be complexed with other
compounds, such as polymyxins, that contain either 6-methyloctanoic acid or
6-ethylheptanoic acid as a fatty acid residue; (4) frequently contain D-amino acids

Fig. 6 Summary of the
different cot genes involved
in coat formation in Bacillus
subtilis spores
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not found in proteins, and (5) they are mainly resistant to hydrolysis by peptidases
and proteases.

The peptide antibiotic synthesis requirements are the same for all of them; they all
require amino acids, ATP, the appropriate synthase (that can be purified from cell-
free extracts), Mg2+ ion, and a reducing agent. The antibiotic extends from the
N-terminal to the C-terminal end, as is the case in protein synthesis, and only
enzyme-bound intermediates are involved (Katz and Demain 1977). Lipmann and
collaborators proposed a mechanism for the synthesis of cyclic peptide antibiotics,
such as gramicidin S, which involves peptidyl transfers from enzyme-bound
thioester intermediates (Gevers et al. 1969; Lipmann 1973). When the peptide
antibiotic is linear (i.e., gramicidins) the pentadecapeptide remains thioester-linked,
and formylation occurs after completion of the polypeptide synthesis (Bauer et al.
1972). Despite all the advances in our knowledge of the genetics, biochemistry, and
synthesis of sporulation-related antibiotics, little is known about the role (or roles)
that these compounds play in the producing organism. The suggested function as a
biochemical sink has its merit, although, as indicated by Katz and Demain (1977),
these antibiotics are produced specifically when the cell detects harsh conditions and
could either be packaged in the Bacillus spore to provide a favorable environment
(by eliminating competitors) during germination or inhibit spore germination until
environmental conditions are favorable.

Antifungal antibiotics produced by Bacillus are somehow linked to sporulation,
as they are secondary metabolites. They are not common in these bacteria, although
there are some lipopeptides (Hamley 2015) with antifungal action, such as fengycin,
surfactin, and iturin family compounds (Dunlap et al. 2013); and more recently,
Knight and coworkers described one secreted by B. subtilis subsp inaquosorum
(Knight et al. 2018). All these antibiotics are synthesized by synthetases not linked to
ribosomes, they exhibit different types of cyclization and varied length of the fatty
acid chain. Fengycin was the first antifungal identified (Vanittanakom et al. 1986),
although surfactin is perhaps the most powerful biosurfactant and the iturin family
displays a broad-spectrum antifungal activity (Knight et al. 2018).

Iturins are a group of lipopeptide antifungal amphiphilic antibiotics that act on the
cytoplasmic membrane altering K+ permeability. Iturins increase membrane perme-
ability by forming ion-conducting pores, due to their interaction with sterols and
phospholipids present in the membrane. The antifungal activity of these compounds
increases with the number of aggregates formed and depends on the type of amino
acids contained by the lipopeptide, as well as the type of sterols present in the
cytoplasmic membrane.

Iturin A (Fig. 7) is the archetype for B. subtilis lipopeptide (Besson et al. 1976). It
is encoded by the iturin A operon, which spans over 38 kb and contains four open
reading frames, ituD, ituA, ituB, and ituC (Tsuge et al. 2001). Recently (Zhou et al.
2020) have reported on the isolation from deep sea, of a new bacterial strain,
tentatively classified within the Bacillus genus, that synthesizes two new iturin-
like lipopeptides, designated as C14 iturin W, and C15 iturin W, with fungicidal
activity by introducing damage into the fungal plasmalemma. Mycosubtilin, also
produced by some B. subtilis strains, is similar to iturin, although there are minor
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differences between the two antibiotics, both in the conformation of serine and
asparagine and in the order the two amino acids are found on the lipopeptides.

Iturins may have additional roles as biocontrol agents. It has been reported lately
(Wang et al. 2020), that iturin A directly extracted from B. subtilis strain WL-2
readily exerts a controlling role on the fungus Phytophthora infestans (potato late
blight disease that shapes a threat worldwide for Solanum tuberosum culture)
through disruption of the cellular membrane and oxidative stress.

Plipastatin (A and B) are potent Bacillus antimicrobial lipopeptides (inhibitors of
phospholipase A2; Volpon et al. 2000), thought to replace shortly conventional
treatments in plant–fungal infections. B. subtilis synthesizes this antibiotic directed
by the operon ppsABCDE operon (Vahidinasab et al. 2020); the authors accom-
plished the construction of a new strain able to produce in a constitutive manner,
increased amounts of plipastatin.

Interestingly, recently it has been reported that some fungal–bacterial interactions
are able to select mutants able to synthesize increased levels of compounds with
antifungal activity (Albarracín-Orio et al. 2020). Surprisingly, the authors found that
interactions of B. subtilis with the fungus Setophoma terrestris, originated bacterial
variants which had lost the ability to form lipopeptides and instead had gained the
capability to synthesize compounds with antifungal activity.

Genome mining applied to B. subtilis NCD-2 is giving positive results as far as
unraveling the potential to find antimicrobial compounds in this strain, and also to
determine the specificity of respective gene clusters (Su et al. 2020). The strain is a
good one to fight soil-borne plant pathogenic fungi, since it has been described as
producer of broad-spectrum antifungal compounds. Additional species of the Bacil-
lus genus, such as B. velezensis have been described as bein g good sources of L
ipopeptides and polyketides (Ruiz-García et al. 2005; Rabbee and Baek 2020), that
allows the bacterium to exert quite positive antagonistic effects against plant path-
ogens, such as Verticillium dahlia that causes wilt in olive trees (Castro et al. 2020),

Fig. 7 Comparison of the
structures of Iturin A and
mycosubtilin. Although the
two compounds are very
similar, the amino acids at
positions 6 and 7 in the
mycosubtilin sequence are
D-Ser!L-Asn, while in
iturin A these amino acids
are inverted
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or to promote the growth ofMalus hupehensis Rehd (Wang et al. 2019) while related
to B. subtilis, is different in that it contains nine gene clusters (namely, srf, bmy, fen,
dhb, bac, mln, bae, dfn, and nrs) by which the bacterium produces a large variety of
antimicrobial compounds (Rabbee and Baek 2020).

Table 7 summarizes the most relevant antibiotics produced by Bacillus.

3.2 Alkanes

Alkanes, with a general molecular formula of CnH2n+2, represent the simplest
organic molecules that are widely distributed in nature; they are stable due to their
backbone carbon atoms, having attained their octet of electrons through the forma-
tion of four covalent bonds.

Alkanes can be used as an advanced biofuel because of their high-energy content,
which is 30% higher than ethanol. Although it has been reported that recombinant
E. coli strains can produce a different range of alkanes, such as pentadecane and
heptadecane (Choi and Lee 2013), the use of these compounds is far from being
industrially exploited, and this includes the alkanes produced as secondary metab-
olites in Gram-positive sporulating bacteria. However, most sporulating bacteria
appear to be good alkane degraders. Efficient microbial biosynthesis of alkanes with
long carbon chains is difficult to achieve in a single organism (Lehtinen et al. 2018),
as this process requires a two-step pathway. Hence, the first step of CO2 reduction to
acetate should be carried out by a homoacetogenic bacterium following the Wood–
Ljungdahl pathway. Transformation into long-chain hydrocarbons, on the other
hand, would be best achieved by a second engineered microorganism expressing
the enzymes acyl-ACP reductase (AAR) and aldehyde deformylating oxygenase
(ADO); ADO is regarded as the bottleneck for the alkane biosynthesis, due to the
low activity of the enzyme.

The available data indicate that aerobic Gram-positive sporulating bacteria do not
naturally exhibit the ability to generate alkanes, at least not in enough quantities to be
industrially relevant. In fact, some results suggest that these microorganisms are
totally unable to do so unless they are genetically engineered. However, this appears
not to be the case for anaerobic clostridia; Bagaeva and Zinurova reported in 2004
that Clostridium pasteurianum could in fact synthesize alkanes (C25-C35 intracellu-
lar and C11-C24 extracellular) at the end of its logarithmic growth phase, in an
atmosphere formed by a mixture of CO2+H2/ argon. A particularity of this bacterial
species, not present in Gram-negative bacteria, is its ability to produce branched
alkanes. Despite the aforementioned, there have been recent papers describing the
ability of certain strains of B. subtilis to form a “volatilome” formed by secondary
metabolites that include hydrocarbons, ketones, alcohols, aldehydes, ester, acids,
among many others (up to 231), and some having the property to control the fungal
population in the rhizosphere (Kai 2020).
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3.3 Parasporal Crystals

Parasporal crystals constitute one of the few examples in Biology in which a cell
contains a crystallized structure with biological activity. The archetypes for these
structures are the bipyramidal parasporal crystals of B. thuringiensis, a Gram-
positive, endospore-forming bacterium closely related to both B. cereus and
B. anthracis, the causative agent of anthrax. The crystals are synthesized during
endospore formation and are hence associated with the secondary metabolism of
Bacillaceae. This microorganism was initially described by Ishiwatari Shigetane
(1901) in the silkworm and named Bacillus sotto. It was later renamed as
B. thuringiensis after Berliner (1915) isolated it from the gut of the flour moth
caterpillar in Thuringia, Germany (Milner 1994). There are currently several known
B. thuringiensis subspecies (all producing parasporal crystals) that display different
toxicity towards insects, such as Lepidoptera, Coleoptera, Diptera, Hymenoptera,
and Nematoda (Schnepf et al. 1998; Wei et al. 2003; Soberón et al. 2013). The
proteinaceous nature (δ-endotoxin or cry proteins) of the parasporal crystal was
described by Hannay and Fitz-James in 1955, while the crystal-specific toxicity
towards caterpillars of the lepidopteran species Pieris brassicae was known since
1965 (Lecadet and Martouret 1965). This research defined the type subspecies,
Berliner, while further subspecies, such as kurstaki, israelensis, and aizawa, were
later described. In 1968 de Barjac and Bonnefoi carried out the first attempt to
rationalize the taxonomy of B. thuringiensis subspecies and varieties. Cry proteins
are encoded by cry genes, which are located on a plasmid in most B. thuringiensis
strains. In 1979 both Robert A. Zakharian and coworkers and Miteva independently
reported the plasmid location of the cry genes, suggesting a role for the plasmid in
both endospore and crystal formation (Zakharian et al. 1979; Miteva 1979)

There are multiple studies on the mode of action of B. thuringiensis toxins (i.e.,
Koch et al. 2015) which, unlike chemical pesticides, are effective only after being
ingested by the insect. The parasporal Cry proteins are approximately 70–140 kDa
and, once within the gastrointestinal tract of insects, they become activated by
proteases and specifically bind to epithelial cells receptors (mostly cadherin-like
glycoproteins); they create pores, formed by oligomers of six Cry molecules (this is
essential for lethality), that cause a dramatic cellular osmotic imbalance which
eventually leads to the death of the insect.

Since the cry genes were cloned in 1981 (Schnepf and Whiteley 1981) there have
been many successful attempts to express them in transgenic crop plants, such as
corn, some of which involved biotechnological companies such as Monsanto. The
initial concerns about the possible negative effects of the thuringiensis toxins, either
released into the environment through the roots of the transgenic plants, or present in
the foodstuffs, resulted in the experiments being concealed from the public, such as
the work by Saxena and Stotzky in 2000. In fact, there was no need for such concern,
as indicated by Koch and coworkers in 2015: “Cry proteins are very limited in their
duration of effectiveness because they can be washed off the plant (e.g., by rain) or
inactivated by sunlight within days after application, and they require considerable
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water, heat, and feedstock to produce, and must be manually applied, either by hand
sprayer on small plots or by machine if applied to large tracts.” Because of their
safety of use, a variety of Cry proteins have been approved for use in at least one
country to protect against lepidopteran pests, and these include: Cry1Ab inserted
into maize by Monsanto; Cry1Ac expressed in cotton, corn, brinjal, and soy by
Monsanto; Cry1A.105 + Cry2Ab2 and Cry1Ac + Cry2Ab2 were introduced in
maize varieties by Monsanto; Cry1Ac + Cry1F in cotton and soy by Dow;
Cry1Fa2 in maize by Dow; Cry1Ac + Cry1F in cotton and soy by Dow; Cry1Ab
+ Cry2Ae in cotton by Bayer. In addition, Cry34Ab1 + Cry35Ab1 were expressed in
maize by Dow and DuPont to protect from Coleoptera (Koch et al. 2015). The
economic importance of Cry proteins in crop protection was reviewed by Marques
and coworkers in 2019. As for the price for the production of these proteins, it passes
through the obtention of Cry protein-overproducing strains. An easy way of doing
this was recently reported by Quan and coworkers in 2020. The authors, by simply
deleting the leu B gene (encodes for the 3-isopropylmalate dehydrogenase in the
leucine synthesis pathway) in a conditionally asporogenous B. thuringiensis, were
able to overexpress such a protein.

The isolation of new and natural strains of B. thuringiensis must proceed at
whatever pace, since Nature has always provided new useful mutations for human
industrial applications. In this sense, Liu and colleagues reported in 2020 the
isolation of a new strain B. thuringiensis, X023, which exhibits enhanced insecti-
cidal (against Plutella xylostella) activity by copper ions. This ion promoted the
expression of cry1Ac and vip3Aa, the synthesis of aminoacids, the glyoxalate
pathway, as well as the poly-β-hydroxybutyrate accumulation; all these compounds
are necessary for the synthesis of parasporal crystals (Liu et al. 2020).

Concerning the safety of use of these biocides, they are generally considered as
safe, as they are quite specific in their mode of action against lepidopteran or Diptera
insects; however, their use may disturb the general metabolism of other insects
initially thought not to be susceptible to the cry toxins. In this sense, Nawrot-
Esposito and colleagues reported in 2020 that these bioinsecticides cause defects
in the larval development of Drosophila melanogaster, by reducing the protein
digestion. Differential side-effects of thuringiensis biocides have also been reported
on this fly by Babin and coworkers in 2020 non-target Drosophila flies.

Late reports (Ursino et al. 2020) have shown that B. subtilis may be directly used
to produce mosquitocidal toxins against species of Aedes, known to transmit some
arbovirus-caused diseases. Some of these diseases include Dengue fever and Yellow
fever (transmitted by Aedes aegypti), Japanese Encephalitis and Rift Valley fever
(transmitted by Culex tritaeniorhynchus), among others. It is clear that the genetic
background of B. subtilis is by far better known than that of B. thuringiensis; so any
genetic manipulation with projection in the industry (i.e., increase production of
lepidopteran or dipteral toxins, or obtention of altogether different toxins) should
have a better outcome if developed in B. subtilis. The deepest study on this topic
follows in the next chapter.
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3.4 Lanthipeptides

Lanthipeptides constitute “natural products,” ribosomally synthesized by bacilli as
secondary metabolites, and are posttranslationally modified peptides (RiPPs) (Nolan
and Walsh 2009; Dias et al. 2015). These modifications include the formation of
meso-lanthionine and 3-methyllanthionine, as well as dehydrated amino acids. Xin
and coworkers classified lanthipeptides into four groups in 2015, depending on the
enzymes involved in post-translational processing. In group I, amino acid dehydra-
tion is carried out by a dedicated lanthipeptide dehydratase, and cyclization is
catalyzed by a lanthipeptide cyclase; in group II, the lanthipeptide is modified by
specific proteins; whereas in groups III and IV, lanthipeptide dehydration and
cyclization reactions are carried out by multifunctional enzymes. B. thuringiensis
and B. cereus are able to produce more than 20 bacteriocins, many with potential
usage both in the Food Science industry and in the clinical control of pathogenic
bacteria (Rea et al. 2010). Cerecidins merit a special citation among the
lanthipeptides produced by the cereus group, for their prospective usefulness in
controlling pathogenic bacteria (Wang et al. 2014). In fact, cerecidins A1 and A7 are
known to be active against Gram-positive bacteria, displaying remarkable efficacy
against both multidrug-resistant S. aureus (MRSA strains) and vancomycin-resistant
Enterococcus faecalis.

As a general rule, lanthipeptides are encoded by structural genes (lanA), normally
synthesized as non-active precursors that are later hydrolyzed into an N-terminal
peptide and a C-terminal peptide; the N-terminal leader peptide is important for post-
translational modifications (Yang and van der Donk 2013; Dias et al. 2015). The
structural genes for these peptides (lanA) frequently cluster with genomic islands,
this is the case for lanthipeptides synthesized by Bacillus methylotrophicus (Dias
et al. 2015), and this supports the notion that their production might be the result of
evolutionary adaptation to best achieve their in vivo function, either as controllers of
other microorganisms (Wang et al. 2014) or as plant growth promoters (Hao et al.
2012). It appears that Gram-positive spore-forming bacteria require antimicrobial
lanthipeptides to conquer harsh environments, as the strains and bacterial species
isolated from harder habitats seem to produce novel lanthipeptides with new char-
acteristics (Othoum et al. 2018). The structural lanthipeptide genes have been cloned
(Ongey et al. 2018) and are in the process of being genetically modified in order to
both increase production of these compounds, that are normally produced in low
amounts by their “natural” bacterial species, and broaden their application.
Lanthipeptides are very promising bioactive compounds with a great potential use
not only in human and veterinary medicine but also in the control of bacteria that
cause food spoilage.
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4 Secondary Metabolites in the Environment

Microbiologists are still blatantly ignorant concerning the number of bacterial
species on earth and can only hypothesize to estimate the enormous number (perhaps
up to 80%) of bacteria that cannot yet be grown in axenic conditions in the
laboratory. This is either due to the lack of appropriate culture media or because
microorganisms are rarely found in nature in pure culture (only pathogenic micro-
organisms constitute a monoculture when causing a disease), and to flourish, they
need to be in contact with other microorganisms, often through “quorum sensing”
mechanisms, or may require secondary metabolites such as antibiotics or
lanthipeptides. Zengler and coworkers researched this topic in their interesting
publication entitled “Cultivating the uncultured” (2002), putting forward a proposal
for a universal method to detect, or at least estimate, the numerous unculturable
microorganisms present in the environment. According to Nai and Meyer (2018)
“Only a paradigm shift in cultivation techniques—from axenic to mixed cultures—
can allow a full comprehension of the (chemical) communication of microorgan-
isms, with profound consequences for natural product discovery, microbial ecology,
symbiosis, and pathogenesis.” This means that it is essential to develop the microbial
co-culture technology, as well as understand the effects of secondary metabolites
produced by a given microbial specimen on the biological development of neigh-
boring organisms. Despite our lack of knowledge in these basic research areas, some
advances are slowly taking place, among them are the early reports by Johnson and
colleagues and Patel and Roth, both in 1978. More recently, Shank (2013) studied
bacterial co-cultures to examine the influence of secondary metabolites on microbial
interspecies interactions in the natural environment. In addition, Nai and Meyer
(2018) reported that the three technical approaches currently used (3D-bioprinting,
single-cell metabolomics, and microfluidics) can allow systematic co-culture of three
or more microorganisms. Hopefully, the next few decades would bring a much better
understanding of the complex microbial relationships that occur in “natural”
environments.

This knowledge and understanding could revitalize the search for novel natural
compounds with antimicrobial activity, such as antibiotics, a task currently practi-
cally abandoned by pharmaceutical companies throughout the world. Some authors
estimate that there are still up to 1000 novel antimicrobials awaiting discovery, as
well as a great number of yet unknown enzybiotics (Veiga-Crespo et al. 2007).
Production of novel drugs could be attained by microbial co-cultures in which the
secondary metabolites secreted by one species induce expression of antibiotics or
antimicrobials in another species (Bertrand et al. 2014). Gram-positive organisms
and spore-forming bacteria, together with members of the Pseudomonadaceae
family, are prime candidates to use in co-culture experiments, as they are among
the best secondary metabolite producers. Although the number of combinations for
laboratory co-culture experiments is high, the family Bacillaceae (B. subtilis,
B. cereus, B. licheniformis, B. thuringiensis, or B. brevis) can be anticipated as
good candidates for co-culture with antibiotic-producing fungi, such as Penicillium,
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Aspergillus, or Acremonium. These co-cultures could result in the production of
novel, improved β-lactams. Other good contenders for co-culture experiments are
members of the Streptococcaceae and Myxococcaceae families, as they constitute
well known antibiotic producers. This opens up the exciting possibility of obtaining
new and improved antibacterials in the near future, as long as both governments and
private companies are willing to invest in this new venture. This research is essential
for the future of antibiotic development and must be done now to find new antimi-
crobials to counteract the threat of poly-resistant bacterial strains. Antibiotic resis-
tance was described by the World Health Organization in 2018 as “one of the biggest
threats to global health, food security, and development” facing humanity today.

5 Toxins

The ability of spore-forming Gram-positive bacilli (such as Bacillus or Clostridium)
to produce toxins is very high and, in most bacteria, it is linked to secondary
metabolism. These compounds include some of the most potent neurotoxins
known in nature (i.e., C. botulinum, C. perfringens, C. sordellii, or Cl. tetani).
Although the toxigenic phenotype has mainly been assigned to the strict anaerobic
Clostridium genus, this ability is also displayed by some species of the mostly
aerobic Bacillus genus, such as B. cereus and B. anthracis. Clostridium botulinum
was named Bacillus botulinus by Emile van Ermengem, who originally isolated it
from spoiled ham (1897). The American bacteriologist Ida Albertina Bengtson
(1881–1952), the first woman hired to work at the National Institutes of Health
(Lindenmann 2005), renamed it as Clostridium in 1924, as it is an anaerobic
organism, hence restricting the genus Bacillus to aerobic spore-forming rods.
Despite this, the bacterium was still referred to as Bacillus in publications well
into the 1950s, such as in the article by Bulatova and Matveev (1957) concerning
clostridial species. Finally, Collins et al. (1994) reorganized and redefined the
species included in the genus Clostridium.

These neurotoxins produced by these bacteria are proteinaceous in nature and
composed of two subunits (α and β). Botulism toxin was originally purified and
crystallized by Lamanna et al. (1946), and is classified into eight types, referred to as
A to H (Dover et al. 2014); A and B are the most important to humans. This toxin
prevents the release of the neurotransmitter acetylcholine from axon endings at the
neuromuscular junction and causes flaccid paralysis. The botulinic toxin is currently
used in a number of medical applications, ranging from wrinkle reduction to the
treatment of limb spasticity after a stroke (Sun et al. 2019); it is also applied in
esthetic plastic surgery to treat facial sagging (Zhou et al. 2019), as well as in the
treatment of Parkinson’s disease (Cardoso 2018), bruxism (Tinastepe et al. 2015)
and strabism (Scott 1981).

Eklund et al. demonstrated in 1971 that, when C. botulinum type C is cured of its
prophage, the bacteriophage Ceβ, it ceases to produce toxin and becomes
nontoxigenic C. novyi type A. This discovery could open the possibility of toxin
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gene movilization among different clostridial species (Eklund et al. 1974). In the late
twentieth century, a neurotoxigenic Clostridium butyricum strain, isolated from
food, was found to be involved in an outbreak of food-borne type E botulism
(Aureli et al. 1986; Meng et al. 1997). In addition, Cassir and coworkers recently
demonstrated (2016) that Clostridium butyricum, normally used as a probiotic, could
become a new emerging pathogen. Enterococcus faecium has also been reported as a
potential producer of botulinum toxin, presumably due to horizontal transmission of
the toxic gene from a clostridial strain (Zhang et al. 2018)
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