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1 Introduction

Planctomycetes is a bacteria phylum initially described by a Hungarian biologist
Nandor Gimesi in Lake Lagymanyos, Budapest (Gimesi 1924). When cultured, they
seem to be atypical microcolonies. He named the species “Planctomycetes bekefi” in
the name of a Hungarian abbot, Remigius Bekefi, assuming the species be a
planktonic fungus. The organism showed unique morphology with several circular
cells, pear-shaped, ellipsoid, or club-shaped, each in its noncellular stalk with a
holdfast at its tip giving the shape as microcolonies rosette. A wide range of species
has originated in different regions all over the world. Few such species are
Planctomyces guttaeformis (Hortobágyi 1965) and Planctomyces stranskae,
Rhodopirellula, and Thermogutta. The bacteria reproduce by budding are named
as Blastocaulis sphaerica for the stalked form and Blastobacter for the non-stalked
(Henrici and Johnson 1935).

Taxonomically, the phylum Planctomycetes and superphylum PVC divides into
two classes and orders. Grouping the class Phycisphaerae into different orders is
based on the cultured and uncultured strains such as Phycisphaerales and
Algisphaera, Phycisphera and Tepidisphaera, respectively (Fukunaga et al. 2009;
Kovaleva et al. 2015; Yoon et al. 2014). While the orders Planctomycetales and
Brocadiales (anammox planctomycetes) descend under the class Planctomycetia
(Schlesner and Stackebrandt 1986; Jetten et al. 2015; Ward 2015). The 16S rRNA
sequencing suggested diverse microbial community and much larger taxonomy
dividing into ten classes, sixteen orders, and 43 families and much genetic diversity
(Yilmaz et al. 2016).
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Studies earlier considered that the planctomycetes cell wall does not constitute
peptidoglycan where almost all the bacterial species have (König et al. 1984; Liesack
et al. 1986), the same was noted in Chlamydia also. But the latest studies on
re-examination found out peptidoglycan polymer in both Chlamydia and
planctomycetes; however, the function and its localization are not that apparent
(Jeske et al. 2015; van Teeseling et al. 2015; Pilhofer et al. 2013). Most
planctomycetes are multicellular while, few form biofilms, for example,
Planctomyces limnophilus (Giovannoni et al. 1987). Planctomycetes have a complex
life cycle relating to both sessile or swimmer stage (Jogler et al. 2011). With the aid
of fimbriae, the sessile cells anchor on biofilms and take part in the dwelling of
microbial communities (DeLong et al. 1993).

The planctomycetes, namely Gemmata obscuriglobus, Rhodopirellula baltica,
and Planctomyces limnophilus, played a crucial role as genetic models for develop-
ing genetic tools (Jogler and Jogler 2013). The physiology speaks diverse functions.
Growth requirements of planctomycetes reported many species generally belong to
chemoautotrophic aerobes such as Blastopirellula, Gemmata, Pirellula,
Planctopirus, Rhodopirellula, and Gimesia, although at times oligotrophic example,
Isosphaera pallida and slow-growingObscuriglobus andMaris species. Acidophilic
species like Zavarzinella and Singulisphaera are detailed. Taking the temperature
requirement, most of the planctomycetes belong to mesophiles and few be thermo-
philic, for example Isosphaera pallid grows at 55 �C at maximum (Giovannoni et al.
1987). The electron acceptor is sulfur-giving sulfides besides, nitrate, mono, di, and
polysaccharides (Slobodkina et al. 2016).

2 Structural Organization of Prokaryotes and Eukaryotes

Ahead of understanding more about cell organization of planctomycetes, it is
indispensable to know the different cell plan compartmentalization of prokaryotes
and eukaryotes. Distinguishing the cellular life of prokaryotes and eukaryotes is
usually based on the cell organization. Earlier in the nineteenth century, the dichot-
omy organization was explained by the presence of a nucleus of cells as plants using
a light microscope; however, later in the twentieth century, Edouard Chatton pro-
posed prokaryotes as non-nucleated cells (Chatton 1925). Studies using an electron
microscope revealed a cavernous difference in the two cell types; the presence of
membrane-bound cell organelles such as the mitochondria, nucleus, and the chloro-
plast of archetypal eukaryote and the absence of double-membrane organelles as
prokaryotes, the bacterial species (Chatton 1938). Another distinct feature is the
presence of the nuclear envelope in eukaryotic cells and lack of enveloped mem-
brane in prokaryotes (Stanier and Van Niel 1962). The three-domain system pro-
posal was accepted with the establishment of Archaea.

For a eukaryotic organism, the presence of a nucleus, its nuclear envelope, and
the nuclear pore complex is the main cell plan. The nuclear pores entrenched within
it, and the structural components that transport amidst the nucleus and cytoplasm and
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the proteins from the nuclear pore complex. Outwardly, the nuclear envelope is
deemed double membrane but, it is not continuous. At the junction of nuclear pores,
the loop link is formed between the membranes of the double-layered sections, such
that the envelope is believed to be as a single folded membrane (Martin 1999). This
characteristic is noteworthy to consider the origin of the nucleus for the viability of
models. Few models that cite symbiotic fusion of two phylogenetic diverge cells
mean that the nuclear envelope has no continuity of inner and outer membranes
(Poole and Penny 2001; Rotte and Martin 2001).

The traditional prokaryote cell plan entails a typically naked genomic DNA with
no membrane. In models of E. coli and B. subtilis, the DNA is shown as a corralled
nucleoid, expands throughout the cytoplasm, and into tiny ribosome-free spaces
occupying a large area of the cell. This arrangement is vital for co-translational
protein secretion during coupled transcription and translation processes. This pro-
cess of coupled transcription and translation excludes the separation of genomic
DNA from the cytoplasmic region and the ribosomal bound regions and is depend-
able on short-lived mRNA. This unique feature is selective to prokaryotes. Yet,
studies are still fragmentary whether this process occurs in eukaryotes (Iborra et al.
2004). Prokaryotic cells do comprise various internal membrane-bound organelles or
intracytoplasmic membrane (ICM) development though, in general, is studied as
prokaryotes lack intracellular compartmentalization (Table 1) (Stolz 1998); how-
ever, these do not constitute prokaryotic cell plan as they are not concerned for
compartments of genomic DNA.

Table 1 Incomparable Prokaryotic cell organelles

Organelle type Present in
Membrane
type References

Acidocalcisome Agrobacterium tumefaciens
Rhodospirillum rubrum

Proteins
and lipid
bilayer

Seufferheld
et al. (2003,
2004)

Chromatophores Purple nonsulfur
Photosynthetic bacteria

Lipid
bilayer

Murat et al.
(2010)

Chlorosomes Green sulfur photosynthetic bacteria Lipid
bilayer

Ribulose-1,5-
bisphosphate carboxyl-
ase/oxygenase
containing
Carboxysomes

Chemoautotrophs and photoautotrophic
bacteria especially nitrifiers, sulfur-
oxidizing thiobacillus
Cyanobacteria

Proteins Cameron
et al. (2013)

Enterosomes Salmonella enterica Proteins Shively
(1998)

Magnetosomes Magnetotactic bacteria Proteins
and lipid
bilayer

Komeili
(2004)
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3 Why Planctomycete is an Exception to the Prokaryotic
Cell Plan?

From the above context of prokaryotes cell organization, it is definite that they lack
the nuclear membrane. However, planctomycetes being a typical phylum of bacteria
has a structural arrangement contradictory to prokaryotes, as the cells are separated
into compartments by ICM into either single or two or more than two are dependent
on the genus. So, these variations of cell compartmentalization confer doubt whether
all genera of planctomycete show cell compartmentalization and if they do exhibit,
are there characteristics helpful in knowing the basis or source and mechanism?

4 Compartmentation of Planctomycetes Cell

As discussed earlier, all planctomycetes contribute to a typical cell plan relating to
internal compartments; within this arrangement there lays additional multifaceted
disparity concerning more compartments and cell membranes (Fig. 1). The fresh-
water planctomycetes, Gemmata obscuriglobus, when cultured and examined
revealed a new characteristic not found in any other bacteria. The feature is the
presence of three membranes: condensed nucleoid bound by two intracytoplasmic
membranes (ICM) and the pirellulosome enclosing the nuclear body (Fuerst and
Webb 1991). In anammox planctomycetes, namely Kuenenia, a single membrane-
bound anammoxosome is seen apart with double membrane ICM. In Pirellula
marina and Pirellula staleyi (Lindsay et al. 1997), Planctomyces limnophilus (Jogler
et al. 2011) and Schlesneria paludicola (Kulichevskaya et al. 2007) have two
compartments, the paryphoplasm separating a ribosome-free outer region from
major compartment the pirellulosome enclosing the ribosome and nucleoid; how-
ever, the species exhibits cellular compartmentalization (Lindsay et al. 1997).

Current studies on planctomycetes suggested the organism executes protein
uptake (endocytosis) via putative or integral membrane protein that looks like
eukaryotic protein clathrins (Lonhienne et al. 2010; Santarella-Mellwig et al.
2010). This feature of endocytosis plays a significant role in eukaryogenesis lineage
giving an interlink bridge to prokaryotes and eukaryotes (Devos and Reynaud 2010;
Forterre and Gribaldo 2010; Fuerst and Sagulenko 2011).

5 Components of Planctomycetes Cell

5.1 Cell Wall and Cell Surface Proteins

The principal component we would discuss is the cell wall. The chemical analysis
for planctomycetes reported the absence of muramic acid an important component
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typical for peptidoglycan polymer which has a key for structural integrity and
potency. This unique feature is contradictory to other bacterial cell walls (Liesack
et al. 1986). While in few planctomycetes and ancestral PVC superphylum, the
operon gene “dcw” is observed which is essential in synthesizing the peptidoglycan
in bacteria (Pilhofer et al. 2008). Homologous to the “dcw” gene, planctomycetes
have genes such as the FtsZ gene. The cell wall is composed mainly of proteins and
made up of amino acids in abundance (Table 2). The amino acid cystine is predom-
inant in most planctomycetes, wherein few low contents of cystine are reported, for
exampleG. obscuriglobus. The presence of cystine shows an integral cell wall due to

Cell Wall
Cytoplasmic Membrane

Intracytoplasmic Membrane

Paryphoplasm

Riboplasm

Nucleoid

Nuclear Envelope

Anammoxosome

Gemmata
Candidatus Brocadia 

anammoxidans

Paryphoplasm

Intracytoplasmic Membrane

Cytoplasmic Membrane

Cell Wall

Pirellulosome (riboplasm)

Nucleoid

Pirellula Isosphaera

(A)
(B)

(C)
(D)

Fig. 1 Schematic diagram of cell organization and compartmentalization of different
planctomycetes species

Table 2 Protein content in planctomycetes

Species Dry weight (%) References

Isosphaera pallida 99 Giovannoni et al. (1987)

Gemmata obscuriglobus 51 Stackebrandt et al. (1986)

Planctomyces maris 80

Pirellula staleyi 82
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the presence of disulfide cross-links (Liesack et al. 1986). This feature gives the cell
shape, strength, and integrity similar to that of peptidoglycan.

5.2 Cateriform

A special characteristic is spotted on the cell surface of planctomycete, the appear-
ance of pit-like structures called crateriform. The allocation of crateriform varies
down the taxonomical position as well as by the size. The nature of crateriform is not
understandable. Indeed, it can withstand its uniformity after SDS treatment. The
distribution might be either polar buds or uniform. The size varies from 12 nm at
least to 7–5 nm in mature buds (Tekniepe et al. 1981). The larger is close to the
mother cell while the smaller is present at the distal end to that of the mother cell. The
change in diameter to 30 nm is noticed in the mature mother cells, where the smaller
structures turn out to be invisible.

5.3 Paryphoplasm

The region paryphoplasm is present amidst the cytoplasmic and intracytoplasmic
membrane. The region is ribosome free. The term “paryphe” means border woven
along with a robe. Based on the electron density, it varies from species to species; for
example, G. obscuriglobus and Candidatus Kuenenia stuttgartiensis where the
former shows relatively denser while the latter is transparent (van Niftrik et al.
2009). It is arranged mostly in the region of the cell border or occupies larger
space within the cell bound to the intracytoplasmic membrane. In Pirellula group
species, the paryphoplasm is dense at polar region than the opposite (Fig. 2b), while
in Rhodopirellula baltica, vesicles-like structures similar to pirellulosome is present
but with no nucleoid (Schlesner et al. 2004). The cell plan in Planctomyces
limnophilus is identical to that in Blastopirellula, but the paryphoplasm shape
changes with different cells along the z-axis and is symmetrically nonrotational
(Jogler et al. 2011). In Blastopirellula, the pirellulosome and the paryphoplasm are
separated by a thin single ICM (Fig. 2a). Studies have reported contradictory out-
comes replacing the term pireplasm in place of paryphoplasm. In species Gemmata
obscuriglobus, invagination of the cytoplasmic membrane into the paryphoplasmic
space from vesicles topologically alike to the pireplasm (Lonhienne et al. 2010),
another argument is the asymmetrical distribution of paryphoplasm in species of
Blastopirellula and Pirellula. However, analysis using cytochemical methods on
anammox planctomycetes is reliable with the theory of paryphoplasm be the actual
cytoplasmic compartment.

Proteins such as non-FTsZ kustd1438 (Candidatus Kuenenia) and YTV protein
accumulates in the paryphoplasm. Staining Blastopirellula and Pirellula indicates
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the presence of glycoprotein and polysaccharide in the paryphoplasm, RNA in
Pirellula group, and G. obscuriglobus species (Lindsay et al. 1997, 2001).

5.4 Intracytoplasmic Membrane

The ICM present below the paryphoplasm is an exclusive trilaminar membrane. The
electron micrographs sections of ICM is visible than the cytoplasmic membrane. In
species Planctomyces limnophilus, ICM is bilayered and is of 6 nm wide as same as
the cytoplasmic membrane (Jogler et al. 2011). The ICM is never intact with the
cytoplasmic membrane, as other bacterial cell membranes appear. Due to the
invagination of the cytoplasmic membrane at endocytotic protein intake, ICM
form vesicles inside the paryphoplasm (Lonhienne et al. 2010), one such example
is Isophaera pallida where 60% of the cell interior is occupied forming large
inclusion due to infolding of ICM (Fig. 1b). Through these vesicles in the cytoplas-
mic membrane, there is the molecular trafficking of components, which is not
evident. On the other hand, in groups of planctomycetes such as G. obscuriglobus
and Anammox species, an extra compartment within the ICM-bound pirellulosome
giving an arrangement of two membranes enfolding the nucleoid, while in anammox
group, a single membrane component anammoxosome with no nucleoid is present.
A common fundamental model of the pirellulosome partition bound by the ICM and

Fig. 2 Transmission electron micrograph view shows cell compartmentalization of parypholasm
(P) and pirellulosome (PI) separated by ICM with condensed nucleoid (N) dispersed in the
pirellulosome (a) Blastopirellula marina species (b) of Pirellula staleyi (Source: Fuerst 2005)
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a paryphoplasm bound by the ICMwithin the cell observes this cell plan in almost all
planctomycetes.

5.5 Pirellulosome

Below the ICM, the major cell component of planctomycetes, the pirellulosome with
nucleoid DNA and ribosome’s is arranged. In species of G. obscuriglobus, an outer
membrane is formed due to infolding ICM into the pirellulosome. But, in Pirellula
group, the ICM at all times outlines an unremitting frontier to the ribosome and
nucleoid, enclosing pirellulosome compartment (Fig. 1a and c) (Lindsay et al. 1997).
While in Rhodopirellula baltica and other planctomycetes, the cell plan appears to
have a small adaptation of pirellulosomes roofed within the paryphoplasm, most
likely surrounded with ribosome’s, but it seems lacking nucleoid (Schlesner et al.
2004); however, this need to be reassessed by tomography to rule out the 3D
structure of a distinct pirellulosome. The same cell plan is seen in Planctomyces
limnophilus but with different forms and organization (Jogler et al. 2011). A rare
example of pirellulosome forming falcate shape at the cell margins are shown in
Isosphaera pallida and Planctomyces maris when the ICM infolds forming an
outsized lobe of paryophoplasm. Protein synthesis by the co-translation process is
suggested in Pirellula group as ribosomes of the pirellulosome are noticed in few
regions lining the boundary of the ICM. In G. obscuriglobus, the ribosomes are
observed arranged linearly all along the outer and inner membranes of the nuclear
envelope looking like that of the eukaryotic endoplasmic reticulum. The significant
role played by the pirellulosome in cell biology is the metabolic activities such as
glycolysis, transcription, and translation, because of the occurrence of DNA and
ribosomes in almost all sites.

5.6 Nucleoid

Section of plantomycetes cells visualized under a transmission electron microscope
shows dense fibrillar nucleoid existing within the pirellulosome. In species of
G. obscuriglobus, the membrane-bound nuclear region, both fibrillar nucleoid and
ribosome-free particle reside; depending on this, both DNA and RNA at the same
time are imaged by immuno-gold labeling techniques. This presence of the invag-
ination of fibrils within the nucleoid signifies a highly dense concentration similar to
that of E. coli nucleoid where a coralline-shaped nucleoid expands all through the
cell space. During cell division in G. obscuriglobus species, the nucleoid shows to
stay in the condensed form all through the cell cycle. Yet, at some point of the
passageway that is the nucleoid passage from the bud neck into the new bud, the
fibril unfolds to some amount but remains connected leaving gaps (Fig. 3a and b).
These gaps signify that the outer and inner membranes of the membrane envelope
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combine to form a continuous membrane giving an impression of a single membrane
nuclear envelop. Within these gaps, there is a chance of protein transport as similar to
that of the nuclear pore. A liquid crystalline cholesteric organization such as DNA
filaments being arranged in a sequence such that each one takes turns virtually in
helical model resulting in the orderly arrangement of DNA in a series of the nested
arch as analogous to eukaryotic dinoflagellates (Yee 2012). This condensation of the
nucleoid in planctomycetes gives inference on how the replication and transcrip-
tional processes are planned in these organisms. Locating the RNA polymerases
might assist in clarifying the cell plan. Lieber et al. (2009) suggested that the
condensation of the nucleoid inG. obscuriglobus species might be due to its obvious
resistance toward ultraviolet rays and gamma radiation (Lieber et al. 2009). Still, the
statement has no proper evidence whether all other planctomycetes do exhibit such
resistance activities.

5.7 Anammoxosome

Anammox planctomycetes are usually coccoid-shaped bacteria with a long genera-
tion time (10–30 days). Species, namely Candidatus Brocadia anammoxidans,
Candidatus Scalindua brodae, Candidatus Scalindua sorokinii, Candidatus
Kuenenia stuttgartiensis, and Candidatutus scalindua, belong to anammox

Fig. 3 Diagram of G. obscuriglobus (a) showing the membrane-bound nuclear body, nucleoid,
ICM, and paryphoplasm (b) enlarged section nuclear envelope showing as single membrane and
gap due to infolding (Source: Fuerst 2005)
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planctomycetes. They are capable enough to convert ammonium to dinitrogen
donating an electron to nitrite with hydroxylamine and hydrazine as transitional
compounds (Jetten et al. 2003; Liesack and Stackebrandt 1992; Strous et al. 2002;
van Niftrik et al. 2004). The capacity of producing hydrazine from hydroxylamine is
a key feature of anammox planctomycetes, similar to the occurrence of free hydra-
zine in nitrogen metabolism of microbes (Strous and Jetten 2004). Localization of
anammox is detected by the presence of a key enzyme, a hydrazine-oxidizing
enzyme.

In species of Anammox planctomycetes, a distinctive feature is the presence of a
unique organelle named as anammoxosome and exceptional lipids molecule lining
the anammoxosome membrane pictured as linear concatenated cyclobutane rings
(ladderane) (Sinninghe Damste et al. 2002). rRNA studies reported anammox
planctomycetes to appear deeply branched with 16sRNA having a distinctive helical
structure at position 9 giving a secondary structure not seen in any other
planctomycetes (Schmid et al. 2001). The organelle lies within the riboplasm region
but is separated by a thin-layered membrane, these planctomycetes do have a
nucleoid present in proximity with the anammoxosome membrane (Lindsay et al.
2001). The cell plan of anammox suggests a single-membrane envelope nucleoid
DNA associated with anammoxosome membrane (Fig. 4). An array of tubules seen
within the anammoxosome membrane suggests a major theory on the
anammoxosome focusing its role in catabolism, that is the oxidation of ammonium

Fig. 4 Cell plan of anammox species (Brocadia anammoxidans) (Source: Fuerst 2017)
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anaerobically. The organelle signifies a lively function, i.e., the cell division or the
anammoxosome movement.

Anammox planctomycetes play an important role on the global cycling of
nitrogen in the environment, especially within the marine ecosystems, where they
are a major microbial component of the world’s oceanic oxygen minimum zones
(OMZs) and marine sediments (Francis et al. 2007; Kuypers et al. 2005; Lam et al.
2009; Op den Camp et al. 2006; Schmid et al. 2007). OMZs are expected to increase
with global warming. So, understanding their implications for nutrient cycling in the
oceans is important for modeling climate change effects (Lam et al. 2009). Marine
anammox planctomycetes comprise a previously unsuspected important missing
link in the global nitrogen cycle. It has been estimated that 50% of the molecular
dinitrogen in the atmosphere originating from the oceans may have its origin in the
ammonium-oxidizing activities of anammox planctomycetes (Dietl et al. 2015).

5.8 Atypical Components of Planctomycetes

5.8.1 Sterols and Hopanoids

Recent research and discovery on Gemmata group reported sterols in its internal
membrane. The presence of sterols in lanosterol form and its isomer parkeol in the
original form suggest the occurrence of the metabolic sterol biosynthetic pathway
(Pearson et al. 2003). Planctomycetes also can produce hopanoids (a substitute for
sterols in eukaryotes) that are helpful in coding squalene hopene cyclase genes for
flexibility, smoothing of membranes implicated for compartmentalization
(Sinninghe Damste et al. 2004).

5.8.2 Ladderane

Ladderane is a unique lipid in the form of a staircase-like arrangement with fused
moieties of cyclobutane. Ladderane is of three types: one be the ester-linked a heptyl
chain, the second be ether linkage with glycerol unit, the final type constitutes both
one and two linked together (Sinninghe Damste et al. 2002). The main function of
ladderane lipid is to avert toxic intermediate hydrazine from dripping into the
riboplasm region. However, the ladderane does not materialize to form a perfect
barrier, as the intermediates are evident on the outer surface of the cells (Kartal et al.
2013). Application of ladderane is suggested in optoelectronics—for a model,
transfer of electrons by chromophores via pie-pie interactions, in materials science
for long-range electron transfer by alpha bonds, as molecular rods or stiff spacers
among functional groups (Nouri and Tantillo 2006). Ladderane is also used to treat
wastes in industries by providing an economical source.
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5.8.3 Hydrocarbons

Gimesia maris once classified as Planctomycetes maris reported to generate olefinic
long chain hydrocarbon with nine double bonds and also has a set of “ole” genes for
synthesis (Sukovich et al. 2010). Besides G. maris, P. limnophilus is capable of
synthesizing long-chain fatty acids through the FAS/PKS mechanism, and also
offers precursors for biosynthesis of olefinic hydrocarbon (Shulse and Allen 2011).

5.8.4 Sulfatases

Of all varied planctomycetes, marine planctomycetes have genes for sulfatases
associated with the habituate with algae-producing sulfated polysaccharides but
studies are not evident regarding the function. However, studies with Rhodopirellula
baltica (110 genes) and other species of Rhodopirellula reported having genes for
sulfates (Glöckner et al. 2003; Wegner et al. 2013). Correlation of marine
metagenomes with marine planctomycete genomes for sulfatases gene is
recommended (Woebken et al. 2007). Of the 110 genes, 82 are similar to the
prokaryotes, while 28 are alike eukaryotic sulfatases (Glöckner et al. 2003). Studies
later instituted more than 1000 ORF annotated with sulfatases. Few of these sulfa-
tases are useful in stereochemical transformation in chemical industries, for example,
R. baltica (Gadler et al. 2006). Deracemization of compounds by R. balticais is a
unique feature in this planctomycete where it undergoes enantioselective hydrolysis
of alkyl sulfate esters retaining the configuration (Gadler and Faber 2007). An
experimental model to yield maximum product by deracemization approach was
attained by the sulfatase in mixture with a stereo-complementary inverting enzyme
(Wallner et al. 2005).

5.8.5 Polyketide Genes

The ease of having either a partial genome sequence or complete suggests the
possibility of assessing biological and chemical assays of novel secondary metabo-
lites generated by the planctomycetes (Jeske et al. 2013). From these analyses, it is
found to have the possibility for synthesis of bacteriocins, non-ribosomal peptides,
and polyketide genes in planctomycetes such as Blastopirellula marina, R. baltica,
Schelsneria paludicola, Singulisphaera acidiphila, and G. obscuriglobus having
highest gene clusters 11, 10, 13, 10, and 12 respectively, while anammox
planctomycete having smallest genome and lowest be Phycisphaera mikurensis.
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5.8.6 Esterases

In thermophilic planctomycetes example, Thermogutta, a carboxylesterase is found
which has a major role in applied perspective (Sayer et al. 2015). The enzyme is
active at 70 �C with a unique active site for α-β hydrolase lineage, most of the “cap”
area is missing at the active site exposing to solvent. This phenomenon explains the
relationships of esterases linking substrate predilection and structural pocket that is
the active site. Gene coding for esterase synthesis has been recovered from a sludge
metagenome and instituted closest association (33% identical amino acids) to
G. obscuriglobus esterase/lipase protein (Zhang et al. 2009).

5.8.7 Polysaccharide Lyase Enzymes

Polysaccharide lyase is one of the main sources of R. baltica (Dabin et al. 2008). The
most common debasing polysaccharide enzyme is the extracellular glycoside hydro-
lase 10 endo-β-1,4-xylanases present in almost all planctomycetes, as well as
Isosphaera-Singulisphaera group (Naumoff et al. 2014). Studies in soils using
ecological radioisotope probing specified that uncultured planctomycetes perhaps
be the prime degraders of composite heteropolysaccharide and consequently may be
a primary contender for investigating the role and function of polysaccharide lyase
enzyme and the enzyme intermediates in the cloning of metagenomes (Wang et al.
2015).

5.8.8 Ornithine Lipids

Low pH habitat planctomycetes such as Telmatocola sphagniphila, Singulisphaera
rosea, and Singulisphaera acidiphila have methylated ornithine lipids (OL) in the
form of mono, di, and tri at the epsilon nitrogen region. The hypothesis endows with
a different mechanism for membrane stability at low pH conditions and extremely
little phosphate conditions. Studies for ecology or lipid analysis of Sphagrum
wetland, the habitat for acidophilic planctomycetes, reported trimethyl OL at the
interface of oxic/noxic region and abundant rRNA sequence (Moore et al. 2015). An
enzyme for N-methylation of OL remained unclear, but later a study in Northern
Russia identified and characterized OL N-methyltransferase OlsG gene/enzyme
from planctomycetes Singulisphaera acidiphila (Escobedo-Hinojosa et al. 2015).

6 Cell Division of Planctomycetes

The cell cycle of planctomycetes and the division is budding, where an identical
smaller daughter cell is formed from the larger mother cell. Budding is observed in
almost all planctomycetes such as Pirellula, Rhodopirellula, Aquisphaera,
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Isosphaera, Planctomyces, Gemmata, and Blastopirellula, but in Isosphaera where
intercalary buds are produced, all along the filament of cells and are not separated
from the mother cell as seen in the usually budding process (Giovannoni et al. 1987).
Alternatively, fission takes place in anammox planctomycete Candidatus Kuenenia
stuttgartiensis and Phycisphaera (van Niftrik et al. 2008; Fukunaga et al. 2009). In
anammox planctomycetes, it is not just the cell limits division at the midpoint but
also the organelle anammoxosome divides within the cell. A protein ring is seen in
the paryphoplasm region unusual to the FSTZ ring seen in the cytoplasm of most
bacteria (van Niftrik et al. 2009). Consequently, even where budding is not seen in a
planctomycete, cell division occurs, which is a unique feature.

In Pirellula staleyi (belongs to Blastocaulis-Planctomyces group), the cell divi-
sion has an exclusive element that indulge in the motility of the cell known as
“swarmer cell phase” (Tekniepe et al. 1981). After swarmer phase, the cell matures
into the mother cell and undergoes budding forming a daughter cell about half to that
of the mother cell. The duration is nearly 3 h. A flagellum is synthesized at the time
of daughter cell formation (attachment phase) and consequently the motile swarmer
is released as soon as the daughter cell is detached from the mother cell. The same
cycle is shown in Planctomyces limnophilus and Rhodopirellula baltica (Gade et al.
2005; Jogler et al. 2011; Wecker et al. 2010). Nevertheless, its studies are unclear
and no evidence of all planctomycetes having the swarmer phase. During the cell
cycle, we come across significant phases: the lag phase or resting phase and the
synthesized phase or S phase where DNA replication occurs.

In Isosphaera pallida, the motility is of gliding type rather than swimming. In
Rhodopirellula baltica, the cells are nonmotile but the polar association is seen
(crateriform structures exhibit the polar distribution where fimbriae start at the border
cell pole). In Gemmata species both the mother cell and the swarmer cells have
flagella (Gade et al. 2005). Rosette-type structure occurs at nonreproductive cell pole
through holdfast components. Budding in Gemmata overall takes 12 h with new bud
detaching from the matured mother cell and that reportedly undergo fission (Fig. 5).

7 Synthetic Biology and Compartmentalized
Planctomycetes Cell

The purpose of Synthetic biology is that it utilizes components and modules of an
existing organism to produce modified or novel types of organisms with definite
roles. Earlier, for synthetic organism generation, genes and regulatory elements of
gene group have been in use. Yet, recent studies reported the use of organelles such
as microcomponents, pirellulosome, and anammoxosome unique to planctomycetes
(Giessen and Silver 2016) and magnetosome (Borg et al. 2015) are considered as a
possible element for engineering synthetic organisms.

Giving a detailed account of organelle function in synthetic biology: the
magnetosome element in arrangement with nano trap system transmits protein
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localization in Magnetotactic bacterium altering the taxonomical activities of the
bacterium. Microcompartments enclosed by proteins anchorage enzymes and such
encapsulated enzymes be capable of constructing new catalytic functions being a
module. One such example of microcompartments degrading enzyme (1-fucose and
1-rhamnose) useful in encapsulation is seen in planctomycetes that degrade sugars
from algal and plant cell walls (Erbilgin et al. 2014). Similar way, the
anammoxosome organelle of planctomycetes may be used to disclose innovative
ways and mechanisms to compartmentalize other bacteria for particular functions
and transfer of substances within the cell. But due to limiting cause in understanding
about the formation of compartments, it is not evident how such arrangement is
formed, but if awareness can be attained through synthetic cell biology research on
planctomycetes, then that may lead to getting a more or increased yield of the desired
compounds by cellular metabolism (Giessen and Silver 2016). The very initial step
for such a process is the expansion of a genetic system for planctomycetes which is
still up and coming. Over and above, advanced research on the isolation of com-
partments and organelles might be useful directly in the field of biotechnology
(Neumann et al. 2014).

Fig. 5 Diagrammatic representation of cell division in planctomycetes. (a and g) are Mother Cells;
Stage b shows bud formation from mother cell; In stage c, the double membraned nuclear envelope
opens releasing nucleoid and the nucleoid is freely passed via the neck and enters the newly formed
bud. Stage d shows free nucleoid with envelope be absent. (e) shows the formation of a nuclear
envelope formed in continuous with the ICM of the mother cell. (f) Membrane fusion and pinching
off results in two cells; however, incomplete separation is observed in the micrographic image. (g)
shows the complete formation of two identical cells, one of which initiates the next budding cycle
while the second mother cell starts a new budding cycle at a lag phase duration of 3–5.5 h [Source:
Lee et al. 2009 modified)
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8 Conclusion

For understanding the cell organization, the cell plan of Planctomycetes has proven
to present novel models and imminent new ways of living earlier indefinite for
bacteria or certainly for any other life form. Due to their varied compartmentaliza-
tion, exclusive enzymatic and chemical mechanisms, the planctomycetes have
previously provided evidence as a functional microbial source. Planctomycetes as
a model organism have variety or continuum of structural organization and interre-
lated molecular properties among eukaryotes and prokaryotes; however, studies at
the genomic level may further help in understanding the fundamental molecular cell
biology of their cell plan and their evolutionary impact for the basis of eukaryote cell
biology.
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