
Chapter 5
Optimization of Training Data Set Based
on Linear Systematic Sampling to Solve
the Inverse Kinematics of 6 DOF Robotic
Arm with Artificial Neural Networks

Ma. del Rosario Martínez-Blanco, Teodoro Ibarra-Pérez,
Fernando Olivera-Domingo, and José Manuel Ortiz-Rodríguez

5.1 Introduction

The large amount of data available today constitutes one of the most valuable capital
for organizations, because through its analysis, it is possible to obtain strategic
information for decision-making, detection of behaviors, establishment of predictive
models, among others [1].

The current volume of information has exceeded the processing capabilities
of current conventional systems. The intervention of new processing algorithms
and scalable techniques, which allow fast and efficient information processing, is
increasingly necessary [2].

When having a very large amount of data, there are usually two ways to
approach the problem. One way can be to redesign the algorithms without affecting
performance to obtain an efficient execution with all the data. A second approach
may involve reducing the data set to obtain a very similar result as if the entire
volume of data were used [3].

Success in knowledge extraction algorithms is highly dependent on the integrity
and consistency of the extracted data. Particularly in the field of artificial neural
networks, most research focuses its efforts on specific applications and training
algorithms that improve precision and convergence of results. However, most of the
studies do not describe the procedure that was applied in the data preprocessing

M. d. R. Martínez-Blanco · T. Ibarra-Pérez · J. M. Ortiz-Rodríguez (�)
Laboratorio de Innovación y Desarrollo Tecnológico en Inteligencia Artificial (LIDTIA),
Universidad Autónoma de Zacatecas (UAZ), Zacatecas, México

T. Ibarra-Pérez · F. Olivera-Domingo
Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas (UPIIZ), Instituto
Politécnico Nacional (IPN), Zacatecas, México

© Springer Nature Switzerland AG 2022
S. Paul et al. (eds.), Frontiers of Data and Knowledge Management
for Convergence of ICT, Healthcare, and Telecommunication Services,
EAI/Springer Innovations in Communication and Computing,
https://doi.org/10.1007/978-3-030-77558-2_5

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77558-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-77558-2_5

86 M. d. R. Martínez-Blanco et al.

stage and, in general, the determination of success or failure in the knowledge
extraction algorithms is influenced by the quality of the training data [4].

Data preprocessing is a stage that can increase the quality and reliability of the
data because a low quality in the data leads to a low quality in the knowledge
extracted. Although it is true that a very complete training data set would allow
a better understanding of the problem to be obtained, the training time required will
be much longer and computationally costly, making it infeasible [5].

Sampling is one of the most appropriate preprocessing methods to solve this
problem due to its advantages in performance and low processing cost required
during its application in knowledge extraction algorithms in various fields of
engineering, statistics, machine learning, and data mining [6].

Data preprocessing techniques focus on two areas: data preparation and data
reduction. Data preparation is mandatory and refers to the adequacy of the data so
that the algorithms can be executed correctly, such as normalization, cleaning, and
probably the recovery of lost data. On the other hand, data reduction is not always
required and refers to the generation of a reduced size that maintains the integrity
of the information as much as possible, such as the selection of characteristics, the
selection of instances, the grouping, and sampling among others [7, 8].

Linear Systematic Sampling (LSS) is one of the most used techniques thanks to
its ease of use. It was first introduced in 1944 by [9] and is also known as Cluster
Sampling method, which consists of dividing the population N into k groups of n
elements each, allowing all the elements of the data set to have the same chances of
being selected [10, 11].

In this study, a Reduction Data Filter (RDF) algorithm based on the LSS method
was implemented to process more than 4 billion data in a conventional AMD Ryzen
7 processor with 16 GB of RAM. In this way, a training data set was generated,
which was used by two different Artificial Neural Networks (ANN) architectures to
analyze the performance and generalizability of both architectures.

5.1.1 Artificial Neural Networks

The understanding of our brain has allowed the creation of Artificial Neural
Networks (ANN) due to the fact that they are inspired by its operation, while
a microprocessor processes information sequentially, the human brain does it in
parallel and concurrently, however, we are still far from emulating the simplest
capabilities of human reasoning, although ANN is currently a very powerful
instrument for various applications in engineering and a very promising field of
research [12].

An artificial neuron can be described as a computational structure or a mathemat-
ical abstraction model inspired by the neurons of our brain to which input signals
arrive, as occurs with the dendrites of a real neuron, and generates an output signal,
as happens with the axon [13]. An example of the schematic of an artificial neuron
is shown below in Fig. 5.1.

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 87

Fig. 5.1 Scheme of an
artificial neuron

Each of the inputs x1, . . . , xn is assigned a value or synaptic weight w1, . . . ,wn. The
output of the perceptron is an independent function of the value of its inputs, with
their respective weights and threshold value. The weights wi represent the intensity
of synapses connecting two neurons and can be negative or positive. θ is the transfer
function or firing threshold from which the neuron is activated [14].

The output is calculated by the cumulative sum of the product of all the input
signals multiplied by their corresponding synaptic weights plus a bias, b, as shown
below in Eq. (5.1).

z =
∑

i

xi × wi + b (5.1)

The output generated is used as input to a transfer function where the response
to the artificial neuron is generated, as shown below in Eq. (5.2).

yi = f

(
∑

i

xi × wi + b

)
. (5.2)

ANNs are interconnected neurons distributed in parallel. Generally, the form of
connection between neurons determines the type of network and they are usually
grouped in layers. A layer is a set of neurons and according to its location it can
be the input layer, a hidden layer, or the output layer. The architecture of a neural
network is determined according to the arrangement of neurons within the layers
and the forms of connection between them [14, 15].

Figure 5.2 shows a simplified model that describes an ANN with three layers,
where it is observed that the network has R1 inputs, i1 neurons in the first layer,
i2 neurons in the second layer, and i3 neurons in the third layer. The bias constant
with a value of 1 is added in each neuron and in this way a layered approach can be
obtained to analyze the complete structure of the network [16].

According to the feedback existing in the network, it can be seen that, if there
is no connection between the output layer and the neurons of the input layer, the
network does not maintain a previous memory state, so it is a forward propagation
network. On the other hand, when there is feedback between the input and output

88 M. d. R. Martínez-Blanco et al.

Fig. 5.2 Artificial Neural Network with two hidden layers

layers, a memory of their previous states is kept and the next state depends not only
on the input signals but also on the previous states of the network, generating a
backward propagation network [14].

In 1986 Rumelhart and McCelland proposed the Back Propagation Neural
Network (BPNN) whose fundamental architecture consists of three layers. In
this type of network, the number of layers that are necessary can be used and
its mathematical foundation is based on the gradient descent algorithm, where
the synaptic weights constantly change when processed by neurons through an
activation function, producing outputs for the next layer until the minimum error
is reached [14, 17, 18].

There is generally a problem with this type of network because the structural
parameters must be established at the beginning of the training. Currently there is
no procedure that guarantees the optimal configuration of these parameters and they
are usually proposed according to the researcher’s previous experience in trial and
error experiments [19].

In Generalized Regression Neural Network (GRNN) architectures, unlike BPNN,
it is not necessary to optimize the training parameters such as the learning rate and
the momentum, on the contrary, the smoothing factor or propagation value of the
network is determined. This value must be greater than zero and can generally be
in the range of 0.01 to 1, obtaining excellent results. To determine the propagation
value, it is necessary to estimate the probability density function according to the
samples used in the training of the network and to carry out several experiments in
order to determine the most appropriate value to train the GRNN [20, 21].

Donald F. Spech introduced this type of network in 1991, which is capable of
producing continuous output values and rapidly draining sparse data sets. Due to
the fact that only one forward propagation is necessary, the training of this type
of network is very fast compared to the BPNN, where the information must be
backward and forward propagated several times until an acceptable value of the
desired error is found [20, 22].

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 89

5.1.2 Inverse Kinematics Solution with Artificial Neural
Networks

Inverse kinematics is one of the most interesting problems in the field of industrial
robotics. Inverse kinematics consists of determining the joint values of the end
effector for a certain position and orientation in a Cartesian plane. This problem
can be solved by means of a closed solution, since on some occasions the solution
in real time is necessary for applications such as tracking a trajectory. However,
the solution could be very complex due to the geometry of the manipulator, forcing
the implementation of iterative solutions, which would be unfeasible for real-time
applications, requiring the intervention of appropriate predictive models in the field
of soft computing, where ANNs are one of those techniques that can be used to
obtain acceptable results [23–25].

During the last decades, researchers have shown a special interest in the use of
ANN, particularly due to its characteristics related to nonlinearity, parallelism, high
robustness, fault tolerance, and great capacity for learning and generalization from
complex and nonlinear examples [26–29].

The multilayer perceptron trained with the back propagation algorithm (BP)
is one of the most widely used network architectures in modeling, optimization,
and classification applications [19, 30–32]. This type of network is one of the
most frequently used to learn the equations of the direct and inverse kinematics
of 6 Degrees of Freedom (DOF) robotic manipulators, where the network learns
the functional relationship between the input space and the output space through
supervised training, based on a mapping adapting the solution in a nonlinear
relationship between the locations of the end effector with the desired location [23,
33].

Currently, the determination of the structural parameters in the use of ANN
continues to be a difficult and complicated task, because the parameters are gen-
erally defined by the researcher’s previous experience in trial and error procedures,
investing large amounts of time and resources, without guaranteeing the optimal
configuration of the structural parameters [19, 28, 34, 35].

In this study, the Robust Design Artificial Neural Networks (RDANN) method-
ology was used to determine the optimal parameters in the first proposed network
architecture: BPNN. Likewise, a systematic procedure was used to calculate the
optimum value in the second proposed network architecture: GRNN. Both networks
were used to solve the Inverse Kinematics (IK) of a 6 DOF robotic manipulator after
training them with two data sets of the same size, but with different preprocessing
characteristics, with the aim of analyzing the performance and generalizability of
the proposed networks based on the quality of the training data [19, 36].

90 M. d. R. Martínez-Blanco et al.

5.2 Neural Networks Based Inverse Kinematics Solution

5.2.1 Kinematics Analysis of Ketzal Robot

The morphology of robotic manipulators generally refers to the shape of the
components and their structural mechanical parts [37]. A robotic manipulator
generally has rigid mechanisms known as links that are connected by prismatic or
rotating joints forming an open chain that can be operated by actuators [38].

In this study, the structure of a robotic manipulator called Ketzal with six DOF
was used. Figure 5.3 shows the structure and coordinates reference systems of the
robot, which is based on an open source, low-cost, and 3D printed project [39].

The forward kinematics calculation is about finding the position and the ori-
entation vectors of the end effector with respect to a fixed coordinate reference
system, given the vector of joint angles [40]. The inverse kinematics problem is
about calculating the vector of joint angles given the position and orientation vectors
of the end effector with respect to a fixed coordinate reference system [41].

The forward kinematics calculation results in an homogeneous transformation
matrix T of size 4x4, as shown in Eq. (5.3), where the spatial configuration between
the joints of the manipulator is related to the position and orientation with respect to
a fixed reference system [24].

T 6
0 =

[
R6
0
0

P 6
0
1

]
=

⎡

⎢⎢⎣

nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1

⎤

⎥⎥⎦ (5.3)

where R6
0 represents a 3×3 size rotation matrix composed of the vectors n, o y a

and that defines the orientation of the end effector and P 6
0 is the position vector

of the end effector in the coordinate reference system. In this chapter, the Denavit-
Hartenberg (D-H) method was used to calculate the forward kinematics of the Ketzal
manipulator by implementing our basic transformations [42]. The D-H parameters
are shown below in Table 5.1.

Fig. 5.3 Ketzal robotic
manipulator

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 91

Table 5.1 Ketzal robot D-H parameters

Link offset (cm) Joint angle (rad) Link length (cm) Twist angle (rad)

d1 = 20.2 θ1 = q1 a1 = 0 α1 = π
2

d2 = 0 θ2 = q2 a2 = 16 α2 = 0
d3 = 0 θ3 = q3 + π

2 a3 = 0 α3 = π
2

d4 = 19.5 θ4 = q4

The transformations, which depend on the configurations of the links, consist of
a succession of rotations and translations allowing to relate the reference system of
element i with the system of element i-1, which is given by Eq. (5.4) [43].

i−1Ai = RotzθiTransx,diTransx,αiRotz,αi (5.4)

Similarly,

i−1Ai =

⎡

⎢⎢⎣

Cθi −SθiCαi

Sθi CθiCαi

SθiSαi aiCθi

− CθiSαi aiSθi

0 Sαi

0 0
Cαi di

0 1

⎤

⎥⎥⎦ (5.5)

where i is the number of the link, θ i is the angle of rotation of the joint, αi is the
rotation of the joint, ai is the length of the link, di is the displacement of the link,
and Cθ i = cos (θ i) y Sθ i = sin (θ i).

Realizing the product of the six matrices obtained from Eq. (5.6), the matrix
that indicates the location of the final system with respect to a reference system
located at the base of the robot is obtained, which is known as the homogeneous
transformation matrix T 6

0 [43].

T 0
6 = 0A1 · 1A2 · 2A3 · 3A4 · 4A5 · 5A6 (5.6)

where

0A1 =

⎡

⎢⎢⎣

cos (q1) 0
sin (q1) 0

sin (q1) 0
− cos (q1) 0

0 1
0 0

0 a0 + a1

0 1

⎤

⎥⎥⎦ , (5.7)

1A2 =

⎡

⎢⎢⎣

cos (q2) − sin (q2)

sin (q2) cos (q2)

0 a2 ∗ cos (q2)

0 a2 ∗ sin (q2)

0 0
0 0

1 0
0 1

⎤

⎥⎥⎦ , (5.8)

92 M. d. R. Martínez-Blanco et al.

2A3 =

⎡

⎢⎢⎣

− sin (q3) 0
cos (q3) 0

cos (q3) 0
sin (q3) 0

0 1
0 0

0 0
0 1

⎤

⎥⎥⎦ , (5.9)

3A4 =

⎡

⎢⎢⎣

cos (q4) 0
sin (q4) 0

− sin (q4) 0
cos (q4) 0

0 −1
0 0

0 a3 + a4

0 1

⎤

⎥⎥⎦ , (5.10)

4A5 =

⎡

⎢⎢⎣

cos (q5) 0
sin (q5) 0

sin (q5) 0
− cos (q5) 0

0 1
0 0

0 0
0 1

⎤

⎥⎥⎦ , (5.11)

5A6 =

⎡

⎢⎢⎣

cos (q6) − sin (q6)

sin (q6) cos (q6)

0 0
0 0

0 0
0 0

1 a5 + a6

0 1

⎤

⎥⎥⎦ , (5.12)

Getting,

nx = sin (q1) sin (q6) cos (q4) + sin (q1) sin (q4) cos (q5) cos (q6) + sin (q2 + q3)

sin (q4) sin (q6) cos (q1) − sin (q5) cos (q1) cos (q2 + q3) cos (q6) − sin (q2 + q3)

cos (q1) cos (q4) cos (q5) cos (q6)

(5.13)

ny = − sin (q6) cos (q1) cos (q4) − sin (q4) cos (q1) cos (q5) cos (q6) + sin (q1)

sin (q2 + q3) sin (q4) sin (q6) − sin (q1) sin (q5) cos (q2 + q3) cos (q6) − sin (q1)

sin (q2 + q3) cos (q4) cos (q5) cos (q6)

(5.14)

nz = − sin (q2 + q3) sin (q5) cos (q6) + cos (q2 + q3) cos (q4) cos (q5) cos (q6)

− sin (q4) sin (q6) cos (q2 + q3)

(5.15)

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 93

ox = sin (q1) cos (q4) cos (q6) + sin (q2 + q3) sin (q4 + q6) cos (q1) − sin (q1)

sin (q4) sin (q6) cos (q5) − sin (q5) sin (q6) cos (q1) cos (q2 + q3)

(5.16)

oy = sin (q4) sin (q6) cos (q1) cos (q5) + sin (q1) sin (q2 + q3) sin (q4) cos (q6)

+ sin (q1) sin (q5) sin (q6) cos (q2 + q3) − sin (q1) sin (q2 + q3) sin (q6) cos (q4)

cos (q5) − cos (q1) cos (q4) cos (q6)

(5.17)

oz = sin (q2 + q3) sin (q5) sin (q6) − sin (q6) cos (q2 + q3) cos (q4) cos (q5)

− sin (q4) cos (q2 + q3) cos (q6)

(5.18)

ax = sin (q1) sin (q4) sin (q5) − sin (q2 + q3) sin (q5) cos (q1) cos (q4) + cos (q1)

cos (q2 + q3) cos (q5)

(5.19)

ay = − sin (q4) sin (q5) cos (q1) − sin (q1) sin (q2 + q3) sin (q5) cos (q4)

+ sin (q1) cos (q2 + q3) cos (q5)

(5.20)

az = sin (q2 + q3) cos (q5) + sin (q5) cos (q2 + q3) cos (q4) (5.21)

px =
[
sin (q1) sin (q4) sin (q5) − sin (q2 + q3) sin (q5) cos (q1) cos (q4) + cos (q1)

cos (q2 + q3) cos (q5)
]
(a5 + a6) + cos (q1) cos (q2 + q3) (a3 + a4) + cos (q1)

cos (q2) a2

(5.22)

94 M. d. R. Martínez-Blanco et al.

py = −
[
sin (q4) sin (q5) cos (q1) − sin (q1) cos (q2 + q3) cos (q5) + sin (q1)

sin (q2 + q3) sin (q5) cos (q4)
]
(a5 + a6) + sin (q1) cos (q2 + q3) (a3 + a4)

+ sin (q1) cos (q2) a2

(5.23)

pz = [sin (q2 + q3) cos (q5) + sin (q5) cos (q2 + q3) cos (q4)] (a5 + a6)

+ sin (q2 + q3) (a3 + a4) + sin (q2) a2 + (a0 + a1) (5.24)

It can be seen that Eqs. (5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, and 5.21)
reflect the values of the orientation vectors of the end of the robot [noa] as a function
of the joint coordinates (q1, q2,q3, q4, q5, q6) and Eqs. (5.22), (5.23) y (5.24) reflect
the values of the position vector of the end of the manipulator (px, py, pz) as a
function of the joint coordinates and lengths of the links (a0, a1, a2, a3, a4, a5, a6).

5.2.2 Description of Data Sets

According to the geometry and physical dimensions of the Ketzal robotic manipula-
tor, the workspace can be represented by the set of position coordinates, orientation,
and joint values. In principle, the workspace is made up of an infinite set of spatial
coordinates. However, it is necessary to generate a space defined by a finite set so
that it can be processed by a computer, because the volume in the data considerably
influences the available processing capacities [4].

Two data sets A and Bwere proposed. Both sets were generated from the transfor-
mation matrices described by Eq. (5.5). According to the geometric characteristics
of the Ketzal robot, the ranges of movement for each of the joints (�1 . . . �6) are
described in Table 5.2.

The workspace for both proposed sets is the same; however, the distribution of
the spatial coordinates is different due to the resolution used in the ranges of motion
initially established in each of the joints during the generation of the two data sets.
In other words, the amount of data generated is defined as a function of the spatial
resolution established in the range of joint values. For example, joint �1 has a range
of motion from 0 to 2π ; therefore, if a jump is set Δθ1 = π , only three values [0,
π , 2π] are considered, on the contrary, if a jump is used from Δθ1 = π /5 a better
spatial resolution is obtained considering eleven values [15].

Table 5.2 Angular ranges in
the Ketzal robot joints

(rad) θ1 θ2 θ3 θ4 θ5 θ6

Mínimum 0 0 2π 0 2π 0
Máximum 2π π π

2 2π π
2 2π

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 95

Available hardware features and capabilities are one of the most important factors
that significantly influence data processing. Below a description of the two data sets
that were generated by implementing two arrays of rows × columns is presented
[44].

DatasetA =

⎡

⎢⎢⎣

a11 a12 . . . a1c

a21 a22 . . . a2c

.

ar1 ar2 . . . arc

⎤

⎥⎥⎦ (5.25)

For data set A, the subscript r represents the number of data generated by each
variable with a value of 24,000 double precision data, with a spatial resolution of
10×5×5×6×4×4, that is, joint �1 within its range of motion can only generate
10 values, the second joint 5 values, and so on for the other joints. The subscript c
represents the total number of variables used with a value of 18 variables, giving a
total of 432,000 data with a physical space in memory of 3.29 MB. The elements
{ar1, ar2, ar3} correspond to the position vector [p] = {px, py, pz}, the elements
{ar4 . . . ar12} correspond to the orientation vector [noa] = {nx, ny, nz, ox, oy, oz,
ax, ay, az}, and finally the elements {ar13 . . . ar18} correspond to the vector of joint
values [Θ] = {Θ1, Θ2, Θ3, Θ4, Θ5, Θ6}.

DatasetB =

⎡

⎢⎢⎣

b11 b12 . . . b1c

b21 b22 . . . b2c

.

br1 br2 . . . brc

⎤

⎥⎥⎦ (5.26)

For data set B, the subscript r has a value of 244,140,625 double precision data,
with a spatial resolution of 25×25×25×25×25×25, where each of the joints can
generate 10 values within its range of motion. The subscript c has a value of 18
variables giving a total of 4,394,531,250 data with a physical space in memory of
4.09 GB.

The elements {br1, br2, br3} correspond to the position vector [p] = {px, py, pz},
the elements {br4 . . . br12} correspond to the orientation vector [n o a] = {nx, ny, nz,
ox, oy, oz, ax, ay, az}, and finally the elements {br13 . . . br18} correspond to the vector
of joint values [Θ] = {Θ1, Θ2, Θ3, Θ4, Θ5, Θ6}.

5.2.3 Data Set Collection

To collect the data sets from the kinematic analysis of the proposed manipulator, a
six-dimensional matrix was generated that contains all the combinations of values
defined in Θ1, Θ2, Θ3, Θ4, Θ5, and Θ6. For data set B, each of the joints
was defined with 25 values; therefore, the resulting matrix has a dimension of

96 M. d. R. Martínez-Blanco et al.

25x25x25x25x25x25. For data set A, the resulting matrix has a dimension of
10x5x5x6x4x4. The x, y, z coordinates are deduced through the direct kinematics
equations, starting from the ranges of motion for each data set as described in
Table 5.2 and taking into account the lengths of the six links of the manipulator,
where a0 = 10.1 cm, a1 = 10.1 cm, a2 = 16.0 cm, a3 = 9.2 cm, a4 = 10.3 cm,
a5 = 1.345 cm, and a6 = 5.37 cm. When calculating the direct kinematics Eqs.
(5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, and 5.24) as a
function of the joints and lengths of the links, a six-dimensional matrix is obtained
for each equation solved. Finally, to obtain the data set, the result of the direct
kinematics equations is grouped together with the joint value matrix in a single
matrix. The resulting matrix contains nine orientation matrices, three position
matrices, and six joint value matrices, for a total of 18 six-dimensional matrices.

5.2.4 Dispersion Analysis of the Generated Data Set

Starting from the initial position and according to the range of movement defined
for each of the joints, the workspace can be appreciated from different perspectives
by using scatter diagrams in the position vectors as a function of the joints. Figure
5.4 shows the dispersion of the position data as a function of the three joints of the
end effector, generating a half sphere as shown below.

By including the combinations of the q1 joint with the previous one, a set of half
spheres following a circular trajectory is obtained, because the joint has a range of
motion from 0 to 360 degrees as seen below in Fig. 5.5.

Fig. 5.4 Position vector (px, py, pz) in function of joints q4, q5 and q6

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 97

Fig. 5.5 Position vector (px, py, pz) in function of joints q1, q4, q5 and q6

Fig. 5.6 Position vector (px, py, pz) in function of joints q2, q4, q5 and q6

On the contrary, if the combinations of the q2 joint instead of the q1 joint are
included in the position vector functions(px, py, pz), a set of half spheres in a vertical
plane following a half-circle trajectory is obtained, because the joint q2 has a range
movement from 0 to 180 degrees as shown below in Fig. 5.6.

If the combinations of q3, q4, q5 and q6 joints are included in the position vector
functions (px, py, pz), a series of half spheres in a horizontal plane following a
circular path are obtained, because the joint q3 has a range of motion of −90 to
90 degrees as shown below in Fig. 5.7.

98 M. d. R. Martínez-Blanco et al.

Fig. 5.7 Position vector (px, py, pz) in function of joints q3, q4, q5 and q6

Fig. 5.8 Position vector (px, py, pz) in function of joints q1, q2, q4, q5 and q6

In this particular case, if the q1, q2, q4, q5 and q6 joints are combined to the
position vector functions (px, py, pz), a vertical and horizontal path of the half sphere
generated by the q4, q5 and q6 joints is obtained through a half-circle path as shown
below in Fig. 5.8.

Finally, by combining all the joints of the manipulator, a data set of size
244,140,625 data with 18 variables is obtained and generated through the functions
of the position vector (px, py, pz) as shown below in Fig. 5.9.

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 99

Fig. 5.9 Position vector (px, py, pz) in function of joints q1, q2, q3, q4, q5 and q6

5.2.5 Reduction Algorithm Based on Linear Systematic
Sampling

It is evident that the amount of data generated in set B exceeds the processing
capacities of a conventional computer. To solve the problem, an algorithm based
on the LSS method was designed. This method has two main advantages. On one
hand, the selection of the first sample is chosen by a sampling period that guarantees
a random instance among a set of samples in a given interval. On the other hand, the
samples chosen consecutively are distributed in a good way among the population,
that is, there is less risk that some or a large part of the population is not represented,
maintaining a constant and uniform distribution among the data [4].

Although the LSS method is one of the most common methods, it has two
drawbacks. On one hand, The sampling variance cannot be taken impartially on the
basis of the single sample taken and in the other hand, when the population size N
cannot be divided evenly by the desired sample size n, systematic sampling cannot
be performed, that is, when N is not an integer multiple of the desired sample size
n and consequently N �= nk. In this case, the sampling could be inefficient and if
at some point the characteristics of the population were periodic and they coincide
with the sampling interval, the representativeness of the desired sample could be
biased [10, 11].

The quality of the data is influenced by the spatial resolution of the data in
the workspace. In this sense, the higher the spatial resolution, the more data will
be distributed in the workspace and the better the data quality. However, to carry
out the processing on conventional processors, it will be necessary to implement
data reduction algorithms that allow obtaining a balanced representation and thus
obtaining good results in the knowledge extraction algorithms [4, 6].

100 M. d. R. Martínez-Blanco et al.

In this case, considering data set B with a population of N = 244,140,625,
where the size of the desired sample is n = 24,000, it is observed that N is not
an integer multiple of n, because k = N / n = 10,172.5260; therefore, k is not an
integer that satisfies the criteria of the LSS method. However, due to the distribution
characteristics of the data, it is possible to carry out systematic sampling while
maintaining a homogeneous representativeness among the data. In this case, the
sampling interval k will be converted to an integer, because the characteristics
of the population are not periodic; therefore, the accumulated bias at the end of
the sampling can be eliminated without altering or modifying the homogeneous
representativeness of the population. Figure 5.10 describes the RDF algorithm that
was used only with data set B due to its size to fulfill this purpose.

According to the Fig. 5.10, the steps for the implementation of the filter are
described in a general way:

1. The values for the original population size N and the desired sample size n are
initialized.

2. The constant of the sampling interval k = N / n is calculated.
3. The random number between 1 and k is generated.
4. The random value is rounded to an integer r1.
5. Element r1 from the original data set is selected as the first filtered data.

Fig. 5.10 RDF algorithm

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 101

6. The cumulative sum is made between the random number and the constant k. In
this step, the cumulative sum is a positive noninteger value.

7. The cumulative value of the sum is rounded to an integer r2.
8. Element r2 is selected from the original data set as the second filtered data and

steps 6, 7, and 8 are repeated until the desired n samples are reached.

Where the variable n represents the desired sample, N represents the original
population, k is the sampling interval, a random number between 1 and k is stored
in the variable start, and the variable index represents the index of the instance
with decimal number while index_r is the integer value of the index of the instance
rounded up.

Within the iterative loop type for, the selection of instances is performed starting
from the k-th element until reaching the desired sample n. The variable index
accumulates the values of the indices with decimals and the value of the sampling
interval k.

For the case of data set B, there is a population N = 244,140,625, where the
desired sample is n = 24,414 and the sampling interval k = 10,000,025. In this
case, when k is not an integer, the RDF algorithm will always perform rounding.
Therefore, when the value of the modulus of the sampling interval k divided by the
desired sample n is zero, a sampling without bias among the population is ensured,
that is, when K is an integer, the LSS criterion is applicable. However, when the
value of the modulus of the sampling interval divided between the desired samples
is close to zero, the bias generated is minimal without significantly influencing the
training results.

5.2.6 Data Set Normalization

The normalization of data sets A and B was performed in the range of −1 to 1,
because the hyperbolic sigmoid tangent transfer function was used for the BPANN
training. A mean of zero was applied, in an interval of −1 ≤ data ≤ 1 by means of
Eq. (5.27).

datanorm =
(
data-min

range
∗ (high − low)

)
+ low (5.27)

where data_norm is the normalized data, data is the data to normalize, min is
the minimum of the generated data set, range is the range or difference between
the maximum value and the minimum value of the generated data set, high = 1
represents the upper limit of the desired interval, and low = −1 represents the lower
limit of the desired range [45].

102 M. d. R. Martínez-Blanco et al.

5.2.7 Training and Test Data Sets

There is no procedure that determines the amount of training and test data that
should be used to train ANNs. However, much of the research with ANN uses the
80:20 and 90:10 ratio. In this study, a random selection of the data was carried out
in order to randomly choose the training and testing subsets with densities of 80:20
and 90:10. This procedure was applied to both data sets, A and B.

To analyze the performance in the proposed network architectures, a training was
carried out for each proposed data density configuration. With the aim of analyzing
the generalizability in each of the proposed network architectures, during the testing
stage, an error of less than 5% was considered for the prediction of the data through
a statistical analysis of correlation and Chi-square.

5.2.8 Training and Test Back Propagation Neural Network

To determine the optimal parameters of the BPNN network, the RDANN method-
ology based on the robust parameter design method proposed by Genichi Taguchi
was used. The engineering method, applied to the design of products or processes,
is focused on reducing the sensitivity to noise and has proven to be an efficient and
powerful method in product design [46].

The robust design technique is known as factorial design of experiments where
most of the possible combinations can be identified without the need to include
a considerable number of experiments and its application allows determining the
functionality or performance of a product or process to be controlled [47].

The RDANN methodology applied to the ANN design allows finding the
selection of the factors involved that allowminimizing the variability of the response
to different inputs to the system through the appropriate choice of the levels in the
controlled design variables [19].

The design variables considered were the number of neurons in the first and
second layers, the momentum, and the learning rate. For the noise variables, the
random weights, the size of the training set versus the size of the test set, and the
random selection of the sets were considered. During the experimentation stage, an
orthogonal array configuration was used with an L9(34) y L4(32) with the aim of
training and testing 36 different ANN architectures [48].

During the confirmation stage, the signal-to-noise ratio was analyzed through
an analysis of variance (ANOVA) to determine adequate levels in the variables
involved and to identify the possible optimal values of the best network topology,
also involving the value of the mean obtained from the Mean Square Error (MSE).
The best architecture was 12: 12: 6, momentum = 0.01, and learning rate = 0.1.

Figure 5.11 shows the generalization tests applied to the BPNN that was
trained with 19,200 data from set A with spatial resolution of 10×5×5×6×4×4
without applying the filter. In each individual graph, the six joint coordinates of

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 103

Fig. 5.11 Without filtering: Predicted joints vs calculated

the manipulator that were previously calculated (“x”) versus the joint coordinates
predicted by the BPNN (“o”) are observed.

Figure 5.12 shows the tests carried out on the BPNN, with the data from
set B that were previously treated by the RDF, with a spatial resolution of
25×25×25×25×25×25. Joint coordinates previously calculated and belonging to
the test data set are displayed. In each box, six joint coordinates calculated (“x”)
versus joint coordinates predicted by the BPNN (“o”) are observed.

5.2.9 Training and Test Generalized Regression Neural
Network

In the GRNN, to determine the optimal spread value of the network, also known as
the “kernel spread constant,” a spread value smaller than the distance between the
input vectors is used to make a close fit between the data. If a higher spread value
is used, it could cause an over adjustment, on the contrary, if the value is too small,
it could cause an under adjustment. Therefore, this constant propagation value is
considered as a regularization parameter that should be optimally selected [49].

To determine the best constant propagation value in the RGNN, 2000 trainings
were performed for each configuration in the data density (80:20 and 90:10) for each
proposed set (A and B) in an automated manner. Next, Table 5.3 shows the spread
values obtained during the RGNN training.

Figure 5.13 shows the generalization tests applied to the GRNN that was trained
with 19,200 data from set A with spatial resolution of 10×5×5×6×4×4, without

104 M. d. R. Martínez-Blanco et al.

Fig. 5.12 With filtering: Predicted joints vs calculated

Table 5.3 Obtaining the
spread value with 2000
iterations

Data set Train/test Global time [hr] Optimal spread

A 80:20 2.38 0.2881
A 90:10 1.22 0.2721
B 80:20 2.26 0.2111
B 90:10 0.89 0.2131

applying the filter, with a much lower spatial resolution compared to set B. In each
individual graph, the six joint coordinates of the manipulator that were previously
calculated (“x”) versus the joint coordinates predicted by the GRNN (“o”) are
observed.

Figure 5.14 shows the tests performed on the GRNN that was trained with the
data from set B that were previously treated by the RDF, with a spatial resolution of
25x25x25x25x25x25. Eight joint coordinates previously calculated and belonging
to the test data set are displayed. In each box, six joint coordinates calculated (“x”)
are observed versus joint coordinates predicted by the GRNN (“o”) are observed.

5.3 Results

5.3.1 Reduction Data Filter Analysis

To analyze the distribution of the data, two dispersion matrices were plotted to
compare the results obtained before and after applying the filter to the data. Based
on the range of motion previously established for each of the joints in Fig. 5.15 (a), a

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 105

Fig. 5.13 Without filtering: Predicted joints vs calculated

Fig. 5.14 With filtering: Predicted joints vs calculated

representation of data set B is shown, which maintains a population of 244,140,625
data for each variable. On the main diagonal, the distribution of three variables
corresponding to the position vector [p]= {px, py, pz} and their data scatter diagrams
in different perspectives can be observed.

106 M. d. R. Martínez-Blanco et al.

Fig. 5.15 Dispersion matrix of the position data set B: (a) Before filtering (b) After filtering

In Fig. 5.15 (b), the data after applying the RDF are shown, obtaining a reduction
of n = 24,410 data for each variable. It can be seen that the data maintain a constant
and uniform distribution with respect to the data set shown in Fig. 5.15 (a).

Figure 5.16 shows the distribution of the position and orientation data vectors
before and after applying the RDF to the data. In Fig. 5.16 (a), we can see the
distribution of the vectors of position [p] = {px, py, pz} and orientation [n o a] = {nx,

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 107

Fig. 5.16 Distribution of position and orientation data set B: (a) Before filtering (b) After filtering

ny, nz, ox, oy, oz, ax, ay, az} belonging to data set B and which originally maintains
a population of 244,140,625 data per variable.

In Fig. 5.16 (b), the data distribution after applying the RDF is shown, obtaining
a reduction of n = 24,410 data per variable. It can be seen that most of the data
maintains the distribution in a constant and uniform way with respect to the data set
shown in Fig. 5.16 (a).

108 M. d. R. Martínez-Blanco et al.

5.3.2 Performance Evidence with Filtering: Comparison
GRNN with BPNN

Next, Table 5.4 shows the results obtained by the two network architectures in the
testing stage, where it can be seen at the end of the table that RGNN obtained the
best percentage of predictions with an error of less than 5%. Likewise, it can be
observed that the training time required for this network is much lower compared to
the BPNN.

The use of the RDF filter allowed solving the problem of data volume and also to
carry out the training in a conventional processor, maintaining the homogeneous
distribution of the original data. During the tests, an error of less than 5% was
considered in the prediction of the data for both architectures by means of a
statistical analysis of correlation and Chi square.

For the BPNN training, 10,000 iterations were performed and the trainrp training
algorithm was used with a goal mse = 1E-4. The structural parameters of the
network such as momentum and learning rate were obtained by the RDANN
methodology with values of 0.01 and 0.1, respectively. The best results in this
architecture were obtained through the training performed by data set B processed
by the RDF Filter, with a data density of 90% for training data and 10% for tests.

5.4 Conclusions and Discussions

There is a relationship between the improvement in the generalizability of both
proposed networks and the fact that the data set was previously processed by
the RDF, because the reduction of the data allows maintaining a representative
distribution with respect to the spatial resolution generated initially, maintaining the
characteristics of the original population, and obtaining a considerable reduction of
99.99% to be able to carry out the processing in conventional computers and obtain
good results.

For the application of the RDF algorithm, as long as the modulus of the sampling
interval k divided by the desired sample n is a value close to zero, it will be possible
to obtain a better representativeness of the population N. Therefore, the answer of
question How close to zero should the sampling interval k divided by the desired
sample n be? its determination will depend on the characteristics of the problem
to consider it as a sampling that allows obtaining good results, since the expected
results are not always obtained when considering an integer k sampling interval. In
this study, the value was 0.02560.

The results obtained by the two network architectures showed an increase in the
generalizability due to the fact that they were trained with the data set previously
treated by the filter. However, when training both architectures using the data set
that was not treated, the generalizability in both networks was lower.

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 109

Ta
bl
e
5.
4

C
om

pa
ra
tiv

e
ta
bl
e
of

re
su
lts

ob
ta
in
ed

R
G
N
N

B
PN

N
D
at
a
se
t

Si
ze

be
fo
re

Fi
lte

ri
ng

Si
ze

af
te
r
fil
te
ri
ng

T
ra
in
/T
es
t

T
ra
in
in
g
tim

e
[s
]

%
R
ig
ht
gu

es
s
X
2
<
5%

T
ra
in
in
g
tim

e
[s
]

%
R
ig
ht
gu

es
s
X
2
<
5%

A
24
,0
00

×
18

24
,0
00

×
18

80
:2
0

4.
27

48
%

26
4.
41

44
%

A
24
,0
00

×
18

24
,0
00

×
18

90
:1
0

1.
60

50
%

31
6.
02

46
%

B
24
4,
14
0,
62
5

×
18

24
,0
00

×
18

80
:2
0

7.
41

79
%

17
5.
44

71
%

B
24
4,
14
0,
62
5

×
18

24
,0
00

×
18

90
:1
0

3.
51

80
%

18
4.
84

72
%

B
24
4,
14
0,
62
5

×
18

24
,4
14

×
18

80
:2
0

2.
69

83
%

18
9.
04

73
%

B
24
4,
14
0,
62
5

×
18

24
,4
14

×
18

90
:1
0

1.
58

83
%

15
8.
57

74
%

110 M. d. R. Martínez-Blanco et al.

The increase in the percentage of successes in relation to the spatial resolution
in the training data sets is evident. However, as spatial resolution increases, data
processing requires higher performance in the available hardware resources, so
the benefit that the use of data preprocessing techniques and/or tools that allow
obtaining good results without decreasing performance and generalizability in
knowledge extraction algorithms is evident.

The time required to train a BPNN is usually ten times greater than the training
time required by a GRNN, in addition to the fact that it is not necessary to select a
list of structural parameters compared to the BPNN, so its implementation is faster
and more efficient.

The best training in both network architectures was obtained using a data density
of 80% for training and 20% for testing. At best, during the testing phase, the GRNN
succeeded in keeping 83% of its predictions with a margin of error of less than
5%. Therefore, this study reaffirms that the quality of the training data sets has a
significant influence on the results obtained by the knowledge extraction algorithms.

Acknowledgments This work was supported by IPN-COTEBAL to study doctoral degree under
permissions 14/2018, 33/2019, and 23/2020. This works was partially supported by CONACYT -
BecasNacionales de Posgrado con la Industria under contract 431101/640582, by the collaborate
students Agustín Ortíz and Brayan M. Carrera and by OMADS S.A. of C.V., an enterprise
dedicated to the innovation and technological development.

References

1. C. Marco, P. Anit, How organisations leverage big data: A maturity model. Ind. Manag. Data
Syst. 116(8), 1468–1492 (2016). https://doi.org/10.1108/IMDS-12-2015-0495

2. K.-C. Li et al., Big Data: Algorithms, Analytics, and Applications (Chapman and Hall/CRC,
2015)

3. H. Liu, H. Motoda. On issues of instance selection. Data Min. Knowl. Disc. 6(2) Art. no. 2
(2002). https://doi.org/10.1023/A:1014056429969

4. H. Liu, H. Motoda, Instance Selection and Construction for Data Mining. Springer US (2001)
5. S. García, J. Luengo, F. Herrera, Data Preprocessing in Data Mining, vol 72 (Springer

International Publishing, Cham, 2015)
6. B. Gu, F. Hu, H. Liu. Sampling and its application in data mining. Technical Report TRA6/00,

Department of Computer Science, National University of Singapur (2000)
7. H. Liu, H. Motoda, On issues of instance selection. Data Min. Knowl. Disc. 6(2), 115–130

(2002). https://doi.org/10.1023/A:1014056429969
8. H. Brighton, C. Mellish, Advances in instance selection for instance-based learning algorithms.

Data Min. Knowl. Disc. 6(2), 153–172 (2002). https://doi.org/10.1023/A:1014043630878
9. W. G. Madow, L. H. Madow. On the theory of systematic sampling, I. Ann. Math. Stat. 15(1).

Art. no. 1 (1944)
10. S.A. Mostafa, I.A. Ahmad, Remainder linear systematic sampling with multiple ran-

dom starts. J. Statist. Theory Pract. 10(4), 824–851 (2016). https://doi.org/10.1080/
15598608.2016.1231094

11. L.H. Madow, Systematic sampling and its relation to other sampling designs. J. Am. Stat.
Assoc. 41(234), 204–217 (1946). https://doi.org/10.1080/01621459.1946.10501864

12. A. Serrano García. Inteligencia artificial (2016)

http://dx.doi.org/10.1108/IMDS-12-2015-0495
http://dx.doi.org/10.1023/A:1014056429969
http://dx.doi.org/10.1023/A:1014056429969
http://dx.doi.org/10.1023/A:1014043630878
http://dx.doi.org/10.1080/15598608.2016.1231094
http://dx.doi.org/10.1080/01621459.1946.10501864

5 Optimization of Training Data Set Based on Linear Systematic Sampling. . . 111

13. X. He, S. Xu, SpringerLink (Online service), Process Neural Networks: Theory and Applica-
tions (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010)

14. A.K. Jain, J. Mao, K.M. Mohiuddin, Artificial neural networks: A tutorial. Computer 29(3),
31–44 (1996). https://doi.org/10.1109/2.485891

15. L. Aggarwal, K. Aggarwal, R.J. Urbanic, Use of artificial neural networks for the development
of an inverse kinematic solution and visual identification of singularity zone(s). Procedia CIRP
17, 812–817 (2014). https://doi.org/10.1016/j.procir.2014.01.107

16. J. Zupan, Introduction to Artificial Neural Network (ANN) Methods: What They Are and How
to Use Them, vol 41 (1994)

17. Y. Zhang, D. Guo, Z. Li, Common nature of learning between back-propagation and hopfield-
type neural networks for generalized matrix inversion with simplified models. IEEE Trans Neu-
ral Netw. Learn. Syst. 24(4), 579–592 (2013). https://doi.org/10.1109/TNNLS.2013.2238555

18. T. Ozaki, T. Suzuki, T. Furuhashi, S. Okuma, Y. Uchikawa, Trajectory control of robotic
manipulators using neural networks. IEEE Trans. Ind. Electron. 38(3), 195–202 (1991). https:/
/doi.org/10.1109/41.87587

19. J.M. Ortiz, R. del Martínez, J.M.C. Viramontes, H.R. Vega, Robust Design of Artificial Neural
Networks Methodology in Neutron Spectrometry (Artificial Neural Networks - Architectures
and Applications, 2013). https://doi.org/10.5772/51274

20. Specht, Probabilistic neural networks for classification, mapping, or associative memory, in
IEEE 1988 International Conference on Neural Networks, 1988, pp. 525–532 vol.1, doi: https:/
/doi.org/10.1109/ICNN.1988.23887

21. D.F. Specht, Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990). https://doi.org/
10.1016/0893-6080(90)90049-q

22. D.F. Specht, P.D. Shapiro, Generalization accuracy of probabilistic neural networks compared
with backpropagation networks. IJCNN-91-Seattle Int. J. Conf. Neural. Netw. i, 887–892
(1991). https://doi.org/10.1109/IJCNN.1991.155296

23. P. Jha, B. B. Biswal. A neural network approach for inverse kinematic of a SCARA
manipulator. IAES International Journal of Robotics and Automation, 3(1), Art. no. 1 (2014).
https://doi.org/10.11591/ijra.v3i1.3201

24. Lee, Robot arm kinematics, dynamics, and control. Computer 15(12), 62–80 (1982). https://
doi.org/10.1109/MC.1982.1653917

25. B. Karlik, S. Aydin, An improved approach to the solution of inverse kinematics problems for
robot manipulators, Eng. Appl. Artif. Intell. 13(2), Art. no. 2, (2000). https://doi.org/10.1016/
S0952-1976(99)00050-0

26. L. Jin, S. Li, J. Yu, J. He, Robot manipulator control using neural networks: A survey.
Neurocomputing 285, 23–34 (2018). https://doi.org/10.1016/j.neucom.2018.01.002

27. S. Li, Y. Zhang, L. Jin, Kinematic control of redundant manipulators using neural networks.
IEEE Transact Neural Netw Learn Syst 28(10), 2243–2254 (2017). https://doi.org/10.1109/
TNNLS.2016.2574363

28. M. Tarokh, M. Kim, Inverse kinematics of 7-DOF robots and limbs by decomposition
and approximation. IEEE Trans. Robot. 23(3), 595–600 (2007). https://doi.org/10.1109/
TRO.2007.898983

29. R. Köker, T. Çakar, Y. Sari, A neural-network committee machine approach to the inverse
kinematics problem solution of robotic manipulators. Eng. Comput. 30(4), 641–649 (2014).
https://doi.org/10.1007/s00366-013-0313-2

30. B.K. Bose, Neural network applications in power electronics and motor drives—An introduc-
tion and perspective. IEEE Trans. Ind. Electron. 54(1), 14–33 (2007). https://doi.org/10.1109/
TIE.2006.888683

31. A. Hasan, A.T. Hasan, H.M.A.A. Al-Assadi, Performance prediction network for serial
manipulators inverse kinematics solution passing through singular configurations. Int. J. Adv.
Robot. Syst. 7(4), 11–24 (2011)

32. R. Gao. Inverse kinematics solution of Robotics based on neural network algorithms. J.
Ambient Intell. Humanized Comput. (2020) https://doi.org/10.1007/s12652-020-01815-4

http://dx.doi.org/10.1109/2.485891
http://dx.doi.org/10.1016/j.procir.2014.01.107
http://dx.doi.org/10.1109/TNNLS.2013.2238555
http://dx.doi.org/10.1109/41.87587
http://dx.doi.org/10.5772/51274
http://dx.doi.org/10.1109/ICNN.1988.23887
http://dx.doi.org/10.1016/0893-6080(90)90049-q
http://dx.doi.org/10.1109/IJCNN.1991.155296
http://dx.doi.org/10.11591/ijra.v3i1.3201
http://dx.doi.org/10.1109/MC.1982.1653917
http://dx.doi.org/10.1016/S0952-1976(99)00050-0
http://dx.doi.org/10.1016/j.neucom.2018.01.002
http://dx.doi.org/10.1109/TNNLS.2016.2574363
http://dx.doi.org/10.1109/TRO.2007.898983
http://dx.doi.org/10.1007/s00366-013-0313-2
http://dx.doi.org/10.1109/TIE.2006.888683
http://dx.doi.org/10.1007/s12652-020-01815-4

112 M. d. R. Martínez-Blanco et al.

33. L. Jin, S. Li, J. Yu, J. He, Robot manipulator control using neural networks: A survey.
Neurocomputing 285, 23–34 (2018). https://doi.org/10.1016/j.neucom.2018.01.002

34. A.-M. Zou, Z.-G. Hou, S.-Y. Fu, and M. Tan. Neural Networks for Mobile Robot Navigation:
A Survey. In Advances in Neural Networks - ISNN 2006 (2006), pp. 1218–1226

35. X. Wu, Z. Xie, Forward kinematics analysis of a novel 3-DOF parallel manipulator. Sci-
entia Iranica. Transact. B Mechan. Engin. 26(1), 346–357 (2019). https://doi.org/10.24200/
sci.2018.20740

36. V. Khoshdel, A. Akbarzadeh, Eds. An optimized artificial neural network for human-force
estimation: consequences for rehabilitation robotics. Industr. Robot. Intern. J. 45(3), Art. no. 3
(2018). https://doi.org/10.1108/IR-10-2017-0190

37. R. Fernando, Robótica – control de robots manipuladores. Alfaomega Grupo Editor (2011)
38. R. Köker, Reliability-based approach to the inverse kinematics solution of robots using

Elman’s networks. Eng. Appl. Artif. Intell. 18(6), 685–693 (2005). https://doi.org/10.1016/
j.engappai.2005.01.004

39. A. Larrañaga. 3D Printable Robotic Arm. GitHub (2018). https://github.com/AngelLM .
Accessed 18 Sep 2019

40. R. Köker, C. Öz, T. Çakar, H. Ekiz, A study of neural network based inverse kinematics solution
for a three-joint robot. Robot. Auton. Syst. 49(3), 227–234 (2004). https://doi.org/10.1016/
j.robot.2004.09.010

41. S. Tejomurtula, S. Kak, Inverse kinematics in robotics using neural networks. Inf. Sci. 116(2),
147–164 (1999). https://doi.org/10.1016/S0020-0255(98)10098-1

42. J. Denavit, R.S. Hartenberg, A kinematic notation for lower-pair mechanisms based on
matrices. Trans. ASME J. Appl. Mech. 22, 215–221 (1955)

43. A.R.J. Almusawi, L.C. Dülger, S. Kapucu, A new artificial neural network approach in solving
inverse kinematics of robotic arm (Denso VP6242). Comput Intell Neurosci CIN 2016 (2016).
https://doi.org/10.1155/2016/5720163

44. S. García, J. Luengo, F. Herrera, Data Preprocessing in Data Mining, vol 72 (Springer
International Publishing, Cham, 2015)

45. T. Jayalakshmi, A. Santhakumaran, Statistical normalization and Back propagation for classi-
fication. Intern. J. Comput. Theory Eng. 3(1), 89–93 (2011)

46. J. Limon-Romero, D. Tlapa, Y. Baez-Lopez, A. Maldonado-Macias, L. Rivera-Cadavid,
Application of the Taguchi method to improve a medical device cutting process. Int. J. Adv.
Manuf. Technol. 87(9–12), 3569–3577 (2016). https://doi.org/10.1007/s00170-016-8623-3

47. M. Ibrahim, N. Zulikha, Z. Abidin, N.R. Roshidi, N.A. Rejab, M.F. Johari, Design of an
Artificial Neural Network Pattern Recognition Scheme Using Full Factorial Experiment.
Appl. Mech. Mater. 465–466, 1149–1154 (2013). https://doi.org/10.4028/www.scientific.net/
AMM.465-466.1149

48. T. Y. Lin, C. H. Tseng. Optimum design for artificial neural networks: an example in a bicycle
derailleur system. Eng. Appl. Artif. Intell. 13(1), Art. no. 1 (2000). https://doi.org/10.1016/
S0952-1976(99)00045-7

49. D.-S. Huang, Radial basis probabilistic neural networks: model and application. Int. J. Pattern
Recognit. Artif. Intell. 13(7), 1083–1101 (1999). https://doi.org/10.1142/S0218001499000604

http://dx.doi.org/10.1016/j.neucom.2018.01.002
http://dx.doi.org/10.24200/sci.2018.20740
http://dx.doi.org/10.1108/IR-10-2017-0190
http://dx.doi.org/10.1016/j.engappai.2005.01.004
https://github.com/AngelLM
http://dx.doi.org/10.1016/j.robot.2004.09.010
http://dx.doi.org/10.1016/S0020-0255(98)10098-1
http://dx.doi.org/10.1155/2016/5720163
http://dx.doi.org/10.1007/s00170-016-8623-3
http://dx.doi.org/10.4028/www.scientific.net/AMM.465-466.1149
http://dx.doi.org/10.1016/S0952-1976(99)00045-7
http://dx.doi.org/10.1142/S0218001499000604

	5 Optimization of Training Data Set Based on Linear Systematic Sampling to Solve the Inverse Kinematics of 6 DOF Robotic Arm with Artificial Neural Networks
	5.1 Introduction
	5.1.1 Artificial Neural Networks
	5.1.2 Inverse Kinematics Solution with Artificial Neural Networks

	5.2 Neural Networks Based Inverse Kinematics Solution
	5.2.1 Kinematics Analysis of Ketzal Robot
	5.2.2 Description of Data Sets
	5.2.3 Data Set Collection
	5.2.4 Dispersion Analysis of the Generated Data Set
	5.2.5 Reduction Algorithm Based on Linear Systematic Sampling
	5.2.6 Data Set Normalization
	5.2.7 Training and Test Data Sets
	5.2.8 Training and Test Back Propagation Neural Network
	5.2.9 Training and Test Generalized Regression Neural Network

	5.3 Results
	5.3.1 Reduction Data Filter Analysis
	5.3.2 Performance Evidence with Filtering: Comparison GRNN with BPNN

	5.4 Conclusions and Discussions
	References

