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Preface

This is the first volume of the two-volume series entitled

Operator Theory and Harmonic Analysis.
Vol. 1:  New General Trends and Advances of the Theory

and
Vol. 2:  Probability-Analytical Models, Methods, and Applications

Volume 1 is devoted to harmonic analysis and its applications in general, while
Volume 2 is focused on probabilistic and mathematical (statistical) methods in
applied sciences, but still in the context of general harmonic analysis and its
numerous applications.

The volumes’ readership is the pool of researchers interested in various aspects
of harmonic analysis and operator theory: real and complex variable methods,
applications to PDE’s, mathematical modeling based on applied harmonic analysis
and probability-analytical methods, and exploration of new themes and trends.

The contributions to both volumes are based on the matter supposed to be
presented at the Annual International Scientific Conference on Modern Methods
and Problems of Operator Theory and Harmonic Analysis and Their Applications
(OTHA-2020, http://otha.sfedu.ru/), canceled due to Covid19 restrictions.

The Editors are very grateful to all the authors for their valuable contributions and
for a strong willingness to support mathematical activities and communications in
the hope of the soonest resumption of regular conferences and safe mutual visits.
The Editors express an immense sorrow on the occasion of the recent loss of
remarkable scientists and brilliant persons, Hrachik Hayrapetyan (Armenia), who
is one of the authors of the first volume, Vladimir Pilidi (Russia), who was an
active member of Program Committees of OTHA conferences, and Vladimir Nogin
(Russia), who was a colleague and a teacher of quite a few participants of OTHA.


http://otha.sfedu.ru/

vi Preface

The first volume contains words in memoriam of our dear friends Hrachik
Hayrapetyan, Vladimir Pilidi, and Vladimir Nogin.

Rostov-on-Don, Russia A. Karapetyants
Santiago de Queretaro, Mexico V. Kravchenko
Ramat-Gan, Israel E. Liflyand

Aveiro, Portugal H. Malonek



In Memory of Prof. Hrachik M.
Hayrapetyan (25.10.1946—06.11.2020)

On November 6, 2020, the world mathematical community lost a brilliant mathe-
matician and a wonderful personality Hrachik Hayrapetyan.

Professor Hayrapetyan was born in 1946 in Dilijan (Armenia). His mathematical
talents were noticed since his adolescence. His mathematical inclinations were
influenced by contacts with his first teacher A. Sahakyan. In 1964, he started
his studies at the Faculty of Mathematics and Mechanics of the Yerevan State
University from which he graduated in 1969. After two years of service in the
Soviet Army, he entered the Institute of Mathematics of the National Academy of
Sciences of Armenia as a junior scientific researcher. Since then, his collaboration
with the academician Mkhitar Jrbashyan started, who proposed to him the study of
free interpolation and basis properties of rational fractions. Hrachik Hayrapetyan
succeeded in discovering a series of essential results in this research field. In
particular, he proved that if the multiplicities in the interpolation problem are not
bounded, then this problem may have no solution and the rational fractions may
fail to be a basis in the closure of their linear span. In 1975, he completed his PhD
thesis. In 1979, he entered the National Polytechnic University of Armenia as an
associate professor of the Chair of Applied Mathematics. At that time, the scientific
group of Prof. N.E. Tovmasyan was developing the theory of boundary value
problems for partial differential equations. H.M. Hayrapetyan was actively involved
in this research. As a specialist in the theory of complex variable functions, he
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was interested in theoretical-functional approach to these problems. He succeeded
in obtaining a series of important results. Particularly, it is worth mentioning the
new formulation of the classical Riemann boundary value problem, which allowed
to solve this problem first in the classes of integrable functions and afterwards in
the class of essentially bounded functions. Later, applying proposed method, Prof.
Hayrapetyan with his students investigated boundary value problems in various
functional spaces. The obtained results not only extended the theory of boundary
value problems but also permitted to develop the theory of elliptic partial differential
equations. Hrachik Hayrapetyan defended his Doctor of Science thesis “Riemann—
Hilbert boundary value problem in the sense of mean convergence and applications
in the theory of elliptic partial differential equations” in the M.V. Lomonosov
Moscow State University. Specialists evaluated his results as a great success in
the theory of boundary value problems. Developing his theory during the last
decade, he studied boundary value problems in weighted classes of functions. He
succeeded to describe the classes of functions, where the Dirichlet and Riemann—
Hilbert boundary value problems in the classes of polyanalytic and polyharmonic
functions are normally solvable in both bounded and unbounded domains. These
results are highly evaluated by specialists in Armenia as well as abroad.

Hrachik Hayrapetyan was one of the members of the first elected Council of the
Armenian Mathematical Union created in 1991 following Armenia’s independence
from the Soviet Union.

Prof. Hayrapetyan was an active organizer. He served two terms as the President
of Mathematical Association of Armenia and he was the Head of specialized
mathematical education chair in National Polytechnic University of Armenia and
the Head of Mathematical Analysis and Function Theory chair in the Yerevan State
University. His devotion to the science and excellent empathy skills helped him to
interest young students in mathematical research. He was a scientific advisor of 15
PhD theses; his students continue the work on ideas of their teacher and mentor,
Hrachik Hayrapetyan, in various universities and research institutions of Armenia.

The fond memory of our friend will forever rest in our hearts.

Doctor of Science, Professor Armenak H. Babayan

Doctor of Science, Professor Vanya A. Mirzoyan

Doctor of Science, Professor Levon Z. Gevorgyan

Chair of Specialized Mathematical Education of National Polytechnic University of
Armenia



In Memory of Prof. Vladimir Pilidi
(07.11.1946-19.01.2021)

Vladimir Pilidi became a student at the Rostov State University (now Southern
Federal University) in 1964. All his scientific career from a talented student
(diploma with honors) to distinguished Chair was related to this university during
57 years.

In 1972, under the guidance of Professor I.B. Simonenko, he defended his Ph.D.
thesis “Local method for the study of linear operator equations of the type of
bisingular integral equations,” and in 1990 at the Dissertation Council of the Tbilisi
Institute of Mathematics named after I. A. Razmadze of the Georgian Academy of
Sciences, he defended doctoral dissertation (second degree) “Bisingular operators
and classes of operators close to them”, which became a significant scientific
achievement that enriched the general theory of operators of local type. Seven
students of Vladimir Pilidi became candidates of science (PhD’s).
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Professor Pilidi was a highly qualified expert in the field of mathematics
and its applications, reviewer of scientific articles, member and chairman of the
Dissertation Council, scientific consultant of several research institutions, chairman
of the State Examination Commissions of universities. After he became the head
of the Chair of Informatics and Computational Experiment in 2000, Vladimir Pilidi
expanded his area of scientific interests towards the application of mathematical
methods in cryptography, the theory of pattern recognition, and graphic information
processing.

Professor Pilidi is known as the author of the bilocal method, an analogue of the
classical local method of Simonenko, and in his research he successfully applied it
to the study of bisingular and related operators, as well as algebras of such operators.
Thanks to these achievements, the name of Vladimir Pilidi will forever remain
among the names of outstanding researchers in analysis and operator theory.

Professor Pilidi actively participated in the scientific life of the Mathematics
Department, in the organization of scientific seminars, conferences, and schools. He
was one of the main organizers of the OTHA conference series, a regular participant,
and a member of the Program Committee of these conferences. Professor Pilidi and
his students made a valuable contribution to the development of this series of con-
ferences and to the development of publication activity following the conferences.

Vladimir Pilidi is known as a brilliant lecturer of various courses in mathematics
and computer science. He had remarkable achievements as a teacher in the lecture
course in algebra and geometry for students of applied and mechanical engineering,
which he taught for about 20 years. His textbook “Linear Algebra” (Vuzovskaya
Kniga, Moscow, 2005), co-authored with A.V. Kozak, is standard for other authors.
Other textbooks by Professor Pilidi are: “Mathematical Analysis” (Phoenix, 2009),
“Mathematical Foundations of Information Security” (Southern Federal University,
2019), and Analytic Geometry (Southern Federal University, 2020). Vladimir Pilidi
developed a deep modern course on mathematical methods of cryptography, which
he taught to students of the Department of Fundamental Informatics and Information
Technology and students of the Department of Applied Mathematics, specialized in
the field of mathematical methods of information security.

His distinguished features were not only erudition and professionalism but also
modesty, discreetness, and goodwill in relations with colleagues and students.
Vladimir Pilidi was a wonderful head of his mathematical family. His wife,
daughter, and son-in-law devoted themselves to mathematics, and his grandchildren
are preparing to become mathematicians as well.

The bright memory of Vladimir Pilidi—of a mathematician, a teacher, and a
brilliant person, will remain in our hearts.

I. M. Erusalimskiy
A. N. Karapetyants
V. S. Rabinovich
S. G. Samko



In Memory of Vladimir Nogin
(20.12.1955-31.05.2021)

Dr. Nogin Vladimir Alexandrovich was born on December 20, 1955. Vladimir
Nogin graduated from the Faculty of Mechanics and Mathematics of the Rostov
State University (now it is Southern Federal University) in 1979, defended his Ph.D.
thesis in 1982 and worked 35 years as an assistant professor, senior teacher and then
associate professor of the Department (Chair) of Differential and Integral Equations
at the same University. During his work at the university, V.A. Nogin taught
courses in mathematical analysis, higher mathematics, and mathematical physics.
He also developed and taught more than five special courses for undergraduate and
postgraduate math students, which included contemporary results in the field of
functional analysis and mathematical physics.

Dr. Nogin’s scientific interests were in the classical area of analysis related to the
study of operators of mathematical physics, the construction and study of fractional
powers of these operators, their inversion, and the description of the image of such
operators in the framework of Lebesgue spaces. At the same time, he dealt with
questions of functional analysis—the description of function spaces that arise in
analysis in the context of the above-mentioned theory of operators. He and his
students obtained profound results in this theory; he successfully developed the
so-called method of approximate inverse operators. He has published about 70
scientific papers and a significant number of textbooks.
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Vladimir Alexandrovich always found enough time for his students, and sci-
entific work was his main passion in life. 8§ PhD theses defended under his
supervisorship. One of his students, Mikhail Gurov, became the teacher of the year
in the Russian Federation in 2020.

Vladimir Alexandrovich was distinguished by his modesty and delicacy in
relation to colleagues. The bright memory of Dr. V.A. Nogin will always be in the
hearts of his colleagues and students.

On behalf of the colleagues and students,

O. G. Avsyankin, A. P. Chegolin, M. N. Gurov, A. N. Karapetyants, D. N.
Karasev, B. G. Vakulov
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Weighted Hadamard-Bergman )
Convolution Operators e

Smbat A. Aghekyan and Alexey N. Karapetyants

Abstract Following the ideas of the recent paper by Karapetiants and Samko
(Hadamard—Bergman convolution operators. Complex analysis operator theory)
we extend the introduced in the mentioned paper notion of Hadamard—Bergman
convolution operators to a weighted settings. We treat operators of fractional
integration and differentiation as important examples of operators in the above
mentioned class, and study mapping properties of certain generalized potentials in
generalized Holder spaces.

Keywords Hadamard-Bergman convolutions - Holomorphic fractional integrals
and derivatives - Holder space

1 Introduction

In the recent paper by A. Karapetyants and S. Samko [16] there was introduced
the notion of Hadamard—Bergman convolution. Here we extend the results of the
mentioned paper to the weighted case, i.e., we study convolutions

g x (@) = [D ) f(zw)dA; (w), zeD,

where dA; (z) = (A + 1)(1 — |z|»)*dA(z), and dA(z) = ;dxdy, z=x+iy eD.
Here either f and g are bothin H(D), or g € L}\ (D) and f € H(D), see Sect. 3 for
definitions.

S. A. Aghekyan - A. N. Karapetyants (><])
Institute of Mathematics, Mechanic and Computer Sciences & Regional Mathematical Center,
Southern Federal University, Rostov-on-Don, Russia
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Introducing the weight parameter is not just a technical issue; it seems more natu-
ral to consider such weighted convolutions and corresponding weighted Hadamard—
Bergman operators in view of the important examples such as the weighted
operators of fractional integration and differentiation (see [26] and also Sect.5),
which are particular cases of the Hadamard—Bergman convolution operators.

Certainly the proofs for the weighted case in most occasions are similar to the
unweighted situation, however the corresponding formulas and conclusions can
provide some tricky issues in view of the weight parameter. Therefore we prefer
to provide a reader with a proof or at least with a sketch of the proof.

The idea can be developed further in the direction of Bergman type operators
which appear in the study of generalized holomorphic functions related to Vekua
and some other equations. Such study attracts now attention of many authors, see
e.g. [5, 6, 14] and references therein. We plan such investigation in another work.

The paper is organized as follows. Section 2 collects necessary preliminaries.
In Sect. 3 we give definitions and discuss some properties of weighted Hadamard—
Bergman convolutions, and in Sect. 4 we proceed with the corresponding operators.
The important examples, the operators of weighted fractional integrodifferentiation,
are discussed in Sect. 5. Some mapping properties in weighted Lebesgue spaces are
discussed in Sects. 6, and 7 presents mappings by weighted fractional operators in
generalized Holder spaces. This section serves as an example of application of our
results.

2 Preliminaries

Let dA(z) = }ded y be the normalized Lebesgue measure on the unit disc . Let
—1 <& < 400,dA;(z) = (A + (1 — [z/)*dA(z). We equip weighted Lebesgue
spaces LY (D) = LP (D, dA;) with the norm

1
1l ps = (/D If(Z)I”dAx(z)> " 1< p<oo, 1)

and we treat the case p = 0o as usual: || flloc = esssup,plf(2)]. By .?{f (D), as
usual, we denote the subspace in L/’\) (D) consisting of holomorphic in D functions
(see [3,4,9, 10]) and also [26, 27]. Let H (D) be the set of functions f, holomorphic
in D, equipped with the topology defined by the countable set of norms

2 fni"

m=0

[flln=""sup |f(@)I= sup »on=12..., 2

1 1
lzl<1=, 4 lzl<l=,4,
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where f,, are the Taylor coefficients of f :

_ Mo 1 G
T omy T 2mi /|r=r r’"+1dr &)
1 m
T O DBOZm A 1) Jy, T A
where

T
B(r;a,b):/ t“il(l—t)bfldt, a>0, b>0, 7>0
0

is the incomplete Beta-function, see [7, page 910]. The space H (D) may be
identified with the set of series

oo

1
Zanzn such that limsup |a,|» < 1.
n=0 n—oo

It can be viewed as a subspace of the space S of all formal power series f =
Y ey fn2" or, which is the same, with the space of sequences {f,}°%,. By
L(H (D)) we denote the set of linear operators on H (D). We refer to the book [25],
Chapter 1.3.1, for more details.

The following lemma is intuitive.

Lemma 2.1 Let f € AL (D), 1 < p < 00, and 0 < a < 2, then

(w)|?
/ 'f|w|a' dALw) < CIfIL,. 1< p < oo,
D

where C > 0 does not depend on f.
The following lemma follows from part (a) of Lemma 3.10 in [27].

Lemma22 Leta+ B <2+ A A <pB <A+ 1. Then s € LI (D).

1
(1-1zh*(1—2)
We will need the following asymptotic of the ratio of Gamma functions:

N
F'(z+a) a—b Cn a—b —N—1
=z +z7%0 (z ) , lzl = oo, 4

where |arg(z + )| < m, Co = 1, and C,, = ')\ TG0 pa=btl(a) m =

1,2,..., N, are expressed in terms of generalized Bernoulli polynomials, see [19]
and [22, page 17].
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3 Weighted Hadamard-Bergman Convolution of Functions
3.1 Convolutions of Holomorphic Functions

Keeping a study of weighted holomorphic spaces in mind, we define the Hadamard
product type composition of holomorphic functions in H (D) :

f@ = fuz" and g@) =Y gmi".
m=0 m=0

as follows

fx8@)=0+DY Bk+1,2+1)frged", zeD.
k=0

See, e.g. [8, 22, 25]) for Hadamard product composition (Hadamard fractional
integrodifferentiation) theory. Here the right hand side is well defined for all
f,g € H(D), since H(D) is identified with the set of series ZZO:() anz" with

limsup,,_, o, |an|ri <1
From the above formula at least formally we have for f € ﬂ% D) :

f*f@)= fD |F@PAALR) =+ 1) Y Blm + 1, A+ Dl finl*.

m=0

See Theorem 3.1 below for the justification of this formula.
We extend the definition of Hadamard—Bergman convolution given in [16] for
the weighted case, though in most places in this paper we skip the word “weighted”.

Definition 1 Let f, g € H (D). The construction

gx f2)= ng(w)f(Zw)dAx(w), zeD, &)

is called the (weighted) Hadamard-Bergman convolution of functions g, f €
H (D). Here and everywhere in the sequel, the Hadamard—Bergman convolution of
holomorphic functions is treated in the improper sense as justified in Theorem 3.1
below.
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Theorem 3.1 Let f, g € H(D). Then the following statements are valid

1. Forany0 <r <1,zeD

/w<r Jf(w)g(zw)dA, (w) = /|w|<r fzw)g(w)dAs (w) (6)
=(0+1) i B k+ 1,0+ 1) figez".
k=0
2. The integral
/D fw)gzw)dAy(w), zeD, (7
exists as improper integral:
/Df(w)g(zw)dAx(w) = lim ol J(w)g(zw)dAj (w)

o0
= O+ 1Y B+ 1,4+ figz".
k=0

Proof We have
w|<r

/| ,@etds ) = > fdt /| gw)w*dA; (w).
w|<r k=0

It remains to refer to (3); the first equality of (6) immediately follows. For the proof
of the second statement we note that from (3) there follows that the integral

/ S w)w™dA; (w) = lim S w)w™dA; (w)
D r=1Jw|<r
exists as improper integral for all f € H (D). Now it suffices to use (6). |

It is clear from the above, but it worth to underline separately that the convolution
formula (5) is symmetric in the sense that:

gx f@) = /Dg(w)f(zw)dAx(w), ®)

= / g(zw) f(w)dAy(w), z € D.
D
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This formula holds in the more general “integration by parts” form:

/D(@mf)(zw)g(w)dAx(w) =/Df(w)(@mg)(zw)dAx(w), ©)

where D" f(z) = " (;Z)m f(@).

3.2 Convolutions of Holomorphic and non Holomorphic
Functions

Convolution formula (5) may be in general considered for non necessarily holomor-
phic functions. In the formula (5) the function g maybe taken non holomorphic,
while f € H(D).

However, in this case we are not able to define the convolution as an improper
integral and have to assume g € Li (D). Also, the symmetry (8) does not hold, in
general.

We define the Fourier type transform of a function g € Li D) :

geLl(D) — umi(e) = /Dg(w)wmdAx(w), m=0,1,.... (10)

In the case g € Li(D) and f € H(D) the convolution (5) also reduces to
multiplier form, i.e.

gx f@) =Y tma(@fu", zeD. (11)

m=0

Therefore, it is clear, that the Hadamard-Bergman convolution (5) of g € L}\ (D)
and f € H(D) may be represented as a convolution with a certain holomorphic
kernel gpo;:

gx fl@)= /Dghoz(w)f(zw)dAx(w) 12)

The relation between the holomorphic kernel gp, and the initially given non
holomorphic kernel g is as follows:

g(w)

Ly dAx(w), zeD,

8hot(2) = Bjg(z) = /
p (1

where Bﬁ is the weighted Bergman projection. Indeed, consider the holomorphic
function g1 (z) = Y oo Hm.2(g)2™ in D, where 5 (g) are given in (10). We
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have

o0
1
7) = 7"
1ol (2) mz:% O+ DBOn+ 1.4+

- 3 ! mym ) dA
_/Dg(w) Z()\+1)B(m+1,)\+1)Z W J dAs(w)

m=0

1 /Dg(w)wmdAx(w)

N /]D) ¢! —giz))))zﬂdm(w) = Bjg(z). z€D.

Here we used the known expansion formula for the weighed Bergman kernel for the
unit disc:

e¢]

1 1 i
(1 — zw)2+r 2 G+ DBm+1,0+1)°

m=0

m

K (z,w) := w™, z,weD.

The extension of the notion of Hadamard-Bergman convolution for non holo-
morphic function g is very important for further analysis. An immediate example
of the Hadamard-Bergman convolution is the construction given by the weighted
Bergman projection Bﬁ) definedon g € L}\ (D) as

g(w)

Ly dA,(w), z € D.

Bﬁg(Z)=/DKA(z, w)g(w)dAA(w)zfm(l

Further development concerns the theory of Toeplitz operators; we plan to threat
this issue in another paper.

4 Weighted Hadamard-Bergman Convolution Operators

Fix a function g € H(D) and define the the Hadamard—-Bergman convolution
operator as an operator

K f(2) =/Dg(w)f(zw)dAx(w)

= lim g(w) f(zw)dAy(w), f e H(D).

r—1 lw|<r

We note that for the Hadamard—-Bergman convolution operator K, with holomor-
phic kernel g(z) = > gmz™ we have

K f(2) =) ma(Ke) 2™, for f(@) =) fuz" € HD),

m=0 m=0



8 S. A. Aghekyan and A. N. Karapetyants

where

pmyKg) = pm () = A+ DBm+1, A+ Dgn, m=0,1,.... (13)

The converse is also true: every operator K € L(H (D)) of the form

Kf(@) =Y tmfui", z€D, (14)

(such operator is called a coefficient multiplier and it is automatically continuous,
see e.g., [21]) is represented as Hadamard—Bergman convolution with the kernel

m

— 1 - HKmZ . 1
8 = (A+1)n§)3(m+1,x+1) =k <(1 —w)2+A> @, zeD. (15

Indeed, we have

Kf() =K (Z fmzm) =D fubtm?"
m=0 m=0

=G+ DY B+ 1.0+ Dgnfuz". (16)
m=0

— Km 1 1
where g, = AT BOMATAt1)? and we arrive at the Hadamard-Bergman convolution

operator with the kernel

/fLmZm

1 o0
8@ = ()\+1)m2:;)B(m-l—1,A-l—l)

[ee) m 1
((A—i—l 2:: (m+1x+1)) K(l—z)m‘

The above results can be also obtained from the results of [24] on the general form
of Hadamard or coefficient type multipliers (see also [20]).

Fix now a function g € L}\ (D). The Hadamard-Bergman convolution operator
K is well defined as

K f(2) =/Dg(w)f(zw)dAA(w), feHD), zeDb. A7)
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It possesses the multiplier realization

Kef (@)=Y 1mr(Ke) fuz", for fx)=Y_ fuz" € H(D),
m=0 m=0

where (5. (Kg) = tm,2(g), and fy,5.(g) is given in (10).

We conclude this section with the following important remark. By a change of
variables the convolution operator K with the kernel g € L i(D) can be written in
the form

A+1 w w
Ref ()= ]2 /|w|<z| § < Z) (1 - ‘ z

In this form the operator K, is well defined in the setting of measurable functions
for which the integral converges. It is represented as the integral operator with
homogeneous of degree (—2) kernel invariant with respect to rotations. Such
operators of the form (18) belong to the class of operators with homogeneous
kernels well studied in analysis (see books [11, 12], and review paper [13]).
The operators (18) may be also considered as generalized Hardy operators. The
algebra of operators with homogeneous kernels is well studied (see [1, 2] for recent
development in this direction); these results may be used for the study of the algebra
of Hadamard—Bergman convolution operators in the framework of holomorphic
functions. We plan to study such questions in another paper. The multidimensional
case is of a special interest as well. Hoverer in such a case we most likely need to
deal with a general Banach lattices and orthogonally theory (see e.g., [17, 18]) using
homogeneous complex polynomials which are substitution of spherical harmonics
techniques proved to work very well in the case of operators with homogeneous
kernel in real analysis.

2 A
).ﬂwmAwm zeD. (18)

S Operators of Fractional Integrodifferentiation

The operator of fractional integration

Hﬂ@:ﬂ;ﬂ;ﬁgﬂﬂmhmxa>0,k>—L (19)

is an example of Hadamard—Bergman convolution. Direct calculation provides

I¥f(2) =

FQ+A))2:Hm+2+A_wﬁﬂ% 00,

FQ+i—a FQ+m+2)

m=0

a>0A#-2-3,....
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The formula (20) defines I for a wider range of parameter A, i.e. A € R, A #
—2,-3,....
We will also need the operator of fractional differentiation

DEF@=""1a fn™, 1)

F(2+A—a)§: FQ+m+21) "
OF(m+2+A—ot)

m=
a>0,A—a#-2,-3,...,
so that
DI f(z) = IEDS f(2) = f(z), zeD.
In order to distinguish between integration and differentiation we prefer to
consider I and DY for positive & > 0 . Clearly the corresponding constructions
(20) and (21) make sense for ¢ € R, and, in particular,

DY =1, A—a#-2,-3,. ... (22)

The operator I§ does not satisfy the semigroup property, however we can indicate
the following rule for the composition:

B +8
L, =07, (23)
where « > 0, 8 > 0 and neither A nor > — o equal to —2, -3, ....
In the following theorem we find a representation of the operator (21) in

convolution terms with the kernel expressed in the term of elementary function.
Denote

d
Df(z) =z, f@.
Z

Theorem 5.2 Let0 <o < land A — o # —2,-3, ..., then

1 —a
DS f(z) = <E + 1+)\D) L7%f(). z€D,

where Ef = f is the identity operator. Hence, for . — o > —1 we have

1 @) J(w)

L+ a- Zw)IHdAl_“(w)’ z € D.

DY f(z) = <E~I—
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Proof We have (E + 1-|IFAD) ]1)1\ = E, hence
_ _ 1 1o
DY =L,% =EL*, = (E + ] +)\Z)> LIL®,

=(E+ ) E + U o)
1+)\’ A—a A 1+)\’ A—a’
according to (23). O
Lemma 5.3 Leta > 0, B € R. Then

1 A(2)

¥ = , AFE=2,-3,..., D, 24

A(l—z)ﬁ (I_Z)ﬁia # Z€ (24)
1 B(2)

D¢ = , A— -2,-3,..., D, 25

where A, B € HD), and A € C(D), A(1) =1 when 8 —a < 1, and B € C(D),
B(1)=1,when 8+ a < 1.
Besides this form =0,1,2,...
o " "

A - Z)2+)~+m = a- Z)2+)‘_0‘+m s A#F=2,-3,..., zeD, (26)

m m
o z z

k(] = g)2+a4m = (1 — g)2Hrtatm’ A—a#—=2,-3,..., zeD. @7
Proof To prove (24) we calculate Taylor expansion of

T(B—a)[(2+2) 1

RO =E s T rpre+a—a (1 - p-

and then use the asymptotic behaviour of Gamma function (4):

B rQ2+2 > ;
*O=rpre+i-a ,;)C”""’ﬂ’“ ’
. _F(n+,3)F(n+2+A—a)_F(n—l—,B—oc)
mEBET P l) T2+ T(n+1)

1
= 0<n2+°‘ﬂ>’ n — 00.

Now (24) is clear. The formula (25) follows by (22).
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To prove the second statement observe that for A > —1 we have

I 1 _ / dA; (w)
A (1 — z)2+* - p (1 — Zw) XA (] — w)2+h
dA; (w)
p (1 — Zw)2 (1 — w)2ti-o
2 1 1

D (1 — z)2+r—« - (1 — 7)2+>—« >
for z € D. Therefore,

1 FQ+Ar—a+m) M
DL - , D.
M1 — )2t TQ+r—a) (1—z)2thoatm Z€

From the other side, differentiating under the integral sign we have

1 dA; (w)
DI ="
A (1 —7)2+* /D (1 — w)2+* (1 — zw)2+r—«
o lC+ri—a+m) wdA, (w)
B FQ+r—a) Jp (1 —w)?tr( — zw)2titm—a
_IFC+r—a+m) w™dA; (w)

FQ+r—a) Jp(Q—zw)2tA (1 — w)2trtm—a’

for z € D. Now for A > —1 the formula (26) follows by comparing the above
formulas. The constructions in both sides of the formula (26), as functions of A are
holomorphic in C except for the poles A = —2, —3, .. .. Therefore, by arguments
of analytic continuation, the formula (26) remains valid for all A € R except for
A = —2,-3,.... Finally, the formula (27) follows by (22). |

6 Some Mapping Results in L? (D)

6.1 Young Type Theorem

Theorem 6.3 Let f € AYD), g € LIM), » > —1. Let 1 < p,q,r < o0,

1 1
p—l—q}l,then

1 1
Ke fllra < Callgllg.all fllpan = » + -1 (28)

where the constant does not depend on f and g.
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Proof The case r = p = oo is obvious with C; = 1 :

IKg flloo < g1 M f loo- (29)

Let now r = p = 1. By Fubini theorem we have

IKg fll1 < /Dlg(w)ldAx(w)/DIf(zw)IdAA(Z)

~N
=0+ 1) [ B 4a, ) |f(z)|<1—‘z‘> dA(z)
D |w] Izl<|w| w
~N
=G+ 1) 180N 4, () |f(z)|<1—‘z‘ ) dA(2)
i<l |w] Iz <|wl w
2 A.
+O+ 1)[ 18N g, () £ @)l (1 M ) dA(2).
Lcjwl<1 w] lzl<lwl w
Due to known estimate |f(z)| < Hf””’;H, z € D we have |f(z)] <
(1-]z?) »

4 242 |
(3) £l for [z] < ,, hence

2 A
0o+ 1) 18N 4, () £ @) (1— 2] ) dA(2)
wi<} wl Izl<|w| w
4 244 4 241
< (3> ||f||1,x[| 1 lg(w)|dAx(w) < <3) IA M lgla
w<2

For the second term similar estimate is also trivial:

2 }‘
arn [ ENaaw [ sl (1 M ) dAG)
5 <lw|<1 |w] w

|zl <[w]

2 A
<s0+) [ L lswdn) | @I (1= ) A
2<w<

|zl <lw]

SAflaligla

Hence, we obtain

4N\ 2H
IKg fll10 < <4+ <3) ) gl f I (30)
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In view of (29) and (30), applying Riesz-Thorin-Stein-Weiss interpolation theorem
[23] we obtain

IKg fllpn < Calliglliall fllpns 1< p<oo. €1y

Here C) does not depend on f and g.
By Holder inequality

IKg flloo < llgllprall fllpa, 1< p<oo. (32)

Combining (31) with (32) and again interpolating between 1 and p’ we finally obtain
(28). ]

As an anonymous reviewer kindly noticed, in fact Theorem 6.3 states that the
bilinear operator B(f; g) = f x g is bounded (with respect to the norm || - ||, on
its rage) on the corresponding product of spaces.

6.2 Sobolev Type Theorem

Besides the operator I, consider also

ot =[ T A ), 0, A> —1, D,
A f @) ]D)|1_Zw|2+)‘7°‘ A(w) a > > z €

and the following two more general operators as well

o a f(w)
T, f(2) = (1—z%) /D (1 Zw)z,(HaH,dAb(w),

o a f(w)
¢, 1@ =(1—zP) fD 1 = ppasas S0

The following Sobolev type theorem is valid.

Theorem 6.4 LetO <a <2, 1<p<2a+b>0,andb> —[17(1 — 9). Then

”7 f”qbq <C||f||pbp
a,b , = »Op» 2’
”‘Saahf”q bg < C”) ”{7 bp : ! a2
' ' h o q p .
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Proof It suffices to prove one of the above estimates. For instance, for 7', we have

q
NTe £y =
q

dA(z)

LI 2\B (1 a12ya+b
/ S@)(A = w1 = |z]%) dA(w)
D

(1 _ Zw)27“+“+b

L 2\P q
SCa,b,q,p/ (/ Lf w)[(1 = w]*) dA(w)) 4AG)
D \JD

1 _Zw|27o¢

= (bg + (b + 1)? f
D

<c ( /D f )P (1~ |w|2)”"dA(w>> L= ClllfIG

where we used known boundedness of the (unweighed) operator I+ = Hg’+ from
LP(D) to L4(D) with; = [1, — 9 (see [16]). O

Corollary 6.1 Let0 <o <2,1 <p < 2, and A > 0. Then

1% fllgrg < CIFI b_1_«
2 g g X psAp>s P = P o

1 1 o
I fllgag SCUfllpops =  — -,
A q,/rq PsAP q p 2

and, consequently, 1§ is bounded from ﬂfp (D) to \?IK 4 (D).

From Corollary 6.1 we immediately obtain the following result.

Theorem 6.5 Let the multiplier w5 (Kg) = w1 (g) of the Hadamard—-Bergman
operator K¢ with the kernel g satisfies the condition

Cy C 1
Mn,A(Kg) = na+k + na+1+)~ + o n(x+2+)» , n — OQ.
Then

A I C JADS ) O <o < 5 A = 0-
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7 Fractional Operators in Generalized Holder Spaces A® (D)

By the symbol €2 we denote the set of functions w : [0, 2] — R which are modulus
of continuity in the usual sense:

1. w is continuous in a neighborhood of the origin and w(0) = 0,
2. w is almost increasing on [0, 2],
3. ‘”E’h) is almost decreasing on [0, 2].

We will use the following Zygmund type conditions:

L w(s)
ds < Co@t), 0<t<2, (33)
0 )
2
1
/ ”(;)dsgcwi), 0<t<2, (34)
t S

where C does not depend on 7.
Let w : [0,2] — Ry be a modulus of continuity. By L”(ID) denote the space of
functions measurable in D such that

If@@) = fw)| = Co(lz —wl), z,weD, (35)

where C does not depend on z, w. The semi-norm and norm of a function f €
L® (D) are respectively given by

— f(w
If 4, o) = quljgm |faEZ(|)Z _fu§|))|, I fllze) = Ifll#.Lom) + 1 llLoem)-
(36)
The generalized Holder type space of holomorphic functions in the unit disc
with prescribed modulus of continuity, denoted by A“(ID), is the space of functions

f from L® (D) holomorphic in I, with the notation

1 fll#, a0 @) = Il fll# Lo@D)-

Under the conditions (33) and (34) the space A“(ID) possesses equivalent
description in terms of behavior of derivative of a function near the boundary
T. Indeed by B“(ID) denote the space of functions holomorphic in D such that
If'(2)] < ngl__lzlf‘), z € D, where C does not depend on z. The semi-norm and
norm of a function f € B (D) are given by

1—z|

s I fllBe@y = | fllg, o) + Il fll Lo ().
(1 -z (D) (D) (D)

Il f 14 Bo) = sup | f'(2)]
zeD w

We will use the following known lemmas given in [16] and in [15] respectively.
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Lemma 7.4 ([16]) Let w; and w> belong to 2, such that wi satisfies (34), w;
satisfies (33), and the product wwy satisfies (34). Then the following estimate holds
true

[ o111 = zw]) @2(1 — [w])
Jor,w(2) 2= /D 1 —zw|? 1 —|w| dAtw)

1—- 1—-
< @1 = lzhan( |z|)7 2D,
=1z

where the constant C does not depend on z € D.

Lemma 7.5 ([15]) Let w satisfy (33), then B®(D) C A“(D). Let w satisfy (34),
then A®(D) € B®(D). In particular, if w satisfies both conditions (33) and (34),
then the spaces A® (D) and B® (D) coincide up to equivalence of norms.

Let a(1 — z) be a holomorphic function in z € ). We consider generalized
fractional operator

a o [ all—w)f(zw) B
IAf(Z)_/]D) (1 — )y dAy(w), A > —L. (37)

Evidently, if a(1 — z) = (1 — 2)%, « > 0, then I{ = I{. In the sequel we assume
that the function « has radial majorant a* € 2, i.e., |a(z)| < a*(|z]), z € D, and
the function a* = a*(h) possesses properties of modulus of continuity.

Theorem 7.6 Let . > —1. Let a* and w belong to 2, and let w, = wa™. Let also
w satisfies (33), a* satisfies (34), and wa™ satisfies (34). Then for the operator I
the following mapping property holds:

I1$ : B°(D) - B* (D). (38)

Proof For all z € D, z # 0 we have

N A1 a(l— w1 —wrzwf (zw)
( Af) (Z) = z / (1 _ w)2+)\ dA(w)
_ A1 fa —zw)(d = wP) wf(w)
= /D (1 — zu)2+r dA(w).

Therefore, for ; < |z| < 1 we estimate

' a*(|1 — zw) w(1 — [w))
f) @] < Gl lnam [ : aAW).
p [I—zwl* 1 —Jw]
It suffices to apply Lemma 7.4 with w; = a* and w; = w, and then use

Lemma 7.5. m|
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Theorem 7.7 Let . > —1. Let a* and w belong to 2, and let w, = wa*. Let also
w and wa™* satisfy both (33) and (34), and a* satisfies (34). Then for the operator
I the following mapping property holds:

1§ A°(D) - A“ (D). (39)

Proof Follows from Theorem 7.6 and Remark 7.5. O

The following theorem is focused on the case of I§. In that case we show that the
mapping in Theorem 7.6 is onto.

Theorem 7.8 Let0 <« < 1, L > —1, and w belongs to 2, and let w and wy (h) =
h®w(h) satisfy both (33) and (34). Then

I (A°(D)) = A (D). (40)

Proof The mapping I : A“(D) — A“«(D) have been proved in Theorem 7.6,
since a(l —z) = (1 —z)* for the case of I[§ . Let us prove that the mapping is “onto”.
Since I and DY are Hadamard—Bergman convolutions, we have f(z) = I5D5 f(2),
z € D. Hence, it suffices to prove that f € A“ (D) implies DY f € A®(D). We
have DY f = (E + 11 Z)) ]Iif‘;f, and Z)Hlf"‘f = H}\:ZZ)f. It remains to show

that Hl oDf € A°(D). We have for A —a > —1

D
050 = 1+ [P da

wD f(w)dA, (w)

=(1+Ax . 41

I+ )/ (1 — 2w (1 — [w ) @D

In fact, since f € A“*(D), then the integral in the right side in (41) converges

absolutely for A > —1, and therefore the formula is true for such A. Hence, for
z € Dand A > —1 we estimate as follows

Lf )l (1 — [w]})*~

|1 _Zw|2+k

(1 — [w])
S Cl[@ 11— zw2(1 — [wp A

2UTEDf )| < 1+ 1) dA(w)
D

where the constant C does not depend on z € ID. Applying Lemma 7.4 we arrive

at 8Z]Ii:‘;“1)f(z) < Gy “’il__‘z‘fl), z € D, which in accordance with Lemma 7.5

completes the proof. O
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If wh) = hY, 0 < g < 1 then we use standard notation AK(]D)) for the
corresponding Holder space

Corollary 7.2 Letw(h) =hY,0 <y <1, A > —1. Then
I$(AY(D)) = AK'HX(D), whenever 0 <y +a < 1.
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Abstract We introduce a general concept of an extension for a mapping f : Xo —
Y, where X and Y are topological spaces and X¢o C X. Three constructions of
such extensions are proposed and the corresponding examples are given. In one of
them, the extension coincides with the Gelfand transform. The peculiarity of these
constructions is that the domain of the extended transformation does not belong to
X but is a bundle over a subset of X.

Keywords Extension of mapping - Closable mapping - Bundle space - Gelfand
transform

1 Introduction

Let X and Y be topological spaces and letamap f : Xo — Yo C Y, where Xg C X
be given. The problem under analysis in this paper is to construct in a canonical way
a new map F with a wider domain. We present naturally arising different versions
of such constructions which serve, in particular, not only for a single map but also
for a family of maps fy : Xo — Yp.

Usually, the following notions are considered.

Definition 1 A mapping F : X; — Y, where X9 C X; C X, such that F(x) =
f(x)forx € Xy, is called a prolongation of the map f : Xo — Y. The prolongation
F is said to be a continuation if it is continuous.
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The problem of constructing continuations is one of the global problems of
analysis, and has been studied intensively. The results in this direction include,
for example, the Tietze—Urysohn Theorem, the Hahn—-Banach Theorem on the
continuation of a linear continuous functional and a lot of others.

If the natural prolongation of f does not exist one arrives at a problem of its
extension. The introduction of the concept we are considering here is based on the
following reasoning. The initial object is the mapping f defined on a subset Xo C
X. However, X can also be considered as a subset of other spaces, and this is
quite a common situation, as we will see by examples. Therefore, one can waive
the requirement that the domain of (an extension) F must be a subset of X and the
image should belong to Y.

Definition 2 A mapping F acting from a set X to aset ¥ will be called an extension
of the mapping f : Xo — Yo C Y if there exist two embeddings

JX:X1—>)? and Jy:Y1—>?,
where
XoCcX1CX;, YhyCcriCy,
such that
F(Jx(x)) =Jy(f(x)) for x € Xo.

The extension for a family of mappings is defined in a similar way.

The main difference between an extension and a prolongation is that the domain
for the extension may not be a subset of X and therefore the main step is to build
new spaces X and Y. The set X must be constructed in such a way that it can be
considered as a “natural domain” for a given mapping f, because it includes objects
that can be associated with the function f and its “natural values”. Moreover, such
a “natural value” does not always belong to a given Y, but it may be an element of
a wider set Y.

We single out particular cases of extensions in the sense of Definition 2.

If Y = Y and we extend only the domain X, then the extension will be called
initial.

If X = X and only the range of values Y is extended, then the extension will be
called final.

Of a particular interest are extensions of f acting from a space X into itself, that
is, when X = Y. We call such an extension two-sided.

We start with recalling well-known specific examples of extensions.

Example 1.1 1f f is an analytic function defined on a domain X¢ C C, its analytic
continuation F can be constructed. It is a function defined on the Riemann surface,
which is the “natural domain” of the analytic function, and may not belong to C.
Here, we have an example of an initial extension.
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If an analytic function has a pole at a point zg, then by assigning the value oo to
the function in question at this point we get an extension that acts not in C, but in
the Riemann sphere. This is an example of a final extension.

If, at the poles of the analytic continuation F' mentioned above we assign to it
the values 0o, then we obtain an extension in the sense of Definition 2, where X is
a Riemann surface and Y is the Riemann sphere.

Example 1.2 Classic example of an extension is the continuation of a uniformly
continuous mapping f : Xo — Yo of metric spaces X, Yp. In this situation F is a
continuous mapping from the completion X of X to the completion Y of Yy which
is an extension for f.

Example 1.3 One more example is extension of differentiation. The classical
differentiation f : x — ‘é’t‘ is a mapping in the space X = C(R) with the domain
C!(R). The differentiation in the sense of distribution theory, acting in the Schwartz
space O (R) is a two-sided extension of this mapping [1].

Example 1.4 A well-known example of an extension can be found in Geometry. Let
X and Y be differentiable manifolds. For a smooth map f : X — Y, its derivative
maps the tangent bundle 7 X into the tangent bundle 7Y, and it is an extension
of f. Here, with every point x € X, there is associated a family points from 7'X
consisting of tangent vectors at the point x.

The sets X that will be constructed henceforth usually have a bundle structure,
and it is convenient to use the terminology from the theory of bundle spaces to
describe the arising relations.

A triple (E, B, p), where E and B are given sets, and p : E — B is a surjective
map, we will call a bundle. Moreover, E is called the bundle space, B is the base of
the bundle, and p is called the projection.

The subset of E, := p~!(b) C E is called the fiber over a pointb; the space E is
represented as a disjoint union of fibers, the points from the fiber E;, will be called
associated with b. A bundle section is amap S : B — E such that p(S(x)) = x
for all x € B (i.e. S is a right inverse to the projection p). Each section defines an
embedding of the base in the bundle space.

A particular important situation is the case when all the fibers are isomorphic to
some space V which is called a typical fiber.

A bundle is called a vector bundle if a typical fiber V is a vector space.

Usually, topological bundles are considered, i.e. it is assumed that £ and B are
topological spaces and the projection p is continuous.

A topological bundle is called locally trivial if for every point x from the base,
there is a neighborhood W, such that p~!(W,) is homeomorphic to the product
bundle W, x V. where V is the typical fiber.

Example 1.5 A more complicated situation arises for an extension of the operation
of multiplication in the space of distributions.

The Schwartz distribution space D(R) contains an everywhere dense subspace
of infinitely differentiable functions C*° which is a differential algebra. Moreover,
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foru € D'(R) and a € C* the product au € D'(R) is defined, but for arbitrary
distributions of # and v the product of v is not defined.

Formal expressions containing such products appear in different applications, in
particular, when considering equations with generalized coefficients, and therefore
we arrive at the problem giving a meaning to the expressions uv for arbitrary
distributions, i.e. constructing an extension for the multiplication operation. This
question has been investigated by different authors in various settings and extensive
literature has been devoted to it [2-5].

In the initial formulation of L. Schwartz, the problem of extending the operation
of multiplication was to construct a certain commutative differential algebra 17@

and embeddings R : D'(R) — m, where differentiation goes into differentia-
tion and multiplication transfers into multiplication, i.e. the equality

R(au) = R(@Rw) forall aeC™® uecDR). (1

holds.

However, L. Schwartz showed in 1954 that such algebra does not exist and the
question of constructing of embeddings of the distribution space in algebras was not
considered for some time.

Eventually the problem was considered in a weakened setting: to construct an
embedding R of the distribution space in a differential algebra m, where the
differentiation transfers into differentiation, without requiring equality (1).

Under such an embedding, the product of the distributions uv is the element
R(u)R(v) from an algebra and the multiplication of the distribution u by the smooth
function a is corrected: the ‘correct’ producta x u is the element R(a)R(u) € m
but not R(au).

The greatest resonance in this direction was caused by the works of J.F.
Colombeau who build the so-called algebra of new generalized functions G (D' (R)),
and embedding of the space £'(R) into it, for which the equality (1) holds for
infinitely differentiable functions. The Colombeau algebra G (D' (R)) is an example
of a two-sided extension of the multiplication operation.

The relation between G(9'(R)) and the distribution space is the following:
G (D' (R)) contains a subspace which is a vector bundle over £ (R) with infinite-
dimensional typical fiber and the remaining elements are of a qualitatively different
nature and are not associated with distributions.

The above discussed examples show that in a general case the construction
of a desired space X can be considered as a generalization of different known
constructions: the tangent bundle to a manifold, the completion of a metric space,
the spaces of distributions and algebras of new generalized functions.

In this paper, we consider three methods of constructing the spaces X cor-
responding to the initial extensions. More general constructions of two-sided
extensions will be given in subsequent works.

In the constructions under consideration a certain set of sequences is distin-
guished, and an equivalence relation is introduced in it. The desired space X is
defined then as a factor space for this equivalence relation. Since as we have
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mentioned the concept of naturalness can be interpreted in different ways it follows
that in the problem of constructing of a “natural domain” there arise several
constructions corresponding to different settings of the problem.

In some specific cases (as in the case of completions of metric spaces) a clearer
implementation for the spaces constructed can be indicated, but in a general situation
there is only a description for them as a factor space for a sequences space.

2 Closure of a Non-closable Mapping

Let X and Y be certain topological spaces and let a map f : Xo — Yy, Xo C
X, Yy C Y be given.

If a sequence x, € X( converges to x € X then the most natural candidate for
the prolongation value at the point x is the element

F(x) = lim f(x). 2

Here for the correctness of this formula the two conditions are needed:

(i) existence of the limit;
(i) independence of these limits from the choice of the sequence x,.

The first condition can be fulfilled if one starts the extension not from the whole
of X but only from the set X; consisting of the points x for which there exists a
sequence x, € X converging to x for which the sequence f(x,) also converges.

Definition 3 A mapping f : Xo — Y is called closable if the condition (ii) holds;
ie.

X, — X, X, = X, x e Xy;

lim f(x,) =y €Y, lim f(x,)=y €Y
n— 00 n—o0

For a closable map formula (2) defines a prolongation f : X; — Y, which we
will call the classical closure of f.

Note that continuity and closability properties of f are not related in the general
case.

For linear operators acting in Banach spaces, the above definition coincides with
the well-known definition of the closure of an operator, which is meaningful for
discontinuous linear operators. Moreover, any continuous linear operator is closable
and its closure is also continuous.

For a non-closable map its extension can be considered as well. The corre-
sponding construction naturally involves consideration of a relation between X and
Y which is functional with respect to x. Let us recall the necessary definitions,
following, for example, [6].
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By a relation between X and Y we call any subset G of the Cartesian product
X x Y. The domain D(G) of the relation is the projection of G onto X. The relation
G is called functional with respect to x iff

{x,yD €eG, (x,y2)€G} = y1=y.

A mapping from X to Y is the relation G C X x Y which is functional with
respect to x. Namely, if we use the common definition of a mapping f : X — Y
then the graph

Gr(f)={k, fx):xeD(f)}CXxY

is a relation between X and Y functional with respect to x.

Moreover, the map J : D(f) > x — (x, f(x)) € Gr(f) is a bijection (the
inverse is projection onto X), which allows us to identify these objects. After such
identification, Gr(f) can be considered as the domain of f, and then the action of
mapping f is defined as the projection onto the second coordinate:

f:Gr(f)>x,y) > yeY.

A representation of a map in this form will be called its normal form.

This trivial remark shows that the initial data of the problem under consideration
can be reformulated. Namely, one can assume that f is defined not on Xo C X but
on the subset Gr(f) from the Cartesian product X x Y.

If G C X x Y is an arbitrary relation, then it is obvious that the projection on X
is continuous and defines a bundle structure in G. In addition, the projection on Y is
a continuous closable mapping, the domain of its closure is G, and the closure also
acts as projection on Y.

Bearing in mind the above presented observations we proceed to the following.

Construction 1 By the closure of a map f acting from a topological space X to a
topological space Y we mean the map F := f defined on the closure of the graph
Gr(f) C X x Y and acting as a projection on the second coordinate.

In other words, the closure is defined as the classic closure for the normal form
of a mapping. In the case of a closable mapping, this definition is equivalent to
the classical definition of the closure, but the fundamental difference between this
construction and Definition 3 is that such a non-classical closure exists for any
mapping and it is an initial extension in the sense of Definition 2, where X = G(f).

Note that the closure of G(f) depends on the topology: when the topology on X
is weakened the closure may turn to be wider and then the fibers of the constructed
bundle may increase.

If a map f is not closable, then the relation Gr( f) is not functional with respect
to x but has a bundle structure, where a fiber may contain several points and the
fibers can have different structures. As a result a new effect arises: when passing to
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the extended domain Gr( f) the points from X decompose into a family of elements
of a new type.

Moreover, on Gr( f) and on the basis the topologies are defined and the bundle
is topological.

Thereby, the qualitative difference between the classical closure and the one
described above lies in the fact that the latter one is not defined on a subset of X
but on a bundle over some subset X1 := p,(Gr(f)) C X.

For linear non-closable operators in Banach spaces, such construction of the
closure was considered in [7, 8]. For a linear operator A, the closure of its graph
Gr(A) is a vector subspace in X @ Y, the projection onto X defines the structure of
a vector bundle on it where the typical fiber is the vector space

V:i=Gy:=p '0)={yeY:(0,y)eG}CY.

In special situations it is convenient to consider a sequential closure. Recall that
the sequential closure of a subset M of a topological space is the set of limits of
sequences of points from M. In the general case, the sequential closure is smaller
than the topological closure but for a number of spaces, in particular, for metric ones
they do coincide.

The definition of the sequential closure also makes sense for the spaces where
a convergence is specified, but topology is not defined. An example is the space of
measurable functions with almost everywhere convergence.

In addition elements obtained by the sequential closure may have better prop-
erties than elements obtained by the topological closure. For example, consider
C[0, 1] as a subset of the space F[0, 1] of all the functions on the interval with
the topology of point convergence. The topological closure of the set C[0, 1] is the
entire space F[0, 1] while the sequential closure consists of Baire functions of the
first class, and it is a part of the space of measurable functions.

Now we give a description of the construction of the sequential closure of a map.

Denote by Xo(f) the set of sequences x, € X, for which the sequence of the
corresponding points of the graph Gr( f) converges, i.e. we have

limx, =xe€ X, lim f(x,)=yeY.

Two such sequences {x,} and {x],} will be considered to be equivalent if both the
mentioned limits do coincide. Then, the closure Gr(f) is isomorphic to the set of
classes of equivalent sequences from Xo( f).

Let X be a topological vector space and let the sequences x, — x and z, — x
define different elements from the fiber over the point x in the bundle Gr(f). Then,
Zn = Xn + v,, where the difference v, = x;, — z, is infinitesimal (tends to zero
in X). Therefore, the closure construction contains the introduction of infinitesimal
quantities, similar to that how it is done in non-standard analysis.

We illustrate the approach described by an example of a simple non-closable
linear differential operator.
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Example 2.1 Consider a linear operator A defined in C 110, 1] ¢ L1[0, 1]and acting
into Y = L{[0, 1] ® R? by the formula

Au = (', u(0), u’(0)).

For a comparison, we will consider in parallel the operator Ag defined in
C'0,1] ¢ Ly[0, 1] and acting into the direct sum Yo = Li[0, 1] @ R by the
formula Agu = (u’, u(0)). This operator is closable and its closure is defined in the
space W'[0, 1], consisting of absolutely continuous functions and acts by the same
formula Agu = (v, u(0)).

Unlike Ao, the operator A is not closed. The closure of its graph is the subspace

X =Gr(A) = {(u,u,u0),&) :uecW'0,1,§ cR} C X x Y.

Since £ is an arbitrary number, this subspace is a topological vector bundle over
W10, 1] where the typical fiber

V=pl0)=1{0,08lcY

is a one-dimensional space. Moreover, the closure of the operator acts at u € X by
the formula

A((u, u',u(0),8)) = (', u(0),§) € Y,

and the number £ can be interpreted as the value of the derivative at point O for
ue wl [0, 1]. Then, for example, for an overdetermined Cauchy problem

u'(t) = y(@); u) =a, u' (0) = b,

there exists the solution u € X for any right-hand part. Note that for u € W'[0, 1],
this problem does not have sense, since the value of u'(0) is not defined, and for
u € C'0, 1] it is solvable only under the condition b = y(0).

However, such a definition of the space X causes dissatisfaction, since here,
the value of the derivative at the point 0 for a function u € W'[0, 1] is formally
assigned. At the same time the description of the space Gr(A) with the help of
sequences turns out to be more meaningful.

Here the space Gr(A) is constructed by means of the sequences u,, € C! for each
of which there exist four limits: two limits of the functional sequences u, — ug and
u,, — yin L1[0, 1] and the limits of the two numerical sequences u, (0) and u/, (0).

Two sequences are called equivalent if for them the four mentioned limits do
coincide, and Gr(A) can be defined as the set of equivalence classes.

For a comparison we consider a similar construction for the operator Ag. Here
the space Gr(Agp) ~ W10, 1] can be constructed from the sequences u, € C ! for
each of which there exist the three limits: two limits of the functional sequences
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u, — up and u,, — y and the limit for the numerical sequence u,(0). In this
case, the sequences for which these three limits do coincide are considered to be
equivalent.

With such a description, the effect of spreading of a point from W'[0, 1] onto
a family of points from Gr(A) is clearly visible: each sequence class defining a
point from Gr(Ap) contains a lot of different classes defining points from Gr(A).
Infinitesimal elements are here the classes of sequences such that u,, — 0, u; — 0
and u, (0) — 0.

Here, we can say that each equivalence class from Gr(A) associated with a
function u € W'[0, 1] ‘remembers’ about the method of approximating of u by
uy, namely, stores information about the behavior of the values of u; 0).

One can notice a relation of the content of the construction considered above
with the of the so-called singularly perturbed problems. The simplest example is the
Cauchy problem for an equation with a small parameter in the second derivative

1
nu”(X) + 1)U’ (x) + go(u(x) = f(x), u(0) =a, u'(0) = by, 3)

where g1 and g; are a continuous functions and g (x) # 0.
Let u,, be solutions to the problem (3) and w, be solutions to a similar problem

1
nw”(X) + 1 ()W () + gow(x) = f(x), w(0) =a, w'(0) = by.

Both these families converge to the same absolutely continuous function u, which
is the solution to the Cauchy problem

q()u'(x) + go()u(x) = f(x), u(0) = a. “

However, these are different objects that should not be identified, since they
approach u differently, and each of them contains some additional information
about the approximation method: u),(0) = by, and w;,(0) = by. These sequences
define different equivalence classes of the space Gr(A) and it is natural to consider
elements from Gr(A), as solutions to the problem (3). Here, the difference v, =
u, —wy, is an infinitesimal quantity, which corresponds to the point zero in w! [0, 1],
and in Gr(A) it is a non-zero quantity.

Example 2.2 Let L}OC(R) be the space of locally integrable functions. The map
f:iu— f(u), where

o]

< fQu),¢ >=/ u(t)g(t)dt &)

—00

defines an embedding f : L}OC R) — D' (R).
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The question about extension of this f is the following:
for whichu € C(R \ 0) can be constructed a corresponding distribution and what
kind can be such distributions?

For non locally integrable u integral

/ u()g(t)dt (6)

—00

is divergent for some ¢ € D(R) and the problem is to give sense to such integrals
for all .

The closure of this embedding f allows us to associate distributions with some
functions u ¢ L} ioc(B). Since the map f is not closable its closure F is defined not
on a set consisting of functions, but on a bundle over such a set, and with a function
u a family of distributions is associated.

To construct the closure of f we need to define a topological vector space X
consisting of measurable functions on R and define also its vector subspace X
consisting of locally integrable functions. As a result of the closure construction we
obtain the space X, where the closure F is defined. Since the map f is linear X is
a vector bundle over the vector subspace X1 C X consisting of these functions that
can be associated with distributions.

As an example, let us consider the space X = C(R\0) consisting of the functions
continuous at t+ # 0 with the topology of the uniform convergence on compact
subsets of R \ 0, and as X( we take the subspace C(R).

Let us describe the space X for this example.

Denote by L = D(R \ 0) the subspace of D(R) consisting of the functions g,
each of which is equal to zero at a neighborhood of zero. If u € X and ¢ € L, then
linear functional u, is defined on L by expresion

<ur,p >= /OO u(t)p(t)dte.

—00

Letu € Xy and§ € (/X\)u. Here, £ is a class consisting of the sequences of u, €
C(R) that converge to u in X and f(u,) converge to a distribution U = F(£§) in
D' (R).

If ¢ € L, then

e¢]

<U,p>= lim/oo u, (e t)dt = / u®)e)dt =<up, ¢ > .

—00

Since U is continuous, the functional u is continuous too and U is a continuation
of ur. For example, if u(t) = exp }, then the functional u is discontinuous and,
therefore, this function does not belong to X. It is easy to check that

m

d
={fueCR\0):u= dt’:’ where v € C(R)}.
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Ifne (X/\) . 1s another element from the fiber over u, then there exists v, € Xo
such that v, — u and f(v,) > V € D'(R).

Then v, — u, — 0 and is infinitisimal in X. But f(v,) — f(u,) — V — U,
where the support of distribution U — V is point 0. Each such distribution is a linear
combination of derivatives of the § —function, i.e.

N
V=U+> Gs®.
k=0

Moreover, for any distribution of this kind, it is easy to indicate explicitly a
sequence that converges to it. From this, we obtain that in the corresponding vector
bundle X , the typical fiber V is arranged as an infinite-dimensional vector space
consisting of such linear combinations (with arbitrary N).

3 Joint Closure of a Family

The description of the closure using sequences suggests an approach to the closure
of a family of mappings fy : Xo = Y, o € A.

Construction 2 Consider the set X ({f«}), consisting of the sequences of points
X € Xo, with limx,, = x € X and such that for any « there exists lim f, (x,) € Y.

The sequences (x,) and (x],) will be considered to be equivalent if all the
indicated limits do coincide for them. Let X ({ f«}) be the factor-space for this
equivalence relation. Then, for any « the map Fy : X ({fa}) — 7Y, is defined by
the formula

Fo ([(en)]) = lim fo (xz)- (N

The constructed family of the mappings F,, defined on X ({ fo}) will be called the
Jjoint closure of the family of mappings fy.

Let X; C X be the subset of limits of the sequences (x,) € X ({ f«})- Then, the
map p : )?({fa}) — X where p([(x,)]) = limx, € X1, defines the structure of the
bundle over X;. Here, the fiber over a point x consists of the functions on o with
values in Y.

Example 3.1 Let A be the space consisting of the functions f on X := (0, 1) that
are left continuous at each point x and have limits f(x + 0) from the right. Let
us construct a joint closure for these functions. Let a sequence x,, be converging to
x € (0, 1). For the convergence of f(x,) (for all f) it is necessary that the sequence
converges to x either from the left or from the right, and then lim f(x,;) = f(x) in
the first case and lim f(x,) = f(x 4 0) in the second one. Denoting the class of
sequences converging to x from the left by x~ and those converging to x from the
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right by xT, we get that in this example the set X ({f}) is arranged as two copies
of the interval (0, 1) with a natural projection onto (0, 1), where the fiber over each
point x contains x and x .

Therefore the extension of a function i is given by the formula F (x) := f(x +
0); F(x7) := f(x). The topology on X({f}) is given in the following way: the
base of neighborhoods of a point x* consists of the sets of the form

Wah =@—ex+e | Jxx+e,
and the base of neighborhoods of a point x ™ consists of the sets of the form
Wa)=@—ex+e | Ja—enh

where M* = {x* : x € M} for M C (0, 1). This is the weakest topology such that
all the functions F' are continuous.

We emphasize that in this bundle all the fibers are arranged identically, but the
bundle is not locally trivial.

4 Physical Interpretation of the Joint Closure

Let us give one of possible interpretations of the construction of a joint closure from
the point of view of applications.

Let the results of observations of a given system be studied by using a set of
instruments, which we denote by A. Firstly, we assume that a mathematical model is
considered, where it is assumed that the states of the system are points of a space X,
and the observation results belong to a space Y. It is also assumed that observational
results are known for the states from a certain subset Xo consisting of ‘simple’
states, i.e. the family of mappings fy : Xo — Y, a € A, is defined.

The problem is to find (based on the available data) the results of observations
for more complex states of the system.

To clarify the practical meaning of the above setting we recall that Z is called the
set of the system states corresponding to a given set of observations A if for each
element of Z and « € A a uniquely determined observation result < o,z >€ Y is
given i.e. for a fixed « the function Fy, (z) :=< «, z > is defined.

On the other hand it is natural to assume that observations distinguish points z
and then z can be identified with the function

&) =<a,z>.

Thus, the state is a function on A with values in Y.
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For example, in quantum mechanics some C*-algebra A is considered as the set
of observables and the state is a non-zero positive linear functional on it.

In the situation considered above, the constructed set X ({ f«}) where the
functions F, are defined has the mentioned properties of the set of states.

Moreover, if among f,, there is a non-closable map then X ({ fo'}) does not belong
to X, but it is a bundle over a subset of X.

Thus, the joint closure clarifies the initial mathematical model and shows that,
in a general case, the state space X ({ f«}) is not a subset in the originally chosen
space X, but it is a bundle over X1 C X. Moreover, the points of a given fiber can
be interpreted as a hidden parameters such that the results of observations depend
on them and they are not significant when considering simple states.

From this point of view, in Example 3.1, the set of simple states is the interval
(0,1), and the observation of a simple state is described by a function from A. In
this example, the extended state space consists of two copies of the interval (0,1),
and the hidden parameter is the sign & at x.

5 Gelfand Extension of a Family

Firstly, we describe the joint closure in other terms. Each point of X defines a
mapping from X¢ x A to X x Y according to the formula . (x, @) := (x, fo(x)).
Let Xo(Xo x A) is the set of such functions. Then, the domain of the functions Fy
is the sequential closure of the set Xo(Xo x A) in the space of all the mappings
from Xo x Ato X x Y in the topology of pointwise convergence. The following
generalization is based on the fact that formula (7) that defines the extended map
does not use the convergence of the sequence x,,.

Construction 3 Let 7 (A, Y) be the space all the functions on (A with the values in
Y equipped by the topology of pointwise convergence. Each point x € X defines
a function &, € (A, Y) by expression & (o) = fy(x). We denote by Xo(A) the
set of such functions (i.e. the set of simple states in the terminology of Sect. 4). Let
Xo(A) be its closure in the space F (A, Y). Then, the functions F,(§) := &(«) are
defined on Xo(A).

Since Xo(A) is a subset of ¥ (A, Y), the induced topology on it is defined and
the functions F, are continuous.

By the Gelfand extension of a family of maps f, we mean the family of
continuous maps Fy (§) := &(«) defined in X (A).

The sequential Gelfand extension of a family of mappings f, is the family of
continuous mappings Fy(§) := &(«) defined as the sequential closure of the set
Xo(A).

The main difference between Construction 3 and the joint closure considered in
Sect. 3 is that here the points of X(A) are not necessarily associated with the points
of X. Such points (i.e. those that can not be associated with the points of X) arise
when a sequence x,, € Xy is such that the sequences of values fy (x,) converge for
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all o, but the sequence x,, itself does not converge in X. Then, the class containing
such a sequence defines an ideal element that cannot be associated with a point from
X.

From the point of view of the concept of Sect.4 the domain of the Gelfand
extension is also the state space of the corresponding system which is wider than
the one obtained when constructing the joint extension.

Let us observe that Construction 3 is a generalization of the classical Gelfand
transform of a commutative Banach algebra, which clarifies the use of the name.

Let A be a Banach algebra with a unity which is a subalgebra of the algebra
of complex-valued functions on a set Xg. For the algebra (A, there is a compact
topological space M (A) called the spectrum of the algebra or the space of maximal
ideals. It can be defined as the space of all multiplicative functionals on A with
the topology of pointwise convergence. The map G : A — C(M(A)) that takes
a function a € A to the function a(§) := &(a), & € M(A) is called the Gelfand
transform of the algebra A.

If A is C*-algebra (equipped with sup-norm and together with function a
contains the complex conjugate function a), then, according to the Gelfand—
Naimark Theorem, the Gelfand transform is an isomorphism of the algebras [9].

Each point x € X defines a multiplicative functional &, (a) = a(x) and the
original space Xy is embedded in M (A). When discussing the Gelfand transform
of such algebras, it is usually interpreted that here the space M (A) serves as the
“natural domain” for the functions from A.

Let a vector space L of functions on the set M be given. A subset of My C M is
called total for L if once the restriction of a function a € L onto the set M is zero
it follows that a = 0. For example, for a family of analytic functions on a domain
M C C any set that has a limit point in M is total.

If M is a compact space then by the Tietze—Urysohn Theorem for the space of
all continuous functions on M only everywhere dense subsets are total. Therefore,
only M itself is closed total subset in M.

Theorem 1 Let A be a Banach algebra which is a subalgebra of functions on a set
Xo with anorm || -|| such that ||la|| > supy, |a(x)|. Then the space obtained by using
the construction of the Gelfand extension is a total closed subset of the space M (A)
of the maximal ideals and the Gelfand extension of the functions from the algebra
A is the restriction of the Gelfand transform onto this subset.

If A is a C*-algebra then the space obtained by using the Gelfand extension
construction is the space M (A) of the maximal ideals and the Gelfand extension of
the functions from the algebra A coincides with the Gelfand transform.

Proof We apply the Gelfand extension to A identifying it with a family of functions
on Xo. For a fixed x the formula ¥, (a) = a(x) defines a linear multiplicative
functional on A and the set Xo(A) consists of such functionals, i.e. it is a part
of the space M (A). The set Xo(A) (i.e. the Gelfand extension) is the closure of
Xo(A) in the space of all functions on A.

The points from this closure are also linear multiplicative functionals, and
therefore X (A) is a closed subset of M (A), and the functions constructed using the
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Gelfand extension are the restrictions of the Gelfand transforms @ to My := Xo(A).
Moreover, M is a total closed subset.

If A is a C*-algebra then any continuous function in M(A) is a Gelfand
transform of some a and, since Xo(A) is a total closed subset it coincides with
M(A).

Note that the density of embedding X in the space M (A) of maximal ideals
holds also for a number of algebras that do not have C*-structure, in particular, for
symmetric algebras A (i.e when a € A implies a € A).

When constructing an extension for elements of an algebra A it suffices to
construct an extension for a system of generators. The space of functions on a
countable set with the topology of pointwise convergence is metrizable and the
sequential closure of it coincides with the topological closure. Therefore if an
algebra A has a countable system of generators then the sequential extension
coincides with the strong one.

The next statement highlights situations when the space of maximal ideals can
be constructed quite explicitly by using the mapping closure operation.

Theorem 2 Let Ay be a C*-algebra which is a subalgebra of functions on the set
Xo and M(Ay) is its maximal ideals space. If the C*-algebra A is obtained from
Ao by adding a function g defined on X then the space of maximal ideals M (A)
is homeomorphic to the closure of the graph of g as a function defined on a dense
subset of M (Ap), i.e.

M(A) ~ Gr(g) C M(Ap) x C.

The proof can be obtained by a direct verification.

Example 5.1 Let X = Xo = R. We start with the algebra Ay consisting of
continuous functions on R that have limits at infinity. Then the Gelfand extension of
these functions is defined on the extended real line R obtained by adding the point
oo to R which is represented as an equivalence class consisting of all sequences
diverging to oo and the extended map is defined at this point as

a(o0) := lin;oa(x).

Here R is the space of maximal ideals of the algebra Aj.

Next, we consider the algebra A; obtained by adding to Ap the function
g1(x) = e which is not defined at the point co. To construct extensions of the
functions from A it is enough to construct the closure for g;. According to the
closure construction among sequences tending to infinity, we distinguish the classes

K = {(xy) : exp(ix,) — 1}, teC, |t]=1.
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The set of such equivalence classes is arranged as a circle, and therefore, the
set where the extensions f, f € Aj, are defined has a bundle structure over the
extended real line where the fiber over the point oo is a circle, and the fibers over
the points from R consist of one point. If we equip this space with the weakest
topology where all the functions fare continuous then this space is homeomorphic
to M(A,), and the map a — @ coincides with the of Gelfand transform.

Finally, we consider a wider algebra A, obtained by adding to A the function
gx) = e!™* Then, according to the construction of the closure, in each of the
classes K; we define the smaller classes

Koy = !(xn) celm) g el n}, neC, Inl=1

The set of all such classes is constructed as a torus T2, and as a result, we get that
the space M (A>) has a bundle structure over R where the fiber over the point oo is
the torus.

If we consider g as a function on M (A;) defined on a dense subset then this
subset is not closed and the closure of its graph is

Gr(gs) C M(A) xC

homeomorphic to M (Ay).

6 Conclusion

In the paper we consider three constructions of initial extensions. Having their own
value and applications they also serve as introductory steps to the global aim of
our investigation: to give a construction of two-sided extension such that the space
of distributions and the algebras of new generalized functions can be obtained as
particular cases. Such a construction will be presented in subsequent works.

The authors wishes to express his thanks to the reviewer for several helpful
remarks.
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On Multidimensional Integral Operators )
with Homogeneous Kernels in Classes s
with Asymptotics

0. G. Avsyankin

Abstract We define a special class of functions having a given asymptotic behavior
in a neighborhood of zero. It is proved that this class is invariant under multidimen-
sional integral operators with homogeneous kernels.

Keywords Integral operator - Homogeneous kernel - Asymptotics - Space of
continuous functions

1 Introduction

Integral operators with homogeneous kernels play an important role in mathematics
and applications. The study of multidimensional integral operators with homoge-
neous kernels of degree (—n) was started by L. G. Mikhailov (see, e.g., [1, 2])
in research on the theory of elliptic differential equations. More precisely, such
operators naturally arise when the potential method is applied to equations of the
form

n
ou
xPAu+ x| Y arx),  +bEu=0
P 0Xf

in domain D containing the point x = 0. Operators with homogeneous kernels
are also used in some problems of mechanics. The study of integral operators with
homogeneous kernels was continued by N. K. Karapetiants. He obtained necessary
and sufficient conditions of boundedness for such operators and he investigated
the compactness of such operators with variable coefficients (see [3]). In recent
decades the theory of integral operators with homogeneous kernels has been
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actively developed. For such operators, the criteria for invertibility and the Fredholm
property were obtained, Banach algebras generated by these operators were studied,
and conditions for the projection method to apply were obtained (see, e.g., [3-11]
and the bibliography therein). But despite significant advances, there are still many
open questions and unsolved problems in this field.

In this paper multidimensional integral operators whose kernels are homo-
geneous of degree (—n) and invariant with respect to all rotations of the space R"
are considered in classes with asymptotics. More precisely, we introduce the class
Af 5(By), which consists of functions defined on the ball B, with a given asymptotic
behavior in the neighborhood of zero. It is shown that this class is invariant with
respect to the considered integral operators. In the future, these results may be
applied to the study of asymptotics of solutions of integral equations. In conclusion,
we note that for operators with difference kernels similar results are contained in
[12-14].

We use the following notation:

e R" is the n-dimensional Euclidean space;

e x=1(x1,...,x) € R

° |x|=\/x12_|_+x%,

o x'=ux/lxl;

e Zy is the set of nonnegative integers;

* By(a) ={x eR": |x| <a}; B, =B,(D);

e C(By(a)) is the space of all continuous complex-valued functions on B, (a) \ {0}
having finite limit as x — 0;

* CoBn(a) = {g € C(By(a)): lim g(x) =0}.

2 Statement of the Problem

Consider the operator
(Ko)(x) =/k(x,y)</)(y)dy, x € By, ey
Bll

where the function k(x, y) is defined on R” x R" (from now on we assume that
n > 2) and satisfies the following conditions:

1°  homogeneity of degree (—n), i.e.
k(ax,ay) =a"k(x,y), VYa >0
2° invariance with respect to the rotation group SO (n), i.e.

k(w(x), o(y)) =k(x,y), VoeSOn);
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3° integrability, i. e.

/Ik(el,y)l(1+llnlyll)“dy <oo0, e =(1,0,...,0),
R?

where u is fixed nonnegative number.

For example, the function

x| ( ‘ Iyl
+ |In
Y21 = yir=172 x|

> —n
satisfies the conditions 1°-3°.
It is known [1, 2] that the operator K is bounded from C(B,) to C(B,) and from
Co(By) to Co(By).
In the space C(B,) we define the special class of functions with a specified
asymptotic behavior at zero.

k(x,y) =

Definition 1 Let0 <o < 1,0 <§ < lands € Z;. The class A‘;"S(Bn) is the set
of all functions g € C(B,) such that for |x| < § the representation

a bi v(x)
=b I :
g(x) “F/Z:;) (1—Injx)/*®  (1—1In lx[)s e

v € Co(B,(9))

holds.

Class A ;(B,) is adapted for integral operators with homogeneous kernels that
have a singularity at zero. This class has in the theory of operators of the form (1)
the same role that the asymptotics in powers of the function lerl has in the theory of
one-dimensional convolution operators.

The main goal of this paper is to establish that the class A{ ;(B,) is invariant
with respect to the operator K, i. e. to prove that K (A‘;" ;@) C A‘;" s@Bn).

3 Auxiliary Statements

Consider the function (1 — ¢)™%, where « > 0 and ¢ € (—o0, 1). Applying the
Taylor formula, we obtain the equality

I a@+ D). (@+m—1)
(1—t)a_1+n; . "+ Ry(1), 2)
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where
a(a+1)...(x+5s) a—s—1.541
Rs(t) = 1 —g) @It 3
s (1) 5+ 1)l 1-8 (3)
and & between 0 and ¢.
Lemma 1 For any fixed s > 0 the estimate
Cyle™*, 1 <0,
R,(1)| < ts+l 4
[Rs(1)] 0<i<l, “)

holds, where C1 and C> are some constants depending on s.

Proof 1ft < 0 then & < 0 and the estimate (4) follows immediately from (3) with

a(fa+1)...(x+5s)

Ci =
! (s + 1!

Lett € (0, 1). We consider two cases.

1. If t € (0, 1/2] then from (3) follows the estimate

ts+l
(1 =0

~

IR ()] < C 20T H st < ¢

where C; = 2¢+s+1Cy.
2. Ift € (1/2, 1) then from formula (2) we obtain

(1—1) m!

- 1 +C<1 1+C
(1—rne (1 — 1)

1 - ... -1
|Rs(1)| < L+ 1+Zo¢(a+ )...(@+m )t’”
m=1

ts—i—l
1 —-n

s+1<€v’

~ ’

where C = 25T1(1 + C). Put C; = max{C, C1}.
O

Lemma 2 Let the function k(x, y) satisfies the conditions 1°-3°. If v € Co(B,(a))
then the function

In [yl
x|

n
Yx) = / Ik(x,y)l<1+ ) v(y)dy

lyl<a

belongs to the space Co(Bp(a)).
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Proof Let us consider the integral operator
(Qu)(x) = / g(x, yv(y)dy, x€B,(a),
B (a)
where

In [yl
x|

)

Its kernel g (x, y) satisfies the conditions 1°, 2° and integrability condition

q(x,y) = lk(x, y)l (1 +

flq(m, Vldy < oo.
RV!

Therefore, the operator Q is bounded in the space Co(B,(a)) (see [2]). Then ¢ =
Qv € Co(Bn(a)). m

Let0 <a < 1,0 <a < 1ands € Z;. Denote by AY (B, (a)) the class
consisting of all functions g € C(B,,(a)) such that

g =b+Y i oW

= (I =Infxp/He o (1 —In x|
where v € Co(B,(a)). Consider the operator

(Kap)(x) = / k(x, e(y)dy, x € By(a),
Bn(a)

where the function k(x, y) satisfies the conditions 1°-3°. We wish to study the
action of the operator K, in the class AY (B, (a)). First of all we consider the two
simplest cases.

Lemma 3 Let numbers s and . be such that
s < [pn]l—1. )
If o(x) = C = const, then

vo(x)

(Ka(/))(x) =c+ (1 —In |x|)s+av

vy € Co(By(a)).
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Proof 1t suffices to assume that C = 1. We have equality

/k(x,ymy:fk(x,y)dy— / k(x. y) dy.

Iyl<a R lyl>a

We make the change of variables y = |x|z in the integrals on the right and use the
property 1° of the function k(x, y). Then we make the rotation change of variables
7 = wy (1), where wy is an element of the group SO (n) for which wy (e;) = x” and
use the property 2°. As a result, we obtain

/k(x )d —/k(e 0 di — / kenndt=ct+ 0@
7y y_ 11 17 — (1_1n|x|)s+a7
via R >

where

c=/k(el,t)dt, vo(x) = — (1 — In |x|)* T / k(er, 1) dt.

R” lt]> ¢
x|

Let us prove that v9 € Co(B,(a)). It’s easy to see that the function vp(x) is
continuous on B, (a) \ {0}. Find the limit of the function vg(x) as x — 0. Using
the obvious inequality

1 1
141In <<1+1n )<1+1n“) (6)
x| a x|

and taking (5) into account, we get the estimate

1 s+o
lvo(x)] < (1 +In |x|) / lk(e1, )| dt

a
le1> 3

1 s+o a s+ao
1+4+1In 1+1In / |k(er, t)| dt
a x|

a
It1>

<

a
71> 5

1 s+o

<<1+1n ) / lk(er, )| (14 |In|t])*+* dt
a

<(

1 s+a
1+lna) / lk(er, )] (1 4 | In |t|)H dt.

a
[t]> x|
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Due to the condition 3° the last integral tends to zero as x — 0. Therefore, vo(x) —
Oasx — 0. |

Lemma 4 Let inequality (5) hold. If

TS
P = (| s P € CoBn@),
then
Kap))= " w € Co(By(a)).

(1 —In|x[)ste’

Proof We write the equality

v(y) _ w(x)
/ KOO (4 npyyse T (e

Iyl<a

where

1—1 s+o
weo = [ k(x,y>(1_12:;c:> v(y) dy.

lyl<a

We will prove that w € Co(B,(a)). It is clear that the function w(x) is continuous
on B, (a) \ {0}. Moreover,

1_1n| |s+a
wl< [ kel ()| dy
1 —In|y|
lyl<a
|y| s+o
< / |k(x,y>|<1+1n|x|> ()| dy
[yl<a
I
< [ wei (14 ) wonay,
lyl<a

The last integral tends to zero as x — 0 by Lemma 2. Therefore, w € Co(B,,(a)).
O

Now we turn to the general case.

Lemma 5 Let inequality (5) hold. Then the class AY (B, (a)) is invariant with
respect to the operator K.
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Proof Consider the function

~ s b; v(x)
o= ; (1 —Injxpite " (1 —Infe)ste’

where v € Co(B, (a)). We wish to prove that the function

d d
K1 =b [ keyray+ ooy [ ke O

; (1—In|y[)i+e
lyl<a =0 |yia Y
v(y)
k(x, d 7
+ [ ke D (e 4 )
lyl<a

belongs to the class AY (B, (a)). To prove this, it suffices to show that each term on
the right side of (7) belongs to the class AY (B, (a)).

The first and last terms in (7) belong to the class AS (B, (a)) by virtue of Lemma 3
and Lemma 4. Consider the other terms. We must prove that

i) = | k@, y) dy € A%(B,(a))
T P = ypire S
lyl<a
foreach j =0, 1,...,s. We consider two cases: j = 0and j > 0.

1. Let j = 0. We make the change of variables y = |x|z in the integral Zp(x) and
use the property 1°, and then we make the change of variables z = w, (¢) and use
2°. As aresult, we get

To(x) = / k(er,) (1 —In|x| —In|t))~® dt
< ¢

xl

! / ker.n (1— 1m0 S
= e —_
(1 —In|x])® b 1 —1n|x|

1<

_ Inpl
1-In|x|

To(x) ! / kier, 1) Z N dt
X) = er, C, )
0 (1 —In|x))® ! A Y L S T U Y P

—a
Applying the Taylor formula to the function (1 ) , we obtain
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where

1 -1
co=1, Cm:ot(a—i—) (- m ) m=1,2,...,s,
m!

and R;(7) is the function of the form (3). Then

N

Cm
I = k(er,t)In™ |t| dt
o(x) =) (1 — In [y / (er, 1) In™ 1]

m=0 1< )

+ ! / kennk (™Y 4
e 9 )

(1 —ln|x|)°‘| J, PR Zn
s

xl

Z 1—ln|x|)°‘+m /k(el’t)lnm|f|df— / k(e1, t) In™ |¢| dt

m=0 Rn
lt1> 5

" ! / kenor (Y 4
e
(1 = In |x])® S T P

1< 5

x|

Let y = cm f k(e1, 1) In™ |t| dt, where O < m < s. Then we obtain

RV!
N J/ S c
m m
Tox) =) (L —n[xpetn ~ > (4 — In )+ f ke, 1) In" |¢] dt
m=0 m=0 a
> ¢
1 In ||
k(e1, )Ry dt
T = e / (€11 °<1—1n|x|>

A

x|

_ - Ym 1 s
B n;) (1 - 1H|X|)Ot+m + (1 —In |x|)s+a <m2:;) wM(x) + LU()C)) s (8)

where

Wy (x) = —cp(1 —In|x])*™™ / k(er,t)In™ |t|dt, m=0,1,...,s;

w(x) = (1 —In |x])° / k(el,t)Rs<lin|t| )dt

In|x|
1<

x|
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We wish to show that w,,, w € Co(B,(a)). Since the functions w(x) and
wp (x) are continuous on By, (a) \ {0}, we will find the limits of these functions
as x — 0. Using the inequality (6), we have

1\
lwm ()] < <1~|—ln |x|> / lk(er, )l Inz]|™

lt1> 3

1 S—m a sS—m
<en <1+1n ) <1~|—ln| |> / le(er, 1L+ | In Je]])" dt
a X

le1> 5

1\
< Cm <1~|—ln ) / lk(er, )[(1 + [Int]])* dt.
a

lt1> )

Last integral tends to zero as x — 0 due to the property 3°. Hence w, €

Co(B,, (a)). Further,
In |z
Ry nlrl dt
1 —1In|x]|
= (1 —In|x])’ f

In |t
R, n ] dt
1—1In|x|
l71<1

In |t
+ (1 —Inx])* / ker ol (& (™ Y a
1 —1In|x|

I<|r|< ¢

lw@)| < (1 =Inlx])* /

‘t‘\|x|

x|

Applying the estimate (4), we get

|w(x)|\ 1||/Ik(el,t)lllnltll‘“dt
111<1

C, [In [¢][s+1
k(ey,t dt. 9
(1 —npap-e / er D1 ey 4 @

NI
Put
1

=C; / ki (er, )| In|¢|*dt, Mr=Cym
[71<1

\x\<1 (1 —In|xl-o’
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Condition 3° and inequality (5) imply that M; < oo. Then from (9) it follows
that

wol< . M 4m / k(er ol et 4
Sy R " (1 — In(jx|]z]))®
NI
M, i dt
< M k(er, )] (14 [In|e|)**!
L f er, 0L+l
1<
M, Iy
= M k(x, 1 1 .
| —Injx| " 2/ IkCx y)|<+ T ) (1—In|y|)®
lyl<a

(10)

Since (1 —In|y|)™® € Cop(B,(a)) then by Lemma 2 the last term in (10) tends
to zero as x — 0. Hence w € Cy(B,(a)). Returning to the formula (8), we
conclude that Zo(x) € AY (B, (a)).

2. Let j > 0. We introduce the auxiliary operator

l
(KPg)(x) = / k(. y) (ln 'y') o) dy, x € By(a),

x|
lyl<a
where £ =0, 1,2, ...,s. We note that KCEO) = K. Then using the easily verified
inequality

1

[yl § [yl m-
| = In 3 1 —In|y| In
T\l —In|x| 1—1n|x| 1 —In|x]| ’
we obtain

o 1 I\ dy
50 = e | Fe(00)) (e

lyl<a

’ 1 Iy ! dy
k(x, 1 .
+elzzl (1 —1In|x])t f (x y)<“|x|> (1 —1In[y]ye+i=!

lyl<a

uo(x) i 1 €1—1) 1
= K ),
(1 —In|x[)ste +Z12=:1 (I —Infxér ¢ (I —In|ypeti-1

Y
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where
s 1_1 o d
1o (x) = f k(x,y)<1n|y|>< n|x|> Yoo
x| I—Inly|) (1 —Inly[)/
lyl<a

We will prove that ug € Co(B,(a)). Indeed, the function u((x) is continuous on
B, (a) \ {0}. Moreover,

W [1=Inlx||* 4
o (x)| < f ke, ) [In y
Wil 1=l (@ =npyps
lyl<a
N o d
< f . )] [in ! <1+‘ln|y|) Yoo
x| wil) =ty
lyl<a
I\ dy
< muyn0+m N
/ wll) (=t
lyl<a

Since (1 —In|y|)™/ € Co(B,(a)) then the last integral tends to zero as x — 0
by Lemma 2. Hence up(x) — Oas x — 0.
Further, through similar arguments we obtain that

K@D 1 _ u (x)
¢ (I —In|ypeti=t (I =1In|x])ets=h

s—L1
1 1
K itt2=2) . , 12
NP SRTRENNIALE (1= Infy])eti=2 (12
-

where u; € Co(Bn(a)). Proceeding the above mentioned process, we denote
|€] = €1 + €2+ -+ €1 and get

g 8=+ ( 1 ) i)
a a

(1 —In|ypo+! — In |x|ye-ts—1f]

s—I7]

1 ) ( 1 )
+ E K, , 13
Lo (= (1 —In|y})* (3



On Multidimensional Integral Operators with Homogeneous Kernels 51

where u;_1 € Co(B,(a)) and |[£| = IZI + £;. Using the formulas (11)—(13), we
get the equality

u(x) s 1
Ti(x) =
IO = 4 et +[Zl (1 In Jx])b
—
s—{1 1 S—|Z\ 1 1
(1€l=7)
X e K , 14
gzz_l(l—lnlxlﬂz Z.Z_1(1—1n|x|)ff “ ((1—1n|y|>“) (9
- ~

where u € Co(B,(a)). Applying the result of the part 1) to the operator Ka(mfj),
we obtain

s—|¢]
(2 1 uj(x) ¥Ym
K == 9
‘ ((1 ~In |y|)a> (1 = Infxpys-leise T ,;) (1= In |x]ym+

5)

where u; € Co(B,(a)) and y;, are some constants. We will substitute (15)
for (14). Then through simple transformations, we get

N

) P
Zj(x) = (1 —1In|x])o+s * ; (1= In|xpre’

where w € Co(B, (a)) and B¢ are some constants. Thus Z; (x) € AY (B, (a)).
O

4 Main Result

The main result of this paper is the following theorem.

Theorem 1 Let inequality (5) hold. Then the class A‘;"a(IB,,) is invariant with
respect to the operator K.

Proof Let ¢ € A‘;"a(IB%n). We have to prove that K¢ € Aﬁ"a(B,,). Let us consider
two operators

(Kip)(x) = f k(x, o(y)dy, xeB,,
IyI<8

(K20)(x) = / k(x, o(y)dy, xe€B,.
s<IyIt



52 0. G. Avsyankin

Since K¢ = K19+ K>, it suffices to show that the functions K¢ and K»¢ belong
to the class A{ ;(By).

From [1, 2] it follows that K19 € C(B,). Denote by ¢s(x) the restriction of
the function ¢(x) to B, (8). Since s € AY(B,(8)) then (K1¢)s € AY(B,(8)) by
Lemma 5. Hence K1¢ € Af 5(By).

Now consider the function K»¢. It is obvious that Ko¢ € C(B,). Moreover, for
|x|] < & we have the equality

w(x)
K = ,
Ko@) = ||
where w(x) = (1 — In|x])*T¥(K2¢)(x). It is clear that the function w(x) is

continuous on B, \ {0}. We will find the limit of this function as x — 0. Put

M = 5 gllal)é | |@(x)|. Then applying the inequality (6), we obtain
INIX

1 s+o
()] < (1 tin M) / kG, )] 19O dy

syl
1 s+o 8 s+a
<M(l+ln8> <1+ln| |> f lk(x, )l dy
X
syl
1 s+o 8 s+o
<M(1+1n5> <1~|—ln| |> / lk(er, t)| dt
X
MES[IE:

x| x|

1 s+o
<M (1 +1In 5) / lk(er, t)] (1 4 |In|z]])+* dt.

8
1> 2

The last integral tends to zero as x — 0 by virtue of 3°. Hence w € Cy(B,(§)) and
consequently Kop € AT ;(B,). ]

Corollary 1 Let inequality (5) hold and let a function ¢ € A¢ ;(B,) such that

v(x)

(1o V€ CoBaO)

(x) =

for|x| < 8. Then K¢ € A‘;"a(IB,,) and for |x| < § the representation

w(x)

KOW = (|00

w € Co(B,(9))

is satisfied.
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Proof The proof follows directly from the analysis of proofs of Theorem 1 and
Lemma 4. |
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A Dirichlet Problem for Non-elliptic m)
Equations and Chebyshev Polynomials ik

A. H. Babayan

Abstract We consider the Dirichlet problem for the linear non-elliptic fourth
order partial differential equation in the unit disk. It supposed that in the equation
only fourth order terms and coefficients are constant. The solvability conditions
of in-homogeneous problem and the solutions of the corresponding homogeneous
problem are determined in explicit form. The solutions are obtained in the form of
expansions by Chebyshev polynomials.

Keywords Chebyshev polynomials - Dirichlet problem - Improperly elliptic
equation - Fourth order non-elliptic equation - Correct boundary value problem

1 Formulation of the Problem and Historical Remarks

Let D be a unit disk of the complex plane and I' = 9 D. We consider the higher
order differential equation

2N 32NV
> A =0, (x,y)eD, (1
kav2N—k
= dxkay
where Ay are constants (A9 # 0). We denote A, j = 1,...,2N the roots of the

characteristic equation

2N
oAt =o. )
k=0
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We are looking for a solution V of Eq. (1) in the class c*N(pyncN-1.9)(pur)
which satisfies the Dirichlet conditions on the boundary I':

kv
ark = fi(x,y), (x,y)€l, k=0,N—1 3)
rr

Here f;, j = 0,N —1 are given functions defined on I' from the class

CWN=1=ke) (), while ) and J, stand for the derivatives with respect to radius
and argument of the point of the I respectively (z = x + iy = re'?, (x, y) e IN).

There are different cases, connected with position of theroots A, j =1, ..., 2N.
If all roots are not real and half of them belong to the upper half-plane and another
half—to the lower half-plane Eq. (1) is properly elliptic and the problem (1), (3) is
correct, that is homogeneous problem (when f; = 0) has finite number of linearly
independent solutions and for the solvability of the in-homogeneous problem it is
necessary and sufficient that there is a finite number linearly independent conditions
to the boundary functions fi [1, 2]. If all roots are not real and the numbers of the
roots in the upper and lower half-planes are different, then Eq. (1) is improperly
elliptic. Investigation of the Dirichlet problem for such equations started in the
famous paper of A.V. Bicadze [3]. Further it was shown that all classical boundary
value problems are not correct (see, for example [2]) for improperly elliptic equation
(1). Correct formulation of the Dirichlet problem for second order improperly
equation was presented in [4]. The main problem—exact determination of the class
of boundary functions. It was shown in [4] that the boundary functions must be
analytic in the domain inside the unit disc. Then the problem (1), (3) for properly
elliptic equation (1) was considered in [5, 6] and [7] and for improperly elliptic
equation (1) in [8—10]. In [5] a method was introduced applicable not only to elliptic
equation (1), but to non-elliptic (when Eq. (2) has real roots) equations also.

In the paper, we consider the case, when roots of Eq.(2) may be real. It was
shown in [11] that in this case the problem (1), (3) is not correct. Then the second
order hyperbolic equation (1) was considered in [12—14]. The Dirichlet problem
for the first order hyperbolic system was considered in [15]. In all these works the
solvability of the problem was connected with the geometry of the boundary I'. In
the [14] the homogeneous Dirichlet problem for the vibrating string equation was
investigated in the unit disk. It was shown that the solution may be represented
by the Chebyshev polynomials. We will show in the paper, that these polynomials
are useful for the investigation of the Dirichlet problem for arbitrary higher order
equation. We want to introduce the unified approach to investigation of the problem
(1), (3) in the unit disk for non-elliptic and elliptic higher order equation (1).
The main idea is the usage of the expansions of the solution by the Chebyshev
polynomials. We consider the case of fourth order equation (1), when roots of Eq. (2)
are real. In the final part of the paper we consider particular case of fourth order
equation with real and complex roots.
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Let’s pass to exact formulation of the results. We consider fourth order equation
(1), and in the first two sections we suppose that A j, j = 1, 2, 3, 4 four roots of the
characteristic equation (2), are real.

First we consider the case, when A1 = A3 # A2 = A4. In this case Eq. (1) may be
represented in the form:

0 A AV A Y V=0 “4)
ay  tox) \ay  Max) T T
Taking into account identities aax = cos @ 3‘9r — Sife 3‘90 , 3‘3 = sin6 3‘9r + Cofe 3‘90 , we
replace boundary conditions (3) by the equivalent conditions
Vel = cos6f1(0) — sin0f;(60) = F(0),
Vy|p = sin6f1(0) 4 cos 65 (6) = G(6); (5)

V(1,0) = fo(0), z=x+iy=¢" (x,y)eTl.

Here F, G € C®(I") are uniquely determined by the boundary functions f i ] =
0, 1. We will prove the following theorem

Theorem 1 If the roots of Eq.(2) are real and satisfy the condition A1 = A3 #
X2 = A4 then the problem (4), (5) is uniquely solvable.

In Sect. 3 we consider the case, when Eq. (1) may be represented in the form

9 AN/ a 9
—a —A V=0 6
(ay 1‘ovc) (ay zax) ©

that is the roots of Eq. (2) satisfy the condition A1 = A3 = A4 # A2 (A are real).
Let’s denote angles «; by the formulas

1
\/1+A§

Then, the obtained result is the following.

cosaj = , sino; =

. j=1,2. 7

Theorem 2 We suppose that the roots of Eq. (2) satisfy the condition: Ay = A3 =
A4 # Ap. We denote § = ap — ay, where the angles aj are found from (7). In this
case the homogeneous problem (6), (5) (when F =0, G = 0 and fo(0) = 0) has a
unique solution if and only if the conditions

O (8) = (k — ) sin(k + 1)8 — (k + 1) sin(k — 1)8 # 0, 8)
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fork =3,4,... hold. If the conditions (8) fail for some q (that is ©4(5) = 0), then
the homogeneous problem (6), (5) has one non-zero solution—polynomial of order
q + 1. Hence, the dimension of the kernel of the problem (6), (5) is equal to the
quantity of the numbers 1 for which (8) fail, that is ®;(5) = 0.

Theorem 3 If the angle § = 0.5m then homogeneous problem (6), (5) has an
infinite number of linearly independent solutions, which are polynomials of order
2m (m = 2,3, ...)and the corresponding in-homogeneous problem has a solution
if and only if the boundary functions F and G satisfy infinite number of linearly
independent orthogonality conditions.

The linearly independent solutions of the homogeneous problem and linearly
independent solvability conditions of the in-homogeneous problem (6), (5) are
determined in explicit form.

2 The Case of Double Roots of Eq. (2)

We consider the problem (4), (5). The general solution of Eq. (4) may be represented
in the following form [5]:

a
Vix,y)=Polx +21y) + BOCDI(X +A1y) + Wolx + A2y)+

ad
+ aewl(x+kzy), X =rcosf, y =rsinf. ©)]

Here @, W; are the functions to be determined. Let’s substitute the solution (9) in

: : : e D00 _ 9D 8 99 _
the boundary equations (5). Using operator identities ;. 5o = 45 5 + dy* dy 06 =

a 0 9

86 8y — x> W€ get two equations for the determination of the functions CD;., lI/;

/ 0 / / a
D (S1) + (39 + )»11) @, (S1) + ¥p(S2) + <

20 +x21> W ($) = F(O);

4 a 4 ! a 4
A1 Py(S1) + (M 99 1) D (S1) + 12¥y(S2) + ()xz 99 1) v, (82) = GO).
(10)

Here

Sj=cos9+xjsin9=\/1+x§cos(9—a,-),j=1,2 (11)
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where the angles o; determined in (7). Thus, unknown functions on the boundary
depend on cos(f — o), therefore, 27 -periodic functions, symmetric relative to the
angle (6 — o ;). Therefore, these functions may be represented by the Fourier series,
and in the corresponding Fourier expansions only cos k(6 — ¢ ;) terms will remain.
We get the representation of unknown functions on the boundary I':

o0
\/1 + 23 (S1) = ZAkj cosk(® —ay), j=0,1
k=0

[e¢)
\/1 + MW (S) =) Bijcosk(® — ), j=0,1.
k=0
Recalling the definition of the first kind Chebyshev polynomials [16], we see, that

o
J1H2300(8) = 3 Ay Titeos @ —an)). j=0.1
k=0

o0
J14220005) = 3 ByTe(eos 0 —a2), j =01 (12)
k=0

Thus, we seek unknown functions by the expansions (12) for arbitrary x + A ;y for
(x, ¥) € D. Substituting these expansions in (10) we have:

o0 o0 o0
Z Arocosa cosk(d —aj) — Z Axik cosa sink(0 — o) + Z Agi sino -
k=0 k=0 k=0

o0 o0
cosk(@ —ay) + Z Brocosapcosk(f — ap) — Z Byikcosap sink(6 — ap)+
k=0 k=0

o0 o0
Y Businaycosk(d — ) = F(0): Y Aposinay cosk(® — o) —
k=0 k=0

o o o0
Z Axiksinag sink(® — o) — Z Agicosag cosk(d —ay) + Z Byo sinaa-
k=0 k=0 k=0

o0 o
cosk(® — ag)—z Biik sino sin k(0 — 052)—2 By cosan cosk(@—an) = G(6).
k=0 k=0



60 A. H. Babayan

Let’s group the coefficients of cos k6 and sin k6 and use the Fourier expansions of
the boundary functions F and G:

Fy < Gy —
F@O) ="+ (FicoskO+Esink), GO) = .+ (Gycosk+Hysin k).
2 k=1 2 k=1
(13)
We get

e¢]

Z ((Axocosay coskay + Agy(kcosay sinkay + sinag coska) + Brocosan-
k=0

cos kay 4+ By (k cosap sin kap + sinap cos kan)) cos k6 + (A cos aq sin ka1 +

Brocosap sinkay + Ag(—k cosaq coskay + sinag sinka) + By (—kcosan-

F o
cos kap + sin oy sin kap)) sink6) = 20 + Z(Fk cos kO + Ej sink0),
k=1

o0
Z ((Aro sinoy coskoy + Agp(ksinog sinkay — cosaq coskay) + Byosinan-
k=0

cos kay 4+ By (k sinay sin kay — cosap cos kan)) cos k6 + (Ao sina sin kaj+

Aj1(—k sinay cos kay — cosay sinkoy) + Byo sinap sinkoy + By (—k sin -

G o0
coskay — cosap sinkay)) sinkf) = 20 + Z(Gk cosk6® + Hy sink6).
k=1

Using uniqueness of the Fourier expansions, we can equate the corresponding
coefficients of cosk6f and sinkf and get the system of linear equations for the
determination of unknown Ag;, By for j =0, 1. If k = 0 we get

Agocosay + Agp sinay + Bog cosay + Bpp sinay = 0.5F,

Agosina; — Agg cosay + Bop sinay — Boj cosay = 0.5Gy. (14)

For k > 1 we obtain fourth order linear system. If we introduce the following
notions

X = (Axo Ax1 Bro Bin)'; b= (Fy Ex Gy Hp)T (15)
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then we get the system for determination of unknown vector X
— _ 1 1 2 2

Here Q. is a matrix with four-dimensional columns Lii, i, j = 1,2. These columns
are determined by the formulas:

L{kl cosa; cosko
L= Lékl | cosajsinka;
ke L, | sine;j coske;
Lz{kl sina; sin kaj
L{_kz kcosasinkoj + sina; cos ko
1= L£k2 | —kcosajcoska; + sina; sinka; — 12 a7
k2= L, | ksinajsinka; — cosa; coska; T
L, —ksina coska; — cosa; sinka;
Calculating the determinant of the system (16), we get
det Q; = k*sin® § — sin® k8 = sin® §(k*> — U2 (cos &), k=1,2,...,  (18)

where Uy_1—second kind Chebyshev polynomial of order k — 1,6 = a2 — a1 («;
determined in (7)). Taking into account, that cosa; > 0 (see (7)) and a1 # a»
we see that § # 0, m and, therefore, |Ux—_1(cosd)| < k (see [16], point 2.2) and,
therefore, the det Q; # O fork = 2,3, ...

Let’s consider homogeneous problem (4), (5). In this case F(#) = 0 and G(0) =
0, hence, from unique solvability of the system (16) for £k > 1, we see, that the
solution of the homogeneous problem (4), (5) may only be the polynomial of order
two (because in the expansions (12) only Ao;, Bo; and A1}, By; differ from zero).
But an arbitrary non-zero polynomial, which satisfies the homogeneous conditions
(5) on I' is divisible by (1 — z7)? (see [17], theorem 5.1), which means that the
homogeneous problem (4), (5) has only trivial solution.

Now, we return to in-homogeneous problem (4), (5). We must consider the in-
homogeneous systems (14), (16). First, taking into account, that det 4 # 0 for k =
2,3, ..., we see that in this case coefficients A; and By are determined uniquely.
System (14) is solvable for arbitrary right part, so Ag; and By; may also be found
(not uniquely). In the system (16) for k = 1 left parts of second and third equations
are the same. Right parts of these equations coincide also because (5) imply that the
functions V, sin@ and V), cos 6 differ by f{ only, therefore, their integrals from —x
to  coincide, so E1 = G1. Summing up, we can say that all coefficients Ay; and
B; may be determined from the systems (14), (16), therefore, the in-homogeneous
problem (4), (5) has a solution.
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Now, we must show, that this solution belongs to the class C L) (D UT). The
determinant det 24 for k — oo is equivalent to k2 (more precise det 2 ~ sin? 8k2),
therefore, the coefficients Ay and By are equivalent to ||b||k~! and the coefficients
Ao and Byo are equivalent to ||| in infinity, where b is a vector of the Fourier
coefficients of boundary functions from (15). These relations imply (see [18], page
210), that all components of the solution are from the class C (LO) (D). Thus, the in-
homogeneous problem (4), (5) has a solution in the class C (Lo) (D) and this solution
is unique. Theorem 1 is proved.

3 The Case of the Triple Root of Characteristic Equation

In this section we consider the case, when the characteristic equation has two distinct
real roots, one of which has the multiplicity three, that is Eq. (1) is reduced to the
form (10). In this case the solution of Eq. (6) represented in the form [5]:

3 3\°
Vix,y) = ®olx + A1y) + ag@l(x—i—)»ly)—i—(ae) Do(x +A1y) + V(x + Xoy).
(19)

Here x = rcos0, y = rsinf) and ®;, ¥ are the functions to be determined. Let’s
substitute the solution (19) in the boundary equations (5). Using operator identities

a 0 a 0 a a d a 0 a

— + ) — - )

dx 060 00 ax  dy dy d0 060090y  0x
aaz_aza+2aaa 0 (N _ (o) 9 _,00 0
ax \90/) ~\a0/) ox “90dy oax’ ay\avw) ~\ose) ay “90ox dy’
we get two equations for the determination of the functions <I>/j, v

, 9 , 3\? 9 , ,
Dy(S1) + <89 +k11> d,(S) + ((ag> +2A186 —1) D, (S1) + V¥ (52) = F(0),

, B , 3\2 3 , ,
A Dy (S1) + (Mae —1) D (S) + (M (39) -2, —MI) D5 (S1) 4+ AW (S2) = G(6).

(20)
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Here S; were defined in (11) and unknown functions CD’/., W may be represented in
the form, analogous to (12):

o
JIH2395050) = 3" A Ticeos @ —an). j=0.1.2,
k=0

o0
V12308 = Bili(cos @ — w), e
k=0
We substitute the functions (21) in the boundary conditions (20):
o o
Z Arocosaycosk(@ —ay) + Z A1 (—kcosay sink(f — ) + sina cos k(0 —

k=0 k=0

oo
o)) — ZAkz <k2 cosaycosk(@ —ay) + 2k sinay sink(60 — ) + cos aj cos k(06—
k=0

oo oo x
al)H‘Z B cosapcosk(@ —ap) = F(0); Z Ao Sin o cos k(@—(xl)—f—z Ar1 (k-
k=0 k=0 k=0

oo
sinag sink(@ — ay) — cosaycosk(@ —ay)) — Z A <k2 sina cosk(@ — ay)—
k=0

o0
2k cosoay sink(f — o) + sinay cos k(0 — ay)) + Z B sinap cosk(0 — ap) = G(0).
k=0

Using Fourier expansions of the boundary functions F" and G (13) and equating the
coefficients of the corresponding cos k6 and sin k6 we get the systems of equations
analogous to (14), (16) for the determination of unknown coefficients Ay; and Bg.
For k = 0 we have
Agpcosay + Agy sina; — Agp cosag + Bocosar = 0.5F)
A()() sin o] — A()1 cosoy — A01 sin o] + Bo sin o) = 0.5G0. (22)

For k > 1 if we introduce unknown vector

Xi = (Ako Ax1 Ax2 Bp)T (23)



64 A. H. Babayan

and given vector b (15) of the Fourier coefficients of the boundary functions, we get
the system for determination of unknown vector Xy:

uXp=b, U= (L} L, LsLE). (24)
where Lil and L/iz are determined in (17) and

—(k2 + 1) cosag cos kap + 2k sin «g sin kag
—(k2 + 1) cosay sinkay — 2k sin g cos kory
—(k2 + 1) sinaj cos kay — 2k cos g sin korg
—(k2 + 1) sinag sin ka; + 2k cos g cos kary

L}(3 = (25)

After transformation, Ay = det €2, the determinant of the system (24), may be
reduced to the form

1 —(k—1) (k—1)? g1

i 1 k+1 (k+1)2p*td
A= det

e 1 k=1 k=12 g

L=+ 1 (k+1)> gttt

(26)

Here B = expid, and § = a» — o was defined in Theorem 2. Calculating the
determinant (26), we get:

Ak = k((k — 1) sin(k + 1)8 — (k + 1) sin(k — 1)8) = kOk(5). 27)

where the function ® defined in (8). From definition of the angles «;, we have
0 < |8] < . We see, that the solvability of the problem (6), (5) is connected to the
solvability of the system (24), and, therefore, with the properties of the determinant
7).

Proof of Theorem 2 Let’s consider the homogeneous problem (6), (5). This prob-
lem is reduced to the solution of homogeneous systems (22), (24) (b = 0, Fy =
Gy = 0). If the conditions (8) hold, then the system (24) for k > 3 has the trivial
solution only. If k = 2 the determinant (27) differs from zero for arbitrary § # 0.
Hence, in the expansions (21) coefficients Ay, By are equal to zero for k > 1. It
means, that the solution of the homogeneous problem (6), (5) is at most second order
polynomial. But an arbitrary non-zero polynomial, which satisfies the homogeneous
conditions (5) on I' is divisible by (1 — z2)? (see [17], theorem 5.1), therefore, has
at least fourth order. Thus the homogeneous problem (6), (5) is uniquely solvable.
If the condition (8) failed for some ¢ > 3, then the homogeneous problem (6), (5)
has non-trivial solution—a polynomial of order g + 1 (we may get in the expansions
(21) Agj = By = O for k # g and instead of A,;, B, get the non-trivial solution of
the corresponding system (24)). Theorem 2 is proved. O
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Proof of Theorem 3 Now, let’s suppose, that § = 0.5, that is the roots A1, A2 of
the characteristic equation (2) satisfy the condition 1 + A1A2 = 0. In this case,
from (8) we get, that ®@,,,_1(6) = 0 form = 2, 3, ..., therefore, the homogeneous
system (24) has non-trivial solution X»,,—1 (23). Substituting this solution in the
formulas (21), and supposing Ay; = By = 0, for k # 2m — 1, we get a non-
trivial solution of the homogeneous problem (6), (5), which is a polynomial of
order 2m. For example, ®3(0.57r) = 0 and direct computation shows, that the
function (1—x2—y?)? is a non-trivial solution of the homogeneous problem (6), (5).
Let’s consider in-homogeneous problem (6), (5). This problem is reduced to the in-
homogeneous systems (22), (24). The system (22) always has a solution. If k = 2m,
then the determinant (26) of the system (24) is equal to Ay, = 8(=1)"tm?2,
therefore, the system (24) is uniquely solvable, and the solution has following
estimate for m — oo:

Aomo ~ |Ibllm, Bom ~ |bll, Azm1Asmo ~ |bllm™", . (28)

If Kk = 2m — 1, then third column of the matrix €25, of the system is a linear
combination of the first and fourth columns, and the range of €2;,,_1 is equal three,
therefore, right parts of the system (components of the vector ) have to satisfy one
solvability condition. Recalling, that the components of the vector b are the Fourier
coefficients of the functions F and G, this condition may be written in the following
form:

/n F(e)sk(e)cm:fﬂ GOR()dO, k=2m—1, m=1,2,..., (29

-7 —TT

where
Si(0) = (k+ 1)sin(k(@ — 1) + 1) — (kK — 1) sin(k(0 — 1) — 1),
Ri(0) = (k+ 1)cos(k(@ — 1) + 1) — (k — 1) cos(k(@ — a1) — o). (30)

If this condition holds, we may get Axy = 0, and the system (24)is reduced to the
system

cosay coska; kcosoaqsinkap + sinoj coska; — sinag sinkog
cosw sinka; —kcosag coskay + sinag sinka) sinag cos ko Y =b
sinoq coskay ksinagsinka; — cosa coska;  cosog sinkag ’
sinog sSinkap —k sin o coska; — coso sinkop — cos g cos korg
31
where ¥ = (Aam—1.0 A2m—-11 (—D" BZm_l)T is three-dimensional unknown

vector, and b is a given vector from (15). For determination of the ¥ we may
get arbitrary three equation of the system (31). If we get first three rows, then
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corresponding determinant of the system is equal Qx = 2(k — 1) sin(k + 1)aq,
and if we get first, third and fourth rows, then corresponding determinant is equal
Ry = —2(k — 1)cos(k + 1)a;. These values (Q and R;) may be small for
different values of ay, when k = 2m — 1 — oo, but Q2 + R? = 4(k — 1)%,
therefore, for arbitrary k = 2m — 1 we may choose Qy or Ry such that the modulus
of the corresponding value will have 2(k — 1) order in infinity and find ¥ from
corresponding system. We will have the estimates

Aom—1,0 ~ Ibll, Bam—1 ~ lIbll, Azm—1,1~ lbllm™", . (32)

analogous to (28) for the obtained solution. Substituting all found coefficients Ay;
and By in (21) we will get the solution of the in-homogeneous problem. Using the
estimates (28), (32) and the formula (2.43) from [16] for integral of Chebyshev
polynomial and the boundary conditions (20), we see that the obtained solution
belongs to the prescribed class C(1:®) (D). Theorem 3 is proved. O

4 The Case, When Eq. (2) Has Real and Complex Roots

In the final section we consider one special case of the fourth order equation (1),
when the characteristic equation (2) has real and complex roots. This equation in
the rectangle was investigated in [19].

Let’s consider an equation

o ( ) — o ( ) ( ) (33)
X, x,y)=0, (x,y)eD.
9 4 y 9 4 y y

Unknown function V belongs to the class C 4(D) N c19)(D) and on the boundary
I' = 9D satisfies the conditions (5). The method of solution of the problem (33),
(5) is analogous to the previous section consideration, hence, we explain it without
details.

The general solution of Eq. (33) may be represented in the form:

Vix,y) = @1(x +y) + P2(x — y) + RO3(x +iy), (x,y) € D, (34)

where ®;, j = 1,2 are unknown two times differentiable functions and @3 is
analytic in D. We substitute these functions in the boundary conditions (5):

Q) (x + y) + Ph(x — y) + RO (x +iy) = F(6),

D (x +y)— Dy(x —y) + Nid(x +iy) = G@), x =cosf, y =sinf. (35)
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As in the formulas (12), we represent the unknown functions by the series

o0
@/ (cos 0 + sinh) = &' (v2(cos(0 — 0.257)) = Z A1 cosk(® — 0.257),

k=0

or

o0
@ (cosf + sinf) = Z Ar1 Te(cos(6 — 0.257)),

k=0

and
o0

/2(0039 —sinf) = Z A2 Ty (cos(0 4+ 0.257)). 36)

k=0

The function @ represented in the following form:

o0
@) (cost +isinh) = Z cret? = (37)
k=0

o0 o0
= Z(Bk coskf — Cy sink®) + i Z(Bk sink® + Cy coskf), cx = Bi +iCy.
k=0 k=0

Substituting (36), (37) and expansions (13) of the boundary functions in (35), we
get

o0
Z (((Ax1 + Ag2) cos 0.25km + By) coskO + (((Ax1 — Ag2) sin0.25km —
k=0

F o0
—Cy) sinkf) = 20 + ) (Fi coskd + Esinko), (38)
k=1

o0
Z (((Ag1 — Ag2) c0s0.25kmr — Cy) cos kb + (((Ax1 + Ag2) sin 0.25kmr —
k=0

Go

(o)
5+ > (Gicoskt) + Hy sinkt). (39)

k=1

—By)sinkf) =
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Equating the coefficients at the same cos k6 and sin k6 for k > 1, we get;
(Ag1 + Ag2) cos 0.25kw + By = Fy,
(Ak1 + Ak2) sin0.25kmw — By = Hy, (40)
(Ax1 — Agp) c0s0.25kmr — Cr = Gy,
(Ax1 — Ax2) sin0.25kw — Cy = Ek. “4n

Let’s consider the system (40), (41). If k = 4m, or k = 4m + 2, then the system
has unique solution, therefore, the coefficients A4y, j, Aam+2, s Bam, Cam, Bam+2,
C4m+2 are uniquely determined. Let’s suppose, that k = 4m + 3. In this case the
system (40) is reduced to the form:

(Ak1 4+ A)0.5vV2(=1)" — B, = —F,
(A1 + Ar2)0.5vV2(=1)" — By = Hy, k =4m +3 “2)

therefore, for the solvability of the system the condition Fu;,4+3 = — Ha;,+3 has to
be met, or

T

T
/ F(0) cos(4m + 3)0d0O —i—/ G(0)sin(dm +3)0d6 =0, m=0,1,....
—7T —7T
(43)

The system (41) in this case is uniquely solvable. Analogously, if k = 4m + 1, then
the system (40) is uniquely solvable, and for the solvability of the system (41) the
condition:

g

T
/ F(0) sin(4m + 1)0d6 — / G@@)cos(4m +1)8d6 =0, m=1,2,....

—7T —TT
(44)
is necessary.
Let’s consider homogeneous problem (33), (5). This problem is reduced to the
solution of the homogeneous system (40), (41). The non-zero solution of this system
will be for k = 4m + 1 and for k = 4m 4 3 only. If k = 4m 4 3, we may get

V2
Bimiz =1, Camy3 =0, Agny3 1 = Agmyr12 = (D" 5
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The corresponding non-trivial solution of the homogeneous problem (33), (5) is the
following:

Vam+a(x, y) = @1 am43(x +y) + Poam+3(x — y)
+ NP3 4yq3(x +iy), m=0,..., (45)

where
/1,4m+3 <\/ZCOS (9 — Z)) — (=)™ \22 cos ((4m 13 (9 B Z)) ,

Ohamss (V2005 (04 ) = 0 s (m +3 (04 7).
) 43 (€)= cos ((4m +3)0) + i sin ((4m +3)6) .

Example 1 Let’s determine the function V4 (for m = 0) in explicit form. We have

’ T V' T NG b4
D5 (\/2005(9— 4)) = 220053<9— 4) = 22 <4<cos<9— 4))3—

cos(o-7)) =5 (2(Vaeos (0-)) = 3vaeos (o= 7 ) ).

and, therefore,
l 1 3
O+ = 26+’ =30 +).
After integration, we get
_ 1 4 _ 2\ L =~
Prstr+y) =, (r+y) 3(x+y)7) +ei,
and, analogously,
16} — 1 N 2 -~ LN 1 . \4 o~
23(x,y) = 4 (x=y)"=3x—y))+c2 P33(x+iy)= 4(36 +iy)" +c3.

Here ¢ are some constants. Finally, the solution Vj is the following:

, .3 _
Va(x, ) = @13(x +3) + P23 (x = y) +RP33(x +iy) = | (1 —x?—yHr+e—
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We determine the constant ¢ from the last homogeneous condition (5) Va(1,0) =
~ 3
c—,=0.

In the case k = 4m + 1, the system (41) is singular, therefore, as non-trivial
solution of the (40), (41), we may get the following:

V2
Bamt1 =0, Camg =1, Asmy1,1 = —Asmg12=(—D" 5

The corresponding non-trivial solution of the homogeneous problem (33), (5) is the
following:

Vam+2(x, y) = @ am+1(x +y) + Poam+1(x — y)
+§R(D3,4m+l(x+iy)v m = 11"'7 (46)

where
s (V200 (0= 1)) = 0 om0 7).

i (V2e0n(04)) = -1 e (om0 (04)

S (e”) = i(cos (4m + 3)0) + i sin ((4m + 3)0)).

Example 2 Let’s determine the function Vs (for m = 1) in explicit form. We have

o5 (Vaeos (0 7)) =~ P eoss (0= ) == (16 (eos(0 - 7)) -
—20 (cos (6 - Z))3 +5cos (6 - Z))

and, therefore,
1
st +y) =~ (4(x F )5 — 100 + )% + 5 + y)) .
After integration, we get

1 5 5 _
D s5(x+y) = —3(x+y)6+ 4(x+y)“— 4(x+y)2+C1,
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and

1 69 4,9 2~ . i N
Dy5(x,y) = 3(x~|—y) —4(x+)’) +4(X+y) +c2, @3 5(x+iy) = 6(x+l)’) +c3,
where ¢ are some constants. Finally, the solution Vg is the following:

Vo(x,y) = @15(x + y) + Pas(x — y) + Ry 5(x +iy) = —5xy(1 — x> — y?)%.

The resulting constant, as in previous case, we determine from the last homogeneous
condition (5) V4(1,0) = 0.

Summing up, we obtain the following theorem.

Theorem 4 The homogeneous problem (33), (5) has infinitely many linearly inde-
pendent solutions V;, determined by the formulas (37), (46). The in-homogeneous
problem (33), (5) has a solution in the class C*(D) N CY9)(D) if and only if
the infinitely many linearly independent conditions (43), (44) holds. The solution
is determined in explicit form by (36), (37) expansions.
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Martingale Hardy-Amalgam Spaces: )
Atomic Decompositions and Duality ik

Justice Sam Bansah and Benoit F. Sehba

Abstract In this paper, we introduce the notion of martingale Hardy-amalgam
spaces: H,, .. Qp 4 and Pp 4. We present two atomic decompositions for these
spaces. The dual space of H,, , for0 < p < g < I is shown to be a Campanato-type

space.

Keywords Martingales - Hardy-amalgam spaces - Atomic decomposition -
Campanato spaces
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42B25, 42B35

1 Introduction

We owe the martingale theory to J. L. Doob from his seminal work [9]. The
theory was later developed by D. L. Burkholder, A. M. Garsia, R. Cairoli, B. J.
Davis and their collaborators (see [4-7, 12, 24, 29] and the references therein).
Martingales are particularly interesting because of their connection and applications
in Fourier analysis, complex analysis and classical Hardy spaces (see for example
[3, 4, 9, 10, 21, 29]). For instance in [4], we see that the methods developed
for Banach valued martingales can be used to obtain sharp constants in some
inequalities. The Riesz Theorem can also be proved in a probabilistic way as it
is done in [3]. The martingale proof of T (b) Theorem and some other martingale
techniques in Harmonic analysis are discussed in [21, 22] and of course the main
book by Weisz [29] contains applications where martingale techniques are used in
Fourier analysis.
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The simplicity of structures in the martingale settings makes it easier when one
wants to study some properties of some function spaces such as equivalences of
spaces, and dualities. For instance, in 1970, one of the questions mathematicians
were interested in, was the extension of R.E.A C Parley’s inequality, originally
proved for 1 < p < oo, to the case where p € (0, c0). D. L. Burkholder and
R. F. Gundy [5] were able to extend the result for all p € (0, 00). Their ability to
do this was essentially due to the introduction of the measurable functions s( f') and
S(f) where f is a martingale. These measurable functions are known as conditional
quadratic variation and quadratic variation respectively and were first introduced in
[5]. This insight from D. L. Burkholder and R. F. Gundy gave birth to the classical
martingale Hardy spaces of which many authors have contributed to the growth in
the past few years [5, 7, 12, 22, 29]. These martingale techniques introduced by
Burkholder and his colleagues, led to many important results in the literature. One
of these results is the equivalence result named after Burkholder, Davis, and Gundy
where they showed that the function space generated by the maximal function and
function space generated by the quadratic variation are equivalent for 1 < p < oo
[5, 29]. Another important result obtained by applying martingale techniques is the
characterization of the dual space of the spaces generated by the maximal functions
when p = 1. This dual space was shown to be the BMO space [12].

The classical martingale Hardy spaces H), are defined as the spaces of martin-
gales whose maximal function, quadratic variation or conditional quadratic variation
belongs to the usual Lebesgue spaces L, with a probability measure. The atomic
decompositions, martingale embeddings and dual spaces of these spaces and related
spaces are discussed by F. Weisz in [29]. This type of studies has been considered
by several authors for some generalizations of the classical Lebesgue spaces as
Lorentz spaces, Orlicz spaces, Orlicz-Musielak spaces. .. (see [15, 19, 23, 26, 30—
32]). Even though this paper mainly focuses on martingale Hardy-amalgam spaces,
it is also worth mentioning that atomic decompositions, martingale embeddings and
dual spaces have been also considered for martingale Morrey-type spaces (see for
instance [8, 16, 17, 33]).

In this paper, inspired by the recent introduction of Hardy-amalgam spaces in the
classical Harmonic analysis [1, 2, 34], we replace Lebesgue spaces in the definition
of the classical martingale Hardy spaces by the Wiener amalgam spaces, introducing
then the notion of martingale Hardy-amalgam spaces. As Wiener amalgam spaces
generalize Lebesgue spaces, martingale Hardy-amalgam spaces then generalize the
martingale Hardy spaces presented in [29]. We provide atomic decompositions and
we characterize the dual spaces of these martingale Hardy-amalgam spaces and
their associated spaces of predictive martingales and martingales with predictive
quadratic variation.

We are motivated essentially by two observations. As first observation we note
that in the case of classical Hardy-amalgam spaces of [1], atomic decomposition is
obtained only for the range 0 < p < g < 1. The question that came into our mind
was to know if any answer could be given beyond this range. The second observation
is that dyadic analogues of Hardy spaces and their dual spaces are pretty practical
when comes to the study of some operators as paraproducts, Calderén—Zygmund
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operators and their commutators on some function spaces (see for example [20,
25, 27, 28]). It was then natural to consider dyadic analogues and more generally,
martingale analogues of the Hardy-amalgam spaces of [1].

The outline of this study is as follows. In Sect.2, we recall the definition of
amalgam space and also recall the definition of the conditional quadratic variation,
s(f), the quadratic variation, S(f) and the maximal function f*. With these in
hand, we will then be in a good position to introduce the martingale Hardy-amalgam
spaces we will consider in this study. Next in Sect. 3, we present the main results of
this study and in Sects. 4 and 5 we present the proofs of our main results. Finally,
in Sect. 6, we conclude and introduce the reader to some unsolved problems in this
area of study.

2 Preliminaries: Menagerie of Spaces

We introduce here some function spaces in relation with our concern in this paper.

2.1 Wiener Amalgam Spaces

Let © be an arbitrary non-empty set and let {€2;};cz be a sequence of nonempty
subsets of €2 such that Q; N Q; = @ for j # i, and

Ueai=<.

JEL

For0 < p, g < 00, the classical amalgam of L, and /,, denoted L, 4, on £2 consists
of functions which are locally in L, and have [/, behaviour, in the sense that the L -
norms over the subsets £2; C €2 form an [, —sequence i.e. for p, g € (0, 00),

Lpg={f :1fllpg:=1fllz,,@ < oo}

where

1

1 llpg == 1Nz, g = Z([QWIQ,dP)” : (1)

JEZ

for 0 < g < oo, and for g = oo,

1
p
Lpoo= :f: 11 p.oo = 1 I1Lpmo(e = SUp (/ Ifl”lszde) < OO}-
JEL Q
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For the sake of presentation, we will use the notation

1
q

1 llpg == Z(/QWlQ,.dP)” :

JEL

for0 < p < 00, and 0 < g < oo, where the right handside is understood as

1
sup ( / |f|P19,.dP)”
JEZ Q

when g = oo. As usual, 14 is the indicator function of the set A. We observe the
following:

* Endowed with the (quasi)-norm || - ||, 4, the amalgam space L , is a complete
space, and a Banach space for 1 < p, g < oo.

* I fllp.p =Ifllp for f € Ly(S2).

* I fllpg =lflpif p<qgand f € Ly().

* Ifllp =W fllpqifg < pand f € Lpg(€2).

Amalgam function spaces have been essentially considered in the case @ = R?, d e
N, and in the case d = 1, the subsets €2 are just the intervals [, j + 1), j € Z. For
more on amalgam spaces and their properties and applications, we refer the reader
to[11, 14, 18].

2.2 Martingale Hardy Spaces via Amalgams

In the remaining of this text, all the spaces are defined with respect to the same
probability space (€2, F,P). Let (Fou>0 = (Fu)nez, be a non-decreasing
sequence of o-algebra with respect to the complete ordering on Zy = {0,1,2---}
such that

o(U]:n)=}'.

neN

For n € Z., the expectation operator and the conditional expectation operator
relatively to F, are denoted by E and E, respectively. We denote by M the set
of all martingales f = (f)n>0 relatively to the filtration (F,),>0 such that fo = 0.
We recall that for f € M, its martingale difference is denoted d,, f = f, — fu—1,
n > 0 with the convention that dp f = 0.

We recall that the stochastic basis, (F,),>0 is said to be regular if there exists
R > Osuch that f, < Rf,— for all non-negative martingale (f,)n>0.
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A martingale f = (fn)n>0 is said to be L, bounded (0 < p < o0) if f, € L),
for all n € Z and we define

I fllp == supllfullp < o0.
neN

We recall that

11, = E(f1P)r = (/Q Iflpd]P’>p .

We denote by T the set of all stopping times on 2. For v € T, and (f,)n>0 an
integrable sequence, we recall that the associated stopped sequence f” = (f,))n>0
is defined by

fi = farv, nE€Zy.

For a martingale f = (f,,)n>0, the quadratic variation, S(f'), and the conditional
quadratic variation, s(f), of f are defined by

S(f) = (Z |dnf|2> and s(f) = (ZEn_ndan)

neN neN

respectively. We shall agree on the notation

1
2

1
n 2 n
Su(f) = (Z |d,-f|2) and  s5,(f) = (Z Ei1|d,»f|2)
i=1 i=1
The maximal function f* or M (f) of the martingale f is defined by

M(f) = f*:=sup|fal.

neN

It is also understood in the sequel that E,, f = f,.

We now introduce the martingale Hardy-amalgam spaces: H,, ,, Qp 4 and Pp 4.
Let0 < p < oo and 0 < g < oo. The first space is defined as follows.
@) H} () ={f e M| fly,@ = 5(Hllpq < 00},
Let I" be the set of all sequences 8 = (B,)n>0 of adapted (i.e. B, is F,-measurable
for any n € Z) non-decreasing, non-negative functions and define

Boo := lim B,.

n—oo
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(ii) The space Q ,(2) consists of all martingales f for which there is a sequence
of functions 8 = (B,)n>0 € I' such that S, (f) < By—1 and B € L 4(S2).
We endow Q, ,(€2) with

1£10pq022 = inf NBocllpq-

(iii) The space P, 4(£2) consists of all martingales f for which there is a sequence
of functions 8 = (Bn)n>0 € I' such that | f,| < B,—1 and Bo € Ly 4(£2).
We endow P, 4(£2) with

1flP,,w = élellﬁ |Boollp.q-

A martingale f € P, 4(R2) is called predictive martingale and a martingale f €
Q,.4(82) is a martingale with predictive quadratic variation.

In the sequel, when there is no ambiguity, the spaces H;’ q(Q), Qp,q(2) and
Pp,q(2) will be just denoted H;, ,, Qp 4 and P, 4 respectively. The same will be
done for the associted (quasi)-norms.

Remark 2.3

* Observe that when 0 < p = g < oo, the above spaces are just the spaces
H ;, Q) and P, defined and studied in [29].

* Hardy-amalgam spaces of classical functions Hp , of RY (d > 1) were
introduced recently by V. P. Ablé and J. Feuto in [1] where they provided
an atomic decomposition for these spaces for 0 < p,g < 1. In [2], they
also characterized the corresponding dual spaces, for 0 < p < g < 1. A
generalization of their definition and their work was pretty recently obtained in
[34].

* Our definitions here are inspired from the work [1] and the usual definition of
martingale Hardy spaces.

3 Presentation of the Results

We start by defining the notion of atoms.

Definition 3.1 Let 0 < p < 0o, and max(p, 1) < r < oco. A measurable function
aisa(p,r)*-atom (resp. (p, r)S-atom, (p, r)*-atom) if there exists a stopping time
v € T such that

(al) a, :==E,a=0ifv > n;

1 1
@2) ls@llrr = lis@llr (resp.IS(HIr, la*ll;) <P(By)" »
where B, = {v # oo}.
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We also have the following other definition of an atom.

Definition 3.2 Let 0 < p < 00,0 < ¢ < oo and max(p,1) < r < oc0. A
measurable function a is a (p, ¢, r)*-atom (resp. (p, g, r)S-atom, (p, g, r)*-atom)
if there exists a stopping time v € 7T such that condition (al) in Definition 3.1 is
satisfied and

@3) [s@ll; Gesp.[S@lr. la*ll-) < PB)r 15,11,

We denote by A(p,q,r)* (resp. A(p,q,r)5, A(p,q,r)*) the set of all
sequences of triplets (A, ak, vk), where A, are nonnegative numbers, ak are (p,r)s-
atoms (resp. (p, r)S-atoms, (p, r)*-atoms) and e T satisfying conditions (al)
and (a2) in Definition 3.1 and such that forany 0 < n <1,

n
A
Z( k 1) IBUkELp’q.
k \P(By)» "

We denote by B(p, ¢, r)* (resp. B(p, q, )5, B(p, q, r)*) the set of all sequences
of triplets (A, ak, vk), where A are nonnegative numbers, a* are (p, q, r)*-atoms
(resp. (p, q, r)S-atoms, (p, g, r)*-atoms) and e T satisfying conditions (al)
and (a3) in Definition 3.2 and such that forany 0 < n < 1,

n
A
E ( k ) 1, €Lpr q.
v nn

X ||1ka ”p,q

We observe that A(p,q,r)* < B(p,q,r)* if p < q and B(p,q,r)® C
A(p, q,r)* if g < p. The same relation holds between the other sets of triplets.
Our first atomic decomposition of the spaces H,, , is as follows.

Theorem 3.3 Let 0 < p < 00, 0 < g < o0 and let max(p, 1) < r < oo. If the
martingale f € M isin H, .. then there exists a sequence of triplets (A, ak, vk e
A(p, q,r)’ suchthat for alln € N,

> End = fi )

keZ

and forany 0 < n <1,

A n

k

§ ( 1) 1, =Clfluy,- 3)
k=0 \IP(Bx)?
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Moreover,
m
Z)\kak — f
k=l

in H;’ asm — 00, | - —oo.
Conversely if f € M has a decomposition as in (2), then for any 0 < n < 1,

()

1
kez \IP(Bx)»

1
n

I flla, <C

P 4q
n’n

Using our second definition of atoms, we also obtain the following atomic decom-
position.

Theorem 3.4 Let 0 < p < 00, 0 < g < o0 and let max(p, 1) < r < oo. If the
martingale f € M is in H,, , then there exists a sequence of triplets (A, ak, vk e
B(p, q,r)* suchthat foralln € N,

ZkkEnak = fa 4

keZ

and forany (0 < n <1,

1
n n
A
Z( ¢ )1ka <ClIflluy,- 5)

k>0 ||1ka||p,q »a
n’n

s

Moreover,

i)\kak — f

k=l

in H;;’q asm — 00, | — —o0.
Conversely if f € M has a decomposition as in (4), then forany0 < n <1,

Ak !
Z L,
keZ, ”1ka ”p,q

For the last two spaces, we obtain the following two atomic decompositions.

n

I fllag, <C

pgq —

P q
n’n

s
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Theorem 3.5 Let0 < p < coand0 < g < o0. Ifthe martingale f € Misin Q
(resp. Pp.q), then there exists a sequence of triplets (A, ak vy e A(p, q,00)°
(resp. A(p, q, 00)*) such that for any n € N,

> Endt = fi (6)

keZ

andforany0 <n <1,
1
n n
Ak
}:( l)lgk < Cliflg,,esp. I flp,,)- (7)
kez \P(Bk)»

P q
n’n

Moreover,
m
> at — f
k=l

in Qp 4 (resp. Py 4)asm — oo, | — —o0.
Conversely, if f € M has a decomposition as in (6), then for any 0 < n <1,

()

1
kez \P(B k) »

n

Ifllg,, (esp.ll flip,,) < C

=T

q
T

Theorem 3.6 Let0 < p < coand0 < g < 0. Ifthe martingale f € Misin Q
(resp. Pp.q), then there exists a sequence of triplets (A, ak vk e B(p,q, 00)>
(resp. B(p, q, 00)*) such that for amy n € N,

> End = fi ®)

keZ

and forany0 <n <1,

Ak !
> 1z,
kel ”1ka ”p,q

n

< Clfllg,, @esp. I flip,,). ©)

P q
n’n

Moreover,

m
Z)\kak — f

k=l

in Qpq (resp. Pp4)asm — oo, | — —oo.
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Conversely if f € M has a decomposition as in (8), then forany0 < n <1,

Ak !
> 1z,
keZ ”1ka ”p,q

Denote by Lg the set of all f € L, such that Eof = 0. For f e LY, put
fn = E,f. We recall that (f,),>0 is in M and Lz-bounded. Moreover, (fn)n>0
converges to f in Ly (see [24]).

Define the function ¢ : F — (0, 00) by

I£ll,, tesp-ll flip,,) < C

P 4q
n’n

” lA ||p,q

p(A) = P(A)

forall A € F, P(A) # 0. We then define the Campanato space L3 , as

1
- 0. - 1 1 / _ 2 2
Ly = :f €L3: e, = sup (mv) N dIP) < oo}.

Our characterization of the dual space of H ;, g space