
Alexander Raschke
Dominique Méry (Eds.)

LN
CS

 1
27

09

Rigorous State-Based
Methods
8th International Conference, ABZ 2021
Ulm, Germany, June 9–11, 2021
Proceedings

Lecture Notes in Computer Science 12709

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexander Raschke • Dominique Méry (Eds.)

Rigorous State-Based
Methods
8th International Conference, ABZ 2021
Ulm, Germany, June 9–11, 2021
Proceedings

123

Editors
Alexander Raschke
Ulm University
Ulm, Germany

Dominique Méry
University of Lorraine
Vandœuvre-lès-Nancy, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-77542-1 ISBN 978-3-030-77543-8 (eBook)
https://doi.org/10.1007/978-3-030-77543-8

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
Chapter “Formalizing the Institution for Event-B in the Coq Proof Assistant” is licensed under the terms
of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6088-8393
https://orcid.org/0000-0001-5231-6611
https://doi.org/10.1007/978-3-030-77543-8
http://creativecommons.org/licenses/by/4.0/

Preface

The International Conference on Rigorous State-Based Methods (ABZ 2021) is an
international forum for the cross-fertilization of related state-based and machine-based
formal methods, mainly Abstract State Machines (ASM), Alloy, B, TLA+, VDM, and
Z. Rigorous state-based methods share a common conceptual foundation and are
widely used in both academia and industry for the design and analysis of hardware and
software systems.

The name ABZ was invented at the first conference held in London in 2008, where
the ASM, B, and Z conference series merged into a single event. The second con-
ference, ABZ 2010, was held in Orford, Canada, where the Alloy community joined
the event; ABZ 2012 was held in Pisa, Italy, which saw the inclusion of the VDM
community in the conference series (but not in the title); and ABZ 2014 was held in
Toulouse, France, which brought the inclusion of the TLA+ community. Lastly, ABZ
2016 was held in Linz, Austria, and ABZ 2018 in Southampton, UK. In 2018 the
Steering Committee decided to retain the (well-known) acronym ABZ and add the
subtitle “International Conference on Rigorous State-Based Methods” to make more
explicit the intention to include all state-based formal methods.

In 2020, the ABZ conference should have been held in Ulm, Germany. Unfortu-
nately, the conference had to be cancelled at short notice due to the worldwide rampant
COVID-19 virus and was postponed to this year, with the hope of welcoming all
participants personally in Ulm. Unfortunately this hope did not come true, so we had to
organize the conference as a virtual event after all. Since the proceedings were ready
before the cancellation of the 2020 conference, we decided to publish them immedi-
ately. We also launched a new call for papers for ABZ 2021 so that researchers had the
opportunity to publish new results in a timely manner.

Because the ABZ conference is normally hosted every two years we had not defined
a new case study, and with the restrictions of the pandemic and the associated increased
efforts, for example for teaching, being felt in the research community, significantly
fewer papers were submitted to ABZ 2021. There were 15 papers submitted from
authors in 8 countries spread over Europe, Asia, and America. Fortunately, the sub-
mitted papers were of very high quality, so that the four reviews per paper were
consistently positive and only one paper had to be rejected. A total of 6 full research
papers and 8 short research papers were accepted. All accepted papers cover broad
research areas on theoretical, systems, or practical aspects of state-based methods.

The doctoral symposium, which was organized for the first time in 2020, also took
place in 2021. Three PhD students submitted a four-page abstract describing their
research projects and received constructive feedback from the senior researchers of the
ABZ community. Each of the submitted abstracts was also evaluated by a separate
Program Committee.

The conference was due to be held during June 9–11, 2021, in Ulm, Germany, but
unfortunately the successes of the COVID-19 vaccination program will probably not be
seen for several months, so the conference was held virtually. In addition to the new
submissions, the authors of ABZ 2020 were also invited to present their papers, which
fortunately many took advantage of and thus a comprehensive program could be put
together.

Unfortunately, due to consequences of the COVID-19 crisis in the personal envi-
ronment, one of the keynote speakers understandably had to cancel at short notice.
However, we were all the more pleased to listen to the keynotes of Ana Cavalcanti,
University of York, UK, on “RoStar technology — a roboticist’s toolbox for combined
proof and sound simulation” and Gilles Dowek, Inria/ENS Paris-Saclay, France, on
“Sharing proofs across logics and systems: a boost for formal methods?”

The EasyChair conference management system was set up for ABZ 2021, sup-
porting submissions and the review process.

We would like to thank all the authors who submitted their work to ABZ 2021. We
are grateful to the Program Committee members for their high-quality reviews and
discussions. Finally, we wish to thank the Organizing Committee members for their
continuous support.

We hope the vaccination program will also reach poor countries as fast as possible
such that the COVID-19 crisis will decrease within the next two years and we can meet
together in person at ABZ 2023 in France.

For readers of these proceedings, we hope these papers are interesting and they
inspire ideas for future research that can be presented at the next ABZ!

April 2021 Alexander Raschke
Dominique Méry

vi Preface

Organization

General Chairs

Alexander Raschke Ulm University, Germany
Dominique Méry Université de Lorraine, LORIA, France

Program Committee

Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Paolo Arcaini National Institute of Informatics, Japan
Richard Banach University of Manchester, UK
Egon Boerger Università di Pisa, Italy
Eerke Boiten De Montfort University, UK
Michael Butler University of Southampton, UK
Andrew Butterfield Trinity College Dublin, Ireland
David Deharbe ClearSy System Engineering, France
Juergen Dingel Queen’s University, Canada
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Mamoun Filali-Amine IRIT, France
Marc Frappier Université de Sherbrooke, Canada
Angelo Gargantini University of Bergamo, Italy
Vincenzo Gervasi University of Pisa, Italy
Gudmund Grov Norwegian Defence Research Establishment (FFI),

Norway
Stefan Hallerstede Aarhus University, Denmark
Klaus Havelund Jet Propulsion Laboratory, USA
Ian J. Hayes The University of Queensland, Australia
Thai Son Hoang University of Southampton, UK
Frank Houdek Daimler AG, Germany
Alexei Iliasov Newcastle University, UK
Felix Kossak Software Competence Center Hagenberg, Austria
Regine Laleau Paris-Est Créteil University, France
Thierry Lecomte ClearSy, France
Michael Leuschel University of Düsseldorf, Germany
Alexei Lisitsa University of Liverpool, UK
Atif Mashkoor Johannes Kepler University, Austria
Jackson Mayo Sandia National Laboratories, USA
Stephan Merz Inria Nancy, France
Stefan Mitsch Carnegie Mellon University, USA
Rosemary Monahan Maynooth University, Ireland
Mohamed Mosbah University of Bordeaux, France
Cesar Munoz NASA, USA

Shin Nakajima National Institute of Informatics, Japan
Uwe Nestmann TU Berlin, Germany
Jose Oliveira University of Minho, Portugal
Philipp Paulweber Vienna University of Technology, Austria
Luigia Petre Åbo Akademi University, Finland
Andreas Prinz University of Agder, Norway
Shengchao Qin Teesside University, UK
Philippe Queinnec Université de Toulouse, France
Elvinia Riccobene University of Milan, Italy
Victor Rivera Australian National University, Australia
Thomas Santen TU Berlin, Germany
Patrizia Scandurra University of Bergamo, Italy
Gerhard Schellhorn Universitaet Augsburg, Germany
Klaus-Dieter Schewe Zhejiang University, China
Steve Schneider University of Surrey, UK
Jun Sun Singapore Management University, Singapore
Maurice H. ter Beek ISTI-CNR, Italy
Laurent Voisin Systerel, France
Virginie Wiels ONERA/DTIM, France
Uwe Zdun University of Vienna, Austria
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

viii Organization

Contents

Regular Research Articles

Unbounded Barrier-Synchronized Concurrent ASMs for Effective
MapReduce Processing on Streams . 3

Zilinghan Li, Shilan He, Yiqing Du, Senén González,
and Klaus-Dieter Schewe

Towards ASM-Based Automated Formal Verification
of Security Protocols . 17

Chiara Braghin, Mario Lilli, and Elvinia Riccobene

Verifying System-Level Security of a Smart Ballot Box. 34
Dana Dghaym, Thai Son Hoang, Michael Butler, Runshan Hu,
Leonardo Aniello, and Vladimiro Sassone

Proving the Safety of a Sliding Window Protocol with Event-B 50
Sophie Coudert

Event-B Formalization of Event-B Contexts . 66
Jean-Paul Bodeveix and Mamoun Filali

Validation of Formal Models by Timed Probabilistic Simulation 81
Fabian Vu, Michael Leuschel, and Atif Mashkoor

Short Articles

Sterling: A Web-Based Visualizer for Relational Modeling Languages. 99
Tristan Dyer and John Baugh

Extending ASMETA with Time Features . 105
Andrea Bombarda, Silvia Bonfanti, Angelo Gargantini,
and Elvinia Riccobene

About the Concolic Execution and Symbolic ASM Function Promotion
in CASM . 112

Philipp Paulweber, Jakob Moosbrugger, and Uwe Zdun

Towards Refinement of Unbounded Parallelism in ASMs Using
Concurrency and Reflection . 118

Fengqing Jiang, Neng Xiong, Xinyu Lian, Senén González,
and Klaus-Dieter Schewe

The CamilleX Framework for the Rodin Platform . 124
Thai Son Hoang, Colin Snook, Dana Dghaym, Asieh Salehi Fathabadi,
and Michael Butler

Extensible Record Structures in Event-B . 130
Asieh Salehi Fathabadi, Colin Snook, Thai Son Hoang, Dana Dghaym,
and Michael Butler

Formalizing and Analyzing System Requirements of Automatic Train
Operation over ETCS Using Event-B . 137

Robert Eschbach

Automatic Transformation of SysML Model to Event-B Model for Railway
CCS Application. 143

Shubhangi Salunkhe, Randolf Berglehner, and Abdul Rasheeq

Short Articles of the PhD-Symposium (Work in Progress)

Formal Meta Engineering Event-B: Extension and Reasoning
The EB4EB Framework . 153

Peter Riviere

A Modeling and Verification Framework for Security Protocols 158
Mario Lilli

Formalizing the Institution for Event-B in the Coq Proof Assistant 162
Conor Reynolds

Author Index . 167

x Contents

Regular Research Articles

Unbounded Barrier-Synchronized
Concurrent ASMs for Effective

MapReduce Processing on Streams

Zilinghan Li1, Shilan He1, Yiqing Du1, Senén González2,
and Klaus-Dieter Schewe1(B)

1 UIUC Institute, Zhejiang University, Haining, China
{zilinghan.18,shilan.18,yiqing.18,kd.schewe}@intl.zju.edu.cn

2 P&T Connected, Linz, Austria

Abstract. MapReduce supports the processing of large data sets in par-
allel. It has been shown that MapReduce is an example for the use of
the bulk synchronous parallel (BSP) bridging model, a model for par-
allel computation on a fixed set of processors comprising alternating
computation and communication phases. In this article we extend the
normal execution of MapReduce from processing large finite data sets to
processing stream queries with input data stream assumed to continue
indefinitely. We classify stream queries into three classes, memoryless,
semi-memoryless and memorable, and provide the model for each class
using MapReduce based on BSP. In addition, as some stream queries
require large amounts of computing sources, the BSP computation model
is extended to a model with unbounded many agents, but preserving
the barrier synchronization. A behavioral theory is developed for this
model extending the behavioral theory of the BSP model. This comprises
an axiomatization, the definition of Infinite-Agent BSP abstract state
machines (Inf-Ag-BSP-ASM) and the proof that such ASMs capture the
unbounded synchronized computations. Finally, we show how MapRe-
duce processing can be further improved on grounds of the unbounded
extension.

Keywords: MapReduce · Stream query · Infinite-agent BSP model ·
Behavioral theory · Concurrent ASM

1 Introduction

MapReduce provides a programming model for processing large data sets in an
asynchronous and distributed way [6]. A MapReduce computation comprises a
map phase processing input data in an asynchronous and parallel way to obtain
intermediate key-value pairs, a shuffle phase redistributing the data and a reduce
phase aggregating intermediate key-value pairs to yield the final results.

The bulk synchronous parallel (BSP) bridging model [16] is a widely-used
model for parallel computations by a fixed number of agents. A BSP computa-
tion consists of a sequence of supersteps, and each superstep is composed of a
c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 3–16, 2021.
https://doi.org/10.1007/978-3-030-77543-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-77543-8_1

4 Z. Li et al.

computation phase and a communication phase. In a computation phase each
agent works independently without any form of interaction until it completes
the local computation. When all agents have completed their local computa-
tions, they continue with a communication phase to exchange data. With all
agents having completed their communication, they return to a new computa-
tion phase and thus begin a new superstep. The BSP model has many useful
applications as demonstrated among others in [5,10,13,14].

As explained in [9] BSP computations are specific concurrent algorithms that
are characterised by a fixed number of agents, the alternation of computation
and communication phases and the barrier synchronization. Consequently, they
are captured by specific concurrent abstract state machines (concurrent ASMs),
the BSP-ASMs, as shown by the behavioral theory of BSP computations.

There exists a strong connection between MapReduce and BSP model: for
the map phase of MapReduce each agent executes the user-defined map func-
tion without interaction, which indicates that the map phase corresponds to
a computation phase in the BSP model. The shuffle phase corresponds to a
communication phase in the BSP model, in which agents interact with each
other by exchanging data. For the reduce phase agents execute the user-defined
reduce function again without interaction, so it also corresponds to a computa-
tion phase. In addition, as MapReduce algorithms proceed, some of the agents
may be executing a map function, while others are executing a reduce function in
the same computation phase. The strong connection indicates that MapReduce
can be captured by the BSP model, which was already sketched in [9]. More
examples on how MapReduce is realized based on grounds of the BSP model
can be found in [14].

A general assumption underlying MapReduce is that while the input data sets
can be large, they are still bounded. In this article we investigate an extension
based on the BSP model enabling the handling of stream queries, where the input
data stream is assumed to continue indefinitely. Then we also extend the BSP
bridging model following the behavioral theory to further support MapReduce
query processing.

We first classify the stream queries according to their concatenation property
and divide them into three different classes: memoryless, semi-memoryless and
memorable. In a nutshell, a memoryless stream process can forget the input
data once they have been processed, a semi-memoryless stream process has to
keep some aggregation of the data for the processing of following data, and
a memorable stream process requires all processed data to be kept. Then we
provide the models for these different classes of stream queries using MapReduce
based on the BSP model.

As the data stream is assumed to continue indefinitely, also the agents exe-
cuting MapReduce are dedicated to processing the stream query indefinitely.
However, we may want to allow some of the agents to leave the computation and
other new agents to join the computation. In particular, some stream queries
require a large amount of computation time and a large memory space for data
storage, especially for some semi-memoryless and memorable queries, so it will

Unbounded Barrier-Synchronized Concurrent ASMs 5

be advantageous not to have any limit on the number of agents. Theoretically,
we may permit an infinite number of agents, but following the theory of concur-
rent algorithms [3] only finitely many of them can be active in each superstep.
Nonetheless, both the join/leave behavior and an unbounded number of agents
are beyond the expressiveness of general BSP model, where the number of agents
is fixed and bounded.

To extend BSP computation and allow such behaviors, we develop an
extended behavioral theory for Infinite-Agent BSP (Inf-Ag-BSP) computations,
which permits changing numbers of agents in all supersteps, but preserves the
barrier synchronization. The notion of behavioral theory was coined to charac-
terise the method used in the sequential ASM thesis characterising sequential
algorithms in a language-independent way [11]. This work therefore became the
first behavioral theory that was investigated. The same method was later used
for recursive algorithms [4], synchronous parallel algorithms [1,2,7,8,15], and
asynchronous concurrent algorithms [3]. As BSP computations are special con-
current algorithms, a specialised behavioral theory was also developed for the
BSP model [9]. In our extended behavioral theory we will exploit that concurrent
ASMs can deal with an infinite number of agents [3].

2 BSP-ASMs for Stream Queries

In our extension of MapReduce to handle stream queries, we restrict ourselves
to abstract computable stream queries following the definitions and notations
in [12]. A stream query Q : Stream → Stream is abstract computable if there
exists a function K : finStream → finStream such that the result of Q can be
obtained by concatenating the results of K applied to larger and larger prefixes
of the input, i.e.

Q : s �→
size(s)⊙

k=0

K(s≤k), (1)

where we use
⊙

to denote concatenation1. Here K is called the kernel of Q. In
the following K is always used to denote the kernel of the corresponding stream
query.

According to Eq. 1, evaluating stream query Q on stream s requires evaluat-
ing K on the whole stream. However, when handling stream queries via MapRe-
duce, streams are split into several pieces that are evaluated independently. Then
the individual results are aggregated to yield the final result. In the following
stream queries are classified into three classes based on their concatenation prop-
erty. We show how each class can be realised via MapReduce based on the BSP
model.

1 The concatenation (
⊙

) used here is not same as the common concatenation denoted
by

∑
. It works more like aggregation and its real functionality varies among different

scenarios, but we still use the term concatenation to be consistent with [12].

6 Z. Li et al.

2.1 Memoryless Stream Queries

In a memoryless stream query the result of new coming input stream is inde-
pendent of the previous input streams, and the output of a larger stream can be
obtained by direct concatenation of the outputs of its smaller substreams. This
gives rise to the following definition.

Definition 1. A stream query Q is said to be memoryless if Q can defined as
follows:

Q : s �→
size(s)⊙

k=0

K(s≤k) =
size(s)⊙

k=0

K(sk) (2)

where sk is the kth element of stream s.

Example 1. Consider the query Q1 which returns an output stream containing
all numbers greater than a threshold value tx. When s is divided into several
substreams, then we can filter out the values greater than tx in each substream
and concatenate them together to yield the final outputs. Since the output can
be obtained by direct concatenation of the outputs of smaller substreams, Q1 is
memoryless.

MapReduce Model. For every MapReduce cycle i, we extract a substream
s(i) from the input stream and execute the map function on this substream to
evaluate K(s(i)); the result is concatenated to the previous result in the reduce
phase in the following way:

Q(s) =
i⊙

k=1

K(s(k)) with s =
i∑

k=1

s(k) (3)

The following ASM 1 gives an ASM rule for agent j handling a memoryless
stream query. The variable taskj is the current phase of agent j which can be
either map or reduce. The rule bsp sync() is used for synchronization which indi-
cates the end of the current superstep for an agent. The agent will not continue
with the next superstep until all agents complete their current superstep. The
rule bsp send() can send the local data to other agents and the sent data is only
available in the next superstep, i.e. after bsp sync(). The rule bsp get() fetches
the data sent by other agents in the previous superstep.

ASM 1 (MapReduce for Memoryless Stream Query based on BSP).

IF taskj = “map”
THEN map outj := Map Function(sj)

bsp send(map outj)
bsp sync()

IF taskj = “reduce”
THEN map outj := bsp get()

reduce outj := concat(reduce outj ,map outj)
bsp sync()

Unbounded Barrier-Synchronized Concurrent ASMs 7

2.2 Semi-memoryless Stream Queries

For a semi-memoryless stream query it is not sufficient to yield the output of
a larger stream by simply concatenating the outputs of smaller substreams si.
Some further information of these smaller substreams, denoted as I(si), is also
required to compute the output. This leads to the following definition.

Definition 2. A stream query Q is said to be semi-memoryless if Q can be
defined as follows:

Q : s → Fagg(K(s1),K(s2), I(s1), I(s2)) with s = s1 + s2, (4)

where K is the kernel of Q, I(si) is a set of informative variables of substreams
si, and Fagg is the function that aggregates the outputs of smaller substreams
and yields the output of the larger stream.

Example 2. Consider the query Q2 which returns the average value of the num-
bers arrived so far. When evaluating the average of stream s, where s is divided
into two substreams s1 and s2, first execute function K which calculates the
average value of s1 and s2 respectively. In this example, the lengths of two sub-
streams are also needed to calculate the total average, namely, I(si) = {len(si)}.
Therefore, Q2 is semi-memoryless and can be evaluated as follows:

Q(s) = Fagg(K(s1),K(s2), I(s1), I(s2))
= Fagg(avg(s1), avg(s2), {len(s1)}, {len(s2)})

= avg(s1) · len(s1)
len(s1) + len(s2)

+ avg(s2) · len(s2)
len(s1) + len(s2)

(5)

MapReduce Model. For every MapReduce cycle i we extract a substream s(i)

from the input stream and execute map function on this substream to evaluate
both K(s(i)) and the informative set I(s(i)), then aggregate with previous results
in the reduce phase in the following way:

Q(s) = Fagg(K(
i−1

Σ
k=1

s(k)),K(s(i)), I(
i−1

Σ
k=1

s(k)), I(s(i))) with s =
i∑

k=1

s(k) (6)

The following ASM 2 gives an ASM rule for agent j handling a semi-
memoryless stream query. The term tag is used to denote the informative set
I. The function bsp send tag() sends the tag to other agents and the function
bsp get tag() fetches the tags sent by others. The variable local tagj is the pre-

viously stored tags of agent j (i.e. I(
i−1

Σ
k=1

s(k)) in Eq. 6). The function Agg plays

the role of Fagg which aggregates the previous and current tags and map-results.

8 Z. Li et al.

ASM 2 (MapReduce for Semi-memoryless Stream Query based on
BSP).

IF taskj = “map”
THEN map outj := Map Function(sj)

tag outj := Tag Fuction(sj)
bsp send(map outj)
bsp send tag(tag outj)
bsp sync()

IF taskj = “reduce”
THEN map outj := bsp get()

tag outj := bsp get tag()
reduce outj := Agg(reduce outj ,map outj , local tagj , tag outj)
bsp sync()

2.3 Memorable Stream Queries

The following definition of a memorable stream query indicates that a large set
of information, or even the whole input stream s is required to obtain the output
of the stream query.

Definition 3. A stream query Q is said to be memorable if Q is semi-
memoryless as defined by Eq. 4 and the cardinality of I(s1) and I(s2) is in the
Θ-Class2 of the cardinality of s1 and s2, respectively, i.e.

|I(s1)| ∈ Θ(|s1|) and |I(s2)| ∈ Θ(|s2|) (7)

or equivalently,
|I(s1) + I(s2)| ∈ Θ(|s|) (8)

Example 3. Consider the query Q3 which returns the median value of the num-
bers arrived so far. Given any stream, every number can be the candidate of the
median, which means the whole stream s is required to determine the median.
When evaluating the median of s, where s is divided into two substreams s1 and
s2, we have I(s1) = s1 and I(s2) = s2. Therefore, Q3 is memorable.

MapReduce Model. According to Definition 3 a memorable stream query is a
special case of a semi-memoryless stream query. Hence, the MapReduce model
of memorable query is almost the same as the one given by Algorithm 2. One of
the most important features of memorable query is that the cardinality of the
informative set is unbounded when the input stream continues indefinitely, and
infinite storage space and computation time is required in the aggregation step.

Though in real-life practice no stream will be infinite and a stream query
for an almost-infinitely long input stream is rarely of interest, the memorable
2 Θ-Class is the intersection of O-Class and Ω-Class which provides an asymptotically

tight bound for functions.

Unbounded Barrier-Synchronized Concurrent ASMs 9

stream query raises the problem how to handle stream queries that require a
large amount of computations and a large storage space. A feasible solution
is to have a large amount of available agents3, which allows agents to join,
e.g. when there are many parallel computation threads, or leave, e.g. when the
computation is almost sequential. This gives sufficient computing sources and
storage space to guarantee the stream query evaluation to succeed. However,
neither an unbounded number of agents nor a dynamic growth and shrinking of
a set of agents is foreseen in the BSP model. It is therefore required to extend the
BSP model to Infinite-Agent BSP model as we will do in the following section.

3 An Extended Unbounded BSP Model

We now extend the BSP model such that an unbounded number of agents is
permitted, though only finitely many of them can be simultaneously active. In
addition, the extended BSP model should allow agents to join or leave the BSP
computation. The extended BSP model will be called Infinite-Agent BSP (Inf-
Ag-BSP) computation model. In the following subsections a behavioral theory of
Inf-Ag-BSP computation will be developed, which extends the behavioral theory
of the general BSP computation.

In general, a behavioral theory consists of an axiomatization of a class of algo-
rithms, a definition of an abstract machine model and a proof that the abstract
machine model captures the class of algorithms stipulated by the axiomatiza-
tion. The axiomatization is essentially a language-independent definition of the
algorithm class, and it is given by a set of postulates. Then the characterization
theorem contains two parts: (1) instances of the abstract machine model satisfiy
the postulates in the axiomatization; (2) every algorithm defined by the postu-
lates can by step-by-step simulated by an abstract machine, i.e. an instance of
the abstract machine model.

3.1 Axiomatization

There are two essential differences between the general BSP computation model
and the extended Inf-Ag-BSP computation model: (1) The total number of avail-
able agents can be countably infinite; (2) The agents can join or leave the set of
active agents in the BSP computation. Therefore, the axiomatization of Inf-Ag-
BSP can be derived from the axiomatization of the general BSP computation
model developed in [9] with those two differences taken into consideration.

For the first difference, we just slightly modify the number of available agents
from finite to countably infinite. This extension is feasible, as general BSP com-
putations are just restricted concurrent algorithms, and as such they can have
an infinite number of agents [3]. As for the second difference we introduce a local
variable joini and a joining set Jn. The variable joini is a function symbol of

3 In theory, we can assume that the number is countably infinite, provided we restrict
the model such that only finitely many of them will be simultaneously active.

10 Z. Li et al.

arity 0 in the local signature of each algorithm. When the algorithm is going to
join the set of active agents, the variable will be set to true; when the algorithm
decides to leave the BSP, it will be reset to false. The joining set Jn contains
the identifiers i of the active agents which have joined in state Sn. In addition,
requiring Jn to be a finite set ensures that only finitely many agents join at the
same time.

However, there remains another issue concerning the join/leave behavior,
which concerns when an agent is allowed to join or leave the BSP computation.
As for join we require any new agent to join only in the communication phase
because it needs to receive data to manipulate in the next computation phase.
As for leave we require that an agent can leave only after communication, i.e.
in the computation phase, because an agent may send some computed data to
other agents in the communication phase. All above considerations motivate the
axiomatization of Inf-Ag-BSP in the following Definition 4, which originates
from that of the general BSP model with several necessary restrictions and
modifications.

Definition 4. An Infinite-Agent BSP (Inf-Ag-BSP) algorithm is a concurrent
algorithm B = {(ai,Ai) | i ∈ N} that satisfies the Inf-Ag-BSP signature restric-
tion and Inf-Ag-BSP communication-and-joining postulate defined in the follow-
ing two definitions.

Definition 5 (Inf-Ag-BSP signature restriction). A concurrent algorithm
B = {(ai,Ai)|i ∈ N} satisfies the Inf-Ag-BSP signature restriction iff the signa-
ture of A0 is Σ0 = {bari, joini | i ∈ N\{0}}∪{barrier}, and the signature of any
other Ai (i ∈ N\{0}) is Σi = Σi,loc ∪ {ci,j , cj,i | j ∈ N\{0}, j �= i} ∪ {barrier}
such that the following conditions are satisfied:

(1) The subsignatures Σi,loc are pairwise disjoint, and each of them contains the
corresponding function symbols bari and joini of arity 0;

(2) For Ai, all locations (ci,j ,v) are write-only;
(3) For Ai, all locations (cj,i,v) are read-only;
(4) The function symbol barrier has arity 0 and is monitored for all agents ai

(i �= 0);
(5) For A0, it monitors bari and joini.

Definition 6 (Inf-Ag-BSP communication-and-joining postulate4). For
a concurrent algorithm B = {(ai,Ai) | i ∈ N} with concurrent run S0, S1, · · · ,
update sets Δn =

⋃
a∈Agn

Δa(res(Sa(n), Σa)) for Sn+1 = Sn + Δn, and a
joining set Jn = {i | valSai(n)(joini) = true}, B satisfies the Inf-Ag-BSP
communication-and-joining postulate iff the following conditions are satisfied:

(1) The cardinality of joining set Jn is finite for all n;
(2) If i /∈ Jn, then either ai /∈ Agn or (joini, true) ∈ Δn;

4 The definitions of the notations used here can be found in [9, Def. 2.2].

Unbounded Barrier-Synchronized Concurrent ASMs 11

(3) If there exists an update (l, v) ∈ Δn with a location of form l = (ci,j ,v), then
all updates in Δn(except (barx, false) and {(bary, true), (joiny, true)})
have this form and valSa(n)(barrier) = true holds for all a ∈ Agn;

(4) If there exists no update (l, v) ∈ Δn with a location of the form l = (ci,j ,v),
then valSa(n)(barrier) = false holds for all a ∈ Agn;

(5) If non-trivial update (joini, true) ∈ Δn, then (bari, true) ∈ Δn;
(6) If non-trivial update (joini, false) ∈ Δn, then valSai(n)(bari) = false;
(7) Whenever (bari ∧ ¬barrier) ∨ (¬bari ∧ barrier) holds for any agent i ∈ Jn

in state Sn, then Δai(n)(res(Sn, Σi)) = ∅;
(8) The location barrier is lazy, namely, it only changes value when all bari for

i ∈ Jn have changed their values from true to false (or false to true).

The postulates in Definition 6 is used to describe the barrier-synchronization
and join/leave behaviors of Inf-Ag-BSP algorithm. The first condition in the
postulate requires that only finitely many agents can be active at the same
time. Actually, the finiteness of Jn follows from the finiteness of the sets Agn,
so condition (1) can be derived from the others. The second condition states
that agents ai with valSai(n)(joini) = false cannot contribute to an update in
state Sn except by an attempt to join the BSP computation in next state Sn+1.
The third and forth separate update sets into only two cases: one is the update
sets corresponding to the communication phase and another is the update sets
corresponding to the computation phase. The fifth and sixth condition specify
when the value of joini can be changed, i.e. when can algorithms join or leave
the BSP algorithm: an algorithm must join and first enter the communication
phase and must leave in the computation phase5. The seventh condition states
that all algorithms involved in the BSP algorithm (i.e. valSai(n)(joini) = true)
have to wait for barrier to become true (or false, respectively) after setting
bari to true (or false respectively).

Analogously to the theory of BSP algorithms we can show concurrent runs of
Infinite-Agent BSP algorithms are indeed organised in supersteps, each compris-
ing a computation phase, in which the individual algorithms Ai operate only on
their local locations, followed by a communication phase, in which the individual
algorithms Ai operate only on their channel locations. The proof is analogous
to the corresponding proof in [9, Thm. 2.1].

Theorem 1 (Superstep Separation Theorem). Let S0, S1, . . . be a concur-
rent run of an Infinite-Agent BSP algorithm B = {(ai,Ai) | 0 ≤ i ≤ k}. Then
there exists a sequence 0 = i0 < i1 < . . . with the following properties:

1. The value of barrier in state Sij is false for even j and true for odd j.
2. For all x with ij ≤ x < ij+1 the update set Δx (with Sx + Δx = Sx+1)

satisfies:

5 Note that it still has to be ensured that an agent leaving the computation does this
after completing its step. This, however, has to be ensured by the specification of
the programs of the agents.

12 Z. Li et al.

(a) If j is even, then all updates in Δx affect locations of the form (f,v) with
f ∈ ⋃k

i=1 Σi,loc.
(b) If j is odd, then none of the updates in Δx affects a location of the form

(f,v) with f ∈ ⋃k
i=1 Σi,loc.

3. For all j, all x with ij−1 ≤ x < ij and all agents a ∈ Agx we have ij−1 ≤ a(x).

3.2 Infinite-Agent BSP Abstract State Machine

As Inf-Ag-BSP algorithms define a restricted class of concurrent algorithms,
an abstract machine model for Inf-Ag-BSP algorithms can also be defined as
restricted concurrent ASM, which we will call Infinite-Agent BSP abstract state
machine (Inf-Ag-BSP-ASM). Definition 7 below defines the rules for such ASM.

Definition 7 (Rules). For i ∈ N\{0} let Σi = Σi,loc∪{ci,j , cj,i | j ∈ N\{0}, j �=
i} ∪ {barrier} be signatures such that the subsignatures Σi,loc are pairwise dis-
joint and contain 0-ary function symbols bari and joini. Then the process rules,
barrier rules and join rules over Σi are defined as follows:

(1) Each assignment rule f(t1, . . . , tn) := t0 with f ∈ Σi,loc\{bari, joini} and
terms t1, . . . , tn, where n is the arity of f , is a process rule. Assignment rules
bari := true and joini := false are also process rules.

(2) Each assignment rule ci,j(t1, . . . , tn) := t0 with j ∈ N\{0}, j �= i and terms
t1, . . . , tn, where n is the arity of ci,j , is a barrier rule. Assignment rule
bari := false is also a barrier rule.

(3) The only join rule is the parallel composition of joini := true and bari :=
true.

(4) If all r1, r2, · · · , rm are process rules (or barrier rules, respectively), then the
parallel composition (r1 | r2 | · · · | rm) is also a process rule (or barrier rule,
respectively).

(5) If r is a process rule (or barrier rule, respectively) and ϕ is a Boolean term,
then (IF ϕ THEN r) is also a process rule (or barrier rule, respectively).

An Inf-Ag-BSP rule over Σi (i ∈ N\{0}) is a rule of the form:

(IF joini ∧ ¬bari ∧ ¬barrier THEN ri,proc) |
(IF joini ∧ bari ∧ barrier THEN ri,comm) |
(IF ¬joini THENCHOOSE ri,join OR skip)

with a process rule ri,proc, a barrier rule ri,comm and the join rule ri,join.
Let Σ0 = {bari, joini | i ∈ N\{0}} ∪ {barrier} and J = {i | val(joini) = true}
be the joining set, a switch rule is a rule over signature Σ0 of the form:

SWITCH ≡
(IF ¬barrier ∧

∧

i∈J
bari THEN barrier := true) |

(IF barrier ∧
∧

i∈J
¬bari THEN barrier := false)

Unbounded Barrier-Synchronized Concurrent ASMs 13

For machines executing an Inf-Ag-BSP algorithm each active machine, i.e.
val(joini) = true, has to execute its local process rule ri,proc until the local vari-
able bari is set to true. Once the “synchronisor” machine M0 updates barrier
to true according to the value of bari of all involved machines, Mi has to exe-
cute its barrier rule ri,comm, until the local variable bari is reset to false. Active
machines can only leave during a computation phase, so joini := false is a pro-
cess rule. An inactive machine can either do nothing or join and then enter the
communication phase. These considerations lead to the following definition.

Definition 8. An Infinite-Agent BSP abstract state machine (Inf-Ag-BSP-
ASM) is a concurrent ASM {(ai,Mi)|i ∈ N}, where the signatures Σi of
machines Mi are defined as in Definition 7, the rule of M0 is SWITCH over
Σ0, the rule of other Mi (i �= 0) is an InfAg-BSP rule over Σi, and the joining
set J = {i | val(joini) = true} is always finite.

3.3 Characterization Theorem

The characterization theorem shows that Inf-Ag-BSP-ASM captures the Inf-Ag-
BSP algorithms. As mentioned before the proof consists of two parts: (1) Inf-
Ag-BSP-ASM satisfies the postulates for Inf-Ag-BSP algorithms in the axioma-
tization; (2) every Inf-Ag-BSP algorithm defined by the postulates can be step-
by-step simulated by an Inf-Ag-BSP-ASM.

Lemma 1. Inf-Ag-BSP-ASM satisfies the postulates for Inf-Ag-BSP algorithms
in the axiomatization.

Proof. Let M = {(ai,Mi)|i ∈ N} be an Inf-Ag-BSP-ASM. According to Def-
inition 8, the signature of M satisfies the Inf-Ag-BSP signature restriction.
It remains to show that M also satisfies the Inf-Ag-BSP communication-and-
joining postulate.

Condition (1) is trivially satisfied because J is required to be always finite in
the definition of M. Condition (2) is a consequence of the Inf-Ag-BSP rule. When
val(joini) = false, the first two if-conditions of the Inf-Ag-BSP rule cannot be
satisfied and the third if-condition must be satisfied. Then the machine either
does nothing or sets both joini and bari to true, which matches what Condition
(2) requires. For Conditions (3) and (4) we can directly exploit the proof in [9].

For Condition (5) the update (joini, true) is non-trivial, i.e. the initial value
of joini is false. Therefore, it corresponds to the join rule ri,join. According to
the definition of join rules we must have also bari := true ∈ ri,join, which implies
Condition (5). For Condition (6) we exploit that the update (joini, false) must
come from a process rule. This can only be executed, if val(bari) = false holds,
so Condition (6) is satisfied.

For Condition (7), (bari∧¬barrier)∨(¬bari∧barrier) for i ∈ Jn is equivalent
to (joini ∧ bari ∧ ¬barrier) ∨ (joini ∧ ¬bari ∧ barrier). In this case none of the
three if-conditions of Inf-Ag-BSP rule are satisfied, so the ASM does nothing
and the update set is ∅. Condition (8) is again a direct and trivial consequence
of the definition of the rule SWITCH.

14 Z. Li et al.

Lemma 2. Every Inf-Ag-BSP algorithm defined by the postulates can be step-
by-step simulated by an Inf-Ag-BSP-ASM.

Proof. Assume that B = {(ai,Ai)|i ∈ N} is an Inf-Ag-BSP algorithm. Given
that Inf-Ag-BSP algorithms define a restricted class of concurrent algorithms,
we let our abstract machine be a cASM M = {(ai,Ai)|i ∈ N} with the same
signature and the same concurrent runs as B, which is the result of the behavioral
theory of concurrent algorithm in [3].

The machine M0 of agent 0 executes a SWITCH rule, which is used for con-
trolling the separation of the computation phase and communication phase of
BSP algorithm. The rules for other machines Mi have the form

(IF ϕ1 THEN ri,1) | · · · | (IF ϕm THEN ri,m)

We can exploit the same argument as in [9] to show that the rules ri can be
written in the form of Inf-Ag-BSP rule when replacing ri by the following rule:

(IF joini ∧ ¬barrier ∧ ¬bari THEN ri,proc) |
(IF joini ∧ barrier ∧ bari THEN ri,comm) |
(IF ¬joini THENCHOOSE ri,join OR skip)

with rules ri,proc, ri,comm, ri,join defined as follows:

ri,proc = (IF ϕ1 THEN ri,1) | · · · |
(IF ϕm′ THEN ri,m′)

ri,comm = (IF ϕm′+1 THEN ri,m′+1) | · · · |
(IF ϕm′′ THEN ri,m′′)

ri,join = (IF ϕm′′+1 THEN ri,m′′+1) | · · · |
(IF ϕm THEN ri,m)

which completes the proof that B can be simulated by an Inf-Ag-BSP-ASM.

Combining Lemmata 1 and 2 gives the following claimed result.

Theorem 2 (Characterization theorem). Infinite-Agent BSP abstract state
machine captures Infinite-Agent BSP algorithms.

4 Processing of Stream Queries with MapReduce Using
Inf-Ag-BSP ASMs

After extending BSP model to the Inf-Ag-BSP model let us revisit our MapRe-
duce models for memoryless and semi-memoryless stream queries in the ASMs
1 and 2. Based on the Inf-Ag-BSP model we refine the previous ASMs, which
leads to Algorithms 3 and 4. The main difference is that this time we check
whether an agent has joined the family of active agents of the BSP computation
or an agent has left before each iteration. The rule Join Update() updates the
value of joini at the begining of the computation phase of each superstep. The
refined ASMs allow agents to join or to leave.

Unbounded Barrier-Synchronized Concurrent ASMs 15

ASM 3 (MapReduce for Memoryless Stream Query based on Inf-Ag-
BSP)

IF joinj = true
THEN joinj := Join Update()

// Update the value of joini in current superstep
IF joinj = true

IF taskj = “map”
THEN map outj := Map Function(sj)

bsp send(map outj)
bsp sync()

IF taskj = “reduce”
map outj := bsp get()
reduce outj := concat(reduce outj ,map outj)
bsp sync()

ASM 4 (MapReduce for Semi-memoryless Stream Query based on
Inf-Ag-BSP)

IF joinj = true
THEN joinj := Join Update()

// Update the value of joini in current superstep
IF joinj = true

IF taskj = “map”
map outj := Map Function(sj)
tag outj := Tag Fuction(sj)
bsp send(map outj)
bsp send tag(tag outj)
bsp sync()

IF taskj = “reduce”
map outj := bsp get()
tag outj := bsp get tag()
reduce outj := Aggre(reduce outj ,map outj ,

local tagj , tag outj)
bsp sync()

5 Conclusion

In this paper, we extended MapReduce to handle different classes of stream
queries based on the BSP model. We distinguished memoryless, semi-memoryless
and memorable stream queries. The increasing need for memory and the increas-
ing number of parallel map/reduce tasks in memorable stream queries motivated
the extension of the general BSP model to Inf-Ag-BSP model. For this we devel-
oped a behavioral theory for the Inf-Ag-BSP model based on the theory of the
general BSP model, and we showed how the extended model is used to refine the

16 Z. Li et al.

processing of stream queries. Furthermore, the Inf-Ag-BSP model is not bound
to MapReduce, so it can also be employed to handle other parallel computation
problems, especially those requiring a large amount of computation work.

References

1. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms. ACM
Trans. Comput. Logic 4(4), 578–651 (2003)

2. Blass, A., Gurevich, Y.: Abstract state machines capture parallel algorithms: cor-
rection and extension. ACM Trans. Comp. Logic 9(3), 1–32 (2008)

3. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Inf. 53(5),
469–492 (2015). https://doi.org/10.1007/s00236-015-0249-7

4. Börger, E., Schewe, K.D.: A behavioural theory of recursive algorithms. Fundam.
Inf. 177(1), 1–37 (2020)

5. Costa, V.G., Maŕın, M.: A parallel search engine with BSP. In: Third Latin Amer-
ican Web Congress (LA-Web 2005), pp. 259–268. IEEE Computer Society (2005).
https://doi.org/10.1109/LAWEB.2005.7

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Opearting Systems Design
& Implementation, OSDI 2004, vol. 6, p. 10. USENIX Association (2004). http://
dl.acm.org/citation.cfm?id=1251254.1251264

7. Dershowitz, N., Falkovich-Derzhavetz, E.: On the parallel computation thesis.
Logic J. IGPL 24(3), 346–374 (2016). https://doi.org/10.1093/jigpal/jzw008

8. Ferrarotti, F., Schewe, K.D., Tec, L., Wang, Q.: A new thesis concerning synchro-
nised parallel computing - simplified parallel ASM thesis. Theor. Comp. Sci. 649,
25–53 (2016). https://doi.org/10.1016/j.tcs.2016.08.013

9. Ferrarotti, F., González, S., Schewe, K.D.: BSP abstract state machines cap-
ture bulk synchronous parallel computations. Sci. Comput. Program. 184, 102319
(2019). https://doi.org/10.1016/j.scico.2019.102319

10. Gava, F., Pommereau, F., Guedj, M.: A BSP algorithm for on-the-fly checking
CTL* formulas on security protocols. J. Supercomput. 69(2), 629–672 (2014).
https://doi.org/10.1007/s11227-014-1099-8

11. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comp. Logic 1(1), 77–111 (2000). https://doi.org/10.1145/343369.
343384

12. Gurevich, Y., Leinders, D., Van den Bussche, J.: A theory of stream queries. In:
Arenas, M., Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797, pp. 153–168.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75987-4 11

13. Inda, M.A., Bisseling, R.H.: A simple and efficient parallel FFT algorithm using
the BSP model. Parallel Comput. 27(14), 1847–1878 (2001)

14. Pace, M.F.: BSP vs. MapReduce. In: Ali, H.H., et al. (eds.) Proceedings of the
International Conference on Computational Science (ICCS 2012). Procedia Com-
puter Science, vol. 9, pp. 246–255. Elsevier (2012)

15. Schewe, K.-D., Wang, Q.: A simplified parallel ASM thesis. In: Derrick, J., et al.
(eds.) ABZ 2012. LNCS, vol. 7316, pp. 341–344. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30885-7 27

16. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990). https://doi.org/10.1145/79173.79181

https://doi.org/10.1007/s00236-015-0249-7
https://doi.org/10.1109/LAWEB.2005.7
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://doi.org/10.1093/jigpal/jzw008
https://doi.org/10.1016/j.tcs.2016.08.013
https://doi.org/10.1016/j.scico.2019.102319
https://doi.org/10.1007/s11227-014-1099-8
https://doi.org/10.1145/343369.343384
https://doi.org/10.1145/343369.343384
https://doi.org/10.1007/978-3-540-75987-4_11
https://doi.org/10.1007/978-3-642-30885-7_27
https://doi.org/10.1145/79173.79181

Towards ASM-Based Automated Formal
Verification of Security Protocols

Chiara Braghin , Mario Lilli , and Elvinia Riccobene(B)

Computer Science Department, Università degli Studi di Milano,
via Celoria 18, Milan, Italy

{chiara.braghin,mario.lilli,elvinia.riccobene}@unimi.it

Abstract. In the security protocols domain, formal verification is more
and more highly demanded to guarantee security assurance: humans
increasingly depend on the use of connected devices in their daily life, so
they must be protected against possible threats and accidents. However,
formal verification, and in general the use of formal methods, is slowed
by myths and misconceptions, mainly due to their mathematical base,
which discourages many designers or engineers from their adoption.

In this paper, we pose the basis for the long-term development of an
ASM-based user-friendly framework for the formal verification of secu-
rity protocols. We introduce a mathematical-based set of templates to
formalise common patterns in security protocols and a set of security
properties. These templates facilitate the protocol formal verification by
providing built-in functions and domains, as well as transition rules and
property schema, to be customised according to the specific protocol to
be verified. The effectiveness of this approach is shown by means of their
application to a number of well-known cryptographic security protocols.

Keywords: Cryptographic protocols · Security assurance · Abstract
state machines

1 Introduction

With the rise of Internet and other open networks, the world became more and
more connected, thus technology and data have taken more significant roles in
our daily lives. A report conducted in 2017 by Domo [20] estimated that by
2020 (without taking in consideration the COVID-19 outbreak that intensified
the process) 1.7MB of data would be created every second for every person on
earth. This massive amount of data, often sensitive, is shared among users by
means of communication protocols. A large number of security protocols have
been developed and deployed in order to provide security guarantees (such as
authentication of actors, or secrecy of some pieces of information) through the

The work was partially supported by the SEED Project SENTINEL.

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 17–33, 2021.
https://doi.org/10.1007/978-3-030-77543-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_2&domain=pdf
http://orcid.org/0000-0002-9756-4675
http://orcid.org/0000-0001-7236-9171
http://orcid.org/0000-0002-1400-1026
https://doi.org/10.1007/978-3-030-77543-8_2

18 C. Braghin et al.

application of cryptographic primitives. However, the design of security proto-
cols, despite their apparent simplicity, is particularly error-prone. Many commu-
nication protocols do not use up-to-date security features or implement them
wrongly, and it is difficult to detect these small vulnerabilities without a formal
analysis. Moreover, security errors cannot be detected by functional software
testing because they appear only in the presence of a malicious adversary. For
this reason, many published protocols have been found flawed many years after
they have been implemented and used in real applications. Thus, formal verifica-
tion of security protocols has become a key issue. It is also important to enforce
the security during the design phase obtaining the so called security by design.
Indeed, flaws found after the design phase are costly to be patched, and the cost
increases exponentially during the next development phase [23].

Research in the field of protocol verification has been very active in the
last thirty years. It reached a fairly mature state, however most of the tools
are not widely adopted by industry as one would expect. Unfortunately, the
adoption of formal methods is slowed by myths and misconceptions, mainly due
to their mathematical base, which discourages many designers or engineers [18].
The common problems of these tools are: a difficult modelling language, making
the writing of the model error-prone as well; a verification process that might
require user interaction and knowledge of the tool’s internal; the verification
results difficult to interpret and to bind to the original protocol. For this reason,
many of the protocols verified so far have been a case study for a specific tool
and each time a new protocol has to be verified, the modelling of the protocol
has to start from scratch, although often the protocols share the same structure.

In this paper, we want to tackle the problem from a little bit different per-
spective: we want to reduce the gap between software engineers or designers’
background and formal methods notation. To this aim, as a first step, we intro-
duce a mathematical-based set of templates to formalise common patterns in
security protocols and a set of security properties. These templates facilitate the
protocol formal verification by providing built-in functions and domains, as well
as transition rules and property schema, to be customised according to the spe-
cific protocol to be verified. Specifically, we propose a library of functions and
domains that can be used to develop Abstract State Machine (ASM) [14] mod-
els of security protocols. ASM specifications are instances of a model template
that reflects the common structure usually shared by the security protocols. We
also provide a set of schema for temporal logic formulas that specify common
security goals of cryptographic protocols. If instantiated according to the specific
protocol information, resulting properties can be automatically verified by the
AsmetaSMV model checker [2]. The modelling formalism that we have defined,
although not yet near to natural language, has the advantage of being under-
stood as “pseudocode over abstract data”, so it is easy to read and use. Our
approach has been applied to well-known cryptographic security protocols and
to the scenario of IoT protocols [25].

The results presented here are the first step toward a long term research
project. In the future, we want to hide the mathematical formalism behind a

Towards ASM-Based Automated Formal Verification of Security Protocols 19

high customisable user interface. More precisely, we want to formalise a nota-
tion that links univocally a formalised characteristic of a secure communication
protocol with a graphical element. Final users can easily drag and drop the
components that they need to build their protocol model. Moreover, we want
to make available in our framework the automatic implementation of security
protocols by exploiting techniques that map ASM models to code (e.g., to C++
[12] or Java [3]).

The rest of the paper is organised as follows. In Sect. 2 we briefly recall
some basic definitions on security protocols and on the ASM formal method; we
also present two protocols used in the paper as running case studies. Section 3
introduces the library of domains and functions to model the various elements
of a security cryptographic protocol and to model the concept of the attacker;
we also show the application of the library primitives to model the two running
examples; finally, we present formula schemas for security protocol verification
and we instantiate them for the two protocol examples. Section 4 relates our
work with existing approaches, and Sect. 5 concludes the paper.

2 Background

2.1 Security Protocols

Although there is a wide range of protocols, differing by the number of principals
(or actors), the number of messages, the goals of the protocol (that may often
be expressed with a list of desired security properties), they all share a common
structure. Indeed, a communication protocol consists of a sequence of messages
between two or more principals. Each message may be written in the form:

M1. A → B : message payload

which specifies:

– The principals (or actors) exchanging messages (in general, symbols A and
B represent arbitrary principals, S a server). In particular, the direction of
the arrow specifies the sender and the receiver of the message.

– The order in which messages are sent, and their specific payload. In particular,
M1 is a label identifying the message, whereas message payload specifies the
actual content of the message.

In secure protocols, payloads can be partially or totally ciphered, either by
symmetric-key encryption (in this case, KAB is often used to specify a key shared
between actors A and B, used both to encrypt and decrypt), or by asymmetric-
key encryption (here, KB and K−1

B are used to specify a public and private key
of B, respectively). Message payloads can contain other information, such as
nonces (N), timestamps (T), etc.

The security goals are often defined with respect to CIA (Confidential-
ity, Integrity, Authentication) triad. The most common are confidentiality or
integrity of message payloads, or entity authentication (i.e., the process by which

20 C. Braghin et al.

one entity is assured of the identity of a second entity that is participating to
the same session of a protocol, thus, they share the same values of the protocol
parameters, such as session keys, nonces, etc.).

Consider for example two classic protocols (that are still in use in a revised
version) that will be used throughout the paper as running examples to introduce
also the ASM notation. The Needham-Schroeder public-key protocol (NSPK,
forshort) has been introduced in 1978 for mutual authentication (here, we omit

Needham-Schroeder public-key protocol SSL protocol

M1. A → B : {A, NA}KB M1. A → B : {KAB}KB

M2. B → A : {NA, NB}KA M2. B → A : {NB}KAB

M3. A → B : {NB}KB M3. A → B : {CA, {NB}
K−1

A
}KAB

the exchanges with the certification authority to get the public keys). It consists
of three messages: in the first message, principal A sends to B a message con-
taining her identity, A, and a nonce, NA, to avoid replay attacks (i.e., reuse of
old messages, often called a challenge message), that only B can decrypt with
his private key. B ’s answer (message M2) is ciphered with A’s public key and
contains nonce NA to authenticate B (he is the only one able to decrypt mes-
sage M1 and obtain NA in clear), and a nonce NB to authenticate A with B.
Since message M2 is encrypted with A’s public key, she is the only one who can
decrypt it, thus if B receives message M3 containing nonce NB encrypted with
his public key, A is authenticated, too.

The SSL protocol was introduced by Netscape to exchange a session key and
mutual authentication. In message M1, client A sends a session key KAB to
server B. In the second message, B produces a challenge NB , which A signs and
returns to B along with a certificate CA, in case B does not have her public key.
Also in this case, A is authenticated when B receives the signed nonce.

In general, a secure protocol is used to communicate along an insecure net-
work in an untrusted environment, such as Internet. That is, the communication
channel is shared among possibly untrusted principals. This means that any
arbitrary adversary E may try to subvert a protocol run. It is common to distin-
guish between passive and active attackers, which differ in the capabilities they
have. The passive attacker is able to eavesdrop the channel, whereas an active
attacker controls the network and can delete, inject, modify and intercept any
message and is only limited by the constraints of the cryptographic methods
used (i.e., the classical symbolic Dolev-Yao model [19] assuming perfect cryp-
tography). In this fully untrusted scenario, it is also wrong to assume that an
intended principal of the protocol always behaves honestly.

Both the above protocols are vulnerable to this attack. In NSPK, if A starts
a session of the protocol with a dishonest principal E, E may start a new session
of the protocol with B to whom (s)he forwards all the messages (s)he receives
from A, where (s)he just changes the key used to encrypt. As a consequence, B

Towards ASM-Based Automated Formal Verification of Security Protocols 21

will think to run a protocol session with A and not with E (the solution is to
add the identity of the intended receiver in message M2, i.e., {NA, NB , B}KA

).
In the SSL protocol, B can be a dishonest principal opening a session with

another principal C, making C to believe (s)he is talking to A (i.e., B imperson-
ates A with C by showing the nonce signed by A in message M3). The attack
may be avoided by modifying message M3 in {CA, {A,B,KAB , NB}K−1

A
}KAB

.

2.2 Abstract State Machines in a Nutshell

ASMs [13,14] is the formalism that we use for modeling security protocols. They
are a state-based formal method, which extends Finite State Machines (FSMs) by
replacing unstructured control states with algebraic structures (i.e., domains of
objects with functions defined on them), and performing state transitions by fir-
ing transition rules. At each computation step, all transition rules are executed in
parallel by leading to simultaneous (consistent) updates of a number of locations
– i.e., memory units defined as pairs (function-name, list-of-parameter-values)–,
and therefore changing functions interpretation from one state to the next one.
Location updates are given as assignments of the form loc := v, where loc is a
location and v its new value. Among other rule constructors, those used for our
purposes are constructors for: guarded updates (if-then, switch-case), paral-
lel updates (par), sequential actions (seq), nondeterministic updates (choose).

Functions which are not updated by rule transitions are static. Those updated
are dynamic, and distinguished in monitored (read by the machine and modified
by the environment), controlled (read and written by the machine).

ASMs allow modeling different computational paradigms, from a single agent
executing parallel actions, to distributed multiple agents interacting in a syn-
chronous or asynchronous way. We exploit the latter computational model for
modeling security protocols. More specifically, a multi-agent ASM is a family of
pairs (a,ASM(a)), where each agent a : Agent executes its own machine ASM(a)
specifying its local behavior, and contributes to determine the next state. A pre-
defined function program on Agent indicates the ASM associated with an agent.
As an example, Fig. 2 shows an excerpt of the multi-agent ASM models of the
two case studies, where the three agents, agentA (for principal A), agentB (for
principar B) and the attacker agentE, operate in a distributed setting according
to the protocol rules (see Sect. 2.1 for more details).

Within transition rules, each agent can identify itself by means of a special
0-ary function self : Agent which is interpreted by each agent a as itself. An
ASM agent can behave according to a control-state ASM [14]: transition rules
are guarded by a function mode, which is updated in the rule body and whose
values resemble the states of a Finite State Machine. This machine model has
been used for specifying principal behaviour (i.e., actor’s actions).

ASMETA Toolset. The ASM formal method is supported by the tool-set
ASMETA (ASM mETAmodeling) [4] for model editing, validation and verifi-
cation.

22 C. Braghin et al.

An ASM model edited in ASMETA by means of the AsmetaL notation [21],
has a predefined structure consisting of: a signature, which contains declarations
of domains and functions; a block of definitions of static domains and functions,
transition rules, state invariants and properties to verify; a main rule, which is
the starting point of a machine computation; a set of initial states, one of which
is elected as default and defines an initial value for the machine locations.

An AsmetaL model can include other pieces of ASM specifications imported as
module from the main machine (that is declared as asm). Every module contains
definitions of domains, functions, invariants and rules, while the main AsmetaL
model is a module that additionally contains an initial state and a main rule
representing the starting point of the execution. The module importing mecha-
nism allows for the specification of predefined libraries of signature declaration
and definition, as those provided in our approach as predefined set of modeling
primitives for cryptography protocols specification.

Among the tools of the ASMETA framework, the model checker AsmetaSMV
can be used to check if given properties, expressed within the model as temporal
logic formulas, hold during all possible model executions. Here, we use AsmetaSMV
to verify the CIA properties for the two case studies (see Sect. 3.3). In case a
property does not hold, a counterexample is returned by the model checker, and
thanks to integration of the ASMETA tools, counterexamples obtained from false
properties are given back as model scenarios that are simulated (an example is
shown in Sect. 3.3). Besides the greater expressiveness of the ASM mathematical
notation w.r.t. the limited modeling primitives of a model checker, the advantage
of using ASM/ASMETA for our purposes, instead of directly specifying protocols
in the input language of the model checker (e.g., NuSMV), is strictly related with
the tool integration feature of ASMETA.

3 ASM Modeling of Cryptographic Protocols

We here introduce the main primitives (in terms of ASM functions and domains
in the AsmetaL notation) useful to model cryptographic protocol. These primi-
tives can be imported as a library, called CryptoLibrary, in the AsmetaL model
of a specific protocol; library domains can be instantiated for the specific pur-
poses of the protocol, while functions can be directly used within the model.

To explain library primitives and show their use for modeling the two case
studies, we use the following convention: excerpts are reported in listings; they
are colored in gray (and not numbered) if they refer to signature declared in the
library, and are numbered and uncolored if excerpts refer to a model.

Towards ASM-Based Automated Formal Verification of Security Protocols 23

Fig. 1. Structure of a message and examples in SSL and NSPK protocols

Actors or Principals. The library specifies protocol actors as agentX of cor-
responding domain Agent X, where X identifies the role of the agent working
in the protocol as A (X=A), as B (X=B), as a malicious actor (X=E), and as a
trusted key distribution server (X=S).

domain Agent A subsetof Agent
domain Agent B subsetof Agent
domain Agent E subsetof Agent
domain Agent S subsetof Agent

static agentA: Agent A
static agentB: Agent B
static agentE: Agent E
static agentS: Agent S

Messages. Protocol messages are modeled by means of library domains and
functions, according to the message structure given in Fig. 1 (the picture
above shows the general structure, the two pictures below exemplify the
structure of SSL message M3, on the left, and of NSPK M2, on the right).
The domain Message is used to model message labels; Payload is the set
of protocol payload data (e.g., nonces, certificates, keys, etc.); the domain
PayloadSection contains labels indicating groups1 of payload data; the func-
tion protocolMessage associates to a (sender, receiver) pair of actors the
label of the message they are exchanging; the function payload yields the set
of payload data contained in the payload section of an exchanged message of
a given label.
Library domains Message, Payload and PayloadSection will be instantiated
according to the characteristics of the specific protocol to model2.

domain Message subsetof Any
domain Payload subsetof Any
domain PayloadSection subsetof Any
controlled protocolMessage: Prod(Agent,Agent)−> Message
controlled payload: Prod(Message,PayloadSection, Agent, Agent) −> Powerset(Payload)

For example, in case of the SSL protocol, Message domain is instantiated as
MessageSSL3 containing the labels of the three messages exchanged between

1 A group contains either data subject to a specific protocol operation (e.g., signature,
hashing, etc.), or data with no further manipulation.

2 Any stands for a domain that can contain any element.
3 We convey to add the suffix naming the protocol to the corresponding library domain

when we instantiate it.

24 C. Braghin et al.

the actors (KK for message M1, NK for M2, CSNK for M3 - see Code 1). Similarly,
PayloadSSL instantiates Payload with elements representing the different
data a message can contain (e.g., SKAB refers to the symmetric key KAB).
Note that it also contains information to deal with an adversary principal
(as SKAE, symmetric key KAE between A and the intruder - see Sect. 3.1).
PayloadSectionSSL instantiates PayloadSection with labels for significant
groups (e.g., SIGN NONCE identifies data {NB}K−1

A
).

enum domain MessageSSL = {KK | NK | CSNK}
enum domain PayloadSSL = {NB|CA|SKAB|SKAE|SKEB}
enum domain PayloadSectionSSL={SEND KEY|NONCE|CERT|SIGN NONCE}
....
protocolMessage(agentA,agentB):= KK
payload(KK,SEND KEY,agentA,agentB):=SKAB

Code 1. Excerpt of ASM model for SSL

Actor’s Actions. Each (honest) protocol actor runs a program having the
same structure; this reflects the common pattern that crypto-protocols have.
Figure 2 in Sect. 3.2 shows the pattern similarity in the two case studies, SSL
and NSPK protocols. Each rule in the actor’s program (e.g., r agentARule
for actor agentA) models the role that the actor has in the protocol run. Each
actor has a memory : (s)he keeps information related to the protocol session
by means of the following built-in functions available in the library.

controlled knownAsimPubKey: Agent −> Powerset(AsimPubKeyType)
controlled knownAsimPrivKey: Agent −> Powerset(AsimPrivKeyType)
controlled knownSimmKey: Agent −> Powerset(SimmKeyType)
controlled knownPayload: Agent −> Powerset(PayloadType)

During a protocol session, an actor follows a control-state ASM on the base
of the mode functions internalState on State and protocolMessage on
Message: each control state represents the actor’s configuration upon per-
forming a protocol step where (s)he plays a specific role (as A or B).

domain State subsetof Any
controlled internalState: Agent −> State

Primitives internalState and State must be instantiated to model a specific
protocol. The excerpt in Code 2 shows the instantiation for the SSL protocol.
It also shows a rule of the (agentB’s) control-state that causes the actor’s
state change. The other rules have similar guarded structures.

enum domain StateA = {IDLE A | WAITING NK | END A}
enum domain StateB = {WAITING KAB | WAITING CSNK | END B}
controlled internalStateA: Agent A −> StateA
controlled internalStateB: Agent B −> StateB

if(internalStateB(self)= WAITING KAB and protocolMessage(e,self)= KK)then
par

protocolMessage(self,e):= NK
payload(NK,NONCE,self,e):= {NB}
internalStateB(self):= WAITING CSNK

endpar
endif

Code 2. Control state ASM model of an Agent in SSL

Towards ASM-Based Automated Formal Verification of Security Protocols 25

Symmetric/Asymmetric encryption primitives. Built-in primitives exist
for handling encryption/decryption of messages by using symmetric and
asymmetric (public and private) keys.

domain SimmKey subsetof Any
controlled encrypt sim: Prod(Message,Powerset(PayloadSection),Agent,Agent) −> SimmKey
static decrypt sim: Prod(Message,Powerset(PayloadSection), Agent, Agent) −> Boolean
static sim keyAssociation: Prod(Agent,Agent) −> SimmKey
function decrypt sim(m in Message, s in Powerset(PayloadSection), a1 in Agent, a2 in Agent)=
if (contains(knownSimmKey(a2),encrypt sim(m,s,a1,a2))) then true else false endif

domain AsimPubKey subsetof Any
domain AsimPrivKey subsetof Any
controlled encrypt asim: Prod(Message,Powerset(PayloadSection),Agent,Agent) −> AsimPubKey
static asim revKeyAssociation: AsimPrivKey −>AsimPubKey
static asim keyAssociation: AsimPubKey −> AsimPrivKey
static decrypt asim: Prod(Message,Powerset(PayloadSection),Agent,Agent) −> Boolean
function decrypt asim(m in MessageType,s in Powerset(PayloadSectionType),a1 in Agent,

a2 in Agent)=
if (contains(knownAsimPrivKey(a2),asim keyAssociation(encrypt asim(m,s,a1,a2)))) then
true else false endif

In both symmetric and asymmetric cases, function encrypt [a]sim mem-
orises the encryption key used to encrypt a message of a given label and
payload, sent by a sender actor to a receiver one. For example, in case of pro-
tocol SSL, when message M3. A → B : {CA, {NB}K−1

A
}KAB

is sent, location
encrypt sim(CSNK,{CERT,SIGN NONCE},agentA,agentB) is updated with
SKAB, being CSNK the message label, {CERT,SIGN NONCE} the message pay-
load, agentA the sender, agentB the receiver, and SKAB the two agents sym-
metric encryption key.
Decryption functions are predicates used within rule guards to check if an
actor receiving an encrypted message of a given label and payload section can
decrypt the received message: it is false when the message encryption key is
not contained in the agent’s memory.
The following Code 3 shows the rule r message NK of the SSL model, which is
executed by actor B at step M2 of the protocol under the Dolev-Yao assump-
tion (in this case, the traffic is controlled by intruder E, therefore, B views
all messages as sent by E - see Sect. 3.1); function decrypt sim is used to
check if B can decrypt the message, and encrypt sim yields the symmetric
key used for encryption.

rule r message NK =
let (e=agentE) in
if (internalStateB(self)=WAITING KAB and protocolMessage(e,self)=KK) then

if decrypt asim(KK,{SEND KEY},e,self) then
par
knownSimmKey(self):= union(knownSimmKey(self),payload(KK,SEND KEY,e,self))
protocolMessage(self,e):= NK
payload(NK,NONCE,self,e):= {NB}
encrypt sim(NK,{NONCE},self,e):= SKAB
internalStateB(self):= WAITING CSNK

endpar
endif endif endlet

Code 3. ASM rule of an Agent in SSL

26 C. Braghin et al.

Signature. In case of asymmetric encryption, the function sign is used to mem-
orize the signature of a message of given label and payload section, sent by
a sender actor to a receiver actor; predicate verify sign is used to check if
an actor receiving a message containing signed data can verify the authen-
ticity of the message: it checks if the actor verifying the signature knows the
sender’s public key and the signed data matches the content of the signature.

controlled sign: Prod(MessageType, PayloadSectionType, Agent, Agent) −> AsimPrivKeyType
static verify sign: Prod(MessageType,PayloadSectionType, Agent, Agent) −> Boolean
function verify sign(m in Message, s in PayloadSection, a1 in Agent,a2 in Agent)=
if (contains(knownAsimPubKey(a2),asim revKeyAssociation(sign(m,s,a1,a2)))) then

if (allin(knownPayload(a2),payload(m,s,a1 ,a2))) then true else false endif
endif

Advanced features. The library makes also available functions to handle
advanced characteristics of crypto-protocols, e.g., hash functions, MAC func-
tions, the Diffie-Hellman (to name a few); these have not been used in the
two case studies reported here and, therefore, they are not presented here.

3.1 Modeling the Intruder Behaviour

We support two possible behaviours of an intruder : a) as a protocol actor having
malicious behaviour, and b) as an external actor operating in passive mode (i.e.,
an eavesdropper), or in active mode according to the Dolev-Yao assumption.
The intruder is available in the library as agentE. His/her program reflects
the intended behaviours. Note that, the attacker controls the traffic and this
is modeled by imaging E in the middle of the communication between A and
B. Therefore, in the presence of the attacker (internal or external), the channel
between the two honest actors is broken in two sub-channels: between A and E,
and between E and B (this justifies why, in the rules, all messages sent by A are
received by E, and all messages received by B arrive from E).

Protocol actor with a malicious behaviour. In this case, agentE, operat-
ing as an intended protocol actor, receives messages from A who voluntarily
started a protocol session with E. In this case, (s)he can save the information
of the payload, but instead of honestly replying to A following the protocol
rules, E uses his/her information to start a new protocol session with B. The
library monitored function chosenReceiver can be used to capture both the
case in which the intended receiver behaves honestly (as B), and the case
in which (s)he behaves dishonestly (as E). Domain Receiver contains those
agents that can be selected as possible protocol receivers.

enum domain Receiver = {agentB|agentE}
monitored chosenReceiver: Receiver
controlled receiver: Receiver

External attacker. In this case, agentE is an external actor, thus A cannot
start a protocol session with E. Information known by the intruder come from
what (s)he is able to steal from the traffic or from a prior knowledge. The
attacker can operate in PASSIVE or ACTIVE mode. This operation mode can

Towards ASM-Based Automated Formal Verification of Security Protocols 27

be selected by the monitored function chosenMode and the same protocol can
be analysed in the two passive/active intruder scenarios.

enum domain Modality = {ACTIVE | PASSIVE}
monitored chosenMode: Modality
controlled mode: Modality

In PASSIVE mode, agentE can view all the messages of the communication
between agentA and agentB, save all information transmitted in clear and
those contained in message payloads that (s)he is able to decrypt. In ACTIVE
mode, agentE operates under the Dolev-Yao assumption and controls the
traffic: besides the capabilities as passive attacker, (s)he can craft messages
by using information stolen (from messages sent by agentA or agentB) and
send fake messages (consistent with the protocol rules).

For each message type, the intruder has rules for working in passive or active
mode. Rules r message eavesdrop model the intruder operating as passive
attacker; rules r message craft model the intruder operating as external active
actor and as protocol actor with malicious behavior (in both cases, (s)he is able
to craft new messages).

Unlike agentA and agentB, agentE has no internalState and does not
work according to a control-state ASM. His/her behaviour depends on what (s)he
views in the traffic. As the other agents, agentE has a knowledge (knownSimmKey,
knownAsimPrivKey, knownAsimPubKey, knownPayload) that can be exploited to
steal information or craft fake messages. To endow the intruder with a prior
knowledge, it is enough to set initial values for the knowledge functions.

Fig. 2. ASM models of protocols SSL and NSPK

28 C. Braghin et al.

3.2 NSPK and SSL Models

Figure 2 reports the high level ASM models of the two case studies by using
predefined domains and functions of the library CryptoLibrary and instantiat-
ing domains when required. The two models have the same structure: each one
is a multi-agent ASM with programs for honest actors agentA and agentB –
according to the actor’s role in the protocol–, and for the attacker agentE; each
honest actor has a rule for each kind of protocol message (s)he has to build, plus
the final B’s rule for the final message check; the attacker has rules to handle
all possible behaviours (as eavesdropper and as message crafter) as described
before. Call rules definitions differ depending to the protocol.

Code 4 shows, as an example, an excerpt of the rule r message CSNK of
protocol SSL, in the case of A talking with B. The rule is executed by agentA
when she is in (internal) state WAITING NK and receives a message of label NK
(step M2): she can decrypt the message and sends a message of label CSNK, which
is encrypted by the symmetric key between herself and the expected receiver
agentB; the message has two payload sections: one of label CERT, which has
payload CA, and one of label SIGN NONCE, which has the same payload (i.e., NB)
of the previously sent message having label NK and payload section NONCE, signed
by the private actor’s key PRIVKA.

rule r message CSNK=
let (e=agentE) in
if (internalStateA(self)=WAITING NK and protocolMessage(e,self)=NK) then
if (receiver=agentB) then
if (decrypt sim(NK,{NONCE},e,self)=true) then
par
protocolMessage(self,e):= CSNK
payload(CSNK,CERT,self,e):= {CA}
payload(CSNK,SIGN NONCE,self,e):= payload(NK,NONCE,e,self)
sign(CSNK,SIGN NONCE,self,e):= PRIVKA
encrypt sim(CSNK,{CERT,SIGN NONCE},self,e):= sim keyAssociation(self,receiver)
internalStateA(self):= END A

endpar
endif

..... endif endlet

Code 4. An excerpt of a rule of actor agentA in SSL protocol

3.3 Security Properties Schema

In this section, we introduce schema also for specifying in CTL formulas the
security goals of a protocol in terms of the CIA triad.

Confidentiality. In communication protocols, encryption is used to obtain data
confidentiality: only actors with correct decryption keys are able to access data.

Let x be a given exchanged data, confidentiality of x is assured by proving
that there is not a state in the future in which E knows x:

¬EF (contains(knownPayload(agentE), x))

Therefore, the confidentiality of the nonce NB in the protocol NSPK is:

Towards ASM-Based Automated Formal Verification of Security Protocols 29

¬EF (contains(knownPayload(agentE), NB))

This property is false in the NSPK protocol. Code 5 shows a scenario of the
NSPK protocol model, which reflects the counterexample reported by the model
checker: if agentA initiates a protocol run with agentB under the Dolev-Yao
assumption of an active attacher agentE (the set command is used to assign
specific values to monitored functions) controlling the traffic, upon a certain
number (not reported here) of machine steps (the command step forces a step
of the ASM execution), the protocol run ends with both agents agentA and
agentB successfully completing the protocol, but also with the shared secret NB
known by the attacker (the check command is used to inspect location values
in the current state of the underlying ASM).

Note that if message M2 is patched using message {NA, NB , B}KA
, the prop-

erty holds.

scenario NB interception
load NS/NS.asm

set chosenReceiver:=agentE;
set chosenMode:=ACTIVE;
step
check internalStateA(agentA)=IDLE A and internalStateB(agentB)=WAITING NAK;
step
check internalStateA(agentA)=WAITING NNK and
internalStateB(agentB)=WAITING NAK and protocolMessage(agentA,agentE)= NAK
and payload(NAK,NONCE ID,agentA,agentE)={NA,ID A} and
encrypt asim(NAK,{NONCE ID},agentA,agentE)=PUBKE;
step
.....
step
check internalStateA(agentA)=END A and internalStateB(agentB)=END B;
check contains(knownPayload(agentE),NB);

Code 5. Scenario from the counterexample of the false confidentiality property

Integrity. Exchanged message has not been altered. Thus, a message can be
considered integral when the payload sent is the same as the payload received.

Let m be a message exchanged. Integrity of m is assured by proving that
there is not a state in the future in which E altered the payload section sec of the
message m:

¬EF (payload(m,sec,agentA,agentE)=payload(m,sec,agentE,agentB))

In none of the two protocols there is integrity violation, since there are two sep-
arate sessions and the attacker does not modify any message along the channel.

Authentication. A principal proves his/her identity by demonstrating knowl-
edge of a secret (not necessarily shared) and of an information that varies over
time (to avoid replay attacks), without explicitly revealing the secret.

Let x be a secret that must be shared by the two actors at the end of the
protocol execution. Authentication of entity x is assured by proving that if there
is a state in the future in which A and B know x, then E does not know x.

EF (contains(knownPayload(agentB), x) and contains(knownPayload(agentA), x)) →
AG(¬(contains(knownPayload(agentE), x)))

30 C. Braghin et al.

The authentication of the secret nonce NB in the protocol SSL is:

EF (contains(knownPayload(agentB), NB) and contains(knownPayload(agentA), NB)) →
AG(¬(contains(knownPayload(agentE), NB)))

This property does not hold; if message M3 is patched using the message
{CA, {A,B,KAB , NB}K−1

A
}KAB

, the property is true.

4 Related Work

After the seminal paper on BAN logic [15] introducing one of the first formalisms
designed to reason about protocols, many techniques and tools have been pro-
posed for verifying protocols.

Tamarin [26] is a well-known tool dedicated to the formal analysis of secu-
rity protocols. It has been used to verify complex protocols such as TLS, 5G, or
RFID protocols. It uses its own modelling language to specify protocols, adver-
sary models and security properties. For the verification process, it is based on
deduction and equational reasoning. However, one of its drawback is its lack of
full automation: for many protocols, the user needs to write intermediate lem-
mas (called sources lemmas), or to manually guide the proof search. In [16],
the authors propose a technique to automatically generate sources lemmas that
works for simple protocols, but still needs user interaction in case of large proto-
cols. Scyther [17] is somehow an extension of Tamarin, with a more accessible
and explicit modelling language by means of a graphical user interface.

ProVerif [11] uses applied pi-calculus [27] as modelling language, and a reso-
lution algorithm on Horn clauses for the verification. It may need human inter-
vention when a protocol proof fails because of some internal approximations, or
it may find false attacks. However, it can verify protocols without arbitrarily
bounding the number of executed protocol sessions or the message size.

Verifpal [24] is a more recent framework inspired by ProVerif. As us, the
authors recognise that the limited usage of formal methods is mainly due to
the fact that the languages employed by most tools is too difficult and abstract.
Verifpal uses a simple modelling language similar to the usual protocol notation
that we introduced in Sect. 2.1 at the cost of some compromises in analysis
completeness. For more sound proofs, translation of models in ProVerif and
Coq [10] are possible. The tool’s internal logic relies on the deconstruction and
reconstruction of abstract terms, similar to existing symbolic verification tools.

AVISPA (Automated Validation of Internet Security Protocols and Appli-
cations) [5] is a platform that groups several tools, using different verification
techniques. It uses HLPSL (High-Level Protocol Specification Language) as pro-
tocol description language. The HLPSL model is then translated in an interme-
diate model, that is given as input to four tools: SATMC (SAT-based Model-
Checker) [6] for a bounded state space, CL-AtSe and OFMC for a bounded
number of sessions, TA4SP for an unbounded number of sessions.

The use of ASMs to model security protocols has been tackled in the past.
However, most of the works are rather outdated and they consist on a single case

Towards ASM-Based Automated Formal Verification of Security Protocols 31

study, rather than a general approach, in many cases with a limited tool support.
In [7], a model of the Kerberos protocol is given through stepwise refinements of
ASMs. In [22] an interactive theorem prover is used to prove security properties
on a smart card application. Although no proof of standard CIA security prop-
erties is given, the authors recognise, as we do, how the ASM refinement theory
could be used to translate the protocol ASM model into a (security-proven) Java
implementation. Our closest ASM-based approach is [1], where an attempt to
generalise the attacker model is given. However the verification technique is by
means of invariant checking via simulation-based attack scenarios.

The idea of patterns reusing is not new as well. In [9], a systematic way to
design secure-by-construction cryptographic protocols, where the proof process
reuses smaller protocol parts previously proven to be correct and secure. In this
case the approach is based on the B notation. The work of [8] describes a method
for implementing and analyse a specific class of security protocols (i.e., classical
key distribution protocols) in SPIN. In particular, the authors focus on modelling
a generic intruder model working with all the protocols within the class. The
work in [28] presents a model-driven approach to design security-critical systems
based on cryptographic protocols and to prove application-specific security prop-
erties. A smart card application is analyzed. UML is used as front-end modeling
notation, whereas ASMs and a theorem prover are used as back-end formalisms
for property verification; the underlying idea is similar to our.

5 Conclusion

In this paper we presented an ASM-based approach for the automatic verification
of cryptographic protocols. To verify the feasibility of our approach, we tested
it both with small protocols and more difficult ones, for example the Z-Wave
protocol in the IoT scenario [25] (where we found a vulnerability that has been
confirmed by the Z-Wave Alliance). With respect to other approaches based on
deduction and equational reasoning, at present, we are able to verify protocols
with a bounded number of sessions. In addition, as for all tools based on model-
checking, we are able to find attacks against protocols, but not to prove the
absence of attacks, since attacks may appear in an unexplored part of the state
space. However, in our case no human intervention is requested to help the tool
to end the verification session, and we never get false positives.

In order to make the approach more user-friendly, the next step is to build a
GUI connecting each element defined in the library with a graphical counterpart
(for example expressed as a sequence diagram). We would also like to translate
our models in prototype Java implementations by exploiting ASMETA toolset.

References

1. Al-Shareefi, F.: Analysing safety-critical systems and security protocols with
abstract state machines. Ph.D. thesis, University of Liverpool (2019)

32 C. Braghin et al.

2. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level
ASM models to low-level NuSMV specifications. In: Frappier, M., Glässer, U.,
Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 61–74.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11811-1 6

3. Arcaini, P., Gargantini, A., Riccobene, E.: Rigorous development process of a
safety-critical system: from ASM models to Java code. Int. J. Softw. Tools Technol.
Transf. 19(2), 247–269 (2017)

4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exp. 41(2), 155–166
(2011)

5. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

6. Armando, A., Compagna, L., Ganty, P.: SAT-based model-checking of security pro-
tocols using planning graph analysis. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.)
FME 2003. LNCS, vol. 2805, pp. 875–893. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45236-2 47

7. Bella, G., Riccobene, E.: Formal analysis of the Kerberos authentication system.
J. Univ. Comput. Sci. 3(12), 1337–1381 (1997)

8. Ben Henda, N.: Generic and efficient attacker models in SPIN. In: Proceedings of
International SPIN Symposium on Model Checking of Software, pp. 77–86 (2014)

9. Benaissa, N., Méry, D.: Cryptographic protocols analysis in event B. In: Pnueli,
A., Virbitskaite, I., Voronkov, A. (eds.) PSI 2009. LNCS, vol. 5947, pp. 282–293.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11486-1 24

10. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer, Heidelberg
(2010)

11. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings of IEEE Computer Security Foundations Workshop, pp. 82–96 (2001)

12. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from abstract state machines specifications. J. Softw. Evol. Process.
32(2) (2020)

13. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

14. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

15. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

16. Cortier, V., Delaune, S., Dreier, J.: Automatic generation of sources lemmas
in Tamarin: towards automatic proofs of security protocols. In: Chen, L., Li,
N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 3–22.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 1

17. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 38

18. Davis, J.A., et al.: Study on the barriers to the industrial adoption of formal
methods. In: Pecheur, C., Dierkes, M. (eds.) FMICS 2013. LNCS, vol. 8187, pp.
63–77. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41010-9 5

https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/978-3-540-45236-2_47
https://doi.org/10.1007/978-3-540-45236-2_47
https://doi.org/10.1007/978-3-642-11486-1_24
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-030-59013-0_1
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-642-41010-9_5

Towards ASM-Based Automated Formal Verification of Security Protocols 33

19. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

20. Domo: Data never sleeps 6th (2017)
21. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a

simulation engine for abstract state machines. J. UCS 14(12), 1949–1983 (2008)
22. Haneberg, D., Grandy, H., Reif, W., Schellhorn, G.: Verifying security protocols:

an ASM approach. In: Proceedings of International Workshop on Abstract State
Machines (2005)

23. Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell, R., Dabney, J.: 8.4.2 error
cost escalation through the project life cycle. In: INCOSE International Sympo-
sium, vol. 14, pp. 1723–1737 (2004)

24. Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: cryptographic protocol analy-
sis for the real world. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.)
INDOCRYPT 2020. LNCS, vol. 12578, pp. 151–202. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-65277-7 8

25. Lilli, M.: Formal verification of Z-Wave protocol security properties. Master’s the-
sis, Università degli Studi di Milano, Italy (2020)

26. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

27. Milner, R.: Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

28. Moebius, N., Stenzel, K., Reif, W.: Generating formal specifications for security-
critical applications - a model-driven approach. In: Workshop on Software Engi-
neering for Secure Systems, pp. 68–74 (2009)

https://doi.org/10.1007/978-3-030-65277-7_8
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48

Verifying System-Level Security
of a Smart Ballot Box

Dana Dghaym(B), Thai Son Hoang, Michael Butler, Runshan Hu,
Leonardo Aniello, and Vladimiro Sassone

ECS, University of Southampton, Southampton, UK
{d.dghaym,t.s.hoang,m.j.butler,rs.hu,l.aniello,vsassone}@soton.ac.uk

Abstract. Event-B, a refinement-based formal modelling language, has
traditionally focused on safety, but now increasingly finds a new role in
developing secure systems. In this paper we take a fresh look at security
and focus on what security means for the system rather than looking at
detailed protocols. We use Event-B for proving security from an abstract
view and refining it towards design details, focusing on the refinement of
the availability property of the system. We define a general approach to
guarantee the availability of events by ensuring the non-strengthening of
their guards, taking into consideration their parameter types. We illus-
trate our approach using a smart ballot system, an integral part of mod-
ern voting systems.

Keywords: Event-B · Availability property · System security ·
Refinement · Voting system

1 Introduction

Event-B [1] is a refinement-based formal method for developing discrete transi-
tion systems. Data refinement is a standard technique in Event-B that requires
relating the abstract variables with the concrete variables using gluing invari-
ants. To ensure the refinement correctness, a guard strengthening (GRD) Proof
Obligation (PO) is generated to verify that if a concrete event is enabled then
its corresponding abstract event is also enabled.

In this paper, we investigate the application of refinement-based formal mod-
elling in building a correct-by-construction secure system. Our focus is the refine-
ment of the availability property of secure systems. The availability property of
a refined event can be proved, if conditions under which event is enabled in an
abstract machine are maintained in the refined machine.

We illustrate our approach using a smart ballot box case study. In this case
study we build a secure system by gradually introducing the confidentiality and
integrity properties of the voting system using encryption and message authen-
tication respectively, while ensuring availability throughout the refinement pro-
cess. In the smart ballot box system case study, confidentiality is ensured by
having the voter’s choices not visible to the system, while integrity is ensured by
c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 34–49, 2021.
https://doi.org/10.1007/978-3-030-77543-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-77543-8_3

Verifying System-Level Security 35

only accepting valid ballots and only rejecting invalid ballots. The availability of
the system is guaranteed by not preventing a voter from casting a valid ballot. In
this case study, we also model the intruder’s behaviour and show how encryption
and authentication can provide protection against an intruder behaviour.

We propose an extension to Event-B Proof Obligations (POs) that relates the
enabledness of an event to availability of behaviour according to a new param-
eter type, which we call a rigid parameter. This PO will ensure the availability
property of events is preserved by refinement.

The rest of the paper is structured as follows. Section 2 gives an overview of
the smart ballot box case study. Section 3 introduces Event-B formal method.
We propose a new PO to prove the availability of refined events in Sect. 4. In
Sect. 5, we present our Event-B development of the case study across the dif-
ferent refinements. We discuss how model checking improved our development
in Sect. 6. We compare our approach with other work in Sect. 7. Finally, we
conclude and present our plans for future work in Sect. 8.

2 Case Study: Smart Ballot Box

The main function of the Smart Ballot Box (SBB) [5] is to inspect a ballot paper
by detecting a 2D barcode, decode it and evaluate if the decoded contents verifies
the paper from a Ballot Marking Device (BMD). If the ballot is valid, then it
can be cast into the storage box. Otherwise, the SBB rejects the paper, that will
be ejected. The SBB does not conduct a full-scale analysis of the document, nor
record the choices of the voters, nor tabulate the votes of the ballots it scans.
The key function of the SBB is to ensure that only valid countable summary
ballot documents that can be tabulated later are included in ballot boxes.

REQ 1 The BMD is used by a voter to make ballot choices and print a summary
ballot. The ballot choices are not recorded by the BMD.

REQ 2 The barcode is created by the BMD as an authenticator so that the SBB
can recognise a legitimate ballot.

REQ 3 The ballot barcode is formed of a timestamp followed by an encoding of
the encrypted ballot and the Message Authentication Code (MAC).

REQ 4 All ballots with invalid or non-existent barcode are rejected by the SBB.
REQ 5 All ballots with a valid barcode are recognized by the SBB.
REQ 6 The user can decide whether to cast or spoil the given ballot. The ballot

is deposited into the ballot box if the voter decides to cast their vote and
subsequently all ballots with the same barcode will be considered invalid.

REQ 7 The user can decide to spoil a valid ballot. In such cases, the ballot is
ejected and returned to the voter, and is subsequently considered invalid.

REQ 8 The ballot box shall reject a ballot with an expired barcode.
REQ 9 The authentication scheme is based on a MAC created with the AES

standard encryption algorithm and a cryptographic key shared by the BMD
and SBB. The SBB authenticates the ballot by recreating the MAC with the
shared key and comparing the result with the MAC encoded in the barcode.
If the two MAC values are equal the ballot is considered valid.

36 D. Dghaym et al.

3 Background

Event-B [1] is a refinement-based formal method for system development. An
Event-B model contains two parts: contexts for static data, and machines for
dynamic behaviour specified by variables v, invariant predicates I(v) that con-
strain the variables, and events. An event comprises a guard denoting its enabling
condition and an action describing how the variables are modified when the event
is executed. In general, an event e has the following form, where t are the event
parameters, G(t, v) is the event guard, and v := E(t, v) is the action of the event.

any twhere G(t,v) then v := E(t,v) end

Refinement in Event-B is reasoned event-wise where the behaviour of the
concrete or refining machine conforms with the abstract machine. This is ensured
by the refinement rules of guard strengthening and action simulation of the
abstract events by their corresponding refining events. In addition to gluing
invariants that relate the abstract and refined state of the models. In this case,
given the abstract invariant I(v) and gluing invariant J(v,w) (where v and w
are abstract and concrete variables, respectively), the GRD PO will check that
the guards of the concrete event H(q,v,w) are stronger than the guards of its
corresponding abstract event G(p,v) (where p and q are the abstract and concrete
parameters, respectively) as follows:

I(v), J(v,w),H(q, v,w) � ∃p · G(p,v) ,

The GRD PO will ensure that if a concrete event is enabled, then its correspond-
ing abstract event must be enabled. In Event-B, an event is enabled if there are
parameter values that satisfy the guard of the event.

Event-B is supported by the Rodin Platform (Rodin) [2], an extensible toolkit
which includes facilities for modelling, verifying the consistency of models using
theorem proving and model checking techniques, and validating models with
simulation-based approaches. In this paper we use both Event-B theorem proving
and model checking using ProB [9] for the validation and verification of the SBB.

4 Rigid Events and Parameters

In this section, we first introduce the notion of enabledness with respect to
a set of parameters (Sect. 4.1). Subsequently, we elaborate on the meaning of
availability properties and introduce the notion of rigid events and parameters
to capture availability properties (Sect. 4.2). We then address preservation of
availability properties during refinement in Sect. 4.3.

4.1 Event Enabledness and Parameters

We extend the notion of event enabledness in Event-B to include the parameters.
Given an event e with parameters p and q (both p and q can be a list of variables)
and G(p, q), the guard of e constraining p and q. We define Enabledp(e) as follows.

Verifying System-Level Security 37

Enabledp(e) == ∃q · G(p, q)

In this definition, we explicitly specify the parameters in the enabledness con-
dition to indicate their scope, i.e., the event e is enabled for all parameters p
satisfying Enabledp(e). Notice that p appears freely in Enabledp(e).

4.2 Specifying Availability Properties with Rigid Events
and Parameters

In Event-B, the availability of an event is determined by its enabledness condi-
tion, e.g., stating that the event must be enabled under certain conditions. As
event guards can be strengthened during refinement, an event available in the
abstraction might no longer be available in the refinement. As a result, we need a
notation to specify which events’ availability we are interested in, and treat them
differently in the refinement. To signify that we are interested in the availability
of event e, we say that event e is a ‘rigid ’ event, denoted as [e].

Of course, the availability of an event also needs to take into account its
parameters. To indicate that we are interested in the availability of the event
with respect to parameters p, we say that p are ‘rigid ’ parameters, denoted as
[p]. Note that only rigid events can have rigid parameters.

In general, consider a rigid event e with rigid parameters rp and other (non-
rigid) parameters op of the following form:1

event [e]
any [rp] opwhere G(rp, op) then ... end

The above rigid event means that the system satisfies the availability property
stating that “event e must be enabled for any parameter rp satisfying Enabledrp
(e)”.

4.3 Refinement Preserving Availability Properties

We now discuss the refinement of rigid events preserving the associated availabil-
ity properties. In a normal Event-B refinement, the guard of a refined event can
be stronger than the abstract guard (and hence restrict the event enabledness).
For a rigid event, on the other hand, we want to ‘preserve’ enabledness, that is
do not strengthen in the refinement the conditions for event enabledness, so that
the availability of the event is maintained by refinement.

The syntactic rules are (1) rigid events can only be refined by rigid events,
and (2) the abstract rigid parameters must be retained in the concrete events.

1 We use [] to distinguish rigid events and parameters from others.

38 D. Dghaym et al.

Consider the following abstract rigid event [ae] and concrete rigid event [ce].

event [ae]
any [rp] oapwhere
Ga(rp, oap, v)

then
// abstract action
...

end

event [ce]
any [rp] ocpwhere
Gc(rp, ocp, v,w)

then
// concrete action
...

end

Here, [rp] represents the rigid parameters, oap and ocp are respectively the other
abstract and concrete parameters. While v and w are the abstract and concrete
variables.

To ensure that the availability properties are preserved through refinement,
we must prove that the concrete event does not strengthen the enableness of
the abstract event, taking into account the rigid parameters. We propose the
following enabledness preservation PO (denoted as ENBL),

I(v), J(v,w), Ga(rp, oap, v) � ∃ocp · Gc(rp, ocp, v,w) ,

where I(v) and J(v,w) are the abstract and concrete invariants.
In general, more rigid parameters can be introduced during refinement.

Notice that the ENBL proof obligation depends on the abstract rigid param-
eters, i.e., any rigid parameters newly introduced by a refinement will be treated
as non-rigid parameters for the purpose of the current ENBL PO and will only
be relevant for the ENBL PO in further refinement steps.

In Event-B an abstract event can be refined by a group of concrete events. In
this case, the ENBL PO is generalised accordingly. Given an abstract rigid event
[ae] and concrete rigid events [ce1], [ce2], .., [cen], the ENBL PO is as follows.

∀ rp, oap · Ga(rp, oap) ⇒∨
i (∃ ocpi · Gci(rp, ocpi))

In the formula above ocpi and Gci (i∈ 1 .. n) are the other concrete parame-
ters and guards of the corresponding concrete event cei.

5 SBB Systems Model in Event-B

In this section, we first present our refinement strategy and then show how we
modelled the SBB system introduced in Sect. 2 using Event-B. We also illustrate
the reasoning about availability properties using enabledness conditions based
on the approach of Sect. 4.

5.1 Refinement Strategy

Our refinement plan consists of an abstract and four refinement levels. Although
our focus is modelling the SBB, it is important to take into consideration how
it interacts with other components of the system, in particular the BMD which
generates the encrypted ballots for authorised voters only.

Verifying System-Level Security 39

Abstract Model: We start by modelling an ideal voting system, where legitimate
ballots are created for voters who have not voted before and only legitimate
ballots are cast.

First Refinement: In this refinement we introduce the physical paper ballots
and we distinguish between the different types of ballots according to Fig. 1. We
model possible attackers behaviour, where an attacker can produce illegitimate
ballots or duplicate legitimate ballots which can invalidate legitimate ballots.
Voters with valid ballots will have the option to either cast or spoil their ballots.
Ballots which are spoiled, invalid or illegitimate will be ejected by the SBB.

Fig. 1. Different types of paper ballots.

Second Refinement: We introduce time and invalidate ballots with expired times-
tamps. We assume synchronised clocks for both the SBB and BMD, but later
we will show how time can be the subject of malicious attacks.

Third Refinement: We data refine the voter information and their votes by
encrypting the ballots using a secret key.

Fourth Refinement: Ensuring the legitimacy of ballots is done through the MAC,
where we compare the computed MAC using the secret authentication key and
the MAC in the ballot barcode.

5.2 Abstract Level: Modelling an Ideal Voting System

An ideal voting system is when each voter can have at most one vote. This is
ensured by the typeof−ballots invariant, where ballots are defined as a partial
function between VOTER and VOTE.

@typeof−ballots: ballots ∈VOTER �→VOTE
Here, we only allow the creation of ballots for voters who were not issued

any ballots previously. Casting of ballots is only applicable for ballots that
are not invalidated, where the variable cast represents the set of cast ballots
cast⊆ ballots. Thus, we have a perfect secure voting system where we ensure
that a voter can cast at most one valid ballot. At this level we only have three
events create ballot, invalidate ballots and cast ballot.

40 D. Dghaym et al.

5.3 First Refinement: Introducing Physical Ballots and Possible
Attacker Capabilities

At this level, we refine ballots and the cast ballots with the physical paper ballots
(papers). These paper ballots are susceptible to attacks, e.g. duplicating paper
ballots, making the voting system insecure. In this section we distinguish between
the different types of papers using disjoint variables as shown in Fig. 1. Ballot
papers can be either legitimate or illegitimate, and legitimate papers can be in
turn partitioned as valid, invalid, cast or spoiled which are modelled as disjoint
sets as follows:

– legitimate papers: Ballots created by BMD or copied from one created by
BMD.

– illegitimate papers: Ballots created by the attackers.
– valid papers: Legitimate ballots that have not expired, and have not been cast

or spoiled before.
– invalid papers: Legitimate ballots but invalid either because expired or (a copy

has been) already cast or spoiled.
– cast papers: Legitimate and already cast.
– spoiled papers: Legitimate ballots that are spoiled.

We define the events that lead to creating legitimate and illegitimate bal-
lot papers and the events that invalidate legitimate ballots. All legitimate
valid ballots are created by the BMD in the event BMD issues paper which
refines the abstract event create ballot. We also define three possible attacks:
ATK creates paper creates an illegitimate ballot; in this case we assume the
attacker does not know the secret keys. On the other hand, both attack
events ATK duplicates valid paper and ATK duplicates invalid paper create legit-
imate ballots by duplicating existing valid and invalid ballots respectively; in
this case the SBB will only accept one valid copy from the voter. The abstract
event invalidate ballots refers to the ballots that cannot be cast; here we refine it
by two events papers expired and spoil valid ballot where any ballots that expire
or get spoiled cannot be cast anymore. The abstract event cast ballot is refined
by cast paper where only valid papers can be cast. We also introduce eject paper
where only invalid, spoiled or illegitimate ballots are ejected out of the SBB.

Given the new variables paper voter and paper vote which are projection func-
tions on papers to represent the voter’s information and choices, the following
invariants should hold. Invariant no valid double voting vote ensures that if two
valid ballots exist for the same voter, then they are copies of each other. On the
other hand, no cast double voting vote ensures that once a valid ballot is cast,
the voter cannot have any other valid ballot papers. Invariants gluing ballots
and gluing cast are gluing invariants that relate the paper ballot with the logical
ballots and cast variables.2

2 where [] is a relational image and { | } is a set comprehension. A concise summary
of Event-B syntax is available at http://wiki.event-b.org/images/EventB-Summary.
pdf.

http://wiki.event-b.org/images/EventB-Summary.pdf
http://wiki.event-b.org/images/EventB-Summary.pdf

Verifying System-Level Security 41

@no valid double voting vote:
∀b1, b2 · b1∈ valid papers∧ b2∈ valid papers∧ paper voter(b1) = paper voter(

b2)
⇒ paper vote(b1) = paper vote(b2)

@no cast double voting vote:
∀b · b∈ cast papers⇒ paper voter(b) /∈ paper voter[valid papers]

@gluing−ballots:
ballots= {paper · paper∈ valid papers ∪ cast papers

| paper voter(paper) �→ paper vote(paper)}

@gluing−cast:
cast= {paper·paper∈ cast papers | paper voter(paper) �→ paper vote(paper)}

At this level, we focus at the main security properties of the SBB:

1. Accept all valid ballots.
2. Reject invalid ballots.

These two goals have different purposes, the first one is concerned with the
system availability, a key security property, where we need to make sure that
valid ballots are not blocked from being cast. On the other hand, the combination
of both goals will ensure the integrity of voting system. The second goal is
expressed in the invariant

ejected papers⊆ (spoiled papers ∪ invalid papers ∪ illegitimate papers)

to ensure that only rejected ballots (invalid or illegitimate) and the ballots the
user choose to spoil will be ejected out of the SBB. Refinement consistency POs
will ensure that this invariant holds across the different refinement levels.

The availability property can be captured by the guard of the relevant events.
In particular, we specify that cast paper is a rigid event and its parameter paper
is also rigid. Using the notation introduced in Sect. 4, the event cast paper has
the following form.

event [cast paper]
any [paper]where
@valid−paper: paper∈ valid papers
then

// actions for casting the ballot
...

end

The above event specifies that the cast paper event must be enabled for any valid
paper, i.e., satisfying the guard paper∈ valid papers.

42 D. Dghaym et al.

5.4 Second Refinement: Introducing Time and Availability of
Events

In this refinement, we introduce Time where each ballot has a timestamp defined
as paper time ∈ papers→TIME and current time demonstrates the progression of
time. A ballot can expire after a certain time if it is not cast or spoiled, thus
invalidating a legitimate ballot. Ballots issued in the future are also considered
invalid. We introduce the clock tick event to progress time which also refines
papers expired from Sect. 5.3.

By introducing time, now we have all the conditions to define a valid ballot
both in terms of duplication and expiry of time stamp. We therefore refine for
the guards of the events that depend on ballot validity, such as casting and
ejecting ballots. These guards will ensure that ballots have not been cast or
spoiled before, have not expired nor have they been issued by an illegitimate
source.

The cast paper event, introduced at the previous level, is a rigid event with
the rigid parameter paper. The refinement of the cast paper event is as follow.

event [cast paper] refines cast paper
any [paper]where
@typeof−paper: paper∈ papers
@not−already−expired: paper time(paper) ≥ current time− expiry duration
@copy−not−already−cast: paper voter(paper) /∈ paper voter[cast papers]
@copy−not−already−spoiled:
(∀sp · sp ∈ spoiled papers⇒

paper voter(paper) = paper voter(sp) ∨
paper vote(paper) = paper vote(sp) ∨
paper time(paper) = paper time(sp)

)
@not−illegitimate−paper: paper /∈ illegitimate papers
then

// cast the paper
...

end

This gives rise to the ENBL PO at this refinement. Because ENBL PO is
not yet supported by Rodin, we encode this ENBL PO as the following theorem
(accept−valid−paper) in our model.

theorem @accept−valid−paper: // Encoding of the ENBL PO for cast paper
event

∀paper · // Universally quantified over abstract rigid
variables

paper∈ valid papers // Guard of the abstract event
⇒
/∗ Guards of the concrete event ∗/
paper∈ papers∧
paper time(paper) ≥ current time− expiry duration∧

Verifying System-Level Security 43

paper voter(paper) /∈ paper voter[cast papers] ∧
(∀sp · sp ∈ spoiled papers⇒

paper voter(paper) = paper voter(sp) ∨
paper vote(paper) = paper vote(sp) ∨
paper time(paper) = paper time(sp)

) ∧
paper /∈ illegitimate papers

Notice that there are no non-rigid parameters for cast paper event, i.e., the right-
hand side of the implication is not existentially quantified. The same applies
to spoil valid paper because the voter should have the option to either cast or
spoil their valid ballot paper, so both events have the same guards or enabling
conditions and the theorem will apply to both events.

As mentioned earlier, if a ballot has been cast or spoiled before, it will be
considered invalid. However, there is a difference here between the two cases, a
voter with a spoiled ballot can be issued another paper if they present a physical
proof to the BMD of the spoiled ballot, whereas a voter with a cast ballot cannot.
Hence the difference between the guards for checking whether a paper has been
cast or spoiled. In the case of a spoiled ballot another ballot belonging to the
same voter can be considered valid if it at least has a different time stamp.
Using model checking it was possible to discover such difference and add this
assumption in the form of guard to BMD issues paper.

Further to the typing invariants related to the new timing vari-
ables, the following invariants describe the difference between valid and
invalid ballots in regards to time and double voting and can ensure
that theorem (accept−valid−paper) above is true. The last invariant
valid−and−spoiled−papers−disjoint was actually discovered by attempting to
prove that there is no valid ballot which is an exact copy of a spoiled ballot.
A voter with a spoiled ballot can get a new legitimate ballot, but the new ballot
will have at least a different time stamp (paper time).

// The valid ballot papers must not have the future time stamps.
@no−future−valid−papers:
∀b·b∈ valid papers⇒ paper time(b) ≤ current time

// The valid ballot papers must not expired
@no−expiry−valid−papers:
∀b·b∈ valid papers \ cast papers

⇒ current time− expiry duration≤ paper time(b)

// For two different valid ballot papers, if it is for the same voter then
// they must have the same time stamp, i.e., they are copies of each other.
@no valid double voting time:
∀b1, b2 ·
b1∈ valid papers∧ b2∈ valid papers

∧ b1 = b2∧ paper voter(b1) = paper voter(b2)
⇒ paper time(b1) = paper time(b2)

44 D. Dghaym et al.

// Any invalid paper will either be expired, or a copy has been cast or a
// copy has been spoiled.
@expired−or−cast−or−spoiled−copy−invalid papers:
∀paper · paper∈ invalid papers⇒
current time− expiry duration> paper time(paper)

∨ paper voter(paper) ∈ paper voter[cast papers]
∨ (∃sp · sp∈ spoiled papers

∧ paper voter(paper) = paper voter(sp)
∧ paper vote(paper) = paper vote(sp)
∧ paper time(paper) = paper time(sp)

)

@valid−and−spoiled−papers−disjoint:
∀vp, sp · vp ∈ valid papers∧ sp ∈ spoiled papers⇒

paper voter(vp) = paper voter(sp)
∨ paper vote(vp) = paper vote(sp)
∨ paper time(vp) = paper time(sp)

5.5 Third Refinement: Ballot Encryption

At this level we introduce encryption so tat the SBB will not be able to access
the voters information. Consequently, we apply data refinement to replace the
variables paper vote and paper voter with the encrypted ballot. The following
invariants describe ballot encryption and include gluing invariants to relate the
new variable paper encrypted ballot with the disappearing variables paper voter
and paper vote.

@typeof−paper encrypted ballot:
paper encrypted ballot ∈ papers→ CYPHER TEXT

@gluing−legitimate−papers:
∀paper·paper∈ legitimate papers

⇒ EncryptionAlgorithm(
paper voter(paper) �→ paper vote(paper) �→ EncryptionKey

) = paper encrypted ballot(paper)

@encrypted−ballot−disjoint−cast−valid:
∀p · p∈ legitimate papers

∧ paper encrypted ballot(p) /∈ paper encrypted ballot[cast papers]
∧ (∀sp · sp ∈ spoiled papers⇒

paper encrypted ballot(p) = paper encrypted ballot(sp)
∨ paper time(p) = paper time(sp))

∧ paper time(p) ≥ current time− expiry duration
⇒ paper voter(p) /∈ paper voter[cast papers]

Verifying System-Level Security 45

@gluing encryption voter:
∀ p1, p2· p1∈ legitimate papers∧ p2∈ legitimate papers

∧ paper encrypted ballot(p1) = paper encrypted ballot(p2)
⇒ paper voter(p1) = paper voter(p2)

@inv not already cast:
∀ p· p∈ valid papers

⇒ paper encrypted ballot(p) /∈ paper encrypted ballot [cast papers]

As the SBB cannot access the voter’s information on the ballot directly, the
guards for cast paper need to be refined. As a result, the ENBL PO needs to be
proved for the refinement. In particular, the part of the ENBL PO related to the
refinement is shown below.

theorem @accept−valid−paper:
∀paper · ... ∧

(∀sp · sp ∈ spoiled papers⇒
paper voter(paper) = paper voter(sp) ∨ paper vote(paper) = paper vote(

sp)
∨ paper time(paper) = paper time(sp)) ∧ ...

⇒ ... ∧
(∀sp · sp∈ spoiled papers⇒
paper encrypted ballot(paper) = paper encrypted ballot(sp)
∨ paper time(paper) = paper time(sp)) ∧ ...

Notice that this PO is discharged trivially due to the property of the encryption
function.

5.6 Fourth Refinement: Ballot Authentication

The purpose of ballot authentication is to protect against malicious intruder
behaviour, where an intruder tries to cast a ballot not issued by its only legiti-
mate source, BMD. These attacks are introduced earlier in Sect. 5.3 and specified
as the attacker events. We introduce MAC to check the legitimacy of the ballot.
Therefore, all the event guards checking for ballot legitimacy will be replaced by
an equality check of the MAC paper mac with the calculated MAC. The MAC
can be calculated using the MACAlgorithm which requires the secret MACKey.

@typeof−paper mac: paper mac ∈ papers→MAC

@mac−illegitimate papers: ∀paper · paper∈ illegitimate papers⇒
paper mac(paper) =MACAlgorithm(

paper time(paper) �→ paper encrypted ballot(paper) �→MACKey)

@mac−legitimate papers:
∀paper · paper∈ legitimate papers⇒

paper mac(paper) =MACAlgorithm(
paper time(paper) �→ paper encrypted ballot(paper) �→MACKey)

46 D. Dghaym et al.

The invariants mac−illegitimate papers and mac−legitimate papers define the
difference between legitimate and illegitimate ballots in relation to MAC. As a
consequence the cast papers guards are refined to check for MAC equality and
the ENBL PO is generated (similarly to the previous section).

In ATK creates paper, we assume the attacker does not know MACKey and
will create illegitimate paper ballots. However, if an attacker compromises key,
they will be able to generate ballots that are accepted by the SBB. It is therefore
crucial to ensure the secrecy of this key. This could be achieved, for example,
using secure hardware which can provide memory protection to the secret keys.

6 Debugging Models Using Model Checking

In this section, we discuss the use of model checking to help with debugging our
model. We first discuss the analysis of refinement consistency of the rigid events
in Sect. 6.1. Subsequently, we analyse the attack on the clocks of the BMD and
SBB in Sect. 6.2.

6.1 Consistency of the Refinement of the Rigid Events

As presented in the previous section, the consistency of the refinement of the rigid
event cast paper is captured as the theorem accept−valid−paper. The theorem
states that a valid paper will be the one that is not yet expired, the voter on
the ballot has not yet voted, and a copy of the paper has not yet been spoiled.
In our initial model the theorem could not be discharged automatically. ProB
Model checker shows a trace that can violate the theorem as follows.

INITIALISATION
BMD issues paper(PAPER1,VOTER1,VOTE7)
spoil valid paper(PAPER1)
BMD issues paper(PAPER2,VOTER1,VOTE7)

The trace shows a scenario where a VOTER1 got a ballot PAPER1 with VOTE7
from the BMD, subsequently spoils the paper, and get another ballot PAPER2
with the same choice VOTE7. At this point, since PAPER2 is a valid paper, but
it has the same information as the spoiled paper PAPER1 (including the time
stamp), PAPER2 cannot be cast. An important assumption that is missing from
our model is that the papers PAPER1 and PAPER2 must have a different time
stamps. As a result, we strengthen the guard of BMD issue paper to add the
assumption

@no−clash−spoiled−papers:
∀sp · sp ∈ spoiled papers⇒

voter = paper voter(sp) ∨ vote = paper vote(sp) ∨ current time =
paper time(sp)

Furthermore, we add an invariant to state the relationship between valid papers
and spoiled papers.

Verifying System-Level Security 47

@valid−and−spoiled−papers−disjoint:
∀vp, sp · vp ∈ valid papers∧ sp ∈ spoiled papers⇒

paper voter(vp) = paper voter(sp) ∨ paper vote(vp) = paper vote(sp)
∨ paper time(vp) = paper time(sp)

Given the above invariant, the theorem for proving the consistency of the refine-
ment of the rigid event is proved automatically.

6.2 Attacks on the Clocks

In Sect. 5.4, we use one global clock and consider that both the SBB and BMD
are always synchronised with current time. However, this might not be the case
and there can be some attacks on the clocks that can lead to accepting invalid
paper ballots or rejecting valid paper ballots.

To model such attacks, in addition to current time in Sect. 5.4, we introduce
two clock variables BMD time and SBB time that are synchronised with the
global clock current time. All the invariants related to time will remain the same
based on current time, while the BMD events such as BMD issues paper will use
the BMD time. Similarly, the SBB events, cast paper and eject paper, will use the
SBB time. Therefore, to prove the invariants related to paper time, both clocks
should be equal to current time. The equality invariants cannot be proved, if we
introduce attacker events that can advance or delay the SBB and BMD clocks.

We use the ProB model checker to show how the clock attacks can inval-
idate the two main requirements of the case study. To help ProB automati-
cally generate a counter example: We restrict ProB to one refinement level.
We remove the invariants related to equality of time and relating the validity
of ballots and time. Then, we copy over the ejected papers type invariant that
ensure that only invalid, illegitimate or spoiled ballots are ejected from previous
refinement level. The model checker generates the following counter example:
〈attacker advance bmd clock(3), BMD issues paper(PAPER1, VOTER3, VOTE1),
eject paper(PAPER1)〉

This trace will violate the ejected papers type invariant copied from the
first refinement, because PAPER1∈ valid papers. Therefore, using ProB, we have
shown how an attack on the BMD clock can lead to rejecting a valid ballot that
has not been spoiled. Other clock attacks can be demonstrated in a similar way.

7 Related Work

In this paper we have modelled a smart ballot box of a secure voting system. We
use Event-B to analyse the system level security focusing on the refinement of
the availability property, whereas most security verification tools such as [10,11]
consider the verification of security protocols.

In [6], the authors also use a correct-by-construction approach using Event-B
to model a secure e-voting system. The authors focus on the recording and the
tallying phases to ensure the verifiability of the system using a decomposition
pattern and a contextualisation technique. Our case study focuses on the smart

48 D. Dghaym et al.

ballot box which only allows the casting of valid encrypted ballots. The encrypted
ballots in the SBB can in turn be used for rapid digital tabulation (tallying) and
to provide an evidence-based auditing for the tabulation process. In this model
we do not handle tabulation, but we are considering the extension of our models
to include tabulation as a future work. Similarly, in [4], the authors focus on the
verifiability of a peered web bulletin board for publishing the evidence of voting
and tallying using Event-B.

In order to prove the availability of casting ballots through refinement, we
prove the enabledness preservation of the events. In [12], the authors use enabled-
ness preservation in conjunction with non-divergence to prove the liveness of an
Event-B model. In their case enabledeness preservation can have two notions,
in the weakest notion, the enabledness preservation states if one of the events
in the abstraction is enabled then one or more events in the refinement are also
enabled. While, the strongest notion states if an abstract event is enabled then
either the refining event is enabled or one of the new events are enabled. Even
their strongest notion of enabledness preservation is still weaker than our defi-
nition of enabledness preservation which requires proving the non-strengthening
of the guards of the rigid event. In [7], the authors use enabledness proofs to
ensure the “refinement equivalence” of external events in the shared-variable
decomposition of Event-B models. However, their proposed POs are similar to
the standard Event-B POs. The idea of enabledness preservation has also been
considered in the formal method ASM [3], in the concepts of ground model and
refinements where the abstract and concrete guards are equivalent.

8 Conclusions and Future Work

In this paper, we have shown how the availability property of an event can be
ensured through refinement by preserving the enabledness of its corresponding
refined events. Such property relates to the parameter type where some parame-
ters are considered rigid and should be preserved through refinement. We provide
a general PO (ENBL) that can be applied to any event with rigid parameters.
We apply ENBL PO by defining a theorem to ensure the availability of casting
valid ballots.

In the future, we will focus on the semantics model to justify the soundness
of the rigid property of events, we can possibly explore failure semantics. We will
also look at how introducing new events in refinement can affect the ENBL PO.
Finally, we plan to provide tool support for the enabledness preservation PO
in Rodin. This can be done by extending the CamilleX [8] textual framework.
In the CamilleX textual editor, the modeller will identify the rigid parameters
of the event, and the enabledness preservation theorems will be automatically
added to the Event-B generated machine.

Acknowledgement. This work is supported by the HD-Sec project, which was funded
by the Digital Security by Design (DSbD) Programme delivered by UKRI to support
the DSbD ecosystem.

Verifying System-Level Security 49

We would like to thank Joseph Kiniry and Daniel Zimmerman from Galois for
providing details of and insights into the case study.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010). https://doi.org/10.1007/s10009-010-0145-y

3. Börger, E.: The ASM ground model method as a foundation of requirements engi-
neering. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol.
2772, pp. 145–160. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39910-0 6

4. Culnane, C., Schneider, S.: A peered bulletin board for robust use in verifiable
voting systems. In: 2014 IEEE 27th Computer Security Foundations Symposium
(CSF), Los Alamitos, CA, USA, pp. 169–183. IEEE Computer Society (2014)

5. Galois and Free & Fair: The BESSPIN Voting System, May 2019. https://
github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019. Accessed 02
Feb 2021

6. Gibson, J.P., Kherroubi, S., Méry, D.: Applying a dependency mechanism for vot-
ing protocol models using Event-B. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017.
LNCS, vol. 10321, pp. 124–138. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60225-7 9

7. Hallerstede, S., Hoang, T.S.: Refinement of decomposed models by interface instan-
tiation. Sci. Comput. Program. 94, 144–163 (2014)

8. Hoang, T. S., Dghaym, D.: Event-B and Rodin Wiki: CamilleX (2018). http://
wiki.event-b.org/index.php/CamilleX. Accessed Feb 2021

9. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

10. Lowe, G.: Casper: a compiler for the analysis of security protocols. In: Proceedings
10th Computer Security Foundations Workshop, pp. 18–30 (1997)

11. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: 2012 IEEE 25th Computer
Security Foundations Symposium, pp. 78–94 (2012)

12. Yadav, D., Butler, M.: Verification of liveness properties in distributed systems. In:
Ranka, S., et al. (eds.) IC3 2009. CCIS, vol. 40, pp. 625–636. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03547-0 59

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/978-3-540-39910-0_6
https://doi.org/10.1007/978-3-540-39910-0_6
https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
https://github.com/GaloisInc/BESSPIN-Voting-System-Demonstrator-2019
https://doi.org/10.1007/978-3-319-60225-7_9
https://doi.org/10.1007/978-3-319-60225-7_9
http://wiki.event-b.org/index.php/CamilleX
http://wiki.event-b.org/index.php/CamilleX
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-642-03547-0_59

Proving the Safety of a Sliding Window
Protocol with Event-B

Sophie Coudert(B)

LTCI, Télécom Paris, Paris, France
sophie.coudert@telecom-paris.fr

Abstract. This paper presents an Event-B modeling of the general ver-
sion of the Sliding Window Protocol (SWP). SWPs ensure reliable data
transfer over unreliable media by routing frames together with their
indexes. Providing SWPs with formal guarantees is recognized to be quite
complex. The experiment we present here shows that Event-B refinement
is a suitable approach to ensure the safety of the protocol. First a sim-
ple model is developed with unbounded frame indexes. Then bounded
indexes and modular arithmetic are introduced, as concrete indexes have
fixed size. At this “hybrid” level, unbounded indexes are not used any
more in computations but they are still useful to express some proper-
ties. Finally, abstract general media are refined towards queues, as an
example of implementation. All unbounded indexes fully disappear in
the final model.

Keywords: Event-B · Sliding Window Protocol · Formal refinement ·
Safety

1 Introduction

This paper experiments the use of the Event-B approach [1] to ensure the safety
of a Sliding Window Protocol (SWP). SWPs are a well-known family of com-
munication protocols that ensure a reliable communication from a sender to a
recipient over unreliable media [2,3]. They are widely used and in particular in
TCP (Transmission Control Protocol) and HDLC (High-Level Data Link Con-
trol). Unreliable media may loss, re-order or duplicate messages. SWPs overcome
this problem by implementing an acknowledgment medium in addition to the
frame medium, and by transporting frames together with their index, which
allows re-ordering at receiver side. Moreover, to offer high latency, they imple-
ment windows at both sides of communication. It allows to avoid waiting for
the acknowledgment of a frame before sending the next one. There are several
versions of the protocol, depending on the window sizes. We modeled the most
general version, as the sending and receiving window sizes are parameters of our
specification.

Despite the relative simplicity of the protocol, it is widely recognized that
ensuring its correctness is far from obvious, because of strong parallelism and
c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 50–65, 2021.
https://doi.org/10.1007/978-3-030-77543-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-77543-8_4

Proving the Safety of a Sliding Window Protocol with Event-B 51

subtle interactions between components. Many previous research propose formal
and non-formal modeling and proofs for SWPs. They rely on various techniques
such as model checking [4–6] or deductive proof [7–9]. The proposed solutions
are generally complex or limited in scope, and no ideal approach emerges. Here
we experiment the use of Event-B. Using Event-B, systems are described by
way of guarded events. Properties about described state machines are ensured
by interactive proofs of generated proof obligations. The main feature of Event-
B is stepwise refinement, which mathematically links abstract models to more
detailed ones. It makes it possible to prove properties at abstract level (thus sim-
ple). Proved refinement then ensures that these properties hold at more concrete
levels. Event-B is generally dedicated to system design and some previous works
propose general approaches using it for developing distributed systems [10,11].
Here we explore the use of Event-B more as a proving technique for a well-known
quite difficult problem, as the refinement process is developed a posteriori and
guided by proving objectives.

As often in Event-B, we ensure safety but do not consider fairness assump-
tions nor liveness properties. Our approach can be summarized as follows. We
model the safety property which says that frames are delivered in the order they
have been sent. We refine it to a model of the protocol where frame indexes are
unbounded values. We then introduce bounded indexes, as concrete implemen-
tations use fixed-size for them. This leads to a hybrid model where both kind of
indexes co-exist. Bounded ones are used in all algorithmic aspects. Unbounded
ones are still useful to express some conditions that avoid ambiguities (as a
bounded index may correspond to several unbounded ones). At this level, media
may still re-order frames. Finally, as an example, we refine media to lossy queues.
Respecting some constraints on parameters, queues ensure non-ambiguity and
allow to fully eliminate unbounded indexes. The provided models could be then
refined towards more concrete implementations.

The paper is organized as follows. Section 2 briefly presents Event-B. Section
3 presents the modeled protocol, the safety property and its refinement to the
model with unbounded indexes. Section 4 presents the introduction of modular
arithmetic and the refinement of media towards queues with bounded indexes.
Section 5 presents related works before concluding.

2 Event-B in Brief

Using the formal method Event-B [1,12], systems are described as machines
including events modifying a state characterized by variables. Each event has
a guard expressing the conditions in which it may occur, and a substitution
describing how it modifies the state. Initialization is a particular event without
guard. Events may be non-deterministic: for example, after substitution “x:∈
{1, 2}”, x’s value may be 1 or 2. Then, machines characterize systems in a discrete
way, by all their possible behaviours, i.e. allowed sequences of events beginning
with initialization. Invariants are properties that must hold in any state. Tools
generate proof obligations that ensure invariants. Intuitively, one must prove

52 S. Coudert

that initialization establishes the invariants and that any other event preserves
them. The logic used for formulas is first-order logic enriched with elementary
set theory.

Beyond invariants the main strength of the method is proved refinement
which mathematically links abstract and detailed models and guarantees that
behaviour and results of abstract level are respected at concrete level. More pre-
cisely, a refinement is a new machine which provides a more detailed description
of the system. It includes a “gluing” invariant which links the abstract and con-
crete states. It refines abstract events w.r.t. the new state representation. It may
also add new events which implicitly refine a “skip” at abstract level. Then each
concrete event has a corresponding one in the abstract machine, which links
concrete behaviours with abstract ones. Tools generate proof obligations that
guarantee the correctness of the refinement. Roughly speaking, a refinement is
correct if any low level behaviour corresponds to a high-level one. It both ensures
that low level behaviour respect abstract one and that high level invariants are
preserved, as no new behaviour appears. Intuitively, the main constraints that a
refinement must respect are the following ones.

– New events cannot modify abstract state. They only detail steps on new
variables that appear in the refinement.

– Refined events have stronger guards than their associated abstract event. So
they can’t occur when abstract event can’t.

– Refined events can only increase determinism: they modify the state in a way
that was allowed by the abstract event. “x:∈ {1, 2}” may become “x:= 2”

In short, removing new events and variables from concrete behaviours must
lead to possible abstract behaviours. For example, new events may detail steps of
a calculus presented as atomic at abstract level. New variables may receive inter-
mediate results that do not exist at abstract level. Event-B has two associated
tools Rodin and atelier-B. The work we present used Rodin [12].

3 Modeling the Protocol with Unbounded Indexes

The model1 includes 13 machines implementing 12 refinement steps. Thus, only
an excerpt is presented here. The first machine describes the “user view” of a safe
communication. The second one introduces the windows. The third one intro-
duces the communication media. Then a technical step prepare the introduction
of bounded indexes. All these steps are simple and provide a safe model of the
SWP considering unbounded indexes and an abstract description of media.

3.1 The Sliding Window Protocol

We modeled the most usual general version of the sliding window protocol, with
a frame medium from transmitter to receiver, and an acknowledgment medium
from receiver to transmitter. Both media are unreliable.
1 https://perso.telecom-paristech.fr/coudert/downloads/SWProdin3 5v1.zip.

https://perso.telecom-paristech.fr/coudert/downloads/SWProdin3_5v1.zip

Proving the Safety of a Sliding Window Protocol with Event-B 53

The transmitter has a window of size wt with lower bound tw. It can transmit
all frames with index in interval tw . . . tw+wt−1 before receiving an acknowledg-
ment for frame index tw. Acknowledgment are cumulative: receiving acknowl-
edgment i at the transmitter side ensures that all frames with index i′ < i have
been delivered at the receiver side. Thus, each time the transmitter receive an
acknowledgment i that is greater than tw, it updates this lower bound (tw := i)
and the window slides. To avoid waiting indefinitely for an acknowledgment, the
transmitter implements timeouts. Relying on these timeouts, frames in the win-
dow may be retransmitted. Thus they are memorized. The precise mechanism of
timeouts depends on implementation. Our model relies on the general possibility
of retransmission, which is sufficient to ensure safety.

The receiver may accept frames in the wrong order. Thus it also implements
a window, with lower bound rw and size wr. rw is the index of the lowest frame
not yet accepted. Each time a frame arrives the receiver computes the new value
for rw and sends an acknowledgment with this value. If the frame is outside the
window, it is discarded. Otherwise it is put in the window. rw is updated when
the frame index is rw + 1. When this happens, all the frames between the old
and the new value of rw have been accepted and correctly ordered. They are
removed from the window and put in a FIFO buffer which contains the frames
that can be delivered to the recipient, in the correct order.

For historical reasons, this version differs slightly from the standard one: the
receiver FIFO is not required by the protocol definition. This difference is not
a simplification. Considering the abstraction of our intermediate hybrid model,
media can duplicate, lose and re-order messages. The refinement towards queues
only considers losses. Implementation of media must avoid ambiguity. Indeed,
bounded indexes have several associated unbounded ones. When using queues
non-ambiguity is ensured provided that wt + wr ≤ m, where m is the modulus.
This is proved in our modeling. When media re-order frames, mechanisms based
on frame lifetime are used. These mechanisms are various and often complex
(in particular for TCP). Moreover, handling time with Event-B is not so simple
[13,14]. Thus we delay this aspect to future works.

3.2 Safety Property: Behaviour of Reliable Communication

The expected behaviour is the following one: any transmitted frame is received
once and the order is respected. In other words, the sequence R of received frames
is a prefix of the sequence T of transmitted frames (in Fig. 1).

Fig. 1. Communication scheme

Our most abstract Event-B machine simply describes this. Frames belong to
an abstract set Fr. Variable t is the unbounded index of the next frame to send.

54 S. Coudert

Variable r is the unbounded index of the next frame to receive. Sequences are
modeled by total functions in a usual way and the property is a simple inclusion.
The corresponding invariants are:
T ∈ 0 .. t − 1 → Fr and R ∈ 0 .. r − 1 → Fr and R ⊆ T

Initial sequences are empty and initial indexes are null. To obtain a model repre-
senting the expected transmission behaviour, we define two events which trivially
preserve invariants:
− event transmit =̂ any f where f ∈ Fr

then T := T ∪ {t �→ f} || t := t + 1
− event receive =̂ when t > r then R(r) := T (r) || r := r + 1

A received data must have been sent (t > r), and it is the good one (T (r)).

3.3 Introducing Windows and Receive Buffer

The first refinement step introduces the windows. Constants wt and wr are
respectively the (strictly positive) sizes of the transmitting and receiving win-
dows. Variables tw and rw are their lower bounds. Figure 2 illustrates the state
and events of this refinement. In formulas, variable i is reserved for unbounded
indexes and variable f is reserved for frames.

Fig. 2. First refinement

A window constraint t < tw + wt is added to the guard of the transmit event.
− event transmit =̂ any f where f ∈ Fr ∧ t < tw + wt then . . .

New event “ack” models the delivering of an acknowledgment inside the
transmitter window, which makes this window slide: tw becomes x on the
left side of Fig. 2. The acknowledgment must have been sent (i ≤ rw).

− event ack =̂ any i where tw < i ≤ rw then tw := i

A receiving buffer RB is introduced (right side of Fig. 2). It contains the frames
in the receiving window (in rw..rw + wr − 1), and those that have no yet been
delivered to the recipient (in r..rw − 1). RB ⊆ T and r..rw − 1 ⊆ dom(RB) are

Proving the Safety of a Sliding Window Protocol with Event-B 55

invariants. The event receive now transfers frames at index r from RB to2 R.
− event receive =̂ when r ∈ dom(RB)

then R := R ∪ ({r}�RB) || RB := {r}�−RB || r := r+1

The new event “accept” fills RB by accepting frames in the receiving window.
The lower bound rw of this window is the first “not yet accepted” frame (thus
rw /∈ dom(RB)). This bound may change: in Fig. 2, rw becomes y for the lower
“accept” arrow.

− event accept =̂ any i where i ∈ (rw .. (rw + wr − 1)). . .
then RB := RB ∪ ({i} � T) || rw := new rw

new rw is max({i′|i′ ∈ rw .. rw + wr ∧ rw .. i′ − 1 ⊆ dom(RB) ∪ {i}})

Many proofs in this refinement are either automatic or easy. The more com-
plex aspect is the set theoretic definition of new rw above, which also makes
some proofs in next refinements tedious. At this level, communication media are
fully abstracted. Only guards of events characterize the messages that may be
delivered. For example, only acknowledgment of accepted message may occur,
although their sending is not modeled. The next refinement provides an explicit
modeling of the media.

3.4 Introducing Communication Media

The second refinement introduces the two media: TM , which routes data
from transmitter to receiver, and RM , which routes acknowledgments from
receiver to transmitter. It is summarized in Fig. 3. Both media are approx-
imation of multisets by sets. Intuitively, msg ∈ TM means that there is
at least one occurrence of message msg in the frame medium. In the real
world, there may be multiple occurrences when the transmitter retransmits a
message and also when the network duplicates messages. Sets may represent
unordered transmissions but also ordered ones, which are just a special case.
− TM contains transmitted frames with their unbounded indexes.

Thus TM ⊆ T is an invariant.
− RM contains acknowledgments that have been sent.

Thus RM ⊆ 0..rw is an invariant.
The event receive is unchanged. Other refined events put messages in media and
get messages from media. Delivered messages may be removed from media or
not (because multiple occurrences are possible).

− transmit event: substitution TM := TM ∪ {t �→ f} is added.
− accept event: substitutions RM := RM ∪ {new rw} and
TM :∈ {TM,TM \ {i �→ f}} are added.
any i d where . . . i �→ f ∈ TM then . . .RB := RB ∪ {i �→ f}
replaces any i where . . . i < t then . . .RB := RB ∪ ({i} � T).

− ack event: the guard i ≤ rw becomes i ∈ RM .

2 S � F restricts the domain of function F to S. S �− F restricts it to dom(F)\S.

56 S. Coudert

Fig. 3. Second refinement

Five new events appear, which modify media but not the abstract state of
previous level. Then the inventory of events defined by the protocol is complete.
Events tlose and rlose model media behaviour: they can lose or duplicate mes-
sages. With set approximation, only losses may modify state representation.

− event tlose =̂ any TM ′ where TM ′ ⊆ TM then TM := TM ′

− event rlose =̂ any RM ′ where RM ′ ⊆ RM then RM := RM ′

event retransmit models retransmission which can occur after timeout: a frame
in transmitter window is put in TM . event reaccept models the delivery of a
frame that is not in receiving window3: acknowledgment rw is put in RM and
the frame may be removed from TM . Reminder that rw is the lower bound of the
receiver window and not the index of the received frame. event reack models
the delivery of an old acknowledgment (iack ≤ tw). This acknowledgment may
be removed from RM .

All the proofs of this refinement step are either automatic or very simple.
The result is an abstract but fairly complete modeling of the sliding window
protocol with a proof of its safety. Many usefull invariants have been proved
(not enumerated here) such as for example tw ≤ rw, tw ≥ rw − wt,. . . Notice
that the sending window has not been modeled by an explicit buffer, as it is
not a significant step at this level. Sent frames in this window are simply a
sub-sequence of T . Further refinement could concern the media and would be
different, depending on medium choices.

In our approach, we first focus on the introduction of modular arithmetic,
keeping the generality of media description. The next refinement only makes a
little technical change to prepare this. Bounded values will appear for indexes,
in particular in the receiver window. The unbounded size of buffer RB is then
a problem. The third refinement step splits RB into two parts: the receiver
window RW and the receiver queue RQ. RW contains frames in rw .. rw +
wr − 1, whose size is bounded by wr. RQ contains all frames with indexes
in r .. rw − 1 and is not bounded. Formally, we have RW = r .. rw − 1 �− RB

and RQ = r .. rw − 1 � RB as gluing invariants. Event descriptions are slightly
modified to accommodate this change. For example, the substitution of event

3 Notice that frame outside the receiver window may be too old or too recent ones.

Proving the Safety of a Sliding Window Protocol with Event-B 57

accept contains RQ := RQ ∪ (rw .. new rw − 1 � (RW ∪ {id �→ f})). Most
manual proofs concern the accept event, and are simple.

4 Modeling the Protocol with Bounded Indexes

A first big stage leads to an hybrid model in which all computations are based
on bounded indexes, but unbounded indexes are still used to express some con-
straints. It is the most consistent part of the work and is decomposed in three
refinement steps. This intermediate model can be refined toward different kind of
media. The last stage refines it towards lossy queues, making unbounded indexes
disappear. It is decomposed in 6 refinement steps. Three of these steps are a bit
tedious as handling queues is not trivial. The three other ones, which eliminate
intermediate structures, are simple.

4.1 A Small Library for Modular Arithmetic

As the build-in modulo operator of Rodin didn’t meet our needs, we defined
our own modulo based on the euclidian division. The result is a fully proved
collection of definitions and theorems in context machines. Most theorems are
intermediate steps to finally prove well-known properties on modulo, such as
congruences for example. We just show a glimpse of them here. The base of our
definition is the following one, for a modulus m ≥ 1:

– eDR(m) = {x �→ (d �→ r)|r ∈ 0 .. m − 1 ∧ x = d ∗ m + r}
– eDR(m)(x) = ediv(m)(x) �→ emod(m)(x)

We proved that eDM(m) is a total function. Thus emod and ediv are well-
defined. Notice that the euclidian division is not the build-in one: −5/2 = −2
but ediv(−5)(2) = −3. We proved theorems as for example:

– ∀m,x·m ≥ 1 ⇒ x = (ediv(m)(x)) ∗ m + emod(m)(x)
– ∀m,x·m ≥ 1 ⇒ emod(m)(emod(m)(x)) = emod(m)(x)
– ∀m, · · · emod(m)(x1) = emod(m)(y1) ∧ emod(m)(x2) = emod(m)(y2)

⇒ emod(m)(x1 + x2) = emod(m)(y1 + y2)
This general library is used to prove some more high level properties required by
our refinement, presented in next sections. Using universally quantified theorems
in proofs is a bit tedious as it requires manual instantiation and it strongly
compromises automation. Inference rules would have been more convenient4.

4 We are currently transposing them in the new release of the Rodin theory plugin.

58 S. Coudert

Fig. 4. Hybrid structures

4.2 Introducing Bounded Values in the Model

In concrete systems, the indexes of frame are stored with a fixed size s. Thus
bounded values “modulo m” are used, where the modulus m is usually 2s.
In other words, emod(m)(i) replaces i. We do not directly replace unbounded
indexes but we first make both information exist simultaneously in “hybrid”
structures. It allows to express properties that are useful for the proofs. A com-
plete refinement makes unbounded indexes disappear, as they are absent from
real implementations. This is the purpose of Sect. 4.3, where media are refined.
Here, they occur in properties required to avoid ambiguity when delivering mes-
sages. The way these properties are ensured depends on media choices and cannot
be modeled at this abstraction level. Thus unbounded indexes do not disappear
but we ensure that they are no longer used for any computation purpose. Intro-
ducing modular arithmetic was rather complicated. We give an insight of the
most relevant aspects of the process. In the model, the modulus m is a constant.
In formulas, z is reserved for bounded indexes.

As shown on Fig. 4, a hybrid structure Sx is introduced for each abstract
structure S in {TM,RM,RW}. Hybrid structures just add bounded indexes
and are all linked to abstract structures by similar gluing invariants. For
example, TM contains tuples i �→ f , which becomes i �→ (emod(m)(i) �→
f) in TMx. An explicit transmitter window TWx appear and is linked to
T . The model contains among others the following invariants or theorems.
TMx ⊆ 0 .. t − 1 × (0 .. m − 1 × Fr)
∀i, z, f ·i �→ (z �→ f) ∈ TMx ⇒ z = emod(m)(i)
TM = {i �→ f |∃z ·i �→ (z �→ f) ∈ TMx}
. . .
∀i, z, f ·i �→ (z �→ f) ∈ TWx ⇒ i �→ f ∈ T

New variables tz, rwz and twz are added, respectively containing bounded values
of t, rw and tw. Events are enriched to handle the new variables while preserv-
ing gluing invariants. During the process, all unbounded variables progressively
disappear from the computation of bounded values. For example in the following
excerpt, only computations of unbounded data rely on unbounded variable t.

Proving the Safety of a Sliding Window Protocol with Event-B 59

Fig. 5. Safe area w.r.t ambiguity

invariants tz = emod(m)(t)
− event transmit =̂ . . . then . . . t := t + 1

|| tz := emod(m)(tz + 1)
|| TMx := TMx ∪ {t �→ (tz �→ f)}. . .

This refinement required lots of manual proofs, in particular when using theo-
rems of Sect. 4.1. But few proofs were actually difficult. The most tedious was to
refine the computation of the new lower bound of the receiver window (in event
accept, new rw = max(complexexpressionusingrw)), which required several
intermediate steps.

The most sensible point was to avoid ambiguity when accepting a frame (or
an acknowledgement). The guard “any i where i �→ f ∈ TM ∧ i ∈ rw..rw+wr−1”
becomes5 “any i z where i �→ (z �→ f) ∈ TMx ∧ z ∈ emod(m)[rw..rw+wr−1]”. If
TMx also contains i′ �→ (z �→ f ′) with i′ �= i, there is a risk of confusion between
f and f ′. Safety is lost. Event “accept” must not occur in such a situation. Figure
5 illustrates the constraint that must be respected by unbounded indexes, w.r.t
a receiving window.

Indexes in grey intervals have the same associated bounded value as indexes
in the window and must be thus excluded. Area between grey intervals is safe.
This has been formally proved in a high level theorem of our context machines
for modular arithmetic. Ideally, the following constraint should be an invariant
of the specification:

∀i, z, f ·i �→ (z �→ f) ∈ TMx ⇒ i ∈ rw − m + wr .. rw + m − 1 (1)

But the mechanisms that ensure it depend on the kind of medium. When frame
lifetimes are used, all frame in the frame medium have different unbounded
indexes. It is not necessary the case when queues are used, thanks to the pre-
served order. The hybrid model covers both kind of medium. Thus the mech-
anisms ensuring (1) are not modeled. Invariant (1) will only be provable in
further refinements. Here, (1) is added to the guard of the event “accept”. We
can then prove that the relation i = rw+ emod(m)(z− rwz) holds for any tuple
i �→ (z �→ f) either being accepted or already in the receiving window. Thus any
ambiguity at the receiver side is excluded. We follow a similar approach at the
transmitter side.

5 emod(m)[rw..rw+wr−1] becomes emod(m)[rwz ..rwz+wr−1] later in refinement.

60 S. Coudert

The result of this refinement process is a model where all algorithmic aspects
of the sliding window protocol are defined using only bounded values. We begin
to make unbounded indexes disappear from the receiver side. For this, the
receiver queue RQ (in r .. rw − 1 → Fr) evolves towards a “normalized” queue
RQq with RQq ∈ 0 .. card(RQq) − 1 → Fr. We also replace r with card(R),
which is mostly symbolic. Unbounded indexes could also be removed from the
transmitter and receiver windows but it would compromise further refinement
as some useful properties using them would disappear. Thus this operation is
delayed.

The only remaining role for unbounded indexes is to exclude ambiguity in
the guards of the accept and the ack events. They will be removed from the
guards later when becoming invariants of the whole model. Indeed, in order to
have a working protocol, these properties should hold anytime. Media must be
refined before completely eliminating unbounded value from the specification.
When media don’t preserve the order of messages, message lifetimes are used.
When media preserve order it suffice to have m ≥ rw+ tw. This is proved in the
next section which presents the refinement of both media towards queues.

4.3 Refining Media Towards Lossy Queues

Abstract media are refined towards queues in a process with multiple steps, which
can be summarized in four big stages. The first stage introduces hybrid queues
(TMxq,RMxq) and proves that they refine abstract media (TMx,RMx). The
second stage does not modify anything but proves that non-ambiguity properties
are invariants. Thus these properties are removed from the guards of events, and
specification of events do not need unbounded indexes any more. The third
stage introduces final structures (TMzq,RMzq,TWz, RWz), i.e. representations
of structures with only bounded values. The last stage removes all intermediate
structures, i.e. all representations with unbounded values.

The following lines are a glimpse of the first stage, at the receiver side. Intu-
itively, the last line is TMxq := tail(TMxq).

invariants TMxq ∈ 0 .. card (TMxq) − 1 → Z × (Z × Fr)
TMx = ran (TMxq) . . .

event accept =̂ any i z f . . .
where 0 �→ (i �→ (z �→ f)) ∈ TMxq

z ∈ emod(m)[rwz .. rwz + wr − 1] . . .
then . . . TMxq := {j ·j ≥ 0 ∧ j + 1 ∈ dom (TMxq)|j �→ TMxq(j + 1)}

The following lines are a glimpse of the third stage. The witness ”with 0 �→ (i �→
(z �→ f)) ∈ TMxq” removes the unbounded index i from the list of parameters.
It automatically disappears in the next refinement step.

Proving the Safety of a Sliding Window Protocol with Event-B 61

Fig. 6. Final model

invariants TMzq = {j, z, f ·∃i·j �→ (i �→ (z �→ f)) ∈ TMxq|j �→ (z �→ f)} . . .
event accept =̂ any z f . . .

where 0 �→ (z �→ f) ∈ TMzq . . .
with 0 �→ (i �→ (z �→ f)) ∈ TMxq then . . .

Stages one and three are a bit tedious as handling queues in proofs is not automa-
tized, but they are essentially technical and not hard. Stage four is also technical.
It eliminates abstract variables in a usual way and is simple. The most significant
stage is the second one which proves the properties that make the protocol safe,
provided that m ≥ wt+wr. Here is the full list of intermediate results (invariants
or theorems) which have been proved to establish the property required by the
receiver side. Theorem of line 5 is the formula (1) p. 10.
1− ∀ . . . j �→ (i �→ f) ∈ TMxq ⇒ i < t (theorem)

2− ∀ . . . j1 �→ (i1 �→ f1) ∈ TMxq ∧ j2 �→ (i2 �→ f2) ∈ TMxq ∧
j2 > j1 ⇒ i2 > i1 − wt

3− ∀ . . . i1 �→ zf ∈ RWx ∧ j �→ (i2 �→ f) ∈ TMxq ⇒ i2 > i1 − wt
4− ∀ . . . j �→ (i �→ f) ∈ TMxq ⇒ i ≥ rw − wt
5− (∀ . . . i �→ (z �→ f) ∈ TMx ⇒ i ∈ rw − m + wr .. rw + m − 1) (theorem)

More intuitively, proving line 5 this way consist in

– proving that i ≤ rw + m − 1, i.e. i ≤ rw + wt + wr − 1 (as m ≥ wt + wr).
Line 1 ensure that frames in medium have been sent, thus i < tw + wt;
as wr ≥ 1 (axiom) and tw ≤ rw (high level invariant), tw ≤ rw + wr − 1
holds, thus tw + wt ≤ rw + wt + wr − 1 holds.

– proving that i ≥ rw−m+wr, i.e. i ≥ rw−wt (as m ≥ wt+wr). Line 2 is the
key point, relying on order. It ensures that if i2 is after i1 in the queue, then
i2 is not older than i1 − wt. Then (line 3), as soon as i1 has been accepted,
no frame in the queue is older than i1 −wt. Thus line 4 holds (as rw − 1 has
been accepted) which directly implies the required property.

So refining media towards queues is not difficult. The final model is quite
simple (3 pages, with comments). Its state is summarized on Fig. 6. As an
illustration, here is the complete specification of events ack6 and tlose. Notice
that now, tlose removes one element from the queue, at any place.

6 Reminder: acknowledgments outside the window are handled by event reack.

62 S. Coudert

event ack =̂ refines ack
when RMzq �= ∅

RMzq(0) ∈ (emod(m))[twz + 1 .. twz + wt]
then twz := RMzq(0)

TWz := emod(m)[twz .. twz+emod(m)(RMzq(0)− (twz+1))]�−TWz
RMzq := {j ·j ≥ 0 ∧ j + 1 ∈ dom(RMzq)|j �→ RMzq(j + 1)}

event tlose =̂ refines tlose
any k where k ∈ dom(TMzq) then TMzq :=
(0 .. k − 1 � TMzq) ∪ {j ·j ≥ k ∧ j + 1 ∈ dom(TMzq)|j �→ TMzq(j + 1)}

Further refinement should introduce concrete computations for modular arith-
metic. It would involve implementation dependent choices (in particular w.r.t.
hardware/software choices). Here we stay at an abstraction level where their
characterization is set theoretic.

5 Related Work

Numerous previous works address the verification of SWPs, so we only mention
some of them. We didn’t find recent significant contribution. An interesting
history is provided in [9]. Approaches based on model checking [4–6] consider
fixed size windows and experience the problem of state explosion. They generally
allow to handle liveness. Our work is more related to deductive approaches.

One of the first paper introducing SWP, [2], already provided an informal
proof. Several more formal works address the safety of various versions of the pro-
tocol. [7] is a partially automated approach of the “Go-back-N” version (receiver
window size is 1) with unbounded frame indexes. It relies on the decidable logic
WS1S and requires some manual abstractions. [15] ensures the safety of the gen-
eral version using PVS, a prover for typed higher order logic. An operational
description of the protocol is verified using an invariant strengthening approach.
Indexes are unbounded and media are FIFOs. Liveness is handled using a PVS
theory for “runs”. [8] also uses PVS to prove the safety of the “Selective-Repeat”
version (the sizes of both windows are equal). Bounded indexes are handled using
lemmas provided by PVS. The work took about 4 months, with automated
proofs. It also proposes a specific handling of frame lifetime. More recently, [16]
presents a similar work for the general version of the protocol, with unbounded
indexes and media that do not re-order messages. [9] seems to be one of tho
most consistent work on the subject. Both safety and liveness (under fairness
assumption) are addressed, considering the selective-repeat version of the pro-
tocol, FIFOs and indexes modulo 2n, where n is the size of windows. The paper
presents a (complex) manual proof, which is then formalized using PVS. It relies
on µCRL (a process algebra with datatypes) and branching bisimulations which
ensure some reachability properties. It is a general approach for protocols [17]
which can be instantiated by specific protocols, such as the sliding window pro-
tocol.

Proving the Safety of a Sliding Window Protocol with Event-B 63

We used a stepwise refinement approach. From this point of view, the works
we found in the literature that are the closest to ours are [1,18–20]. [1,18] deal
with the alternating bit protocol (window sizes are 1). [20] briefly presents a
modeling of the SWP as an application of a development pattern for Event-B.
The model ensures safety and considers unbounded indexes. [19] deals with a
slighly modified version of the general one, considering unbounded indexes and
FIFO media. Although the approach is not truly formalized, it is methodical
and addresses the design of distributed algorithms. It consists of a sequence
of sequential program transformations that preserve correctness. The first pro-
gram is global (i.e. not distributed) and similar to our abstract machine. In a
transformation step, variables are partitioned w.r.t. processes, which makes the
need of communication appear, as processes can only access their own variables.
New processes and variables are thus introduced, together with invariants that
link them. Resulting steps for the SWP example look like our steps in Sect. 3.
The approach can be compared to an Event-B refinement for the purpose of
applying shared event decomposition [10,21,22]. Beside that, our model could
be decomposed using this technique. In addition, [19] ensures a progress prop-
erty using variants. It is a kind of liveness which relies on non-cumulative (thus
non-standard) acknowledgments. Our approach, by comparison, is fully formal-
ized and proved in Event-B, and considers bounded indexes. Moreover, thanks
to the stepwise refinement approach, we identify different significant models: the
model with unbounded indexes of Sect. 3, the hybrid model of Sect. 4.2, and
the model with queues of Sect. 4.3. The two last ones could be further refined
towards safe implementations.

Event-B approaches dedicated to distributed systems [10,11] also start with a
global model and introduce distribution and communications later in refinement.
They aim at proposing general methodologies for the development of distributed
algorithms. They do not focus on communication protocols. Lastly, [13] recently
models the bounded retransmission protocol (a timed Alternating Bit Proto-
col) as an example. This work provides Event-B with infinite traces semantics,
which allows to handle progress with respect to time. New proof obligations are
identified for handling some real time and fairness properties.

6 Conclusion

In this paper we ensure the safety of the general version of the Sliding Window
Protocol using the Event-B refinement approach. 326 proofs among the 794 ones
where manual, but time is more significant as complexity of proofs varies widely.
This work took about two and a half months to a moderately experienced Rodin
user, despite some blunders in the modeling.

The refinement process is decomposed in three main significant stages. The
first one quickly produced a model with unbounded frame indexes. The sec-
ond one transposed all algorithmic aspects into modular arithmetic for bounded
indexes. In the resulting model, unbounded indexes are only used to express
properties. This general model may then be refined w.r.t. specific media. As an

64 S. Coudert

example, the third stage is a refinement that replaces abstract media by queues.
Unbounded indexes completely disappear. First and third stages each took a long
week, as did the development of a small library for modular arithmetic. Much of
the effort was expended on switching between unbounded and bounded indexes.
It is not surprising as avoiding ambiguity while doing this is a delicate issue.
Moreover, as pointed in Sect. 4.1 having inference rules for modular arithmetic
would have been more convenient.

Nearly all models are simple. Only the hybrid one, which merges both kinds
of indexes, is less readable. As a final model, it could be strongly simplified.
But lot of information is kept in order to make further refinement easier (and
even feasible), and to avoid some useless proofs. From a methodological point of
view, it is a delicate point as this model is probably the main one. Indeed, it is
intended to be the starting point of any refinement towards concrete media.

To conclude, the experiment is a success and the Event-B approach has been
very suitable for the problem under study. The only drawback is that it does
not allow to handle liveness. However liveness is not a default property of this
protocol, as messages may be lost. It requires some restrictions or additional
assumptions (e.g. fairness). The absence of deadlock has been visually checked
in our final model. Further work could target the refinement of our hybrid model
towards media with frame lifetime mechanism. Applying the approach to other
non trivial protocols would also be interesting.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York (2010)

2. Stenning, N.V.: A data transfer protocol. Comput. Netw. 1(2), 99–110 (1976)
3. Tanenbaum, A.S., et al.: Computer Networks. Prentice-Hall (1996)
4. Richier, J.-L., Rodriguez, C., Sifakis, J., Voiron, J.: Verification in XESAR of the

sliding window protocol. In: IFIP WG6.1 Seventh International Conference on Pro-
tocol Specification, Testing and Verification VII, NLD. North-Holland Publishing
Co (1987)

5. Kaivola, R.: Using compositional preorders in the verification of sliding window
protocol. In: Grumberg, O. (ed.) CAV 1997. LNCS, pp. 48–59. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63166-6 8

6. Godefroid, P., Long, D.E.: Symbolic protocol verification with queue BDDs. Formal
Methods Syst. Des. 14(3), 257–271 (1999)

7. Smith, M.A., Klarlund, N.: Verification of a sliding window protocol using IOA
and MONA. In: FORTE/PSTV 2000, pp. 19–34. NLD (2000). Kluwer, B.V

8. Chkliaev, D., Hooman, J., de Vink, E.: Verification and improvement of the sliding
window protocol. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 113–127. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-
X 9

9. Badban, B., Fokkink, W., Groote, J.F., Pang, J., van de Pol, J.: Verification of
a sliding window protocol in µCRL and PVS. Formal Aspects Comput. 17(3),
342–388 (2005)

https://doi.org/10.1007/3-540-63166-6_8
https://doi.org/10.1007/3-540-36577-X_9
https://doi.org/10.1007/3-540-36577-X_9

Proving the Safety of a Sliding Window Protocol with Event-B 65

10. Siala, B., Bhiri, M.T., Bodeveix, J.-P., Filali, M.: An event-B development process
for the distributed BIP framework. In: Ogata, K., Lawford, M., Liu, S. (eds.)
ICFEM 2016. LNCS, vol. 10009, pp. 313–328. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-47846-3 20

11. Stankaitis, P., Iliasov, A., Ait-Ameur, Y., Kobayashi, T., Ishikawa, F.,
Romanovsky, A.: A refinement based method for developing distributed protocols.
In: HASE 2019, pp. 90–97 (2019)

12. Event-B home page. http://www.event-b.org/
13. Zhu, C., Butler, M., Cirstea, C.: Trace semantics and refinement patterns for real-

time properties in Event-B models. Sci. Comput. Program. 197 (2020)
14. Sulskus, G., Poppleton, M., Rezazadeh, A.: An interval-based approach to mod-

elling time in event-B. In: Dastani, M., Sirjani, M. (eds.) FSEN 2015. LNCS,
vol. 9392, pp. 292–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24644-4 20

15. Rusu, V.: Verifying a sliding-window protocol using PVS. In: Kim, M., Chin, B.,
Kang, S., Lee, D. (eds.) FORTE 2001. IIFIP, vol. 69, pp. 251–268. Springer, Boston,
MA (2002). https://doi.org/10.1007/0-306-47003-9 16

16. Chkliaev, D., Nepomniaschy, V.: Deductive verification of the sliding window pro-
tocol. Autom. Control. Comput. Sci. 47, 12 (2013)

17. Fokkink, W., Pang, J., De Pol, J.: Cones and foci: A mechanical framework for
protocol verification. Form. Methods Syst. Des. 29(1), 1–31 (2006)

18. Van de Snepscheut, J.L.A.: The sliding-window protocol revisited. Formal Aspects
Comput. 7(1), 3–17 (1995)

19. Hoogerwoord, R.R.: A formal derivation of a sliding window protocol. Computer
science reports. Technische Universiteit Eindhoven (2006)

20. Méry, D.: Modelling by patterns for correct-by-construction process. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 399–423. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03418-4 24

21. Butler, M.: Incremental design of distributed systems with Event-B. Eng. Methods
Tools Softw. Saf. Secur. 22(131) (2009)

22. Silva, R., Butler, M.: Shared event composition/decomposition in event-B. In:
Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol.
6957, pp. 122–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25271-6 7

https://doi.org/10.1007/978-3-319-47846-3_20
https://doi.org/10.1007/978-3-319-47846-3_20
http://www.event-b.org/
https://doi.org/10.1007/978-3-319-24644-4_20
https://doi.org/10.1007/978-3-319-24644-4_20
https://doi.org/10.1007/0-306-47003-9_16
https://doi.org/10.1007/978-3-030-03418-4_24
https://doi.org/10.1007/978-3-642-25271-6_7
https://doi.org/10.1007/978-3-642-25271-6_7

Event-B Formalization of Event-B
Contexts

Jean-Paul Bodeveix1 and Mamoun Filali2(B)

1 IRIT-UPS, 118 Route de Narbonne, 31062 Toulouse, France
jean-paul.bodeveix@irit.fr

2 IRIT-CNRS, 118 Route de Narbonne, 31062 Toulouse, France
mamoun.filali@irit.fr

Abstract. This paper presents an Event-B meta-modelisation of an
Event-B project restricted to its context hierarchy which introduces the
functional part of a development through sets, constants, axioms and
theorems. We study the proposal of a new mechanism for Event-B. It
consists in allowing to instantiate in a new context an already proved
theorem in a given context. We investigate the validation of the instan-
tiation mechanism in order to prove the validity of imported theorems.
We also compare the proposal with similar mechanisms available within
some existing theorem provers.

Keywords: Formal methods · Event-B · Meta modelisation

1 Introduction

Event-B [1] is a formal method for the rigorous development of systems. One of
its salient features is the Rodin tool [2] which offers an integrated environment
for developing and proving. The aim of the EBRP (Enhancing Event-B and
Rodin Plus) project1 is to enhance the framework offered by Rodin in order
to better support reuse in Event-B developments thanks to the introduction of
generic theories and data types. This enhancement follows the initial work of
[4,7]. As a first step of the project, a light extension of the Event-B language
and tool has been proposed. In this paper, we investigate an Event-B meta-level
description of this extension. An Event-B model consists in a functional model
made of an acyclic graph of contexts and a dynamic model using the functional
part which consists of successive event-based machine refinements. We focus here
on the new reusability mechanism currently studied by the EBRP project for the
functional model. It consists in reusing (importing) instances of theorems and
axioms considered to be parameterized by the sets and constants declared in their
context. The aim of this paper is to validate this importation mechanism: more
precisely, we wish to establish the validity of an instance of an imported theorem.
For this purpose, we propose a meta-level study of Event-B context structure

1 The project EBRP is supported by the French research agency: ANR.

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 66–80, 2021.
https://doi.org/10.1007/978-3-030-77543-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_5&domain=pdf
http://orcid.org/0000-0002-4179-6063
http://orcid.org/0000-0001-5387-6805
https://doi.org/10.1007/978-3-030-77543-8_5

Event-B Formalization of Event-B Contexts 67

cFormula

cProject cImport

cStaticcValidity cImportStatic

cSemantics cImportSemantics

Standard Event-B

Extension

Fig. 1. Metamodel architecture

extended with importation clauses. Figure 1 shows the meta modelisation of
a standard Event-B context and its extension with importation/instanciation
clauses.

The rest of the paper is structured as follows: Section 2 presents an Event-
B meta-model of an Event-B project made of contexts. Section 3 extends this
meta-model by the proposed importation mechanism. Section 4 presents similar
mechanisms that can be found in other proof environments. Section 5 concludes
this paper.

2 Event-B Contexts

In this section, we give a meta-level description of a project made of a hier-
archy of contexts. Starting with a high level description of formulas (context
cFormula), we introduce the subset of valid formulas (context cValidity) and
describe the project structure as a set of contexts (context cProject). Semantics
constraints are introduced through the contexts cStatic and cSemantics. The
new importation feature is introduced in the cImport context with semantic
constraints in cImportStatic and cImportSemantics. To summarize, the stan-
dard representation is structured as a set of contexts corresponding to the left
hand side of Fig. 1 and the proposed extension in its right hand side. Moreover,
we illustrate the architecture of these contexts through UML-like diagrams2.

2.1 Formulas

Formulas (see Fig. 2) are modelled at an abstract level. Its free variables are
either sets (acting as base types) or constants. A formula denotes either an
expression or a predicate. Some expressions (left unspecified here) denote types.
The text of a formula is not considered.

2 We could have used the UML-B plugin [9].

68 J.-P. Bodeveix and M. Filali

Formula

Expression Predicate

Type

Set Constant
ref stes * ref constants *

Fig. 2. cFormula context

However, the relations ref sets and ref csts associate respectively the
referenced sets and constants. Formulas are partitioned into Expression and
Predicate. Note that we have not modeled the type of an expression and typ-
ing constraints. Note also that we could have declared the two relations ref sets
and ref csts as functions to power sets of sets or constants. However, it would
make more difficult to use the relational composition in order to navigate through
the metamodel. These notions are declared through the following labelled (the
‘@’ tag) Event-B axioms3:

@Formula part partition(Formula,Expression , Predicate)
@ref sets ty ref sets ∈ Formula ↔ Set
@ref csts ty ref csts ∈ Formula ↔ Constant

A Type is seen as a special expression which only refers to sets (not con-
stants)4.

@Type ty Type ⊆ Expression // type expressions such as P(A) and A × B

@ref type Type � ref csts = ∅ // A type expression doesn’t reference a constant

An important operation on formulas is substitution (subst): a set can be
replaced by a Type and a constant by an Expression. The main static property of
a substitution: subst ref is that unreferenced sets and constants can be removed
from the substitution domain. This expressed through a domain restriction (�).
We use this property to show that an imported instance of a theorem remains a
theorem5 6 7.

@subst ty subst ∈ (Set �→ Type) × (Constant �→ Expression) × Formula → Formula
@subst ref ∀s,c, f · s ∈ Set �→Type ∧ c ∈ Constant �→Expression ∧ f ∈ Formula ⇒
subst(s �→c�→f) = subst(ref sets [{ f}] � s �→ ref csts [{ f}] � c �→ f)

3 A ↔ B denotes the set of relations from A to B : A ↔ B � P(A × B).
4 � denotes domain restriction: s � r � r ∩ (s × ran(r)).
5 x �→ y denotes the ordered pair (x , y).
6 s � t denotes a partial function.
7 r [s] denotes the relational image by r of the set s: r [s] � ran(s � r).

Event-B Formalization of Event-B Contexts 69

2.2 Validity

We first introduce a sequent as a pair formed by a set of hypothesis predicates
and a conclusion predicate. Valid sequents are introduced as a subset.

@Sequent def Sequent = P(Predicate) × Predicate
@Valid ty Valid ⊆ Sequent

With respect to our concerns, we consider only two axioms about sequents:
monotony and substitution of free identifiers which are sets and constants. The
first one states that if the hypotheses of a valid sequent are enriched, the sequent
remains valid.

@Valid mono ∀H1,H2,G· H1⊆H2 ∧ H1 �→G ∈ Valid ⇒ H2 �→G ∈ Valid
@subst V ∀H,G,s,c· H�→G ∈ Valid ∧ s ∈ Set �→ Type ∧ c ∈ Constant �→ Expression ⇒

{h·h ∈ H | subst(s�→c�→h)} �→ subst(s�→c�→G) ∈ Valid

2.3 Project

Context

Assertion
Predicate

(from cFormula)

Axiom Theorem

Set
(from cFormula)

Constant
(from cFormula)

extend

*

*1

assertion

*
1 predicate *

1
set*

1
constant*

cProject

Fig. 3. cProject context

A project contains contexts denoted by the set Context linked by the extend
relation extend. extend is declared irreflexive and transitive (Fig. 3).

@extend ty extend ∈ Context ↔ Context // c1 extends c2
@extend irr id ∩ extend = ∅
@extend trans extend;extend ⊆ extend

Sets and constants are defined within contexts. A set or a context is defined
once8. Note that a set or a constant can be present in unrelated contexts (through
the extend relation).
8 r1; r2 denotes relation composition, usually denoted r2 ◦ r1. It is used to navigate in
the metamodel along a chain of links.

70 J.-P. Bodeveix and M. Filali

@set ty set ∈ Context ↔ Set
@constant ty constant ∈ Context ↔ Constant
// a set is defined once in a hierarchy of contexts
@set uniq pred (extend; set) ∩ set = ∅
// a constant is defined once in a hierarchy of contexts
@cst uniq pred (extend;constant) ∩ constant = ∅

In a context, assertions are stated. An assertion is characterized by a pred-
icate. assertion defines the relation between contexts and assertions. Axioms
and theorems define distinct assertions.

@assert ty predicate ∈ Assertion → Predicate
@ass ty assertion ∈ Context ↔ Assertion
@ass ctx assertion −1 ∈ Assertion → Context
@Assert fin finite (Assertion)
@Axiom ty Axiom ⊆ Assertion
@Theorem ty Theorem ⊆ Assertion
@AxThm Axiom ∩ Theorem = ∅

axiom and thm are respectively the restriction of assertion to axioms and
theorems.

@ax ty axiom = assertion � Axiom
@thm ty thm = assertion � Theorem

2.4 Static Correcness

Theorem
(from cProject)

WFC
Formula

(from cFormula)
wd 0..1

cStatic

Fig. 4. cStatic context

The static correctness of a project is introduced in the context cStatic. First, sets
and constants used by an assertion should be visible from the current context
(Fig. 4).

// sets referenced by an assertion are declared
// in the context of the axiom or its ancestry
@sets ext assertion ; predicate ; ref sets ; set−1 ⊆ id ∪ extend
// sets referenced by an assertion are declared
// in the context of the axiom or its ancestry
@csts ext assertion ; predicate ; ref csts ;constant−1 ⊆ id ∪ extend

Event-B Formalization of Event-B Contexts 71

Second, well-formedness conditions are introduced through the subset WFC
of Theorem. Static correctness is defined by associating through the wd partial
function a wellformedness condition to a formula. It is an assertion to be proven,
i.e. a theorem.

@WFF ty WFC ⊆ Theorem
@WD ty wd ∈ Formula �→ WFC

Furthermore, a WFC is well formed by construction and thus does not appear
in the domain of wd.

@WD WD predicate[WFC] ∩ dom(wd) = ∅

The well-definedness condition of a formula does not reference new sets or
constants with respect to the initial formula.

@sets wd wd;predicate ; ref sets ⊆ ref sets
@csts wd wd;predicate ; ref csts ⊆ ref csts

2.5 Semantics

Assertion
(from cProject)

depends

*

*

cSemantics

Fig. 5. cSemantics context

The soundness of a context is established through the proof of the validity of
its theorems. The proof is abstracted by specifying axioms it uses. We introduce
them through the depends relation (Fig. 5).

@depends ty depends ∈ Assertion ↔ Assertion

An assertion can only depend on assertions that are visible from the cur-
rent context. We also state that an assertion depends on its well-definedness
condition.

@depends extends assertion ;depends ⊆ (id ∪ extend); assertion
@depends WD predicate;wd ⊆ depends

Moreover, the depends relation is supposed to be irreflexive and transitive.

@depends irr id ∩ depends = ∅
@depends trans depends;depends ⊆ depends

72 J.-P. Bodeveix and M. Filali

A sequent is built from theorems. Its hypotheses are all the assertions on
which the theorem depends. Its conclusion is the predicate associated to the
theorem itself. The semantics of the theorem annotation is thus defined by stat-
ing that this sequent is valid.

@THM V ∀t· t ∈ Theorem ⇒ (depends;predicate)[{t}] �→ predicate(t) ∈ Valid

3 Instantiation of Assertions

This section presents a metamodelisation and the validation of an instanciation
mechanism proposed by the EBRP project. It is structured as a set of contexts
as shown by the right hand side of Fig. 1.

3.1 Informal Presentation

Let us consider a simple generic example with an axiom used to prove a theorem:

context gen
sets T
axioms
@axm1 ∀x,y·x ∈ T∧y ∈ T ⇒ x=y

theorem @th1 T�=∅ ⇒ (∃x·T={x})
end

context instance1
axioms // import th1 with T mapped to Z

@@th Z�=∅ ⇒ (∃x·Z={x}) // gen|T :=Z|th1
end

Within a tool developed by the EBRP project, the proposed syntax to achieve
the instanciation of th1 in context instance1 is given as a comment. It contains
three fields: the context to be imported, instanciation parameters and the name
of the target assertion. The instanciated formula can then be automatically
generated.

Theorem th1 can be proved in context gen using axiom atm1. th is a (con-
sidered correct) instance of th1. However, while it is expected that importing a
theorem should give a theorem, actually th is not a theorem. For the assertion
“imported theorems are valid” to be valid, a sufficient condition can be that all
previous axioms should be imported before as theorems (to be proved), and with
the same instance parameters. This is illustrated by the context instance2 (see
Fig. 6).

context instance2
axioms // import axm1 and th1

theorem @@PO ∀x,y·x ∈ Z∧y ∈ Z ⇒ x=y // gen|T :=Z|axm1
@@th Z�=∅ ⇒ (∃x·Z={x}) // gen|T :=Z|th1

end

So imported axioms appearing before imported theorems should become
proof obligations (thus marked as theorems). Imported theorems should not be
proved again and thus appear as axioms.

Event-B Formalization of Event-B Contexts 73

Here, the theorem PO cannot be proved. It follows that unsoundness of the
context instance2 is clearly pointed out, which is the expected behavior. To
sum up, instance1 should be rejected because an axiom preceding th1 has not
be imported as theorem; instance2 is accepted by the static type checker but
cannot be validated by the user. instance3 is an example satisfying the static
rules and for which the proof obligation for atm1 instance can be discharged.

context instance3 // a correct instance of gen
sets Unit
constants void
axioms
@part partition (Unit, {void})
theorem @@atm1 ∀x,y·x ∈ Unit∧y ∈ Unit ⇒ x=y // gen|T :=Unit|axm1
@@th Unit �=∅ ⇒ (∃x·Unit={x}) // gen|T :=Unit|th1

end

axm1: Axiom

th1: Theorem

axm1 th1
proved by user

@@po: Obligation

@@th: ImportedThm

@@po @@th
valid by construction

depends depends

imported Assertion

[T := Z]

imported Assertion

[T := Z]

importing context
instance2

source context
gen

Fig. 6. Imported theorem

3.2 Importation of External Assertions

Import

Axiom
(from cProject)

ImportedAxiom ImportedTheoremObligation

Assertion
(from cProject)

importedAssertion1

cImport

Fig. 7. cImport context

Importation points are added to standard Event-B assertions inside contexts.
An importation point is a reference to an assertion of a remote context. Three
kind of importations are distinguished: imported axioms, imported theorems
and obligations (Fig. 7).

74 J.-P. Bodeveix and M. Filali

axioms
@Import ty Import ⊆ Assertion
@imports ty imports = assertion � Import
@obl ty Obligation ⊆ Import
@ImportedThm ty ImportedTheorem ⊆ Import
@ImportedAxm ty ImportedAxiom ⊆ Axiom

Obligations should be proved by the importing context and are thus declared
as a subset of Theorem. An ImportedTheorem is valid by construction. An
ImportedAxiom is an instance of an axiom that remains axiomatic in the import-
ing context.

Note that imported theorems should not be proved again. Either their cor-
rectness are guaranteed by a meta-level argument (Transformation verification
approach), or a proof can be automatically generated and checked (translation
validation approach).

@Import part partition (Import, ImportedAxiom, ImportedTheorem, Obligation)
@importedAssertion ty importedAssertion ∈ Import → Assertion
@importedContext def importedContext = importedAssertion;assertion−1

@isObligation importedAssertion [Obligation] ⊆ Axiom
@isTheorem importedAssertion[ImportedTheorem] ⊆ Theorem ∪ ImportedTheorem

Last, a substitution of remote sets and constants is associated to each impor-
tation point. Sets are substituted by type expressions and thus only refer to sets.
Constants are substituted by any expression of compatible type and may refer
to sets or constants9.

@isAxiom importedAssertion[ImportedAxiom] ⊆ Axiom
@importedContext present importedContext−1;importedAssertion ⊆ axiom
@set subst ty set subst ∈ Import × Set �→ Type
@cst subst ty cst subst ∈ Import × Constant �→ Expression
// formal set parameters are declared in the source context
@setp decl dom(set subst) ⊆ ran(imports ⊗ set)
// formal constant parameters are declared in the source context
@cstp decl dom(cst subst) ⊆ ran(imports ⊗ constant)

Referred sets and constants should be visible by the importing context. All
remotely accessed sets and constants should be substituted.

// constants of actual parameters for constants are visible by the importing context
@cs rc (imports⊗(Context×Constant));cst subst; ref csts ⊆ (id∪extend);constant

// sets of actual parameters for constants are visible by the importing context

@cs rs (imports⊗(Context×Constant));cst subst; ref sets ⊆ (id∪extend);set
// sets of actual parameters for sets are visible by the importing context

@ss rs (imports⊗(Context×Set));set subst; ref sets ⊆ (id∪extend);set
// all sets used by the imported axiom are substituted
@sr subst importedAssertion ; predicate ; ref sets ⊆ dom(set subst)

9 r ⊗ s � {x �→ (y �→ z) | x �→ y ∈ r ∧ x �→ z ∈ s}.

Event-B Formalization of Event-B Contexts 75

Note that the model could be refined to introduce typing conditions and con-
strain expressions to be used by substitutions.

3.3 Static Verification of Importations

In order to guarantee the validity of imported theorems, we link the dependency
relation and importation clauses: all dependent assertions on which the imported
assertion depends should also be imported. The importing clause should depend
on these imports. Derived imports should use compatible substitutions, i.e. com-
mon sets or constants should be substituted by the same expressions.

@import depends ∀ctx,imp·
ctx �→imp ∈ imports ∧ importedAssertion(imp) ∈ Theorem ∪ ImportedTheorem ⇒
(∀ax· importedAssertion(imp) �→ ax ∈ depends ⇒
(∃impa· ctx �→impa ∈ imports ∧
imp �→ impa ∈ depends ∧
ax = importedAssertion(impa) ∧
(∀s· imp �→s ∈ dom(set subst) ∧ impa �→s ∈ dom(set subst) ⇒

set subst (imp�→s) = set subst(impa�→s)) ∧
(∀c· imp �→c ∈ dom(cst subst) ∧ impa�→c ∈ dom(cst subst) ⇒

cst subst (imp�→c) = cst subst(impa�→c))
))

3.4 Correctness of Theorem Instantiation

We first define the semantics of an imported assertion as the assertion obtained
by applying the substitution declared in the importation clause to the imported
assertion:

@importPredicate ∀imp· imp ∈ Import ⇒
predicate (imp) = subst({s�→t | (imp �→s)�→t ∈ set subst} �→

{c�→e | (imp �→c)�→e ∈ cst subst} �→ predicate(importedAssertion(imp)))

The correctness theorem states that the sequent formed by assertions on
which the import depends and imported statement is valid. The imported state-
ment can be itself an instance of another distant statement. We thus suppose
that the union of the dependency and importation graphs is acyclic. The base
case of the result is then given by the following theorem:

theorem @ImportValid ∀ctx,imp·ctx�→imp ∈ imports ∧
importedAssertion(imp) ∈ Theorem ⇒

(depends;predicate)[{ imp}] �→ predicate (imp) ∈ Valid

Given a context ctx and an importation point imp,

– let th=importedAssertion(imp) and suppose it is a theorem. By axiom
THM V of cSemantics (Sect. 2.5) the following sequent is valid:

(depends;predicate)[{th}] �→ predicate(th)

76 J.-P. Bodeveix and M. Filali

– Using the set and constant substitutions (S ,C) declared in importation
point imp, we have predicate(imp) = subst(S,C,predicate(th)) through
axiom importPredicate of Sect. 3.4.

– Using axiom subst V of Sect. 2.2, we can instanciate the sequent to get a new
valid sequent Sq2: subst(S,C)[(depends;predicate)[{th}]] �→ th.

– Thanks to axiom import depends of Sect. 3.3, antecedents of the imported
theorem have been imported before with compatible substitutions, i.e. imp
depends on these importation points.

– Thanks to axiom subst ref of Sect. 2.1, applying substitutions (S ,C) gives
the same result.

– Thus, thanks to the monotonicity of validity (axiom Valid mono of Sect. 2.2),
the sequent concluding on th and containing its dependencies contains enough
hypotheses to be valid.

4 Related Concepts

In this section, we review modularity constructs that can be found in various
theorem provers. We reuse the same example to illustrate their features and
compare them with respect to some key features.

4.1 Section Mechanism in Coq

Variables or hypotheses can be declared in a Coq [10] section and used freely in
the rest of the section.

Section Gen.
Variable T: Type.
Hypothesis axm1: forall (x y: T), x=y.
Theorem th1: (exists x:T, True) → exists x:T, (forall y:T, x=y).
intros. destruct H as [x _]. exists x; auto.

Qed.
End Gen.

When the section is closed, variables or hypotheses used by definitions or
theorems are made parameters. Here th1 is now seen as a function parameterized
by a type T, a proof of axm1 property, and a proof that T is inhabited. An instance
of th1 can be obtained through a partial call of th1 with a type and a proof,
leading to th definition.

Section Instance.
Inductive unit: Type := One.
Lemma unit_eq: forall (x y: unit), x=y.
intros; destruct x; destruct y; auto.

Qed.
Definition th := th1 unit unit_eq.

End Instance.

Note that it is not necessary to introduce the lemma unit eq before instan-
tiating the theorem th1: a proof obligation could be generated through the use
of Program Definition.

Event-B Formalization of Event-B Contexts 77

4.2 Module Mechanism in Coq

The theorem th1 is now proved inside a parameterized module (or functor). Its
parameter is typed by the module type tGen declaring T and axm1.

Module Type tGen.
Parameter T: Type.
Parameter axm1: forall (x y: T), x=y.

End tGen.
Module Gen(U: tGen).
Theorem th1: (exists x:U.T, True) → exists x:U.T, (forall y, x=y).
intros. destruct H as [x _]. exists x. apply U.axm1.

Qed.
End Gen.

In order to use the contents of Gen, it must be instanciated by passing a
module compliant with tGen. We introduce the module U defining a one-element
type and proving the required property. Then Gen can be instanciated, which
leads to the module instance I.

Module Instance.
Module U <: tGen.
Inductive unit: Type := One. Definition T := unit.
Lemma axm1: forall (x y: unit), x=y.
intros; destruct x; destruct y; auto.

Qed.
End U.
Module I := Gen U.
Definition th := I.th1.

End Instance.

4.3 Locales in Isabelle/HOL

Locales [3] introduce a module system in the theorem prover Isabelle [11]. In the
following, the locale gen is parameterized by the variable T typed as a set over
the polymorphic type ’a and states the assumption atm1 over the variables of
the set T. Thanks to this assumption, the theorem th1 is then proved.

locale gen =
fixes T :: ”’a set”
assumes atm1: ”∀ x ∈ T. ∀ y ∈ T. x=y”

begin
theorem th1: shows ”T �= ∅ → (∃x ∈ T. T={x})”
proof using atm1 by blast
qed

end

The constant S is then defined as the singleton {1}. The latter set is used
to give an intepretation to the locale gen. Then, this intepretation requires to

78 J.-P. Bodeveix and M. Filali

discharge the assumptions of the locale considered as proof obligations. After
unfolding the definition of S and thanks to the powerful tactic auto these obli-
gations is automatic.

definition ”S = {1}”
interpretation i : gen ”S” unfolding S def by unfold locales auto

4.4 Clones of Why3

In why3 [5], a theory can declare abstract types and axioms which are used to
prove theorems:

theory Gen
type t
axiom axm1: ∀ x y:t. x=y
goal th1: (∃ x:t. �) → ∃ x:t. ∀ y:t. x=y

end

The theory can be instanciated by given values to abstract types. Then
axioms automatically become proof obligations. Proof attempts are then per-
formed by the tool, and the contents of the instantiated theory become available
to check remaining declarations of the Instance theory. The mechanism is less
heavy but similar to Coq modules.

theory Instance
type u = Unit
clone Gen as G with type t = u (* axm1 instance is a proof obligation *)

end

4.5 Modules of TLA+

In TLA+ [8], modules can state assumptions and use them for proofs.

1 module gen
2 constants T
3 assume atm1 Δ= ∀ x , y ∈ T : x = y
5 theorem th1 Δ= T = {} =⇒ (∃ x ∈ T : T = {x})
6 1 qed by atm1
8

In order to instantiate a module, one has to provide the constants (and the
variables) that are used in this module. It is also possible to inherit the theo-
rems of this instantiated module. However, each such theorem has an additional
hypothesis consisting of the assumptions of the instantiated module. Otherwise
stated, the reuse of a theorem is possible once the assumptions of its module
have been discharged.

Event-B Formalization of Event-B Contexts 79

1 module instance
3 constant Z
5 theorem PO Δ= ∀ x , y : x ∈ Z ∧ y ∈ Z =⇒ x = y
7 i Δ= instance gen with T ← Z
9 theorem th Δ= Z = {} =⇒ (∃ x ∈ Z : Z = {x})

10 1 qed by i !th1, PO
12

4.6 Summary

In this section, we summarize some features offered by the module systems of
the different proof environments. We have considered three criteria:

– The instantiation syntax: is it possible to extract a single theorem from a mod-
ule? How formal parameters are given? Do they take implicit values (effective
parameter with the same name as the formal parameter)?

– Interaction with provers: is it possible to prove obligations before instantiating
the module, during module instantiation, or does the parameter property
become a hypothesis of the extracted theorem?

– Extensibility of generic modules: is it possible to extend the generic theory
by adding new parameters or new theorems?

Coq Sections Coq Modules Isabelle Why3 TLA Rodin

Theorem import � �

Named parameters � �

Implicit parameters � �

Type param. synthesis � � � � � �

Anticipated proof � � � � �

Proof obligation � � � �

Axioms as assumptions � �

Extensibility � � � � �

As said in the introduction, the current integration of these features is inves-
tigated as a light extension of the Rodin tool. Ticks in the Rodin column indicate
in-development features. Extensibility is by nature present through Rodin con-
text extension. The other features presented in the table have no impact on the
meta-level analysis and will be reflected by the choices done in the final IDE of
the tool under construction.

5 Conclusion

In this paper, we have tried to put forward the meta level description of an
extension currently studied within the EBRP project. The aim of this meta-
modelisation is to validate the expected properties of theorem instantiation. It

80 J.-P. Bodeveix and M. Filali

has been done using current Event-B contexts. This axiomatic formalization
could be considered as the formal specification of a static semantic checker of
(extended) Event-B models. Also, an interesting evolution of this work could be
to take into account the enhancements that are currently being implemented
within the EBRP project, as well as some features already available within the
plugin theory [7] (inductive types, definition by cases, . . .). It would be an inter-
esting validation of these enhancements. A more ambitious aim would be to
standardize the syntax and semantics of Event-B [6] through Event-B. It would
need to take into account machines, refinements, types,

Acknowledgement. We thank the anonymous reviewers for their helpful comments.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

3. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Rea-
son. 52(2), 123–153 (2014)

4. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol.
8051, pp. 67–81. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39698-4 5

5. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

6. Hallerstede, S.: On the purpose of Event-B proof obligations. Formal Aspects Com-
put. 23(1), 133–150 (2011)

7. Hoang, T.S., Voisin, L., Salehi, A., Butler, M.J, Wilkinson, T., Beauger, N.: Theory
Plug-in for Rodin 3.x. CoRR, abs/1701.08625 (2017)

8. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

9. Snook, C., Butler, M.: UML-B: a plug-in for the Event-B tool set. In: Börger,
E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, p. 344.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8 32

10. The Coq Development Team. The Coq Proof Assistant, January 2021
11. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,

O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 7

https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-540-87603-8_32
https://doi.org/10.1007/978-3-540-71067-7_7

Validation of Formal Models by Timed
Probabilistic Simulation

Fabian Vu1(B) , Michael Leuschel1(B) , and Atif Mashkoor2(B)

1 Institut für Informatik, Universität Düsseldorf, Düsseldorf, Germany
{fabian.vu,leuschel}@uni-duesseldorf.de

2 Institute for Software Systems Engineering, Johannes Kepler University Linz,
Linz, Austria

atif.mashkoor@jku.at

Abstract. The validation of a formal model consists of checking its con-
formance with actual requirements. In the context of (Event-) B, some
temporal aspects can typically be validated by LTL or CTL model check-
ing, while other properties can be validated via interactive animation or
trace replay. In this paper, we present a new simulation-based validation
technique for (Event-) B models called SimB. The proposed technique
uses annotations to construct simulations, taking probabilistic and real-
time aspects of the models into account. In this fashion, statistical prop-
erties of a single simulation run or a series of runs can be checked (e.g.,
Monte Carlo estimation or hypothesis tests). SimB complements anima-
tion and model checking, and its usability has been assessed via several
case studies.

1 Introduction

A typical modeling approach in B [1] and Event-B [2] is to have a generic model
for proof, and various instances of the generic model for animation or model
checking. The generic model can be verified using provers, such as AtelierB1

or Rodin [3], while the instances can be verified or validated with ProB [4]
using animation and model checking. These two techniques are complementary:
proof gives strong guarantees under the assumption of a correct model and can
scale to large or infinite-state systems. But it provides limited feedback and
typically cannot be used to ensure the presence of a desired real-world behavior.
Animation and model checking provide more intuitive user feedback (e.g., in
the form of domain-specific visualizations), but typically cannot be applied to
generic models and usually cannot be used for exhaustive verification.
1 https://www.atelierb.eu/en/.

This research presented in this paper has been conducted within the IVOIRE project,
which is funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian Sci-
ence Fund (FWF) grant # I 4744-N. The work of Atif Mashkoor has been partly funded
by the LIT Secure and Correct Systems Lab sponsored by the province of Upper Aus-
tria.

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 81–96, 2021.
https://doi.org/10.1007/978-3-030-77543-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_6&domain=pdf
http://orcid.org/0000-0003-2556-5553
http://orcid.org/0000-0002-4595-1518
http://orcid.org/0000-0003-1210-5953
https://www.atelierb.eu/en/
https://doi.org/10.1007/978-3-030-77543-8_6

82 F. Vu et al.

In this paper, we focus on validation, i.e., checking that a formal model is
realistic and meets user expectations. Currently, in (Event-) B temporal prop-
erties (e.g., liveness) can be validated with LTL model checking, while the pres-
ence of features or desired behaviors can be validated via animation and trace
replay [5]. However, what is currently missing is the validation via more realis-
tic simulations. In this work, we want to enable validation based on simulation
taking into account real-time and probabilistic aspects. Our goal is to develop a
lightweight and flexible validation approach, which can also be used for other for-
malisms (e.g., Z, TLA+, or CSP), and which is capable to accommodate various
modelling styles and ways to encode time. Our approach builds on annotations
of the respective formal models, processed by a simulator called SimB built on
top of ProB.

As we show later, SimB can be used for a variety of complimentary validation
tasks. Here we sketch one example. Suppose we have a generic Event-B model
of a safety-critical component of train movement. This model has an abstrac-
tion of the environment, with just the features needed for proofs (e.g., maximal
acceleration of other trains). The model may only incorporate a limited, abstract
notion of time and may not include information about the likelihood of enabled
events. This is where our new technique and tool get involved: we can associate
time and probabilities with events of the model, enabling us to conduct realistic
simulations as well as to collect statistical information about the formal model,
e.g., the likelihood of enabled events or the likelihood of a behavior (within a
certain time). Information about timing, probabilities, and interactions between
events are not mined from true system executions. So, the challenge for the user
is to define simulation parameters in SimB such that realistic simulations are
created. Here it is possible to vary the simulation parameters for the same model
to see how it behaves afterwards. This makes it possible to get a better picture
of the model’s behavior in the real world.

The rest of the paper is organized as follows. Section 2 describes how we
encode timing and probabilistic behavior. Its realization in the form of SimB
with the corresponding scheduling algorithm is explained in Sect. 3. Section 4
introduces a class of validation techniques using the presented simulation app-
roach. Section 5 then demonstrates how SimB is applied to existing examples for
validation purposes. In Sect. 6, we compare our approach with published works
in the context of simulation and formal methods with probabilistic and timing
behaviors. The paper is concluded in Sect. 7.

2 Timed Probabilistic Simulation Principles

This section explains the principles of encoding timing and probabilistic behavior
in this work. To make the idea easier to understand, we recall the notion of
operations and events in (Event-) B first, which will be referred to as events
for the rest of the paper. Events consist of a guard and an action. An event
can be fired if it is enabled, i.e., its guard is true. Firing an event executes
the corresponding action modifying the current state. Note that events may use
parameters and the action may itself be non-deterministic.

Validation of Formal Models by Timed Probabilistic Simulation 83

Fig. 1. Clocks example

(Event-) B is a discrete-time
language and events are always
executed instantaneously. As
shown in Fig. 1, the model
switches instantaneously from
c2 = 0 to c2 = 2 without vio-
lating the invariant c2 ∈ {0, 2}
(i.e., not taking on the inter-
mediate value 1). The (Event-)
B method neither provides any
guideline about how much time
passes between two event executions2 nor imposes any restriction on how to
choose which enabled event is executed.

invariants c1 : {0,1} & c2 : {0,2}
initialisation c1,c2 := 0,0
event clock1 = begin c1 := 1-c1 end
event clock2 = begin c2 := 2-c2 end

Listing 1. Examples with Two Independent Clocks

2.1 Encoding Simulation Time

Adding and Adapting Timing Behavior. Our approach works independently of
whether time is already part of a model (e.g., in the style as suggested by Rehm
et al. [6]) or not. The task of SimB is to add timing behavior in case time is not
already part of the model. Otherwise, SimB annotations adapt to timing con-
structs that are part of the model. Furthermore, SimB simulates many processes
in parallel.

Let us first have a look at the small example presented in Listing 1 and
Fig. 1. Here, time is not a part of the model. Suppose clock1 and clock2 are
independent; one ticks every second, the other every 300 ms. Naively, one would
increment the simulation time after executing an event. But following this naive
approach, it is not possible to model the parallelism of both clocks. However, we
can model it if we allow the execution of an event, which triggers other events.
So in this example, clock1 activates itself every second and clock2 activates
itself every 300 ms. This also makes it possible to encode sequential cyclic or
acyclic processes like CSP [7].

SimB also intends to cater for models managing time explicitly, e.g., the
models of automotive systems [8]. An important task here is to synchronize
SimB annotations with the model’s time, i.e., to adapt the timing behavior.
This is enabled by the fact that SimB activation deadlines do not have to be
static but can be computed from the model’s constants and variables. Hence,

2 The fact that invariant proof obligations encode an induction proof, the B method
implicitly assumes that there are no Zeno runs (i.e., there are no infinitely many
events during any given finite time period).

84 F. Vu et al.

event activation can take an explicit time or deadline variable from the model
into account. In conclusion, timing behavior is encoded such that events activate
each other to be executed at a specific time in the future.

Event Activation. There are two issues regarding the activation of events with
timing behavior:

1. Which event is selected first when many are activated at the same time?
2. How is a new event activation processed if the same event is already queued

for execution in the future?

To tackle the first problem, the modeler can assign a priority when annotating
an event to control which event is selected first. By default, their priorities are
defined by the order they appear in the SimB annotations. The second problem is
solved by adding another event activation to the queue by default, i.e., there are
multiple activations for the same event. To make our encoding of timing behavior
more flexible, it is possible to force SimB to keep just a single activation. Here,
it must be specified whether the new activation should be ignored, or whether
the maximum or minimum time of both activations should be taken.

2.2 Encoding Simulation Probabilities

There are three possibilities where probability can be applied to an (Event-) B
model:

1. Probabilistic choice in non-deterministic assignments (e.g., x :: S)
2. Probabilistic choice between parameters
3. Probabilistic choice between events

As explained by Hallerstede et al. [9], a model becomes very difficult to under-
stand when it features probabilities besides non-deterministic assignments. Con-
sider different versions to model a coin toss as portrayed in Listing 2. The
designer could model it either with non-determinism (1), with a parameter (2),
or with two different events (3). In our approach, probabilities are not encoded
in the model as we do not extend the B language. Instead, probabilities are
encoded in SimB annotations, which will be explained in Sect. 3 more in detail.

toss = BEGIN lastToss :: {{Heads}, {Tails}} END // (1)

toss(c) = PRE c : CoinSide THEN lastToss := {c} END // (2)

toss_heads = BEGIN lastToss := {Heads} END; // (3)
toss_tails = BEGIN lastToss := {Tails} END

Listing 2. Possibilities to Model a Coin Toss

To cover simulation for a wide range of models, it is thus necessary to enable
the simulator to control all of the three encodings above. Otherwise, the existing
models have to be rewritten to a given format to make the simulator feasible.

Validation of Formal Models by Timed Probabilistic Simulation 85

3 Simulation Infrastructure

Based on the aforementioned ideas, we now introduce our concept of activating
events via annotations combining both timing and probabilistic behavior. An
important issue is keeping the syntax and the semantics of the SimB annotations
understandable. Even though both timing and probabilistic behavior are part of
SimB, they should never be mixed up together at the same level. It becomes
even more complicated when the modeler has to foresee that an event might be
disabled.

SimB Simulator

SimB Annotations

Scheduling Table

Formal Model

ProB Animator

Input

updates and reads

Input

evaluates formulas
executes events

Fig. 2. Interaction of SimB Simulator with ProB
using annotations

After loading a formal model
into ProB, corresponding anno-
tations containing probabilis-
tic and timing elements are
loaded into the SimB simula-
tor. Figure 2 shows the architec-
ture of the interaction of SimB
with ProB. SimB uses ProB
to evaluate formulas and to exe-
cute events. Again, SimB man-
ages a scheduling table to store
the event activation’s scheduled
time. An event is executed if
these two conditions are met: it is activated for now and it is enabled together
with the chosen values for parameters and non-deterministic variables.

Concept of Activation. Initially, SimB activates SETUP CONSTANTS and INITIAL-
ISATION, whereupon the other events are activated. For each event executed by
SimB, the modeler can annotate (multiple) events for activation in the future.
There are activations of two kinds:

1. direct activations which execute an event after some delay,
2. probabilistic choices, which again lead to other activations, each labeled with

a probability. The sum of the probabilities must be equal to 1. It is possible
to chain multiple such activations together, but eventually, a direct activation
must be reached.

Each activation is associated with an id. A direct activation always stores
the activated event’s name. Optionally, it also contains information to con-
trol the scheduled time, the (probabilistic) choice between parameters and non-
deterministic variables, the priority, additional guards, activation kind, and (mul-
tiple) activations to activate other events. In contrast, probabilistic choice acti-
vations contain the ids of the other activations with the corresponding probabil-
ities.

Those simulation parameters are not mined from true system executions. So,
it is the modeler’s responsibility to define them such that realistic simulations
are created. Using SimB, the user can vary the simulation parameters for the
same model to see how it behaves afterwards. Regarding time and probabilities,

86 F. Vu et al.

it is not only possible to specify constant values, but also to use B formulas
which are evaluated in the current state. Thus, it is also possible to vary the
simulation parameters within a single simulation.

An example for SimB annotations for (3) of Listing 2 specifying a coin toss
each 500 ms is shown in Listing 3. This results in the corresponding activa-
tion diagram graph portrayed in Fig. 3 (direct activations in yellow, probabilistic
choice in red).

th toss_heads

toss

500ms

tt toss_tails500ms

0.5

0.5

activating

activating

INIT

Fig. 3. Activation diagram for Listing 3 (Color
figure online)

When simulating coin tosses
with the SimB annotations in
Listing 3, SimB first activates the
INITIALISATION. After initializ-
ing the model, SimB activates
the probabilistic choice identified
with toss. This again activates
either the direct activation tt
or th, each with a probability
of 50%. Either toss heads or
toss tails is then scheduled for
execution in 500 ms. After executing one of the two events, the probabilistic
choice toss is triggered again, which results in the next cycle simulating a coin
toss.

{
"activations ": [
{"id":" $initialise_machine", "execute ":" $initialise_machine",
"activating ":" toss"},

{"id":" toss", "chooseActivation ":{"th": "0.5" , "tt": "0.5"}} ,
{"id":"th", "execute ":" toss_heads", "after ":500 , "activating ":" toss"},
{"id":"tt", "execute ":" toss_tails", "after ":500 , "activating ":" toss"}

]
}

Listing 3. SimB Annotations for Coin Toss (3) in Listing 2

Scheduling Algorithm. The scheduling algorithm is separated into two parts:
initialization and simulation loop.

Initially, simTime and delay are both assigned to 0. While simTime stores
the simulation’s current time, delay describes the time for the next sched-
uled events. The scheduling table st is initialized storing scheduled times for
direct activations. They are identified by their id. Again, direct activations
are stored in annEvents. In the beginning, the scheduling algorithm activates
INITIALISATION and SETUP CONSTANTS with time(INITIALISATION) = 0 and
time(SETUP CONSTANTS) = 0 respectively. To handle SETUP CONSTANTS before
the INITIALISATION, it is always assigned with a higher priority. For these two
special cases, the user is not able to define the priority.

In the following, the simulation loop is described in Algorithm 1. The loop
runs until reaching the ending condition, e.g., when the scheduling table is empty
and thus no event can be fired anymore, or when the simulator is interrupted
by the user. Within each simulation step, simTime is updated. Similarly, each

Validation of Formal Models by Timed Probabilistic Simulation 87

Algorithm 1: Algorithm for Simulation Loop
1 procedure simulationLoop()
2 while not endingConditionReached() // Finish at ending condition

3 simTime := simTime + delay // Update time

4 for each annEvent ∈ annEvents // Update scheduling table

5 for each activation ∈ st(id(annEvent))
6 time(activation) := time(activation) - delay
7 executeActivatedEvents() // Execute activated events

8 delay := minimum(activationTimes(st)) // Update delay

9 wait delay // Wait delay (only in real-time simulation)

10 end procedure

scheduled activation’s time is reduced by delay. Afterwards, activated events
are processed by executeActivatedEvents. Finally, delay is updated to the
time where the next events will be activated. Regarding real-time simulation,
i.e., simulation with wall-clock time, this is the waiting time until the next step.

Algorithm 2: Algorithm for Executing Activated Events
1 procedure executeActivatedEvents()
2 for each annEvent ∈ annEvents in order of priority

3 // Do not execute if ending condition reached

4 if endingConditionReached()
5 break
6 for each activation ∈ st(id(annEvent))
7 if time(activation) > 0 // Do not execute if not scheduled

8 break

9 // Remove activation from scheduling table

10 st(id(annEvent)) := st(id(annEvent)) \ {activation}
11 // Select enabled event matching event name,

12 // additional guards, and (probabilistically) chosen

13 // values for parameters and non-deterministic variables

14 transition := selectTransition(activation)

15 if transition exists
16 execute(transition) // Execute transition of activated event

17 activateEvents(annEvent) // activate other events

18 end procedure

Now, we refer to Algorithm 2 describing the execution of activated events.
To execute scheduled events, the simulator iterates over the direct activations in
order of their priority. When no priorities are specified the definition order in the
file is used. An activation is scheduled for this step if it is activated now, i.e., its
time is equal to 0. It is then removed from the scheduling table. When scheduling
activations in the future, each activation is always inserted sorted after the time
in the corresponding list. This makes it possible to iterate in each list until an
activation is taken, which is not scheduled for this step. Afterwards, an enabled

88 F. Vu et al.

event matching the stored name, additional guards, and the (probabilistic) choice
of parameters and non-deterministic variables is selected for execution if it exists.
Executing an event activates other events following the concept of activation,
which is realized by activateEvents.

4 Applying SimB for Validation

Real-Time Simulation. Using SimB annotations and the underlying model, a
modeler can play a single simulation in real-time, i.e., wall-clock time. This
provides a feeling of how the model might behave in practice. The modeler can
then manually check whether the model behaves as desired.

Monte Carlo Simulation. SimB also supports Monte Carlo simulations [10]. Here
simulations can be performed faster than in real-time (i.e., SimB does not have
to wait for the delay to expire, as long as it keeps track of the elapsed time in the
model). In SimB, the modeler can specify a start predicate, a start time, or a
number of steps that a single generated scenario must have reached. Furthermore,
it is possible to define a number of steps, an end predicate, or an end time where
the simulation for generating a single scenario should end. In addition to Monte
Carlo simulation, the modeler can provide probabilistic and timing properties
that are checked on the resulting simulations taking the start condition into
account. Two validation techniques are considered here: hypothesis testing [11]
and estimation [12]. During Monte Carlo simulation, the simulator also collects
statistical information, e.g., the likelihood of enabled events or the likelihood of
a behavior (within a certain time).

Given several simulations, a hypothesis, and a significance level, the modeler
could ask a question whether to accept or reject the hypothesis. This is done
by checking whether a certain property is fulfilled to a given probability. Given
several simulations, one could also ask a question about a certain value, which is
then estimated. For example, let ve be the estimated value, and vd be the desired
value, it is then possible to check whether ve ∈ [vd − ε, vd + ε] for a given ε.

Compared to probabilistic (temporal) model checking [13], SimB does not
encode a Markov chain which is then used as a state space with probabilities. Fur-
thermore, SimB does not validate probabilistic temporal properties expressed as
PCTL [14] formulas. There are also statistical model checking techniques apply-
ing Monte Carlo simulation, hypothesis testing, and estimation. Scenarios are
generated whereupon PB-LTL formulas [15], or BLTL formulas with a threshold
[16] are checked. Since SimB does not check temporal formulas, it is not possible
to validate properties over infinite paths. As mentioned before, one can define a
start condition as well as an end condition between which a certain property is
checked with a probability.

Timed Trace Replay. Given a single simulation run, one can also save it to a trace
file with the particular timing encoded as SimB annotations. Afterwards, this
timed trace can be re-played in real-time. It does not matter whether the simu-
lation was generated from real-time simulation or Monte Carlo simulation. The

Validation of Formal Models by Timed Probabilistic Simulation 89

resulting SimB annotations do not contain any probabilistic elements. Consider
a simulation generating a trace with length n where the timestamp of the i-th
event is ts(i). It is then possible to generate SimB annotations where executing
event i activates the event i+1 with annotation i+1 and with a scheduled time
of ts(i + 1) − ts(i). Nevertheless, it is still challenging to check whether a timed
trace can be re-generated from a modified model or SimB annotation. It might
then be necessary to save more information about the simulator’s history, e.g.,
which probabilistic choices have been taken into account or which activations
have been discarded.

5 Case Studies

This section demonstrates the application of SimB to various case studies. See
Table 1 for a complete list of applied case studies, which are accessible online3.

Real-Time Simulation and Timed Trace Replay. In the context of real-time sim-
ulation, we only focus on the automotive case study [8]. As a case study, the
driver’s inputs on the pitman controller and the warning lights are simulated.
Every time the driver activates the pitman controller or the warning lights, a
sequence of events blinking the lights until the driver’s next input is triggered.

A property to be validated is, e.g., that the corresponding lights are turned
on with full intensity within a certain time after the driver makes an input on
the pitman controller. Another property for validation is that the lights never
turn on until the driver makes an input on the pitman controller or the warning
lights button.

Within the model, the time is modeled as a variable that is increased by
events, which are responsible for passing the time, passing the time until the
next deadline, blinking the lights and passing the time until the next deadline,
and passing the time until the next deadline with a timeout. By following the
principles of our simulation approach (see Sect. 2), it was possible to adapt to
the model’s timing specification.

Figure 4 shows an actual simulation illustrated as VisB [17] visualizations.
Using VisB alone, one can create SVG images and an associated VisB file for a
model. Within the VisB file, it is possible to define which operation is triggered
when clicking an SVG element. Here, one can also manipulate the style of the
images by using B formulas which are evaluated in each state. In combination
with SimB, a simulation can then be seen as an animated picture similar to a
GIF picture. As shown in Fig. 4a, the engine is turned on, the pitman controller
is in a neutral position, the warning lights button is not pressed, and the lights
are turned off. After 1.7 s have passed, the driver decides to move the pitman
controller to Upward7, which activates the lights on the right-hand side (see
Fig. 4b). With a delay of 100 ms, the lights on the right-hand side turn on
whereupon they blink every 500 ms (see Fig. 4c–Fig. 4e).

3 Available at https://github.com/favu100/SimB-examples.

https://github.com/favu100/SimB-examples

90 F. Vu et al.

(a) State at 0s (b) State at 1.7s (c) State at 1.8s

(d) State at 2.3s (e) State at 2.8s

Fig. 4. Simulation example for the automotive case study [8]

Timed traces are successfully captured from the real-time simulation as well
as Monte Carlo simulation. As explained before, they are stored as SimB anno-
tations. Thus, re-playing them works similar to real-time simulation.

Monte Carlo Simulation. SimB is also used for Monte Carlo simulation, together
with hypothesis testing and estimation, to validate the timing and probabilistic
behavior of formal models. The results are shown in Table 1. Validated properties
also include “almost-certain” properties, i.e., properties describing a random
event to occur with probability 1. The examples Dueling Cowboys, Tourists (aka
Rabin’s Choice Coordination), and Leader Election (aka Herman’s probabilistic
self-stabilization) are taken from the work of Hallerstede et al. [9] and Hoang [18].
All experiments are done with a fixed seed4 in ProB2-UI5 on a MacBook Air
with 8 GB of RAM and a 1.6 GHz Intel i5 processor with two cores. A significance
level and an ε-value are set for hypothesis testing and estimation respectively
(as described in Sect. 4). Both values are set to 1% for 100 runs. Again, they are
set to 0.1% for ≥10 000 runs.

Simulations with ≥10 000 runs were calculated within 4 min, with each of
them executing more than 500 000 events. In contrast, those simulations with
only 100 runs take up to 1 h to terminate. Here, a significantly lower number
of events (≤65 000 events) are executed for each simulation. Currently, SimB
evaluates all outgoing transitions before choosing one. This can obviously lead to
performance issues. Particularly, a very large number of transitions are evaluated

4 Seed is a number used to initialize the random number generator to make the results
are reproducible. We used 1000 as seed.

5 https://github.com/hhu-stups/prob2 ui.

https://github.com/hhu-stups/prob2_ui

Validation of Formal Models by Timed Probabilistic Simulation 91

in the simulations with 100 runs. For the Dueling Cowboys we produced a more
abstract version with a smaller state space, enabling us to simulate 10 000 runs
in less than 13 s. In future, SimB could be improved such that it only evaluates
a single transition given the probabilistic annotations.

Table 1. Application of SimB validation techniques based on Monte Carlo simulation
to case studies with number of runs, number of Evaluated Transitions (ET), Runtime
in Seconds (RT), and the result of validation

Model Simulation Property Runs ET RT Result

Coin toss Fair Tosses Heads in 50% of all

Tosses

1 000 000 7 8.19 ✓ (49.93%)

Eventually Heads in

100 Tosses

10 000 7 3.43 ✓ (100%)

Rolling dice Fair Dices 6 in 16.67% of all

Rolls

1 000 000 43 10.33 ✓ (16.66%)

Eventually 6 in 100

Rolls

10 000 43 6.09 ✓ (100%)

Dueling cowboys 100 Cowboys, Termination in 125

Shots

100 1 720 854 1676.06 ✗ (56%)

80% Accuracy Termination in 250

Shots

100 1 723 302 1703.74 ✓ (100%)

Dueling cowboys

(abstract)

100 Cowboys, Termination in 125

Shots

10 000 201 11.01 ✗ (63.13%)

80% Accuracy Termination in 250

Shots

10 000 201 12.51 ✓ (100%)

Tourists 100 Tourists Termination in 125

Moves

100 956 468 2019.1 ✗ (0%)

Termination in 300

Moves

100 1 081 099 3195.14 ✓ (100%)

Leader Election 10 Nodes Termination in 250

Steps

10 000 37 917 201.6 ✗ (99.46%)

Termination in 500

Steps

10 000 37 884 201.36 ✓ (100%)

Traffic Light (TL) Cars TL from Red to Green in 0.5 s

for Cars

1 000 000 5 9.61 ✗ (0%)

Red to Green Red to Green in 1 s

for Cars

1 000 000 5 9.84 ✓ (100%)

Lift Basement to 2nd

floor

Reaching 2nd floor in

10 s

1 000 000 47 48.11 ✗ (0%)

Reaching 2nd floor in

20 s

1 000 000 47 46.57 ✓ (100%)

Lift Basement to stop

at 1st floor stop

at 1st floor

Reaching 2nd floor in

20 s

1 000 000 70 78.36 ✗ (0%)

Automotive Case

Studya
Random Input on

Pitman Controller

and Hazard

Warning Signal

with Engine on

Left light blinks 100

ms with full intensity

after moving pitman

to Downward7

10 000 106 22.73 ✗ (99.17%)

Left light blinks 500

ms with full intensity

after moving pitman

to Downward7

10 000 106 22.37 ✓ (100%)

Lights never turn on

until it is activated

via pitman or

warning lights

10 000 74 9.51 ✓ (100%)

a Specification was optimized for model checking

92 F. Vu et al.

6 Related Work

In this section, we compare our work with the state of the art in the field of
modeling and simulation of probabilistic and timing behaviors.

Modeling and Verification of Probabilistic Behavior. Hallerstede et al. [9] intro-
duce probabilistic events for Event-B in which the modeler can use probabilis-
tic assignments in place of non-deterministic assignments (but not probabilistic
choice between events nor for parameters, and there are no explicit values for
the probabilities used). Based on this work, Hoang [18] presents an approach
to verify almost-certain properties. In contrast, SimB simulates existing models
by using additional annotations. This makes it possible to gain better insights
on how the model would behave in a real-world application. SimB can use sta-
tistical techniques to validate the presence of a desired behavior with detailed
feedback. We achieve this by building on top of the semantics of (Event-)B, not
by changing it at the core. Our approach is more empirical than formal and
proof-based.

Legay et al. [13,16] provide an overview of statistical model checking includ-
ing probabilistic model checking and numerical approaches. While the former
is applied to a Markov chain (used as a state space with probabilities), the lat-
ter approximates certain values during validation. We do not encode a Markov
chain in SimB and our work does not apply probabilistic model checking. Fur-
thermore, SimB does not validate probabilistic temporal properties expressed as
PCTL [14] formulas. There are also statistical model checking techniques apply-
ing Monte Carlo simulation, hypothesis testing, and estimation. This is done by
generating simulations and checking timing properties expressed as BLTL formu-
las with a threshold. Abdellatif et al. [15] present a simulation-based approach
to generate attacking scenarios to validate probabilistic properties expressed as
PB-LTL formulas in a model of smart contracts and the blockchain. Similar to
our work, safety properties are also checked with fault tolerance and estimation
of error probability. In contrast, we provide a property that is checked for each
generated simulation, e.g., whether a predicate is eventually true between the
starting condition and the ending condition of a simulation. Since SimB does not
check temporal formulas, it is not possible to validate probabilistic properties
over infinite paths.

Modeling and Verification of Timing Behavior. To model and verify real-time
behavior, the modeler could use formalisms, such as timed automaton [19], with
existing model checkers, e.g., Uppaal [20]. There are also approaches to ver-
ify both probabilistic and real-time behavior, e.g., by using the model checker
PRISM which is applied to probabilistic timed automaton [21]. To check such
properties in (probabilistic) timed automata, reachability analysis is applied. Its
task is to check whether a state is reachable with the given timing (and prob-
abilistic) properties. Our proposed approach is a lightweight solution to simu-
late existing models to gain additional insights into how they might behave in
practice. SimB simulates a model until a certain condition, a certain time, or
a certain number of steps is reached. Probabilistic and timing properties are

Validation of Formal Models by Timed Probabilistic Simulation 93

then validated with statistical methods on the resulting traces without apply-
ing reachability analysis. Thus, SimB is not meant to replace other approaches
based on timed automata. Abdellatif et al. [22] present a scheduling approach
to check whether the modeled program is implementable, holding the defined
timing properties. Again, one can also model concrete time in discrete-time for-
malisms, e.g., by following an approach presented by Leslie Lamport for TLA+
[23], or Event-B by following a timing constraint pattern discussed by Rehm et al.
[6] and Mashkoor et al. [5]. Timing properties can then be verified with existing
provers and model checkers in the corresponding languages. As aforementioned,
our work simulates the underlying (Event-) B model by using annotations for
timing and probabilistic behavior. SimB annotations can be used to match the
modeled time, see, e.g., the automotive case study [8]. Furthermore, SimB can
also simulate user behavior.

Simulators. JeB [24] is a framework, which translates Event-B models into
JavaScript programs for simulation. Models are sometimes too abstract for ani-
mation tools such as ProB. To enable validation of these models anyway without
refining, they are translated into executable programs. One can also insert pieces
of code to control the simulation. The challenge is to define the fidelity property
between the model and its translation [25]. In contrast, the task of SimB is not to
make models executable, but to simulate executable models to apply statistical
validation techniques. Therefore, SimB is built on top of the ProB animator.

Similar to our approach, Dieumegard et al. [26] present a simulator for an
anti-collision function of a small robotic rover based on Event-B to understand
how the specification behaves. Note that the simulator presented by Dieumegard
et al. is not a generic one. So, it is limited to the robotic rover case study.

Co-Simulation. In VDM, simulation is already more common than animation
or model checking. It has now been extended by a co-simulation toolset named
INTO-CPS [27]. INTO-CPS tools also contain design space exploration imple-
mented with search algorithms where simulation parameters may vary and sce-
narios outcomes evaluated. Thus, INTO-CPS can search for optimal simulation
parameters. In SimB, it is still a challenge for the modeler to choose simulation
parameters such that realistic scenarios are generated. The modeler could, e.g.,
vary the simulation parameters for the same model to see how it behaves after-
wards. But this process has to be done manually. Compared to this co-simulation
tool-set, our approach is somewhat limited but much more lightweight. For exam-
ple, there is neither a continuous simulation tool running nor an FMI interface
in SimB. In the future, SimB annotations could actually be used on top of a
co-simulation using (Event-) B.

Other Formalisms. It would have been possible to use CSP control annotations
for (Event-) B models [28], as available in ProB [29]. But, CSP does not cater
to probabilities or time. The Timed CSP interpreter from [30] is not available in
the current release of ProB, and also lacks probabilistic features. There are also
formalisms combining probabilistic and timing behavior such as Probabilistic
Time Petri Nets [31]. Since this formalism is not supported in ProB, it would

94 F. Vu et al.

be necessary to implement an interpreter to control the model. SimB is designed
to be as simple as possible, but strong enough for simulation of models with
probabilistic and timing behavior. Moreover, on a technical side, our annotations
also work for other formalisms (such as TLA+).

7 Conclusion and Future Work

In this paper, we presented SimB – a simulator for formal models, which adapts
the concept of activations annotating events with timing and probabilistic ele-
ments. Here, it was particularly important to separate probabilistic and timing
behavior from each other to keep the syntax and semantics of SimB understand-
able. By building SimB on top of ProB, it was possible to support formalisms
that are supported by ProB such as B, Event-B, Z, TLA+, and CSP. SimB is
capable of simulating environment inputs, e.g., by users, and models’ behaviors.

In this work, the usability of SimB was demonstrated in several examples.
SimB can either be used to extend existing models by timing and probabilistic
behavior, or adapt to models where time is modeled as a variable. SimB is capa-
ble to validate formal models using Monte Carlo simulation, hypothesis testing,
estimation, and timed trace replay. Using Monte Carlo simulation, the modeler
can generate scenarios to gain insights into how the model might behave in real-
world. It is then possible to replay them with timing behavior, or to validate
timing and probabilistic properties with hypothesis testing and estimation.

More information on SimB with screenshots and a tutorial is available at:

https://prob.hhu.de/w/index.php?title=SimB

As future work, it would be possible to add more statistical validation meth-
ods. Furthermore, the performance of SimB could be improved. On the one hand,
SimB should compute a single transition given the defined probabilistic annota-
tions, rather than computing all and choosing afterwards. On the other hand,
one could apply code generation for SimB. To cover a wide range of models, it
would be necessary to target generated code from other high-level code genera-
tors such as B2Program [32], EventB2Java [33] or Asm2C++ [34]. Additionally,
we would also like to describe the semantics of SimB in formal logic. One could
then implement an interpreter and integrate it into ProB’s core. This could be
a way to reduce the overhead of SimB to ProB. Furthermore, it is then possible
to animate and model check (Event-) B models together with SimB annotations.

Regarding the future, one could investigate how SimB can be used for co-
simulation. Furthermore, it is still a challenge for the modeler to choose simula-
tion parameters such that realistic scenarios are generated. So, another future
work would be to analyze how optimal simulation parameters could be explored.

Eventually, we intend to use SimB in the context of validation obligations [35],
which is the idea of breaking down the validation of a formal model into smaller
tasks and associating them with each refinement step. Validations should then
be applicable and re-usable for the whole software development life cycle.

https://prob.hhu.de/w/index.php?title=SimB

Validation of Formal Models by Timed Probabilistic Simulation 95

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
3. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

4. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

5. Mashkoor, A., Jacquot, J.-P.: Utilizing Event-B for domain engineering: a critical
analysis. Requir. Eng. 16(3), 191–207 (2011)

6. Rehm, J., Cansell, D.: Proved development of the real-time properties of the IEEE
1394 root contention protocol with the event-B method. In: Proceedings ISoLA,
pp. 179–190 (2007)

7. Hoare, T.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978)

8. Leuschel, M., Mutz, M., Werth, M.: Modelling and validating an automotive system
in classical B and Event-B. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020.
LNCS, vol. 12071, pp. 335–350. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-48077-6 27

9. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in Event-B. In:
Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73210-5 16

10. Mooney, C.Z.: Monte Carlo Simulation, vol. 116, Sage Publications (1997)
11. Kendall, M.G., Stuart, A., Keith Ord, J.: Kendall’s Advanced Theory of Statistics.

Oxford University Press, Oxford (1987)
12. Fisher, R.A.: Theory of statistical estimation. Math. Proc. Cambridge Philos. Soc.

22(5), 700–725 (1925)
13. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.

In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

14. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6, 512–535 (1995)

15. Abdellatif, T., Brousmiche, K.-L.: Formal verification of smart contracts based on
users and blockchain behaviors models. In: Proceedings NTMS, pp. 1–5 (2018)

16. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statisti-
cal model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

17. Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with
SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS,
vol. 12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-48077-6 21

18. Hoang, T.S.: Reasoning about almost-certain convergence properties using Event-
B. In: Proceedings AVoCS. LNCS, vol. 81, pp. 108–121 (2014)

19. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-540-73210-5_16
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21

96 F. Vu et al.

20. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

21. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMAT-
S/FTRTFT -2004. LNCS, vol. 3253, pp. 293–308. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30206-3 21

22. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In: Proceedings of the Tenth ACM International Conference on
Embedded Software, pp. 229–238. ACM (2010)

23. Lamport, L.: Real-time model checking is really simple. In: Borrione, D., Paul, W.
(eds.) CHARME 2005. LNCS, vol. 3725, pp. 162–175. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560548 14

24. Mashkoor, A., Yang, F., Jacquot, J.-P.: Refinement-based Validation of Event-B
Specifications. Softw. Syst. Model. 16(3), 789–808 (2016). https://doi.org/10.1007/
s10270-016-0514-4

25. Mashkoor, A., Jacquot, J.-P.: Validation of formal specifications through transfor-
mation and animation. Requirements Eng. 22(4), 433–451 (2016). https://doi.org/
10.1007/s00766-016-0246-6

26. Dieumegard, A., Ge, N., Jenn, E.: Event-B at work: some lessons learnt from an
application to a robot anti-collision function. In: Barrett, C., Davies, M., Kahsai, T.
(eds.) NFM 2017. LNCS, vol. 10227, pp. 327–341. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-57288-8 24

27. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019)

28. Ifill, W., Schneider, S., Treharne, H.: Augmenting B with control annotations. In:
Julliand, J., Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 34–48. Springer,
Heidelberg (2006). https://doi.org/10.1007/11955757 6

29. Butler, M., Leuschel, M.: Combining CSP and B for specification and property veri-
fication. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582,
pp. 221–236. Springer, Heidelberg (2005). https://doi.org/10.1007/11526841 16

30. Dragon, M., Gimblett, A., Roggenbach, M.: A simulator for timed CSP. In: Pro-
ceedings AVoCS. Electronic Communications of the EASST, vol. 46 (2011)

31. Emzivat, Y., Delahaye, B., Lime, D., Roux, O.H.: Probabilistic time petri nets. In:
Kordon, F., Moldt, D. (eds.) PETRI NETS 2016. LNCS, vol. 9698, pp. 261–280.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39086-4 16

32. Vu, F., Hansen, D., Körner, P., Leuschel, M.: A multi-target code generator for
high-level B. In: Proceedings iFM 2019, pp. 456–473 (2019)

33. Cataño, N., Rivera, V.: EventB2Java: a code generator for Event-B. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 166–171.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 13

34. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from abstract state machines specifications. J. Softw. Evol. Process.
32(2), e2205 (2020)

35. Mashkoor, A., Leuschel, M., Egyed, A.: Validation obligations: a novel approach
to check compliance between requirements and their formal specification. In: ICSE
2021 NIER (2021)

https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/978-3-540-30206-3_21
https://doi.org/10.1007/11560548_14
https://doi.org/10.1007/s10270-016-0514-4
https://doi.org/10.1007/s10270-016-0514-4
https://doi.org/10.1007/s00766-016-0246-6
https://doi.org/10.1007/s00766-016-0246-6
https://doi.org/10.1007/978-3-319-57288-8_24
https://doi.org/10.1007/978-3-319-57288-8_24
https://doi.org/10.1007/11955757_6
https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/978-3-319-39086-4_16
https://doi.org/10.1007/978-3-319-40648-0_13

Short Articles

Sterling: A Web-Based Visualizer
for Relational Modeling Languages

Tristan Dyer1(B) and John Baugh2

1 Brown University, Providence, RI, USA
tristan dyer@brown.edu

2 North Carolina State University, Raleigh, NC, USA

Abstract. We introduce Sterling, a web-based visualization tool that
provides interactive views of relational models and allows users to cre-
ate custom visualizations using modern JavaScript libraries like D3 and
Cytoscape. We outline its design goals and architecture, and describe
custom visualizations developed with Sterling that enable verification
studies of scientific software used in production. While development is
driven primarily by the Alloy community, other relational modeling lan-
guages are accommodated by Sterling’s data agnostic architecture.

Keywords: Alloy · Sterling · Formal methods · Visualization

1 Introduction

Model finding tools like Alloy enable a lightweight approach to design and rea-
soning about complex software systems. Such tools provide push-button analysis
for both checking assertions within bounded scopes, and for generating instances
that satisfy a property of interest. An attractive feature of Alloy is the immedi-
ate feedback provided by visualizations, allowing users to inspect instances and
counterexamples in order to identify design problems. The ability to communi-
cate visual information intuitively therefore plays a key role in determining the
effectiveness of interactions with the user [5].

The built-in visualizer in the Alloy Analyzer can display an instance as a
directed graph in which nodes represent atoms and edges represent tuples of
relations. To help users better understand an instance, basic properties of the
graph such as color and shape can be customized, and graph nodes can be
repositioned manually to achieve a clearer layout. Additionally, the graph view
supports “projection,” a feature most commonly used with models of dynamic
systems, in which an instance is displayed from the perspective of an atom or
set of atoms. When an instance of such a model is projected over time, the user
is able to step through snapshots of individual states in sequence.

Despite these capabilities, some instances can be difficult to interpret as mod-
els grow in size and complexity. Some well-known issues, for instance, include the
inability to drag nodes out of the rows into which they are initially laid out [3,8].

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 99–104, 2021.
https://doi.org/10.1007/978-3-030-77543-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-77543-8_7

100 T. Dyer and J. Baugh

In addition, the graph layout is recalculated any time a new instance is generated
or the projection is changed, so the user is forced to reinterpret the entire graph
if, for example, they are stepping through the state atoms in sequence [3,9,12].
Various approaches have been proposed to address these and other issues, either
by extending the existing visualizer [12] or by introducing new tools [3,5,8]. Our
own experiences with Alloy in the field of scientific computing have highlighted
the need for better visualization approaches in general, and for an interface that
can also depict spatial relationships—not just topological ones—while maintain-
ing consistency in those relationships when dynamic updates occur, as they do
in problems with time-varying state.

For instance, in one such study, Baugh and Altuntas [2] use Alloy to explore
implementation choices and ensure soundness of an extension made to a large-
scale storm surge application used in production. To be physically meaningful,
models representing finite element meshes—which can be thought of as a trian-
gulation of a surface—are constrained to include only those that have a planar
embedding, and therefore do not contain overlapping triangles. Working with
relational depictions alone means “untangling” each instance as it occurs, lead-
ing to the study’s conclusion that “more than any extension to Alloy, what would
have benefited our study most is a tool capable of automatically producing pla-
nar embeddings of meshes from Alloy instances, which proved to be tedious to
do by hand.”

A subsequent study [4] with Alloy focused on bounded verification of sparse
matrix formats, which use array indirection and other structure to avoid stor-
ing zeroes. Dense matrices are modeled as relations mapping indices to values,
producing dozens of tuples that clutter and overrun any visualization attempt
with edges. The sparse matrices themselves, and the dynamic state changes that
accompany them for operations like matrix multiplication, make visualizations
nearly impossible to interpret.

2 Sterling Design and Architecture

Motivated by these studies, and drawing on feedback and suggestions from the
2018 Workshop on the Future of Alloy, we have developed an approach that
builds on the strengths of existing visualizations. Sterling’s design is based on
the following principles: the visualizer should (1) implement and extend the capa-
bilities already present in Alloy, (2) employ a modern architecture built using
popular languages and well established libraries, and (3) provide functionality
for creating domain specific visualizations.

Consistent with these principles, Sterling is a web application,1 built upon a
popular web technology stack using the React and Redux libraries, and packaged
with a custom build of Alloy. A client-server relationship is established between
Sterling and Alloy by an embedded web server, enabling instances to be imme-
diately visualized in Sterling as they are generated by Alloy. The user interface
is similar to Alloy’s own, providing graph and table views which extend the
1 A Sterling demo with examples can be found at https://sterling-js.github.io.

https://sterling-js.github.io

Sterling: A Web-Based Visualizer for Relational Modeling Languages 101

functionality of their counterparts in Alloy, while adding a “script” view that
provides users with the ability to create custom visualizations from instance
data by writing JavaScript code. Communication between Alloy and the indi-
vidual views is managed using a mediated model-view architecture, illustrated
in Fig. 1. Consequently, other relational logic and model finding tools may also
employ Sterling for visualization, so long as data is provided to Sterling in the
Alloy XML format.

Script View Graph View

Mediator

Instance
JSON

Instance
JSON

npm JS Libraries

Alloy

Instance XML

Instance
Requests

React Redux

Fig. 1. The sterling architecture.

The Sterling graph view offers the same functionality as the Alloy graph view,
but also provides a few key extensions. Most notably, graph elements are not
restricted to rows, and users may freely arrange graphical elements to make the
display more readable. Furthermore, the layout algorithm is not automatically
executed when the projection is changed or a new instance is generated, and
so graphical elements remain static as users step through stateful models and
generate instances.

The Sterling script view provides an environment for the rapid development
of custom visualizations by bringing together a text editor, a blank canvas, and
a JavaScript execution environment, giving users a basic “code sandbox” in
which they can create visualizations based on instance data using their favorite
JS libraries. Within the script view environment, all instance data—the signa-
tures, fields, atoms, and tuples—are exposed as JS variables. Additionally, users
have direct access to the npm package repository, which can be used to add
visualization (or any other useful) libraries to the scripting environment. This
combination enables, for example, a user to bind atoms to shapes using the
D3 visualization library, and to calculate their positions based on relationships
defined by tuples. We have found this paradigm to be particularly useful for
visualizing instances of models with inherent spatial properties. For example, a
planar embedding of a finite element mesh, as previously described, is shown in
Fig. 2. More custom visualizations, including ones for sparse matrices and some
common puzzles, can be found in the interactive demo on the Sterling website.

102 T. Dyer and J. Baugh

Fig. 2. Finite element mesh as a planar embedding in the script view.

3 Creating Scripts and Models

The script view is designed to integrate with the iterative design process that
is typical of Alloy, and as such, users receive the same kind of immediate visual
feedback provided by the graph view, with the added benefit of complete control
over the visual approach used to display instances. In typical usage of the script
view, a user begins by writing a model and executing a command to generate
an instance. The instance is automatically sent to Sterling, where the user then
writes a script in the script view. To execute the script and generate the visu-
alization, the user presses “Ctrl+Enter” or clicks the “Execute” button located
at the top of the script editor. The user can continue to refine the visualization
by editing and rerunning the script, or use the “Next” button to explore more
instances. Each time an instance is generated, Sterling automatically executes
the script to re-render the visualization. This automatic execution continues
when the user returns to Alloy, refines the model, and generates new instances.
If the model is changed in a way that causes the visualization script to throw an
error, the user is notified, and they must then update the visualization script to
reflect the new model.

In practice we have found visualization scripts typically start out simple
and grow in complexity alongside the model. For example, early iterations of the
previously described matrix models employed the Cytoscape JS library to create
interactive “snapshot” views of instances, as shown in Fig. 3a. These snapshots,
described by Jackson [6], proved useful in the development and understanding
of both the hierarchical and relational structure of the models. As the structure
of the models became more concrete and focus shifted to modeling the behavior
of sparse matrix operations, the visualization script evolved to provide a more
realistic view of matrices as well as a clear depiction of state change, as shown
in Fig. 3b.

Sterling: A Web-Based Visualizer for Relational Modeling Languages 103

(a) A snapshot view of a dense matrix

(b) A sparse matrix update operation

Fig. 3. Scripts for matrix models at (a) early and (b) late stages of development.

For users who are comfortable using JavaScript, particularly those with
experience using popular JS visualization libraries, creating custom visualiza-
tions from Alloy instances is straightforward. To support users with little or
no experience, the Sterling website provides tutorials and numerous examples
that demonstrate basic visualization techniques. Furthermore, scripts capable of
generating custom visualizations for some common modeling paradigms, such as
binary trees and directed graphs, are available on the website and can be used
out-of-the-box.

4 Conclusion

Sterling addresses some of the common issues identified with existing visualiza-
tions in Alloy, and introduces a script view to enable development of custom
visualizations without sacrificing the immediate visual feedback provided by the
Alloy Analyzer. The Sterling architecture and visualization approach take inspi-
ration from other tools developed to address certain visualization challenges in
Alloy and other formalisms. Alloy4Fun [8] and BMotionWeb [7] are both web-
based tools that leverage the popularity of the JavaScript programming language

104 T. Dyer and J. Baugh

and the availability of robust data visualization libraries, and PVSio-Web [10]
employs a client-server architecture to enable coupling of a formal verification
tool with a web-based interface. VisB [11], a tool built upon Java, JavaFX, and
JavaScript, enables the creation of interactive SVG visualizations for models
developed in ProB using an approach that does not require user to have prior
knowledge of JavaScript.

Development is ongoing and part of the lead author’s postdoc at Brown
University, where Sterling’s flexible architecture is being leveraged to develop
user studies with the goal of better understanding the role of visualization and
user interaction in state-based modeling. Additionally, Sterling is the visualizer
for an Alloy-like model finder called Forge [1], which is being developed at Brown
University and is used to teach a Logic for Systems class of over 60 students.

Acknowledgments. We thank Shriram Krishnamurthi, Tim Nelson, and Kathi Fisler
for their ideas and support, Mia Santomauro for the Sterling custom visualization guide,
and the Alloy community for their helpful suggestions. This work is partially supported
by the US NSF.

References

1. Forge. https://github.com/tnelson/Forge. Accessed 12 Apr 2021
2. Baugh, J., Altuntas, A.: Formal methods and finite element analysis of hurricane

storm surge: a case study in software verification. Sci. Comput. Program. 158,
100–121 (2018)

3. Couto, R., et al.: Improving the visualization of Alloy instances. Electron. Proc.
Theor. Comput. Sci. 284, 37–52 (2018)

4. Dyer, T., Altuntas, A., Baugh, J.: Bounded verification of sparse matrix computa-
tions. In: Proceedings of the Third International Workshop on Software Correctness
for HPC Applications, Correctness 2019, pp. 36–43. IEEE/ACM (2019)

5. Gammaitoni, L., Kelsen, P.: Domain-specific visualization of Alloy instances. In:
Ait, A.Y., Schewe, K.D. (eds.) Abstract State Machines, Alloy, B, TLA, VDM,
and Z, pp. 324–327. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43652-3 33

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2012)

7. Ladenberger, L., Leuschel, M.: BMotionWeb: a tool for rapid creation of formal
prototypes. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
403–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 27

8. Macedo, N., et al.: Sharing and learning Alloy on the web. arXiv abs/1907.02275
(2019)

9. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)

10. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: a tool for rapid
prototyping device user interfaces in PVS. Electron. Commun. EASST 69 (2014)

11. Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with
SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol.
12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
48077-6 21

12. Zaman, A., et al.: Improved visualization of relational logic models. Technical
report. CS-2013-04, University of Waterloo (2013)

https://github.com/tnelson/Forge
https://doi.org/10.1007/978-3-662-43652-3_33
https://doi.org/10.1007/978-3-662-43652-3_33
https://doi.org/10.1007/978-3-319-41591-8_27
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21

Extending ASMETA with Time Features

Andrea Bombarda1(B) , Silvia Bonfanti1 , Angelo Gargantini1 ,
and Elvinia Riccobene2

1 Dipartimento di Ingegneria Gestionale, dell’Informazione e della Produzione,
Università degli Studi di Bergamo, Bergamo, Italy

{andrea.bombarda,silvia.bonfanti,angelo.gargantini}@unibg.it
2 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

elvinia.riccobene@unimi.it

Abstract. ASMs and the ASMETA framework can be used to model
and analyze a variety of systems, and many of them rely on time con-
straints. In this paper, we present the ASMETA extension to deal with
model time features.

1 Introduction

Abstract State Machines (ASMs) [8] have been used to model several real case
studies [2,3,5]. The framework ASMETA [4] supports the design and analysis
of ASM models; it offers a wide set of features for model validation, verifica-
tion, and code generation. However, many real systems, especially those in the
safety-critical and cyber-physic domains, rely on time constraints. Modeling and
validating these kinds of systems using ASMETA may be difficult since it does
not offer primitives explicitly designed for dealing with time. According to the
ASM definition of monitored locations, time is a monitored function whose value
is written by the environment and read by the machine. Till now, the user has
been asked to act as the environment and directly set time values when required;
alternately, boolean monitored functions have been used to model passed time
events. This user-based way of time supplying can be an annoying and error-
prone activity and would require suitable constraints to guarantee time cor-
rectness, such as that time is a monotonic increasing function. Moreover, if the
specification uses multiple time units (like seconds and minutes), it is left to the
user to set them in a coherent way.

In this paper, we present the ASMETA library TimeLibrary that intro-
duces time as special monitored functions and the concept of timers. Moreover,
ASMETA is now extended to handle time in different ways (behind the above-
mentioned already existing ways): i) reading the time from the machine hosting
the simulation; ii) allowing the user to set the simulation time unit and enter the
time values as a normal monitored function, in case exact time instants chosen
by the user are needed to simulate critical behavior; iii) automatically increasing
the time values at each machine step according to parameters initially set by the
user.
c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 105–111, 2021.
https://doi.org/10.1007/978-3-030-77543-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_8&domain=pdf
http://orcid.org/0000-0003-4244-9319
http://orcid.org/0000-0001-9679-4551
http://orcid.org/0000-0002-4035-0131
http://orcid.org/0000-0002-1400-1026
https://doi.org/10.1007/978-3-030-77543-8_8

106 A. Bombarda et al.

module TimeLibrary
import StandardLibrary
export ∗
signature:
abstract domain Timer
enum domain TimerUnit={NANOSEC,

MILLISEC, SEC, MIN, HOUR}
monitored mCurrTimeNanosecs: Integer
monitored mCurrTimeMillisecs: Integer
monitored mCurrTimeSecs: Integer
monitored mCurrTimeMins: Integer
monitored mCurrTimeHours: Integer
controlled start: Timer−> Integer
controlled duration: Timer −> Integer
controlled timerUnit: Timer −> TimerUnit
derived currentTime : Timer−> Integer
derived expired: Timer −> Boolean

definitions:

function currentTime($t in Timer) = if (timerUnit($t)=NANOSEC) then
mCurrTimeNanosecs
else if (timerUnit($t)=MILLISEC) then mCurrTimeMillisecs
else if (timerUnit($t)=SEC) then mCurrTimeSecs
else if (timerUnit($t)=MIN) then mCurrTimeMins
else if (timerUnit($t)=HOUR) then mCurrTimeHours
endif endif endif endif endif

function expired($t in Timer) = (currentTime($t) >= start($t) + duration($t))

macro rule r reset timer($t in Timer) = start($t) :=
currentTime($t)

macro rule r set duration($t in Timer, $ms in Integer) =
duration($t) := $ms

macro rule r set timer unit($t in Timer, $unit in TimerUnit) =
timerUnit($t) := $unit

Code 1. ASMETA TimeLibrary

Our approach is inspired by the timing mechanism provided in other formal
notations [9] and in other ASM frameworks. For instance, CoreASM1 introduces
the TimerPattern: it uses the monitored location now to save the current sys-
tem time and has appropriate TimerAssumptions on now evolution and what-
ever unit assumptions [8]. However, CoreASM explicitly only links now to the
machine clock and it manages only times expressed in milliseconds and nanosec-
onds. Other ASM time mechanisms have been proposed starting from the seminal
work in [11]; e.g., a simulator for real-time reactive ASMs was presented in [1],
while the TASM approach specifying duration of rule execution appeared in [12],
and its extension with events and observers in [13]. A general study of timing
for ASMs can be found in [10].

The paper is structured as follows. In Sect. 2 we present the main function-
alities we have introduced to deal with time, namely the TimeLibrary, with its
monitored functions and the Timer. Section 3 reports the different approaches
to simulate the time and shows the results of simulation in different case stud-
ies, such as a simple clock and the well-known Sluice Gate Control case study.
Future works are outlined in Sect. 4.

2 Time in ASMETA

In ASMETA framework, we have introduced the TimeLibrary2 which contains the
basic constructs necessary to introduce time features in ASMETA specifications:
i) monitored functions to manage the time in different time units (nanoseconds,
milliseconds, seconds, minutes, and hours); ii) an abstract domain Timer useful to
introduce user-defined timers; iii) some functions and rules to operate on timers,
like to check if a desired amount of time is passed, to reset and start a timer,
and to set the timer duration and time unit. The proposed solution allows users
to use different time units in the same ASM model and it guarantees consistency

1 https://github.com/CoreASM/coreasm.core/tree/master/org.coreasm.engine/src/
org/coreasm/engine/plugins/time.

2 https://github.com/asmeta/asmeta/blob/master/asm examples/STDL/TimeLibra
ry.asm.

https://github.com/CoreASM/coreasm.core/tree/master/org.coreasm.engine/src/org/coreasm/engine/plugins/time
https://github.com/CoreASM/coreasm.core/tree/master/org.coreasm.engine/src/org/coreasm/engine/plugins/time
https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.asm
https://github.com/asmeta/asmeta/blob/master/asm_examples/STDL/TimeLibrary.asm

Extending ASMETA with Time Features 107

between them during model simulation. Moreover, our mechanism assures that
in a defined state, all the time functions refer to the same time instant, no matter
what time unit is used.

A simple example using the time monitored functions is shown in Code 2,
representing a clock that displays at each step current hours, minutes, and sec-
onds.

asm simpleClock
import TimeLibrary

signature:
controlled clockHours: Integer
controlled clockMins: Integer
controlled clockSecs: Integer

definitions:
main rule r main =
par
clockHours:=mCurrTimeHours mod 24
clockMins:=mCurrTimeMins mod 60
clockSecs:=mCurrTimeSecs mod 60

endpar

Code 2. Time example: return current time

Measuring the absolute time is useful, but often, systems require that actions
are executed if a desired amount of time is passed. For this purpose, timers are
available in the TimeLibrary (see Code 1)3, and, in the following, we will show
how to use them. In the Sluice Gate Control case study (a well-known case study
proposed in [7]) there are two timers, one to check if 10 min are passed before
closing the gate and one if 3 h are passed before opening the gate. We have
declared one function for each timer (see Code 3). Timers are initialized in the
initial state, in terms of duration and time unit (using duration($t in Timer) and
timerUnit($t in Timer) controlled functions). Moreover, during the initialization
phase, the user can (if it is required by the specification) start the declared timer
(using the currentTime($t in Timer) library function). The user uses the function
expired($t in Timer) from the TimeLibrary (see line 12 in Code 3) to check if the
timer passed as parameter is expired. While, when the timer must be reset in
the specification, it can be done using the rule r reset timer($t in Timer) (see line
15 in Code 3), which takes the timer to reset as parameter. Moreover, in the
specification duration of a timer can be changed (using the rule r set duration($t
in Timer)) as well as its time unit (using the rule r set timer unit($t in Timer)).

1 asm sluiceGateGround
2 import TimeLibrary
3 signature:
4 enum domain PhaseDomain = { FULLYCLOSED, FULLYOPEN }
5 dynamic controlled phase: PhaseDomain
6 static timer10MinPassed: Timer
7 static timer3hPassed: Timer
8
9 definitions:

10 main rule r Main =
11 par
12 if phase=FULLYCLOSED and expired(timer3hPassed) then
13 par
14 phase := FULLYOPEN
15 r reset timer[timer10MinPassed]
16 endpar
17 endif

if phase=FULLYOPEN and expired(timer10MinPassed) then
par
phase := FULLYCLOSED
r reset timer[timer3hPassed]
endpar
endif
endpar

default init s0:
function duration($t in Timer) =
if $t = timer10MinPassed then 10
else if $t = timer3hPassed then 3 endif endif
function timerUnit($t in Timer) =
if $t = timer10MinPassed then MIN
else if $t = timer3hPassed then HOUR endif endif
function start($t in Timer) = currentTime($t)
function phase = FULLYCLOSED

Code 3. Use of Timer in Sluice Gate Control specification

3 Note that $t denotes the variable t in the AsmetaL notation.

108 A. Bombarda et al.

3 Simulating Time

Besides time modeling, ASMETA framework supports three different mecha-
nisms to handle time during simulation: i) the time is read from the machine
hosting the simulation; ii) the user enters the values for time as normal monitored
functions; iii) the time is automatically increased at each step by a predefined
value.

The first mechanism allows the user to run the specification without entering
the value of time monitored functions because the time is obtained from the Java
8 Date/Time API Instant.now() and automatically assigned to the time moni-
tored functions. Sometimes, and especially if the specification would require long
time intervals like hours or very short time intervals like nanoseconds, if the real
time is used during the simulation, it may be unfeasible or impractical for the
user to check what happens at specific instants of time. In this case, the second
mechanism is most suitable: the user specifies the time unit he wants to run
the specification and enters the desired time when required. If the specification
uses more than one time with different time units, the others are automatically
derived. In case the user wants to execute the specification and automatically
increment the time by a predefined value at each step, the third approach can
be used. The user has to define the time step and time unit, then the system
automatically increments the time of the set delta value at each running step. If
times have other time units compared to the one set by the user, they are auto-
matically derived. The desired mechanism is set in the ASMETA → Simulator
preferences from Window menu in Eclipse, as shown in Fig. 1.

Fig. 1. Simulator settings

In the following, some simulation examples using all methods are shown. The
simulation of Code 2 using Java time is shown in Fig. 2. For the entire simulation,
the user had to wait 1 h. To fasten checking what happens at specific instants
of time, the second method is the most suitable because the user specifies at
each step the time and one step is executed with the inserted value (see Fig. 3).

Fig. 2. Clock simulation in “Java Time” mode

Extending ASMETA with Time Features 109

Fig. 3. Clock simulation in “ask user” mode

Fig. 4. Clock simulation in “auto increment” mode with Delta = 30 and Time Unit =
SECONDS

Fig. 5. Sluice Gate simulation in “Java Time” mode

The advantage is that the required simulation time is lower. Moreover, this is
useful in case the user wants to check the behavior of the modeled system when
the clock returns erroneous values (such as decreasing time between two con-
secutive steps). The last simulation method automatically increments the time
at each step by a given value, and an example is shown in Fig. 4. The simu-
lation is performed using a delta time equals to 30 s. As expected the change
of clockHours function occurs at State 120. To show the use of timers, we have
simulated the Sluice Gate specification using the three methods available. The
first method requires the user to wait three hours before changing from FUL-
LYCLOSED to FULLYOPENED. After ten minutes the gate moves back to
FULLYCLOSED state in which it remains again for three hours (see Fig. 5).
Note that controlled functions at state i are updated due to monitored values
(including time) observed at state i − 1. Since the instants of time when state
changes occur are well known, we have simulated the specification using the sec-
ond method (see Fig. 6) where the time is set at each state by the user. In this
case, the simulation is faster because we do not have to wait the specification

110 A. Bombarda et al.

Fig. 6. Sluice Gate simulation in “ask user” mode

time. In Fig. 7 the specification is simulated with the auto increment method,
the delta is set to 10 and the time unit to minutes. Using this approach, the
simulation is run and at each step the minutes are incremented by 10.

4 Future Work

Those presented in this paper are the first results of our effort toward endowing
ASMETA with primitives to model and analyze systems with time constraints.
In the future, we plan to provide two major improvements: i) extending the
ASMETA scenario-based validation with new time features; ii) automatically
mapping ASMETA time primitives into code time primitive, e.g., extending
the automatic mapping of ASMETA models into C++ code for the Arduino
platform [6].

Fig. 7. Sluice Gate simulation in “auto increment” mode with Delta = 10 and Time
Unit = MINUTES

References

1. Slissenko, A., Vasilyev, P.: Simulation of timed abstract state machines with pred-
icate logic model-checking. J. Univ. Comput. Sci. 14(12), 1984–2006 (2008)

2. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Integrat-
ing formal methods into medical software development: the ASM approach. Sci.
Comput. Program. 158, 148–167 (2018)

Extending ASMETA with Time Features 111

3. Arcaini, P., Gargantini, A., Riccobene, E.: Rigorous development process of a
safety-critical system: from ASM models to Java code. Int. J. Softw. Tools Technol.
Transf. 19(2), 247–269 (2015). https://doi.org/10.1007/s10009-015-0394-x

4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw.: Pract. Exp. 41, 155–166
(2011)

5. Bombarda, A., Bonfanti, S., Gargantini, A.: Developing medical devices from
abstract state machines to embedded systems: a smart pill box case study. In:
Mazzara, M., Bruel, J.-M., Meyer, B., Petrenko, A. (eds.) TOOLS 2019. LNCS,
vol. 11771, pp. 89–103. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29852-4 7

6. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from abstract state machines specifications. J. Softw.: Evol. Process
32(2), e2205 (2019)

7. Börger, E.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-642-18216-7

8. Böger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

9. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing.
Springer, Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-32332-4

10. Graf, S., Prinz, A.: Time in state machines. Fundam. Informaticae 77(1–2), 143–
174 (2007)

11. Gurevich, Y., Huggins, J.K.: The railroad crossing problem: an experiment with
instantaneous actions and immediate reactions. In: Kleine Büning, H. (ed.) CSL
1995. LNCS, vol. 1092, pp. 266–290. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61377-3 43

12. Lundqvist, K., Ouimet, M.: The timed abstract state machine language: abstract
state machines for real-time system engineering. J. Univ. Comput. Sci. 14(12),
2007–2033 (2008)

13. Zhou, J., Lu, Y., Lundqvist, K.: A TASM-based requirements validation approach
for safety-critical embedded systems. In: George, L., Vardanega, T. (eds.) Ada-
Europe 2014. LNCS, vol. 8454, pp. 43–57. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08311-7 5

https://doi.org/10.1007/s10009-015-0394-x
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-030-29852-4_7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-32332-4
https://doi.org/10.1007/3-540-61377-3_43
https://doi.org/10.1007/3-540-61377-3_43
https://doi.org/10.1007/978-3-319-08311-7_5
https://doi.org/10.1007/978-3-319-08311-7_5

About the Concolic Execution
and Symbolic ASM Function Promotion

in CASM

Philipp Paulweber1(B), Jakob Moosbrugger3, and Uwe Zdun2

1 Vienna University of Technology, Institute of Information Systems Engineering,
Research Unit Compilers and Languages (CompLang),

Argentinierstraße 8, 1040 Vienna, Austria
ppaulweber@complang.tuwien.ac.at

2 University of Vienna, Faculty of Computer Science, Research Group Software
Architecture (SWA), Währingerstraße 29, 1090 Vienna, Austria

uwe.zdun@univie.ac.at
3 Vienna, Austria

Abstract. Abstract State Machines (ASMs) are a well-known state
based formal method to describe systems at a very high level and can
be executed either through a concrete or symbolic interpretation. By
symbolically executing an ASM specification, certain properties can be
checked by transforming the described ASM into a suitable input for
model checkers or Automated Theorem Provers (ATPs). Due to the
rather fast increasing state space, model checking and ATP solutions can
lead to inefficient implementations of symbolic execution. More efficient
state space and execution performance can be achieved by using a con-
colic execution approach. In this paper, we describe an improved concolic
execution implementation for the Corinthian Abstract State Machine
(CASM) language. We outline the transformation of a symbolically exe-
cuted ASM specification to a single Thousands of Problems for Theorem
Provers (TPTP) format. Furthermore, we introduce a compiler analysis
to promote concrete ASM functions into symbolic ones in order to obtain
symbolic consistency.

Keywords: Abstract State Machine · Concolic execution · CASM ·
TPTP · Z3

1 Introduction

Due to the mathematical foundation of the Abstract State Machine (ASM) the-
ory [1,2], ASM specifications can be evaluated through either concrete or sym-
bolic interpretation. All available ASM implementations offer a concrete execu-
tion, and some ASM implementations provide a symbolic execution based on

P. Paulweber—The work in this paper was carried out at the former affiliation2.
J. Moosbrugger—No affiliation.

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 112–117, 2021.
https://doi.org/10.1007/978-3-030-77543-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-77543-8_9

Concolic Execution and Symbolic ASM Function Promotion in CASM 113

1 CASM
2
3 init test
4
5 [symbolic]
6 function x : -> Integer
7
8 [symbolic]
9 function y : -> Integer

10
11 rule test =
12 {
13 if x = 0 then
14 skip
15 else
16 y := 12 / x
17 program(self) := undef
18 }
19
20
21
22
23 // ...

Listing 1.1. Example.casm

1 tff(symbolNext , type , sym2: $int).
2 fof(id0 ,hypothesis ,x(1,sym2)).
3 fof(’Example.casm :13’,hypothesis ,sym2 =0).
4 fof(id1 ,hypothesis ,x(2,sym2)).
5 fof(final0 ,hypothesis ,x(0,sym2)).

Listing 1.2. If-Then-Branch TPTP Trace of
Example.casm by Lezuo [6]

1 tff(symbolNext , type , sym2: $int).
2 fof(id0 ,hypothesis ,x(1,sym2)).
3 fof(’Example.casm :13’,hypothesis ,sym2 !=0).
4 tff(symbolNext , type , sym4: $int).
5 tff(symbolNext , type , sym5: $int).
6 fof(id1 ,hypothesis ,y(1,sym5)).
7 fof(id2 ,hypothesis ,x(2,sym2)).
8 fof(id3 ,hypothesis ,y(2,sym4)).
9 fof(final0 ,hypothesis ,x(0,sym2)).

10 fof(final1 ,hypothesis ,y(0,sym4)).

Listing 1.3. Else-Branch TPTP Trace of
Example.casm by Lezuo [6]

model checking (e.g. Farahbod et al. [3] for CoreASM). Besides the approaches
targeting model checking applications, some ASM implementations transform
the specifications into Automated Theorem Provers (ATP) problems to check
with off-the-shelve solver tools desired properties (e.g. Arcaini et al. [4] for
AsmetaL with SMT solver Yices). A major disadvantage of such techniques
is that for rather small ASM specifications, huge ATP input problems are gen-
erated which result into large states and long evaluation times of the underlying
solver.

To overcome this problem, a concolic execution [5] can be used to reduce
the number of symbolic path conditions by performing a mixed concrete and
symbolic interpretation. Branches inside an evaluation are driven by concrete
results and only symbolic states of interest are tracked in the output trace which
directly optimizes the results. Therefore, concolic execution [5] trades complete-
ness for computation speed. So far, only Lezuo [6] described a concolic execution
approach for ASM specifications. Based on a prototype version of the Corinthian
Abstract State Machine (CASM) language1 [7], the described concolic execution
performed a model-to-text transformation by emitting directly multiple Thou-
sands of Problems for Theorem Provers (TPTP) [8] traces of the symbolically
executed specification. A downside of Lezuos’ [6] approach is that for each condi-
tional rule (path condition) the generated TPTP trace gets forked into an if-then
and else part resulting into two TPTP specifications which are emitted during
the symbolic execution of an ASM specification.

Listing 1.1 depicts an example CASM specification consisting of two functions
– x and y – and a named rule test with a block rule, conditional rule, skip
rule, and two update rules. This specification represents the running example
which was used by Lezuo [6] to describe a division-by-zero-free ASM specification
expressed in the latest CASM language syntax. Both functions – x and y –
are set explicitly to symbolic in order to determine a TPTP trace showing
that the function y gets only updated with a non-zero Integer value of function
x. Two TPTP traces are generated by using Lezuos’ [6] implemented (closed

1 For the CASM syntax description, see: https://casm-lang.org/syntax.

https://casm-lang.org/syntax

114 P. Paulweber et al.

source) symbolic execution. Listing 1.2 depicts the if-then part and the Listing
1.3 depicts the else part. Based on this traces, a language user can use an external
ATP solver Z3 [9] or vanHelsing [10] and prove the division-by-zero-free property
for the functions y and x by analyzing each TPTP trace.

We present in this paper an improved version of the concolic execution for
the (open-source) CASM language and implementation. Based on the concolic
execution definition by Lezuo [6], we provide two major improvements in the cur-
rent presented implementation state: (1) the concolic execution generates a single
TPTP trace and does not generate forked TPTP traces for each path condition
(see Sect. 2); and (2) a language user only has to set ASM functions of interest
to symbolic and each ASM function is automatically promoted to symbolic if
there exists a path which updates that ASM function (see Sect. 3). Furthermore,
we do not directly generate TPTP traces through a model-to-text transforma-
tion. We have implemented an abstraction of the TPTP model and provided
an in-memory model-to-model transformation. This design decision allows us to
directly (re)use in the CASM compiler the transformed TPTP instance either for
further analysis, in-memory evaluation, or emitting to a textual representation
in order to use an external solver.

2 CASM Concolic Execution and TPTP Model

CASM is a concrete ASM implementation with a strongly typed inferred spec-
ification language. The concolic execution is implemented as forward symbolic
execution by reusing and extending the Abstract Syntax Tree (AST) based con-
crete execution2. Due to the CASM compiler design [11], the symbolic constant,
calculation, and environment handling is directly implemented on the CASM
Intermediate Representation (IR) level3. Our own TPTP implementation4 sup-
ports in-memory model-to-model transformation based on the SMT/SAT solver
Z3 [9] to invoke a Z3-based evaluation without external tooling.

Since each ASM function can be explicitly selected to be evaluated as sym-
bolic state (annotation syntax), a complete selection of all available ASM func-
tions inside a specification would enable a full symbolic execution of the provided
specification. So far we support all basic ASM rules in the transformation except
for symbolic iterate rules consisting of symbolic path conditions. Listing 1.4
depicts the same division-by-zero-free running example as shown in Listing 1.1
with one small change. In this listing the function y is not explicitly set to
symbolic, because the function of interest we want to analyze is the function x.
Function y gets implicitly set to symbolic through a novel compiler analysis pass
(see Sect. 3) in order to provide symbolic consistency for the specified update to
function y where function x is used in the division operation (see Listing 1.4 at
Line 16). Listing 1.5 corresponds to the result TPTP trace of the concolic execu-
tion. A first look at this TPTP trace gives the impression that it is longer than
2 For CASM front-end, see: https://github.com/casm-lang/libcasm-fe/pull/206.
3 For CASM mid-end, see: https://github.com/casm-lang/libcasm-ir/pull/29.
4 For TPTP model, see: https://github.com/casm-lang/libtptp/pull/5.

https://github.com/casm-lang/libcasm-fe/pull/206
https://github.com/casm-lang/libcasm-ir/pull/29
https://github.com/casm-lang/libtptp/pull/5

Concolic Execution and Symbolic ASM Function Promotion in CASM 115

1 CASM
2
3 init test
4
5 [symbolic]
6 function x : -> Integer
7
8 // concrete , not set symbolic
9 function y : -> Integer

10
11 rule test =
12 {
13 if x = 0 then
14 skip
15 else
16 y := 12 / x
17 program(self) := undef
18 }

Listing 1.4. Example.casm

1 tff(2,type ,’%0’:$int).
2 tff(4,type ,’%1’:$o).
3 tff(6,type ,’%2’:$int).
4 tff(8,type ,’%3’:$int).
5 tff(12,type ,’%4’:$int).
6 tff(15,type ,’%5’:$int).
7 tff(9,hypothesis ,’#div#i’:($int*$int*$int)>$o).
8 tff(0,hypothesis ,’@x’:($int*$int)>$o).
9 tff(1,hypothesis ,’@y’:($int*$int)>$o).

10 tff(3,hypothesis ,’@x’(1,’%0’)).
11 tff(5,hypothesis ,’%1’<=>(’%0’=0)).
12 tff(7,hypothesis ,~’%1’=>(’@x’(1,’%2’))).
13 tff(10, hypothesis ,~’%1’=>(’#div#i’(12,’%2’,’%3’))).
14 tff(11, hypothesis ,~’%1’=>(’@y’(2,’%3’))).
15 tff(13, hypothesis ,’@x’(1,’%4’)).
16 tff(14, hypothesis ,’@x’(0,’%4’)).
17 tff(16, hypothesis ,’@y’(2,’%5’)).
18 tff(17, hypothesis ,’@y’(0,’%5’)).

Listing 1.5. TPTP Trace of Example.casm

both TPTP traces combined of the previous implementation depicted in Listing
1.2 and Listing 1.3, but besides the path condition fork there is a huge difference
in the form of the trace representation itself. Lezuos’ [6] implementation uses
mixed First Order Form (FOF) and Typed First Order Form (TFF) formulae
to represent the state evolving which fully complies to the deprecated TPTP
versions before 7.0 [8]. Since the latest major revision 7 of TPTP the mixing
of FOF and TFF does not work anymore, because variables and constants in
FOF formulae are assumed to be in the same infinite domain, which is not the
case for any type in a TFF formulae [8]. The later implies that each variable or
constant in a TFF formulae is not equal to any variable or constant in a FOF
formula. Therefore, we generate a fully typed TPTP trace by using only TFF
formulae in the trace result. A transformed TPTP trace consists of four parts:
(1) type declarations for intermediate calculations (see Listing 1.5 Line 1 to 6);
(2) language operand definitions (see Listing 1.5 Line 7); (3) all function defi-
nitions (see Listing 1.5 Line 8 to 9); and (4) the actual trace itself (see Listing
1.5 Line 10-18). Since in TPTP each variable can only be used once and there
exists no notion of time, each ASM function gets mapped to a TPTP predicate
with 2 or more arguments where the first argument represents an Integer based
time. Similar to the definition by Lezuo [6], we use time at 1 to represent the
initialization of ASM functions. Time at 0 equals the termination of an ASM
execution. This encoding provides an elegant way to describe start and termina-
tion constraints, since the times are known before the concolic execution starts.
Furthermore, since CASM supports block rules (parallel execution semantics)
and sequential rules (sequential execution semantics) the handling of parallelism
is an important issue. The evolving of function states (ASM steps) is encoded
in the time value of each function in the first argument. Sequential rule com-
putations which create pseudo update-sets [7] are not shown and tracked in the
TPTP trace except for the remaining update to functions.

3 ASM Function Promotion and Symbolic Consistency

Due to the possibility that some ASM functions in a CASM specification can
be marked as symbolic, the concolic execution can reach an interpretation of

116 P. Paulweber et al.

1 casmi: info: promoting function ’y’ to be symbolic , because function is
2 updated with symbolic value.
3 Example.casm :16:8..16:19
4 y := 12 / x
5 ^---------^

Listing 1.6. CLI Tool Information of ASM Symbolic Function Promotion

the ASM specification where a symbolic value or calculation could be used in
an update rule to a concrete ASM function. This would abort the concolic exe-
cution and would lead to an execution error, because the symbolic consistency
is violated. Therefore, we implemented a symbolic consistency analysis in the
compiler pass pipeline which analyses in advance which concrete ASM functions
will be updated by symbolic values. Note that updating a symbolic ASM func-
tion with a concrete value (e.g. a numeric value) is possible and does not violate
symbolic consistency.

The symbolic consistency pass is an AST-based compiler analysis pass and
checks if any function update produces a symbolic conflict. Each function, rule
parameters, and expression AST node gets annotated by the analysis which
labels the nodes either symbolic, concrete, or unknown.

Depending on the annotated functions through the annotation syntax, all
functions are labeled either symbolic or concrete and all other nodes in the
AST are labeled unknown at the beginning of the analysis. Since CASM sup-
ports named rule calls, each possible rule call hierarchy starting from the init
statement has to be evaluated in order to determine symbolic consistency. The
analysis derives in a step-by-step manner a Rule Call Graph (RCG) where each
callable rule has to go through four states – init, started, evaluated, and finished.
The resulting RCG is used to derive the final symbolic function promotion which
assures symbolic consistency.

We implemented a proper reporting of ASM functions which are promoted
to symbolic. Listing 1.6 depicts a console output of our CASM interpreter Com-
mand Line Interface (CLI) tool named casmi5 which evaluated in concolic/sym-
bolic execution mode the Example.casm specification shown in Listing 1.4 and
outputs an information message that function y gets promoted to a symbolic
ASM function.

4 Conclusion

In this paper, we describe an improved ASM based concolic execution approach
which is implemented for the CASM language and its framework.

Novel about this contribution is that the transformation of an ASM spec-
ification towards a TPTP model instance is performed through an in-memory
model-to-model transformation which allows either further in-memory analysis,
optimization, and evaluation of the TPTP instance or a flexible model-to-text
transformation into a TPTP textual representation. Furthermore, the imple-
mented approach only generates a single TPTP trace and promotes non-symbolic
5 For CLI tool casmi, see: https://github.com/casm-lang/casmi/pull/12.

https://github.com/casm-lang/casmi/pull/12

Concolic Execution and Symbolic ASM Function Promotion in CASM 117

ASM functions to symbolic ones if the symbolic consistency is violated which is
determined in advance through a symbolic consistency pass.

With our new concolic execution approach we aim at a complete translation
validation of the CASM compiler implementation itself by checking each internal
transformation step of the intermediate models [11]. Moreover, due to the intro-
duction of state and behavioral separation in the CASM language [12], we are
currently investigating the ability of automated semantic checking for imported
ASM rules from loaded libraries or modules.

Acknowledgements. We would like to thank Andreas Krall1 for proof-reading the
paper and Emmanuel Pescosta for several concolic execution discussions.

References

1. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide - Specification and Validation
Methods, pp. 9–36. Oxford University Press Inc, New York (1995)

2. Borger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1 9

3. Farahbod, R., Glässer, U., Ma, G.: Model checking CoreASM specifications. In:
Proceedings of the 14th International ASM Workshop (ASM 2007). Citeseer (2007)

4. Arcaini, P., Gargantini, A., Riccobene, E.: SMT-based automatic proof of ASM
model refinement. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol.
9763, pp. 253–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41591-8 17

5. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 50 (2018)

6. Lezuo, R.: Scalable translation validation; tools, techniques and framework. Ph.D.
thesis, (2014). Wien, Techn. Univ., Diss

7. Lezuo, R., Paulweber, P., Krall, A.: CASM - optimized compilation of abstract
state machines. In: SIGPLAN/SIGBED Conference on Languages, Compilers and
Tools for Embedded Systems (LCTES), pp. 13–22. ACM (2014)

8. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Auto-
mated Reason. 59(4), 483–502 (2017). https://doi.org/10.1007/s10817-017-9407-7

9. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

10. Lezuo, R., Dragan, I., Barany, G., Krall, A.: vanHelsing: a fast proof checker for
debuggable compiler verification. In: 2015 17th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 167–174.
IEEE (2015)

11. Paulweber, P., Pescosta, E., Zdun, U.: CASM-IR: uniform ASM-based intermediate
representation for model specification, execution, and transformation. In: Butler,
M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp.
39–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 4

12. Paulweber, P., Pescosta, E., Zdun, U.: Structuring the state and behavior of ASMs:
introducing a trait-based construct for abstract state machine languages. In:
Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 237–243.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 17

https://doi.org/10.1007/978-3-662-56641-1_9
https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1007/978-3-319-41591-8_17
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-91271-4_4
https://doi.org/10.1007/978-3-030-48077-6_17

Towards Refinement of Unbounded
Parallelism in ASMs Using Concurrency

and Reflection

Fengqing Jiang1, Neng Xiong1, Xinyu Lian1, Senén González2,
and Klaus-Dieter Schewe1(B)

1 UIUC Institute, Zhejiang University, Haining, China
{fengqing.18,neng.18,xinyul.18,kd.schewe}@intl.zju.edu.cn

2 TMConnected, Linz, Austria

Abstract. The BSP bridging model can be exploited to sup-
port MapReduce processing. This article describes how this can be
realised using a work-stealing approach, where an idle processor can
autonomously grab a thread from a partially ordered pool of open threads
and execute it. It is further outlined that this can be generalised for the
refinement of an unboundedly parallel ASM by a concurrent, reflective
BSP-ASM, i.e. the individual agents are associated with reflective ASMs,
i.e. they can adapt their own program.

Keywords: MapReduce · Work stealing · Reflection · Abstract State
Machine · BSP bridging model

1 Introduction

The bulk synchronous parallel (BSP) bridging model [6] is a model for parallel
computations on a fixed number of processors comprising sequences of alternat-
ing computation and communication phases. In a computation phase each pro-
cessor works independently without any form of interaction until it completes the
local computation. When all processors have completed their local computations,
they continue with a communication phase to exchange data. With all agents
having completed their communication, they return to a new computation phase
and thus begin a new superstep. BSP computations are specific concurrent algo-
rithms, and as such they are captured by restricted communicating concurrent
Abstract State Machines (ASMs) [2] called BSP-ASMs as shown in [3].

A MapReduce computation comprises a map phase processing input data to
obtain intermediate key-value pairs, a shuffle phase redistributing the data and
a reduce phase aggregating intermediate key-value pairs to yield the final result.
In [3] it was shown how BSP-ASMs can be exploited to specify and analyse
MapReduce. Examples how MapReduce is realised based on grounds of the BSP
model can be found in [4].

In this short paper we first show that the scheduling effort can be minimised
by adopting a work stealing approach as introduced in [1]. This approach places
c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 118–123, 2021.
https://doi.org/10.1007/978-3-030-77543-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-77543-8_10

Towards Refinement of Unbounded Parallelism 119

the decision about the next thread to be executed into the individual agents, i.e.
whenever an ASM associated with a processor becomes idle, it can autonomously
grab a thread from a partially ordered pool of open threads and execute it. We
proceed with an outline of work in progress generalising the approach to a general
refinement method for unbounded parallelism in ASMs. The problem is that in
an implementation only finitely many processors are available, which suggests to
look for a refinement of an ASM by a BSP-ASM. In the general case it becomes
necessary that the individual agents are associated with reflective ASMs [5], i.e.
they must be able to adapt their own program.

In Sect. 2 we present a specification of MapReduce with work stealing by BSP-
ASMs, which is based on the work in [3]. In Sect. 3 we describe our observation
that this can be used for a general approach to the refinement of unboundedly
parallel ASMs by concurrent, reflective ASMs.

2 BSP-ASMs for MapReduce with Work Stealing

For the processing of MapReduce we can assume a shared environment that is
accessible by all processes contributing to the computation. In order to simplify
synchronisation among the different processes we assume that there exists an
environment host machine H as the center spot of the concurrent computation.
For the assignment of tasks we require a task queue TQ holding map and reduce
tasks. Map and reduce tasks have a similar structure comprising a job name J ,
associated (bulk) data D, a function label in {Map,Reduce}, a function F , a
set of indices I ⊆ N, and a processing flag in {Undo, Processing}.

Map tasks are generated by H as computation tasks and corresponding data
is associated with them. For storing intermediate results of map functions we
require a reduce container RC. When adding a computation job to H, H will
also generate a reduce flag rf and add it to RC. When a reduce flag is completed,
H generates a reduce task, adds it to TQ and removes the flag from RC. Reduce
tasks are generated only by the reduce container RC, if all map tasks of a job
have been completed successfully.

The environment is initialized with data and corresponding user-defined
map/reduce functions. The environment-host machine H splits the data into
m pieces, then creates and pushes m map tasks into the task queue TQ, and
adds a corresponding reduce flag rf into the reduce container RC.
Environment Initialization =

Forall 〈J ∈ Job,MapF,ReduceF,Data〉 Do
LET DataBulks = Split(Data)
Forall DataBulk ∈ DataBulks Do

Task := 〈J,DataBulk,Map,MapF, i, Undo〉
H.TQ := H.TQ ∪ {Task}

Further computation tasks are added to the environment before the compu-
tation starts by the family of machines.
Task Assign =

If Fetch Request from(Pi)

120 F. Jiang et al.

Then Task := H.TQ.findUndo()
Task.PF := Processing

If Fail Information from(Pi)
Then Task.PF := Undo
If Success Information from(Pi)
Then TQ := TQ − {Task}

Reduce Task Generation =
If Receive from Map Task
Then rf := RC.find(Job)

rf.DataSet(i) := ReceiveData
If Completed(rf)
Then Task := 〈Job,DataSet,Reduce,ReduceF, i, Undo〉

H.TQ := H.TQ ∪ {Task}
Each individual process Pi will run its computation task autonomously. If

the program detect its availability Pi will communicate with H and fetch a task
Ti from TQ, which is either a map or a reduce task.

Pi = Task := FetchRequest()
Task execute
If Task Success
Then Send SuccessInformation to H

If Task.FT = Map
Then Send result to H.RC

If Task.FT = Reduce
Then Output

Else
Send FailureInformation to H
Restart/reboot process

In case of a map task the process will execute a map phase. While in this
phase, the process applies the given map function to the data sequence resulting
in multiple (Key, V alue) pairs. When the task is completed successfully, the
intermediate result is transferred to H. In case of a reduce task the process will
execute a reduce phase. Firstly, the process will sort the (key, valuelist) pairs
according to Key. Then it will merge the pairs as the output of the computation
phase.

An intermediate result returned to H will be stored into one rf based on the
job name. The environment host machine H will monitor, whether each reduce
flag is completed after passing back from each map invocation. Since there will
be m map operations for a certain assignment in total, only when the reduce
flag is loaded with whole m intermediate results, H will generate a reduce task
based on the completed rf and add to TQ as well as removing this rf from the
reduce container.

Towards Refinement of Unbounded Parallelism 121

3 Reflective Refinement of Unbounded Parallel ASMs

We now look at the use of reflective BSP-ASMs in the refinement of an ASM.
Our problem is to deal with (unbounded) parallelism in case of finitely many
processors. We identify the agents of the target BSP-ASM with the available
processors, so our set of agents will be {ai | 1 ≤ i ≤ k} plus the synchronisation
agent a0 which only executes a Switch rule. Whenever a machine encounters
a parallel construct, it posts program fragments that need to be executed to a
thread pool. The thread pool should be partially ordered reflecting that some of
the open threads depend on others. Then the gist of the refinement is that rules
of ASMs need to be modified such that new threads can be posted to the pool
and each agent can fetch his next thread from the pool.

Reflective ASMs as defined in [5] use a 0-ary function symbol self, which in
each state S takes a tree value representing the current signature and the current
rule. In each state S the rule represented by a subtree of valS(self) is considered
not just a tree value, but an executable rule r(S), which is used to yield the
next state S + Δr(S)(S). For this duality we require functions raise and drop to
switch between these two views: raise turns a tree value representing a rule into
an executable ASM rule and a tree value representing a signature into a set of
locations; drop turns rules and locations into tree values [5].

The location self can be updated like any other location defined by the current
signature, i.e. both the signature and the rule can change in every step. However,
to support multiple updates of only parts of the tree, reflective ASMs permit
also partial updates. Updates concerning the same location � produced by partial
assignments are first collected in a multiset Δ̈�. If the operators and arguments
are compatible with each other, this multiset together with valS(f(t1, . . . , tn))
will then be collapsed into a single update (�, v0).

In order to turn a BSP-ASM into a reflective BSP-ASM the signature Σi,loc

must contain a function symbol self i, and the represented rule must be a BSP
rule over Σi, in which the process rule ri,proc and the barrier rule ri,comm are
represented by subtrees of valS(self i). The creation of new threads and the
fetching of open threads must then become part of the process rule.

A thread ϑ is given by a rule r(ϑ) together with a set of locations, in which
the rule needs to be executed. Let us associate in addition each thread with a
unique identifier idϑ and a set pred(ϑ) of those identifiers of threads that need
to be executed before ϑ. The rule r(ϑ) can be represented by a tree value tr(ϑ),
and also the required state can be represented by a tree value representing a
set of terms. It has to be understood that the terms represented in this tree
represent the locations that need to be evaluated to execute the rule. Thus, the
terms refer to the locations of the individual ASM associated with a particular
agent, so we can add the agent ai to the tree representation.

Thus, a thread ϑ is represented as a tree value

ϑ = label hedge(thread, id〈idϑ〉 rule〈rϑ〉 agent〈aϑ〉 tsig tpred)

122 F. Jiang et al.

with

tsig = label hedge(signature,
label hedge(func, 〈f1〉〈a1〉) . . . label hedge(func, 〈fk〉〈ak〉))

tpred = label hedge(pred, id〈id1〉 . . . id〈idm〉)
Then the local thread pool pooli associated with an agent ai is a set of set

of such threads that is also represented by a tree.
It must be possible to make the open threads ϑ with pred(ϑ) = ∅ available

to other agents as well. This can be done in a communication phase. An agent
ai when executing a step in the computation phase and adding new threads to
its thread pool also sets bari := true to indicate that it is prepared to enter
its communication phase. Likewise, if an agent ai detects pooli = 〈〉, it also sets
bari := true.

When agent a0 sets barrier to true, agents ai broadcast the identifiers and
rules of at most k − 1 of their open threads ϑ with pred(ϑ) = 〈〉 to the other
agents except a0. On receipt of message containing open threads, an idle agent
aj selects the most appropriate thread adding it to its own thread pool and
returning a message to the agent ai that created the thread. The agent ai on
receiving a selection may acknowledge it by evaluating the terms and sending the
data, i.e. the terms plus their values to the agent aj , and removing the thread
from its own pool. In case that a thread has been selected by more than one
agent, only one selection is acknowledged, the other one is declined by sending
an appropriate message. An agent whose selection has been declined makes an
alternative choice until it receives a confirmation.

After receiving a confirmation of a selection or after having sent all acknowl-
edgements an agent sets bari := false. When agent a0 sets barrier to false, all
agents resume their computation phase. So the computation phase of agent ai

must start with an initialisation making a thread from the local thread pool
pooli the new active rule by updating self i and pooli (removing the thread),
and adding the data associated with it (in case the thread came from a different
agent aj) to the local state.

Let us now consider a single reflective ASM M. So let the signature and rule
of M be represented in a location self. We can further turn M into a BSP-ASM
with M associated with agent a1, while all other agents ai (2 ≤ i ≤ k) are
associated with an ASM with rule skip. We can further assume that the rules
ri take the form choose y with ψ(y) do Forall x with ϕ(x,y) do r′

i(x,y).
So the evaluation of ψ(y) and ϕ(x,y) in the current states yields a set of rules
r′
i(x,y) that need to be executed. Assuming that these rules are independent of

each other they give rise to new threads to be added to pooli.
Technically, this means that the Forall-rule is considered as a rule term, i.e.

drop is applied to it. From this term the component rules r′
i(x,y) are extracted

and the corresponding threads are added to the thread pool, i.e. the rule is
refined by choose y with ψ(y) do Forall x with ϕ(x,y) do post(tr′

i(x,y)),
where tr′

i(x,y) is the tree term rϑ representing the rule r′
i(x,y) and post is an

ASM rule that generates an identifier idϑ, computes a tree representation tsig of

Towards Refinement of Unbounded Parallelism 123

a bounded exploration witness W from the rule representing the terms that are
necessary to evaluate the rule and adds a new thread to pooli.

The first thread in the pool (if non-empty) then becomes the new rule of the
agent ai, which means that the rule is followed by an update of the rule part of
self i together with an elimination of the first element in the local thread pool.
The next k − 1 threads ϑi (2 ≤ i ≤ k) with pred(ϑ) = 〈〉 become subject of a
posting message using a barrier rule. If there are less than k − 1 such threads,
all remaining threads are considered.

A thread created by a different agent is usually associated with the transfer of
data. It is therefore advisable to first look for new local threads, so we proceed
analogously with two decisive differences: (1) As we do not yet know if the
conditions ψ(y) and ϕ(x,y) will be satisfied, we use a conditional rule for the
thread with the condition ψ(y) ∧ ϕ(x,y); (2) The resulting threads may also
depend on the threads that have been created before, so pred(ϑ) will not be
empty. However, this dependence is only partial, and the threads on which the
new ϑ depends may have already been executed.

4 Concluding Remarks

In this article we sketched an extension of BSP-ASMs by reflection such that
the involved single-agent ASMs can adapt their own programs. We outlined our
work in progress how this capability can be used to allow these ASMs to select
their next rule from a pool of partially ordered rules. These rules and associated
data are produced by the unboundedly many parallel branches of an ASM. In
this way we envision to refine ASMs with unbounded parallelism by BSP-ASMs
with workstealing modus. The advantage of the approach is that we can dispense
with sophisticated scheduling. So far, in this short paper we just illustrated the
idea on MapReduce as an example, which greatly benefits from the approach,
though it does not require much reflection.

References

1. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999). https://doi.org/10.1145/324133.324234

2. Börger, E., Schewe, K.D.: Communication in abstract state machines. J. Univ. Com-
put. Sci. 23(2), 129–145 (2017). http://www.jucs.org/jucs 23 2/communication in
abstract state

3. Ferrarotti, F., González, S., Schewe, K.D.: BSP abstract state machines capture bulk
synchronous parallel computations. Sci. Comput. Program. 184 (2019). https://doi.
org/10.1016/j.scico.2019.102319

4. Pace, M.F.: BSP vs. MapReduce. In: Ali, H.H., et al. (eds.) Proceedings of the
International Conference on Computational Science (ICCS 2012). Procedia Com-
puter Science, vol. 9, pp. 246–255. Elsevier (2012)

5. Schewe, K.D., Ferrarotti, F.: Behavioural theory of reflective algorithms I: reflective
sequential algorithms. CoRR abs/2001.01873 (2020). http://arxiv.org/abs/2001.
01873

6. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990). https://doi.org/10.1145/79173.79181

https://doi.org/10.1145/324133.324234
http://www.jucs.org/jucs_23_2/communication_in_abstract_state
http://www.jucs.org/jucs_23_2/communication_in_abstract_state
https://doi.org/10.1016/j.scico.2019.102319
https://doi.org/10.1016/j.scico.2019.102319
http://arxiv.org/abs/2001.01873
http://arxiv.org/abs/2001.01873
https://doi.org/10.1145/79173.79181

The CamilleX Framework for the Rodin
Platform

Thai Son Hoang(B) , Colin Snook , Dana Dghaym ,
Asieh Salehi Fathabadi , and Michael Butler

ECS, University of Southampton, Southampton, UK
{t.s.hoang,cfs,d.dghaym,a.salehi-fathabadi,m.j.butler}@soton.ac.uk

Abstract. We present the CamilleX framework for the Rodin platform
in this paper. The framework provides a textual representation and per-
sistence for the Event-B modelling constructs. It supports direct exten-
sions to the Event-B syntax such as machine inclusion and record struc-
tures, as well as indirect extensions provided by other plugins such as
UML-B diagrams. We discusses CamilleX’s design and in particular, its
extension mechanisms and examples of their use.

Keywords: Event-B · Rodin platform · XText · CamilleX

1 Introduction and Motivation

The Event-B modelling method [1] is a discrete state-transition formal modelling
language. The main supporting tool for Event-B is the Rodin Platform (Rodin)
[2], which facilitates the editing of Event-B models and reasoning about them.
Rodin is based on Eclipse and provides an extensible platform via Eclipse’s
plug-in mechanism. This is very important for the openness approach to both
Event-B as the modelling method and to the supporting Rodin [11].

Rodin [2] is a supporting platform for Event-B and is developed in Eclipse.
One of the main components of the Rodin Core is the Rodin repository. In
particular, the Rodin repository stores the elements in a tree-shaped structured
database and does not make any assumptions about the elements stored in the
repository. The internal structure of the model repository (called the ‘Rodin
repository’) was influenced by the choice of using Eclipse as the underlying basis
for Rodin [11]. Essentially, an Event-B model in Rodin is a collection of modelling
elements. The ‘syntax’ using keywords that users see in the GUI is provided by
the corresponding editors and does not exist in the persisted model. As the
structure is independent of the Event-B modelling language, it makes extending
Event-B straight-forward. Another important component of the Rodin Core is
the Rodin builder which runs the Event-B core tools automatically. While the
design of the Rodin repository aids extensibility, it has other consequences. The
models are persisted in XML files which makes it difficult for humans to read

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 124–129, 2021.
https://doi.org/10.1007/978-3-030-77543-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_11&domain=pdf
http://orcid.org/0000-0003-4095-0732
http://orcid.org/0000-0002-0210-0983
http://orcid.org/0000-0002-2196-2749
http://orcid.org/0000-0002-0508-3066
http://orcid.org/0000-0003-4642-5373
https://doi.org/10.1007/978-3-030-77543-8_11

The CamilleX Framework for the Rodin Platform 125

and understand the model. It is difficult, for example, to compare two versions
of a model when using version control tools for collaboration. Moreover, it is
challenging to develop a functional modelling user interface, in particular, the
editor for the XML files.

Our motivation is to have a true, human readable, text-based persistence of
Event-B models which overcomes the limitations of the current modelling user
interface.

2 Background

This section provides background information about the CamilleX-relevant tech-
nology, namely, the Eclipse Modelling Framework (EMF) and XText.

EMF [10] is an Eclipse-based framework for implementing modelling lan-
guages. An abstract syntax is defined by a meta-model and code is then gen-
erated to provide a repository for instances of the model. In previous work [9]
we have implemented EMF tooling for Event-B models with persistence into
the Rodin repository. Many of our plug-ins, including UML-B, are based on this
Event-B EMF framework and utilise the extension mechanism that we built into
it. The basis of this inheritance structure is the generic meta-class, EventBEle-
ment which provides facilities for extending the meta-model with new features.
The most important of these is the extensions containment of AbstractExten-
sion. Since this is inherited by all other model element classes, an extension
containment can be defined for any kind of concrete model element by sub-
classing AbstractExtension and providing support for persistence, processing and
translation as required. The CamilleX tools described herein are based on this
EMF meta-model and make use of its extension mechanism, both for syntactic
extensions to the modelling language as well as to support model contributions
provided by other plugins.

XText [3] is a powerful framework for developing programming languages and
domain-specific languages. The input to the framework is a grammar describing
the input language and the result of the framework tooling is “a full infrastruc-
ture, including parser, linker, typechecker, compiler as well as editing support
for Eclipse” [7]. In particular, the editing support generated from XText includes
features such as content assist and customisable framework for validation and
code generation. Internally XText relies on EMF, e.g., for loading the in-memory
representation of any parsed text files. This enables XText models to be used by
any other EMF-based tools since the XText grammar can be seen as ‘just’ an
alternative persistence for EMF models.

3 CamilleX

The main aim of the CamilleX framework is to provide text-based serialisation of
Event-B models. Furthermore given the existing facilities for Event-B in Rodin,
we have the following design principles for CamilleX.

126 T. S. Hoang et al.

– Reuse the existing Event-B tools of Rodin as much as possible.
– Support direct extension of the Event-B syntax to provide additional features.
– Provide compatibility with other kinds of ‘higher-level’ models that contribute

to the overall model, e.g., UML-B diagrams [8].

Section 3.1 gives an overview of the basic design for the CamilleX framework.
We will discuss direct extensions to the Event-B syntax in Sect. 3.2 and indirect
extension by plug-ins to contain other kinds of models in Sect. 3.3.

3.1 The Basic Design

CamilleX supports two types of textual files XMachine and XContext, which
in turn will be automatically translated to the corresponding Rodin Event-B
components (machine and context). The reverse transformation from Event-B to
CamilleX is also supported and can be invoked manually as shown in Fig. 1. Note
that the representation of CamilleX constructs (XMachines and XContexts), uses
an extended Event-B EMF to accommodates Event-B syntax extensions (e.g.,
machine inclusion and records structure) which are ‘flattened’ into the (core)
Event-B EMF during the automatic translation.

Fig. 1. Overview of CamilleX and Rodin Event-B constructs

Essentially, CamilleX provides the “outer” syntax to Event-B models while
relying on the Event-B static checker to check the “inner” syntax of Event-B
(i.e., Event-B mathematical formulae).

An important difference between the syntax of CamilleX and that of Camille
is that CamilleX supports comments “everywhere”. Since Camille relies directly
on the structure of the underlying XML serialisation, it can only accept com-
ments attached to the individual modelling elements. For CamilleX, comments
can appear anywhere in the textual representation of the Event-B models and
are ignored (i.e. omitted) during the translation to Rodin Event-B constructs.

As we rely on the Event-B static checker for checking the inner syntax of the
Event-B models, we implemented a callback mechanism to report any errors and
warnings raised by the Rodin static checker back to the CamilleX constructs.

The CamilleX Framework for the Rodin Platform 127

3.2 Direct Extensions to the Event-B Syntax

In this section, we present two extensions of the CamilleX constructs to support
machine inclusion [6] and records structure [5]. The steps for extending CamilleX
are as follows.

1. Extend the Event-B EMF with the new modelling element(s).
2. Extend the grammar of the CamilleX construct and regenerate the supporting

tools.
3. Extend the CamilleX validator to ensure the consistency of the added mod-

elling elements.
4. Extend the CamilleX generator to translate the newly added modelling ele-

ments into standard Event-B in the model output to Rodin.

Machine Inclusion. The machine inclusion extension provides the concepts for a
machine to include other machines and for an event to synchronise with one or
more events from the (different) included machines. The details of the mechanism
are described in [6]. We summarise the main ideas of for a machine A that
includes a machine B below:

– A inherits all variables and invariants of B.
– B’s variables can only be modified from A via synchronising with an event of
B.

– Multiple instances of B can be included via prefixing and in that case, B’s
variables and events are renamed accordingly.

The CamilleX generator is extended to “flatten” the machine inclusion
and event synchronisation into standard Event-B EMF before serialisation into
Rodin Event-B constructs.

– For each includes clause of a machine, the translator copies the variables and
invariants from the included machine. If the included machine is prefixed,
multiple copies of the variables and invariants are generated and renamed
accordingly.

– For each synchronises clause of an event, the translator copies the content of
the included events (i.e., the parameters, guards and actions) and renames
them appropriately if the included machine is prefixed.

Record Structures. The records extension provides the ability to use record struc-
tures within Event-B machines and contexts. The record structures and their
translation to Event-B are described in [5]. Records can be declared in both con-
texts and machines and will generate different Event-B modelling elements in
each. The CamilleX generator is extended to “flatten” the records into standard
Event-B EMF before serialisation into Rodin Event-B constructs. A record in a
context will generate either a carrier set or (if it is an inherited record) a con-
stant. The fields of a record in a context will be generated as constants with the
appropriate type, depending on the multiplicities, one (total functions), many
(binary relations), or opt (partial functions). A record in a machine must inherit

128 T. S. Hoang et al.

another record, and is generates a variable of the machine. The fields of a record
in a machine will also be generated as variables with the appropriate type in the
machine (depending on the record’s multiplicity).

3.3 Indirect Extensions by Plug-Ins

In the previous section, we showed how to directly extend the syntax of the
CamilleX constructs, i.e. XContexts and XMachines to support mechanisms such
as machine inclusion and record structures. In this section, we describe a generic
extensible mechanism for integration with other plug-ins such as UML-B.

We introduce the notion of containment, to enable XContexts and XMa-
chine to include external components such as UML-B diagrams. We introduce
the contains clauses which references a DiagramOwners. Each DiagramOwner con-
tains zero or more Diagrams which will contribute to the containing Machines
or Contexts. The abstract meta-class, Diagram, can then be sub-classed to con-
tribute the specific desired model syntax. For example, the UML-B diagram
types, statemachine and classdiagram, both extend Diagram.

An extension point is created for the CamilleX generator, which allows plug-
ins to contribute an implementation of how the contained components are trans-
lated in order to contribute to the Event-B models. The CamilleX generator
will then defer to this translation for the specific type of contained components
declared in the extension, e.g., UML-B state-machines or class diagrams.

4 Conclusion and Future Work

This paper presents the CamilleX framework which provides textual serialisation
of Event-B models. In particular, we reuse the existing Event-B tool-chain of
Rodin, by providing only the “outer” syntax for the Event-B models. The design
of CamilleX supports both direct extension to the Event-B syntax and indirect
extensions by plug-ins to contain other types of components such as UML-B
diagrams. Our experience shows that CamilleX improves the usability of Rodin
and assists users in developing Event-B models.

Future work on machine inclusion will suppress the generation of unneces-
sary proof obligations (e.g., those that are related to included invariants are
correct-by-construction), add support for importing a refinement-chain (instead
of individual machines), and integrate with context instantiation.

Currently CamilleX does not fully support the extension refinement of record
structures as described in [5]. At the moment, properties of the record fields are
translated as axioms and invariants after other “normal” axioms and invariants.
Sometimes we need to rearrange the order. For example, the generated elements
need to go before or in between the other normal elements. In order to provide
more flexible ordering of elements, the Event-B EMF will be restructured to
have a single collection of child elements.

Support for reasoning about availability properties with the notion of rigid
events and parameters [4] can be also added to CamilleX.

The CamilleX Framework for the Rodin Platform 129

Although the CamilleX containment extension allows for integration with
UML-B, the UML-B diagrams are currently persisted in EMF XMI format. For
similar reasons to CamilleX, it would be advantageous to have a human-readable
text persistence for UML-B diagrams. We are therefore developing XUML-B,
which will provide an XText persistence for UML-B.

Acknowledgement. This work is supported by the following projects:
– HiClass project (113213), which is part of the ATI Programme, a joint Govern-

ment and industry investment to maintain and grow the UK’s competitive position in
civil aerospace design and manufacture.

– HD-Sec project, which was funded by the Digital Security by Design (DSbD)
Programme delivered by UKRI to support the DSbD ecosystem.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

3. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend, 2nd
edn. Packt Publishing, Birmingham (2016)

4. Dghaym, D., Hoang, T.S., Butler, M., Hu, R., Aniello, L., Sassone, V.: Verifying
system-level security of a smart ballot box. In: ABZ 2021 (2021)

5. Salehi Fathabadi, A., Snook, C., Hoang, T.S., Dghaym, D., Butler, M.: Extensible
record structures in Event-B. In: ABZ 2021 (2021)

6. Hoang, T.S., Dghaym, D., Snook, C.F., Butler, M.J.: A composition mechanism
for refinement-based methods. In: 22nd International Conference on Engineering of
Complex Computer Systems, ICECCS 2017, Fukuoka, Japan, 5–8 November 2017,
pp. 100–109. IEEE Computer Society (2017)

7. The XText Project. XText website (2020). https://www.eclipse.org/Xtext/
8. Said, M.Y., Butler, M., Snook, C.: Language and tool support for class and state

machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05089-3 37

9. Snook, C., Fritz, F., Iliasov, A.: Event-B and rodin documentation Wiki:
EMF framework for event-B (2009). http://wiki.event-b.org/index.php/EMF
framework for Event-B. Accessed May 2020

10. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work. The Eclipse Series, 2nd edn. Addison-Wesley Professional, Boston (2008)

11. Voisin, L., Abrial, J.-R.: The rodin platform has turned ten. In: Aı̈t Ameur, Y.,
Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 1–8. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43652-3 1

https://www.eclipse.org/Xtext/
https://doi.org/10.1007/978-3-642-05089-3_37
https://doi.org/10.1007/978-3-642-05089-3_37
http://wiki.event-b.org/index.php/EMF_framework_for_Event-B
http://wiki.event-b.org/index.php/EMF_framework_for_Event-B
https://doi.org/10.1007/978-3-662-43652-3_1

Extensible Record Structures in Event-B

Asieh Salehi Fathabadi(B) , Colin Snook , Thai Son Hoang ,
Dana Dghaym , and Michael Butler

ECS, University of Southampton, Southampton, UK
{a.salehi-fathabadi,cfs,t.s.hoang,d.dghaym,m.j.butler}@soton.ac.uk

Abstract. Event-B is a state-based formal method for system develop-
ment. The Event-B mathematical language does not support a syntax
for the direct definition of structured types such as records. This paper
proposes extending the Event-B language with direct record definitions.
A key feature is the ability to extend records with new fields in refine-
ment steps. The XEvent-B tool, which supports a textual representation
of Event-B models, is extended to provide support for direct record def-
inition and automatic transformation of record structures into standard
Event-B elements. We demonstrate this work by modelling of the Toke-
neer case study.

1 Introduction and Motivation

In Event-B [1], system state is modelled using data structures. However, the
Event-B mathematical language does not support a syntax for the direct defini-
tion of record data structures. Record structures result in more readable models
while retaining the ease of refinement and proof. We have extended the Event-B
language to support direct definition of record structures. Our motivation is to
allow modellers to use the familiar concepts of record structured datatypes in
Event-B modelling. Moreover, we aim to have a smooth integration of records
with the step-wise refinement paradigm in Event-B. Here, a record is a collection
of fields of different data types, in fixed number and sequence [7]. In refinement,
we may extend existing records with new fields. This allows us to introduce
details to the structured data in an incremental fashion. Our work is inspired by
[3] but offers an improved translation into Event-B (see discussion in Sect. 6).

This paper is structured as follows: Sect. 2 provides background on the Event-
B. Section 3 presents tool support. Section 4 reports of the syntax and transfor-
mation of record structure, followed by application of it in the tokeneer case
study presented in Sect. 5. Section 6 compares with other data structuring meth-
ods. Finally Sect. 7 concludes.

2 Background

Event-B [1] is a refinement-based formal method for system development. An
Event-B model contains two parts: contexts for static data and machines for

This work is supported by the HiClass project (113213), which is part of the ATI
Programme, a joint Government and industry investment to maintain and grow the
UK’s competitive position in civil aerospace design and manufacture.

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 130–136, 2021.
https://doi.org/10.1007/978-3-030-77543-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_12&domain=pdf
http://orcid.org/0000-0002-0508-3066
http://orcid.org/0000-0002-0210-0983
http://orcid.org/0000-0003-4095-0732
http://orcid.org/0000-0002-2196-2749
http://orcid.org/0000-0003-4642-5373
https://doi.org/10.1007/978-3-030-77543-8_12

Extensible Record Structures in Event-B 131

dynamic behaviour. Contexts contain carrier sets s, constants c, and axioms
A(c) that constrain the carrier sets and constants. Machines contain variables v,
invariant predicates I(v) that constrain the variables, and events. Event-B uses a
mathematical language that is based on set theory and predicate logic. Event-B
is supported by the Rodin Platform [2], an extensible open source toolkit which
includes facilities for modelling and verification techniques.

3 Tool: CamilleX

The records feature is based on our EMF framework for Event-B [11] which
uses the Eclipse Modeling Framework (EMF) [13] and provides extension and
translation mechanisms to extend the Event-B language. CamilleX [5] provides
an extensible text representation of Event-B models (as opposed to Rodin XML
files). CamilleX supports two types of text files, XMachine and XContext, which
are automatically translated to the corresponding Rodin machine or context.
We have extended the CamilleX grammar to support the new records extension.
CamilleX uses the XText [4] framework to implement an editor and translation
tool. XText is an EMF-based open source framework for developing domain-
specific languages with a human-readable text persistence. When CamilleX files
are saved, the CamilleX translator calls any extension translators. In our case
a records translator will generate the ‘flattened’ standard Event-B elements in
the target machine and/or context. Records are translated to standard Event-B
and hence direct support for records is not required in the existing Rodin tools.

4 Record Structure

Record Syntax: A record in an Event-B XMachine or XContext text file is
specified using the following syntax:

record record id [extends extended record id]
(field id : [multiplicity] field type)∗
Each record has an identifier, record id, and can optionally extend another

record, extended record id. A record contains zero or more field(s). A record
field has an identifier, field id, an optional multiplicity, multiplicity, and a
data type, field type.

Multiplicity: Multiplicity defines the minimum and maximum number of times
the field element can appear in the record. There are three alternative multiplic-
ity options for a field: - one: the field contains exactly one value. - opt: (optional)
the field contains zero or one values. - many: the field contains zero or more val-
ues. If no multiplicity option is specified for a field, it is considered as one. While
the one multiplicity is common, our opt and many multiplicities give modellers
the flexibility in defining the cardinality associated with each field in a record.

Extension: A record can be extended via single inheritance, allowing record
structures to model hierarchies that occur in refining a model. Instances of an
extending record have the fields of the record that they extend as well as the
new fields that they define. Static record fields are specified in a context, while

132 A. Salehi Fathabadi et al.

dynamic record fields are specified in a machine. A record can extend another
record in three ways as follows:

– A record specified in a context/machine extends a record specified in the
same context/machine. This approach supports hierarchical definition of data
structures. Where some records share some fields, the common fields can be
specified as a parent record which is extended by child records.

– A record specified in a machine, extends a record specified in a context, seen
by the machine. This is where a record contains both static and dynamic
data, we extend fields of a static record by new dynamic fields.

– A record specified in a refining context/machine, extends a record specified in
the abstract context/machine. This approach supports data refinement where
new fields are defined for an existing abstract record in a refinement level.

Record Transformation: By saving the XText file, a context/machine file
including the translated Event-B elements for specified records are generated.
The translation elements includes sets, constants and axioms in a context and
variables and invariants in a machine. In a context:

– a non-extending record is translated to a set: sets record id
– an extending record is translated to a constant and an axiom, specifying the

record type as a sub-set relation:
constants record id
axioms record id⊆ extended record id

– each field is translated to a constant and an axiom, specifying the field type:
constants field id
axioms field id∈ record id (↔/ �→/→) field type

There are three alternative relation types for a field depending on its multi-
plicity: - “many”: is translated to a relation (↔), -“opt” (optional): is trans-
lated a partial function (�→), -“one”: is translated to a total function (→). In
a machine:

– a record in a machine must extend another record. An extending record is
translated to a variable and an invariant, specifying the record type as a
sub-set relation:
variables record id
invariants record id⊆ extendedc record id

– each field is translated to a variable and an invariant, specifying the field
type:
variables field id
invariants field id∈ record id (↔/ �→/→) field type

5 Case Study

The Tokeneer system [8] consists of a secure enclave and a set of system compo-
nents including a card reader and a fingerprint reader. In this paper, we outline
the application of record structures in specifying the system-level states. The

Extensible Record Structures in Event-B 133

primary objective of the tokeneer system is to prevent unauthorised access to
the secure enclave. A successful scenario involves: arrival of a permitted user at
the door who then presents a card on the card reader and a matching finger
print at the fingerprint reader. The system will then unlock the door allowing
the user to open it and enter the enclave. A card contains a token and a token
includes certificates. Figure 1 presents the hierarchy of certificate types.

Fig. 1. Hierarchy of tokeneer certificate types

The Event-B model of tokeneer includes an abstract level and two levels
of refinement where the door and card specifications are modelled respectively.
The certificate hierarchy types, token and card structures are specified using
record definitions in the context of the second refinement as below (left); and
the machine m2 card, seeing context c2 card, is partly presented below (right):

context c2 card extends c1 door
setsKEYPART PRIVILEGE

CLEARANCE TOKENID
FINGERPRINT

records
record CERTIFICATE

idIssuer: issuer
validityPeriod: time
signature: optKEYPART

record IDCert extends CERTIFICATE
subject:USER
publicKey:KEYPART

recordAttCert extends CERTIFICATE
baseCertId: issuer
tokenId:TOKENID

record RoleCert extendsAttCert
role: PRIVILEGE
clearance: CLEARANCE

record PrivCert extends RoleCert
recordAuthCert extends RoleCert
record IandACert extendsAttCert

fingerprintTemplate: FINGERPRINT
recordTOKEN

tokenID:TOKENID
idCert: IDCert
privCert: PrivCert
iandACert: IandACert

record CARD
token:TOKEN

recordUSER extendsUSER
fingerprint: FINGERPRINT

end

machinem2 card refinesm1 door sees
c2 card

variables validToken
records
recordUSER extendsUSER

holds: opt CARD
recordTOKEN extendsTOKEN

authCert: opt AuthCert
invariants
@inv1: validToken ⊆ TOKEN
@inv2: holds∼ ∈ CARD �→ USER
@inv3: ∀tkn. tkn ∈ validToken ⇒

baseCertId(privCert(tkn))= idIssuer(
idCert(tkn)) ∧

baseCertId(iandACert(tkn))=
idIssuer(idCert(tkn)) ∧

tokenId(privCert(tkn))= tokenID(tkn
) ∧

tokenId(iandACert(tkn))= tokenID(

tkn)
events
event holdCard any user crdwhere
@grd1: user ∈ USER
@grd2: crd ∈ CARD
@gdr3: user /∈ dom(holds)
@grd4: crd /∈ ran(holds)
@gdr5: token(crd) ∈ validToken
@gdr6: fingerprint(user)=

fingerprintTemplate(iandACert(
token(crd))) then

@act1: holds(user) := crd end
end

134 A. Salehi Fathabadi et al.

Record USER, includes the fingerprint field, specified in the context, c2 card,
and is extended in the refining machine, m2 card, to include the CARD field.
We modelled the fingerprint as a static property of a user and holding a card
as an optional dynamic property (i.e., defined in the machine). The holds field
of the USER record is declared as optional, specifying that each user can hold
at most one card. The invariant inv2 specifies that each card can be held by at
most one user. This is as example of how we can specify extra properties of a
defined record.

Record TOKEN including a token ID and three static certificates, is extended
to include the dynamic optional authorisation certificate in the machine,
m2 card. During the first attempt to enter the enclave, a valid authorisation
certificate is issued and added to the card. A token is valid if all of the certifi-
cates on it are well-formed: each certificate correctly cross-references to the ID
certificate, and each certificate correctly cross-references to the token ID. This
requirement is specified as an invariant, inv3 ; this is an example of the use of
records in an invariant.

As an example of modification of the field values, we present the event
holdCard here. A set of guards check the validity of the card token, grd5, and
matching fingerprint, grd6. If the guards hold then the record field holds is
updated to include the new pair of user and crd.

6 Comparison with Other Data Structuring Methods

Alloy. [6] is a lightweight state-based formal modelling language which influ-
enced our approach. Records are similar to Alloy signatures, with the same
notion of extends and fields. We based our syntax for field multiplicity on Alloy
multiplicities (lone=opt, one=one, some=many). Sibling signatures are disjoint
by default and signatures can be marked as abstract indicating that their sub-
signatures form a partition. We did not include disjoint/partition features in
records because it requires all siblings to be declared simultaneously in the same
refinement. Facts can be added to constrain signatures with implicit quantifica-
tion over the instances of the signature. For records, disjointness, partition and
constraints can be specified using axioms or invariants.

Declarative Records. A previous attempt [10] to support records (based on [3])
extended the Rodin Event-B notation. Records were converted to ‘plain’ Event-B
by the static checker for proof verification. Records were only available as con-
stants. Hence fields could not be varied individually. In order to change the value
of a field, a new instance of the record was selected with the desired new field
value and other fields unchanged. However, difficulties were experienced using
the ProB model checker since it has to instantiate possible values of records.
Our new approach supports variable record structures which alleviates the tool-
ing challenges and our implementation is based on the CamilleX framework to
provide human-usable text persistence whereas the previous plug-in persisted
models as XML.

Extensible Record Structures in Event-B 135

UML-B Class diagrams. [9] structure data in a similar way to records. Classes,
attributes and associations are linked to Event-B data elements (carrier sets,
constants, or variables) and generate constraints on those elements that reflect
the data relationships. A class represents a set of instances as does a record and
attributes or associations are similar to fields. However, class diagram models
provide more options (e.g. multiplicity of fields, partitioning of subsets) than are
required in records. Initially, we considered whether a clean human-usable text
persistence for class diagrams might provide an efficient route to textual record
structures. However, the abstract syntax (meta-model) for class diagrams has
been designed to support diagram editors. Since the additional options and struc-
tural differences of class diagrams must be accommodated in the persistence,
they impact the concrete syntax for records. Therefore, while class diagrams
remain an alternative option for data structuring, it is beneficial to provide a
separate textual syntax and tooling for records in Event-B.

7 Conclusion and Future Works

In the Event-B formal language, record structures can be defined using standard
Event-B elements. For example, a dynamic record field can be specified as a vari-
able and an invariant specifying the type of field. However there is no support for
direct definition of record structures. As illustrated by the Tokeneer case study,
direct definition of records using our approach results in improved readability in
modelling compared with indirect definition in Event-B. In particular, we have
designed a new notation for extensible records, so that records can be smoothly
extended during the refinement process. However when the Event-B model is
refined, records can be refined either by extension (super-position of new fields),
presented in this paper, or data refinement (replacement of fields), which is a
future research direction. Furthermore, record structures will help identifying
program data structures when generating code from Event-B model [12].

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., et al.: Rodin: an open toolset for modelling and reasoning in Event-
B. Softw. Tools Technol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/
s10009-010-0145-y

3. Evans, N., Butler, M.: A proposal for records in Event-B. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 221–235. Springer, Heidelberg
(2006). https://doi.org/10.1007/11813040 16

4. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: OOPSLA, pp. 307–309. ACM (2010)

5. Hoang, T.S., Snook, C., Dghaym, D., Salehi Fathabadi, A., Butler, M.: The
CamilleX framework for the Rodin platform (2021, accepted in ABZ)

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/11813040_16

136 A. Salehi Fathabadi et al.

7. Flatt, M., Felleisen, M., Bruce Findler, R., Krishnamurthi, S.: How To Design Pro-
grams: An Introduction to Programming and Computing. MIT Press, Cambridge
(2001)

8. Praxis: Tokeneer. https://www.adacore.com/tokeneer. Accessed Mar 2021
9. Snook, C., Butler, M.: UML-B: formal modelling and design aided by UML. ACM

Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)
10. Snook, C.: Event-B and Rodin Wiki: records extension (2010). http://wiki.event-

b.org/index.php/Records Extension. Accessed Mar 2021
11. Snook, C., et al.: Event-B and Rodin Wiki (2009). http://wiki.event-b.org/index.

php/EMF framework for Event-B. Accessed Mar 2021
12. Sritharan, S., Hoang, T.S.: Towards generating SPARK from Event-B models.

In: Dongol, B., Troubitsyna, E. (eds.) IFM 2020. LNCS, vol. 12546, pp. 103–120.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63461-2 6

13. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work. The Eclipse Series, 2nd edn. Addison-Wesley Professional, Boston (2008)

https://www.adacore.com/tokeneer
http://wiki.event-b.org/index.php/Records_Extension
http://wiki.event-b.org/index.php/Records_Extension
http://wiki.event-b.org/index.php/EMF_framework_for_Event-B
http://wiki.event-b.org/index.php/EMF_framework_for_Event-B
https://doi.org/10.1007/978-3-030-63461-2_6

Formalizing and Analyzing System
Requirements of Automatic Train

Operation over ETCS Using Event-B

Robert Eschbach(B)

ITK Engineering GmbH, Im Speyerer Tal 6, 76761 Ruelzheim, Germany
robert.eschbach@itk-engineering.de

https://www.itk-engineering.de/en/

Abstract. The European Railway Traffic Management System
(ERTMS) aims at the replacement of incompatible national railway traf-
fic management systems in Europe. A part of ERTMS is the European
Train Control System (ETCS). ETCS is an automatic train protection
system and can collaborate with an automatic train operation system
(ATO). ATO can control and monitor the braking, traction and door
system of a train. This collaboration is called ATO over ETCS. In this
paper we describe the experiences gained in the formalization and the
formal analysis of system requirements related to the modes of the ATO
onboard unit and its interfaces to train, ATO trackside unit, and ETCS
onboard unit. A primary goal to achieve was the stepwise and system-
atic construction of an Event-B specification tightly coupled with the
requirements based on a bidirectional traceability concept. Another goal
was the formal verification of important safety properties related to the
mode transitions and transition conditions of the ATO onboard unit.

Keywords: ATO over ETCS · Formalization · Traceability · Formal
verification · Event-B

1 ATO over ETCS

The European Railway Traffic Management System (ERTMS) aims at the
replacement of incompatible national railway traffic management systems in
Europe. A central part of ERTMS is ETCS. In this paper we will focus on
the collaboration of ETCS with ATO called ATO over ETCS (AoE). The sys-
tem requirements for ATO over ETCS (AoE) have been specified within the
Shift2Rail research project X2RAIL-1. Further information can be obtained from
https://projects.shift2rail.org (accessed Feb 11, 2021). The system requirements
are specified in SUBSET-1251. As can be seen in the reference architecture of

1 Technical specifications for ETCS are published in the Control Command and Sig-
nalling Technical Specification for Interoperability hosted by the European Rail
Agency. These specifications are grouped into several uniquely numbered subsets.

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 137–142, 2021.
https://doi.org/10.1007/978-3-030-77543-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_13&domain=pdf
http://orcid.org/0000-0002-2789-1873
https://projects.shift2rail.org
https://doi.org/10.1007/978-3-030-77543-8_13

138 R. Eschbach

AoE depicted in Fig. 1 the ATO is divided in ATO onboard unit (ATO-OB) and
ATO trackside unit (ATO-TS). The following ATO-OB interface specifications
have been analyzed: ATO-TS (SUBSET-125), ETCS onboard unit (ETCS-OB)
(SUBSET-130, SUBSET-143) and Train (SUBSET-139). A main part of the sys-
tem requirements is related to ATO-OB operation modes and mode transitions
(see Fig. 2).

Fig. 1. AoE reference architecture

Related Work. Formal methods have been applied to ETCS in several research
and industrial projects. For example, in [9] the authors designed a controller
for a cooperation protocol of control parameters. They identified constraints in
order to ensure collision freedom. In [7] a concrete implementation of the ETCS
Hybrid Level 3 concept is presented. The authors introduce so called virtual block
functions which computes the occupation states of virtual subsections. In [3] the
authors describe the experiences gained in modelling a satellite-based ERTMS
L3 moving block signalling system with Simulink and Uppaal and analysing
the Uppaal model with the statistical model checker Uppaal SMC. In [5] the
authors present a proof of concept of Virtual coupling. They introduce a specific
operating mode for ETCS and define a coupling control algorithm that addresses
time-varying delays affecting the communication links. In [1] the authors model
the principles of ERTMS Hybrid Level 3 in the mCRL2 process algebra. They
perform an analysis with the mCRL2 toolset which can be used for modelling,
validation and verification of concurrent systems and protocols. The identified
issues have been communicated to the EEIG ERTMS Users Group and have led
to several improvements of the affected specifications. In [4] the authors present
a detailed report on the convergence of FM related studies carried out in the

Formalizing and Analyzing System Requirements of AoE 139

Shift2Rail projects X2Rail-2 and ASTRail. In both projects a systematic survey
of the state of the art of formal methods application in railway industry and
related best practices was carried out. In [2] the authors present the results of a
questionnaire which was part of the analysis phase of ASTRail research project.
One of the most important results is that classical B and Event-B with the
respective tools Atelier-B, ProB and Rodin were used most often in projects.

The formalization approach described in this paper consists of the following
six steps (1) identify components, (2) derive function tables for relevant require-
ments, (3) derive a variable table with read/write permissions for the identified
components, (4) derive Event-B specification, (5) validation, and (6) verification.

Fig. 2. AoE mode transitions (excerpt)

Step 1: Identify Components. The first step in the formal analysis con-
sists of the systematic identification of components and boundaries specified
in SUBSET-125. The ATO-OB is the main component whereas in the environ-
ment of ATO-OB the following components were identified: ATO-TS, ETCS-OB,
Driver and Train.

Step 2: Derive Function Tables. The formalization started with the stepwise
extraction of conditions and actions related to modes like ATO Engaged of the
ATO-OB and its related mode transitions and transition conditions. For each

140 R. Eschbach

mode all conditions and actions were combined in a so-called function table as
proposed by Dave Parnas (for example [8]). Function tables and Event-B were
successfully applied in [6]. Traceability information was added to conditions and
actions that allows for relating requirements with elements of the function tables.
Furthermore, a coverage analysis was made in order to ensure that all relevant
requirements have been covered by the analysis. In Fig. 3 an excerpt of function
table for ATO-OB mode ATO Ready (RE) is depicted.

Fig. 3. AoE function table for ATO-OB mode ready (excerpt)

Each function table consists of a hierarchical structured condition block, a
value block and a variable block. Each column describes an event that consist
of the conjunction of all conditions which are part of the column and an action
which assigns in parallel all column values to the variables. Each column has
been later formalized to an event of the corresponding Event-B specification.
The trace to this event is specified in the first row of the function table. In this
way a bidirectional traceability between function table and events of the Event-B
specification is established.

Step 3: Derive Variable Table. The next analysis step consists of identifying
variables in the conditions and actions so that conditions and actions can be
reformulated formally. The requirements were analyzed such that types (like bool
or enumeration types) can be assigned to the variables. This involves the analysis
of relevant interface specifications, especially the interface between ATO-OB and
ETCS-OB and the interface between ATO-OB and train, respectively. Based on
this analysis, for each variable and for each component read/write permissions
were assigned. In addition, traceability information related to both the interface
and system requirements and events of the Event-B specification was added.
For example, variable ato ob etcs ob in ad mode with type bool is defined. The
justification for this decision is given by the trace [130, 7.3.2.2] [9.10.8,
10>-p3-] pointing to section 7.3.2.2 of SUBSET-130 and to transition 10 (with

Formalizing and Analyzing System Requirements of AoE 141

priority 3) in section 9.1.8 of SUBSET-125. SUBSET-130 defines a signal with
name Q ADMODE which can take the values 0 or 1. The ETCS-OB will send
this signal cyclically to the ATO-OB (indicating whether it is in AD mode or
not). The component ATO-OB has read permission, the environment component
ETCS-OB has write permission. All other environment components have neither
read nor write permissions.

Step 4: Derive Event-B Specification. The derived Event-B Specification
has 25 variables, 30 invariants and 41 events. In Fig. 4 event ato ob mode re 6
(excerpt) is shown which has been derived from column [ato ob mode re 6] of
the function table depicted in Fig. 3.

ato ob mode re 6
any

ato ob
where

ato ob ∈ ATOOB
ato ob mode (ato ob) = RE
a t o ob op e r a t i o n a l c ond i t i o n s (ato ob) = TRUE
ato ob engagement cond i t i ons (ato ob) = TRUE
ato ob e tc s ob in ad mode (ato ob) = TRUE
. . .

then
ato ob mode (ato ob) = EG
. . .

end

Fig. 4. Event ato ob mode re 6

Step 5: Validation. In SUBSET-125 several scenarios of AoE are specified.
These scenarios are classified as descriptions (they are not requirements). For
example, section 9.10.2 describes the nominal scenario in which the ATO will be
engaged by the driver for each so-called journey segment. We have used ProB
for simulating step-by-step these scenarios in order to validate the model.

Step 6: Verification. The formal verification was mainly done by theorem
proving with the tool Rodin and the Atelier B prover, the SMT solvers and
ProB plugins. Furthermore, refinement steps were used to impose further con-
straints on the environment. For example, since AoE realizes so-called Grade of
Automation level 2, a very important safety property is that ATO will never
be engaged when the driver never selects ATO Engage. In a refinement step
the behavior of the driver was constrained such that he can never select ATO
Engage. It was proven that an ATO-OB in this refined Event-B specification is
never in mode ATO Engaged (EG) or ATO Disengaging (DE) (the only modes
in which ATO is engaged).

142 R. Eschbach

Conclusion. In this paper the experiences gained in the formalisation and anal-
ysis of AoE was presented. The formal analysis of the mode transition require-
ments revealed 23 ambiguities and missing requirements. The formal analysis
will be continued in the future. According to the determined refinement strat-
egy the focus will be on the important functional layers ATO Active Functions
Table and ETCS mode transition requests (SUBSET-125, 9.11, 9.12), respec-
tively. With these refinement steps the functional layer ATO Operational States
(SUBSET-125, 9) will be completely addressed.

Acknowledgments. I thank the anonymous reviewers for their valuable suggestions
to improve the paper.

References

1. Bartholomeus, M., Luttik, B., Willemse, T.: Modelling and analysing ERTMS
hybrid level 3 with the mCRL2 toolset. In: Howar, F., Barnat, J. (eds.) FMICS
2018. LNCS, vol. 11119, pp. 98–114. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00244-2 7

2. Basile, D., et al.: On the industrial uptake of formal methods in the railway domain.
In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 20–29. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 2

3. Basile, D., ter Beek, M.H., Ferrari, A., Legay, A.: Modelling and analysing ERTMS
L3 moving block railway signalling with simulink and Uppaal SMC. In: Larsen,
K.G., Willemse, T. (eds.) FMICS 2019. LNCS, vol. 11687, pp. 1–21. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-27008-7 1

4. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the rail-
ways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS,
vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30942-8 46

5. Di Meo, C., Di Vaio, M., Flammini, F., Nardone, R., Santini, S., Vittorini, V.:
ERTMS/ETCS virtual coupling: proof of concept and numerical analysis. IEEE
Trans. Intell. Transp. Syst. 21(6), 2545–2556 (2020)

6. Eschbach, R.: Industrial application of Event-B to a wayside train monitoring sys-
tem: formal conceptual data analysis. In: ter Beek, M.H., McIver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 738–745. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8 43

7. Hansen, D., et al.: Using a formal B model at runtime in a demonstration of the
ETCS hybrid level 3 concept with real trains. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 292–306. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 20

8. Parnas, D.L.: Inspection of safety-critical software using program-function tables. In:
Linkage and Developing Countries, Information Processing 1994, Proceedings of the
IFIP 13th World Computer Congress, Hamburg, Germany, 28 August–2 September
1994, vol. 3, pp. 270–277. IFIP Transactions (1994)

9. Platzer, A., Quesel, J.-D.: European train control system: a case study in for-
mal verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol.
5885, pp. 246–265. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
10373-5 13

https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1007/978-3-030-00244-2_7
https://doi.org/10.1007/978-3-319-98938-9_2
https://doi.org/10.1007/978-3-030-27008-7_1
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_46
https://doi.org/10.1007/978-3-030-30942-8_43
https://doi.org/10.1007/978-3-030-30942-8_43
https://doi.org/10.1007/978-3-319-91271-4_20
https://doi.org/10.1007/978-3-642-10373-5_13
https://doi.org/10.1007/978-3-642-10373-5_13

Automatic Transformation of SysML
Model to Event-B Model for Railway

CCS Application

Shubhangi Salunkhe1,2(B) , Randolf Berglehner1,2, and Abdul Rasheeq1,2

1 DB Netz AG, Frankfurt am Main, Germany
{Shubhangi.Salunkhe-extern,Randolf.Berglehner-extern,

Abdul.Rasheeq-extern}@deutschebahn.com
2 Neovendi GmbH, Kalkar, Germany

{s.salunkhe,R.Berglehner,a.rasheeq}@neovendi.com

Abstract. Digitalisation and innovation among the railway systems
entail effort-demanding challenges, especially when considering how cru-
cial it is to verify safety requirements and proof security levels. The
early Verification and Validation (V&V) of railway systems detect critical
issues and avoid severe consequences due to software failure. This paper
aims to distinguish the subset of SysML language, which can be verified
and usable by a systems engineer. As we are interested in proving safety
properties expressed using invariants on states, we consider the Event-B
method for this purpose. Later the selected SysML subset is used for
automatic transformation and finally performing the verification using a
formal verification tool. The transformation is applied on a simple point
machine case study from DB Netz AG; First, a SysML model is designed
using the Windchill modeler, then automatically transformed to Event-B
and finally imported into the RODIN platform for formal verification.

Keywords: Model transformation · SysML · Event-B · Model-based
systems engineering

1 Introduction

Modern railways are based on centralized control systems where all systems are
computer controlled; given the railways’ safety-critical nature, modelling and
simulating such a system is a high priority. Model-Based Systems Engineering
(MBSE) provides generic systems modelling tools that allow users to use this
approach in the railway domain. SysML (Systems Modeling Language) [1] is the
most widely used general-purpose modelling language in MBSE for specification,
analysis, design, and validation of a wide range of different systems. The railway
systems are safety-critical; it is essential to implement early Verification and
Validation to detect critical issues as early as possible and control the underlying
design costs and rollbacks.

c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 143–149, 2021.
https://doi.org/10.1007/978-3-030-77543-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_14&domain=pdf
http://orcid.org/0000-0002-4418-5452
https://doi.org/10.1007/978-3-030-77543-8_14

144 S. Salunkhe et al.

This paper proposes a transformation using Triple Graph Grammars (TGGs)
[5] between SysML and Event-B [2]. The main idea is to identify the subset of
the Event-B language and SysML language, which is necessary and appropriate
for the transformation, then search for the semantic similarities between both
constructs and finally define a transformation from SysML to Event-B using
Model-Driven Engineering techniques. Our work in this paper is an advancement
of the MBSE approach explained by Berglehenr et al. in [4], and eliminate the
manual efforts and increases the efficiency by automating the transformation
process.

2 Motivation and Objectives

In the EULYNX1,2 consortium, European railway infrastructure managers
develop standard interfaces and subsystems for the next generation command,
control and signaling (CCS) architecture. Model-based systems engineering
(MBSE) is used to ensure soundness and completeness of the specified inter-
faces. Infrastructure managers define the appropriate use case descriptions and
modelling experts convert the use cases into executable SysML models using
the Windchill Modeler3 tool. Subsequently, infrastructure managers evaluate
whether the specified interfaces are sound regarding their intended use apply-
ing simulation-based testing. In order to additionally enable formal verification
the SysML model is transformed into a formal Model using the formal method
Event-B. The transformation is done manually without tool support.

In the existing formal verification of EULYNX models, the SysML state
machines created using Windchill modeler are transformed to equivalent UML-B
state machines using UML-B plug-in [7]. Later from the UML-B state machines,
the Event-B code is generated, and then the safety requirements are verified.
The overall approach is time-consuming and increases the overall life-cycle cost.
These challenges motivate our work in this paper to establish the automated
transformation with the following set of objectives: (1) The main objective is to
propose a methodology and tool-chain to automate the transformation of SysML
specification models into formal models (Event-B). (2) The traceability should
be maintained between informal requirements and the modeled system, specif-
ically for the safety properties. (3) The model should be verified against such
safety requirements using formal methods with some tool support. (4) Reduce
the efforts involved in the manual transformation of the SysML semi-formal
model to a formal model.

1 https://www.eulynx.eu/.
2 Our work is featured in embedded video on EULYNX website: https://www.youtube.

com/watch?v=GhoNoMm4om0.
3 https://www.ptc.com/en/products/windchill/modeler.

https://www.eulynx.eu/
https://www.youtube.com/watch?v=GhoNoMm4om0
https://www.youtube.com/watch?v=GhoNoMm4om0
https://www.ptc.com/en/products/windchill/modeler

Automatic Transformation of SysML Model to Event-B Model 145

3 Case Study and Transformation Approach

3.1 Case Study and Scope

In this paper, we have proposed a prototype to automate the transformation.
For this prototype, we have considered a small case study provided by DB Netz.
It is a technical specification and requirements document describing an interface
between a point machine controller to the interlocking. Figure 1 shows Point
Machine’s configuration in its simplest form: Two tracks represent the left and
right positions. The lamps represent the position of the tracks after the move-
ment. The main requirement is to move the tracks to the left or right position
depending on the commands received from the interlocking. Figure 2 depicts the
system’s behavior in the form of a SysML state machine diagram.

Fig. 1. Case Study: Point Machine

StateMachine1

RIGHT

LEFT

when(move_point_left
= TRUE)/ left := TRUE;
right := FALSE;

when(move_point_right
= TRUE)/ right:= TRUE;
left := FALSE;

Fig. 2. Case Study: SysML State-
Machine Diagram

To perform the formal verification, the SysML state machine diagram is
transformed into the equivalent Event-B model. Hence, in the Event-B method,
there are mainly two aspects that need to be considered: What kinds of Event-B
components? Furthermore, what kind of link between these components to use?.
We restrict the Event-B method usage to one machine with variables, invariant,
events, actions and guards. Concerning the data type, the primitive data type
(i.e. Boolean) is considered. After Studying the Event-B language thoroughly, we
define the SysML subset under the defined limited subset for Event-B. Table 1
list the semantic mapping between SysML and Event-B.

We have considered a very limited subset of state machine elements in our
approach to provide a prototype as a first step.

3.2 Model-to-Model Transformation

The transformation defined in our approach consists of TGG rules [5] that need
to be established by using the subset defined for semantics between SysML
and Event-B Model Using Model-Driven Engineering (MDE) techniques, we
implemented a proprietary model transformation written in eMoflon-IBeX [3].

146 S. Salunkhe et al.

Table 1. List of semantic similarities

SysML concept Event-B concept

State-Machine Machine(Project)

States Variables

Transition Events

Effects Actions

Triggers Guards

States Default Invariants

Ports Variables

As stated earlier, the system functional requirements are modeled in Windchill
modeler and persisted in XMI format. The XMI file includes other SysML model
elements such as block diagrams and stereotypes, but we focus on state machine
diagrams and ports in our approach. Thus, the state machine and ports part
of the XMI file is parsed before providing it as an input to the eMoflon: IBeX
tool. Furthermore, we consider state machine as a collection of variables at the
Event-B side and applied the transformation accordingly.

In the first step, we implement the meta-models for SysML and Event-B.
The mapping between the elements of SysML and Event-B models is defined
by writing TGG rules that will generate the target Event-B model. TGGs can
perform the transformation in both direction i.e. forward and backward, hence
named bi-directional. In our approach, we only apply forward transformation.
Listing 1.1 depicts the Event-B model generated by the application of the rules
for the state machine depicted in Fig. 2.

Each state machine of SysML model is transformed into Machine module of
the Event-B and has the same name as state machine. The States and Ports are
transformed into Event-B Variables, for example, states RIGHT and LEFT and
ports right, left. States from SysML state machine are also translated to Invari-
ants (for e.g., TYPEOF RIGHT:) and initialized them in the INITIALISATION
event (for e.g., init RIGHT:RIGHT := TRUE). The predicates of Invariants are
created using attribute conditions (for e.g., RIGHT∈BOOL). The attribute con-
ditions are implemented using JAVA language. The Transitions, Triggers and
Actions of SysML state smachine are translated into Event-B Events, Guards and
Actions. In Event-B, the Event represent the transition from one state to other
state depending on the data that represent the state. Such transitions are real-
ized by translating the Source State and Target State of a Transition of SysML
state machine to Guard condition and Enter & Leave actions of Event-B (for e.g.,
isin RIGHT: RIGHT = TRUE & Enter LEFT: LEFT := TRUE). This proto-
type has implemented 14 rules and 13 attribute conditions to transform state
machine from a case study.

Automatic Transformation of SysML Model to Event-B Model 147

MACHINE
machine

VARIABLES
r i gh t
move point r i gh t
move point l e f t
LEFT
RIGHT
l e f t

INVARIANTS
TYPEOF LEFT : LEFT∈BOOL
TYPEOF RIGHT : RIGHT∈BOOL

EVENTS
INITIALISATION =̂
STATUS

ord inary
BEGIN

init RIGHT : RIGHT := TRUE
init LEFT : LEFT := FALSE

END
Previous=̂
STATUS

ord inary

WHEN
isin LEFT : LEFT = TRUE
guard2 : move point r i gh t = TRUE

THEN
enter RIGHT : RIGHT := TRUE
action4 : l e f t := FALSE
leave LEFT : LEFT := FALSE
action3 : r i gh t := TRUE

END
Next=̂
STATUS

ord inary
WHEN

guard1 : move point l e f t = TRUE
isin RIGHT : RIGHT = TRUE

THEN
action1 : l e f t := TRUE
enter LEFT : LEFT := TRUE
action 2 : r i gh t := FALSE
leave RIGHT : RIGHT := FALSE

END
END

Listing 1.1. Event-B model obtained for the Point Machine State-Machine

In order to perform the transformation, the following steps are performed
using eMoflon:IBeX tool: (1) First, The SysML state machine model is exported
from the Windchill modeler in .xmi format and provided as an input to the tool.
(2) later the forward operation ofeMoflon:IBeX is applied together with the
rules. (3) The transformation will generate the Event-B model in .xmb format,
which is imported into the RODIN [6] platform to generate the Event-B code.

4 Related Work

Several well-known approaches offer a transformation from SysML to formal
methods in different industries according to their needs and applications. Snook
and Butler [7] perform a transformation from UML-B to Event-B, where UML-B
is a graphical front end for Event-B. Similarly, Bousse et al. [8] worked on trans-
formation from SysML to B method, with the same motivation as ours for early
V&V of railway systems, but with a different solution. Many other works offered
a transformation from SysML to different other formal methods such as Wang et
al. [9] worked on transformation from SysML to NuSMV model checker. Zhang et
al. [10] introduced transformation from SysML requirement diagram to Event-B
for distributed systems. The seminal work by Giese et al. [11] provided a trans-
formation from SysML to AUTOSAR using Triple Graph Grammars (TGGs).
Bouwman and Djurre van der Wal et al. [12] automated a transformation from
SysML to mCRL2 in a project called FormaSig4 in collaboration with EULYNX,
DB Netz and ProRail5.

Despite the availability of different transformation for SysML to formal meth-
ods, the researchers are still trying to perform and implement SysML transfor-
mation according to the usage of formal language in their industries, specific
to their application, availability of tools, and expertise. The works mentioned
in this section are tailored to the specific application scenarios and cannot be
4 https://www.utwente.nl/en/eemcs/fmt/research/projects/formasig/.
5 https://www.prorail.nl/.

https://www.utwente.nl/en/eemcs/fmt/research/projects/formasig/
https://www.prorail.nl/

148 S. Salunkhe et al.

related to a transformation to the Event-B, which motivates our work in this
paper to perform the transformation from SysML state machine to Event-B.

5 Conclusion and Future Work

Our approach provides a technique for early V&V of SysML model using the
existing tool-set of Event-B language. The essential purpose is to propose a
methodology and tool-chain to support the automatic transformation and allow
standardization of system interfaces’ specifications. The proposed approach is
implemented in a prototype using a simple case study. The existing tools such
as Windchill modeler for semi-formal modelling (i.e. SysML) and RODIN for
formal modelling(i.e. Event-B) are connected via eMoflon: IBeX to perform the
transformation. The prototype is limited to the simple and most relevant con-
struct of SysML state machine, in which we performed the semantics mapping
between both languages and defined the transformation rules. The prototype is
validated by providing three different test cases. The test cases are simple and
have the language elements that are described in Sect. 3.1, but they consist of
more states, transitions, events and actions as compared to the case study pro-
vided in Sect. 3.1. The transformation provides the correct results for all three
test cases, thus validating the transformation to be accurate.

The prototype we implemented in this paper acquire elementary constructs
of the SysML state machine. We plan to extend the transformation for more
complex state machine constructs to provide the practical applicability of the
transformation to the real-world models (e.g. EULYNX models). The current
transformation is applied in only forward direction. The transformation shall be
extended for backward direction to facilitate traceability in case of error found
during formal verification. The RODIN platform and eMoflon: IBeX uses the
same EMF framework for their application; in future, these two tools can be
merged, and a User Interface(UI) can be implemented to perform the transfor-
mation. The UI will help inexperienced users conduct the transformation very
easily and liberate them from any technical details.

References

1. Friedenthal, S., Moore, A., Steiner, R.: OMG systems modeling language (OMG
SysML) tutorial. In: INCOSE International Symposium, vol. 9 (2006)

2. Abrial, J.-R., et al.: Rodin: an open toolset for modelling and reasoning in Event-B.
Int. J. Softw. Tools Technol. Transfer 12(6), 447–466 (2010)

3. Weidmann, N., et al.: Incremental bidirectional model transformation with
eMoflon: IBeX. In: Cheney, J., Ko, H.-S. (eds.) 2019 (CEUR
Workshop Proceedings), vol. 2355, pp. 45–55. CEUR-WS.org (2019)

4. Berglehner, R., Rasheeq, A., Cherif, I.: An approach to improve SysML railway
specification using UML-B and EVENT-B. Poster Presented at RSSRail (2019)

5. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

https://doi.org/10.1007/3-540-59071-4_45

Automatic Transformation of SysML Model to Event-B Model 149

6. Butler, M., Hallerstede, S.: The Rodin formal modelling tool. In: FACS 2007 Christ-
mas Workshop: Formal Methods in Industry, pp. 1–5 (2007)

7. Snook, C., Butler, M.: UML-B and Event-B: an integration of languages and tools
(2008)

8. Bousse, E., et al.: Aligning SysML with the B method to provide V&V for sys-
tems engineering. In: Proceedings of the Workshop on Model-driven Engineering,
Verification and Validation (2012)

9. Wang, H., et al.: Integrating model checking with SysML in complex system safety
analysis. IEEE Access 7, 16561–16571 (2019)

10. Zhang, Q., Huang, Z., Xie, J.: Distributed system model using SysML and Event-
B. In: Gu, X., Liu, G., Li, B. (eds.) MLICOM 2017. LNICST, vol. 226, pp. 326–336.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73564-1 32

11. Giese, H., Hildebrandt, S., Neumann, S.: Towards integrating SysML and
AUTOSAR modeling via bidirectional model synchronization. In: MBEES (2009)

12. Luttik, S.P.B.: What is the point: formal analysis and test generation for a railway
standard. e-proc (ESREL2020 PSAM15) (2020)

https://doi.org/10.1007/978-3-319-73564-1_32

Short Articles of the PhD-Symposium
(Work in Progress)

Formal Meta Engineering Event-B:
Extension and Reasoning
The EB4EB Framework

Peter Riviere(B)

IRIT/INPT-ENSEEIHT, 2 rue Charles Camichel Toulouse, 31000 Toulouse, France
peter.riviere@toulouse-inp.fr

1 Context

State-based Formal methods have been used to design and verify the develop-
ment of complex software systems for a long time. Such methods are underpinned
with solid mathematical concepts. Event-B [1] belongs to this family of methods.
It advocates a correct-by-construction approach to model a complex system. It
is based on set theory and first-order logic. It comes with a powerful integrated
development environment called Rodin [9].

The use of formal methods must satisfy the needs of the end user by allowing
for scalability, portability, expressiveness, and modularity, among other things.
Many key features are currently supported by the Event-B language either in
the core modelling language or through specific plugins (e.g. composition plug-
in [10], Theory plug-in [2,4], code generation plug-in [6,8]). The Theory Plug-in
[2,4] extends Event-B to allow for the definition of new data types, theories, and
operators in order to enhance the expressiveness of the formalism. For exam-
ple, to handle the continuous behavior of a hybrid system for designing a safe
controller, domain specific features, related to continuous mathematics [5], have
been developed in the form of theories.

The Event-B language requires advanced modelling and reasoning concepts
in order to capture the notion of model, proof obligation (PO) and proof pro-
cess. Currently, verifying interesting properties such as deadlock freeness, event
scheduling, liveness, etc., requires ad hoc modelling by the designer. Establish-
ing these properties is based on the use of automatic and/or interactive proof
systems and/or model checkers.

Due to a lack of access and explicit manipulation of Event-B concepts, it
is quite impossible to express a generic property on these concepts in a theory
within a generic definition. Indeed, there is no mechanism in Event-B allowing
a designer to define, at a higher order level, additional reusable POs.

The above mentioned issue has been addressed by the development of several
plug-ins as Rodin tools. Examples are machine compositions and decomposition,
event scheduling, code generation, and translation that have been developed
using Eclipse. There is a lack of evidence to guarantee the functional correct-
ness of such developed tools. For example, how can we assert that the machine
composition and decomposition plug-in behave correctly.
c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 153–157, 2021.
https://doi.org/10.1007/978-3-030-77543-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-77543-8_15

154 P. Riviere

2 Motivation and Objectives

The above mentioned plug-ins enrich Event-B by introducing either new data
types (e.g. using the theory plug-in [2,4]) or by externally defined specific pro-
grams that manipulate Event-B models (e.g. composition/decomposition plug-
in). None of the above approaches allow to manipulate Event-B models as first
order objects. A typical example is the case of deadlock freeness. Three possible
options are currently possible: either the developer writes explicitly this PO in
the form of a theorem to be proved in the development, or by writing an external
program in the PO Generator (to generate this theorem as a PO), or in the form
of a plug-in (generating an Event-B machine with the PO as theorem). Both
approaches are error prone (written programs are not certified to be correct) or
ad hoc (no reuse, properties need to be written for each specific model analysis).

Offering the capability to manipulate Event-B concepts (models, states, tran-
sitions, invariants, variants, guards, POs, etc.) as first order objects will allow the
developer to express properties on these objects. For example, deadlock freeness
PO can be expressed at machine level if guards and invariants can be manipu-
lated in the modelling language. Such a manipulation is possible if the Event-B
theory, as defined in the Event-B book [1] associated to Event-B, is formalised
in Event-B itself (reflexive modeling).

So, the objective of our PhD thesis work consists in improving modelling
and reasoning capabilities of Event-B through the development and formali-
sation of a theory of Event-B in Event-B. Indeed, we propose to develop the
EB4EB framework grounded on a set of theories defining data types for Event-
B concepts, operators manipulating these concepts and a set of proved theorems
precising their semantic properties. In addition, we propose to build other the-
ories to introduce other Event-B models domain specific analyses in the form of
properties expressed on the Event-B concepts that describe POs on the analysed
models.

Note that the soundness of this framework for Event-B extension and reason-
ing developed in Event-B shall preserve the core logical foundation of original
Event-B models. The main objectives of our work are summarised as follows:

– Analyse and identify the fundamental Event-B concepts and properties that
define the notion of machine. Then, using a context or a theory, formalise
these concepts (modelling in the small).

– Analyse and identify the Event-B refinement operation for events, data and
machine, and then formalise it as a context or theory (modelling in the large).

– Deploy the proposed approach for enhancing reasoning mechanism like dead-
lock freeness, reachability, etc.

– Introduce new modeling and reasoning mechanisms to handle domain spe-
cific analyses of Event-B models. For example, continuous behaviour, human
machine interaction, and so on.

– Deploy the proposed approach for analysing and certifying the existing plug-
ins, such as composition/decomposition, code generation, etc.

Formal Meta Engineering Event-B 155

– Allow the capability to Import/Export Event-B models as First Order Logic
formulas in other proof tools, as these models become expressed as instances
of Event-B theories.

3 Proposed Approach

3.1 Overview of the Approach

An Event-B system model consists of context, machine that focuses on formal
modelling to describe system behaviour using refinement approach. Additional
theories may be required to axiomatise new definitions and data-types in either
contexts or theory components.

Our approach focuses on the development of Event-B theory axiomatising
Event-B concepts. We propose a set of datatypes, operators, and theorems to
specify the Event-B concepts, their relationships and other additional attributes
and properties related to these concepts. The obtained meta-theory serves to
design a system model as instances of this meta-theory. This instantiation gen-
erates a set of new POs.

3.2 Modelling and Instantiation Mechanism

Once the theory for Event-B concepts is designed, two main approaches to instan-
tiate it are envisioned, namely deep modelling and shallow modelling.

– Deep modelling. All the concepts of an Event-B model to be analysed, vari-
ables, events, guards, invariants, substitutions, etc., are defined as instances
of the developed meta-theory. An Event-B model is represented as an Event-
B context, and POs are described as either theorems or well-definedness POs.
Higher order logic and set theory are used to express all the definitions. It can
be used as an entry point to the design of an import/export system between
other proof assistants.

– Shallow modelling. In this case, for each Event-B model to be analysed, we
define another Event-B model consisting of a context instantiating the theory
with the concepts of the analysed model and a refinement of an abstract
generic machine composed of two events init and progress capturing generic
behaviours. This machine is refined to introduce the events of the analysed
Event-B model. This method contributes to reduce the proof effort as the
POs associated each event become simulation proofs. In the same spirit as
TLA+ [7], the concepts of init and progress events are identified similar to
init and next events of TLA+.

These two instantiation mechanisms extend the modeling and reasoning capa-
bilities of Event-B language itself as it makes it possible to define additional
theorems encoding other POs (e.g. deadlock freeness). It is important to note
that these two instantiation mechanisms are distinct and play an important role
in the refinement process. The modeling tool Rodin equipped with proving tools

156 P. Riviere

will be used to support all the theories and models. To check the correctness of
the developed models, all the generated POs related to well-defined conditions,
theorems and properties must be successfully discharged. Instantiation also gen-
erates some new POs that must be discharged before any further development.
In addition, the developed theory of Event-B can be used for analysing and
verifying the core functionalities of existing Rodin plugins.

4 Future Work

The development of Event-B theory is currently in progress. In addition to the
developments of the necessary theories, we intend to develop complex case stud-
ies to demonstrate the expressiveness and scalability of both deep and shallow
mechanisms. Other planned work includes checking the correctness of existing
plug-ins like composition/decomposition, code generation, etc., by describing,
at the level of the Event-B theory, the operation they encode. Moreover, we
plan to deploy the proposed approach for enhancing the reasoning mechanism,
such as deadlock freeness, reachability etc. In addition, the proposed approach
will be implemented with the theory plug-in and context instantiation devel-
oped in the context of the EBRP project. Our long term future work includes
to import/export the Event-B theory as well as Event-B models in other proof
assistants, through Dedukti [3].

Acknowledgements. This study was undertaken as part of the EBRP (Enhancing
EventB and RODIN: EventB-RODIN-Plus) project. We are very grateful to EBRP
project members for their valuable discussion and feedback.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.:
Proposals for mathematical extensions for Event-B. Technical Report (2009)

3. Boespflug, M., Carbonneaux, Q., Hermant, O., Saillard, R.: Dedukti: a Universal
Proof Checker. In: Journées communes LTP - LAC. Orléans, France, October 2012.
https://hal-mines-paristech.archives-ouvertes.fr/hal-01537578

4. Butler, M., Maamria, I.: Mathematical extension in Event-B through the rodin
theory component (2010)

5. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Formally verified architecture
patterns of hybrid systems using proof and refinement with Event-B. In: Raschke,
A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 169–185. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 12

6. Fürst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazaki, K.: Code genera-
tion for event-B. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp.
323–338. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10181-1 20

7. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

https://hal-mines-paristech.archives-ouvertes.fr/hal-01537578
https://doi.org/10.1007/978-3-030-48077-6_12
https://doi.org/10.1007/978-3-319-10181-1_20

Formal Meta Engineering Event-B 157

8. Méry, D., Singh, N.K.: Automatic code generation from Event-B models. In: Pro-
ceedings of the 2011 Symposium on Information and Communication Technology,
SoICT 2011, pp. 179–188 (2011)

9. Rodin sourceforge. https://sourceforge.net/projects/rodin-b-sharp/
10. Silva, R., Butler, M.: Shared event composition/decomposition in Event-B. In:

Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol.
6957, pp. 122–141. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25271-6 7

https://sourceforge.net/projects/rodin-b-sharp/
https://doi.org/10.1007/978-3-642-25271-6_7
https://doi.org/10.1007/978-3-642-25271-6_7

A Modeling and Verification Framework
for Security Protocols

Mario Lilli(B)

Computer Science Department, Università degli Studi di Milano,
via Celoria 18, Milan, Italy
mario.lilli@unimi.it

Abstract. Bad design decisions in security protocols can drastically
affect the robustness of the protection given by protocols, causing the
introduction of vulnerabilities and leak of information. My PhD project
aims to reduce the possibility of introducing flaws supporting designers
and engineers with a user-friendly formal verification framework, with
various options for both model construction and verification.

Keywords: ASM · Security protocol · Automatic verification ·
ASMETA

1 Introduction

A challenging problem in security protocols design is the difficulty of granting
security properties in a provable way. This problem can be traced back to both
a lack of user-friendly tools and protocol designers’ misconceptions linked to the
formal methods [7]. During my PhD that has started in October 2020, I aim to
study and develop a new tool that hides mathematical formalism and enforces
push-button verification. Many other tools address the same problem [2,3,6,9],
but no one integrates all the required features to lead the protocol designers to
consider the formal methods a viable way to check their protocol’s correctness.
The common problems of these tools are: a difficult modelling language, making
the writing of the model error-prone as well; a verification process that might
require user interaction and knowledge of the tool’s internal; the verification
results difficult to interpret and to bind to the original protocol.

During the last year, I worked on applying formal methods to security pro-
tocols with good results on a complex case study, e.g. Z-Wave protocol. The
obtained results [4] show that ASMs (Abstract State Machines) can be a suit-
able way to describe complex protocols even for designers and engineers because
the notion of ASM resembles that of the Finite State Machine (FSM), which
they commonly know. Moreover, the ASMETA framework [1] (a tool-set for
modelling, validating and verifying ASMs), which is at the basis of my experi-
mentation, is easily expandable with new external tools or software components.

The development of the desired modelling and verification framework for
security protocols can be reached by addressing several research questions stated
below and regarding three main precise research directions:
c© Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 158–161, 2021.
https://doi.org/10.1007/978-3-030-77543-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_16&domain=pdf
http://orcid.org/0000-0001-7236-9171
https://doi.org/10.1007/978-3-030-77543-8_16

A Modeling and Verification Framework for Security Protocols 159

– RQ1 :“How is it possible to take advantage of all the pros of a formal method
without the need to know its mathematical formalism?”
In particular, I am interested in evaluating a front-end interface that hides
the mathematical formalism and using natural language processing (NLP)
techniques that can automatize the extraction of requirements from the doc-
umentation [8].

– RQ2 :“Are classical model checkers suitable enough to guarantee properties of
secure systems?”
Classical verification properties are qualitative and are related to functional
behaviour. Nevertheless, security protocols operate in a hostile and unpre-
dictable environment that requires the checking of non-functional properties.
Therefore stochastic model checker should be tested to verify probabilistic
and real-time behaviour.

– RQ3 :“How is it possible to guarantee that code operates as required by the
specification?”
This is a fundamental question since the availability of these techniques may
influence also the protocol certification process. To answer this question three
possible directions can be investigated: code generation from models, confor-
mance checking and runtime verification.

2 Related Work

In the last few years, many techniques and tools have been proposed for verifying
protocols. The main points of difference between tools are the modelling language
and the verification technique. In the rest of the section, I summarize the most
relevant and mature verification tools.

tamarin [6] is a tool used to verify various security protocols, among which
it is possible to find complex protocols like TLS, 5G and RFID. It has a mod-
elling language that allows specifying protocols, adversary models and security
properties. However, the verification phase is based on deduction and equational
reasoning. The principal drawback of this tool is the need for human intervention
during the verification phase.

ProVerif [3] uses pi-calculus as a modelling language, and for protocols veri-
fication, it checks the Horn clause. ProVerif may need human intervention when
it may find a false attack or fail to prove some protocol properties.

Verifpal [9] is a relatively new framework inspired by ProVerif. It employs
a language similar to the one used in protocol specification but with a fixed
number of primitives. The verification phase relies on symbolic verification.

AVISPA [2] is a platform that group several tools, which use a single mod-
elling language called HLPSL (High-Level Protocol Specification Language). The
verification phase is handled using three different tools: SATMC (SAT-based
Model-Checker) for abounded state space, CL-AtSe and OFMC for a bounded
number of sessions, TA4SP for an unbounded number of sessions.

160 M. Lilli

Fig. 1. Roadmap of steps needed for
the modelling phase

Fig. 2. Roadmap of steps needed for
the verification phase

3 Description of the Approach

My PhD project aims to investigate new techniques to automatize both the
procedure of modelling and verification, creating a tool that is user-friendly to
spread the adoption of model checking in the industry sector.

Figure 1 shows the roadmap of steps needed to build a user-friendly and
automated modelling tool for protocol security. The first step (the creation of
a reusable template) [4] is the basis for all the future phases. It consists of
three main sub-steps: a formalization of cryptographic primitives common among
protocols, a template that formalizes agents’ internal structure and the capability
of interaction between agents using a message structure resembling the real-
life equivalent. The second step in the roadmap plans to integrate time in the
ASM formalism. The extension is needed because many security protocols are
temporized. When the first two steps are completed can be used in the next steps.
The template element will be mapped with a drag and drop graphical interface.
More precisely, each construct available in the template is mapped with a UML-
like element. The last two steps simplify the construction of the formal model,
reducing designers intervention. The first one using NLP techniques can build a
model from scratch extracting requirements from documentations. The second
one is useful when implementation is provided by third-parties and it is necessary
to guarantee that code operates in conformance with the specification. Therefore,
I aim to automatically deriving the model from the code of the security protocol.

Figure 2 points out the steps needed for fully automated and exhaustive
verification of security protocols. The first step that I have identified requires
constructing a template of CTL properties reusable across protocols. A set of
reusable security properties are presented in [3]. They cover the basic CIA (con-
fidentiality, integrity and authenticity) properties.

The ASMETA framework already supports the flattening of the model in
NuSMV [5], but it would be interesting to test other verification techniques (e.g.
SAT solver) to compare performance and results. However, security protocols
require the verification of qualitative properties, which means to verify properties
that are, in many cases, probabilistic and real-time. The classical model checker
can not deal with these properties, so stochastic model checkers will help execute
an accurate verification.

A Modeling and Verification Framework for Security Protocols 161

The final goal is to map resulting traces with a graphical visualization similar
to the one used during the model construction. In this way, designers or any user
can easily spot the flaw.

4 Conclusion

Wider adoption of formal methods for security protocols design is crucial for
obtaining more secure and robust protocols. In this paper, I outline my PhD
research project, which aims to hide the mathematical complexities of formal
methods by developing two main research areas, one centred on the modelling
phase and the other on the verification. The main result that I plan to obtain is
to spread the necessity of implementing security by design to reduce expensive
flows and leaks during the protocol’s life, preserving final users’ privacy.

References

1. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process for
engineering a toolset for a formal method. Softw.: Pract. Experience 41(2), 155–166
(2011)

2. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

3. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings 14th IEEE Computer Security Foundations Workshop, 2001, pp. 82–96
(2001). https://doi.org/10.1109/CSFW.2001.930138

4. Braghin, C., Lilli, M., Riccobene, E.: Towards ASM-based automated formal veri-
fication of security protocols. In: Rigorous State-Based Methods. Springer (2021).
(accepted)

5. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

6. Cortier, V., Delaune, S., Dreier, J.: Automatic generation of sources lemmas in
Tamarin: towards automatic proofs of security protocols. In: Chen, L., Li, N., Liang,
K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 3–22. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59013-0 1

7. Davis, J.A., et al.: Study on the barriers to the industrial adoption of formal meth-
ods. In: Pecheur, C., Dierkes, M. (eds.) FMICS 2013. LNCS, vol. 8187, pp. 63–77.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41010-9 5

8. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: Automatically
extracting requirements specifications from natural language, March 2014

9. Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: cryptographic protocol analysis for
the real world. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT
2020. LNCS, vol. 12578, pp. 151–202. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-65277-7 8

https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-030-59013-0_1
https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-030-65277-7_8
https://doi.org/10.1007/978-3-030-65277-7_8

Formalizing the Institution for Event-B
in the Coq Proof Assistant

Conor Reynolds(B)

Maynooth University, Maynooth, Kildare, Ireland
conor.reynolds@mu.ie

Abstract. We formalize a fragment of the theory of institutions suffi-
cient to establish basic facts about the institution EVT for Event-B, and
its relationship with the institution FOPEQ for first-order predicate logic.
We prove the satisfaction condition for EVT and encode the institution
comorphism FOPEQ → EVT embedding FOPEQ in EVT .

Keywords: Coq · Event-B · Institution theory

1 Introduction

The theory of institutions [4] was introduced by Joseph Goguen and Rod Burstall
to give concrete form to the informal notion of a “logical system”, identifying a
common structure among the many logics in regular use in computer science. A
2017 paper by Marie Farrell, Rosemary Monahan, and James Power [3] uses the
theory of institutions to provide a sound mathematical semantics and modular-
ization constructs for the industrial-strength state-based formal modelling lan-
guage Event-B [1], providing interoperability with other formalisms. In related
work, the Heterogeneous Tool Set (Hets) [7] makes use of institutions to provide
heterogeneous specifications.

Event-B has an associated development process for system-level modelling
and analysis. Key features include the use of set theory as a modelling notation,
the use of refinement to represent systems at different abstraction levels and the
use of mathematical proof to verify consistency between refinement levels. The
primary purpose of this research is to formalize the work in [3] within the Coq
proof assistant, and more generally to provide the rudiments of a Coq library
for the theory of institutions.

We build on earlier work formalizing universal algebra in Agda by Emmanuel
Gunther, Alejandro Gadea, and Miguel Pagano [5]. However, the purpose of this
work is not to provide a comprehensive development of universal algebra; we only
develop as much as we need in order to define the institutions for first-order logic
and Event-B. We also depend on the development of category theory by John
Wiegley at jwiegley/category-theory.

Supported by the Irish Research Council (GOIPG/2019/4529).
c© The Author(s) 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 162–166, 2021.
https://doi.org/10.1007/978-3-030-77543-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_17&domain=pdf
http://orcid.org/0000-0002-6598-5512
https://github.com/jwiegley/category-theory
https://doi.org/10.1007/978-3-030-77543-8_17

Formalizing the Institution for Event-B in the Coq Proof Assistant 163

While some obligations remain to be formally discharged for the institution
FOPEQ for first-order predicate logic with equality, our developments for the
institution EVT for Event-B are complete. We have also encoded the institution
comorphism FOPEQ → EVT , which embeds the simpler FOPEQ institution
into EVT , providing the underlying mathematical language for EVT . It remains,
however, to prove the naturality condition in our encoding. The formalization
is not axiom-free, assuming dependent function extensionality and proof irrele-
vance. A more careful development might use setoids (as in [2,5]), and in the
future we may experiment with grounding these efforts in homotopy type theory.

Throughout this paper, we will assume some familiarity with basic category
theory, as well as the first two chapters of [8].

2 The Institution for Event-B

An institution [4] consists of

– a category Sig of signatures (non-logical syntax);
– a sentence functor Sen : Sig → Set (logical syntax);
– a model functor Mod : Sigop → Cat (semantics for non-logical syntax); and
– a semantic entailment relation �Σ ⊆ |Mod(Σ)| × Sen(Σ) for each Σ ∈ Sig,

such that for any signature translation σ : Σ → Σ′, any sentence φ ∈ Sen(Σ),
and any model M ′ ∈ Mod(Σ′), the satisfaction condition holds:

M ′ �Σ′ Sen(σ)(φ) iff Mod(σ)(M ′) �Σ φ (1)

This kind of institution is sometimes referred to as a set/cat institution, since the
target of Sen is Set and the target of Mod is Cat. To avoid encoding a “category
of categories” in Coq, we implement set/set institutions [6].

We will now provide a precise but brief definition for the institution for
Event-B, alongside its definition in Coq. For details, we refer the reader to [3].
Throughout, let Status = {ordinary ≤ anticipated ≤ convergent}.

The category of EVT -signatures has as objects Σ̂ = 〈Σ, E, X, X ′〉, where Σ
is a first-order signature, E : Status → Type is a status-indexed set of events,
and X, X ′ : sorts Σ → Type are sorts-indexed sets of pre- and post-variables,
respectively. In Coq, this becomes:

Record EvtSignature :=
{ base_sig :> FOSig ;

events : Status → Type ;
Vars : sorts base_sig → Type ;
Vars’ : sorts base_sig → Type }.

An EVT -signature morphism Σ̂1 → Σ̂2 consists of a first-order signature mor-
phism σ : Σ1 → Σ2 translating the base signature, along with a function
E1 → E2 mapping events in such a way as to preserve the ordering on sta-
tuses, and functions X1 → X2 ◦ σ, X ′

1 → X ′
2 ◦ σ mapping variables, regarded as

morphisms in their respective indexed categories. It is convenient to assume that

164 C. Reynolds

the initialization event is not in E, so there is no need for the assumption that
the initial event is preserved by signature morphisms. If the initialization/event
distinction is made at the level of sentences, then we can enforce preservation of
the initialization event definitionally.

Record EvtSigMorphism Σ Σ’ : Type :=
{ on_base_sig :> SignatureMorphism Σ Σ’ ;

on_events : EventMorphism Σ Σ’ ;
on_vars : Vars Σ → Vars Σ’ ◦ on_base_sig ;
on_vars’ : Vars’ Σ → Vars’ Σ’ ◦ on_base_sig }.

EVT -sentences are either initialization sentences, Init ψ where ψ : FOSen(Σ +
X ′), or event sentences, Event e ψ where ψ : FOSen(Σ + X + X ′). Note that the
base signature is expanded to include the EVT -variables as constant operation
names. Initialization sentences describe how variables are initially set. Event
sentences describe how events change the variables. As a very simple example,
given an event inc which increments a variable n, inc :≡ begin n := n + 1 end,
we write the EVT -sentence Event(inc, n′ = n + 1), where n ∈ X and n′ ∈ X ′ are
respectively pre- and post-variables from the ambient Event-B signature. Given
an initialization event which starts n at 0, init :≡ begin n := 0 end, we write
the EVT -sentence Init(n′ = 0). For details on this correspondence, see again [3].

Event-B sentences rely on the ability to construct the expansion of first-order
signatures by adjoining a sorts-indexed set of constant operation names, which
in Coq we denote by SigExpand Σ X. EVT -sentences can be defined as follows.

Inductive EVT Σ : Type :=
| Init : FOSen (SigExpand Σ (Vars’ Σ)) → EVT Σ
| Event : ∀ status, events Σ status

→ FOSen (SigExpand Σ (Vars Σ + Vars’ Σ))
→ EVT Σ.

An EVT -model consists of a first-order model M and a pair of environments
L : List(X ′ → M) and R : E → List(X + X ′ → M), which are lists of valuations
of variables in M . We enforce that L and Re, for each event e, are nonempty.

Record EvtModel Σ :=
{ base_alg :> Algebra Σ ;

envL : NEList (Vars’ Σ → base_alg) ;
envR : ∀ status,

events Σ status → NEList (Vars Σ + Vars’ Σ → base_alg) }.

Let Mθ denote the expansion of a model M by a valuation θ : X → M . We say
that 〈M, L, R〉 � Init ψ if for all valuations θ ∈ L, we have Mθ � ψ, and we say
that 〈M, L, R〉 � Event e ψ if for all valuations θ ∈ Re we have Mθ � ψ. This
can be written down directly in Coq.

Definition interp_evt Σ M φ : Prop :=
match φ with
| Init ψ => List.Forall (λ θ, AlgExpansion M θ � ψ) (envL M)
| Event e ψ => List.Forall (λ θ, AlgExpansion M θ � ψ) (envR M e)
end.

Formalizing the Institution for Event-B in the Coq Proof Assistant 165

Now, taking a top-down perspective, we can define institutions in Coq as follows:

Class Institution :=
{ Sig : Category ;

Sen : Sig → SetCat ;
Mod : Sig^op → SetCat ;
interp : ∀ Σ : Sig, Mod Σ → Sen Σ → Prop ;

satisfaction : ∀ (Σ Σ’ : Sig) (σ : Σ → Σ’)
(φ : Sen Σ) (M’ : Mod Σ’),

interp M’ (fmap[Sen] σ φ) ↔ interp (fmap[Mod] σ M’) φ }.

Proving that EVT is an institution amounts to instantiating this class to the
above definitions and discharging the generated obligations. The proofs rely on
custom induction principles for the dependent records we introduce above, since
the induction principles generated by Coq are too strong. For example, if one
wishes to prove that two Event-B signature morphisms σ̂ and σ̂′ are equal, of
course it suffices to prove that they are equal componentwise. Consider equality
on the on_vars component. The statement of this equality will depend on a
proof p : σ = σ′ that the underlying first-order signature morphisms are equal,
which we write p∗(on_vars σ̂) = on_vars σ̂′. Notice that this requirement is
substantially stronger than necessary; it suffices in this case to know that σ and
σ′ agree on sorts. Hence, given p′ : on_sorts σ = on_sorts σ′, we only need to
prove p′

∗(on_vars σ̂) = on_vars σ̂′. This dramatically simplifies the proofs.

3 Future Work

In the future, it will be interesting to investigate Coq’s code extraction facili-
ties to generate provably correct code derived from, for example, the institution
comorphism FOPEQ → EVT . We also wish to prove the amalgamation prop-
erty for EVT , and more generally to build institution-independent constructions
and proofs, which we have already explored to some extent for modal logics and
linear-time temporal logics. The proofs involved in the definition for first-order
predicate logic were rather complicated, but the proofs for EVT often reduced
to properties of first-order logic. This suggests that quick progress could be made
defining further institutions, verifying their properties, and providing interoper-
ability between represented formalisms represented in our framework.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Capretta, V.: Universal algebra in type theory. In: Bertot, Y., Dowek, G., Théry,
L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 131–148.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48256-3_10

3. Farrell, M., Monahan, R., Power, J.F.: An institution for Event-B. In: James, P.,
Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 104–119. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72044-9_8

https://doi.org/10.1007/3-540-48256-3_10
https://doi.org/10.1007/978-3-319-72044-9_8

166 C. Reynolds

4. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

5. Gunther, E., Gadea, A., Pagano, M.: Formalization of universal algebra in Agda.
Electron. Notes Theor. Comput. Sci. 338, 147–166 (2018)

6. Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a logic? In:
Beziau, J.Y. (ed.) Logica Universalis, pp. 111–133. Birkhäuser Basel (2007)

7. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_40

8. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer-Verlag (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-71209-1_40
http://creativecommons.org/licenses/by/4.0/

Author Index

Aniello, Leonardo 34

Baugh, John 99
Berglehner, Randolf 143
Bodeveix, Jean-Paul 66
Bombarda, Andrea 105
Bonfanti, Silvia 105
Braghin, Chiara 17
Butler, Michael 34, 124, 130

Coudert, Sophie 50

Dghaym, Dana 34, 124, 130
Du, Yiqing 3
Dyer, Tristan 99

Eschbach, Robert 137

Filali, Mamoun 66

Gargantini, Angelo 105
González, Senén 3, 118

He, Shilan 3
Hoang, Thai Son 34, 124, 130
Hu, Runshan 34

Jiang, Fengqing 118

Leuschel, Michael 81
Li, Zilinghan 3
Lian, Xinyu 118
Lilli, Mario 17, 158

Mashkoor, Atif 81
Moosbrugger, Jakob 112

Paulweber, Philipp 112

Rasheeq, Abdul 143
Reynolds, Conor 162
Riccobene, Elvinia 17, 105
Riviere, Peter 153

Salehi Fathabadi, Asieh 124, 130
Salunkhe, Shubhangi 143
Sassone, Vladimiro 34
Schewe, Klaus-Dieter 3, 118
Snook, Colin 124, 130

Vu, Fabian 81

Xiong, Neng 118

Zdun, Uwe 112

	Preface
	Organization
	Contents
	Regular Research Articles
	Unbounded Barrier-Synchronized Concurrent ASMs for Effective MapReduce Processing on Streams
	1 Introduction
	2 BSP-ASMs for Stream Queries
	2.1 Memoryless Stream Queries
	2.2 Semi-memoryless Stream Queries
	2.3 Memorable Stream Queries

	3 An Extended Unbounded BSP Model
	3.1 Axiomatization
	3.2 Infinite-Agent BSP Abstract State Machine
	3.3 Characterization Theorem

	4 Processing of Stream Queries with MapReduce Using Inf-Ag-BSP ASMs
	5 Conclusion
	References

	Towards ASM-Based Automated Formal Verification of Security Protocols
	1 Introduction
	2 Background
	2.1 Security Protocols
	2.2 Abstract State Machines in a Nutshell

	3 ASM Modeling of Cryptographic Protocols
	3.1 Modeling the Intruder Behaviour
	3.2 NSPK and SSL Models
	3.3 Security Properties Schema

	4 Related Work
	5 Conclusion
	References

	Verifying System-Level Security of a Smart Ballot Box
	1 Introduction
	2 Case Study: Smart Ballot Box
	3 Background
	4 Rigid Events and Parameters
	4.1 Event Enabledness and Parameters
	4.2 Specifying Availability Properties with Rigid Events and Parameters
	4.3 Refinement Preserving Availability Properties

	5 SBB Systems Model in Event-B
	5.1 Refinement Strategy
	5.2 Abstract Level: Modelling an Ideal Voting System
	5.3 First Refinement: Introducing Physical Ballots and Possible Attacker Capabilities
	5.4 Second Refinement: Introducing Time and Availability of Events
	5.5 Third Refinement: Ballot Encryption
	5.6 Fourth Refinement: Ballot Authentication

	6 Debugging Models Using Model Checking
	6.1 Consistency of the Refinement of the Rigid Events
	6.2 Attacks on the Clocks

	7 Related Work
	8 Conclusions and Future Work
	References

	Proving the Safety of a Sliding Window Protocol with Event-B
	1 Introduction
	2 Event-B in Brief
	3 Modeling the Protocol with Unbounded Indexes
	3.1 The Sliding Window Protocol
	3.2 Safety Property: Behaviour of Reliable Communication
	3.3 Introducing Windows and Receive Buffer
	3.4 Introducing Communication Media

	4 Modeling the Protocol with Bounded Indexes
	4.1 A Small Library for Modular Arithmetic
	4.2 Introducing Bounded Values in the Model
	4.3 Refining Media Towards Lossy Queues

	5 Related Work
	6 Conclusion
	References

	Event-B Formalization of Event-B Contexts
	1 Introduction
	2 Event-B Contexts
	2.1 Formulas
	2.2 Validity
	2.3 Project
	2.4 Static Correcness
	2.5 Semantics

	3 Instantiation of Assertions
	3.1 Informal Presentation
	3.2 Importation of External Assertions
	3.3 Static Verification of Importations
	3.4 Correctness of Theorem Instantiation

	4 Related Concepts
	4.1 Section Mechanism in Coq
	4.2 Module Mechanism in Coq
	4.3 Locales in Isabelle/HOL
	4.4 Clones of Why3
	4.5 Modules of TLA+
	4.6 Summary

	5 Conclusion
	References

	Validation of Formal Models by Timed Probabilistic Simulation
	1 Introduction
	2 Timed Probabilistic Simulation Principles
	2.1 Encoding Simulation Time
	2.2 Encoding Simulation Probabilities

	3 Simulation Infrastructure
	4 Applying SimB for Validation
	5 Case Studies
	6 Related Work
	7 Conclusion and Future Work
	References

	Short Articles
	Sterling: A Web-Based Visualizer for Relational Modeling Languages
	1 Introduction
	2 Sterling Design and Architecture
	3 Creating Scripts and Models
	4 Conclusion
	References

	Extending ASMETA with Time Features
	1 Introduction
	2 Time in ASMETA
	3 Simulating Time
	4 Future Work
	References

	About the Concolic Execution and Symbolic ASM Function Promotion in CASM
	1 Introduction
	2 CASM Concolic Execution and TPTP Model
	3 ASM Function Promotion and Symbolic Consistency
	4 Conclusion
	References

	Towards Refinement of Unbounded Parallelism in ASMs Using Concurrency and Reflection
	1 Introduction
	2 BSP-ASMs for MapReduce with Work Stealing
	3 Reflective Refinement of Unbounded Parallel ASMs
	4 Concluding Remarks
	References

	The CamilleX Framework for the Rodin Platform
	1 Introduction and Motivation
	2 Background
	3 CamilleX
	3.1 The Basic Design
	3.2 Direct Extensions to the Event-B Syntax
	3.3 Indirect Extensions by Plug-Ins

	4 Conclusion and Future Work
	References

	Extensible Record Structures in Event-B
	1 Introduction and Motivation
	2 Background
	3 Tool: CamilleX
	4 Record Structure
	5 Case Study
	6 Comparison with Other Data Structuring Methods
	7 Conclusion and Future Works
	References

	Formalizing and Analyzing System Requirements of Automatic Train Operation over ETCS Using Event-B
	1 ATO over ETCS
	References

	Automatic Transformation of SysML Model to Event-B Model for Railway CCS Application
	1 Introduction
	2 Motivation and Objectives
	3 Case Study and Transformation Approach
	3.1 Case Study and Scope
	3.2 Model-to-Model Transformation

	4 Related Work
	5 Conclusion and Future Work
	References

	Short Articles of the PhD-Symposium (Work in Progress)
	Formal Meta Engineering Event-B: Extension and Reasoning The EB4EB Framework
	1 Context
	2 Motivation and Objectives
	3 Proposed Approach
	3.1 Overview of the Approach
	3.2 Modelling and Instantiation Mechanism

	4 Future Work
	References

	A Modeling and Verification Framework for Security Protocols
	1 Introduction
	2 Related Work
	3 Description of the Approach
	4 Conclusion
	References

	Formalizing the Institution for Event-B in the Coq Proof Assistant
	1 Introduction
	2 The Institution for Event-B
	3 Future Work
	References

	Author Index

