
Pointer Program Synthesis
as Non-deterministic Planning

Xu Lu and Bin Yu(B)

ICTT and ISN Lab, Xidian University, Xi’an 710071, People’s Republic of China
byu@xidian.edu.cn

Abstract. Program synthesis is the task of automatically construct-
ing programs that satisfy a given high-level formal specification (con-
straints). In this paper, we concentrate on the synthesis problem of a
special category of program, named pointer program that manipulate
heaps. Separation logic has been applied successfully in modular reason-
ing of pointer programs. There are many studies on formal analysis of
pointer programs using a form of symbolic execution based on a decid-
able proof theory of separation logic. Automatic specification checking
can be done efficiently by means of symbolic execution. With this basis,
we present a novel approach to simulate the symbolic execution pro-
cess for the sake of synthesizing pointer programs. Concretely, symbolic
execution rules are compiled into a non-deterministic planning problem
which can be directly solved by existing planners. The reason of using
non-deterministic planning is that it enables to generate strong cyclic
plans where loop and branch connections (similar to basic program con-
structs) may appear. We show the preliminary experimental results on
synthesizing several programs that work with linked lists.

Keywords: Program synthesis · Non-deterministic planning ·
Separation logic · Symbolic execution

1 Introduction

Automatic synthesis of program has long been considered as one of the most
central problems in computer science. It is the task of automatically finding
programs from the underlying language that satisfy user intent expressed in
some form of (formal) constraints [15]. Usually, we need to perform certain kind
of search over the state space of all potential programs in order to generate one
that meets the constraints.

Fruitful studies have achieved a lot of progress for program synthesis in many
communities. Beginning in 1957, Alonzo Church defines the problem to synthe-
size a circuit from mathematical requirements. Reactive synthesis is a special

This research is supported by the National Natural Science Foundation of China under
Grant 61806158, China Postdoctoral Science Foundation under Grant 2019T120881
and Grant 2018M643585.

c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 126–141, 2021.
https://doi.org/10.1007/978-3-030-77474-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_9

Pointer Program Synthesis as Non-deterministic Planning 127

case of program synthesis that aims to produce a controller that reacts to envi-
ronment’s inputs satisfying a given temporal logic specification [5]. An interna-
tional competition called the Reactive Synthesis Competition is held annually
since 2014.1 Camacho et al. establish the correspondence of planning problems
with temporally extended goals to reactive synthesis problems [8]. Building on
this correspondence, synthesis can be realized more efficiently via planning. A
pattern-based code synthesis approach is presented to assemble an application
from existing components [12]. The code patterns are expressed by planning
domain models. Recently, the application of AI techniques especially deep learn-
ing methods in program synthesis becomes an active research topic. DeepCoder,
developed by Microsoft, is to train a neural network to predict properties of pro-
gram that generated the outputs from the inputs [1]. Empirically, DeepCoder
is able to help generate small programs only containing several lines. Gu et al.
propose a deep learning based approach to generate API usage sequences for a
given natural language query [14]. The work in [2] transforms a graphical user
interface screenshot created by a designer into computer code by deep learning
methods. Various codes for three different platforms can be generated with the
accuracy over 77%. In addition, other techniques from different perspectives such
as inductive programming [16] and genetic programming [20] are also applied in
program synthesis. However, synthesizing a program is still a challenging prob-
lem due to the large search space.

AI planning, or planning for short, has been successfully applied in many
fields. Planning is the problem of finding a sequence of actions that leads from
an initial state to a goal state [13]. Classical planning is the problem such that
each action has deterministic outcome. If the outcomes of some actions are uncer-
tain, the problem is referred to as a non-deterministic planning problem. The
non-deterministic actions give rise to the exponential growth in the search space
and hence make the problem more difficult even in the simplest situation where
the states of the world are full observable. A plan to a non-deterministic planning
problem may have loops or branches which are similar to basic programming lan-
guage constructs. Inspired by this, we obtain the idea to bridge the gap between
program synthesis and non-deterministic planning.

Programs that manipulate heaps are called pointer programs. Pointer oper-
ations allow dynamic heap allocation and deallocation, pointer reference and
dereference etc. These characteristics make pointer programs more error prone.
Separation logic is an extension of Hoare logic addressing the task of reasoning
about pointer programs [19]. Its key power lies in the separating conjunction
Σ1 ∗Σ2, which asserts that Σ1 and Σ2 hold for separate portions of heaps, lead-
ing the reasoning in a modular way. Starting from the pioneer work [4], which
presents a symbolic execution of a fragment of separation logic formulas called
symbolic heaps, many researchers exploit symbolic execution techniques to build
formal proofs of pointer programs [7,10,17]. The most famous tool, Infer [6], is
a static analyzer developed at Facebook rooting on symbolic execution.

1 http://www.syntcomp.org/.

http://www.syntcomp.org/

128 X. Lu and B. Yu

This paper focusses on the pointer program synthesis. We propose a compi-
lation based approach to simulate the symbolic execution process of pointer pro-
grams by non-deterministic planning. The compilation result is specified in the
Planning Domain Definition Language (PDDL) [11] that is a standard input to
the state-of-the-art planners. The major contribution of our work is the encoding
approach from symbolic execution rules to non-deterministic planning models.
To the best of our knowledge, it is unique in using non-deterministic planners
as program synthesizers.

The rest of the paper is organized as follows. Section 2 and Sect. 3 review the
notations of non-deterministic planning and symbolic heaps; Sect. 4 shows sym-
bolic execution theory of pointer programs with symbolic heaps; Sect. 5 describes
how to compile symbolic execution rules into non-deterministic planning prob-
lems; Sect. 6 gives the experimental results; the last section concludes our work.

2 FOND Planning

We assume environments are fully observable. Following [13], a Fully Observable
Non-Deterministic (FOND) planning problem P is a tuple (F , I,G,A), where F
is a set of fluents, I ⊆ F characterizes what holds initially, G ⊆ F characterizes
the goal, and A is the set of actions. The set of literals of F is Lits(F) =
F ∪ {¬f | f ∈ F}. Each action a ∈ A is associated with a pair (pre(a), eff(a)),
where pre(a) ⊆ Lits(F) is the precondition and eff(a) is a set of outcomes of a.
An outcome o ∈ eff(a) is a set of conditional effects (with, possibly, an empty
condition), each of the form C � l, where C ⊆ Lits(F) and l ∈ Lits(F). Briefly
speaking, C � l expresses the meaning that after applying a in the current state,
l becomes true in the next state if current state satisfies C. A planning state s
is a subset of F that are true.2 Given s ⊆ F and f ∈ F , we say that s satisfies
f , denoted s |= f iff f ∈ s. In addition, s |= ¬f iff f �∈ s, and s |= L for a
set of literals L, if s |= l for every l ∈ L. An action a is applicable in state s
if s |= pre(a). We say s′ is a result of applying a in s iff for one outcome o in
eff(a), s′ = s\{f | (C � ¬f) ∈ o, s |= C} ∪ {f | (C � f) ∈ o, s |= C}.

Solutions to a FOND planning problem are referred to as policies. A pol-
icy p is a partial mapping from states to actions. We say a is applicable in
s if p(s) = a. An execution σ of a policy p in state s is a finite sequence
〈(s0, a0), . . . , (sn−1, an−1), sn〉 or an infinite sequence 〈(s0, a0), (s1, a1), . . .〉,
where s0 = s, and all of its state-action-state substrings s, a, s′ satisfy p(s) = a
and s′ is a result of applying a in s. Finite executions ending in a state s if p(s)
is undefined. A state trace π can be yielded from an execution σ by removing
all the action symbols from σ.

2 Fluents in F\I are implicitly assumed to be false according to the closed world
assumption.

Pointer Program Synthesis as Non-deterministic Planning 129

An infinite execution σ is fair iff whenever s, a occurs infinitely often within
σ, then for every s′ that is a result of applying a in s, s, a, s′ occurs infinitely
often. A solution to P is strong cyclic iff each of its executions in I is either
finite and ends in a state that satisfies G or is infinite and unfair [9]. Intuitively
speaking, the execution fairness of a strong cyclic solution guarantees that a goal
state can eventually be reached from every reachable state with no effect that is
always ignored. There are also strong solutions and weak solutions to a FOND
planning problem, but we will not need those definitions in this paper.

3 Symbolic Heaps

We assume a set of programs variables V ar (ranged over by x, y, . . .), and a set
of primed variables V ar′ (ranged over by x′, y′, . . .). All variables are restricted
as pointer type. The primed variables can only be used within logical formulas.
The concrete heap models contain a set of locations Loc and a special notation
nil which indicates a null pointer value. Let V al = Loc ∪ {nil}. We then define
stack S and heap H as:

S : (V ar ∪ V ar′) → V al H : Loc ⇀ V al

A heap maps a location to a location or nil representing a heap cell. The
syntax of symbolic heap is defined below [4] which is a strict subset of separation
logic [19].

e ::=x | x′ | nil expression
Π ::= e1 = e2 | e1 �= e2 | true | Π1 ∧ Π2 pure formula
Σ ::= emp | e1 �→ e2 | ls(e1, e2) | true | Σ1 ∗ Σ2 spatial formula
P ::=Π � Σ | ∃x′ : P symbolic heap

Note that the assertions are restricted without negations and universal quan-
tifiers. A symbolic heap Π �Σ can be divided into pure part Π (heap independent)
and spatial part Σ (heap dependent), where Π is essentially an ∧-separated
sequence of pure formulas, and Σ a ∗-separated sequence of spatial formulas.
The pure part is straightforward to understand, and the spatial part charac-
terize spatial features of heaps. e1 �→ e2 is read as e1 points-to e2. It can hold
only in a singleton heap, where e1 is the only active cell holding the value e2.
ls(e1, e2) denotes a linked list segment with head pointer e1 and e2 holding in
the tail cell. A complete linked list is one that satisfies ls(e, nil).

130 X. Lu and B. Yu

The semantics of symbolic heaps is given by a relation S,H |=SH P . H =
H1 • H2 indicates that the domains of H1 and H2 are disjoint, and H is their
union.

�x�s
def= s(x) �x′�s def= s(x′) �nil�s

def= nil

S,H |=SH e1 = e2 iff �e1�s = �e2�s.

S,H |=SH e1 �= e2 iff �e1�s �= �e2�s.

S,H |=SH true iff always.
S,H |=SH Π1 ∧ Π2 iff S,H |=SH Π1 and S,H |=SH Π2.

S,H |=SH emp iff H = ∅.

S,H |=SH e1 �→ e2 iff H = [(�e1�s, �e2�s)].
S,H |=SH ls(e1, e2) iff there is a nonempty acyclic path from �e1�s to �e2�s

in H and this path contains all heaps cells in H.

S,H |=SH Σ1 ∗ Σ2 iff ∃H1,H2 : H = H1 • H2 and S,H1 |=SH Σ1 and
S,H2 |=SH Σ2.

S,H |=SH Π � Σ iff S,H |=SH Π and S,H |=SH Σ.

S,H |=SH ∃x′ : P iff ∃v ∈ V al : S,H |=SH P (v/x′).

For simplicity, symbolic heap we define only allows to reason about linked
lists. The field can be regarded as the next pointer. For other linked shapes
such as binary trees, we can extend the points-to assertion as e1 �→ e2, e3. The
semantics of list segment is given informally, saying that it holds of given heap
containing at least one heap cell. Therefore it is equivalent to the least predicate
satisfying:

ls(e1, e2) ⇔ e1 �→ e2 ∨ ∃x′ : e1 �= e2 ∧ e1 �→ x′ ∗ ls(x′, e2)

4 Symbolic Execution

In this section we give symbolic execution rules for a pointer programming lan-
guage. The grammar of commands is given by:

b ::= e1 = e2 | e1 �= e2 Boolean terms
c ::= x := e | x := [e] | [e] := e′ | new(x) | dispose(e) Primitive commands
C ::= c | C1; C2 | while (b) do {C} | if (b) then {C1} else {C2} Commands

Pointer Program Synthesis as Non-deterministic Planning 131

The heap dereferencing operator [·] is similar to symbolic heaps, that refers
to the “next” field. x := e is the assignment, x := [e] and [e] := e′ are called
lookup and mutation respectively, new(x) and dispose(e) are heap allocation
and deallocation commands.

Shown in Table 1, the symbolic execution semantics P, C =⇒ P ′ takes a
symbolic heap P and a primitive command C as input, and transforms it into a
new symbolic heap P ′ as an output. The primed variables x′, y′ are fresh primed
variables in these rules.

Table 1. Symbolic execution rules

Π � Σ new(x) =⇒ ∃x′, y′ : (Π � Σ)(x′/x) ∗ x �→ y′

Π � Σ ∗ e1 �→ e2 dispose(e1) =⇒ Π � Σ

Π � Σ x := e =⇒ ∃x′ : x = e(x′/x) ∧ (Π � Σ)(x′/x)

Π � Σ ∗ e1 �→ e2 [e1] := e3 =⇒ Π � Σ ∗ e1 �→ e3

Π � Σ ∗ e1 �→ e2 x := [e1] =⇒ ∃x′ : x = e2(x′/x) ∧ (Π � Σ ∗ e1 �→ e2)(x′/x)

We use notation A(e) for primitive commands that access heap cell e:

A(e) ::= [e] := e′ | x := [e] | dispose(e)

When executing A(e), we expect its precondition to be in a particular form
Π �Σ ∗ e �→ e′. That is, the value holds in e should be explicitly exposed in order
to fire the rule. Therefore, we have to equivalently rearrange the precondition
whenever current symbolic heap do not match the rule.

Rearrangement rules are listed below. The Switch rule simply makes use of
equalities to recognize that a dereferencing step is possible. The other two rules
correspond to unrolling a list segment. To do so, we need to unroll the list to be
a single heap cell (Unroll List2) or more cells (Unroll List1).

Rearrangement Rules

Switch
Π1 � Σ1 ∗ e1 �→ e3, A(e1) =⇒ Π2 � Σ2

Π1 � Σ1 ∗ e2 �→ e3, A(e1) =⇒ Π2 � Σ2
Π1 � e1 = e2

Unroll List1
∃x′ : e1 �= e2 ∧ Π1 � Σ1 ∗ e1 �→ x′ ∗ ls(x′, e2), A(e1) =⇒ Π2 � Σ2

Π1 � Σ1 ∗ ls(e1, e2), A(e1) =⇒ Π2 � Σ2

Unroll List2
Π1 ∧ e1 �→ e2 � Σ1, A(e1) =⇒ Π2 � Σ2

Π1 � Σ1 ∗ ls(e1, e2), A(e1) =⇒ Π2 � Σ2

Generally, the number of symbolic heaps is infinite since primed variables can
be introduced during symbolic execution. For example, in a loop that includes
allocation (e.g., while (true) do {. . . ;new(x); . . .}). An arbitrary length of sym-
bolic heap can be generated, i.e., x �→ x′ ∗ x′ �→ x′′ · · · . In order to achieve
fixed-point convergence, abstraction rules Π1 � Σ1 � Π2 � Σ2 are introduced.

132 X. Lu and B. Yu

The main effort of abstraction rules is to reduce primed variables. The
abstraction rules are reported below. On one hand, we can remove primed vari-
ables from the pure parts of formulas (Abs1). On the other hand, we can gob-
ble up primed variables by merging lists, swallowing single cells into lists, and
abstracting two cells by a list (Abs2 and Abs3). We use the notation H(e1, e2)
to stand for a formula in either of the form e1 �→ e2 or ls(e1, e2).

Abstraction Rules

Abs1 e = x′ ∧ Π � Σ � (Π � Σ)(e/x′) or x′ = e ∧ Π � Σ � (Π � Σ)(e/x′)

Abs2
Π � e2 = nil x′ not in {Π,Σ, e1, e2}

Π � Σ ∗ H1(e1, x′) ∗ H2(x′, e2) � Π � Σ ∗ H(e1, nil)

Abs3
Π � e2 = e3 x′ not in {Π,Σ, e1, e2, e3, e4}

Π � Σ ∗ H1(e1, x′) ∗ H2(x′, e2) ∗ H3(e3, e4) � Π � Σ ∗ ls(e1, e2) ∗ H3(e3, e4)

The ∗-conjunct H3(e3, e4) cannot be left out by considerations of soundness
as Berdine and Calcagno pointed out [3,4]. If we want to abstract H1(−,−) and
H2(−,−) into one, the end of the second should not point back into the first.

Fig. 1. The encoding approach

5 Compiling Symbolic Execution into FOND Planning

In this section we compile a pointer program synthesis problem into a FOND
planning problem. The former is formalized as follows.

Definition 1 (Pointer Program Synthesis). Given symbolic heaps Pin and
Pout as input and output respectively, the task of pointer program synthesis is to
generate a pointer program C that satisfies Pin and Pout.

Figure 1 illustrates the key idea of our approach. There are three modes
after compilation, i.e., Command mode, Check mode and Abstraction mode.
The order of their executions is reflected by black arrows. The Command mode
contains a set of planning actions encoded from primitive command. We do not

Pointer Program Synthesis as Non-deterministic Planning 133

encode the rearrangement rules into a separate phase. Instead, the rearrangement
step is embedded in the encoding of A(e). The actions in the Check mode are
used to check the existence of an abstraction action that can fire. The abstraction
rules are compiled into a set of abstraction actions.

Suppose the resulting FOND planning problem is P = (F , I,G,A), where
each component is described as follows. The initial state I and goal G are deter-
mined by Pin and Pout of specific synthesis problems.

Fluents: The set of fluents F is listed in Table 2, where int0 represents the null
value. Moreover, we use the fluents command(), check(), choose(), abstraction()
to represent different phases, and abs1(), abs2(), abs3() to denote which abstrac-
tion rule can be activated.

Table 2. Fluents of the encoded problem

Fluent Meaning

pvar(x) x is a program variable

lvar(x′) x′ is a logical variable

auxiliary(x′) x′ is a logical variable in use

pt(x1, x2) A single heap cell

ls(x1, x2) A linked list segment

equal(x1, x2) Equality of x1 and x2

var-num(x, v) Value of x is v in {inti | 0 ≤ i ≤ n}
active(v) Value v is allocated

Command Mode: Command mode is the first phase that a primitive command
action is performed along with a possible rearrangement. Different from symbolic
execution, here we do not distinguish rearrangement and command execution,
only do rearrangement when it is needed. The encoded actions are shown in
Table 3. For instance, there are two dispose actions corresponding to the dispose
command, i.e., dispose1 and dispose2. The precondition of the former includes
an explicit heap cell pt(x2, x3), and that of the latter includes a list ls(x2, x3)
which needs to be unrolled as non-deterministic effects. The keyword “oneof”
is used to express the non-deterministic effects in a planning model.

134 X. Lu and B. Yu

Table 3. Compilation of primitive commands

Action Preconditions Effects

new(x1, x2, v1, v2) command(),

pvar(x1),

lvar(x2),

¬auxiliary(x2),

var-num(x1, v1),

var-num(x2, int0),

¬active(v2)

¬command(), check(), pt(x1, nil), active(v2),

var-num(x1, v2), ¬var-num(x1, v1),

∀y : {equal(x1, y)} � {auxiliary(x2), ¬equal(x1, y),

¬equal(y, x1), equal(x2, y), equal(y, x2),

¬var-num(x2, int0), var-num(x2, v1)},
∀y : {pt(x1, y)} � {auxiliary(x2), ¬pt(x1, y), pt(x2, y),

¬var-num(x2, int0), var-num(x2, v1)},
∀y : {pt(y, x1)} � {auxiliary(x2), ¬pt(y, x1), pt(y, x2),

¬var-num(x2, int0), var-num(x2, v1)},
∀y : {ls(x1, y)} � {auxiliary(x2), ¬ls(x1, y), ls(x2, y),

¬var-num(x2, int0), var-num(x2, v1)},
∀y : {ls(y, x1)} � {auxiliary(x2), ¬ls(y, x1), ls(y, x2),

¬var-num(x2, int0), var-num(x2, v1)}
dispose1(x1, x2, x3, v) command(),

pvar(x1),

active(v),

var-num(x1, v),

var-num(x2, v),

pt(x2, x3)

¬command(), check(), ¬pt(x2, x3), ¬active(v),

∀y : {var-num(y, v)} �
{¬var-num(y, v), var-num(y, int0)}

dispose2(x1, x2, x3,

x4, v1, v2)

command(),

pvar(x1),

lvar(x4),

active(v1),

¬active(v2),

var-num(x1, v1),

var-num(x2, v1),

ls(x2, x3),

¬auxiliary(x4),

var-num(x4, int0)

¬command(), check(), ¬ls(x2, x3), ¬active(v1),

∀y : {var-num(y, v1)} � {¬var-num(y, v1), var-num(y,

int0)}, oneof(∅, {auxiliary(x4), ls(x4, x3), active(v2),

¬var-num(x4, int0), var-num(x4, v2)})

assign(x1, x2, x3,

v1, v2)

command(),

pvar(x1),

pvar(x2),

lvar(x3),

var-num(x1, int1),

var-num(x2, int2),

¬auxiliary(x3),

var-num(x3, int0)

¬command(), check(), equal(x1, x2), equal(x2, x1), {v1 �=
v2} � {¬var-num(x1, v1), var-num(x1, v2)},
∀y : {equal(x1, y)} � {auxiliary(x3), ¬equal(x1, y),

¬equal(y, x1), equal(x3, y), equal(y, x3),

¬var-num(x3, int0), var-num(x3, v1)},
∀y : {pt(x1, y)} � {auxiliary(x3), ¬pt(x1, y), pt(x3, y),

¬var-num(x3, int0), var-num(x3, v1)},
∀y : {pt(y, x1)} � {auxiliary(x3), ¬pt(y, x1), pt(y, x3),

¬var-num(x3, int0), var-num(x3, v1)},
∀y : {ls(x1, y)} � {auxiliary(x3), ¬ls(x1, y), ls(x3, y),

¬var-num(x3, int0), var-num(x3, v1)},
∀y : {ls(y, x1)} � {auxiliary(x3), ¬ls(y, x1), ls(y, x3),

¬var-num(x3, int0), var-num(x3, v1)}
mutation1(x1, x2, x3,

x4, v)

command(),

pvar(x1),

pvar(x4),

var-num(x1, v),

var-num(x2, v),

pt(x2, x3)

¬command(), check(), ¬pt(x2, x3), pt(x2, x4)

mutation2(x1, x2, x3,

x4, x5, v1, v2)

command(),

pvar(x1),

pvar(x4),

lvar(x5),

¬active(v2),

var-num(x1, v1),

var-num(x2, v1),

ls(x2, x3),

¬auxiliary(x5),

var-num(x5, int0)

¬command(), check(), ¬ls(x2, x3),

oneof({pt(x2, x4)}, {auxiliary(x5), pt(x2, x4),

ls(x5, x3), active(v2), ¬var-num(x5, int0),

var-num(x5, v2)})

(continued)

Pointer Program Synthesis as Non-deterministic Planning 135

Table 3. (continued)

Action Preconditions Effects

lookup1(x1, x2, x3, x4,

x5, v1, v2, v3)

command(),

pvar(x1),

pvar(x2),

lvar(x5),

var-num(x1, v1),

var-num(x4, v2),

var-num(x2, v3),

var-num(x3, v3),

pt(x3, x4),

¬auxiliary(x5),

var-num(x5, int0)

¬command(), check(), equal(x1, x4), equal(x4, x1),

{v1 �= v2} � {¬var-num(x1, v1), var-num(x1, v2)},
∀y : {equal(x1, y)} � {auxiliary(x5), ¬equal(x1, y),

¬equal(y, x1), equal(x5, y), equal(y, x5),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {pt(x1, y)} � {auxiliary(x5), ¬pt(x1, y), pt(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {pt(y, x1)} � {auxiliary(x5), ¬pt(y, x1), pt(y, x5),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {ls(x1, y)} � {auxiliary(x5), ¬ls(x1, y), ls(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {ls(y, x1)} � {auxiliary(x5), ¬ls(y, x1), ls(y, x5),

¬var-num(x5, int0), var-num(x5, v1)}
lookup2(x1, x2, x3, x4,

x5, x6, v1, v2, v3, v4)

command(),

pvar(x1),

pvar(x2),

lvar(x5),

lvar(x6),

var-num(x1, v1),

var-num(x4, v2),

var-num(x2, v3),

var-num(x3, v3),

ls(x3, x4),

¬active(v4),

¬auxiliary(x5),

var-num(x5, int0),

¬auxiliary(x6),

var-num(x6, int0)

¬command(), check(), ¬ls(x3, x4),

{v1 �= v5} � {¬var-num(x1, v1), var-num(x1, v5)},
∀y : {equal(x1, y)} � {auxiliary(x5), ¬equal(x1, y),

¬equal(y, x1), equal(x5, y), equal(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {pt(x1, y)} � {auxiliary(x5), ¬pt(x1, y),pt(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {pt(y, x1)} � {auxiliary(x5), ¬pt(y, x1), pt(y, x5),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {ls(x1, y)} � {auxiliary(x5), ¬ls(x1, y), ls(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {ls(y, x1)} � {auxiliary(x5), ¬ls(y, x1), ls(y, x5),

¬var-num(x5, int0), var-num(x5, v1)},
oneof({pt(x3, x4), equal(x1, x4), equal(x4, x1),

¬var-num(x1, v1), var-num(x1, v2)}, {auxiliary(x6),

active(v4), equal(x1, x6), equal(x6, x1),

¬var-num(x1, v1), var-num(x1, v4), pt(x3, x6),

ls(x6, x4), ¬var-num(x6, int0), var-num(x6, v4)})

Check Mode: The definition actions in Check mode are shown in Table 4.
Action check-act alters the truth value of flags absi(), i = 1, 2, 3 according to
the current state whenever a corresponding abstraction rule is enabled. Then
the choose-act will be executed to determine the next phase to be switched with
respect to absi(). When no abstraction rules can be applied, the next phase is
the command mode, otherwise it is still turned to the abstraction mode.

136 X. Lu and B. Yu

Table 4. Actions in Check mode

Action Preconditions Effects

check-act() check() ¬check(), choose(),
{∃x1, x2 : pvar(x1) ∧ lvar(x2) ∧ equal(x1, x2))} � {abs1()},
∀x1, x2, x3 : {pt(x1, x2), pt(x2, x3), auxiliary(x2),
∃v : var-num(x1, v) ∧ ¬var-num(x3, v), ∀y : ¬equal(y, x2)∧
¬ls(y, x2) ∧ ¬ls(x2, y), ∀y : y
= x1 → ¬pt(y, x2),
∀y : y
= x3 → ¬pt(x2, y)} � {abs2()},
∀x1, x2, x3 : {pt(x1, x2), ls(x2, x3), auxiliary(x2),
∃v : var-num(x1, v) ∧ ¬var-num(x3, v), ∀y : ¬equal(y, x2)∧
¬ls(y, x2) ∧ ¬pt(x2, y), ∀y : y
= x1 → ¬pt(y, x2),
∀y : y
= x3 → ¬ls(x2, y)} � {abs2()},
∀x1, x2, x3 : {ls(x1, x2), pt(x2, x3), auxiliary(x2),
∃v : var-num(x1, v) ∧ ¬var-num(x3, v), ∀y : ¬equal(y, x2)∧
¬pt(y, x2) ∧ ¬ls(x2, y), ∀y : y
= x1 → ¬ls(y, x2),
∀y : y
= x3 → ¬pt(x2, y)} � {abs2()},
∀x1, x2, x3 : {ls(x1, x2), ls(x2, x3), auxiliary(x2),
∃v : var-num(x1, v) ∧ ¬var-num(x3, v), ∀y : ¬equal(y, x2)∧
¬ls(y, x2) ∧ ¬ls(x2, y), ∀y : y
= x1 → ¬ls(y, x2),
∀y : y
= x3 → ¬ls(x2, y)} � {abs2()},
{∃x : auxiliary(x) ∧ ∀y : ¬equal(x, y)) ∧ ¬pt(x, y)∧
¬pt(y, x) ∧ ¬ls(x, y) ∧ ¬ls(y, x)} � {abs3()},

choose-act() choose() ¬choose(), ¬abs1(), ¬abs2(), ¬abs3(),
{abs1(), abs2(), abs3()} � {command()}
{¬abs1(), ¬abs2(), ¬abs3()} � {abstraction()}

Abstraction Mode: Table 5 shows the set of abstraction actions encoded from
abstraction rules. The first two actions correspond to the abstraction rules. The
last rule is used to free a logical variable in use, and make it available. When
after applying an abstraction rule, we will go back to the Check mode until no
abstraction rules can fire.

Pointer Program Synthesis as Non-deterministic Planning 137

Table 5. Compilation of abstraction rules

Action Preconditions Effects

abstract1(x1, x2) abstraction(),
pvar(x1),
auxiliary(x2),

equal(x1, x2)

¬abstraction(), check(),
¬equal(x1, x2), ¬equal(x2, x1),
∀y : (equal(x2, y) ∧ x1
= y) �
{¬equal(x2, y), ¬equal(y, x2),
equal(x1, y), equal(y, x1)},
∀y : pt(x2, y) � {¬pt(x2, y),
pt(x1, y)},
∀y : pt(y, x2) � {¬pt(y, x2),
pt(y, x1)},
∀y : ls(x2, y) � {¬ls(x2, y),
ls(x1, y)},
∀y : ls(y, x2) � {¬ls(y, x2),
ls(y, x1)}

abstract2(x1, x2, x3, v) abstraction(),
auxiliary(x2),
var-num(x1, v),
¬var-num(x3, v),
equal(x3, nil) ∨ x3 = nil,
(pt(x1, x2) ∧ pt(x2, x3))∨
(pt(x1, x2) ∧ ls(x2, x3))∨
(ls(x1, x2) ∧ pt(x2, x3))∨
(ls(x1, x2) ∧ ls(x2, x3)),
∀y : ¬equal(y, x2),
∀y : (y
= x1 ∧ y
= x2∧
y
= x3) →
(¬pt(x2, y) ∧ ¬pt(y, x2)∧
¬ls(x2, y) ∧ ¬ls(y, x2)),

¬abstraction(), check(),
ls(x1, x3),
pt(x1, x2) � ¬pt(x1, x2),
ls(x1, x2) � ¬ls(x1, x2),
pt(x2, x3) � ¬pt(x2, x3),
ls(x2, x3) � ¬ls(x2, x3)

abstract3(x, v) abstraction(),
auxiliary(x),
var-num(x, v),
∀y : ¬equal(x, y)∧
¬pt(x, y) ∧ ¬pt(y, x)∧
¬ls(x, y) ∧ ¬ls(y, x)

¬abstraction(), check(),
¬auxiliary(x),
v
= int0 � var-num(x, int0)

6 Case Study and Experiment

In this section, we conduct a series of experiments to evaluate our approach.
Further, we illustrate an example on synthesis of a disposal program which aims
to dispose a linked list. The following code is the disposal program.

while (x �= nil) do {
y := x;
x := [x];
dispose(y)

}

138 X. Lu and B. Yu

The initial state of this program is ls(x, nil). Using the symbolic execution
rules, the symbolic execution process is shown in Fig. 2. Note that the loop arrow
from bottom to up means that ls(x, nil) is the invariant of the program. At the
beginning, we know x does not equal to nil since ls(x, nil) at least contains
one cell. Hence the first assignment command in the loop body is executed.
When executing the second command, we do not know what holds in address x
according to the spatial part ls(x, nil) of the symbolic heap. Therefore a rear-
rangement step should be applied to distinguish the symbolic heap into a couple
of situations. After executing x := [x], we need to try to abstract the obtained
symbolic heap since some primed variables are introduced. Then the last deal-
location command is executed. In one situation, the loop exits. In the other, we
find an invariant that is the same to the initial state. At this time the process
terminates.

Fig. 2. Symbolic execution process for disposal program

In practice, we encode the program into standard PDDL which can be
accepted by existing planners. The details are omitted here. We evaluate our
approach on several list manipulated program. The non-deterministic planner
PRP [18] is used as the FOND planner. Experiments are conducted on a laptop
running Ubuntu 16.04 on an Intel� CoreTM i7-8550U CPU 1.80 GHz and 8 GB
of RAM. The results are shown in Table 6. “Insert” is to synthesize a program
that inserts a cell before the head, “Remove” is the list disposal program, “Tra-
verse” is to travel a list, “Append” is to append two lists into one. Sometimes we
cannot synthesize a list program by our approach. For instance, reversing a list
is impossible to be synthesized since the initial state and the goal are both an
abstract list. Whether the list is reversed or not finally is never known. The sec-
ond column is the search time in seconds. The third column is length of a policy.
Note that the length includes additional actions (check actions and abstraction
actions) except primitive command actions.

Pointer Program Synthesis as Non-deterministic Planning 139

Table 6. Experimental results on list program

Program Time(s) Length

Insert 1.94 49

Remove 25.18 31

Traverse 16.56 25

Append 258.18 86

Fig. 3. Policy for synthesizing the disposal program

PRP generates a sequential plan for “Insert” and constructs loops for the
other three programs. Consider the performance, we can see that synthesizing
loop programs is not easy since the search time is much more than synthesizing
sequential ones. More efforts needs to be made in order to find a loop for a
planner. The essential reason is the quantifiers in the encoded actions especially
in the effects of abstractions and preconditions of check actions. In practice, the
quantifiers are expanded that will result in the explosion of the state space.

The solution generated for disposal program is shown in Fig. 3. We preserve
the command actions and remove rest. Therefore, we obtain a compact policy
much closer to a pointer program. Obviously, the policy is similar to the disposal
program mentioned before. The boolean condition at the start of the loop must
be specified manually.

7 Conclusion

Synthesizing programs is a difficult and central problem in computer science. In
this paper, we propose an automated planning based method for pointer pro-
gram synthesis. Inspired by symbolic execution of separation logic, we compile
this process into a FOND planning problem, mainly including primitive com-
mand compilation, rearrangement compilation and abstraction compilation. In
future work, we plan to synthesize larger scale programs. This is feasible from
the theoretical point of view because of the modular reasoning feature of sepa-
ration logic. Furthermore, we have to find a way that can reduce the number of
quantifiers in the encoded actions to improve the performance of planners.

140 X. Lu and B. Yu

References

1. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
learning to write programs. In: 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Pro-
ceedings. OpenReview.net (2017). https://openreview.net/forum?id=ByldLrqlx

2. Beltramelli, T.: pix2code: generating code from a graphical user interface screen-
shot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2018, Paris, France, 19–22 June 2018. pp. 3:1–3:6. ACM
(2018). https://doi.org/10.1145/3220134.3220135

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: FSTTCS 2004: Foundations of Software Technology and Theoretical Computer
Science, 24th International Conference, Chennai, India, 16–18 December 2004, Pro-
ceedings, pp. 97–109 (2004). https://doi.org/10.1007/978-3-540-30538-5 9

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Programming Languages and Systems, Third Asian Symposium, APLAS
2005, Tsukuba, Japan, 2–5 November 2005, Proceedings, pp. 52–68 (2005). https://
doi.org/10.1007/11575467 5

5. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007

6. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holz-
mann, G.J., Joshi, R. (eds.) NASA Formal Methods - 7th International Sympo-
sium, NFM 2015, Pasadena, CA, USA, 27–29 April 2015, Proceedings. Lecture
Notes in Computer Science, vol. 9058, pp. 3–11. Springer (2015). https://doi.org/
10.1007/978-3-319-17524-9 1

7. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011). https://doi.org/
10.1145/2049697.2049700

8. Camacho, A., Bienvenu, M., McIlraith, S.A.: Towards a unified view of AI planning
and reactive synthesis. In: Benton, J., Lipovetzky, N., Onaindia, E., Smith, D.E.,
Srivastava, S. (eds.) Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, 11–15
July 2019, pp. 58–67. AAAI Press (2019). https://aaai.org/ojs/index.php/ICAPS/
article/view/3460

9. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong
cyclic planning via symbolic model checking. Artif. Intell. 147(1–2), 35–84 (2003).
https://doi.org/10.1016/S0004-3702(02)00374-0

10. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems, 12th International Conference, TACAS 2006 Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006, Proceedings. Lecture
Notes in Computer Science, vol. 3920, pp. 287–302. Springer (2006). https://doi.
org/10.1007/11691372 19

11. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003). https://doi.org/10.1613/
jair.1129

https://openreview.net/forum?id=ByldLrqlx
https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/11575467_5
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://aaai.org/ojs/index.php/ICAPS/article/view/3460
https://aaai.org/ojs/index.php/ICAPS/article/view/3460
https://doi.org/10.1016/S0004-3702(02)00374-0
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/11691372_19
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129

Pointer Program Synthesis as Non-deterministic Planning 141

12. Fu, J., Bastani, F.B., Yen, I.: Automated AI planning and code pattern based
code synthesis. In: 18th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2006), 13–15 November 2006, Arlington, VA, USA, pp. 540–
546. IEEE Computer Society (2006). https://doi.org/10.1109/ICTAI.2006.37

13. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and Practice.
Elsevier (2004)

14. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep API learning. In: Zimmermann, T.,
Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, 13–18 November 2016, pp. 631–642. ACM (2016). https://doi.org/10.
1145/2950290.2950334

15. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017). https://doi.org/10.1561/2500000010

16. Kitzelmann, E.: Inductive programming: A survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) Approaches and Applications
of Inductive Programming, Third International Workshop, AAIP 2009, Edinburgh,
UK, 4 September 2009. Revised Papers. Lecture Notes in Computer Science, vol.
5812, pp. 50–73. Springer (2009). https://doi.org/10.1007/978-3-642-11931-6 3

17. Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in separation logic
for imperative list-processing programs. SPACE 1(1), 5–7 (2006)

18. Muise, C.J., McIlraith, S.A., Beck, J.C.: Improved non-deterministic planning by
exploiting state relevance. In: McCluskey, L., Williams, B.C., Silva, J.R., Bonet,
B. (eds.) Proceedings of the Twenty-Second International Conference on Auto-
mated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, 25–19
June 2012. AAAI (2012). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/
paper/view/4718

19. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22–25 July
2002, Copenhagen, Denmark, Proceedings, pp. 55–74 (2002). https://doi.org/10.
1109/LICS.2002.1029817

20. Vanneschi, L., Poli, R.: Genetic programming - introduction, applications, theory
and open issues. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natu-
ral Computing, pp. 709–739. Springer (2012). https://doi.org/10.1007/978-3-540-
92910-9 24

https://doi.org/10.1109/ICTAI.2006.37
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/978-3-642-11931-6_3
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4718
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4718
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1007/978-3-540-92910-9_24

	Pointer Program Synthesis as Non-deterministic Planning
	1 Introduction
	2 FOND Planning
	3 Symbolic Heaps
	4 Symbolic Execution
	5 Compiling Symbolic Execution into FOND Planning
	6 Case Study and Experiment
	7 Conclusion
	References

