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Abstract The article deals with a Boolean valued approach to some algebraic
problems arising from functional analysis. The main results are as follows. (1) A
universally complete vector lattice without locally one-dimensional bands contains
an infinite direct sum of order dense sublattices each of which is a band preserving
linear isomorphic (but not lattice isomorphic) copy of the whole lattice. (2) Every
separated injective module over a semiprime rationally complete commutative ring
admits a direct sum decomposition with homogeneous summands. (3) A semiprime
rationally complete commutative ring properly embedded in a ring with projections
K is a homogeneity ring of an additive mapping between appropriateK-modules.

Keywords Boolean valued analysis · Universally complete vector lattice ·
Injective module · Commutative ring · K-module

1 Introduction

The Boolean valued approach is a machinery of studying properties of an arbitrary
mathematical object by means of comparison between its representations in two
different set-theoretic models whose construction utilizes distinct Boolean algebras.
As these models, one usually takes the classical sets in the shape of the von Neumann
universe V and a properly truncated Boolean valued universe V

(B) in which the
conventional set-theoretic concepts and constructions acquire nonstandard interpre-
tations.
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A general scheme of applying the Boolean valued approach is as follows, see [16,
17]. Assume that X ⊂ V and X ⊂ V(B) are two classes of mathematical objects,
external and internal, respectively. Suppose we are able to prove the following

Boolean Valued Representation Result: Every external X ∈ X embeds into a

Boolean valued modelV(B) becoming an internal objectX ∈ X.
Boolean Valued Transfer Principle then tells us that every theorem about X

within Zermelo–Fraenkel set theory with choice ZFC has its counterpart for the
original object X interpreted as a Boolean valued objectX.

Boolean Valued Machinery enables us to perform some translation of theorems
from X ∈ V(B) to X ∈ V making use of appropriate general operations and the
principles of Boolean valued models.

The paper deals with a Boolean-valued approach to some algebraic problems
arising from functional analysis. Section 2 collects some Boolean valued requisites.
The main result of Sect. 3 states that a universally complete vector lattice without
locally one-dimensional bands contains an infinite direct sum of order dense
sublattices each of which is a band preserving linearly isomorphic (but not lattice
isomorphic) copy of the whole lattice. This problem is related to band preserving
linear operators in vector lattices, see Abramovich and Kitover [2], Kusraev and
Kutateladze [17, Chap. 4]. In Sect. 4 it is proved that every separated injective
module over a semiprime rationally complete commutative ring admits a direct sum
decomposition with homogeneous summands. Problems of this kind arise in the
theory of operator algebras, see Chilin and Karimov [5], Ozawa [20]. It is proved in
Sect. 5 that a semiprime rationally complete commutative ring properly embedded
in a ring with projections K is a homogeneity ring of an additive mapping between
appropriate K-modules. This result relates to functional equations, see Wilansky
[23].

The reader can find the necessary information on the theory of vector lattices in
[1, 3]; Boolean valued analysis, in [4, 15, 16]; rings and modules, in [19]. Troughout
the sequel B is a complete Boolean algebra with unit 1 and zero O. A partition of
unity in B is a family (bξ )ξ∈Ξ ⊂ B such that

∨
ξ∈Ξ bξ = 1 and bξ ∧ bη = O

whenever ξ �= η. We let := denote the assignment by definition, while N and R
symbolize the naturals and the reals.

2 Boolean Valued Requisites

Let B be a complete Boolean algebra. Boolean valued universe V(B) is defined by
recursion on α with α running through the class of all ordinals:

V
(B)
α =

{
x : (∃ β ∈ α) x : dom(x) → B, dom(x) ⊂ V

(B)
β

}
,

V
(B) :=

⋃

α∈OnV
(B)
α (On is the class of all ordinals).
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For making statements about V(B) take a formula ϕ = ϕ(u1, . . . , un) of the lan-
guage of Zermelo–Fraenkel set theory with choice (≡ ZFC) and replace the
variables u1, . . . , un by elements x1, . . . , xn ∈ V

(B). There is a natural way of
assigning to each such statement an element [[ϕ(x1, . . . , xn)]] ∈ B which acts as
the ‘Boolean truth-value’ of ϕ(x1, . . . , xn) in the universe V

(B). We say that the
statement ϕ(x1, . . . , xn) is valid within V

(B) if [[ϕ(x1, . . . , xn)]] = 1.

Theorem 2.1 (Transfer Principle) All theorems of Zermelo–Fraenkel set theory
with choice are true within V

(B). More precisely, if ϕ(u1, . . . , un) is a theorem of
ZFC then

(∀x1, . . . , xn ∈ V
(B)) [[ϕ(x1, . . . , xn)]] = 1

is also a theorem of ZFC.

Given an arbitrary X ∈ V
(B), we define the descent X↓ as the set X↓ := {x ∈

V
(B) : [[x ∈ X]] = 1}. Assume that X,Y, f, P ∈ V

(B) are such that [[f : X →
Y ]] = 1 and [[P ⊂ X2]] = 1, i. e., f is a mapping from X to Y and P is a binary
relation on X within V(B). Then f ↓ is a unique mapping from X↓ to Y↓ for which
[[f↓(x) = f (x)]] = 1 (x ∈ X↓) and P↓ is a unique binary relation on X↓ with
(x1, x2) ∈ P↓ ⇐⇒ [[(x1, x2) ∈ P ]] = 1. The ascent is a transformation acting in
the reverse direction. i.e., sending any subset X ⊂ V

(B) into an element of V(B).
Along with these transformation there is the canonical embedding X → X∧ of the
class of standard sets (≡ von Neumann universe) V into a Boolean valued universe
V

(B) see [4, 15].
Let R stands for the field of reals within V

(B) i. e., R := (R,⊕,�, 0, 1,�)

and [[ϕ(R)]] = 1, where ϕ(R) is the conjunction of axioms of the reals. Consider
the descent R := R↓ of the algebraic structure R within V

(B). In other words,
R := (R↓,⊕↓,�↓,� ↓, 0, 1) is considered as the descent R↓ of the underlying
set R together with the descended operations ⊕↓ and �↓ and order relation � ↓ of
the structureR. The following fundamental result due to Gordon [7] tells us that the
interpretation of reals (complexes) in a Boolean valued model V(B) is a universally
complete real (complex) vector lattice with the Boolean algebra of band projections
isomorphic to B.

Theorem 2.2 (Gordon) The algebraic structure R↓ with the descended opera-
tions and order relation is a universally complete real vector lattice and a semiprime
f -algebra with a ring and order unit 1 := 1∧. Moreover, R∧ is a dense subfield of
R within V

(B).

Proof A detailed proof can be found in [17, Sections 2.2, 2.3]. ��
Gordon’s theorem 2.2 raises the question of when R

∧ and R coincide within
V

(B). The answer was obtained by Gutman [10] in terms of the σ -distributivity of
the Boolean algebra B. A σ -complete Boolean algebra B is said to be σ -distributive
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if, for any double sequence (bn
m)n,m∈N in B, the equality holds (cf. [22, 19.1]).

∧

n∈N

∨

m∈N
bn
m =

∨

m∈NN

∧

n∈N
bn
m(n)

Theorem 2.3 (Gutman) Let B be a complete Boolean algebra and R the field of
reals within V

(B). The following assertions are equivalent:

(1) B is σ -distributive.
(2) V

(B) |�R = R
∧.

(3) R↓ is locally one-dimensional.

We also need the following result on the structure of cardinals within a Boolean-
valued universe. Let Card(x) symbolize that x is a cardinal.

Theorem 2.4 Each Boolean valued cardinal is a mixture of some set of relatively
standard cardinals. More precisely, Given x ∈ V

(B), we have V(B) |� Card(x) if and
only if there are nonempty set of cardinals 	 and a partition of unity (bγ )γ∈	 ⊂ B

such that x = mixγ∈	bγ γ ∧ and V
(Bγ ) |� Card(γ ∧) with Bγ := [0, bγ ] for all

γ ∈ 	.

Proof See Bell [4, Problem 1.45 and Theorem 1.50], Kusraev and Kutataeladze and
[17, Subsections 1.9.7 and 1.9.11]. ��

3 Band Preserving Linear Isomorphisms

Abramovich and Kitover in [2, p. 1, ProblemB] raised the question as to whether the
vector lattices X and Y are lattice isomorphic whenever X and Y are d-isomorphic,
that is, there exists a linear disjointness preserving operator T : X → Y such that
T −1 is also disjointness preserving? A negative answer was given in the same work,
see [2, Theorem 13.4]. The problem has a negative solution even in the class of band
preserving operators, see [17, Theorem 4.6.7]. Moreover, if X is a real universally
complete vector lattice without locally one-dimensional bands then X = X1 ⊕ X2
for some component-wise closed and laterally complete vector sublattices X1 ⊂ X

and X2 ⊂ X both d-isomorphic to X but neither X1 nor X2 is Dedekind complete
and hence lattice isomorphic to X, see [18]. The aim of this section is to show that
the latter result can be improved to infinite direct sum decomposition.

Definition 3.1 A vector lattice X is said to be locally one-dimensional if for every
two nondisjoint x1, x2 ∈ X there exist nonzero components u1 and u2 of x1 and
x2 respectively such that u1 and u2 are proportional. Let γ be a cardinal. A vector
lattice X is said to be Hamel γ -homogeneous whenever there exists a local Hamel
basis of cardinality γ in X consisting of strongly distinct weak order units. Two
elements x, y ∈ X are said to be strongly distinct if |x − y| is a weak order unit
in X.
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Lemma 3.2 Let X be a universally complete vector lattice. There is a band X0
in X such that X⊥

0 is locally one-dimensional and there exists a partition of unity
(πγ )γ∈	 in P(X0) with 	 a set of infinite cardinals such that πγ X0 is strictly Hamel
γ -homogeneous for all γ ∈ 	.

Proof The proof can be found in [17, Theorem 4.6.9]. ��
Lemma 3.3 The field of reals R has no proper subfield of which it is a finite
extension.

Proof See, for example, Coppel [6, Lemma 17]. ��
Lemma 3.4 Let R be the field of reals within V

(B), X := R↓, and b ∈ B. Denote
by dim(R) the internal cardinal with [[dim(R) is the algebraic dimension of the
vector space R over R

∧]] = 1. Then bX is strictly Hamel γ -homogeneous if and
only if b ≤ [[dim(R) = γ ∧]].
Proof This can be proved as in [12, Theorem 8.3.11]. ��
Lemma 3.5 Let P be a proper subfield of R. There exists an infinite cardinal �

and a family (Xα)α≤� of P-linear subspace in R such that R = ⊕
α≤� Xα and,

for every α ≤ �, the P-vector spaces Xα and R are isomorphic, whilst they are not
isomorphic as ordered vector spaces over P.

Proof It follows from Lemma 3.3 that R is an infinite dimensional vector space
over the field P. Let E be a Hamel basis of a P-vector space R. Since � := |E| is an
infinite cardinal, we have the representation � = ∑

α∈A �α, where �α = � for all
α ∈ A and |A| ≤ �. It follows that there is a family of subsets Eα ⊂ E such that
E = ⋃

α≤� Eα , |Eα| = |E| for all α ≤ �, and Eα ∩ Eβ = ∅ whenever α �= β. If
Xα denotes the P-subspace of R generated by Eα, thenXα � R andXα and R are
isomorphic as vector spaces over P. IfXα andR were isomorphic as ordered vector
spaces over P, then X would be order complete and, as a consequence, we would
haveXα = R; a contradiction. ��
Definition 3.6 Let X be a vector latice and u ∈ X. An element v ∈ X is called a
component of v if |v| ∧ |u − v| = 0. The set of all components of u is denoted by
C(u). A subset X0 is said to be component-wise closed if for every u ∈ X0 the set
C(u) is contained in X0. A sublattice X0 ⊂ X is said to be laterally complete if
every disjoint family in X0 has a supremum.

Lemma 3.7 Let R — be the field of reals within V
(B) and let us consider a

universally complete vector lattice X := R↓. For the sublattice X0 ⊂ X the
following conditions:

(1) X0 is laterally complete, component-wise closed, and X⊥⊥
0 = X.

(2) X0 = X0↓ for some nonzero vector sublattice X0 of the field R considered as
vector lattice over the subfield R

∧.

Proof It directly follows from [17, Theorem 2.5.1]. ��
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Denote by [A]σ the set of all elements x ∈ X representable in the form
x = ∑∞

n=1 πkak, where (ak) is an arbitrary sequence in A and (πk) is a countable
partition of unity in P(X).

Theorem 3.8 Assume that a real universally complete vector lattice X is strictly
Hamel �-homogeneous for some infinite cardinal �. Then there exists a family
(Xα)α≤� of component-wise closed and laterally complete vector sublattices Xα ⊂
X satisfying the conditions:

(1) X = [⊕
α≤� Xα

]
σ

and X = X⊥⊥
α for all α ≤ �.

(2) The canonical projection πα : X → Xα are all band preserving.
(3) Xα is d-isomorphic to X for all α ≤ �.
(4) Xα is not Dedekind complete and hence not lattice isomorphic to X for all

α ≤ �.

Proof We can assume without loss of generality that X = R↓. Since there is no
loally one-dimensional band in X, we have [[R �= R

∧]] = 1 by Gutman’s theorem
2.2. Working within V

(B), we can apply Lemma 3.5 by Transfer Principle and find
an infinite cardinal � and a family (Xα)α≤� of R∧-linear subspaces of R such that
R = ⊕

α≤� Xα and, for every α ≤ �, there is anR∧-isomorphism τα fromXα onto
R, while Xα and R are not isomorphic as ordered vector spaces over R∧. Let pα :
R → Xα stand for the projection corresponding to the direct sum decomposition
R = ⊕

α≤� Xα . To externalize, put Xα := Xα↓, Tα := τα↓, Sα := τ−1
α ↓, and

Pα := pα↓. The maps Sα : X → Xα , Tα : Xα → X, and Pα : X → Xα are band
preserving and R-linear by [17, Theorem 4.3.4]. Moreover, Sα and Tα are injective
and Sα = (τα↓)−1 = T −1

α , see [17, 1.5.3(2)]. Since Xα is linearly isomorphic to
R, [[Xα �= {0}]] = 1 and hence X⊥⊥

α = X. It follows from Lemma 3.6 that Xα is
laterally complete and component-wise closed. It remains to observe that a) Xα and
X are lattice isomorphic if and only if X and R are isomorphic as ordered vector
spaces over R∧; b) Pα is order bounded if and only if so is pα within V(B). ��
Corollary 3.9 For every universally complete vector lattice X without locally one-
dimensional bands there exist an infinite cardinal � and a family (Xα)α≤� of
component-wise closed and laterally complete vector sublattices Xα ⊂ X such that
Xα is d-isomorphic but not lattice isomorphic to X for all α ≤ � and Xα∩Xβ = {0}
for α �= β.

Proof This is immediate from Lemma 3.2 and Theorem 3.8. ��
Remark 3.10 As can be seen from the proof of Theorem 3.8, the key role in
this section is played by the Boolean valued interpretation of the Hamel basis. In
some problems, a similar role belongs to the Boolean valued interpretation of a
transcendence basis, see [13].
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4 Classification of Injective Modules

Recently, Chilin and Karimov [5] obtained a classification result for laterally
complete modules over universally complete f -algebras. They introduced the
concept of the passport and proved that two such modules are isomorphic if and
only if their passport coincide. In this section we will show that these results remain
valid for a broader class of separated injective modules over semiprime rationally
complete commutative rings.

In what follows, K stands for a commutative semiprime ring with unit and
X denotes a unitary K-module. The Boolean valued approach to the above
classification problem is based on the following two results (Theorems 4.2 and 4.4)
due to Gordon [8, 9].

Definition 4.1 An annihilator ideal of K is a subset of the form S⊥ := {k ∈ K :
(∀ s ∈ S) ks = 0} with a nonempty subset S ⊂ K . A subset S of K is called dense
provided that S⊥ = {0}; i. e., the equality k ·S := {k ·s : s ∈ S} = {0} implies k = 0
for all k ∈ K . A ring K is said to be rationally complete whenever, to each dense
ideal J ⊂ K and each group homomorphism h : J → K such that h(kx) = kh(x)

for all k ∈ K and x ∈ J , there is an element r in K with h(x) = rx for all x ∈ J .

Observe thatK is rationally complete if and only if the complete ring of quotients
Q(K) is isomorphic to K canonically, see Lambek [19, § 2.3].

Theorem 4.2 If K is a field within V
(B) then K↓ is a rationally complete

semiprime ring, and there is an isomorphism χ of B onto the Boolean algebra
A(K↓) of the annihilator ideals of K↓ such that

b ≤ [[x = 0]] ⇐⇒ x ∈ χ(b∗) (x ∈ K, b ∈ B).

Conversely, if K is a rationally complete semiprime ring and B stands for the
Boolean algebra A(K) of all annihilator ideals of K , then there is an internal field
K ∈ V

(B) such that the ring K is isomorphic to K↓.

Proof See [16, Theorem 8.3.1] and [16, Theorem 8.3.2]. ��
Definition 4.3 AK-moduleX is separated provided that for every dense ideal J ⊂
K the identity xJ = {0} implies x = 0. Recall that a K-module X is injective
whenever, given a K-module Y , a K-submodule Y0 ⊂ Y , and a K-homomorphism
h0 : Y0 → X, there exists a K-homomorphism h : Y → X extending h0.

The Baer criterion says that a K-module X is injective if and only if for each
ideal J ⊂ K and each K-homomorphism h : J → X there exists x ∈ X with
h(a) = xa for all a ∈ J ; see Lambek [19]. All modules under consideration are
assumed to be faithful, that is, Xk �= {0} for any 0 �= k ∈ K , or equivalently, the
canonical representation of K by endomorphisms of the additive group X is one-to-
one.
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Theorem 4.4 Let X be a vector space over a field K within V
(B), and let χ : B →

B(K↓) be a Boolean isomorphism in Theorem 4.2. Then X↓ is a separated unital
injective module over K↓ such that b ≤ [[x = 0]] and χ(b)x = 0 are equivalent
for all x ∈ X↓ and b ∈ B. Conversely, if K = K↓ and X is a unital separated
injective K-module then there exists an internal vector space X ∈ V

(B) over K
such that the K-module X is isomorphic to X↓. Moreover if j : K → K↓ is an
isomorphism in Theorem 4.2, then one can choose an isomorphism ı : X → X↓
such that ı(ax) = j (a)ı(x) (a ∈ K, x ∈ X).

Proof See [16, Theorems 8.3.12 ] and [16, and 8.3.13]. ��
Thus, Theorem 4.4 enables us to apply Boolean valued approach to unital sepa-

rated injective modules over semiprime rationally complete commutative rings.

Definition 4.5 A family E in a K-module X is called K-linearly independent or
symply linearly independent whenever, for all n ∈ N, α1, . . . , αn ∈ K , and
e1, . . . , en ∈ E, the equality

∑n
k=1 αkek = 0 implies α1 = . . . = αn = 0. An

inclusion maximal K-linearly independent subset of X is called a Hamel K-basis
for X.

Every unital separated injectiveK-moduleX has a HamelK-basis. A K-linearly
independent set E in X is a Hamel K-basis if and only if for every x ∈ X there exist
a partition of unity (πk)k∈N in P(K) and a family (λk,e)k∈N,e∈E in K such that

πkx =
∑

e∈E λk,eπke (k ∈ N)

and for every k ∈ N the set {e ∈ E : λk,e �= 0} is finite.
Definition 4.6 Let γ be a cardinal. A K-module X is said to be Hamel γ -
homogeneous whenever there exists a Hamel K-basis of cardinality γ in X. For
π ∈ P(X) denote by �(π) the least cardinal γ for which πX is Hamel γ -
homogeneous. Say that X is strictly Hamel γ -homogeneous whenever X is Hamel
γ -homogeneous and �(π) = γ for all nonzero π ∈ P(X).

Theorem 4.7 Let K be a semiprime rationally complete commutative ring and let
X be a separated injective module over K . There exists a partition of unity (eγ )γ∈	

in P(K) with 	 a set of cardinals such that eγ X is strictly Hamel γ -homogeneous
for all γ ∈ 	. Moreover, X is isomorphic to

∏
γ∈	 eγ X and the partition of unity

(eγ )γ∈	 is unique up to permutation.

Proof According to Theorems 4.2 and 4.4 we may assume that K = K↓ and X =
X↓, whereX is a vector space over the field K within V

(B). Moreover, dim(X) ∈
V

(B), the algebraic dimension ofX, is an internal cardinal and, since each Boolean
valued cardinal is a mixture of some set of relatively standard cardinals [17, 1.9.11],
we have dim(X) = mixγ∈	bγ γ ∧ where 	 is a set of cardinals and (bγ )γ∈	 is a
partition of unity. Thus, for all γ ∈ 	 we have eγ ≤ [[dim(X) = γ ∧]], whence eγ X

is strictly Hamel γ -homogeneous. The remaining details are elementary. ��
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Definition 4.8 The partition of unity (eγ )γ∈	 in P(K) in Theorem 4.7 is called the
passport of K-module X is denoted by 	(X).

Theorem 4.9 Faithful separated injective K-modules X and Y are isomorphic if
and only if 	(X) = 	(Y ).

Remark 4.10

(1) In the particular case that K is a universally complete f -algebra, we get
the classification obtained by Chilin and Karimov [5, Theorems 4.2 and 4.3]
without using the Boolean valued approach. In this event X is a vector spaces
over the field of reals K = R or complexes K = C within V

(B). Another
particular case of Theorem 4.7 when X is a vector subspace of R (considered
as a vector space over R∧) was examined by Kusraev and Kutateladze [17,
Chap. 4].

(2) The family (eγ )γ∈	 in Theorem 16 is called a decomposition series if eγ X is
(not necessarily strict) Hamel γ -homogeneous for all γ ∈ 	. It can be also
proved that separated injective modules over K = L0(B) are isomorphic if and
only if their decomposition series are congruent in the sense of Ozawa [20].

(3) An injective Banach lattice possesses a module structure over some ring
of continuous function C(Q) with Q an extremally disconnected Hausdorff
topological space [17, Sections 5.10]. This enables one to apply the Boolean
valued approach to the classification problem of injective Banach lattices;
details can be found in Kusraev [14]. The key role here is played by the concept
of the Maharam operator, see [11].

5 Homogeneity Rings of Additive Operators

In this section, a ring K is supposed to have an identity element which is distinct
from zero. This implies that K is not the zero ring {0}. Accordingly, a subring F

of K is required to contain the identity element of K . Let X and Y be two unitary
K-modules. Then, for any additive mapping f : X → Y , the subset of K defined as

Hf := {k ∈ K : f (kx) = kf (x) for all x ∈ X}

is a subring of K , the homogeneity ring of f , see Rätz [21, Lemma 1]. The problem
is to examine what subrings of K have the form Hf for some additive operator f

from X to Y ? It is proved by Rätz [21, Theorem 3] that, for X �= {0}, Y �= {0} and
any subring S of K for which X is a free S-module, there exists an additive mapping
f : X → Y such that Hf = S. The assumption that X is a free S-module seems
to be pretty restrictive. However, in a special case of vector spaces over fields this
condition is fulfilled so that we have the following.

Lemma 5.1 Let X and Y be nonzero unitary K-modules and {y} is linearly
independent for some y ∈ Y . If a subring S of K is a field then there exists an
additive mapping f : X → Y such that Hf = S.
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Consider an f -algebra A. Given an additive operator S : A → A, define the
homogeneity set HS ⊂ A of S as HS := {a ∈ A : S(ax) = aSx forall x ∈ A}.
Then HS is evidently a subring of A and our problem is to examine what subrings
of A have the form HS for some additive operator S in A?

Definition 5.2 A projection of a ring K is an endomorphism π of K with π ◦ π =
π . Say that B is a Boolean algebra of projections in K if B consists of mutually
commuting projections in K under the operations

π1 ∨ π2 := π1 + π2 − π1 ◦ π2, π1 ∧ π2 := π1 ◦ π2,

π∗ := IK − π (π1, π2, π ∈ B)

and in which the zero and the identity operators in K serve as the top and bottom
elements of B. Given x ∈ K , the carrier of x is defined as the projection [x] :=∧{π ∈ B : πx = x}.
Definition 5.3 BAP-ring is a pair (K,B) where K is a ring with the distinguished
complete Boolean algebra of projections B, see [15]. Say that K is a B-complete
ring if B is a complete Boolean algebra isomorphic toB, (K,B) is a BAP-ring, and
for every partition of unity (πξ )ξ∈Ξ inB the following two conditions hold:

(1) If x ∈ K and πξx = 0 for all ξ ∈ Ξ then x = 0.
(2) If (xξ )ξ∈Ξ is a family in K then there exists x ∈ K such that πξx = πξxξ for

all ξ ∈ Ξ .

Theorem 5.4 Let K be a ring within V
(B) and K := K↓. Then K is a B-complete

ring and there exists an isomorphism j from B onto a Boolean algebra of projections
B in K such that

b ≤ [[x = 0]] ⇐⇒ j (b)x = 0 (x ∈ K, b ∈ B).

Conversely, if K is a B-complete ring then there exists K ∈ V
(B) such that [[K is a

ring ]] = 1 and the descent K↓ is B-isomorphic to K .

Proof The first part is proved in [15, Theorem 4.2.8], while the second part can be
deduced from [15, Theorem 4.3.3]. The reader is referred to [16, Theorems 8.1.4
and 5.1.7] for complete proofs and many pertinent results. ��
Lemma 5.5 Let K be a ring within V

(B) and K := K↓. For a semiprime
commutative subring F ⊂ K the following are equivalent:

(1) F is rationally complete and each annihilator ideal in F is of the form j (b)F

for some b ∈ B.
(2) F is regular, B-complete, and xy = 0 implies [x] ◦ [y] = 0 for all x, y ∈ F .
(3) F = F↓ for some field F which is a subring of K within V

(B).
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Proof Clearly, [x] ◦ [y] = 0 implies xy = 0 for all x, y ∈ K . It follows that j (b)F

is an annihilator ideal. Observe that if each annihilator ideal in F is of the form
j (b)F for some b ∈ B or xy = 0 implies [x] ◦ [y] = 0 for all x, y ∈ F , then B

is isomorphic to the Boolean algebra of all annihilator ideals; the isomorphism is
given by assigning b → j (b)F (b ∈ B). Now, to ensure that the conditions (1) and
(2) are equivalent it remains to observe that a semiprime ring is rationally complete
if and if it is regular and B-complete with B the Boolean algebra of annihilator
ideals [15, Theorem 4.5.4]. The equivalence of (3) to both (1) and (2) follows from
Theorem 4.2. ��
Definition 5.6 A separated K-module X is said to be B-complete if K is B-
complete and for every partition of unity (bξ )ξ∈Ξ in B and a family(xξ)ξ∈Ξ in X

there exists x ∈ X such that j (bξ )x = j (bξ )xξ for all ξ ∈ Ξ .

Theorem 5.7 Let X be a modules over a ring K within V
(B). Then X := X↓ is

a B-complete module over the B-complete ring K := K↓. Conversely, if X is a B-
complete K-module then there exists X ∈ V

(B) such that [[X is a K-module ]] = 1
and there is an isomorphism ιX from X onto X↓ such that ιX(ax) = ιK(a)ιX(x)

for all a ∈ K and x ∈ X, where ιK is a ring isomorphism from K onto K↓ in
Theorem 5.4.

Proof The proof runs along the lines of the proof of Theorems 8.3.1 and 8.3.2 in
[16]. ��

We are now ready to state and proof the main result of this section.

Theorem 5.8 Let X and Y be unitary B-complete K-modules. If a subring F of K

is rationally complete and each annihilator ideal in F is of the form j (b)F for some
b ∈ B then there exists an additive mapping f : X → Y such that Hf = F .

Proof According to Theorem 5.4 we can assume that K = K↓, where K ∈ V
(B)

and [[K is a ring ]] = 1. By Lemma 5.5 it follows that F = F↓ for some field F
which is a subring of K within V

(B). Using Theorem 5.7 we can find K-modules
X and Y within V

(B) such that X = X↓ and Y = Y↓. The Transfer Principle
(Theorem 2.1) guarantees that Lemma 5.1 is true within V(B), so that there exists an
additive function ϕ : X → Y with Hϕ = F. Put f := ϕ↓ and note that Hf = Hϕ↓.
It follows that Hf = F . ��
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