
383© The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2022
S. Nandan Mohanty et al. (eds.), Internet of Things and Its Applications,  
EAI/Springer Innovations in Communication and Computing, 
https://doi.org/10.1007/978-3-030-77528-5_20

Collaborative Processing Using 
the Internet of Things for Post-Disaster 
Management

Saurabh Kumar

1  �Introduction

In recent years, the occurrence of disasters has caused a significant amount of loss 
to the different countries of the world. Disaster management agencies worldwide 
have categorized the disasters as either natural or man-made [1, 2]. A natural disas-
ter is considered as the physical phenomena that occur naturally and are caused 
either by the rapid or slow occurrence of events that have significant impacts on the 
health of human beings, sometimes causing death and severe suffering among them. 
Natural disasters can be geophysical, hydrological, climatological, meteorological, 
and biological [3]. On the other hand, a man-made disaster is considered as an event 
that is the result of environmental or technological emergencies near human settle-
ments and is caused by the daily life activities of human beings. Man-made disasters 
can be related to environmental degradation, pollution, and accidents in the indus-
tries, technological developments, transportation, etc. [4]. Moreover, there are cer-
tain complex combinations of natural and man-made disasters, which include, but 
are not limited to, food insecurity, epidemics, armed conflicts, and displaced popu-
lation. According to the International Committee of the Red Cross (ICRC), the dif-
ferent complex emergencies can be characterized in terms of loss of life, extensive 
violence, widespread damage to the societies and economies of any country, and 
evolving risks for humanitarian relief workers in terms of their security [5, 6]. In the 
last three decades, the world has observed different pandemics such as Ebola, Zika, 
Avian flu, Cholera, Dengue fever, Malaria, Yellow fever, and Coronavirus Disease 
(COVID-19), which is the most recent one from among them all [6]. These 
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pandemics have negatively affected the economic and social costs and resulted in an 
unexpected decrease in human manpower. According to the International Federation 
of Red Cross and Red Crescent Societies, a disaster results from a hazardous impact 
on vulnerable people worldwide [7]. Thus, there is a need to address the disaster 
management practices to prevent and mitigate such disaster cases in real time.

Disaster management focuses on prevention, preparedness, response, relief, and 
recovery operations [8]. There is a cyclic link between environmental management 
and disaster mitigation and adaptation. The practices carried for disaster mitigation 
and adaptation result in the management of the environment, whereas the manage-
ment of the environment forms a pillar to prevent disasters from happening. The 
former is a part of post-disaster management [9], and the latter forms the basis of 
pre-disaster management [10]. The disaster management cycle consists of four 
phases: response, recovery, mitigation, and preparedness [1]. The pre-disaster man-
agement ethics is mostly based on human beings’ education and forming a disci-
plined environment so that the unexpected vulnerabilities cannot be exploited 
unnecessarily. For instance, cutting off too much of the woods may result in defor-
estation, which again results in frequent floods in the area that affects the lives of 
human beings negatively. To perform effective management of the disaster, once it 
has occurred, one must understand and follow the practices related to post-disaster 
management.

In the case of post-disaster management, there are six tools used, namely, 
Environmental Risk Assessment (ERA), Environmental Management Systems 
(EMS), Strategic Environmental Assessment (SEA), Environmental vulnerability 
and hazard mapping, Rapid Environmental Assessment (REA), and Environmental 
Impact Assessment (EIA) [11]. Using the abovementioned tools, the assessment of 
a disaster can be done effectively, and relevant safety measures for its prevention 
and mitigation can be devised. In the past few years, it has been observed that the 
disaster management authorities have created and been working upon these tools 
efficiently to either prevent the disasters with early warning systems or prepare the 
concerned authorities to focus on the mitigation, response, and recovery operations 
once the disasters have occurred. However, there is a need to integrate the technolo-
gies and techniques utilized across the world to handle the disaster situations, as and 
when it happens, in a more profound manner. With the emergence of Information 
and Communication Technology (ICT) and ambient intelligence [12] around the 
world, there is a need to use these technologies to automate the post-disaster man-
agement activities all around the world. The use of technologies will help govern-
ments, businesses, and civil society to plan and reduce the impact of disasters by 
appropriate shaping of public policies and plans through integrated communication 
among the conscious entities participating in the post-disaster management 
operations.

Effective communication is one of the crucial aspects in performing the opera-
tions associated with post-disaster management. The invention of the Internet and 
its evolution in terms of connectivity, communication capability, and speed have 
helped build a concrete backbone infrastructure to support the ICT applications. 
Also, the emergence of the Internet of Things (IoT) [13] and the profound use of 
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cyber-physical systems [14] provide a platform wherein different types of devices 
and human beings, irrespective of their ethnicity and languages, can be connected 
all across the world with the use of the Internet. It has helped emphasize five signifi-
cant but continuing trends concerned with the world of computing, i.e., ubiquity, 
interconnection, intelligence, delegation, and human orientation [15]. These five 
trends are the basic building blocks of ambient intelligence and help perform intel-
ligent distributed processing, even with the devices deployed in remote or inacces-
sible regions. It must be noted that there is a need to address the issue of disaster 
management on a global scale and in real time, wherein the autonomous operation 
plays a significant role. Since the post-disaster management operations require a 
significant amount of communication and computation to be performed in real time, 
the five continuing trends mentioned above with their features and efficient plat-
forms are highly useful in planning and producing the strategies intended for effec-
tive post-disaster management operations. However, to address the challenges such 
as heterogeneity in devices, communication protocols and mechanisms, demand for 
heavy computation, processing power, and reliability, there is a need to understand 
and incorporate the collaborative processing among the devices in the network, as 
described in the following section.

2  �Collaborative Data Processing

In the current real-world situations, the task of post-disaster management requires 
efficient connectivity and communication among the entities involved in the opera-
tions. In [16], J S Kumar et al. present a generic model for communication among 
the different entities involved in the post-disaster management operations. It is 
emphasized to use an Intelligent Information Network (IIN) for the IoT environ-
ment, wherein an information processing system acquires the information from the 
site of disaster using the cyber-physical network, which in turn will be utilized by 
the disaster management team and legislation authorities to understand the nature of 
the disaster and communicate this information to the media/citizens/non-
governmental organizations. The information processing system performs its activi-
ties using the sensing and actuation operations in the region of interest. To deploy 
and manage such an information system is a critical challenge and requires a col-
laborative strategy of processing the data at different levels.

Collaborative data processing revolves around five key terminologies: communi-
cation, cooperation, coordination, collaboration, and task [17]. Communication is 
the exchange of ideas and information among the participating entities. Cooperation 
is to work with someone in the sense of enabling, i.e., provide the needed resources 
and information. Cooperation is achieved using the conscious and deliberate efforts 
of the participating entities. Similarly, coordination is identified by the actions of 
the users directed by a coordinator to accomplish a common goal. On the other 
hand, collaboration is defined as a collective effort of participating entities to achieve 
the desired goal with willingness. Finally, the task is a schedulable function or 
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feature executed in temporal scope. A task may be periodic or aperiodic, sporadic, 
deadline-based, and precedence-based by its characteristics. Collaborative Data 
Processing (CDP) is the collection and management of data from one or more 
sources and distribution of information to the destination with the goal to control, 
process, evaluate, and report data and information activities [18]. To perform effi-
cient collaborative data processing among the devices deployed in the network, 
there is a need to address the critical challenges associated with it.

Four critical issues are needed to be addressed for successful collaborative pro-
cessing among the networked devices: dynamic determination of the level of sens-
ing, entities of sensing, frequency of sensing, and entities involved in the computation 
[17]. Moreover, there are two technical issues with collaborative data processing. 
First is the degree of information sharing among the devices in the network. The 
second issue is to formulate the methods employed to fuse the information among 
the devices sensing it. Thus, collaborative data processing revolves around the con-
cept of distributed information fusion.

Figure 1 depicts a simple scenario to understand the concept of collaboration and 
its significance using a tree-based network infrastructure [19]. As an event occurs in 
the region of interest, it is detected and sensed by the device, in the communication 
range of which the event has occurred. As shown in Fig. 1a, two devices sense the 
event. The sensed event is forwarded to the root node, which serves as the sink node 
in the network. Since two devices send the same data to the root node, the redundant 
data will be received by the root node. Also, forwarding of the same data will incur 
a significant amount of load on power-constrained devices, which must be avoided 
necessarily to maintain the lifetime of nodes and the network as well. This is an 
undesirable case and, thus, must be handled at the device level only. In this context, 
the devices sensing the event must collaborate among themselves to devise a strat-
egy to forward the sensed information in such a way as to reduce the power con-
sumption and redundancy in the network. This kind of scenario may further become 
more complicated in a network wherein the autonomous operation occurs among 

Fig. 1  (a) Two nodes detect an event; (b) event information is propagated to sink node [19]
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heterogeneous devices. Thus, there is a need to outline the different challenges asso-
ciated with collaboration by understanding the different research areas in CDP.

2.1  �Research Areas

The research areas in CDP are based on the different characteristics affecting the 
operation of devices and key evaluation metrics used to measure the performance of 
these devices. The characteristics of these devices are outlined in terms of mobility 
of nodes, distributed processing demand of the applications, ability to cope with 
node failures which affect the reliability adversely, power consumption constraints 
of devices using batteries or other forms of energy harvesting, communication fail-
ure affecting the real-time response of the system, and high-scale data processing 
both at the local and global levels to process the tasks in the applications [20, 21]. 
On the basis of different characteristics discussed above, the key evaluation metrics 
may include the performances related to lifetime, connectivity and coverage, 
deployment cost and ease of operation, response time, effective sampling rate, and 
security [21]. The different research areas in CDP are shown in Fig. 2.

The research areas in CDP can be categorized into network-based and Quality of 
Service (QoS)-based [14, 18]. In the network-based category, the problems related 
to the creation and maintenance of the network are discussed, such as the 

Fig. 2  Classification of research areas in the collaborative data processing [20, 21]
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deployment of devices in the network, coverage of the network, localization of 
devices and events in the region of interest, and the clustering of deployed devices 
to support the operations related to the different applications [18]. Similarly, the 
QoS-based category discusses the problems related to maintenance of the perfor-
mance of the network, such as energy conservation of the devices, lifetime, con-
nectivity, reliability, and response time of the network to different services [14].

Furthermore, there is another category for the classification of research areas in 
CDP: collaborative sensing, collaborative communication, and collaborative com-
puting. Collaborative sensing is governed by three factors, i.e., anomaly detection 
rate, quality of signal processing, and false alarm rate [19]. When an anomaly is 
detected, the signal is sampled and filtered, the process of threshold comparison is 
performed, information is fused, and, finally, the features are fused with neighbors 
to achieve accuracy and improvement in signal quality. The primary role of collab-
orative sensing is to gather information from the environment with robustness. 
Collaborative sensing takes care of the assignment of tasks to sensors, execution of 
the sequence of tasks on sensors, and creation of communication schedule among 
the sensors. The collaborative signal processing gets affected by attributes such as 
the size of the sensor, deployment methodology and mobility model utilized, the 
extent of sensing required, operating environment, underlying processing architec-
ture, and availability of energy of the devices. Among all the above attributes, the 
processing architecture plays a significant role in efficiently sensing the events in 
the region of interest. A layered architecture for cooperative signal processing is 
discussed in [22], as shown in Fig. 3. It can be observed from the figure that the 
lower three layers execute operations autonomously, whereas the upper three layers 
perform the operations cooperatively. The lower layers focus more on 

Fig. 3  Layered architecture for cooperative signal processing [22]
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hardware-based processing, and the upper layers perform application-oriented func-
tions. The quality, detection rate, and power consumption increase when moved 
from lower to upper layers, whereas the false alarm rate decreases considerably.

The success of collaborative communication depends on attributes such as opti-
mized response time, maximum throughput, maximum average lifetime, minimum 
energy consumption, and maximum coverage of the network. The strength of the 
backbone ICT network plays a significant role in performing efficient communica-
tion. On the other hand, a computing model deals with dynamic network heuristics 
and distributed computing, wherein the computation needs to be performed at the 
node, local, and global levels. The computing model can be categorized into cen-
tralized and distributed schemes [23]. The centralized computing model uses the 
client-server model of computation, whereas the distributed model uses mobile 
agent-based computation. The centralized model suffers from higher energy con-
sumption and storage requirements, has a longer processing time, suffers from dis-
connection of the network when the server goes down, and, thus, is suitable for 
small and sparse networks. The different challenges and issues related to collabora-
tive data processing and their respective characteristics are summarized in Table 1.

On the other hand, in the case of distributed computing model, the energy con-
sumption and storage requirements are comparatively lesser, and processing does 
not get affected, due to which, with increase in scalability, mobile agent bypasses 
the dead node, results into longer network latency with less dense networks, and, 
thus, is best suited with denser nodes in the network. The authors in [24] discuss a 
graph-based communication algorithm that utilizes two computing schemes to 
address the collaboration among the devices. The first scheme assumes that the 
number of nodes within a cluster is large and the number of cluster heads is small. 

Table 1  Challenges and characteristics of research in the collaborative data processing

Challenges/issues Characteristics

Device deployment Uniform distribution of devices, optimal clustering, multiple wireless 
hops

Energy consumption Accuracy in communication, strong dependence on battery lifetime, 
affected by re-routing

Date reporting model Periodic, event-based, query-based, hybrid, depends on route stability
Node/link 
heterogeneity

Different rates of sensing and reporting of events, diverse QoS, multiple 
data reporting models

Fault tolerance Multiple levels of redundancy, application dependent
Scalability Routing scheme must support huge number of devices
Network dynamics Issue of route stability, depends on application, reactive vs proactive 

reporting mode
Transmission media Effect of fading, high error rate, multipath spread, other channel 

impairments
Connectivity High device density, deployment strategy
Data aggregation Reduction in number of transmissions, signal processing methods, 

beamforming
Quality of services Bounded latency, energy dissipation of devices, lifetime improvement
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In this case, computing within a cluster is performed using the distributed model, 
and computing among different clusters is performed using the centralized model. 
Similarly, the second scheme assumes that the number of nodes within a cluster is 
small and the number of cluster heads is large. In such a case, the process adopted 
is just the reverse of the former one, as discussed above.

In addition to collaborative processing, the post-disaster management activities 
require the exploration of ambient intelligence in the region of interest. It helps to 
achieve ubiquity, interconnection, and intelligence, which results in efficient com-
munication among the entities involved in the operation. The advent of IoT serves 
as a strong pillar of ambient intelligence with profound communication capability 
among the heterogeneous devices deployed in the region of interest. In conjunction 
with collaborative data processing, the IoT environment provides a platform to use 
the cyber-physical systems to perform sensing and actuation on the environment 
and communicate the sensed information in real time. Thus, there is a need to 
explore the IoT technology to understand its utilization in post-disaster manage-
ment activities, as discussed in the following section.

3  �Internet of Things

Currently, there are over 4.5 billion people across the world who have access to the 
Internet. Every eight out of ten Internet users have smartphones, which has increased 
the information and data access in real time, and its demand is ever increasing. The 
evolution of ICT has attracted the world’s attention toward the notion of a smart 
world [25]. The idea of an intelligent world includes a key component, i.e., device-
to-device communication. It emphasizes the role of unified communication, which 
can be realized with integrated telecommunications, computers, enterprise soft-
ware, robust middleware, storage, and audiovisual systems. This enables the users 
to access, store, transmit, and evaluate the information in real time. However, there 
are certain critical issues related to the usage of a unified communication platform, 
such as the gap between developed and developing nations, penetration of remote 
areas, availability of cellular coverage, electronic transmission speed, and efficient 
use of the backbone network. In this context, the Internet of Things environment 
plays a major role in realizing the vision of unified communication using the 
Internet.

The IoT environment offers the scope of connecting and communicating among 
the devices around the world using the Internet protocols. The use of the Internet is 
crucial and profitable for energy-constrained and limited computing powered 
devices. The IoT environment assumes the distribution of heterogeneous devices of 
various types, such as sensors, actuators, servers, mobile stations, etc. The term 
heterogeneity means that the devices use different mechanisms for manufacturing 
and different communication protocols having different sizes and shapes, adopt dif-
ferent computation techniques and different processing power, may exist in differ-
ent types of networks, are short-ranged or long-ranged, and offer different QoS 
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performances. In such a scenario, various issues are affecting the performance of 
the IoT networks. First, there is a need to address the efficient connectivity among 
the physical, Information Technology (IT), social, and business infrastructures by 
virtue of collective intelligence and QoS parameters affecting the communication in 
real time. Second, the issues of mobility, routing, and the requirement of an on-the-
move configuration of devices pose a big challenge. Third, since the IoT environ-
ment assumes communication among many machines worldwide, the algorithms 
must support the scaling at the global level, robust communication, and self-
organization capabilities. Fourth, the IoT network integrates different platforms, 
protocols, and technologies, and thus, interoperability must be addressed on a large 
scale. Finally, the underlying network architecture and system design must be pre-
pared in such a way as to support the issues as discussed above with efficient pro-
cessing of the application operating in the IoT environment. Thus, it is important to 
conceptualize the IoT on a global level.

The Internet of Things is a global networking interconnecting smart objects 
employing comprehensive Internet technologies to support a wide range of tech-
nologies necessary to realize the vision with the intent to develop applications and 
services using such technologies in the global business world. There are three con-
ceptual pillars of IoT: be identifiable, have communication capability, and have col-
laboration among the objects or things [26]. These IoT objects or things are anything 
that can be seen around the world. It can range from your spectacles to the chair, 
table, bed, sofa, wall, wearables, and more complex computing machinery. It can be 
observed that the IoT tries to connect all the objects in the world using the Internet. 
However, it can also be observed that these objects are heterogeneous in their behav-
iors and characteristics. Thus, the devices in the IoT environment are categorized 
into two basic types: sensor device and IoT device.

The sensor device detects or measures a physical property or records and indi-
cates or responds to it in real time. On the other hand, creating an IoT device is 
complex and challenging, yet not so difficult in the world where we live. To create 
an IoT device, choose any thing besides a computer, and add computational intelli-
gence to make the thing a computationally intensive device. Further, add a network 
connection to the computationally intensive device to build an IoT device. An IoT 
device can be able to communicate using the Internet protocol stack. An example of 
the IoT device is shown in Fig. 4, wherein a simple cellular phone is added with 
intelligence using sensors, a camera, high-end display, wireless fidelity, and 
GPS. Then, it is connected with high-speed mobile broadband to make a smart-
phone, which can be utilized as an IoT device in the network. With the understand-
ing of the different devices in the IoT environment, the way forward is to get 
acquainted with the different underlying architectures of IoT and their significance, 
as discussed in the following section.
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3.1  �Issues and Challenges

The development of applications using the IoT environment must address five cru-
cial points: deployment of devices in the network, use of smart agents, development 
of intelligent spaces, real-time pervasive computing, and system architecture. These 
five topics are also known as the building blocks of IoT. The deployment of devices 
must be performed in such a way that the mechanism provides ease of access to the 
broadband infrastructure. This helps improve the collective embedded intelligence 
of the region, which further provides a cohesive and integrated infrastructure of 
smart devices. However, the most crucial aspect of the IoT environment is to address 
the system architecture. This is because the different devices use various communi-
cation protocols, for which there is a need to develop an underlying architecture that 
integrates the functioning of these protocols at different layers of the operation.

Gubbi et al. [27] discuss the conceptual IoT framework with cloud computing 
serving as the middleware of network of things and applications. The critical aspects 
of the network of things include, but are not limited to, security, reconfigurability, 
QoS, communication protocols, location awareness, and compressive sensing. The 
middleware serves as a cloud platform supporting the visualization, computation, 
analytics, and storage services. This kind of framework is beneficial in the real-time 
processing environment. However, it does not address the distinction among the 
heterogeneous devices at the physical layer. Similar application-oriented architec-
tural models are discussed concerning smart cities [28], healthcare [27], smart grid 
[29], and intelligent transport systems [30]. When these architectures are analyzed 
on a micro scale, it can be observed that the IoT architecture requires the physical 
layer, data accumulation layer, abstraction layer, and application layer for imple-
menting the network layer functionality at the edge for routing and exploring the 
role of analytics and business processes.

Although there exist different applications in the IoT environment, the devices 
and edges can be considered as the heart of the complete architecture in a nutshell 
so that any business application can run on top of it. In this context, a layered IoT 
framework is proposed in [31]. It consists of two types of devices: sensor device and 

Fig. 4  Example of an IoT device
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IoT device forming two different layers, namely, sensing layer and IoT layer, 
respectively. Both the sensor and IoT devices are responsible for performing the 
data acquisition and data distribution operations. However, since the IoT devices are 
better than the sensor devices in terms of communication and computation capabili-
ties and are connected using IP-based protocol, they are assigned to perform data 
distribution on a major scale and data acquisition on a minor scale. The responsibil-
ity of the devices at the sensing layer is just the opposite of that of devices in the IoT 
layer. The sensor devices are ID-enabled and short-ranged and have comparatively 
lower energy, whereas the IoT devices can be either IP-enabled or ID-enabled based 
on the requirement of the scenario in which it is operating. The devices at the IoT 
layer support IEEE 802.15.4, IEEE 802.15.4e, 6LoWPAN, and CoAP in the physi-
cal, MAC, network, and application layers, respectively [26, 27]. The layered IoT 
framework is shown in Fig. 5. It can be observed that the devices in the same layer 
are assumed to communicate in the local neighborhood. Similarly, the IoT devices 
can acquire the data from the sensing layer and, thus, assume to perform this opera-
tion in the global neighborhood. Even with the architectural framework of the IoT 
environment, there is a need to address the different issues and challenges associ-
ated with such a network.

The collaboration in the IoT environment embeds numerous heterogeneous 
devices and processes the information from them to improve the sensing and actua-
tion capabilities. There are some issues and challenges which must be addressed for 
performing efficient communication among these devices, as shown in Fig. 6. These 
issues can be addressed for real-time service delivery by incorporating effective 
algorithms in the fields of deployment, localization, and clustering. The significance 
of these fields can be outlined by the fact that real-time service delivery requires the 
localization of devices in real time. The better location estimation results from bet-
ter coverage of the terrain, hence resulting in the discussion of the deployment in the 

Fig. 5  Layered IoT framework [31]
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case of the IoT environment. Additionally, the sensing and acquisition by the 
deployed devices can be efficiently performed if these devices are logically clus-
tered in terms of their context of the operation. These topics are discussed in the 
next few sections.

4  �Deployment

The operations for post-disaster management using autonomous devices require 
that the devices must provide the services throughout the terrain. Specifically, the 
requirement is to cover the region of interest with an optimum number of devices. 
This is due to the reason that the devices are costly and their management and main-
tenance are associated with a high cost. In a broader sense, the deployment of 
devices provides efficient connectivity and coverage throughout the area. It results 
in more proficient communication among the devices to sense and forward the 
sensed information in real time. An efficient deployment strategy helps to achieve 
robustness in case of the failure of specific devices. The robust processing of the 
data strengthens the data acquisition capability of the devices in the terrain. This 
ensures a better distribution of devices with higher granularity, which further pro-
vides a better communication range with energy efficiency and reliability. Thus, 
deployment becomes one of the key issues for building a concrete infrastructure for 
post-disaster management.

The deployment strategy can be categorized into pre-deployment, post-
deployment, and re-deployment phases [25]. In the pre-deployment phase, the algo-
rithms are developed to deploy the devices for the first time in the terrain. This is 
essentially the initial phase of deployment, and thus, a lot of effort is required during 
this phase to provide better coverage of the area. It is because the deployment pro-
cess also incurs a high cost, depending on whether it is performed manually or 
autonomously. During the pre-deployment phase, efforts are made to understand the 
coverage area of the terrain. The area of coverage may be either known or unknown. 

Fig. 6  Issues and challenges of operation in the IoT environment [27–29]
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With a known area of coverage, the placement of devices becomes comparatively 
easier than when it is unknown. For instance, the coverage area of a house is known 
and can be measured in square feet. In such a case, for sensing the earthquake trem-
ors, it is easier to judge the minimum number of devices required to be deployed to 
serve the purpose. On the other hand, with an unknown area of coverage, it is com-
paratively difficult to decide the minimum number of devices that need to be 
deployed in the region, further resulting in the additional cost in its implementation. 
This becomes even more challenging in the presence of obstructions and non-line of 
sight conditions. Moreover, it can be inferred that the manual deployment can be 
done in regions with the known area of coverage. Still, it is quite difficult to adopt it 
in regions with unknown coverage areas. Thus, in such a scenario, the deployment 
can be performed using unmanned aerial vehicles.

It has been seen that there are certain possibilities of change in the network topol-
ogy due to the non-availability of enough power, changing task dynamics, and non-
reachability of the services. The post-deployment phase is carried out to perform the 
maintenance operations in such conditions. This phase is crucial as it improves the 
lifetime of individual devices and the overall lifetime of the network. Further, the 
re-deployment phase is carried out whenever it is observed that the deployed devices 
are either not functioning or stopped functioning due to unforeseen circumstances. 
These circumstances may vary based on the environmental conditions. Also, since 
the devices are battery-powered, they may get disconnected due to power issues or 
network connectivity. In such cases, either the devices are additionally deployed or 
re-deployed at the same location to serve the purpose of the dead device. Based on 
the requirements of the applications, there are different strategies of deployment, as 
discussed in the following section.

4.1  �Types of Deployment Strategies

The disaster may occur at any place. The places where the disaster has occurred 
may have either regular or irregular terrain, line of sight (LoS), non-line of sight 
(NLoS), or obstructed line of sight (OLoS) conditions [32], the geographical region 
may be small or very large and require either less or huge number of devices to be 
deployed. Since it has already been discussed that the algorithms and strategies for 
deployment must be chosen by adhering to the respective cost constraints, there is a 
need to decide on the type of deployment strategies by considering the terrain 
parameters as discussed above.

In the literature, two basic types of deployment strategies are used, namely, 
deterministic and random deployments. These strategies are studied widely in the 
field of Wireless Sensor Networks (WSN) [33, 34]. The deterministic deployment is 
concerned with placing the devices in a well-organized manner in the terrain. 
Usually, it uses the concept of the geometrical distribution of the devices. The geo-
metrical distribution may take the form of a square, circle, hexagon, ellipse, linear 
placement, etc. It gives better performance with a known area of coverage. The 
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deterministic deployment has the advantage in terms of the fact that there is a cer-
tain level of control on the optimum number of devices used. However, when con-
sidering the real-time IoT environment with a huge number of devices and changing 
task dynamics for the cyber-physical systems, the deterministic scheme poses a 
certain level of limitations.

On the other hand, the random deployment scheme offers to solve the limitations 
of the deterministic deployment scheme by using two approaches: random distribu-
tion and planned placement [35]. The former approach employs algorithms based 
on mathematical computations to calculate the location of devices to be placed in 
the region of interest. Similarly, there are three categories of methods used for the 
planned placement approach. The first method, also known as the incremental 
approach, deploys the devices in different increments. This provides a well-planned 
strategy to deploy the optimum number of devices based on the requirement of the 
application. The second method uses the concept of airdropping. This approach 
must be carried out cautiously as the hardware is costly, and thus, some mechanism 
must be devised to handle such deployments by considering the cost. This method 
is also known as the virtual force-based approach. The random deployment strategy 
is better than the deterministic deployment strategy as it offers better coverage, even 
when the area of coverage is unknown. However, there are three major limitations 
associated with a random deployment scheme. First, it relies on multi-hop commu-
nication using relay nodes as the information must be carried to farther ends of the 
region. In such a case, if one of the relay nodes is dead, then the implementation 
algorithm gets affected severely. Second, a random deployment scheme produces 
coverage holes in the region, which results in the isolation of some devices in the 
region. Finally, randomness is a tangible concept, i.e., there is no concept of pure 
randomness in the universe. Thus, random algorithms utilized in the deployment 
use a certain level of determinism in its implementation. Moreover, the coverage 
holes may result in a greater number of signals getting exchanges among the devices, 
and thus, the random deployment scheme may suffer from inefficient utilization of 
energy and reduced lifetime of the network.

It is well known that the IoT environment assumes heterogeneity at various lev-
els of operation. For example, the different areas may need different requirements 
of coverage, connectivity, and reliability based on the type of applications and ser-
vices. In this regard, the authors in [25, 36] discuss a quasi-random deployment 
strategy that uses an amalgamated method of both the random and deterministic 
schemes. It uses the concept of the quasi-Monte Carlo method of numerical integra-
tion. It also uses the discrepancy theory to generate the locations of the devices to 
be deployed in the terrain. The discrepancy theory, in mathematics, can be described 
as the deviation of a situation from one state to another. It has fundamental roots in 
classical theory. It is the distribution of points in s-dimensional space using geo-
metrically defined subsets to generate evenly spaced points in the space. The quasi-
random deployment scheme is implemented using the low discrepancy sequences. 
There are four low discrepancy sequences as shown in Fig.  7, namely, Van der 
Corput, Halton, Faure, and Sobol [36]. The Van der Corput sequence works in 

S. Kumar



397

one-dimensional terrain, Halton is best suited for two-dimensional terrain, and 
Faure and Sobol are algorithms meant to be implemented in multidimensional 
terrain.

4.2  �Comparison of Deployment Strategies

In the IoT environment, there is a need to understand the advantages, limitations, 
and applications of all the deployment schemes to utilize them with respect to the 
different requirements. The authors in [25] compared the random, deterministic, 
and quasi-random deployment strategies. The grid-based deployment is considered 
as one of the deterministic schemes for comparison. The comparative evaluation is 
shown in Fig.  8. The comparison is performed by deploying 100 nodes on a 
1000 × 1000 squared meters terrain. It is observed that the grid scheme provides 
better coverage in the terrain, as depicted in Fig. 8a. However, it is already discussed 
that the grid-based deployment does not have limited applications in a real-time 
environment where the area of coverage is unknown. As shown in Fig. 8b, random 
deployment has significant coverage holes in the region. However, this limitation of 
random deployment is eliminated with quasi-random deployment, as shown in 
Fig. 8c, wherein the distribution is more even compared to the random deployment.

It is well established that the quasi-random deployment provides better coverage. 
Also, it supports all three phases of deployment, i.e., pre-deployment, post-
deployment, and re-deployment, which has limited scope in the case of random 
schemes of deployment. Once deployed, the next crucial task of the devices is to 
provide real-time service delivery. The service delivery in real time can only be 
achieved if the real-time locations of the devices are known. In this regard, there is 
a need to understand the fundamentals of localization and its applications in the IoT 
environment, which is discussed in the following section.

Fig. 7  Categories of low discrepancy sequences [25, 36]
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5  �Localization

The different relief operations to handle the disaster situations in real time require 
data and information about the situation in real time. The communication of these 
data and information may be periodic or sporadic based on the type of applications 
and their requisites. One of the crucial aspects of real-time service delivery is to 
know the location of the device from where the data need to be communicated. 
However, it is a challenging task due to several reasons. First, the installation of 
GPS is costly and, hence, cannot be implemented on all devices. Thus, one must 

Fig. 8  Deployment of devices using grid-based, random, and quasi-random schemes [25]
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devise a mechanism that can be used to find the location of the devices in the absence 
of GPS technology. Second, the deployed devices have heterogeneous characteris-
tics, for which the mechanism must support a certain level of efficient mapping to 
find the location of the devices in real time. Finally, the capability of the deployed 
devices must be explored so as to map the signals transmitted and received among 
the devices. Thus, the challenges associated with the process of localization need to 
be formulated and understood for better development of the algorithm for the IoT 
environment.

The goal of localization is to estimate the position of the nodes placed in the 
region of interest. The localization algorithm is needed to satisfy the real-time deliv-
ery constraints for scalable applications that require data from a huge number of 
devices. The high accuracy positioning of devices depends on data processing in the 
spatial context. In this regard, the different underlying assumptions for localization 
are shown in Fig. 9. To devise an efficient localization algorithm, there is a need to 
develop an effective deployment scheme with a better area of coverage and connec-
tivity in the region of interest. The processing architecture and network topology 
have significant contributions to the performance of the localization algorithm. This 
is due to the reason that the changes in topology are caused by either the sudden 
death of some of the nodes or heavy mobility in the network. Due to the mobile 
nodes in the network, the location of the devices changes frequently. The location 
estimation and communication of estimated location in real time need accuracy in 
signal processing, which further depends on the different parameters of the environ-
ment. Thus, the technologies used for building the cyber-physical systems must be 
efficient enough to work in such complex conditions of the environment to support 
the different applications and services in real time.

Fig. 9  Underlying assumptions for localization [31, 37]
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5.1  �Node Localization

In the case of disasters, the data and information about the situation of these disas-
ters can be accessed if the location of devices deployed is known in real time. The 
localization problem can be categorized into proximity-based, range-based, and 
angle-based [25, 31], as depicted in Fig. 10. In proximity-based localization, the 
location is estimated using the signals received from the devices in the communica-
tion range of the device that is estimating the location. The range-based localization 
uses the distance information, and angle-based localization uses the angle at which 
the signals are received from multiple devices in the communication range. The 
localization algorithm is implemented in three phases: coordination phase, wherein 
the information in the form of signals is received from the other devices in the vicin-
ity; measurement phase, in which the different forms of measurements are per-
formed either in the form of distance or phase of the received signals; position 
estimation phase, in which the location is estimated using the information derived 
in the measurement phase [31].

Localization is a well-researched topic in the field of wireless sensor networks. 
The localization algorithms are categorized to be either range measurement-based, 
infrastructure-based, or distributed/centralized based on the mechanism of imple-
mentation used in the process [37]. The categories of localization algorithms are 
shown in Fig. 11. The range measurement technique includes algorithms based on 
either range-based or range-free mechanisms. The infrastructure-based technique 
uses either anchor-based or anchor-free localization methods. The distributed or 
centralized localization algorithm uses either former or latter way of network topol-
ogy for the purpose of location estimation in the network.

When considering the IoT environment, the location information is crucial to 
perform different activities to satisfy the real-time service delivery constraints. A 
significant amount of research is done in the field of localization in the IoT environ-
ment. The localization algorithms in IoT can be categorized to address four critical 
issues: mobility of objects in groups, distribution of smart devices, environmental 

Fig. 10  Categories of localization problem [31]
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conditions, and framework for the different services. Similarly, there are four cru-
cial challenges associated with developing efficient localization algorithms for 
devices operating in the IoT environment: the amount of signaling overhead, local-
ization accuracy, communication accuracy, and complexity in computing.

The authors in [25] discuss the localization of both the sensor and IoT devices 
operating in the IoT environment by implementing an across layer localization algo-
rithm. It localizes the sensors using the known locations of IoT devices and vice 
versa. The authors emphasize that although the GPS is costly, it can be used for 
some of the IoT devices to localize them. In [38], the authors have discussed the use 
of Unmanned Aerial Vehicles (UAV) as IoT devices. The network is created in such 
a way that all the sensor devices are placed on the ground, and the UAVs serve as 
the IoT device. There are multiple UAVs that are communicating using IP protocol 
on the Internet. The sensor devices on the ground are clustered using the hierarchi-
cal clustering technique [39] to create clusters wherein one UAV is assigned as the 
cluster head. The sensors send the data sensed to the UAV, which further communi-
cates the data to other UAVs in real time. The localization is performed in such a 
way that the location of one cluster is known to other clusters in the network and 
vice versa. Such a way of real-time data and information exchange based on the 
location information of the devices in the network is beneficial in handling post-
disaster situations.

5.2  �Event Localization

As and when the disaster occurs, the situation is identified on the basis of different 
types of events. An event may be defined in terms of any abnormality observed in 
the usual process. For instance, the fire may be considered as a disaster, wherein the 
situation can be identified on the basis of different events such as rise in 

Fig. 11  Categories of localization algorithms [37]
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temperature, pressure, and humidity in an abnormal way as compared to the normal 
conditions. Similarly, one can check the concentration of different gases to identify 
the occurrence of fire in the region. Also, the camera can be used to identify the fire 
situation in a building. Thus, by analyzing the different parameters as mentioned 
above, one can reach the conclusion that the fire has happened in a particular area in 
the city. Since the current scenario demands the autonomous operation to be carried 
out for post-disaster management, there is a need to localize such events in real time 
to provide effective response and relief supports as and when the disaster happens. 
The localization of events has prominent applications in industries where human 
lives are at stake during the shop floor activities and, thus, requires the real-time data 
of the abnormality, if any, to solve the issues as early as possible.

There are a lot of algorithms proposed in the literature to solve the event localiza-
tion problem. The emphasis is given on understanding the intensity of events, decid-
ing whether the events are occurring only once or multiple times, either at the same 
spatial location or different locations in the region of interest, and terrain limitations 
where the events are occurring. When considering the IoT environment, it is 
assumed that a huge number of devices sense the events in the region. Thus, there is 
a need to bridge the gap between IP-enabled devices and the short-range wireless 
devices deployed to serve the purpose. However, the major challenge is to address 
the LoS and NLoS situations in the terrain. In this context, the angle of arrival of 
signals can be explored for better location estimation of the events.

Since the deployed devices can send and receive signals in their vicinity, the 
Direction of Arrival (DoA) of signals from the events can be calculated to further 
find the location of these events. The algorithms of the DoA of signals calculate the 
angle of arrival and use the different parameters of the signals to calculate the loca-
tion of the events [40]. The DoA estimation algorithms can be classified into two 
categories: non-parametric estimation and parametric high-resolution estimation 
[41]. The non-parametric estimation is categorized further into low- and high-
resolution methods. Some of the famous low-resolution algorithms are periodo-
gram, correlogram, and modified periodogram correlogram. Similarly, some of the 
high-resolution algorithms are the methods proposed by Capon and Borgiotti-
Lagunas and methods based on maximum entropy. The parametric high-resolution 
estimation algorithms are classified as either AR/ARMA-based, model fitting-
based, or subspace-based. The AR/ARMA algorithm uses the concept of maximum 
entropy to estimate the parameters of the signals. Similarly, some of the famous 
model fitting-based algorithms use the deterministic and stochastic machine learn-
ing and least square methods. On the other hand, MUSIC and min-norm methods 
are a few classic algorithms used for parameter estimation using the subspace-based 
methods. The classification of DoA estimation approaches is summarized in Fig. 12.

The IoT environment may have regular or irregular terrain, thus making it 
extremely difficult to map the signals getting exchanged among the devices operat-
ing in the region of interest. The authors in [32, 41, 42] discuss utilizing the DoA 
estimation technique for event localization using the quasi-random deployment of 
devices in the region of interest. The proposed algorithm utilizes a concentric circu-
lar array for mapping the signals from the devices in the terrain. The concentric 
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circular array provides better coverage of the terrain as compared to the linear or 
uniform circular arrays. Thus, the signals are received with higher accuracy than 
that of the other two approaches. The event localization algorithm is further explored 
and implemented on a real testbed experimental setup using the cloud to acquire, 
store, and fetch the data in real time using the UAV-based communication in the IoT 
environment [43]. Such a type of communication environment is beneficial for real-
life operations to be performed autonomously.

The localization is a very crucial activity to be initiated for the response and 
relief operations in case of the occurrence of disasters. For real-time service deliv-
ery in the IoT environment, where a massive number of devices operate in the ter-
rain, the location estimation needs to be done for both the nodes and the events 
occurring in the region. This helps in processing the event information and under-
standing the places of origin of these events. It further helps in providing the ser-
vices for disaster mitigation, as and when required.

6  �Conclusion

The two crucial operations during disasters are response and recovery. Effective 
implementation of these operations requires the data and information to be accessed 
from the places of catastrophe in real time. One of the essential tasks during disaster 
situations is to save lives. Thus, employing human beings for relief operations is a 
dangerous initiative. The loss of human lives has been reported a lot during relief 
operations throughout the world. To save lives and create a robust infrastructure 
with which post-disaster management can be done efficiently is challenging. In this 
regard, the evolution of IoT has served a greater purpose by implementing a net-
work where all the devices and things can get connected among themselves using 

Fig. 12  Approaches for direction of arrival estimation [41]
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the Internet. However, using an IoT environment to perform post-disaster manage-
ment comes with a certain level of challenges. In this chapter, three critical chal-
lenges, namely, deployment, localization, and collaborative processing, to explore 
the benefits of IoT are discussed. For a successful post-disaster management opera-
tion, the relevant activities must be integrated on a platform for efficient manage-
ment of resources and effective communication for real-time service delivery. This 
chapter focuses on the basic understanding of these topics with their significance 
and real-world applications.
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