
Formalizing the Institution for Event-B
in the Coq Proof Assistant

Conor Reynolds(B)

Maynooth University, Maynooth, Kildare, Ireland
conor.reynolds@mu.ie

Abstract. We formalize a fragment of the theory of institutions suffi-
cient to establish basic facts about the institution EVT for Event-B, and
its relationship with the institution FOPEQ for first-order predicate logic.
We prove the satisfaction condition for EVT and encode the institution
comorphism FOPEQ → EVT embedding FOPEQ in EVT .

Keywords: Coq · Event-B · Institution theory

1 Introduction

The theory of institutions [4] was introduced by Joseph Goguen and Rod Burstall
to give concrete form to the informal notion of a “logical system”, identifying a
common structure among the many logics in regular use in computer science. A
2017 paper by Marie Farrell, Rosemary Monahan, and James Power [3] uses the
theory of institutions to provide a sound mathematical semantics and modular-
ization constructs for the industrial-strength state-based formal modelling lan-
guage Event-B [1], providing interoperability with other formalisms. In related
work, the Heterogeneous Tool Set (Hets) [7] makes use of institutions to provide
heterogeneous specifications.

Event-B has an associated development process for system-level modelling
and analysis. Key features include the use of set theory as a modelling notation,
the use of refinement to represent systems at different abstraction levels and the
use of mathematical proof to verify consistency between refinement levels. The
primary purpose of this research is to formalize the work in [3] within the Coq
proof assistant, and more generally to provide the rudiments of a Coq library
for the theory of institutions.

We build on earlier work formalizing universal algebra in Agda by Emmanuel
Gunther, Alejandro Gadea, and Miguel Pagano [5]. However, the purpose of this
work is not to provide a comprehensive development of universal algebra; we only
develop as much as we need in order to define the institutions for first-order logic
and Event-B. We also depend on the development of category theory by John
Wiegley at jwiegley/category-theory.

Supported by the Irish Research Council (GOIPG/2019/4529).
c© The Author(s) 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 162–166, 2021.
https://doi.org/10.1007/978-3-030-77543-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_17&domain=pdf
http://orcid.org/0000-0002-6598-5512
https://github.com/jwiegley/category-theory
https://doi.org/10.1007/978-3-030-77543-8_17

Formalizing the Institution for Event-B in the Coq Proof Assistant 163

While some obligations remain to be formally discharged for the institution
FOPEQ for first-order predicate logic with equality, our developments for the
institution EVT for Event-B are complete. We have also encoded the institution
comorphism FOPEQ → EVT , which embeds the simpler FOPEQ institution
into EVT , providing the underlying mathematical language for EVT . It remains,
however, to prove the naturality condition in our encoding. The formalization
is not axiom-free, assuming dependent function extensionality and proof irrele-
vance. A more careful development might use setoids (as in [2,5]), and in the
future we may experiment with grounding these efforts in homotopy type theory.

Throughout this paper, we will assume some familiarity with basic category
theory, as well as the first two chapters of [8].

2 The Institution for Event-B

An institution [4] consists of

– a category Sig of signatures (non-logical syntax);
– a sentence functor Sen : Sig → Set (logical syntax);
– a model functor Mod : Sigop → Cat (semantics for non-logical syntax); and
– a semantic entailment relation �Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sig,

such that for any signature translation σ : Σ → Σ′, any sentence φ ∈ Sen(Σ),
and any model M ′ ∈ Mod(Σ′), the satisfaction condition holds:

M ′ �Σ′ Sen(σ)(φ) iff Mod(σ)(M ′) �Σ φ (1)

This kind of institution is sometimes referred to as a set/cat institution, since the
target of Sen is Set and the target of Mod is Cat. To avoid encoding a “category
of categories” in Coq, we implement set/set institutions [6].

We will now provide a precise but brief definition for the institution for
Event-B, alongside its definition in Coq. For details, we refer the reader to [3].
Throughout, let Status = {ordinary ≤ anticipated ≤ convergent}.

The category of EVT -signatures has as objects Σ̂ = 〈Σ, E, X, X ′〉, where Σ
is a first-order signature, E : Status → Type is a status-indexed set of events,
and X, X ′ : sorts Σ → Type are sorts-indexed sets of pre- and post-variables,
respectively. In Coq, this becomes:

Record EvtSignature :=
{ base_sig :> FOSig ;

events : Status → Type ;
Vars : sorts base_sig → Type ;
Vars’ : sorts base_sig → Type }.

An EVT -signature morphism Σ̂1 → Σ̂2 consists of a first-order signature mor-
phism σ : Σ1 → Σ2 translating the base signature, along with a function
E1 → E2 mapping events in such a way as to preserve the ordering on sta-
tuses, and functions X1 → X2 ◦ σ, X ′

1 → X ′
2 ◦ σ mapping variables, regarded as

morphisms in their respective indexed categories. It is convenient to assume that

164 C. Reynolds

the initialization event is not in E, so there is no need for the assumption that
the initial event is preserved by signature morphisms. If the initialization/event
distinction is made at the level of sentences, then we can enforce preservation of
the initialization event definitionally.

Record EvtSigMorphism Σ Σ’ : Type :=
{ on_base_sig :> SignatureMorphism Σ Σ’ ;

on_events : EventMorphism Σ Σ’ ;
on_vars : Vars Σ → Vars Σ’ ◦ on_base_sig ;
on_vars’ : Vars’ Σ → Vars’ Σ’ ◦ on_base_sig }.

EVT -sentences are either initialization sentences, Init ψ where ψ : FOSen(Σ +
X ′), or event sentences, Event e ψ where ψ : FOSen(Σ + X + X ′). Note that the
base signature is expanded to include the EVT -variables as constant operation
names. Initialization sentences describe how variables are initially set. Event
sentences describe how events change the variables. As a very simple example,
given an event inc which increments a variable n, inc :≡ begin n := n + 1 end,
we write the EVT -sentence Event(inc, n′ = n + 1), where n ∈ X and n′ ∈ X ′ are
respectively pre- and post-variables from the ambient Event-B signature. Given
an initialization event which starts n at 0, init :≡ begin n := 0 end, we write
the EVT -sentence Init(n′ = 0). For details on this correspondence, see again [3].

Event-B sentences rely on the ability to construct the expansion of first-order
signatures by adjoining a sorts-indexed set of constant operation names, which
in Coq we denote by SigExpand Σ X. EVT -sentences can be defined as follows.

Inductive EVT Σ : Type :=
| Init : FOSen (SigExpand Σ (Vars’ Σ)) → EVT Σ
| Event : ∀ status, events Σ status

→ FOSen (SigExpand Σ (Vars Σ + Vars’ Σ))
→ EVT Σ.

An EVT -model consists of a first-order model M and a pair of environments
L : List(X ′ → M) and R : E → List(X + X ′ → M), which are lists of valuations
of variables in M . We enforce that L and Re, for each event e, are nonempty.

Record EvtModel Σ :=
{ base_alg :> Algebra Σ ;

envL : NEList (Vars’ Σ → base_alg) ;
envR : ∀ status,

events Σ status → NEList (Vars Σ + Vars’ Σ → base_alg) }.

Let Mθ denote the expansion of a model M by a valuation θ : X → M . We say
that 〈M, L, R〉 � Init ψ if for all valuations θ ∈ L, we have Mθ � ψ, and we say
that 〈M, L, R〉 � Event e ψ if for all valuations θ ∈ Re we have Mθ � ψ. This
can be written down directly in Coq.

Definition interp_evt Σ M φ : Prop :=
match φ with
| Init ψ => List.Forall (λ θ, AlgExpansion M θ � ψ) (envL M)
| Event e ψ => List.Forall (λ θ, AlgExpansion M θ � ψ) (envR M e)
end.

Formalizing the Institution for Event-B in the Coq Proof Assistant 165

Now, taking a top-down perspective, we can define institutions in Coq as follows:

Class Institution :=
{ Sig : Category ;

Sen : Sig → SetCat ;
Mod : Sig^op → SetCat ;
interp : ∀ Σ : Sig, Mod Σ → Sen Σ → Prop ;

satisfaction : ∀ (Σ Σ’ : Sig) (σ : Σ → Σ’)
(φ : Sen Σ) (M’ : Mod Σ’),

interp M’ (fmap[Sen] σ φ) ↔ interp (fmap[Mod] σ M’) φ }.

Proving that EVT is an institution amounts to instantiating this class to the
above definitions and discharging the generated obligations. The proofs rely on
custom induction principles for the dependent records we introduce above, since
the induction principles generated by Coq are too strong. For example, if one
wishes to prove that two Event-B signature morphisms σ̂ and σ̂′ are equal, of
course it suffices to prove that they are equal componentwise. Consider equality
on the on_vars component. The statement of this equality will depend on a
proof p : σ = σ′ that the underlying first-order signature morphisms are equal,
which we write p∗(on_vars σ̂) = on_vars σ̂′. Notice that this requirement is
substantially stronger than necessary; it suffices in this case to know that σ and
σ′ agree on sorts. Hence, given p′ : on_sorts σ = on_sorts σ′, we only need to
prove p′

∗(on_vars σ̂) = on_vars σ̂′. This dramatically simplifies the proofs.

3 Future Work

In the future, it will be interesting to investigate Coq’s code extraction facili-
ties to generate provably correct code derived from, for example, the institution
comorphism FOPEQ → EVT . We also wish to prove the amalgamation prop-
erty for EVT , and more generally to build institution-independent constructions
and proofs, which we have already explored to some extent for modal logics and
linear-time temporal logics. The proofs involved in the definition for first-order
predicate logic were rather complicated, but the proofs for EVT often reduced
to properties of first-order logic. This suggests that quick progress could be made
defining further institutions, verifying their properties, and providing interoper-
ability between represented formalisms represented in our framework.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G., Théry,
L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 131–148.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48256-3_10

3. Farrell, M., Monahan, R., Power, J.F.: An institution for Event-B. In: James, P.,
Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 104–119. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72044-9_8

https://doi.org/10.1007/3-540-48256-3_10
https://doi.org/10.1007/978-3-319-72044-9_8

166 C. Reynolds

4. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

5. Gunther, E., Gadea, A., Pagano, M.: Formalization of universal algebra in Agda.
Electron. Notes Theor. Comput. Sci. 338, 147–166 (2018)

6. Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a logic? In:
Beziau, J.Y. (ed.) Logica Universalis, pp. 111–133. Birkhäuser Basel (2007)

7. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_40

8. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer-Verlag (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-71209-1_40
http://creativecommons.org/licenses/by/4.0/

	Formalizing the Institution for Event-B in the Coq Proof Assistant
	1 Introduction
	2 The Institution for Event-B
	3 Future Work
	References

