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Abstract First impressions are influential in shaping our personal, economic, and
political decisions. We develop a computational framework that can model and
modify impressions of faces. First, we use a state-of-the-art predictive model of
facial impressions (such as facial attractiveness, trustworthiness, and intelligence)
and apply it to a large-scale natural face dataset in order to create a robust facial
impression dataset. We validate the augmented dataset with respect to human judg-
ments. Second, we use the new dataset to train a model, ModifAE, that changes face
smoothly and effectively in multiple social dimensions. This modification model
offers social scientists the ability to manipulate impressions as needed, and it sheds
light on both the biases and the visual features underlying first impression formation.

1 Introduction

Humans quickly form subjective impressions of faces, judging traits like facial attrac-
tiveness, trustworthiness, and aggressiveness [1]. Despite the continuous scale and
subjective nature of these social judgments, there is often a consensus among humans
in how traits are perceived; for example, human raters will agree that certain faces
appear relativelymore trustworthy [2, 3]. Social judgments of faces have a significant
impact on social outcomes, ranging from electoral success to sentencing decisions
[4, 5]. Modeling is one way to understand these critical split-second impressions.
Another way is through explicit human-judged experiments, which require carefully
controlled datasets (e.g., building a dataset of faces that vary in “trustworthiness”
while remaining consistent across age, gender, and “attractiveness”). In this work,
we develop a system to model these impressions, predict human average impres-
sions on facial images, visualize human perceptual biases, and create isolated image
modifications for experimental datasets.

Choosing a subset of social impressions formodeling,we look to the 10kUSAdult
Faces Database [6]. Bainbridge et al. [6] investigated what social traits influence the
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memorability of a face. They compiled a list of 20 spontaneous social judgments
and the corresponding opposite traits. Then, they assembled a human-judged dataset
of trait ratings on 2,222 faces from the 10k US Adult Faces Database. Among the
40 traits, “trustworthy”, “attractive,”, “aggressive,” and “intelligent” were frequently
used in human-written face descriptions, played a significant role in face memorabil-
ity, and had relatively high rating agreement levels between human judges. Therefore,
we choose them as a representative subset of social impressions for modeling in this
paper. Motivated by the success of deep learning in modeling visual properties, we
use deep learning-based pretrained representations as the basis for learning to predict
first impressions on realistic faces, training a predictive linearmodel that successfully
predicts human social perception on faces whenever human have consensus.

To create controlled face datasets and visualize perceptual biases, a generative
model is needed. Recent generative image models have been successful in creat-
ing high-resolution, high-fidelity, and diverse images [7–9]. However, in the face
space, most generative models have focused on editing or modifying categorical
and objective attributes, such as expression, gender, hair color, and identity [9].
These categorical changes are referred to as “image-to-image translation.” Here, we
focus on modifying continuous traits of an image, which we refer to as “continu-
ous image modification” [10]. Regarding continuous image modification, there has
been work on modifying the memorability [11] and attractiveness of a face [12],
but these models do not generalize to wider sets of social impressions. Also, some
researchers have endowed computer-generated faces with particular social impres-
sions, but these models cannot modify real face images [5, 13]. So, no prior work
has attempted to automatically modify general continuous social impressions of real
face photographs. Part of the difficulty lies in the fact that training a high-fidelity
generative model requires a large amount of data, yet there is no pre-existing dataset
that has tens of thousands of faces with labeled social impression trait scores. We
overcome this difficulty by proposing a cost-effective and easy-to-scale-up method
to construct a large-scale facial impression dataset.

Conditional generative adversarial networks (GANs) [14] have become the most
popular tool for the image-to-image translation task, so we compare against a recent
GAN as a state-of-the-art (SOTA) reference point [10, 15, 16]. StarGAN [9] is a
SOTA conditional GAN that can modify multiple binary categorical traits of faces at
once, maintaining the identity of the face using a “cycle consistency” loss function,
which translates the face back to the original one [17]. StarGAN consists of two
networks: a generator and a discriminator. The generator takes an image and a set
of desired categorical traits, producing a modified image. The discriminator takes an
image and makes a prediction about its realism and categorical traits. By comparing
the fake images to genuine images, the discriminator gives feedback to the generator
about how to make the image and desired traits appear more realistic.

Despite the success of GANs in categorical image-to-image translation, they can-
not perform continuous image modification without binarizing the task. GANs typ-
ically have many parameters and long training times. They are also sensitive to
hyper-parameter selection and the delicate balance between generator and discrimi-
nator training. Therefore, they can be difficult to train compared to a single-network
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model. Finally, they suffer from a lack of interpretability, offering no means of visu-
alizing or understanding why the model makes the modifications it does.

In this work, we address these architectural concerns while designing a neural
network to model and automatically modify continuous-scale face traits (rated from
1 to 9) in real face images. First, we use our deep learning-based predictive linear
model [18] to predict human facial impressions of attractiveness [3, 19], trustwor-
thiness [2, 20], aggressiveness [21], and intelligence, to form an augmented dataset.
We validated the effectiveness of this dataset augmentation method with human
experiments.

With this large-scale realistic facial impression dataset, we train a deep modifying
autoencoder, ModifAE, that can smoothly and naturally modify the first impressions
of faces. We evaluate the model performance quantitatively and qualitatively and
compare it with StarGAN. Notably, our generative model can modify multiple traits
at once and can provide visualizations of group average trait features. It is also easy
to train. These capabilities make it a powerful tool, which can, for example, modify
multiple traits while controlling other high-level attributes, such as gender. We then
quantify the actual changes ModifAE makes to modify perceived impressions, shed-
ding light on what geometric features correspond to social impression dimensions.

2 Predicting Social Attributes of Faces

Previous studies have shown that pretrained deep learningmodels can provide feature
representations versatile for related tasks [22]. After comparing multiple off-the-
shelf pretrained neural networks, we find that conv5_2 layer of VGG16 (pretrained
for object classification) leads to satisfactory results. After obtaining intermediate
representations from the pretrained neural networks, we apply Principal Component
Analysis to reduce the dimensionality, then train a ridge regression model to produce
predictions on each social attribute, respectively. For “trustworthy”, “attractive,”,
“aggressive,” and “intelligent”, the predictive model’s correlations (Spearman rank
correlation)with human averaging ratings are 0.73, 0.75, 0.72 , and 0.62, respectively,
on the test set.

3 Creating a Large-Scale Facial Impression Dataset

To train a generative model on continuous face traits, we need a large and diverse
dataset. We use images from the CelebA dataset [23], which consists of over 190,000
images of celebrities. The images in CelebA are annotated with binary categorical
labels such as “wearing a hat” but not on continuous ratings of social impressions.

To generate continuous social impression traits of these faces, we use our predic-
tive model mentioned above [18] trained on a smaller dataset (approximately 2,000
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Fig. 1 CelebA faces and their predicted trait scores

faces from the 10k US Adult Faces Database [6]) that have been annotated with
continuous ratings by 15 raters for each of the social traits.

We apply this model to over 190,000 faces from the CelebA dataset. The resulting
model predictions are highly correlated with human judgments (∗∗∗ denotes that
p < 0.0001): trustworthy (0.73∗∗∗), attractive (0.90∗∗∗), aggressive (0.76∗∗∗), and
intelligent (0.62∗∗∗). These correlations are obtained by asking subject to rate faces
on these four traits and computing average human ratings’ Spearman correlationwith
the model’s predictions. The details of these experiments are given in the Methods.

Example faces and their predicted ratings are shown in Fig. 1. Note here that 6–8
are high ratings, and 2–4 are low ratings.

4 Validating the Algorithm-Augmented Dataset

To evaluate the effectiveness of this algorithm-augmented dataset, we collect human
judgments of faces in CelebA and evaluate how model predictions correlate with
human judgments. We examined four traits: attractive, aggressive, trustworthy and
intelligent because they represent different aspects of first impressions and are of
relatively high human agreement. For each trait, we chose 80 faces whose predicted
scores are evenly spread across a range of predictions (i.e., from 2 to 8). Every
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participant is presentedwith a random sequence of these 80 faces, and is asked to give
each face a rating on a 1–9 scale for the specified trait. Every face is rated by roughly
15 subjects (ranging from 12 to 16), and we compute the average ratings for each
face. Lastly, we compute the Spearman rank correlation between the average human
ratings and the model’s predictions. For all four traits, human average ratings are
significantly correlatedwithmodel predictions (∗∗∗ indicates p < 0.001): trustworthy
(0.73∗∗∗), attractive (0.90∗∗∗), aggressive (0.76∗∗∗), and intelligent (0.62∗∗∗).We plan
to publicly release the large-scale facial impression dataset for future researchers’
use.

5 ModifAE: A Modification Model of Social Impressions

With the large-scale validated first impression face dataset, we train our modification
model, ModifAE. The network is trained on an autoencoding task (reproducing the
input on the output) with an added input corresponding to the trait value (see Fig. 2).
By using aggressive dropout on the image side (a technique where a random half
of the activations are set to 0), the model implicitly learns to depend on the input
trait value to generate the reconstruction of the image. This enables the model, after
training, to use different trait values to modify the image.

5.1 Architecture

TheModifAE architecture consists of a single autoencoder with two (image and trait)
sets of inputs that pass through an encoding stage and then are fused (by averaging
them) in the middle of the network. This latent representation is then fed into an
image decoder.

The image encoder and decoder are identical to the encode and decode portions of
the StarGAN generator network, scaled to fewer channels [9]. More specifically, the
network has two downsampling convolutional layers with stride two, four residual
blocks, a bottleneck with 16 channels, four more residual blocks, then two upsam-
pling transposed convolutional layers with stride two [9]. All layers have ReLU
activation. We use the first half of this network (including the bottleneck) as the
image encoder. We use the remainder of the network as the image decoder. Theoret-
ically, this portion could consist of the encode and decode halves of any other image
autoencoder.

The trait encoder takes a one-dimensional set of traits, feeds these into a single
dense layer with Leaky ReLU activation, and reshapes the output to create a vector
of the identical shape as the image encoder output. The outputs of the trait and image
encoders are then combined into a single latent representation of the image and
ratings.



6 A. Song et al.

Fig. 2 General illustration of ModifAE architecture

In order to encourage themodel to encode the trait information, which is otherwise
unnecessary to reproduce the image, 50% dropout is applied to the values from the
image encoder. This is then averaged with the trait encoder output to arrive at the
combined latent representation. The image decoder projects the representation back
into image space, creating the single output image. The architecture is depicted in
Fig. 2.

Despite sharing some aspects of architecture with StarGAN’s generator [9], Mod-
ifAE has over 50 times fewer parameters.

5.2 ModifAE Training Procedure

ModifAE is only trained on an autoencoding task.We trainModifAE using theAdam
optimizer [24] and train for 100 epochs on our augmented CelebA images [23]. The
objective is to optimize a single loss function based on two terms. We use the L1 loss
on the image autoencoder. We also optimize the L1 loss between the trait encoder
and image encoder. The total loss is

L = 1

N

N∑

p=1

|xp − AE(xp)| + |E(xp) − E(yp)| (1)

where xp is the pth image example, yp is its trait vector, E(·) is the result of the
trait or image encoder, and AE(·) is the output of the full-architecture autoencoder.
The second term in this loss function encourages the network to have a similar
representation between the trait and the image encodings.
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Fig. 3 Image modifications by ModifAE in trustworthy and attractive

5.3 How ModifAE Works

Each image is encoded along with its predicted traits. The image encoder compresses
the image down to a bottlenecked latent space, where higher level features about the
image are encoded. Simultaneously, the trait encoder projects the given traits to the
same latent space, creating an average face representation with those ratings (Fig. 3).

Results

First, we qualitatively examine ModifAE’s modifications and visualizations of trait
representations and then quantitatively compare the modifications of ModifAE and
StarGAN with human behavioral studies.

5.4 Qualitative Evaluation

We obtain visualizations of ModifAE’s trait representations by presenting the model
with trait values in the absence of any image input. The resulting transformation
maps show ModifAE’s representation of a trait at different trait values. These trans-
formation maps can be produced from models which were trained on multiple traits,
enabling visualizations of how ModifAE perceives some traits to vary indepen-
dently of others. Figure 5 shows traversals of“attractive,” “intelligent,” “trustworthy,”
and “aggressive,” while holding gender constant. Through this method, ModifAE
addresses the issue of interpretability in generative models. These images provide a
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Fig. 4 Multi-trait image modification by ModifAE

window into how ModifAE represents each trait and how ModifAE changes a face
to increase or decrease a given trait value.

In general, it appears that faces that subtend a larger visual angle are rated more
positively, with the trend for the faces to get bigger from left to right for the three
positive traits, and the opposite for aggressive. To our knowledge, this has not been
observed previously and hence is a prediction of our model.

Similarly, a larger smile results in more positive ratings, with big smiles on the
right for the positive traits and on the left for the negative trait. This accords with
our intuition and is consistent with previous research that demonstrates smiling is
associated with positive person perception [25].

For attractiveness, in addition to the larger smile corresponding to more attractive,
at the unattractive end of the scale, there is lower contrast in the face features.

We also are able to modify two traits at once, by training on both trait values in a
single network (see Fig. 4). For this experiment, we trained ModifAE on two traits:
“attractive” and “aggressive.” The picture in the upper left corner is the original.
Looking at the (1, 1) point in Fig. 4 (unattractive and not aggressive), the man’s
mouth is fairly neutral, and his features are not very pronounced. As attractiveness
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Fig. 5 Visualization of model’s internal perception of traits. Each is a traversal of a trait (increasing
left to right) while gender is held constant
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and aggressiveness increase, the angles of the face become sharper, there is more
definition of features like eyes and eyebrows, and the smile shrinks.

In the “attractive” transformation map of Fig. 5, age is a salient factor, with
rounder, pudgier, older faces appearing on the left side of the traversal, and faces
with sharper features, clearly defined large eyes, and larger smiles appear on the
more attractive side. This makes sense and is a confirmation that the model reflects
human biases.

In the “intelligent” transformationmaps, the degree of smile increases left to right,
the hair gets longer, and the eyebrows get smaller, perhaps suggesting that large brows
are perceived as less intelligent. Additionally, the head size clearly increases from
left to right. This suggests that images in which the head subtends a greater visual
angle are perceived as more intelligent, a bias that, to our knowledge, has not been
previously observed. Of course, in this case, it is not the real-world size that matters,
just the size of the head in the image. This is a prediction of our model.

Similar to the attractiveness traversal, the trustworthiness increaseswith the degree
of smiling. The forehead gets larger, and there is a slight lightening of the hair,
suggesting older people are more trustworthy.

For aggressiveness, clearly the bigger the smile, the less aggressive the face
appears, which fits well with our intuition. Also, the visual angle of the face becomes
smaller, and tous, at least, the eyes appear “beadier.”Unfortunately, there also appears
to be a racial bias, with darker skin appearing more aggressive.

5.5 Quantitative Evaluation

To evaluate the quality of ModifAE’s continuous subjective trait modifications, we
performed AmazonMechanical Turk (AMT) experiments on the four traits we focus
on in this article: aggressive, attractive, trustworthy, and intelligent. For each trait, we
created 90 image pairs, of which 80 are the same identity modified to be at high and
low values of each trait. For StarGAN, we used a median split of low and high-rated
traits to train the model, making the transformation binary. ModifAE was trained as
previously described. For each model, then, faces were modified to be low or high
on each trait. Subjects judged which face had more of the particular trait. 10 pairs
were repeats in order to judge subject consistency, and 10 pairs were unmodified
CelebA faces with high and low ratings. This latter we called “ground truth” pairs
to test whether subjects were paying attention. Subjects whose ratings on these pairs
were at chance or below were rejected.

Hence, for each trait, we present participants with a sequence of 100 image pairs,
and participants are asked to pick which image most exemplifies the trait in each
pair.1 Each pair was evaluated by 15 subjects.

1 In a pilot experiment, we asked subjects to rate faces with different identities generated in a fine
continuum, but found significant variance with no correlation to the intended scores, presumably
because the images were not differentiable at that fine a grain.
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Table 1 Comparison of ModifAE with StarGAN

Attribute ModifAE StarGAN “Ground Truth”

Aggressive 0.68∗∗∗ 0.72∗∗∗ 0.90∗∗∗

Attractive 0.68∗∗∗ 0.51 0.94 ∗∗∗

Trustworthy 0.63∗∗∗ 0.40 0.87∗∗∗

Intelligent 0.68∗∗∗ 0.58∗∗∗ 0.81∗∗∗
∗ p < 0.05, ∗∗ p < 0.001, ∗∗∗ p < 0.0001

We calculate the fraction of pairs in which subjects chose the image with the
higher modified trait across all participants and all pairs. If they choose the face that
was modified to be higher in the trait, then they agree with the model’s modifications.
The results are shown in Table1. We perform a binomial test to determine whether
each trait’s accuracy is significantly below or above chance (∗∗∗ p < 0.001). Note
that the fourth column “Ground Truth” indicates the overall accuracy of the unmod-
ified “ground truth” pairs. Given the variance in human impression judgments, these
numbers serve as a reference ceiling for how well the models can perform.

FromTable1, we can see that for all four traits, ModifAE produces pairs that yield
above chance level human agreement. In three out of the four traits, ModifAE signif-
icantly outperforms StarGAN; whereas, for the aggressive trait, StarGAN performs
only slightly better than ModifAE. StarGAN is good at creating discrete changes in
facial expressions, which accounts for this advantage.

Since ModifAE is able to generate continuous modifications, we evaluated this
property by creating two more same-face pairs: ones modified to have low values
and middle values, and ones modified to have middle values and high values. We
obtain human agreement (accuracy) over the Low-Mid and Mid-High pairs for each
of the four traits. The results are shown in Table2.

From Table2, we find that all the low-mid pairs yield significantly above chance
accuracy, yet for mid-high level, only trustworthy pairs have accuracy slightly above
chance (p < 0.05∗). This suggests that human psychological face space is nonlinear
and has more differentiation toward the low- to mid-range of social dimensions.
Another possibility is that when our model generates faces that are of more extreme
scores (e.g., 8 or 9), the model is extrapolating and produces artifacts that lead to
that face being rejected. This speculation requires further analysis to be confirmed.

Table 2 ModifAE Low-Mid-High level self-comparison

Attribute Low-Mid Mid-High Low-High

Aggressive 0.60∗∗∗ 0.52 0.68∗∗∗

Attractive 0.59∗∗∗ 0.52 0.68∗∗∗

Trustworthy 0.61∗∗∗ 0.53∗ 0.63∗∗∗

Intelligent 0.60∗∗∗ 0.50 0.68∗∗∗
∗ p < 0.05, ∗∗ p < 0.001, ∗∗∗ p < 0.0001
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5.6 Qualitative Interpretations

With a hypothesis-driven approach, psychologists have identified certain visual fea-
tures that contribute to specific impressions. The symmetry of the face [26] can
explainwhy certain faces lookmore attractive.Other global face features such as fem-
ininity, babyfaceness [27], typicality [28], and facial width-to-height ratio (fWHR)
[29] drive different aspects of social impression perception (warmth, honesty, sub-
missiveness, dominance, etc.). Emotions such as perceived anger and happiness drive
aggressiveness and trustworthiness perceptions, respectively. Using morphing and
averaging methods, studies [30] have established that age also serves an important
role in social perception of attractiveness, trustworthiness, and dominance.

6 Discussion

Wehave shown that a deep network can be used to predict the human social perception
of faces, achieving a high correlation with the average human ratings. As far as
we know, this is the widest exploration of social judgment predictions, showing
human-like perceptions on 40 social dimensions. By predicting this as a continuous
value, rather than categorical, the subjective nature of human judgment is modeled
smoothly, along with the subjective face trait landscape.

Of greater significance is our model’s correlations with human judgments for
traits such as trustworthiness, responsibility, confidence, and intelligence, which
correspond to more static features of the face. In this area, the deep network, which
responds to facial textures and shape, has superior performance. While these judg-
ments do not correspond to the traditional notion of “ground truth”, they are descrip-
tions for which humans have a fair amount of agreement, suggesting the presence of
a signal to be recognized. Furthermore, we have shown that our prediction model can
generalize reasonably well to an entirely new dataset, making it widely applicable
to real-world scenarios.

We further develop agenerativemodel,ModifAE,which canmodify a face’s social
impressions while preserving its realism. ModifAE can change a face’s perceived
social features (e.g., make a face lookmore sociable, trustworthy). It can also produce
transformation maps that elegantly summarize the average opinions and biases of a
group of raters who have created a dataset. This functionality enables psychologists
to quantify human biases during the formation of social impressions in a precise
and systematic manner. Psychologists could generate variants of a real face differing
in age, gender, and race while holding other traits constant. This controlled dataset
could be used to explore how various factors separately and jointly affect the social
impressions of faces.

Our computational models make predictions and modifications regarding the first
impressions of faces, and such first impressions are indicative of implicit bias toward
different social groups [31]. With knowledge of people’s first impressions, along
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with the embedded potential bias, we have a chance to analyze the perceptual and
social interactions that are fundamental to humans.

These results are also significant for the field of social robotics and the fight against
discrimination. Predictive models like this can bring empathy to robotics, where
technology can help us bridge the emotional and social divide and promote social
equality. Empathetic technology can benefit people who are implicitly discriminated
against based on social impressions. While a robot should not purely judge a human
on appearance, much of human interaction is dictated by the underlying fabric of
social impressions. Thus, it is important for a robot to be aware of the subjective social
fabric, opening the door to useful knowledge such as whether humans might judge a
person to be trustworthy. These judgments may happen subconsciously for humans,
while a robot can be more objective, predicting these judgments and objectively
choosing when to consider them in a decision. A robot need not treat an attractive or
unattractive person differently for its own purposes, but this knowledge could affect
how interactions are made for the sake of the human, knowing in advance how that
person may feel that they fit into the social landscape. These applications can have
significant societal effects.
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