Some Algebraic Aspects of Boolean Valued Analysis

Anatoly G. Kusraev

Abstract The article deals with a Boolean valued approach to some algebraic problems arising from functional analysis. The main results are as follows. (1) A universally complete vector lattice without locally one-dimensional bands contains an infinite direct sum of order dense sublattices each of which is a band preserving linear isomorphic (but not lattice isomorphic) copy of the whole lattice. (2) Every separated injective module over a semiprime rationally complete commutative ring admits a direct sum decomposition with homogeneous summands. (3) A semiprime rationally complete commutative ring properly embedded in a ring with projections *K* is a homogeneity ring of an additive mapping between appropriate *K*-modules.

Keywords Boolean valued analysis · Universally complete vector lattice · Injective module \cdot Commutative ring \cdot *K*-module

1 Introduction

The *Boolean valued approach* is a machinery of studying properties of an arbitrary mathematical object by means of comparison between its representations in two different set-theoretic models whose construction utilizes distinct Boolean algebras. As these models, one usually takes the classical sets in the shape of the *von Neumann universe* ∇ and a properly truncated *Boolean valued universe* $\nabla^{(\mathbb{B})}$ in which the conventional set-theoretic concepts and constructions acquire nonstandard interpretations.

A. G. Kusraev (\boxtimes)

Southern Mathematical Institute of the Vladikavkaz Scientific Center of the RAS, Vladikavkaz, Russia

K. L. Khetagurov North-Ossetian State University, Vladikavkaz, Russia e-mail: kusraev@smath.ru

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 A. N. Karapetyants et al. (eds.), *Operator Theory and Harmonic Analysis*, Springer Proceedings in Mathematics & Statistics 357, https://doi.org/10.1007/978-3-030-77493-6_19

A general scheme of applying the Boolean valued approach is as follows, see [\[16,](#page-11-0)

[17\]](#page-11-1). Assume that **X** ⊂ W and $X \subset W^{(B)}$ are two classes of mathematical objects, *external* and *internal*, respectively. Suppose we are able to prove the following

Boolean Valued Representation Result: Every external $X \in \mathbf{X}$ embeds into a Boolean valued model $\mathbb{V}^{(\mathbb{B})}$ becoming an internal object $\mathscr{X} \in \mathbb{X}$.

Boolean Valued Transfer Principle then tells us that every theorem about *X* within Zermelo–Fraenkel set theory with choice ZFC has its counterpart for the original object *X* interpreted as a Boolean valued object *X*.

Boolean Valued Machinery enables us to perform some translation of theorems from $\mathscr{X} \in \mathbb{V}^{(\mathbb{B})}$ to $X \in \mathbb{V}$ making use of appropriate general operations and the principles of Boolean valued models.

The paper deals with a Boolean-valued approach to some algebraic problems arising from functional analysis. Section [2](#page-1-0) collects some Boolean valued requisites. The main result of Sect. [3](#page-3-0) states that a universally complete vector lattice without locally one-dimensional bands contains an infinite direct sum of order dense sublattices each of which is a band preserving linearly isomorphic (but not lattice isomorphic) copy of the whole lattice. This problem is related to band preserving linear operators in vector lattices, see Abramovich and Kitover [\[2\]](#page-10-0), Kusraev and Kutateladze [\[17,](#page-11-1) Chap. 4]. In Sect. [4](#page-6-0) it is proved that every separated injective module over a semiprime rationally complete commutative ring admits a direct sum decomposition with homogeneous summands. Problems of this kind arise in the theory of operator algebras, see Chilin and Karimov [\[5\]](#page-11-2), Ozawa [\[20\]](#page-11-3). It is proved in Sect. [5](#page-8-0) that a semiprime rationally complete commutative ring properly embedded in a ring with projections K is a homogeneity ring of an additive mapping between appropriate *K*-modules. This result relates to functional equations, see Wilansky [\[23\]](#page-11-4).

The reader can find the necessary information on the theory of vector lattices in $[1, 3]$ $[1, 3]$ $[1, 3]$; Boolean valued analysis, in $[4, 15, 16]$ $[4, 15, 16]$ $[4, 15, 16]$ $[4, 15, 16]$ $[4, 15, 16]$; rings and modules, in $[19]$. Troughout the sequel B is a complete Boolean algebra with unit 1 and zero O. A *partition of unity* in \mathbb{B} is a family $(b_{\xi})_{\xi \in \mathbb{S}} \subset \mathbb{B}$ such that $\bigvee_{\xi \in \mathbb{S}} b_{\xi} = \mathbb{1}$ and $b_{\xi} \wedge b_{\eta} = \mathbb{O}$ whenever $\xi \neq \eta$. We let := denote the assignment by definition, while N and R symbolize the naturals and the reals.

2 Boolean Valued Requisites

Let $\mathbb B$ be a complete Boolean algebra. Boolean valued universe $\mathbb V^{(\mathbb B)}$ is defined by recursion on *α* with *α* running through the class of all ordinals:

$$
\mathbb{V}_{\alpha}^{(\mathbb{B})} = \left\{ x : (\exists \beta \in \alpha) \ x : \text{dom}(x) \to \mathbb{B}, \ \text{dom}(x) \subset \mathbb{V}_{\beta}^{(\mathbb{B})} \right\},
$$

$$
\mathbb{V}^{(\mathbb{B})} := \bigcup_{\alpha \in \text{On}} \mathbb{V}_{\alpha}^{(\mathbb{B})} \quad \text{(On is the class of all ordinals)}.
$$

For making statements about $\mathbb{V}^{(\mathbb{B})}$ take a formula $\varphi = \varphi(u_1, \ldots, u_n)$ of the language of *Zermelo–Fraenkel set theory* with choice (\equiv *ZFC*) and replace the variables u_1, \ldots, u_n by elements $x_1, \ldots, x_n \in \mathbb{V}^{(\mathbb{B})}$. There is a natural way of assigning to each such statement an element $[\![\varphi(x_1, \ldots, x_n)]\!] \in \mathbb{B}$ which acts as the *'Boolean truth-value'* of $\varphi(x_1, \ldots, x_n)$ in the universe $\mathbb{V}^{(\mathbb{B})}$. We say that the statement $\varphi(x_1, \ldots, x_n)$ *is valid within* $\mathbb{V}^{(\mathbb{B})}$ if $[\![\varphi(x_1, \ldots, x_n)]\!] = \mathbb{1}$.

Theorem 2.1 (Transfer Principle) *All theorems of Zermelo–Fraenkel set theory with choice are true within* $\mathbb{V}^{(\mathbb{B})}$ *. More precisely, if* $\varphi(u_1,\ldots,u_n)$ *is a theorem of* ZFC *then*

$$
(\forall x_1,\ldots,x_n\in\mathbb{V}^{(\mathbb{B})})\;[\![\varphi(x_1,\ldots,x_n)]\!]=\mathbb{1}
$$

is also a theorem of ZFC*.*

Given an arbitrary $X \in \mathbb{V}^{(\mathbb{B})}$, we define the *descent* $X \downarrow$ as the set $X \downarrow := \{x \in \mathbb{S}^{(\mathbb{B})} \mid x \in \mathbb{R}^{(\mathbb{B})} \}$ $\mathbb{V}^{(\mathbb{B})}$: $\llbracket x \in X \rrbracket = \mathbb{I} \}$. Assume that *X, Y, f, P* $\in \mathbb{V}^{(\mathbb{B})}$ are such that $\llbracket f : X \rightarrow$ *Y* $\|\mathbf{P}\| = \|\mathbf{P}\|$ and $\|\mathbf{P}\| \subset X^2\| = \|\mathbf{P}\|$, i.e., *f* is a mapping from *X* to *Y* and *P* is a binary relation on *X* within $\mathbb{V}^{(\mathbb{B})}$. Then $f \downarrow$ is a unique mapping from $X \downarrow$ to $Y \downarrow$ for which $[[f \downarrow(x) = f(x)]] = \mathbb{1}$ $(x \in X \downarrow)$ and $P \downarrow$ is a unique binary relation on $X \downarrow$ with (x_1, x_2) ∈ P ↓ \Longleftrightarrow $[(x_1, x_2) \in P] = 1$. The *ascent* is a transformation acting in the reverse direction. i.e., sending any subset $X \subset \mathbb{V}^{(\mathbb{B})}$ into an element of $\mathbb{V}^{(\mathbb{B})}$. Along with these transformation there is the *canonical embedding* $X \mapsto X^{\wedge}$ of the class of standard sets ([≡] *von Neumann universe*) ^V into a Boolean valued universe $\mathbb{V}^{(\mathbb{B})}$ see [\[4,](#page-11-5) [15\]](#page-11-6).

Let \mathcal{R} stands for the field of reals within $\mathbb{V}^{(\mathbb{B})}$ i. e., $\mathcal{R} := (\mathbb{R}, \oplus, \odot, 0, 1, \leq)$ and $[\![\varphi(\mathcal{R})]\!] = \mathbb{1}$, where $\varphi(\mathcal{R})$ is the conjunction of axioms of the reals. Consider the descent $\mathbf{R} := \mathcal{R} \downarrow$ of the algebraic structure \mathcal{R} within $\mathbb{V}^{(\mathbb{B})}$. In other words, $\mathbf{R} := (\mathbf{R} \downarrow, \oplus \downarrow, \odot \downarrow, \leq \downarrow, 0, 1)$ is considered as the descent $\mathbf{R} \downarrow$ of the underlying set R together with the descended operations $\oplus \downarrow$ and $\odot \downarrow$ and order relation $\leq \downarrow$ of the structure *R*. The following fundamental result due to Gordon [\[7\]](#page-11-8) tells us that the interpretation of reals (complexes) in a Boolean valued model $\mathbb{V}^{(\mathbb{B})}$ is a universally complete real (complex) vector lattice with the Boolean algebra of band projections isomorphic to B.

Theorem 2.2 (Gordon) *The algebraic structure R*↓ *with the descended operations and order relation is a universally complete real vector lattice and a semiprime f* -algebra with a ring and order unit $\mathbb{1} := 1^\wedge$. Moreover, \mathbb{R}^\wedge is a dense subfield of \mathscr{R} within $\mathbb{V}^{(\mathbb{B})}$.

Proof A detailed proof can be found in [\[17,](#page-11-1) Sections 2.2, 2.3]. □

Gordon's theorem 2.2 raises the question of when \mathbb{R}^{\wedge} and \mathscr{R} coincide within $V^{(\mathbb{B})}$. The answer was obtained by Gutman [\[10\]](#page-11-9) in terms of the σ -distributivity of the Boolean algebra B. A *σ*-complete Boolean algebra B is said to be *σ*-*distributive* if, for any double sequence $(b_m^n)_{n,m \in \mathbb{N}}$ in \mathbb{B} , the equality holds (cf. [\[22,](#page-11-10) 19.1]).

$$
\bigwedge_{n\in\mathbb{N}}\bigvee_{m\in\mathbb{N}}b_m^n=\bigvee_{m\in\mathbb{N}^{\mathbb{N}}}\bigwedge_{n\in\mathbb{N}}b_{m(n)}^n
$$

Theorem 2.3 (Gutman) *Let* $\mathbb B$ *be a complete Boolean algebra and* $\mathcal R$ *the field of reals within* V*(*B*) . The following assertions are equivalent:*

- (1) B *is σ-distributive.*
- $(V^{\mathbb{(B)}}) \models \mathscr{R} = \mathbb{R}^n$.
- (3) *R*↓ *is locally one-dimensional.*

We also need the following result on the structure of cardinals within a Booleanvalued universe. Let Card*(x)* symbolize that *x* is a cardinal.

Theorem 2.4 *Each Boolean valued cardinal is a mixture of some set of relatively standard cardinals. More precisely, Given* $x \in \mathbb{V}^{(\mathbb{B})}$, we have $\mathbb{V}^{(\mathbb{B})} \models \text{Card}(x)$ *if and only if there are nonempty set of cardinals* Γ *and a partition of unity* $(b_{\nu})_{\nu \in \Gamma} \subset \mathbb{B}$ *such that* $x = \max_{\gamma \in \Gamma} b_{\gamma} \gamma^{\wedge}$ *and* $\mathbb{V}^{(\mathbb{B}_{\gamma})} \models \text{Card}(\gamma^{\wedge})$ *with* $\mathbb{B}_{\gamma} := [0, b_{\gamma}]$ *for all* $\nu \in \Gamma$.

Proof See Bell [\[4,](#page-11-5) Problem 1.45 and Theorem 1.50], Kusraev and Kutataeladze and [\[17,](#page-11-1) Subsections 1.9.7 and 1.9.11].

3 Band Preserving Linear Isomorphisms

Abramovich and Kitover in [\[2,](#page-10-0) p. 1, Problem B] raised the question as to whether the vector lattices *X* and *Y* are lattice isomorphic whenever *X* and *Y* are *d*-isomorphic, that is, there exists a linear disjointness preserving operator $T : X \rightarrow Y$ such that T^{-1} is also disjointness preserving? A negative answer was given in the same work, see [\[2,](#page-10-0) Theorem 13.4]. The problem has a negative solution even in the class of band preserving operators, see [\[17,](#page-11-1) Theorem 4.6.7]. Moreover, if *X* is a real universally complete vector lattice without locally one-dimensional bands then $X = X_1 \oplus X_2$ for some component-wise closed and laterally complete vector sublattices $X_1 \subset X$ and $X_2 \subset X$ both *d*-isomorphic to *X* but neither X_1 nor X_2 is Dedekind complete and hence lattice isomorphic to X , see $[18]$. The aim of this section is to show that the latter result can be improved to infinite direct sum decomposition.

Definition 3.1 A vector lattice *X* is said to be *locally one-dimensional* if for every two nondisjoint $x_1, x_2 \in X$ there exist nonzero components u_1 and u_2 of x_1 and *x*₂ respectively such that u_1 and u_2 are proportional. Let γ be a cardinal. A vector lattice *X* is said to be *Hamel γ* -*homogeneous* whenever there exists a local Hamel basis of cardinality γ in *X* consisting of strongly distinct weak order units. Two elements $x, y \in X$ are said to be *strongly distinct* if $|x - y|$ is a weak order unit in *X*.

Lemma 3.2 Let *X* be a universally complete vector lattice. There is a band X_0 *in X* such that X_0^{\perp} *is locally one-dimensional and there exists a partition of unity* $(\pi_{\nu})_{\nu \in \Gamma}$ *in* $\mathbb{P}(X_0)$ *with* Γ *a set of infinite cardinals such that* $\pi_{\nu} X_0$ *is strictly Hamel γ -homogeneous for all* $\gamma \in \Gamma$ *.*

Proof The proof can be found in [\[17,](#page-11-1) Theorem 4.6.9]. □

Lemma 3.3 *The field of reals* R *has no proper subfield of which it is a finite extension.*

Proof See, for example, Coppel [\[6,](#page-11-12) Lemma 17]. □

Lemma 3.4 *Let* \mathcal{R} *be the field of reals within* $\mathbb{V}^{(\mathbb{B})}$, $X := \mathcal{R}\downarrow$, and $b \in \mathbb{B}$ *. Denote by* dim*(R) the internal cardinal with* [[dim*(R) is the algebraic dimension of the vector space ^R over* ^R∧]] = ¹*. Then bX is strictly Hamel ^γ -homogeneous if and only if* $b \leq \text{Idim}(\mathcal{R}) = \gamma^{\wedge} \text{I}.$

Proof This can be proved as in [\[12,](#page-11-13) Theorem 8.3.11].

Lemma 3.5 Let $\mathbb P$ be a proper subfield of $\mathbb R$. There exists an infinite cardinal x *and a family* $(\mathscr{X}_{\alpha})_{\alpha \leq x}$ *of* \mathbb{P} *-linear subspace in* \mathbb{R} *such that* $\mathbb{R} = \bigoplus_{\alpha \leq x} \mathscr{X}_{\alpha}$ *and, for every* $\alpha \leq \alpha$, the P-vector spaces \mathcal{X}_{α} and R are isomorphic, whilst they are not *isomorphic as ordered vector spaces over* P*.*

Proof It follows from Lemma [3.3](#page-4-0) that R is an infinite dimensional vector space over the field \mathbb{P} . Let \mathscr{E} be a Hamel basis of a \mathbb{P} -vector space \mathbb{R} . Since $x := |\mathscr{E}|$ is an infinite cardinal, we have the representation $\alpha = \sum_{\alpha \in A} x_{\alpha}$, where $x_{\alpha} = \alpha$ for all $\alpha \in A$ and $|A| \leq \alpha$. It follows that there is a family of subsets $\mathscr{E}_{\alpha} \subset \mathscr{E}$ such that $\mathscr{E} = \bigcup_{\alpha \leq x} \mathscr{E}_{\alpha}, |\mathscr{E}_{\alpha}| = |\mathscr{E}|$ for all $\alpha \leq x$, and $\mathscr{E}_{\alpha} \cap \mathscr{E}_{\beta} = \emptyset$ whenever $\alpha \neq \beta$. If *X*^{*α*} denotes the P-subspace of R generated by \mathcal{E}_α , then \mathcal{X}_α ⊆ R and \mathcal{X}_α and R are isomorphic as vector spaces over \mathbb{P} . If \mathscr{X}_{α} and \mathbb{R} were isomorphic as ordered vector spaces over \mathbb{P} , then $\mathscr X$ would be order complete and, as a consequence, we would have $\mathcal{X}_{\alpha} = \mathbb{R}$; a contradiction.

Definition 3.6 Let *X* be a vector latice and $u \in X$. An element $v \in X$ is called a *component* of *v* if $|v| \wedge |u - v| = 0$. The set of all components of *u* is denoted by $\mathbb{C}(u)$. A subset X_0 is said to be *component-wise closed* if for every $u \in X_0$ the set $\mathbb{C}(u)$ is contained in X_0 . A sublattice $X_0 \subset X$ is said to be *laterally complete* if every disjoint family in X_0 has a supremum.

Lemma 3.7 *Let* \mathcal{R} — *be the field of reals within* $\mathbb{V}^{(\mathbb{B})}$ *and let us consider a universally complete vector lattice* $X := \mathcal{R} \downarrow$ *. For the sublattice* $X_0 \subset X$ *the following conditions:*

- (1) *X*₀ *is laterally complete, component-wise closed, and* $X_0^{\perp \perp} = X$.
- (2) $X_0 = \mathcal{X}_0 \downarrow$ *for some nonzero vector sublattice* \mathcal{X}_0 *of the field* \mathcal{R} *considered as vector lattice over the subfield* ℝ[∧].

Proof It directly follows from [\[17,](#page-11-1) Theorem 2.5.1]. □

Denote by $[A]_{\sigma}$ the set of all elements $x \in X$ representable in the form $x = \sum_{n=1}^{\infty} \pi_k a_k$, where (a_k) is an arbitrary sequence in *A* and (π_k) is a countable partition of unity in $\mathbb{P}(X)$.

Theorem 3.8 *Assume that a real universally complete vector lattice X is strictly Hamel -homogeneous for some infinite cardinal . Then there exists a family* $(X_{\alpha})_{\alpha\leq\alpha}$ *of component-wise closed and laterally complete vector sublattices* $X_{\alpha} \subset$ *X satisfying the conditions:*

- (1) $X = [\bigoplus_{\alpha \leq x} X_{\alpha}]_{\sigma}$ and $X = X_{\alpha}^{\perp \perp}$ for all $\alpha \leq x$.
- (2) *The canonical projection* $\pi_{\alpha}: X \to X_{\alpha}$ *are all band preserving.*
- (3) X_{α} *is d-isomorphic to* X *for all* $\alpha \leq \alpha$.
- (4) *Xα is not Dedekind complete and hence not lattice isomorphic to X for all ^α* [≤] *.*

Proof We can assume without loss of generality that $X = \mathcal{R}$. Since there is no loally one-dimensional band in *X*, we have $\llbracket \mathcal{R} \neq \mathbb{R}^n \rrbracket = \mathbb{1}$ by Gutman's theorem 2.2. Working within $\mathbb{V}^{(\mathbb{B})}$, we can apply Lemma [3.5](#page-4-1) by Transfer Principle and find an infinite cardinal *x* and a family $(\mathscr{X}_{\alpha})_{\alpha \leq x}$ of \mathbb{R}^{\wedge} -linear subspaces of \mathscr{R} such that $\mathscr{R} = \bigoplus_{\alpha \leq \alpha} \mathscr{X}_{\alpha}$ and, for every $\alpha \leq \alpha$, there is an \mathbb{R}^{\wedge} -isomorphism τ_{α} from \mathscr{X}_{α} onto *R*, while \mathscr{X}_{α} and \mathscr{R} are not isomorphic as ordered vector spaces over \mathbb{R}^{\wedge} . Let p_{α} : $\mathcal{R} \to \mathcal{X}_{\alpha}$ stand for the projection corresponding to the direct sum decomposition $\mathscr{R} = \bigoplus_{\alpha \leq x} \mathscr{X}_{\alpha}$. To externalize, put $X_{\alpha} := \mathscr{X}_{\alpha} \downarrow$, $T_{\alpha} := \tau_{\alpha} \downarrow$, $S_{\alpha} := \tau_{\alpha}^{-1} \downarrow$, and $P_{\alpha} := p_{\alpha} \overline{\downarrow}$. The maps $S_{\alpha}: X \to X_{\alpha}, T_{\alpha}: X_{\alpha} \to X$, and $P_{\alpha}: X \to X_{\alpha}$ are band preserving and R-linear by [\[17,](#page-11-1) Theorem 4.3.4]. Moreover, S_α and T_α are injective and $S_\alpha = (\tau_\alpha \downarrow)^{-1} = T_\alpha^{-1}$, see [\[17,](#page-11-1) 1.5.3(2)]. Since \mathcal{X}_α is linearly isomorphic to $\mathcal{R}, \llbracket \mathcal{X}_{\alpha} \neq \{0\} \rrbracket = \mathbb{1}$ and hence $X_{\alpha}^{\perp \perp} = X$. It follows from Lemma 3.6 that X_{α} is laterally complete and component-wise closed. It remains to observe that a) X_α and *X* are lattice isomorphic if and only if *X* and *R* are isomorphic as ordered vector spaces over \mathbb{R}^{\wedge} ; b) P_{α} is order bounded if and only if so is p_{α} within $\mathbb{V}^{(\mathbb{B})}$. \Box

Corollary 3.9 *For every universally complete vector lattice X without locally onedimensional bands there exist an infinite cardinal x and a family* $(X_\alpha)_{\alpha \leq x}$ *of component-wise closed and laterally complete vector sublattices* $X_\alpha \subset X$ *such that X_α is d*-*isomorphic but not lattice isomorphic to X for all* $\alpha \leq \alpha$ *and* $X_{\alpha} \cap X_{\beta} = \{0\}$ *for* $\alpha \neq \beta$ *.*

Proof This is immediate from Lemma [3.2](#page-4-2) and Theorem [3.8.](#page-5-0) □

Remark 3.10 As can be seen from the proof of Theorem [3.8,](#page-5-0) the key role in this section is played by the Boolean valued interpretation of the Hamel basis. In some problems, a similar role belongs to the Boolean valued interpretation of a transcendence basis, see [\[13\]](#page-11-14).

4 Classification of Injective Modules

Recently, Chilin and Karimov [\[5\]](#page-11-2) obtained a classification result for laterally complete modules over universally complete *f* -algebras. They introduced the concept of the *passport* and proved that two such modules are isomorphic if and only if their passport coincide. In this section we will show that these results remain valid for a broader class of separated injective modules over semiprime rationally complete commutative rings.

In what follows, *K* stands for a commutative semiprime ring with unit and *X* denotes a unitary *K*-module. The Boolean valued approach to the above classification problem is based on the following two results (Theorems [4.2](#page-6-1) and [4.4\)](#page-7-0) due to Gordon [\[8,](#page-11-15) [9\]](#page-11-16).

Definition 4.1 An *annihilator ideal* of *K* is a subset of the form $S^{\perp} := \{k \in K :$ $(∀ s ∈ S)$ *ks* = 0} with a nonempty subset *S* ⊂ *K*. A subset *S* of *K* is called *dense* provided that $S^{\perp} = \{0\}$; i. e., the equality $k \cdot S := \{k \cdot s : s \in S\} = \{0\}$ implies $k = 0$ for all $k \in K$. A ring K is said to be *rationally complete* whenever, to each dense ideal *^J* [⊂] *^K* and each group homomorphism *^h* : *^J* [→] *^K* such that *h(kx)* ⁼ *kh(x)* for all $k \in K$ and $x \in J$, there is an element r in K with $h(x) = rx$ for all $x \in J$.

Observe that K is rationally complete if and only if the complete ring of quotients $Q(K)$ is isomorphic to *K* canonically, see Lambek [\[19,](#page-11-7) § 2.3].

Theorem 4.2 *If* K *is a field within* $V^{(\mathbb{B})}$ *then* $K\downarrow$ *is a rationally complete semiprime ring, and there is an isomorphism χ of* B *onto the Boolean algebra* ^A*(K*↓*) of the annihilator ideals of ^K*[↓] *such that*

$$
b \leq [\! [x = 0] \!] \iff x \in \chi(b^*) \quad (x \in K, \ b \in \mathbb{B}).
$$

Conversely, if K is a rationally complete semiprime ring and B *stands for the Boolean algebra* A*(K) of all annihilator ideals of K, then there is an internal field* $\mathscr{K} \in \mathbb{V}^{(\mathbb{B})}$ *such that the ring K is isomorphic to* $\mathscr{K} \mathcal{L}$ *.*

Proof See [\[16,](#page-11-0) Theorem 8.3.1] and [16, Theorem 8.3.2]. □

Definition 4.3 A *K*-module *X* is *separated* provided that for every dense ideal $J \subset$ *K* the identity $xJ = \{0\}$ implies $x = 0$. Recall that a *K*-module *X* is *injective* whenever, given a *K*-module *Y*, a *K*-submodule $Y_0 \subset Y$, and a *K*-homomorphism $h_0: Y_0 \to X$, there exists a *K*-homomorphism $h: Y \to X$ extending h_0 .

The *Baer criterion* says that a *K*-module *X* is injective if and only if for each ideal *J* ⊂ *K* and each *K*-homomorphism $h : J \rightarrow X$ there exists $x \in X$ with $h(a) = xa$ for all $a \in J$; see Lambek [\[19\]](#page-11-7). All modules under consideration are assumed to be *faithful*, that is, $Xk \neq \{0\}$ for any $0 \neq k \in K$, or equivalently, the canonical representation of *K* by endomorphisms of the additive group *X* is one-toone.

Theorem 4.4 *Let* \mathcal{X} *be a vector space over a field* \mathcal{X} *within* $\mathbb{V}^{(\mathbb{B})}$ *, and let* $\chi : \mathbb{B} \to \mathbb{R}$ ^B*(K*↓*) be a Boolean isomorphism in Theorem [4.2.](#page-6-1) Then ^X*[↓] *is a separated unital injective module over* $\mathcal{K}\downarrow$ *such that* $b \leq ||x| = 0$ *and* $\chi(b)x = 0$ *are equivalent for all* $x \in \mathcal{X}$ *and* $b \in \mathbb{B}$ *. Conversely, if* $K = \mathcal{X}$ *and X is a unital separated injective K*-module then there exists an internal vector space $\mathscr{X} \in \mathbb{V}^{(\mathbb{B})}$ *over* \mathscr{K} *such that the K-module X is isomorphic to* $\mathscr{X}\downarrow$ *. Moreover if* ι : $K \to \mathscr{K}\downarrow$ *is an isomorphism in Theorem [4.2,](#page-6-1)* then one can choose an isomorphism $\iota : X \to \mathcal{X} \downarrow$ *such that* $\iota(ax) = \iota(a)\iota(x)$ ($a \in K, x \in X$).

Proof See [\[16,](#page-11-0) Theorems 8.3.12] and [16, and 8.3.13]. □

Thus, Theorem [4.4](#page-7-0) enables us to apply Boolean valued approach to unital separated injective modules over semiprime rationally complete commutative rings.

Definition 4.5 A family \mathcal{E} in a *K*-module *X* is called *K*-*linearly independent* or symply *linearly independent* whenever, for all $n \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_n \in K$, and *e*₁,...,e_n \in *E*, the equality $\sum_{k=1}^{n} \alpha_k e_k = 0$ implies $\alpha_1 = \ldots = \alpha_n = 0$. An inclusion maximal *K*-linearly independent subset of *X* is called a *Hamel K*-*basis* for *X*.

Every unital separated injective *K*-module *X* has a Hamel *K*-basis. A *K*-linearly independent set \mathcal{E} in *X* is a Hamel *K*-basis if and only if for every $x \in X$ there exist a partition of unity $(\pi_k)_{k \in \mathbb{N}}$ in $\mathbb{P}(K)$ and a family $(\lambda_k, e)_{k \in \mathbb{N}}$, $e \in \mathcal{E}$ in K such that

$$
\pi_k x = \sum_{e \in \mathcal{E}} \lambda_{k,e} \pi_k e \quad (k \in \mathbb{N})
$$

and for every $k \in \mathbb{N}$ the set $\{e \in \mathscr{E} : \lambda_{k,e} \neq 0\}$ is finite.

Definition 4.6 Let γ be a cardinal. A *K*-module *X* is said to be *Hamel* γ *homogeneous* whenever there exists a Hamel *K*-basis of cardinality γ in *X*. For $\pi \in \mathbb{P}(X)$ denote by $\chi(\pi)$ the least cardinal γ for which πX is Hamel γ homogeneous. Say that *X* is *strictly Hamel γ* -*homogeneous* whenever *X* is Hamel *γ*-homogeneous and $x(π) = γ$ for all nonzero $π ∈ \mathbb{P}(X)$.

Theorem 4.7 *Let K be a semiprime rationally complete commutative ring and let X* be a separated injective module over *K*. There exists a partition of unity $(e_v)_{v \in \Gamma}$ *in* $\mathbb{P}(K)$ *with* Γ *a set of cardinals such that* $e_{\gamma}X$ *is strictly Hamel* γ *-homogeneous for all* $\gamma \in \Gamma$ *. Moreover, X is isomorphic to* $\prod_{\gamma \in \Gamma} e_{\gamma} X$ *and the partition of unity* $(e_{\gamma})_{\gamma \in \Gamma}$ *is unique up to permutation.*

Proof According to Theorems [4.2](#page-6-1) and [4.4](#page-7-0) we may assume that $K = \mathcal{K}$ and $X =$ \mathscr{X} **U**, where \mathscr{X} is a vector space over the field \mathscr{K} within $\mathbb{V}^{(\mathbb{B})}$. Moreover, dim $(\mathscr{X}) \in$ $V^{(\dot{\mathbb{B}})}$, the algebraic dimension of \mathscr{X} , is an internal cardinal and, since each Boolean valued cardinal is a mixture of some set of relatively standard cardinals [\[17,](#page-11-1) 1.9.11], we have dim $(\mathcal{X}) = \max_{\gamma \in \Gamma} b_{\gamma} \gamma^{\wedge}$ where Γ is a set of cardinals and $(b_{\gamma})_{\gamma \in \Gamma}$ is a partition of unity. Thus, for all $\gamma \in \Gamma$ we have $e_{\gamma} \leq ||\dim(\mathscr{X})| = \gamma \wedge ||$, whence $e_{\gamma} X$ is strictly Hamel *^γ* -homogeneous. The remaining details are elementary.

Definition 4.8 The partition of unity $(e_v)_{v \in \Gamma}$ in $\mathbb{P}(K)$ in Theorem [4.7](#page-7-1) is called the passport of *K*-module *X* is denoted by $\Gamma(X)$.

Theorem 4.9 *Faithful separated injective K-modules X and Y are isomorphic if and only if* $\Gamma(X) = \Gamma(Y)$ *.*

Remark 4.10

- (1) In the particular case that *K* is a universally complete *f* -algebra, we get the classification obtained by Chilin and Karimov [\[5,](#page-11-2) Theorems 4.2 and 4.3] without using the Boolean valued approach. In this event $\mathscr X$ is a vector spaces over the field of reals $\mathcal{K} = \mathcal{R}$ or complexes $\mathcal{K} = \mathcal{C}$ within $\mathbb{V}^{(\mathbb{B})}$. Another particular case of Theorem [4.7](#page-7-1) when $\mathscr X$ is a vector subspace of $\mathscr R$ (considered as a vector space over \mathbb{R}^n) was examined by Kusraev and Kutateladze [\[17,](#page-11-1) Chap. 4].
- (2) The family $(e_v)_{v \in \Gamma}$ in Theorem 16 is called a *decomposition series* if $e_v X$ is (not necessarily strict) Hamel *γ*-homogeneous for all $\gamma \in \Gamma$. It can be also proved that separated injective modules over $K = L^0(\mathcal{B})$ are isomorphic if and only if their decomposition series are *congruent* in the sense of Ozawa [\[20\]](#page-11-3).
- (3) An *injective Banach lattice* possesses a module structure over some ring of continuous function $C(Q)$ with Q an extremally disconnected Hausdorff topological space [\[17,](#page-11-1) Sections 5.10]. This enables one to apply the Boolean valued approach to the classification problem of injective Banach lattices; details can be found in Kusraev [\[14\]](#page-11-17). The key role here is played by the concept of the Maharam operator, see [\[11\]](#page-11-18).

5 Homogeneity Rings of Additive Operators

In this section, a ring *K* is supposed to have an identity element which is distinct from zero. This implies that *^K* is not the zero ring {0}. Accordingly, a subring *^F* of *K* is required to contain the identity element of *K*. Let *X* and *Y* be two unitary *K*-modules. Then, for any additive mapping $f : X \to Y$, the subset of *K* defined as

$$
H_f := \{ k \in K : f(kx) = kf(x) \text{ for all } x \in X \}
$$

is a subring of *K*, the *homogeneity ring* of *f* , see Rätz [\[21,](#page-11-19) Lemma 1]. The problem is to examine what subrings of K have the form H_f for some additive operator f from *X* to *Y*? It is proved by Rätz [\[21,](#page-11-19) Theorem 3] that, for $X \neq \{0\}$, $Y \neq \{0\}$ and any subring *S* of *K* for which *X* is a *free S*-*module*, there exists an additive mapping $f: X \to Y$ such that $H_f = S$. The assumption that *X* is a free *S*-module seems to be pretty restrictive. However, in a special case of vector spaces over fields this condition is fulfilled so that we have the following.

Lemma 5.1 *Let ^X and ^Y be nonzero unitary ^K-modules and* {*y*} *is linearly independent for some* $y \in Y$. If a subring S of K is a field then there exists an *additive mapping* $f : X \to Y$ *such that* $H_f = S$ *.*

Consider an *f*-algebra *A*. Given an additive operator $S : A \rightarrow A$, define the homogeneity set $H_S \subset A$ of *S* as $H_S := \{a \in A : S(ax) = aSx \text{ for all } x \in A\}.$ Then H_s is evidently a subring of A and our problem is to examine what subrings of *A* have the form H_S for some additive operator *S* in *A*?

Definition 5.2 A *projection* of a ring *K* is an endomorphism π of *K* with $\pi \circ \pi =$ *π*. Say that *B* is a *Boolean algebra of projections* in *K* if *B* consists of mutually commuting projections in *K* under the operations

$$
\pi_1 \vee \pi_2 := \pi_1 + \pi_2 - \pi_1 \circ \pi_2, \quad \pi_1 \wedge \pi_2 := \pi_1 \circ \pi_2,
$$

$$
\pi^* := I_K - \pi \quad (\pi_1, \pi_2, \pi \in \mathscr{B})
$$

and in which the zero and the identity operators in *K* serve as the top and bottom $\bigwedge \{\pi \in \mathscr{B} : \pi x = x\}.$ elements of *B*. Given $x \in K$, the *carrier* of *x* is defined as the projection $[x] :=$

Definition 5.3 BAP-*ring* is a pair (K, \mathcal{B}) where *K* is a ring with the distinguished complete Boolean algebra of projections \mathcal{B} , see [\[15\]](#page-11-6). Say that *K* is a B-complete ring if \mathbb{B} is a complete Boolean algebra isomorphic to $\mathscr{B}, (K, \mathscr{B})$ is a BAP-ring, and for every partition of unity $(\pi_{\xi})_{\xi \in \Xi}$ in *B* the following two conditions hold:

- (1) If $x \in K$ and $\pi_{\xi} x = 0$ for all $\xi \in \Xi$ then $x = 0$.
- (2) If $(x_{\xi})_{\xi \in \Xi}$ is a family in *K* then there exists $x \in K$ such that $\pi_{\xi} x = \pi_{\xi} x_{\xi}$ for all $\xi \in \mathcal{Z}$.

Theorem 5.4 Let *K* be a ring within $\nabla^{(\mathbb{B})}$ and $K := \mathcal{K}$. Then K is a B-complete *ring and there exists an isomorphism j from* B *onto a Boolean algebra of projections B in K such that*

$$
b \leq [x = 0] \Longleftrightarrow j(b)x = 0 \quad (x \in K, \ b \in \mathbb{B}).
$$

Conversely, if K is a \mathbb{B} *-complete ring then there exists* $\mathcal{K} \in \mathbb{V}^{(\mathbb{B})}$ *such that* $\mathbb{I} \mathcal{K}$ *is a ring* $\mathbb{I} = \mathbb{I}$ *and the descent* $\mathcal{K} \downarrow$ *is* \mathbb{B} *-isomorphic to K.*

Proof The first part is proved in [\[15,](#page-11-6) Theorem 4.2.8], while the second part can be deduced from [\[15,](#page-11-6) Theorem 4.3.3]. The reader is referred to [\[16,](#page-11-0) Theorems 8.1.4 and 5.1.7] for complete proofs and many pertinent results.

Lemma 5.5 Let *K* be a ring within $V^{(B)}$ and $K := \mathcal{K}$. For a semiprime *commutative subring* $F \subset K$ *the following are equivalent:*

- (1) *F* is rationally complete and each annihilator ideal in *F* is of the form $I(b)$ *F for some* $b \in \mathbb{B}$ *.*
- (2) *F* is regular, \mathbb{B} -complete, and $xy = 0$ implies $[x] \circ [y] = 0$ for all $x, y \in F$.
- (3) $F = \mathscr{F} \downarrow$ *for some field* \mathscr{F} *which is a subring of* \mathscr{K} *within* $\check{\mathbb{V}}^{(\mathbb{B})}$ *.*

Proof Clearly, $[x] \circ [y] = 0$ implies $xy = 0$ for all $x, y \in K$. It follows that $f(b)F$ is an annihilator ideal. Observe that if each annihilator ideal in *F* is of the form $j(b)F$ for some $b \in \mathbb{B}$ or $xy = 0$ implies $[x] \circ [y] = 0$ for all $x, y \in F$, then \mathbb{B} is isomorphic to the Boolean algebra of all annihilator ideals; the isomorphism is given by assigning $b \mapsto j(b)F$ ($b \in \mathbb{B}$). Now, to ensure that the conditions (1) and (2) are equivalent it remains to observe that a semiprime ring is rationally complete if and if it is regular and \mathbb{B} -complete with \mathbb{B} the Boolean algebra of annihilator ideals $[15,$ Theorem 4.5.4]. The equivalence of (3) to both (1) and (2) follows from Theorem [4.2.](#page-6-1)

Definition 5.6 A separated *K*-module *X* is said to be \mathbb{B} -complete if *K* is \mathbb{B} complete and for every partition of unity $(b_{\varepsilon})_{\varepsilon \in \Xi}$ in B and a family $(x_{\varepsilon})_{\varepsilon \in \Xi}$ in X there exists $x \in X$ such that $j(b_{\xi})x = j(b_{\xi})x_{\xi}$ for all $\xi \in \mathcal{Z}$.

Theorem 5.7 Let \mathcal{X} be a modules over a ring \mathcal{X} within $\mathbb{V}^{(\mathbb{B})}$. Then $X := \mathcal{X}$ is $a \mathbb{B}$ -complete module over the \mathbb{B} -complete ring $K := \mathcal{K}$. Conversely, if X is a \mathbb{B} *complete K-module then there exists* $\mathscr{X} \in \mathbb{V}^{(\mathbb{B})}$ *such that* $\mathbb{I} \mathscr{X}$ *is a* \mathscr{X} *-module* $\mathbb{I} = \mathbb{I}$ *and there is an isomorphism ιx from X onto* $\mathscr{X}\downarrow$ *such that* $\iota_X(ax) = \iota_K(a)\iota_X(x)$ *for all* $a \in K$ *and* $x \in X$ *, where* ι_K *is a ring isomorphism from* K *onto* $\mathcal{K}\downarrow$ *in Theorem [5.4.](#page-9-0)*

Proof The proof runs along the lines of the proof of Theorems 8.3.1 and 8.3.2 in $[16]$.

We are now ready to state and proof the main result of this section.

Theorem 5.8 *Let X and Y be unitary* B*-complete K-modules. If a subring F of K is rationally complete and each annihilator ideal in F is of the form j (b)F for some b* $\in \mathbb{B}$ *then there exists an additive mapping* $f : X \to Y$ *such that* $H_f = F$ *.*

Proof According to Theorem [5.4](#page-9-0) we can assume that $K = \mathcal{K}\downarrow$, where $\mathcal{K} \in \mathbb{V}^{(\mathbb{B})}$ and $[\mathcal{K}]$ is a ring $] = 1$. By Lemma [5.5](#page-9-1) it follows that $F = \mathcal{F} \downarrow$ for some field \mathcal{F} which is a subring of $\mathscr K$ within $\mathbb{V}^{(\mathbb{B})}$. Using Theorem [5.7](#page-10-3) we can find $\mathscr K$ -modules *X* and *Y* within $\mathbb{V}^{(\mathbb{B})}$ such that *X* = \mathcal{X} ↓ and *Y* = \mathcal{Y} ↓. The Transfer Principle (Theorem [2.1\)](#page-2-0) guarantees that Lemma [5.1](#page-8-1) is true within $V^{(\mathbb{B})}$, so that there exists an additive function $\varphi : \mathcal{X} \to \mathcal{Y}$ with $H_{\varphi} = \mathcal{F}$. Put $f := \varphi \downarrow$ and note that $H_f = H_{\varphi} \downarrow$.
It follows that $H_f = F$. It follows that $H_f = F$.

References

- 1. Abramovich, Y.A., Aliprantis, C.D.: An Invitation to Operator Theory. Graduate Stud. in Math., vol. 50. Amer. Math. Soc., Providence (2002)
- 2. Abramovich, Y.A., Kitover, A.K.: Inverses of Disjointness Preserving Operators, vol. 143(679). Mem. Amer. Math. Soc., Providence, (2000), 164 p.
- 3. Aliprantis, C.D., Burkinshaw, O., Positive Operators. Acad. Press, New York (1985), xvi+367 p.
- 4. Bell, J.L., Boolean Valued Models and Independence Proofs in Set Theory. Clarendon Press, New York (1985)
- 5. Chilin, V.I., Karimov, J.A., Laterally complete *^C*∞*(Q)*-modules. Vladikavkaz Math. J. **¹⁶**(2), 69–78 2014
- 6. Coppel, W.A.: Foundations of Convex Geometry. Cambridge Univ. Press, Cambridge (1988)
- 7. Gordon, E.I.: Real numbers in Boolean valued models of set theory and *K*-spaces. Dokl. Akad. Nauk SSSR. **237**(4), 773–775 (1977)
- 8. Gordon, E.I.: Rationally Complete Semiprime Commutative Rings in Boolean Valued Models of Set Theory. Gor'ki˘ı (1983) (VINITI, 3286-83) [in Russian]
- 9. Gordon, E.I.: Strongly Unital Injective modules as Linear Spaces in Boolean Valued Models of Set Theory, Gor'ki˘ı (1984) (VINITI, 770-85) [in Russian]
- 10. Gutman, A.E.: Locally one-dimensional *K*-spaces and *σ*-distributive Boolean algebras. Sib. Adv. Math **5**(2), 99–121 (1995)
- 11. Kusraev, A.G., General formulas of desintegration. Dokl. Akad Nauk SSSR **265**(6), 1312–1316 (1982)
- 12. Kusraev, A.G.: Dominated Operators. Kluwer, Dordrecht (2000), xiii+446 p.
- 13. Kusraev, A.G.: Automorphisms and derivations in extended complex *f* -algebras. Sib. Math. J. **47**(1), 97–107 (2006)
- 14. Kusraev, A.G.: The Boolean transfer principle for injective Banach lattices. Sib. Math. J. **56**(5), 888–900 (2015)
- 15. Kusraev, A.G., Kutateladze, S.S.: Boolean Valued Analysis. Kluwer, Dordrecht (1999), 322 p.
- 16. Kusraev, A.G., Kutateladze, S.S.: Introduction to Boolean Valued Analysis. Nauka, Moscow (2005) (in Russian), 526 p.
- 17. Kusraev, A.G., Kutateladze, S.S.: Boolean Valued Analysis: Selected Topics. South Math. Inst. VNC RAS, Vladikavkaz (2014), 400 p.
- 18. Kusraev, A.G., Kutateladze, S.S.: Two applications of Boolean valued analysis. Sib. Math. J. **60**(5), 902–910 (2019)
- 19. Lambek, J.: Lectures on Rings and Modules. Blaisdel, Toronto (1966)
- 20. Ozawa, M.: A classification of type I *AW*∗-algebras and Boolean valued analysis. J. Math. Soc. Jpn. **36**(4), 589–608 (1984)
- 21. Rätz, J.: On the homogeneity of additive mappings. Aeq. Math. **14**, 67–71 (1976)
- 22. Sikorski, R.: Boolean Algebras. Springer, Berlin (1964)
- 23. Wilansky, A.: Additive functions. In: May, K.O. (ed.) Lectures on Calculus. Holden-Day, San Francisco (1967), pp. 97–124