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Preface

We are delighted to introduce the proceedings of the sixteenth edition of the European
Alliance for Innovation (EAI) International Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness (Qshine 2020). This conference
brought researchers, developers, and practitioners around the world to disseminate,
exchange, and discuss all recent advances related to heterogeneous networking, par-
ticularly with regard to quality, experience, reliability, security, and robustness.

The technical program of Qshine 2020 consisted of 20 full papers, which were
selected from the 49 submitted papers. Aside from the high-quality technical paper
presentations, the technical program also featured a keynote speech, which was given
by Prof. Xiaoming Fu from the University of Gottingen, Germany. Because of the
COVID-19 pandemic, the conference was, unfortunately, held virtually in the cyber-
space, with all the presentations, including the keynote speech, given online. During
the conference there were more than 200 academics in attendance.

Coordination with the steering chairs, Prof. Bo Li and Prof. Imrich Chlamtac, was
essential for the success of the conference. We sincerely appreciate their constant
support and guidance. It was also a great pleasure to work with such an excellent
Organizing Commitee team, including Dr. Ao Feng, Min Chen, Dr. Changming Zhao,
Dr. Wenzao Li, Prof. Jianbing Ma, and Jing Peng; we are grateful for their hard work in
organizing and supporting the conference. We would like to thank the Technical
Program Committee (TPC), led by our TPC Co-chairs, Prof. Sheng Xiao, Prof. Baowei
Wang, and Prof. Zhipeng Yang, who completed the peer-review process for the
technical papers and put together a high-quality technical program. We are also grateful
to the Conference Manager, Natasha Onofrei, for her support and all the authors who
submitted their papers to the Qshine 2020 conference.

We strongly believe that the Qshine conference provides a good forum for all
researchers, developers, and practitioners to discuss all science and technology aspects
that are relevant to heterogeneous networking. We also expect that the future editions
of the Qshine conference will be as successful and stimulating as Qshine 2020, as
indicated by the contributions presented in this volume.

Xi Wu
Kaishun Wu
Cong Wang
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Research and Application of Visual SLAM
Based on Embedded GPU

Tianji Ma , Nanyang Bai , Wentao Shi , Lutao Wang(B), and Tao Wu

Chengdu University of Information Technology, Chengdu, Sichuan, China
{wanglt,wut}@cuit.edu.cn

Abstract. In automatic navigation robots, robotic autonomous positioning is one
of the most difficult challenges. Simultaneous Localization andMapping (SLAM)
technology can incrementally construct a map of the robot’s moving path in an
unknown environment while estimating the position of the robot in the map, pro-
viding an effective solution for robots to fully navigate autonomously. The camera
can obtain corresponding two-dimensional digital images from the real three-
dimensional world. These images contain very rich color, texture information and
highly recognizable features, which provide indispensable information for robots
to understand and recognize the environment based on the ability to autonomously
explore the unknown environment. Therefore, more and more researchers use
cameras to solve SLAM problems, also known as visual SLAM.

Visual SLAM needs to process a large number of image data collected by
the camera, which has high performance requirements for computing hardware,
and thus its application on embedded mobile platforms is greatly limited. In this
regard, this paper uses embedded hardware equipped with embedded GPU, com-
bines CUDA-based GPU parallel computing and visual SLAM algorithm, finally,
designs a parallelization scheme based on embedded GPU.

Keywords: Visual-SLAM · Embedded · Parallel computing · CUDA · GPU

1 Introduction

1.1 Background

In order to achieve fully autonomous work in an unknown environment, mobile robots
must solve two basic problems of positioning themselves and perception of the envi-
ronment. Simultaneous Localization andMapping (SLAM) was first proposed by Smith
[1] and applied in the field of robotics. It combines the robot’s self-positioning and map
construction into one. The goal is tomake the robot locate itself through themovement of
the robot without the prior information of the environment, and then establish a real-time
map of the environment based on the sensor data, at the same time the robot’s motion
trajectory is accurately estimated.

At present, SLAMhas relatively mature applications. For example, sweeping robots,
drones, Augmented Reality (AR), Virtual Reality (VR), etc. Autonomous driving and

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
X. Wu et al. (Eds.): QShine 2020, LNICST 381, pp. 3–21, 2021.
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accurate 3D reconstruction are also in rapid development. According to different sen-
sors used, SLAM can be divided into visual SLAM and laser SLAM. Laser SLAM
uses LiDAR (Light Laser Detection and Ranging) as a sensor, and the collected data is
called Point Cloud data, which contains accurate angle information and distance infor-
mation. The distance measurement using LiDAR is more accurate, and the error model
is relatively simple. At the same time, LiDAR has the advantages of being insensitive
to light. Compared with visual SLAM, laser SLAM’s related theoretical research is
relatively mature, but the sensors are expensive. Visual SLAM can use a variety of cam-
eras: monocular camera, stereo camera, and depth camera as sensors. These cameras
are cheaper than LiDAR and are widely used in various fields of society. At the same
time, rich color information, texture information, and more recognizable image features
can be obtained from the images captured by the camera. Therefore, visual SLAM has
gradually become the main research direction for solving SLAM problems, but its dis-
advantage is that real-time processing of a large amount of image data requires high
computing resources, which brings real-time operation on embedded platforms and
mobile platforms a great challenge. Compared with the computing resources of high
power consumption PC platforms, embedded platforms and mobile platforms generally
have low power consumption, and the computing resources are also greatly restricted.
Therefore, it is an important direction of the research to use limited computing resources
to efficiently execute algorithms of visual SLAM on embedded platforms.

1.2 Main Research Content

Thanks to the rapid development of parallel technology, the performance of proces-
sors suitable for parallel computing is also rapidly improving, which makes it possible
to double the operating efficiency of the algorithm. In recent years, GPU computing
performance has achieved rapid growth. Its computing performance, especially parallel
computing performance, is far stronger than that of CPU. Researchers have gradually
discovered the potential of GPU parallel computing. In order to provide a more friendly
interface for researchers and developers to use GPU to solve problems, in 2006, NVIDIA
Corporation released CUDA (Compute Unified Device Architecture), a general-purpose
parallel computing platform and programming model, as an “engine” to drive GPU to
solve complex computing problems, which is more efficient than CPU. After more than
ten years of development, CUDA has been widely used in the field of image process-
ing. XianLou [2] uses CUDA to accelerate the processing of image segmentation algo-
rithms based on normalization, and Chengyao [3] uses CUDA to optimize image feature
extraction and realizes the real-time stitching of panoramic video, which overcomes the
shortcomings of high power consumption, non-real-time and low stability that used to
rely on post-processing.

The current development of visual SLAM has been relatively mature, and there
are various types of solutions, including sparse method, semi-dense method, and dense
method, as well as feature pointmethod based on image features and directmethod based
on image grayscale. The execution efficiency, positioning accuracy, and robustness of
these algorithms perform well in specific experimental environments. However, most of
these algorithms are performed on desktop-level high-power platforms, and there is very
littlework to solve visual SLAMproblems for embeddedplatforms.Embeddedplatforms
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have many advantages such as low power consumption, miniaturization, low cost, and
high reliability, but their performance is far inferior to high-power PC platforms. Due
to visual SLAM has high requirements for computing resources and correspondingly
high requirements for hardware computing performance, embedded platforms and their
performance are easily ignored by visual SLAM researchers.

With the development of embedded hardware, high-performance embedded hard-
ware with integrated GPU has emerged. Since there are a lot of image processing and
pose estimation operations in visual SLAM, these operations consume a lot of com-
puting resources. Therefore, GPU parallel computing can be used to accelerate pro-
cessing. The real-time processing performance of visual SLAM in embedded systems
can be effectively improved through the combination of high-performance embedded
processing hardware and algorithm optimization, which is beneficial to the mobility,
miniaturization, and low energy consumption applications of visual SLAM technology.

In summary, our work mainly studies how to use GPU parallel computing to accel-
erate processing on embedded hardware to overcome the computational complexity of
visual SLAM. Although there have been some works that use GPU to accelerate parallel
calculation of certain algorithms in SLAM, such as Wu C [4] and Rodriguez Losada
[5] have implemented beam adjustment and ICP (Iterative Closest Point) algorithms on
GPU, but these works are all performed on desktop GPUs.

Visual 
Odometry Optimization

Loop Closure 
Detection

Front-end Back-endCamera data input Mapping

Fig. 1. A block diagram of a typical visual SLAM system.

Figure 1 illustrates a typical visual SLAM system structure diagram, including five
parts: visual sensor data, front-end (also called visual odometer), back-end, mapping and
loop closure detection. The vision sensors input the images, and then system performs
feature extraction and matching on these input images at the front end, and then roughly
estimates the position of the feature points and the robot, and then transfers the estimated
result to the back end, and executes graph optimization to get a more accurate result. In
this way, it is possible to locate and then build a map, and at the same time transfers the
optimized result to the closed-loop inspection to eliminate the accumulated error of the
robot moving for a long time, and then uses the result for tracking. Among these five
parts, the front-end and the back-end are important parts in charge of processing data,
and these two parts consume a lot of computing resources.

Our work focuses on the front-end, illustrating the main key technologies of feature
extraction, feature matching and the principle of relevant algorithms. We combine the
selected scheme and the computing performance of embedded hardware, and then select
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the most appropriate GPU parallel computing method to optimize and improve the
visual SLAM processing performance, operating efficiency and ensure good positioning
accuracy.

The theoretical basis and related work studied in this paper are as follows:

Firstly, the overall framework of visual SLAM is introduced. The responsibilities and
functions of each module in the framework are described.
Then the main method of the visual SLAM front-end, the feature point method, is
introduced. In this paper, we use ORB (Oriented FAST and Rotated BRIEF) features
as the front-end implementation method which has the fastest calculation speed on the
basis of meeting the accuracy of feature detection, to ensure the fast processing of the
embedded platform.
Finally, the parallel mechanism is analyzed on the CUDA-based GPU hardware archi-
tecture and programming model. On this basis, the detailed parallel analysis of the
key technologies of the selected scheme is carried out. A reasonable parallelization
schemewas designed, andGPUparallelized visual SLAMsystemwas built on embedded
development board NVIDIA Jetson TX2.

In order to evaluate the performance of the system, relevant experiments were carried
out on the data set. The results show that the whole system is in good working condition.
In addition, by counting the time overhead of executing data set, it is intuitively shown
that the use of GPU parallelization effectively improves the operating speed of the visual
SLAM system on the embedded platform.

2 Front-End Visual Odometry

The front-end is at the lower level in the visual SLAM system, also known as visual
odometry (VO) [6]. For visual odometry, its focus is on the frame-to-frame motion
between adjacent images. When the sensor data module transmits the image frame
sequence (i.e. video stream) to the visual odometry, its function is to extract the key
information of adjacent image frames to roughly estimate the camera movement in
advance to provide better results for the back-end.At present, there are twomainmethods
of visual odometry, feature point method and direct method. In this paper, we use the
feature point method.

2.1 Feature Point Method

The front-end based on the feature point method is a classic method of visual odometry.
It uses the redundancy of the image to detect and extract feature points from the prepro-
cessed input image, and then performs feature matching to estimate the camera motion
trajectory. Therefore, it avoids processing the complete image containing a large amount
of redundant information, and greatly reduces the amount of calculationwhile preserving
the important information of the image. And it runs stably and is not sensitive to lighting
and dynamic objects, so it is widely used in visual SLAM. For the visual odometry of
the feature point method, one of the keys is to use feature detection algorithms to extract
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the best features from a frame of images. At present, the development of image feature
detection algorithms is relatively mature. Commonly used feature detection algorithms:
SIFT [7], SURF [8], ORB, AKAZE [9]. For details, please check the relevant literature.

2.2 ORB Feature Detection Algorithm

ORB algorithm was proposed by Ethan Rublee [10] and others in 2011. It combines an
improved FAST (Features From Accelerated Segment Test) corner detection algorithm
and a direction normalized BRIEF (Binary Robust Independent Elementary Features)
feature descriptor algorithm. The ORB feature detector will detect FAST corner points
in each layer of the image Gaussian pyramid, and use Harris corner scores to evaluate
the detection points to select the highest quality feature points. Since the original BRIEF
feature descriptor is very sensitive to rotation, the ORB algorithm is improved. ORB
features have scale invariance, rotation invariance, and certain affine invariance.

3 GPU Parallel Accelerated Visual SLAM

3.1 GPU Hardware Features

In recent years, with the rapid development of science and technology, the problems
faced by many research fields have become larger and the corresponding requirements
for computing performance have become higher and higher. However, as the manufac-
turing technology gradually approached its limit, the growth rate of CPU computing
performance has gradually slowed down. Even if CPU manufacturers represented by
Intel and AMD have introduced multi-core architecture CPU to make up for the limit
of single-core performance improvement, their performance still cannot meet the needs
of the market. For the GPU, driven by the market urgent need for real-time and high-
definition 3D image rendering, GPU has gradually developed into a highly parallel,
multi-threaded,multi-core processor architecture like today, with huge computing power
and extremely high memory bandwidth. Its computing performance is far stronger than
the CPU (see Fig. 2).

The reason behind this huge computing performance gap is that the difference in
hardware structure between GPU and CPU. Let’s start this topic from the “core” per-
spective. First of all, the CPU is composed of several cores optimized for sequential
serial processing. While the GPU is composed of thousands of smaller, more efficient
cores, which are specifically designed to handle multiple tasks at the same time, and
can efficiently handle parallel tasks. In other words, although each core of the CPU is
extremely powerful in processing tasks, it has fewer cores and does not perform well in
parallel computing. In contrast, although the computing power of each core of the GPU
is not powerful, it has a large number of cores, which can handle multiple computing
tasks at the same time, and is well competent for parallel computing.

The different hardware features of GPU and CPU determine their application sce-
narios. The CPU is the core of the computer’s operation and control, and the GPU is
mainly used for graphics and image processing. The form of the image presented in the
computer is a matrix. Our processing of the image is actually to operate various matrices
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Fig. 2. Shows the intuitive comparison of single-precision and double-precision floating-point
computing capabilities between CPU and GPU. It can be foreseen that the computing difference
between CPU and GPU will become larger and larger in the short term.

for calculations, and many matrix operations can actually be parallelized, which makes
image processing fast.

Nowwe compare the features of CPU and GPU from the perspective of data process-
ing. The CPU needs strong versatility to handle a variety of different data types, such
as integers, floating point numbers, etc., and it must be good at handling a large number
of branch jumps and interrupt handling caused by logical judgments. So the CPU is
actually a powerful processing unit. It can handle many things properly. Of course, we
need to give it a lot of hardware resources for it to use, which makes the CPU impossible
to have too many cores. The GPU is facing a highly unified, independent, large-scale
data and a pure computing environment that does not need to be interrupted. Although
the processing power of its core is far less powerful than that of the CPU, the GPU has a
lot of cores, which makes up for the lack of single-core computing power and supports
parallel computing.

It can be seen from the structure (see Fig. 3) that a large part of the CPU is used for
caching and control, and there are relatively few arithmetic logic units, while the GPU
is the exact opposite, and the computing units occupy the vast majority.

In the early days, it was very inconvenient for researchers to use GPU to perform
calculations in the field of non-graphics rendering, because GPU is dedicated to graphics
rendering and has streamlined rendering pipelines. Therefore, general-purpose comput-
ing programs can only be encapsulated into rendering programs and embedded in these
pipelines before they can be executed by the GPU. With the increasing demand for
general-purpose computing, in order to provide researchers and developers with a more
friendly interface to use GPU to solve problems, NVIDIA Corporation released CUDA
in 2006, a general-purpose parallel computing platform and programming model, as
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Fig. 3. Diagram of CPU and GPU structure.

an “engine” to drive the GPU to efficiently solve complex computing problems. Now
this kind of general-purpose parallel computing is widely used in various industries and
fields, including deep learning that has developed rapidly in recent years.

In the current computer architecture, in order to complete CUDA parallel comput-
ing, the GPU alone cannot complete the computing task. The CPU must be used to
cooperate to complete a high-performance parallel computing task. Generally speaking,
the parallel code performs on the GPU and the serial code performs on the CPU. This
is heterogeneous computing. Specifically, heterogeneous computing means that proces-
sors of different architectures cooperate with each other to complete computing tasks.
The CPU is responsible for the overall program flow, and the GPU is responsible for
the specific calculations. When each thread of the GPU completes the calculations, the
results are copied to the CPU to complete a computing task (see Fig. 4).

GPU

Applica�on Code

Compute-Intensive 
Func�ons

5% of Code
Rest of Sequen�al

CPU Code
CPU

Fig. 4. The intensive calculation code (about 5% of the code amount) is completed by the GPU,
and the remaining serial code is executed by the CPU.

3.2 CUDA Hardware Model

A simplified diagram of the GPU hardware architecture that supports CUDA is shown
in Fig. 5. The most basic processing unit is the Streaming Processor (SP), also known as
CUDA-CORE, which is responsible for the execution of each specific instruction. The
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GPU parallel computing is essentially a large number of SP simultaneous processing
tasks. The core unit is Streaming Multiprocessor (SM), also known as GPU core, which
consists of multiple SPs, thread schedulers, memories and other units. The number of
SMs owned by different models of GPU and the number of SPs contained in each SM
are different. Therefore, a GPU may have thousands of SPs. In theory, these SPs can
execute instructions at the same time, so the calculation speed is very fast.

Constant memory

Global memory

Texture memory

SP
Shared memory
Local memory

Register
Warp scheduler

...

SM

Host interface

Thread scheduler

Thread-driven engine

Fig. 5. GPU hardware architecture diagram.

The thread scheduler is responsible for allocating parallel tasks to SM. Each SM can
start multiple thread blocks to execute parallel tasks, and the number of them is allo-
cated by the developer according to their actual calculation needs. Each thread block is
composed of multiple threads. Threads belonging to the same thread block can commu-
nicate and collaborate efficiently through shared memory. Finally, CUDA will allocate
computing tasks to a certain number of threads, and these threads will eventually be
mapped to each SP for calculation.

In addition, in order to meet the diverse needs of graphics rendering, the GPU has
multiple types of memory for threads to access its stored data. These memories have
their own characteristics. The characteristics of these memories are summarized in Table
1. Making good use of these memories can reduce unnecessary data access time and
improve calculation speed.

3.3 CUDA Programming Model

TheCUDAsoftware environment is constantly updatedwith the development of theGPU
hardware architecture. The latest version is CUDA 11.0. The functions provided by the
entire environment are getting more and more powerful, and the interface becomes very
friendly. CUDA supports C/C++, Python, JAVA and other high-level languages, and
the corresponding programs are executed by the CPU and GPU. The CUDA parallel
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Table 1. The characteristics of GPU memories.

Memory Cache Access permission Life cycle

Register × Thread private Thread

Local memory × Thread private Thread

Shared memory × Shared within thread
block

Block

Global memory × Device read/write Grid

Constant memory
√

Device read only Grid

Texture memory
√

Device read only Grid

program executed on the GPU is also called a kernel function, which is specifically
used to complete GPU parallel computing tasks, and its definition is also different from
ordinary functions.

The following will introduce a typical CUDA program execution procedure (see
Fig. 6). Each grid contains several thread blocks, which are composed of several threads.
All thread blocks in the grid can be parallelized, and all threads in the thread block can
also be parallelized, so the degree of parallelization is high.

Host

kernel1

kernel2

Device
Grid 1

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Grid 2

Grid

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Block
(2,0)

Block
(2,1)

Block(1,1)

Thread(0,3)

Thread(0,2)

Thread(0,1)

Thread(0,0)

Thread(1,3)

Thread(1,2)

Thread(1,1)

Thread(1,0)

Thread(2,3)

Thread(2,2)

Thread(2,1)

Thread(2,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Block(1,1)

Fig. 6. Host refers to the host side, representing the CPU, and Device refers to the device side,
representing the GPU. Grid is the outermost thread organization structure in CUDA.

The program is first executed from the Host side, the serial program performs initial-
ization work, and the kernel function is started after the data and storage space required
for the execution of the kernel function are allocated. And then the Device side will
generate a large number of threads based on various variable parameters set in the kernel
function, and these threads will be organized into thread blocks. Subsequently, the thread
blocks will be allocated to the SM for parallel execution. Each thread block is divided
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into several groups of threads when executed on the SM, and each group of threads
will eventually be mapped to a group of SPs in the SM for parallel calculation. After
the kernel function is executed, the serial program will copy the calculation result from
Device to Host. Then prepare for the next execution of the kernel function, or complete
and end the execution of this CUDA program.

3.4 Experimental Hardware

This time, the high-performance embedded platform we used is Jetson TX2. It is a pow-
erful multi-core mobile SOC released by NVIDIA in 2017, mainly for smart terminal
devices such as smart robots, drones, unmanned driving, smart cameras, and portable
medical equipment. Its CPU has a total of 6 cores, including 4 Cortex-A57 and 2 cus-
tomized Denver cores. In addition, TX2 is a heterogeneous system, which integrates a
Pascal architecture GPU with 256 CUDA cores. Its main performance indicators are
shown in Table 2. The computing performance and related parameters of its GPU are
shown in Table 3.

Table 2. TX2 main performance indicators.

Parameter Performance indicator

CPU ARM Cortex-A57(quad-core) 2 GHz + NVIDIA Denver2(dual-core) 2 GHz

GPU 256 CUDA-COREs Pascal 1300 MHz

Memory 8 GB 128-bit LPDDR4 1866 MHz 58.3 GB/s

Storage 32 GB eMMC

TDP 7.5–15w

Table 3. GPU related parameters of TX2.

Parameter Performance indicator

Computing performance version 6.2

Maximum number of threads in thread block 1024

Maximum dimension of thread block 3

Maximum dimension of thread block in x and y direction 1024

Maximum dimension of thread block in z direction 64

3.5 Front-End Parallelization

For the front-end based on the feature point method, the main processing procedures are
image feature extraction and matching. They consume more than half of the computing
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resources and are calculated for images, so this part is particularly suitable for paral-
lelization. In the following subsections, we will analyze how the procedures of image
feature extraction and matching can be parallelized. Then we parallelize the relevant
parts by CUDA, and finally test the execution efficiency of GPU parallelization through
experiments.

Front-End Parallelizable Analysis. After the front-end obtains a frame of images
transmitted from the visual sensor, it constructs an image Gaussian pyramid based on
the original image first. Afterwards, the key points and feature vectors are extracted
from each image layer of the image pyramid to ensure that the ORB features are scale-
invariant. Finally, all key points and feature vectors extracted from each image layer
will be mapped to the original image, but this makes the image features of each original
image too dense and repetitive. Therefore, it is necessary to delete the repeated feature
points and perform non-maximum suppression on the rest of feature points to ensure
that the distribution of the feature points is relatively uniform and to improve the effect
of image matching. The main calculation procedure of the feature extraction (see Fig. 7)
is as follows:

1. Construct image Gaussian pyramid.
2. Perform FAST key points detection in each image layer of the pyramid.
3. Perform coordinate normalization in image layers of different sizes.
4. Delete duplicate FAST key points. Compare each key point with the corresponding

key point in the upper and lower adjacent image layers at the same scale, and keep
the key point with the largest response value.

5. Non-maximum suppression. Each key point is compared respectively with 26 adja-
cent points in the image layer where it is located and in the upper and lower adjacent
image layers at the same scale. Only when the response value of this key point is
greater than the other key points, will it be kept, otherwise it will be deleted.

6. Sort key points according to FAST and Harris response values [11]. Select the top
N best feature points, and the N value is preset according to requirements.

7. Assign the direction to each key point, and calculate the BRIEF descriptor to
complete the extraction of ORB features.

Analyze the parallelization of the above steps, we can get the conclusion:

1. In the FAST key points detection procedure, there is no data communication between
the image layers of the Gaussian pyramid, so FAST key point detection can be
performed in parallel in each image layer.

2. FAST key points detection only has data association with each pixel and its neigh-
boring pixels in the image, and the detection procedure is exactly the same, so it can
be executed in parallel on a large scale.

3. Duplicate point deletion and non-maximum suppression are both related to the fea-
ture point and the image where it is located, and also related to the neighborhood
feature points in the upper and lower adjacent images at the same scale. Therefore,
the Gaussian pyramid of the three image layers can be input at the same time and
calculated in parallel in the same way.
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Image input

Gaussian pyramid construction

Feature point detection

Coordinate normalization

Duplicate points deletion

Non-maximum suppression

Distribution direction

Feature vectors generating

Orb feature extraction completed

Fig. 7. ORB feature extraction flow chart.

4. For each key point, the calculation of its direction is based on the data association
between the key point and the independent local image information in the image
where it is located, so it can be calculated in parallel.

After the image feature extraction is completed, feature matching is needed to find
the same feature point pair in the two images. There are many methods for feature
matching. Due to the ORB feature vector (also known as feature descriptor) is a binary
string, Hamming distance can be used to describe the similarity of a pair of feature
vectors. After that, the same feature point pair can be found by the method of brute-force
matching. Hamming distance can be expressed as:

D(V1,V2) =
255∑

i=0

xi ⊕ yi (1)

V1, V2 are two ORB feature vectors, V1 = x0x1 · · · x255, V2 = y0y1 · · · y255. The
process of calculating the Hamming distance is to perform an exclusive OR operation
on each bit of the two feature vectors. The smaller the value ofD(V1,V2), the higher the
similarity of the two feature vectors; and the larger the value of x, the lower the similarity
of the two feature vectors. In addition, a threshold K needs to be set. If D(V1,V2) is
greater than the threshold, the corresponding feature vector and feature point should be
deleted. Finally, a rough matching point pair can be obtained by means of the method
of brute-force matching.
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With the matched point pairs, a change model can be established through the
RANSAC (Random Sample Consensus) algorithm to describe the change relationship
between the points in the two images:

[x1, y1, 1]T = M [x, y, 1]T (2)

The transformation matrixM is written as:

M =
⎡

⎣
a11 a12 a13
a21 a22 a23
0 0 1

⎤

⎦ (3)

Suppose P is the coordinate data set of the point pair obtained by rough matching,
then select 3 pairs of matching points from P to calculate the transformation matrix
M through Eq. 2. Then use the remaining point pairs in P to verify the accuracy of
the transformation matrix M, and count the number of matching points that conform to
the model. Repeat the above procedures, the final selected transformation model should
have the most matching points.

Analyze the parallelization of the above steps, we can get the conclusion:

1. The calculation of the similarity of two ORB feature vectors has no data communi-
cation, so it can be processed in parallel.

2. When calculating the Hamming distance, the exclusive OR operation of each bit of
the two feature vectors is only related to the binary value of the bit itself, so this
procedure can be processed in parallel.

3. The RANSAC algorithm selects 3 pairs of points from the set P of matching points,
which are independent for matching, and there is no data communication, so this
procedure can be processed in parallel.

4. When calculating the transformation matrix M, it is only related to the matching
points used, so this procedure can be processed in parallel.

5. Verify the accuracy of each transformation matrix M is only related to all rough
matching point pairs, so this procedure can be processed in parallel.

The FAST Key Point Detection Parallelization Design. Map each image layer in the
image pyramid to a thread, and each thread block allocates 32 × 8 threads, the number
of thread blocks is:

N = W + blockDim.x − 7

blockDim.x
× H + blockDim.y − 7

blockDim.y
(4)

In Eq. 4,N represents the total number of thread blocks required to perform this task,
blockDim.x represents the number of threads in the x direction, blockDim.y represents
the number of threads in the y direction,W and H are the width and height of the image
respectively. In order to prevent access conflicts in parallel threads, each thread in parallel
will perform FAST key point detection on a pixel in the image. If it conforms the FAST
key point, the coordinate of the pixel is saved in the global memory, and the total number
of detected FAST key points is recorded and saved in the global memory.



16 T. Ma et al.

In addition, a corresponding size of global storage space is allocated for each layer
of image and initialized to zero to store the response value of key points, if a certain
pixel is selected as the FAST key point, its response value is saved in the corresponding
position of the allocated space.

Coordinate Normalization. In order to store the updated response value of the key
point, the global memory is allocated the same size as the storage space of the original
image, and each thread block is allocated 256 threads. The total number of thread blocks
is the same as Eq. 4. Each thread in parallel calculates the normalized coordinate of a key
point and updates the response value of the feature point after the normalized coordinate
in the allocated space.

Duplicate Points Deletion and Non-maximum Suppression. The coordinate value
and the response value of a feature point to be detected, the response value of the fea-
ture points in the neighborhood around the feature point to be detected, and the response
value of the neighborhood feature points in the upper and lower scale image of the image
layer where the feature point to be detected is located are transferred as parameters to
the CUDA kernel function that performs duplicate points deletion and non-maximum
suppression. And each thread block allocates 256 threads, the number of thread blocks
is:

N = Nfast + blockDim.x − 1

blockDim.x
(5)

In Eq. 5,N represents the total number of thread blocks required to perform this task,
Nfast is the total number of FAST key points of the image layer, each thread in parallel
calculates one key point. Read the response value of all key points in the neighborhood
of the key point in the three image layers. If the response value of the key point is the
largest, keep this key point and delete the two key points at the corresponding positions
in the upper and lower adjacent image layers at the same scale, otherwise delete itself.
At the same time, the number of key points remaining after duplicate points deletion and
non-maximum suppression operations should be recorded.

Filter Key Points. Use CUDA kernel function to sort the key points and corresponding
response values remaining after the previous operation. Here directly use the parallel
sorting algorithm in the Thrust library, and then according to requirement, select the top
N feature points with the highest response value for subsequent calculations.

Distribution Direction. Calculate the direction of each feature point in parallel, and
allocate 32 × 8 threads per thread block, the number of thread blocks is:

N = Nfast + blockDim.y − 1

blockDim.y
(6)

In Eq. 6,N represents the total number of thread blocks required to perform this task,
Nfast is the total number of FAST key points. According to reference [12], each thread
in parallel calculates the first-order moment m10, m01, and the origin moment m00 of
the feature point. Then save the results in shared memory to improve the efficiency of
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repeated access to data. In addition, thread 0 in each thread block is used to calculate
the direction of the feature point according to reference [12], and the result is saved in
the global memory after the calculation is completed.

Generating Feature Vectors. Transfer relevant parameters to the CUDA kernel func-
tion, and then start the kernel function to extract the ORB feature vector. And each thread
block allocates 32 × 8 threads, the number of thread blocks is:

N = L + blockDim.x − 1

blockDim.x
× Nfast + blockDim.y − 1

blockDim.y
(7)

In Eq. 7, Nfast is the total number of FAST key points, and L is the length of the ORB
feature vector. The feature vector is generated according to the direction of the key point
and the sampling mode of the neighborhood of the image block in each thread block.

Feature Matching. Calculate the Hamming distance between two feature vectors in
parallel by the method of brute-force matching. Each thread calculates the Hamming
distance between a feature vector in the current image and all feature vectors in another
image. Save the index value and Hamming distance value of the two feature vectors with
the smallest distance in the global memory. Each thread block is allocated 256 threads,
and the total number of thread blocks is:

N = Nvec + blockDim.x − 1

blockDim.x
(8)

In Eq. 8, Nvec is the total number of feature vectors in the current image. When the
calculation is completed, the results saved in the global memory are transferred back to
the memory on the Host side. Then filter out the mismatched results through a threshold
to obtain rough matching results. When the rough matching is completed, all the saved
data is transferred from the Host side memory to the Device side constant memory to
provide data for the RANSAC algorithm.

RANSAC. First set the number of iterations K, and then randomly generate K groups
of random numbers, each group contains three different random numbers. Since these
random numbers will not be changed in subsequent calculations, these random numbers
are transferred from the Host side memory to the Device side constant memory. Thereby,
the data access speed can be improved through the cache in the constant memory.

Transfer relevant parameters to the CUDA kernel function, and then start the kernel
function to calculate the transformation matrix M. Thread 0 in each thread block reads
a set of random numbers from the constant memory to determine the three sample
numbers. Then the feature point coordinates corresponding to the sample number can be
read from the constant memory. Each thread in parallel uses the coordinates of the three
feature points randomly selected to calculate the transformation matrix M according to
Eq. 2 and save the result in the global memory.
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Then transfer relevant parameters for the second CUDA kernel function, and start
the kernel function to verify the accuracy of the transformation matrixM. Each thread in
parallel reads the coordinates of the feature points from the constant memory to verify
the accuracy of a transformation matrix M, and it is necessary to count the number of
feature points that conform to the transformation matrix M. The best transformation
matrix M is selected according to the number of feature points previously counted.

3.6 Front-End Parallelization Efficiency Test

In order to verify that the GPU parallelization method used in this paper can effectively
accelerate the processing speed of the front-end, the parallelization method is tested on
the EuRoC MAV Dataset [13]. In the data sets, the data sets those name starts with MH
are the videos shot indoors. Easy, medium, difficult represents the complexity of the
scene in the video. As the complexity increases, high-speed moving scenes, scenes with
strong lighting changes, and scenes with fast turning will appear in the video. These
scenes will affect the accuracy of the estimated camera movement trajectory. During
the experiment, the time cost of executing each set of data sets was recorded under the
conditions of only using CPU and using GPU acceleration respectively. Time unit is
minutes (min) (Table 4).

Table 4. The time overhead of executing data set

Data set CPU only CPU + GPU

MH_01_easy 7:51 4:56

MH_02_easy 6:31 3:53

MH_03_medium 5:41 3:31

MH_04_difficult 4:07 2:30

MH_05_difficult 4:46 2:47

From the results, the time cost of running the data set after using GPU parallelization
on TX2 is greatly reduced, reducing the time by about half. Therefore, the use of GPU
parallelization can significantly improve the processing performance of the visual SLAM
front-end.

3.7 Movement Trajectory Estimation Test

Under the conditions of using only CPU and using GPU acceleration respectively, the
camera motion trajectory is estimated through the visual SLAM algorithm. Due to the
limited length of the paper, we only introduce the results of testingMH_04_difficult (see
Fig. 8) and MH_05_difficult (see Fig. 9). In the two figures, the dotted line represents
the actual value of the camera’s motion trajectory, the blue line represents the estimated
value of the trajectory when GPU acceleration is enabled, and the green line represents
the estimated value without GPU acceleration. We can roughly see that whether GPU
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acceleration is enabled has no effect on the accuracy of the estimated camera movement
trajectory. This conclusion can also be obtained from Table 5 and Table 6.

Fig. 8. WhetherGPUacceleration is enabled has no effect on the accuracy of the estimated camera
movement trajectory.

Fig. 9. WhetherGPUacceleration is enabled has no effect on the accuracy of the estimated camera
movement trajectory. However, at some corners of the trajectory, the result obtained by turning
on GPU acceleration is closer to the actual value.
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Table 5. In the MH_04_difficult, the absolute error between the two trajectory estimates and the
groundtruth. The absolute error unit is meters (m).

Absolute
error

CPU only CPU + GPU

Max 1.132117 1.141322

Mean 0.424403 0.448092

Median 0.417360 0.439376

Min 0.028691 0.053778

Table 6. In the MH_05_difficult, the absolute error between the two trajectory estimates and the
groundtruth. The absolute error unit is meters (m).

Absolute
error

CPU only CPU + GPU

Max 1.246482 1.224756

Mean 0.408896 0.421434

Median 0.387428 0.396226

Min 0.020689 0.048313

4 Conclusion and Future Work

Visual SLAMneeds to process a large number of image data, so the performance require-
ments of computing hardware are relatively high, which limits the application of visual
SLAM on embedded platforms. In this paper, we studied the front-end problem of visual
SLAM based on embedded platform, and then we proposed front-end parallelization
scheme. Finally, the visual SLAM system was implemented on the embedded platform
through GPU parallelization, and the effectiveness of the system was verified through
the data sets.

The visual SLAM is a huge and complex project. Due to time constraints, we have
not done enough research on it. The visual SLAM based on embedded GPU studied in
this paper can be further explored from the following two aspects:

1. With the advancement of technology, the performance of embedded and other minia-
turized mobile platforms will become more powerful, such as higher performance
GPU, or high performance FPGA. These hardware devices can make visual SLAM
algorithms more efficient.

2. When the camera moves too fast, the image texture information collected by the
camera is not rich enough, and the scene illumination changes drastically, the visual
SLAM will have large estimation errors or data loss. For this, inertial measurement
unit can be used for the multi-sensor fusion to compensate disadvantages of visual
sensor.
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Abstract. In the hardware Trojan detectionmethod, destructive reverse engineer-
ing can most precisely restore the original circuit of the chip to be detected, but
this method is a huge amount of work, high cost, long life cycle. In this paper, we
proposed a multi-featured GEP technology, non-destructive reverse engineering
of the chip using various data obtained from bypass detection, in order to restore
the actual circuit of the hardware, or at least find out the unknown circuit design.
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1 Introduction

In today’s hardware Trojan detection technology [1–7], destructive reverse engineering
[1, 3, 8–10] can most precisely restore the original circuit of the chip to be detected, but
this technology is a huge amount of work, high cost, long life cycle, and the chip has
been scrapped after detection, can only be used for sampling or replication of a class
of chips, bypass detection [11–16] technology analyzes the bypass circuit signal, such
as timing, power, electromagnetics, heat, etc., determine whether or not they contain
Trojans, no damage to the chip, relatively small amount of data is needed, lower cost, is
the most important and effective method.

Some of the work is done by evolutionary algorithms to study evolutionary hardware
[17–23]. This paper proposes a multi-featured GEP evolutionary algorithm, use a single
circuit component or group of circuit structures as a node, use an operator to describe
a node’s multi-features, use GEP to evolved circuits close to the original circuit, then
determine the structure of the original circuit.

2 Brief Introduction of GEP

GEP (Gene Expression Programming) [24] combines the advantages of GA and GP,
follow the basic steps of Evolutionary Computation (EC). The basic composition of
its genetic material is two kinds of symbols, that is terminators and functions. A gene
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consists of a linear, fixed-length string of symbols, code for expression treeswith different
sizes and shapes, a chromosome can consist of a single gene or multiple genes, each
chromosome is decoded to map as a candidate solution for problem response.

F is the set of functions and T is the set of terminals, the genes of GEP are composed
of a head and a tail. The head contains symbols that represent both F and T, whereas the
tail contains T. For each problem the length of the head h is chosen, whereas the length
of the tail e is a function of h and the number of arguments of the function with more
arguments n (also called maximum arity) and is evaluated by the equation:

e = h × (n − 1) + 1 (1)

For example, consider a gene for which the set of functions F = {+, −, *, /, Q} and
the set of terminals T = {a, b}. In this case n = 2, if we chose an h = 10, then e = 11,
thus the length of the gene is 21, one such gene is shown below (the tail is shown in
bold):

+Q − /b ∗ abQbabababbaaab

It codes for the following expression tree (ET):

The algebraic expression:

√
a/b + b − √

a ∗ b

Tail excess symbols are discarded directly without use. This allows GEP to use
fixed-length encoding to express different sizes and shapes of expression trees.

3 Use GEP to Represent Circuit

GEP has done well in mining association rules, clustering, classification rules, time
series predictions, sunspot predictions [25–29].

As can be seen from the data structure of GEP, GEP can solve tree structure problems
very well, Other words, circuits that can be represented as a tree-shaped structure with n
leaf nodes, can be described directly with GEP. The logic circuit of the 6-in/1 output in
Fig. 1(a) can be easily represented as a tree structure in Fig. 1(b), It replaces the logical
gate function with the logical symbol, in GEP, Its corresponding effective gene is:

And, And, And, A, Not, And, And, B, C, Not, E, F, D
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Fig. 1. 6-in/1-out circuit

Fig. 2. Isomorphic circuit of Fig. 1

But, if only logical values are used to represent the circuit, there are too many
isomorphic situations, for example, the circuit in Fig. 1 can be replaced with the circuit
in Fig. 2.

The corresponding valid gene is:

And, A, And, C, And, Not, And, D, E, F

The two circuits are fully equivalent in logic values, both is:

Y = ACD′EF

And you can see, in the second circuit, input B is not used at all. That is, input B in
the first circuit does not actually affect the output.

This example is just for the logic value of the circuit, In fact, for the circuit bypass
information detection, there is a similar situation. The test results for any single bypass
information, we can get a number of different circuit structures. This article refers to
this situation as isomorphic.

Thus, only a logical value is used to learn a certain kind of bypass information
to describe the circuit, so much Isomorphism that the circuit structure could not be
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confirmed. In this paper, a multi-featured GEP algorithm is proposed, use the same
structure in GEP to represent multiple circuit features, effectively reduces the number
of isomorphic circuits, and use this algorithm to detect hardware trojans.

4 Multi-featured GEP

In this paper, the logic value of the circuit or any kind of bypass information such as
voltage, current, etc. is called a characteristic value. Isomorphism for a characteristic
value, essentially, the characteristics of the circuit components on this characteristic
value are superimposed on each other, allows several different circuit structures to exhibit
similar or even identical characteristics after the characteristic values are superimposed
on each other, this makes it impossible to represent the corresponding circuit by the
result of a particular characteristic value.

While we are doing the test, multiple feature values are detected at the same time,
the detection results of each feature value can result in multiple isomorphic circuits, but
since the overlay characteristics of different feature values cannot be identical, these
homogeneous circuits cannot be exactly the same, and the same part of which is the
possible real circuit.

The Multi-featured GEP algorithm can be illustrated by a Not-Gate designed by a
triode in Fig. 3.

Fig. 3. A Not Gate Designed by Triode

• Feature Value 1:

In digital logic terms, the description of this circuit is: Y = !A.

• Feature Value 2:

In terms of voltage, the description of this circuit is: Vy = VA < VSH ? Vcc: VCES.
Among them: VSH represents high-level threshold, that is, the lower potential limit

of “1” in the circuit. VCES represents a saturation voltage drop of the tripole.
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• Feature Value 3:

In terms of current, the description of this circuit is: Cy = N * CA, where N is the
magnification of the current.

In addition, there are a variety of other bypass information detection items, like delay,
spectrum, etc.

The above 3 characteristic values, using any one alone can not determine the lower
circuit structure, however, if the three cases are combined, the circuit structure can be
determined.

In GEP, an operator represents only one calculation, a GEP individual can only
represent a description of a feature value, can get an unlimited number of isosome
circuits, it is difficult to determine the actual circuit structure.

This paper proposes a method to combine the test results of multiple characteristic
values on a basic circuit into a single function representation, combine into a compos-
ite function, i.e. have a function represent multiple calculations, use GEP’s functional
evolutionary ability to evolve representations close to the original circuit.

In detail, we include these multiple detection values in a function, the input of the
function is multiple feature values, the output is a vector, like this non-gate circuit. in
GEP’s expression tree, it is still represented by “Not.”, but the implication becomes the
calculation of the below vector:

Not(A1, A2, . . . , An) = [F1(A1), F2(A2), . . . , Fn(An)]

Where Ak (k is 1,…, n) is the input value of some kind of feature detection, Fk (Ak)
(k s 1, …, n) is the result of this feature value detection corresponding to the input value
Ak.

For example, corresponding to this non-gate circuit, the symbol Not indicates the
following meaning:

Not(A, VA, CA) = [!A, VA < VSH?Vcc : VCES, N ∗ CA]

Where A represents the logical value (1 or 0) represented by the voltage entered at
point A, The VA represents the input voltage of point A and the CA represents the input
current of point A.

Thus, when using GEP evolution, a single symbol Not can also represent multiple
feature value tests that are not associated with each other.
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5 Experiments

5.1 Experimental Settings

This paper has designed 4 experiments (Table 1).

1. Parameters
• The circuit parameters are:

– Output m = 1
– The number of features is k = 1, 2, 2, 3
– 3 features are used: feature 1 is logical, feature 2 is voltage value, feature 3 is

current value.

• As a comparison experiment, the parameters used are exactly the same:

Table 1. Experiment parameters

Parameter Value

Fitness >=1

Selection mode Tournament, size = 3

Population size 10000

Head length 20

Tail length 21

Chromosome length 1

Mutation rate 0.05

Insert rate 0.1

Root insert rate 0.01

One-point cross rate 0.1

Two-point recombination rate 0.1

Input number 4

Output number 1

Function set Not, And, Or
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2. Fitness function

The characteristic data are logical data, voltage data and current data, which have
their respective Fitness function:

a. Logical Fitness function:

F1 = 1 −
∑N

i=1
|yi − y|/N (2)

N is the test data count, yi is the logical value calculated based on the test data after
decoding the individual, y is the output logic values for test data. Because of the logic
value, so the worst case is that each output after the individual decodes is the opposite
of the test value, that is |yi − y| = 1, so the value of the F1 is in [0,1].

b. Voltage Fitness function

F2 = 1 − (
∑N

i=1

∣∣yi − y
∣∣/N)/(VCC − VDD) (3)

N is the test data count, yi is the voltage value calculated based on the test data after
decoding the individual, y is the output voltage values for test data. The worst case is,
each test output value is either the highest level or the lowest level, and each output that
is decoded by an individual is the opposite of the test value that is |yi − y| = Vcc −
VDD, so the value of the F2 is in [0,1].

c. Current Fitness function

F3 = 1 − SSE/SST (4)

SSE =
∑m

i=1
(yi − y

∧

i)
2

SST =
∑m

i=1
(yi − yi)

2
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N is the test data count, y
∧

i is estimate of yi calculated from Ti using formula, yi is the
average of the y, SSE is Residual Sum of Squares, SST is Sum of Squares of Deviations,
F3 is the square of the multiple correlation coefficient in statistics, its value is also in
[0,1].

d. Individual’s Fitness

According to the previous algorithm description, the individual’s fitness should be a
combination of the three, then the individual’s fitness is:

F = C1 ∗ F1 + C2 ∗ F2 + C3 ∗ F3 (5)

C1, C2, C3 is weights of 3 feature values in final fitness.

5.2 Experimental Results

Figure 4 is a circuit that has no Trojan.
Its boolean expression is

Y = A + BC + BD (6)

The circuit dose the computation

Y =
{
0, (ABCD) < 5
1, else

(7)

A B C D

Y

Fig. 4. Circuit has No Trojan

After several logic gates added to the circuit of the Fig. 1, it becomes a circuit has
trojan (Fig. 5). In the new circuit that Y will also get a value of 0 when (ABCD) = 7:

Y =
{
0, (ABCD) < 5 or (ABCD) = 7
1, else

(8)

Its Boolean expression becomes:

Y = A + BCD′ + BC′D (9)
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A B C D

Y

Fig. 5. Circuit with Trojan

The activate gene of the circuit is: Or, A, Or, And, And, B, And, B, And, Not, D, C,
Not, C, D

If the pins are so many that we can only test part of the values, the input value
to activate the trojan (ABCD) = (0111)2 may be missed at this time. In the following
experiment, the input value (0111)2 will not be provided, and the output of this input
value will be determined by the evolved circuit.

Using different combinations, we designed 4 sets of experiments. Considering that
the logic values are required to be correct in the circuit first, the voltage and current
values must be based on the correct logic values in order to make sense. The individual’s
fitness is a combination of several data, in which the proportion of logical value is larger.

• Experiment 1 (Table 2)

Table 2. Setting of the Experiment 1

Parameter Value

Logic Gate And, or, not

Values Provided Logic Values

Fitness function F = F1

Exercise Count 100

Trojan Discovered Count 0
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None of the 100 times exercise is able to discover the Trojan circuit if only the logical
values were provided. Figure 6 shows some typical results.

Fig. 6. Some Circuits evolved by Multi-featured GEP in Experiment 1

The simplified Boolean Expression of all the circuits above is:

Y = A + BC + BD
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• Experiment 2 (Table 3)

Table 3. Setting of the Experiment 2

Parameter Value

Logic Gate And, or, not

Values Provided Logic Values, Voltage Values

Fitness function F = 0.8 * F1 + 0.2 * F2

Exercise Count 100

Trojan Discovered Count 0

None of the 100 times exercise is able to discover the Trojan circuit if both the logical
values and the voltage values were provided. Figure 7 shows some typical results.

The simplified Boolean Expression of all the circuits above is:

Y = A + BC + BD

The Trojan still cannot be discovered although both the logical value and the voltage
value were provided. The reason is in digital circuits, the logic value itself is expressed
in terms of voltage values, for example, a voltage value less than 3 V is considered to be
0, a voltage value greater than 3 V is considered to be 1. So the choice of logical value
and voltage value as feature values on this issue is as same as only provided the logical
value.

• Experiment 3 (Table 4)

The Trojan circuit was discovered 72 times among the 100 times exercise when the
logical values and the voltage values were provided. Figure 8 shows some typical results.

Both circuits’ simplified Boolean Expression is

Y = A + BCD′ + BC′D

The equivalent circuit has been discovered although the original circuit has hidden.

• Experiment 4 (Table 5)

The Trojan circuit was discovered 67 times among the 100 times exercise when three
feature values were all provided. Figure 9 shows a different result.

The simplified Boolean Expression is:

Y = A + BCD′ + BC′D

A circuit equivalent to the original circuit has been found.
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Fig. 7. Some Circuits evolved by Multi-featured GEP in Experiment 2
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Table 4. Setting of the Experiment 3

Parameter Value

Logic Gate And, or, not

Values Provided Logic Values, Current Values

Fitness function F = 0.8 * F1 + 0.2 * F3

Exercise Count 100

Trojan Discovered Count 72

Fig. 8. Some Circuits evolved by Multi-featured GEP in Experiment 3

In this group of experiments, three feature values were used, but the efficiency of
discovering the Trojan was similar to experiment 3 which used only two feature values.
The reason is since the logical value itself is expressed in terms of voltage values, then
the three feature values are equal to the two feature values.
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Table 5. Setting of the Experiment 4

Parameter Value

Logic Gate And, or, not

Values Provided Logic Values, Voltage Values Current Values

Fitness function F = 0.6 * F1 + 0.2 * F2 + 0.2 * F3

Exercise Count 100

Trojan Discovered Count 67

A B

Fig. 9. Typical Circuit evolved by Multi-featured GEP in Experiment 4

6 Conclusions

This paper has proposed multi-featured GEP algorithm, when multiple feature values
were fused into the same operator, there is a certain probability that GEP can auto-
matically discover the evolutionary power of mathematical formulas to discover Trojan
circuits. The fewer features used, the more efficient GEP evolves, but farther away the
conclusion is from the real circuit. On the otherwise, the more features used, the less
efficient GEP evolves, but the conclusion is closer to the real circuit. However, if there is
a direct conversion relationship between the multiple feature values used, the character-
istic values can be considered one, and this situation does not increase the evolutionary
accuracy of GEP.
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Abstract. Sleep apnea is an important factor that affects human health. Tradi-
tional approaches based on wearable devices or pressure sensor devices are too
expensive to be suitable for daily use, which also don’t consider the impact on the
breathing frequency when the human body turns over or gets up. In this paper,
we propose a system based on WiFi to monitor sleep apnea state. Firstly, we use
linear fitting to eliminate the phase errors of the receiving antennas, and wavelet
transform to remove the noise of signal amplitude. Secondly, we combine the
short-time Fourier transform and sliding window method to segment the signal.
Finally, the features such as the variance of the phase difference between antennas
are extracted, and the neural network model is built to identify apnea state, so as
to eliminate interference caused by changes in sleep postures. Experiment results
show that the detection accuracy rate for sleep apnea is over 95.6%. Our system
can be a daily apnea monitoring approach and provide health reference for users.

Keywords: WiFi · Channel state information · Sleep apnea

1 Introduction

Sleep quality is closely related to human health. Some commercial devices collect data
from headphones or wristbands worn by users to analyze the quality of sleep [1–3].

In recent years, because of its non-contact and high privacy characteristics, radar
has been widely used in breathing detection. WiKiSpiro [4] monitors breathing in real
time by combining a depth camera and a radar system. WiSpiro [5] is a system that uses
frequency modulated continuous wave (FMCW) to re-construct the thorax and abdomen
movement, and maps it to the breathing process through the training process. The Vital-
Radio system [6] for monitoring breath and heart rate proposed by Adib et al. uses a
bandwidth of 5.46 GHz to 7.25 GHz. However, radar system equipment is not only
expensive to manufacture but also requires additional customized hardware equipment
and has a high operating frequency.

Compared with radar systems, radio frequency identification (RFID) has the char-
acteristics of simple structure and equipment, and high recognition rate. Therefore, it is
also used for vital signs monitoring. Tagbreathe [7] attaches a lightweight RFID tag to
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the user’s clothing, analyzes the low-level data obtained by the RFID reader, and uses
phase information to estimate the respiratory rate. With the popularity of WiFi devices,
WiFi-based respiratory detection technology is gradually becoming a research hotspot.
Ubibreathe [8] uses the received signal strength indication (RSSI) on the WiFi device
for breath estimation. A bandpass filter with a cut-off frequency of 0.1 Hz to 0.5 Hz
is used to filter the received RSSI signal. The Fourier transform is used to estimate the
breathing frequency. However, it only provides accurate results when the human brings
the WiFi device close to the chest.

Compared with the superimposed energy information provided by RSSI, channel
state information (CSI) not only contains carrier amplitude information, but also provides
phase information of each carrier. The finer granularity provides higher possibility for
more accurate breath detection research. Liu [9] uses the CSI amplitude and phase
difference to capture the tiny movements caused by breathing and heartbeat. Phasebeat
[10] uses wavelet transform to decompose and reconstruct the respiratory signal and
heart rate signal in the CSI signal. TR-BREATH [11] combines Root-Music and other
algorithms to analyze the time-reversed resonance intensity to estimate the respiratory
frequency.

In view of the above-mentioned shortcomings, the detection system for sleep pro-
posed in this paper has strong privacy and low price, and is suitable for daily detection
systems. Firstly, we construct the signal model of the received signal and modify the
received CSI phase information. Secondly, we eliminate the noise, interference and
abnormal values in the signal after the correction. Next, a signal segmentation algorithm
is designed to select subcarriers that have the most obvious change in motion and seg-
ment the signal. Finally, we extract features from the segments and construct a classifier
for detection and recognition. The scheme designed in this paper does not require any
equipment to be carried, nor does it need to modify the related hardware equipment to
detect the sleep state.

2 System Model and Framework

2.1 System Overview

In order to simulate the breathing state thatmay occur during sleep, the human is required
to breathe normally in the test area to simulate the breathing state; stop breathing to
simulate apnea; leave the test area to simulate unmanned state.

As shown in Fig. 1, the sleep state detection process based onWiFi is mainly divided
into two stages. In the offline stage, CSI of unmanned state, human breathing state
and apnea state are collected respectively. Then, we eliminate phase errors and noise
interference in the environment, and select the optimal subcarrier. Finally, the features
of the three scenes are extracted, and a detection classifier is constructed and generated.
In the online phase, we collect CSI, preprocess signals, and extract signal features in
the same way. The classifier built in the offline phase is used to complete the sleep state
detection.
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Fig. 1. A system architecture of a sleep apnea monitoring method based on home WiFi.

2.2 Channel State Information Overview

The advent of orthogonal frequency division multiplexing (OFDM) technology helps
us extract CSI from the transmitting end to the receiving end of the wireless signal. To
characterize multipath propagation, wireless channels are usually modeled with channel
impulse response (CIR). It can be expressed as:

h(t) =
L∑

l=1

αlδ(t − τl) (1)

where L is the total number of propagation paths; δ(t) is the Dirichlet function; αl
and τl are the amplitude attenuation and time delay of the i-th path, respectively. Since
multipath transmission shows frequency selective fading in the frequency domain, it can
also be characterized by channel frequency response (CFR) H (f ). CFR and CIR are
Fourier transforms:

H (f ) = FT[h(t)] =
L∑

l=1

αle
−j2π f τl (2)

where f is the frequency. In the time domain, the accepted signal y(t) is the
convolution of the transmitted signal s(t) and h(t):

y(t) = s(t) ⊗ h(t) (3)

Correspondingly, in the frequency domain, the received signal spectrum Y (f ) is the
product of the transmitted signal spectrum S(f ) and H (f ):

Y (f ) = S(f ) · H (f ) (4)
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CSI is the sampled version of CFR. Assuming that there are K subcarriers on one
antenna and M packets are received, the CSI can be expressed as a matrix:

CSIK×M =

⎡

⎢⎢⎣

csi1,1 csi1,2 · · · csi1,M
...

... . . .
...

csiK,1 csiK,2 · · · csiK,M

⎤

⎥⎥⎦ (5)

where csik,m(k ∈ [1,K], m ∈ [1,M ]) represents the sum of all paths of the k-th
subcarrier in the m-th data packet.

3 Data Processing

3.1 Phase Error Elimination

In actual operation, the actual received phase consists of the true phase value and the
offset value:

φ̂k = φk + 2π

K
kη + ρ (6)

where φ̂k and φk represent measured phase and actual phase of the k-th subcarrier,
respectively. η represents the phase offset and ρ represents constant error. In this paper,
the phase error is eliminated by linear fitting method [12], and the result comparison
is shown in Fig. 2. It can be seen that the phase after linear calibration is more stable
than the original phase. Although the processed phase is not completely equal to the true
phase, it is very close to the true value, and the error can be relatively ignored.

(a) Subcarrier phase before linear error 
cancellation.

(b) Subcarrier phase after linear error 
cancellation.

Fig. 2. The comparison result before and after the subcarrier phase linearity error is eliminated.
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3.2 Noise Cancellation

In the measured environment, due to the multipath effect in the room and the factors
of the device, the received signal exists various noises, resulting in the required useful
signals being submerged in the noise. Thus, the process of amplitude processing of CSI
in this paper includes the removal of outliers and wavelet denoising. As shown in the
black box in Fig. 3(a), there will always be a few outliers that deviate from the original
signal trajectory. We use a filter based on the median absolute deviation to filter out the
sample values outside of [μ − 3 · σ,μ + 3 · σ ], where μ represents the mean, and σ

represents the standard deviation. Then, we replace them by the median of the data, as
shown in Fig. 3(b).

After removing the influence caused by outliers, the wavelet denoising method is
used to process the CSI amplitude. In this paper, ‘db3’ is used as a wavelet basis to
decompose the signal in 5 layers. The comparison results before and after denoising are
shown in Fig. 4. Before denoising, the signal is submerged in noise, and after denoising,
the waveform becomes smooth and can reflect the changing state of the channel.

(a) CSI amplitude before removing outliers. (b) CSI amplitude after removing outliers.

Fig. 3. CSI amplitude before and after removing outliers.

(a) CSI amplitude before removing high 
frequency noise.

(b) CSI amplitude after removing high 
frequency noise.

Fig. 4. Comparison of CSI amplitude before and after denoising.
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3.3 Subcarrier Selection Method

Due to the different frequency of the subcarriers, the sensitivity to changes caused by
human breathing, apnea and unmanned states is also different. Therefore, we need to
filter out subcarriers that do not change significantly. In this paper, we use the change of
CSI amplitude to quantify the sensitivity of subcarriers to the sleep state. Assuming that
the signal length isM, we calculate the variance of the CSI signal of the k-th subcarrier
Vk :

Vk = 1

M − 1

M∑

m=1

(csik,m − 1

M

M∑

m=1

csik,m)2 (7)

4 Feature Extraction

4.1 Signal Segmentation Method

Since the collected data may contain the subject being in apnea or the subject leaving
the test area, etc., for monitoring the sleep state accurately, before performing feature
extraction, these fragments need to be segmented from the data, and identify and classify
them. Therefore, this paper uses a sliding window-based method [13] to segment the
signal. We assume that the window length is N and the signal length is M, and calculate
the variance Vn of the CSI signal difference between two adjacent windows:

Vn = 1

N − 1

N∑

m=1

((csin,m − csin−1,m)

− 1

N

N∑

m=1

(csin,m − csin−1,m))2 (8)

where n indicates the number index of windows. Then, We normalize Vn to get V ′
n:

V ′
i = Vi − min{Vi}

max{Vi} − min{Vi} , (1 ≤ i ≤ n) (9)

Firstly, we set the start flag as “False”. When it is “False”, compare each V ′
i with the

threshold σ . If V
′
i ≥ λ, we set the start time Tbegin = (i − 1) · N and change the start

flag to “True”. When the start flag is “True”, if V
′
i < λ, we set the middle Node V

′
test

as ω · V ′
i + (1 − ω) · V ′

i+1. To make a judgment to V
′
test , if V

′
test < β · V ′

i+1, we set the
end time node Tend = i · N . After traversing all V ′

n, we can get the start and end time
node of all the fragments. In this paper, we set the threshold λ as 0.65, and the weighted
parameters ω and β as 0.85 and 3, respectively.
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4.2 Feature Extraction

In this paper, we use the difference in phase difference between antennas in the presence
of human breathing, apnea, and absence to detect the sleep state of the human. We
calculate the phase difference D between the antennas, and the mean, variance, range
and quartile moment of it:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ED = 1
M

M∑
m=1

D(m)

VD = 1
M−1

M∑
m=1

(D(m) − ED)2

RD = max(D) − min(D), D′ = sort(D),

QD = D′((M + 1) · 0.75) − D′((M + 1) · 0.25)

(10)

where sort(·)means sort from small to large. Assuming that the number of antennas,
subcarriers and collected samples are X, K and Y, respectively, the input feature dimen-
sion of the classifier is 2X · (X −1) ·K ×Y . In this paper, back-propagation (BP) neural
network is used to learn and map the feature set.

5 Experimental Results

In this paper, we utilize the csitools based on Linux and use the form of one transmitter
and three receivers. The transmitting end uses a directional antenna to send data, and the
receiving end uses three omnidirectional antennas to receive data.We use twomini hosts
equipped with Intel 5300 wireless network card as transmitter and receiver and select
channel 149 with a center frequency of 5.749 GHz to send and receive data. The packet
sending rate is set to 500 per second. The offline data collected in the experiment are
in three states: unmanned, apnea, and human breathing. 450 sets of data were collected
respectively to extract features to form the training data set.

(a) Scatterplot of the distribution of the first 
and third features.

(c) Scatterplot of the distribution of the first 
and second features.

Fig. 5. Scatterplot of feature distribution.
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For feature extraction, we observe the performance of the extracted signal feature
through the feature distribution map, and randomly take two of the features to draw a
feature distribution scatter plot, as shown in Fig. 5. As can be seen from Fig. 5(a), there
is a small amount of confusion between the first feature and the third feature due to
the similarity between apnea and unmanned state. But from Fig. 5(b), the first feature
and the second feature are almost free of mixed grains and has a clear distribution area,
which can better distinguish the three states.

The confusion matrix obtained after the classification is shown in Fig. 6. Then, we
calculate its Precision and precision Recall:

⎧
⎪⎪⎨

⎪⎪⎩

Precision = TP

TP + FP

Recall = TP

TP + FN

(11)

human breath apnea unmanned

human breath 99.1% 0.7% 0.2%

apnea 4.0% 95.6% 0.4%

unmanned 0.0% 0.4% 99.6%

Fig. 6. Classification confusion matrix of three states.

Combining Fig. 6 and (11), the Precision and Recall values for presence of breath,
apnea, and unmanned states are 96.12%, 98.85%, 99.33%, 99.11%, 95.56%, 99.56%,
respectively. Then, we use macro F1-Score as a measurement indicator to weight it on
average:

macro F1−score = 2×
1
3 ·

3∑
j=1

Precision(j) × 1
3 ·

3∑
j=1

Recall(j)

1
3 ·

3∑
j=1

Precision(j) + 1
3 ·

3∑
j=1

Recall(j)

(12)

The calculated Macro F1-Score is about 0.98. For the accuracy and recall rate in the
macro F1-Score comprehensive model, the greater the value is, the higher the quality of
the classification model is. Compared with the common CSI-based breathing detection
system, this article fully considers the effect caused by getting up and turning over during
actual sleep, and abstracts effective data segment without interferences produced by
human’s movement. The detection accuracy rate can reach more than 95.6%. Compared
with the existing breath detection scheme, the scheme proposed in this paper has more
practical application value.
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6 Conclusion

In this paper, we propose a WiFi-based sleep apnea state detection system that does not
require the subject to wear any additional equipment or modify the hardware facilities,
which can complete the sleep state only using commercial WiFi equipment. Firstly,
we construct the signal model and preprocess the received signal. Then, we design a
segmentation algorithm to select the optimal subcarrier and segments the signal. Finally,
the features of segments are extracted, and a classifier is constructed to recognize breath,
apnea and unmanned state in the sleep state. Experimental results show that this approach
can not only eliminate the noise CSI information, but also achieve a recognition accuracy
rate of more than 95.6%. How to recognize and detect sleep status for multiple people
will become our future work.
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Abstract. With the development of Internet of Things (IoTs), the number of
sensor nodes is growing rapidly. These sensors are usually passive or supplied
by batteries and are usually a mixed-signal circuit. Analog to digital converter
(ADC) is a core element in the sensor, and the power consumption of occupies a
considerable part of the whole sensor. SARADC is a good candidate for the sensor
due to its good energy-efficiency, medium resolution and speed. As the key part of
SAR ADC, digital-to-analog converter (DAC) dominates the power consumption
of the SAR ADC when dynamic comparator is employed. In order to improve the
energy efficiency of the DAC, this paper proposes energy-efficient DAC scheme
based on unit capacitor switching. By employing a capacitor-splitting structure
and introducing a third voltage reference Vq equal to a quarter of the voltage
reference Vref, the unit capacitor can be employed to generate the last bit, which
in turn reduces the DAC area. Simulation results show that the proposed scheme
reduces the switching energy by 99.03% and the DAC area by 87.5% compared
to the conventional SAR ADC structure, which achieves good energy-efficiency
and area-efficiency.

Keywords: SAR ADC · DAC switching scheme · Energy-efficiency · Unit
capacitor switching · Area-efficiency

1 Introduction

With the development of Internet of Things (IoTs), sensors are wildly deployed in order
tomeet requirements of information acquisition. In order to extend the life of sensors, the
power consumption is very stringent, especially for implantable, portable and wearable
devices. As the key component of these sensors, analog-to-digital converter (ADC)
consumes a large amount power of the sensors. Compared to flash ADC, sigma-delta
ADC and pipeline ADC, successive approximation register (SAR) features low power,
medium speed, low complexity andmedium resolution, and is a good candidate for those
low power applications.

In SAR ADC, capacitive DAC (CDAC) dominates the power consumption and the
area of the SARADC, and the power consumption and the area of DAC increase with the
resolution ofADC. In recent years, variousDACscheme have been developed to improve
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the performance of the DAC [1–9]. In [1], by using a set and downmethod, the switching
energy is reduced by 81.26% compared to the conventional structure. In [2], the Vcm-
based scheme reduces the switching energy by 87.54% compared with the conventional
scheme. Although schemes in [1, 2] greatly improve the energy-efficiency, the DAC area
is still too large, which occupies a large die area. In order to improve the energy efficiency
and reduce the DAC area, schemes in [3–8] proposes different methods to improve the
performances. Compared with the conventional schemes, the low frequency dependence
switching scheme in [3], the tri-level scheme in [4], the Vcm-basedmonotonic switching
scheme in [5], the switching scheme in [6], the scheme with high accuracy in [7], the
scheme in [8] and the low common-mode voltage variation scheme in [9] reduce the
switching energy by 95.34%, 96.89%, 97.66%, 98.84%, 98.44%, 98.84% and 98.45%,
respectively. And these schemes in [3–8] all achieve an area reduction of 75% compared
to the conventional scheme. In order to further reduce theDAC area, a Vaq-based tri-level
switching scheme is developed [10], and the DAC area is only 12.5% of the conventional
scheme, which reduces the DAC area by half compared with schemes in [3–9]. However,
the switching energy is only comparable to the tri-level scheme in [4]. In order to further
improve the energy efficiency and reduce the DAC area, this paper proposes a DAC
scheme based on unit capacitor switching, which improves the energy efficiency by
99.03% and reduces the DAC area by 87.5% compared to the conventional scheme.

2 Proposed DAC Switching Scheme

The proposed architecture for a 10-bit SAR ADC is shown in Fig. 1. The SAR ADC
is mainly divided into three parts: SAR logic, DAC and comparator. Here, a capacitor-
splitting DAC structure is adopted as in [7], and the most significant bit (MSB) capacitor
is divided into small LSB parts, which is the same as the least significant bit (LSB)
capacitors. The DAC consists of four sub-arrays, i.e. two MSB sub-arrays and two LSB
sub-arrays. Different from other schemes in [2–9], the proposed architecture introduces
a new reference voltage Vq, which is a quarter of the reference voltage Vref.

Vq
Vref

Vref
Vq

Gnd

SA
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 C
on

tr
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Clk

b[9:0]Control  signals

Vip
Vin
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C C2C25C C C2C25C

2C25C C C25C2C C C
unit capacitors

LSB sub-arraysMSB sub-arrays

Fig. 1. Proposed SAR ADC structure
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2.1 Switching Procedure of the Proposed Scheme

Fig. 2. The DAC switching procedure for a 5-bit SAR ADC model

The complete DAC switching procedure is explained using a 5-bit ADC in Fig. 2. As
the conversion is symmetric, only the case for Vip > Vin is shown here. The sampling
is conducted by connecting the inputs to the top plates of the DAC while the sequences
of the bottom plates on both sides are set to [0, 0, 1, 1]. The MSB (b4) is obtained with
no energy consumption due to the top-sampling technique. When the MSB is acquired,
the sequence of higher voltage potential side is set to [0, 0, 1/4, 1/4] and the sequence
on the other side changes to [1/4, 1/4, 1, 1]. No energy is consumed for this operation
and the MSB-1 (b3) can be obtained after the comparison. During the MSB-2 (b2) cycle,
if MSB-1 (b3) equals to logic ‘1’, the corresponding capacitor of the LSB array with
higher voltage potential changes from ‘1/4’ to ‘0’ and the counterpart of the LSB array
with lower voltage potential changes from ‘1/4’ to ‘1’; otherwise, the corresponding
capacitor of the LSB array with higher voltage potential changes from ‘1’ to ‘1/4’ and
the counterpart of the LSB array with lower voltage potential changes from ‘0’ to ‘1/4’.
This operation can be applied to the generations of MSB-2 to LSB-2 for an N-bit ADC.
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The last two bits (LSB-1 and LSB) are obtained by reusing unit capacitors. The
capacitors connection change depends on the comparison results of MSB, LSB-3 and
LSB-2, which is shown clearly in Table 1. In order to clearly explain the LSB-1 and
LSB generation, unit capacitors are divided into unit capacitors and dummy capacitors as
Fig. 3 shows. And Cd_DACPM, Cu_DACPM, Cd_DACPL, Cu_DACPL, Cd_DACNM, Cu_DACNM,
Cd_DACNL and Cu_DACNL in Table 1 represent the dummy capacitor in MSB sub-array
of P-side, the unit capacitor in MSB sub-array of P-side, the dummy capacitor in LSB
sub-array of P-side, the unit capacitor in LSB sub-array of P-side, the dummy capacitor
in MSB sub-array of N-side, the unit capacitor in MSB sub-array of N-side, the dummy
capacitor in LSB sub-array of N-side and the unit capacitor in LSB sub-array of N-side,
respectively.
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capacitors
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capacitors

Fig. 3. Illustration of the unit capacitor switching scheme

Case 1: If MSB= 1, LSB-3= 1 and LSB-2= 1, for LSB-1 cycle, the dummy capacitor
of the MSB-array with the higher voltage potential changes from ‘0’ to ‘1/4’, and the
dummy capacitor of the MSB-array with the lower voltage potential changes from ‘1/4’
to ‘1’, this operation achieves an absolute voltage change 1/8Vref. After the comparison,
the LSB-1 is obtained. If LSB-1 = 1, the dummy capacitor of the LSB-array with the
higher voltage potential changes from ‘1/4’ to ‘0’; otherwise, the unit capacitor of the
LSB-array with the higher voltage potential changes from ‘0’ to ‘1/4’. After the DAC
settles, the LSB can be obtained after the comparator finished the comparison.

Case 2: IfMSB= 1, LSB-3= 1 and LSB-2= 0, for LSB-1 cycle, the dummy capacitor
and the unit capacitor of the MSB-array with the lower voltage potential both change
from ‘0’ to ‘1/4’, and an absolute voltage change 1/8Vref can be obtained. The capacitor
connection change to obtain the LSB is just the same as Case 1.

Case 3: IfMSB= 1, LSB-3= 0 and LSB-2= 1, for LSB-1 cycle, the dummy capacitor
and the unit capacitor of the MSB-array with the higher voltage potential both change
from ‘1/4’ to ‘0’. For the LSB cycle, if LSB-1 = 1, the unit capacitor of the MSB-array
with the higher voltage potential is reconnected from ‘1/4’ to ‘0’; otherwise, the dummy
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capacitor of the MSB-array with the lower voltage potential is reconnected from ‘0’ to
‘1/4’.

Case 4: If MSB= 1, LSB-3= 0 and LSB-2= 0, for LSB-1 cycle, the dummy capacitor
and the unit capacitor of the MSB-array with the higher voltage potential both change
from ‘1/4’ to ‘0’. For the LSB cycle, if LSB-1 = 1, the unit capacitor of the MSB-array
with the higher voltage potential is reconnected from ‘1/4’ to ‘0’; otherwise, the dummy
capacitor of the MSB-array with the lower voltage potential is reconnected from ‘0’ to
‘1/4’.

Table 1. Capacitor operations of the last two bits

MSB = 1
LSB-3 = 1
LSB-2 = 1

MSB = 1
LSB-3 = 1
LSB-2 = 0

MSB = 1
LSB-3 = 0
LSB-2 = 1

MSB = 1
LSB-3 = 0
LSB-2 = 0

LSB-1 cycle Cd_DACPM:
0 to 1/4
Cd_DACNM:
1/4 to 1

Cu_DACPM:
0 to 1/4
Cd_DACPM:
0 to 1/4

Cu_DACPL:
1/4 to 0
Cd_DAPL:
1/4 to 0

Cu_DACPM:
1/4 to 0
Cd_DACPM:
1/4 to 0

LSB cycle LSB-1 = 1,
Cd_DACPL: 1/4 to
0;
LSB-1 = 0,
Cu_DACPL: 0 to
1/4

LSB-1 = 1,
Cd_DACPL: 1/4 to
0;
LSB-1 = 0,
Cu_DACPL: 0 to
1/4

LSB-1 = 1,
Cd_DACPM: 1/4 to
0;
LSB-1 = 0,
Cu_DACPM: 0 to
1/4

LSB-1 = 1,
Cd_DACPM: 1/4 to
0;
LSB-1 = 0,
Cu_DACPM: 0 to
1/4

2.2 The Impact of the Accuracy of Vq

As Sect. 2.1 described, the MSB is acquired after the sampling and no capacitor con-
nection change is performed. Thus, the generation of the MSB has no relationship with
the third reference voltage Vq. During the phase of the MSB-1, all capacitors of the
LSB sub-array with higher voltage potential changes from ‘1’ to ‘1/4’ and those of the
MSB sub-array with lower voltage potential changes from ‘0’ to ‘1/4’. Supposing the
variation of Vq is�V andMSB is ‘1’, then during the phase of theMSB-1, the following
equations can be obtained

VDACP(MSB1) = Vip − 1

2
[Vref − (Vq + �V )] (1)

VDACN (MSB1) = Vin − 1

2
(Vq + �V ) (2)

VDAC(MSB1) = Vip − Vip − 1

2
Vref (3)
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where VDACP(MSB1), VDACN(MSB1) and VDAC(MSB1) are the voltage of positive-
side DAC array, the voltage of negative DAC array and the differential voltage of the
DAC, respectively. From Eq. (3), it can be seen that the variation of Vq has no impact
on the DAC voltage. The generation of MSB-2 to LSB-2 is similar to MSB-1, where
the operations are complementary, which means the inaccurate transition of one side is
compensated by the other side. Thus, the variation of Vq does not affect the transitions.
However, the generation of the last two-bits only involves capacitor(s) of one side, thus
the inaccurate transition due to the variation of Vq can not be compensated. Fortunately,
the voltage changes of the last two-bit are small, the effect of Vq is minimized.

3 Simulation Results

3.1 Switching Energy

In order to evaluate the switching scheme of the proposed scheme, behavioral models of
SAR ADC with the proposed DAC switching scheme and other published schemes are
built usingMatlab. During simulations, a 10-bit SARADC is employed, and the negative
value of the switching energywas treated as zero in calculation as in [6]. The reset energy
can be eliminated by the technique in [11], and it is not considered in the simulation.
Figure 4 illustrates the switching energy versus the digital code of different schemes.
Table 2 summarizes the main performances of different DAC switching schemes. The
switching energy and the unit capacitor number of the proposed unit capacitor switching
based scheme are 13.24 CV2

ref and 256, which improves the energy efficiency by 99.03%
and reduces the DAC area by 87.5% compared to the conventional one. Compared to
other schemes, the proposed scheme is the most energy-efficient one and the DAC area
is the smallest one.

3.2 Linearity

As analysis in Sect. 3.1, the switching energy is related to the value of the unit capac-
itor. The unit capacitor should be as small as possible when considering the switching
energy. However, due to the process variation, the practical value of a capacitor usually
deviates from its nominal value, and the capacitor mismatch limits the smallest value
of the unit capacitor adopted in the design procedure. Assume that the unit capacitor
follows a Gaussian distribution with a mean value of Cu and a standard deviation of σu.
Each capacitor in the binary-weighted capacitor array is consisted of the unit capacitor
connected in parallel.

In order to evaluate the linearity of the switching scheme, Monte Carlo simulations
are carried out using Matlab. During simulations, the unit capacitor is regarded as a
Gaussian random variable with standard deviation of 1% (σu/Cu = 0.01). Figure 5 shows
simulation results of DNL (Differential-Non-linearity) and INL (Integral-Nonlinearity)
of 500Monte Carlo runs of a 10-bit DACwith the proposed switching scheme. The root-
mean-square (RMS) values of DNL and INL are 0.259LSB and 0.242LSB, respectively.
As the first comparison cycle is mismatch free, the worst DNL occurs at 1/4VFS and
3/4VFS, where VFS stands for full scale signal.
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Fig. 4. Output code against switching energy

Table 2. Performance comparisons of different schemes for 10-bit SAR ADC

Switching scheme Switching energy
(CVref

2)
Energy savings Total unit capacitor

number
Area reduction

Conventional 1363.3 Ref. 2048 Ref.

Monotonic [1] 255.5 81.26% 1024 50%

Vcm-based [2] 170.17 87.54% 1024 50%

A. Sanyal [3] 63.56 95.34% 512 75%

Tri-level [4] 42.42 96.89% 512 75%

VMS [5] 31.88 97.66% 512 75%

Tong [6] 15.88 98.84% 512 75%

Xie [7] 21.2 98.44% 512 75%

Zhu [9] 15.88 98.84% 512 75%

Zhao [10] 48.03 96.48% 256 87.5%

This work 13.24 99.03% 256 87.5%
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Fig. 5. The standard deviation of DNL and INL of the proposed scheme

4 Conclusion

This paper presents a low energy and small DAC area switching scheme for SAR ADC.
By employing a capacitor splitting structure and introducing a third reference voltage
Vq equals to 1/4 Vref, the proposed DAC scheme can reuse the unit capacitors to reduce
switching energy and the DAC area. Compared to the conventional structure, the pro-
posed structure reduces the switching energy by 99.03% and the DAC area by 87.5%,
which achieves both energy efficiency and area reduction.
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Abstract. Accurate meteorological observation relies heavily on the
proper and precise working of meteorological facilities. Nevertheless, a
big portion of meteorological facilities are deployed in outdoor environ-
ments hardly within the reach of convenient monitoring and reliable net-
working infrastructure, hence the surveillance challenge. Given such an
infrastructure-less/-poor environment (deserts, oceans, etc.) for mete-
orological facilities, Ad Hoc nodes are possible candidates for mobile
surveillance. However, pure Ad Hoc networking without a logical centric
node can barely provide consistent collaboration between mobile nodes
during monitoring. This paper proposes a tunnelled overlay structure
that bridges the Ad Hoc protocol stack and the SDN (Software-Defined
Networking) protocol stack based on network virtualization techniques,
so that robust distributed Ad Hoc mobile nodes are grouped in the form
of an SDN-governed swarm to conduct the mobile surveillance task with
joint efforts under the consistent control of the centric SDN controller. In
addition, mobile nodes are equipped with TensorFlow-based image recog-
nition feature, capable of transmitting the recognized results of harmful
creatures that might cause facility damages, to suggest proper protection
measures, control/avoid facility loss, etc. Experiments on the prototype
SDN-governed Ad Hoc swarm are carried out in a real-world university
campus meteorological station to demonstrate its feasibility and func-
tionalities.
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1 Introduction

Meteorological facilities play a key role in various economic aspects, such as
weather forecast, agricultural production, tourism, etc. The accuracy of meteo-
rological observation relies heavily on the proper and precise working of mete-
orological facilities, thus requiring close surveillance of these devices and equip-
ments. However, a big portion of these facilities are usually deployed in outdoor
environments hardly within the reach of convenient surveillance and reliable net-
work infrastructure, some of which even have to face with severe environmental
conditions. For instance, for those remotely located meteorological facilities in,
e.g., deserts, steep ocean cliffs, etc., they might encounter extreme heat, erosion,
wind damage, etc. Given such a complex and infrastructure-less/-poor envi-
ronment and diverse facilities to monitor, simply introducing fixed sensors and
cameras might not fully meet the surveillance requirements of outdoor meteo-
rological facilities. For example in a meteorological station as shown in Fig. 1,
meteorological and auxiliary facilities might not be perfectly monitored due to
that their positions are out of the range of fixed cameras, or obscured by unex-
pected objects such as growing trees, falling rocks, (see Q1 in Fig. 1, i.e., an
obscured humidity sensor) etc. Facilities might also be damaged by wild animals
(Q2), e.g., birds, or severe environmental conditions, e.g., strong wind. Besides,
meteorological (e.g., temperature sensors, humidity sensors, solar sensors, wind
monitors, rain monitors) and auxiliary facilities (e.g., cameras) also need to be
periodically or regularly checked/monitored in order to make sure they work
properly. For such scenarios, a group of mobile nodes (such as unmanned aerial
vehicles or wheeled vehicles in Fig. 1) can be commanded to take a patrol of
meteorological facilities and accordingly adapt on-site formations to avoid obsta-
cles, to track harmful creatures, etc., and timely transfer surveillance or damage
report to administrators so that facility loss can be controlled or even avoided
asap.

Mobile nodes organized and networked through Ad Hoc networking [7] in a
flexible and on-demand fashion are possible candidates for mobile surveillance of
meteorological facilities deployed in fields. The mobility, flexibility, and robust-
ness in volatile networked environment are desired benefits. However, several
issues must be addressed.

– Consistent control over the whole mobile swarm. Mobile nodes in an Ad
Hoc swarm work in a distributed and self-determined fashion. Their moving
or sensing behaviors might not comply with the requirements of the global
surveillance task if no consistent control is given.

– Collaborative on-site formation adaptation. Obstacles might block the surveil-
lance angle. Mobile nodes under the control of a common “head” are able to
adjust positions accordingly and collaboratively to form various formations
such as triangles, rectangles, etc., for better monitoring views.

– Image recognition capability. Surveillance by only images would require exces-
sive human intervention to identify harmful creatures or damage status if any.
If pictures or videos taken by mobile nodes can be timely recognized on-site
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Fig. 1. An outdoor meteorological station under mobile surveillance

and the results of which can be meaningfully transmitted to administrators,
appropriate measures are able to be taken as soon as possible.

To summary, pure Ad Hoc networking, which is essentially a distributed
structure without central control, can barely afford consistent collaboration
between mobile nodes during monitoring, hence the challenge in consistent and
streamlined collaboration during mobile surveillance. One possible solution is
to apply the centralized SDN (Software-Defined Networking) [15] on top of the
distributed Ad Hoc underlay if its mobility, flexibility, and robustness are to be
sustained. SDN is widely appliced in DCN (Data center Networks) [21,26,30],
WAN (Wide Area Networks) [24,28], network virtualization [37,39], network
resources optimization [5,27], QoS provisioning [3,4,6], service function chain-
ing [25,29,32,34], etc. Works are also seen in the literature that integrate SDN
into distributed network underlays, to improve security [12,14], to conduct access
control and flow scheduling [33], to refine data aggregation [11], to facilitate
machine learning integration [22], etc. Nevertheless, how to combine the benefits
from the distributed Ad Hoc networking and the centralized SDN, setup the
direct control from a uniform controlling interface, and apply the overlaid and
hybrid network structure in real-world mobile surveillances of valuable assets
are still seldom studied. In this paper, we propose the SDN-governed Ad Hoc
swarm, an approach to construct a centralized SDN overlay on top of the dis-
tributed Ad Hoc underlay for mobile surveillance of meteorological facilities. The
contribution of this paper includes as follows:
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– A tunnelled overlay structure based on VxLAN (Virtual eXtensible Local
Area Network) [18] that bridges the Ad Hoc protocol stack and SDN protocol
stack to implement uniform control over distributed underlay.

– The extended OpenFlow [19] to accommodate self-defined physical actions
so that mobility and sensibility of the Ad Hoc swarm can be consistently
controlled without involving hardware details.

– Combined with TensorFlow-based image recognition, a prototype of low-cost
mobile surveillance Ad Hoc swarm governed by SDN is implemented on Rasp-
berry Pi platform. Extensive experiments of this prototype swarm were con-
ducted in a real-world meteorological station.

The rest of this paper is organized as follows: Sect. 2 introduces the archi-
tecture of mobile nodes in the SDN-governed Ad Hoc swarm. Section 3 specifies
how the SDN overlay is built on top of the Ad Hoc underlay, and the cen-
tralized control by means of the extended OpenFlow. Section 4 specifies the
TensorFlow-based image recognition deployed on the swarm. Section 5 conducts
various experiments to test the SDN-governed Ad Hoc swarm prototype in a
real meteorological station. Related works are summarized in Sect. 6. Finally,
this paper is concluded in Sect. 7.

2 Mobile Node Architecture

The architecture of the mobile node is shown in Fig. 2, which is roughly divided
into 3 layers. The HW (hardware) layer is based on the Raspberry Pi platform,
mainly providing wheeled mobility, camera monitoring and various sensors such
as temperature sensors, infrared detectors, etc. Note that other mobility platform
such as unmanned aerial vehicle (UAV) can also be considered if affordable.
OS (Operating System) layer provides software functionalities like networking,
computing, storage, etc. It is able to provide on the operating system several
wireless communication protocols, such as WiFi, ZigBee, LoRa, NB-IoT, etc.,
as well as Ad Hoc routing protocols, such as AODV, DSDV, DSR, OLSR, etc.,
to enable peer-to-peer distributed control, packed with operating systems or
manually installed as needed. Since high data rate transmission is needed in
our application scenario to support camera surveillance and photo sharing for
image recognition, we adopt the higher-rate WiFi as the fundamental wireless
communication mechanism between mobile nodes. Low-power and lower data-
rate communications, such as ZigBee for shorter range and LoRa/NB-IoT for
longer range can be considered if corresponding chips are available.

The key extension for the centralized control over the distributed Ad Hoc
underlay is the SDN layer. Every node is equipped with the SDN data plane,
e.g., Open vSwitch (OVS) [23]. Meanwhile, swarm head might be re-assigned to
other mobile nodes due to damage, high workload, low battery, etc., hence every
node must be eligible to be elected as the swarm head to control and manage
other mobile nodes so that the centralized SDN overlay can be continuously
maintained. Thus, the SDN control plane must be deployed on every node as well,
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such as Floodlight, ONOS [1], OpenDaylight [20], etc. In this paper, we adopt
OVS as the SDN switch and lightweight Floodlight as the SDN controller. SDN
controller (i.e., Floodlight) is activated once a mobile node is elected/designated
as swarm head while SDN switch (i.e., OVS) is always standing by on every node
to accept control by swarm head through OpenFlow.

Fig. 2. Mobile node architecture

3 Ad Hoc Swarm Networking

3.1 Ad Hoc Underlay Networking

Every mobile node needs to participate in a two-stage networking to enable the
centralized SDN control over the Ad Hoc swarm, i.e., the Ad Hoc underlay net-
working and SDN overlay networking. And, the Ad Hoc underlay does not have
fixed networking infrastructure. Therefore, the wireless NIC (network interface
card) of the mobile node should be configured to work in the ad hoc mode. This
can be done by editing /etc./network/interfaces. For example, the following con-
figuration (Listing 1.1) sets the IP address of the physical wireless NIC wlan0 as
10.0.0.1. It works in the ad hoc mode as specified in the configuration, so that
infrastructure such as access points (AP) are not needed for mutual communi-
cation between mobile nodes. Meanwhile, all participating mobile nodes in the
same swarm must be configured with exactly the same ESSID (Extended Ser-
vice Set ID), for example “my-swarm” in Listing 1.1. Network mask “netmask”
can be adapted according to the scale of the swarm to be constructed. Take the
10.0.0.0 IP subnet as an example. The IP addresses in such a subnet are by
default class A addresses, whose network masks default to 255.0.0.0 (with 8 bits
for network IDs and 24 bits for host IDs). It provides an address space capable
of hosting almost 224 nodes, which is more than needed in our scenario where an
Ad Hoc swarm usually consists of several or tens of collaborative mobile nodes.
Therefore, CIDR (classless inter-domain routing) can be used to partition such
big address spaces by providing different network masks. For example, 10.0.0.0
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subnet with an altered network mask 255.255.255.0 (also written as 10.0.0.0/24)
gives a 28 space whereas 10.0.0.0/28 gives an even smaller space with 24 mobile
nodes. Other mobile nodes have similar settings except for different IP addresses.
Mobile nodes can ping each other using physical IP addresses (i.e., 10.0.0.x) and
receive ICMP replies normally at this point of time, even though no APs are
present. The following configuration demonstrates how wireless NICs should be
configured when WiFi is adopted as the wireless communication for a distributed
Ad Hoc swarm. The above configuration can be scripted and executed to enable
automatic Ad Hoc underlay networking.

1 auto wlan0
2 al low−hotplug wlan0
3 i f a c e wlan0 i n e t s t a t i c
4 address 1 0 . 0 . 0 . 1
5 netmask 255 . 255 . 255 . 0
6 network 1 0 . 0 . 0 . 0
7 broadcast 1 0 . 0 . 0 . 2 5 5
8 w i r e l e s s −e s s i d my−swarm
9 w i r e l e s s −mode ad−hoc

10 w i r e l e s s −channel 3

Listing 1.1. The Ad Hoc Configuration

3.2 SDN Overlay Networking

Tunnelled Overlay Structure. Ad Hoc protocol stack and SDN protocol
stack are two independent stacks. To combine flexibility from Ad Hoc and man-
ageability from SDN, the two stacks must be somehow bridged. The key to
deploying the SDN overlay above the Ad Hoc underlay to offer consistent and
streamlined control is the deployment of OVS, the software-ized SDN switch.
OVS consists of several modules working in both user space and kernel space
of a Linux system. Core modules include ovsdb-server, ovs-vswitchd, ovs kernel
module in kernel space, etc. ovsdb-server keep records of configurations. ovs-
vswitchd communicates with SDN controllers through OpenFlow. ovs-vswitchd
also connects with ovs kernel module through netlink and supports multiple
datapaths, i.e., the virtual bridges that forward data. When ovs kernel module
receives traffic, the actual forwarding is done by datapaths. Datapaths can be
created on demand by OVS, and equipped with multiple vports (virtual ports
on a datapath) for traffic ingress and egress. When directing packets to another
vport upon traffic arrival, a vport matches packet fields with OpenFlow-installed
flow table entries, and forwards matched packets or inquire the SDN controller
for miss-matched ones. In other words, traffic forwarding by OVS is essentially
instructed by (the flow table entries installed by) OpenFlow. The primary work-
flow of OVS can be found in Fig. 3.

According to the workflow of OVS mentioned above, to control the traf-
fic flows running through the Ad Hoc underlay, wireless NICs of mobile nodes
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Fig. 3. OVS workflow

must be bound to datapaths created by OVS, so that traffic flows run into OVS
modules, leading to an direct control by OpenFlow. Nevertheless the physical
wireless NICs have already participated in the Ad Hoc underlay networking in
the previous phase, thus simply bounding wireless NICs to datapaths fails the
Ad Hoc underlay communication. Alternatively, we can create extra datapaths
to encapsulate physical wireless NICs, so that the inner physical wireless NICs
inside datapaths are controlled indirectly by OpenFlow. In this way, the SDN
overlay becomes possible. In every mobile node, we create an OVS datapath
named br0. At this point of time, every node has two forwarding devices, the
physical wireless NIC wlan0, participating in the Ad Hoc underlay networking,
and the virtual datapath br0, to participate in the SDN overlay controlling. To
encapsulate wlan0 without compromising the Ad Hoc underlay communication,
it requires end-to-end tunneling over the physical communication channels by
means of datapath and vport. To achieve this, VxLAN is adopted for pairwise
tunneling. The ovs-vsctl utitity provided by OVS offers VxLAN support. For
every other mobile node, br0 adds a vport to tunnel all the way to the wlan0 of
that node. Besides, br0 is assigned an independent IP address other than that
of its own wlan0. Pseudo code for mobile node with wlan0 assigned 10.0.0.1 (n1
for short) tunnelling another node with wlan0 assigned 10.0.0.2 (n2) looks like
Listing 1.2. In the above settings, it not only tunnels n1 and n2 using VxLAN,
it also instructs the OVS datapath br0 to be controlled by the SDN controller
process residing on 10.0.0.1:6653 through OpenFlow. Note 6653 is the official
transport number for OpenFlow. The SDN controller IP address 10.0.0.1 indi-
cates both SDN data plane and control plane are activated in n1 and n1 controls
itself. Similar settings must be configured at the other side of the tunnel, i.e.,
n2, with symmetric changes on remote IP address as 10.0.0.1 and 20.0.0.2/24
for n2 br0. In this way, n1 controls both n1 and n2, forming the SDN overlay.
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1 ovs−v s c t l del−br br0
2 ovs−v s c t l add−br br0
3 ovs−v s c t l add−port br0 vport1
4 ovs−v s c t l s e t i n t e r f a c e vport1
5 type=vxlan
6 opt ions : remote ip =10 .0 .0 . 2
7 i f c o n f i g br0 20 . 0 . 0 . 1 / 24 up
8 ovs−v s c t l set−c o n t r o l l e r br0
9 tcp : 1 0 . 0 . 0 . 1 : 6 6 5 3

Listing 1.2. VxLAN Tunneling Configuration

Imagine there arem nodes in an Ad Hoc swarm. It requiresm(m−1) ∼ O(m2)
tunnels for full collaboration in the Ad Hoc underlay. Therefore, the control and
collaboration at runtime is quite complex given largerm, demanding sophisticated
algorithms. Nevertheless, if an SDN overlay is constructed, it only imposes m− 1
OpenFlow channels for full control and centralized collaboration. The administra-
tor controls only the SDN controller through northbound interface, and it gives
instructions on behalf of the administrator through OpenFlow, leading to much
simpler runtime management. Figure 4 demonstrates the architecture of the SDN-
controlled Ad Hoc swarm (m = 4) where the upmost node with purple shadow
is the SDN controller. The above configuration can be scripted and executed to
enable automatic SDN overlay networking. Meanwhile, the selection of the SDN
controller (i.e., the swarm head) can be done manually for a small scale swarm.
Alternatively, derivatives of cluster head election algorithm such as LEACH [31]
widely used in ZigBee can be tuned and used for such a purpose.

Centralized Controlling. We can see from the mobile node architecture that
the control and management of the Ad Hoc swarm can be simply achieved by
invoking the SDN controller northbound interface residing on the swarm head. In
this way, the control and management of the swarm is simplified as the interac-
tion with the swarm head that sends unified OpenFlow directives to other mobile
nodes. Therefore, OpenFlow can now be regarded as the middleware to unify
heterogenous hardware platforms, offering centralized control and management
over peer-to-peer distributed Ad Hoc underlay. This “divide and conquer” app-
roach scales when there are a large amount of mobile nodes under control. In this
paper, we go one step further to extend OpenFlow from pure data forwarding
actions to physical actions including moving, monitoring, and sensing.

OpenFlow is originally designed to instruct data forwarding on switches.
Switches match the incoming packets against flow table, and execute correspond-
ing OpenFlow actions for matched packets. For those miss-matched packets,
switches send OpenFlow packet-in PDUs to the SDN controller to inquire how
these packets should be processed. The SDN controller replies with packet-out
to instruct forwarding actions, and switches also install corresponding flow table
entries so that similar packets are to be locally processed the same way with-
out further inquiries. OpenFlow supports several forwarding-related actions (see
Listing 1.3, line 3–9) in version 1.3 which is a widely deployed version.
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Fig. 4. SDN-governed Ad Hoc Swarm

Since mobile nodes involves moving, sensing, monitoring, etc., to fully imple-
ment the control and management of mobile node using OpenFlow, OpenFlow
must be extended with corresponding actions. For example in Listing 1.3, action
{OFPACT MOVE FORWARD, 101} has been added to instruct the movement
of the mobile node to move forward; action {OFACT CAMERA ON, 201} has
been added to instruct the mobile node to turn on the camera and conduct live
surveillance; action {OFACT IMAGE RECOGNIZE, 201} for image recognition
(see Sect. 4). These actions are to be parsed locally on mobile nodes upon arrival.
And subsequently, hardware driver APIs are to be invoked internally, transparent
to upper layer applications or administrators, to drive corresponding equipments
on board of these mobile nodes.

1 stat ic const struct ofpact map of12 [ ]=
2 {
3 {OFPACT OUTPUT, 0} ,
4 {OFPACT SET MPLS TTL, 15} ,
5 {OFPACT DEC MPLS TTL, 16} ,
6 {OFPACT PUSH VLAN, 17} ,
7 {OFPACT STRIP VLAN, 18} ,
8 {OFPACT PUSH MPLS, 19} ,
9 {OFPACT POP MPLS, 20} ,

10 . . .
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11 {OFPACTMOVEFORWARD, 101} ,
12 {OFPACTMOVEBACKWARD, 102} ,
13 {OFPACT MOVE LEFT, 103} ,
14 {OFPACT MOVE RIGHT, 104} ,
15 . . .
16 {OFPACT CAMERA ON, 201} ,
17 {OFPACT CAMERA OFF, 202} ,
18 . . .
19 {OFPACT IMAGE RECOGNIZE, 301} ,
20 }

Listing 1.3. OpenFlow 1.3 Actions

4 Image Recognition

Image recognition plays a key role in mobile surveillance of meteorological facil-
ities. We developed the image recognition feature deployed on the Raspberry
Pi platform based on TensorFlow and OpenCV framework. The purpose of the
TensorFlow-based image recognition is to identify several harmful creatures seen
around the target meteorological station, i.e., rats, sparrows, dogs, eagles, etc.,
and send not only the taken images but also the recognized results once damage
occurs to the administrator in a timely fashion, to alarm possible creature-caused
damages to meteorological facilities (e.g., rat-bites) at early stage and/or to sug-
gest protection measures.

We selected the ssd mobilenet v1 network and the pre-trained ssd mobilenet
v1 coco model to conduct the transfer learning, to accelerate the training.
Mobilenet is a lightweight neural network model proposed by Google in 2017,
which is suitable for embedded mobile nodes. There are 28 layers in total, each
of which has a BatchNorm layer and a ReLU layer. Depth separable convolution
is used in mobilenet to divide the standard convolution kernels into depth convo-
lution kernels and 1× 1 point-wise convolution kernels, so that the computation
load can be reduced for mobile nodes. SSD (single shot multibox detector) is
one of the most popular classification frameworks. Its main task is to conduct
classification after features extraction from neural networks. The main idea of
SSD is to carry out intensive sampling uniformly at different positions in the
figure, and adopt different scales and aspect-ratios during sampling to carry out
classification and regression. SSD uses convolution to extract the detection from
the multi-scale feature map, so that objects of different scales can be simultane-
ously detected, that is, bigger scales for smaller objects detection and vise versa.
ssd mobilenet adds 8 convolution layers after the last layer of mobilenet, and
extracts 6 of them for detection and the rest for convolution kernels for coordi-
nate regression. As of model training, the original ssd mobilenet v1 coco model
has a 90-dimensional output layer that we substituted with a 4-dimensional (rep-
resenting rats, sparrows, dogs, and eagles) softmax layer to generate the proba-
bilities indicating which creature the identified object belongs to. The above pro-
cess applies in the static image recognition. If image recognition must be applied
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in video streaming such as camera surveillance, OpenCV framework needs to
be deployed along with TensorFlow to extract frames from video streaming and
conduct the serial image recognition for each frame.

At this point of time, we have constructed an Ad Hoc swarm under the
centralized control of the SDN controller activated on the swarm head. Since
every mobile node is equipped with OVS, it can be uniformly and compliantly
instructed to move, adapt on-site formation, monitor, recognize objects on the
taken photos, etc., by means of our extended OpenFlow messages that contain
self-defined physical actions.

5 Evaluation

5.1 Swarm Networking and Centralized Controlling

The prototype of the SDN-controlled Ad Hoc swarm is implemented based on
the Raspberry Pi platform. Raspbian operating system was installed on very
Raspberry Pi. Floodlight was deployed as the SDN controller, and OVS is also
installed as the SDN data plane, to comprehensively build the SDN layer over
every mobile node. For the administrator, northbound REST API provided by
Floodlight can be invoked to remotely control the swarm head (i.e., the SDN
controller), and the head delivers OpenFlow messages that contain actions to
instruct how the Ad Hoc swarm should function and collaborate. For indoor
experiments in this section, three such mobile nodes (P1–P3, as shown in Fig. 5a)
were participating in the networking, among which, one node was working as the
swarm head, which was also an ordinary Ad Hoc swarm node under control itself.
The logical SDN overlay topology was discovered by the Floodlight controller
and shown in Fig. 5b.

(a) Underlay Ad Hoc Swarm (b) Overlay SDN Topology

Fig. 5. SDN-controlled Ad Hoc swarm

The SDN overlay worked in the 20.0.0.0 IP segment while the Ad Hoc under-
lay worked in the 10.0.0.0 IP segment. Administrators can push flow entries
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through Floodlight’s northbound API (relative URL is /wm/staticflowpusher/j-
son) to instruct data forwarding, demonstrated by Fig. 6. A flow entry that drops
all data from source IP 20.0.0.1 (i.e., P1) to destination IP 20.0.0.4 (i.e., P3) in
this experiment was pushed by the administrator, as shown in Fig. 6a. We can
see from Fig. 6c that subsequent pingings complained about the destination host
unreachable. Dynamic controlling over data forwarding of the Ad Hoc underlay
was also implemented, as shown in Fig. 6b where a flow entry that deletes the
previous traffic-dropping instruction was pushed by the administrator. We can
see from Fig. 6d, the pinging was re-activated. Notice that the pinging opera-
tion directly uses the SDN overlay IP addresses (20.0.0.x), instead of those of
the Ad Hoc underlay (10.0.0.x). This indicates that the forwarding of the Ad
Hoc underlay is fully controlled by the SDN overlay, without any underlying
hardware/configuration/communication details involved. Therefore, the admin-
istrator interacts with only the Ad Hoc swarm head to implement full control
over the whole Ad Hoc swarm through the SDN layer deployed on every node.

(a) The flow entry that drops traffic be-
tween P1 and P3

(b) Deleting the traffic-dropping flow entry

(c) Traffic disabled (d) Traffic enabled

Fig. 6. Flow entries pushing

Self-defined physical actions of the extended OpenFlow, as we have intro-
duced in Sect. 3.2, can also be pushed from the SDN controller located on the
swarm head using Packet-out PDUs, like ordinary OpenFlow actions for data
forwarding. A flow entry containing action {OFACT CAMERA ON, 201} was
pushed, and the Ad Hoc swarm node that received it turned on its camera
to conduct live surveillance, as shown in Fig. 7a. Another flow entry containing
{OFPACT MOVE FORWARD, 101} action was pushed, and the Ad Hoc swarm
node that received it moved in different directions for keyboard strokes w (for-
ward), s (backward), a (left) and d (right), as shown in Fig. 7b. These physical
actions are particularly useful for collaborative mobile surveillance over valuable
assets or facilities, including meteorological facilities remotely deployed, in case
of being unexpectedly obscured by obstacles such growing tree branches, dam-
aged by wild animals, etc., as will be shown in outdoor experiments in Sect. 5.2.
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(a) SDN-controlled Camera Surveillance (b) SDN-controlled Moving

Fig. 7. Self-defined physical actions of the extended OpenFlow

5.2 Mobile Surveillance and Image Recognition

The prototype of the SDN-governed Ad Hoc swarm, augmented with wheels,
cameras, sensors, etc., was also deployed in the meteorological station of Chengdu
University of Information Technology (CUIT) for outdoor mobile surveillance of
meteorological facilities. CUIT features its meteorology, and has a professional
meteorological station located in its campus, as shown in Fig. 8a. The size of the
main station is about 88 m × 41 m and that of the secondary radar station is
about 20 m × 21 m. Some facilities, especially the radar, are obscured by nearby
trees, hard to be effectively monitored by the fixed camera, as we can see from
Fig. 8b. An SDN-governed Ad Hoc swarm consisting of three wheeled mobile
nodes was deployed for evaluation. A flow entry containing action Camera On
was pushed by the SDN controller (i.e., the swarm head), and the node that
received it turned on its camera to conduct live surveillance and image recogni-
tion as needed. To bypass obstacles and get better monitoring angles, the swarm
head also instructed mobile nodes to gradually move around the radar and other
meteorological facilities while conducting live surveillance, by sending OpenFlow
messages that contained movement actions in different directions. Figure 8c (1)–
(3) shows this mobile monitoring process that gradually avoided bushes and
grass, and revealed a clear view of the meteorological radar. Besides, mobile
surveillance makes it more feasible to conduct multi-angle monitoring compared
with fixed camera shooting. For example, Fig. 8c (4) shows a reverse view of
the monitored radar, taken by anther mobile node in the triangular on-site for-
mation commanded by the swarm head. In addition, the node-to-node wireless
coverage in the field is about 100 m, given the current mobile node design, which
is sufficient for the mutual communication between nodes, and the surveillance
of the meteorological station.

Image recognition based on TensorFlow was also tested in this experiment
due to that small-sized harmful animals are seen around the meteorological facil-
ities, which might cause damage. Figure 8d–8e demonstrate the recognition and
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marking of birds in a picture. The marking function, which draws a highlighted
frame around the recognized object and indicates the recognition confidence,
requires TensorFlow’s object detection API as well as a more complex offline
training process. It says in these pictures the recognition confidence was about
89% in Fig. 8d and 99% in Fig. 8e, respectively. The average recognition precision
was above 90% for larger objects in a picture. The delay for image recognition
and marking was 0.7 s on average even though the computing platform is the
comparatively low-performance mobile Raspberry Pi.

(a) The Meteoreology Station (b) The Swarm and the Blocked Radar

(c) Mobile Surveillance around the Radar

(d) Bird Recognition (e) Bird Recognition

Fig. 8. Mobile surveillance of a meteorological radar
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6 Related Works

Efforts have been made to extend SDN from wired networking towards the wire-
less networking. OpenRoads [35] merged SDN with WiFi/WiMAX technologies
to deploy in university campus networks to facilitate wireless network inno-
vation. It provides wireless extensions to the original OpenFlow. OpenRoads
consists of three layers, namely the flow table layer, which coordinates Open-
Flow and WiFi/WiMAX; the slicing layer, for FlowVisor-based network slicing;
and the controller layer implemented by NOX [10]. In particular, OpenRoads
demonstrated how wireless handover can be effectively conducted by means of
SDN in wireless environments. In reference [8], OpenFlow is applied to WMN
(Wireless Mesh Network), and an SDN solution based on virtualization tech-
nology and cross-layer flow table rules for WMN is proposed to enable unified
control. Similarly, applications of SDN in wireless networks are also reported in
references [9,36]. These works focus on SDN-equipped wireless networks, lack-
ing the support for ad hoc networking and uniform control, hence difficulty in
coordinating Ad Hoc nodes to conduct the consistent and coordinated mobile
surveillance.

Recent years have also seen the efforts in integrating SDN into Ad Hoc net-
working. Reference [16] proposed and envisioned the software-defined VANET
architecture and various services. Architecturally, it includes a remote centralized
SDN controller located in a telecommunications datacenter, base stations, fixed
RSUs (Road Side Unit), and mobile vehicles. Vehicles and RSUs constitute the
data plane, whose data transmission is controlled by the SDN controller. Base
stations and the remote controller conduct remote communication via wireless
communications, such as LTE or WiMAX. This work gave some preliminary
envisions on the software-defined VANET. Reference [38] proposed to control
the OVS entities deployed on Ad Hoc nodes by the SDN controller, as we do in
this paper. It maintains the interoperability with other SDN by applying best-
practice SDN methodologies in implementation. However, the main weakness of
this work is its lack of consideration of mobility management commonly seen
in Ad Hoc networking. Reference [17] proposed to bridge SDN domains with
west-east interfaces in a peer-to-peer manner, which offered new possibilities for
interconnectivity and collaboration between software-defined MANETs.

SDN has also been introduced into the monitoring of valuable assets in recent
years. Reference [2] extended the SDN southbound interface that is dedicated to
devices discovery in a way that messages for adaptive device status monitoring
are piggybacked in the LLDP (Link Layer Discovery Protocol), and proposed
to apply this adaptive monitoring mechanism in energy Internet. Reference [14]
proposed to monitor and improve the use of water resources by means of secure
SDN techniques. Reference [13] adopted a similar approach to our work in that
hardware-specifics are encapsulated using software and exposed as unified inter-
faces for easy invocation and composition, i.e., the concept of Software-Defined
Device. Our work defers in that OpenFlow is used as the middleware to unify
data forwarding and physical actions, thus the enhancement of interoperability
and compatibility with wired SDN networks.
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7 Conclusions

Ad Hoc networking provides good survivability and flexibility in non-static net-
work topologies, thus a good choice for on-demand mobile surveillance for meteo-
rological facilities deployed in fields where communication and monitoring infras-
tructures might be in shortage. However, the distributed structure prevents it
from being consistently controlled hence the difficulty in coordination in mobile
surveillance. This paper proposes to ingrate SDN methodologies into Ad Hoc
networking to construct a collaborative and controlled swarm, so that moving,
sensing, image recognition, etc., are uniformly controlled by the centralized SDN
controller by means of extended OpenFlow. This overlaid and hybrid structure
simplifies the global control over an Ad Hoc swarm in that only the Ad Hoc
swarm head that activates the SDN controller is involved for the manipulation
of the whole swarm. Extensive experiments in a real-world meteorological sta-
tion demonstrate the feasibility. In our future work, topology dynamics such as
swarm fusion and fission due to the distance variability will be studied to offer
finer-grained control over the distributed underlay.
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Abstract. Charging stations deployment is an important problem inElectricVehi-
cle (EV) networks. The distribution of EV is complicated in urban environments.
Therefore, reasonable location deployment will avail to reduce construction costs
and improve user experience. Aim to this, this paper comprehensively considers
the cost of charging stations and the charging costs of EVs. Studied the charg-
ing station location, charging station capacity and the optimization algorithms for
charging station location, and proposed a method for estimating the optimal loca-
tion and optimal capacity allocation of EV charging stations. Firstly, this paper
uses the Voronoi diagram to divide the service range of the charging stations,
then uses the differential evolution algorithm combined with the particle swarm
optimization algorithm (DEIPSO) to solve the charging station location model,
and finally consider the residence time of EV in the charging station, use queuing
theory to solve the charging station capacity allocation model. The experimental
results shows that DEIPSO can better jump out of the local optimum and achieve
the global optimum; the proposed model can plan the charging station on the basis
of fully considering the total charging costs of charging stations and EVs.

Keywords: EV · Charging stations · Location · Capacity allocation · DEIPSO
algorithm

1 Introduction

1.1 Background and Motivation

At present, the related research of EV charging stations at home and abroad mainly
focuses on the following aspects: (1) Research on Location Model of Charging Station.
Mehmet, C.C. et al. [1] believe that the optimal deployment location of the charging sta-
tion is closely related to the number of EVs and traffic density in the planning area, and
propose to use data mining methods to estimate the optimal location of the charging sta-
tion; Johannes, S. et al. [2] solve the problem of user’s charging difficulties, considering
the user’s charging habits and propose amethod for selecting the location of the charging
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station; Bi, R. et al. [3] considered the influence of different vehicle owners’ charging
behavior and established multiple models for comparative analysis. The results showed
that the vehicle owners’ charging behavior will have a greater impact on the simulation
results, so on this basis, optimize the location of the charging station; Phonrattanasak, P.
[4] under the constraints of the distribution network and traffic restrictions, the planning
model of charging station is established by considering the total cost of fast charging
station and the total loss of distribution network. (2) Research on the charging station
capacity allocation model. To meet the charging needs of EVs, the vehicles do not con-
sider the problemofwaiting in linewhen charging. Some research scholars determine the
number of chargers in charging stations by calculating the maximum charging demand
within the service range of charging stations [5–7]; by considering the queuing problem
of EVs during charging, some researchers have proposed to use the method of queu-
ing theory [8–10] to establish the capacity allocation model of charging stations. (3)
Research on the algorithm for solving the location model. Mehar, S. et al. [11] added a
new operator to the traditional genetic algorithm to estimate the optimal location of the
charging station. The improved genetic algorithm can prevent the algorithm from prema-
turely converging and improve the efficiency of the algorithm; Han, F.J. [12] combined
Voronoi diagram with traditional particle swarm optimization algorithm to improve the
optimization effect and optimization speed of the algorithm; because the traditional parti-
cle swarm optimization algorithm is easy to fall into the local optimum, some scholars [5,
6, 13] combined Voronoi diagram with improved particle swarm optimization algorithm
to further improve the optimization speed of the algorithm.

1.2 Challenges and Our Solution

EVs have become an important part of the new energy development strategy, and is
the development direction of new energy vehicles. The construction of EV charging
stations is a prerequisite for the development and popularization of EVs. Due to the
relatively high construction cost of charging stations and the large amount of land and
power resources they occupy, the development of charging stations is relatively slow.
The layout of the charging stations that have been constructed is unreasonable in space
and has a great blindness. The unreasonable deployment of charging stations will affect
the urban transportation network planning, increase the driving costs of vehicles, and
make it difficult for operators to make profits or even lose money. Whether the planning
of EV charging stations is reasonable will directly affect the number of EVs used and
the improvement of service levels.

The above literature has important guiding significance for the planning of charging
stations, but them ignores that the location of EV charging stations will affect many
aspects, which in turn will not be conducive to the development of charging stations, and
different location optimization algorithms solving the location problem of the charging
station is also a key part, the quality of the selection algorithm is directly related to the
accuracy of the final optimization result. Therefore, in the location and capacitymodel of
the charging station, this paper comprehensively considers the actual influencing factors
in real life, and considers the number of EVs, the charging behavior of users, the cost
of building stations and operating costs of charging stations in different regions, and
proposed the location and volume model of EVs charging station. On the basis of the
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traditional particle swarm optimization algorithm is easy to fall into the local optimal,
proposing a differential evolution particle swarm optimization algorithm (DEIPSO) to
verify the feasibility of the model.

1.3 Paper Structure

The rest of the paper is organized as follows: Sect. 2 introduces the prediction model of
EV charging demand points in the planning area. Section 3 introduces the mathematical
model of EV charging station location. Section 4 introduces the mathematical model
of EV charging station capacity allocation and objective function. Section 5 introduces
the constraints in this model. Section 6 introduces the DEIPSO algorithm. Section 7
introduces the simulation scenarios of the experiment in this paper. Section 8 introduces
the simulation results of the model in this paper. Section 9 summarizes the paper.

2 Division of Charging Demand Points

Charging demand is the number of EVs that need to go to the charging station for
charging in a certain area and time. The charging demand is closely related to the traffic
density. In areaswith charging demand, the traffic density near the areawill also increase.
Therefore, the service capacity of the charging station should match the traffic density
of the corresponding area to meet the charging needs of EVs as much as possible. EVs
are located in most areas of the city, and vehicles will go to the nearest charging station
to charge without the guidance of charging. Therefore, in this paper, the planning area
is divided into several smaller areas [14], and each small area is a charging demand cell.
Nie, Y. et al. [15] proposed that in any area, traffic flow is conserved for a period of time.
According to this conclusion, it can be assumed that the number of EVs in each small
area remains unchanged, so for the convenience of calculation, the geometric center of
each cell is regarded as a charging load point, according to the number of EVs at each
charging load point, calculating the charging demand of each cell.

3 Mathematical Model of EV Charging Station Location

The construction of the charging station not only needs to consider the construction cost
of the charging station, but also needs to consider the driving cost of EVs. This paper
mainly considers the fixed construction cost of the charging station, the annual operating
cost and the charging satisfaction of EV users, and establishes a mathematical model for
the location of EV charging stations, as shown in Eq. (1).

TotalCost = CSC + 1

ϕ
(
vj, dij

) (1)

In Eq. (1), TotalCost is the total cost; CSC is the construction cost of the charging
station; ϕ(vj, dij) is the EV user satisfaction.
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The construction cost of the charging station is composed of the fixed construction
cost and the annual operating cost of the charging station, as shown in Eq. (2).

CSC =
∑

i∈CS fcs(Ni)RZ + ucs(Ni) (2)

The fixed construction cost fcs of the charging station is shown in Eq. (3).

fcs(Ni) = Wi + qiNi + mi (3)

In Eq. (3),Wi is the fixed investment cost of each charging station; qi is the construc-
tion investment cost related to the charger in the charging station; mi is the investment
cost related to the transformer in the charging station; Ni is the number of charging piles
in charging station i.

By reading a large number of references and combining the simulation environment
of this paper, the annual operating cost of the charging station is shown in Eq. (4).

ucs(Ni) = 0.1fcs(Ni) (4)

RZ is the discount factor of the charging station as shown in Eq. (5).

RZ =
(
rr(1 + rr)ms

)

(1 + rr)ms−1 (5)

In Eq. (5), rr is the discount rate and ms is the depreciation period of the charging
station.

EV user satisfaction: EV user satisfaction indicates the evaluation of the charging
station by the EV users at the charging station, as shown in Eq. (6).

ϕ
(
vj, dij

) = 1

VTC + VTE + CSL
(6)

In Eq. (6), VTC is the cost of the travel time for EVs to reach the charging station;
VTE is the cost of energy consumption for EVs to reach the charging station; CSL is
the cost of waiting time for EVs at charging station, and the size of the function value
indicates the satisfaction of the EV user with the charging station.

In this paper, consider the non-linear coefficient of urban roads to calculate the
distance traveled by EVs, as shown in Eq. (7).

Dij = λij ∗ γij ∗ dij (7)

In Eq. (7), λij is the non-linear coefficient of the urban road from the demand point j
to the charging station i; γij is the reentry coefficient of the EV journey from the demand
point j to the charging station i; dij is the linear distance from the demand point j to the
charging station i.

λij = dtij
dij

(8)

The minimum value of λij is 1, and the smaller the λij, the more convenient the traffic
between the two points.
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The time-consuming cost of an EVs in road is shown in Eq. (9).

VTC =
365βtimeNc

(∑
i∈CS

∑
j∈JCD pnjDij

)

vj
(9)

In Eq. (9), βtime is the time cost of EVs; p is the daily fast charging probability of
EVs; nj is the number of EVs at demand point j; vj is the average driving speed of EVs;
Nc is the number of daily charging of EVs, as shown in Eq. (10).

Nc = E1km ∗ k

battery
(10)

In Eq. (10), E1km is the energy consumption of EVs; k is the daily mileage of EVs;
battery is the battery capacity of EVs.

The cost of energy consumption for EVs to reach the charging station is shown in
Eq. (11).

VTE = 365mNc

(∑

i∈CS
∑

j∈CD njDijE1km

)
(11)

In Eq. (11), m is the electricity price in the planned area.

4 Mathematical Model of EVCharging Station Capacity Allocation

When an EV is charging at a charging station, if the charging station does not have an idle
charging pile, it needs to wait in line for service. Queuing theory is through statistical
research on the arrival and service time of service objects, to obtain statistical laws of
quantitative indicators such as waiting time, queue length, and length of busy period,
and then to improve the structure of the service system or reorganize the service objects
according to these laws. So that the service systemcanmeet the needs of the service target,
but also can make the organization’s expenses the most economical or some indicators
are optimal. The planning of the number of charging piles for EV charging stations
is to meet the charging needs of EVs and to optimize the economics of the charging
station. Therefore, this paper uses the queuing theory multi-service desk model (M/M/S)
to establish charging stations capacity allocation model. In the queuing system of the
charging station, the arrival time of EVs follows the negative exponential distribution
with the parameter λ, and the service time of each service desk is independent of each
other, with the negative exponential distributionwith the parameterμ. The average queue
length Ls of the EV at the charging station is shown in Eq. (12).

Ls = P0ρ
NiρNi

Ni!
(
1 − ρNi

)2 + ρ (12)

In Eq. (12), P0 is the probability that all charging piles in the charging station are
idle, as shown in Eq. (13).

P0 =
[
∑Ni−1

n=0

ρn

n! + ρNi

Ni!
(
1 − ρNi

)

]−1

(13)
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In Eq. (13), n is the number of EVs.

ρNi = ρ

Ni
= λ

Niμ
(14)

The residence time of the EV at the charging station is shown in Eq. (15).

Ws = Ls
λ

(15)

The cost of the waiting time of an EV at a charging station is shown in Eq. (16).

CSL = 365βtimeNc

(∑

i∈CS
∑

j∈CD nj

(
Ws − 1

μ

))
(16)

The objective function of this paper is shown in Eq. (17).

Cost = min(TotalCost) (17)

In Eq. 17, Cost is the lowest cost considering the cost of the charging station (con-
struction cost, annual operating cost) and the cost of the EV (road travel time cost, energy
consumption cost, waiting time cost at charging station).

5 Model Constraints

The number of charging piles in each charging station is constrained by Eq. (18).

Ni,min ≤ Ni ≤ Ni,max (18)

In Eq. (18),Ni,min is the minimum number of charging piles included in the charging
station;Ni,max is themaximum number of charging piles included in the charging station.

The distance constraint between charging stations is shown in Eq. (19).

Dmin ≤ Dij ≤ 2 ∗ Dmin (19)

In Eq. (19), Dmin is the minimum distance between two charging stations.
The distance constraint from the charging demand point to the charging station is

shown in Eq. (20).

max
(
Dij

) ≤ Dmax (20)

In Eq. (20), Dmax is the maximum service radius of the charging station.
In order to avoid the long queue of EVs at the charging station and ensure the stability

of the queuing system, the arrival rate of EVs must be less than the product of the service
rate of the charging station and the number of charging piles, as shown in Eq. (21).

λ ≤ μNi (21)

The residence time limit of EVs at charging stations is shown in Eq. (22).

Ws ≤ Ws−max (22)

In Eq. (22),Ws−max is the maximum residence time of the EV at the charging station
(Ws−max = 40 min).
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6 Location Algorithm Analysis

6.1 Voronoi Diagram

Voronoi diagram is composed of a set of continuous polygons formed by a set of vertical
bisectors connecting two adjacent points. In the Voronoi diagram, the distance from
any point within a polygon to the control points that constitute the polygon is less than
the distance to the control points of other polygons. In this paper, assuming that the
coordinates of the charging station are control points, using these control points to draw
a Voronoi diagram, the service area of the charging station can be divided.

6.2 Improve Particle Swarm Optimization

The particle swarm optimization searches the search space in parallel through a group of
initialized groups, and realizes the evolution of the population through the competition
and cooperation between individuals in the population. Fewer parameters need to be set,
and the operation is simple.

In particle swarm optimization, each particle represents a potential solution to the
problem, and the fitness of the particle is judged by the fitness function. The initial value
of the particle swarm is a group of random particles, and the optimal solution is found
according to the iteration. In each iteration, the particle updates its position and velocity
according to the individual optimal value and the global optimal value. The particle
velocity update formula is shown in Eq. (23).

Vt = ω ∗ Vt + c1r1(Pbest − xt) + c2r2(gbest − xt) (23)

In Eq. (23), ω is the inertial weight; c1 c2 is the learning factor; r1 r2 is the random
number in the range [0,1]; Pbest is the individual optimal value of the particle; gbest is
the global optimal value of the particle. The speed update formula consists of 3 parts,
ω ∗ V t is the inertial part, the motion inertia of the reaction particle; c1r1(Pbest − xt)
is the cognitive part, and the reaction particle has a tendency to update its own history
optimally; c2r2(gbest − xt) is the social part, and the reaction particle has a tendency to
update the historical optimal value in the directed group.

When the learning factor c1 is greater than c2, particles pay attention to their historical
position; when c1 is less than c2, particles pay more attention to social information. We
can find that in the early stage of the particle movement, the particle needs to update
to its historical optimal value; in the later stage of the movement, the particle needs
to pay more attention to update to the group optimal value. Therefore, in this paper,
the improved particle swarm algorithm (IPSO) is used. In IPSO, asymmetric arccosine
strategy is used to set the learning factor, as shown in Eqs. (24) and (25).

c1 = c1end + (c1start − c1end ) ∗ (1 − acos(−2*n/(N + 1) + 1)/π) (24)

c2 = c2end + (c2start − c2end)∗(1 − acos(−2*n/(N + 1) + 1)/π) (25)

In Eq. (24) and (25), c1start = 2.75, c1end = 0.5, c2start = 1.25, c2end = 2.25.
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Equation (26) shows the particle position update formula.

Xt = Xt + Vt (26)

In this paper, the particle out-of-bounds problem is solved by restricting the particle’s
active area. The particle’s active area Particle_Area is shown in Eq. (27).

Particle_Area ∈ [
xmin, xmax]∪[ymin, ymax

]
(27)

In Eq. (27), xmin, xmax, ymin, ymax are the smallest horizontal axis coordinate point,
the largest horizontal axis coordinate point, the smallest vertical axis coordinate point,
and the largest vertical axis coordinate point in the simulation environment.

6.3 Differential Evolution Algorithm

Differential evolution (DE) algorithm is a group-based adaptive global optimization
algorithm. The core part of the algorithm includes mutation, hybridization and selection
operations. The mutation operation of the differential evolution algorithm is shown in
Eq. (28).

Vdi = Xdr1 + F0(Xdr2 − Xdr3) (28)

In Eq. (28), Xd is the initial population; r1r2r3 is a random value (r1r2r3ε[1,N ]),
and r1 �= r2 �= r3 �= i; N is the population size. The hybridization operation is shown in
Eq. (29).

Udij =
{
Vdijrand ≤ CRor randi(1,Tn) = j
Xdijrand > CRor randi(1,Tn) �= j

(29)

In Eq. (29), CR is the mutation probability, j ∈ [1,Tn]. The selection operation is
shown in Eq. (30).

Xd =
{
Ud fit(Ud ) < fit(Xd )

Xd fit(Ud ) ≥ fit(Xd )
(30)

In Eq. (30), fit(Ud ) is the fitness of the population Ud ; fit(Xd ) is the fitness of the
population Xd .

6.4 Differential Evolution Improve Particle Swarm Optimization

In this paper, by combining DE algorithm and IPSO to improve the global optimization
ability of the solution, the steps are as follows.

(1) According to the charging demand in the planning area and the service capacity of
the charging station, estimate the number range of charging stations in the planning
area Tn ∈ [Nmin,Nmax].
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(2) Use the DE algorithm to plan the charging station, set the range of the
charging station site CSposition, CSposition ∈ [xmin, xmax] ∪ [ymin, ymax], and
randomly generate the charging station site Xd within this range, Xd =
[(x1, y1), (x2, y2), . . . , (xN , yN )], N is the population size.

(3) Set the initial dimension of theDE algorithm, that is, the initial number of charging
stations Tn = Nmin.

(4) According to Eqs. (28), (29), and (30), mutation operation, hybridization oper-
ation, and selection operation are performed respectively. After each operation,
a new charging station position must be generated reasonably according to the
constraints.

(5) Set the maximum number of iterations of the algorithm. When the algorithm
reaches the maximum number of iterations, the algorithm stops. At this time, the
position set DEX of the charging station and the corresponding adaptation value
DEF are counted.

(6) The IPSO is used to plan the charging station, the initial station site range is
CSposition, and the initial charging station site is X , X = Xd .

(7) Set the initial dimension of the IPSO, that is, the number of charging stations
Tn = Nmin.

(8) Calculate the local optimal solution and the global optimal solution, update the
particle speed according to Eq. (23), and update the particle position according to
Eq. (26), and calculate the local optimal solution and global optimal solution of
the updated population.

(9) Set the maximum number of iterations of the algorithm. When the algorithm
reaches the maximum number of iterations, the algorithm stops. At this time,
the charging station position set IPSOX and the corresponding adaptation value
IPSOF are counted.

(10) Combining DEF and IPSOF to obtain a new fitness value combination NewFit,
NewFit = [DEF, IPSOF], the dimension of NewFit is 2N .

(11) SortNewFit in ascending order to obtain the new population’s fitness valueNewF ,
and take the first N fitness values for the charging station location NewP.

(12) UsingNewP as the initial site, repeat steps (7), (8), (9). Obtain the charging station
location set IPSOX and the corresponding fitness value IPSOF . By selecting the
minimum value of IPSOF , the minimum total cost and the optimal deployment
position of the charging station can be obtained.

(13) Tn = Tn + 1, repeat steps (4)–(12), until Tn > Nmax, the algorithm stops.
(14) Count the total cost corresponding to the number of different charging stations, and

select the number and location of charging stations corresponding to the optimal
cost.
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7 Simulation Scenario

The experiment process of this paper uses MATLAB software to simulate. In order to
increase the scalability of the model, the algorithm realization module, environmental
parameter module, and parameter calculation module are independently established in
the program. This paper sets the simulation parameters based on the reference [14]
simulation environment, as shown in Table 1.

Table 1. Simulation parameters.

Parameter Value

Number of charging demand points (n) 34

Fixed investment (Wi) 2 millions

Investment-related to the unit price of the charging piles in the charging station
(q)

0.35 millions

The investment cost related to the transformer in the charging station (ei) 0.2 millions

Discount rate (rr) 0.08

Charging station depreciation period (ms) 20 years

Average driving speed of EVs (v) 30km/h

Non-linear coefficient of the urban road (λij) 1.2

Minimum number of charging piles in the charging station (Ni,min) 3

Maximum number of charging piles in the charging station (Ni,max) 30

Algorithm parameters settings are shown in Table 2.

Table 2. Algorithm parameters.

Parameter Value

Number of particles (N ) 20

Maximum number of iterations (MaxIter) 100

Inertial weights (Ws andWe) 0.9 and 0.4

Scaling factor (F) 0.4

Mutation probability (CR) 0.6

The location of the charging demand points is shown in Fig. 1.
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Fig. 1. Distribution of charging demand points

8 Simulation Results

The convergence curves of IPSO, DE, and DEIPSO are shown in Fig. 2.

Fig. 2. Convergence curve

In Fig. 2, we can find that compared with IPSO and DE, DEIPSO can converge
earlier and can jump out of the local optimum.
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The changes in the cost of charging stations and the cost of driving EVs with the
number of charging stations deployed are shown in Fig. 3.

Fig. 3. Different costs vary with the number of charging stations deployed

In Fig. 3, we can find that as the charging station increases, the cost of the charging
stations also increases, because the construction cost of the charging station is positively
related to the number of charging stations deployed. The driving cost of EVs decreases
as the number of charging stations increases, the reason is that as the number of charging
stations increases, it will be easier for EVs to find the nearest charging station and reduce
the distance traveled. Therefore, when selecting the number of charging stations to be
deployed, it is necessary to comprehensively consider the cost of charging stations and
the driving cost of EVs, as shown in Fig. 4.

In Fig. 4, We can find that when the cost of charging stations and the cost of EVs
are considered comprehensively, the total cost of deploying six charging stations is the
lowest. This is because when the number of charging stations is six, the total cost of
charging station cost and EVs cost is the lowest.
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Fig. 4. The total cost varies with the number of charging stations deployed

The total cost of IPSO, DE, and DEIPSO changes with the number of charging
stations deployed is shown in Table 3.

Table 3. Total cost changes.

Algorithm IPSO DE DEIPSO

Total cost of deploying 4 charging stations (ten million) 1.5332 1.4833 1.4503

Total cost of deploying 5 charging stations (ten million) 1.2164 1.3645 1.2162

Total cost of deploying 6 charging stations (ten million) 1.2152 1.1311 1.0668

Total cost of deploying 7 charging stations (ten million) 1.1080 1.0979 1.0978

Total cost of deploying 8 charging stations (ten million) 1.4694 1.1501 1.1417

In Table 3, we can find that no matter how many charging stations are deployed, the
total cost of using the DEIPSO algorithm is lower than the IPSO and DE algorithms.
This is because the DE algorithm increases the diversity of the IPSO population and
reduces the risk of falling into a local optimum.

The location distribution of charging stations in the planned area is shown in Fig. 5.
When six charging stations are deployed, the service indicators of the charging piles

in the charging station are shown in Table 4.
In Table 4, we can find that the average residence time of EVs at the charging station

is within 40min.
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Fig. 5. Location of charging station deployment

Table 4. Service indicators of the charging piles in the charging station.

Charging station serial number 1 2 3 4 5 6

Number of charging piles 18 21 22 22 13 23

Residence time (min) 39.984 38.874 37.794 37.146 36.516 39.756

9 Conclusion

This paper comprehensively considers the cost of EVs charging and the cost of charging
stations construction, and proposes a method of location and capacity for EV charging
stations. The model of EV charging station location, the model of EV charging station
capacity allocation, and the optimization algorithm of the location of the charging station
are studied respectively. The DEIPSO algorithm is used to verify the feasibility of the
site selection model for the site selection of charging stations; the queuing theory of this
paper can be used to reasonably plan the number of piles in each charging station; by
comparing theDE, IPSO, andDEIPSOalgorithms, it is found that theDEIPSOalgorithm
can achieve a certain degree Jump out of the local optimal solution, finding the global
optimal solution, and better deploy the charging station location.

Acknowledgement. This work supported by Sichuan Science and Technology Pro-
gram 2019ZDZX0005.
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Abstract. Simultaneous localization and mapping (SLAM) is considered to be
the basic ability of intelligent mobile robots. In the past few decades, thanks to
community’s continuous and in-depth research on SLAM algorithms, the cur-
rent SLAM algorithms have achieved good performance. But there are still some
problems. For example, most SLAM algorithms have the assumption of a static
environment, but in real life, most of the environment contains moving objects, so
how to deal with the moving objects in the environment requires careful consid-
eration. What’s more, traditional geometric maps cannot specific environmental
semantic information for mobile robots, so how to make robots truly understand
the surrounding environment to complete some advanced tasks is also a difficult
problem. In this paper, we design a scheme to improve the accuracy and robustness
of SLAM in a dynamic environment. And we realize the perception of semantic
information of objects in the environment through the object detection algorithm
of deep learning neural network.

Keywords: SLAM · Semantic recognition · Semantic map · Dynamic target
detection

1 Introduction

In the past years, with the development of AR (Augments Reality), UAV (Unmanned
Aerial Vehicle), and UGV (Unmanned Ground Vehicle), visual SLAM has been exten-
sively investigated. The mainstream vision sensors are divided into monocular cam-
eras, stereo cameras, and RGB-D cameras. The monocular camera’s simple solution has
advantages in terms of size, power, and cost. However, there are also some problems,
such as the inability to observe the scale and state initialization. By using more complex
equipment, such as stereo cameras or RGB-D cameras, these problems could be solved,
and the robustness of the visual SLAM system is also greatly improved.

Thanks to the SLAM system’s continuous research by the research group, the visual
SLAM system framework has been quite mature. It usually consists of several essential
parts, such as feature extraction front-end, state estimation back-end, and closed-loop
detection. Additionally, some advanced SLAM algorithms have achieved satisfactory
performance, such as ORBSLAM2 [1], LSD-SLAM [2].
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However, some issues remain unsolved. For example, these algorithms all assume
the strong constraint of the static environment. When there are dynamic objects in the
environment, its robustness and accuracy will be significantly decreased. Besides, these
algorithms only provide geometric maps. It cannot provide support for advanced tasks
such as intelligent obstacle avoidance.

In a dynamic environment, the SLAM algorithm’s robustness will be significantly
affected whether those algorithms are based on the feature method or the direct method
because dynamic objects in the environment will corrupt the state estimation quality
and lead to system failure. For example, dynamic objects in the environment may
deceive the feature association in the visual SLAM algorithm. Therefore, to improve
the entire system’s stability, it is especially important to deal with dynamic objects in
the environment.

The typical SLAM method only provides a geometric map composed of points
and planes, which does not contain the surrounding environment’s semantic informa-
tion. Compared with geometric maps, semantic maps have the advantages of intuitive
visualization and effective human–machine-environments interaction. According to the
summary by Cadena et al. [3] We have now entered the third stage of SLAM research,
videlicet, a stage of robust perception: the realization of robust performance, high-level
understanding, resource perception, and task-driven perception represents the theme of
this era.

This paper focuses on reducing the impact of dynamic objects in vision SLAM
by combining the Mask R-CNN network with epipolar geometry. Simultaneously, the
semantic information is bound to the octree map to obtain the semantic graph. Provide
conditions for robots to achieve advanced tasks such as intelligent navigation.

In the rest of this paper, the structure is as follows. Section 2 provides an overview
of semantic SLAM and SLAM in dynamic environments. Then Sect. 3 presents the
framework of this whole SLAM system in detail. And we discuss how to detect dynamic
objects and produce semantic maps. Subsequently, Sect. 4 provides the results of our
program and ORB-SLAM2 on the TUM RGB-D dataset. Finally, in Sect. 5, we give a
brief conclusion and discussion about our work.

2 Related Work

2.1 Semantic SLAM

Generally speaking, semantic SLAM is to use a neural network to provide road sign
information for traditional SLAM solutions. The semantic SLAM system consists of
two essential components: a semantic extractor and a modern V-SLAM framework. The
semantic information is mainly extracted and derived from two processes. They are
object detection and semantic segmentation [4].

Object detection is recognized as an essential branch of CV, whose development can
be roughly divided into handcraft feature-basedmachine learning stage (2001–2013) and
learning feature-based deep learning (2013-present). The former is extremely dependent
on handcraft features of images [5–9]. It also requires many computing resources. In
recent years, due to the introduction of deep learning and graphics processing units,
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Object detection’s accuracy and efficiency have been greatly improved in theory and
practice. Therefore, more and more SLAM adds semantic modules into the system.

The earliest semantic map was proposed by Pham et al. [10] They used SSD, which
has a fast detection speed, and ORB-SLAM2, which can achieve real-time position-
ing and promote each other. Then through dividing the depth map, object detection,
and finally, output a semantic map with semantic information. Pronobis et al. [11, 12]
proposed an online system using lasers and cameras to construct a semantic map of
the environment. McCormac et al. proposed a dense three-dimensional semantic map-
ping method SemanticFusion [13] using convolutional neural networks. By combining
CNNs with a dense SLAM solution ElasticFusion [14]. It ensures the dense long-term
consistency of indoor positioning and eliminates the multi-circle scanning trajectory’s
cumulative error. It integrates the semantic prediction probability of CNNs from the
multi-view points into the map to obtain a three-dimensional dense semantic map.

2.2 Dynamic Segmentation

In the SLAMcommunity, relevant information extracted from static objects is considered
stable and effective,while information extracted frommoving objects is known to decline
the algorithm’s performance. For dynamic objects in the environment, advanced SLAM
systems either treat them as outliers and eliminate them in different ways. Either use a
separate target tracking module to track it.

One of the earliest works about SLAM in dynamic environments is presented by
Hahnel et al. [15] use an Expectation–Maximisation (EM) algorithm to update the prob-
abilistic estimate about which measurements correspond to a static/dynamic object and
remove them from the estimationwhen they correspond to a dynamic object. Alcantarilla
et al. [16] introduce dense scene flow for dynamic objects detection and show improved
localization and mapping results by removing “erroneous” measurements on dynamic
objects from the estimation. Tan et al. [17] propose an online keyframe update that reli-
ably detects changed features in terms of appearance and structure and discards them if
necessary. Kundu et al. [18] extend egomotion estimation with MBSfM [19] techniques
similar to estimate the SE (3) trajectories of the third-party motions in a scene, but they
constrain all the motions to the horizontal plane.

3 System Description

3.1 SLAM

In practical applications, the accuracy of attitude estimation and harsh environments’
reliability are the critical factors for evaluating autonomous robots. ORB-SLAM2, as a
relatively lightweight SLAM system, has an excellent performance in a static environ-
ment. We added a dynamic object detection module and a semantic map module for it.
As shown in Fig. 1, we have designed five threads to control the SLAM system’s five
main modules. For the part of the dynamic environment, we place a real-time semantic
segmentation network in a separate sub-thread and filter out the scene’s dynamic targets
by combining semantic segmentation and moving consistency checking methods. This
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Fig. 1. The framework of our system. Our work mainly focuses on semantic extraction and
dynamic detection of input images.

improves the robustness and accuracy of the SLAM system in dynamic scenarios. For
the semantic map part, we also designed a separate thread to build the octree map. The
semantic map is realized in the form of binding with semantic tags.

3.2 Semantic Segmentation

Semantic segmentation is an integral part of image processing and image understanding
in machine vision technology. Semantic segmentation is to classify each pixel in the
image, determine each point’s category (such as background, person, or car), and divide
the area.

To obtain the semantic information and potential moving objects in the environment,
we use Mask R-CNN [20] to perform semantic segmentation on the image to obtain the
objects in the environment and their semantic information. Mask R-CNN is a region-
based semantic segmentation method that uses selective search to extract many target
proposals. It then calculates the CNN features of each proposal. Finally, class-specific
linear support vector machines are used to classify each region. Compared with other
CNN networks, Mask R-CNN has higher speed and accuracy.

Like Fig. 2, it can subdivide the dynamic or movable objects in the image (such as
people, animals, bicycles, cars, motorcycles, planes, buses, trains, trucks, boats, etc.).
Most of the objects in our lives are included in their recognizable range.

3.3 Moving Consistency Check

In the Mask R-CNN network, we detect and process potential moving objects in the
image, but these potential moving objects are not necessarily in a real state of motion.
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Fig. 2. The result of object detection by Mask R-CNN in COCO dataset

They may also be static, such as a car parked on the side of the road. If we remove all
the features of the image located on the potential moving objects, although the negative
impact of motion on the accuracy can be avoided, we will also lose a large number of
effective features. This may cause the tracking of the SLAM system to be lost due to
the lack of matching features. Therefore, it is particularly important to use the move-
ment consistency to detect the true state of all potential dynamic objects. Geometric
constraints (such as epipolar lines, triangulation, basic matrix estimation or reprojection
error equations) are effective ways to determine the state of feature motion [21].

In this experiment, we use the feature of epipolar constraint to distinguish the
dynamic and static features of the object. As shown in Fig. 3, the static feature sat-
isfies the standard constraints of the epipolar geometry (Fig. 3 (a)). If the tracked feature
is too far from the polar line, it is likely to be a dynamic feature (Fig. 3 (b)).

Fig. 3. (a) The transformation form point x1 to point x2 be define by epipolar constraint in static
scenes. (b) Violation of geometric constraints in a dynamic environment: (1) The tracked feature
is too far from the epipolar line; (2) Back-projected rays from the tracked features do not meet;
(3) The dynamic feature has an impact on the accuracy of the basic matrix estimation; (4) The
reprojected feature is too far away from the observed feature

Figure 3(a) shows that the feature point transformation in the static background
satisfies the epipolar geometric constraint. When the point x1 changes to the point x2 in
the static scene, the epipolar constraint is:

xT2 Fx1 = 0 (1)
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To filter out the feature points of motion more effectively, our solution process is as
follows: first, we extract the feature points of the previous frame. Secondly, calculate the
corresponding displacements of these points in the current frame by using the LK optical
flow method of pyramid layering. Then, we estimate the fundamental matrix by the
RANSAC algorithm through the previous frame’s feature points and the corresponding
points of the current frame.Next, use the fundamentalmatrix to calculate the epipolar line
in the current frame. Finally, the matching point’s distance to its corresponding epipolar
line is calculated, and the motion state of the feature point is judged by comparing it
with the preset threshold.

The feature points of the previous frame are projected into the current frame through
the fundamental matrix. Let P1 and P2 denote the matching points in the previous frame
and the current frame, respectively, and their homogeneous coordinate forms are:

P1(u1, v1, 1),P2(u2, v2, 1) (2)

Among them, u and v respectively represent the position of the point in the image.
According to the principle of epipolar geometry, we can get the epipolar line l1 through
the fundamental matrix F and the point P1. The expression is:

I1 =
⎡
⎣
X
Y
Z

⎤
⎦ = FP1 = F

⎡
⎣
u1
v1
1

⎤
⎦ (3)

X, Y, Z in the expression represent the line vectors of the epipolar line. Moreover,
the distance from the matching point to its corresponding epipolar line is determined as
follows:

D =
∣∣PT

2 FP1
∣∣

√∣∣∣∣X 2
∣∣∣∣ + ∣∣∣∣Y 2

∣∣∣∣ (4)

D represents the distance from the matching point to the epipolar line. Our moving
consistency module determines whether the point is a motion point by calculating the
distance and comparing it with our previous preset threshold. Finally, if the matching
point’s distance to its corresponding epipolar line is less than the threshold, we consider
the feature point is static. In contrast, if the distance is greater than the threshold, we
consider the matching point to be moving.

3.4 Remove Outliers

In theMaskR-CNNnetwork,we detect and extract potentialmoving targets in the image.
Nevertheless, these potential moving targets are not certainly in a moving state, such
as a car parked on the side of the road. If all the feature points in the potential moving
target are eliminated indiscriminately, the SLAM system may lose track due to the lack
of features. Therefore, it is particularly important to combine the moving consistency
detection results with semantic segmentation to judge the movement state detection’s
potential moving targets.
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Thanks to the semantic segmentation network, we can quickly obtain the complete
contours of potentialmoving targets.We judge the target’smovement state by the number
of moving feature points in the potential moving targets’ contour. Suppose the number
of moving feature points is bigger than the threshold. We regard the target as a moving
object. Wewill delete all the feature points in the target’s contour, then use the remaining
feature points for pose estimation. In this way, we can accurately eliminate the outliers
that will affect the attitude estimation, thereby improving the system’s accuracy.

3.5 Semantic Map

The maps used in the SLAM system are divided into point cloud map and octree map.
The advantage of the point cloud map is that it can be efficiently generated directly
from RGB-D images and does not require additional processing. However, the point
cloud map is usually large and carry too much useless information, such as shadows and
wrinkles. Simultaneously, the point cloud map cannot handle dynamic objects because
the point cloud map can only add points during the construction process. The octree map
is more flexible and updatable than the point cloud map. Furthermore, the octree map
can be stored more efficiently and is easy to navigate.

Wemaintain the octree map through the octree map thread in the system. This thread
will combine the keyframes obtained in the tracking thread with the segmentation results
obtained in the semantic segmentation thread. We use the transformation matrix and
depth image in the keyframe to create a local point cloud map. The local point cloud
map is convenient for the system to perform local BA operations. And we convert and
store the local point cloud map in the global octree map. The semantic information is
merged into the octree map by binding the octree map’s voxels to a specific color. We
assign every semantic label to each different color. For example, red represents people,
and blue represents cars, etc. In this way, the semantic information in the map can be
updated efficiently.

In General, what is saved in the map should be the static background in the environ-
ment, so dynamic objects should not exist on themap.We can use semantic segmentation
results to filter out dynamic objects. However, the accuracy of semantic segmentation
is limited. In complex situations, for example, objects overlap each other, the semantic
segmentation results may be incomplete or even wrong. We use a probability model
to evaluate the possibility of a single voxel being occupied quantitatively to solve this
problem. Let P denote the probability that a voxel n is occupied from time z1 to zt, and
its expression is:

P(n|z1:t) =
[
1+ 1−P(n|zt)

P(n|zt)
1−P(n|z1:t−1)
P(n|z1:t−1)

P(n)
1−P(n)

]−1
(5)

It can be seen that the value of this formula depends on the prior probability of P(n),
P(n|z1:t-1), and P(n|zt) at time zt. By using the log-odds notation [22], it can be expressed
as:

L(n|z1:t) = L(n|z1:t−1)+ L(n|zt) (6)

L(n) = log

[
P(n)

1− P(n)

]
(7)
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L(n|z1:t) represents the log-odds score of voxel n from the start time z1 to time
zt. When the voxel is repeatedly observed to be occupied, the voxel’s log-odds score
will increase. Otherwise, it will decrease. The occupied probability P of a voxel can
be calculated by inverse logit transform. The state of the voxel is judged by comparing
the probability P with our predefined threshold. When the probability P is greater than
the threshold, we consider that the voxel is stably occupied. In other words, this voxel
belongs to a static object. Through this method, we can handle the map construction
problem in a dynamic environment well.

4 Experimental Results

In this experiment, we used the TUM RGB-D dataset as the test data and compared our
solution with the original ORB-SLAM2. The TUM RGB-D data set [23] consists of 39
kinds of sequences recorded in different indoor scenes at full frame rate (30 Hz) using
Microsoft Kinect sensors. The data set provides RGB-D images and real trajectories.
In this dataset’s walking sequence, there will be a large number of scenes of people
moving. These moving people will significantly reduce the robustness and accuracy of
the SLAM algorithm. This data set is highly dynamic. Therefore, it is challenging for
the SLAM algorithm.

Figure 4(a) shows the evaluation of the absolute pose error (APE) between our
measured value and the real value. This data evaluates the overall consistency of our
measurement data with the real trajectory. Figure 4(b) Represents the real-time attitude
error between ourmeasured value and the real trajectory. The lower the color temperature
of the track color, the closer our measured value is to the real value. The higher the color
temperature of the track color, the greater the deviation between our measured value and
the real value. Figure 5(a) shows the evaluation of the relative pose error (RPE) between
our measured value and the real value. This data evaluates the translation and rotation
drift between our scheme and the real trajectory. Figure 5(b) Represents the real-time
translation drift error and rotation drift error between our measured value and the real
trajectory. The lower the color temperature of the track color, the smaller the error.
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Figure 6(a) shows the difference in our scheme,ORB-SLAM2, and the real trajectory.
It reflects the system’s integral accuracy. Figure 6(b) shows the deviation of our scheme
and ORB-SLAM2 in the x, y, and z directions compared to the real trajectory. Figure 6
(c) shows the error between the two methods and the real trajectory attitude. Moreover,
Tables 1, 2 and 3 show the comparison of rotation deviations and translation deviations
in different schemes. It is clear that our solution is more robust and accurate in a dynamic
environment than the original ORB-SLAM2.

Fig. 4. (a) The absolute pose error (APE) between the measured value and the trajectory includes
root mean square error (RMSE), median, and mean. (b) The deviation of the measurement data
on the track position

Fig. 5. (a) The relative pose error (RPE) between the measured value and the trajectory includes
root mean square error (RMSE), median, and mean. (b) The deviation of the measurement data
on the track position
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Fig. 6. (a) Our method and ORB-SLAM2 are compared with the real trajectory. (b) Compared
with the real trajectory, the deviation of the two schemes in the x, y, and z directions. (c) The
difference in attitude estimation between the two schemes compared to the real trajectory

Table 1. Results of metric rotational drift (RPE)

Sequences ORB-SLAM2 Our Scheme

RMSE Mean Median RMSE Mean Median

fr3_walking_xyz 7.7424 5.8754 4.5440 0.9234 0.5836 0.4197

fr3_walking_static 3.8754 1.5744 0.4571 0.2975 0.2415 0.2276

fr3_sitting_static 0.2887 0.2559 0.2495 0.2775 0.2417 0.2355

Table 2. Results of metric translational drift (RPE)

Sequences ORB-SLAM2 Our Scheme

RMSE Mean Median RMSE Mean Median

fr3_walking_xyz 0.1475 0.1254 0.1152 0.0013 0.0012 0.0012

fr3_walking_static 0.2167 0.0901 0.0154 0.0115 0.0091 0.0084

fr3_sitting_static 0.0095 0.0083 0.0074 0.0084 0.0078 0.0072

Table 3. Results of metric absolute trajectory error (ATE)

Sequences ORB-SLAM2 Our Scheme

RMSE Mean Median RMSE Mean Median

fr3_walking_xyz 0.7541 0.6484 0.5864 0.0247 0.0194 0.0172

fr3_walking_static 0.4052 0.3574 0.3028 0.0085 0.0075 0.0067

fr3_sitting_static 0.0087 0.0075 0.0062 0.0065 0.0054 0.0048
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5 Conclusion

In this paper, we discussed some of the SLAMproblems, firstly the accuracy problems in
dynamic environments, secondly the limitations of geometric maps. We have proposed
a scheme to solve these problems. We use the semantic segmentation technology of the
deep learning network to capture potential dynamic objects in the image and use geo-
metric constraints to interpret the potential moving objects’ real state. SLAM’s accuracy
in a dynamic environment is improved by removing feature points frommoving objects.
Simultaneously, we extracted semantic information from the segmented image and com-
bined it with traditional geometric maps to realize SLAM’s perception of environmental
information. After testing, our solution has significantly improved positioning accuracy
and robustness compared to ORB-SALM2 in a dynamic environment. However, there
are still some problemswith our system. For example, static objects at the edge of images
may be misunderstood as dynamic objects because they disappear from the next frame’s
edge. It may lead to a decrease in the system’s accuracy, which is also the direction of
our efforts in the future.
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Abstract. Recently, the iterative adaptive approach (IAA) has been
proposed to be a high-resolution spectrum estimator. Its main idea is
reformulating the nonlinear frequency estimation problem as a linear
one, with parameters being updated iteratively according to weighted
least squares. Since the derivation is based on grid searching in a fixed
frequency range [0, 2π), the accurate of the IAA is limited by the number
of grid. In this paper, we proposing two generalized versions of IAA,
which can work well in a flexible frequency range, so that the performance
can be improved in the same grid points. Simulation results are included
to demonstrate the superior of our proposed methods.

Keywords: Iterative adaptive approach (IAA) · Spectral estimation ·
Frequency domain

1 Introduction

Spectral analysis has been an important topic in science and engineering because
many real-world signals are well described by the sinusoidal model. Basically, the
frequency components of the observed data can be obtained by means of either
parametric or nonparametric techniques [1]. In the parametric approach, the
signal is assumed to satisfy a generating model with known functional form,
which allows the derivation of the optimal spectral estimators. However, the
performance of these methods degrades when there is a mismatch between the
assumed and actual signal models. On the other hand, no assumptions are made
about the data in the nonparametric approach. Among numerous non-parametric
estimators developed in the literature, a conventional representative is the peri-
odogram based on the Fourier transform, but its resolution is fundamentally
limited by the available observation length. To improve the performance, sev-
eral algorithms such as principal-singular-vector utilization for modal analysis
(PUMA) [2], Capon [3], multiple signal classification (MUSIC) [4] have been
proposed, which can provide high-resolution in the scenario of high signal-to-
noise ratio (SNR) and large number of snapshots. In [5], amplitude and phase
estimator (APES) was suggested to accurately estimate the power of the source
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signal, which can resolve sources as well. Although these methods can obtain
high accurate estimation in the case of high SNR or numerous snapshots, their
performance degrades when only a few snapshots are available. This is because
that accurate implementation of covariance matrix in these methods requires a
large number of snapshots.

In [6], a super-resolution method, namely, the iterative adaptive approach
(IAA), is developed, which iteratively obtaining spectrum estimate using the
weighted least squares (WLS) approach. According to the Markov estimate [7],
the weighing matrix in IAA is in fact the covariance matrix of observations. To
ensure the high resolution, IAA updates the covariance matrix using the estimate
iteratively, and hence, accurate implementation of the IAA covariance matrix
requires the estimates in full frequency ranges of [0, 2π). That is to say, IAA can
only work well in the fixed full range. However, in the case that the coarse arrival
ranges of sources are known a priori, full range estimation of IAA is redundant
and suffers from high computational cost. Although fast implementation of IAA
[8]–[9] has been proposed, it is still not a good choice.

In this paper, two generalized version of IAA, referred to as selective IAA I
(SIAA I) and selective IAA II (SIAA II), are devised, which can be work well
in a flexible frequency range. To be employed in any selective azimuth range,
two implementation criteria of the covariance matrix are suggested, where only
the spectrum estimate in the interested azimuth range is required. For SIAA I,
we divide the full frequency range into interested one and non-interested one.
Then the covariance matrix is modified utilizing the spectrum estimate in the
interested range as well as the variance estimates outside the selective range
that can be obtained by the selective spectrum estimate. While in SIAA II,
we redefine the mathematical model of observations as the noise-free and noisy
component, where the former is described by the selective azimuth range. The
covariance matrix of SIAA II is then defined by the spectrum estimate and the
variance of noise term.

The rest of this paper is organized as follows. In Sect. 2, a brief review of
IAA algorithm is given. In Sect. 3, the main idea of both SIAA I and SIAA II
are provided. Computer simulations in Sect. 4 demonstrate the accurate of the
proposed methods. Finally, conclusions are drawn in Sect. 5.

2 Review of IAA

Here we just consider a 1-D uniformly sampled sequence of N samples. IAA
is based on a uniform frequency grid with K points in full range [0, 2π) and
the frequency bin: ωk = 2π k

K , k = 0, 1, . . . ,K − 1 . Then the frequency com-
ponents can be expressed as A = [a(ω0) a(ω1) . . . a(ωk) . . . a(ωK−1)]
with a(ωk) = [1 ejω . . . ejnω . . . ej(N−1)ω]T standing for the steering
vector. Then the data model can be written as

y = Ax + q (1)
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where y = [y0 y1 . . . yN−1]T is observed data and x = [x0 x1 . . . xK−1]T is
the amplitude corresponding to each frequency bin with xk denoting the complex
amplitude corresponds to the kth bin, and q is noise term.

IAA can solve (1) by minimize the cost function:

||y − a(ωk)xk||2Q−1 k = 0, 1, . . . ,K − 1 (2)

where ‖x‖Q−1 = xHQ−1x and

Q =E{(y − a(ωk)xk)(y − a(ωk)xk)H}
=R − pka(ωk)aH(ωk) (3)

is the weighting matrix which is also IAA interference and noise covariance
matrix. Where pk = |xk|2 stands for the signal power at frequency ωk. Introduc-
ing a definition of IAA covariance matrix which is:

R = E{yyH} = APAH (4)

where P is a diagonal matrix with diagonal elements from power vector p =
[p0 p1 . . . pK−1]T . Then we can minimize (2) with respect xk yields [10]

xIAA
k =

aH(ωk)Q−1y
aH(ωk)Q−1a(ωk)

k = 0, 1, . . . ,K − 1 (5)

Using matrix inverse lemma we can see:

aH(ωk)Q−1 =
aH(ωk)R−1

1 − pkaH(ωk)R−1a(ωk)
(6)

Then (5) can be simplified as:

xIAA
k =

aH(ωk)R−1y
aH(ωk)R−1a(ωk)

k = 0, 1, . . . ,K − 1 (7)

(7) avoids the computation of pk for each bin, so we usually use (7) replace (5)
as solution of IAA.

3 Proposed Method

Although IAA estimate amplitude xk one by one, we cannot just change the
range of A because it will have a singular problem when we compute inverse of
covariance matrix. Even when we solve the singular problem, the result is wrong
so the covariance should utilize the information in full range.

The spectrum of an observed signal is composed of noise-free signal and noise.
We just consider the additive Gaussian white noise here. If we have already
known the locate range of frequency, ripples outside of this range are just noise
which is Gaussian distribution. So in order to reduce the computation cost, we
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can just use IAA estimate amplitude in locate range. Here we suppose locate
range is [t1, t2).

Then we can decompose the original data model (1) into:

y = s + q

=A(Ψ + Φ)
=As(Ψ + Φ1) + AosΦ2

= snew + qnew

=Asxs + Aos[xos1 xos2] (8)

Where s is the noise-free signal and q is noise with Ψ being the amplitude vector
of noise-free signal and Φ denoting the ’amplitude’ vector of noise. We divide
the frequency bin into two range: As in frequency location range [t1, t2) and Aos

in range other than frequency range [0, t1) and [t2, 2π). And the corresponding
amplitude vector can also be divided into two parts: Ψ + Φ1 and Φ2. From the
decomposition we reconstruct a new noise-free signal snew and a new noise qnew.
Here the new noise is also Gaussian distribution.

Then from the new definition of signal and noise, we can divide the whole
range [0, 2π) into [0, t1), [t1, t2)and [t2, 2π). And corresponding amplitude vectors
can also be broken into xos1,xs and xos2, which means the amplitude distributed
in [0, 2π) can be expressed as [xos1 xs xos2]. We also introduce a steering
vector as(ω) = [1 ejω . . . ej(N−1)ω] so Eq. (8) can be simplified as:

y = snew + qnew

=Asxs + qnew (9)

where As = [as(ω0) . . . as(ωK−1)] with ωk = t1 + (t2 − t1) k
K and xs =

[xs0 xs1 . . . xsK−1 ] is the corresponding amplitude vector.
If we have known y and As, we can estimate xs by minimizing cost function:

||y − as(ωk)xsk
||2R−1 k = 0, 1, . . . ,K − 1 (10)

where R has the same definition with original IAA. And there are two method
to compute R which will be shown later.

And the solution of Eq. (10) can be expressed:

xIAA
sk

=
aH

s (ωk)R−1y
aH

s (ωk)R−1as(ωk)
k = 0, 1, . . . , K − 1 (11)

3.1 SEIAA I

This algorithm is based on the original definition of R in frequency domain. The
definition of R request us to know the amplitude corresponding to [0, 2π). As we
just want to update the amplitude xs of [t1, t2), we should use another method
to reconstruct information outside of this range. Only the power of each complex
amplitude is useful in estimating R. As ripples outside of [t1, t2) are Gaussian
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distribution and the values of ripples are very small comparing with the peak
of signal, we can assume all magnitudes outside [t1, t2) are equal and this is the
basic idea of SEIAA.

We can use the energy conservation law and sample average method to com-
pute new noise variance σ2

new:

yHy = t2(xH
s xs + σ2

new)

σ2
new =

1
N

||y − tAsxs||22
σ2

new = xH
os1xos1 + xH

os2xos2

xH
os1xos1 = xH

os2xos2 (12)

where t is coefficient to balance the relationship between y and x and As is
shorten for the frequency bin of [t1, t2). The detail of Eq. (12) can be shown in
appendix A.

After we estimate the value of xos1 and xos2, we can reshape the power vector
p as p = [|xos1|2 |xs|2 |xos2|2] and then we can see the step of algorithm in
Table 1.

Table 1. Steps of SEIAA I

Steps of Proposed Algorithm

1. Implementing the integrated frequency matrix A and frequency matrix As;

2. Setting a initial value of xs,xos1,xos2, e.g., all set to 1;

3. Reshaping vector p and then R using Eq. (4);

4. Estimating xs using solution (11);

5. Computing xos1,xos2 using Eq. (12);

6. Repeat steps 3 - 5 until ||xt+1−xt||2
||xt+1||2 in tolerance;

3.2 SEIAA II

Combining the definition of R and Eq. (9) we can see:

R =E{yyH}
=E{(Asx + qnew)(Asx + qnew)H}
=AsPsAs + E{qnewqH

new}
=AsPsAs + σ2

newIN (13)

where Ps is the diagonal matrix with diagonal entries from power vector ps =
[|xs0 |2, . . . , |xsK−1 |2] and σ2

new is the variance of new noise qnew. σ2
new is same

with the Eq. (12). So Algorithm II can be shown in Table 2.
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Table 2. Steps of SEIAA II

Steps of Proposed Algorithm

1. Implementing frequency matrix As;

2. Setting a initial value of xs, e.g., all set to 1;

3. Estimating σ2
new using Eq. (12);

4. Constructing vector ps and then R using Eq. (13);

5. Estimating xs using solution (11);

6. Repeat steps 3 - 5 until ||xt+1−xt||2
||xt+1||2 in tolerance;

4 Simulation ResultS
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Fig. 1. Spectrum of two 1-D real tones using original IAA and REIAA

In this section, we examine the performance of the proposed algorithm. To have
a directly conclusion, we set the number of grid points K = 600 for SEIAA and
the interested range is [0.1π, 0.5π), so we choose K = 3000 for original IAA.
Meanwhile, when we estimate spectrum, SNR(signal to noise ratio) is 12 dB and
te data length is N = 40.

Figure 1 is for a 1-D real tone. And the signal model is yn = α1cos(ω1n +
φ1) + α2cos(ω2n + φ2) + qn, n = 0, 1, . . . , N − 1 and parameters we set are
α1 = α2 = 1, ω1 = 0.2π, ω2 = 0.3π, φ1 = 0.1;φ2 = 0.12. From Fig. 1 we can see,
for real tones, IAA gives the spectrum which is symmetric by π. The two curves
shows that the real-tone IAA (REIAA) gives the same spectrum with IAA in
range [0, π). So in order to save complexity, we use REIAA to replace IAA when
estimate real tones.
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Fig. 2. Spectrum of two 1-D complex tones using original IAA and SEIAAI, SEIAAII

Table 3. Computation time of three methods

original IAA 3.9652

SEIAA I 1.2515

SEIAA II 0.2012

To simplify the problem, we use complex tones When we test SEIAA. the
data model is yn = α1e

ω1n+φ1 + α2e
ω2n+φ2 + qn, , n = 0, 1, . . . , N − 1 and

the parameters we set are α1 = α2 = 1, φ1 = 0.1;φ2 = 0.12. Figure 2 gives
four curves which is original IAA, original IAA in [0.1π, 0.5π) (to compare eas-
ily),SEIAA I and SEIAA II, while the Table 3 shows the computation time of
those three methods. From the curve ’IAA with axis’ and ’SEIAA I’, we can see
the spectrum of the first two is approximately same but ’SEIAA I’ runs faster
than ’IAA’. For ’SEIAA II’, it can resolve two peaks but it is not flat in range
[0.2π, 0.3π) compared with the former two methods. But ’SEIAA I’ runs fastest
in those three methods. So from the simulation result we can see, IAA gives the
best spectrum but the highest complexity; SEIAA I gives the similar spectrum
with IAA but the medium complexity in three method; SEIAA II gives a not so
good spectrum but the computation time is fastest.

Figure 3 and Fig. 4 also use the same data model with Fig. 2. But here we
suppose the number of grid points is same for three methods. Those two curves
give us a shown that the accuracy of estimating frequency using original IAA and
our methods comparing with crlb. all the test are dependent on 200 independent
runs.
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Fig. 3. Mean square error of ω1 versus SNR
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Fig. 4. Mean square error of ω2 versus SNR

5 Conclusion

Based on the symmetric property of covariance and the symmetric property of
magnitude for real tones, we simplify the IAA from [0, 2π) to [0, π). We also
propose another two method: SEIAA I and SEIAA II to a selective range [t1, t2)
with 0 ≤ t1 < t2 ≤ 2π. SEIAA I are based on assumption that all the value
outside of interested range is equal and use energy conservation law to estimate
those then reshape the covariance. SEIAA II reshape a new signal and new noise
and use energy conservation law to compute variance of noise and then estimate
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covariance matrix according to its definition. And then simulation results prove
the performance of SEIAA.
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Appendix: Noise Variance Relationship Between Time
Domain and Frequency Domain

In IAA, If the input data is the noise qn, n = 0, . . . , N − 1:

q = Axq (14)

where A is the frequency bin in [0, 2π] and xq = [xq0 . . . xqK−1 ] so the
variance of noise can be written:

σ2 =
1
N

E{qHq}

=
1
N

E{xH
q (AHA)xq}

=E{|xq|2} (15)

where noise is i.i.d noise so E{xqkxqt} = 0 when t �= k. From the original data
model we can see and use sample average to express expectation:

σ2 =E{qHq}
=

1
N

||y − Ax||22 (16)

E{|xq|2} =
K−1∑

k=0

|xqk |2 (17)
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Abstract. In this paper, we address the frequency estimation prob-
lem of a single sinusoid embedded in the heavy-tailed noise, where the
additive Cauchy-Gaussian mixture (ACG) model is considered. Here the
ACG noise model is the sum of Gaussian and Cauchy variables. With the
use of Metropolis-Hastings algorithm, an accurate frequency estimator is
developed in the presence of ACG noise. Simulation results demonstrate
that the mean square error performance of the proposed algorithm can
attain the Cramér-Rao lower bound.

Keywords: Frequency estimation · Additive Cauchy-Gaussian mixture
noise · Metropolis-Hastings algorithm · Cramér-Rao lower bound

1 Introduction

Heavy-tailed noise is commonly encountered in many areas such as wireless
communication and image processing [1]. Typical models of this noise type are
α-stable distribution, Student’s t-distribution and generalized Gaussian distri-
bution (GGD) [2–5]. Nevertheless, in the real world applications, those noise
models cannot represent all kinds of the impulsive noise types, especially for
that cannot be expressed by a single known function. To remedy this shortcom-
ing, mixture models have been proposed including the Gaussian mixture model
(GMM) and the Cauchy Gaussian mixture (CGM) [6,7] model, whose probabil-
ity density function (PDF) is the sum of the weighted PDFs of the component
distributions, such as Gaussian or Cauchy distributions. They can describe most
impulsive noise types in the real-world, except the case where the interference is
caused by the channel and device. In astrophysical imaging processing [8], the
observation noise is the sum of an symmetric α-stable (SαS) distribution caused
by the radiation from galaxies and a Gaussian noise due to the satellite antenna.
In a communication network [9], the multi-access interference can be modelled as
SαS distribution while the environmental noise is a Gaussian process. Therefore,
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a new description of the mixture impulsive noise is proposed, referring to as the
sum of SαS and Gaussian random variables in time domain.

In this work, the frequency estimation in the presence of the mixture noise is
considered, where the model is the sum of a variable following the SαS with α = 1
and a Gaussian noise with unknown variance. Since when α = 1, the SαS stable
noise is in fact the Cauchy distribution [10], the mixture noise can be referred to
as additive Cauchy-Gaussian (ACG) noise [11,12]. Since the closed-form PDF
expression of ACG noise is not existed, traditional frequency estimators cannot
provide the optimum estimation. To fix this issue, a Bayesian method, namely,
Markov chain Monte Carlo (MCMC) method [13,14] is employed, which is appli-
cable for the distribution where directly sampling from the posterior PDF is dif-
ficult. The main idea of MCMC is sampling from a simple distribution, referred
to as the proposal distribution, in the way of constructing a Markov chain. For a
convergent Markov chain, the state of the chain can be utilized to describe a sam-
ple of the target PDF. It is worth pointing out that the convergence here means
the state of the chain becomes stationary. As a series of sampled algorithms,
the commonly used MCMC algorithms are the Metropolis-Hastings (M-H) [15]
and Gibbs sampling [16] algorithms. The M-H algorithm provides a general sam-
pling framework requiring the computations of an acceptance criterion to judge
whether the samples come from the correct posterior or not. On the other hand,
Gibbs sampling is utilized when the full conditionals are available and are easy
to sample, where the calculation of acceptance ratios is avoid In this paper, to
illustrate the frequency estimation clearly, the single complex sinusoid signal is
taken as an example. Since the target PDF of ACG noise is complicated and
involves Voigt profile, the Gibbs sampling algorithm cannot be employed, and
hence the M-H algorithm is chosen as the sampling algorithm.

The rest of this paper is organized as follows. In Sect. 2, the details of M-H
algorithm is reviewed. Then the details of the proposed method is presented in
Sect. 3, where the PDF of additive impulsive noise is also included. Computer
simulations are provided in Sect. 4 to evaluate the accuracy of the proposed
scheme. Finally, conclusions are drawn in Sect. 5.

2 Review of M-H Algorithm

Before reviewing the M-H algorithm, some basic ideas of the Markov chain is
introduced [17,18]. Then we define a Markov chain {xl} using a sequence of
dependent random variables [20]

x1, x2, · · · , xl, xl+1, · · · (1)

where the probability of xl+1 relies only on xl with the conditional PDF being
defined by P(xl+1|xl). Hence, the PDF of xl+1, namely, πl+1, is expressed as

πl+1 =
∫

P(xl+1|xl)πldxl. (2)
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Let π∗ = liml→∞ πl+1. Then we can say that a Markov chain is stationary in
the case that

π∗ = P(·|·)π∗, (3)

is satisfied. To ensure (3), a sufficient, but not necessary condition can be written
as

πlP(xl+1|xl) = πl+1P(xl|xl+1). (4)

Among traditional MCMC algorithms, instead of directly sampling from a
target PDF f(x), samples are usually obtained with the use of a Markov chain.
In principle, if a proper P(·|·) is chosen, whose stationary distribution align
with the target PDF f(x), samples generated from the Markov chain eventually
tends to be from f(x) accordingly.

In the following, the steps of the MCMC method can shown in Table 1.
It is worth to point out that since the initialization x1 is arbitrarily chosen
since it only influences the convergence rate of MCMC method. Furthermore,
we introduce L1 as burn-in period, after which the chain reaches convergence.

Table 1. Steps of MCMC method

(i) Initialize x1

(ii) Iteratively draw xl+1 from the conditional PDF P(xl+1|xl) until l = L

(iii) Throw out the first L1 burn-in period samples

Differ with the typical MCMC methods, the main idea of the M-H algo-
rithm [21] is drawing samples from a proposal distribution with a rejection cri-
terion, instead of sampling from P(xl+1|xl) directly. In M-H method, a candi-
date, denoted by x∗ is generated from a proposal distribution q(x∗|xl). Then the
acceptance probability

A (xl, x
∗) = min

{
1,

q(xl|x∗)f(x∗)
q(x∗|xl)f(xl)

}
, (5)

will determine whether the candidate is accepted or not. It is noted that the
proposal distributions are usually chosen as uniform, Gaussian or Student’s t
processes, which are easier to be sampled. The details of the M-H algorithm can
be seen in Table 2.

In the M-H algorithm, in order to ensure a stationary distribution, the tran-
sition kernel can be defined as

P(xl+1|xl) = q(xl+1|xl)A (xl, xl+1) + δ(xl+1 − xl)B(xl), (6)

where B(xl) =
∫

q(x∗|xl) (1 − A (xl, x
∗)) dx∗. According to [19], the balance

condition (4) is easily to be proven being hold.
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Table 2. Steps of M-H algorithm

(i) Initialize x1

(ii) Sample u ∼ U(0, 1)

(iii) Sample x∗ ∼ q(x∗|x(l)), l = 1, 2, · · ·
(iv) Calculate A (xl, x

∗) according to (5)

(v) If u < A (xl, x
∗)

xl+1 = x∗

else

xl+1 = xl

(vi) Repeat Steps (ii)–(iv) until l = L

(vii) Discard burn-in samples

3 Proposed Method

Without loss of generality, the observed data y = [y1 y2 · · · yN ]T can be modeled
as:

yn = sn + qn, (7)

where qn = cn + gn denotes the ACG noise which is mixed by the independent
and identically distributed (IID) Cauchy noise cn with unknown median γ and
the IID zero-mean Gaussian noise gn with known variance σ2, and

sn = A cos(ωn + φ) = a1 cos(ωn) + a2 sin(ωn), (8)

is the noise-free signal, with a1 = A cos(φ), a2 = −A sin(φ) and A, ω, φ being
amplitude, frequency and phase, respectively. Our task is to find ω from obser-
vations {yn}N−1

n=0 .
We express the PDFs of Cauchy and Gaussian distributions as:

fC(cn|γ) =
γ

π(c2n + γ2)
, (9)

fG(gn|σ2) =
1√
2πσ

exp
(

− g2n
2σ2

)
. (10)

Then the PDF of the mixture noise q, denoted as the Voigt profile [22], can be
computed according to (9) and (10), which is

fQ(q|γ, σ2) =
N∏

n=1

∫ ∞

−∞

γ

π((qn − τ)2 + γ2)
1√
2πσ

e− τ2

2σ2 dτ

=
N∏

n=1

Re{wn}
σ
√

2π
, (11)
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where Re{x} is the real part of x ∈ C and

wn = exp

(
−

(
qn + iγ

σ
√

2

)2
) (

1 +
2i√
π

∫ qn+iγ

σ
√

2

0

exp
(
t2

)
dt

)
. (12)

Let θθθ = [a1, a2, ω, γ]T being unknown parameter vector. In general, the
priors of γ and σ2 are assumed to be following conjugate inverse-gamma dis-
tribution with shape and scaling parameters being close to zero [23]. Assume
that the priors for a1, a2, ω, γ and qn are statistically independent, they can be
expressed as

f(y|a1, a2, ω, γ, σ2) = fQ(y − s|γ, σ2), (13)

f(a1, a2) =
1

(2πδ2)N
exp

(
−a2

1 + a2
2

2δ2
N

)
, (14)

f(ω) =
1

πN
, ω ∈ [0, π], (15)

f(γ) =
βα1
1

Γ (α1)
exp

(
−β1

γ

)
, (16)

f(σ2) =
βα2
2

Γ (α2)
exp

(
−β2

σ2

)
(17)

where β1 = β2 = 0.01 and α1 = α2 = 10−10.
According to Bayes’ theorem [13], we have

f(a1, a2, ω, γ, σ2|y)

= f(y|a1, a2, ω, γ, σ2)f(a1, a2)f(ω)f(γ)

=C
N∏

n=1

∫ ∞

0

γα−1 exp
(

−γ(t + β) − σ2

2
t2

)
exp

(
−a2

1 + a2
2

2δ2

)

× cos ((yn − a1 cos(ωn) − a2 sin(ωn))t) dt. (18)

where C = β
α1
1 β

α2
2√

2πσΓ (α1)Γ (α2)
.

Although the PDF expression is given, the maximum likelihood estimator
cannot be employed due to the multimodality of the likelihood function and the
high computational complexity of the grid search. Furthermore, other typical
robust estimators, such as the p-norm minimizer [24], cannot provide optimum
estimation for the mixture noise. Moreover, even when the conditional PDFs of



120 Y. Chen et al.

each unknown parameters are known, the Gibbs sampling algorithm cannot be
applied because of the complicated expression of the posterior f(y|θθθ).

Therefore, to estimate parameters accurately, the M-H algorithm is utilized.
Here we choose the multivariate Gaussian distribution as the proposal distribu-
tion, whose expression is

q(x|μ) =
1

2π
√|ΣΣΣ| exp

(
−1

2
(x − μμμ)TΣΣΣ−1(x − μμμ)

)
, (19)

where x = [x1 x2 x3 x4x5]T with x1, x2, x3, x4, x5 corresponding to
a1, a2, ω, γ, σ2, respectively, μμμ = [μ1 μ2 μ3 μ4 μ5]T denotes the proposal mean
vector and ΣΣΣ is the 5×5 proposal covariance matrix with |ΣΣΣ| denoting the deter-
minant of ΣΣΣ. The ΣΣΣ is a diagonal matrix whose main diagonal entries, namely,
proposal variances. It is noted that the larger variance will cause a faster con-
vergence but possible oscillation around the correct value. While the smaller
variance values lead to slower convergence but small fluctuation.

In our problem, the mean of proposed distribution is set to all zeros. While for
the proposed covariance, to choose a proper values, we utilize the idea of batch-
mode. That is to say, for the k-th estimated values, denoted by θθθ(k), the m-th
elements of the corresponding proposed covariance matrix, namely, ΣΣΣ(k)(m,m)
is defined as

ΣΣΣ(k)(m,m) =
L−1∑
l=0

(
θθθ(k−l) − θθθ(k−l−1)

)2

,m = 1, · · · , 5. (20)

To start the algorithm, the initial estimate of θθθ and the burn-in period P
should be determined. As it is discussed before, θθθ(1) can be chosen arbitrarily
because the initialization of the M-H method only affects the convergence rate.
Then the first P samples from the M-H algorithm are threw away, in order to
avoid the initial bias. Here P refers to as the burn-in period. In the kth iteration
(k = P + 1, 2, . . . ,K + P ), θθθ(k) is calculated from the θθθ(k−1) by following the
steps in Table 3.

Table 3. The proposed algorithm

1. Initialize θθθ as all ones;

2. generate P samples using M-H algorithm in Table 2 with
the fixed ΣΣΣ = I5 × 5, where I5 × 5 is an identity matrix;

3. For k = P + 1, · · · K + P

3.1 compute ΣΣΣ(k) using (20);

3.2 obtain θθθ(k) using M-H algorithm in Table 2 and ΣΣΣ(k).

Finally, the estimates â1, â2 and ω̂ are obtained from the mean of the samples
θθθ(k)(1), θθθ(k)(2) and θθθ(k)(1) (k = P + 1, · · · ,K + P ), respectively. Utilize the
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definition of a1 and a2, we can obtain the estimates of amplitudes and phase,
denoted by Â and φ̂,

Â =
√

â2
1 + â2

2, (21)

φ̂ = atan
(

â2

â1

)
, (22)

where atan(·) is arctangent function.

4 Cramér-Rao Lower Bound (CRLB)

Let ψψψ = [A ω φ γ σ2]T . The Cramér-Rao lower bound (CRLB) of unknown
parameters can be obtained from the diagonal elements of the inverse of the
Fisher information matrix I and the (m, k) entry (m, k = 1, · · · , 5) of I has the
form of

I(m, k) = −E

{
∂ log f(y|ψψψ)

∂ψψψ

(
∂ log f(y|ψψψ)

∂ψψψ

)T
}

, (23)

where

∂ log f(y|ψψψ)
∂ψψψ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ2

cos(ωn+φ)Re{(yn−A cos(ωn+φ)+iγ)wn}
Re{wn}

1
σ2

An sin(ωn+φ)Re{(yn−A cos(ωn+φ)+iγ)wn}
Re{wn}

1
σ2

A sin(ωn+φ)Re{(yn−A cos(ωn+φ)+iγ)wn}
Re{wn}

−
1

σ2 Re{i(yn−An−B+iγ)wn}+ 2√
2πσ2

Re{wn}
1

σ2 Re{(yn−An−B+iγ)2wn}+ γ√
2πσ2σ2

Re{wn} − 1
2σ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

Due to the complicated integration in (23) and (23), the closed-form of CRLB is
difficult to be obtained. As a result, we calculate (23) using a numerical method
which is an approximation:

Î(k, l) ≈ 1
M

M∑
m=1

N∑
n=1

∂ log f(ym
n |ψψψ)

∂ψψψ

(
∂ log f(ym

n |ψψψ)
∂ψψψ

)T

, (25)

where M is the number of independent Monte Carlo runs and ym
n denotes the

observed signal at the mth trial. Apparently, a sufficiently large value of M will
make (25) approaching (23).

5 Simulation Results

To assess the performance of the proposed method, computer simulations have
been conducted. The mean square error (MSE), referred to as E{(ω̂ − ω)2}, is
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utilized as the performance measure. Then the signal sn is generated according
to (8) with A = 13.84, ω = 1.79 and φ = −0.33. In the M-H algorithm, the
initial estimate is set to as [1 1 1 1 1]T , while the number of iterations is K =
8000. It is demonstrated that burn-in period P can be chosen as 2000 in this
setting. Here comparison with the 1-norm estimator is provide due to its robust
and suboptimal for the Cauchy noise, while the CRLB are also included as a
benchmark. It is noted that the 1-norm minimizer is solved by the least absolute
deviation [25]. All results are based on 100 independent runs with a data length
of N = 100.
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Fig. 1. Estimates of unknown parameters versus iteration number k

First of all, the convergence rate of the unknown parameters is investigated.
Meanwhile, the burn-in period P can be determined, accordingly. In this test, the
density parameters are set to γ = 0.05 and σ2 = 0.5. Figures 1 and 2 indicates
the estimates of all unknown parameters in different iteration number k, which
are ω, A, φ, γ and σ2. It can be seen in these figures that after the first 2000
samples, the sampled data approaches the true values of unknown parameters.
Therefore, the burn-in period P can be chosen as 2000 in this parameter setting.

In the following, the MSE performance of the proposed estimator is consid-
ered. In the proposed method, the Σ is identical to the previous test and γ is
scaled to produce different noise conditions. According to the study in the previ-
ous test, we throw away first 2000 samples to ensure the stable of the method. It
is shown in Fig. 3 that the MSEs of the proposed attain the CRLB in the case of
γ ∈ [−20, 10] dB. Furthermore, the proposed method is superior to the 1-norm
estimator.
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Fig. 2. Estimates of density parameters versus iteration number k

-20 -15 -10 -5 0 5 10
-70

-60

-50

-40

-30

-20

-10

0

M
S

E
 o

f 

Proposed method
l1
CRLB

Fig. 3. Mean square error of ω versus γ

6 Conclusion

In this paper, the frequency estimation of a single sinusoid signal under additive
Cauchy-Gaussian mixtures is studied. An accurate frequency estimator is devel-
oped, by employing a numerical Bayesian method, namely, Metropolis-Hastings
algorithm. Simulation results show that the proposed method can provide an
unbiased estimates with a long-term samples. Furthermore, the MSE of the pro-
posed estimator can attain the CRLB after throw away the burn-in period sam-
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ples. Our method can be extended to the family of signals with more complicated
models.
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Abstract. Generative adversarial networks (GAN) could synthesize semantically
meaningful data from standard signal distribution, which make it have consider-
able potential to alleviate data scarcity. In this paper, based on Evolutionary GAN,
cardiac magnetic resonance images enhancement method is proposed to solve
over-fitting problem caused by training convolution network with small dataset.
The most optimal generator which consider the quality and diversity of generated
images simultaneously from many generator mutations is chosen. Meanwhile, to
expand the whole training set distribution, we combine the linear interpolation
of eigenvectors to synthesize new training samples and synthesize related linear
interpolation labels, which can make the discrete sample space become continu-
ous to improve the smoothness between domains. In this paper, the effectiveness
of this method is verified by classification experiments, and the influence of the
proportion of synthesized samples on the classification results of cardiac magnetic
resonance images is explored.

Keywords: Evolutionary GAN · Cardiac magnetic resonance · Data
augmentation · Linear interpolation

1 Introduction

Cardiac magnetic resonance imaging (MRI) is known as the gold standard for assessing
cardiac function. Conventional cardiac MRI scanning technology has been relatively
mature and has played a vital role in disease diagnosis.At present,many cardiacmagnetic
resonance image-assisted diagnosis tasks based on deep learning [1] have achieved
good results, but cardiac magnetic resonance images not only require expensive medical
equipment to obtain, but also require experienced radiologists to carry out a large number
of manual data annotation, which is undoubtedly extremely time-consuming and labor-
consuming. In addition, the privacy of patients in the field of medical images has always
been very sensitive, so it costs a lot to obtain a large number of data sets that are balanced
between positive and negative samples.
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A great challenge in the field of medical imaging based on deep learning is how
to deal with small-scale data sets and limited number of labeled data. Especially when
using complex deep learning model, the data set is not sufficient or the data set sample is
unbalanced, which will make the deep convolution neural network with huge parameters
appear over fitting [2]. In the field of computer vision, scholars have proposed many
effective methods for over fitting, such as batch regularization [3], dropout [4], early
stopping method [5], weight sharing [6], weight attenuation [7], etc. The above method
is to adjust the network structure. In addition, data enhancement [8] is an effective
method to operate on the data itself, which alleviates the phenomenon of over fitting
in image analysis and classification to a certain extent. The classical data enhancement
techniques mainly include affine transformation methods such as translation, rotation,
scaling, flipping and shearing [9, 10], and the original samples and new samples are
mixed as training sets and input into convolutional neural network. Adjusting the color
space of samples is also a data enhancement method.Wang et al. [11] used the method of
changing the brightness value to expand the sample size. Although these methods have
improved, only the operation on the original samples does not produce new features.
The diversity of the original samples has not been substantially improved [12], and the
promotion effect is weak when processing small-scale data.

Generative Adversarial Network (GAN) [13] is a generative model proposed by Ian
Goodfellow and others. It consists of a generator G and a discriminator D. The generator
G uses noise z sampled from uniform distribution or normal distribution as input to
synthesize image G(z). The discriminator D attempts to judge the synthetic image G(z)
as false asmuch as possible, and judges the real image x as true, and adjusts the parameters
of each model through successive confrontation training. Finally, the generator obtains
the distribution model of real samples and obtains the generation performance close to
the real image. The specific structure of GAN is shown in Fig. 1.

Fig. 1. The structure of GAN
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The entire training process of GAN is to find the balance between the generating
network and the discriminating network, which makes the discriminator unable to judge
whether the samples generated by the generator are real or generated, so that the gen-
erating network can achieve the optimal performance. This process can be expressed as
formula (1):

minGmaxDExPdata

[
logD(x)

] + EzPz

[
log(1 − D(G(z)))

]
(1)

The generative adversarial network generates new samples by fitting the original
sample distribution. The new samples are generated from the distribution learned by
the generative model, which makes it have new features that are different from the
original samples. This feature makes it possible to use the samples generated by the
generating network as new training samples to achieve data expansion. Although GAN
has achieved good results in many computer vision fields, it has many problems in
practical applications. On the one hand, GAN is very difficult to train. Once the data
distribution and the distribution fitted by the generating network do not substantially
overlap at the beginning of training, the gradient of the generating network can easily
point to a random direction, resulting in the problem of gradient disappearance [14]. On
the other hand, in order to make the discriminator give high scores, the generator will
try to generate a relatively safe but lack of diversity of single samples, which will lead
to the problem of pattern collapse [15].

In order to alleviate the gradient disappearance and model collapse, a large number
of GAN variant models have been proposed. The more representative ones are: DCGAN
[16]which combines convolutional neural networkwithGANandConditionalGAN[17]
which adds precondition control generator to the input data. There are also LSGAN [18]
and WGAN [19], which have made great improvements to the loss function. Among
them, WGAN uses Wasserstein distance to measure the distribution distance, which
makes GAN more stable in training to a large extent. However, Ishaan et al. found that
WGAN uses a forced phase method to make the parameters of the network mostly focus
on −0.01, 0.01, which will waste the fitting ability of the convolutional neural network.
Therefore, they proposed the WGAN-GP model [20], which effectively alleviated this
problem, so it became a more classic model. The Evolutionary GAN [21] proposed by
Zhang et al. is a variant model of a generative adversarial network based on evolutionary
algorithms. It will perform mutation operations when the discriminator stops training
to generate multiple generators as adversarial targets. In different environments (that is,
the current discriminator), a specific evaluation method is used to evaluate the quality
and diversity of the generated pictures. This series of operations can reserve one or
more generators with strong performance for the next round of training. This method
of overcoming the limitations of single adversarial target has been proven to be able to
keep the best offspring all the time, effectively alleviate the problem of mode collapse
and improve the quality of the generator.
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Recently, many scholars use GAN to enhance training data samples. The article [22]
uses GAN to enhance the data of human faces and handwritten fonts. Ibrahim et al. [23]
used the improvement of PGGAN to expand the data set of skin injury and improved
the classification accuracy. Maayan et al. [24] used DCGAN and ACGAN to expand the
data of liver medical images, and proved that the classification effect of DCGAN in this
data set is improved more. Compared with affine transformation, GAN can be used to
generate images with new features by learning the real distribution.

Considering that Evolutionary GAN can improve the diversity and quality of gener-
ated samples, this paper uses Evolutionary GAN to enhance cardiac magnetic resonance
image data. The main contributions of this paper are as follows:

1) A cardiac magnetic resonance medical image data enhancement method based on
Evolutionary GAN is proposed, which generates high-quality and diverse sam-
ples to expand the training set, and finally improves the various indicators of the
classification results;

2) Combining the linear interpolation of feature vectors in Evolutionary GAN to syn-
thesize new training samples and generate related linear interpolation labels, which
not only expands the distribution of the entire training set, but alsomakes the discrete
sample space continuous and improves the smoothness between fields, so that the
model can be better trained.

3) We use various indicators of downstream classification tasks to optimize the model
and experimental details.

2 Evolutionary GAN

The training process of Evolutionary GAN can be divided into three stages: the first stage
is mutation, that is, the parent generator is mutated into multiple offspring generators;
the second stage is evaluation, that is, the adaptive score of each offspring generator
of the current discriminator is calculated through the fitness function; the third stage is
selection, that is, the offspring generator with the highest adaptive score is selected by
sorting. The basic structure of the Evolutionary GAN is shown in Fig. 2:
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Fig. 2. The structure of Evolutionary GAN

2.1 Mutation

Evolutionary GAN uses different mutation methods to obtain offspring generators based
on parent generators. Thesemutation operators are actually different training targets. The
purpose is to reduce the distance between the generated distribution and the real data
distribution through different angles. It should be noted that the best discriminator D*
in formula (2) should be trained before each mutation operation.

D(x) = Pdata(x)

Pdata(x) + Pg(x)
(2)

Zhang et al. proposed three mutation methods:

1) Maximum and minimum value mutation: the mutation has little change to the
original objective function, which can provide effective gradient and alleviate the
phenomenon of gradient disappearance. It can be written as formula (3):

Mminimax
G = 1

2
EzPz

[
log(1 − D(G(z)))

]
(3)

2) Heuristic mutation: heuristic mutation aims to maximize the log probability of the
discriminator’s error. When the discriminator judges the generated sample as false,
the heuristic mutation will not be saturated, and can still provide effective gradient
so that the generator can be continuously trained. It can be written as formula (4):

Mheuristic
G = 1

2
EzPz (4)

3) Least squares mutation: inspired by ISGAN, least squares mutation can also avoid
vanishing gradient. At the same time, compared with heuristic mutation, the least
square mutation does not generate false samples at a very high cost, but it does not
use very low cost to avoid punishment, which can avoid model collapse to a certain
extent. It can be written as formula (5):

M least−square
G = EzPz

[
D(G(z) − 1)2

]
(5)
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2.2 Fitness Function

Evolutionary GAN uses the fitness function to evaluate the generator’s performance and
quantifies it to the corresponding adaptability score, which can be written as formula
(6):

F = Fq + γFd (6)

Fq is used to measure the quality of the generated samples, that is, whether the
offspring generator can fool the discriminator, which can be written as formula (7):

Fq = Ez[D(G(z))] (7)

Fq measures the diversity of the generated samples. It measures the gradient gen-
erated when the parameters of the discriminator are updated again according to the
offspring generator. If the samples generated by the offspring generator are relatively
concentrated (lack of diversity), it is easier to cause large gradient fluctuations when
updating the discriminator parameters, which can be written as formula (8):

Fd = −log
∥∥∇D − Ex

[
logD(x)

] − Ez
[
log(1 − D(G(z)))

]∥∥ (8)

γ (≥ 0) is a hyperparameter used to adjust the quality of samples generated and the
weight of diversity, which can be adjusted freely in the experiment.

3 Method

In this paper, we design a data enhancement model of cardiac magnetic resonance med-
ical image based on Evolutionary GAN, which can generate high-quality and diverse
samples to expand the training set. The linear interpolation of related labels is generated
by combining the linear interpolation of feature vector, which expands the distribution
of training set and makes the discrete sample space continuous, so that the model can
be trained better. The specific network structure is shown in Fig. 3:

3.1 DAE GAN

Using GAN for data enhancement requires high quality and diversity of samples. Evo-
lutionary GAN can be stably trained and can generate high-quality and diverse samples,
so it is very suitable for data enhancement. By adjusting the parameters in the fitness
function, you can choose to focus on diversity or quality according to your needs, which
can make the data enhancement process more operative. This article improves the Evo-
lutionary GAN and names the improved model Data Augmentation Evolutionary GAN
(DAE GAN).

There is no difference between the input and output of EvolutionaryGANandVanilla
GAN, except that after the discriminator parameters are fixed, multiple offspring gener-
ators are mutated based on the parent generator for training. After the evaluation of the
fitness function, the optimal one or more generators are selected as the parent generator
in the next discriminator environment.
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Fig. 3. The proposed network

Although Evolutionary GAN greatly improves the diversity of generated samples,
a certain number of training samples are required if you want to fully train the GAN
model. In the case of too few training samples, the generator and discriminator are prone
to reach the equilibrium point prematurely, which will also cause the phenomenon of
model collapse in the generated data. In order to alleviate this problem, this paper uses
the traditional affine transformation data enhancement method before training GAN,
and expands the data through horizontal flip, vertical inversion, translation, rotation and
other operations. Due to the security of medical images, the original data is not added
with noise, crop and other operations, and the texture and edge features of the original
data are retained as far as possible. But traditional data enhancement only makes small
changes to the original data, and does not generate new features, and the samples are
also discrete. Thus, this article introduces the linear interpolation.

Zhang et al. proposed a data-independent data enhancement method in the article
[25]. This method constructs virtual training samples from original samples, combines
linear interpolation of feature vectors to synthesize new training samples and generates
related linear interpolations Labels to expand the distribution of the entire training set.
The specific formula is as formula (9):

{
x̃ = λxi +

(
1 − λxj

)

ỹ = λyi +
(
1 − λyj

) (9)

xi, xj is the original input vector, yi, yj is the label code, (xi, xj), (yi, yj) are two samples
randomly sampled from the original sample, λ ∈ Beta[α, α] is the weight vector, and
α ∈ (0,+∞) is the hyperparameter that controls the interpolation strength between
the feature and the target vector. The linear interpolation method enables the model to
behave linearly when processing the area between the original sample and the sample, so
as to reduce the inadaptability of predicting test samples other than the training sample,
and enhance the generalization ability. At the same time, the discrete sample space can
be continuous and the smoothness between fields can be improved.
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When the generator parameters are fixed, the original input of the Evolutionary
GAN discriminator is two samples: one is the generated sample, the discriminator tries
to minimize the distance between the predicted label of the sample and “0”; the other is
the real sample, the discriminator is minimized as much as possible the distance between
the predicted label of this sample and “1”. The discriminator loss function of the original
Evolutionary GAN is as formula (10):

LD = LReal + LFake (10)

The discriminator loss function is expanded into formula (11) as follow:

E
x,z

L(D(x), 1) + E
x,z

L(D(G(z)), 0) (11)

This paper uses linear interpolation operation in Evolutionary GAN to modify the
discriminator input from the original two pictures to one picture, and the discriminator
task is changed tominimize the distance between the predicted label of the fusion sample
and “λ”. The loss function of discriminator is modified as formula (12):

E
x,z,λ

L(D(λx + (1 − λ)G(z)), λ) (12)

3.2 Algorithm

Usually GAN will use the noise z that obeys the multivariate uniform distribution or
multivariate normal distribution as the input of the model. Matan et al. [26] believe that
multiple Gaussian distributions can better adapt to the inherent multi-modality of the
real training data distribution, so a multi-modal distribution is used as input in GAN and
it is proved that this method can improve the quality and variety of generated images.
The algorithm combined with Gaussian mixture model in this paper is as follows:
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Input: N, K, D, BS, M and . The total number of iterations N, the number of 
Gaussian distributions K, latent spatial dimension D, batch size BS, the number of 
mutation operations M, hyper-parameters .

Output: the updated weight of discriminator and generator parameters. 
Step1. Initialize the discriminator parameter  and generator parameter 
Step2. Gaussian distribution operation 
cycle 1 start:  for k = 1 : K

Step2.1. Sample the initial mean of the Gaussian distribution K
Step2.2. Initialize the covariance matrix of Gaussian distribution K

cycle 1 end 
cycle 2 start:  for n = 1 : N

Step3. Train discriminator 
cycle 3 start:  for j = 1 : BS

Step3.1. Sample a real image 
Step3.2. Sample Gaussian index
Step3.3. Sample noise from the k-th Gaussian distribution
Step3.4. Input the noise into the generator to synthesize a sample
Step3.5. Perform linear interpolation on real samples and synthetic samples, 

interpolate new samples and labels
Step3.6. Calculate the loss of discriminator

cycle 3 end 
Step3.7. Calculate the average loss of discriminator 
Step3.8. Update the discriminator parameter 
Step4. Train generator 
cycle 4 start:  for m = 1 : M

cycle 5 start:  for j = 1 : BS
Step4.1. Sample Gaussian index 
Step4.2. Sample noise from the k-th Gaussian distribution 
Step4.3. Input the noise into the generator to synthesize a sample 
Step4.5. Perform a mutation operation on the parent generator and use the 

offspring generator to generate samples 
Step4.6. Calculate the loss of the offspring generator 

cycle 5 end 
Step4.7. Calculate the average loss of the offspring generator 
Step4.8. Update the parameter of the offspring generator 
Step4.9. Calculate the adaptive score of the offspring generator 

cycle 4 end 
Step4.10. Sort the offspring generators in descending order according to the 

adaptive score 
Step4.11. Leave the offspring generator with the highest adaptive score in the 

current environment and use it as the parent generator for the next iteration 
cycle 2 end 
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4 Results Analysis

4.1 Data Set and Preprocessing

The cardiovascular magnetic resonance data in this experiment comes from a partner
hospital. All samples are 2D short-axis primary T1 mapped images. The spatial distance
of these cardiac magnetic resonance images ranges from 1.172 × 1.172 × 1.0 mm3 to
1.406 × 1.406 × 1.0 mm3, and the original pixel size was 256 × 218 × 1. The benign
and malignant labeling and segmentation areas of the image are manually labelled and
drawn by senior experts. The original image data is in the “.mha” format. The original
image data was in “.MHA” format. After preprocessing, such as resampling, selection of
regions of interest, normalization andfinal selection of interest, a total of 298 imageswere
obtained, including 221 cardiomyopathy images and 77 non-diseased images. The image
size after preprocessing was 80 × 80 × 1. The pretreated cardiac magnetic resonance
image is shown in Fig. 4.

Fig. 4. Cardiac magnetic resonance image

In order to ensure the consistency of training data, all samples are normalized in this
experiment. Before training GAN, this experiment performed affine transformation data
enhancement on the training set, including: horizontal flip, vertical flip, 0°–20° random
amplification and rotation, 90°, 180°, 270° rotation, 0–2% random amplification and
translation of vertical and horizontal axes, small and specific amplitude amplification
and rotation, and amplification translation, so as to make the data not lose the original
image information. After the training set is enhanced once, it is divided into two types
of operations: one is to put it into the classifier for training directly, and then use the test
set to get the classification results; the other is to put it into different GAN for training,
and finally generate new samples to train the classifier again.

4.2 Training DAE GAN

The original evolutionary GAN uses the structure of DCGAN. In this paper, we consider
that the residual structure [27] can alleviate the gradient vanishing problemand accelerate
the convergence speed of the model, so as to train the high-performance generator more
quickly in the same training time. The residual structure as shown in Fig. 5 is used in
the generator and discriminator in this article.
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Fig. 5. Residual block structure

Combined with the self-attention module [28], the detailed structure of the generator
and discriminator and the output size of each layer are shown in Table 1.

DAE GAN experimental environment: Ubuntu 16.04.1 TLS, Tensorflow 1.14.0, two
Nvidia Tesla M40 GPU with 12 GB video memory used to train the generative models
of diseased and non-diseased samples respectively. The maximum storage capacity of
the model is set to 4, taking into account the space occupation and preventing accidental
interruption.

4.3 The Generation Results of DAE GAN

This experiment uses 5-fold cross validation to dynamically divide the heart magnetic
resonance image into a training set and a test set at a ratio of 0.8:0.2. Training DAE
Gan only uses the training set. Due to the uncertainty of deep convolution model in the
training process, each model was trained several times (≥5), and the specific effect of
data enhancement method was verified by average classification results.

After normalization and affine transformation, the training set of the cardiacmagnetic
resonance image data is expanded. We train DAE GAN model following the steps of
Algorithm 1. In order to intuitively show the training process of the generative model,
Fig. 6 shows the changing process of the samples generated in the training process of
the model.

The comparison between the samples generated by the trained model generator and
the real samples is shown in Fig. 7.
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Table 1. The structure of DAE GAN

Generator Kernel size

Noise z
—

Fully Connected Mapping
—

Residual Structure 3 × 3

Residual Structure 3 × 3

Self-attention Module
—

Residual Structure 3 × 3

Residual Structure 3 × 3

Convolutional Layer & tanh 3 × 3

Discriminator Kernel size

Input Image
—

Convolutional Layer 3 × 3

Residual Structure 3 × 3

Self-attention Module
—

Residual Structure 3 × 3

Residual Structure 3 × 3

Residual Structure 3 × 3

Fully Connected Layer
—

4.4 Classification Experiment and Analysis of Experimental Results

Observation method has strong subjectivity. In this experiment, data enhancement is
performed on small sample medical images, as a result, the observation method can
only be used as a reference evaluation standard. In order to evaluate the effect of data
enhancement, this article uses the ResNet50 model and the Xception model [29] as a
classifier, the classification results are used to uniformly evaluate the effects of various
data enhancement methods.

In addition to the conventional accuracy index, the sensitivity and specificity of two
medical image classification indexes are also calculated. These indicators are briefly
explained below.

The accuracy rate, that is, the probability that the diseased sample and the non-
diseased sample are judged correctly. The calculation method is as formula (13):

Accuracy = TP + TN

TP + TN + FP + FN
(13)
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Fig. 6. The changing process of generated sample

Fig. 7. Comparison of generated samples with real samples

Sensitivity, namely the probability that a diseased sample is judged to be diseased.
The calculation method is as formula (14):

Sensitivity = TP

TP + FN
(14)
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Specificity, namely the probability of judging a non-diseased sample as non-diseased.
The calculation method is as formula (15):

Specificity = TP

TP + FN
(15)

TP represents True Positive, namely the classifier judges it to be a diseased sample,
which is in fact also a diseased sample;TN represents TrueNegative, that is, the classifier
judges it to be a non-diseased sample, which is in fact not a diseased sample. FP is short
for False Positive, namely the classifier judges it to be a diseased sample, which is in
fact a non-diseased sample; FN is short for False Negative, that is, the classifier judges
that the sample is not diseased, but is actually a diseased sample.

In this article, the classification experiment uses the Keras framework under the
Ubuntu 16.04.1 TLS system environment, the version number is 2.24; the training pro-
cess uses a Tesla M40. The learning rate is set to 1e−4, and we use the RMSprop
optimizer, setting early stopping method to prevent over-fitting, and the 5-fold cross-
validation method is used to find the average classification result of the classifier. Table 2
details the average classification results of each enhancement methods in the ResNet50
and Xception classification models.

Table 2. The classification results of enhancement methods

Enhancement method Accuracy Sensitivity Specificity

Classification Network 1: ResNet50

No Enhancement 0.7767 0.9674 0.6964

Affine Transformation 0.8093 0.9806 0.7300

DCGAN 0.8140 0.9760 0.7436

ACGAN 0.7915 0.9728 0.7127

Evolutionary GAN 0.8288 0.9726 0.7591

Our Method 0.8478 0.9772 0.7822

Classification Network 2: Xception

No Enhancement 0.7953 0.9765 0.6833

Affine Transformation 0.8279 0.9700 0.7696

DCGAN 0.8326 0.9672 0.7239

ACGAN 0.8054 0.9731 0.7082

Evolutionary GAN 0.8514 0.9780 0.7821

Our Method 0.8698 0.9798 0.8116

Through the experiments, we found that compared with the classification results
without any data enhancement method, in ResNet50 model, the classification accuracy
increased from 0.7767 to 0.8478, the sensitivity from 0.9674 to 0.9772, the specificity
from 0.6964 to 0.7822; in Xception model, the classification accuracy increased from
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0.7953 to 0.8698, the sensitivity from 0.9765 to 0.9798, and the specificity from 0.6833
to 0.8116.

5 Conclusion

The DAE GAN model proposed in this paper can effectively expand the amount of
cardiac magnetic resonance image data, and effectively alleviate the problem that the
classification network cannot be fully trained due to the small amount of medical image
data and the uneven data. Compared with any data enhancement method, the classifica-
tion accuracy of DAE GAN in ResNet50 and Xception models has been improved by
7.11% and 7.45% respectively; compared with affine transformation data enhancement,
the method proposed in this paper has been improved by 3.85% and 4.19% respectively,
and the experimental results show that the method is effective in different classification
models.
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ogy Program under Grant 2019ZDZX0005 and the Chinese Scholarship Council under Grant
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Abstract. In this work, the performance of four Machine Learn-
ing Algorithms (MLAs) applied to Cognitive Mobile Radio Networks
(CMRNs) are analyzed. These algorithms are Coalition Game The-
ory (CGT), Naive Bayesian Classifier (NBC), Support Vector Machine
(SVM), and Decision Trees (DT). The numerical results of the perfor-
mance analysis of these algorithms are presented based on two met-
rics. These metrics are commonly used in CMRNs which are Probability
of Detection (Pd) and Probability of False Alarm (Pfa) against Signal-
to-Noise Ratio (SNR). Furthermore, outcomes regarding the Classifica-
tion Quality (CQ) and the simulation time are exposed. Theoretical and
numerical results show that the SVM outperforms the rest of the algo-
rithms in each of the metrics. The reasons behind this come from the
SVM features, namely high precision, fast learning, and simplicity in the
realization stage.

Keywords: Cognitive mobile radio networks (CMRNs) · Coalition
game theory (CGT) · Support vector machine (SVM) · Decision tree
(DT) · Machine learning algorithms (MLAs) · Naive bayesian classifier
(NBC)

1 Introduction

Communications based on Cognitive Radio (CR) have been studied in recent
years because they use the electromagnetic spectrum efficiently [1]. This use
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efficiency occurs when performing frequency band jumps between wireless pro-
tocols and technologies. Furthermore, by complying with this paradigm, CR is
considered an enabling technology for 5G communications. Another feature of
CR is that its physical layer is a radio that changes its transmission character-
istics depending on the communications environment. This adaptation occurs
by detecting spectral holes and efficiently using the available frequencies. These
benefits present CR in the short term as the best performing solution to achieve
high data rates in wireless communications and enable large-scale user mobil-
ity. However, CR’s biggest challenge is identifying primary users (PUs) who are
using a wide range of spectrum, at a certain time, and in a specific geographic
location. On the other hand, CR implementations must meet the following crite-
ria: there is no interference between secondary (SU) (unlicensed) users and PUs
[2].

For a communications system to be considered CR-based, it must fulfill a cog-
nitive process, which requires four steps: spectrum detection, spectrum decision,
spectrum sharing, and spectrum mobility [3]. In the last decade, investigations
regarding the CR topic have been oriented in the field of spectrum detection and
decision. Consequently, several techniques have been proposed, such as Energy
Detection (ED), Cycle-Stationary Detection (CD), Singular Value Decomposi-
tion (SVD) [4], and Eigen-Value Decomposition (EVD). Nevertheless, in order
to ensure that the CR devices to be truly conscious of the frequency changes
that occurs in the mobility stage, just to improve the efficiency, is imperative
that equipped with learning and reasoning functionalities.

In the search for mechanisms to mitigate problems in the spectrum detection
and decision stages in CR systems, Machine Learning Algorithms (MLAs) have
received a lot of attention from the scientific community. In the context of future
networks (CR, femto/small cells, and heterogeneous networks), in [5], the authors
present a problem formulation and methodology of several MLAs in terms of
effectiveness in the testing stage. This analysis is done because MLAs present
a new paradigm of proactive, self-aware, self-adaptive, and predictive networks.
The authors conclude that the benefits of the MLAs will be verified in the
next generation networks. In [6], the authors present a multiple antenna CR
system, in which Support Vector Machine (SVM) algorithms are used to solve
the spectrum detection problem. This work shows that the SVM algorithms
applied to spectrum detection, specifically of spectral holes detection, are robust
in terms of temporal and spatio-temporal detection. In [7], another application
proposes an MLA-based solution for CR at the end-user device level. The authors
conclude that in terms of the terminal service experience and user behavior, the
complexity of the central CR network can be reduced.

The main contribution of this manuscript is the performance evaluation of the
Coalition Game Theory (CGT), Naive Bayesian Classifier (NBC), Support Vec-
tor Machine (SVM), and Decision Trees (DT) methods applied and adapted to a
single Cognitive Mobile Radio Networks (CMRNs) by using the Network Simu-
lator 3 (NS-3.23) modules [8]. This software validates several Machine Learning
(ML) Approaches in a functional mobile network. The performance of these
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algorithms are analyzed in terms of the Probability of Detection (Pd), Proba-
bility of False Alarm (Pfa), Classification Quality (CQ) and simulation time,
by employing numerical simulations and by obtaining Cumulative Probability
Distributions (CDFs).

The organization of this manuscript is presented as follows: the CMRN, PUs
and SUs models are explained in Sect. 2. In Sect. 3, the proposed MLAs are
described with their respective mathematical formulation. Then, in Sect. 4, The
performance of the CR with the MLAs applied and the numerical results of the
simulations are discussed. Finally, the conclusions are presented in Sect. 5.

2 Cognitive Radio System Model

To evaluate the spectrum detection and spectrum decision, we use the stan-
dard MLA, which is composed by numerous input, hidden layers with differ-
ent number of neurons, and various output applied to CMRNs, implemented
to coexist with a primary wireless network composed of two state-of-the-art
technologies, which are Wireless Fidelity (WiFi) and Long Term Evolution
(LTE). We supposed an area covered by CMRN like the propose scenario,
composed of m source-destination PUs pairs. The primary transmitters set
is as follow Pp = (P1p, P2p..., Pmp), while the corresponding receivers set is
Pr = (P1r, P2r...., Pmr). We assume the coexistence of l secondary transmit-
ter in the set Ss = (S1s, S2s..., Sls), and their corresponding receivers in the set
Sr = (S1r, S2r..., Slr). This scenario is presented in Fig. 1.

2.1 Secondary User Model

In a PU network, a single SU is considered to access the licensed bands without
interfering with the communication of the PUs. We define t as the time slot and
i as the frequency bin, where t = 1, 2, ..., n and i = 1, 2, ..., k respectively. We
also define n as the number of time slots and k as the number of frequency bins.
By using the SVD detection method [4], the spectrum sensing problem can be
formulated as follows

xi(t) =
{

ni(t) H0

hi(t) ∗ si(t) + ni(t) H1
, (1)

here, xi(t) is the signal received by the SU at the tth time slot in the ith frequency
bin, si(t) is the signal transmitted by the PU, ni(t) is the Additive White Gaus-
sian Noise (AWGN), and hi(t) is the channel gain. H0 and H1 are the hypothesis
test that indicates whether the SU is using the corresponding channel or not.

We used the SVD detection method as the spectrum detection technique
because of its easy to design and efficiency in terms of Pd over other detection
methods. The spectrum detection process carried out by the SVD method and
its operating characteristics are explained in more detail in [4]. The spectrum
status SSi(t) is given as follows
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Fig. 1. Scheme of the proposed CMRN.

SSi(t) =
{

1 xi(t) > λ
0 xi(t) < λ

. (2)

The occupancy Oi
c for the ith time slot acquires the form of

Oi
c = (

k∑
t=1

SSi(t))/k, (3)

which means the average state of the spectrum between the used frequencies
bins. When a PU uses some frequency bin that is being sensed by some SU, the
SSi(t) is increased. Consequently, the Oi

c will take large values, by highlighting
that the probability of using that frequency bin for the SU is low. Conversely, if
SSi(t) decreases, Oi

c also decreases and it is more likely that this frequency bin
is idle and can be used.

2.2 Primary User Model

The PU status is represented as PU i. This status, for the ith time slot, can be
chosen according the rules that follow
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PU i =

⎧⎪⎪⎨
⎪⎪⎩

1 (Oi
c > Uoc) or (Loc ≤ Oi

c ≤ Uoc

and ffbi < ffb)
0 (Oi

c < Loc) or (Loc ≤ Oi
c ≤ Uoc

and ffbi ≥ ffb)

, (4)

The maximum and minimum values of occupancy for the n time slots are repre-
sented by Uoc and Loc. The consecutive free frequency bins in the ith time slot
are denoted by ffbi, whose maximum value when the PU is present is denoted
as ffb.

2.3 Steps for an Overall Machine Learning

First, MLA constructs a classifier to map SSi to PU i, where SSi = (SSi(1),
SSi(2)..., SSi(k)) represents the feature vector. There are three steps for con-
structing a classifier, which are:

Training: For the training stage, we denote a training vector for the spec-
tral state, SSi(train) = (SSi(train)(1), SSi(train)(2)....., SSi(train)(k))T . Then, we
denote a variable for the training PU status, PU i

train. For the total cases,
i = 1, 2, ..., n1, where n1 is the number of training time slots fed into the classifier.

Testing: For the training stage, we denote a testing vector for the spectral
state, SSi(test) = (SSi(test)(1), SSi(test)(2)....., SSi(test)(k))T , Then, we denote a
variable fot the testing PU status, PU i

test. For the total cases, i = n1 + 1, n1 +
2, ..., n2, n2 refers to the length of testing sequence. In this work, the matrix of
size n∗k is divided into 10% training data matrix of size n1 ×k and 90% testing
data matrix of size n2 × k [9].

Classification Quality: For the classification quality stage, we denote the
PU status for the ith time slot as PU i

eval. In this stage it is categorized the
testing vector SSi(test) as an occupied class (PU i

eval = 1) or unoccupied class
(PU i

eval =0). The PU status is correctly determined, when PU i
eval = PU i

test,
by producing CQi = 1. This scenario will be represented as Pd = 1 or 0 depending
on the value of PU i

eval. The no-detection occurs when PU i
eval = 0 and PU i

test =1,
whereas false alarm occurs when PU i

eval =1 and PU i
test =0, by giving CQi =0.

This situation will be represented as Pfa.

3 Proposed Machine Learning Algorithms

In this work, four MLA are analyzed to predict the PU status via the occupancy
data. The motivation to use these algorithms is to find the most efficient MLA
for predicting future status.
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3.1 Coalition Game Theory

We formulate the cooperative problem as a coalition game G = (N ;u), where
N = SSi and u represents the payoff function that transform a user contribution
in a coalition into its profit. We formulate this scheme via two steps, as follows
[2].

The Cooperation Phase: First, local detection is required, which is done
using the SVD method. In a Rayleigh fading environment, the Pd and Pfa of
the i-th SU are respectively represented as Pd,i,j and Pf,i,j , which are given by
[2]

Pd,i,j = [PYi,j > λ|H1] = e− λ
2

w−2∑
n=0

1
n!

(
λ

2

)n

+

(
1 + γi,j

γi,j

)w−1
[
e
− λ

2(1+γi,j) − e− λ
2

w−2∑
n=0

1
n!

(
λ ∗ γi,j

2(1 + γi,j)

)n
]

,

(5)

and

Pfa,i,j = [PYi,j > λ|H0] =
Γ

(
w, λ

2

)
Γ (w)

, (6)

where Yi,j is the normalized output of the i-th SU sensing the status of the j-
th PU, λ is the detection threshold for the j-th PU, w is the time-bandwidth
product, and γi,j denotes the average SNR of the received signal from the PU to
the SU. Furthermore, Γ (., .) and Γ (.) are the incomplete and complete Gamma
functions respectively.

In addition, the missing probability Pm for the i-th SU is considered as follows

Pm,i = 1 − Pd,i,j . (7)

By reducing the Pm,i directly maps to increasing the Pd and, consequently,
interference on the PU decreases.

Within each coalition Ω, a single SU, named as the coalition head, k, collects
the sensing bits from the coalition SUs, and acts as a fusion center to decide on
the presence or not of the PUs in the channel.

The missing and false alarm probabilities are as follows

Qm,Ω =
∏
i∈Ω

[Pm,i ∗ (1 − Pe,i,k) + (1 − Pm,i) ∗ Pe,i,k], (8)

and

Qf,Ω = 1 −
∏
i∈Ω

[(1 − Pfa) ∗ (1 − Pe,i,k) + Pfa ∗ Pe,i,k]. (9)
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A suitable function acquires the form of

u(Ω) = Qd,Ω − C(Qf,Ω) = (1 − Qm,Ω) − C(Qf,Ω), (10)

where Qd,Ω denotes the probability detection of the coalition Ω and C(Qf,Ω)
represent a cost function of the Pfa within the coalition Ω. The latter can be
written as

C(Qf,Ω) =

⎧⎨
⎩

−α2log(1 −
((

Qf,Ω

ε

)2
)

Qf,Ω < ε

+∞ Qf,Ω ≥ α
, (11)

where ε denotes a false alarm constraint per coalition, namely per SU.

The SU Transmission Phase. For the SU transmission phase we assume a
time division multiplexing [10]. Then, the transmission is divided according the
SU contribution in Ω. The time allocated for SU is given by (1 − αP ) ∗ tΩi . Its
reward is made proportional to the energy spent by the SU.

3.2 Naive Bayesian Classifier

This algorithm is named as the “independent feature model” because it does
not consider the features interdependence. In this model, the total samples are
contained in the feature vector for the ith time, Furthermore, these samples
are independent of each other, because of every feature represents a specific
frequency bin. However, the variable of the PU status PU i, results a function of
the frequency bin. The probability of SSi by using the Bayes theorem is defined
as [11]

p(PUi, SSi) = p(PUi) * p(SSi|PUi). (12)

When PU i =0, SSi is classified as an idle class; otherwise SSi is an occupied
class. The goal is to obtain the class with the largest posterior probability in the
classification phase. The classification rule is represent as follows

classify(SŜi) = arg max
SSi

{
p(PUi, SSi)

}
, (13)

where SŜi = {SŜi (1) , SŜi (2) . . . {SŜi(k)}.

3.3 Support Vector Machine

This algorithm results in a discriminative classifier with high accuracy. In addi-
tion, SVM tends to be resistant to over-fitting and. Generally, two types of clas-
sifiers in SVM are presented in the literature: linear and non-linear SVM. In this
work, for simplicity but without losing the generality, linear SVM is employed.
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The training feature and response vectors are represented as D =
(
PUi, SSi

)
,

where PU i ∈ {0, 1} . By definition, the two classes of SVM are separated defin-
ing a hyperplane H, which is represented as x ∗ SSi = ρ, where x represents the
normal vector and ρ represents the constant separating occupied and idle classes
(PU i ∈ {0, 1}), which in turn is defined as [12]

PU i =

{
1 → x ∗ SSi > ρ(Occupied class)

0 → x ∗ SSi < ρ(Idle class)
(14)

3.4 Decision Trees

In this work, decision trees are represented with a classificatory approach, where
the leaves of the tree define the class labels. A benefit of DTs is that they can
handle interactions and feature dependency. Regarding the decision made by
this algorithm, it is made at each node internally, which allows the data division
into two own subsets. The data is represented ad follows

(SSi,PUi) = {(SSi (1) , SSi (2) . . . SSi(k)),PUi}, (15)

where PU i is the dependent variable, which is assigned by calculating the entropy
of the feature as follows [13]

Entropy(t) = −
Z∑

idi=0

p(idi|t) ∗ log2(p(idi|t), (16)

where p(idi|t) is the fraction of records belonging to class idi for a certain node
t, and Z represents the total classes.

4 Results

4.1 Simulation Parameters

Each of the MLAs were implemented in a simulated CR environment. To gen-
erate the simulations, we use the NS-3 software, because it provides executable
models of signal propagation and user mobility. We have chosen for the propa-
gation model, the range propagation loss model, due to its unique end-user and
transmitter dependency. For the mobility model we chose the random waypoint
model. To create a more realistic environment, we created two types of SU: SUs
with cognitive capacity to work only on LTE or WiFi and SUs with cognitive
capacity for both technologies (dual SU). The most important technical param-
eters used in the simulation scenarios are shown in Table 1.
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Table 1. Technical parameters of the simulation

Parameter Value

AP coverage 50m

Channel model Slow Rayleigh fading

CR LTE/WiFi (SU) 5

Dual CR (SU) 10

eNB cells 3

eNB coverage 350m

LTE frequency 729MHz [4]

LTE bandwidth 20MHz [4]

Mobility model Random way-point

Noise model AWGN

Propagation model Range propagation loss

PU LTE/WiFi 5

Receiver power 0.06 mW

Samples Variable

Transmitter power 0.037 mW

WiFi bandwidth 20MHz [4]

WiFi frequency 2400MHz [4]

4.2 Numerical Simulation Results

The MLA curves were obtained through the implementation and simulation of
the algorithms in NS-3. The Pd vs SNR and Pfa vs SNR are presented as a
Cumulative Distribution Function (CDF) for the MLAs, as shown in Fig. 2 and
Fig. 3. As can be seen in both figures, the algorithm that presents the worst
performance is the NBC, due to its features of not having complete information
and making decisions based on statistics. CGT and DT algorithms have a similar
behavior, because the first takes a cooperative detection between nodes, and the
second divides the decisions into subsets, which are similar processes for the
system. Finally, the algorithm with the best performance is the SVM, due to its
high precision and accuracy when recognizing the use patterns of frequency bins
for detection. For low levels of SNR, specifically −10 dB, SVM has a Pd of 50%
and a Pfa of 5%, while NBC has a Pd of 20% and a Pfa of 7%.

Figure 4 shows the plot of the Classification Quality as a function of Number
of Samples. As Ns increases, they have more chance to sense and sensing accuracy
improves. However, by increasing the Ns, the algorithms have a greater amount
of data to process and become slower.
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Fig. 2. Probability of detection CDF.

Fig. 3. Probability of false alarm CDF.

Fig. 4. Classification quality curve.

An important factor that must be considered by the simulator to develop the
experiments in a controlled way is the simulation time, since it is not the same
magnitude as the real time. To determine these times, several simulations were
run with different Ns, maintaining the basic technical parameters indicated in
Table 1 in each of them. We defined the number of simulations for the experiment
using the Monte Carlo method, with 21 iterations for all variations of SUs.
This process was done to have reliable and valid statistics of the generated
data [14]. We observe the linear and increasing behavior of Simulation time
vs Number Of Samples in Fig. 5. The SVM algorithm presents slightly better
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Fig. 5. Simulation time as a function of number of samples.

performance than the other MLAs, due to its simplicity of learning. Specifically
the biggest difference is found when Ns is 15000, the SVM has a simulation time
of 340 min approximately, while the CGT that presents the worst performance,
has a simulation time of 390 min.

5 Conclusions

In this work, some MLA implemented in the detection and decision stage of a
CMRN have been analyzed and compared. We modeled the detection and deci-
sion stage of the “Cognitive Cycle” as a Coalition Game (CG), Naive Bayesian
Classifier (NVC), Support Vector Machine (SVM) and Decision Tree (DT) prob-
lem with their respective algorithms. We characterized the network structure
resulting from the proposed techniques, its stability and performance was stud-
ied and observed in terms of Pd, Pfa, CQ and simulation time. Simulation results
showed that SVM algorithm, compared with CG, NVC and DT, outperform the
CMRN system, based on the parameters studied, specifically in 40 min less in
simulation time, compared to the worst performance algorithm (CGT), keeping
the Ns fixed at 15000. It also increases the Pd by 30% and decreases the Pfa by
2%, compared to the NBC algorithm, which showed the worst performance in
these parameters, keeping the SNR fixed at −10 dB.
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Abstract. Heterogeneous sensor networks, including water distribution
systems and traffic monitoring systems, produce abundant time series
data with an arbitrarily-high multivariate order for monitoring network
dynamics and detecting events of interest. Nevertheless, errors and fail-
ures in the calibration, data storage or acquisition can occur on some of
the sensors installed in those systems, producing missing and/or anoma-
lous values. This work proposes a computational system, referred as
AutoMTS, for the fully autonomous cleaning of multivariate time series
data using strict quality criteria assessed against ground truth extracted
from the targeted series data. The proposed methodology is parameter-
free as it relies on robust principles for the assessment, hyperparameteri-
zation and selection of methods. AutoMTS coherently supports an exten-
sive set state-of-the-art methods for (multivariate) time series imputa-
tion and outlier detection-and-treatment, considering both point and
segment/serial occurrences. A comprehensive evaluation of AutoMTS is
accomplished using heterogeneous sensors from two water distribution
systems with varying sampling rates, water consumption patterns, and
inconsistencies. Results confirm the relevance of the proposed AutoMTS
system. AutoMTS is provided as an open-source tool available at https://
github.com/RicardoFLNSousa/AutoMTS/tree/master.

Keywords: Parameter-free learning · Multivariate time series ·
Missing values imputation · Outlier detection · Heterogeneous sensor
networks

1 Introduction

The placement of heterogeneous sensors within complex systems – whether phys-
iological, mechanical, digital, geophysical, environmental or urban – offers the
possibility to acquire comprehensive views of their behavior along time. Sen-
sorized systems produce abundant time series data, used for monitoring purposes
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or the detection of events of interest. However, the placed sensors are suscepti-
ble to failures and errors associated with sensor calibration and data acquisition-
transmission-storage [1], producing time series data with missing and anomalous
values. In this context, time series data are generally subjected to initial pro-
cessing stages for leveraging their quality for the subsequent mining stages.

Processing time series data produced by networks of heterogeneous sensors
is, nevertheless, a laborious process due to four major reasons. First, the selec-
tion and parameterization of the processing methods is highly dependent on
the regularities of the target series data and challenged by the wide diversity
of approaches currently available. Second, the profile of errors can be diversi-
fied, each leading to different processing choices. In this context, the type and
amount of anomalies and missing values can largely affect decisions. Third, dif-
ferent types of sensors – such as water flow, pressure and water quality sensors
in water distribution systems – may benefit from dissimilar processing methods.
In fact, sensors of the same type but with singular calibrations, sampling rates,
or positioning within the monitored system can as well benefit from different
choices. Fourth and finally, different systems equipped with identical sensors do
not necessarily benefit from the same processing options. Consider water distri-
bution network (WDN) systems, water consumption patterns can highly vary
between WDNs or along time, impacting decisions. Also, different WDNs may
be susceptible to unique externalities, affecting the profile of observed errors.

In addition, time series data processing generally yields suboptimal results.
First, cross-variable relationships in multivariate time series data are commonly
disregarded. For instance, flow and pressure sensors in WDNs are generally cor-
related, and thus co-located or nearby sensors can guide the treatment of low-
quality series data. Second and understandably, optimal decisions are challenged
by the wide diversity of available processing approaches, multiplicity of sensors,
and profile of errors observed per sensor.

This work proposes a methodology for the fully autonomous cleaning of
multivariate time series that is able to address the introduced challenges. The
proposed methodology, referred as AutoMTS (Autonomous Multivariate Time
Series data processing), offers three major contributions. First, AutoMTS pro-
vides strict guarantees of optimality as it places robust processing decisions
against ground truth extracted from the targeted series data. To this end, series
data are automatically explored in order to detect conserved segments and iden-
tify the profile of observed errors, which are then planted in the conserved seg-
ments for the sound comparison of available processing choices.

Second, AutoMTS provides a comprehensive coverage of available process-
ing options, currently providing over twenty state-of-the-art methods for missing
imputation, outlier detection and gross-error removal from time series data. Par-
ticular attention was placed to guarantee the presence of state-of-the-art methods
able to consider cross-variable dependencies in the presence of multivariate time
series data. Also, we further guarantee the presence of methods able to deal with
both point and segment/serial missing and outlier values.
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Third, AutoMTS is parameter-free as it relies on robust principles to assess,
hyperparameterize and select state-of-the-art processing methods.

To assess the significance of the proposed contributions, AutoMTS is exten-
sively evaluated in two water distribution network systems with heterogeneous
sensors, producing observations at varying sampling rates, and subjected to
unique water consumption patterns and error profiles.

The gathered results confirm the relevance of the proposed AutoMTS
methodology, highlighting that processing choices are highly specific to each
sensor and thus guarantees of optimality can only be provided under comprehen-
sive and robust assessments. Also, results further offer a thorough comparison of
state-of-the-art imputation and outlier detection methods, assessing their ability
to handle diverse error profiles in real-world series data with varying regularities.

AutoMTS is provided as both a graphical and programmatic tool satisfying
strict usability criteria.

The manuscript is structured as follows. Section 2 provides essential back-
ground and surveys recent contributions on time series data processing. Section
3 described the AutoMTS approach. Section 4 comprehensively assesses the ade-
quacy of AutoMTS using two real-world heterogeneous networks as study cases.
Finally, concluding remarks and major implications are synthesized.

2 Background and Related Work

This section offers a structured view on how to process inconsistencies in (mul-
tivariate) time series, providing essential background, surveying recent contribu-
tions, and describing the preprocessing methods implemented in AutoMTS.

Time Series Data Processing. Signals produced by sensors are generally
represented as time series, an ordered set of observations x1..T = (x1, ...,xT ),
each xt being recorded at a specific time point t. Time series can be univariate,
xt ∈ R, or multivariate, xt ∈ R

m, where m > 1 is the order (number of variables).
Errors associated with the calibration, measurement, storage, logger commu-

nication and synchronization of sensors are associated with inconsistencies on
the produced time series. As a result different types of errors can be observed,
including: 1) anomalous values, 2) missing values; 3) duplicate values; 4) atypi-
cal values or gross errors (impossibilities in a given domain); and 5) incorrectly
timestamped observations (arbitrarily-high sampling delays).

Low-quality data can be rectified. The task of preprocessing time series is
the process of leveraging quality data to facilitate the subsequent extraction of
useful information from the time series. In this context, cleaning the identified
inconsistencies is an important step, and the one targeted in this work.

Time series can be decomposed into trend, seasonal, cyclical, and irregular
components using additive or multiplicative models [2]. Processing can take place
on the original series or separately on each component. Classical approaches
for time series analysis generally rely on statistical principles, including auto-
regression, differencing and exponential smoothing operations to either detect
deviations from expectations as well as to impute missing values [3].
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Time series typically have an internal structure with domain-specific mean-
ings. In this context, normalization, resampling, piecewise aggregate approxima-
tion, symbolic aggregate approximation, and transformations (including Fourier,
Wavelet and other forms of window-based feature extraction) can support the
analysis of the internal structure of time series. However, finding suitable repre-
sentations is highly dependent on the subsequent mining ends and therefore is
not considered part of the processing pipeline proposed in our work.

Missing Value Imputation. Missing observations, commonly referred as miss-
ing values, can be characterized by the underlying stochastic processes that
describe their occurrence: i) missing completely at random (MCAR) where there
is no distribution characterizing their occurrence, generally caused by punctual
problems on data transmission-storage-acquisition; ii) missing at random (MAR)
where missings are independent of the value of the observation but dependent
on the other non-missing observations (e.g. sensor malfunction under high tem-
peratures); and iii) not missing at random (NMAR) where missings essentially
depend on the value of the observation (e.g. sensors failing measuring high pres-
sure). Complementary, missing values can be described by their type – whether
point, sequential or mixed similarly to outliers – and amount from a given period.

There are three typical choices to deal with missing values: i) force removal,
leading to gaps on the time series to be handled along the subsequent time
series processing steps; ii) replace them with a dedicated value or symbol; and iii)
estimate their values using imputation principles. Missing removal can be listwise
(indiscriminate missing deletion) or pairwise (controlled deletion in accordance
with the amount) [4]. Missing imputation can either produce hot-deck estimates
from similar/nearby observations or from matched segments of the time series;
or cold-deck estimates from external time series datasets [4].

Last observation carried forward (LOCF) and next observation carried back-
ward (NOCB) are simplistic methods based on the closest available observation.
Linear interpolation linearly combines last and next observations. Usually, the
seasonal component is removed at the beginning and included after linear inter-
polation is done. Moving average (MA) can include further observations to esti-
mate the missing value, x̂t = 1

m

∑k
j=−k xt+j where [t−k, t+k] is a centered win-

dow of 2k+1 length (also termed order). When the sequential values are all miss-
ing observations, the window size can dynamically expand until two non-missing
values occur. In this context, linear interpolation is a moving average or order 2.
Average (median) imputation corresponds to a moving average (median) with
unbounded order, imputing the average (median) of all non-missing occurrences.
The expectation maximization algorithm (EM) has been also suggested for esti-
mating missing observations within multivariate time series data, although in its
original form disregards time dependencies. Amelia combines the EM method
with bootstrapping to impute missing values in time series data using principles
from multiple imputation. Classical approaches for time series modeling, includ-
ing SARIMA and Holt-Winters [3], are also viable imputation candidates when
time series have well-established regularities.
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k-nearest neighbors (kNN) can be applied to impute both point and sequen-
tial missings from (multivariate) time series. To this end, time series are sub-
jected to segmentation, and the value estimates inferred from the closest neigh-
bor subsequences. Particular attention should be paid to its parameterization, as
kNN performance highly depends on the selected distance (e.g. ability to tolerate
shift and scale misalignments on the time and amplitude axes) and number of
neighbors. In the presence of multivariate time series data, MissForests [5] uses
principles from random forest approaches to deal with mixed-variables (relevant
when dealing with heterogeneous sensors) in accordance with the frequency of
missing values (chained principle). Despite its role, it neglects time dependen-
cies between observation. The time-extended version of multivariate imputation
by chained equations (MICE) [6] is able to addresses such drawback while still
accounting for cross-variable dependencies.

Osman et al. [4] proposed an ensemble approach that selects between classical
imputation techniques (such as moving average) and modern alternatives in
accordance with the type (MAR or MCAR) and amount of missings. In addition
to some of the surveyed methods, modern imputation techniques further include
reconstruction methods based on principal component analysis [7] and machine
learning techniques such as Gaussian process regression, tensor-based methods
[8], and neural networks, specially auto-associative neural networks [9].

Moritz et al. [10] extensively compares multiple-imputation approaches by
deleting observations from time series with varying trend and seasonal charac-
teristics. Multiple-imputation approaches rely on multiple estimates to reduce
biases. For instance, Aggregated values [11] is an estimator from mean esti-
mates collected at multiple temporal granularities (overall, yearly, monthly and
daily mean). Seasonal Kalman filters and model-based approaches have been
also applied within multiple-imputation settings [10,12].

Imputation methods have been also proposed in the context of specific
domains. In water-energy-gas distribution systems, the well-recognized Quevedo
method [13] estimates missings from observations collected at similar periods
from previous days, weeks, months and years. Barrela et al. [14] further proposed
a estimator that combines both forecast and backcast missing observations values
generated by TBATS and ARIMA models, accommodating multiple seasonality.

Time Series Outlier Detection. Outliers are observations significantly devi-
ating from expectations as to arouse suspicion of being generated by a different
mechanism [15]. Outliers can occur in point or serial forms. Point outliers (also
referred as punctual or singular outliers) can be detected against the whole series
(global outliers) or against observations that occur on nearby time points or share
the same context (local/contextual outliers). Sequential outliers (also referred as
segment or serial outliers) are anomalous subsequences of contiguous observa-
tions. Outliers can be further characterized in accordance with their causation
and impact [16]: additive outliers affect the time series for a single time period;
level shift outliers have preserved/continuous effects; temporary change outliers
show an exponential decaying over time; and innovational outliers affect the
nearest subsequent observations. Outlier analysis generally comprises anomaly
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scoring, detection and treatment steps. Treatment either denotes the removal
(planting missing values) or re-estimation of outlier values. Approaches for out-
lier analysis are generally categorized according to distribution-based, depth-
based, distance-based, density-based and clustering-based approaches [17].

Outlier analysis can be applied on the raw time series or over its irregular
component once decomposed. Simple methods for point outlier detection rely on
deviation criteria or inter-quartile ranges assessed on the irregular component.
Generally, this class of methods fits empirical or statistical distributions and fix
thresholds on what it is expected to occur. Despite their simplicity, time depen-
dencies are disregarded. Local outlier factor (LOF) [18] approach minimizes this
drawback by computing anomaly scores based on the local density of an observa-
tion with respect to its neighbours where the neighborhood criteria can include
temporal and cross-variable distances. Isolation forests [19] recursively generate
partitions from multivariate series data by randomly selecting a feature and a
split value for the feature. Presumably the anomalies need fewer partitions to be
isolated compared to “normal” points, thus yielding smaller trees. Parametric
models from maximum likelihood estimates are also available [20].

Gupta et al. [21] provide a comprehensive survey of contributions on out-
lier detection over temporal data structures, including (geolocalized) time series
data. The approaches to detect point outliers are grouped into five major cate-
gories: predictive, profile-based models, information-theoretic, classification and
clustering approaches. In the context of predictive models, a score is assigned
to each observation as a deviation from the estimated value. Estimates can be
computed using imputation techniques for univariate and multivariate time series
data previously covered. Profile-based approaches trace a normal profile for the
time series using classical time series models [3] and more recent advances, includ-
ing recurrent neural networks that act as auto-encoders [22]. Anomaly scores are
then inferred by testing deviations against the approximated profile. The princi-
ple behind the less common information theoretic approaches is that the removal
of outlier results in higher abstraction ability (time series representations with
lower error bound) [23].

Approaches for sequential outlier detection traditionally compare subse-
quences segmented under multi-scale sliding windows to identify dissimilar sub-
sequences. Keogh et al. [24] outlines principles to surpass the computational
complexity of computing pairwise time series distances between all subsequences,
including heuristics to reorder candidate subsequences, locality sensitive hash-
ing, Haar wavelets, and joint use of symbolic aggregations with augmented tries.
These are used for an improved ordering of subsequences. An additional chal-
lenge is the fact that sequential outliers may have an arbitrary length. Chen et
al. [25] proposed a new class of approaches that satisfy this premise: a pattern
(subsequence of two consecutive points) is defined and outliers are composed of
infrequent patterns on either the original time series or compressed time series
recovered after wavelet transform.

Time series clustering algorithms are as well used to detect sequential out-
liers. Generally, these approaches segment the inputted series to identify anoma-



160 R. Sousa et al.

lous segments, paying particular attention to distance metrics between time
series (including metrics to tolerate misalignments) and barycenter criteria when-
ever applicable. Understandably, traditional clustering algorithms can be also
applied to detect outliers from (multivariate) time series by assuming indepen-
dence between observations. HOT SAX [26] also offers the possibility to detect
sequential outliers, referred as time series discords, from symbolic representations
of the time series. HOT SAX, originally prepared to detect global sequential out-
liers, was later on extended towards local sequential outliers [27].

Other Inconsistencies. In the presence of domain knowledge, atypical values
or gross errors in time series can be detected by fixing upper and/or lower bounds
on the acceptable values. Duplicate values are harder to detect as they may not
necessarily result in anomalous values. Duplicates can have different causes: 1)
accumulation of values from previous observations (generally preceded by miss-
ing occurrences), and 2) multiplicity of measurements within a single time step.
Density-based outlier approaches are generally considered for the former case,
while rule-based analysis of timestamps against sampling expectations are pur-
sued for the latter case. Finally, irregular sampling rates observed within or
between sensors or between sensors often result from faulty sensor synchroniza-
tion. Diverse transforms and dedicated time series analysis algorithms have been
proposed to deal with irregular measurements [28,29].

Parameter-Free and Autonomous Processing. The literature on
autonomous selection of either parametric or non-parametric methods for time
series processing is scarce, generally providing series-dependent contributions
and focusing on a single processing task. Rayana et al. [30] and Zimek et al. [31]
proposed ensemble principles to infer anomaly scores from multiple estimates,
validated in specific data domains. Similarly, ensemble principles for imputing
missing observations in time series have been proposed [32,33]. Böhm et al. [34]
introduced CoCo, a parameter-free method for detecting outliers in data with
unknown underlying distributions. Despite the relevance of these contributions,
to our knowledge there are not yet methodologies for autonomously assessing,
parameterizing and selecting methods able to treat time series unsupervisedly.

3 Solution: Autonomous Time Series Data Processing

Despite the relevance of the surveyed contributions, existing time series pre-
processing methods are generally oriented towards specific data regularities and
types of errors. Thorough comparisons are thus necessary to place proper deci-
sions, a generally laborious and difficult process due to the difficulty of perform-
ing objective assessments in the absence of ground truth. In this context, we
propose a novel approach for the fully Autonomous processing of Multivariate
Time Series data, referred as AutoMTS. AutoMTS receives as input a pointer
to a database or file with the raw time series data, and produces as output the
processed data without inconsistencies in accordance with strict quality criteria.
Annotations, including bounds associated with the estimated anomaly scores,
and performance statistics can be optionally outputted.
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The AutoMTS is a parameter-free methodology, a composition of steps that
guarantee the robust assessment, hyperparameterization and selection of state-
of-the-art processing methods in accordance with the regularities and inconsis-
tencies observed in the inputted series data. The major idea behind AutoMTS
is to generate precise ground truth for the sound and quality-driven evaluation
of available processing options. To this end, AutoMTS relies on two major prin-
ciples: i) detection of conserved segments within the inputted series data, and
ii) modeling the type and amount of observed errors. Under these principles, the
assessment can be conducted by purposefully planting inconsistencies along the
conserved segments and, depending on their length, on synthetically generated
series using the approximated component-wise regularities. In this way, available
processing options can be objectively assessed.

AutoMTS provides a good coverage of available processing options, providing
over twenty state-of-the-art methods for missing imputation, outlier detection
and gross-error removal from time series data. With the aim of handling errors
of varying profile, AutoMTS incorporates processing methods able to deal with
both point and serial missing and outlier values. In addition, AutoMTS is able
explore the aided processing guidance provided by correlated variables within
multivariate time series data. To this end, state-of-the-art processing methods
able to capture cross-variable dependencies are further supported in AutoMTS.

3.1 Methodology

AutoMTS is a sequential approach for preprocessing time series produced from
heterogeneous networks. The four major steps are depicted in Fig. 1. Given a
(multivariate) time series, the first step is to treat non-cumulative duplicates
through a rule-based inspection of sampling irregularities (see Sect. 2). After the
time series is cleansed of duplicates, the second step is the detection of atypical
values against background knowledge. For instance, in the context of water flow
and pressure sensors, lower bounds are generally zero and upper bounds fixed
in accordance with pipe specifications. Atypical values are then translated into
missing values to be dealt later in the process. On the third step, we detect outlier
observations. This is a core step in our pipeline as the wide-diversity of state-
of-the-art methods for outlier detection needs to be robustly assessed using the
methodology proposed in Sect. 3.2. The selected method, already hyperparame-
terized, is then applied to detect outliers in the target (multivariate) time series.
The detected outliers, along with their anomaly scores, will be given to the user
and he may opt to either discard the outliers (default option) or mark some of
the outputted outliers to be retained in the time series. The fourth step is to
impute values on the missing observations, including originally missing occur-
rences as well as the removed outliers and atypical values. Similarly with the
third step, this is another core step within the AutoMTS process. The assess-
ment methodology for hyperparameterizing and selecting imputation methods is
introduced in Sect. 3.3. Once missing occurrences are imputed, the treated time
series is returned by AutoMTS.
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Fig. 1. Time series preprocessing methodology.

3.2 Autonomous Outlier Detection (Step 3)

The third step purposefully plants artificial outliers in the conserved segments
of the inputted time series in accordance with the signal regularities observed
along those segments. The regularities reveal information related with the point-
wise and segment-wise distribution of values to guide the planting of point and
segment outliers. The robust planting of artificial outliers is essential to gather
ground truth for the objective assessment of the methods, necessary to their
hyperparameterization and comparison.
For generating the ground truth, five major steps are undertaken:

1. the time series is decomposed into trend, seasonal, cyclical and noise/irregular
components;

2. the distribution of values observed along the irregular component is dynam-
ically fitted into a well-known probability distribution using both the
Kolmogorov-Smirnov and χ2 statistical tests;

3. the tails of the approximated distributions are used to plant point outlier
values randomly distributed along the irregular component;

4. sequential outliers are further planted by guaranteeing a residual joint prob-
ability of the observed values along the artificial subsequence;

5. the irregular component with the planted point and sequential outliers is
added to the original trend, seasonal and cyclical components.

The statistical properties of this five-step process guarantee the presence
of non-trivial outliers resembling the characteristics of real-world anomalies.
AutoMTS runs by default 30 process simulations to collect performance esti-
mates.

Some of the outlier detection methods available in the AutoMTS are standard
deviation, inter quartile range, isolation forests, LOF, DBScan and HOT SAX.

Let TP (true positives) be the correctly detected outliers, TN (true nega-
tives) be observations correctly identified as non-outliers, FP (false positives) be
the incorrectly detected outliers, and FN (false negatives) be the non-detected
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outliers wrongly. To evaluate the behavior of outlier detection methods, we sug-
gest as essential performance views the analysis of recall,

recall =
TP

TP + FN
,

to understand the percentage of correctly identified outliers, as well as precision,

precision =
TP

TP + FP
,

to understand whether the retrieved outliers were identified at the cost of retriev-
ing non-outlier observations (false positives). To objectively guide the hyperpa-
rameterization and selection steps, these complementary views can be combined
within scores, such as the F1-score,

F1-score = 2 × precision × recall
precision + recall

,

which is not free of criticisms [35] due to the inherent characteristics of the
harmonic mean. Complementary integrative scores able to reconcile recall and
precision views at alternative anomaly score thresholds, including the area under
the ROC curve (AUC), can be alternatively selected [35].

3.3 Autonomous Missing Imputation (Step 4)

The fourth step wittingly generates missing observations within conserved seg-
ments of the inputted time series in accordance with the profile of missing data
observed along the non-conserved segments. The profile of missing observations
essentially discloses information on their temporal distribution, nature (point
versus sequential), length, amount and periodicity (well-defined versus random).
Similarly to the generation of artificial outliers, the removal of observations is
essential to gather ground truth for objective assessments required for the hyper-
parameterization and selection of imputation methods.

For generating the ground truth, three major steps are undertaken. First,
AutoMTS verifies whether the largest conserved segment satisfies a minimum
length assumption (four times the seasonal factor as default). If the largest con-
served segment does not satisfies the assumption, the segment is replaced by an
artificial time series. To generate the artificial time series, the original time series
should be decomposed in order to approximate its core components. The irregu-
lar component is regenerated in accordance with the underlying distribution and
added to the remaining components to produce a synthetic time series without
missing occurrences. Second, the approximated percentage amount and tempo-
ral distribution of punctual missings in the original time series is used to remove
observations from the conserved segment or synthesized time series. Third, and
finally, sequential missings are planted in accordance with the distribution of
their extension and recurrence on the original time series.

The statistical properties of this three-step process guarantee the presence of
missing observations resembling real-world characteristics. By default, 30 process
simulations are considered to collect performance estimates.
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Some the univariate imputation methods available in the AutoMTS are: ran-
dom sample, interpolation, LOCF, NOCB and moving average. Some of the sup-
ported multivariate methods are: random forests, EM, kNN, Mice and Amelia.

To evaluate the performance of imputation methods, residue-based scores are
considered, including the mean absolute error (MAE),

MAE = Σn
i=1|x̂ti − xti |,

where x and x̂ are the observed and imputed time series respectively, and n is
the number of missings; the root mean squared error (RMSE),

RMSE =

√
√
√
√

n∑

i=1

(x̂ti − xti)2

n
,

the symmetric mean absolute percentage error (SMAPE); and the percentage
of missing values imputed since not all imputation methods may not encounter
necessary conditions for imputing certain missing observations.

3.4 Computational Complexity

Considering the presence of k1 preprocessing methods, each with O(Ti) complex-
ity, then the complexity of executing them is

∑k1
i O(Ti) = O(k1Tmax). Assuming

that the conducted Bayesian optimization per method converges in a bounded
number of k2 iterations for each method, then O(k1k2Tmax). Finally, considering
the presence of k3 testing settings in accordance with the detected error profiles
in the original series (e.g. k3=2 for missing and outlier segments with well-defined
rate and length distributions), then AutoMTS has O(k1k2k3Tmax) complexity.
k1 and k3 are constants. Given a window of bounded size w, the majority of
preprocessing methods are linear on the window size, yielding O(k1k2k3w).

3.5 Final Remarks on the Behavior of AutoMTS

The state-of-the-art methods supported along the third and fourth steps of the
AutoMTS pipeline are tested one by one. A good portion of these methods
require the input of parameter values. In this context, hyperparameterization is
conducted using the planted inconsistencies in order to identify the best parame-
ters. To this end, we rely on Bayesian optimization [36] due to its inherent ability
to traverse only the most promising areas of the search space, thus promoting effi-
ciency. The hyperparameterization should be driven by one of the performance
views previously introduced. By default, F1-score is selected for the hyperpa-
rameterization of outlier detection methods, while RMSE is the default criteria
to guide the hyperparameterization of missing imputation methods.

Once parameterized, methods are then evaluated using the same performance
views. If the length of the largest conserved segment (or synthesized time series)
permits, the segment is further segmented into two subsequences, one for hyper-
parameterization and other for the final method evaluation. In this way, we
prevent the overfitting of the selected parameters.
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4 Results

Results are organized in three major steps. First, we describe the networks of
heterogeneous sensors that will be used as study cases, exploring some of the
produced time series. Second, we provide a thorough comparison of state-of-the-
art methods to detect outliers and impute missings, showing that their adequacy
is highly dependent on the time series regularities and error profiles. Finally, we
assess AutoMTS, quantifying its performance gains.

Study Cases: Beja and Barreiro Water Distribution Systems

A Water Distribution Network (WDN) is a system composed of pumps, pipelines,
tanks and other elements for delivering water in adequate quantities, pressure
and quality for the everyday needs. WDNs can be equipped with an arbitrarily-
high number of heterogeneous sensors, including water flow and pressure sensors.

The results of this article were obtained in collaboration with two major
water utilities: Barreiro city Council and Beja city Council, which provided time
series representative of their telemetry systems.

Barreiro WDN is composed by 14 sensors of water flow and pressure that
provide aggregated measurements on an hourly basis along 2018. The time series
has 8473 observations, an amount inferior to the total yearly hours given the
presence of weekly periods without measurements – real sequential missings –
and the presence of a scarce number of punctual missings. Beja WDN offers water
flow and pressure measurements along a two-year period (5/2017 to 4/2019)
with an approximate 5-minute sampling rate. Each time series has over 200.000
observations, a irregular sampling rate and the presence of missing values along
segments of lower extension than those observed in the Barreiro WDN.

Figure 2a depicts the water flow series from sensors located near the principal
tanks in the Barreiro and Beja WDNs, while Fig. 2b depicts the time series

Fig. 2. Sensor measurements over 5 illustrative days for both Barreiro and Beja WDNs.
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produced by the approximately co-located water pressure sensors. As one can
observe, the pressure and flow series from show highly dissimilar structure. In
addition, sensors of the type show considerably different regularities for different
water distribution systems. These observations motivate the need to perform
processing decisions separately for each sensor from the monitored systems.

Experimental Setting
To assess the impact of placing appropriate choices along the processing stages
in accordance with the characteristics and inconsistencies observed along time
series, we consider the water flow and pressure time series from Barreiro and Beja
WDNs and applied the proposed AutoMTS methodology to generate ground
truth. To facilitate the interpretability of results, we further varied the profile
of the planted inconsistencies for some of the conducted analyzes. The major
parameters controlling the experimental setting are:

– available methods for point outlier detection (e.g. isolation forests) and
sequential outlier detection (e.g. SAX), and the corresponding parameters;

– planted outlier profiles, including: i) frequency of outliers (1% to 10%); ii) type
of outliers (point versus sequential); and iii) length of sequential outliers;

– available methods for missing imputation from univariate series (e.g. moving
average) or multivariate series (e.g. MICE), and corresponding parameters;

– planted missing profiles, including: i) frequency of missing values (from 1% to
20%); ii) type of missings (point versus sequential); and iii) length of sequen-
tial missing observations.

The presented results provide the average performance collected from 30 simu-
lations. A stochastic process to generate inconsistencies in accordance with the
introduced parameters is used to produce each simulation. Random seeds are
considered to guarantee fair comparisons between methods.

4.1 AutoMTS Performance

Table 1 provides a comprehensive analysis of the performance of multiple outlier
detection methods on time series data produced from different sensors installed
within the Barreiro and Beja WDNs. We can observe that different settings – dif-
ferent sensors, water distribution systems, outlier types – propel different choices.
Considering F1-score and recall, while isolation forests appears to be the most
promising option for water pressure sensors, inter-quartile range performance is
particularly good on water flow sensors. The recall of the most surveyed methods
significantly differs between WDNs. Understandably, as AutoMTS selects the
best choice available, it shows optimal performance across major performance
views.
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Figures 3a and 3b offer a complementary graphical description of previous
results, further showing how the performance of different outlier detection meth-
ods vary with the amount of planted outliers. Illustrating, HOT SAX is not
competitive when considering a low amount of outliers (offers a good recall yet
low precision due its focus on outlier segments), yet performance improves with
a medium-to-high amount of outliers. The analysis of these figures further high-
lights that there are significant changes in performance associated with changes
on the amount of outlier values. These variations can affect processing decisions
(e.g. isolation forests versus inter-quartile range in pressure sensors), further
supporting the relevance of the proposed AutoMTS methodology.

Fig. 3. Performance of outlier detection methods with varying percentage of planted
point outliers in time series produced from heterogeneous sensors.

Similarly to Table 1, Table 2 gathers results on the performance of missing
imputation methods on time series data produced from different sensors placed
within the Barreiro and Beja WDNs. Decisions are similarly dependent on the
target sensor, network and missing profile (type and amount). For instance, while
interpolation shows generally good performance on water flow sensors is not com-
petitive on water pressure sensors. The characteristics of the Beja WDN, where
measurements are collected under a smaller sampling rate, presents compelling
evidence towards the use moving average imputation technique. Finally, we can
observe a decreased performance of single-value estimators such as LOCF and
NOCB for imputing missing segments and an increased performance of multi-
point estimators such as moving average estimators for this sequential type of
missings. These remarks underline the role of AutoMTS.
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Fig. 4. Performance of missing imputation methods with varying percentage of point
missings planted in time series from heterogeneous sensors.

Figures 4a and 4b extend some of the presented settings, offering a comple-
mentary graphical description sensitive to the amount of planted missing values.
Generally, the higher the amount of missing observations, the higher the impu-
tation difficulty. These figures highlight the presence of significant performance
differences related with the amount of missing observations, further suggesting
the relevance of understanding the missing profiles when placing preprocess-
ing decisions. For instance, while random forests is generally a non-competitive
method for a small amount of missings, it is the suggested option to impute
high amounts of missing observations in water pressure series. This last remark
further pinpoints the relevance of considering cross-variable dependencies.

Tables 3 and 4 in appendix provide complementary results on the behavior
of both outlier detection and missing imputation methods to handle point and
sequential inconsistencies.

4.2 AutoMTS Tool

Figure 5 provides a snapshot of the AutoMTS tool. On the left panel it is possible
to upload the file which contains the time series dataset. Different file formats are
supported, including .xlsx and .csv, as well as different data representations. An
illustrative representation of the input data is a table with timestamped rows
containing the measurements and as many columns as the number of sensors
(time series). If sensors have temporally misaligned measurements, each row
can alternatively describe a single event, identifying the timestamp, sensor and
collected measurement. To guarantee that ground truth is assessed over the
provided series data, each sensor needs to have at least one period of four weeks
without missing observations. Otherwise, synthetic series are generated for the
parameterization and selection of methods. Once the uploaded dataset passes
the initial validation process, it is possible to filter the dataset by selecting the
time series (sensors) that we want to process. This can be done using sensor
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Table 2. Performance of missing imputation methods for water pressure and flow
sensors from Barreiro and Beja WDNs with planted point and sequential missing values
on 2% of observations.

Barreiro WDN Beja WDN
RMSE MAE SMAPE % RMSE MAE SMAPE %

pr
es

su
re

:
po

in
t Mean 0.051 ± 0.07 0.025 ± 0.02 0.941 ± 0.89 1.00 0.166 ± 0.01 0.154 ± 0.01 4.325 ± 0.21 1.00

Median 0.051 ± 0.07 0.024 ± 0.02 0.927 ± 0.89 1.00 0.19 ± 0.02 0.124 ± 0.02 3.495 ± 0.52 1.00
Random sample 0.058 ± 0.07 0.034 ± 0.04 1.268 ± 1.43 1.00 0.23 ± 0.05 0.169 ± 0.06 4.759 ± 1.64 1.00
Interpolation 0.052 ± 0.08 0.023 ± 0.02 0.897 ± 1.04 1.00 0.048± 0.01 0.03± 0.01 0.842 ± 0.17 1.00
Locf 0.039± 0.07 0.019± 0.02 0.747 ± 0.93 1.00 0.067 ± 0.02 0.036 ± 0.01 1.017 ± 0.22 1.00
Nocb 0.073 ± 0.11 0.03 ± 0.03 1.247 ± 1.53 1.00 0.057 ± 0.02 0.033 ± 0.01 0.923 ± 0.22 1.00
Moving average 0.047 ± 0.07 0.021 ± 0.02 0.822 ± 0.88 1.00 0.08 ± 0.02 0.042 ± 0.01 1.168 ± 0.27 1.00
Random forests 0.074 ± 0.07 0.037 ± 0.02 1.425 ± 1.00 1.00 0.173 ± 0.01 0.132 ± 0.01 3.709 ± 0.39 1.00
EM 0.092 ± 0.06 0.065 ± 0.02 2.422 ± 0.87 1.00 0.231 ± 0.02 0.19 ± 0.02 5.343 ± 0.50 1.00
Knn 0.059 ± 0.05 0.032 ± 0.02 1.216 ± 0.82 1.00 0.164 ± 0.01 0.132 ± 0.01 3.707 ± 0.41 1.00
Mice 0.083 ± 0.06 0.046 ± 0.02 1.722 ± 0.95 1.00 0.22 ± 0.02 0.152 ± 0.02 4.304 ± 0.50 1.00
Amelia 0.095 ± 0.06 0.069 ± 0.02 2.547 ± 0.95 0.98 0.229 ± 0.01 0.187 ± 0.01 5.247 ± 0.37 0.97
AutoMTS 0.039 ± 0.07 0.019 ± 0.02 0.747 ± 0.93 1.00 0.048 ± 0.01 0.03 ± 0.01 0.842 ± 0.17 1.00

flo
w

:
po

in
t

Mean 8.89 ± 1.25 7.461 ± 1.31 34.015 ± 6.62 1.00 47.609 ± 5.38 36.619 ± 3.97 48.716 ± 4.41 1.00
Median 9.061 ± 1.27 7.47 ± 1.35 33.91 ± 7.02 1.00 49.51 ± 6.59 34.352 ± 4.72 45.846 ± 4.99 1.00
Random sample 11.894 ± 4.25 9.956 ± 4.17 41.997 ± 12.05 1.00 58.912 ± 19.86 46.49 ± 20.79 60.353 ± 29.31 1.00
Interpolation 2.801± 0.86 2.0± 0.66 10.056 ± 4.14 1.00 16.871± 2.52 11.96± 1.36 9.655 ± 2.54 1.00
Locf 4.221 ± 1.22 3.264 ± 0.90 15.714 ± 4.51 1.00 20.677 ± 3.41 14.189 ± 1.94 23.204 ± 3.36 1.00
Nocb 4.52 ± 1.17 3.484 ± 0.91 16.934 ± 4.57 0.99 20.526 ± 2.83 14.425 ± 1.73 23.604 ± 3.12 1.00
Moving average 6.68 ± 2.04 5.314 ± 1.63 25.299 ± 6.89 1.00 20.534 ± 3.08 14.683 ± 1.64 23.764 ± 3.29 1.00
Random forests 10.115 ± 1.86 8.315 ± 1.73 37.123 ± 8.07 1.00 46.03 ± 5.63 34.514 ± 3.76 46.435 ± 3.94 1.00
EM 12.125 ± 2.88 9.982 ± 2.50 47.819 ± 11.22 1.00 64.264 ± 6.33 49.785 ± 4.78 77.618 ± 6.87 1.00
Knn 9.771 ± 1.60 8.051 ± 1.46 36.148 ± 7.26 1.00 48.345 ± 5.78 36.213 ± 3.97 48.019 ± 4.41 1.00
Mice 12.69 ± 2.57 10.433 ± 2.42 48.719 ± 11.95 1.00 72.407 ± 6.63 54.85 ± 5.43 67.096 ± 5.80 1.00
Amelia 12.548 ± 2.03 10.346 ± 1.76 46.246 ± 8.02 0.98 67.114 ± 5.31 53.254 ± 5.21 75.529 ± 6.72 0.97
AutoMTS 2.801 ± 0.86 2.0 ± 0.66 10.056 ± 4.14 1.00 16.871 ± 2.52 11.96 ± 1.36 19.655 ± 2.54 1.00

pr
es

su
re

:s
eq

ue
nt

ia
l Mean 0.025 ± 0.06 0.014 ± 0.02 0.535 ± 0.80 1.00 0.166 ± 0.03 0.156 ± 0.02 4.399 ± 0.66 1.00

Median 0.024± 0.06 0.013± 0.02 0.518 ± 0.80 1.00 0.185 ± 0.07 0.129 ± 0.06 3.653 ± 1.69 1.00
Random sample 0.035 ± 0.06 0.024 ± 0.03 0.908 ± 1.20 1.00 0.227 ± 0.07 0.174 ± 0.08 4.924 ± 2.23 1.00
Interpolation 0.03 ± 0.06 0.021 ± 0.04 0.834 ± 1.82 1.00 0.117 ± 0.03 0.09 ± 0.03 2.538 ± 0.92 1.00
Locf 0.039 ± 0.10 0.029 ± 0.07 1.176 ± 3.10 1.00 0.207 ± 0.08 0.15 ± 0.08 4.228 ± 2.31 1.00
Nocb 0.029 ± 0.06 0.018 ± 0.02 0.67 ± 0.87 1.00 0.18 ± 0.07 0.123 ± 0.08 3.489 ± 2.17 1.00
Moving average 0.03 ± 0.07 0.022 ± 0.05 0.875 ± 2.12 0.67 0.061± 0.06 0.044± 0.05 1.224 ± 1.42 0.13
Random forests 0.074 ± 0.09 0.034 ± 0.03 1.35 ± 1.30 1.00 0.189 ± 0.03 0.149 ± 0.03 4.187 ± 0.77 1.00
EM 0.086 ± 0.05 0.064 ± 0.02 2.371 ± 0.75 1.00 0.227 ± 0.03 0.188 ± 0.03 5.286 ± 0.71 1.00
Knn 0.049 ± 0.06 0.026 ± 0.02 1.013 ± 0.83 1.00 0.177 ± 0.03 0.145 ± 0.03 4.073 ± 0.79 1.00
Mice 0.047 ± 0.06 0.027 ± 0.02 0.994 ± 0.81 1.00 0.229 ± 0.03 0.164 ± 0.03 4.633 ± 0.84 1.00
Amelia 0.082 ± 0.05 0.063 ± 0.02 2.302 ± 0.88 1.00 0.236 ± 0.03 0.194 ± 0.03 5.441 ± 0.74 1.00
AutoMTS 0.024 ± 0.06 0.013 ± 0.02 0.518 ± 0.80 1.00 0.117 ± 0.03 0.09 ± 0.03 2.538 ± 0.92 1.00

flo
w

:
se

qu
en

ti
al

Mean 8.922 ± 3.13 7.691 ± 3.31 33.079 ± 12.44 1.00 49.262 ± 15.83 38.472 ± 11.40 44.656 ± 7.20 1.00
Median 8.956 ± 3.00 7.574 ± 3.26 32.503 ± 12.70 1.00 52.412 ± 20.38 38.268 ± 14.57 44.13 ± 10.56 1.00
Random sample 10.477 ± 4.33 8.774 ± 3.75 37.703 ± 16.27 1.00 61.061 ± 22.51 49.609 ± 20.98 59.152 ± 29.97 1.00
Interpolation 5.889± 2.26 4.855± 2.15 21.426 ± 8.18 1.00 34.086 ± 11.53 25.531 ± 7.72 31.003 ± 8.26 1.00
Locf 9.482 ± 3.27 7.23 ± 2.73 32.741 ± 11.95 1.00 40.719 ± 13.46 31.17 ± 9.71 37.961 ± 13.23 1.00
Nocb 8.971 ± 3.37 7.244 ± 3.08 31.694 ± 12.54 1.00 49.136 ± 19.13 37.041 ± 13.07 43.945 ± 12.47 1.00
Moving average 9.006 ± 3.95 7.262 ± 3.38 33.103 ± 13.17 0.67 24.745± 12.15 19.515± 9.65 23.337 ± 12.06 0.13
Random forests 10.211 ± 2.87 8.412 ± 3.00 35.549 ± 11.01 1.00 49.06 ± 14.73 37.128 ± 10.54 43.422 ± 6.87 1.00
EM 12.111 ± 3.38 10.346 ± 3.01 47.673 ± 11.92 1.00 69.439 ± 16.02 54.84 ± 12.28 78.177 ± 9.67 1.00
Knn 10.035 ± 2.98 8.375 ± 3.01 35.499 ± 11.47 1.00 51.228 ± 14.47 39.216 ± 10.56 46.073 ± 6.67 1.00
Mice 12.611 ± 4.13 10.549 ± 3.47 47.185 ± 14.90 1.00 72.33 ± 13.95 56.269 ± 11.41 64.379 ± 8.45 1.00
Amelia 12.232 ± 3.02 10.263 ± 2.76 45.0 ± 11.82 1.00 68.419 ± 13.26 55.239 ± 10.25 72.444 ± 7.02 1.00
AutoMTS 5.889 ± 2.26 4.855 ± 2.15 21.426 ± 8.18 1.00 34.086 ± 11.53 25.531 ± 7.72 31.003 ± 8.26 1.00

type and sensor name fields. It is possible to further filter the observations by
time period on the period field, the days of the week on the calendar field (e.g.
weekdays, holidays, saturdays), as well as the desirable time granularity for the
target time series.
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Fig. 5. AutoMTS tool: graphical user interface.

On the right panel it is possible to select the steps along the AutoMTS
pipeline to be accomplished, in particular whether we want to conduct missing
imputation and/or outlier detection. For both options, it is possible to select one
of three distinct modes: i) the default mode which provides a simple rule-based
decision on what is the most appropriate method given the general characteristics
of the inputted series data; ii) the parametric mode which allows the user to
select a desirable method method and its parameters; and, at last, iii) the fully
automatic mode which runs AutoMTS (Sect. 3) to autonomously identify the
best method for each one of the sensors selected in the left panel.

The user can optionally specify the profile of the artificially planted missing
values and outlier values to be considered along the evaluation stage of AutoMTS
(as well as to provide statistics whenever the user opts to select default and
parametric modes). Here the user can select the type, percentage and duration
of artificial missings and outliers. It is also possible to select the number of
sensors on where we want to plant the artificial inconsistencies. Finally, the user
can also specify whether the inconsistencies must occur at the same time for the
inputted set of sensors or planted for each sensor individually, thus mimicking
different real-world problems in heterogeneous networks.
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After running the query, the application will return the original series with
the missing values imputed and the outliers detected, together with performance
statistics whenever the user opted for generating ground truth by planting arti-
ficial inconsistencies. Figure 6 provides a summarized view of the outputs. The
user can use interactive zooming and filtering facilities on the displayed series,
and access a generated report with the results of the assessment with a similar
format as the ones presented along the previous section.

Fig. 6. AutoMTS tool: output overview.

5 Conclusion

This work proposed a methodology, AutoMTS, for the fully-autonomous and
quality-driven processing of time series data produced by networks of heteroge-
neous sensors. AutoMTS is parameter-free and offers strict guarantees of opti-
mality as it places robust principles to assess, hyperparameterize and select state-
of-the-art processing methods. To this end, ground truth is produced from con-
served series segments in accordance with the eligible error profiles. AutoMTS
further provides a comprehensive coverage of state-of-the-art methods for miss-
ing imputation, outlier detection and gross-error removal from time series data.
AutoMTS implements processing methods able to explore the aided guidance
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from cross-variable dependencies in the presence of multivariate time series data.
In addition, we guarantee the presence of methods able to deal with varying
types and amount of missing and outlier values, including both point and serial
occurrences of varying duration and recurrence.

The experimental assessment of AutoMTS over two real-world study cases
– water distribution network systems with different sampling rates, water con-
sumption patterns and error profiles – confirm the significance of the above con-
tributions. The gathered results confirm the relevance of the proposed AutoMTS
methodology, highlighting that processing choices are highly specific to each sen-
sor and thus guarantees of optimality can only be provided under comprehen-
sive and robust assessments. Also, results further offer a thorough comparison of
state-of-the-art imputation and outlier detection methods, evidencing inherent
strengths and limitations to handle diverse error profiles in real-world series data
with varying regularities.

This work opens up possibilities for the processing of networks of sensors, par-
ticularly those networks that are large in size, heterogeneous in nature, or whose
regularities are subjected to significant changes along time. AutoMTS surpasses
the need for laborious processing decisions in these contexts, autonomously lever-
aging time series data quality for subsequent analytics.

As future work, we aim to extend the proposed methodology to guarantee
the online processing of time series data streams for real-time monitoring tasks.

Acknowledgements. The authors thank the support of Câmara Municipal do Bar-
reiro, Câmara Municipal de Beja, Infraquinta and Câmara Municipal de Lisboa. This
work is further supported by national funds through Fundação para a Ciência e
Tecnologia under projects WISDOM (DSAIPA/DS/0089/2018), ILU (DSAIPA/DS/
0111/ 2018), FARO (PTDC/EGE-ECO/30535/2017), and the INESC-ID (UIDB/
50021/2020) and CeMAT/IST-ID (UID/Multi/04621/2019) pluriannuals.
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Table 4. Performance of imputation methods for water pressure and flow sensors from
Barreiro and Beja WDNs with planted point and sequential missing values on 10% of
observations.

Barreiro WDN Beja WDN
RMSE MAE SMAPE % RMSE MAE SMAPE %

pr
es

su
re

:
po

in
t

Mean 0.064 ± 0.05 0.025 ± 0.01 0.933 ± 0.43 1.00 0.166 ± 0.00 0.154 ± 0.00 4.335 ± 0.08 1.00
Median 0.065 ± 0.05 0.024 ± 0.01 0.921 ± 0.42 1.00 0.192 ± 0.01 0.125 ± 0.01 3.517 ± 0.18 1.00
Random sample 0.07 ± 0.05 0.033 ± 0.03 1.247 ± 0.91 1.00 0.23 ± 0.04 0.168 ± 0.05 4.737 ± 1.45 1.00
Interpolation 0.058 ± 0.05 0.019 ± 0.01 0.731 ± 0.37 0.99 0.05± 0.00 0.031± 0.00 0.857 ± 0.06 1.00
Locf 0.062 ± 0.05 0.021 ± 0.01 0.796 ± 0.36 0.99 0.068 ± 0.01 0.036 ± 0.00 0.999 ± 0.10 1.00
Nocb 0.062 ± 0.06 0.021 ± 0.01 0.808 ± 0.43 0.99 0.065 ± 0.01 0.035 ± 0.00 0.973 ± 0.09 1.00
Moving average 0.055± 0.04 0.018± 0.01 0.712 ± 0.33 0.99 0.078 ± 0.01 0.04 ± 0.00 1.113 ± 0.10 1.00
Random forests 0.089 ± 0.04 0.037 ± 0.01 1.414 ± 0.41 1.00 0.175 ± 0.01 0.133 ± 0.01 3.752 ± 0.18 1.00
EM 0.098 ± 0.03 0.065 ± 0.01 2.404 ± 0.28 1.00 0.228 ± 0.01 0.188 ± 0.01 5.275 ± 0.23 1.00
Knn 0.069 ± 0.04 0.032 ± 0.01 1.19 ± 0.38 1.00 0.166 ± 0.01 0.135 ± 0.01 3.806 ± 0.15 1.00
Mice 0.084 ± 0.04 0.043 ± 0.01 1.574 ± 0.49 1.00 0.221 ± 0.01 0.154 ± 0.01 4.337 ± 0.24 1.00
Amelia 0.104 ± 0.04 0.068 ± 0.01 2.508 ± 0.54 0.90 0.234 ± 0.01 0.19 ± 0.01 5.342 ± 0.21 0.90
AutoMTS 0.055 ± 0.04 0.018 ± 0.01 0.712 ± 0.33 0.99 0.05 ± 0.00 0.031 ± 0.00 0.857 ± 0.06 1.00

flo
w

:
po

in
t

Mean 8.878 ± 0.58 7.331 ± 0.57 32.584 ± 2.57 1.00 47.573 ± 2.71 36.25 ± 1.68 48.104 ± 1.96 1.00
Median 8.976 ± 0.57 7.312 ± 0.58 32.392 ± 2.70 1.00 49.678 ± 3.18 34.009 ± 2.14 45.249 ± 2.21 1.00
Random sample 12.186 ± 4.31 10.31 ± 4.14 42.831 ± 12.28 1.00 59.523 ± 17.85 46.715 ± 19.59 60.721 ± 28.42 1.00
Interpolation 2.927± 0.32 2.055± 0.25 9.821 ± 1.23 0.99 17.246± 1.34 12.137± 0.79 19.849 ± 1.08 1.00
Locf 4.602 ± 0.47 3.49 ± 0.34 16.146 ± 1.65 0.99 21.231 ± 1.60 14.692 ± 0.85 23.877 ± 1.62 1.00
Nocb 4.878 ± 0.55 3.649 ± 0.35 16.924 ± 1.43 0.99 21.133 ± 1.57 14.565 ± 1.01 24.047 ± 1.59 1.00
Moving average 7.021 ± 0.79 5.48 ± 0.59 25.245 ± 2.28 0.99 21.595 ± 1.46 15.242 ± 0.83 24.077 ± 1.57 1.00
Random forests 10.086 ± 0.83 8.085 ± 0.78 35.154 ± 3.40 1.00 47.097 ± 3.20 34.74 ± 2.29 46.244 ± 2.00 1.00
EM 12.08 ± 0.85 9.806 ± 0.72 46.242 ± 3.74 1.00 66.136 ± 3.22 50.566 ± 2.36 79.039 ± 3.73 1.00
Knn 9.639 ± 0.73 7.857 ± 0.66 34.557 ± 2.72 1.00 47.803 ± 2.11 35.747 ± 1.66 47.494 ± 2.00 1.00
Mice 13.291 ± 1.05 10.893 ± 1.03 49.257 ± 5.83 1.00 72.356 ± 5.04 54.984 ± 4.83 66.829 ± 5.40 1.00
Amelia 12.11 ± 0.94 9.78 ± 0.82 42.972 ± 4.07 0.90 65.755 ± 2.65 51.807 ± 2.21 71.872 ± 3.35 0.90
AutoMTS 2.927 ± 0.32 2.055 ± 0.25 9.821 ± 1.23 0.99 17.246 ± 1.34 12.137 ± 0.79 19.849 ± 1.08 1.00

pr
es

su
re

:s
eq

ue
nt

ia
l

Mean 0.021 ± 0.02 0.013 ± 0.00 0.464 ± 0.13 1.00 0.169± 0.01 0.157 ± 0.00 4.416 ± 0.13 1.00
Median 0.02± 0.02 0.012± 0.00 0.427 ± 0.13 1.00 0.197 ± 0.01 0.13± 0.01 3.684 ± 0.34 1.00
Random sample 0.03 ± 0.03 0.022 ± 0.03 0.816 ± 0.95 1.00 0.23 ± 0.04 0.168 ± 0.05 4.729 ± 1.31 1.00
Interpolation 0.03 ± 0.06 0.021 ± 0.04 0.817 ± 1.58 1.00 0.207 ± 0.01 0.164 ± 0.01 4.618 ± 0.39 1.00
Locf 0.043 ± 0.11 0.032 ± 0.08 1.265 ± 3.34 1.00 0.24 ± 0.03 0.177 ± 0.04 4.998 ± 1.15 1.00
Nocb 0.022 ± 0.02 0.014 ± 0.01 0.533 ± 0.20 1.00 0.237 ± 0.03 0.175 ± 0.03 4.955 ± 0.91 1.00
Moving average 0.031 ± 0.07 0.022 ± 0.05 0.887 ± 2.12 0.12 0.061 ± 0.07 0.044 ± 0.05 1.225 ± 1.42 0.03
Random forests 0.064 ± 0.04 0.027 ± 0.01 1.013 ± 0.33 1.00 0.189 ± 0.01 0.147 ± 0.01 4.155 ± 0.24 1.00
EM 0.078 ± 0.01 0.061 ± 0.01 2.21 ± 0.19 1.00 0.23 ± 0.01 0.189 ± 0.01 5.326 ± 0.22 1.00
Knn 0.045 ± 0.02 0.024 ± 0.00 0.871 ± 0.16 1.00 0.178 ± 0.01 0.146 ± 0.01 4.112 ± 0.19 1.00
Mice 0.056 ± 0.02 0.032 ± 0.01 1.167 ± 0.31 1.00 0.229 ± 0.01 0.162 ± 0.01 4.587 ± 0.30 1.00
Amelia 0.073 ± 0.02 0.056 ± 0.01 2.026 ± 0.41 0.89 0.238 ± 0.01 0.194 ± 0.01 5.433 ± 0.33 0.89
AutoMTS 0.02 ± 0.02 0.012 ± 0.00 0.427 ± 0.13 1.00 0.169 ± 0.01 0.157 ± 0.00 4.416 ± 0.13 1.00

flo
w

:
se

qu
en

ti
al

Mean 8.839 ± 1.09 7.415 ± 1.25 32.556 ± 4.45 1.00 53.752 ± 13.36 40.987 ± 9.06 46.883 ± 3.85 1.00
Median 8.884 ± 0.98 7.321 ± 1.20 32.073 ± 4.38 1.00 56.946 ± 18.43 41.172 ± 12.99 46.95 ± 8.74 1.00
Random sample 11.589 ± 3.59 9.644 ± 3.29 41.054 ± 11.91 1.00 65.0 ± 21.24 51.602 ± 19.29 60.692 ± 29.12 1.00
Interpolation 10.273 ± 1.21 8.493 ± 1.13 37.44 ± 4.24 1.00 40.72 ± 10.25 31.124 ± 7.20 37.789 ± 6.21 1.00
Locf 12.074 ± 2.19 9.705 ± 1.90 43.785 ± 8.47 1.00 44.045 ± 11.33 33.286 ± 8.19 40.576 ± 11.90 1.00
Nocb 11.092 ± 2.30 9.055 ± 1.90 39.8 ± 8.14 1.00 47.163 ± 15.20 37.099 ± 12.08 44.922 ± 12.72 1.00
Moving average 8.803± 3.96 7.065± 3.39 31.923 ± 13.69 0.12 24.396± 12.08 19.166± 9.47 23.783 ± 12.51 0.03
Random forests 9.913 ± 1.07 7.961 ± 1.05 34.648 ± 3.79 1.00 53.638 ± 13.67 39.78 ± 9.41 45.504 ± 4.33 1.00
EM 12.193 ± 1.44 9.957 ± 1.25 46.583 ± 5.41 1.00 73.736 ± 13.64 57.226 ± 10.29 79.993 ± 5.61 1.00
Knn 9.431 ± 1.13 7.696 ± 1.17 33.592 ± 4.34 1.00 54.104 ± 12.18 40.735 ± 8.19 47.224 ± 3.77 1.00
Mice 12.148 ± 1.79 9.931 ± 1.55 44.663 ± 7.75 1.00 75.86 ± 6.55 58.838 ± 5.76 67.721 ± 4.48 1.00
Amelia 12.125 ± 1.38 9.771 ± 1.29 43.056 ± 5.90 0.89 70.062 ± 8.17 55.106 ± 6.29 70.747 ± 3.56 0.89
AutoMTS 8.839 ± 1.09 7.415 ± 1.25 32.556 ± 4.45 1.00 40.72 ± 10.25 31.124 ± 7.20 37.789 ± 6.21 1.00
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Abstract. In recent years, deep learning-based image extrapolation has achieved
remarkable improvements. Image extrapolation utilizes the structural and seman-
tic information from the known area of an image to extrapolate the unknown area.
In addition, these extrapolative parts not only maintain the consistency of spatial
information and structural information with the known area, but also achieve a
clear, beautiful, natural and harmonious visual effect. In view of the shortcomings
of traditional image extrapolation methods, this paper proposes an image extrap-
olation method which is based on perceptual loss and style loss. In the paper,
we use the perceptual loss and style loss to restrain the generation of the texture
and style of images, which improves the distorted and fuzzy structure generated
by traditional methods. The perceptual loss and style loss capture the semantic
information and the overall style of the known area respectively, which is helpful
for the network to grasp the texture and style of images. The experiments on the
Places2 and Paris StreetView dataset show that our approach could produce better
results.

Keywords: Image extrapolation · Perceptual loss · Style loss

1 Introduction

In computer vision tasks, deep learning-based image completion methods are widely
used. Especially in recent years, image completion has made significant achieve-ments.
Image completion is a special task, which actually falls between image editing and image
generating. Traditional image completion methods can be divided into texture diffusion-
based [3, 4, 16], distribution-based [13, 17] and generator-based models [8, 9, 14, 15].
Texture diffusion-based methods simply collect the similar pixels from the known area
to fill the missing area. Due to directly searching similar pixels from a known area to
complete an unknown area, the completed results usually have unnatural images and
fuzzy boundaries. Based on the idea of data driving, distribution-based methods learn
the relevant distribution information from large data to generate plausible structures.
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However, these methods produce rough and fuzzy results. Generator-based methods
generally employ neural network to extract high-level spatial features of the image
and finally generate plausible structures for the missing regions. Since the semantic
information of the image can be captured, these methods usually generate coherent,
clear and authentic contents.

Image extrapolation, a specific application of image completion, utilizes the frag-
ments of images to infer extensional parts, and finally generating thewhole picture. It can
be mainly used on texture synthesis, panorama synthesis and video expansion. However,
it remains a challenging problem than image inpainting due to two main issues. First,
fewer image proximity information can be used to infer the unknown regions. Second,
the extrapolative results must have the realistic visual effect and natural structures. A
mainstream deep learning-based technology for image extrapolation is the generative
adversarial network (GAN) [2]. It as generative model performs remarkably on the unsu-
pervised learning of complex distribution. The generator and discriminator networks are
trained jointly with opposite goals: the former minimizes the objective function and the
latter maximizes the objective function by adversarial training. This competitiveness
helps them to mimic any distribution of data. In this way, generator can capture the data
distribution once trained successfully.

How tomake the network generate visually-realistic and semantically-plausible con-
tents? In this paper, a new GAN-based method is proposed. In the proposed method, we
use the perceptual loss [12] to extract features from both original images and generative
images, as a result the network could obtain lower-level details and high-level abstract
information. This finally helps network to produce clear and nature contents. More-
over, we utilize the style loss [11] to calculate Gram matrix of the extracted features for
analysing the correlation of pairwise features. This eventually catches the overall style
of images. Furthermore, the general reconstruction loss has some limitations, since it
directly measures differences of the pixels from both original images and generative
images. The general reconstruction results indeed have the higher signal-to-noise ratio,
but it contains less high-frequency information. This would lead to blurry and distorted
images. While perceptual loss acquires semantic information of images by extracting
feature, which means that network is in the perception of the images. Owing to using
low-level pixel information and high-level abstract features of images, which can restrain
both texture and style of data, our proposed method could generate real and reasonable
contents for the missing regions.
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Our main contributions are as follows:

1. Perceptual loss is used to extract the details and abstract features of the images,
ensuring the consistency of the semantic information between the known area and
unknownarea.Eventually, visually eliminating theblurry of boundary andgenerating
natural and real results.

2. Style loss is used to obtain the overall style of the images through feature extractor
and Gram matrix, ensuring the consistency of texture and style between the known
area and unknown area. Finally, promoting the generation of real and natural style.

2 Related Work

Patch-based and diffusion-based methods are main non-deep-learning image comple-
tion approaches, which aim at attaining non-learning statistics information to com-
plete images. They borrow similar pixels from undamaged images to fill missing parts.
It usually generates implausible texture as it fails to understand high-level semantic
information of images.

Context encoders (CE) [1] is an early deep learning-basedmethod for image comple-
tion. It uses an encoder-decoder network architecture. Specially, the encoder maps the
masked image to a low-dimensional feature space, then the decoder utilizes the features
to reconstruct a complete image. Moreover, the encoder and decoder are connected by
channel-wise fully-connected layer. Based on unsupervised learning method, CE uti-
lizes the known feature information to complete the missing areas. However, it usually
produces blurry textures and distorted structures, since the limitation of channel-wise
fully-connected layer. Thus, CE needs to be improved in the network architecture.

Then, paper [5] could produce fine complete results by using multi-scale neural
patch synthesis. Its network architecture consists of two branches. The first branch is
responsible for generating the contents ofmissing regions, which utilizes the information
from known areas. The second is used to produce textures for missing regions, which
considers the differences of textures from both original images and generative images.
Moreover, it employs the pre-trained VGG network [6] to extract texture features, then
generates fine textures by restraining the gap of the featuremaps.Due to fully considering
the differences of textures, the method made a great improvement. However, owing to
a large memory is required and only learning patch information from an image rather
than a dataset, the method has some limitations.
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Recently,MarkSabini et al. [7] proposed the imageoutpaintingwithGANs (IOGnet).
At present, the state-of-the-art approaches mainly apply GAN and CNN. Therefore,
IOGnet employed CNN-based GAN to extrapolate the both sides of images, namely
completing the regions beyond the border of images. In addition, it could produce a
panorama through recursive extrapolation. In order to improve stability of the DCGAN,
it changed the traditional training procedure. The training procedure is divided into
three stages. The first stage is to train the generator by using mean square error. The
second stage is to train the discriminator. The last stage is to train the generator and the
discriminator at the same time. However, its extrapolative results are still much vague.
Thus, the method also needs further improvements.

More recently, the pluralistic image completion (PICnet) proposed by Chuanxia
Zheng et al. [10] achieved good complete results. Most image completion methods gen-
erate only one output result for a missing image. In this paper, they creatively proposed
a pluralistic image completion method. Namely, they generated diverse and reasonable
complete results for one input. However, the pluralistic image completion faced a great
challenge. Sampling from CVAE would lead to the minimal diversity, due to a ground
truth only provides one instance label in the training dataset. In order to solve this prob-
lem, PICnet proposed a probabilistic theory-based framework to maintain the diversity
of sampling. Moreover, it used two parallel paths to train the model. One is the recon-
structive path, which uses the instance label to obtain the prior distribution of missing
regions and finally it reconstructs the image by the prior distribution. Another is the
generative path, whose distribution is close to the prior distribution of the reconstructive
path. The network achieves the trade-off between the reconstruction of original data and
the variance of conditional distribution. Since utilizing the prior information of missing
parts to guide the process of image completion, the approach could produce excellently
clear and realistic results. In addition, the diversity of output results provides a sufficient
condition to select high-quality complete images.

3 Image Extrapolation Based on Perceptual Loss and Style Loss

The encoder-decoder network architecture is used in our method (see Fig. 1). Specially,
the encoder extracts high-level abstract features of the image, and the decoder utilizes
the abstract features to up-sample a reconstructive image. Moreover, both encoder and
decoder are connected by residual block to realize the inference network function. This
could generate the mean and variance of VAE for the decoder’s sampling in the latent
space. To improve the stability of training procedure, we apply LSGAN that uses the
least squares loss. In addition, the structure of discriminator is similar to that of the
encoder, and we use the global discriminator to score the whole image. This could grasp
the overall quality of the image.
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Fig. 1. Overview of our architecture.

In Fig. 1, Ic is the complement of the masked image, and Im is the masked image. ⊕
means to concatenate Ic and Im. The convolution kernels of Encoder, ResBlock, Decoder
and Discriminator are all 3 × 3, and the stride is 1 × 1. During training, Ic and Im are
concatenated and input into the Encoder. The mean and variance of VAE is generated by
the Resblock, then utilizing the mean and variance to up-sample images. Thus, the prior
information of reconstructive path is used to guide the process of image generation.
Furthermore, the decoder generates the reconstructive image Irec and the generative
image Igen respectively, finally sending the Irec and Igen to their own discriminators.

3.1 Perceptual Loss

The perceptual loss extracts the features fromboth generative images and original images
through the pre-trained VGG network, and restrains the features of these images by the
L1 norm. Since forcing the generative results to perceptually resemble these labels from
pre-trained network, the perceptual loss could improve the quality of extrapolative areas.
Formally,

Lp = E
[∥∥φj

(
Igt

) − φj
(
Igen

)∥∥
1

]
(1)

where Igt and Igen are the original image and the generative image, respectively. φj(.)

is the j-th layer feature map extracted by VGG network. Perceptual loss is to compare
the features from the convolution of original images and generative images in the VGG
network. This aims to make the extracted high-level feature information (such as the
contents and structures of images) as close as possible. It also means that the network
is perceiving the image. In the training of GAN network, perceptual loss can make the
feature map of the generative image close to that of the original image, finally assists
the image generation and improves the quality of generative images.
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3.2 Style Loss

Style loss is similar to perceptual loss. We also use the pre-trained VGG network to
extract features from both generative images and original images. However, the Gram
matrix of extracted features is further calculated. As restraining the Gram matrix of
features, the overall style of both generative images and original images could be as
close as possible. Finally, the quality of the generative images also can be improved.
Formally,

Ls = E
[∥∥∥Gφi

(Igt) − Gφi
(Igen)

∥∥∥
1

]
(2)

where Igt and Igen are the original image and the generative image respectively, and φi(.)

is the i-th layer feature map extracted by VGG network. G(.) denotes the Gram matrix
corresponding to the feature maps. Gram matrix calculates the inner product of any k
vectors in the n-dimensional Euclidean space. It can be regarded as covariance matrix
without subtracting mean between different feature maps. In the convolution network,
the shallow layer network extracts low-level features of images, while the deep layer
network extracts high-level abstract features. These low-level and high-level features are
more like the overall style of an image, which determines the real attribute of an image.
By calculating the Gram matrix of these feature maps, the correlation between pairwise
eigenvectors can be estimated. In the training procedure, owing to the style of generative
images can be gradually close to that of original images, the quality of generative images
could be improved.

3.3 Other Loss

In addition, we use the loss of PICnet:

L = αKL(L
r
KL + LgKL) + αapp(L

r
app + Lgapp) + αad (L

r
ad + Lgad ) (3)

where the superscripts r and g denote the loss of reconstructive path and generative path
respectively. LKL is used to constrain the distribution of hidden layer and Lapp is the
reconstruction loss of images. Lad is the adversarial loss.

Finally, we add the two losses to Eq. (3):

Ltotal = L + λ1Lp + λ2Ls (4)

In the experiment, we set λ1 = 0.1, λ2 = 250.
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3.4 Improvement of IOGnet

Furthermore, we also apply perceptual loss and style loss to the improvement of the
IOGnet method. The loss of the original IOGnet is as follows:

LMSE = ||M � (G(Ip) − In)||22 (5)

LD = −[logD(In) + log(1 − D(G(Ip)))] (6)

LG = LMSE − γ logD(G(Ip)) (7)

where M is the mask, In is ground truth, and Ip is concatenation of the masked In and the
mask. D and G are the discriminator and generator, respectively. The training procedure
is divided into three stages. The first stage is through Eq. (5) to train the generator. In the
second stage, the discriminator is trained through Eq. (6). In the last stage, the generator
and discriminator are trained at the same time through Eq. (7).

We modify the losses of Eq. (5) and Eq. (7) in IOGnet as follows:

Lr = LMSE + αLp + βLs (8)

LG = Lr − γ logD(G(Ip)) (9)

Namely, the perceptual loss and style loss are added in the first and third stages of
training, and we set α = 10, β = 100, and γ = 0.0004 in the experiment.

4 Experiment Results

The experimentalmetrics can be divided into the qualitative and quantitative comparison.
The qualitative comparison is visually estimated for the quality of generative results. In
addition, we measure the quantitative comparison by employing the following metrics:
1) Inception Score (IS) and Frechet Inception Distance (FID) are commonly used to
evaluate the quality of the generative model, which can be used to measure the diversity
and clarity of generative images; 2) peak signal-to-noise ratio (PSNR) is also a widely-
used full-reference metric for objective estimation; 3) other metrics include �1 loss, root
mean square error (RMSE) and structural similarity (SSIM). These metrics are based on
pixel-wise independence.

IS = exp(Ex∼pgDKL(p(y|x)‖p(y) )) (10)

where x is the generative image, g is the generator, and y is the label predicted by
pre-trained Inception-V3 model.

FID = ∥∥μx − μg
∥∥2
2 + Tr(

∑

x
+

∑

g
−2(

∑

x

∑

g
)1/2) (11)

where the superscripts x and g denote the ground truth and generative image respectively.
μ is the mean of eigenvectors, and � is the covariance matrix of eigenvectors

PSNR = 10 · log10
MAX 2

I

MSE
(12)
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whereMAX 2
I is the maximum pixel-value of the image, and MSE is mean square error.

The experiment is implemented in Python 3.6.9, PyTorch 1.2.0, and Ubuntu 16.04.
The GPU is NVIDIA Geforce RTX 2080 Ti. In addition, the batch-size is 64, and the
Adam optimizer is used to update the network parameters. The fixed learning rate is
10–4. Furthermore, we train the network in the end-to-end style. The LSGAN is applied
to make the training procedure more stable, and updating the discriminator once then
updating the generator once. Our training procedure costs 100 epochs in total.

We evaluate the proposed model on the image dataset Paris StreetView [18] and
Place2 [19]. All the images are resized to 128 × 128. The test input is masked images
with the 64 × 64 center area. The experimental comparison method is the baseline of
PICnet and IOGnet. Because of the multiple output results of PICnet, we choose the
image with the highest score of discriminator for comparison.

4.1 Qualitative Comparison

Firstly, we evaluate our model on the Paris StreetView dataset. Figure 2 shows the
extrapolative results generated by PIC and our method, which could be used to visually
estimate these results. In Fig. 2(c), the PIC generates the results with distorted structures
and even residual shadows in the extrapolative regions. Moreover, the results of PIC
also exhibit slight blurriness and unnaturalness. In Fig. 2(d) and (e), we add style loss
alone or add style loss and perceptual loss at the same time into PIC. As a result, the
generative results have some improvements. Our model could basically eliminate the
parts with residual shadows in PIC, and force the generative images to be closer to the
style of ground truth.

Then, we also show the experimental results on the Places2 in Fig. 3. We can find the
similar influence on generative images after adding the style loss and perceptual loss.
By and large, the visual effects of Fig. 3(d) and (e) are better than Fig. 3(c). Compared
to the original PIC, our model could produce more natural and more realistic images.
As a result, the experimental results show that our method can improve the quality of
image extrapolation.

In order to further evaluate the effectiveness of our method, we also implement the
experiments compared with the IOGmethod. Figure 4 and Fig. 5 show the visual effects
of IOG method and our method on the Paris StreetView and Places2 dataset. Similarly,
the generative results can be improved after adding the style loss and perceptual loss.
Compared with the original IOG in Fig. 4(c) and Fig. 5(c), our model could smooth
the coarseness of extrapolative parts, meanwhile enhance the clarity and aesthetics of
generative images. On the whole, the images generated by our model are more visually-
realistic and more plausible than the original IOG.
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(a) (b)                          (c)                       (d)                        (e)

Fig. 2. Qualitative results of different methods on the Paris StreetView dataset. (a) ground truth,
(b) input, (c) PIC, (d) PIC+style loss, and (e) PIC+style loss+perceptual loss.

In conclusion, we compared with the original PIC and IOG on the Paris StreetView
and Place2 for qualitative comparison. The experiments prove that the style loss and
perceptual loss can contribute to the improvement of image extrapolation, especially for
these exhibit fuzzyness and unnaturalness.

4.2 Quantitative Comparison

Table 1 and 2 show the quantitative results of different methods on Places2 and Paris
StreetView. These results of quantitative metrics show that after adding style loss and
perceptual loss the generative images could be improved in some degrees. Table 1 is the
quantitative metrics of 20000 test images on the Place2. The IS metric increases by 0.09,
and FID decreases by 2.94. Thus, it shows that ourmethods could effectively improve the
diversity and clarity of the generative images. Meanwhile, RMSE and �1 loss metrics
decrease by 1.45 and 0.65 respectively, indicating that the overall pixel differences
between the generative images and the original images are smaller. However, owing to
the limitation of the 100 test images of Paris StreetView, we only evaluate the SSIM and
RMSE. Furthermore, the SSIM and RMSE on the Paris StreetView are also better.
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(a) (b)                         (c)                       (d)                       (e)

Fig. 3. Qualitative results of different methods on the Places2 dataset. (a) ground truth, (b) input,
(c) PIC, (d) PIC+style loss, and (e) PIC+style loss+perceptual loss.

(a)                       (b)                          (c)                       (d)                     (e)

Fig. 4. Qualitative results of different methods on the Places2 dataset. (a) ground truth, (b) input,
(c) IOG, (d) IOG+style loss, and (e) IOG+style loss+perceptual loss.
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(a)                         (b)                         (c)                 (d)                        (e)

Fig. 5. Qualitative results of different methods on the Paris StreetView dataset. (a) ground truth,
(b) input, (c) IOG, (d) IOG+style loss, and (e) IOG+style loss+perceptual loss.

Table 1. Quantitative results of different methods on the Places2 dataset.

Method IS FID PSNR �1 loss SSIM RMSE

PIC 5.60 34.81 12.95 38.29 0.4116 70.21

PIC+style loss 5.49 31.87 12.92 38.21 0.4109 70.54

PIC+style loss+perceptual loss 5.69 32.39 13.11 37.64 0.4140 68.76

Table 2. Quantitative results of different methods on Paris StreetView. Because the limitation of
the 100 test images of Paris StreetView, we only evaluate the SSIM and RMSE.

Method SSIM RMSE

PIC 0.4248 55.63

PIC+style loss 0.4441 55.58

PIC+style loss+perceptual loss 0.4367 55.89

In addition, we have also implemented the comparative experiments on the IOG
method. Table 3 and 4 show the quantitative results of different methods on Place2 and
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Table 3. Quantitative results of different methods on Places2.

Method IS FID PSNR �1 loss SSIM RMSE

IOG 5.32 68.04 15.32 32.43 0.4455 52.56

IOG+style loss 5.72 64.71 15.43 31.82 0.4488 51.90

IOG+style loss+perceptual loss 5.89 62.34 15.61 31.11 0.4660 51.14

Table 4. Quantitative results of different methods on Paris StreetView. Because the limitation of
the 100 test images of Paris StreetView, we only evaluate the SSIM and RMSE.

Method SSIM RMSE

IOG 0.4670 43.11

IOG+style loss 0.4730 43.37

IOG+style loss+perceptual loss 0.4731 42.60

Paris Streetviewdataset. The experimental results onPlace2dataset show that ourmethod
increases by 0.57 and 0.29 in IS and PSNR respectively, and the FID and �1 loss decrease
by 5.7 and 1.32. Thus, it proves that the style loss and perceptual loss can improve the
quality of the generative images, and it can also improve the clarity and naturalness of
the extrapolative results. Moreover, SSIM increases by 0.02 and RMSE decreases 1.42,
indicating that our method could improve the quality of generative images. In addition,
SSIM and RMSE metrics on the Paris StreetView dataset are also improved.

5 Conclusion

We proposed a new image extrapolation method. It combined the perceptual loss with
style loss. After training and testing on the commonly-used image extrapolation dataset,
experimental results show that our model can produce fine textures and natural contents
for the missing images. In addition, no matter qualitative or quantitative comparison,
our results could exhibit better than these methods. In the future, we will continue to
explore the relevant aspects of image extrapolation, and further improve the quality of
generative images in the field.
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Abstract. The modulation measurement profilometry encoding the
spatial distribution information of specimen surface into the fringe defo-
cus can realize the reconstruction of the specimen with complex surface
shape. For this technique, the imaging axis of the CCD camera is coaxial
with the projecting direction thanks to the application of a beam split-
ter mounting in the projection optical path. Without doing the phase
unwrapping operation, it can accomplish shadow-free measurement for
the specimen by extracting modulation values of the fringe pattern. The
paper makes a comparison of the modulation retrieval in the condi-
tions of fringe patterns with different surface profiles. Two Fourier trans-
form methods are implemented in our computer simulation and practical
experiment to show their performance in demodulating the modulation
information from fringe patterns in optical 3D shape measurement.

Keywords: Surface measurements · Fourier transform · Image
analysis · Modulation

1 Introduction

Three-dimensional surface shape measurement with the virtues of non-
destructive, non-contact, high-resolution, high speed and ease of automation
has become attractive to a profusion of industrial metrology, machine vision,
robot simulation and automated manufacturing [1,2]. Among the existing opti-
cal three-dimensional shape measurement based on trigonometric measurement
principle, Phase-shifting profilometry [3,4] is displayed more prominently thanks
to its high measurement accuracy and low environmental vulnerability which is
superior to that of other optical three-dimensional surface shape measurement
technologies such as Four transform profilometry [5,6], Wavelet transform pro-
filometry [7–9] and S-Transform profilometry [10–13]. However, as a multi-frame
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fringes analysis technology, Phase shifting profilometry requires the projection
of multiple patterns to reconstruct the shape surface of the specimen that speed
may be sacrificed in favor of the resolution, and it’s not competent for dynamic
measurement. Therefore, the single-frame fringe analysis technology will be more
widely utilized for measuring dynamically deformable shapes because only one
single fringe projection is required to complete instantaneous deformation analy-
sis. For this category of technique, the inherent problem of shadow and occlusion
is inexorable because there is a certain angle between the projection and acqui-
sition axes.

Some vertical measurement techniques [14–18] have been proposed in a bid to
address this nontrivial problem, including modulation measurement profilome-
try and three-dimensional surface profilometry based on fringe contrast analysis,
as distinct from the optical three-dimensional shape measurement based on the
trigonometric measurement principle, applies a configuration with a feature that
the projection axis coincides with the acquisition axis or the acquisition direc-
tion is the same as the projection direction. It not only avoids the effect of
shadows and shutoff, but also solves the issue of phase truncating and spatial
discontinuities. For this technology, the spatial distribution information of the
specimen is encoded into the fringe defocus, so modulation values instead of
phase information in the fringe pattern is required to be analyzed to accomplish
the reconstruction.

There are two categories of the modulation measurement systems. For the
first category, the grating moves in a direction parallel to the projected axis
during the measurement process, and modulation values are extracted from the
perspective of the entire two-dimensional fringe pattern. Phase-shifting method
and two-dimensional Fourier transform method can be applied to realize the
modulation calculation. For another category, a certain angle exists between
the direction of the movement for the grating and that of the projection axis.
Not only the above approaches, but also the one-dimensional Fourier transform
method can be used to complete modulation retrieval. However, this method
calculates the modulation information from an intensity curve formed by epony-
mous pixels from the series of the captured fringe patterns instead of each two-
dimensional fringe pattern, and it is not applicable to the first type of system
measurement. The one-dimensional Fourier transform method can be regarded
as a kind of point-to-point operation instead of a global operation based on each
entire fringe pattern analysis utilizing two-dimensional Fourier transform, which
can retain more details of the specimen.

This paper gives a brief review of the theory for the modulation measurement
in the second case (an angle exists), both one-dimensional Fourier transform
method and two-dimensional Fourier transform method are used to extracting
the fringe modulation distribution from two different viewpoints. Comparisons
are made in both computer simulation and actual experiment to show their
performance in demodulating the modulation information from fringe patterns
in optical 3D shape measurement.
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Fig. 1. The system configuration.

2 Principle

Figure 1 shows the system configuration of the modulation measurement pro-
filometry. In this configuration, the grating is fixed on the translation platform
and the normal of the grating plane is parallel to the optical axis. There is an
angle (90◦-β) existing between the bearings of the electric translation table and
the projection optical axis. While the direction of detector is coaxial to the optic
axis of projector. As such, this system offers a vertical measurement method
against the problem of shadow and occlusion caused in triangulation system,
which makes it possible to measure the specimen with complex surface. In the
process of the measurement, the grating is driven by 1D precision translation
platform, whose image will continually scan the specimen. Simultaneously, a
CCD camera acquires the corresponding fringe patterns encoding the spatial

Light

Light
Light

Grating

H(1)

H(n)
H(N)

Fig. 2. Imaging principle.
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distribution information of the specimen synchronously. Due to the existence
of the angle (90◦-β) between the direction of grating motion and the optical
axis, a fixed phase shifting interval (2π/N, N ≥ 3) appears for any two adjacent
captured grating images. According to the imaging principle shown in Fig. 2,
when project the image of the grating onto the specimen surface, the clearest
fringe pattern with the largest modulation value observed by CCD camera will
be produced on the focal plane. As the distance from the image plane to the
focal plane increases, the image becomes more and more blurred. Therefore, a
relationship between the modulation value and the image plane position can be
formed as depicted in Fig. 2.

As shown in Fig. 1, in the actual measurement process, two sets of pulses with
different time intervals will be sent by a controller. One set pulses are used to
control the stepper motor to drive the grating to scan the specimen in succession,
another set pulses are applied to trigger CCD camera to synchronously capture
the grating image produced on the surface of the specimen that image acquisition
will be synchronized with grating projection. Assuming that variable t represents
the serial number of the collected image. Actually, variable t contains several
other implicit meanings. When the CCD camera captures the t th frame pattern,
the t th set pulses have been generated. Also, the grating derived by the 1D
precision translation platform has been moved t times at an equal interval, the
phase interval between the first grating image and the t th grating image will be
t times of 2π/N that the total phase shift is t · 2π/N. The algorithm for the t th

frame fringe can be mathematically described as [16]

If (x, y, t) =
R(x, y)I0(x, y)

M2

+
R(x, y)C0(x, y)

M2
cos

[
2πf0x + Φ0(x, y) +

2π(t − 1)
N

] (1)

I f(x, y, t) represents the light energy distribution of the t th fringe. R(x, y) is
the reflectivity of the specimen. M is the transverse magnification. I 0(x, y) and
C 0(x, y) respectively are the background intensity and projected fringe contrast.
f 0 represents the grating frequency. Φ0(x, y) is the initial phase. N represents
the total phase shift numbers for one period. The value of t ranges from 1 to
T (t = 1, 2, 3, . . . , T ) that the grating moves T times throughout the whole
scanning process.

I f(x, y, t) represents a clear image on the focal plane. While the image on
the defocused plane with a distance γ from the focusing plane can be described
as

Id(x, y, t; γ) = h(x, y; γ) ∗ If (x, y, t) (2)

Where I d(x, y, t ; γ) represents the blurred image. Symbol * is the convolution
operation. The expression of h(x, y ; γ) is

h(x, y; γ) =
1

2πσ2
h

e
− x2+y2

2σ2
h (3)
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Where σh = cr. The value of c is a system parameter, and it often takes the
value of [19].

Substitute Eq. 1 and Eq. 3 into Eq. 2, the out-of-focus image can be written
to be

Id(x, y, t; γ) =
R(x, y)I0(x, y)

M2
+

R(x, y)C0(x, y)
M2

• e− f0
2σ2

h
2 cos

[
2πf0x + Φ0(x, y) +

2π(t − 1)
N

] (4)

The corresponding modulation distribution for the image with different
degree of defocusing level can be defined as

M(x, y, t; γ) =
R(x, y)

M2
C0(x, y)e− f0

2σ2
h

2

= R(x, y)M0(x, y)e− f0
2σ2

h
2

(5)

Where M 0(x, y) represents the modulation value on the focusing plane, which
will be larger than that at any other defocusing plane.

3 Extraction of Modulation Values

3.1 Two-Dimensional Fourier Transform Method

When applying the two-dimensional Fourier transform method to calculate the
modulation values, the result is obtained from the perspective of the entire two-
dimensional image from the series of the captured fringe patterns. In mathemat-
ics, the convolution theorem states that under suitable conditions the Fourier
transform of a convolution of two signals is the pointwise product of their Fourier
transforms. Therefore, Eq. 2 can be written in the product form that

ID(u, v, t; γ) = H(u, v; γ) • IF (u, v, t) (6)

Where

H(u, v; γ) = e
− u2+v2

2σ2
h

IF (u, v, t) =
R(u, v)I0(u, v)

M2
δ(u, v)

+
R(u, v)C(u, v)

2M2
δ(u − f0, 0)ei{Φ0(u,v)+

2π(t−1)
N }

+
R(u, v)C(u, v)

2M2
δ(u + f0, 0)e−i{Φ0(u,v)+

2π(t−1)
N }

(7)

According to Eq. 6 and Eq. 7, the out-of-focus image in the frequency domain
can be expressed as

ID(u, v, t; γ) = ID(0)(u, v, t; γ) + ID(1)(u, v, t; γ) + ID(−1)(u, v, t; γ) (8)
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Where

ID(0)(u, v, t; γ) =
R(u, v)I0(u, v)

M2
δ(u, v)

ID(1)(u, v, t; γ) =
R(u, v)C(u, v)

2M2
δ(u − f0, 0)ei{Φ0(u,v)+

2π(t−1)
N }e− f0

2σ2
h

2

ID(−1)(u, v, t; γ) =
R(u, v)C(u, v)

2M2
δ(u + f0, 0)e−i{Φ0(u,v)+

2π(t−1)
N }e− f0

2σ2
h

2

(9)

Where ID(0)(u, v, t ; γ) and ID(1)(u, v, t ; γ) respectively represent the zero and
the fundamental frequency component. ID(−1)(u, v, t ; γ) is the conjugate of the
ID(1)(u, v, t ; γ). Select an appropriate filter window to extract the fundamental
frequency part and then apply the inverse Fourier transform. The modulation
value can be obtained by taking the absolute value of the obtained result.

M2DFFT (x, y, t; γ) =
∣∣∣∣R(x, y)

2M2
C0(x, y)ei{Φ0(x,y)+2π(t−1)/N}e− f0

2σ2
h

2

∣∣∣∣
=

R(x, y)
2M2

C0(x, y)e− f0
2σ2

h
2

=
1
2
R(x, y)M0(x, y)e− f0

2σ2
h

2

(10)

When making a comparison between Eq. 10 and Eq. 5, it becomes apparent
that there is only one difference (constant 1/2), which means that the modulation
distribution of out-of-focus image can be acquired by multiplying constant 2.

Two-dimensional Fourier transform method is a global analysis method. The
modulation value of any pixel in the fringe pattern is extracted by taking advan-
tage of the information of pixels in the entire two-dimensional fringe pattern.
Therefore, even if a pixel in the fringe has no data, a modulation value for this
pixel can be estimated based on the information of surrounding pixels, which
implies that the sensitivity of this method is not high enough in detection of
minor defects. Besides, the application of the filtering operation makes this app-
roach fail to retain the details of the specimen, which will smooth the steep edges
and corners, bring down a steep slope.

3.2 One-Dimensional Fourier Transform Method

When utilizing the one-dimensional Fourier transform method to realize the
modulation acquisition, the calculation result is completed from an angle of an
intensity curve formed by eponymous pixels from the captured images. Therefore,
it is a kind of point-to-point operation instead of a global operation based on
each entire fringe pattern analysis.

As shown in Fig. 3, points at the same position (x, y) are extracted from
this series of images, and finally the curve I (t)(x, y) (the blue curve, the red
one represents its outline) shown in the right figure can be formed. Based on
Eq. 1, curve I (t)(x, y) from the definite point (x, y) of the fringes can be simply
expressed as
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Fig. 3. The curve I (t)(x, y). (Color figure online)

Id(t)|(x,y) =
R

M2

{
I0 + C0e

− f0
2σ2

h
2 cos

[
Φ +

2π(t − 1)
N

]}∣∣∣∣
(x,y)

(11)

For the same position (x, y) on the fringe patterns,Φ = 2πf 0x + Φ0 is a
constant. Do Fourier transform operation on Eq. 11 that

ID′ (t)|(u,v) = ID′ (0)(t)
∣∣∣
(u,v)

+ ID′ (1)(t)
∣∣∣
(u,v)

+ ID′ (−1)(t)
∣∣∣
(u,v)

(12)

Where

ID′ (0)(t)
∣∣∣
(u,v)

=
RI0
M2

δ(u, v)

ID′ (1)(t)
∣∣∣
(u,v)

=
RC

2M2
δ(u − f0, 0)ei{Φ+

2π(t−1)
N }e− f0

2σ2
h

2

ID′ (−1)(t)
∣∣∣
(u,v)

=
RC

2M2
δ(u + f0, 0)e−i{Φ+

2π(t−1)
N }e− f0

2σ2
h

2

(13)

ID′ (0)(t)
∣∣∣
(u,v)

denotes the zero-spectrum component of the curve,

ID′ (1)(t)
∣∣∣
(u,v)

and ID′ (−1)(t)
∣∣∣
(u,v)

respectively represent the fundamental spec-

trum component of the curve. The utilization of a proper filter can make the
acquisition of useful fundamental component come true, and then doing inverse
Fourier transform. Modulation value for each fringe at position (x, y) can be
finally obtained by taking the absolute value of the result.

M1DFFT (t)|(x,y) =

∣∣∣∣∣
R

2M2
C0e

i{Φ+
2π(t−1)

N }e− f0
2σ2

h
2

∣∣∣∣
(x,y)

∣∣∣∣∣
=

R

2M2
C0e

− f0
2σ2

h
2

∣∣∣∣
(x,y)

=
1
2
RM0e

− f0
2σ2

h
2

∣∣∣∣
(x,y)

(14)
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Comparing Eq. 14 with Eq. 5, modulation distribution of out-of-focus image
for point (x, y) can be calculated by multiplying constant 2. While the modula-
tion maps of the whole images can be obtained by repeatedly doing the above
operation for every point in the fringe patterns. For this method in modula-
tion retrieval, the calculation result for each pixel in a fringe pattern in effect
terminates the influence from the information of its neighbor pixels. That is,
the operation of each pixel in the entire fringe pattern is independent of each
other. The frequency spectrum of a curve by one-dimensional Fourier transform
method is simpler than that of an image by two-dimensional Fourier trans-
form method. Moreover, the generation of high-frequency components can be
effectively avoided by appropriately selecting the scanning range, which refrains
from spectrum aliasing between fundamental frequency and high order frequency.
Obviously, due to the simple spectrum, it is easy to extract useful fundamental
frequency information to retain more details of the specimen.

4 Simulation

In the actual application, the surface of the tested object is unpredictable. This
section will make a comparison of the performance of the two Fourier transform
methods in the reconstruction of two different surface profiles.

The main parameters are set as following. Both the background intensity
and the fringe contrast are 0.5 (I 0(x, y) = 0.5,C 0(x, y)) = 0.5. The reflectivity
factor is set to be R(x, y) = 0, The frequency of the grating is f 0= 1/6 pixel-1,
the focal length and the diameter of the lens respectively are f = 58 mm and d
= 40. In the scanning process, a total of 160 frames of fringes were collected by
CCD that T = 160. The size of each image is 264 × 264 pixels. To match reality
more exactly, random noise of 3% fringe intensity is added in each image. All
the simulations are performed on MATLAB platform.

4.1 Comparison of Smooth Surface

The first tested object we used is the PEAKS function. It has an absolute
height of 60 mm as shown in Fig. 4(a). Figure 4 (b) shows the 60th frame of
captured images. Both one-dimensional Fourier transform method (1DFT) and
Two-dimensional Fourier Transform method (2DFT) are used to calculating the
modulation values of the images, and the performance for the 60th frame of
captured images obtained by the two methods are respectively shown in Figs. 4
(c) and (d). It is palpable that there are many small spots in Fig. 4 (c), while
the edges in Fig. 4 (d) are blurred. The reconstruction result and error distri-
bution for the two approaches are respectively shown in Figs. 5 (a)–(d). The
standard deviation errors (mean square error RMS) are 0.353 mm by 1DFT and
0.144 mm by 2DFT. Obviously, for the tested object with smooth surfaces, there
are many burrs on the surface shape obtained by 1DFT. While for 2DFT, it
softens the steep area even though the smoothness of the surface is preserved.
In order to illustrate features clearly, Figs. 6(a)–(c) show a small area (rows:
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Fig. 4. Simulation: (a) The simulated object; (b) The 60th frame of fringe pattern; (c)
Modulation values obtained by 1DFT; (d) Modulation values obtained by 2DFT.

185–220; columns: 115–150) of the simulated object and the reconstructions of
the same area by the two methods. Figure 6(d) shows the part from the 170th

column to the 225th column in the 100th row of the simulated object, the same
part of the reconstruction by 1DFT and that by 2DFT. For the 1DFT method

Fig. 5. Simulation results: (a) Reconstruction by 1DFT; (b) Reconstruction by 2DFT;
(c) Error distribution by 1DFT; (d) Error distribution by 2DFT.
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Fig. 6. Comparisons: (a) Part of the simulated object; (b) Part of the reconstruction
by 1DFT; (c) Part of the reconstruction by 2DFT; (d) the 170th column to the 225th

column in the 100th row of the simulated object, the same part of the reconstruction
by 1DFT and that by 2DFT.

in modulation retrieval, calculation result for one pixel in a fringe pattern is
extracted from a curve produced by retrieving the same coordinate from the
captured fringe patterns, that is, there is no relationship among adjacent pixels,
and a slight difference in the modulation values can result in a large difference
in height values. This existence of the difference leads to a reconstruction for the
measured object with a coarse or irregular surface. However, 2DFT method is a
global analysis method. The modulation value of any pixel in the fringe pattern
is extracted by taking advantage of the information of pixels in the entire fringe
pattern. Besides, the application of the filtering operation brings down steep
slopes even though the character of smoothness for the surface shape remains.

4.2 Comparison of Step Surface

To furtherly make a comparison, another computer simulation is used in this
section. The simulated object is shown in Fig. 7(a) has a dramatic change in
height that there are four discontinuous height steps (10 mm, 30 mm, 50 mm,
70 mm) from the bottom to the top.

In this simulation, the system parameters are the same as those mentioned
above. Figure 7 (b) shows the 64th frame of captured images. Figures 7 (c) and
(d) are respectively the modulation values of Fig. 7 (b) obtained by 1DFT and
2DFT. Even the measured object has rapid height variation on the shape surface,
the application of 1DFT method can obtain accurate modulation value (the edges
of the steps are clear) in the areas where height variation is steep. While for the
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Fig. 7. Simulation: (a) The simulated object; (b) The 60th frame of fringe pattern; (c)
Modulation values obtained by 1DFT; (d) Modulation values obtained by 2DFT.

2DFT method, the edge between two steps with different heights is blurred. The
reconstructions obtained by the two methods are respectively shown in Figs. 8
(a) and (b). Figures 8 (c) and (d) are the corresponding error distributions.
The standard deviation errors are 0.351 mm by 1DFT method and 3.543 mm
by 2DFT method. For 2DFT method, due to the filtering operation applied in
the analysis of each fringe, high-frequency component containing the details of
the measured object is filtered out, the sharp edge of the step becomes smooth.
While the result by 1DFT is much better since the modulation is calculated
using point-to-point algorithm which eliminates the influence from the neighbor
pixels. For clarity, Figs. 9(a)–(c) shows a small area (rows: 195–210; columns:
125–140) on the second step plane of the tested object, the reconstructed result
by 1DFT and that by 2DFT. Figure 9(d) shows the part from the 192nd column
to the 242nd column in the 152nd row of the simulated object, the same part
of the reconstruction by 1DFT and that by 2DFT. For the 1DFT method, the
calculation of any point for the height value has no relationship with others
that the edge of any two steps can be reconstructed correctly. However, it is
the independence of points that the reconstructed plane is not flat (shown in
Fig. 9(b)). While for the 2DFT method, the utilization of the filtering operation
leads to the result that the high frequency component containing the details of
the measured object is filtered out, the sharp edge of the step becomes smooth.
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Fig. 8. Simulation results: (a) Reconstruction by 1DFT; (b) Reconstruction by 2DFT;
(c) Error distribution by 1DFT; (d) Error distribution by 2DFT.

Fig. 9. Comparisons: (a) Part of the simulated object; (b) Part of the reconstruction
by 1DFT; (c) Part of the reconstruction by 2DFT; (d) The 192nd column to the 242nd

column in the 152nd row of the simulated object, the same part of the reconstruction
by 1DFT and that by 2DFT.

5 Experiment

In order to verify the conclusions in the simulation, experiment is carried out to
confirm the results. The measurement system is shown in Fig. 10. The grating is 2
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Fig. 10. Configuration of the experiment system.

lines/mm. The face of a Maitreya shown in Fig. 11(a) is utilized as the measured
object. In the process of measurement, 471 frames of the fringe patterns are
captured by the CCD camera (BASLER A504k). To show the variety of focus
plane, Figs. 11(a)–(c) respectively show the 200th, the 300th, the 400th frame of
the fringe patterns. It illustrates that the focus plane of the projector changes
from top to bottom of the measured object. To reduce the computational work,
the size of the captured images is cut to be 880 × 1030 pixels. Both the 1DFT
method and the 2DFT method are applied to analyze the fringes.

Fig. 11. Fringe patterns: (a) The 200th frame of fringe pattern; (b) The 300th frame
of fringe pattern; (c) The 400th frame of fringe pattern. (Color figure online)

For the 1DFT method, the extraction of modulation is done from an angle
of an intensity curve formed by eponymous pixels from the captured images.
Take the center pixel (441, 515) (marked in Fig. 11(a) with an orange dot) of
the cropped image as an example, its intensity cure shows in Fig. 12(a), whose
spectrum is shown in Fig. 12(b). Obviously, the spectrum of a cure is very simple,
and it’s easy for one to filter the useful fundamental frequency information to
obtain the envelope of this curve. When the envelope for each pixel is extracted,
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Fig. 12. Modulation retrieval: (a) Intensity curve formed by eponymous pixels from the
captured images; (b) The spectrum of (a); (c) The spectrum of Fig. 11(a); (d) Partial
cross-section of (c); (e) Modulation values obtained by 1DFT; (f) Modulation values
obtained by 2DFT.

Fig. 13. Experiment results: (a) The reconstruction result obtained by 1DFT; (b) The
reconstruction result of the left eye by 1DFT; (c) Enlarged picture of the forehead by
1DFT; (d) The reconstruction result obtained by 2DFT; (e) The reconstruction result
of the left eye by 2DFT; (f) Enlarged picture of the forehead by 2DFT.
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the modulation distribution for any t th(t = 1, 2, 3 ... 471) fringe can be obtained
by extracting the modulation value of the t th point from each envelope line. For
the 2DFT method, modulation retrieval is completed from the whole 2D image.
Take the 300th frame of images as an example, its spectrum is shown in Fig. 12(c).
It is apparent that the spectrum of a 2D image is more complex than that of
a curve. What’s worse, the zero-frequency component and high-order frequency
component are very close to the fundamental frequency component, and both
the zero frequency component and the fundamental frequency component extend
to each other. To clearly distinguish the relationship among these frequency
components, Fig. 12(d) shows a partial cross-section (row: 441, column: 518–
1030) of Fig. 12(c). Figures 12(e) and (f) are the modulation distributions of
Fig. 11(b), which are respectively obtained by the 1DFT method and the 2DFT
method. Obviously, Fig. 12(e) is clearer than Fig. 12(f). Even for the complex
regions such as the nose, the mouth and the eyes, the modulation distribution
map can be obtained accurately by 1DFT.

The reconstruction results by the 1DFT method and the 2DFT method are
respectively shown in Figs. 12(a)–(c) and Figs. 12(d)–(f). Figures. 12(a) and (d)
show the whole surface of the Maitreya by the two methods. For the result
obtained by the 1DFT method, the details of the shape surface for the object
can be well preserved such as the tiny changes in the eyes, mouth and nose.
However, the application of the filtering operation makes the 2DFT method
fail to retain the characteristics of these areas with small changes in height.
For clarity, Figs. 12(b) and Fig. 12(e) respectively show the height distribution
of the left eye (marked in Figs. 11(b) with red rectangle) reconstructed by the
two methods. The position of the eyelids can be clearly identified in Fig. 12(b),
while Fig. 12(e) just shows a smooth cambered surface that completely misses
the details. Figures 12(c) and Fig. 13(f) show the reconstructions of a flat area
(part of the forehead marked in Figs. 11(b) with blue rectangle, rows: 401–500;
columns: 201–300) calculated by the two methods. Due to the application of
point-to-point algorithm for 1DFT, there is no relationship for the calculation of
any two adjacent pixels. A slight difference in the modulation values can result in
a large difference in height values. Therefore, there are many burrs on the surface
shape obtained by 1DFT. While, as shown in Fig. 12(f), 2DFT can reconstruct
the corresponding region with a smooth surface.

6 Discussion

In the actual application for the two methods, to get more efficient modulation
or improve the measurement accuracy, one can set up the experimental system
from the following aspects:
– Period of the grating. The period of the grating should be small enough, so

that the modulation distribution for each pixel point will be narrow, which
helps extract the maximum modulation value and the corresponding serial
number more accurately. At the same time, one should take the Nyquist–
Shannon sampling theorem into consideration that the sampling period for
the fringe pattern should be at last more than 4 points.
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– Pitch and range of grating movement. The distance of each movement for the
grating should be appropriately small to ensure that the modulation curve is
sampled properly and smoothly. The entire range of grating movement should
be large enough to ensure that the modulation curve includes the maximum
modulation value and at least one minimum modulation value adjacent to
either side of it.

– Translation platform. The grating is driven by a 1D precision translation
platform, and this movement is manually controlled. If a closed-loop step-
motor control system is utilized, the measurement accuracy will be improved.

7 Conclusion

Two methods including 1DFT method and 2DFT are utilized to extract the
modulation distribution of fringe patterns. For 1DFT method, the calculation is
completed from an angle of an intensity curve formed by eponymous pixels from
a series of captured images, which terminates the influence from the information
of other neighbor pixels and can better retain the details of the object under
test. While the surface of the reconstruction result will be coarse due to the
differences of the modulation values for any adjacent pixels. For 2DFT method,
the result is obtained from the perspective of each complete two-dimensional
image from the series of the captured fringe patterns, and the application of the
filtering operation will smooth the steep edges and corners, bring down a steep
slope and fail to retain more details of the measured object.
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Abstract. Image visual effects can be enhanced primarily through edge and tex-
ture enhancement or contrast enhancement. Image enhancement based on frac-
tional differential can effectively enhance image details such as edge and texture
using the weak derivative property of the 0–1-order fractional differential opera-
tor. Image enhancement based on gray statistics involves the redistribution of light
and dark pixels to enhance the overall contrast of the enhanced image as well as
the enlargement of the gray-level dynamic range, thereby improving the visual
effect of the image effectively. To enhance the edge and texture information of
the image, enhance the contrast of the image effectively, and then improve the
visual effect of the image, an image enhancement model based on contrast limited
adaptive histogram equalization incorporating a fractional differential operator
is proposed. The image enhancement model incorporates a fractional differen-
tial operator into the adaptive limited contrast image enhancement model, which
can enhance the image contrast and effectively enhance the edge and texture
details of the image simultaneously. Experimental results show that the proposed
variable-order fractional differential contrast-limited adaptive histogram equal-
ization image enhancement model can significantly improve the contrast of the
image compared with the traditional fractional differential image enhancement
model; additionally, it can effectively enhance the edge and texture details of the
image compared with the traditional image enhancement model, which is based
on statistical methods.

Keywords: Fractional calculus · Image enhancement · Fractional gradient ·
Variable order · Histogram enhancement

1 Introduction

Image enhancement mainly emphasizes the local and non-local feature information of
an image to achieve clearer images or highlight the edge texture and other important
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features of the image such that the image contrast can be enhanced; hence, the visual
effect of the image will be enhanced for later applications in specific occasions. Two
image enhancement methods exist: frequency and spatial methods. In the frequency
method, an image is transformed into a two-dimensional discrete Fourier transform or
cosine transform, and high-frequency information such as edge and texture is enhanced
using a high-pass filter, rendering the enhanced image visual effects better or easier
to be processed later [1, 2]. The spatial domain method can be classified into image
enhancement based on a difference operator and that based on gray-level statistics [3,
4]. The difference operator uses the gray-level difference of neighboring pixels to extract
the edge and texture features of the image and then adds the weighted sum to the original
image to enhance the important features of the image, such as edges and textures, thereby
achieving a better image visual effect. The gray-level statistical method can improve the
dynamic range of gray values and image contrasts by redistributing the probability of
light and dark pixel values in the image and hence improve the visual effects of the
image.

In recent years, research focus on difference image enhancement has expanded from
the traditional integer-order differential operator to the fractional-order sub-differential
operator. Pu proposed a classical image enhancement model based on a fractional dif-
ferential operator using the “weak derivative” and “nonlocal” characteristics of the frac-
tional differential operator; as such, the fractional differential operator can enhance the
high-frequency component of the image and retain the low- and medium-frequency
information of the signal nonlinearly. Therefore, the application of a low-order frac-
tional differential operator to image enhancement can enrich the weak edge and tex-
ture of the enhanced image; additionally, the detailed features of the smooth region of
the image can be enhanced accordingly [5–7]. On this basis, scholars have proposed
many improved image enhancement models based on fractional differential to solve
the problems of fractional differential image enhancement models [8–13]. However,
the enhancement effect of the fractional differential operator on low-contrast images is
insignificant. This is because the fractional differential operator is essentially a differ-
ence operator. It mainly enhances the gray value of pixels in abrupt gray areas, such
as edges and textures, and does not redistribute the local or nonlocal gray value dis-
tribution of the image. Therefore, the enhancement effect of the low-contrast image is
poor. The image enhancement method based on pixel gray value statistics is a histogram
enhancement technology, among which the histogram equalization method is widely
used because of its simplicity and high efficiency [14–18]. The traditional histogram
equalization image enhancement is a global image enhancement method that enhances
an entire image in a unified scale. Therefore, this method can not only enhance the
contrast of the background image, but also reduce the contrast of useful signals, and the
gray level of the transformed image will be reduced owing to tradeoffs. Consequently,
some details in the image will disappear, and the hierarchical sense of the processed
image will be poor. To solve the problems in traditional histogram enhancement tech-
nology, Kare proposed a self-adaptive contrast-limited adaptive histogram equalization
(CLAHE) image enhancement model [19], which uses block processing to perform his-
togram equalization to different degrees in different contrast regions of the image. To
overcome noise in enlarged images during the enhancement process, a contrast is set.
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A threshold is used to control the effects of noise, and a better contrast enhancement
effect is obtained. On this basis, scholars have proposed many improvement methods
[20, 21]. However, the effect of the CLAHE image enhancement model on images with
rich texture details is insignificant. This is because the image enhancement model is
based on the pixel statistical redistribution method, which cannot directly enhance the
edge and texture details of the image; hence, the image enhancement ability is limited.

In summary, the fractional differential image enhancement model based on the dif-
ference method and the CLAHE image enhancement model based on statistical methods
have their own advantages and disadvantages. The image enhancement model based on
fractional differential can effectively enhance the edge and texture details of the image,
but the effect of the model on low-contrast image enhancement is insignificant; hence,
it cannot effectively improve the overall and local contrast of the image. Furthermore,
the visual effect of the enhanced image is general. Meanwhile, the CLAHE operator
can effectively improve the local and nonlocal contrast of an image; additionally, a con-
trast threshold is introduced to suppress noise amplification during image enhancement.
However, the effect of the CLAHE operator on image enhancement with rich texture
details is general, and the enhancement of image clarity is insignificant. To enhance
the overall and local contrast of an image and effectively enhance the edge and texture
details of the image, this study attempts to integrate a fractional-order differential opera-
tor into the contrast-constrained adaptive histogram enhancement model; additionally, a
CLAHE image enhancementmodel based on a fractional differential-order local variable
is proposed. The image model offers not only the advantages of the classical fractional
differential enhancement operator, but also exhibits the ability of the CLAHE model to
enhance the local and nonlocal enhancement effect of low-contrast images.

2 Theoretical Background

2.1 Fractional Calculus Theory

Fractional calculus theory is an extension of integral-order calculus theory. Leibniz ini-
tially established fractional calculus theory at the end of the 16th century. Subsequently,
the development of fractional calculus theory and its application lagged behind. It was
not until Riemann Liouville [22] introduced fractional calculus theory into Brownian
motion analysis that fractional calculus theory was initially applied in practice. In recent
years, fractional calculus theory has been widely used in signal processing and analysis,
fractal theory, and fractional order PID controllers. To date, a unified definition for frac-
tional calculus theory does not exist. Generally, different definitions are used based on
applications. The definition of fractional Grümwald–Letnikov (G–L) is realized using
a difference scheme; therefore, it is highly suitable for processing the gray values of
discrete pixels in digital image processing. Furthermore, the fractional G–L definition
is conducive to numerical calculations and can be regarded as the extension of the limit
form of the integer-order differential.

According to the definition of the integer-order derivative for continuous functions
f (x), the first derivative is defined as shown in Eq. (1).

f
′
(x) = lim

�x→0

f (x + �x) − f (x)

�x
(1)
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According to a similar definition, the definition of the n-order derivative of a
continuous function f (x) can be deduced, as shown in Eq. (2).

f n(x) = lim
�x→0

1

(�x)n

n∑

j=0

(−1)j
(
n

j

)
f (x − j�x) (2)

According to the mathematical properties of the classical gamma function �(x),(
n

j

)
= n !

j !(n−j)! = �(n+1)
�(j+1)�(n−j+1) . Assuming that any real number v replaces a positive

integer n and considering the special case of the fractional G–L definition in digital
image processing, i.e., the distance between adjacent pixels is �x = 1, a fractional
G–L differential definition suitable for two-dimensional discrete signal processing is
obtained. Equation (3) can be simplified to Eq. (4), where g(i) = (−1)i �(v+1)

�(i+1)�(v−i+1) ,
and the symbol “*” implies a convolution operation.

f v(x) = lim
n→∞

n∑

i=0

(−1)i
�(v + 1)

�(i + 1)�(v − i + 1)
f (x − i) (3)

f v(x) = lim
n→∞

n∑

i=0

g(i)f (x − i) = g(x) ∗ f (x) (4)

2.2 Amplitude Frequency Characteristics of Fractional Calculus Operators

To analyze the amplitude–frequency characteristics of the one-dimensional signal frac-
tional calculus operator, the function g(x) is transformed into a frequency space. Both
sides of Eq. (4) are Fourier transformed to obtain Eq. (5), where the frequency domain
function of the fractional calculus is G(ω), as shown in Eq. (6).

FT
(
f v(x)

) = FT (g(x) ∗ f (x)) = G(ω) × F(ω) (5)

G(ω) = FT

(
(−1)i

�(v + 1)

�(i + 1)�(v − i + 1)

)
= |ω |vei vπ2 sgn(ω) (6)

Figure 1 shows the amplitude–frequency characteristic curves of the fractional dif-
ferential operator and the fractional integral operator based on the fractional G–L def-
inition. Subgraph (a) represents the amplitude–frequency characteristic curve corre-
sponding to the differential order defined by the fractional-order G–L in the range of
v ∈ {0.0, 0.5, 0.8, 1.0, 1.5, 2.0}. Direct observation shows that the fractional-order
G–L calculus operator with a positive order can enhance the high-frequency part of the
signal (ω > 1). Furthermore, the enhancement amplitude will increase rapidly with the
increase in the differential order, but the enhancement amplitude is not as significant
as that of the high-order integer differential. The subpositive fractional G–L differential
operator can enhance the middle- and low-frequency parts of the signal (ω < 1) to a
certain extent, but the high-order sub-integer differential operator has a certain degree of
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attenuation effect on the low- and medium-frequency information. Subgraph (b) shows
that the fractional-order range v ∈ {0.0, −0.5, −0.8, −1.0, −1.5, −2.0} defined by
G–L is the corresponding amplitude–frequency characteristic curve. Direct observation
shows that the fractional-order G–L calculus operator with a negative order had a cer-
tain degree of nonlinear attenuation on the high-frequency part of the signal (ω > 1),
and the attenuation amplitude decreased gradually with the decrease in the differential
order. Compared with the high-order integral operator, the fractional-order G–L calculus
operator can retain more high-frequency information. The fractional-order G–L calcu-
lus operator with a negative order had a certain degree of nonlinear enhancement on the
middle- and low-frequency parts of the signal (ω < 1), and the enhancement amplitude
increased significantly with the decrease in the differential order.

a. Fractional differential operator

b. Fractional integral operator

Fig. 1. Amplitude–frequency characteristic curve of fractional order G–L calculus operator

2.3 CLAHE Model

To solve the block effect and real-time problem of the traditional histogram enhancement
model, Karel proposed a contrast-constrained adaptive histogram image enhancement
algorithm. The core idea of the CLAHE algorithm is to use the image segmentation
mechanism. Before calculating the cumulative histogram of each image block, a clip-
ping threshold is determined to increase the amplitude of the original image cumulative
histogram. The clipping part cannot be omitted but is redistributed to the original image
histogram according to certain rules. Finally, bilinear interpolation is used to improve
the timeliness of the CLAHE algorithm, and the block effect is eliminated. The core
steps of the CLAHE algorithm are as follows.
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Step 1. The image is divided into n * n image non-overlapping sub-blocks of the same
size, as shown in in Fig. 2(a).

         
a. Block image                          b. Sub-block image partition

Fig. 2. Image block diagram for n = 4

Step 2. The histogram of the current image sub-block is calculated, and the clipped
image histogram is determined according to the image gray threshold, as shown in
Fig. 3. The number of pixels in the image block whose gray histogram is greater than the
histogramclipping threshold is accumulated and stored in the exceeding threshold vector.
Subsequently, the histogram is redistributed repeatedly to satisfy the clipping threshold.
Finally, the image sub-block is processed using traditional histogram equalization.

a. Histogram of original image   b. Histogram after clipping  c. Histogram after reallocation

Fig. 3. Schematic diagram of image sub block histogram clipping process
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Step 3. According to the area divided by subgraph (b) in Fig. 2, interpolation calculation
is performed using different methods. Specifically, as shown in Fig. 4, for the pixels
in the dark region, bilinear interpolation was performed according to the gray value
of the pixel in the four neighborhood regions. For the pixel in the light color region,
the gray value was linearly interpolated according to the gray value of the pixel in
the photographic neighborhood. The gray value of the pixel in the colorless region
was determined according to the histogram mapping of the sub-block. The specific
interpolation method is expressed in Eq. (7).

a. Image interior area                   b. Image boundary area       c. Image corner area

P
PP

r

s

Fig. 4. Schematic diagram of pixel interpolation method in different regions

Pnew =

⎧
⎪⎨

⎪⎩

s
s+r

(
y

x+y fi,j(Pold ) + x
x+y fi+1,j(Pold )

)
+ r

s+r

(
y

x+y fi,j+1(Pold ) + x
x+y fi+1,j+1(Pold )

)

s
s+r fi,j(Pold ) + r

s+r fi,j(Pold )

Pold

(7)

3 Fractional Differential Contrast-Limited Adaptive Histogram
Equalization (FCLAHE) Model

To enhance the edge and texture details of the image, effectively enhance the image
contrast, and improve the visual effect of the image, a model combining the advantages
of the fractional-order differential operator and the CLAHE model is proposed herein,
known as the variable-order FCLAHE image enhancement model.
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3.1 Image Detail Measure

(1) Fractional gradient modulus of the image

The image gradient is described as a measure in a bounded variation function or distri-
bution space, denoted as BV(�), in which discontinuous jump features such as edges
and textures are allowed. Therefore, the space BV(�) is often used to describe the global
characteristics of images in an image processing model based on a variational method
[23]. In this study, based on the total variation and AAABV(�)AA space and combined
with fractional calculus theory, the fractional total variation and fractional BV(�) space
were extended.

Suppose � is a bounded subset of the image plane and image f ∈ L 1(�). If the
distribution derivative of an image f can be expressed by a finite-vector-valued random
measure on a bounded subset, i.e., when ∀φ = (φ1, φ2) ∈ C1

0 (�)2 and
∣∣φL∞(�)

∣∣ ≤
1, then the fractional Green’s formula

∫
�
f × divvφd� == ∫

�
(−1)vDvf · φd� is

satisfied. In this case, Dvf = (Dv
xf ,D

v
yf ) is a finite vector value measure on �, from

which expressions of fractional total variation and fractional step degree can be obtained,
as shown in Eqs. (8) and (9).

∫

�

∣∣Dvf
∣∣d� = sup

⎧
⎪⎪⎨

⎪⎪⎩

∫

�

fdivvφd� : φ = (φ1, φ2)

∈ C1
0 (�)2,

∣∣φL∞(�)

∣∣ ≤ 1

⎫
⎪⎪⎬

⎪⎪⎭
(8)

Dvf = ∇vf =
(

∂vf

∂xv1
,

∂v

∂xv2

)
(9)

Based on Eq. (9) and considering the “eight-neighborhood” of the image, the frac-
tional ladder degree modulus function of the image can be obtained, as shown in
Eq. (10).

∣∣∇vf
∣∣ =

√√√√√√√√√

⎛

⎜⎜⎜⎝

(
∂vf

∂xv+

)2

+
(

∂vf

∂ xv−

)2

+
(

∂vf

∂yv+

)2

+
(

∂vf

∂yv−

)2

+
(

∂vf

∂xv45 ◦

)2

+
(

∂vf

∂xv135 ◦

)2

+
(

∂vf

∂xv275 ◦

)2

+
(

∂vf

∂xv315 ◦

)2

⎞

⎟⎟⎟⎠ (10)

Based on Eq. (10), the fractional gradient modulus of the “sub-block image” can be
obtained, as shown in Eq. (11).

FGMIk =
∑

(i,j)∈Ik

∣∣∇vfi,j
∣∣ (11)

(2) Image texture measurements

The autocorrelation function x(t) is typically used to represent the relationship between
random signals at any time point. It is generally used to describe the cross-correlation
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of specific signals and the correlation degree at different times in the same sequence.
Furthermore, it is typically used to search for repetitive patterns. Because the image
texture roughness is proportional to the autocorrelation function, an autocorrelation
function is introduced herein to mathematically describe the image texture feature value;
hence, the image texture measurement can be obtained, as shown in Eq. (12).

ITMε,η(fk) =

∑
(i,j)∈fk

f (i, j)f (i − ε, j − η)

∑
(i,j)∈fk

[
f (i, j)

]2 ε, η ∈ [1,D] D is the offset distance (12)

3.2 Variable-Order Weight Function

As shown by the amplitude–frequency characteristic curve of the fractional differential
operator, the fractional differential operator can more effectively enhance the “weak
texture” details of the image than the integer-order differential operator in the low-
frequency part of the image; additionally, it can nonlinearly enhance the “strong texture”
and edge information of the image in the high-frequency part of the image, but the lifting
amplitude is lower than that of the high-order integer differential operator. Therefore, a
coincidence score must be constructed for the weight function of the properties of the
differential-order image enhancement operator. In Eq. (13), using the special properties
of the special function, g(x) as shown in Fig. 5(a), the boundary of function g(x) is
approximately x = k, the definition domain is x ∈ [0, 1], and the value domain is
g(x) ∈ [0, 1]. In the definition domain, the function g(x) decreased with the increase
in x. In this study, the normalized image eigenvalues were in the range of 0 to 1, and
the corresponding fractional differential-order values were between 0 and 2 because
the fractional differential operator in this interval can enhance the image details more
reasonably. Therefore, the range of the function g(x) was extended to 0–2, and the
symmetric function x = k about g

′
(x) was derived, as shown in Eq. (14). As shown

in Fig. 5(b), the function g
′
(x) is related to x = k (the boundary), definition domain

x ∈ [0, 1], and value domain g′(x) ∈ [0, 2]. Within the definition domain, the value
of function g

′
(x) increased with x, and the increase range of the function value was

controlled by parameter r.

g(x) = 1

1 + (x/k)r
(13)

g
′
(x) = 2

1 + ((2k − x)/k)r
(14)

3.3 Description of FCLAHE Algorithm

Step 1: The Image is Classified into Two Levels. Based on the CLAHE algorithm,
the image is divided into N*N sub-blocks, and the sub-block image is further divided
into M*M block “secondary sub-block images” by combining the template scale of the



218 G. Huang et al.

(a) g(x) (b) 'g (x)

Fig. 5. Schematic diagram of weight function within x ∈ [0, 1] range

traditional fractional differential mask operator. If the domain � is a bounded open sub-
set of the real space R2, then the image can be represented as f = {

fΩ : Ω ∈ R2 → R
}
.

As shown in Fig. 6, the entire image f� in the definition domain � is blocked, and
it is numbered in the line order to obtain the line vector set

[
f1, f2, f3....f N∗N

]
of N*

N * N “sub-block images.” Hence, the row vector set
[
fk1, fk2 , fk3 ....fkM ∗M

]
of M * M

“secondary sub-block images” can be obtained after the current “sub-block image” fk ,
k ∈ 1,N∗N is divided into two levels (Fig. 7).

Fig. 6. N = 4, M = 3 block diagram Fig. 7. The fractional order G - L operator

Step 2: Calculate the “Sub-Block Image” Eigenvalue. The fractional step modulus
value of each “sub-block image” was calculated using Eq. (11) and then stored into the
fractional ladder modulus value vector FGMblk of the “sub-block image.” Using the
image texture formula show in Eq. (12), the texture measure value of each “sub-block
image” was calculated and then stored into the texture measure vector ITMblk of the
“sub-block image.” Subsequently, the fractional ladder degree modulus vector FGMblk
and image texture measure vector ITMblk were normalized by a sigmoid function in the
global range, as shown in Eq. (15). Finally, the weighted sum of the two types of image
eigenvalues was calculated to obtain the “sub-block image” eigenvalue vector SIFblk , as
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shown in Eq. (16).
{
FGMblk = 1

1+e−FGMblk

ITMblk = 1
1+e−ITMblk

(15)

SIFblk = k1FGMblk + k2ITMblk k1 + k2 = 1

k1 and k2are weight adjustment coefficients (16)

Step 3: Calculate characteristic value of “secondary sub-block image”. As in step
2, the fractional step modulus vector of the “sub-block image” can be obtained using the
fractional step modulus formula shown in Eq. (11) and the image texture measurement
formula shown inEq. (12). Subsequently, the samenormalizationprocesswasperformed.
Finally, the weighted sum of the two image eigenvalues was calculated to obtain the
“secondary sub-block image” eigenvalue vector SIFsub_blk .

Step 4: Determine the Order of Variable-Order Fractional Differential. The “sub-
block image” eigenvalue vector SIFblk and the “secondary sub-block image” eigenvalue
vector SIFsub_blk are weighted and summed again; consequently, the local and nonlocal
image eigenvalues SIF of the current processing module can be obtained, as shown in
Eq. (17). Using the g′(x) property of the weight function deduced in this study, i.e., it
is an increasing function in the real number field, and that the enhancement amplitude
increases with the independent variable, the fractional differential-order function with
variable order can be obtained, as shown in Eq. (18).

SIF = k3SIFblk + k4SIFsub_blk k3 and k4 are weight coefficients
′ k3 + k4 = 1 (17)

v = 2

1 + ((2k − SIF)/k)r
k and r are adjustment parameters (18)

Step 5: Variable-Order Fractional Differential Enhancement. Using the fractional
G–L differential operators in [6], as shown in Eqs. (19) and (20), and extending them to
eight directions in the image, we can obtain the fractional G–L differential mask operator
based on the fractional-order G–L differential mask operator, as shown in Fig. 7, where
the coefficient of the mask operator is expressed by Eq. (21). Finally, the current sub-
block image fk and variable-order mask operator are convoluted to obtain the edge and
texture details of the current sub-block image.

G
a D

v
t f (x, y)x

�= f (x, y) + (−v)f (x − 1, y) + −v(−v + 1)

2
f (x − 2, y)

+−v(−v + 1)(−v + 2)

6
f (x − 3, y) + · · · + �(−v + m)

�(m + 1)�(−v)
f (x − m, y)

(19)

G
a D

v
t f (x, y)y

�= f (x, y) + (−v)f (x, y − 1) + −v(−v + 1)

2
f (x, y − 2)

+−v(−v + 1)(−v + 2)

6
f (x, y − 3) + · · · + �(−v + n)

�(n + 1)�(−v)
f (x, y − n)

(20)
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Wf0 = 1
Wf1 = −v
Wf2 = v(v−1)

2
. . . . . .

Wfm = v(v−1)(v−2)...(v−m+1)
m!

(21)

Step 6: FCLAHE Image Enhancement. Redistributing the current sub-block image
according to certain rules, the histogram distribution of fk shows the occurrence times
of all pixels in the original histogram within the clipping threshold. Subsequently, the
redistributed histogram was equalized to obtain a better contrast in the sub-block image.
Finally, the image details extracted by the CLAHE method and fractional differential
were weighted and summed, as shown in Eq. (22); the function min() ensures that the
gray value of the processed image is within the specified range.

fk = min

⎛

⎝k5
∑

i∈fk

(
fki ∗ Wv

max(Wv)

)
+ k6CLAHE(fk), 1

⎞

⎠

k5 and k6 are weight adjustment coefficients (22)

4 Experimental Simulation and Comparative Analysis

4.1 Evaluation Parameters

In a subjective evaluation, the human eye directly views the enhanced image, and the
enhanced image mainly focuses on the human eye’s feeling, to reflect the human visual
perception. Hence, the image is more vivid. Because the human eye is sensitive to the
texture details and edge parts of the image, direct observation was performed in this
study to contrast the difference between visual light and shade, as well as the difference
in binary images with edge and texture features. The objective index was evaluated by
constructing the relevant evaluation function of important objective image evaluation
features based on the subjective feeling of the human eyes. Subsequently, according to
the evaluation function, the numerical quantization results based on some image features
were obtained. In this study, the edge preserving coefficient, average gradient, contrast,
and image entropy were used to evaluate the objective enhancement effect of image
enhancement operators.

(1) Edge Preservation Index (EPI)
The edge preserving index indicates that the enhancement operator maintains the hor-
izontal or vertical edge of the image. The higher the EPI value, the better is the edge
preserving ability of the operator. The formula for the edge retention coefficient is shown
in Eq. (23).

EPI =
row∑

i=1

col∑

j=1

∣∣∣∣∣
Δlevel fafter(i, j)+
Δvertical fafter(i, j)

∣∣∣∣∣

/
row∑

i=1

col∑

j=1

∣∣∣∣∣
Δlevel fbefor(i, j)+
Δvertical fbefor(i, j)

∣∣∣∣∣ (23)
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(2) Average Gradient (AG)
The AG value of the image can describe detailed contrast and texture changes in the
image as well as reflect the clarity of the image to a certain extent. The formula to
calculate the AG value is shown in Eq. (24).

AG = 1

M ∗ N

row∑

i=1

col∑

j=1

√
Δlevel f (i, j)2 + Δvertical f (i, j)2 (24)

(3) Entropy (E)
The E of an image describes the average amount of information contained in the image.
The higher the E value, the more information it contains, and the richer are the edge
texture details of the image. The formula to calculate the image E is as follows:

Entropy(fi,j) = −
NUM _GL∑

L=1

P
(
fi,j

)
logP

(
fi,j

)

p is the probability function of the image pixel

(25)

(4) Contrast (C)
C represents the ratio of black to white, i.e., the gradient from black to white. The larger
the ratio, the more gradients exist from black to white, and the better is the texture level
of the detail. The formula for C is as follows:

C =
∣∣∣∣∣∣

row∑

i=1

col∑

j=1

�f (i, j)

∣∣∣∣∣∣

/
Number (26)

Here, “number” indicates the number of differences between the gray values of eight
adjacent regions of the image.

4.2 Experimental Results Analysis

The variable-order fractional order CLAHE image enhancement model proposed herein
involves many parameters. The weighted coefficient or threshold parameter of the model
can be determined using the empirical value or average proportion after many experi-
ments. In this study, the number of first-order blocks was N = 4, the number of second-
order blocks was M = 3, the offset distance of the image texture was D = 5, and
the weights of the fractional-step eigenvalue and texture eigenvalue of the “sub-block
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image” and “secondary sub-block image” were k1 = 0.5 and k2 = 0.5, respectively. For
the variable-order fractional differential, the weights of the two-level sub-block image
eigenvalues were k3 = 0.5 and k4 = 0.5, and the variable-order fractional differential
function k = 0.5, r = 2. The first four coefficients were used as the estimated values
of the fractional differential. The weights of the FCLAHE contrast enhancement image
and fractional differential detail image were k5 = 1.1 and k6 = 1, respectively.

Toverify the advantages of theFCLAHE image enhancementmodel proposedherein,
the current classic image enhancement methods were compared, including the Laplace
image enhancement (Laplace), traditional fractional-order G–L image enhancement,
histogram equalization (HE), and CLAHE methods. The experimental results show that
superior performance of the proposed method based on comparing the images obtained
from different image enhancement methods and the texture characteristics of the image.
The experimental results show that the proposed FCLAHE image enhancement method
had ahigher contrast and edge texture than those of existing image enhancementmethods,
as indicated by the calculated quantitative values of objective indicators of the image
after different enhancement methods, including the EPI, AG, E, and C. Furthermore, it
demonstrated clearer and better visual effects.

Figure 8 shows the contrast of different enhancement models to enhance the Barbara
image. Direct observation of the red circle part of the Barbara image shows that the
Laplace operator, fractional G–L operator, and FCLAHE image enhancement model
proposed herein significantly improved the texture details of the rattan chair information
of the Barbara image compared with the HE and CLAHE image enhancement methods.
Because the Laplace operator is a second-order differential operator, the edge and texture
amplitude of the enhanced image improved significantly. However, if the differential
order of the Laplace operator is extremely large, the strong edge information in the image
will be enhanced excessively, thereby resulting in the false “bright line” phenomenon
on the arm edge of the character image, which may cause image distortion. Direct
observation of the Barbara blue circle shows that the CLAHE and FCLAHE image
enhancement models can improve the local contrast information of the image compared
with the Laplace, fractional-order G–L, and HE methods because it considers the local
and nonlocal statistical information of the image, resulting in better bright-contrast visual
effects and more visible low-contrast details. Figure 9 shows the contrast effect of the
texture features of image Barbara enhanced by different enhancement models. Direct
observation shows that the method proposed herein can enhance the detailed texture
features of the image more effectively than other image enhancement methods, as well
as effectively improve the local and overall contrasts of the image.

Figure 10 shows the contrast curves of the AG, edge retention coefficient, C, and E
values of the two images above enhanced using the Laplace, fractional-order G–L, HE,
CLAHE, and FCLAHE methods. Direct observation shows that the FCLAHE method
improved the low-frequency weak edge and texture details of the image more effectively
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a. Original picture b. Laplace       c. G-L 

d. HE                e. CLAHE           f. FCLAHE

Fig. 8. Pictures obtained using different image enhancement models

a. Original picture b. Laplace        c. G-L 

d. HE              e. CLAHE        f. FCLAHE

Fig. 9. Texture feature map of different image enhancement methods

compared with the difference or statistical image enhancement methods. Moreover, it
exhibited the ability of the nonlocal adaptive histogram operator to improve the local
and nonlocal contrasts of the image; consequently, the evaluation index of the enhanced
image was better than those of other classical image enhancement methods.
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Fig. 10. Evaluation data corresponding to different image enhancement models

5 Conclusion

The fractional differential image enhancement model and its improved model typically
utilizes the “weak derivative” and “nonlocal” properties of the fractional differential
operator; hence, it can effectively enhance the edge and texture information of an image.
However, the effect of this model on low-contrast image enhancement is not ideal. The
CLAHE image enhancement model utilizes the probability redistribution of light and
darkpixels to enhance the overall contrast of an enhanced image and expands the dynamic
range of the gray level, which can effectively improve the light and dark contrasts of the
image. However, the effect of the CLAHE model on images with rich texture details is
insignificant. Considering the advantages and disadvantages of the difference and statis-
tical methods for image enhancement, a variable-order fractional order CLAHE image
enhancement model based on the existing fractional-order differential image enhance-
ment model and the classical CLAHEmodel was proposed. Themodel uses the blocking
mechanism of the CLAHE model, in which the current sub-block image is divided into
two levels. The order of the fractional differential operator is determined by the linear
weighted value of the fractional ladder degree modulus and the image texture measure
of the current image sub-block and secondary block images. The simulation results
show that the proposed FCLAHE method afforded different degrees of improvement
compared with other classical image enhancement models owing to the combination of
the fractional differential operator and the CLAHE operator’s excellent characteristics,
whether in subjective direct observations or based on objective evaluation data.
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Abstract. In this paper, a mixture process is proposed for modelling the
summation of Cauchy and Gaussian random variables. The probability
density function (PDF) of the mixture can be derived as the Voigt pro-
file. To further study the noise, the estimation of the constant model is
taken as an illustration. Here the scenarios of both known and unknown
density parameters are considered. The maximum likelihood estimator
(MLE) with Voigt function is first employed to devised the optimal esti-
mator. Then an M -estimator with pseudo-Voigt function is developed to
improve the computational complexity of MLE. Simulation results indi-
cate the superior of both proposals, which can attain the Cramér-Rao
lower bound.

Keywords: Cauchy distribution · Gaussian distribution · Additive
mixture noise · Maximum likelihood estimation · Voigt function ·
M -estimation · Pseudo-Voigt function

1 Introduction

Impulsive noise is commonly encountered in many applications such as wireless
communications and image processing [1]. Differ with Gaussian noise, it belongs
to a family of heavy-tailed noise depicting varying characteristics. Typical impul-
sive noise models in the literature are α-stable distribution, and generalized
Gaussian distribution (GGD) [2]–[3]. Unfortunately, these models cannot cover
all variety of impulsive noise types in the real-world, especially for noise obtained
at receivers both in radio communication network [4] and binary transmission
[5], where the noise is modeled as the sum of two random variables following dif-
ferent distribution. It is also discussed in [6] that in astrophysical images, cosmic
microwave background radiation was contaminated with Gaussian noise from
the satellite beam and the radiation from galaxies which can be modelled as an
α-stable distribution. Here the noise can be expressed as the sum of α-stable
and Gaussian variables.
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In this paper, to further study the mixture noise, the sum of symmetric
Cauchy distribution (α = 1) with median γ and zero mean Gaussian distribution
with variance σ2 is taken as an example. The probability density function (PDF)
of the mixture noise is called Voigt function, which is derived by the convolution
of the PDF of Cauchy and Gaussian’s PDF [7]. When the density parameters,
namely, γ and σ2 are known, the PDF of the mixture is determined as a Voigt
function, and hence maximum likelihood estimator (MLE) on the PDF can be
directly applied. However, when γ and σ2 are unknown, the expression of PDF is
specified. Therefore, they should be estimated prior to employing MLE, with the
use of the relationship between the empirical characteristic function (ECF) and
characteristic function (CF). Since the Voigt function has a complicated expres-
sion with complex integral, MLE suffers from a high computational complexity.
To reduce the complexity of MLE, the M -estimator is utilized, whose main idea
is finding the minimum of the logarithm of a loss function [8]. Here the loss
function can be selected as an arbitrary function. Particularly, the M -estimator
becomes the MLE in the case that the loss function is the logarithm of likelihood
function. In order to keep the high performance of the MLE, the loss function
is chosen as the pseudo-Voigt function, which is the approximation of the Voigt
function [9], which is referred to as MEPV. Similar to the MLE, both the known
and unknown γ and σ2 are considered. While they should be estimated firstly,
in the unknown density parameters case.

The rest of this paper is organized as follows. Sections 2 and 3 devise the
details of the proposed methods, refered to as MLE and MEPV, respectively,
where both the known and unknown density parameters cases are investigated
individually. Section 4 presented the derivation of the Cramér-Rao lower bound
(CRLB) of unknown parameters are derived. Computer simulations are con-
ducted in Sect. 5 to evaluate the accuracy and complexity of proposals. Finally,
conclusions are drawn in Sect. 6.

2 Maximum Likelihood Estimator

The observed data y = [y0, y1, . . . , yN−1]T can be modeled as:

yn = A + en, n = 0, 1, . . . , N − 1 (1)

where

en = qn + pn (2)

and A is the constant of interest, en is the sum of independent and identically
distributed (IID) Cauchy variable with median γ and IID zero mean Gaussian
noise with the variance σ2. Since the PDFs of Cauchy and Gaussian distributions
are:

fq(x; γ) =
γ

π(x2 + γ2)
(3)
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fp(x;σ2) =
1√
2πσ

e− x2

2σ2 , (4)

the PDF of en is calculated by the convolution of fq and fp [7], which is

fe(x;σ, γ) =
∫ ∞

−∞

γ

π((en − τ)2 + γ2)
1√
2πσ

exp
(

− τ2

2σ2

)
dτ (5)

=
Re{wn}
σ
√

2π
(6)

where

wn = exp

(
−

(
en + iγ

σ
√

2

)2
) (

1 +
2i√
π

∫ en+iγ

σ
√

2

0

exp
(
t2

)
dt

)
(7)

where wn is referred to as Faddeeva function [10], with Re{wn} being the real
part of wn.

In the following, we will first consider the scenario of known γ and σ2, and
then extend the study with unknown distribution parameters.

2.1 Scenario I: Known σ2 and γ

The PDF of the observed data yn is expressed as:

fe(y, A) =
N−1∏
n=0

Re{wn}
σ
√

2π
(8)

where

wn = e
−( yn−A+iγ

σ
√

2
)2

(
1 +

2i√
π

∫ yn−A+iγ

σ
√

2

0

et2dt

)
. (9)

According to the idea of MLE [11], the estimate of A, denoted by Â, can be
obtained:

Â = arg min
A

ln fe(y, A) = arg min
A

N−1∑
n=0

ln Re{wn} (10)

For a constant, the location range is (−∞,∞) and thus the grid search method
is not practical. Therefore the Newton’s method is utilized:

Â(k+1) = Â(k) −
∑N−1

n=0 f
′
e(yn;A)∑N−1

n=0 f ′′
e (yn;A)

∣∣∣∣
A=Â(k)

(11)
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where

f
′
e(yn;A) =

1
Re{wn}Re

{
∂wn

∂A

}
(12)

f
′′
e (yn;A) =

1
Re{wn}Re

{
∂2wn

∂A2

}
−

(
f

′
e(yn;A)

)2

(13)

∂wn

∂A
=

2
i
√

π
+ 2wn

yn − A + iγ

σ
√

2
(14)

∂2wn

∂A2
=

(
4
(yn − A + iγ

σ
√

2

)2 − 2
)

wn +
4

i
√

π

yn − A + iγ

σ
√

2
(15)

and (k) denotes the kth iteration. The (11) is updated until the relative error∣∣ Â(k+1)−Â(k)

Â(k+1)

∣∣ < ε is reached, with ε being the tolerance. To simplify the problem,
the least absolute deviation is utilized to initial the value of A, which is Â(0) =
median{yn}.

2.2 Scenario II: Unknown σ2 and γ

If γ and σ2 are unknown, an exact expression of PDF cannot be derived readily,
so γ and σ2 are estimated using the relationship between CF and ECF first. For
the ACG noise, the CF of yn has the form of

φ(t) = E{eiynt} = exp(itA − γ|t| − t2

2
σ2) (16)

where E is expectation operator and the magnitude of φ(t) can be written as

|φ(t)| = exp(−γ|t| − t2

2
σ2). (17)

Take the logarithm on both sides of (17), we have

Φ(t) = − ln |φ(t)| = γ|t| +
t2

2
σ2. (18)

Accordingly, the ECF ψ(t) has the form of

ψ(t) =
1
N

N∑
n=1

eiynt (19)

and Ψ(t) = − ln(|ψ(t)|). If the interval of t is chosen as t ∈ [t0, tM−1], then γ
and σ2 can be estimated as

{γ̂, σ̂2} = arg min
γ,σ2

J (20)
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where J = ||Ψ − Fx||1 with Ψ = [Ψ(t0), Ψ(t1), . . . , Ψ(tM−1)]T , x = [γ, σ2]T and
F = [b0,b1,b2, . . . ,bM−1]T with bn = [|tn|, t2n

2 ]. In this study, (20) can be solved
with the use of the subgradient method [12]:

x̂(k) = x̂(k) − αkg(k) (21)

where g(k) = −FT sign(Ψ − Fx(k)) and αk = 1/||g(k)||2. We employ the least
squares solution for minimizing ||Ψ − Fx||22 as x̂(0) and the stopping criterion
follows that of scenario I. According to the analysis in [13], the interval of t is
set to [0.1, 1]. Since γ and σ2 are estimated by (20), the PDF of en is calculated
by (8) and then Â is obtained by (11).

3 M -Estimator Using Pseudo-Voigt Function

Even though the MLE has a high accuracy performance, this method suffers from
high computational complexity due to the integral in the Faddeeva function, i.e.,
the PDF of yn. To reduce the cost, the logarithm of the pseudo-Voigt function
is chosen as the loss function, and M -estimator is employed to estimate the
constant.

It has been proved that the Voigt function can be approximately described
by the sum of the PDF of Cauchy and Gaussian distributions, which is called
pseudo-Voigt function [9]:

fP (en; γ, σ2) = μf1(en; γ) + (1 − μ)f2(en;σ2) (22)

where f1 and f2 are the PDFs of Cauchy and Gaussian distributions, respec-
tively:

f1(en; γ) =
Cγv√

π(e2n + γ2
v)

(23)

f2(en;σ2) =
C√
πγv

exp

(
− log(2)

(
en

γv

)2
)

(24)

with

μ =
C − √

g

C(1 − √
πg)

, C = b1/2(a)ea2
(1 − erf(a)) ,

γv =
√

2σb1/2(a) (25)

b1/2(a) = a +
√

g exp(−0.605a + 0.072a2 − 0.005a3 + 0.00014a4) (26)

and a = γ√
2σ

, with erf(·) denoting the error function and g = log(2).
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3.1 Known γ and σ2

In this case, the pseudo-Voigt function parameters are known, A is estimated by
minimizing

Â = arg min
Ã

{
−

N∑
n=1

log
(
fP (yn, A; γ, σ2)

)}
(27)

where fP (yn, A; γ, σ2) = (1 − μ)f1(yn − hnA; γ) + μf2(yn − hnA;σ2) = (1 −
μ)f1(yn, A; γ) + μf2(yn, A;σ2).

To solve (27), the Newton’s method is employed

Â(�+1) = Â(�) −
(

∂2 J

∂A2

)−1 (
∂J

∂A

) ∣∣∣∣
A=Â(�)

(28)

where

∂J

∂A
=

[∑N
n=1 nVn∑N
n=1 Vn

]
(29)
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(
Un − V 2

n

)
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(
Un − V 2

n

) ∑N
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(
Un − V 2

n

)
]

(30)

with

Vn =
1

fP (yn, A; γ, σ2)

(
(1 − μ)

(
−2 log(2)

γ2
v

)
f2(yn, A;σ2)

+μ

( −2(yn, A)
(yn, A)2 + γ2

v

)
f1(yn, A; γ)

)
(31)

Un =
1

fP (yn, A; γ, σ2)

(
(1 − μ)

(
−2 log(2)

γ2
v

)2

f2(yn, A;σ2)

+μ

(
2(yn, A) − 2γ2

v

((yn, A)2 + γ2
v)2

)
f1(yn, A; γ)

)
(32)

In this method, Â is updated by (28) and the initial guess and stop criterion are
same with those of the MLE.

3.2 Unknown γ and σ2

Similar to the scenario in the MLE, the density parameters γ and σ2 should be
estimated first, which can be derived from (19). After γ̂ and σ̂2 are obtained,
fP (yn, A; γ̂, σ̂2) can be reconstructed. Then, the unknown parameter vector A
can be estimated by updating (28).
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4 Cramér-Rao Lower Bound

The CRLB [11] of Â can be calculated by the diagonal elements of the inverse
of the Fisher information matrix I, which has the form of

I = −E

{
N∑

n=1

∂2 log fM (yn, A; γ, σ2)
∂A2

}

= E

{
N∑

n=1

∂ log fM (yn, A; γ, σ2)
∂A

(
∂ log fM (yn, A; γ, σ2)

∂A

)T
}

. (33)

With the use of (16), (33) is:

∂ log fM (yn, A; γ, σ2)
∂A

=
1
σ2

Re{(yn − A + iγ)wn}
Re{wn} . (34)

Since it is difficult to derive the closed-form expression of (34), the average of
sufficient number of independent runs is utilized to replace the expectation.

For unknown γ and σ2, we define ααα = [A γ σ2]T . Then the CRLB of Â in
this case corresponds to the (1, 1) entry of I−1. Then the (k, l) entry of I is

Ik,l

= −E

{
N∑

n=1

∂ log fM (yn, A; γ, σ2)
∂αk

∂ log fM (yn, A; γ, σ2)
∂αl

}
,

k, l = 1, 2, 3. (35)

where

∂ log fM (yn, A; γ, σ2)
∂ααα

=

⎡
⎢⎢⎢⎣

1
σ2

Re{(yn−A+iγ)wn}
Re{wn}

−
1

σ2 Re{i(yn−A+iγ)wn}+ 2√
2πσ2

Re{wn}
1

σ2 Re{(yn−A+iγ)2wn}+ γ√
2πσ2σ2

Re{wn} − 1
2σ2

⎤
⎥⎥⎥⎦ . (36)

5 Simulation Results

To assess the performance of the proposed methods, computer simulations are
provided. The mean square error (MSE), E{(Â − A)2}, is utilized as the per-
formance measure. The constant is defined as A = 0.5. In the case of unknown
density parameter, the interval of t is chosen as [0.1, 1] with 1000 uniform grid
points, according to the analysis in [13]. Due to the complexity of the mixture
noise, the signal to noise ratio (SNR) is difficult to define, and hence we set
γ = σ2 and scale σ2 to produce different noise conditions. Comparison with the
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1-norm estimator is provided and the CRLB is also included as the benchmark.
It is noted that the 1-norm minimizer is solved by the least absolute deviation
(LAD) [14]. All results are based on 1000 independent runs with a data length
of N = 60.

First of all, the scenario of the known distribution parameters is investigated.
It is shown in Figs. 1 and 2 that the MSEs of both MLE and MEPV can attain
the CRLB for σ2 ∈ [−30, 10] dB case, while they are superior to the 1-norm
estimator. Here, the performance of both MLE and MEPV are same to each
other, this is because the main idea of them similar. Figure 3 indicates the
average computational cost versus the data length N , where σ2 and γ are set to
10 dB. A stopwatch timer is employed to measure the computation time. It is
observed that the complexity of MEPV is significantly reduced compared with
the MLE. Furthermore, for large values of N (N > 2550), the computational
cost of MLE is increasing exponentially, while MEPV grows linearly because it
requires less iterations to converge.

Then, the scenario of the unknown γ and σ2 is studied. Here the ECF and
CF are employed to estimate the density parameters γ and σ2 in prior. It can
be seen in Figs. 1 and 3 that the MSE of both MLE and MEPV can achieve the
CRLB and they still outperforms the 1-norm estimator.
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Fig. 1. Mean square error of A versus σ2 with known γ and σ2



Optimum Parameter Estimation 235

500 1000 1500 2000 2500

N

10-5

10-4

10-3

10-2

10-1

100

C
om

pu
ta

tio
na

l t
im

e

L1 norm
MLE
MEPV

Fig. 2. Computational complexity versus N

-30 -25 -20 -15 -10 -5 0 5 10
2 (dB)

-50

-40

-30

-20

-10

0

10

M
ea

n 
S

qu
ar

e 
E

rr
or

 o
f A

 (
dB

)

L1 norm
MLE
MEPV
CRLB

Fig. 3. Mean square error of A versus σ2 with unknown γ and σ2

6 Conclusion

A mixture noise modeled as the sum of two popular noise processes, namely,
Cauchy and Gaussian distributions is investigated in this paper. To estimate the
parameter in this mixture noise, the MLE is first developed for both known and
unknown density parameters cases, which is regarded as a special M -estimator.
The MEPV is also devised to estimate the parameters with reduced computa-
tions. Computer simulation results are provided to show the optimality of the
proposed methods.



236 Y. Chen et al.

Funding. The work was financially supported by National Natural Science Founda-

tion of China (Grant No. 61701021) and Fundamental Research Funds for the Central

Universities (Grant No. FRF-TP-19-006A3).

References

1. Zoubir, A.M., Koivunen, V., Chakhchoukh, Y., Muma, M.: Robust estimation in
signal processing: a tutorial-style treatment of fundamental concepts. IEEE Sig.
Process. Mag. 29(4), 61–80 (2012)

2. Nikias, C.L., Shao, M.: Signal Processing with Alpha-Stable Distribution and
Applications. Wiley, New York (1995)

3. Shynk, J.J.: Probability, Random Variables, and Random Processes: Theory and
Signal Processing Applications. Wiley, Hoboken (2013)

4. Ilow, J., Hatzinakos, D., Venetsanopoulos, A.N.: Performance of FH SS radio net-
works with interference modeled as a mixture of Gaussian and alpha-stable noise.
IEEE Trans. Commun. 46(4), 509–520 (1998)

5. Ilow, J., Hatzinakos, D.: Detection for binary transmission in a mixture of Gaussian
noise and impulsive noise modeled as an alpha-stable process. IEEE Sig. Process.
Lett. 1(3), 55–57 (1994)

6. Herranz, D., Kuruoglu, E.E., Toffolatti, L.: An α-stable approach to the study
of the P(D) distribution of unresolved point sources in CMB sky maps. Astron.
Astrophys. 424(3), 1081–1096 (2004)

7. Olver, F.W.J., Lozier, D.M., Boisvert, R.F.: NIST Handbook of Mathematical
Functions, pp. 167–168. Cambridge University Press, Cambridge (2010)

8. Huber, P.J.: Robust Statistics. Wiley, New York (1981)
9. Dirocco, H.O., Cruzado, A.: The Voigt profile as a sum of a Gaussian and a

Lorentzian functions, when the coefficient depends only on the widths ratio. Acta
Physica Polonica A 122(4), 666–669 (2012)

10. Weideman, J.A.C.: Computation of the complex error function. SIMAM J. Numer.
Anal. 31(5), 1497–1518 (1994)

11. Kay, S.M.: Fundamentals of Statistical Signal Processing: Estimation Theory.
Prentice-Hall, Englewood Cliffs (1993)

12. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
New York (2004)

13. Kogon, S.M., Williams, D.B.: On the characterization of impulsive noise with α-
stable distributions using Fourier techniques. In: Proceedings of the Asilomar Con-
ference on Signals, Systems and Computers, vol. 2, pp. 787–791, November 1995

14. Li, Y., Arce, G.: A maximum likelihood approach to least absolute deviation regres-
sion. EURASIP J. Appl. Sig. Process. 12, 1762–1769 (2004). https://doi.org/10.
1155/S1110865704401139

https://doi.org/10.1155/S1110865704401139
https://doi.org/10.1155/S1110865704401139


Face Reconstruction with Specific Weight Mask

Wentao Shi(B) , Tianji Ma , Nangyang Bai , and Lutao Wang

Chengdu University of Information Technology, No. 24, 1st Section, Xuefu Road, Southwest
Airlines, Chengdu, Sichuan, China

waglt@cuit.edu.cn

Abstract. Create a 3D face model from a 2D face image, generally extract facial
feature points, calculate a 3D deformation model, and perform deformation and
stretching on the generated face database. However, this approach is not only
time-consuming but also has no calculation errors. Ideally, neural networks’ use
to obtain deformation model parameters is also affected by factors such as pose,
angle, and datasets. 3D face reconstruction methods rely excessively on the accu-
racy of the labeling and the face detector’s accuracy. This article proposes amethod
that is not affected by pose.We adopt a feature point extractor that can obtain more
features, design an hourglass network to get a model, and consider each feature
area differently, effectively using the feature point information. Map from two-
dimensional coordinates to three-dimensional space to achieve face reconstruc-
tion, and obtain a high-precision face model. We do experiments on the three-
dimensional face datasets AFLW2000-3D and 300W-3D. The results show that
this method can obtain good performance in face multi-angle reconstruction, and
the accuracy is also improved.

Keywords: Computer vision · Face alignment · Dense alignment · Face
reconstruction

1 Introduction

With the improvement of perception technology and the fermentation of deep learning,
studys in face recognition improve rapidly in recent years, and the accuracy of 3D face
reconstruction has also been continuously improved. Due to its wide range of applica-
tions, 3D face reconstruction has always attracted attention. Obtaining 3D information
from 2D images is of great significance to various fields. It plays a crucial character
on animation, games, smart shopping, information security, and other fields. However,
3D face reconstruction often relies on expensive capture equipment and professional
technicians, and the cost is exceptionally high. For a long time, the loss of in-depth
information and lack of prior knowledge has been a problem.

2D image recognition can easily obtain accurate information and has high robustness,
while 3D face reconstruction is affected by various factors such as angle, illumination,
skin texture, and lack of datasets with real marks. In order to get good results, the input
picture has to perform a good angle, and the face of the image cannot be blocked. Also,
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the method might be time-consuming, and the results might not work well. Therefore,
the transition from two-dimensional to three-dimensional is a challenging topic in the
computer vision area.

The face canbe regarded as a three-dimensional object containing texture information
and structure information. The three-dimensional face reconstruction method is mainly
based on the optimization algorithm [1], and the corresponding face structure and texture
information is obtained by obtaining the 3DMorphableModel (3DMM) coefficients [2].
3DMM learns the prior knowledge of 3D face utilizing statistical analysis and obtains
the required face model by controlling the average face database model’s deformation.
Reference [9] proposed an idea to separate the four areas of the face, find the best-
fitting model in each area, and further deform and combine to find the best-fitting model
corresponding to each area. However, these methods will be computationally time-
consuming due to their high computational complexity and rely on prior knowledge,
difficulty in initialization, and easy to fall into local optima.Evenwith these shortcomings
in those methods, 3DMM is still proposing solutions to nonlinear regression functions.
With the rise of machine learning and deep learning, most of the work is still based on
3DMM. Recently, methods of using CNNs to regress 3DMM coefficients have achieved
good results [3], Zhu [4], End to Endmethod [5]. However, many methods are restrained
by poses, they need the input data to have a good angle, and the feature regions are not
displaying well.

Fig. 1. Obtain 3D point cloud information from a single image

In order to solve the problem of insufficient robustness, limited by the rotation angle,
restoration accuracy, we create a two-dimensional coordinate system that carries 3D
semantic information and divide the face into different regions on the two-dimensional
surface through feature points, and we give different weights to different feature areas.
Figure 1 shows an example of obtaining 3D point cloud information from a single image.
We achieved good results on different angles and performed robustness in different
datasets.

2 Related Works

From 1999 to 2010, Blanz and Vetter [2] proposed a 3D Morphable Model (3DMM),
whosemethod can construct a 3D facemodel based on 2D images. As pointed out above,
the face is divided into the texture part and structure part. The texture coefficient and
structure coefficient are shown in the Eq. (1) and Eq. (2), α is the structure coefficient
and β is the texture coefficient. These two coefficients control the transformation of
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the face model. Generate an average face model that can be deformed according to the
images, and change the deformable model’s coefficients to stretch and deform to obtain
the desired result.

Smodel = S̄ +
∑m−1

i=1
αiSi (1)

Tmodel = T̄ +
∑m−1

i=1
βiTi (2)

Later, in 2004, Blanz [10] proposed sparse facial feature points for model parameter
estimation. Rara [11] and others proposed a model between 2D facial feature points and
3DMM parameters, using principal component regression analysis (PCR) to estimate
3DMM parameters. Due to the facial posture’s influence, the possible accuracy of the
detection of the detected 2D facial key feature points may be reduced. Dou [12] proposed
a dictionary-based method to regress 3D face shape, using sparse coding to estimate
model parameters from facial landmarks. Similarly, Zhou [13] also used a dictionary-
based method and proposed a convex formula to estimate model parameters. Anbarjafari
[9] proposed an end-to-end concept, dividing the face into four parts. All texture maps
are distorted to fit the same UV map, and all the parts behind the face are discarded.
For the four regions, corresponding facial models are obtained separately, and the four
regions obtained by stitching are combined to obtain a complete face. This method is
severely affected by noise and hair.

Recently, 3D face reconstruction methods based on deep learning came out. There
are methods to add corrections or details to the rough 3DMM prediction [6], Tewari
[15], Guo [16]. Many cutting-edge methods use CNNs to regress 3DMM parameters,
please see the example, Richardson [6], Tuan[7], Jackson [8], Richardson [14], Feng Y
[17], Tewari [20], Piotraschke [21], Huber [22], He K [23]. Figure 2 shows the process
of face recognition, which performs excellently in many applications. However, 3D face
reconstruction has many issues, such as lack of datasets, rely on the good pose of input
data.

Reference [7] solves the problem of the insufficient training set and is more robust
than previous methods. The author uses multiple pose photos of the same object to
generate a high-accuracy 3D face model [21], and then uses the generated model as a
training set and uses a threaded deep convolutional neural network to generate a robust
face model. Reference [17] proposed to use 2D pictures with semantic information and
non-equivalently consider the weights of different points for evaluation, but the texture
information of this method is rough.

3 Network and Loss Function

Our proposed method uses more accurate facial feature extraction to construct a UV
map regression 3D face model. The main steps are divided into the extraction of facial
feature points, construction of UVmaps, and a simple CNN network. In the feature point
extraction, we use the face key point extraction method of more key points proposed
by Niko. This method belongs to the branch of [22]. Compared with 68 key feature
points, 13 key points are added (including forehead area). The difference between the
two methods has been shown in Fig. 3 below.
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Fig. 2. Application of deep learning in the field of face recognition

Fig. 3. 81 feature key point extractor (left), 68 feature key point extractor (right)

3.1 Network

We directly regress the parameters of a 3D face from a single 2D face through the CNN
network. Meanwhile, we need to emphasize the robustness of the method. Therefore, we
need a dataset containing 2D faces and corresponding 3D information and containing
yaw angles as our training set. The 300W-3D data set contains large-angle face images,
which satisfies our requirements very well. We choose 300W-3D as our training set.
Simultaneously, to evaluate the superiority of the method, we manually annotated the
81 feature points of some of the acquired pictures and showed them in the experimental
results section.

In order to ensure the effectiveness of the results, we should consider the facial
feature regions differently. It is tough to consider features directly from 3D information.
Converting a three-dimensional problem to a two-dimensional problem can solve this
problem well.
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The UVmap is a two-dimensional image that records the information of all 3D point
clouds. We refer to [19] to propose a method for constructing a UV location map. We
design and use an hourglass network, mainly borrowed from the fully convolutional
network and the residual network. According to the input color face photo, the UV
position map is obtained from a single 2D face image.

Fig. 4. CNN network, rectangle represents residual block.

Each rectangle is a residual block representing a feature. To ensure the dense geo-
metric structure information of the face, the size of the UVmap is 256, which can obtain
a high-precision point cloud. The network structure is shown in Fig. 4. The network con-
verts the input RGB image into the corresponding UV image, using encoder-decoder.
The coding part is composed of cascaded residual blocks, and each layer is activated by
the Relu function and input to the next convolutional layer. Finally, after activation of
the Relu function, the output of each residual block structure is obtained, and the picture
with the size of 256 × 256 × 3 is reduced to the feature map of 8 × 8 × 512, and the
decoding part includes the transposed convolution layer, and the picture is restored to
the UV map with the size 256 × 256 × 3. The stride is 1, all kernel size is set to 4, and
the Relu function is used to activate.

3.2 Loss Function

To display the information represented by the distinct regions, Anbarjafari [9] proposed
an idea, considering the difference in the characteristic information of each region,
modeling each region separately, and finally fusing each region.

Realize this vision by creating a UV map. The UV image is a 2D image that con-
tains 3D point cloud information. Reference [9] Use UV maps to represent the texture
information of the face. Different from others, Feng Y [17] uses UV space to store 3D
point cloud information. The real 3D point cloud information can accurately match the
projection of the 2D plane. The picture’s RGB information becomes the x, y, z coordi-
nate points in the texture map. Simultaneously, the UV coordinates also contain 3DMM
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parameters, which carry enough 3D semantic information. We learn from the method
they proposed. Since the UV map is obtained through the network, we can divide the
face region. According to the difference of the region’s feature information, different
weights are assigned to each region when calculating the loss. Experiments show that
doing so can get better experimental results.

Loss =
∑

||P(x, y) − P(∼)(x, y)|| • W(x, y) (3)

We divide the face into regions in the obtained UV space. Compared with the pre-
vious method, we distribute the weights more carefully according to the proportion.
Equation (3) shows our loss function, P(x,y) is the predicted face coordinate point, P
is the real face coordinate, and W(x,y) is the weight coefficient corresponding to the
coordinate point. In our conception, the weight ratio is different according to the divided
regions, and the calculation formula is shown in the above formula. Area 1 (81 facial
feature points): Area 2 (eyes, nose): Area 3 (mouth): Area 4 (forehead, other areas): Area
5 (neck) = 16:5:4:3:0. Undoubtedly, the 81 key feature points of area 1 should have the
highest weight, which is given to 16. Area 3, because the mouth is an important feature,
it is assigned 4; the neck of area 5 is an outside area, assigned 0; area 2 and area 4 It
belongs to a distinct area, where the eyes and nose of area 2 are iconic features, which
are 1 higher than area 3; the forehead and other facial areas of area 4 are relatively less
obvious, and 3 is assigned. In this way, we can consider each feature non-equivalently.

4 Experimental Results

Since the dataset requires both 2D pictures and their corresponding 3D semantic infor-
mation, 300W-3D is selected as the training set because it contains 3DMM coefficients
and different angle facial pictures, which enables it to store 3D point cloud information.
Compare with 3DDFA [4], DeFA [4], and PRN [17] on the AFLW2000-3D and Florence
datasets.

AFLW2000-3D is a dataset used to evaluate the performance of 3D face reconstruc-
tion for unconstrained images. This dataset contains the first two thousand face avatars
in the AFLW dataset, which can be used for head deflection or head 2D or 3D detection,
as well as large-angle faces. The dataset contains two data types. The first is JPG format
data, which contains two-dimensional face pictures;MAT format data is a dictionary that
contains feature points, 3DMM information, and various image parameters. Since the
dataset carries 3DMM coefficients, the three-dimensional information is reconstructed
by 3DMM and contains 68 feature points of three-dimensional information. It is the
most commonly used dataset to evaluate the performance of facial reconstruction.

300W is a huge face dataset. The dataset has more than thousands of images, each
image contains more than one face, but only one face is labeled, mainly used for face
alignment. 300W-3D is a dataset that marked 300Wdata with 3DMMparameters, which
can be used to train, test, and evaluate reconstruction performance. We show some
examples in Fig. 5. Also, 300W-LP is suitable for our experiment. 300W-LP a subset of
300W samples containing large angles. It can be used to evaluate the robustness of the
method to deflection angle rotation.
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Fig. 5. Some large pose face in 300W-LP.

The Florence-3D dataset contains 53 labeled objects. Every object has different
angles. In this section, we compare the performance of some methods, such as 3DDFA
and DeFa.

Wemanuallymarked 81 key points of faces in somepictures and conducted a separate
display experiment. The results have been shown at the rendering part, and we can see
the performance intuitively.

Fig. 6. Output of our method, including the front face and the side face. Some input faces are
captured by ourselves

Use the carried 3DMM coefficients to generate the corresponding 3D position map
and render it into the UV space. The size of the picture remains unchanged in the UV
space, still 256 × 256. Use the hourglass network for training and Adam optimizer
operation. The learning rate starts from 0.0001, decays by half every 20 batches, and the
input face (rotation) is randomized. Use tensorflow to run. The graphics card used in the
experimental hardware is a GTX1070Ti graphics card and I7-8700 central processing
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unit. Figure 6 shows some examples of our outputs; some input images were captured
and manually mark by ourselves.

Although the regularized mean square error (MSE) is generally used as the perfor-
mance evaluation index, direct use of MSE will cause the loss of key information. To
better evaluate the network performance, we evaluate the method at large pose datasets
by calculating the regularized mean error (NME). The results show good robustness and
well performance. Furthermore, we manually mark 81 key points in some photos and
give the results at the rendering display part. In order to further study the performance of
the method in this paper under different angles, some data are compared with the NME
under small, different, and large deflection angles. The results are shown in Table 1.

Table 1. Performance compared with other methods at different angles (NME).

Method 0° to 30° 30° to
60°

60° to
90°

Mean

3DDFA 3.80 4.55 7.88 5.41

3DSTN 3.13 4.43 5.78 4.45

PRN 2.75 3.50 4.60 3.62

SDM 3.67 4.90 9.67 6.08

Ours 2.69 3.48 4.58 3.58

We use CED (cumulative error distribution, which is used to obtain the sum of all
variables below a specific value) to observe the experimental results intuitively. We
evaluate the performance of our method on the AFLW2000-3D. The result has been
shown in Fig. 7.

We divide the face into 5 regions according to the extracted feature points and assign
different weights to each region. The 81 key points have the highest weights to ensure
that the network can accurately learn these points’ positions. Because the neck area is
meaningless for the face model’s regression, the weight is zero.

To verify the effect of dividing feature regions, we compare the method of not
considering feature regions (all facial regions are equal to 1), the allocation method
is shown in Table 2, and the results are shown in Fig. 8. Obviously, considering facial
feature regions, giving differentweights to different regions canmake our network better.

The bestway to evaluate the performance of the facemodel is to observe the rendering
result directly.Wemanuallymark 81 key points.Wedisplay the outputs below. See Fig. 9.
Figure (a) is the reconstruction result of the front face, and figure (b) is the reconstruction
result of the side face. Even if the picture uses a picture that includes a rotation angle,
we can get satisfactory results.

As shown upon, all facial details, wrinkles, spots are basically restored, and the
model will not be influenced by changing the angle. Even we zoom in on the picture,
and we still can get a clear vision of the texture details.
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Fig. 7. 3D reconstruction performance comparison, the cumulative error distribution of 4 different
methods on the AFLW2000-3D dataset, smooth the curve for better observing

Table 2. Different weight ratio

Area1 Area2 Area3 Area4 Area5

Weight r1 16 5 4 3 0

Weight r2 1 1 1 1 0

Fig. 8. Comparison of weight ratio 1 and weight ratio 2.
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Fig. 9. Outputs of our methods, including both the front face and the side face

5 Conclusion

We provide a new idea for solving the 3D face reconstruction from a single 2D picture.
This idea does not rely on expensive hardware equipment and complex networks and
can fully return to face features. Experiments show that this method has an excellent
performance in 3D face reconstruction.

In this paper, we show the CNN using the hourglass network structure to regress the
UV parameters. During the training process, feature points are added as a guide to obtain
a robust face image. Meanwhile, an excellent facial feature extractor is introduced to
visually display the rendering results. Even if the input image is rotated, excellent results
can be obtained without being affected by the rotation. There still has many ways to
extend this work, such as applying more accurate feature area weights.
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Abstract. The main goal of this paper is to investigate the prob-
lems of the uniqueness of equilibrium and the global µ-stability for the
QVNN (quaternion-valued neural network) with leaky constant delay,
non-differentiable discrete time-varying delay, distributed constant delay,
which is closer to practical application than the QVNN with differen-
tiable time-varying delay. Firstly, we discuss the QVNN as entirety, and
prove the equilibrium of the QVNN is unique by using Homeomorphism
mapping theorem and quaternion-valued linear matrix inequality. Then
a new Lyapunov-Krasovskii functional is derived from the delayed state.
The sufficient condition of the global µ-stability is given, while apprais-
ing the derivative of the Lyapunov-Krasovskii functional and quaternion-
valued linear matrix inequality, this result is new and different from the
approaches in available literatures. A quaternion-valued numerical exam-
ple is presented to illustrate these results.

Keywords: Quaternion-valued neural network · Non-differentiable
delays · Constant delays · Global stability

1 Introduction

In recent years, Neural networks has been becoming as foundation of machine
learning technology, and used in diverse fields widely, such as engineering control,
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Supported by the Sichuan Province science and technology department applica-
tion foundation project (2016JY0238), Sichuan Province Education Department
Key Projects (18ZA0235), Sichuan Province Education Department General Project
(18ZB0268, 18ZB0266), Research Fund of Leshan Normal University (JG2018-1-04,
LZD003).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

X. Wu et al. (Eds.): QShine 2020, LNICST 381, pp. 248–259, 2021.

https://doi.org/10.1007/978-3-030-77569-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77569-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-77569-8_18


Stability Analysis of Quaternion-Valued Neural Network 249

neural networks, complex-valued neural networks have been extensively inves-
tigated in past decades. W. Hamilton proposed quaternion comprised of one
real part as well as three imaginary parts in 1872 [4]. Quaternion has stronger
information storage capacity. In high-dimensional data processing, quaternion-
valued neural networks (QVNNs) have irreplaceable advantages compare with
real-valued neural networks and complex-valued neural networks, by leveraging
the benefits of this [5–9]. In practical applications, time delays may reduce the
transmission speed of Neural network, and destabilize the overall stable system
[10–12], and there are a lot of non-differentiable time-varying delays in reality,
it is important to take non-differentiable time-varying delays into neural net-
works [13–16]. Hence, the stability of neural networks is primary consideration
for ensuring its practicality. In 2007, the definition of the μ-stability is proposed
firstly [17], that is recapitulative and could be specialized into six stability states,
including power stability, exponential stability, log stability, log-log stability, the
global asymptotical stability, the Lyapunov stability, via changing the property
of the time delay and μ function [18].

In our research, we investigate the global μ-stability of the QVNN with
leaky constant delay, non-differentiable discrete time-varying delay, distributed
constant delay. Firstly the equilibrium of the QVNN is unique is proved by
using Homeomorphism mapping theorem and quaternion-valued linear matrix
inequality. Next, based on the delayed state’s feature, we constructed a new
Lyapunov-Krasovskii function. The global μ-stability of the QVNN is obtained
while appraising the derivative of the Lyapunov-Krasovskii function as well as
quaternion-valued linear matrix inequality. The vital contributions of this study
are summarized as follows:

(1) We discuss the global μ-stability of the QVNN with non-differentiable dis-
crete time-varying delay, which is closer to practical application than the
QVNN with differentiable time-varying delay;

(2) We investigate the QVNN as entirety, not decompose the QVNN into two
complex-valued neural networks or four real-valued neural networks, the
increasing of data dimension caused by decomposition method is avoided.

2 Preliminaries

x is a quaternion, and can be defined as follow:

x = xR + i · xI + j · xJ + k · xK ,

xR, xI , xJ , xK ∈ R all are real coefficient, i, j, k all denote the imaginary units.
A quaternion satisfies the Hamilton rule:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = −1.

Due to the Hamilton rule, quaternion doesn’t meet commutative law of mul-
tiplication. In the next content, we use following notations: Qn×m,Cn×m,Rn×m
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represent, respectively, the set of n × m quaternion, complex, real matrices;
SCn(Q) denotes the set of self-conjugate matrices, SC>

n (Q) denotes the set of
positive definite matrices of quaternions [18]; x ∈ Q

n, x∗ is the conjugate trans-
pose of x; A ∈ Q

n×m, Ā, A∗, and λmin(A) represent, respectively, the conjugate,
the conjugate transpose, and the minimum eigenvalue of A [19].

Considering the QVNN as follow:

dx(t)
dt

= − Dx(t − τ1) + Ag(x(t)) + Bg
(
x(t − τ(t))

)
+ C

∫ t

t−τ2

g
(
x(s)

)
ds + v

(1)
x(t) = (x1(t), x2(t), ...., xn(t))T ∈ Q

n is the state vector. D ∈ R
n×n,

with D = diag(d1, d2, ..., dn) � 0 means the self-feedback connection weight
matrix. A,B,C ∈ Q

n×n mean the connection weight matrix. τ1, τ2, τ(t)
denote, respectively, the leakage time delay, the distributed constant time
delay, and the non-differentiable discrete time-varying delay. g(x(t)) =
(g1(x1(t)), g2(x2(t)), ..., gn(xn(t)))T ∈ Q

n denotes activation function. v =
(v1, v2, ..., vn) ∈ Q

n means the external input vector. λ̄(A) is the minimum of
eigenvalues matrix A.

Assumption 1. There are positive constants δl, such that:

‖ gl(x) − gl(x′) ‖≤ δl ‖ x − x′ ‖,

where l = 1, 2, ..., n. We define matrix:

Γ = diag(δ1, δ2, ..., δn),

Definition 1. μ-stability: μ(t) ≥ 0 is continuous function, when t → ∞, μ(t) →
∞. If there exists a constant ω, then

‖x(t)‖ ≤ ω

μ(t)
.

Lemma 1 ([20]). G =
[
G11 G12

G21 G22

]
∈ Q

2n×2n where G11 = G∗
11, G12 = G∗

21,

G22 = G∗
22, then G ≺ 0 is equivalent two conditions:

(1) G22 ≺ 0, G11 − G12G
−1
22 G∗

12 ≺ 0;
(2) G11 ≺ 0, G22 − G∗

12G
−1
11 G12 ≺ 0.

Lemma 2. H(x) is specified as a homeomorphism of Qn onto itself, if H(x) :
Q

n → Q
n is a continuous map accord with two qualifications:

(1) H(x) is a injective on Q
n;

(2) lim
‖x‖→∞

H(x) = ∞.

Lemma 3 ([3]). For the Hermitian constant matrix W ∈ Q
n×n, W ≥ 0, and

scalar function g : [n,m] → Q
n, n ≤ m, then

(∫ m

n

g(s) ds

)∗
W

(∫ m

n

g(s) ds

)

≤ (m − n)
∫ m

n

g∗(s)Wg(s) ds.
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Lemma 4 ([3]). Let q, q̌ ∈ Q
n, Q ∈ SC>

n (Q), then

q∗q̌ + q̌∗q ≤ 1
ε
q∗Q−1q + εq̌∗Qq̌.

3 Main Result

Theorem 1. If Assumption 1 holds, the equilibrium of the QVNN (1) is unique,
when there are positive matrix U and positive matrices J1, J2, J3, such that

Σ =
⎡

⎢
⎢
⎣

Σ1 UA UB UC
∗ −J1 0 0
∗ ∗ −J2 0
∗ ∗ ∗ −J3

⎤

⎥
⎥
⎦

≺0

(2)

where
Σ1 = −UD − DU + ΓJ1Γ + ΓJ2Γ + τ2ΓJ3Γ

Proof. Establishing a continuous map

H(x) = −Dx + Ag(x) + Bg(x) + τCg(x) + V (3)

we assume there are two different vectors x1, x2 ∈ Q
n, such that H(x1) = H(x2),

− (x1 − x2)∗(UD + DU)(x1 − x2) + (x1 − x2)∗U(A + B)
(
g(x1) − g(x2)

)∗
J)1

· (
g(x1) − g(x2)

)
+ τ(x1 − x2)∗UC

(
g(x1) − g(x2)

)
+ τ

(
g(x1) − g(x2)

)∗
C∗U

· (x1 − x2) = 0
(4)

Based on Lemma 4,

(x1 − x2)∗U(A + B)
(
g(x1) − g(x2)

)∗
J)1

(
g(x1) − g(x2)

)

≤(x1 − x2)∗UAJ−1
1 A∗U(x1 − x2) +

(
g(x1) − g(x2)

)∗
J1

(
g(x1) − g(x2)

)
+ (x1

− x2)∗UBJ−1
2 B∗U(x1 − x2) +

(
g(x1) − g(x2)

)∗
J2

(
g(x1) − g(x2)

)

(5)
τ(x1 − x2)∗UC

(
g(x1) − g(x2)

)
+ τ

(
g(x1) − g(x2)

)∗
C∗U(x1 − x2)

≤(x1 − x2)∗UCJ−1
3 C∗U(x1 − x2) + τ2

(
g(x1) − g(x2)

)∗
J3

(
g(x1) − g(x2)

) (6)

(
g(x1) − g(x2)

)∗
Jl

(
g(x1) − g(x2)

) ≤ (x1 − x2)∗ΓJlΓ (x1 − x2) (7)

where l = 1, 2, 3.

(x1 − x2)∗(−UD − DU + UAJ−1
1 A∗U + UBJ−1

2 B∗U

+ UCJ−1
3 C∗U + ΓJ1Γ + ΓJ2Γ + τ2ΓJ3Γ )(x1 − x2) ≥ 0

(8)
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According to Lemma 1 and Σ ≺ 0, the following inequality can be obtained

− UD − DU + UAJ−1
1 A∗U + UBJ−1

2 B∗U

+ UCJ−1
3 C∗U + ΓJ1Γ + ΓJ2Γ + τ2ΓJ3Γ ≺ 0,

(9)

therefore, H(x) is an injective on Q. Besides,

x∗U
(
H(x) − H(0)

)
+

(
H(x) − H(0)

)∗
Ux

≤x∗(−UD − DU + UAJ−1
1 A∗U + UBJ−1

2 B∗U + UCJ−1
3 C∗U + ΓJ1Γ + ΓJ2Γ

+ τ2ΓJ3Γ )x

≤ − λ̄(−UD − DU + UAJ−1
1 A∗U + UBJ−1

2 B∗U + UCJ−1
3 C∗U + ΓJ1Γ + ΓJ2

· Γ + τ2ΓJ3Γ )x∗x
=λx∗x

(10)
λ ‖ x ‖2≤ 2 ‖ x ‖‖ U ‖ ( ‖ H(x) ‖ + ‖ H(0) ‖ )

(11)

λ ‖ x ‖≤ 2 ‖ U ‖ ( ‖ H(x) ‖ + ‖ H(0) ‖ )
(12)

Consequently, ‖ H(x) ‖→ ∞, as ‖ x ‖→ ∞, an unique equilibrium point of
the QVNN (1) is proved.

Choosing the variable substitution x̃(t) = x(t)− x̂, x̂ is the equilibrium point
of the QVNN (1), the following system is obtained from the QVNN (1):

dx̃(t)
dt

= −Dx̃(t − τ1) + Ag
(
x̃(t)

)
+ Bg

(
x̃(t − τ(t))

)
+ C

∫ t

t−τ2

g(x̃(s)) ds,

Theorem 2. The QVNN (1) is global μ−stability, if t ≥ T , max{τ1, τ2, τ(t)} ≤
τ , there are constants α, β, such that μ̇(t)

μ(t) ≤ β, η ≤ μ(t−τ)
μ(t) ≤ α, and matrices

R1, R2, R3, R4, R5 ∈ SC>
n (Q), the following matrix Π exists:

Π =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π1 R1 R3 η2R2 0 0 0
∗ τ1R2 0 0 0 0 0
∗ ∗ 2βR3 −R3 0 0 0
∗ ∗ ∗ −η2R2 0 0 0
∗ ∗ ∗ ∗ R4 0 0
∗ ∗ ∗ ∗ ∗ −η2R4 0
∗ ∗ ∗ ∗ ∗ ∗ −η2R5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺0

(13)

Π1 = 2βR1 − η2R2 + τ2R5
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Proof. Using Lyapunov-Krasovskii function as below,

V (t) =
5∑

q=1

Vq(t) (14)

V1(t) =μ2(t)x̃∗(t)R1x̃(t),

V2(t) =τ1

∫ τ1

0

∫ t

t−θ

μ2(s) ˙̃x∗(s)R2
˙̃x(s)dsdθ,

V3(t) =μ2(t)
( ∫ t

t−τ1

x̃(s)ds
)∗

R3

( ∫ t

t−τ1

x̃(s)ds
)
,

V4(t) =
∫ t

t−τ

μ2(s)g∗(x̃(s)
)
R4g

(
x̃(s)

)
ds,

V5(t) =τ2

∫ τ2

0

∫ t

t−θ

μ2(s)x̃∗(s)R5x̃(s)dsdθ.

The derivative of V (t) along the trajectories of the QVNN (1) is:

V̇1(t) = 2μ(t)μ̇(t)x̃∗(t)R1x̃(t) + μ2(t) ˙̃x∗(t)R1x̃(t) + μ2(t)x̃∗(t)R1
˙̃x(t)

≤2βμ2(t)x̃∗(t)R1x̃(t) + μ2(t) ˙̃x∗(t)R1x̃(t) + μ2(t)x̃∗(t)R1
˙̃x(t)

(15)

V̇2(t) = τ1

∫ τ1

0

μ2(t) ˙̃x∗(t)R2
˙̃x(t) − μ2(t − θ) · ˙̃x∗(t − θ)R2

˙̃x(t − θ)dθ

≤τ2
1μ2(t) ˙̃x∗(t)R2

˙̃x(t) − η2τ1μ
2(t)

∫ τ1

0

˙̃x∗(t − θ)R2
˙̃x(t − θ)dθ

≤τ2
1μ2(t) ˙̃x∗(t)R2

˙̃x(t) − η2μ2(t)
(
x̃∗(t)R2x̃(t) − x̃∗(t)R2x̃(t − τ1) − x̃∗(t

− τ1)R2x̃(t) + x̃∗(t − τ1)R2x̃(t − τ1)
)

(16)

V̇3(t) = μ2(t)
(
x̃(t) − x̃(t − τ1)

)∗
R3

∫ t

t−τ1

x̃(s)ds + 2μ(t)μ̇(t)
( ∫ t

t−τ1

x̃(s)ds
)∗

R3

·
∫ t

t−τ1

x̃(s)ds + μ2(t)
( ∫ t

t−τ1

x̃(s)ds
)∗

R3

(
x̃(t) − x̃(t − τ1)

)

(17)
V̇4(t) = μ2(t)g∗(x̃(t)

)
R4g

(
x̃(t)

) − μ2(t − τ)g∗(x̃(t − τ)
)
R4g

(
x̃(t − τ)

)
(18)

V̇5(t) = τ2

∫ τ2

0

μ2(t)x̃∗(t)R5x̃(t) − μ2(t − θ)x̃∗(t − θ)R5x̃(t − θ)dθ

≤μ2(t)
(
τ2
2 x̃∗(t)R5x̃(t) − η2τ2

∫ t

t−τ2

μ2(s)x̃∗(s)R5x̃(s)ds
)

≤μ2(t)
(
τ2x̃

∗(t)R5x̃(t) − η2
( ∫ t

t−τ2

x̃(s)ds
)∗

R5

∫ t

t−τ2

x̃(s)ds
)

(19)
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With (14)–(19),

D+V (t) ≤ 2βμ2(t)x̃∗(t)R1x̃(t) + μ2(t) ˙̃x∗(t)R1x̃(t) + μ2(t)x̃∗(t)R1
˙̃x(t) + τ2

1μ2(t)

· ˙̃x∗(t)R2
˙̃x(t) − η2μ2(t)

(
x̃∗(t)R2x̃(t) − x̃∗(t)R2x̃(t − τ1) − x̃∗(t − τ1)

· R2x̃(t) + x̃∗(t − τ1)R2x̃(t − τ1)
)
μ2(t)

(
x̃(t) − x̃(t − τ1)

)∗
R3

·
∫ t

t−τ1

x̃(s)ds + 2μ(t)μ̇(t)
( ∫ t

t−τ1

x̃(s)ds
)∗

R3

∫ t

t−τ1

x̃(s)ds + μ2(t)

· ( ∫ t

t−τ1

x̃(s)ds
)∗

R3

(
x̃(t) − x̃(t − τ1)

)
μ2(t)g∗(x̃(t)

)
R4g

(
x̃(t)

) − μ2(t

− τ)g∗(x̃(t − τ)
)
R4g

(
x̃(t − τ)

)
+ μ2(t)

(
τ2x̃

∗(t)R5x̃(t) − η2

· ( ∫ t

t−τ2

x̃(s)ds
)∗

R5

∫ t

t−τ2

x̃(s)ds
)

≤μ2(t)
(

2βx̃∗(t)R1x̃(t) + ˙̃x∗(t)R1x̃(t) + x̃∗(t)R1
˙̃x(t) + τ2

1
˙̃x∗(t)R2

˙̃x(t)

− η2
(
x̃∗(t)R2x̃(t) − x̃∗(t)R2x̃(t − τ1) − x̃∗(t − τ1)R2x̃(t) + x̃∗(t − τ1)

· R2x̃(t − τ1)
)(

x̃(t) − x̃(t − τ1)
)∗

R3

∫ t

t−τ1

x̃(s)ds + 2β
( ∫ t

t−τ1

x̃(s)ds
)∗

· R3

∫ t

t−τ1

x̃(s)ds +
( ∫ t

t−τ1

x̃(s)ds
)∗

R3

(
x̃(t) − x̃(t − τ1)

)
g∗(x̃(t)

)
R4

· g
(
x̃(t)

) − η2g∗(x̃(t − τ)
)
R4g

(
x̃(t − τ)

)
+

(
τ2x̃

∗(t)R5x̃(t) − η2

· ( ∫ t

t−τ2

x̃(s)ds
)∗

R5

∫ t

t−τ2

x̃(s)ds
))

= μ2(t)q(t)Πq∗(t)
(20)

and

q(t) =
(

x̃∗(t), ˙̃x(t),
( ∫ t

t−τ1

x̃(s)ds
)∗

, x̃∗(t − τ1),

g∗(x̃(t)
)
, g∗(x̃(t − τ)

)
,
( ∫ t

t−τ2

x̃(s)ds
)∗

)
.

With (13) and (20),
D+V (t) ≤ 0. (21)

For t ∈ [T,+∞),

μ2(t)λ̄(R1)‖x̃(t)‖2 ≤ V (t) ≤ V0 = max
0<s<T

V (s) (22)
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Hence,
‖ x̃(t) ‖≤ ω

μ(t)
, (23)

with

ω =

√
V0

λ̄(R1)
.

Therefore, the QVNN (1) is global μ-stability.

4 Simulation Example

A numerical simulation example is presented to strengthen the new conclusions
above.

Considering the following QVNN:

dx(t)
dt

= − Dx(t − τ1) + Ag(x(t)) + Bg
(
x(t − τ(t))

)
+ C

∫ t

t−τ2

g
(
x(s)

)
ds + v

(24)
where

A =
[
a11 a12

a21 a22

]
, B =

[
b11 b12
b21 b22

]
, C =

[
c11 c12
c21 c22

]
,

D =
[
5 0
0 5

]
, v =

[
v1
v2

]
,

we randomly define quaternion matrices of the QVNN: a11 = 0.27 − 0.35i +
0.043j − 0.18k, a12 = −0.15 − 0.22i + 0.28j − 0.04k, a21 = −0.31 − 0.293i +
0.2j − 0.06k, a22 = 0.175 − 0.2i + 0.18j − 0.165k; b11 = −0.38 + 0.223i − 0.57j −
0.139k, b12 = 0.16 − 0.121i + 0.031j − 0.09k, b21 = 0.93 − 0.701i + 0.02j −
0.27k, b22 = 0.0907 − 0.24i + 0.104j + 0.08k; c11 = −0.231 + 0.208i − 0.179j +
0.05k, c12 = 0.77+0.01i+0.04j −1.23k, c21 = 0.092−0.113i+0.25j −0.7k, c22 =
−0.336 + 0.134i − 0.22j + 0.4k; v1 = 0.052 − 0.14i + 0.08j − 0.12k, v2 =
−0.58 + 0.304i − 0.19j + 0.145k.

Define g(x(t)) = tanh(x(t)), τ1 = 0.4, τ2 = 0.3, τ(t) = 0.37|sint|, μ = e0.8t,
obviously, τ = 0.4, β = 0.8, η = 0.6, α = 0.8.

The solutions of Σ ≺ 0 and Π ≺ 0 can be resolved as:

Σ =
⎡

⎢
⎢
⎣

Σ1 UA UB UC
∗ −J1 0 0
∗ ∗ −J2 0
∗ ∗ ∗ −J3

⎤

⎥
⎥
⎦

≺0
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Π =
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Π1 R1 R3 η2R2 0 0 0
∗ τ1R2 0 0 0 0 0
∗ ∗ 2βR3 −R3 0 0 0
∗ ∗ ∗ −η2R2 0 0 0
∗ ∗ ∗ ∗ R4 0 0
∗ ∗ ∗ ∗ ∗ −η2R4 0
∗ ∗ ∗ ∗ ∗ ∗ −η2R5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≺0

Π1 = 2βR1 − η2R2 + τ2R5

where
Σ1 = −UD − DU + ΓJ1Γ + ΓJ2Γ + τ2ΓJ3Γ

U = 10−9diag[0.1335, 0.1155, 0.1357, 0.0649]

J1 = 10−10

[
j111 j121
j211 j221

]
, J2 = 10−10

[
j112 j122
j212 j222

]
, J3 = 10−14

[
j113 j123
j213 j223

]
,

R1 = 10−11

[
r111 0
0 r221

]
, R2 = 10−10

[
r112 0
0 r222

]
, R3 = 10−11

[
r113 0
0 r223

]
,

R4 = 10−11

[
r114 0
0 r224

]
, R5 = 10−10

[
r115 0
021 r225

]
.

j111 = −0.1771 − 0.1771j; j121 = 0.0193 + 0.0111i + 0.0193j + 0.0111k; j211 =
0.0193 − 0.0111i + 0.0193j − 0.0111k; j221 = −0.1801 − 0.1801j; j112 = 0.03846 −
0.4789j; j122 = 0.00341 + 0.2058i + 0.0035j + 0.0023k; j212 = 0.00341 − 0.2058i +
0.0035j − 0.0023k; j222 = −0.7801− 0.4674j; j113 = 0.189+0.189j; j123 = 0.0012+
0.0032i + 0.0012j + 0.0012k; j213 = 0.0012 − 0.0032i + 0.0012j − 0.0032k; j223 =
0.2105 + 0.2105j; r111 = −0.5063 − 0.5063j; r221 = −0.5063 − 0.5063j; r112 =
0.3272 + 0.3272j; r222 = 0.3272 + 0.3272j; r113 = −0.2932 − 0.2932j; r223 =
−0.2932 − 0.2932j; r114 = 0.4514 + 0.451j; r224 = 0.4514 + 0.451j; r115 = 0.8523 +
0.8523j; r225 = 0.8523 + 0.8523j.

Hence the QVNN (24) has unique equilibrium and is global μ-stability under
Theorem 1 and Theorem 2.

Figure 1, 2, 3 and 4 respectively are the trajectories of xR(t), xI(t), xJ(t),
xK(t) in QVNN (4.1) with original value x(0) = (−0.5 − 0.32i + 0.28j −
0.541k, 0.69 + 1.05i − 1.1j + 1.2k).
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Fig. 1. The trajectories of xR(t) in the QVNN (24)
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Fig. 2. The trajectories of xI(t) in the QVNN (24)
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Fig. 3. The trajectories of xJ(t) in the QVNN (24)
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Fig. 4. The trajectories of xK(t) in the QVNN (24)

5 Conclusion

This paper discuss the equilibrium’s uniqueness and the global μ-stability of
the QVNN (quaternion-valued neural network) with leaky constant delay, non-
differentiable discrete time-varying delay, distributed constant delay. Firstly,
considering the QVNN as entirety, the uniqueness of the QVNN’s equilibrium
is obtained, via Homeomorphism mapping theorem and quaternion-valued lin-
ear matrix inequality. Next a novel Lyapunov-Krasovskii functional is derived
according to the delayed state, and the sufficient condition of the global μ-
stability is presented. Finally, we give a quaternion-valued numerical example to
illustrate these new results.
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Abstract. Recent studies attempt to construct complicated and redun-
dant Convolutional Neural Networks (CNNs) to improve image classifi-
cation performance. In this paper, instead of painstakingly designing a
CNN’s architecture, we consider promoting classification performance by
revising CNN’s classification results. We therefore propose a novel image
classification approach that Learns to Rectify Label (LRL) through Ker-
nel Extreme Learning Machine (KELM). It includes two phases: (1) Pre
classification, we put images into a trained CNN to generate correspond-
ing incomplete labels. (2) Label Rectification, the incomplete labels are
rectified by the KELM’s high-dimensional mapping, so final classifica-
tion results are acquired. Extensive experiments conducted on public
datasets demonstrate the effectiveness of our method. At the meantime,
our method has well generalizability that can be integrated with many
popular networks.

Keywords: Convolutional Neural Networks · Kernel extreme learning
machine · Image classification

1 Introduction

Image classification is a fundamental task in computer vision, which aims to
distinguish the image categories according to their semantic information. It is
widely involved in many real-world application, including face recognition [5],
traffic sign detection [29] and brain image analysis [2]. An early typical approach
is using the handcraft feature (e.g.SIFT [24], HOG [4]) and feature description
combined with classical classifiers (e.g.SVM [3]).

Convolutional neural networks (CNNs) have exhibited strong learning capa-
bility on image classification [19]. Subsequent works [25,27] build deeper CNNs
by designing small convolutional kernels. In [8,11], shortcut connections build
relation of different convolutional layers and alleviate vanishing gradient problem
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in deep networks. SKNet [21] propose a dynamic selection mechanism in CNNs
that allows each neuron to adaptively adjust its receptive field size based on mul-
tiple scales of input information. Res2Net [6] represents multi-scale features at a
granular level and increases the range of receptive fields for each network layer.
All of above-mentioned methods try to improve CNN’s design to boost classi-
fication performance, but complicated architectures and enormous parameters
often lead to redundant complicated loads and poorly trained models.

Fig. 1. Framework of the proposed approach.

On the other hand, some studies view CNNs as two main components, i.e. a
feature extractor and a Softmax classifier. They consider improving discrimina-
tive ability of features by replacing Softmax with other machine learning algo-
rithms [1,22]. e.g. Support Vector Machine (SVM) or Extreme Learning Machine
(ELM). However, extracted high-dimensional features in matrix manipulation is
time-consuming, which still remains a challenge.

In this paper, we consider a different view that tries to rectify labels output
by CNN to a more correct distribution. We propose to learn to rectify label
(LRL) through kernel extreme learning machine (KELM). Figure 1 illustrates
our framework schematically. It involves two stages, i.e. pre classification and
label rectification. In pre classification, we put images into a trained CNN and
get corresponding classification results called incomplete labels. These labels
may have large deviations with their ground truth. In label rectification, we aim
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to exploit label-wise relation, so the incomplete labels are fed into a KELM. By
random kernel mapping and linear combination, we can get final classification
results. Notably, compared with KSVM, KELM is more appropriate for mutil-
class classification and it is higher efficiency [13].

In summary, the main contributions of this paper can be concluded as follows:
– To the best of our knowledge, it is the first time that a label rectification

method is proposed for image classification.
– We present a novel image classification framework (LRL) that combines CNN

with KELM, and it has well generalizability for different CNN’s architecture.
– Our experiments on public dataset also demonstrate our superiority on image

classification task.

The rest of our paper is organized as follows: In Sect. 2, we introduce the
pre classification. In Sect. 3, we introduce the way label rectification briefly. In
Sect. 4, we show the experiments result. In Sect. 5, we draw a conclusion of this
paper.

2 Pre Classification

CNNs have achieved a significant success in image classification. And it is widely
believed that a CNN contains two components: a feature extractor and a Soft-
max classifier. The feature extractor can be constructed deeply, so as to obtain
strong representative capability for input images. Most of existing efforts try to
improve the architecture of feature extractor (increasing depth [25], multi-scale
kernel size [27] and attention mechanism [26] etc.) for learning a more com-
plicated mapping. Some methods notice the limitation of Softmax classifier in
nonlinear conditions. So they substitute it with other machine learning models
(SVM [1], ELM [22] etc.). However, all of these methods ignore to exploit pre-
dicted label information which is generally regarded as final classification results
of CNNs. Moreover, according to existing observations, CNNs are sensitive for
hyper-parameters, so well training a network becomes hard, and it lacks adap-
tiveness in real-world application.

Above-mentioned illustrations motivate us to capture label information out-
put by CNN to boost classification performance. This paper denotes the labels
as incomplete labels because we conjecture these labels still have potential to
be improved. In our method, we consequently extract labels of CNN instead of
features. It can be formulated as Formula (1):

L = Fθ(I) (1)

where F is a well-trained CNN, I is the input image, L is extracted labels, θ is
the parameters of CNN. Compared with features in fully connected layers [22],
extracted labels contain predicted scores of each image category, and they are
relatively low dimension (It depends on the number of all categories), so it is
more efficient in subsequent operations. In addition, for a pre-trained CNN, the
proposed method can drastically improve their performance according to our
experiments. Notably, we do not use Softmax function to normalize the extracted
labels in our method.
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3 Label Rectification

Given incomplete labels L, we aim to revise them by a model f . For efficiently
training f , we utilize ELM to rectify incomplete labels. ELM was proposed by
Huang [15], it’s a single-hidden layer feedforward neural networks (SLFNs) which
randomly chooses hidden nodes and analytically determines the output weight
of SLFNs. ELM tends to provide good generalization performance at extremely
fast learning speed and the hidden layer need not be tuned. ELM consists of
three layers: input layer, hidden layer and output layer. The structure of it is
shown in Fig. 2.

Consider the incomplete labels L is passed through an ELM network, the
hidden layer can map it to large dimensionality that increase the the universal
infinite approximation ability of the ELM. The output function of ELM for
generalized SLFNs can be described as Formula (2):

fl(L) =
l∑

i=1

βihi(L) = h(L)β (2)

where β = [β1, ..., βl]T is output weights vector of hidden layer h(L) =
[h1(L), ..., hl(L)], and hi(L) is the output of the ith hidden node output, h(L)
maps the d-dimensional label L to the l-dimensional hidden layer feature. And
the output functions of hidden nodes may not be unique. Different output func-
tions may be used in different hidden neurons. In real applications, hi(L) can be
defined as:

hi(L) = G(ai, bi, L), ai ∈ Rd, bi ∈ R (3)

where G(a, b, L) is a nonlinear piecewise continuous function satisfying ELM uni-
versal approximation capability theorems and (ai, bi)

L
i=1 are randomly generated

according to any continuous probability distribution. In our algorithm, we use
the Sigmoid (4) which is used in feed forward networks and Gaussian kernel (5)
function [14] which is used in RBF networks. In this paper, the sigmoid function
is applied in ELM, and the Gaussian kernel is applied in KELM.

G(a, b, L) =
1

1 + exp(−(αL + b))
(4)

G(a, b, L) = exp(−b‖L − a‖2) (5)

ELM is to minimize the training error as well as the norm of the output
weights. The ELM learning function use the minimal norm least square method,
it can be formulated as:
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Fig. 2. Architecture of the ELM.

arg min
β

‖Hβ − Y ‖. (6)

where H is the hidden layer output matrix, Y is training data target matrix.
The minimal norm least square method was used in ELM, it can provide the

solution of β:

β̂ = H†Y (7)

where H† is the Moore–Penrose generalized inverse of matrix H. The orthogonal
projection method can be used to calculate H†: when HT H is nonsingular, H†

can be defined as:

H† = (HT H)−1HT (8)

or when HHT is nonsingular, H† can be defined as:

H† = HT (HHT )−1 (9)

As far as we get the value of β̂, we can pass through the incomplete labels
Ltest to well-trained ELM or KELM, and the rectified label feature matrix L′

can be defined as:

L′ = h(Ltest)β̂ (10)

4 Experiments

4.1 Label Rectified Evaluation

To evaluate the effectiveness of the proposed, we conduct experiments on CIFAR-
10 and CIFAR-100 [18]. Those two datasets are widely used in image classifica-
tion benchmark and consist of colored natural scene images. The size of all images
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is 32 × 32 pixel. The training and test sets contain 50k and 10k images respec-
tively. For adequately evaluating our method, we utilize two classical CNNs, i.e.
VGG19 [25] and ResNet50 [8]. We set two baselines [12,23] for comparisons.
Table 1 shows our experimental results.

LRL can obviously promote CNN’s classification performance. On CIFAR-
10, ResNet50 achieves 90.79% accuracy, while ResNet50-LRL (KELM) achieves
92.28% accuracy. On CIFAR-100, VGG19-LRL (KELM) outperforms VGG19 by
1.39% accuracy. From these comparisons, we can conclude the proposed method
can effectively rectify incomplete labels output by CNNs. Compared with LRL
(ELM), LRL (KELM) has more potential for image classification task, and it
demonstrates RBF kernel is more appropriate to exploit label relations.

Table 1. Accuracy (%) on the CIFAR-10 and CIFAR-100 datasets.

Model CIFAR-10 CIFAR-100

Gao et al. [12] 88.34 62.20

ResNet [9] 89.44 –

FractalNet [20] 89.92 64.66

Network in network [23] 89.59 64.32

VGG19 90.49 63.83

VGG19-LRL (ELM) 90.64 65.01

VGG19-LRL (KELM) 90.86 65.22

ResNet50 90.79 68.52

ResNet50-LRL (ELM) 92.11 71.44

ResNet50-LRL (KELM) 92.28 72.27

4.2 Compare with the State-of-the-arts

In this section, we compare our method with sate-of-the-art methods. we run
experiments on the Caltech-256 dataset [7]. It contains more classes and less
samples than CIFAR, with 256 classes and total of 30607 images. Each category
has a minimum of 80 images. Following [22], we utilize 60 randomly selected
images from per class as the training dataset, the rest as the testing dataset. We
resize all images to 256 × 256 pixel. VGG19 [25], ResNet18 [8], Zhu et al. [28],
SqueezeNet [16], VGG19-BN [17], Inception-V3 [10] are introduced for compar-
ison, and we finally adopt ResNet50 for pre classification. Table 2 shows our
experimental results.

Notably, ResNet50-LRL (KELM) also works well on Caltech-256 and outper-
forms all other state-of-the-art approaches. ResNet50 achieves to 80.40% Top-1
and 92.95% Top-5 accuracy. Compared with Zhu.et al. [28], our method out-
performs it by 11.96% Top-1 and 2.4% Top-5 accuracy, ResNet50-LRL (KELM)
outperforms base model by 1.46% Top-1 and 0.32% Top-5 accuracy. Those exper-
imental results demonstrate the superiority of our approach on image classifica-
tion.
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Table 2. Accuracy (%) on the Caltech-256 dataset compared with other state-of-the-
art methods.

Model Top-1 Top-5

VGG19 [25] 70.54 87.81

ResNet18 [8] 73.22 86.96

SqueezeNet [16] 66.00 85.00

Zhu et al. [28] 70.00 89.00

Inception-V3 (with WCD) [10] 80.61 –

VGG19-BN [17] 74.83 89.85

ResNet50 [8] 80.40 92.95

ResNet50-LRL (KELM) 81.96 93.27

4.3 Classifier Comparisons

In our method, we adopt KELM to rectify incomplete labels. In order to evalu-
ate it, we compare it with other different classifiers. Linear SVM, Kernel SVM
(KSVM), Neural Network (NN) and Sigmoid function ELM (ELM). Besides, we
introduce a method of Li et al. [22], which utilizes the KELM replace the Soft-
max classifier, that may cause two problem. First, features may contain more
redundant information than labels. Second, the dimension of features is larger
than labels, which consumes more times for training. In our method, we extract
the labels whose dimension equal the images classes. We train the ResNet50 as
pre classification. Table 3 exhibits our experimental results.

Apparently, Li et al. and LRL (KELM) are efficient in improving the per-
formance of image classification. But other classifiers provide negative effect
on improving accuracy. Li et al. can improve the accuracy of base model about
1.12%, and LRL (KELM) can improve about 1.07%. But, in contrast, experiment
shows that the LRL (KELM) has advantage of high training speed. In conclu-
sion, the LRL (KELM) achieve better balance between accuracy and training
time.

4.4 Training Observation

In our training phase, we apply a pre-trained network (on ImageNet) into specific
datasets (e.g. Caltech-256), so we can obtain a well-trained CNN for pre classifi-
cation. But badly trained CNNs should be considered. So we apply LRL method
into each ResNet50’s training epoch. We plot the Top-1 accuracy of ResNet50,
ResNet50-LRL (ELM) and ResNet50-LRL (KELM). The visual comparisons are
provided in Fig. 3.

Obviously, KELM based LRL (green line) can substantially promote
ResNet50 (blue line) performance in very early epochs. It manifests our method
is effective for unwell-trained CNNs. Although the disparity of them becomes
small, KELM based LRL still outperforms ResNet50. Besides, we notice the
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Table 3. Accuracy (%) and training times on the Caltech-256 with different methods.

Classifier Promotion (%) Time (s)

Li et al. [22] +1.12 18.02

Linear SVM −5.06 16.26

KSVM −3.03 47.07

NN −5.70 120.31

ELM −2.06 2.81

KELM +1.07 4.58

Fig. 3. Training observation of ResNet50 on Caltech-256 dataset.

ELM based LRL (orange line) cannot improve ResNet50 performance after the
13-th epoch.

4.5 Implementation Details

For Caltech-256 dataset, we modify the last layer of VGG19 and ResNet50 to
257 outputs. These CNNs are trained using a batch size of 32 for 50 epochs and
the learning rate is set to 10−4. For the CIFAR-10 and CIFAR-100 datasets, we
replaced the fully-connected layer of ResNet50 to 11 and 101 outputs. ResNet50
are trained using a batch size of 128 for 300 epochs and the initial learning is set
to 0.001 and is divided by 10 at 30 % and 75 % of the total number of training
epochs. All CNNs are trained using stochastic gradient descent. And we use a
weight decay of 0.01 and Nesterov moumentum of 0.9. In all experiments, the
images are randomly flipped and cropped before passing into the networks. In
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all our simulations on ELM with Sigmoid additive hidden node and RBF hidden
node, l = 1000. All the hidden node parameters are randomly generated based
on uniform distribution. Experiments are performed on a NVIDIA Titan Xp
GPU.

5 Conclusion

In this paper, instead of designing complicated and redundant CNNs, we explore
the label-wise relation for label rectification, then propose a method (LRL) to
learn label rectify through kernel extreme learning machine to improve accuracy
of image classification. Compared with features, labels contain less redundant
information and dimension is smaller. LRL can achieve similar accuracy but save
more times for training. In addition, by training observation, we found that LRL
shows strong advantages in rectifying the labels of pre-trained models. Extensive
experiments conducted on public datasets demonstrate the effectiveness of LRL
(KELM). To our best knowledge, this is the first labels rectification approach
for image classification. In future, we will exploit a method to learn label rectify
from source dataset to target dataset directly.
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