
Jinyun Xue
Fumiko Nagoya
Shaoying Liu
Zhenhua Duan (Eds.)

LN
CS

 1
27

23

Structured Object-Oriented
Formal Language and Method
10th International Workshop, SOFL+MSVL 2020
Singapore, March 1, 2021
Revised Selected Papers

Lecture Notes in Computer Science 12723

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jinyun Xue · Fumiko Nagoya · Shaoying Liu ·
Zhenhua Duan (Eds.)

Structured Object-Oriented
Formal Language and Method
10th International Workshop, SOFL+MSVL 2020
Singapore, March 1, 2021
Revised Selected Papers

Editors
Jinyun Xue
Jiangxi Normal University
Nanchang, China

Shaoying Liu
Hiroshima University
Hiroshima, Japan

Fumiko Nagoya
Nihon University
Tokyo, Japan

Zhenhua Duan
Xidian University
Xi’an, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-77473-8 ISBN 978-3-030-77474-5 (eBook)
https://doi.org/10.1007/978-3-030-77474-5

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-77474-5

Preface

TheStructuredObject-OrientedFormalLanguage (SOFL) has been developed to address
the challenge of how to transform formal methods principles and techniques into prac-
tice by providing a comprehensible specification language, a practical modelingmethod,
various verification and validation techniques, and tool support through effective inte-
gration of formal methods with conventional software engineering techniques. SOFL
integrates Data FlowDiagrams, Petri Nets; andVDM-SL to offer a visualized and formal
notation for specification construction; a three-step approach to requirements acquisi-
tion and system design; specification-based inspection and testing methods for detecting
errors in both specifications and programs; and a set of tools to support modeling and
verification. The Modeling, Simulation and Verification Language (MSVL) is a parallel
programming language. Its supporting toolkit, MSV, has been developed to enable us
to model, simulate, and verify a system in a formal manner. Following the success of
previous SOFL+MSVL workshops, this workshop aimed to continuously promote the
development and combination of the SOFL formal engineering method and the MSVL
formal method, as well as the applications of their fundamental principles and specific
techniques for developing other formal engineering techniques.

The workshop attracted 24 submissions on formal modeling, formal verifica-
tion, model checking, metamorphic testing, natural language processing, and geo-
metric modeling. Each submission was rigorously reviewed by two or more Program
Committee members on the basis of technical quality, relevance, significance, and clar-
ity, and 13 papers were accepted for publication in the workshop proceedings. The
acceptance rate was 54%.

We would like to thank ICFEM 2020 for supporting the organization of the virtual
meeting and all of the Program Committee members for their great efforts and coopera-
tion in reviewing and selecting the papers.Wewould also like to thank all the participants
for attending presentation sessions and actively joining discussions at the workshop.
Finally, our gratitude goes to the editors, Anna Kramer and Guido Zosimo-Landolfo at
Springer, for their continuous support in publishing the workshop proceedings.

March 2021 Jinyun Xue
Fumiko Nagoya

Shaoying Liu
Zhenhua Duan

Organization

General Chairs

Shaoying Liu Hiroshima University, Japan
Zhenhua Duan Xidian University, China

Program Co-chairs

Fumiko Nagoya Nihon University, Japan
Jinyun Xue Jiangxi Normal University, China

Program Committee

Busalire Emeka Hosei University, Japan
Colin Fidge Queensland University of Technology, Australia
Huaikou Miao Shanghai University, China
Kazuhiro Ogata JAIST, Japan
Shengchao Qin Teesside University, UK
Shin Nakajima National Institute of Informatics, Japan
Wuwei Shen Western Michigan University, USA
Xinfeng Shu Xi’an University of Posts and Telecommunications, China
Yuting Chen Shanghai Jiao Tong University, China
Zhen You Jiangxi Normal University, China
Zhuo Cheng Jiangxi Normal University, China

Contents

Modeling and Specification

An MSVL-Based Modeling Framework for Back Propagation Neural
Networks . 3
Liang Zhao, Zhe Feng, Xiaobing Wang, and Xinfeng Shu

A Case Study on Combining Agile Requirements Development and SOFL 23
Fumiko Nagoya

Formal Modeling and Verification of Microservice-Based Cyber-Physical
System . 34
Jingzi Wang, Hongyan Mao, and Ningkang Jiang

Design and Implementation of Virtual Reality Geometric Modeling
in Apla+VR . 54

Jiewen Huang, Jinyun Xue, Zhen You, and Zhehong Zhou

Model Checking

An Unified Model Checking Approach of APTL . 69
Haiyang Wang

Model Checking Multi-interruption Concurrent Programs with TMSVL 79
Jin Cui and Lianxiang Zhu

An MSVL Based Model Checking Method for Multi-threaded C Programs 88
Xinfeng Shu, Zhenyu Wang, Weiran Gao, Xiaobing Wang, and Liang Zhao

Specification and Verification

A Formal Approach to Secure Design of RESTful Web APIs Using SOFL 105
Busalire Emeka, Soichiro Hidaka, and Shaoying Liu

Pointer Program Synthesis as Non-deterministic Planning 126
Xu Lu and Bin Yu

Runtime Verification of Ethereum Smart Contracts Based on MSVL 142
Bin Yu, Xu Lu, Hao Chen, Ming Lei, and Xiaobing Wang

viii Contents

Automatic Generation of Specification from Natural Language Based
on Temporal Logic . 154
Xiaobing Wang, Ge Li, Chunyi Li, Liang Zhao, and Xinfeng Shu

Testing and Formal Verification

Software Testing with Statistical Partial Oracles: - Application to Neural
Networks Software - . 175
Shin Nakajima

Formalizing Spark Applications with MSVL . 193
Meng Wang and Shushan Li

Author Index . 205

Modeling and Specification

An MSVL-Based Modeling Framework
for Back Propagation Neural Networks

Liang Zhao1, Zhe Feng1, Xiaobing Wang1(B), and Xinfeng Shu2(B)

1 Institute of Computing Theory and Technology, ISN Laboratory,
Xidian University, Xi’an 710071, People’s Republic of China

lzhao@xidian.edu.cn, xbwang@mail.xidian.edu.cn
2 School of Computer Science and Technology, Xi’an University of Posts

and Telecommunications, Xi’an 710061, People’s Republic of China
shuxf@xupt.edu.cn

Abstract. With the rapid development and wide application of artifi-
cial neural networks, formal modeling and verification of their security
become more and more significant. As a basic step towards the direc-
tion, this work proposes a comprehensive modeling framework for back
propagation (BP) neural networks based on the formal language MSVL.
In this framework, the structure and behavior of a BP neural network
are formalized as specifications of data structures and operations, and
they are in turn implemented as MSVL structs and functions, respec-
tively. Based on the formalization, models of BP neural networks can be
constructed and trained according to the requirements of users. Experi-
mental results show that these models have good performance in terms
of metrics concerning training and prediction such as loss and accuracy.

Keywords: Formal modeling · MSVL · Artificial neural network ·
Back propagation · Formal verification

1 Introduction

In recent years, with the advancement of computer software and hardware and
the development of machine learning technology, artificial intelligence, especially
artificial neural network, has become a hot topic in computer science. Different
artificial neural network models have been proposed, such as convolutional neural
networks and recurrent neural networks, with excellent abilities of data comput-
ing and classification. In the meantime, various systems based on artificial neural
networks have been developed, and they have been successfully applied to areas
of our daily life including transportation, medical treatment, social network and
electronic commerce.

This research is supported by National Natural Science Foundation of China Grant Nos.
61972301, 61672403 and 61732013, National Natural Science Foundation of Shaanxi
Province under Grant No. 2020GY-043, and Shaanxi Key Science and Technology
Innovation Team Project Grant No. 2019TD-001.

c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 3–22, 2021.
https://doi.org/10.1007/978-3-030-77474-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_1

4 L. Zhao et al.

With their rapid development and wide application, the security of artificial
neural networks has been paid more and more attention. Systems of artificial
neural networks may contain defects or leaks, or may be vulnerable to differ-
ent malicious attacks, and such situations are not rare. In March 2018, a Uber
self-driving vehicle collided with a pedestrian in Arizona, US and caused his
death unfortunately, which became the first pedestrian death accident caused
by automatic driving systems in the world. In December 2019, an artificial intel-
ligence company named Kneron claimed to have used 3D masks to break through
the face recognition systems of Alipay and WeChat, and successfully enter the
railway station by face swiping.

So, it is vital to verify the security of artificial neural networks, especially
those to be applied in safety-critical situations. Verification is a kind of formal
methods, using techniques such as model checking [2] and theorem proving [11]
to validate whether a system satisfies or violates expected properties. The basis
of verification is to construct a model of the system with formal languages and
notations, which enables strict mathematic and logic reasoning of the system
and the properties. Nevertheless, formal modeling and verification of artificial
neural networks is far from an easy job, since their behavior is somewhat opaque
and unexplainable, depending on a huge number of parameters obtained through
machine learning.

As far as we know, there is some work on formal modeling and verification
of artificial neural networks. Huang et al. [10] study a kind of robustness prop-
erties of deep neural networks. By defining a set of manipulations to discretize
the neighborhood space of certain standard sample, they establish a set of logic
constraints and then use a solver of satisfiability modulo theory (SMT) to check
whether there are adversarial samples in the neighborhood space. Katz et al. [12]
extend the simplex method of linear programming by considering the rectified
linear unit (ReLU) function. Based on this, they formalize and verify linear prop-
erties of neural networks with only ReLU as the activation function. Singh et
al. [16] model feedforward neural networks and convolutional neural networks
with an abstract domain of floating-point polyhedra and intervals that supports
different transformation functions. Based on the abstract domain, certain prop-
erties of these networks, such as robustness and pre/post conditions, can be
verified with certain precision. Ghodsi et al. [7] propose a verification model for
neural network systems deployed in the cloud, using certain interactive proof
protocols. They make a few restrictions on the structure of the neural network,
e.g. the data should be in a finite domain and the activation functions should
be quadratic. It can be observed that these studies consider different aspects of
different neural networks, make different simplifying assumptions, and aim at
different properties. They cannot form a systematic modeling and verification
method for general neural networks.

To improve this situation, we are going to develop a comprehensive frame-
work that models and verifies various aspects of various neural networks. This
work is the first step towards this direction, proposing a fundamental framework
for the modeling of general aspects, including details of the layered structure,

An MSVL-Based Modeling Framework for BPNN 5

the prediction behavior and the learning behavior, of back propagation (BP)
neural networks, the most basic category of neural networks. As for the underly-
ing formal language, we adopt Modeling, Simulation and Verification Language
(MSVL) [6]. MSVL has a C-like syntax which is convenient to use, but it is actu-
ally defined based on Projection Temporal Logic (PTL) [4], a temporal logic with
strong expressive power [17]. With the logic basis, the language is suitable for
modeling, simulating and further verifying various computer systems and pro-
grams [5,22].

In this work, we propose a systematic modeling framework based on MSVL
for BP neural networks. On the one hand, the structure of a BP neural network is
modeled hierarchically. Entities of different levels, such as matrix, fully connected
layer and network-level parameters, are characterized as specific data structures
and implemented as MSVL structs. On the other hand, the behavior of the net-
work is modeled. Behavior patterns of different levels, such as matrix operations,
forward propagation and BP, are characterized as specific operations and imple-
mented as MSVL functions. Based on these data structures and operations, we
formulate a process for constructing and training a BP neural network according
to the user’s customization. We carry out an experiment using the framework
to generate various instances of BP neural networks for the classification task of
handwritten font recognition. The instances show good performance in terms of
standard metrics such as loss and accuracy. Especially, the convergence of the
loss and the increase of the accuracy during the training turn out to be more
stable, compared with Python implementations of the same network structure.

The rest of this paper is organized as follows. Section 2 introduces basic
notions of MSVL and BP neural network. Then, Sects. 3 and 4 specify the design
and implementation of the modeling framework, respectively. After that, Sect. 5
presents the experiment which applies the framework to handwritten font recog-
nition. Finally, conclusions are drawn is Sect. 6 with a discussion on future work.

2 Background

This section introduces basic notions of the language MSVL and back propaga-
tion neural network.

2.1 The Language MSVL

Modeling, Simulation and Verification Language (MSVL) [6,18] is a temporal
logic programming language that supports formal modeling and verification of
computer systems. Specifically, it is an executable subset of projection temporal
logic (PTL) [4] with more succinct notations.

MSVL has a C-like syntax that is easy to use. It supports various data types
such as integer, float, array types, pointer types and struct types. The syntax
of arithmetic expressions e, l-value expressions le and boolean expressions b of
MSVL is given as follows.

6 L. Zhao et al.

e := le | c | ©x | -©x | e1 aop e2 | &x | (T)e
le := x | e1[e2] | ∗e | e.a | e−> a

b := true | false | ¬b | b1 ∧ b2 | e1 = e2 | e1 < e2

Here, x denotes a variable, c denotes a constant, and a denotes an attribute
name of a struct. Besides, © (next) and -© (previous) are temporal operators,
aop denotes an arithmetic operation such as addition and multiplication, while
(T) represents a cast operation to a type T .

A statement of MSVL, generally represented by p or q, takes the form of
one of the following constructs. Actually, each construct is defined by a PTL
formula, which is interpreted over an interval of states. Readers may refer to [18]
for the definition and semantics of the statements.

(1) Termination: empty (2) Unit Interval: skip
(3) Assignment: le ⇐ e (4) Unit Assignment: le := e

(5) Variable Declaration: T x (6) Interval Frame: frame(x)
(7) Conjunction: p and q (8) Selection: p or q

(9) Next: next p (10) Always: alw p

(11) Chop: p; q (12) Parallel: p || q

(13) Conditional Choice: if b then p else q (14) While Loop: while b do p

(15) Projection: (p1, ..., pm) prj q (16) Function Call: f(e1, ..., en)

The statement empty represents an interval of length 0, i.e., the current state
is the last state, while skip represents a unit interval, i.e., the next state is the
last state. A unit assignment le := e indicates le is assigned by e over a unit
interval. A frame statement frame(x) indicates the value of x is preserved at
every state of the current interval, unless it is assigned explicitly. A projection
statement (p1, ..., pm) prj q represents a special form of parallel execution. It
indicates p1, · · · , pm are executed sequentially, while q is executed “in parallel”,
over their projected interval. The intuition of the other statement constructs is
straightforward.

MSVL has a compiler MC [20] based on LLVM. The compiler accepts a
well-formed MSVL program as its input, and through the process of the lex-
ical analysis, syntactic analysis and semantic analysis, generates the result of
executable binary code. In this way, MC is suitable to realize modeling and
verification tasks with MSVL.

2.2 Back Propagation Neural Network

Back propagation (BP) neural network [3] is a basic category of neural network
composed of fully connected layers and trained through propagating the loss
backwardly. A BP neural network may have multiple hidden layers between the
input layer and the output layer. Each layer has several neurons, and neurons
of adjacent layers are fully connected by weights.

An MSVL-Based Modeling Framework for BPNN 7

Fig. 1. An example BP neural network

We use bold lowercase letters, such as a and δ, to represent row vectors, and
bold uppercase letters, such as A and Δ, to represent matrices. For a vector
a = (a1, . . . , an), the notation a+ represents the extension of a with a bias 1
at the front, i.e. a+ = (1, a1, . . . , an). Besides, σ and L represent the activation
function and loss function, respectively.

We introduce the calculation behavior of BP neural networks through an
example, shown in Fig. 1. The network has an input layer with three neurons, one
hidden layer with six neurons and an output layer with three neurons, indicating
there are three result categories. They are also called the 0-th, first and second
layers, respectively.

The main behavior of a BP neural network is prediction and training. Pre-
diction calculates the category of an input sample, which is a vector of features
whose size equals the number of neurons of the input layer. In this example,
an input sample x = (x1, x2, x3) has three features. It is extended with the
bias, and then multiplied by the matrix W (1) = (w(1)

ij)4×6 of weights of the
first layer, obtaining the summation value vector s(1) = x+W (1). Then, it is
activated by certain activation function, obtaining the activation value vector
a(1) = σ(1)(s(1)) of the layer. The calculation is the same for the second layer.
a(1) is extended with the bias, multiplied by the weight matrix W (2) = (w(2)

ij)7×3

as s(2) = (a(1))+W (2), and then activated, obtaining the activation value vector
a(2) = σ(2)(s(2)) of the second layer. Such a calculation process is called for-
ward propagation. a(2) of size 3 is regarded as the probabilities that the input x
belongs to the three categories. Thus, x is predicted to belong to the category
with the highest probability.

8 L. Zhao et al.

To make the prediction accurate, the network should be trained so that the
weights are set to proper values. The input of the training is a set of sample vec-
tors x whose category is known and labelled by one-hot vectors y. Each sample x
is processed through forward propagation, obtaining the activation value vector
a(2). Then, the loss is calculated between a(2) and y. If we adopt mean square
error as the loss function, the calculation is L(a(2),y) = 1/2

∑3
i=1(a

(2)
i − yi)2.

After that, the gradient of the loss with respect to each weight parameter
w

(k)
ij is calculated. Suppose the activation functions of both layers are the sigmoid

function. The calculation is performed backwardly: from the output layer to the
first layer. Such a calculation process is called BP, sketched as follows.

δ
(2)
k =

(
a
(2)
k − yk

)
a
(2)
k

(
1 − a

(2)
k

) ∂L
∂w

(2)
ik

= δ
(2)
k

(
a
(1)
i

)+

δ
(1)
j = a

(1)
j (1 − a

(1)
j)

∑

k∈K

δ
(2)
k w

(2)
jk

∂L
∂w

(1)
ij

= δ
(1)
j

(
x
(0)
i

)+

Finally, to make the loss decrease effectively, each weight parameter is
updated based on its corresponding gradient. At this stage, different optimiza-
tion methods can be used to accelerate the decrease of loss, such as batch
gradient descent (BGD) [19], mini-batch gradient descent (MBGD) [13] and
Adam [14]. The training generally involves a large number of batched samples,
and is repeated for multiple iterations.

3 Design of the Modeling Framework

This section presents the design of the modeling framework for BP neural net-
works. We first introduce a few principles based on which we carry out the
design.

3.1 Design Principles

For designing the modeling framework, we take into account three general prin-
ciples: portability, extensibility and training efficiency.

Portability refers to the ease with which software or applications can be
transferred from one environment to another, and it is a necessary condition
that models can be widely used. From an engineering point of view, portabil-
ity indicates lower development costs. An application may be coded once and
applied to different platforms, and developers pay more attention to the logic of
the application itself. From the perspective of software and hardware develop-
ment, portability enables software and hardware to be developed independent
of each other. For good portability, the design of our framework is for an MSVL
implementation. MSVL is a general modeling language that supports compila-
tion with LLVM.

An MSVL-Based Modeling Framework for BPNN 9

Modeling of the Structure

Layers Network-level Structures

Basic Computing Units

Fully
Connected

Layer

 Other
Layer

 BP Neural
Network Data Set

Matrix Tensor

Modeling of the Behavior

Prediction Training

Basic Operations

Forward
Propagation

Back
Propagation

Weight
Update

Matrix
Operations

Weight
Initiations

 Activation
Operations

Loss
CalculationsVector

Fig. 2. Sketch of the modeling framework

Extensibility refers to the ability for software models or systems to extend. It
considers the future growth of the a system by adding new functions or modifying
existing functions. Generally, extensibility can be achieved through dynamically
loaded plug-in, carefully designed hierarchical structure with abstract interfaces
at the top, useful callback function construct, as well as functionally extensible
code structure. For good extensibility, we carry out a hierarchical design and
process-like construction according to the natures of neural networks and the
characteristics of MSVL.

Training efficiency is a general principle for developing a machine-learning
model, which may refer to the time cost for the model to be well trained, or more
detailedly the speed that some loss metric converges. As one kind of machine-
learning models, a neural network is usually trained by a large data set for many
iterations, involving frequent calculation of losses and gradients in terms of oper-
ations of large matrices or tensors. For good training efficiency, our design sup-
ports general optimization strategies for gradient calculation and weight update.
We also consider methods that improve single-point computing efficiency, such
as sparse-matrix optimization [21].

3.2 Sketch of the Modeling Framework

The design of the modeling framework follows the above principles and considers
the modeling of both the structure and behavior of BP neural networks, sketched
as Fig. 2.

The modeling of the structure is a hierarchical design. At the first level, basic
computing units of a BP neural network are specified, including vector, matrix
and tensor. Among these basic computing units, matrix is the most important
data structure. In fact, a vector can be regarded as a special matrix, while a
three-dimensional tensor can be expressed in the form of a matrix array. Based
on the first level, the second level involves the modeling of layers and network-
level structures. For a model of BP neural networks, it is enough to consider only
fully connected layers in this work. However, the modeling of other layers, such
as convolutional layers, is also supported so that the framework is extensible to
other types of neural networks. Network-level structures include the whole BP
neural network and the sample data set. Notice that the data set is needed to
model the training behavior.

10 L. Zhao et al.

Matirx

row: int
 // the number of rows
col: int
 // the number of columns
element: float**
 // the pointer referring to the data values

FCLayer

NeurionNum: int // the number of neurons
ActiFunc: int // the activation function
ActiMat: Matrix // the activation value matrix
SumMat: Matrix // the summation value matrix
WeightMat: Matrix // the weight matrix
WeightBiasMat: Matrix // the weight bias matrix
DeltaMat: Matrix // the intermediate temporary matrix for BP
NablaWbMat: Matrix // the weight gradient matrix
ActiDeriMat: Matrix // the activation derivation matrix

Fig. 3. Data structures: matrix and layer

The modeling of the structure of a BP neural network enables the model-
ing of its behavior. At the first level, we formalize a series of basic operations
upon the matrix data structure, including matrix operations, weight initiations,
activation operations and loss calculations. Based on the first level, the second
level models the two major behavior patterns of a BP neural network: prediction
and training. The main operation of prediction is forward propagation, while the
main operations of training involves BP and weight update.

3.3 Modeling of the Structure

The modeling of the structure of a BP neural network involves the modeling of
basic computing units, layers, and network-level structures.

Basic Computing Units. The basic computing units of a BP neural network
generally indicate the one-dimensional row vector, the two-dimensional matrix
and the three-dimensional tensor. We model the two-dimensional Matrix as a
data structure shown in Fig. 3. It is the most basic data structure of this frame-
work. Specifically, a matrix has three properties: the number of rows, the number
of columns, and the pointer referring to the data values. Then, a vector is rep-
resented as a matrix with just one row, and a tensor can be represented as an
array of matrices.

Layers. The layered structure is an important part of hierarchical modeling.
Here, we only model fully connected layers that are enough to constitutes BP
neural networks. Nevertheless, with the data structures of matrix and tensor, it
is also feasible to model other kinds of layers, e.g. convolutional layers, so that
different types of neural networks, e.g. convolutional neural networks, can be
further characterized.

A fully connected layer is formalized as a data structure named FCLayer,
shown in Fig. 3. Specifically, it has the following properties: the number of neu-
rons, the activation function, the activation value matrix, the summation value
matrix, the weight matrix, the weight bias matrix, the intermediate temporary
matrix for BP, the weight gradient matrix, and the activation derivation matrix.

An MSVL-Based Modeling Framework for BPNN 11

DataSet

FeatureDataSet: Matrix // the set of features
LabelDataSet: Matrix // the set of labels
TrainFeature: Matrix // the training features
TrainLabel: Matrix // the training labels
BatchTrainFeature: Matrix // the batched training features
BatchTrainLabel: Matrix // the batched training labels
TestFeature: Matrix // the test features
TestLabel: Matrix // the test labels
SampleNum: int // the number of samples
TrainSampleNum: int // the numbers of training samples
TestSampleNum: int // the numbers of test samples
DimensionNum: int // the number of features
ClassificationNum: int // the number of categories
BatchSize: int // the batch size
BatchNum: int // the number of batches
Remainder: int // the size of the last data block

BPNN

CurrentSampleNum: int
 // the current number of samples to deal with
SampleDimensionNum: int
 // the number of data features
HiddenLayerNum: int
 // the number of hidden layers
WeightInitWayNum: int
 // the weight initialization method
Layers: FCLayer*
 // the pointer referring to the structure of all layers
OnehotMat: Matrix
 // the labels with one-hot encoding
ClassificationNum: int
 // the number of categories
LossFunc: int
 //the choice of loss function

Fig. 4. Data structures of network level

Network-Level Structures. We consider two structures of network level: the
BP neural network and the data set. By combining the fully connected layers and
related parameters, we formalize a BP neural network as a data structure named
BPNN, shown in Fig. 4. Specifically, its properties involve the current number
of samples to deal with, the number of data features, the number of hidden
layers, the weight initialization method, the pointer referring to the structure of
all layers, the labels with one-hot encoding, the number of categories, and the
choice of loss function.

Besides, we model a sample data set as a data structure named DataSet, also
shown in Fig. 4. It has the following properties: the set of features, the set of
labels, the training features, the training labels, the batched training features,
the batched training labels, the test features, the test labels, the numbers of
training and test samples, the number of features, the number of categories, the
batch size, the number of batches, and the size of the last data block which may
be smaller than the batch size.

3.4 Modeling of the Behavior

With the data structures designed in the previous subsection, we are able to
model the behavior of a BP neural network. This involves the modeling of basic
operations, the prediction behavior and the training behavior.

Basic Operations. Basic operations lay the foundation of specific behavior
modes. As is shown in Fig. 5, we utilize the matrix data structure to formalize
four categories of basic operations: matrix operations, weight initiations, activa-
tion operations and loss calculations.

Here, we introduce a few notations. For a matrix X, XT represents the
transposition of X, while the plus notation X+ represents the extension of X

12 L. Zhao et al.

Fig. 5. Basic operations

with one bias column of all 1 to the left side. For two matrices X and Y of the
same size, X ◦ Y represents the product of X and Y by position. For example,

(
a1 a2

a3 a4

)+

=
(

1 a1 a2

1 a3 a4

)

and
(

a1 a2

a3 a4

)

◦
(

b1 b2
b3 b4

)

=
(

a1b1 a2b2
a3b3 a4b4

)

.

We formalize a group of matrix operations. MatCreate is for the creation of a
matrix, while MatDelete is for its deletion. MatAdd, MatSub, MatMul and Mat-
Product are for the addition, subtraction, multiplication and product by position
(◦) of two matrices, respectively. Besides, MatNumMul multiplies a matrix by a
constant number, i.e., each element of the matrix is multiplied by the number.
The meaning of MatNumAdd is similar. In addition, MatCopy is for matrix copy.
MatPlusCol and MatTrans calculate the plus X+ and transposition XT of a
matrix X, respectively.

There are four main ways of weight initialization for neural networks: random
initialization [1], all zero initialization, Xavier initialization [8] and HeKaiMing
initialization [9]. We formalize them as four operations MatInitRandomNorm,
MatInitZero, MatInitXavier and MatInitHe, respectively. We also model a general
operation NNWeightInit of weight initialization that chooses one of these concrete
operations according to an integer parameter.

We formalize five activation operations: MatSoftmax, MatSigmoid, MatTanh,
MatRelu and MatLeakyRelu. They characterize the widely used activation func-
tions softmax [15], sigmoid, tanh, relu and leaky relu, respectively. We also
model a general activation operation MatActivate that chooses one of the five

An MSVL-Based Modeling Framework for BPNN 13

NNForward

Input:
 featureMat: Matrix
 bpnn: BPNN*
Output:
 NULL (In-place update)

 if (CurrentSampleNum == feature.row) then pass
 Otherwise reallocate the parameter space o f neural networks

 (bpnn-> layers[0].ActiMat) < -- featureMat
 bpnn-> Layer[0].ActiMatPlus < -- MatPlusCol(bpnn-> Layer[0].ActiMat)

 fo r (i=0; i< bpnn-> (HiddenLayerNum+1); i=i+1):
 bpnn-> layers[i+1].SumMat < -- bpnn-> layers[i].ActiMat * bpnn-> layers[i+1].WeightBiasMat
 bpnn-> layers[i+1].ActiMat < -- MatActivate(bpnn-> layers[i+1].SumMat)
 if (i==bpnn-> HiddenLayerNum) then pass
 Otherwise bpnn-> layers[i+1].ActiMatPlus < -- MatPlusCol(bpnn-> Layer[i+1].ActiMat)

Fig. 6. Operation of forward propagation

operation referring to an integer parameter. Similarly, for loss calculation, we for-
malize two operations CE and MSE that calculate the well known cross entropy
loss [15] and mean square error loss, respectively. One of the two is chosen in a
general operation LossFunction, according to a specific parameter.

Prediction. The core operation of the prediction behavior of a BP neural net-
work is forward propagation. Given a vector of size M as the input, the output
of forward propagation is a vector of size K indicating the probabilities that
the input belongs to the K categories. Usually, the input vector is predicted to
belong to the category with the highest probability.

Forward propagation can be generalized in that the input can be a matrix
of size N × M , representing a set of N vectors of the same size. They are dealt
with at the same time, and the output is also a matrix, of size N × K.

Suppose a BP neural network has H hidden layers. We call the input layer
the 0-th layer and the output layer the (H+1)-th layer. Let W (i), S(i), A(i) and
σ(i) denote the weight matrix, the summation matrix, the activation matrix and
the activation function of Layer i (0 ≤ i ≤ H+1), respectively.

Inspired by the example presented in Sect. 2.2, we outline the calculation
of forward propagation as follows. For consistency, the input matrix is denoted
as A(0).

(
A(0)

)+
W

(1)
b = S(1) σ(1)

−→ A(1) b−→ (
A(1)

)+

⇒· · ·
⇒(

A(H−1)
)+

W
(H)
b = S(H) σ(H)

−→ A(H) b−→ (
A(H)

)+

⇒(
A(H)

)+
W

(H+1)
b = S(H+1) σ(H+1)

−→ A(H+1)

Here, b−→ indicates the extension with a bias column, while ⇒ means entering
the next layer. The calculation is formalized as an operation NNForward, shown
in Fig. 6.

Training. Generally speaking, the training behavior is more complicated than
the prediction behavior. The key of training is to calculate the gradients of the

14 L. Zhao et al.

Training

Input:
 bpnn: BPNN*
 data: DataSet
Output:
 NULL (In-place update)

 fo r (i=1; i< =epoch; i=i+1):
 fo r (j=1; j< data.BatchNum;j=j+1):
 NNForward(data.BatchTrainFeature[j],bpnn)
 loss < -- LossFunction(bpnn,data.BatchTrainLabelOneHot[j])
 NNBackward(bpnn)
 WeightUpdate(bpnn,optimizationPara)

WeightUpdate

Input:
 bpnn: BPNN*
 optimizationPara: float
Output:
 NULL (In-place update)
fo r (i=1; i< =bpnn-> (HiddenLayerNum+1); i=i+1):
 Update bpnn-> Layer[i].WeightBiasMat according to the specific optimization algorithm

NNBackward

Input:
 bpnn: BPNN*
Output:
 NULL (In-place update)

 if (Softmax activation and Cross Entropy loss) then
 bpnn-> Layer[bpnn-> HiddenLayerNum+1].DeltaMat
 < -- bpnn-> Layer[bpnn> HiddenLayerNum+1].ActiMat - bpnn-> OnehotMat
 Otherwise
 The derivatives bpnn-> Layer[bpnn-> HiddenLayerNum+1].DeltaMat
 is normally obtained by the chain rule

 bpnn-> Layer[bpnn-> HiddenLayerNum+1].NablaWbMat
 < -- 1/bpnn-> CurrentSampleNum
 * MatTrans(bpnn-> Layer[bpnn-> HiddenLayerNum].ActiMatPlus)
 * bpnn-> Layer[bpnn-> HiddenLayerNum+1].DeltaMat

 fo r (i=bpnn-> HiddenLayerNum; i> 0; i=i-1):
 The derivatives bpnn-> Layer[i].DeltaMat is normally obtained by the chain rule.
 bpnn-> Layer[i].NablaWbMat < -- 1/bpnn-> CurrentSampleNum
 * MatTrans(bpnn-> Layer[i].ActiMatPlus) * bpnn-> Layer[i].DeltaMat

Fig. 7. Operations of training

loss with respect to the weights through BP. After that, all the weights are
updated referring to the corresponding gradients.

Let Y be the label matrix, which may be composed of a set of one-hot vectors.
Recall that L denotes the loss function. Assume (·)′ calculates the derivative of
a function, while ∇W calculates the gradients of a function with respect to the
weights in a matrix W .

Inspired by the example presented in Sect. 2.2, we outline a general calcu-
lation of BP in terms of matrix operations. First, for the output layer, i.e. the
(H+1)-th layer, the gradients are calculated as follows.

∇
W

(H+1)
b

L(A(H+1),Y) =
1
N

(A(H)+)T Δ(H+1)

Δ(H+1) =
∂L(A(H+1),Y)

∂A(H+1)
◦ (σ(H+1))′(S(H+1))

Here, we use an auxiliary matrix Δ(i) to record certain intermediate results of
each layer i (1 ≤ i ≤ H +1). Then, the calculation of the i-th hidden layer
(1 ≤ i ≤ H) depends on the results of its next layer. The calculation is actually
performed backwardly, from Layer H to Layer 1.

∇
W

(i)
b

L(A(H+1),Y) =
1
N

(
A(i−1)+

)T
Δ(i)

Δ(i) = Δ(i+1)(W (i+1))T ◦ (σ(i))′(S(i))

We formalize this calculation as an operation NNBackward, shown in Fig. 7.
The operation of BP calculates the gradients of the loss with respect to all

the weights in the neural network. After that, the weights are updated according
to the gradients, also in terms of matrix operations. In this phase, different opti-
mization strategies, such as BGD, MBGD and Adam, can be used in order to
improve the training efficiency. We specify this process as an operation Weigh-
tUpdate, shown in Fig. 7.

The training of a BP neural network is generally performed for multiple
iterations, and each iteration is called an epoch. In each epoch, by utilizing the
data set, we carry out forward propagation, calculate the loss, back-propagate

An MSVL-Based Modeling Framework for BPNN 15

the gradient, and finally update the weights. The whole process is formalized as
an operation Training, shown also in Fig. 7.

4 Implementation of the Modeling Framework

This section introduces issues on implementing the modeling framework by
MSVL, including the implementation of the data structures, the implementation
of the operations, and a detailed process of constructing a BP neural network.

4.1 Implementation of the Data Structures

We have implemented all the data structures of the modeling framework by
MSVL structs. Three representative ones, Mat, FCLayer and BPNN, are shown
in Listing 1.

Listing 1. Representative Structs

1 struct Mat {
2 int row and
3 int col and
4 float ∗∗element
5 };
6
7 struct FCLayer {
8 Mat ActiMat and
9 Mat ActiMatPlus and

10 Mat SumMat and
11 Mat WeightMat and
12 Mat WeightBiasMat and
13 Mat DeltaMat and
14 Mat NablaWbMat and
15 Mat ActiFunDerivationMat and
16 int NeuronNum and
17 int AcitFuncNum
18 };
19
20 struct BPNN {
21 int CurrentSampleNum and
22 int SampleDimensionNum and
23 int HiddenLayerNum and
24 int WeightInitWayNum and
25 FCLayer ∗Layer and
26 Mat OnehotMat and
27 int ClassificationNum and
28 int LossFuncNum
29 };

As is shown in Line 4, the attribute element of the struct Mat is a pointer
referring to a two-dimensional array of float numbers. The use of two-dimensional
array instead of one-dimensional array is to balance the time and space consump-
tion. In Line 17, the attribute AcitFuncNum of the struct FCLayer represents the
choice of activation function of the layer. It is simply a zero-based integer: 0
for inactivation, 1 for sigmoid, 2 for tanh, 3 for relu, 4 for leaky relu and 5
for softmax. Similarly, in Lines 24 and 28, the attributes WeightInitWayNum
and LossFuncNum of the struct BPNN represent the choices of weight initializa-
tion methods and loss functions, respectively. Supporting various selections, the
framework has good expressiveness and extensibility.

16 L. Zhao et al.

4.2 Implementation of Operations

We have implemented all the operations of the modeling framework by MSVL
functions. Two representative ones, MatMul and NNBackward, are shown in
Listings 2 and 3, respectively. Notice that in an MSVL function, RValue rep-
resents the return value.

Listing 2. Function MatMul

1 function MatMul (Mat ∗src1, Mat ∗src2, Mat ∗dst, Mat∗ RValue)
2 {
3 frame(row,col , i ,temp1,temp2,temp3,temp4,return) and (
4 int return<==0 and skip;
5 int row,col and skip ;
6 int i and skip ;
7 MatZeros(dst,RValue);
8 float temp1<==0.0 and skip;
9 float temp2<==0.0 and skip;

10 row:=0;
11 while(row<src1−>row)
12 {
13 col:=0;
14 while(col<src1−>col)
15 {
16 temp1:=(src1−>element[row])[col];
17 int temp3 and skip;
18 temp3:=equal(temp1,0,RValue);
19 if (temp3=0) then
20 {
21 i :=0;
22 while(i<src2−>col)
23 {
24 temp2:=(src2−>element[col])[i];
25 int temp4 and skip;
26 temp4:=equal(temp2,0,RValue);
27 if (temp4=0) then
28 {
29 (dst−>element[row])[i]:=(dst−>element[row])[i]+temp1∗temp2
30 }
31 else
32 {
33 skip
34 };
35 i :=i+1
36 }
37 }
38 else
39 {
40 skip
41 };
42 col:=col+1
43 };
44 row:=row+1
45 };
46 return<==1 and RValue:=dst;
47 skip
48)
49 };

Among the basic operations, matrix multiplication is the most direct factor
affecting the training efficiency of the framework. To accelerate the calculation of
matrix multiplication, we adopt three kinds of optimizations in this framework:
register optimization, multi-level cache optimization, and sparse optimization.
The idea of sparse optimization is that a lot of matrices, e.g. the activation
value matrices of deep layers, become sparse, with most elements to be 0, as the
number of training epochs increases. For this kind of matrices, the multiplication
can be simplified by ignoring many 0 factors. The key code of sparse optimization
is presented in Lines 17–41 of Listing 2. It can greatly improve the efficiency of
matrix multiplication.

An MSVL-Based Modeling Framework for BPNN 17

Listing 3. Function NNBackward
1 function NNBackward (FCNN ∗fcnn, Mat∗ RValue)
2 {
3 frame(i ,TransM,ActiM,MulM,ProdM,TAM,return) and (
4 int return<==0 and skip;
5 NNOuputLayerBackward(fcnn,RValue);
6 int i<==fcnn−>HiddenLayerNum and skip;
7 while(i>0)
8 {
9 Mat TransM and skip;

10 Mat ActiM and skip;
11 Mat MulM and skip;
12 Mat ProdM and skip;
13 Mat TAM and skip;
14 MatCreate(&TransM,fcnn−>Layer[i+1].WeightMat.col,fcnn−>Layer[i+1].WeightMat.row,RValue);
15 MatCreate(&ActiM,fcnn−>Layer[i].SumMat.row,fcnn−>Layer[i].SumMat.col,RValue);
16 MatCreate(&MulM,fcnn−>Layer[i+1].DeltaMat.row,fcnn−>Layer[i+1].WeightMat.row,RValue);
17 MatCreate(&ProdM,fcnn−>Layer[i].SumMat.row,fcnn−>Layer[i].SumMat.col,RValue);
18 MatCreate(&TAM,fcnn−>Layer[i−1].ActiMatPlus.col,fcnn−>Layer[i−1].ActiMatPlus.row,RValue);
19 TransM(&fcnn−>Layer[i+1].WeightMat,&TransM,RValue);
20 ActiFunDerivation(fcnn−>Layer[i].SumMat,&ActiM,fcnn−>Layer[i].AcitFuncNum,RValue);
21 MatMul(&fcnn−>Layer[i+1].DeltaMat,&TransM,&MulM,RValue);
22 MatProduct(&MulM,&ActiM,&fcnn−>Layer[i].DeltaMat,RValue);
23 TransM(&fcnn−>Layer[i−1].ActiMatPlus,&TAM,RValue);
24 MatMul(&TAM,&fcnn−>Layer[i].DeltaMat,&fcnn−>Layer[i].NablaWbMat,RValue);
25 MatNumMul(1.0/fcnn−>sampleCapacity,&fcnn−>Layer[i].NablaWbMat,&fcnn−>Layer[i].NablaWbMat,RValue);
26 MatDelete(&TransM);
27 MatDelete(&ActiM);
28 MatDelete(&MulM);
29 MatDelete(&ProdM);
30 MatDelete(&TAM);
31 i :=i−1
32 };
33 return<==1 and RValue:=NULL;
34 skip
35)
36 };

According to the design of the operation NNBackward in Fig. 7, The calcu-
lation for the output layer is different from that for other layers. We implement
an auxiliary function NNOuputLayerBackward to realize the calculation for the
output layer. It is invoked in Line 5 of Listing 3. The rest statements of the
function NNBackward are direct realization of their counterparts in the design.

4.3 Construction of a BP Neural Network

Based on the implementation of data structures and operations, we formulate a
detailed process for constructing a general BP neural network, until the network
is well trained. The process is sketched in Fig. 8.

The process starts from collecting requirements from users through a group of
parameters. These parameters involve the numbers of training and test samples,
the number of hidden layers, the number of neurons and the activate function
of each layer, and the choices of weight initialization and loss functions. They
are organized as a temporary data structure Customization and input into the
process. With these parameters, corresponding attributes of the data structures
of the framework are assigned.

The second step is data set construction. In this step, batch-related parame-
ters, such as the number of batches and the size of the last batch, are calculated,
and referring to these parameters the required space is allocated. After that, the
data set is imported into the DataSet structure.

The third step is neural network initialization. In this step, the space for
all the parameters of the BP neural network is allocated, as well as auxiliary
space for intermediate results of matrix operations. After that, the weights of
the neural network are initialized.

18 L. Zhao et al.

Fig. 8. Construction of a BP Neural Network

Then, the construction enters the training phase. In this phase, an iterative
training epoch is performed for a specific number of N times. Each epoch is a
sequential composition of a forward propagation to calculate the loss, a BP to
calculate the gradients, and an updation of weights according to the gradients.
Specifically, the forward propagation processes all the batches of the training
data. Based on their outputs, the total loss is calculated by invoking the func-
tion LossFunction. The BP calculates the gradients of the loss in two stages:
the calculation of the output layer, and then the calculation of hidden layers.
Finally, all the weights are updated according to their corresponding gradients.
For good training efficiency, the updation involves invoking certain optimization
methods, such as BGD, MBGD and Adam. They have been implemented as
MSVL functions.

5 Experiment

In this section, we carry out an experiment to test the performance of the mod-
eling framework. Specifically, we use the framework to model instances of BP
neural networks for the classification task of handwritten font recognition.

For training and testing the neural network, we adopt MNIST1 which is
a standard data set of handwritten digits. MNIST consists of a training data
set of 60, 000 images and a test data set of 10, 000 images. Both of them are

1 Data set acquisition address: http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

An MSVL-Based Modeling Framework for BPNN 19

Fig. 9. MNIST data examples

randomly selected from a pool of images, and are thus considered to follow the
same empirical distribution. As is shown in Fig. 9, an image looks like a one-
digit number in terms of handwritten strokes, and the task is to classify any
image into one of the ten categories: from 0 to 9. Specifically, each image has
784 (28×28) pixels, and each pixel takes a value between 0 and 255 to indicate
the grayscale. Thus, an image can be represented as a vector of 784 features. In
this experiment, the MNIST data set is reorganized into “.msd” files and then
imported into the framework.

BP Neural Network Construction. For the classification task, we construct
an instance of BP neural network with two hidden layers. The numbers of neu-
rons of the input layer, the two hidden layers and the output layer are 784, 512,
256 and 10, respectively. As for the activation functions, both the hidden lay-
ers are activated by relu, but the output layer is activated by softmax. As for
the loss function, we choose the cross entropy loss. As for the optimization of
weight update, we choose the Adam method. Based on these requirements, the
framework generates an MSVL function main for constructing, including train-
ing and testing, the instance, shown in Listing 4. In this experiment, variants
of this instance, e.g. with different optimization strategies, are also constructed
and their performances are measured.

Listing 4. Function main for Constructing an Instance

1 function main (int RValue)
2 {
3 frame(NueronNums,ActiFuncNums,user,data,nn,layer,adamPara,loss, losstest ,N,i , j ,acc) and (
4 Customization user and skip ;
5 DataSet data and skip ;
6 BPNN nn and skip;
7 FCLayer layer and skip ;
8 AdamPara adamPara and skip;
9 int NueronNums[4]<=={784,512,256,10} and skip;

10 int ActiFuncNums[4]<=={0,3,3,5} and skip;
11 float loss<==0.0 and skip;
12 float losstest <==0.0 and skip;
13 float acc<==0.0 and skip;
14 int N<==1 and skip;
15 int i<==0 and skip;
16 InitCustom(&user,RValue);
17 InitDataSet(&data,RValue);
18 InitFCNN(&nn,RValue);
19 InitFCLayer(&layer ,RValue);
20 initAdam(nn,&adamPara);
21 MinstHWDataLoading();
22
23 user .CompleteSampleNum:=70000;
24 user .TrainSampleNum:=60000;
25 user .TestSampleNum:=10000;

20 L. Zhao et al.

26 user .SampleDimensionNum:=784;
27 user .HiddenLayerNum:=2;
28 user . ClassificationNum:=10;
29 user .LossFuncNum:=1;
30 user .WeightInitWayNum:=3;
31 user .BatchSize:=200;
32 user .NeuronNumArray:=NueronNums;
33 user .ActiFuncNumArray:=ActiFuncNums;
34 DumpCustom(user,RValue);
35 LoadParaFromCustom(user,&data,&nn);
36
37 DatasetConstruction(user,&data);
38 CreateNNSpaceAndLoadinPara2FCLayer(&nn,user,RValue);
39 NNWeightinit(&nn,RValue);
40
41 while(i<N)
42 {
43 int j<==0 and skip;
44 while(j<data.BatchNum)
45 {
46 NNforward(data.BatchTrainFeature[j],&nn);
47 loss :=Lossfunction(data.BatchTrainLabelOneHot[j],&nn, RValue);
48 NNBackward(&nn,RValue);
49 Adam(&nn,&adamPara);
50 j :=j+1
51 };
52 NNforward(data.TestFeature,&nn);
53 losstest :=Lossfunction(data.TestLabelOneHot,&nn, RValue);
54 acc:=testAcc(nn,data,RValue);
55 i :=i+1
56 }
57)
58 };

In this function, Lines 3–20 are for variable declaration and initialization, as
well as data import. Then, Lines 12–34 are for parameter customization, and
Lines 36–38 for data set construction and neural network initialization. Finally,
Lines 40–55 are for training and testing. The function can be complied and
executed by the MSVL compiler MC.

Experimental Results. The experiment is performed on a 32-bit x86 win10
platform, with the CPU frequency 2.1 GHz. We conduct a series of experimental
instances and test their performances concerning the standard metrics of neural
networks: loss and accuracy. All the results are average values obtained from at
least 3 instances.

We implement the same network structure using Python, and compare the
loss and accuracy between the MSVL and Python implementations, both adopt-
ing the Adam optimization. The results are visualized in Fig. 10(a), where the
dotted curves represent the loss and the full curves represent the accuracy. As
the number of epochs increases, the two implementations achieve almost the
same expectations of accuracy (0.98 above) and loss (nearly 0), indicating that
the MSVL model is trained as effectively as the Python implementation. On the
other hand, the performance of the MSVL model is more stable. By contrast,
the accuracy and loss curves of the Python implementation have more serious
jitters.

We also compare the loss and accuracy among the commonly used optimiza-
tion methods of weight update: BGD, MBGD and Adam. The results of MSVL
instances with these methods are visualized in Fig. 10(b), and the dotted and full
curves respectively represent the loss and accuracy, too. As the number of epochs
increases, the losses of the instances of MBGD and Adam converge quickly to
achieve good accuracy, but the loss for the traditional BGD method fails to

An MSVL-Based Modeling Framework for BPNN 21

Fig. 10. Results of loss and accuracy

approach 0. Among the three optimization methods, the performance of Adam
is the best.

6 Conclusions

In this work, we propose an MSVL-based framework for formal modeling of
BP neural networks. The framework is comprehensive, capable of modeling var-
ious aspects of a BP neural network concerning both the structure and the
behavior. Especially, the framework supports the construction and training of
a neural-network model according to user-customized parameters. Through an
experiment of handwritten font recognition, we show that the models generated
by the framework perform well under standard metrics of loss and accuracy.

For future work, we are going to develop methods for formal verification
of BP neural networks based on this framework. MSVL has provided a good
temporal-logic basis that supports model checking and theorem proving. The
main challenge lies in the exploration and formalization of meaningful properties
of these networks. In addition, it is meaningful to extend the framework to
various categories of neural networks, such as convolutional neural networks and
recurrent neural networks. In fact, the formalization of basic computing units
such as matrix and tensor enables further modeling of different layer structures.

References

1. Chen, Y., Chi, Y., Fan, J., Ma, C.: Gradient descent with random initialization:
fast global convergence for nonconvex phase retrieval. Math. Program. 176(1–2),
5–37 (2019). https://doi.org/10.1007/s10107-019-01363-6

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Hobo-
ken (2000)

3. Williams, R.J., Rumelhart, D.E., Hinton, G.E.: Learning representations by back-
propagating errors. Nature 323, 533–536 (1986)

https://doi.org/10.1007/s10107-019-01363-6

22 L. Zhao et al.

4. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Bei-
jing (2006)

5. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
167–186. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88194-
0 12

6. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70(1), 31–61 (2008)

7. Ghodsi, Z., Gu, T., Garg, S.: Safetynets: verifiable execution of deep neural net-
works on an untrusted cloud. In: NIPS, pp. 4672–4681 (2017)

8. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Whye Teh, Y., Titterington, M. (eds.) Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, Pro-
ceedings of Machine Learning Research, Chia Laguna Resort, Sardinia, vol. 9, pp.
249–256. PMLR (2010)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778. IEEE Computer Society (2016)

10. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

11. Kanso, K., Setzer, A.: A light-weight integration of automated and interactive
theorem proving. Math. Struct. Comput. Sci. 26(01), 129–153 (2016)

12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

13. Khirirat, S., Feyzmahdavian, H.R., Johansson, M.: Mini-batch gradient descent:
faster convergence under data sparsity. In: CDC, pp. 2880–2887. IEEE (2017)

14. Kingma, D.P., Adam, J.B.: A method for stochastic optimization. In: ICLR
(Poster) (2015)

15. Pang, T., Xu, K., Dong, Y., Du, C., Chen, N., Zhu, J.: Rethinking softmax cross-
entropy loss for adversarial robustness. CoRR, abs/1905.10626 (2019)

16. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. In: Proceedings ACM Programming Language 3(POPL) (2019).
Article 41

17. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with
star. Theoretical Comput. Sci. 412, 1729–1744 (2011)

18. Wang, X., Tian, C., Duan, Z., Zhao, L.: MSVL: a typed language for temporal
logic programming. Front. Comput. Sci. 11(5), 762–785 (2017). https://doi.org/
10.1007/s11704-016-6059-4

19. Randall Wilson, D., Martinez, T.R.: The general inefficiency of batch training for
gradient descent learning. Neural Networks 16(10), 1429–1451 (2003)

20. Yang, K., Duan, Z., Tian, C., Zhang, N.: A compiler for MSVL and its applications.
Theor. Comput. Sci. 749, 2–16 (2018)

21. Zhang, H., Cheng, X., Zang, H., Park, D.H.: Compiler-level matrix multiplication
optimization for deep learning. CoRR, abs/1909.10616 (2019)

22. Zhang, N., Duan, Z., Tian, C.: Model checking concurrent systems with MSVL.
Sci. China Inf. Sci. 59(11), 101–118 (2016). https://doi.org/10.1007/s11432-015-
0882-6

https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/s11704-016-6059-4
https://doi.org/10.1007/s11704-016-6059-4
https://doi.org/10.1007/s11432-015-0882-6
https://doi.org/10.1007/s11432-015-0882-6

A Case Study on Combining Agile
Requirements Development and SOFL

Fumiko Nagoya(B)

College of Commerce, Nihon University, Tokyo, Japan
nagoya.fumiko@nihon-u.ac.jp

Abstract. This paper presents a requirement development process com-
bined with agile software development and the Structured Object-
Oriented Formal Language (SOFL) to produce reliable software. Agile
methods have made outstanding contributions to handle changes by
short iterative development, though the requirements are less rigorous
for verification of the corresponding programs. SOFL supports defin-
ing, and modifying requirements, and verifying programs based on the
specifications, as a result of unifying the power of structured methods
and object-oriented methods. We conducted a case study to assess the
combined requirement development process and observe reworks caused
by requirement changes. The result shows that our proposed process is
effective to define the data and constraints, though changes in domains’
properties need continuous studies.

Keywords: SOFL · Agile · Requirements development

1 Introduction

Software requirements are properties of system behavior desired by various stake-
holders such as paying customers, users, and developers. Software engineers gather
users’ needs and identify the priorities for solving some real-world problems,
and they define goals, functions, external interfaces, quality attributes, and con-
straints placed on a software product or service. Many researchers and practition-
ers have developed diverse techniques, methods, and tools [1] for dealing well with
requirements engineering activities. The requirements engineering activities can
be roughly classified into two: requirements development and requirements man-
agement [2]. The requirements development includes elicitation, analysis, specifi-
cation, validation of requirements [3]. The requirements management comprises
identification, documentation, maintenance, communication, tracking & tracing
requirements throughout the life cycle of a system, product, or service [4].

Zave [5] has mentioned that traditional requirements engineering studies
focused on the requirements development activities by translations into formal
specifications from informal observations of the real world. Formal methods, such
as VDM [6], Z [7], and Alloy [8], contribute to specifying precise and unambigu-
ous formal specifications, and such formal expressions permit verifying proper-
ties or models by supporting tools. In contrast, agile software development has
c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 23–33, 2021.
https://doi.org/10.1007/978-3-030-77474-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_2

24 F. Nagoya

been mainly driven by the software industry for dealing with frequent change
requests from clients or business environments during a project. As the manifesto
[9] talks of welcoming change, agile software development manages customer
requirements flexibly by iterative and incremental development.

Some studies [10] propose a combination of formal methods and agile soft-
ware development for producing reliable software. Most agile practitioners in the
software industry do not use formal methods. Succeeding in the software business
[11,12] has more to do with managing expectations and gaining consensus from
their customers than developing secure and reliable products at first release.
Agile philosophy has been critical of writing requirements documents and spec-
ifications at the beginning of a project as a waste of time and unrealistic. The
reason is that the requirements will change over time. Meyer [13] argues against
the criticism that writing a product requirements document provides a sound
basis for discussion about the system’s future functions. Especially, it is helpful
to decide which function to remove.

To tackle the criticism of writing requirements documents and response
demand of specifications, we propose to use SOFL [14]. First, SOFL aids to inte-
grate structured methods and object-oriented methods. It uses Vienna Develop-
ment Method Specification Language (VDM-SL) [6] as textual notations. VDM-
SL gives precise definitions of data and operations by simple propositional logics,
basic set theory, and predicates for describing formal specifications. Also, SOFL
provides graphical notations by adopting Data Flow Diagram [15], and Petri Nets
[16]. The graphical notations help inexperienced persons to give an understand-
able overall architecture, associations with functions, and a hierarchic structure
of the system. Second, SOFL supports transforming into formal descriptions
from informal descriptions by a phased approach. In general, formal specifica-
tions use formal descriptions based on set theory, logic, algebra. Whereas, user
requirements in agile software development are written in natural language. The
transformation into formal descriptions in SOFL is called the three-step specifi-
cation approach and constructs informal, semi-formal, and formal specifications.
In this approach, informal and semi-formal specifications keep a good balance
between preciseness and readability for even an inexperienced person to formal
descriptions. Third, SOFL can effectively facilitate the combination of prototyp-
ing development and formal specifications [17,18] in an iterative and incremental
development manner. Rapid software prototyping is commonly used in agile soft-
ware development as we will mention in the next section. Also, we conducted a
case study to observe whether this combined process can handle changes caused
by feedback from stakeholders. The result gives an interesting indication by
revealing what kind of requirements and where changes occur during projects.

This paper is organized as follows. Section 2 introduces the background of
our study on agile software development. Section 3 gives detailed instructions
on our requirement development process with the informal and semi-formal
specifications of SOFL. Section 4 explains the case study and discusses the
results. Section 5 reviews related work. Finally, in Sect. 6 we conclude the paper
and point out future research directions.

A Case Study on Combining Agile Requirements Development and SOFL 25

2 Background

Agile software development is not a single development methodology, but a
superset of principles, practice, roles, and artifacts in each agile method such
as Extreme Programming (XP) [19], Scrum [20], and Crystal [21]. For instance,
Scrum takes in an iterative and incremental development manner for accept-
ing changes at any time. In this section, we discuss the agile artifacts produced
by typical agile requirements development to find a seamless transition process
from informal descriptions written in natural language into formal descriptions.
Prototypes, use cases and scenarios [22], and story cards [23] are commonly used
in agile requirements development. These agile artifacts give more insight into
designing a final product and improve communication between various stake-
holders.

A prototype is a model of a product sketched ideas as depicted on the left-
hand side of Fig. 1. It provides useful feedback from stakeholders in the initial
stages of product development. Snyder [24] expresses that paper prototyping
facilitates brainstorming, designing, creating, testing, and refining user inter-
faces. Nevertheless, these activities do not record automatically, nor we repro-
duce them. To overcome these challenges, numerous web designers use mock-
up tools. A mock-up is also a model of a product illustrated by desktop, mobile,
or online applications. And, the model seems the final product as if the functions
provide. Especially, some online mock-up tools permit collaborative editing by
a team; as a result, team members’ feedback or questions save in the cloud,
and the editor response anytime and anywhere. Despite these benefits, a paper
prototype or mock-up is not a document written in any natural language, but
a picture. Consequently, it would not by itself define what to be done by the
system precisely.

A use case diagram represents a system behavior with labeled oval shapes and
stick figures as shown in the middle of Fig. 1. Each ellipse has a name as a user
goal, what we call “use case”. A user case consists of scenarios, and a scenario
is a sequence of actions and interactions that occur under certain conditions. A
story card is a piece of paper used to write down a “user story” as illustrated on
the right-hand side of Fig. 1. A user story describes a small unit of functionality
that will be valuable to a user of the system.

Both use case and user story utilize the scenarios which indicate the prop-
erties of the system’s functionality from the users’ point of view. A scenario
is merely one episode of user interaction. No matter how many episodes, a sce-
nario is not itself a constituent behavior of the system. And above all, generating
tests based on such episodes do not satisfy test case completeness. These rea-
sons are these typical agile artifacts do not cause the actions of decomposition,
composition, encapsulation, abstraction, and generalization, in comparison with
structured methods and object-oriented methods. In summary, agile artifacts are
insufficient for comprehensive analysis to produce reliable software.

26 F. Nagoya

Prototype Use Case & Scenarios Story cards

Fig. 1. Agile requirements development

3 Requirements Development Process

SOFL provides the three-step specification approach: informal, semi-formal, and
formal specifications which enable to build formal specifications from informal
descriptions written in a natural language step by step. Especially, informal and
semi-formal specifications have an important role in functional decomposition
and object composition. This section explains with an example of the develop-
ment of informal and semi-formal specifications. Additionally, we propose an
integrated requirement development process with the informal and semi-formal
specifications of SOFL.

3.1 Informal Specification

The informal specification is a well-organized document written in a natural lan-
guage as with scenarios described in use cases and user stories. However, SOFL
makes a shift in perspective from user to system. Agile requirements develop-
ment describes system functions from the user’s perspective as mentioned above.
In contrast, SOFL requires an informal specification to clearly define from the
point of view of systems. The informal specification contains three items: func-
tions to be implemented, data resources to be used, and necessary constraints
on both functions and data resources. For example, an informal specification for
developing a mobile application to find a babysitter is given as follows.

Functions

– Receive a request: This system receives the time, date, and location which a
customer specifies to find an available babysitter.

– Display search results: The system shows the candidate babysitters that
match the input data. When there is no available babysitter, the system
shows the message that the customer needs to select a wider range area for
search.

– Provide babysitters’ profiles: The system gives a babysitter’s profile depend on
the customer’s selection among the search results. A profile includes personal

A Case Study on Combining Agile Requirements Development and SOFL 27

data, hourly pay rate, available optional services, and reviews from other
customers.

– Book babysitter: The system enables to book one babysitter with some
optional services and asks to agree on pay rate and responsibility.

– Arrange contact: The system makes communication go smoothly with the
customer and the babysitter by phone for an interview directly.

– Cancel or change booking: The system accepts a cancellation or changing
request from the customer, though there’s a cancellation charge under some
conditions.

– Collect monthly services fees: The system calculates a monthly charge for
babysitter service and collects the amount from each customer by credit card.
On the other hand, the system calculates a monthly wage for each babysitter
in consideration of babysitter service and sends the amount by bank transfer.

Data Resources

– sitter data: ID, password, name, email, phone number, address, bank account,
profile data, hourly rate, customer reviews.

– customer data: ID, password, name, email, phone number, address, credit
card number, child data.

– child data: age, gender, allergies, special supports.
– booking data: location, date, start time, end time, sitter data, client data,

specified optional services.
– charge amount: hourly rate, total service time, additional fee for optional

services.

Constraints

– A password consists of six or more character sets.
– The maximum number of browsing historical log data is 10
– All windows for showing search results are visible but not editable.
– This program prohibits multiple running

3.2 Semi-formal Specification

The semi-formal specification is described as a set of modules to encapsulate
required functions, data resources, and constraints in a hierarchical fashion. A
module is composed of a module name, constant declarations, type declarations,
variable declarations, an invariant section, and a list of processes as illustrated
in Fig. 2. The module name represents a relation between the high-level module
and its decomposition module. The constant declarations, type declarations, and
variable declarations support clarifying the data items defined in the formal spec-
ification. The invariant section defines the constraints which are applied to the
whole specification. A process carries out an operation with process name, input
and output ports, precondition, and postcondition. The precondition describes a
constraint on the input data flows before the execution of the process, while the

28 F. Nagoya

Fig. 2. The three-step specification approach

postcondition provides a constraint on the output data flows after the execution.
The semi-formal specification obeys the syntax of VDM-SL, but the precondition
and postcondition are written in a natural language.

Two graphs illustrated by the right-hand side in Fig. 2 represent system
behavior of modules in the formal specification, respectively. Also, the graphs
show a decomposition from the upper module into the lower module in the for-
mal specification. Generally, visualizations of system behavior strongly support
understanding the big picture and facilitating communications as with agile soft-
ware development. SOFL does not restrict whether graphical notations should
be used for expressing modules in semi-formal specifications instead of formal
specifications. For this reason, we decide to draw roughly data flow diagrams to
identify a hierarchical structure at the semi-formal specifications as we describe
below in a combined requirement development process.

3.3 A Combined Requirement Development Process

We propose a requirement development process combined with agile software
development and the SOFL informal and semi-formal specifications. It is possi-
ble to adapt frequent change requests from stakeholders and support construct-
ing formal specifications. Figure 3 explains that the combined requirement devel-
opment process has five steps: prototype, use case & scenario, informal
specification, Data Flow Diagram, and semi-formal specification. The
prototypes represent ideas for user interfaces of final products, and include not
only paper prototypes but also mock-ups. In use cases & scenarios, a sys-
tem designer describes episodes from a viewpoint of product users by diagrams
and/or documents. However, the system designer changes the perspective from
the beneficiary receiver of the product into the system supplier after informal
specification. As we explained above, the designer needs to refine informal

A Case Study on Combining Agile Requirements Development and SOFL 29

descriptions to formal specifications with the aid of Data Flow Diagram, and
semi-formal specification step by step. In the combined requirement devel-
opment process, each artifact is refined by stakeholder feedback during a short-
cycled iteration just as “sprint” in Scrum [20]. SOFL serves as a bridge to ensure
a smooth transition from the agile artifacts into formal specifications.

Prototype Use Case &
Scenario

Informal
specification

Data Flow
Diagram

Semi-formal
specification

Fig. 3. The combined requirements development process

4 Case Study

We conducted a case study to evaluate the combined requirement development
process for inexperienced undergraduate students in formal descriptions. Twelve
undergraduate students who major in business participated in this experiment
as project managers. One professor who has experience in developing software
and knowledge of formal methods took on the facilitator. Each project consisted
of four to eight team members, one project manager, and one facilitator. The
manager was in charge of one mobile application development project, respec-
tively. And each target domain for the project was based on social experiences
through part-time jobs or internships. After they got six months of training in
agile software development and SOFL, they decided on target domains. The
target domains were finding a babysitter, employee shift planning, umbrella
rental service, and bus routing guide. And then, they carried out brainstorm-
ing, designing, creating, and modifying the artifacts: prototypes, use case &
scenario, informal specification, Data Flow Diagram, and semi-formal
specification.

30 F. Nagoya

Table 1. The result of case study

Prototype Use case & Informal Data Flow Semi-formal

scenario specification Diagram specification

interface 3 0 0 0 0

domain 2 1 2 1 3

functions 2 3 1 0 1

data 0 1 1 8 0

constrains 0 2 3 0 1

total 8 7 7 9 5

4.1 Results

The manager kept a record of when and what items he or she revised based
on feedback from other team members. Each step of the combined requirement
development process generally took two or three iterations, and each iteration
was carried out during the two-week sprint duration. The total time for the
experiment took almost six months. The periods were from November 2017 to
June 2018, and from November 2018 to June 2019.

The facilitator analyzed feedback and reactions, and categorized requirement
changes into five parts: interface, domain, functions, data, and constraints. Table 1
shows that each column represents the feedback point, and it arranges according
to the timeline. The rows mean the category of reactions. We can find two
features from the Table 1.

First, informal specification, Data Flow Diagram, and semi-formal
specification steps support discovering data and constraints. Second, requests
for changing the domain continue from the beginning to the end of the combined
requirement development process. The problem of the change needs more discus-
sion for handling development if we apply the combined requirement develop-
ment process in practice. We mention project managers’ actions during reworking
requirement changes in the next part.

4.2 Findings

During the case study, the facilitator realized some project managers were for-
getting the most important services to provide the system. The missing core
services occurred when the managers focused on the feedback from other team
members too much. Additionally, some projects returned the previous step for
changing problem domains, for instance, adding a new target user. The reworks
occurred during informal specification, Data Flow Diagram, and semi-
formal specification.

To address the former case, the facilitator decided iteration goals and a set of
acceptance criteria in advance. The iteration goals clearly define what the team
accomplish. The acceptance criteria help to judge disagreement or agreement of

A Case Study on Combining Agile Requirements Development and SOFL 31

stakeholders’ feedback. The latter case expresses that our proposed process is
not easy to adapt to the changes in domains’ properties without repeating the
activities from the previous step to the current step.

5 Related Work

Some studies focus on the changes in domain properties and for managing con-
tinuous changes. Zave and Jackson [25] have emphasized that it is important to
distinguish the machine and problem domains carefully. Because, the machine
behavior is to be created by programming, whereas the problem domains have
given properties and behaviors. The domains’ properties and behaviors might be
given, in actuality, they are influenced by environmental conditions. Also, Jack-
son [26] has mentioned that pre-formal work creates a bridge from the stake-
holders’ purposes and desires, leading to a detailed software specification. He
has explained his proposed “Problem Frames approach” [27] applied for cyber-
physical systems as pre-formal work.

Ghezzi [28] addresses the problem of environmental change and shows a
model for cyber-physical systems. The model makes it possible to achieve self-
adaptation software to changes in the environment. He shows how to incorporate
formal modeling and verification iteratively and incrementally of agile software
development. However, he suggests further research is needed to adapt modeling
and verification.

We use SOFL as pre-formal work to ensure a smooth transition from the agile
artifacts into formal specifications. However, it is not limited to apply for cyber-
physical systems, we need more studies on the changes in domains’ properties
for the sake of the development of an integrated tool to manage our proposed
requirement development process.

6 Conclusions

This paper describes the combined requirement development process with agile
requirements development and the SOFL informal and semi-formal specifica-
tions. The proposed process aims both to adapt frequent change requests from
stakeholders and develop secure and reliable products, simultaneously. The case
study shows that the proposed process contributes to discovering the data and
constraints at the latter steps. In contrast, the requests for changing the domain
exist at every step of the proposed process. It means that the proposed process
is successful to supply agile development with structured methods and object-
oriented methods. On the other hand, it is not enough to prevent returning the
previous step for adapting after changes in domains’ properties. We need more
studies for the changes in domains’ properties and behaviors and examine the
associations with self-adaptation software for managing continuous changes in
our future research.

32 F. Nagoya

Acknowledgment. We would like to thank Kaede HOSHINO for developing GUI
models, including writing the SOFL specifications for a mobile application to find a
babysitter.

References

1. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceed-
ings of the Conference on The Future of Software Engineering. ICSE 2000, New
York, pp. 35–46. Association for Computing Machinery (2000)

2. Wiegers, K.E., Beatty, J.: Software Requirements 3. Microsoft Press, Redmond
(2013)

3. Bourque, P., Fairley, R.E. (eds.): SWEBOK: Guide to the Software Engineering
Body of Knowledge. Version 3.0 edn. IEEE Computer Society, Los Alamitos, CA
(2014)

4. ISO/IEC/IEEE: International standard - systems and software engineering - life
cycle processes - requirements engineering. ISO/IEC/IEEE 29148(E), 1–104 (2018)

5. Zave, P.: Classification of research efforts in requirements engineering. ACM Com-
put. Surv. 29, 315–321 (1997)

6. Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall Inter-
national Ltd., Hoboken (1986)

7. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall Inc., Hoboken (1996)

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11, 256–290 (2002)

9. Beck, K., et al.: Manifesto for agile software development (2001). http://www.
agilemanifesto.org/

10. Black, S., Boca, P.P., Bowen, J.P., Gorman, J., Hinchey, M.: Formal versus agile:
survival of the fittest. Computer 42, 37–45 (2009)

11. Bernstein, D.: Beyond Legacy Code: Nine Practices to Extend the Life (and Value)
of Your Software. Pragmatic Bookshelf, Pragmatic programmers (2015)

12. McConnell, S.: More Effective Agile: A Roadmap for Software Leaders. Construx
Press, Bellevue (2019)

13. Meyer, B.: Agile!: The Good, the Hype and the Ugly. Springer Publishing Com-
pany, Incorporated, New York (2014). https://doi.org/10.1007/978-3-319-05155-
0 11

14. Liu, S.: Formal Engineering for Industrial Software Development. Springer Verlag,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30482-1 4

15. DeMarco, T.: Structured Analysis and System Specification. Prentice Hall PTR,
Upper Saddle River (1979)

16. Reisig, W.: Petri Nets: An Introduction. Springer-Verlag, New York (1985).
https://doi.org/10.1007/978-3-642-69968-9

17. Nagoya, F., Liu, S.: Development of a web dictionary system using SOFL.
Wirel. Pers. Commun. 94(2), 253–266 (2016). https://doi.org/10.1007/s11277-016-
3291-z

18. Nagoya, F., Liu, S.: A case study of a GUI-aided approach to constructing formal
specifications. In: Liu, S., Duan, Z., Tian, C., Nagoya, F. (eds.) SOFL+MSVL
2016. LNCS, vol. 10189, pp. 74–84. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57708-1 5

19. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley Professional, Boston (2004)

http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://doi.org/10.1007/978-3-319-05155-0_11
https://doi.org/10.1007/978-3-319-05155-0_11
https://doi.org/10.1007/978-3-540-30482-1_4
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/s11277-016-3291-z
https://doi.org/10.1007/s11277-016-3291-z
https://doi.org/10.1007/978-3-319-57708-1_5
https://doi.org/10.1007/978-3-319-57708-1_5

A Case Study on Combining Agile Requirements Development and SOFL 33

20. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, 1st edn. Pren-
tice Hall PTR, Hoboken (2001)

21. Cockburn, A.: Crystal Clear a Human-Powered Methodology for Small Teams, 1st
edn. Addison-Wesley Professional, Boston (2004)

22. Cockburn, A.: Writing Effective Use Cases, 1st edn. Addison-Wesley Longman
Publishing Co. Inc., Boston (2000)

23. Cohn, M.: User Stories Applied: For Agile Software Development. Addison Wesley
Longman Publishing Co. Inc., Hoboken (2004)

24. Snyder, C.: Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces. Morgan Kaufmann Publishers Inc., San Francisco (2004)

25. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. 6, 1–30 (1997)

26. Jackson, M.: Behaviours as design components of cyber-physical systems. In:
Meyer, B., Nordio, M. (eds.) LASER 2014. LNCS, vol. 8987, pp. 43–62. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28406-4 2

27. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley Longman Publishing Co. Inc., Hoboken (2000)

28. Ghezzi, C.: Formal Methods and Agile Development: Towards a Happy Marriage.
In: Gruhn, V., Striemer, R. (eds.) The Essence of Software Engineering, pp. 25–36.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73897-0 2

https://doi.org/10.1007/978-3-319-28406-4_2
https://doi.org/10.1007/978-3-319-73897-0_2

Formal Modeling and Verification
of Microservice-Based Cyber-Physical System

Jingzi Wang, Hongyan Mao(B), and Ningkang Jiang(B)

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai,
China

{hymao,nkjiang}@sei.ecnu.edu.cn

Abstract. Cyber-Physical System (CPS) has attracted extensive attention in
diverse application fields. However, the modeling and verification of CPS is a
great challenge because of its complexity and the changing interactive environ-
ments. Hence, how to simplify the complicated system design, improve the flex-
ibility and correctness is a concerned research issue. Therefore, we provide a
microservice-based framework of CPS application, named MSBF. The MSBF
uses a level structure to explicit the interface and communication, and adopts the
microservice architecture to guarantee the flexibility. To prove the correctness
and reliability of MSBF, the formal method Communication Sequential Processes
(CSP) is adopted to model and verify the MSBF. A method is proposed for trans-
forming the main component of MSBF to CSP. Moreover, a case study of smart
museum system is given, which has several requirements to be satisfied. The
system is built by MSBF, and transformed to CSP. The modeling of the system
includes the modules and interactive communications, and that illustrates the fea-
sibility and sustainability of the framework. The Process Analysis Toolkit (PAT)
is used to verify the properties of the constructed model. The verification results
show that the deadlock does not exist and the requirements are satisfied.

Keywords: Cyber-Physical System · Formal modeling · Microservice-based
framework · CSP · Smart museum system

1 Introduction

With the development of communication technology, intelligent control technology and
smart sensing technology, the traditional embedded systems can be interconnected and
composed to a complex system, named Cyber-Physical Systems (CPS) [1]. CPSs inte-
grate the network and physical environment, and augment entity devices on dynamic
sensing and interaction control. Accordingly, it has a great application prospect in
intelligent systems, such as smart building and intelligent manufacturing in IoT [2].

Because environments and the requirements for the control of CPSs are changed
frequently, CPSs should guarantee the specification even in complicated conditions and
ease to update for functional changes. To satisfy the requirements, the architecture of
CPSs must adapt to situations when the environment or function changing, and ease to
maintain.

© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 34–53, 2021.
https://doi.org/10.1007/978-3-030-77474-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_3

Formal Modeling and Verification of Microservice-Based CPS 35

The perfect CPS is hard to build due to the complexity and unpredictable changes,
which is a challenge to system designers [3].

To solve the problems, other development and design technologies can be used. One
isWebService [4], which provides service composition and decomposition for a compre-
hensive interactive system, extensively used in application development. Some work has
been done to increase the flexibility and reliability based on SOA in [18, 19]. Recently,
microservice is an evolution of the SOA. It focuses on decoupling and decomposition ser-
vices as individual modules, which is suited for building at the cloud side [20]. Microser-
vice can be combined with the traditional layer-based architecture, a microservice-based
framework enables system reliability, compositionality, and maintainability.

To guarantee services running correctness when the environment and function
changes, hence it’s necessary to verify the function specification of the CPS. For-
mal method is a reliable approach to ensure the system effectiveness. Communication
Sequential Process (CSP) [6, 7] is a powerful tool on formal method for modeling
and verifying complex concurrent systems. By represent entity devices and services as
processes, CSP can describe the communication and interaction of microservice-based
CPS. It also can be implemented in Process Analysis Toolkit (PAT) [8, 9], which is a
verification tool covering all possible conditions of the built model.

The main contributions of this paper are embodied in the following aspects.

• Amicroservice-based framework, namedMSBF, is proposed to facilitate the design of
CPS.The framework includes the traditional layer-based framework andmicroservice,
and enables CPS reliable and flexible.

• Wepropose an approach to transformMSBF toCSPmodel,which is a formalmodeling
ease to ensure its reliability. It can be easy to construct and verify.

• A smart museum system is constructed using our framework, and PAT is applied to
verify and ensure the reliability and flexibility of the system.

The rest of this paper is organized as follows. Section 2 discusses the related work.
Section 3 demonstrates the microservice-based framework of CPS. Section 4 is a brief
introduction to CSP syntax. Section 5 proposes a method for transforming the MSBF to
CSP. Section 6 supplies a smart museum system architecture and introduces its require-
ments. Section 7 presents themodeling of themuseum system and the formal description
using CSP. Section 8 shows the verification of the specification and robustness of the
model. Section 9 concludes the work.

2 Related Work

The design challenges of CPS are shown to integrate the network and the entity,
security, flexibility, device-independent and so forth, when facing varied requirements
and environment. To solve these problems, some methodologies and frameworks are
proposed.

Layer-based methodology is an important technology which divides the whole sys-
tems into hierarchical layers. Every layer uses the interface of lower layers to imple-
ment functions, and provides interface to upper layers. An approach for layer-based

36 J. Wang et al.

methodology is proposed in [10], which discuss the definition of CPS, and proposes
a 5-level architecture for design. It defines the attributes and functions of each level.
Another approach for layer-based framework is proposed [11], which separates CPS
into three layers: computational layer, physical layer, and communication layer, and the
model-centric method issued to design CPS.

Simple layer-based methodologies just define a specification for relationship and
functions of layers, not a framework in detail. In the further works, Service-oriented
architectures (SOA) and multi-agent systems (MAS) are two important software tech-
nologies which can be adopted in CPS. They are applied in many fields of complex
systems like energy management [12] and data analytics [13] because of its advantages.

Multi-agent-based framework divided CPS into agents, and the functions of CPS is
implemented by interactive and cooperation of the agents. An agent-based approach is
proposed in [14], which is exploited the model-driven agent-based CPS. The approach
combines the model-driven principle and metamodel in order to facilitate CPS develop-
ment for reconfigurability and resilience. Another agent-based approach is proposed in
[15], which has effort on temporal-spatial traits and interaction with physical environ-
ment. It uses a five-tuple to formulate the CPS-agent, and gives classic CPS architecture
decryptions by five-tuple. Moreover, an agent-oriented modeling using Petri nets is pro-
posed in [16], which synthesizes individual models to obtain a complete system model.
[17] proposes an agent-based control centric methodology. In this work, a four-phase
method is proposed for analysis and design of CPS, which helps avoiding common
pitfalls of multithreaded programming. A model transformation method to construct a
representative MAS design model for CPS and IoT systems is presented in [22], which
uses a source model that describes components and labeled relations between these
components. Although multi-agent-based frameworks have advantages of distributed,
autonomous and modularity, the large-scaled agents often is difficult to maintain and
change functions.

Compare to agent-based methodologies, service-based architecture is more suited
for interoperability and flexibility. SOA is a software technology in the field of Web
Service, which proposes a loosely coupled group of services and use services compo-
sition to implement complex system. A service-based approach is proposed in [18],
which provides a separation between domain modeling, planning execution, monitoring
and actuation service. It has several benefits such as reusability and flexibility. Another
service-based approach is proposed in [19], which uses SOA to solve the problem of
autonomic computing. A case of application on CPS using SOA is proposed in [20],
which presents a Cyber Physical Systems oriented e-business platform using SOA.

Microservice is an evolution of SOA, which enables independent development and
loose coupling. Our work takes advantages of microservice, and provides a flexible
framework for complicated system.

3 Microservice-Based CPS Framework

In this section, a microservice-based CPS framework MSBF is proposed. The MSBF
adopts tradition layer-based framework and microservice technology by explicating the
relationship between layers and modules in microservice. And more, an approach of
service description is proposed for service modeling of CPS (Fig. 1).

Formal Modeling and Verification of Microservice-Based CPS 37

Fig. 1. The structure of the MSBF

The MSBF consists of four layers, and which is physical layer, middleware layer,
service layer and implementation layer. The framework is showed in Fig. 2.

Implementation Layer. The implementation of services is responsible for realize the
system function, including the specific input/output processing, command choosing,
another service calling and so forth. By leaving the interface unchanged, implementation
can be changeable for the new specification of system or new environment, and the rest
of CPS can be maintained.

Service Layer. As its name implies, there are services in this layer. Two types of service
are proposed, function services and controller services. Function services are responsible
for themain function of CPS, which handle the data from device, and conclude the return
command to device. And controller functions tackle the relationship between services
such as synchronization, for the composition of services. Every service should satisfy the
single responsibility principle and the interface segregation principle to keep flexibility.
The service layer provides the interface of communication between devices and services,
including the interface of calling and return. The service layer can be built on the cloud.

Middleware Layer. This layer mainly solves two problems. One is device indepen-
dence. There are different kinds of component in physical layer, and they should use a
samemethod to discover and communicate with services. Middleware layer should have
the function to guarantee that the service interface is not relay on device.

To utilize the flexibility of microservice architecture, a middleware between service
and device should be proposed for loosing coupled. If service is changed, the change can
be registered on the middleware, which can avoid mainly modifying about the system.

38 J. Wang et al.

Physical Layer. Machines in CPS and their components in this layer. There are sensors,
mechanical control systems and embedded programs. This layer provides the function
of data acquiring, basic mechanical control and network module to find services. For the
varied environment and functions, just basic control function should be implemented in
this layer.

After the introduction of the MSBF, the services are specified formally below. The
transition system service is defined as TS = (s0, S, E, V, T):

• s0 is the initial state;
• S is a set of states;
• E is a set of events;
• V = v1, v2… vn is a set of variables;
• T = S × E × V indicates a set of transitions.

Fig. 2. The state transition of ticket seller service

The set of states S often includes initial state, input state, synchronization state,
computing state, output state and end state. The initial state and end state represent the
beginning and ending of the service. The input state and output state represent that the
service is tackling the input and output, and they will be transformed to other states
when the input/output event occurs. The synchronization state represents the service is
communicating to other service for synchronization. The computing state represents the
service is running for computing which command will be sent to entity devices.

Formal Modeling and Verification of Microservice-Based CPS 39

And an interface of communication between service and device is a tuple (R, B, P)

• R is a set of devices/services;
• B is a set of command for device/services;
• P is a set of parameters of commands

The definition of interface refers to the resource-behavior methodology. All
devices/services are seen as resource, which have a set of semantic well-defined behav-
ior. The functions of resource which have semantic similarity can be combined to one
behavior. The resource-behavior methodology in favor of the device independence, and
the specific parameter should be appointed for devices have large different.

In order to describe the frame work and service, an example of the ticket seller
service is proposed in Fig. 2. There is a ticket seller system for a museum, which should
sell tickets to customers. Moreover, to avoid the museum crowded, selling should stop
when too many tickets are sold. When the museum is not crowded, if the customer is a
child (age below 14), the ticket seller will sell the child ticket, otherwise sell the adult
ticket. When a call information comes, service will tackle the input, and query the state
of selling tickets on the synchronization state. The synchronization is implemented by a
controller service, which works like a simple state machine. The independent controller
service help maintain CPS when the requirement of synchronization changes. And the
exit service will change the state to permitted when the customers exit and the museum
is not crowded. If the query is permitted, the service will compute what command it
should send, and output the command to entity device. The device will be controlled
correctly by command.

4 CSP

CSP a is a process-algebraic formal method for modeling concurrent processes with
communication. Hence its powerful expression for the complex concurrent system, CSP
is widely applied for structure modeling and specification verifying. Modeling in CSP,
we can abstract each base service unit as a process.

A brief introduction about CSP syntax of the language is: P and Q are two processes.
a and b are two actions. And c is a channel.

P, Q := Skip | Stop | a → P | c?x → P | c!v → Q | x := e | P;Q | P||Q | P|||Q | if b then
P else Q | [cond]a->P

Skip denotes that a process does nothing but terminates successfully.
Stop denotes that the process is in the state of deadlock and does nothing.
a → P represents that the process first engages inaction a, then the subsequent

behavior is like P.
c?x→ P receives a message through the channel c and assigns it to a variable x, then

behaves like P.
c!v → Q sends a message v using the channel c, then the behavior is like Q.
x := e assigns value e to x.
P; Q performs P and Q sequentially.

40 J. Wang et al.

P||Q denotes that P runs in parallel with Q.
P|||Q indicates that P interleaves Q which means P and Q run concurrently and

randomly.
if b then P else Q denotes the conditional choice. If the value of b is true then it

behaves like P else like Q.
[cond]a->P denotes if cond is satisfied, engages inaction a, then the subsequent

behavior is like P; if cond not be satisfied, the process will wait for cond. Check cond
and do a is an atomic behavior.

5 The Transformation Between MSBF and CSP

In this section, the methodology for transforming two typical modules (entity devices
and services) to CSP is proposed. The modeling of entity devices is similar by CSP, and
so the modeling of service is. Therefore, the similar modules should be modeled in the
same way.

A. The Model of Entity Devices

Fig. 3. The typical process of entity devices

A typical entity device is showed in Fig. 3. First, the device acquires data by sensor.
After a simple data processing, the request for service discovery is sent to the register
center, and the register center will answer by service ID. Then the device generates the
service calling using the data from sensor, ands send the calling to the service platform.
When the device receives the command from the service platform, the mechanical part
of the device will be controlled by the command.

As above mentioned, a typical entity device has two sessions of communication: to
register center and service platform. Four channels in CSP can represent the communica-
tion: register center request channel, service discovery channel, service calling channel,
and command receiving channel. Moreover, the data sensor also can be represented by
a channel, named sensor channel. And the mechanical control can be represented by a
process.

Formal Modeling and Verification of Microservice-Based CPS 41

A typical model of the entity device is like:

Sensor_channel?data->register_center_request_channel!deviceID->
Service_discovery_channel?serviceID->
service_calling_channel! behavior.serviceID.parameter ->
command_receiving_channel? command->DeviceControl(command,parameter)

B. The Model of Services
A typical function service is showed in Fig. 4. First, the function service should inter-
pret the input. Then, if the service is limited by a request of synchronization, it should
query the controller service. If necessary, the service should send a change request to
the controller service to change the state of synchronization. The function service com-
putes and generate the command when the it receive the permission from the controller
service. Finally, the service sends the output to the entity device and transforms to the
input state. The synchronization state could be multiple depending on the situation of
synchronization.

Fig. 4. The typical process of function services

The function service can be modeled by the states. Every state is represented by
a process in CSP. The input state and output state should tackle the input/output, two
channel, service input channel and service output channel, should be used in the two
state. The synchronization state has a communication to a controller service, and two
channels, service synchronization request channel and service synchronization response
channel, should be used for the communication of synchronization. If the response is
permitted, the service can be transformed to the computing state. Otherwise, service
should be transformed to the input state. The computing state is the main part of the
service, and it should be implemented differently because of the function.

A typical model of the function service is like:

42 J. Wang et al.

ServiceInitState = service_run_event-> ServiceInputState
ServiceInputState = service_input_channel?input->input_tackling_event->
ServiceSynchronizationState
ServiceSynchronizationState = service_synchronization_request_channel!request->
service_synchronization_response_channel?response
->ServiceSynchronizationCheck(response)
ServiceSynchronizationCheck response = resopose_is_permitted-> ServiceCom-

putingState |
resopose_is_not_permitted-> ServiceInputState

ServiceComputingState = computing_event-> ServiceOutputState
ServiceOutputState = service_output_channel!output-> ServiceInputState

The controller service like a simple state machine, and it also can be modeled by the
state. Every state is represented by a process in CSP. A state includes two parts for the
state querying and the state changing. In the state querying part, the controller service
just receives request by the service synchronization request channel, and sends output
the result of permission, depending on which state the service on. In the state changing
part, the controller service receives the change request and computes which state should
be transformed or not.

A typical model of the controller service is like:

ControllerServiceState1 = service_synchronization_request_channel?request->
ControllerServiceStateComputing(request)

ControllerServiceStateComputing(request) = request_is_querying->
service_synchronization_repsonse_channel!the_response_of_this_state |
request_is_changing_->
(the_state_should_be_transformed-> ControllerServiceState2 |

he_state_should_not_be_transformed-> ControllerServiceState1)

6 The Museum System Architecture

There are increasing application demands based on CPS technology, such as intelligent
industrial production systems and smart home systems. With the growth of cities, there
are lots of diverse museums. To ensure the security and decrease the waiting time, the
automatic and intelligent application system is constructed. We construct a CPS appli-
cation about the museum system, which could consist of multiple services conveniently
to extend. It could have tickets selling, tickets checking and crowd controlling services,
etc. The architecture of the museum system is shown in Fig. 5.

Customers visiting themuseum should follow the path of Entrance, the Ticket Office,
the Exhibition Area, finally exit the museum. Ticket Office sells tickets to the museum.
Exhibition Areas are the major parts of the exhibition of the museum, and customers
watch exhibits in there.

In fact, to protect the exhibits and guarantee the proper operation of the museum,
the museum system has some running constraints. The realistic requirements are listed
as follow:

Formal Modeling and Verification of Microservice-Based CPS 43

• Requirement 1: Exhibition Area cannot contain toomany (above 3) people at the same
time

Requirement 1 is for the order of the exhibition. If too many customers enter the
Exhibition Areas, they will have a bad experience. Requirement 1 could be violated
when some customers enter the Exhibition Area at the same time. The problem could
be solved by three methods: making visitors buy tickets one by one, triggering the lock
of ticket sell service when a visitor buys tickets and using an atomic operation consisted
of buying and decreasing the rest of tickets.

• Requirement 2: Exhibition Area only allows the customer with tickets.

Requirement 2 prevents people from having no tickets from entering the exhibition.
The requirement may be violated when irrelevant people are in the wrong place.

Fig. 5. The museum architecture

To avoid violating Requirement 2 and Requirement 3, a valid identity verification
procedure is necessary to design.

• Requirement 3: If the Exhibition Areas are full, no ticket can be sold.

Requirement 3 is a method for crowd control. If the Exhibition Areas are full, for the
feeling of customers and the order of themuseum, no tickets should be sold. Requirement
the could be violated when the customer buys a ticket at the moment of Exhibition Areas
getting a full load.

7 Museum System Modeling

In this section, the museum system is modelled by CSP. All components are seen as
processes inCSP.Tomodel themuseumsystemby theMSBF, particularly the behavior of
customers, the CPS is divided into four kinds of processes: entity devices, microservices

44 J. Wang et al.

on the cloud, the register center, and behaviors of people. The sets and channels in CSP
model are listed, and the four kinds of processes are described below, then the museum
system is modeled in CSP.

A. Channels and Sets
In the museum, customers can go through apart of rooms. Depends on their identity,
customers have two states: having a ticket or no ticket. The set Identity is defined, which
contains all people who can enter this museum. The set State is defined, which contains
the conditions mentioned. The definition of set Visitor:

State=def {ticket, no_ticket}
Visitor=def {identity, state | identity ∈ Identity, state ∈ State}

In this model, for representing the behavior of customers, who is in the room should
be modeled. Otherwise, the action of customers, such as buying tickets and go to another
room, cannot be described. For the reason, the customers of these rooms can’t be ignored.
A set Room is defined there, and it contains sets of people in a specific room. The set
Exhibition_Area_People is for people in Exhibition Area, Ticket_Office_People is for
people in Ticket Office.

Exhibition_Area_People=def {identity | identity ∈ Identity}
Ticket_Office_People=def {identity | identity ∈ Identity}

The set Variable is defined for the semaphore for Requirement 3. The variable
exexhibition_area_count represents the number of customers in Exhibition Area.

Variable=def {exhibition_area_count}

The set DeviceName and ServiceId is defined for service discovery. The content
of DeviceName is the identity of all entity devices, and ServiceId is the identity of all
services.

DeviceName=def {ticket_door,ticket_seller,exhibition_area_door,exit_door}
ServiceId=def {door_service,ticket_seller_service,exhibition_door_service,
ticket_sell_controller_service}

As shown in Fig. 6, the communication may occur between the register center and
entity devices, or services and entity device. Moreover, the service composition also
needs some method to exchange messages. These communications should be repre-
sented by channels. Referring to Fig. 6, a device has three channels, including sensor
(for getting data from the sensor), discovery (for service discovery), command (for get-
ting command from service). And the register center and the service platform need a
channel to communicate with devices. Moreover, every service should have a channel
for receiving input, and a channel for receiving synchronization message. To illustrate
the channel clearly, the name of channels is like this: a sensor channel of the door of
ticket office to the corridor is ticket_door_sensor. These channels are declared:

Formal Modeling and Verification of Microservice-Based CPS 45

Channels { ticket_door_sensor, ticket_door_discovery, ticket_door_command,
ticket_seller_sensor, ticket_seller_discovery, ticket_seller_command, exhibi-
tion_area_sensor, exhibition_area_discovery, exhibition_area_command, ex-
it_sensor, exit_ discovery, exit_command, register_in, service_platform_in,
door_service_input, ticket_seller_service_input,
exhibition_area_controller_service_input,
exhibition_area_door_service_input,
exhibition_area_door_service_synchronization,
ticket_seller_service_synchronization }

B. The Model of Entity Devices
In theMSBF, most of logic parts are implemented in service, whichmeans entity devices
are easy to be described by CSP. Entity devices which has similar behaviors, and they
can be modeled as the similar form.

The Door of Ticket Office. The Door of Ticket Office is a typical entity device. Its
sensor acquires the message of people who want to enter the ticket office, visits the
register center to service discovery, sends message to the service platform, and gets
command it should do. If the door opens and a customer enter into the ticket office, the
set Ticket_Office_People should change to represent the behavior of customer. By the
way, a series of set operation is defined there:

• delete (id, set) delete id from the set.
• contain (id, set) query if set contains id.
• update (id, set) update id to set and save the ticket state of id.

And two operation for the set Identity is defined there:

• getstate(id) query the ticket state of id.
• changestate(id,state) change the ticket state of id,

The typical entity device is modeled by two processes, communicate part and control
part. The definition of the door of ticket office are:

46 J. Wang et al.

TicketDoor =def ticket_door_sensor?id.state->
register_in!ticket_door->
ticket_door_discovery?service_id->
service_platform_in! ticket_door.service_id.id.state ->
ticket_door_command?command->TicketDoorControl(id,state,command)
TicketDoorControl(id,state,command)=def
If command==open

update(ticket_office,id,state)->TicketDoor()
}
else

TicketDoor

Other Devices. Except the door of ticket office, there are the door of exhibition area,
the door of exit and the ticket seller. They are similar with the door of ticket office, and
can be described as same form. Therefore, just the definition of ticket seller is proposed
here:

TicketSeller =def ticket_seller_sensor?id.state.index->
register_in!ticket_seller->ticket_seller_discovery?service_id->
service_platform_in!ticket_seller.service_id.id.state->
ticket_selerl_command?command->TicketSellerControl(id,command)
TicketSellerControl(id,command)=
If command==open

changestate(id)
else

TicketSeller

C. The Model of Register Center
The register center is a middleware for service discovery. It can be implemented as a
key-value cache so that an if-else model is proposed here. The definition of the register
center is:

ServiceDiscovery(device_name)=
If device_name==ticker_door

ticket_door_discovery!door_service->RegisterCenter
else if device_name==ticket_seller

ticket_sell_discovery!ticker_seller_service->RegisterCenter
else if device_name==exhibition_area_door

exhibition_area_discovery!exhibition_area_door_service->RegisterCenter

RegisterCenter = register_in?device_name->ServiceDiscovery(device_name);

Formal Modeling and Verification of Microservice-Based CPS 47

D. The Model of Customer
Themodel in this part is not for theMSBF. In order to the verificationwork, the customers
in the museum and their behaviors should be described, for the sensor acquiring data
and the CPS running. Two models for the people should be defined here.

The Entering. The entering just simulate that customers enter the museum and start
the CPS. If the behavior of entering is lost, the verification is hard to run. The definition
of the behavior of entering is:

Entering=def
|||i ∈ Visitor (ticket_door_sensor!i.no_ticket->Skip)

Customers in Room. The museum has two rooms, the ticket office and the exhibition
area. In different places, the behavior customers can do is different. In the ticket office,
customers can buy tickets and go to exhibition area. And in exhibition area, the customers
just can leave. In this model, customers are described as a choice of behavior. For
example, the customers in the ticket office is:

PeopleInTicketOffice =def GoToExhibitionArea1 □BuyTickets
GoToExhibitionArea1 =def

exhibition_area_1_sensor! i Ticket_Office_People .getstate(i)->
PeopleInTicketOffice

BuyTickets =def

ticket_seller_sensor! ! i Ticket_Office_People .getstate(i)->
PeopleInTicketOffice

E. The Model of Services
Themodels of services are proposed in this part. The service platform has threemodules,
including a request dispatcher (for interpreting request and calling correct service), a
command sender (for sending command to correct device), and services. The request
dispatcher and command sender canbedescribed as akey-value structure, like the register
center. But for the service composition and reuse, the command may send to another
service, and the key-value of service id – service synchronization channel should also in
the command sender. The definition of the request dispatcher and command sender are:

48 J. Wang et al.

door_service_input!device_name.person.id->ServicePlatform
else if service_id==ticket_seller_service

ticket_sell_service_input!device_name.person.id->ServicePlatform
else if service_id==exhibition_area_service

exhibition_area_door_service_input!device_name.person.id->ServicePlatform
CommandSender(device_name,command)=def
if evice_name==ticket_door

ticket_door_command!command->RegisterCenter
else if device_name==ticket_seller

ticket_sell_command!command->RegisterCenter
else if device_name==exhibition_area_door

exhibition_area_command!command->RegisterCenter
else if device_name==exhibition_area_service

exhibition_area_synchronization!command-> RegisterCenter
else if device_name==ticket_seller_service

ticket_seller_service_synchronization!command-> RegisterCenter
else if device_name== exhibition_area_controller_service

exhibition_area_controller_service_input! device_name.command
->RegisterCenter

ServicePlatform =def service_platform_in?device_name.service_id.id.state
->ServiceRun(device_name,service_id,id,state)
ServiceRun(device_name,service_id,id,state)=def
If service_id==door_service

The Service of Doors. The door of the ticket office has no extra requirement, the service
can be reused. And it is just needed for opening when someone wants to enter the room.
The definition of door services is:

DoorService=def door_service_input?device_name.id.state->
CommandSend(device_name,open);DoorService;

The Service of The Exhibition Area’s Door. A little more complicated service is pro-
posed in this part. In Sect. 5, the typical model of services is proposed. The service of
the exhibition area’s door and the exit follow the typical model, so only the model of
the exhibition area’s door is proposed here. To satisfy the requirement 3, the exhibition
area’s door and the exit door need communication to count the customers in the exhi-
bition area. And the state of the exhibition area should be provided for the service of
ticket seller to control the seller. Therefore, a controller service for the state of exhibition
area is needed. For the requirement 3, the controller service is implemented as a state
machine. The full state means the exhibition area is full, and the not full state is contrary.
The definition of the controller service is:

Formal Modeling and Verification of Microservice-Based CPS 49

else if parameter == minus
 {exhibition_area_count=exhibition_area_count-1}
 -> ExhibitionAreaNotFull
else if parameter == query

CommandSend(service_id,open)
ExhibitionAreaFull =def

exhibition_area_controller_service_input?service_id.parameter->
if parameter == minus
 {exhibition_area_count=exhibition_area_count-1}
 -> ExhibitionAreaNotFull
else if parameter == query

CommandSend(service_id,close)

ExhibitionAreaController =def ExhibitionAreaNotFull
ExhibitionAreaNotFull =def

exhibition_area_controller_service_input?service_id.parameter->
if parameter == plus && exhibition_area_count == 2
 {exhibition_area_count=exhibition_area_count+1}
 -> ExhibitionAreaFull

The Service of The Exhibition Area’s Door is described by the state. As shown in
Fig. 3, a typical service has four state: initial state, synchronization state, computing state
and command generating state. Initial state is the state of beginning. The synchronization
state is the state of calling controller service for the synchronization message. For the
exhibition area door service, the service should communicate with controller service for
open permission. If the exhibition area is not full, the service of the exhibition area’s
door will receive the permission. Which command generating state should be arrived is
judged in computing state, then the correct command is generated and sent.

Not only the service of the exhibition area’s door, the exit door and the ticket seller are
also modeled in this form. Therefore, just the definition of the service of the exhibition
area’s door is proposed:

50 J. Wang et al.

ExhibitionAreaDoorServiceInit =def
exhibition_area_door_service_input?device_name.id.state
->ExhibitionAreaDoorServiceSynchronization (device_name,id,state)
ExhibitionAreaDoorServiceSynchronization (device_name,id,state)=def
-> exhibition_area_controller_service_input! exhibition_area_door_service.query
->exhibition_area_service_synchronization?command ->
if command == open

ExhibitionAreaDoorComputing(device_name,id,state)
else

ExhibitionArea1DoorFailed(device_name,id,state)
ExhibitionAreaDoorComputing=def
if state== ticket

ExhibitionAreaDoorSuccess(device_name,id,state)
else

ExhibitionAreaDoorFailed(device_name,id,state)
ExhibitionAreaDoorSuccess(device_name,person,id)=def
CommandSend(device_name,open);
CommandSend(exhibition_area_controller_service,plus);
ExhibitionAreaDoorServiceInit
ExhibitionAreaDoorFailed(device_name,person,id)=def

CommandSend(device_name,close);ExhibitionAreaDoorServiceInit

Finally, the definition of the whole museum system is as follow:

Service=def
ServicePlatform||DoorService||TicketSellServiceInit||ExhibitionAreaDoorServiceInit||
ExhibitionAreaController||ExitServiceInit
People=def PeopleInTicketOffice||PeopleInExhibitionArea
Museum=def Entering||TicketDoor||TicketSeller||ExhibitionAreaDoor||ExitDoor
System=def Service||People||Museum||RegisterCenter

8 The Verification of Museum System Model

The CSP model of the museum system is translated to PAT, and the requirements are
verified. A part of codes of the model is shown in Fig. 6.

In themodel, deadlockmay occurwhen theTicketOffice has an unpredicted situation
of synchronization. The deadlock means some people cannot enter the room they are
able to get into. In PAT, the statements are used to check this:

#assert System () deadlockfree;
To check whether the behaviors are consistent with the requirements, the definitions

of unexpected statewould be verified. Threewrong conditions are set for the requirement,
if the condition is reached (it means the verification result is valid in PAT), the require-
ment will not be satisfied. In this part, two new variables are listed there. The variable
temp_entering_id is the customer who entering the exhibition area lately. The variable
sellsign represents the behavior of ticket selling. And the variable exhibition_area_count

Formal Modeling and Verification of Microservice-Based CPS 51

Fig. 6. The PAT code of museum model

is mentioned in Sect. 7, for the count of customers in the exhibition area. The definitions
of the opposition state are:

#define wrongcontain (exhibition_area_count > 3);
#define noticket (temp_entering_id_ ==noticket);
#define wrongsold (exhibition_area_count >=3&&sellsign ==1);
Wrongcontain means too many customers in Exhibition Area.
Noticket means a visitor enters the Exhibition Area without a ticket.
Wrongsold means a ticket is sold when Exhibition Area is full.
In PAT, the statements are used to check them:
#assert System() reaches wrongcontain;
#assert System() reaches noticket;
#assert System() reaches wrongsold;
The verification result is shown in Fig. 7. According to the conclusion, we know the

deadlock-free is valid, and the rest of the asserts is not valid, which means our model
satisfying the requirements.

52 J. Wang et al.

Fig. 7. The result of verification

9 Conclusion

In this paper, we present a microservice-based framework MSBF for CPS design. The
MSBF adopts the layer-basedmethodology for separating the components and functions
ofCPS, and it is based onmicroservice architecture to guarantee the flexibility.Moreover,
a CSPmodel is constructed for a smart museum system. The specificmodel is built based
on three requirements about museum service, and themodel are verified. By themuseum
case, the method for transforming theMSBF to CSP is proposed. The typical modules of
CPS are modeled in the museum system, including services, entity devices and register
center. The verification result shows our model satisfies the system requirements, and
it means the microservice-based framework is reliable for CPS design. In future work,
we plan to find a general way to resolve the gap between CPS and modeling and use the
framework modeling other realistic CPS applications.

Acknowledgment. This work was supported financially by the National Natural Science Foun-
dation of China ((No. 61572195, 61872145), the Open Project of Shanghai Key Laboratory of
Trustworthy Computing (No. 07dz22304201603).

References

1. Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing
revolution. In: Design Automation Conference. IEEE (2010)

2. Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-physical systems: a new frontier.
In: 2008 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy
Computing (SUTC 2008), Taichung. IEEE (2008)

3. Lee, E.: Cyber physical systems: design challenges. In: IEEE Symposium on Object Oriented
Real-time Distributed Computing. IEEE Computer Society (2008)

4. Paik, H.-y., Lemos, A.L., Barukh, M.C., Benatallah, B., Natarajan, A.: Web service composi-
tion: overview. In: Paik, H. (ed.) Web Service Implementation and Composition Techniques,
pp. 149–158. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55542-3_5

5. Hasselbring, W., Steinacker, G.: Microservice Architectures for Scalability, Agility and
Reliability in E-Commerce, pp. 243–246 (2017)

https://doi.org/10.1007/978-3-319-55542-3_5

Formal Modeling and Verification of Microservice-Based CPS 53

6. Hoare,C.A.R.:CommunicatingSequential Processes. PrenticeHall International inComputer
Science, Boston (1985)

7. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

8. PAT: Process Analysis Toolkit. http://pat.comp.nus.edu.sg/
9. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: introducing a process analysis

toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 307–322. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-8_22

10. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for Industry 4.0-based
manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

11. Masin, M., et al.: Cross-layer design of reconfigurable cyber-physical systems. In: 2017
Design, Automation and Test in Europe Conference and Exhibition (DATE). IEEE (2017)

12. Hong, Y., et al.: A novel multi-agent model-free control for state-of-charge balancing between
distributed battery energy storage systems. IEEE Trans. Emerg. Top. Comput. Intell. 99, 1–10
(2020)

13. Barik, R.K., Dubey, H., Mankodiya, K.: SoA-Fog: secure service-oriented edge computing
architecture for smart health big data analytics. In: 2017 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE (2018)

14. Batchkova, I., Ivanova, T.:Model-driven development of agent-based cyber-physical systems.
IFAC-Papers OnLine 52(25), 258–263 (2019)

15. Hu, Y., Zhou, X.: CPS-Agent oriented construction and implementation for cyber physical
systems. IEEE Access 1 (2018)

16. He, X., et al.: A framework for developing cyber physical systems. In: The 29th International
Conference on Software Engineering and Knowledge Engineering (2017)

17. Cicirelli, F., et al.: Model continuity in cyber-physical systems: a control-centered method-
ology based on agents. Simul. Model. Pract. Theory Int. J. Feder. Eur. Simul. Soc. 83, 93
(2018)

18. Feljan, A.V., et al.: SOA-PE: a service-oriented architecture for planning and execution in
cyber-physical systems. In: International Conference on Smart Sensors and Systems. IEEE
(2017)

19. Mohalik, S.K., et al.: Adaptive service-oriented architectures for cyber physical systems. In:
2017 IEEE Symposium on Service-Oriented System Engineering (SOSE). IEEE (2017)

20. Bigheti, J.A., Fernandes, M.M., Godoy, E.D.P.: Control as a service: a microservice approach
to Industry 4.0. In: IEEE International Workshop on Metrology for Industry 4.0 and Internet
of Things National Service of Industrial Training (Senai), Lençóis Paulista, São Paulo State
University (Unesp) (2019)

21. Pop, E., Gifu, D.: A cyber-physical systems oriented platform using web services. In: 2019
22nd International Conference on Control Systems and Computer Science (CSCS) (2019)

22. Nakagawa, H., et al.: A model transformation approach to constructing agent-oriented design
models for CPS/IoT systems. In: SAC 2020: The 35th ACM/SIGAPP Symposium onApplied
Computing. ACM (2020)

http://pat.comp.nus.edu.sg/
https://doi.org/10.1007/978-3-540-88479-8_22

Design and Implementation of Virtual Reality
Geometric Modeling in Apla+VR

Jiewen Huang1,2, Jinyun Xue1(B), Zhen You1, and Zhehong Zhou1,2

1 National-Level International S & T Cooperation Base of Networked Supporting Software,
Nanchang, China

jinyun@vip.sina.com
2 School of Computer Information Engineering, Jiangxi Normal University, Nanchang 330022,

Jiangxi, China

Abstract. The geometric modeling languages for virtual reality could be classi-
fied into graphical modeling languages and script modeling languages. The graph-
ical modeling languages are easier to use, but difficult to ensure the precision of
3D models. While the script modeling languages are so complex that harder to be
coded byprogrammers. In order to address the above problems, this paper proposes
a novel virtual reality modeling language Apla+VR, which not only combines into
our original abstract modeling language Apla, but also extends a new function
of constructing 3D models of virtual reality systems conveniently and abstractly.
Meanwhile, the correctness of Apla+VR programs also be ensured by using PAR
method and theory of FMDE (FormalModel-Driven Engineering). Furthermore, a
code generator called Apla+VR → MAXscript, could translate abstract Apla+VR

programs into MAXscript scripts, which can be complied in 3DSMax engine,
and then be created into 3D models effectively. Finally, it is proved that Apla+VR

and its tools can increase the efficiency and reliablility of developing 3D models
through a case study of the minimum sum problem virtual reality system.

Keywords: Virtual reality · Geometric modeling · Apla+VR · MAXscript

1 Introduction

Virtual Reality (VR) technology refers to a human-computer interaction technology that
combines computers, sensors, artificial intelligence, 5G, andother technologies. Through
the existing information technology, a digital environment similar to the real world is
generated in terms of sight, hearing, touch, smell, etc., and the interaction between the
users and objects in the virtual environment is realized through virtual reality equipment,
so that people can get an immersive feeling [1, 2]. The three-dimensional model is
an important part of building a virtual reality system, and its authenticity will affect
the immersion of the virtual reality system [3]. There are various geometric modeling
languages, and they are applied in different fields (such as VTK [4] andMAXScript [5]).
The geometric modeling languages in the virtual reality field still have some challenging
problems: (1) The language is complex and tedious, and the degree of abstraction is not

© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 54–65, 2021.
https://doi.org/10.1007/978-3-030-77474-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_4

Design and Implementation of Virtual Reality Geometric Modeling in Apla+VR 55

high; (2) The development efficiency and reliability of themodeling program are difficult
to be ensured.

3DSMax [6] software is one of the most widely used 3D design software in the
world. It provides an integrated development environment. Users can use the mouse
for graphical modeling or create models through MAXScript scripts. It provides a rich
and flexible tool combination and computational rendering engine, which can easily
simulate the real scenes. This makes it very suitable for the development of virtual
reality 3D models. The 3D models in recent applications [7] have attracted the attention
of users. 3DSMax can also batch process models by using a scripting language to speed
up manual steps.

With the guidance of Formal Model-Driven Engineering (FMDE), we develop
abstract programs for 3D models by using our proposed Apla+VR language in this paper.
And then the Apla+VR programs could be automatically generated into Maxscript codes
with the help of our supporting tool Apla+VR → MAXscript. The target MAXscript
could be compiled in the 3DSMax framework to create the 3D models required by vir-
tual reality systems. Model designers and interactive developers who use the Apla+VR

language can jointly build a model resource library to facilitate the development of vir-
tual reality systems. The main contribution of our paper is that a novel virtual reality
geometric modeling language Apla+VR is designed. Compared with MAXScript code,
the Apla+VR program is more generic and abstract. Therefore, it could efficiently relieve
the burden of programmers, who don’t pay more attention to the complex syntax details.
Another advantage of abstraction is that it would be easier to formally verify the correct-
ness of Apla+VR program. A case study, which is developed by using generator Apla+VR

→ MAXScript, demonstrates the expression ability, effectiveness and dependence of
Apla+VR language.

2 Related Work

2.1 Virtual Reality Geometric Modeling

Classification of Geometric Modeling. The current virtual reality geometric modeling
mainly includes three-dimensional software graphical modeling (3DSMax [5], ZBrush
[8], etc.), scanning modeling (Z+F IMAGER [9], EXAscan [10], etc.), script modeling
(VTK [4], VRML [11], etc.).

• Graphical modeling can intuitively generate 3D models by dragging through the real-
time visual interface, and the effect is intuitive. Graphical modeling is one of the most
common modeling methods used by model designers.

• Instrument and equipment generate 3D models by scanning the physical surface. Its
portability and easy-to-operate characteristics give it unique advantages in archaeol-
ogy, medicine and other fields. [10] use 3D scanning to build digital cultural relics
archives.

• Scriptmodeling generatesmodels by compiling codes, which can accurately represent
the model. VTK and ITK [12] are more inclined to medical image processing, corre-
sponding to visualization display and underlying image processing algorithms respec-
tively. VRML [9] is a graphic description language for Web-oriented 3D modeling
and rendering, but its ability to manage large scenes is poor and outdated.

56 J. Huang et al.

Each of the three modeling methods have its advantages and disadvantages. script
modeling can simulate behavior through algorithms or dynamic particle effects when it
needs to simulate a real dynamic scene, and the effect is more realistic.

2.2 MAXScript Geometric Modeling Language and 3DSMax Framework

MAXScriptGeometricModelingLanguage. 3DSMax provides two geometricmodel-
ing methods (MAXScript script geometric modeling and graphical modeling), as shown
in Fig. 1. From the functional perspective, MAXScript script geometric modeling and
graphical modeling are equivalent, script modeling can achieve all the functions of
graphical modeling, and vice versa. The monitoring and plug-in functions provided by
MAXScript are a supplement to 3DSMax’s graphical geometric modeling. MAXScript
can also implement high-precision control and batch operations that are difficult to
achieve with graphical geometric modeling.

Graphical
Geometric
Modeling

Script Geometry
Modeling

Monitor
Func�on

Plug-in
Func�on

Batch Opera�on

Improve Accuracy

Func�onal Equivalence

Supply

Supply

MAXScript

3DSMAX

Effect

Fig. 1. The relationship between script modeling and graphical modeling in 3dsmax

Virtual reality itself is a product ofmulti-domain integration. Indoor architecture [13]
can be used as exhibition, and the game field [14] can bring new interactive experiences.
The MAXScript scripting language can meet the needs of multi-domain modeling and
development. In addition, MAXScript can develop high-precision models. Therefore,
MAXScript is also the target language of Apla+VR.

3DSMax Framework. The 3DSMax framework is mainly composed of three parts,
including standard primitives, modifiers and other operations. The 3DSMax framework
components correspond to the specific development steps of MAXScript.

StandardPrimitives. Primitives are the basis of geometricmodeling. Thegeometric prim-
itives in the real world exist in the form of basketball, water pipe, etc. In the framework,
it is a sphere, tube, pyramid, etc. Geometric modeling usually selects a primitive which
is close to the appearance of the 3D model. The closer the primitive is to the structure
of the original design model, the more time required for modeling can be saved.

Modifiers. Modifiers can quickly change the appearance of primitives. A variety of
modifiers in the framework, such as free deformation FFD_3 × 3 × 3 modifier, edit

Design and Implementation of Virtual Reality Geometric Modeling in Apla+VR 57

polygonmodifier and so on.Byusing differentmodifiers, users can simplify themodeling
process and create complex and sophisticated models.

Other Operations. The operations of the first two parts can create a mesh description
model, but the 3D model at this time has no surface details. To make the model more
realistic, it is also necessary to add operations such as materials and textures. These
operations can determine the material state and visual appearance of the mesh surface
of the model, bringing an intuitive sense of three-dimensional space. Finally, render or
export.

2.3 PAR Platform

Partition and Recurrence (PAR) method [15, 16] is a formal development method based
on model-driven, which is a development method for solving the problem of develop-
ing high-reliability and high-confidence software design. PAR proposed custom generic
algorithm design language and its generation rules, abstract programming language
and a series of executable language generation system. PAR has successfully solved a
large number of classical algorithm problems. Among them, the graph planarity algo-
rithm [17] proposed by Turing Award winners Hopcroft and Tarjan has been improved,
implemented in the PAR platform and shown the results to himself.

The PAR method uses advanced development techniques such as MMD’s formal
development methods and software automation. The entire development process can be
embodied in the following five models, as shown in Fig. 2. (1) Requirement model—
Structured Natural Language (SNL) describes the requirement of the problem to be
solved. (2) Specification model—the formal specification for describing problems in
Radl language, which can be automatically converted from SNL to Radl specification.
(3) Algorithm model—By using the Radl language to express the algorithm for solving
the problem, it can be semi-automatically converted from the Radl specification to the
Radl algorithm. (4) Abstract program model—Apla language [18] develops abstract
program, which can be automatically converted from Radl algorithm to Apla program.
(5) Executable program model—executable programming language represents specific
programs, which can be automatically converted from Apla programs to executable
programs (such as C++ [19], C# [20], JAVA [21], etc.).

Apla language [22] defines an abstract programming language with generic mecha-
nism in order to realize the PAR method of formal development of algorithm programs.
The language mechanism of function abstraction and data abstraction reduces the com-
plexity of describing the problem, and makes the composed program very concise and
easy to understand. Apla language provides standard data types, custom simple types,
predefined abstract data types and custom abstract data types. The complete type system
simplifies the programming process. The rich reusable component library can greatly
improve the efficiency of software development, and a large number of programmodules
can be reused through the same component library. It also supports formal deduction to
ensure the correctness of the program.

58 J. Huang et al.

C++
Program

Java
Program

C#
Program

VB
Program

Automatic
Transform

Automatic
Transform

Semi-
Automatic
Transform

Automatic
Transform

Formal Proof or Theorem Prover

Executable Program

Quan�fica�on Problem

Structured
Natural
Language
Requireme
nt

Apla
Program
Model

Radl
Specification
Model

Radl
Algorithm
Model

Non-Quan�fica�on Problem

Fig. 2. PAR platform architecture

3 Apla+VR Language Design and Code Generator Development

With extending basic data type with modeling, data structure and geometry data type,
we design Apla+VR, which is not only combined with our original Apla language, but
also implement the virtual reality geometric modeling. Meanwhile, a generator called
Apla+VR → MAXScript is developed, and it would be used to generate MAXScript
destination program from Apla+VR source program.

3.1 Apla+VR Syntax

Apla+VR program consists of two parts: program header and program body. The program
header contains language components such as custom functions and abstract data types.
The program body is mainly composed of simple program statements and control struc-
tures to realize its specific program functions. The code in Sect. 4.1 is a virtual reality
geometric modeling program written according to Apla+VR syntax specifications.

An important feature of Apla+VR is that it has a rich data type system (predefined
ADT: tree, graph, sequence, etc.), but it still cannot meet the needs of virtual reality
modeling. In order to facilitate the development of Apla+VR modeling, six standard
data types related to graphic design have been added, which are point3, point2, color,
angleaxis, eulerangle and matrix3. Taking point3 as an example, it can locate the three-
dimensionalmodel in space, and accurately describe the directions of the three coordinate
axes of x-axis, y-axis, and z-axis, which are defined as follows:

var <name>: point3;
<name>:= [<int_or_real>,<int_or_real>,<int_or_real>];

Apla+VR pioneered the addition of geometric data types, including box, cone, sphere,
cylinder, torus and plane. Geometry types are abstracted from analysis the model-
ing framework 3DSMax and the interaction framework Unity, which facilitates the
expansion of virtual reality interactive functions while achieving geometric modeling.

Design and Implementation of Virtual Reality Geometric Modeling in Apla+VR 59

When modifying the appearance of the model, modifiers are provided as type operations
to the geometry type. Type operations are implemented through Apla+VR component
library, see Sect. 3.2 for details. Geometric data types not only ensure the simplicity of
the language, but also use the language features of the original Apla+VR’s predefined
ADT, and users can use them like basic data types. Taking the sphere geometry type as
an example, some of its definitions and operations are as follows:

type sphere = record
rad : real;
segs : integer;
smooth : boolean;
hemisphere : real;
center:point3;
…

end.
specify ADT sphere()
var s1,s2 :sphere;
s1.rad = <real>;
s2.segs = <integer>;

s1 ∩ s2 ;
s1.mirror(axisName_string)
s1.addModifier(modifier_name);
s1.moveFace(array_faces, point3, axis_point3);
s1.noisem(integer_seed,point3_strength,real_scale);
…

endspec.

3.2 Code Generator

The code generator converts the modeling program described by Apla+VR into an exe-
cutable MAXScript script. The code generator is composed of analysis module, gen-
eration module, and component library, as shown in Fig. 3. The generated MAXScript
script contains all the codes needed for the primitives, modifiers, materials and textures
that make up the appearance of the 3D model.

Analysis Module. The analysis module is mainly composed of lexical analysis, Syntax
and semantic analysis and error handling. Lexical analysis scans and decomposes the
characters that make up the program, and outputs the corresponding token sequence.
Syntax and semantic analysis recognizes and processes various grammatical components
from the results of lexical analysis markers according to related grammars and reviews
them, and uses top-down recursive descent method to judge and match tokens one by
one, and transfers to the corresponding branch. If spelling, structural errors, semantic
mismatch and other errors are detected, then transferred to the corresponding error
handlingmodule to handle the errors. If the variable p is of type point3, in the assignment
operation, the system will first read the characters in sequence and determine whether
they are identifiers, numbers or other characters, and then check whether the two sides

60 J. Huang et al.

of the equation are of the same type according to the grammatical requirements, and
output an error prompt when an error occurs.

Generation Module. The generation module is the core module of the code genera-
tor, which contains a generation rule library that satisfies the virtual reality modeling
mechanism. During the code generation period, the program generation rules are used to
generate the target program based on the semantic information. Programgeneration rules
include type definition generation, function definition generation, expression generation,
and program body generation, etc.

Apla+VR

Program Interac�on
mechanism

Syntax
Analysis

Seman�c
Analysis

Error
handling

Program
Genera�on

Core Algorithm

Generate
rule base

Component
library

C# Program

MAXScript
Program

Modeling
mechanism

Lexical
Analysis

Fig. 3. Code generator architecture

Component Library. Geometric data types have been added to Apla+VR. Most of the
operations of these types are encapsulated in the component library and called when
needed. There are three kinds of compound operations (∩, ∪,−), seven basic operations
(move, rotate, scale, copy, mirror, select, delete), and a variety of complex operations
(bevelFace, extrudeFace, exportAll, etc.). The realization component can be realized
in two ways: One is to use monitoring function of MAXScript to convert operations
into macro records for encapsulation. The other is to use the API of the 3DSMax frame-
work. Directly calling the API can reduce repetitive work and facilitate modification and
expansion. Completing data type operations in the form of components can facilitate the
migration of script modeling platforms.

3.3 Development Steps of Virtual Reality Models Based on PAR Method

Apla+VR modeling based on the PAR method can simplify the steps of traditional script
modeling and save modeling time. Specific steps are as follows:

(1) The user firstly uses the Apla+VR language to specify the geometric data type that
approximates the appearance of the real object, and the operations required to modify
the geometric type corresponding to the appearance of the three-dimensional model.

(2)The codegenerator convertsApla+VR program into the correspondingMAXScript
script.

(3) Then add MAXScript scripts to the 3DSMax framework, and create the required
3D model after compilation.

Design and Implementation of Virtual Reality Geometric Modeling in Apla+VR 61

4 A Case Study

The problem of the minimum sum of the array segments refers to: Given an integer
array a[0:n−1], the minimum sum of adjacent elements in a is calculated. Virtual reality
technology can intuitively describe abstract algorithm problems in the form of three-
dimensional graphics, and the solution steps can be intuitively expressed in theminimum
sum problem. First of all, the n numbers in the array need to be materialized, that is,
geometric modeling. Figure 4 shows the steps method for generating the digital model.

Apla+VR

Geometry Data
Type
Box

Opera�ons
Add Modifier
Edge to Seam

Mapping...

Code
Generator

Genetate

3DSMax

Primi�ve
Modifiers

Other opera�ons

Compile

3D Models
MAXScript

code

Fig. 4. Steps of 3D model generation

4.1 Apla+VR Implementation of 3D Model

In order to visually indicate the numerical value of the case, the box geometry type is
selected to simulate, and different lengths are used to distinguish values of different
sizes. Due to the elements in the integer array are positive and negative, they can be
identified by texture.

According to the Apla+VR Syntax rules, the program code to pre-implement the
model case is as follows:

In this case, we generate a cuboid of equal proportional length, and the length of the
3D model can also be modified by precise numerical values. The specific value should
be changed with the value of array a[0: n−1] in the minimum sum virtual reality system.
UsingApla+VR can reduce the length of the code. Functions that originally requiredmore
than a dozen lines of code to implement only need to call a few lines of encapsulated type
operations, which ensures code readability. At the same time, one-time batch generation
of models can save development time and improve development efficiency.

62 J. Huang et al.

program createNumModel;
var nm : box; I : integer;
function numModel(size : integer, pos : point3);
begin
nm.len, nm.wid, nm.hei, nm.pos := size,5,5,pos;
nm.name:= "nunModel" + size;
nm.addModifier(UVWUnwrap);
nm.setEdgeToSeam(1,5,7,10,18,26,34,42,44,46,66) ;
... // Omit some operations

end.
begin
i := 0;
do (i < 5) → size, pos := 4 * (i +1), [0,30 * i,0];
numModel(size, pos);
i := i + 1;
od;
map(all,D:\numModel\positive.jpg ,1,70,33,0.6);
export(all,” D:\\numModel”,”num”,1);

end.

4.2 Generation

Next, the code generator will convert the Apla+VR program into MAXScript script code.
After the generated code file is imported into the 3dsmax framework, the required model
can be obtained after compilation. The specific 3Dmodel used in theminimal sumvirtual
reality system is shown in Fig. 5 below.

Fig. 5. Application of digital models in virtual reality system

In architecture Fig. 3, there is the generation of C# scripts to realize the interaction
and environment management in the virtual reality system. This is one of our main tasks
in the later period. The virtual reality case of minimum sum is written with interactive
code through C#.

Design and Implementation of Virtual Reality Geometric Modeling in Apla+VR 63

4.3 Formal Verification

For the above core code, The new definition of the loop invariant method and the new
development strategy in the PAR can be used to derive the loop invariant, and the Dijk-
stra’s weakest predicate method [23] can be used to verify the formal correctness of the
Apla+VR program.

Pre-condition: {Q:i=0 ∧ size = 4 ∧ pos = [0, 0, 0]}
Post-condition: {R:i=5 ∧ size = 20 ∧ pos = [0, 120, 0]}
Loop invariant: {ρ : 0 ≤ i < 5 ∧ size = 4 ∗ (i + 1) ∧ pos = [0, 30*i, 0]}
Limit function: τ = 5 − i

The verification process is as follows:

According to (1)(2)(3)(4)(5), it is proved that the Apla+VR program in this case is
completely correct. On the premise that the code generator is reliable, the correctness
of the generated MAXScript program can also be guaranteed.

64 J. Huang et al.

5 Conclusions

The Apla+VR language is simple and highly abstract, which overcomes the weakness of
low-efficiency and lacking-verification of reliability by using the geometric modeling
language. It can quickly create and generate Three-dimensional model scripts in virtual
reality systems. The complication of the generatedMAXScript codeswould be processed
by 3DSMax. Hence, it is not only useful to lighten our work of developing platform, but
also easier to realize platform independence and facilitates transplantation.

Apla+VR helps to strengthen the connection betweenmodel designers and interactive
developers. Developers can create 3D models well without learning graphic modeling
technology.

In future work, Apla+VR should continue to be improved in some details. Mean-
while, the PAR method could be extended to virtual reality interaction and environ-
ment management, in order to achieve complete automation of virtual reality system
development.

References

1. Zhao, Q.P.: Overview of virtual reality. Sci. China (Series F: Inf. Sci.) 39(1), 2–46 (2009)
2. Boas, Y.: Overview of virtual reality technologies. Interact. Multimedia Conf. 13(1), 48–69

(2013)
3. Xue, J.Y., Huang, J.W., You, Z.: Research on virtual reality modeling mechanism based on

apla language[J/OL]. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 1–7 (2020). https://doi.
org/10.13245/j.hust.210209

4. Pavao, A.C., Pouzada, E.V.S., Mathias, M.A.: Electromagnetic field visualization through
VTK software. In: Proceedings of the 2001 SBMO/IEEE MTT-S International Microwave
and Optoelectronics Conference. Belem: IEEE, pp. 21–24 (2001)

5. Hua,W.: 3dsMAXScript Scripting Language Complete LearningManual. Ordnance Industry
Press, Tianjin (2006)

6. 3ds Max HELP GUIDES. [EB/OL] (2020) https://help.autodesk.com/view/3DSMAX/2021/
ENU/.Autodesk

7. Digital protectionofNefertari’s tomb. [EB/OL]. https://www.nefertaritomb.com/vr-nowadays
8. Scott, S.: ZBrush Character Creation: Advanced Digital Sculpting, 2nd edn. Sybex Inc, U.S

(2011)
9. Zhang, J.H., et al.: Research on the 3D digital protection of ancient buildings and cultural

relics based on 3D laser scanning—taking the Dacheng hall of Confucian temple in Leshan,
Sichuan as an example. Mapp. Spatial Geographic Inf. 39(07), 42–44 (2016)

10. Li, Q., Cheng, X.J.: Accuracy test and analysis of self-positioning handheld 3D laser scanner.
Bull. Surveying Mapping, (10), 65–68+96 (2016)

11. Ames, A.L., Nadeau, D.R., Moreland, J.L.: VRML2.0 SourceBook. Wiley, New York (1997)
12. Pieper, S., et al.: The NA-MIC Kit: ITK, VTK, pipelines, grids and 3D slicer as an open

platform for themedical image computing community. In: 3rd IEEE International Symposium
on Biomedical Imaging: Nano to Macro, pp. 698–701 (2006)

13. Li, J.J.: Realization of 3D modeling and interactive system for indoor architecture based on
Unity3D. China University of Mining and Technology (2014)

14. Blaha, J., Gupta, M.: Diplopia: a virtual reality game designed to help amblyopics. IEEE
Virtual Reality (VR) 2014, 163–164 (2014)

https://doi.org/10.13245/j.hust.210209
https://help.autodesk.com/view/3DSMAX/2021/ENU/.Autodesk
https://www.nefertaritomb.com/vr-nowadays

Design and Implementation of Virtual Reality Geometric Modeling in Apla+VR 65

15. Xue, J.Y.: PARmethod and its supporting platform. In: Prof of the 1st InternationalWorkshop
on Asian Working Conference on Verified Software. [s.n.], pp. 159–169 (2006)

16. Xue, J.Y.: Formal derivation of graph algorithmic programs using partition-and-recur. J.
Comput. Sci. Technol. 13(6), 553–561 (1998). https://doi.org/10.1007/BF02946498

17. Gries,D.,Xue, J.Y.: TheHopcroft-Tarjan planarity algorithm, presentation and improvements.
Technical Report, 88–906, Computer Science Department, Cornell University (1988)

18. Xie, W.P.: Radl→Apla Program Generation System and its Reliability Research. Jiangxi
Normal University Library, Nanchang (2009)

19. Yong, L.: Development of Apla to C++ Automatic Program Conversion System. Jiangxi
Normal University Library, Nanchang (2002)

20. Zuo, Z.K.: Design and Implementation of Apla→C#Automatic ProgramConversion System.
Jiangxi Normal University Library, Nanchang (2004)

21. Shi, H.H.: Apla-Java Automatic Program Conversion System Supporting Generic Program-
ming. Jiangxi Normal University Library, Nanchang (2004)

22. Xue, J., Zheng, Y., Qimin, H., You, Z., Xie, W., Cheng, Z.: PAR: a practicable formal
method and its supporting platform. In: Sun, J., Sun, M. (eds.) Formal Methods and Soft-
ware Engineering: 20th International Conference on Formal Engineering Methods, ICFEM
2018, Gold Coast, QLD, Australia, 12−16November 2018, Proceedings, pp. 70–86. Springer
International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-02450-5_5

23. Dijkstra, E.W.: A Discipline of programming. Prentice Hall, New Jersey (1976)

https://doi.org/10.1007/BF02946498
https://doi.org/10.1007/978-3-030-02450-5_5

Model Checking

An Unified Model Checking Approach
of APTL

Haiyang Wang(B)

Xi’an University of Technology, Xi’an, China
hywang@xaut.edu.cn

Abstract. This paper investigates an unified model checking procedure
for Alternating Projection Temporal Logic (APTL) based on automaton.
The method for transforming an APTL formula to an alternating Büchi
automaton over Concurrent Game structure (BCG) has been illustrated.
The algorithm for the product of two BCGs is presented in this paper. In
addition, the APTL model checking algorithm for open system is given
and examples are also presented to illustrate how the procedure works.

Keywords: Model checking · APTL · BCG · Open system

1 Introduction

Model checking [1,2] is an automatic technique for verifying the properties of con-
current systems, where the formalized representation of systems is specified by
temporal logic formulas, and the process of model checking depends on efficient
and flexible algorithms of reachability problem based on graph theory. Model
checking technique has attracted great attention from universal scholars and has
got a rapid development. Model checking has been widely used in various fields
of society, such as circuit design and protocol verification, etc. [3–6].

The properties of system are formally described by temporal logic formulas,
so temporal logic plays a vital role in model checking. Alternating temporal
logic (ATL) [7] is a temporal logic, which is proposed by Alur and he used it
to verify the properties of reactive systems, as well as it regards the interactive
process of a reactive system as a game process between an open system and its
environment. Proposition projection temporal logic (PPTL) [8] can conveniently
describe the properties of finite and infinite state paths. PPTL formulas are
simple and intuitive, and can express completely regular properties; PPTL plays
an important role in the field of model checking. Alternating projection temporal
logic (APTL) [9,10] is an extended logic of PPTL, it is able to not only express
properties specified in classical temporal logic LTL, but also express interval
related sequential and periodical properties, as well as express game related
properties of open systems and multi-agent systems.

This research is supported by the NSFC Grant No. 413619001.

c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 69–78, 2021.
https://doi.org/10.1007/978-3-030-77474-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_5

70 H. Wang

With the motivation that to complete the APTL model checking fully auto-
matically. We have illustrated the logic laws of APTL and the algorithms of
transforming APTL formula to a BCG [11]. Also, an improved method for check-
ing the satisfiability of APTL formulas has been presented [12]. The symbolic
model checking of APTL has been designed [10]. In this paper, the algorithm
for the product method of two BCG is presented and an unified model checking
approach of APTL based on BCGs is also illustrated. Finally, a case study is
presented to illustrate how the procedure works.

The next section introduces some fundamental essentials. Section 3, the app-
roach of product construction of BCGs is given, furthermore, the algorithm for
the APTL model checking is also presented. A case study is presented in Sect. 3.2.
Finally, conclusions are drawn in Sect. 4.

2 Preliminaries

In order to express my scientific research work explicitly, in this section the
primary issues are expound clearly.

2.1 Alternating Projection Temporal Logic

APTL Syntax. The temporal logic alternating interval based temporal logics
are defined with respect to a finite set P of atomic propositions and a finite set
A of agents. The formula of PPTL is given by the following grammar:

P ::= p | ¬P | P ∨ Q | ©�A� P | (P1, · · · , Pm)prj�A�Q

where p ∈ P, P1, . . . , Pm, P and Q are all well-formed APTL formulas. The
operator �� is a path quantifier, and ©�A� (next) and prj�A� (projection)
[8–10] are basic temporal operators with path quantifier, that the path quantifiers
are parameterized by set of agents.

APTL Semantics. The notation of Concurrent Game Structures (CGS) for
using interval based temporal logics. A Concurrent Game Structure (CGS) is
defined by C = (P,A, S, s0, l,Δ, τ), the detail issues are represented in paper
[7,11]. Following the definition of CGSs, we define a state s over P to be a
mapping from P to B = {true, false}, s : P → B. A computation λ(s) starting
from a state s in a concurrent game structure satisfies the APTL formula P ,
denoted by λ(s) |= P .

A computation λ = s0, s1, . . . is a non-empty sequence of states, which can
be finite or infinite. The length, |λ|, of λ is ω if λ is infinite, and the number of
states minus 1 if λ is finite. To have a uniform notation for both finite and infinite
intervals, we will use extended integers as indices. That is, we consider the set
N0 of non-negative integers and ω, Nω = N0 ∪ ω, and extend the comparison
operators, =, <, ≤, to Nω by considering ω = ω, and for all i ∈ N0, i < ω.
Moreover, we define
 as ≤ −{(ω, ω)}. Let Γ denotes the set of all computations.

An Unified Model Checking Approach of APTL 71

For any computation λ ∈ Γ and indexes 0 ≤ i ≤ j
 |λ| we use λ[i], λ[0, i],
λ[i, |λ|], and λ[i, j] to denote the i-th state in λ, the finite prefix s0, s1, . . . , si of
λ, the suffix si, si+1, . . . of λ, and an interval si, . . . , sj of λ respectively.

Let λ = s0, s1, . . . be a computation, and r1, . . . , rk be integers (h ≥ 1)
such that 0 = r ≤ . . . ≤ rh
 |λ|. The projection of λ onto r1, . . . , rh is the
computation, λ ↓ (r1, . . . , rh) = st1 , st2 , . . . , stl where t1, . . . , tl are obtained
from r1, . . . , rh by deleting all duplicates. That is, t1, . . . , tl is the longest
strictly increasing subsequence of r1, . . . , rh. For example, s0, s1, s2, s3, s4 ↓
(0, 0, 2, 2, 2, 3) = s0, s2, s3.

The satisfaction relation (|=) is inductively defined as follows:

– λ(s) |= p for propositions p ∈ P, iff p ∈ l(s).
– λ(s) |= ¬P , iff λ(s) � P .
– λ(s) |= P ∨ Q, iff λ(s) |= P or λ(s) |= Q.
– λ(s) |= ©�A�P iff |λ(s)| ≥ 2, and there exists a strategy fA for the agents

in A, such that λ(s) ∈ out(s, fA), and λ(s)[1, |λ|] |= P .
– λ(s) |= (P1, . . . , Pm)prj�A�Q iff there exists a strategy fA for the agents in

A, and λ(s) ∈ out(s, fA), and integers 0 = r0 ≤ r1 ≤ . . . ≤ rm ≤ |λ(s)| such
that λ(s)[ri−1, ri] |= Pi, 0 < i ≤ m and λ |= Q for one of the following λ:
(a) rm < |λ(s)| and λ = λ(s) ↓ (r0, . . . , rm) · λ(s)[rm + 1, . . . , |λ(s)|] or
(b) rm = |λ(s)| and λ = λ(s) ↓ (r0, . . . , rm) for some 0 ≤ h ≤ m.

Note that these path quantifiers. As special cases, �A� and �φ� corresponds
to existential ∃ and universal ∀ path quantification, respectively. When A = φ,
the APTL formulas are in fct PPTL formulas. As the dual of ��, we use [[]],
defined by [[A]] def= �A\A�.

2.2 From APTL Formulas to BCGs

An APTL formula can be transformed into a BCG [9,12]. The details of the pro-
cedure is shown in Fig. 1. Firstly, lexical analysis of APTL formula φ, and then
construct the syntax tree. Secondly, we make preprocess to eliminate all impli-
cations, equivalence, double negations, skip, len(n), ♦ in formula φ. Thirdly, we
construct labeled normal form graph (LNFG) according to the normal form of
formula φ, then transform the LNFG to a generalized alternating Büchi automa-
ton over concurrent game structure (GBCG). Finally, the BCG is developed from
the obtained GBCG.

3 Model Checking for APTL

3.1 Model Checking Algorithm for APTL

In the following, we provide an unified model checking algorithm for APTL for-
mulas. The algorithm used for checking whether an APTL formula P is satisfied
by a CGS s. The method is relies on a reduction procedure that a certain product
construction of the BCG for the system s with the BCG for the APTL formula
P .

72 H. Wang

Fig. 1. The transformation process of an APTL formula to BCG.

Definition 1. Product of the system automata BCG and the property automata
BCG. For the system automata BCG B1 = (P,A, Q1, Q01, δ1, F1) and the
BCG for the complement property is B2 = (P,A, Q2, Q02, δ2, F2), the product
automata B = B1 ⊗ B2 = (P,A, Q1 × Q2, Q01 × Q02, δ, F) where δ is

q1
P1−−−−−→

�A1� δ1

q′
1 ∧ q2

P2−−−−−→
�A2� δ2

q′
2

(q1, q2)
(P1,P2)−−−−−−−−−−−→

(�A1�,�A2�) δ

(q′
1, q

′
2)

where P1 ∧ P2 �= false and F = {fi|fi = (q1i, q2i), q1i ∈ F1 and A1 ∧ A2 �=
φ or q1i ∈ F1 ∧ q2i ∈ F2}.

It follows that if the product automata B is empty then the system automata B1

satisfy the formula P , where B2 is the automata of the complement to formula
P . That is to say the system satisfy formula P .

As a result, the skeleton in Algorithm 1 can be used to check whether the
CGS S satisfies the APTL formula P .

3.2 A Case Study

Security protocols are excellent case studies for the techniques we have illustrated
the model checking techniques. We considering the two-party contract signing
scenario, the ASW (Asokan-Shoup-Waidner) [13–15] protocol as the verifying
system.

In two-party contract signing, both players have initially agreed on some
contract text. A valid contract consists of nonrepudiation tokens on the contract
text by each player. A fair contract signing protocol must ensure that either both
players end up with contracts or neither does. The contract signing procedure is
shown as the Fig. 2.

An Unified Model Checking Approach of APTL 73

Algorithm 1. Model-checking algorithm for APTL formula
Input: an CGS S and an APTL formula P
Output: true if the product automata of the system automata and the property

automata is empty. Otherwise false plus a counterexample for P .

B1 =Bcg(S); /*construct the BCG of system S*/
N =Nf(P); /*transform P to its normal form*/
CN = Conf(N); /*rewrite N as complete normal form*/
NN =Neg(CN); /*obtain the negation formula’s normal form*/
G =Lnfg(NN); /*construct the LNFG of the negation formula*/
GB =Gbcg(G); /*obtain the GBCG of the negation formula*/
B′

2 =Gbtb(GB); /*transform the GBCG to BCG*/
B2 =Simplify(B2);/*simplify the BCG*/
if B2 is not empty then

B = B1 ⊗ B2;
else return true;
B′ =Simplify(B); /*simplify the product BCG*/
if B′ is empty then

return true;
else return false and a counterpath.

We model the ASW protocol as bellow. The set of agents is P = {A,B, T,C},
A is the Originator, B is the Recipient, T is the third party and C is the channel.
Now we introduce the atomic propositions, X mi: agent X has obtained message
mi; A a1: agent A has generate the abort message a1; Bquit: B decides to give up,
then the protocol run terminates simply; C/T A.a1: agent C or T has received
the abort request; A/B r1: agent A or B has generates the resolve message, in
order to send the resolve request to the agent T ; C/T A/B.r1: agent C or T has
received the resolve request that send by agent A or B; X TY.aborted: agent
X has obtained the aborted message that the abort request is raised by the
agent Y ; X TY.resolved: agent X has obtained the resolved message that the
resolve request is raised by the agent Y ; A contract: agent A has received the
valid contract; B contract: agent B has received the valid contract; aborted: the
contract signing procedure has been aborted; resolved: the agent A or B has
obtained the valid contract via sends the resolve request to the agent T .

The model of the ASW protocol is shown as Fig. 3. Now we verify two prop-
erties of the ASW protocol. A fair contract signing protocol must ensure that
either both players end up with valid contracts or neither does. We verify whether
the model contains the situation that agent B obtained valid contract but agent
A does not obtained finally. The property is formally as an APTL formula:
¬♦<B,C,T>(B contract ∧ ¬♦�A�A contract). The BCG of the APTL formula
is shown as Fig. 4.

74 H. Wang

Fig. 2. ASW protocol

Fig. 3. BCG S of the ASW protocol

Then we calculate the product of the system model and the property BCG
as the Definition 1 illustrated. The product BCG of the ASW protocol BCG S
and the property BCG G1 is show in Fig. 5. Then we simplifying the BCG
G′

1 as the algorithm Simplify illustrated. We obtained the conclusion that

An Unified Model Checking Approach of APTL 75

Fig. 4. The BCG G1 of �<B,C,T>(B contract ∧ ¬ ��A� A contract), the node a
denote the APTL formula true;<B,C,T> (B contract ∧ ¬ ��A� A contract), b denote
¬(true;�A� A contract), c denote true;<B,C,T> (B contract ∧ ¬ ��A� A contract), d
denote false, e denote ε, the accepting set is F = {b, e}

Fig. 5. The BCG G1 of S × G1

the product BCG is empty, viz, the ASW protocol satisfy the APTL formula
¬♦<B,C,T>(B contract ∧ ¬♦�A�A contract). The other property is formally
expressed by APTL formula as ¬♦<B,C,T>(B contract ∧ ♦�A�A contract).
The BCG G2 of the formula is shown in Fig. 6. The product BCG G′

2 is
calculated as the Definition 1 shows and illustrated in Fig. 7. Then we sim-
plifying the BCG G′

2 as the algorithm Simplify illustrated. After simplify
the G′

2 we obtained the BCG as the Fig. 8 shows. Obviously, the product
BCG is not empty, i.e., the ASW protocol is not satisfy the APTL formula

76 H. Wang

Fig. 6. The BCG G2 of ♦<B,C,T>(B contract ∧ ♦�A�A contract), the node a′

denote the APTL formula true;<B,C,T> (B contract ∧ ♦�A�A contract), b′ denote
true;<B,C,T> (B contract ∧ ♦�A�A contract), c′ denote true;�A� A contract, d′

denote true and e′ denote ε. The accepting set F = {d′, e′}

Fig. 7. The product BCG G′
2 of S × G2

¬♦<B,C,T>(B contract ∧ ♦�A�A contract). From the above two example, we
illustrated the APTL formula model checking procedure perfectly. By our expe-
rience, the decision procedures given in this paper are indispensable for complete
the model checking procedure automatically.

An Unified Model Checking Approach of APTL 77

Fig. 8. The simplifying BCG, F = {[d′, 45], [e′, 45]}

4 Conclusion

To specify and verify open systems, we provide the unified APTL model checking
algorithm based on BCGs. And a case study is also presented to illustrate the
whole process. In the future, we will further investigate and improve the method.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.-J.: Symbolic
model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

3. Cui, J., Duan, Z., Tian, C., Hongwei, D.: A novel approach to modeling and ver-
ifying real-time systems for high reliability. IEEE Trans. Reliab. 67(2), 481–493
(2018)

4. Yu, B., Duan, Z., Tian, C., Zhang, N.: Verifying temporal properties of programs:
a parallel approach. J. Parallel Distrib. Comput. 118, 89–99 (2018)

5. Albert, E., Gmez-Zamalloa, M., Isabel, M., Rubio, A., Sammartino, M., Silva,
A.: Actor-based model checking for Software-Defined Networks. J. Log. Algebraic
Methods Program. 118, 100617 (2021)

6. Yu, C.-M., Tala’t, M., Shen, L.-H., Feng, K.-T.: A multi-objective model checking
for transmission policy optimization in hybrid powered small cell networks. IEEE
Access 8, 71339–71352 (2020)

7. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

8. Duan, Z., Tian, C., Zhang, N.: A canonical form based decision procedure and
model checking approach for propositional projection temporal logic. Theor. Com-
put. Sci. 609, 544560 (2016)

78 H. Wang

9. Tian, C., Duan, Z.: Model checking open systems with alternating projection tem-
poral logic. Theor. Comput. Sci. 774, 65–81 (2019)

10. Wang, H., Duan, Z., Tian, C.: Model checking multi-agent systems with APTL.
Ad Hoc Sens. Wirel. Networks 37(1–4), 35–52 (2017)

11. Tian, C., Duan, Z.: Alternating interval based temporal logics. In: Dong, J.S., Zhu,
H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 694–709. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16901-4 45

12. Wang, H.Y., Duan, Z.H., Tian, C.: Tool for checking satisfiability of APTL formu-
las. Ruan Jian Xue Bao/J. Softw. 29(6), 1635–1646 (2018). (in Chinese)

13. Kremer, S., Raskin, J.-F.: Game analysis of abuse-free contract signing. In: 15th
IEEE Computer Security Foundations Workshop. Proceedings. IEEE (2002)

14. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair
exchange. In: 1998 IEEE Symposium on Security and Privacy. Proceedings. IEEE
(1998)

15. Slanina, M., Sipma, H.B., Manna, Z.: Deductive verification of alternating systems.
Formal Aspects Comput. 20(4–5), 507–560 (2008)

https://doi.org/10.1007/978-3-642-16901-4_45

Model Checking Multi-interruption
Concurrent Programs with TMSVL

Jin Cui and Lianxiang Zhu(B)

Xi’an Shiyou University, 710071 Xi’an, People’s Republic of China

Abstract. Concurrent programs are commonly used in real-time system
software. Verifying the correctness of concurrent programs is an impor-
tant job to ensure the reliability of real-time system software. The causes
of concurrency in a real-time system program include task scheduling
and interrupt mechanism, where multi-interruption is an effective means
of real-time response to asynchronous events. This paper studies the
modeling approach for multi-interruption concurrent programs based on
TMSVL (Timed Modeling, Simulation and Verification Language), so as
to verify temporal properties of multi-interruption concurrent programs,
such as safety and liveness properties. The formal syntax and semantics of
multi-interruption concurrent programs is established based on TMSVL,
and the correctness and practicability of our approach is demonstrated
with a case study.

Keywords: Model checking · Concurrent programs ·
Multi-interruption · Formal verification

1 Introduction

Real-time system software is widely used in safety-critical systems such as
unmanned vehicle, aerospace, nuclear industry and so on. It is significant to
ensure the reliability of real-time system software. Interrupt is an effective means
for real-time systems to respond to asynchronous events timely, and it is one of
the major factors causing concurrent execution of programs. The causes of con-
currency also include multitasking (threads) scheduling, thread blocking, etc.
Since interrupt events can occur at any time and preempt the executing pro-
gram, it will lead to a large number of concurrent interleaving execution traces
of programs, thus causing unpredictable system error behaviors [1]. It is a chal-
lenge task to ensure the correctness of multi-interruption concurrent programs
(namely the programs that contain responses to interrupt events).

Formal verification uses strict mathematical methods to prove whether a
system satisfies desired properties and find errors, especially potential hazards
that cannot be found by testing [2]. Theorem proving and model checking are

This research is supported by Shaanxi provincial key research and development pro-
gram No. 2020GY-038.

c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 79–87, 2021.
https://doi.org/10.1007/978-3-030-77474-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_6

80 J. Cui and L. Zhu

two important methods in formal verification. Model checking [3] proposed by
Clarke et al., winner of the Turing Award, verifies whether the system satisfies
the desired property by traversing the state space of the model and searching
counter-example, which can be carried out automatically without manual inter-
vention.

In recent years, there have been some researches on modeling and verification
of multi-interruption concurrent systems. In literature [4], a framework based on
the theorem proving tool Coq for verifying the preemptive operating system
kernel with multi-interruption was designed. The framework is applied to the
functional correctness verification of key modules of the μC/OS-II scheduler,
interrupt handler, message queue, mutex semaphores and so on. Based on the
compositional framework, literature [5] introduces device drivers and interrup-
tions into the kernel layer to verify the functional correctness of the operating
system kernel. Literature [6] models interrupt-driven systems with timed Petri
net. By transforming the timed Petri net model into timed automata, the invari-
ant properties are verified by symbolic coding and SMT solver based bounded
model checking approach. Literature [7] defines the formal language iDola for
modeling multi-interruption mechanisms in embedded systems. With the lan-
guage iDola, the interrupt driven systems are modeled in a declaration manner,
and the temporal properties of LTL (Linear Temporal Logic) and CTL (Compu-
tation Tree Logic) are verified using timed automata based approach. Literature
[8] defines the formal semantics for multi-interruption programs with a new mod-
eling language. The modeling language can model the main program and inter-
rupt handlers, it describes the time information by means of predicate function.
The modeling language provides an effective method for modeling the interrupt
behavior of multi-interruption systems and for making time analysis. Literature
[9] generates a formal model for interrupt processing systems using fixed-length
bit vectors, and proposes a SMT-based bounded model checking approach for
interrupt processing systems. Literature [10] proposes interrupt sequence dia-
gram (ISD) to model interrupt systems. ISD is extended from UML sequence
diagram by designing special interaction segments for priority-based preempt-
able interrupt handlers. For the verification purpose, the authors defines the
ISD semantics based on automata, thus using reachability analysis of hybrid
automata theory for ISD model checking.

To verify the interruption concurrent systems, the theorem proof approach
mainly focuses on the functional correctness, but rarely verifies the temporal
properties, while the model checking approach is effective in verifying tempo-
ral properties described by LTL and CTL. However, LTL and CTL are diffi-
cult to describe periodicity and interval related properties [11–13]. This paper
studies the modeling approach of multi-interruption concurrent programs based
on TMSVL (Timed Modeling, Simulation and Verification Language) [14], so
as to verify the safety, liveness, timeliness, and other temporal properties of
multi-interruption concurrent programs with unified model checking approach
based on TMSVL [15]. The verification approach in this paper uses the property

Model Checking Multi-interruption Concurrent Programs with TMSVL 81

formula [16] to describe the desired property, which has full regular expressive-
ness and can describe the interval-related properties and periodic properties.

The remainder of the paper is organized as follows. The next section gives an
introduction to our model checking approach. In Sect. 3, we show the modeling
approach for multi-interruption concurrent programs with TMSVL. In Sect. 4, a
case study is presented to illustrate the application of our approach to modeling
and verifying of multi-interruption concurrent programs. Finally, conclusions and
future work are drawn in Sect. 5.

2 Model Checking Approach

With our verification approach, the system to be verified is modeled by the
TMSVL program M , and the desired property is specified with formula φ. Both
of them are defined based on TPTL (Timed Projection Temporal Logic), and
their definitions can be seen in [14]. The model checking approach is shown in
Fig. 1. In the verification process, we need to transform M into its normal form,
then construct normal form graph (NFG) for M . The definitions of normal form
for TMSVL program M is shown in Definition 1.

Definition 1 (Normal form). A TMSVL program M is in its normal form
if it is of the following form:

M ≡
l1∨

i=1

Mei ∧ empty ∨
l2∨

j=1

Mcj ∧ ©Mfj

where l1 + l2 ≥ 1 and the following hold:
1) Mfj is a TMSVL program.
2) Each of Mei and Mcj is either true or a state formula of the form w1∧. . .∧wm

(m ≥ 1) such that w1, . . . , wm are either v = e, or pv, or ¬pv (v is a variable, e
denotes the value of v, and pv is an atomic proposition).

The normal form graph describes the state space of the system M and
presents the model satisfying the program M . For M , its NFG is a directed
graph G, G = (CL,EL), where CL represents a set of nodes and EL represents
a set of edges. In CL, each node is represented by a TMSVL program, while in
EL, each edge is a triplet (q, pe, r) from node q to node r and marked with the
state formula pe.

In the verification process, we make state reduction for TMSVL program M ,
mainly by transforming M to the normal form, transform the negative of the
property φ, namely ¬φ to normal form, and construct NFG for M ∧ ¬φ. In the
process of constructing NFG for M ∧ ¬φ, we need to judge whether there exists
an acceptable path. If there is no acceptable path, it indicates that M satisfies
φ; otherwise M violates φ, and a counterexample path is found.

82 J. Cui and L. Zhu

Fig. 1. Model checking approach for multi-interruption concurrent programs

3 Modeling Concurrent Programs with Interruption
Using TMSVL

3.1 Modeling Single-Interruption Concurrent Programs

To facilitate establishing the formal model and semantics of interrupt concur-
rency, we analyze the behavior of single-interruption concurrent programs with
an example. Figure 2 shows an execution scenario for a single-interruption pro-
gram. The dark blue rectangle indicates that the main program is executing, and
the light blue rectangle indicates that the interrupt handler isrA is executing.
We can see that during the execution of the main program, the interrupt handler
may be preempted by isrA in response to an external event. While isrA is not
preempted during execution, actually isrA always executes sequentially.

Fig. 2. An execution scenario of single-interruption

Model Checking Multi-interruption Concurrent Programs with TMSVL 83

In TMSVL, the statement Q when (b, r) do H denoted as N1 is used to
model the single-interruption concurrent program. In N1, Q stands for the main
program, b is a boolean variable recording whether to respond to an interrupt
request or not, r is a propositional argument indicating whether the main pro-
gram has finished execution, and H is an interrupt handler. In [14], the single
interrupt semantics based on TPTL is proposed and is defined as follows:

Q when(b, r) do H
def=

(((if(b)then{H}else skip)�, r ∧ ε) prj (Q; r ∧ ε)) ∧ halt(r)

Its semantics are mainly defined by the projection operator (prj). Its semantics
can be described by the semantic graph as shown in Fig. 3.

Fig. 3. The interval graph of Q when(b, r) do H

3.2 Modeling Multi-interruption Concurrent Programs

To model concurrent programs with multi-interruption, we take a concurrent
system with two interruptions as an example, the execution scenario is shown
in Fig. 4. The two interrupt handlers are isrA and isrB, isrA has a lower
priority, while isrB has a higher priority. In Fig. 4, during the execution of
the main program, the cases where nested execution of interruption, single-
interruption sequential execution and multi-interruption sequential execution are
included. We define Nn for multi-interruption concurrent programs by extend-
ing the single-interruption model N1. Nn can effectively describe various possible
concurrent situations of multi-interrupt concurrent programs, including nested
execution of interruptions, sequential executions of single-interruption and multi-
interruption, thus automatically verify temporal properties of multi-interruption
concurrent programs (such as safety, liveness, timeliness, etc.).

The syntax of Nn is Q when(b[0]or...Orb[n − 1], r)do R(rq, b,H, p, n), where
Q is the main program; b is a boolean array, b[i] indicates whether to respond
to interrupt requests i, if b[i] is true, the interrupt request i can be responded,
otherwise, it will not be responded; r is a propositional variable; H[i] is the
interrupt handler for interrupt request i: p is a boolean array, and p[i] stands
for whether the execution of interrupt handler H[i] terminates. R(rq, b,H, p, n)
(R for short) describes the preemption of the main program by the n interrupt

84 J. Cui and L. Zhu

Fig. 4. An execution scenario of multi-interruption concurrency

requests. Actually, Nn is equivalent to the TPTL formula (((if(b[0]∨ b[1]∨ . . . ∨
b[n − 1]) then {R} else {skip})∗, r) prj (Q; r)) ∧ halt(r).

The semantics of Nn can be described by the interval graph shown in Fig. 5.
The interval graph is a projection structure with the top and the bottom intervals
ending simultaneously. Each sub-interval in Q (constituted by two consecutive
states of Q) corresponds to skip or R in Nn on the bottom interval. If it corre-
sponds to skip, it means that the two states in Q have not been interrupted and
there is no concurrency between them. Otherwise the two states are interrupted
by interrupt handlers, and there are start and end states of interrupt handlers
between them, which constitutes the concurrent executions of the system.

Fig. 5. The semantics diagram of Nn

Since there is preemption during the execution of the interrupt handler,
there is still concurrency caused by interrupt sequential execution and interrupt
nested execution in R. We need to recursively use the Nn structure to model
the concurrency among interrupt handlers. Assume that the interrupt requests
are rq[0], . . . , rq[n−1] and their priorities decrease in turn, then R(rq, b,H, p, n)
can be defined by the TMSVL program below:

Model Checking Multi-interruption Concurrent Programs with TMSVL 85

if (¬rq[0] ∧ . . . ∧ ¬rq[n − 2] ∧ rq[n − 1]) then
H[n − 1] when(p[n − 1], b[0] ∨ . . . ∨ b[n − 2]) do R(rq, b,H, p, n − 1)∧

if (¬rq[0] ∧ . . . ∧ ¬rq[n − 3] ∧ rq[n − 2]) then
H[n − 2] when(p[n − 2], b[0] ∨ . . . ∨ b[n − 3]) do R(rq, b,H, p, n − 2)∧

. . . ∧
if (rq[0]) then H[0]

4 A Case Study

Figure 6 shows an example program composed of the function main(), interrupt
handlers ISR1() and ISR2(). The main function performs the division operation
only when x is strictly less than y. ISR1() increases x by 1 and ISR2() decreases
y by 1. Assume ISR1() is triggered by external event a0, ISR2() is triggered by
external event a1, and a0 has a higher priority than a1. As a case study, we
verify the safety property that the divisor in main() never equals to 0. Thus,
we can use the multi-interruption structure Nn and TMSVL language to model
the above instance, property formula to describe the desired property. Further,
we utilize the TMSVL interpreter to verify whether the property is valid or not
automatically.

Fig. 6. A design instance of the multi-interruption program

To model the above instance, let the TMSVL model of the design instance
be M , the main function be Q, ISR1 be H[0] and ISR2 be H[1]. Additionally, we
use Dc to denote the global variable definition module, boolean variables rq[0]
and rq[1] denote whether interrupt events a0 and a1 occur or not, respectively.
Thus, M can be defined in TMSVL as follows:

86 J. Cui and L. Zhu

Fig. 7. The TMSVL programs of the modules Dc,Q,H[0] and H[1]

M
def
= Dc;Q when(b[0] or b[1], r)do R(rq, b,H, p, 2)

R(rq, b,H, p, 2)
def
= if ¬re[0] ∧ re[1] then H[1] when(b[0], p[1])do R(rq, b,H, p, 1) and

if re[0] then H[0] and
if ¬re[0] ∧ ¬re[1] then skip

R(rq, b,H, p, 1)
def
= if b[0] then H[0] else skip

where Dc, Q, H[0], and H[1] are defined in Fig. 7, respectively. Specifically, the
global variables in M consists of program variables x, y, z as well as the intro-
duced variables iEv, a boolean arrays of size 2. iEv represents that whether
interrupt events a0 and a1 occur, when the execution of interrupt handlers com-
pletes, the corresponding element in iEv is set to 0.

The desired property can be expressed by the property formula �(x �= y). The
property is violated when main() is executed into the while loop, the statement
z = 1/(x − y) is about to be executed, while the interrupt handler makes x = y.

5 Conclusion

In this paper, the single-interruption structure of TMSVL is extended to model
multi-interruption concurrent programs, so that we can model multi-interruption
concurrent programs using the extended TMSVL, and temporal properties of
multi-interruption concurrent programs, such as safety and liveness can be ver-
ified by the unified model checking approach. In the future, we will study the
application of the approach in modeling and verification of real-time operating
systems on the one hand; we will also study how to mitigate the state space
explosion that occurs during the verification of multi-interrupt concurrent pro-
grams on the other hand.

Model Checking Multi-interruption Concurrent Programs with TMSVL 87

References

1. Wu, X., Chen, L., et al.: Numerical static analysis of interrupt-driven programs
via sequentialization. In: 2015 International Conference on Embedded Software
(EMSOFT), pp. 55–64 (2015)

2. Wing, J.M.: A specifier’s introduction to formal methods. Computer 23(9), 8–22
(1990)

3. Graf, S.: Design and synthesis of synchronization skeletons using branching time
logic (1984)

4. Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A practical verification
framework for Preemptive OS kernels. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 59–79. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41540-6 4

5. Hao, C., Wu, N., et al.: Toward compositional verification of interruptible OS
kernels and device drivers. J. Autom. Reasoning 51(6), 1–49 (2017)

6. Hou, G., Zhou, K., et al.: Interrupt modeling and verification for embedded systems
based on time petri nets. Comput. Sci. 8299(66), 62–76 (2014)

7. Liu, H., Zhang, H., et al.: IDola: bridge modeling to verification and implementa-
tion of interrupt-driven systems. In: Theoretical Aspects of Software Engineering
Conference (2014)

8. Huang, Y., He, J., Zhu, H., Zhao, Y., Shi, J., Qin, S.: Semantic theories of programs
with nested interrupts. Front. Comput. Sci. 9(3), 331–345 (2015). https://doi.org/
10.1007/s11704-015-3251-x

9. Uemura, K., Yamane, S.: SMT-based bounded model checking of embedded
assembly program with interruptions. In: 2019 IEEE International Conference
on Dependable, Autonomic and Secure Computing, International Conference on
Pervasive Intelligence and Computing, International Conference on Cloud and
Big Data Computing, International Conference on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), pp. 633–639 (2019)

10. Pan, M., Chen, S., et al.: Easy modelling and verification of unpredictable and pre-
emptive interrupt-driven systems. In: Proceedings of the 41st International Con-
ference on Software Engineering, pp. 212–222. IEEE Press (2019)

11. Yu, B., Duan, Z., et al.: Verifying temporal properties of programs: a parallel
approach. J. Parallel Distrib. Comput. 118, 89–99 (2018)

12. Wang, M., Tian, C., et al.: Verifying full regular temporal properties of programs
via dynamic program execution. IEEE Trans. Reliab. 68, 1101–1116 (2018)

13. Wang, H., Duan, Z., Tian, C.: APTL model checker for verifying multi-agent sys-
tems. Ruan Jian Xue Bao/J. Softw. 30(2), 231–243 (2019)

14. Cui, J., Duan, Z., et al.: A novel approach to modeling and verifying real-time
systems for high reliability. IEEE Trans. Reliab. PP(99), 1–13 (2018)

15. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
167–186. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88194-
0 12

16. Cui, J., Cong, T., et al.: Verifying schedulability of tasks in ROS-based systems.
J. Comb. Optim. 37, 901–920 (2018)

https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/s11704-015-3251-x
https://doi.org/10.1007/s11704-015-3251-x
https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1007/978-3-540-88194-0_12

An MSVL Based Model Checking
Method for Multi-threaded C Programs

Xinfeng Shu1, Zhenyu Wang1, Weiran Gao1(B), Xiaobing Wang2(B),
and Liang Zhao2(B)

1 School of Computer Science and Technology, Xi’an University of Posts
and Telecommunications, Xi’an 710061, China

shuxf@xupt.edu.cn
2 Institute of Computing Theory and Technology, Xidian University,

Xi’an 710071, China
xbwang@mail.xidian.edu.cn, lzhao@xidian.edu.cn

Abstract. To solve the problem that software testing is unable to meet
the verification needs of multi-threaded C programs, a novel verification
approach with Modeling, Simulation and Validation Language (MSVL)
is proposed. To this end, the rules for describing the parallel execution
semantics of multi-threaded C program with MSVL are defined, , and a
specific tool is developed for automatically translating a multi-threaded
C program into its equivalent MSVL program. In addition, an example
is given to illustrate how the approach works. The approach fully utilizes
the powerful expressiveness of MSVL to verify the multi-threaded C pro-
grams in a direct way, and helps to improve the quality of the software
system.

Keywords: Multi-threaded program · MSVL · Formal method ·
Program verification · Model checking

1 Introduction

With the rapid development and popularization of Internet technology, network
software has become the dominant software form. C language, as a kind of
classical programming language, is featured by simple grammar, strong expres-
sion ability and high operation efficiency. Its multi-threaded technique has been
widely used in the development of various network software. However, the uncer-
tain operation results ascribed to the concurrent execution of multi-threaded
programs makes traditional testing methods hardly ensure the correctness of
test conclusions when testing network software [1], causing hidden dangers for
the safe and reliable operation of network software.

This research is supported by the Key Research and Development Projects of Shaanxi
Province (No. 2020GY-210), and The Equipment Pre-research Key Laboratory Foun-
dation (No. JZX7Y202001SY000901), and the NSFC (Grant Nos. 61672403, 61972301,
61572386).

c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 88–101, 2021.
https://doi.org/10.1007/978-3-030-77474-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_7

An MSVL Based Model Checking Method for Multi-threaded C Programs 89

To solve the problem above, some scholars have introduced the model check-
ing method [2] into the verification of multi-threaded programs. Paper [8] veri-
fies POSIX multi-threaded C program by bounded model checking approach,
which defines the rules to transform the multi-threaded programs into non-
deterministic sequential programs and then uses CBMC, a bounded model check-
ing tool, to verify the safety property of the program . In paper [6], Fehnker et
al. employs Goanna static analysis tool [7] to transform C/C++ program model
into NuSMV model and checks the defects of malloc and free operations. How-
ever, the method above, which mainly focuses on the safety of the program, can
be hardly used to verify the program properties of liveness as well as fairness.

MSVL (Modeling, Simulation and Verification Language) [5], a logical pro-
gramming language defined with Project Temporal Logic (PTL) [4], provides a
rich set of data types [14] (e.g., char, int, float, pointer, structure, semaphore,
etc.) and data structures (e.g., set, list, array, etc.), as well as powerful statements
(e.g., sequence, selection, loop, concurrency, etc.). Besides, MSVL supports the
function mechanisms [17] to model the complex system. Further, Propositional
Projection Temporal Logic (PPTL), the propositional subset of PTL, has the
expressiveness power of the full regular expressions [12], which enable us to
model, simulate and verify the concurrent and reactive systems within a same
logical system[3]. MSVL has a dedicated verification tool MSV [15], which has
been successfully used in the validation of typical concurrent and distributed
systems [9,13].

To solve problem of formal verifying multi-threaded C programs, we are moti-
vated to extend the MSVL-based model checking approach of C programs[16]
to multi-threaded programs. To this end, the rules for describing the parallel
execution semantics of multi-threaded C programs with MSVL are defined, and
the techniques for automatically rewriting a multi-threaded program into its
equivalent MSVL program are formalized. Thus, the multi-threaded C program
can be indirectly verified by model checking the corresponding MSVL program
with the specific model checking tool MSV.

The rest of the paper is organized as follows. In the next section, MSVL
and its semaphore technique are briefly introduced. In Sect. 3, the rules for con-
verting multi-threaded programs to MSVL programs are defined and the related
techniques are introduced. In Sect. 4, an example is given to illustrate how the
method works in verifying multi-threaded programs. Finally, the conclusion is
given in Sect. 5.

2 Preliminaries

2.1 Introduction of MSVL

Modeling, Simulation and Verification Language (MSVL) is an executable subset
of Projection Temporal Logic (PTL) [4] with frame and used to model, simu-
late and verify concurrent systems. With MSVL, expressions can be regarded
as the PTL terms and statements as treated as the PTL formulas. In the fol-
lowing, we briefly introduce the kernel of MSVL. For more deals, please refer to
literatures [5].

90 X. Shu et al.

Data Type. MSVL provides a rich set of data types [14]. The fundamental
types include unsigned character (char), unsigned integer (int) and floating point
number (float). Besides, there is a hierarchy of derived data types built with the
fundamental types, including string (string), list (list), pointer (pointer), array
(array), structure (struct) and union (union).

Expression. The arithmetic expressions e and boolean expressions b of MSVL
are inductively defined as follows:

e ::= n | x | ©x | -©e | e0ope1(op ::= +| − | ∗ |/|%)
b ::= true | false | e0 = e1 | e0 < e1 | ¬b | b0 ∧ b1

where n is an integer and x is a variable. The elementary statements in MSVL
are defined as follows:

(1) Immediate Assign x ⇐ e
def= x = e ∧ px

(2) Unit Assignment x := e
def= ©x = e ∧ ©px ∧ skip

(3) Conjunction S1 and S2
def= S1 ∧ S2

(4) Selection S1 or S2
def= S1 ∨ S2

(5) Next next S
def= ©S

(6) Always always S
def= �S

(7) Termination empty
def= ¬©true

(8) Skip skip
def= ©ε

(9) Sequential S1;S2
def= (S1, S2)prj ε

(10) Local exist x : S
def= ∃x : S

(11) State Frame lbf(x) def= ¬af(x) → ∃b:(-©x = b ∧ x = b)
(12) Interval Frame frame(x) def= �(ε → ©(lbf(x)))
(13) Projection (S1, . . . , Sm)prj S
(14) Condition if b then S1 else S2

def= (b → S1) ∧ (¬b → S2)
(15) While while b do S

def= (b ∧ S)� ∧ �(ε → ¬b)
(16) Await await(b) def=

∧
x∈Vb

frame(x) ∧ �(ε ↔ b)

(17) Parallel S1||S2
def= ((S1; true) ∧ S2) ∨ (S1 ∧ (S2; true))

∨ (S1 ∧ S2)

where x is a variable, e is an arbitrary expression, b is a boolean expression, and
S1, . . . , Sm, S are all MSVL statements. The immediate assignment x ⇐ e, unit
assignment x := e, empty, lbf(x) and frame(x) are basic statements, and the
left composite ones.

For convenience of modeling complex software and hardware systems, MSVL
takes the divide-and-conquer strategy and employees functions as the basic com-
ponents like C programming language does. The general grammar of MSVL
function is as follows [17]:

An MSVL Based Model Checking Method for Multi-threaded C Programs 91

function funcName(in type1 x1, . . . , in typem xm,

out type1 y1, . . . , out typen ym, return type RValue)
{ S } //Function body

The grammar of function call is funcName(v1, . . . , vn). Parameter passing
in MSVL is similar to that in C, i.e. all function arguments are passed by values
(call-by-value). With call-by-value, the actual argument expression is evaluated,
and the resulting value is bound to the corresponding formal parameter in the
function. Even if the function may assign new values to its formal parame-
ters, only its local copy is assigned and anything passed into a function call
is unchanged in the caller’s scope when the function returns. Furthermore, the
pointer type is also supported by MSVL, which allows both caller and callee will
be able to access and modify a same variable.

2.2 Introduction of MSVL Semaphore

To solve the synchronization and mutual exclusion between concurrent processes
(threads), MSVL also provides a mechanism of semaphore [10] like operation
system does. Semaphore in MSVL is a parameterized type semaphore(n), where
n is the maximum number of processes (threads) accessing the critical resource
denoted by the semaphore variable. Besides, the following 3 MSVL functions
are defined to initialize a semaphore variable, acquire a resource and release a
resource respectively:

– function sem init(semaphore(n)* sem, int value, int procNum): used to ini-
tialize semaphore. The parameter sem is the semaphore representing the
critical resource, and value is the initial number of critical resources, and
procNum is the maximum number of processes (threads) using the resource.

– function sem acquire(semaphore(n)* sem, int id): used to apply for a critical
resource for the processes (threads). The parameter sem is the semaphore to
apply for resource, and id is the identification of processes (threads) to apply
for resource.

– function sem release(semaphore(n)* sem, int id): used to release a resource
occupied by the process (thread) release. The parameter sem is the semaphore
to release resource, and id is the identification of process (thread) to release
resource.

3 Model Checking Mutli-threaded C Program

The research object of this paper is the multi-threaded C program based on
POSIX multi-threaded library (Pthread library). The basic strategy of model
checking multi-threaded C programs is to transform the program into its equiv-
alent MSVL program and in turn, verify the MSVL program model indirectly
to check whether the original multi-threaded C program satisfies the desired
property.

92 X. Shu et al.

3.1 Transforming C Program into MSVL Program

In this subsection, we first introduce the rules for transforming the basic C
programs into MSVL[16], and then extend the method to multi-thread area.

Transformation of Basic C Programs. The rewriting rules from basic data
types and expressions of C language into MSVL are shown in Table 1 and Table 2
respectively. The data type provided by MSVL is almost consistent with that
provided by C language, except for the following two aspects. First, as a logical
programming language, MSVL does not further divide integers into long, int
and short types. Second, structure members are connected by operator and. To
facilitate descriptions, c type (including the form with subscript) refers to any
C language data type in Table 1 and below, whereas m type (including the form
with subscript) is the corresponding MSVL type. The arithmetic operation and
relational operation expressions of MSVL are defined in the same way with C
language, except for replacing the operators && and || of C language with and
and or respectively.

Table 1. Transforming rules of data types

Index C Data Type MSVL Data type

1 char Char

2 long, int, short int

3 float, double float

4 [] []

5 c type * m type *

6

struct sname{ struct sname{
ctype 1 mem 1; mtype 1 mem 1 and

. and

ctype n mem n; mtype n mem n

}; }

The transforming rules of basic statements from C language to MSVL are
shown in Table 3. For the variable declaration statement of C Language c type x,
the corresponding variable m type x should be defined in MSVL and frame
technology should be used to remain the value of x in the scope of variable
x. As for the assignment statement x = e of C language, a specific function
E2MSVL is employed to transform the expression e to an MSVL expression
according to the transformation rules in Table 2 and then assign the result to
variable x. Moreover, MSVL still supports the sequence, selection and loop state-
ments like C language does, besides, we need employ the functions E2MSVL
and S2MSVL to recursively transform the sub-boolean expression b and sub-
statement S (S1/S2)contained in C language into the corresponding MSVL

An MSVL Based Model Checking Method for Multi-threaded C Programs 93

Table 2. Transforming rules of expressions

Index C expression MSVL expression

1 x [+|- | * | / | % | != | x [+ | - | * | / | % | != | =
== | > | >= | < | <=] y | > | >= | < | <=] y

2 b1 & & b2 b1 and b2

3 b1 || b2 b1 or b2

4 !b !b

expressions and statements according to the transformation rules in Table 2 and
Table 3 respectively.

Table 3. Transforming rules of basic statements

Index C Statement MSVL Statement

1 c type x ; frame(x) and m type x and (.)

2 x = e x := E2MSVL(e)

3 S1 ; S2 ; S2MSVL(S1) ; S2MSVL(S2)

4 if (b) if (E2MSVL(b)) then

{ S1 ; } { S2MSVL(S1) }
else else

{ S2; } { S2MSVL(S2) }
5 while(b) while(E2MSVL(b))

{ S ; } { S2MSVL(S) }

The rules for transforming a C function is as follows:

– The function name and parameters’ name remain unchanged, and the type
c typei(1 ≤ i ≤ n) of each formal parameter is transformed to m typei corre-
sponding to Table 1;

– The function body statement S is transformed to the statement of MSVL
according to Table 3;

– If the function has returned value of type c type, a new formal parameter
RV alue with type m type corresponding to c type is added at the end of the
formal parameter of MSVL function;

– For the returned statement return e in the C function, replace it with MSVL
statement RV alue :=E2MSVL(e).

C language starts with the function main by default. Accordingly, a function
call statement main() to call MSVL function main is added to the end of the
transformed MSVL program, so that the MSVL program also starts from the
function main.

94 X. Shu et al.

TransformingMulti-threaded C Programs. Pthread library follows POSIX
standard and defines the functions to manipulates concurrent threads, among
which pthread create and pthread join are two commonly used functions to cre-
ate and synchronize threads. The interfaces of the two functions are defined as
follows:

– int pthread create(pthread t *tidp, const pthread attr t *attr, (void*)
(*start), void *arg)

– int pthread join(pthread t tid, void **thread return)

In function pthread create, parameter tidp is a pointer to the thread identi-
fier; parameter attr is used to set thread property; parameter start rtn is the
address of the thread entry function; arg is the parameter pointer passed into
the function start rtn. In function pthread join, parameter tid is the identifier of
the waiting thread; thread return is the secondary pointer to the value returned
by the waiting thread. For simplicity, we only consider the case of thread return
being NULL.

The execution process of multi-threaded C program can be depicted in Fig. 1.
Once the main thread creates the sub-thread successfully through calling the
function pthread create, the remaining program segment S2 of the main thread
and the program segment S3 in the entry function of sub-thread will execute
concurrently. When the main thread executes the call statement of function
pthread join, it will suspend and wait for the sub-thread to finish executing
segment S3. If pthread join function is not used in the main thread, the main
thread will forcibly terminate the sub-thread after it finishes executing S2. In
such case, if the sub-thread has not finished executing S3, it may cause the loss
of data processed by S3.

Fig. 1. Schematic diagram of executing of a multi-threaded C program

In this paper, we only consider multi-threaded C program with
pthread create and pthread join functions, and limits the number of creation
threads to a finite number. The rules for rewriting multi-thread related state-
ments of C programs into MSVL are defined as below:

R1. Define a specific new global boolean variable Exit at the beginning of
the MSVL program with initial value false, and then transforms the main func-
tion void main(){S} of C program into MSVL function main(){S2MSV L(S);
Exit := true}, i.e., in addition to transforming the statement S of the C pro-

gram main function into an MSVL statement, add an assignment statement
Exit := true at the end to identify the completion of the entire program.

An MSVL Based Model Checking Method for Multi-threaded C Programs 95

R2. Convert the thread identifier type pthread t in C program to the integer
type int of MSVL.

R3. Transform the definition statements of thread entry function in C pro-
grams, i.e., void ∗ fun(void ∗ par){. . . (ctype 1∗) par; . . . ; return e; . . .} into
MSVL function function fun(int ∗tid,mtype 1 ∗par,mtype 2 RV alue){. . . par;
. . . ; RV alue := E2MSV L(e) ; . . . ; ∗tid := 0}.

In R3, a new parameter tid is added to the MSVL function to keep the pointer
of thread identifier variable; the type mtype 1 of second parameter par is the
correspond MSVL type of c type which is used to access the value of parameter
par; the type mtype 2 of third parameter RV alue is identified by checking the
type of expression e; at the end of the function body, a new assignment statement
∗tid := 0 is appended to indicate the end of thread execution.

R4. For thread creation statement pthread create(tidp, attr, start, arg); S,
replace it with MSVL statement (tidp <== TID NUM) and start(tidp, arg,
retval) || S2MSV L(S), where TID NUM is an integer constant as the unique
identifier allocated for each thread.

In C language, each new thread identifier is automatically assigned by
Pthread library when calling pthread create function, but similar support is
unavailable in MSVL. Therefore, in R4, a dedicated threads counter TID NUM
with the initial value of 1 is introduce to store the thread identifier. While cre-
ating a new thread, the value of the counter is assigned to the thread and then
is added by 1. Further, once the new thread is successfully created, it will con-
currently execute function start with the remaining statement S of the main
thread, so it is transformed into the concurrently calling of the start function
with executing the corresponding MSVL statements of S, i.e., S2MSV L(S). In
addition, the second parameter attr of the statement, i.e., thread property, is
not considered in the transformation process.

R5. Transform the statement pthread join(TID,NULL) in the C program
into the MSVL statement await(tid = 0) to wait for the thread to terminate
execution.

The statement await(tid = 0) in R5 is used to coordinate with the statement
∗tid := 0 at the end of thread body in R3, so that the main thread must keep
waiting until the sub-thread tid completes.

Transforming Semaphore. While developing a multi-threaded C program,
semaphore mechanism is usually used for the synchronization and mutual exclu-
sion among concurrent threads. The rules for transforming semaphore between
C language and MSVL are defined as follows:

R6. Transform the semaphore type sem t of C program into that of MSVL
semaphore(Num), where Num is the maximum number of threads accessing
the semaphore in the C program.

R7. Semaphore initialization statement sem init(&sem, pshared, value) in
C program is transformed into sem init(&SEM, value,MaxNum) of MSVL,
where, MaxNum is the maximum number of threads using critical resource sem.
The parameter pshared indicates whether the semaphore type is shared between

96 X. Shu et al.

threads within a process (value 0) or between processes (value 1) and it is not
considered in course of transformation.

In R6 and R7, the maximum number of threads using critical resources is
obtained by counting the number of created threads in a multi-threaded C pro-
gram in course of transformation.

R8. Replace the semaphore operation statements sem wait(&sem) and sem
post(&sem) of C program with that of MSVL sem acquire(&sem, tid) and
sem release(&sem, tid) respectively to allocate or release a critical resource
respectively, where tid is the identifier of the thread that contains MSVL
semaphore operation statement.

3.2 Validation Procedures

With the transformation rules above, we have developed a tool for model check-
ing POSIX multi-threaded C program, of which the validation process is given in
Fig. 2. The tool consists of four parts, i.e., pretreatment module, C program con-
verter, code builder and MSV validator. The pretreatment module firstly makes
static analysis on multi-threaded C program through lexical analysis tool “lex”
and grammar analysis tool “yacc”, and then constructs a Hierarchical Syntax
Chart (HSC) for the program [11]. The C program converter uses the algorithm
to dynamically traverse the HSC of C program, and generates the corresponding
HSC of MSVL program with the previous transformation rules, and counts the
number of created threads (the specific algorithm is omitted). The code builder
traverses the HSC of MSVL program and transforms it into an MSVL program,
which the relevant algorithms can be found in paper[11]. Finally, we input the
MSVL program obtained and the expected properties expressed by positional
Projection Temporal Logic (PPTL) [12] into the MSV validator to indirectly
check whether original multi-threaded C program meets the desired property.

Fig. 2. Validation procedure.

An MSVL Based Model Checking Method for Multi-threaded C Programs 97

4 Case Study

In this section, we give an example of multi-threaded C program for producer-
consumer problem to show how the proposed method works.

4.1 Problem Description

The producer-consumer problem is a classic inter-process synchronization prob-
lem. In such a problem, the producer process repeatedly produces goods and puts
them into the warehouse (shared buffer space), and if warehouse is not empty, the
consume process continuously takes the goods away from the warehouse for con-
sumption. For ease of description, we assume the problem to be single producer,
single consumer, and single buffer zone. The POSIX multi-threaded C program of
the problem is given in Table 4, where, semaphore variables semSpace, semProd
and semBuf represent the critical resources buffer space, product and buffer
zone, and their initial values are 1, 0, 1 respectively. Moreover, the activities of
both the producer and the consumer are abstracted as two threads with the
entry functions Producer and Consumer respectively. Furthermore, the global
variable flag represents which thread is currently accessing the buffer zone, and
it takes the value 1 denoting the producer is in the buffer zone, otherwise, it
takes the value 2.

Table 4. Multi-threaded C program for producer consumer problem.

1 #include <pthread.h> 17 sem wait(&semBuf);

2 sem t semSpace, semProd; 18 flag=2;

3 sem t semBuf; 19 sem post(&semBuf);

4 int flag; 20 sem post(&semSpace);

5 void* Producer(){ 21 }
6 while(1){ 22 }
7 sem wait(&semSpace); 23 void main (void){
8 sem wait(&semBuf); 24 pthread t proid, conid;

9 flag=1; 25 sem init (&semSpace, 0, 1);

10 sem post(&semBuf); 26 sem init (&semProd, 0, 0);

11 sem post(&semProd); 27 sem init (&semBuf, 0, 1);

12 } 28 pthread create(&proid,NULL,Producer, NULL);

13 } 29 pthread create(&conid,NULL,Consumer,NULL);

14 void* Consumer(){ 30 pthread join(pid, NULL);

15 while(1){ 31 pthread join(cid, NULL);

16 sem wait(&semProd); 32 }

The HSC of the C program for producer-consumer problem is shown on the
left side of Fig. 3. For the function main in the C program, a special compound
statement is created in the HSC, whose name node (node <1>) is constructed

98 X. Shu et al.

according to the function declaration of function main (Line 23 of the program),
and whose content nodes (nodes <2>–<6>) are defined sequentially according
to statements (Line 24–31 of the program) contained in the function main. Since
body of the function main is a sequential program, all the nodes in the HSC of
the function main are common nodes.

Fig. 3. The Transformation from C HSC to MSVL HSC.

Then, we transform the HSC of C program into the HSC of the correspond-
ing MSVL program according to the transformation rules given in the previous
section, and the result obtained is shown on the right side of Fig. 3. In the fol-
lowing, we only give some interpretation to the transformation of key nodes.

– Node <1> is a function declaration statement void main(void), according to
the transformation rule of ordinary function, it is transformed into the MSVL
function declaration statement main(), see node ①.

– Node <2> refers to the definition of thread identifier pthread t proid, conid,
according to rule R2, it is transformed into the MSVL statement
int proid and int conid, see node ②.

– Node <3> is a thread creation statement pthread create(&proid, NULL,
Producer, NULL). This is the first thread whose identifier number is 1.
According to rule R3, the thread is transformed to the MSVL statement
proid <== 1 and Producer(&proid) (node ③), and a TYPE FORK node is
also created to describe the concurrent execution structure between threads,
and the thread forms the first PAR branch of the concurrent structure. Sim-
ilarly, node <4> is transformed to the second PAR branch of the concurrent
structure (see node ④), and its thread identifier is 2.

An MSVL Based Model Checking Method for Multi-threaded C Programs 99

– Node <5> and <6> are the remaining statements pthread join(proid,
NULL) and pthread join(conid, NULL) of of the main thread. Accord-
ing to rule R5, the two nodes are transformed into the MSVL statements
await(proid = 0) and await(conid = 0) respectively, which forms the third
PAR branch of the concurrent structure (see ⑤ and ⑥).

– According to rule R1, at the end of the main function, statement Exit = true
is inserted, which corresponds to the node ⑦ at the third PAR branch of the
concurrent structure.

Subsequently, we employ the algorithm HSC2MSV L [11] to traverse the
HSC of MSVL and generate the corresponding MSVL program. The result MSVL
program for producer consumer-problem is shown in Table 5.

Table 5. MSVL program for producer-consumer problem

frame(semProd,semBuf,semSpace,flag, sem acquire(&semProd,*tid);

Exit)and(semaphore(2) semProd and sem acquire(&semBuf,*tid);

semaphore(2) semBuf and flag:=2;

semaphore(2) semSpace and int flag and sem acquire(&semBuf,*tid);

bool Exit<==false and skip; sem acquire(&semSpace,*tid)

function Producer(int *tid){ });
termi(Exit) and (*tid:=0

while(true){ };
sem acquire(&semSpace, *tid); function main(){
sem acquire(&semBuf, *tid); frame(proid,conid) and (

flag:=1; int proid and int conid and skip

sem release(&semBuf, *tid); sem init(&semSpace,1,2);

sem release(&semProd, *tid); sem init(&semProd,0,2);

} sem init(&semBuf,1,2);

);*tid :=0 (proid<==1 and Producer(&proid))

}; ||(conid<==2 and Consumer(&conid))

function Consumer(int *tid){ ||(await(proid=0) and await(conid=0))

termi(Exit) and ()};
while(true){ main())

Finally, we verify a liveness property of the program, that is, after the pro-
ducer puts a product into the buffer zone (i.e., flag = 1) at some time point,
the consumer will definitely take the product from the buffer zone for consump-
tion in the future (i.e., flag = 2). The property described by PTL formula is
♦(flag = 1);♦(flag = 2). We also need rewrite the formula into a PPTL for-
mula for further model checking. Let atomic proposition p denote flag = 1 and
q be flag = 2, thus the liveness property in PPTL formula is ♦p;♦q.

We input both the MSVL program and the liveness property in PPTL into
the MSV tool, select the verification model to do model checking. The verification
results is shown in Fig. 4, there does not exist any counter-example path, which
indicates that the MSVL program satisfys the liveness property, and thus the
conclusion also holds for the original multi-threaded C program.

100 X. Shu et al.

Fig. 4. Verification result.

5 Conclusion

In this paper, we present a MSVL based model checking approach to verify
POSIX multi-threaded C program, and a validation tool for POSIX multi-
threaded C program is development. The tool can automatically transform the
multi-threaded C program into an equivalent MSVL program, and employs the
rich expressive power of PPTL to validate the liveness, fairness and other com-
plex properties. However, this paper only focus on the multi-threaded C program
that uses thread function pthread create and pthread join. In the near future,
we will extend the work to the program that contains more thread functions in
Pthread library (e.g., pthread exit, pthread cancel, etc.), and apply the method
to verify some practical network softwares.

References

1. Bianchi, F.A., Margara, A., Pezzè, M.: A survey of recent trends in testing concur-
rent software systems. IEEE Trans. Softw. Eng. 44(8), 747–783 (2018). https://
doi.org/10.1109/TSE.2017.2707089

2. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0 1

3. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
167–186. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88194-
0 12

4. Duan, Z., Tian, C., Zhang, N.: A canonical form based decision procedure and
model checking approach for propositional projection temporal logic. Theor. Com-
put. Sci. 609, 544–560 (2016). https://doi.org/10.1016/j.tcs.2015.08.039

https://doi.org/10.1109/TSE.2017.2707089
https://doi.org/10.1109/TSE.2017.2707089
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1016/j.tcs.2015.08.039

An MSVL Based Model Checking Method for Multi-threaded C Programs 101

5. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70(1), 31–61 (2008). https://doi.org/10.1016/j.scico.2007.09.001

6. Fehnker, A., Huuck, R.: Model checking driven static analysis for the real world:
designing and tuning large scale bug detection. Innov. Syst. Softw. Eng. 9(1), 45–56
(2013)

7. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Goanna—a static
model checker. In: Brim, L., Haverkort, B., Leucker, M., van de Pol, J. (eds.)
FMICS 2006. LNCS, vol. 4346, pp. 297–300. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70952-7 20

8. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08867-9 39

9. Ma, Q., Duan, Z.H.: Automatic theorem proving technique for MSVL. J. Xidian
Univ. 43(01), 75–81 (2016). https://doi.org/10.3969/j.issn.1001-2400,2016.01.014

10. Shu, X., Duan, Z.: Extending MSVL with semaphore. In: Dinh, T.N., Thai, M.T.
(eds.) COCOON 2016. LNCS, vol. 9797, pp. 599–610. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-42634-1 48

11. Shu, X., Li, C., Liu, C.: A visual modeling language for MSVL. In: Liu, S., Duan,
Z., Tian, C., Nagoya, F. (eds.) SOFL+MSVL 2016. LNCS, vol. 10189, pp. 220–237.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57708-1 13

12. Tian, C., Duan, Z.: Expressiveness of propositional projection temporal logic with
star. Theor. Comput. Sci. 412(18), 1729–1744 (2011). https://doi.org/10.1016/j.
tcs.2010.12.047

13. Wang, X.B., Guo, W.X., Duan, Z.H.: Communication mechanism and its imple-
mentation for msvl based on message pass. J. Softw. 29(6), 1607–1621 (2018).
https://doi.org/10.13328/j.cnki.jos.005471

14. Wang, X., Tian, C., Duan, Z., Zhao, L.: MSVL: a typed language for temporal
logic programming. Front. Comput. Sci. 11(5), 762–785 (2017). https://doi.org/
10.1007/s11704-016-6059-4

15. Yang, K., Duan, Z., Tian, C., Zhang, N.: A compiler for MSVL and its applications.
Theor. Comput. Sci. 749, 2–16 (2018). https://doi.org/10.1016/j.tcs.2017.07.032

16. Yu, Y., Duan, Z., Tian, C., Yang, M.: Model checking C programs with MSVL.
In: Liu, S. (ed.) SOFL 2012. LNCS, vol. 7787, pp. 87–103. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39277-1 7

17. Zhang, N., Duan, Z., Tian, C.: A mechanism of function calls in MSVL. Theor.
Comput. Sci. 654, 11–25 (2016). https://doi.org/10.1016/j.tcs.2016.02.037

https://doi.org/10.1016/j.scico.2007.09.001
https://doi.org/10.1007/978-3-540-70952-7_20
https://doi.org/10.1007/978-3-540-70952-7_20
https://doi.org/10.1007/978-3-319-08867-9_39
https://doi.org/10.3969/j.issn.1001-2400,2016.01.014
https://doi.org/10.1007/978-3-319-42634-1_48
https://doi.org/10.1007/978-3-319-57708-1_13
https://doi.org/10.1016/j.tcs.2010.12.047
https://doi.org/10.1016/j.tcs.2010.12.047
https://doi.org/10.13328/j.cnki.jos.005471
https://doi.org/10.1007/s11704-016-6059-4
https://doi.org/10.1007/s11704-016-6059-4
https://doi.org/10.1016/j.tcs.2017.07.032
https://doi.org/10.1007/978-3-642-39277-1_7
https://doi.org/10.1016/j.tcs.2016.02.037

Specification and Verification

A Formal Approach to Secure Design
of RESTful Web APIs Using SOFL

Busalire Emeka1(B), Soichiro Hidaka1, and Shaoying Liu2

1 Graduate School of Computer and Information Sciences, Hosei University, Tokyo, Japan
onesmus.busalire.5n@stu.hosei.ac.jp, hidaka@hosei.ac.jp
2 School of Informatics and Data Science, Hiroshima University, Hiroshima, Japan

sliu@hiroshima-u.ac.jp

Abstract. A primary concern in the design and development of a RESTful Appli-
cation Programming Interfaces (APIs) is API security. A RESTful API provides
data over the network using HTTP and must not violate any of its security proper-
ties. When APIs are designed, the functional and security properties are inextrica-
bly linked thus security requirements of an API cannot be treated as afterthoughts.
We therefore propose an approach to specifying and verifying APIs functional
and security requirements with the practical formal method SOFL (Structured-
Object-oriented Formal Language). We convert an API specification written in an
API description language into SOFL while expressing security requirements as
constraints on the APIs functional requirements and dataflow between the API’s
trust boundaries. The verification of the specifications can be carried out using
specification-based conformance testing. We apply this approach to a model of an
online banking API as a case study using Django REST Framework and analyze
its results.

Keywords: RESTful APIs · API security requirements · Formal methods ·
Formal specification verification · SOFL

1 Introduction

AwebAPI (Application Programming Interface) is a set of functions and procedures that
allow users to access and build upon the data and functionality of an existing application
available over the web through the HTTP protocol [1]. Many web APIs nowadays adopt
REpresentational State Transfer (REST) [2] architectural style which allows building
loosely coupled API designs relying on HTTP and the web friendly JSON data represen-
tation format. The loosely coupling approach makes client applications have flexibility
and reusability of an API in terms of the fact that its elements can be easily added,
replaced and changed.

However, REST is a design paradigm and protocol-agnostic. It does not rely on any
set of defined standards to describe the implementation of a RESTful API. This poses
a challenge in the development and testing for satisfiability of a RESTful API property
such as security. Since REST APIs expose internal business services and data to a set

© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 105–125, 2021.
https://doi.org/10.1007/978-3-030-77474-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_8

106 B. Emeka et al.

of public and/or private heterogeneous client applications, the level of security offered
by these APIs must be extremely high, since their breach may cause huge financial and
business integrity losses on the part of the service providers.

An ideal and secure REST API must exactly and accurately function as intended
and preserve its security properties during its operation. If a REST API is to provide
access to some exposed business data to a requesting client application, it must fulfill
the functional requirement of the client application without violation of its’ security
properties. It must also not violate the security properties of the system providing the
data. In addition, while RESTful services can easily be invoked through a web browser
or a client application, it is still difficult for users to fully understand and evaluate their
functions with respect to the requirements in the context of target systems, because a few
formal descriptions are provided with these services. Moreover, while each individual
operation in an API may be secure on its own, combinations of operations might not
be. Therefore, adopting a model that enables the capture and verification of precisely
defined functional and security requirements of an API is crucial in the development of
an API.

Formal methods have been proven to offer an approach to the construction and veri-
fication for precise, consistent and correct specifications using mathematical notations.
Research reveals that formal methods have been effective in capturing requirements,
identifying errors and transforming specifications to programs [3, 4]. However, in prac-
tice, there exists limitations in applying formal methods like VDM [5], B-Method and
Z notation because they require high skills for abstraction and their notations offer a
steep learning curve for most engineers in the industry. In addition, their formal proof
techniques and refinements are difficult and expensive to apply in practice.

Our research proposes a model offering a formal practical approach to specify and
verify security and functional requirements of RESTful APIs using SOFL (Structured-
Object-oriented Formal Language) [3]. Our approach focusses on ensuring that all of the
expected functional behaviors provided by anAPI and their related security requirements
must be captured correctly, since a securewebAPI is expected both to deliver its business
functions and to preserve its security features and that of the system it is interfacing.
To achieve this, we construct SOFL formal but comprehensible functional and security
requirement specifications from an API description written in RESTful API modelling
Language (RAML)1 [6].

We chose RAML since its mostly used to describe REST APIs and from our expe-
rience, it’s easy to covert to SOFL specifications as its structure of describing an API
request clearly defines the inputs, outputs and the requests associated constraints. This
means it can be converted into its equivalent SOFL process representation directly either
manually or semi-automatically with only a change in the syntax. We then ensure
the consistency and correctness of the specification through formal verification and
specification-based conformance testing. Our choice of SOFL for specification and ver-
ification is influenced by its user-friendliness and practicality in requirement specifica-
tions. It supports both structured and object-oriented methodologies as well as provides
both graphical and textual formal notation for specifications [3, 4]. In this paper, we
consider a model of an online banking application API, a security critical API, as an

1 https://raml.org/about-raml.

https://raml.org/about-raml

A Formal Approach to Secure Design of RESTful Web APIs 107

example to describe how to specify both the functional and security requirements in an
interweaving manner and, conduct the verification of the specifications for the assur-
ance of its’ security properties. We achieve this by carrying out API specification-based
testing to assert the correctness of data flow across the API functions, with regards to
the preservation of its security attributes. Our contributions of this research include:

• Providing a formal model for transforming RAML definitions to SOFL and for inter-
weaving functional and security requirements of RESTful APIs. We use SOFL to
model the structural and behavioral features of REST web service.

• Providing specification-based conformance testing techniques for assurance of the
correct implementation of an API’s functional and security requirements.

• Evaluating the effectiveness of SOFL in security requirement engineering of REST
APIs by sharing our experience through a case study implemented in Django REST
framework

The remainder of this paper is organized as follows. Section 2 describes briefly
SOFL and REST architectural style. Section 3 describes our proposed approach that
interweaves API’s security and functional requirements. Section 4 covers the technique
we adopt for specification-based conformance testing. Section 5 gives a brief discussion
on the evaluation of our proposed approach. Section 6 focusses on related work and
finally Sect. 7 gives conclusions and outlines areas for our future research.

2 REST and SOFL

2.1 REST

The concept of REST was introduced by Roy Fielding in his PhD dissertation, “Archi-
tectural Styles and the Design of Network-based Software Architectures” [2]. REST
relies on HTTP protocol for data communication and revolves around the concept of
resources where each and every component is considered as a resource. These resources
are accessed via a common interface using HTTP methods such as GET for retrieving a
resource, PUT for updating a resource, POST for creating a resource and DELETE for
removing a resource. Contrary to other web services, REST is an architectural style and
protocol agnostic.

The REST architecture focusses on providing access to a resource for a REST client
to access and render it [1]. It utilizes Uniform Resource Identifiers (URIs) in identifying
each resource and provides several resource representations such as XML, JSON, Text
etc. to represent its type. For an API to be considered RESTful, it needs to satisfy the
following design characteristics commonly referred to as REST constraints [1].

• Client-server architecture – separates concerns between user interfaces and data stor-
age with the client sending requests for various types of services to the server and the
server providing services to the client as per the requests.

• Statelessness – The client makes requests to the server with all information as stated
so that the server understands the requests and treats them as independent. The client
requests keep the server independent of any stored context.

108 B. Emeka et al.

• Caching – Frequently accessed data i.e., client responses are stored to reduce the need
to generate the same response more than once until they need to be.

• Uniform Interface – REST-based services can use the HTTP interface, such as GET,
PUT, POST and DELETE, to maintain uniformity across the web. The primary reason
for a uniform interface is to retain some common vocabulary across the internet that
can bemappedwith CRUDoperations i.e., Create, Read, Update, Delete. The services
can independently evolve as their interfaces simplify and decouple the architecture.

• Layered systems – A layered system consists layers with different units of functional-
ity. A layer communicates by means of predefined interfaces to only the layer above
or the layer below. The layers above rely on the layers below to perform its functions.
Layers can be added, removed, modified or reordered as the architecture evolves.

• Code on Demand - this is an optional constraint of REST that is intended to allow
business logic within the client web browser.

Out of the six constraints, the first four mainly influence the design. The Layered
System is more important to the deployment of Web APIs than to their design, and Code
on Demand does not seem to be popular in application to web API’s [1]. A detailed
description of RESTful web APIs is given in [7].

2.2 SOFL

SOFL is a formal engineering method that provides a formal but comprehensible lan-
guage for both requirements and design specifications, and a practical method for devel-
oping software systems [3]. SOFL is designed by integrating different notations and
techniques on the basis that all are needed to work together effectively in a coherent man-
ner for specification constructions and verifications. The SOFL specification language
integrates Data Flow Diagrams [4] which describe comprehensibly the architecture of
specifications, Petri nets [8] and VDM-SL [5]. A formalized Data Flow diagram result-
ing from the integration is called Condition Data Flow Diagram (CDFD). SOFL also
uses classes to model complicated data flows and stores. A data store offers data that can
be accessed by processes in a CDFD. SOFL adopts a three-step evolutionary approach to
developing formal specifications, starting from informal specifications, to semi-formal
specifications and finally to formal specifications. The informal specification usually
written in a natural language serves as the basis for deriving the semi-formal specifi-
cations in which the SOFL syntax to some extent is enforced. The formal specification
is then derived from the semi-formal specification through formalization of the infor-
mal parts in the semi-formal specifications. More details about the SOFL specifications
language can be found from the SOFL book [3].

3 Our Proposed Approach

Wedescribe a formal secured design approach that seeks to interweave the functional and
security requirements of RESTAPIs using SOFL. Our approach uses RAML definitions
as a base for informally describing the APIs functional and security requirements. The
approach has three steps. The first step yields a set of informal functional and their related

A Formal Approach to Secure Design of RESTful Web APIs 109

security requirements expressed in RAML security schemes definitions. The security
requirements are defined as constraints upon the functional requirements. They express
the APIs security goals in operational terms. The second step focus on transformation of
RAMLdefinitions to SOFLbased semi-formal specifications byfirstmodelling theAPI’s
behavioral features using SOFL’s Conditional Data Flow Diagrams (CDFDs) and then
express theREST specific requestmethods as SOFLmodule processeswith informal pre-
post conditions. Their related security requirements are defined as either SOFL module
invariants or guard condition in the process’ pre-post conditions. Finally, the last step
involves formalization of the pre-post conditions and proving the satisfiability of the
functional and security requirements through specification testing [8]. The formalized
functional and security requirements can then be transformed into executable API code
manually or semi-automatically with the help of a supporting tool. In the following
sections, we explain each step-in detail.

3.1 Step 1: Identification of Informal Functional and Security Requirements

We define the API’s functional requirements from the request methods (a program unit)
that yield a response in the form of a resource. The request methods are simply HTTP
methods which are mapped to specific REST API semantics as outlined in Table 1.

Table 1. HTTP methods

Method Meaning

GET Reads the representation of a resource state

POST Creates new resource

PUT Updates a resource

DELETE Removes a resource

HEAD Fetches metadata associated with a resource’s state

OPTIONS List the available methods

We express these informal functional requirements using RAML [6, 9] description
language that allows defining the resources and operations of a REST API in JSON. We
chose RAML because of its ease of transformation to SOFL syntax during the formaliza-
tion process as well as its ability to strike a better balance between machine and human
readability. Figure 1 shows an excerpt of the RAML definition of an online banking API
with JSON representation of its resources. The online banking API allow customers
access and manage their bank accounts. The paths objects e.g. /accounts/{accountid}
include relative paths to individual endpoints. Each path item includes operations using
HTTP methods e.g. GET for /accounts/{accountid}, which in turn include properties
such as their parameters i.e. response status codes e.g. 200, and the media types they
produce or consume e.g. application/json. The definition also includes JSON schema
determining the response/request payload. A sample RAMLAPI description excerpt for
an online banking application is given below.

110 B. Emeka et al.

Fig. 1. Sample RAML specification for an Online Banking API

A Formal Approach to Secure Design of RESTful Web APIs 111

We derive the informal API security requirements by considering the following
aspects:

• The resources exposed by the API that are to be protected e.g. customer names and
account details

• The security goals that are important such as confidentiality of target API resources
• Themechanisms that are available to achieve these goals such as authentication, access
control, audit logging and rate limiting

• Common security vulnerabilities of RESTful APIs [7] as described in Table 2.

Table 2. Common REST API vulnerabilities and mitigations

REST API vulnerability Vulnerability mitigation

Cross Site Request Forgery Apply token-based approaches for PUT, POST, and
DELETE request

Incorrect input Reject incorrect input by validation on both client and
server side. Log validation failures and limit processing rate
if failure rate increases

URL modification Validate all URLs servicing a request

Insecure message parsing Check all incoming messages framed either as XML or
JSON for security violations

Incoming content type validation Explicitly validate all incoming content types for POST and
PUT methods

Response types validation Make clients specify which MIME types should be used in
the reply message

XML signature wrapping Securely parse XML messages for XML-based services

XML injection attacks Construct XML messages using XML serializer

Tempering of message integrity Use message digest algorithms to preserve message
integrity e.g. JSON web token (JWT) for messages
delivered in JSON format

• The set of threats relevant to the API. We identify these threats using S.T.R.I.D.E
[10] threat modelling process, by analysing the flow of requests/responses across
trust boundaries defined by the main logical components of the API, and the target
environment for deployment.

These security requirements are mapped as constraints on the expressed functional
requirements with an ultimate goal of arriving at a convincing argument to prove their
satisfiability in the formalized specifications. The distinction between convincing and
proof of satisfiability is important. Whereas we may not prove the negative, that a viola-
tion of an API’s security requirement does not exist through specification testing; we can
make a convincing argument that sufficient outcomes have been addressed. We propose

112 B. Emeka et al.

to use formal proofs as argumentation to this end; to convince a reader that the security
requirements can be satisfied.

3.2 Step 2: Transforming RAML Definitions to SOFL

In this step, we adopt the following rules of transformation from RAML definitions to
SOFL semi-formal specifications

• Rule 1: Transform REST request definitions GET, POST, PUT and DELETE to SOFL
processes specified with informal pre-post conditions.

• Rule 2: Construct CDFDs [4] for the textual semi-formal specifications so that the
requirements can be visualized. The CDFDs describe the API’s request input and
output data flows.

• Rule 3: Define REST request parameters as inputs and their types to their respective
SOFL processes, and responses as outputs of their associated SOFL processes. All
data stores interacting with the inputs and outputs are also defined.

• Rule 4: Express the defined RAML security schemes (i.e. security requirements)
as SOFL module invariants or guard conditions in the post-condition of the relevant
processes. This rule achieves the interweaving of functional and security requirements.

The excerpt shows an example of SOFL module specification transformed from the
RAML definitions defined in Sect. 3.1. For brevity, we give only the necessary parts of
the module.

MODULE BANKING_API

type

Permissions = map userID to PermissionSet;

userID = nat;

accID = nat;

Permission = {<create>, <read>, <delete>} /* enumeration type for permis-

sions */

/* restricted subset drawn from the powerset of Permission */

PermissionSet = {{<create>, <read>, <delete>}, {<read>}, {<create>, <read>}}

Status = {<Active>,<Suspended>,<Closed>} /* enumeration type for account

status */

CustomerAccounts = composed of

userid : userID

account_number: nat

current_balance: real

account_currency: string

account_name: string

uncleared_amount: real

end;

Account = map accID to CustomerAccounts;

var

ext # accountset: set of CustomerAccounts

ext # account_table: Account

ext # permission_table : Permissions

A Formal Approach to Secure Design of RESTful Web APIs 113

inv

/* all accounts are associated with users with read and create permission */

forall[x:CustomerAccounts] | permission_table(x.user_id) inset PermissionSet

and permission_table(x.user_id) = {<read>}

/* different accounts have different account_number, so an account_number

uniquely determines an account */

forall[account1, account2 :accountset] |

account1 <> account2 =>account1.account_number <> account2.account_number

process Account_Details (account_id: accID, userid: userID) account_info:

CustomerAccounts, response_msg: string

ext rd account_table, permission_table

pre true

/* guard condition for valid input and permission */

post account_info should have account details associated with account_id.

The response_msg should give a HTTP status message of code 200 or code 404

end_process;

process Account_Balance (account_id: accID, userid: userID) account_balance:

CustomerAccounts, response_msg: string

ext rd account_table, permission_table

pre account_id must map to a customer account and userid must have <read>

only permissions

post account_balance should have account details associated with account_id.

The response_msg should give a HTTP status message of code 200 or code 404

end_process;

end module;

The CDFD in Fig. 2 diagramatically represent two processes i.e. Account_Balance
and Account_Details. Account_Balance takes 3 inputs i.e. acc_bal signal from
an API request A(auth_req) conditional structure, accID and userID; and yields
account_balance and response_message as outputs. The Account_Details process con-
sumes acc_det signal, an output of B(auth_req) conditional structure, accID and
userID and yields account_info and response_msg as outputs. Both processes read from
account_table and permission_table data stores.

Fig. 2. CDFD for Account_Balance and Account_Details processes

114 B. Emeka et al.

We apply our transformation rules in converting the RAMLAPI definitions in Fig. 1
into a SOFLmodule with two process definition albeit expressed informally. We convert
the request GET /accounts?account_id = {account_id} into a SOFL module process
Account_Details with its associated inputs and outputs, as well as their data types being
explicitly declared.We also convert the requestGET /accounts/balance?= {account_id}
request into the process Account_Balance and declare all its inputs and outputs as
well as their respective data types. Finally we express the RAML access control secu-
rity scheme i.e. securitySchemes:BankingAPIScopes {“Customer”:{< read >}} as an
invariant that constrains the functionality of the two processes, formally expressed as
forall[x:CustomerAccounts] | permission_table(x.user_id) = {<read>}, that is, a user
instance must only have read permissions while servicing a request defined by the two
processes.

3.3 Step 3: Formalization of API Specifications

So far, our API specification is expressed as a set of system modules encapsulating the
functions, data resources and constraints. In particular, the API’s request methods are
specified as SOFL processes. The input and output data structures of these processes
are formally defined while the pre- and post-conditions are expressed in informal lan-
guage. To test for satisfiability of API’s both functional and security requirements, the
processes need to be completely formalized to lay a foundation for generating proper test
cases to run specification-based conformance testing. The formalization process involves
fully formalizing the pre- and post-conditions of these processes to precisely express
the expected operational semantics upon their associated request methods. To formally
define the pre- and post-conditions of these processes, we re-introduce the concept of a
SOFL process.

A SOFL process is defined as a five-tuple: (P, InPortSet, OutPortSet, preP, postP).

• P is the name of the process
• InPortSet = {

inPort1, inPort2, . . . , inPortf
}
defines the set of input ports of P

where inPorti(i = 1, . . . , f) is an input port. Each input port is defined as inPorti ={
vj1 , . . . , vjri

}
where vk

(
k = j1, . . . , jri

)
is a variable of this port.

• OutPortSet = {
outPort1, inPort2, . . . , outPortg

}
defines the set of output ports of

P where outPorti(i = 1, . . . , g) is an output port. Each output port is defined as

outPorti =
{
vl1 , . . . , vlsi

}
where vk

(
k = l1, . . . , lsi

)
is a variable of this port.

• preP is the pre-condition of P, which specifies the condition that the input variables
need to satisfy.

• postP is the post-condition ofP, which specifies the condition that the output variables
are required to satisfy.

A Formal Approach to Secure Design of RESTful Web APIs 115

An interpretation of a processP is as follows.Whenone of the input ports in inPortSet
e.g. inPorti is available, all its input variables are bound to specific values in their types
and the process P is executed. The results of the execution make one of the output
ports in OutPortSet say outPortj is made available and all of its output variables are
bound to specific values of their types. If the input variables satisfy the pre-condition
preP before the execution of P, the output variables are required to satisfy the post-
condition postP after the execution of the process P, provided that the execution of P
terminates and is deterministic. The SOFL excerpts below show the formal specification
of the two processes Account_Details and Account_Balance. Account_Details takes two
input parameters, account_id and user_id and yields either an output account_info of a
composite data type and a response message of type string or a response error message
of type string. To represent the necessary data resources to be shared by the processes,
for example, the customer account details, the data stores account_table of map type
and permission_table of map type are defined as external variables.

MODULE BANKING_API

type

/* type definitions omitted for brevity */

inv

forall[:accountset] |

p (.user_id) inset PermissionSet

and (.user_id) = {<read>}

forall[, :accountset] |

<> => .account_number <> .account_number

function get_account(: accID) : account

== get({ :accountset| .account_number = })

end_function /* returns an account with given account_number */

process Account_Details(:accID, :userID)

: CustomerAccounts, :string

ext rd

pre true

post

116 B. Emeka et al.

/* guard condition for valid input and permission */

exists! .account_number

and .userid) = {<read>}

/* read permission */

and

/* defining condition for valid input and permission */

= get_account()

and = "200 OK" /* message indicates success */

or

/* guard condition for nonexisting account number */

not exist[:] |

<> .account_number

and = "404 account not found"

or

exists![] |

= .account_number

and (get_account().userid) <> {<read>}

and = "401 permission denied"

end process;

process Account_Balance(: accID, : userID) : Cus-

tomerAccount, : string

ext rd ,

pre true

post exists![:accountset] |

= .account_number

and (.userid) = {<read>}

and = get_account()

and = "200 OK"

or

not exist[:] | = .account_number

and = "404 account not found"

or

exists![.account_number

and (get_account().userid) <> {<read>}

and ="401 permission denied"

end process;

end module;

The pre- and post-conditions of process Account_Details precisely represents the
functions of a request operation Account_Details and its related constraining functions.
The constraining function check for permissions of the process’ userid input parameter.
The predicate exists! [account:accountset] | account_id = account.account_number and
permission_table(account.userid) = {<read>} states that there exists a user account of

A Formal Approach to Secure Design of RESTful Web APIs 117

the required Account type in the accountset datastore whose account_number matches
the input parameter account_id and the user attached to the account has <read> only
permissions. After formalizing all the pre-post-conditions, the next step is to check
whether the formal API specifications satisfy their required functions and constraints.
We apply specification-based conformance testing technique as described in the next
section.

4 Specification Based Conformance Testing

A REST API offers a group of operations in form of request methods to perform
its functions. These operations are stateless, and the execution results depend on the
input data. To check whether a stateless operation implements its desired behav-
ior, the developer needs to check whether the relations between its input and out-
puts are consistent with the defined formal pre- and post-conditions of its processes.
The pre- and post-conditions of an API process can be transformed into a num-
ber of independent relations called functional scenarios [11]. Let the post-condition
Ppost ≡ (C1 ∧ D1) ∨ (C2 ∧ D2) ∨ . . . ∨ (Cn ∧ Dn),whereeachCi(i = 1, . . . , n) is a
predicate called guard condition that contains no output variables and Di a defining
condition that contains at least one output variable but no guard condition. Then each
∼Ppre ∧ Ci ∧ Di is called a functional scenario, where ∼F for logical formula F of the
input/output variables of a process denotes the value of F before starting execution of
the process. A process P can then be transformed into a functional scenario of the form
≡ ∼Ppre∧C1∧D1∨. . .∨∼Ppre∧Cn∧Dn. Each functional scenario ~Ppre∧Ci∧Di inde-
pendently defines how the output ofP is defined usingDi under the condition∼Ppre∧Ci.
Therefore, to test whether a REST API request operation implements all the expected
functions and its related constraints correctly, a developer will need to run adequate test
data generated from all the functional scenarios of its associated process. In the pub-
lication [8], a scenario-coverage for test case generation is proposed. We introduce its
detail as follows. Suppose a process P ≡ (∼Ppre ∧ C1 ∧ D1

)∨ . . .∨(∼Ppre ∧ Cn ∧ Dn
)

where (n ≥ 1) and T is a test set. Then T is said to satisfy the scenario-coverage of iff
∀i∈{1,...,n}∃t∈T ·∼Ppre(t)∧Ci(t). That is, a test set T satisfies the scenario coverage for a
process P iff for any functional scenario, there exists a test case in T such that it satisfies
the conjunction of the precondition ∼Ppre and the guard condition Ci.

The functional coverage allows us to generate sufficient test data for checking con-
formance of an API request operation owith respect to its associated process P. Suppose
for each functional scenario fi ≡ ∼Ppre ∧ Ci ∧ Di of process P, we define t to be a test
case generated from fi and r be the execution result of the associated request operation
o using t, then we can assert o does not conform to P iff ∼Ppre(t) ∧ Ct ∧ ¬Di(t, r)
holds. We use this condition as a test oracle to judge the conformance of a REST API
request method to its associated process. For a test case t satisfying the pre-condition and
guard condition of fi, if the corresponding test result r of request operation o does not
satisfy the defining conditionDi then we can determine that request operation o does not
correctly satisfy the functional and security requirements of the API’s request under test.
The condition ∼Ppre(t) ∧ Ct ∧ ¬Di(t, r) serves as a test oracle that can be applied for
judging the satisfiability of the functional and security requirements to their associated

118 B. Emeka et al.

processes. For a given test case t satisfying the pre-condition and guard condition of fi, if
the corresponding test result r of operation o does not satisfy the defining condition Di,
then we can establish that the operation o does not correctly implement the functional
and security requirement of the API request under test.

We can use a very simple example to demonstrate the application of the functional
scenario-based test data generation. In Fig. 3, the required function for the GET API
operation Account_Details is defined formally as shown below

process Account_Details(:accID, :userID)

: CustomerAccounts, :string

ext rd ,

pre true

post

/* guard condition for valid input and permission */

exists![:accountset] | = .account_number

and (.userid) = {<read>}

/* read permission */

and

/* defining condition for valid input and permission */

= get_account(account_id)

and = "200 OK" /* message indicates success */

or

/* guard condition for nonexisting account number */

not exist[:] | <> .account_number

and = "404 account not found"

or

exists![:] |

= .account_number

and (get_account().userid) <> {<read>}

and ="401 permission denied"

end process;

The process Account_Details takes account_id and userid as input variables
and returns two output variables, account_info and response_msg. The pre- and
post-conditions of the process are represented as three functional scenarios:

A Formal Approach to Secure Design of RESTful Web APIs 119

(1.) FS1 exists![:accountset] |

= .account_number

and (.userid) = {<read>}

/* read permission */

and

/* defining condition for valid input and permission */

= get_account()

and = "200 OK" /* message indicates success */

(2.) FS2 not exist[:] |

<> .account_number

and = "404 account not found"

(3.) FS3 exists! [:] |

= .account_number

and (get_account().userid) <> {<read>}

and = "401 permission denied"

We can generate test data from each functional scenario. Table 3 shows some sample
test cases covering the three functional scenarios and the corresponding test results.

Table 3. Sample Test Cases: Account_Details GET API operation

Functional scenario Test case Execution result Expected result Test oracle

FS1 (True, True) True True False

FS2 (False, True) False False False

FS3 (True, True) False True True

To cover functional scenario 1 (FS1), we generate a sample test case (true, true) for
the two input variables account_id and userid respectively. After executing the test case,
the output value of account_info yields a truth value of true against the expected truth
value of true. We proceed to generate test case (false, true) for the functional scenario
2 (FS2) and the output value of account_info yields a truth value of false against the
expected truth value of false.Running the test case (true,true) for FS3 the output variable
account_info yields a truth value of falsewhich violates the expected truth value of true.

Considering that REST APIs are stateless, developers only need to observe the exe-
cution results and determine the conformance of the operations corresponding to their
associated processes by analysing the defining conditions.

5 Case Study

We conducted a small experiment to validate our approach by using it to model spec-
ifications of a RESTful online banking API. The model API allows users to conduct

120 B. Emeka et al.

banking operations, such as view account details, view account balance, make utility
bills payments, transfer money to other accounts. The model specifications include 1
module containing 15 processes. The processes reflect the resources to be retrieved by
the API via requests made by a client application for example.

/onlinebanking/accounts/{accountid}

/onlinebanking/accounts/balance/{accountid}

/onlinebanking/accounts

/onlinebanking/TransferBetweenMyAccounts/{transferaccountID}

/onlinebanking/TransferToOtherBankCustomers/customer/{customeraccID}

The REST architectural style requires that all resources should be addressable and
connected. Thus, we require that our resource model should not contain an isolated
resource. Since we are describing RESTful web interfaces, the allowed operations on
resources are GET, POST, PUT, PATCH and DELETE. The GET method retrieves a
representation of a resource without any side effects i.e., it does not cause a change
in the state of the system. For example GET /onlinebanking/accounts?id = {id} and
GET /onlinebanking/CardsOverview?card_id = {cardid} represent GET requests on
resources accounts andCardsOverview respectively.Whenever aGETmethod is invoked
on a resource, it gives the representation of the resource as a response if the resource is
available, else a response code of 404 is sent back. The POST, PUT, PATCH or DELETE
methods can have side effects i.e. they can cause a change in the state of the interacting
resource. Adopting our proposed approach as described in Sect. 3, we first expressed the
API’s business functions (functional requirements) as well as their associated constraints
(security requirements) in RAML. Next, we converted the RAML based specifications
into SOFL based specifications by applying our RAML to SOFL transformation rules.
We then formalized the specifications so as to have a base for testing and validating their
conformance to their expected functional and security attributes as well as achieve inter-
weaved functional and security requirements. Finally, we transformed this formalized
specification into executable web service by implementing it in Django REST frame-
work. Since the scope of the application is too large to be covered in this section, we
shall use GET /onlinebanking/accounts?account_id = {accountid} as an example. The
SOFL excerpt in Sect. 4 shows a SOFL based representation of a contract generated for
the HTTP method GET on accounts resource.

6 Case Study Implementation Using Django REST Framework

Django REST framework abstracts the complexities of developing RESTful web ser-
vices in Python. Django REST frameworks works on top of Django web framework
which can be understood with its three basic files that support separation of concerns
i.e. models.py, urls.py and views.py where models.py contains descriptions of database
tables, views.py contains the business logic and urls.py specifies which URI to map to
which view.When using Django REST framework on top of Django web framework, an
additional file serializers.py defines the representational format i.e. JSON or XML of the
resources exposed by a RESTful API end point. The excerpt below gives an executable
representation of the code manually generated from our formalized SOFL specifications
on GET /onlinebanking/accounts?customeraccount = {account_id} API endpoint

A Formal Approach to Secure Design of RESTful Web APIs 121

from django.db import models

from django.contrib.auth.models import User

from . import countrylist, choicelists

models.py

class CustomerAccount(models.Model):

INACTIVE = 0

ACTIVE = 1

SUSPENDED = 2

CLOSED = 3

STATUS = ((INACTIVE, 'In-active account'),

(ACTIVE, 'Active Account'),

(CLOSED, 'CLosed Account'),

(SUSPENDED, 'Suspended Account'),)

account_owner = models.ForeignKey(User, on_delete=models.CASCADE)

account_number = models.CharField(max_length=13, unique=True)

account_name = models.CharField(max_length=40,

help_text="Maximum of 40 Characters")

current_balance = models.FloatField(null=True)

account_currency = models.IntegerField(

choices=choicelists.ACCOUNTCURRENCY,

default=choicelists.KES)

account_status = models.IntegField(choices=STATUS, default=INACTIVE)

uncleared_amount = models.FloatField(null=True)

def __str__(self):

return '{0}, {1}'.format(self.account_number,

self.account_name)

#api/serializers.py

#API serializers with business logic for account transfers

from django.urls import reverse

from rest_framework import serializers

from onlinebanking.models import CustomerAccount

class CustomerAccountSerializer(serializers.ModelSerializer):

122 B. Emeka et al.

class InternalAccountTransferSerializer(serializers.ModelSerializer):

account_transfer = serializers.SerializerMethodField()

class Meta:

model = CustomerAccount

fields = ('account_owner','account_number','account_name',\

'current_balance','account_currency','account_status')

def get_account_transfer(self, transfer_amount):

self.current_balance = self.current_balance

- transfer_amount

return reverse ('internaltransfer', args=(transfer_amount,))

class CompleteInternalAccountTransferSerializer (

serializers.ModelSerializer):

update_transfer = serializers.SerializerMethodField()

class Meta:

model = CustomerAccount

fields = ('account_owner','account_number','account_name',\

'current_balance','account_currency','account_status',)

def get_update_transfer(self, transfer_amount):

self.current_balance = self.current_balance + transfer_amount

return reverse('completetransfer', args=(transfer_amount,))

API views excerpt. Lists customer accounts and view for

Internal account transfers

from rest_framework import generics

from .models import CustomerAccount

from .serializers import CustomerAccountSerialize,

CompleteInternalAccountTransferSerializer

class Meta:

model = CustomerAccount

fields = ('account_owner', 'account_number', 'account_name',\

'current_balance', 'account_currency',\

'account_status', 'uncleared_amount')

Our approach of testing consisted of three steps. First, we generated test cases that
included both input and output values for the process specifications. We achieved this by
extracting independent paths from SOFL processes represented by the API’s resource
paths. We transformed the pre-, post-conditions of each process involved in each path
to Functional Scenario Form (FSF), constructed Functional Scenario Sequence (FSS)

A Formal Approach to Secure Design of RESTful Web APIs 123

of the involved processes and generated test cases from the FSS. Second, we evaluated
the specifications with the test cases and finally we analyze the test results in order to
determine whether violations of their functional and security attributes are detected.
Since our specifications do not indicate algorithms for implementation but rather are
expressed with predicate expressions such as pre- and post-conditions, we substituted
all the variables involved with concrete values of their types while evaluating them.
The results of such evaluations are Boolean values: true or false. We analyzed the test
results by comparing the evaluation results with a predicate expression that represent the
functional and /or security property to be verified for each process. Consistency between
the evaluated results and the predicate expressions implied satisfiability of the properties
in test.

7 Related Work

As far as the security of web APIs is concerned, several approaches have been studied
according to published literature. Fett et al. [12] propose a rigorous, systematic formal
analysis of OpenID Financial-grade API (FAPI) based on a web infrastructure model.
They first develop a precise model of the FAPI in the web infrastructuremodel, including
different profiles for read-only and read-write access, different types of clients, and
different combinations of security features, capturing the complex interactions in a web-
based environment. They then use theirmodel of FAPI to precisely define central security
properties of an API. Yamaguchi et al. [13] propose an API-based design approach that
allows non-security experts easily configure and enable Web Services Security. Their
design approach mainly focusses on abstraction of Web Services Security processing
by providing a six-step programming model for configuring and testing Web Services
Security. Alqahatni et al. [14] introduce an approach for automatically tracing source
code vulnerabilities at the API level across project boundaries. Their approach takes
advantage of Semantic Web and its technology stack to establish a unified knowledge
representation that can link and analyze vulnerabilities across project boundaries. Woo
et al. [15] introduce a security assessment framework for RESTful services in a Software
DefinedNetwork (SDN). The framework aims at automatically finding out security holes
related to RESTful services in the SDN controller.

However, studies targeting formal requirement engineering approaches to specifying
and testing RESTful APIs are limited. We seek to plug this research gap by providing
a formal approach that offers a secure by design approach for RESTful APIs. We take
advantage of formal specification-based conformance testing to infer the satisfiability
of both security and functional requirements provided by an API operation.

8 Conclusion and Future Works

We have described an approach to interweaving the functional and security require-
ments of RESTful APIs and to testing whether the implementation of the requirements
satisfies its specification. Our approach offers three steps. The first step yields a set
of functional and security requirements of a RESTful API expressed in RAML defini-
tions. The second step focus on transformation of the RAML definitions to SOFL based

124 B. Emeka et al.

semi-formal specifications. We express the REST specific request methods as SOFL
processes with informal pre-post conditions and their related security requirements as
either SOFL module invariants or guard conditions in functional scenarios of the pro-
cess. The third step involves formalization of the pre-post conditions and “proving” the
satisfiability of the functional and security requirements through specification testing.
We have confirmed the feasibility of our approach by using it to develop a model of an
online bankingAPI. In the future, wewill extend the research by developing a supporting
tool for semi-automatic conversion from RAML definitions to SOFL specifications and
from formalized SOFL API specifications to executable API code.

References

1. Richardson, M.A.L., Ruby, S.: RESTful Web APIs. 1st edn. O’reilly Media Inc., Sebastopol
(2013)

2. Fielding, R.T.: Architectural styles and the design of network-based software architectures -
Ph.D. dissertation. University of California, Irvine (2000). https://www.ics.uci.edu/~fielding/
pubs/dissertation/fielding_dissertation.pdf

3. Liu, S.: Formal Engineering for Industrial Software Development Using the SOFL Method.
Springer-Verlag, Heidelberg (2004)

4. Liu, S., Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba, M.: SOFL: a formal engineering method-
ology for industrial applications. IIEEE Trans. Softw. Eng. 24(1), 24–45 (1998). https://doi.
org/10.1109/32.663996

5. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice Hall (1990)
6. Hunter, K.L.: Irresistible APIs- Designing Web APIs that Developers will Love. Manning

Publications Co. (2017)
7. Harihara Subramanian, P.R.: Hands-On RESTful API Design Patterns and Best Practices.

Packet Publishing (2019)
8. Miao, W., Liu, S.: A Formal Specification-based Integration Testing Approach, pp. 26–43.

Japan, Kyoto (2012)
9. Biehl, M.: API Architecture: The Big Picture for Building APIs, vol. 2. API University Series

(2015)
10. Jiang, L., Chen, H., Deng, F.: A security evaluation method based on STRIDE model for

web service. In: 2010 2nd International Workshop on Intelligent Systems and Applications,
Wuhan, China, May 2010, pp. 1–5 (2010). https://doi.org/10.1109/iwisa.2010.5473445

11. Liu, S.: Integrating specification-based review and testing for detecting errors in programs. In:
The 9th International Conference on Formal Engineering Methods (ICFEM2007), pp. 136–
150 November 2007

12. Fett, D., Hosseyni, P., Kusters, R.: An extensive formal security analysis of the OpenID
Financial-GradeAPI. In: 2019 IEEESymposiumonSecurity and Privacy (SP), San Francisco,
CA, USA, pp. 453–471 May 2019. https://doi.org/10.1109/sp.2019.00067

13. Yamaguchi, Y., Chung, H.-V., Teraguchi, M., Uramoto, N.: Easy-to-use programming model
for web services security. In: The 2nd IEEE Asia-Pacific Service Computing Conference
(APSCC 2007), Tsubuka Science City, Japan, pp. 275–282 December 2007. https://doi.org/
10.1109/APSCC.2007.38

https://www.ics.uci.edu/%7efielding/pubs/dissertation/fielding_dissertation.pdf
https://doi.org/10.1109/32.663996
https://doi.org/10.1109/iwisa.2010.5473445
https://doi.org/10.1109/sp.2019.00067
https://doi.org/10.1109/APSCC.2007.38

A Formal Approach to Secure Design of RESTful Web APIs 125

14. Alqahtani, S.S., Eghan, E.E., Rilling, J.: Recovering semantic traceability links between APIs
and security vulnerabilities: an ontological modeling approach. In: 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, pp. 80–91
March 2017. https://doi.org/10.1109/icst.2017.15

15. Woo, S., Lee, S., Kim, J., Shin, S.: RE-CHECKER: towards secure RESTful service in
software-defined networking. In: 2018 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), Verona, Italy, pp. 1–5 November 2018. https://
doi.org/10.1109/nfv-sdn.2018.8725649

https://doi.org/10.1109/icst.2017.15
https://doi.org/10.1109/nfv-sdn.2018.8725649

Pointer Program Synthesis
as Non-deterministic Planning

Xu Lu and Bin Yu(B)

ICTT and ISN Lab, Xidian University, Xi’an 710071, People’s Republic of China
byu@xidian.edu.cn

Abstract. Program synthesis is the task of automatically construct-
ing programs that satisfy a given high-level formal specification (con-
straints). In this paper, we concentrate on the synthesis problem of a
special category of program, named pointer program that manipulate
heaps. Separation logic has been applied successfully in modular reason-
ing of pointer programs. There are many studies on formal analysis of
pointer programs using a form of symbolic execution based on a decid-
able proof theory of separation logic. Automatic specification checking
can be done efficiently by means of symbolic execution. With this basis,
we present a novel approach to simulate the symbolic execution pro-
cess for the sake of synthesizing pointer programs. Concretely, symbolic
execution rules are compiled into a non-deterministic planning problem
which can be directly solved by existing planners. The reason of using
non-deterministic planning is that it enables to generate strong cyclic
plans where loop and branch connections (similar to basic program con-
structs) may appear. We show the preliminary experimental results on
synthesizing several programs that work with linked lists.

Keywords: Program synthesis · Non-deterministic planning ·
Separation logic · Symbolic execution

1 Introduction

Automatic synthesis of program has long been considered as one of the most
central problems in computer science. It is the task of automatically finding
programs from the underlying language that satisfy user intent expressed in
some form of (formal) constraints [15]. Usually, we need to perform certain kind
of search over the state space of all potential programs in order to generate one
that meets the constraints.

Fruitful studies have achieved a lot of progress for program synthesis in many
communities. Beginning in 1957, Alonzo Church defines the problem to synthe-
size a circuit from mathematical requirements. Reactive synthesis is a special

This research is supported by the National Natural Science Foundation of China under
Grant 61806158, China Postdoctoral Science Foundation under Grant 2019T120881
and Grant 2018M643585.

c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 126–141, 2021.
https://doi.org/10.1007/978-3-030-77474-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_9

Pointer Program Synthesis as Non-deterministic Planning 127

case of program synthesis that aims to produce a controller that reacts to envi-
ronment’s inputs satisfying a given temporal logic specification [5]. An interna-
tional competition called the Reactive Synthesis Competition is held annually
since 2014.1 Camacho et al. establish the correspondence of planning problems
with temporally extended goals to reactive synthesis problems [8]. Building on
this correspondence, synthesis can be realized more efficiently via planning. A
pattern-based code synthesis approach is presented to assemble an application
from existing components [12]. The code patterns are expressed by planning
domain models. Recently, the application of AI techniques especially deep learn-
ing methods in program synthesis becomes an active research topic. DeepCoder,
developed by Microsoft, is to train a neural network to predict properties of pro-
gram that generated the outputs from the inputs [1]. Empirically, DeepCoder
is able to help generate small programs only containing several lines. Gu et al.
propose a deep learning based approach to generate API usage sequences for a
given natural language query [14]. The work in [2] transforms a graphical user
interface screenshot created by a designer into computer code by deep learning
methods. Various codes for three different platforms can be generated with the
accuracy over 77%. In addition, other techniques from different perspectives such
as inductive programming [16] and genetic programming [20] are also applied in
program synthesis. However, synthesizing a program is still a challenging prob-
lem due to the large search space.

AI planning, or planning for short, has been successfully applied in many
fields. Planning is the problem of finding a sequence of actions that leads from
an initial state to a goal state [13]. Classical planning is the problem such that
each action has deterministic outcome. If the outcomes of some actions are uncer-
tain, the problem is referred to as a non-deterministic planning problem. The
non-deterministic actions give rise to the exponential growth in the search space
and hence make the problem more difficult even in the simplest situation where
the states of the world are full observable. A plan to a non-deterministic planning
problem may have loops or branches which are similar to basic programming lan-
guage constructs. Inspired by this, we obtain the idea to bridge the gap between
program synthesis and non-deterministic planning.

Programs that manipulate heaps are called pointer programs. Pointer oper-
ations allow dynamic heap allocation and deallocation, pointer reference and
dereference etc. These characteristics make pointer programs more error prone.
Separation logic is an extension of Hoare logic addressing the task of reasoning
about pointer programs [19]. Its key power lies in the separating conjunction
Σ1 ∗Σ2, which asserts that Σ1 and Σ2 hold for separate portions of heaps, lead-
ing the reasoning in a modular way. Starting from the pioneer work [4], which
presents a symbolic execution of a fragment of separation logic formulas called
symbolic heaps, many researchers exploit symbolic execution techniques to build
formal proofs of pointer programs [7,10,17]. The most famous tool, Infer [6], is
a static analyzer developed at Facebook rooting on symbolic execution.

1 http://www.syntcomp.org/.

http://www.syntcomp.org/

128 X. Lu and B. Yu

This paper focusses on the pointer program synthesis. We propose a compi-
lation based approach to simulate the symbolic execution process of pointer pro-
grams by non-deterministic planning. The compilation result is specified in the
Planning Domain Definition Language (PDDL) [11] that is a standard input to
the state-of-the-art planners. The major contribution of our work is the encoding
approach from symbolic execution rules to non-deterministic planning models.
To the best of our knowledge, it is unique in using non-deterministic planners
as program synthesizers.

The rest of the paper is organized as follows. Section 2 and Sect. 3 review the
notations of non-deterministic planning and symbolic heaps; Sect. 4 shows sym-
bolic execution theory of pointer programs with symbolic heaps; Sect. 5 describes
how to compile symbolic execution rules into non-deterministic planning prob-
lems; Sect. 6 gives the experimental results; the last section concludes our work.

2 FOND Planning

We assume environments are fully observable. Following [13], a Fully Observable
Non-Deterministic (FOND) planning problem P is a tuple (F , I,G,A), where F
is a set of fluents, I ⊆ F characterizes what holds initially, G ⊆ F characterizes
the goal, and A is the set of actions. The set of literals of F is Lits(F) =
F ∪ {¬f | f ∈ F}. Each action a ∈ A is associated with a pair (pre(a), eff(a)),
where pre(a) ⊆ Lits(F) is the precondition and eff(a) is a set of outcomes of a.
An outcome o ∈ eff(a) is a set of conditional effects (with, possibly, an empty
condition), each of the form C � l, where C ⊆ Lits(F) and l ∈ Lits(F). Briefly
speaking, C � l expresses the meaning that after applying a in the current state,
l becomes true in the next state if current state satisfies C. A planning state s
is a subset of F that are true.2 Given s ⊆ F and f ∈ F , we say that s satisfies
f , denoted s |= f iff f ∈ s. In addition, s |= ¬f iff f �∈ s, and s |= L for a
set of literals L, if s |= l for every l ∈ L. An action a is applicable in state s
if s |= pre(a). We say s′ is a result of applying a in s iff for one outcome o in
eff(a), s′ = s\{f | (C � ¬f) ∈ o, s |= C} ∪ {f | (C � f) ∈ o, s |= C}.

Solutions to a FOND planning problem are referred to as policies. A pol-
icy p is a partial mapping from states to actions. We say a is applicable in
s if p(s) = a. An execution σ of a policy p in state s is a finite sequence
〈(s0, a0), . . . , (sn−1, an−1), sn〉 or an infinite sequence 〈(s0, a0), (s1, a1), . . .〉,
where s0 = s, and all of its state-action-state substrings s, a, s′ satisfy p(s) = a
and s′ is a result of applying a in s. Finite executions ending in a state s if p(s)
is undefined. A state trace π can be yielded from an execution σ by removing
all the action symbols from σ.

2 Fluents in F\I are implicitly assumed to be false according to the closed world
assumption.

Pointer Program Synthesis as Non-deterministic Planning 129

An infinite execution σ is fair iff whenever s, a occurs infinitely often within
σ, then for every s′ that is a result of applying a in s, s, a, s′ occurs infinitely
often. A solution to P is strong cyclic iff each of its executions in I is either
finite and ends in a state that satisfies G or is infinite and unfair [9]. Intuitively
speaking, the execution fairness of a strong cyclic solution guarantees that a goal
state can eventually be reached from every reachable state with no effect that is
always ignored. There are also strong solutions and weak solutions to a FOND
planning problem, but we will not need those definitions in this paper.

3 Symbolic Heaps

We assume a set of programs variables V ar (ranged over by x, y, . . .), and a set
of primed variables V ar′ (ranged over by x′, y′, . . .). All variables are restricted
as pointer type. The primed variables can only be used within logical formulas.
The concrete heap models contain a set of locations Loc and a special notation
nil which indicates a null pointer value. Let V al = Loc ∪ {nil}. We then define
stack S and heap H as:

S : (V ar ∪ V ar′) → V al H : Loc ⇀ V al

A heap maps a location to a location or nil representing a heap cell. The
syntax of symbolic heap is defined below [4] which is a strict subset of separation
logic [19].

e ::=x | x′ | nil expression
Π ::= e1 = e2 | e1 �= e2 | true | Π1 ∧ Π2 pure formula
Σ ::= emp | e1 �→ e2 | ls(e1, e2) | true | Σ1 ∗ Σ2 spatial formula
P ::=Π � Σ | ∃x′ : P symbolic heap

Note that the assertions are restricted without negations and universal quan-
tifiers. A symbolic heap Π �Σ can be divided into pure part Π (heap independent)
and spatial part Σ (heap dependent), where Π is essentially an ∧-separated
sequence of pure formulas, and Σ a ∗-separated sequence of spatial formulas.
The pure part is straightforward to understand, and the spatial part charac-
terize spatial features of heaps. e1 �→ e2 is read as e1 points-to e2. It can hold
only in a singleton heap, where e1 is the only active cell holding the value e2.
ls(e1, e2) denotes a linked list segment with head pointer e1 and e2 holding in
the tail cell. A complete linked list is one that satisfies ls(e, nil).

130 X. Lu and B. Yu

The semantics of symbolic heaps is given by a relation S,H |=SH P . H =
H1 • H2 indicates that the domains of H1 and H2 are disjoint, and H is their
union.

�x�s
def= s(x) �x′�s def= s(x′) �nil�s

def= nil

S,H |=SH e1 = e2 iff �e1�s = �e2�s.

S,H |=SH e1 �= e2 iff �e1�s �= �e2�s.

S,H |=SH true iff always.
S,H |=SH Π1 ∧ Π2 iff S,H |=SH Π1 and S,H |=SH Π2.

S,H |=SH emp iff H = ∅.

S,H |=SH e1 �→ e2 iff H = [(�e1�s, �e2�s)].
S,H |=SH ls(e1, e2) iff there is a nonempty acyclic path from �e1�s to �e2�s

in H and this path contains all heaps cells in H.

S,H |=SH Σ1 ∗ Σ2 iff ∃H1,H2 : H = H1 • H2 and S,H1 |=SH Σ1 and
S,H2 |=SH Σ2.

S,H |=SH Π � Σ iff S,H |=SH Π and S,H |=SH Σ.

S,H |=SH ∃x′ : P iff ∃v ∈ V al : S,H |=SH P (v/x′).

For simplicity, symbolic heap we define only allows to reason about linked
lists. The field can be regarded as the next pointer. For other linked shapes
such as binary trees, we can extend the points-to assertion as e1 �→ e2, e3. The
semantics of list segment is given informally, saying that it holds of given heap
containing at least one heap cell. Therefore it is equivalent to the least predicate
satisfying:

ls(e1, e2) ⇔ e1 �→ e2 ∨ ∃x′ : e1 �= e2 ∧ e1 �→ x′ ∗ ls(x′, e2)

4 Symbolic Execution

In this section we give symbolic execution rules for a pointer programming lan-
guage. The grammar of commands is given by:

b ::= e1 = e2 | e1 �= e2 Boolean terms
c ::= x := e | x := [e] | [e] := e′ | new(x) | dispose(e) Primitive commands
C ::= c | C1; C2 | while (b) do {C} | if (b) then {C1} else {C2} Commands

Pointer Program Synthesis as Non-deterministic Planning 131

The heap dereferencing operator [·] is similar to symbolic heaps, that refers
to the “next” field. x := e is the assignment, x := [e] and [e] := e′ are called
lookup and mutation respectively, new(x) and dispose(e) are heap allocation
and deallocation commands.

Shown in Table 1, the symbolic execution semantics P, C =⇒ P ′ takes a
symbolic heap P and a primitive command C as input, and transforms it into a
new symbolic heap P ′ as an output. The primed variables x′, y′ are fresh primed
variables in these rules.

Table 1. Symbolic execution rules

Π � Σ new(x) =⇒ ∃x′, y′ : (Π � Σ)(x′/x) ∗ x �→ y′

Π � Σ ∗ e1 �→ e2 dispose(e1) =⇒ Π � Σ

Π � Σ x := e =⇒ ∃x′ : x = e(x′/x) ∧ (Π � Σ)(x′/x)

Π � Σ ∗ e1 �→ e2 [e1] := e3 =⇒ Π � Σ ∗ e1 �→ e3

Π � Σ ∗ e1 �→ e2 x := [e1] =⇒ ∃x′ : x = e2(x′/x) ∧ (Π � Σ ∗ e1 �→ e2)(x′/x)

We use notation A(e) for primitive commands that access heap cell e:

A(e) ::= [e] := e′ | x := [e] | dispose(e)

When executing A(e), we expect its precondition to be in a particular form
Π �Σ ∗ e �→ e′. That is, the value holds in e should be explicitly exposed in order
to fire the rule. Therefore, we have to equivalently rearrange the precondition
whenever current symbolic heap do not match the rule.

Rearrangement rules are listed below. The Switch rule simply makes use of
equalities to recognize that a dereferencing step is possible. The other two rules
correspond to unrolling a list segment. To do so, we need to unroll the list to be
a single heap cell (Unroll List2) or more cells (Unroll List1).

Rearrangement Rules

Switch
Π1 � Σ1 ∗ e1 �→ e3, A(e1) =⇒ Π2 � Σ2

Π1 � Σ1 ∗ e2 �→ e3, A(e1) =⇒ Π2 � Σ2
Π1 � e1 = e2

Unroll List1
∃x′ : e1 �= e2 ∧ Π1 � Σ1 ∗ e1 �→ x′ ∗ ls(x′, e2), A(e1) =⇒ Π2 � Σ2

Π1 � Σ1 ∗ ls(e1, e2), A(e1) =⇒ Π2 � Σ2

Unroll List2
Π1 ∧ e1 �→ e2 � Σ1, A(e1) =⇒ Π2 � Σ2

Π1 � Σ1 ∗ ls(e1, e2), A(e1) =⇒ Π2 � Σ2

Generally, the number of symbolic heaps is infinite since primed variables can
be introduced during symbolic execution. For example, in a loop that includes
allocation (e.g., while (true) do {. . . ;new(x); . . .}). An arbitrary length of sym-
bolic heap can be generated, i.e., x �→ x′ ∗ x′ �→ x′′ · · · . In order to achieve
fixed-point convergence, abstraction rules Π1 � Σ1 � Π2 � Σ2 are introduced.

132 X. Lu and B. Yu

The main effort of abstraction rules is to reduce primed variables. The
abstraction rules are reported below. On one hand, we can remove primed vari-
ables from the pure parts of formulas (Abs1). On the other hand, we can gob-
ble up primed variables by merging lists, swallowing single cells into lists, and
abstracting two cells by a list (Abs2 and Abs3). We use the notation H(e1, e2)
to stand for a formula in either of the form e1 �→ e2 or ls(e1, e2).

Abstraction Rules

Abs1 e = x′ ∧ Π � Σ � (Π � Σ)(e/x′) or x′ = e ∧ Π � Σ � (Π � Σ)(e/x′)

Abs2
Π � e2 = nil x′ not in {Π,Σ, e1, e2}

Π � Σ ∗ H1(e1, x′) ∗ H2(x′, e2) � Π � Σ ∗ H(e1, nil)

Abs3
Π � e2 = e3 x′ not in {Π,Σ, e1, e2, e3, e4}

Π � Σ ∗ H1(e1, x′) ∗ H2(x′, e2) ∗ H3(e3, e4) � Π � Σ ∗ ls(e1, e2) ∗ H3(e3, e4)

The ∗-conjunct H3(e3, e4) cannot be left out by considerations of soundness
as Berdine and Calcagno pointed out [3,4]. If we want to abstract H1(−,−) and
H2(−,−) into one, the end of the second should not point back into the first.

Fig. 1. The encoding approach

5 Compiling Symbolic Execution into FOND Planning

In this section we compile a pointer program synthesis problem into a FOND
planning problem. The former is formalized as follows.

Definition 1 (Pointer Program Synthesis). Given symbolic heaps Pin and
Pout as input and output respectively, the task of pointer program synthesis is to
generate a pointer program C that satisfies Pin and Pout.

Figure 1 illustrates the key idea of our approach. There are three modes
after compilation, i.e., Command mode, Check mode and Abstraction mode.
The order of their executions is reflected by black arrows. The Command mode
contains a set of planning actions encoded from primitive command. We do not

Pointer Program Synthesis as Non-deterministic Planning 133

encode the rearrangement rules into a separate phase. Instead, the rearrangement
step is embedded in the encoding of A(e). The actions in the Check mode are
used to check the existence of an abstraction action that can fire. The abstraction
rules are compiled into a set of abstraction actions.

Suppose the resulting FOND planning problem is P = (F , I,G,A), where
each component is described as follows. The initial state I and goal G are deter-
mined by Pin and Pout of specific synthesis problems.

Fluents: The set of fluents F is listed in Table 2, where int0 represents the null
value. Moreover, we use the fluents command(), check(), choose(), abstraction()
to represent different phases, and abs1(), abs2(), abs3() to denote which abstrac-
tion rule can be activated.

Table 2. Fluents of the encoded problem

Fluent Meaning

pvar(x) x is a program variable

lvar(x′) x′ is a logical variable

auxiliary(x′) x′ is a logical variable in use

pt(x1, x2) A single heap cell

ls(x1, x2) A linked list segment

equal(x1, x2) Equality of x1 and x2

var-num(x, v) Value of x is v in {inti | 0 ≤ i ≤ n}
active(v) Value v is allocated

Command Mode: Command mode is the first phase that a primitive command
action is performed along with a possible rearrangement. Different from symbolic
execution, here we do not distinguish rearrangement and command execution,
only do rearrangement when it is needed. The encoded actions are shown in
Table 3. For instance, there are two dispose actions corresponding to the dispose
command, i.e., dispose1 and dispose2. The precondition of the former includes
an explicit heap cell pt(x2, x3), and that of the latter includes a list ls(x2, x3)
which needs to be unrolled as non-deterministic effects. The keyword “oneof”
is used to express the non-deterministic effects in a planning model.

134 X. Lu and B. Yu

Table 3. Compilation of primitive commands

Action Preconditions Effects

new(x1, x2, v1, v2) command(),

pvar(x1),

lvar(x2),

¬auxiliary(x2),

var-num(x1, v1),

var-num(x2, int0),

¬active(v2)

¬command(), check(), pt(x1, nil), active(v2),

var-num(x1, v2), ¬var-num(x1, v1),

∀y : {equal(x1, y)} � {auxiliary(x2), ¬equal(x1, y),

¬equal(y, x1), equal(x2, y), equal(y, x2),

¬var-num(x2, int0), var-num(x2, v1)},
∀y : {pt(x1, y)} � {auxiliary(x2), ¬pt(x1, y), pt(x2, y),

¬var-num(x2, int0), var-num(x2, v1)},
∀y : {pt(y, x1)} � {auxiliary(x2), ¬pt(y, x1), pt(y, x2),

¬var-num(x2, int0), var-num(x2, v1)},
∀y : {ls(x1, y)} � {auxiliary(x2), ¬ls(x1, y), ls(x2, y),

¬var-num(x2, int0), var-num(x2, v1)},
∀y : {ls(y, x1)} � {auxiliary(x2), ¬ls(y, x1), ls(y, x2),

¬var-num(x2, int0), var-num(x2, v1)}
dispose1(x1, x2, x3, v) command(),

pvar(x1),

active(v),

var-num(x1, v),

var-num(x2, v),

pt(x2, x3)

¬command(), check(), ¬pt(x2, x3), ¬active(v),

∀y : {var-num(y, v)} �
{¬var-num(y, v), var-num(y, int0)}

dispose2(x1, x2, x3,

x4, v1, v2)

command(),

pvar(x1),

lvar(x4),

active(v1),

¬active(v2),

var-num(x1, v1),

var-num(x2, v1),

ls(x2, x3),

¬auxiliary(x4),

var-num(x4, int0)

¬command(), check(), ¬ls(x2, x3), ¬active(v1),

∀y : {var-num(y, v1)} � {¬var-num(y, v1), var-num(y,

int0)}, oneof(∅, {auxiliary(x4), ls(x4, x3), active(v2),

¬var-num(x4, int0), var-num(x4, v2)})

assign(x1, x2, x3,

v1, v2)

command(),

pvar(x1),

pvar(x2),

lvar(x3),

var-num(x1, int1),

var-num(x2, int2),

¬auxiliary(x3),

var-num(x3, int0)

¬command(), check(), equal(x1, x2), equal(x2, x1), {v1 �=
v2} � {¬var-num(x1, v1), var-num(x1, v2)},
∀y : {equal(x1, y)} � {auxiliary(x3), ¬equal(x1, y),

¬equal(y, x1), equal(x3, y), equal(y, x3),

¬var-num(x3, int0), var-num(x3, v1)},
∀y : {pt(x1, y)} � {auxiliary(x3), ¬pt(x1, y), pt(x3, y),

¬var-num(x3, int0), var-num(x3, v1)},
∀y : {pt(y, x1)} � {auxiliary(x3), ¬pt(y, x1), pt(y, x3),

¬var-num(x3, int0), var-num(x3, v1)},
∀y : {ls(x1, y)} � {auxiliary(x3), ¬ls(x1, y), ls(x3, y),

¬var-num(x3, int0), var-num(x3, v1)},
∀y : {ls(y, x1)} � {auxiliary(x3), ¬ls(y, x1), ls(y, x3),

¬var-num(x3, int0), var-num(x3, v1)}
mutation1(x1, x2, x3,

x4, v)

command(),

pvar(x1),

pvar(x4),

var-num(x1, v),

var-num(x2, v),

pt(x2, x3)

¬command(), check(), ¬pt(x2, x3), pt(x2, x4)

mutation2(x1, x2, x3,

x4, x5, v1, v2)

command(),

pvar(x1),

pvar(x4),

lvar(x5),

¬active(v2),

var-num(x1, v1),

var-num(x2, v1),

ls(x2, x3),

¬auxiliary(x5),

var-num(x5, int0)

¬command(), check(), ¬ls(x2, x3),

oneof({pt(x2, x4)}, {auxiliary(x5), pt(x2, x4),

ls(x5, x3), active(v2), ¬var-num(x5, int0),

var-num(x5, v2)})

(continued)

Pointer Program Synthesis as Non-deterministic Planning 135

Table 3. (continued)

Action Preconditions Effects

lookup1(x1, x2, x3, x4,

x5, v1, v2, v3)

command(),

pvar(x1),

pvar(x2),

lvar(x5),

var-num(x1, v1),

var-num(x4, v2),

var-num(x2, v3),

var-num(x3, v3),

pt(x3, x4),

¬auxiliary(x5),

var-num(x5, int0)

¬command(), check(), equal(x1, x4), equal(x4, x1),

{v1 �= v2} � {¬var-num(x1, v1), var-num(x1, v2)},
∀y : {equal(x1, y)} � {auxiliary(x5), ¬equal(x1, y),

¬equal(y, x1), equal(x5, y), equal(y, x5),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {pt(x1, y)} � {auxiliary(x5), ¬pt(x1, y), pt(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {pt(y, x1)} � {auxiliary(x5), ¬pt(y, x1), pt(y, x5),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {ls(x1, y)} � {auxiliary(x5), ¬ls(x1, y), ls(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {ls(y, x1)} � {auxiliary(x5), ¬ls(y, x1), ls(y, x5),

¬var-num(x5, int0), var-num(x5, v1)}
lookup2(x1, x2, x3, x4,

x5, x6, v1, v2, v3, v4)

command(),

pvar(x1),

pvar(x2),

lvar(x5),

lvar(x6),

var-num(x1, v1),

var-num(x4, v2),

var-num(x2, v3),

var-num(x3, v3),

ls(x3, x4),

¬active(v4),

¬auxiliary(x5),

var-num(x5, int0),

¬auxiliary(x6),

var-num(x6, int0)

¬command(), check(), ¬ls(x3, x4),

{v1 �= v5} � {¬var-num(x1, v1), var-num(x1, v5)},
∀y : {equal(x1, y)} � {auxiliary(x5), ¬equal(x1, y),

¬equal(y, x1), equal(x5, y), equal(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {pt(x1, y)} � {auxiliary(x5), ¬pt(x1, y),pt(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {pt(y, x1)} � {auxiliary(x5), ¬pt(y, x1), pt(y, x5),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {ls(x1, y)} � {auxiliary(x5), ¬ls(x1, y), ls(x5, y),

¬var-num(x5, int0), var-num(x5, v1)},
∀y : {ls(y, x1)} � {auxiliary(x5), ¬ls(y, x1), ls(y, x5),

¬var-num(x5, int0), var-num(x5, v1)},
oneof({pt(x3, x4), equal(x1, x4), equal(x4, x1),

¬var-num(x1, v1), var-num(x1, v2)}, {auxiliary(x6),

active(v4), equal(x1, x6), equal(x6, x1),

¬var-num(x1, v1), var-num(x1, v4), pt(x3, x6),

ls(x6, x4), ¬var-num(x6, int0), var-num(x6, v4)})

Check Mode: The definition actions in Check mode are shown in Table 4.
Action check-act alters the truth value of flags absi(), i = 1, 2, 3 according to
the current state whenever a corresponding abstraction rule is enabled. Then
the choose-act will be executed to determine the next phase to be switched with
respect to absi(). When no abstraction rules can be applied, the next phase is
the command mode, otherwise it is still turned to the abstraction mode.

136 X. Lu and B. Yu

Table 4. Actions in Check mode

Action Preconditions Effects

check-act() check() ¬check(), choose(),
{∃x1, x2 : pvar(x1) ∧ lvar(x2) ∧ equal(x1, x2))} � {abs1()},
∀x1, x2, x3 : {pt(x1, x2), pt(x2, x3), auxiliary(x2),
∃v : var-num(x1, v) ∧ ¬var-num(x3, v), ∀y : ¬equal(y, x2)∧
¬ls(y, x2) ∧ ¬ls(x2, y), ∀y : y
= x1 → ¬pt(y, x2),
∀y : y
= x3 → ¬pt(x2, y)} � {abs2()},
∀x1, x2, x3 : {pt(x1, x2), ls(x2, x3), auxiliary(x2),
∃v : var-num(x1, v) ∧ ¬var-num(x3, v), ∀y : ¬equal(y, x2)∧
¬ls(y, x2) ∧ ¬pt(x2, y), ∀y : y
= x1 → ¬pt(y, x2),
∀y : y
= x3 → ¬ls(x2, y)} � {abs2()},
∀x1, x2, x3 : {ls(x1, x2), pt(x2, x3), auxiliary(x2),
∃v : var-num(x1, v) ∧ ¬var-num(x3, v), ∀y : ¬equal(y, x2)∧
¬pt(y, x2) ∧ ¬ls(x2, y), ∀y : y
= x1 → ¬ls(y, x2),
∀y : y
= x3 → ¬pt(x2, y)} � {abs2()},
∀x1, x2, x3 : {ls(x1, x2), ls(x2, x3), auxiliary(x2),
∃v : var-num(x1, v) ∧ ¬var-num(x3, v), ∀y : ¬equal(y, x2)∧
¬ls(y, x2) ∧ ¬ls(x2, y), ∀y : y
= x1 → ¬ls(y, x2),
∀y : y
= x3 → ¬ls(x2, y)} � {abs2()},
{∃x : auxiliary(x) ∧ ∀y : ¬equal(x, y)) ∧ ¬pt(x, y)∧
¬pt(y, x) ∧ ¬ls(x, y) ∧ ¬ls(y, x)} � {abs3()},

choose-act() choose() ¬choose(), ¬abs1(), ¬abs2(), ¬abs3(),
{abs1(), abs2(), abs3()} � {command()}
{¬abs1(), ¬abs2(), ¬abs3()} � {abstraction()}

Abstraction Mode: Table 5 shows the set of abstraction actions encoded from
abstraction rules. The first two actions correspond to the abstraction rules. The
last rule is used to free a logical variable in use, and make it available. When
after applying an abstraction rule, we will go back to the Check mode until no
abstraction rules can fire.

Pointer Program Synthesis as Non-deterministic Planning 137

Table 5. Compilation of abstraction rules

Action Preconditions Effects

abstract1(x1, x2) abstraction(),
pvar(x1),
auxiliary(x2),

equal(x1, x2)

¬abstraction(), check(),
¬equal(x1, x2), ¬equal(x2, x1),
∀y : (equal(x2, y) ∧ x1
= y) �
{¬equal(x2, y), ¬equal(y, x2),
equal(x1, y), equal(y, x1)},
∀y : pt(x2, y) � {¬pt(x2, y),
pt(x1, y)},
∀y : pt(y, x2) � {¬pt(y, x2),
pt(y, x1)},
∀y : ls(x2, y) � {¬ls(x2, y),
ls(x1, y)},
∀y : ls(y, x2) � {¬ls(y, x2),
ls(y, x1)}

abstract2(x1, x2, x3, v) abstraction(),
auxiliary(x2),
var-num(x1, v),
¬var-num(x3, v),
equal(x3, nil) ∨ x3 = nil,
(pt(x1, x2) ∧ pt(x2, x3))∨
(pt(x1, x2) ∧ ls(x2, x3))∨
(ls(x1, x2) ∧ pt(x2, x3))∨
(ls(x1, x2) ∧ ls(x2, x3)),
∀y : ¬equal(y, x2),
∀y : (y
= x1 ∧ y
= x2∧
y
= x3) →
(¬pt(x2, y) ∧ ¬pt(y, x2)∧
¬ls(x2, y) ∧ ¬ls(y, x2)),

¬abstraction(), check(),
ls(x1, x3),
pt(x1, x2) � ¬pt(x1, x2),
ls(x1, x2) � ¬ls(x1, x2),
pt(x2, x3) � ¬pt(x2, x3),
ls(x2, x3) � ¬ls(x2, x3)

abstract3(x, v) abstraction(),
auxiliary(x),
var-num(x, v),
∀y : ¬equal(x, y)∧
¬pt(x, y) ∧ ¬pt(y, x)∧
¬ls(x, y) ∧ ¬ls(y, x)

¬abstraction(), check(),
¬auxiliary(x),
v
= int0 � var-num(x, int0)

6 Case Study and Experiment

In this section, we conduct a series of experiments to evaluate our approach.
Further, we illustrate an example on synthesis of a disposal program which aims
to dispose a linked list. The following code is the disposal program.

while (x �= nil) do {
y := x;
x := [x];
dispose(y)

}

138 X. Lu and B. Yu

The initial state of this program is ls(x, nil). Using the symbolic execution
rules, the symbolic execution process is shown in Fig. 2. Note that the loop arrow
from bottom to up means that ls(x, nil) is the invariant of the program. At the
beginning, we know x does not equal to nil since ls(x, nil) at least contains
one cell. Hence the first assignment command in the loop body is executed.
When executing the second command, we do not know what holds in address x
according to the spatial part ls(x, nil) of the symbolic heap. Therefore a rear-
rangement step should be applied to distinguish the symbolic heap into a couple
of situations. After executing x := [x], we need to try to abstract the obtained
symbolic heap since some primed variables are introduced. Then the last deal-
location command is executed. In one situation, the loop exits. In the other, we
find an invariant that is the same to the initial state. At this time the process
terminates.

Fig. 2. Symbolic execution process for disposal program

In practice, we encode the program into standard PDDL which can be
accepted by existing planners. The details are omitted here. We evaluate our
approach on several list manipulated program. The non-deterministic planner
PRP [18] is used as the FOND planner. Experiments are conducted on a laptop
running Ubuntu 16.04 on an Intel� CoreTM i7-8550U CPU 1.80 GHz and 8 GB
of RAM. The results are shown in Table 6. “Insert” is to synthesize a program
that inserts a cell before the head, “Remove” is the list disposal program, “Tra-
verse” is to travel a list, “Append” is to append two lists into one. Sometimes we
cannot synthesize a list program by our approach. For instance, reversing a list
is impossible to be synthesized since the initial state and the goal are both an
abstract list. Whether the list is reversed or not finally is never known. The sec-
ond column is the search time in seconds. The third column is length of a policy.
Note that the length includes additional actions (check actions and abstraction
actions) except primitive command actions.

Pointer Program Synthesis as Non-deterministic Planning 139

Table 6. Experimental results on list program

Program Time(s) Length

Insert 1.94 49

Remove 25.18 31

Traverse 16.56 25

Append 258.18 86

Fig. 3. Policy for synthesizing the disposal program

PRP generates a sequential plan for “Insert” and constructs loops for the
other three programs. Consider the performance, we can see that synthesizing
loop programs is not easy since the search time is much more than synthesizing
sequential ones. More efforts needs to be made in order to find a loop for a
planner. The essential reason is the quantifiers in the encoded actions especially
in the effects of abstractions and preconditions of check actions. In practice, the
quantifiers are expanded that will result in the explosion of the state space.

The solution generated for disposal program is shown in Fig. 3. We preserve
the command actions and remove rest. Therefore, we obtain a compact policy
much closer to a pointer program. Obviously, the policy is similar to the disposal
program mentioned before. The boolean condition at the start of the loop must
be specified manually.

7 Conclusion

Synthesizing programs is a difficult and central problem in computer science. In
this paper, we propose an automated planning based method for pointer pro-
gram synthesis. Inspired by symbolic execution of separation logic, we compile
this process into a FOND planning problem, mainly including primitive com-
mand compilation, rearrangement compilation and abstraction compilation. In
future work, we plan to synthesize larger scale programs. This is feasible from
the theoretical point of view because of the modular reasoning feature of sepa-
ration logic. Furthermore, we have to find a way that can reduce the number of
quantifiers in the encoded actions to improve the performance of planners.

140 X. Lu and B. Yu

References

1. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
learning to write programs. In: 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Pro-
ceedings. OpenReview.net (2017). https://openreview.net/forum?id=ByldLrqlx

2. Beltramelli, T.: pix2code: generating code from a graphical user interface screen-
shot. In: Proceedings of the ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2018, Paris, France, 19–22 June 2018. pp. 3:1–3:6. ACM
(2018). https://doi.org/10.1145/3220134.3220135

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: FSTTCS 2004: Foundations of Software Technology and Theoretical Computer
Science, 24th International Conference, Chennai, India, 16–18 December 2004, Pro-
ceedings, pp. 97–109 (2004). https://doi.org/10.1007/978-3-540-30538-5 9

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Programming Languages and Systems, Third Asian Symposium, APLAS
2005, Tsukuba, Japan, 2–5 November 2005, Proceedings, pp. 52–68 (2005). https://
doi.org/10.1007/11575467 5

5. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012). https://doi.org/10.
1016/j.jcss.2011.08.007

6. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holz-
mann, G.J., Joshi, R. (eds.) NASA Formal Methods - 7th International Sympo-
sium, NFM 2015, Pasadena, CA, USA, 27–29 April 2015, Proceedings. Lecture
Notes in Computer Science, vol. 9058, pp. 3–11. Springer (2015). https://doi.org/
10.1007/978-3-319-17524-9 1

7. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011). https://doi.org/
10.1145/2049697.2049700

8. Camacho, A., Bienvenu, M., McIlraith, S.A.: Towards a unified view of AI planning
and reactive synthesis. In: Benton, J., Lipovetzky, N., Onaindia, E., Smith, D.E.,
Srivastava, S. (eds.) Proceedings of the Twenty-Ninth International Conference
on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA, 11–15
July 2019, pp. 58–67. AAAI Press (2019). https://aaai.org/ojs/index.php/ICAPS/
article/view/3460

9. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong
cyclic planning via symbolic model checking. Artif. Intell. 147(1–2), 35–84 (2003).
https://doi.org/10.1016/S0004-3702(02)00374-0

10. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) Tools and Algorithms for the Construc-
tion and Analysis of Systems, 12th International Conference, TACAS 2006 Held
as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 25 - April 2, 2006, Proceedings. Lecture
Notes in Computer Science, vol. 3920, pp. 287–302. Springer (2006). https://doi.
org/10.1007/11691372 19

11. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. 20, 61–124 (2003). https://doi.org/10.1613/
jair.1129

https://openreview.net/forum?id=ByldLrqlx
https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/11575467_5
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://aaai.org/ojs/index.php/ICAPS/article/view/3460
https://aaai.org/ojs/index.php/ICAPS/article/view/3460
https://doi.org/10.1016/S0004-3702(02)00374-0
https://doi.org/10.1007/11691372_19
https://doi.org/10.1007/11691372_19
https://doi.org/10.1613/jair.1129
https://doi.org/10.1613/jair.1129

Pointer Program Synthesis as Non-deterministic Planning 141

12. Fu, J., Bastani, F.B., Yen, I.: Automated AI planning and code pattern based
code synthesis. In: 18th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2006), 13–15 November 2006, Arlington, VA, USA, pp. 540–
546. IEEE Computer Society (2006). https://doi.org/10.1109/ICTAI.2006.37

13. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and Practice.
Elsevier (2004)

14. Gu, X., Zhang, H., Zhang, D., Kim, S.: Deep API learning. In: Zimmermann, T.,
Cleland-Huang, J., Su, Z. (eds.) Proceedings of the 24th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, 13–18 November 2016, pp. 631–642. ACM (2016). https://doi.org/10.
1145/2950290.2950334

15. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program.
Lang. 4(1–2), 1–119 (2017). https://doi.org/10.1561/2500000010

16. Kitzelmann, E.: Inductive programming: A survey of program synthesis techniques.
In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) Approaches and Applications
of Inductive Programming, Third International Workshop, AAIP 2009, Edinburgh,
UK, 4 September 2009. Revised Papers. Lecture Notes in Computer Science, vol.
5812, pp. 50–73. Springer (2009). https://doi.org/10.1007/978-3-642-11931-6 3

17. Magill, S., Nanevski, A., Clarke, E., Lee, P.: Inferring invariants in separation logic
for imperative list-processing programs. SPACE 1(1), 5–7 (2006)

18. Muise, C.J., McIlraith, S.A., Beck, J.C.: Improved non-deterministic planning by
exploiting state relevance. In: McCluskey, L., Williams, B.C., Silva, J.R., Bonet,
B. (eds.) Proceedings of the Twenty-Second International Conference on Auto-
mated Planning and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, 25–19
June 2012. AAAI (2012). http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/
paper/view/4718

19. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22–25 July
2002, Copenhagen, Denmark, Proceedings, pp. 55–74 (2002). https://doi.org/10.
1109/LICS.2002.1029817

20. Vanneschi, L., Poli, R.: Genetic programming - introduction, applications, theory
and open issues. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natu-
ral Computing, pp. 709–739. Springer (2012). https://doi.org/10.1007/978-3-540-
92910-9 24

https://doi.org/10.1109/ICTAI.2006.37
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1145/2950290.2950334
https://doi.org/10.1561/2500000010
https://doi.org/10.1007/978-3-642-11931-6_3
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4718
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4718
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-540-92910-9_24
https://doi.org/10.1007/978-3-540-92910-9_24

Runtime Verification of Ethereum Smart
Contracts Based on MSVL

Bin Yu1, Xu Lu1, Hao Chen2,3, Ming Lei4, and Xiaobing Wang1(B)

1 School of Computer Science and Technology, Xidian University, Xi’an 710071, China
{byu,xlu}@xidian.edu.cn, xbwang@mail.xidian.edu.cn

2 Beijing Edutainment World Education Technology Co., Ltd., Beijing 100000, China
chenhao@stemedu.cn

3 Xi’an CoolMi Technology Co., Ltd., Xi’an 710077, China
4 School of Computer Science, Shaanxi Normal University, Xi’an 710062, China

leiming@snnu.edu.cn

Abstract. Ethereum has become the most widely used underlying platform of
blockchain smart contracts in the world. Compared with traditional software,
the security problem of Ethereum smart contracts is more prominent due to its
characteristics. Being a lightweight formal verification technique, runtime ver-
ification is pursued to check whether one monitored program execution obeys
a desired property. In this paper, we propose a runtime verification method for
smart contract security based on modeling, simulation and verification language
(MSVL). First, a smart contract program is modeled by MSVL and a transla-
tor SOL2M is developed to convert a Solidity program to MSVL program. Then
Propositional Projection Temporal Logic (PPTL) formulas are used to describe
the security properties of smart contracts. Finally, runtime verification is used to
verify whether the modeling program conforms to the given security properties.
As a case study, a voting smart contract is employed to show the efficiency and
effectiveness of the proposed approach.

Keywords: Ethereum smart contract · Runtime verification · Solidity · PPTL ·
MSVL

1 Introduction

Blockchain uses cryptography knowledge to store all digital assets on the point-to-point
network, and provides a trusted channel for information and value transfer and exchange
in untrusted network, which has the characteristics of decentralization, open autonomy
and non tampering [1]. Cisco research shows that it is estimated that more than 10%

This research is supported by the Fundamental Research Funds for the Central Universities under
Grant XJS210305, Natural Science Basic Research Program of Shaanxi (Program No. 2021JQ-
208 and No. 2021JQ-314), National Natural Science Foundation of Shaanxi Province under
Grant 2020GY-043, National Natural Science Foundation of China under Grant 61972301 and
Grant 61806158, China Postdoctoral Science Foundation under Grant 2019T120881 and Grant
2018M643585.

c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 142–153, 2021.
https://doi.org/10.1007/978-3-030-77474-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_10

Runtime Verification of Ethereum Smart Contracts Based on MSVL 143

of the global GDP will be stored on the blockchain by 2027 [2]. As the application
layer core of the blockchain, Ethereum [3] is the first open source public blockchain
platform with smart contract function, which supports the smart contracts deployed on
it. It uses a Turing’s complete high-level programming language, Solidity, to realize
complex business logic [4], based on the proof of work (POW) consensus mechanism
and Ethereum virtual machine, (EVM) execution environment, in the case of no third
party for digital asset transactions [5].

At present, Ethereum has become the most widely used underlying platform of
blockchain smart contracts in the world, and has been highly concerned by top financial
institutions and technology enterprises such as JPMorgan Chase, Microsoft and IBM.
Ethereum smart contracts are utilized to realize the core logic of different business sce-
narios such as financial audit [6], contract signing [7] and supply chain management
[8]. In 2020, the number of newly created Ethereum smart contracts exceeded 10 mil-
lion, and the number of transfers based on Ethereum smart contracts was nearly 350
million. With such a large scale of funds, the security of Ethereum smart contracts must
be highly valued.

Compared with traditional software, the security problems of Ethereum smart con-
tracts are more prominent due to its characteristics [9]. Firstly, smart contracts are open-
source, and the security defects of deployed contracts will be directly exposed to poten-
tial malicious attackers. Secondly, smart contracts are non tamperable, and the losses
caused by the defects can not be made up. What is more, the reuse rate of Ethereum
smart contract code deployed on the blockchain is more than 90%. Due to the digital
storage and management of the key information such as assets and identity, once the
copied contract code has defects, it will bring huge security risks to the whole system.
For example, the attacker took advantage of the script code vulnerability of the Dao
smart contract to steal more than 3 million Ethernet coins in 2016. In 2018, the attacker
used the integer overflow problem in the batch transfer function of the BEC smart con-
tract to generate tokens indefinitely, resulting in a loss of about 6 billion RMB.

In current detection methods, the traditional code testing and manual audit methods
have certain limitations. The incompleteness of these methods makes them impossi-
ble to verify all the state space of the contract, and it is difficult to find the hidden
logic defects. In view of the above problems, Ethereum community has repeatedly rec-
ommended formal verification methods, which have been successfully used in many
safety critical fields. Formal verification method is based on logic calculus, formal lan-
guage, automata and other theoretical computer science. It can strictly deduce whether
a smart contract meets the temporal properties of the specified business logic, which
has become an important way to ensure the temporal correctness of Ethereum smart
contracts.

Being a lightweight formal verification technique, runtime verification is pursued to
check whether one monitored program execution obeys a desired property [10]. In this
paper, we propose a runtime verification method for Ethereum smart contracts based
on modeling, simulation and verification language (MSVL). First, a smart contract pro-
gram is modeled by MSVL. In order to reduce a lot of manual operations in modeling,
SOL2M is developed to convert Solidity to MSVL. Then Propositional Projection Tem-
poral Logic (PPTL) formulas are used to describe the security properties of smart con-
tracts. Because of the projection and temporal operators, PPTL has a stronger expressive

144 B. Yu et al.

power than the general propositional logics. Finally, runtime verification is used to ver-
ify whether the modeling program conforms to the given security properties. As a case
study, a voting smart contract is employed to show the efficiency and effectiveness of
the proposed approach.

This paper is organized as follows. The next section briefly presents the language
MSVL used for the implementation of the model and PPTL used for the description
of properties. Section 3 gives the proposed runtime verification approach for Ethereum
smart contracts. Then, a verification case is described in Sect. 4. Finally, the conclusion
is drawn in Sect. 5.

2 Preliminaries

In this section, we will introduce programming language MSVL and property language
PPTL, both of which are subsets of Projection Temporal Logic (PTL) [11]. The contents
in this section are borrowed from [12–14].

2.1 MSVL

The arithmetic expression e and boolean expression b are inductively defined as follows:

e ::= c | x | g(e1, . . . , em) | ext f (e1, . . . , en) | -©e | ©e
b ::= true | f alse | ε |�| ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1

In the arithmetic expression, c is a constant, x a variable, m and n integers, g a state
function, and f a function. A state function g(e1, . . . , em) contains no temporal opera-
tors. ext f (e1, . . . , en) is an external call of function f meaning that we only concern the
return value of function f rather than the interval over which the function is executed.
-©e and©e respectively stand for the value of e at the previous state and the next state.

In the boolean expressions, �
def
= ©true and ε

def
= ¬ �.

The following are the elementary statements in MSVL:

1. Termination empty 2. Assignment x<==e

3. Unit Assignment x:=e 4. Interval Frame frame(x)

5. Selection p or q 6. Conjunction p and q

8. Always alw(p) 7. Next next p

9. Sequence p;q 10. Local variable local x:p

11. Projection {p1,. . .,pm} prj q 12. Parallel p ‖ q

13. Conditional if(b)then{p}else{q} 14. While while(b){p}
15. Await await(b) 16. Function call g(e1,...,em)
17. External function call ext f(e1,...,en)

where x is a variable, e and b denote an arithmetic expression or a boolean expression,
respectively. p1, . . ., pm, p and q are programs of MSVL. The meaning of each statement
is given in [12] and omitted here.

Runtime Verification of Ethereum Smart Contracts Based on MSVL 145

2.2 PPTL

Syntax: Over a countable set Prop of atomic propositions, the syntax of a PPTL for-
mula P is inductively defined as follows:

P ::= p | © P | ¬P | P1 ∨ P2 | (P1, . . ., Pm) pr j P | P+
where p ∈ Prop is an atomic proposition; P1, . . . , Pm and P are all well-formed PPTL
formulas.

Semantics: The boolean domain B = {true, f alse}. A state s is a mapping from Prop
to B. s[p] represents the value of the atomic proposition p at state s. A non-empty
sequence of states σ = 〈s0, s1, . . .〉 is called an interval. |σ| denotes the length of σ. If
σ is finite, |σ| equals the number of states minus 1. Otherwise, |σ| equals ω. In order
to consider both finite and infinite intervals in a unified way, the integers is extended
as Nω = N0 ∪ {ω}, where N0 denotes the set of non-negative integers. Besides, the
comparison operators =, <,≤ to Nω is also extended by considering ω = ω and i < ω
for all i ∈ N0. Further, � is defined as ≤ −{(ω,ω)}. A sub-interval 〈si, . . . , s j〉 can be
denoted as σ(i.. j) for simplicity. For an interval σ and integers r1, . . . , rh such that 0 ≤
r1 ≤ r2 ≤ . . . ≤ rh, the operation ↓ can be utilized to obtain the projected interval, σ ↓
(r1, . . . , rh) = 〈st1 , st2 , . . . , stl〉, where t1, . . . , tl are obtained from r1, . . . , rh by deleting
the duplicates. σ1 ·σ2 = 〈s0, . . . , sn, s′0, . . .〉 denotes the concatenation of a finite interval
σ1 = 〈s0, . . . , sn〉 with another interval σ2 = 〈s′0, . . .〉.

For an interval σ, i ∈ N0, j ∈ Nω, and i � j ≤ |σ|, an interpretation of a PPTL
formula is I = (σ, i, j). The satisfaction relation |= is inductively defined as follows:

I |= p iff si[p] = true, and p ∈ Prop is an atomic proposition.
I |= ©P iff i < j and (σ, i + 1, j) |= P.
I |= ¬P iff I �|= P.
I |= P ∧ Q iff I |= P and I |= Q.
I |= (P1, . . ., Pm) pr j P iff there exist integers r0, . . . , rm, and i = r0 ≤ . . . ≤ rm−1 � rm
≤ jsuch that (σ, rl−1, rl) |= Pl, 1 ≤ l ≤ m, and (σ′, 0, |σ′|) |= P for one of the
following σ′:
(a) rm < j and σ′ = σ ↓ (r0, . . . , rm) · σ(rm+1.. j),
(b) rm = j and σ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m.

I |= P+ iff there exist finitely many integers r0, . . . , rnand i = r0 ≤ . . . ≤ rn−1 � rn = j
(n ≥ 1) such that (σ, rl−1, rl) |= P, 1 ≤ l ≤ n; or j = ω and there are infinitely
many integersk = r0 ≤ r1 ≤ . . . such that lim

i→∞ ri = ω and (σ, rl−1, rl) |= P, l ≥ 1.

The abbreviations true, f alse and ∧ are defined as usual. The following exhibits
some derived formulas from elementary PPTL formulas, which have been explained in
[11,14].

ε
def
= ¬© true

♦P
def
= true; P

P∗ def
= P+ ∨ ε

len(n)
def
= ©nε

more
def
= ¬ε

P1; P2
def
= (P1, P2) pr j ε

�P
def
= ¬♦¬P

f in(P)
def
= �(ε→ P)

146 B. Yu et al.

With Example 1 in the following, we intuitively illustrate two PPTL formulas whose
contained operators are frequently used in this paper.

Example 1. The first PPTL formula is P′; len(5), where P′ can also be a PPTL formula.
It means that after property P′ holds, there also exists an interval whose length is 5.
The second PPTL formula is©(p ∧ ((len(2); (p ∧ ε))∗)), meaning that the atomic prop-
erty p must hold at every odd state ignoring even ones. Their intuitive semantics are
respectively shown in Fig. 1(a) and Fig. 1(b).

p p

O(p ((len(2);(p ε))*))P’;len(5)

P’ interval length=5
p p

(a) (b)

p

Fig. 1. Two examples of PPTL formulas

In order to explicitly illustrate the model of a PPTL formula P, we can construct its
corresponding LNFG. An LNFG is defined as a tuple G = (CL(P), EL(P),V0,L =
{L1, · · ·,Lk}), where CL(P) denotes the set of nodes and EL(P) denotes the set of
directed edges among CL(P), V0 is the set of initial nodes, and each Li ⊆ CL(P),
1 ≤ i ≤ k, is the set of nodes with li being the label. Each node is specified by a
PPTL formula; each edge is labeled with a state formula; and the extra propositions lk
labeled on some nodes are used to identify an infinite acceptable path. In an LNFG, a
finite path, π = 〈n0, p0, · · ·, ε〉, is an alternating sequence of nodes and edges from an
initial node to the ε node, while an infinite path, π = 〈n0, p0, · · ·, (ni, pi, · · ·, n j, p j)ω〉, is
an infinite alternate sequence of nodes and edges emanating from an initial node. In an
infinite path, the set of nodes which infinitely often occur is denoted by Inf (π). If a path
π is finite or infinite with all the nodes in Inf (π) not sharing a same label, it is called
acceptable. Theories relative to LNFGs can be referred to [15].

Example 2. In order to show how an LNFG looks like, Fig. 2 illustrates the LNFG of
PPTL formula ♦(p ∧ �(¬q)) as an example. In this LNFG, π = 〈1, p ∧ ¬q, 3,¬q, 4〉 is
a finite path, while π = 〈1, true, (2, true)ω〉 is an infinite path. In this infinite path, we
have Inf (π) = {2} ⊆ L1 = {2}, which means that the nodes occurring infinitely often
have the same label l1. Hence, this path is unacceptable.

3 Runtime Verification of Ethereum Smart Contracts

3.1 Framework

Figure 3 shows the framework of our runtime verification approach. First, a smart con-
tract program is modeled by MSVL with the translator SOL2M. Then PPTL formulas

Runtime Verification of Ethereum Smart Contracts Based on MSVL 147

Fig. 2. LNFG of formula ♦(p ∧ �(¬q))

Verification
CasesCloud9

PPTL

P

MSVL

M

if, while, for, break,
continue, return, …

Control
Statements

bool, int, array,
struct, …

Data
Types

>, <, =, +, -, *, …Arithmetic
Operations

Anonymous
functions, events,
mapping types,

exception handling, ...

Other
Components

Runtime
Verification

Functional
Consistency

Logical
Correctness

Contract
Completeness

Solidity

¬P
LNFG

G’

SOL2M LLVM
IR Code

Fig. 3. The framework of our runtime verification approach

are used to describe the security properties of smart contracts, including functional con-
sistency, logical correctness and contract completeness. After that, Cloud 9 is employed
to generated as many verification cases as possible. Finally, runtime verification is used
to verify whether the modeling program conforms to the given properties.

3.2 SOL2M Converter

MSVL is employed to model the smart contract program written by Solidity. In order
to reduce a large number of manual operations in the modeling process, an equiva-
lent conversion tool SOL2M realizing the translation from Solidity to MSVL is devel-
oped, which achieves the automation of the modeling process. The specific structure
and workflow are shown in Fig. 4. The SOL2M converter is mainly divided into four
parts:

1. Preprocessing: Process the version identification statement in the Solidity source
program and import other source file statements;

2. Lexical analysis: Generate a lexical analyzer through the JavaCC tool, perform lex-
ical analysis on the Solidity program, and identify the source program as a specific
word stream;

148 B. Yu et al.

Lexical
Rules

Solidity

Grammar
Rules

Conversion
Rules

JavaCC

Lexical
Analyzer Parser Conversion

Implementation

Lexical
Analysis

Grammar
Analysis

Program
Conversion

Solidity
Program

MSVL
Program

Fig. 4. The structure of SOL2M

3. Syntax analysis: Generate a syntax analyzer through the JavaCC tool, perform gram-
matical analysis on the Solidity program, and recognize the word stream generated
by the lexical analysis as a program statement;

4. Program conversion: By analyzing the lexical and grammatical similarities and dif-
ferences between Solidity and MSVL, formulate the conversion rules from Solidity
to MSVL, nest the conversion code in the BNF paradigm of grammatical analysis,
and realize the dynamic conversion from Solidity to MSVL.

Since the first three parts have been given in detail in [16,17], we just introduce the
last part. Semantic analysis is a logical stage in the compilation process. Its function is
to analyze the context-sensitive nature of the source program, examine whether there
are semantic errors, and finally translate the source program into a language that can
be read by the machine. SOL2M analyzes the semantics of the Solidity source program
after syntax analysis, and formulates the equivalent conversion rules between Solidity
and MSVL according to the actual meaning of each statement, and realizes the program
conversion in the process of semantic analysis.

Through the analysis and comparison of Solidity and MSVL language, the conver-
sion rules between them are formulated. The following two aspects are introduced from
the conversion rules of contract and basic statements, and some conversion rules are
shown in Fig. 5.

In Solidity, integer variables are declared with “int8” or “uint256”, which are con-
verted to “int” in MSVL. Similarly the “bytes” in Solidity are equivalent to the “char”
in MSVL. The address variable “address” in Solidity is also converted to the “char”.
The mapping variable “mapping” is converted to structure. If there is nested mapping,
the mapping variable will be converted to multiple nested structs. In Solidity. the dec-
laration of struct is the same as MSVL so that we only need to add the corresponding

Runtime Verification of Ethereum Smart Contracts Based on MSVL 149

temporal operators in the struct. Meanwhile, the usage of function declaration in Solid-
ity and MSVL are same, but we need to add a frame operator in function to ensure
variables remain the same value over an interval unless it is explicitly assigned.

For the basic statements. if there is an approximate statement of Solidity in MSVL,
it can be replaced directly, such as “while” statement and “if” statement. If there is
no approximate statement in MSVL, abstract conversion is required, e.g. “throw” state-
ment. Since there is no statement throwing exception in MSVL, we abstract the “throw”
statement into “skip” with interval length of 1, and execute the empty statement in the
next state. That is, when an exception is thrown, the subsequent statement will not be
executed.

According to the characteristics of JavaCC, semantic analysis and program conver-
sion are carried out simultaneously in the process of syntactic analysis. The semantic
action of conversion is predefined in each parsing function according to the conversion
rules. The basic flow of program conversion is as follows: First, the Solidity program file
is read by SOL2M converter (solidity.sol). Then it enters the syntactic analysis stage.
The semantic information of the syntax unit of Solidity program is extracted based on
the conversion rules, and the Solidity program is also converted into MSVL program
which is equivalent in function. The converted MSVL program is temporarily stored
in the recreated Java collection object. After the syntactic analysis is completed, the
temporary collection is traversed and written into the MSVL program file (msvl.m).

3.3 Runtime Verification

With the traditional runtime verification approach, finding counterexamples amounts to
sequentially exploring acceptable paths in the automaton constructed for the negation
of a desired property. In order to take full advantage of hardware resources supplied
by a multi-core machine, a parallel approach has been proposed in [18] to verify full
regular temporal properties for real-world programs.

In this approach, the produced trace (possibly incomplete) is first divided into sev-
eral segments which can be verified in parallel. Then, a thread pool is created for each
segment. The thread pool provides an opportunity for each thread to track nondetermin-
istic branches in the LNFG of the negation of the property concurrently. When some of
the segments have been verified, the obtained results are merged to show whether the
trace satisfies or violates the desired property. If we know that the property is valid or
invalid with the already verified segments, it is unnecessary to keep on executing the
program and verifying more segments. Otherwise, the verification module continues
working until a conclusive result is given or all the segments are verified.

4 Case Study: Runtime Verification for a Vote Smart Contract

This section takes the voting smart contract as an example, and gives the detailed pro-
cess of modeling and verification procedure. As shown in Fig. 6, the voting contract
mainly includes three parts: state variables, structures, and functions. The name of the
contract is voteContract. The contract first declares the Candidate structure, which con-
tains two member variables, the candidate name and the number of votes obtained.

150 B. Yu et al.

Struct

Declaration
statement

Function

Return
statement

Conditional
statement

Loop
statement

Expressions with
arithmetic operators
Expressions with

assignment operators
Expressions with
logical operators

Fig. 5. Conversion rules from Solidity to MSVL

Secondly, a mapping type from the candidate to the number of votes is created, and
the array Candidate is used to store all candidates. Two functions are also declared in
the contract: function vote implements the voting for a specific candidate and function
winner selects the winner with the highest number of votes from all candidates.

The voting smart contract is modeled and automatically stored in the solidity.sol
file as the input of the SOL2M converter. The Solidity code is converted to the MSVL
code, and the result is stored in the msvl.m file. We summarize the properties of smart
contracts into three levels: functional consistency, logical correctness, and contract
completeness. The following describes the properties of the voting smart contract that
should be satisfied from these three aspects.

Functional consistency: The basic requirements that each smart contract should
meet refer to the consistency between the functions of the smart contract and the design
requirements, that is, the functions of the contract to be verified should meet the actual
requirements. For the voting smart contract, function winner needs to select the winner
with the highest number of votes from all candidates. If there is a candidate with a higher
number of votes than the winner, it means that function winner does not meet the actual
requirements. In this case, the smart contract does not meet the functional consistency.

Runtime Verification of Ethereum Smart Contracts Based on MSVL 151

Fig. 6. The vote smart contract

The PPTL formula used to describe the property can be specified as P1 ≡ f in(!m),
meaning that after the voting, there is no candidate with higher votes than the winner.

Logical correctness: The security issue of smart contracts refers to ensuring that the
logic of the functions in the contract is correct, that is, there are no logical loopholes.
For the voting smart contract, function vote is the logical core part of the whole contract.
One of the desired property is that when a person calls function vote to initiate a vote,
the number of votes he has in his hand is at least 1. The property can be specified as
P2 ≡ �(q→ r).

Contract completeness: It is the comprehensive expression of functional consistency
and logical correctness. Only when both of the functional consistency and logical cor-
rectness are satisfied, can the contract be considered to meet the completeness. For the
voting smart contract, it can be specified as P3 ≡ P1 ∧ P2 ≡ f in(!m) ∧ �(q→ r).

After the smart contract is implemented in MSVL and all of the properties are speci-
fied in PPTL formulas, runtime verification is performed to check whether the program
satisfies the desired properties. The runtime verification results show that the voting
smart contract satisfies all of these three properties. The verification time is 356 ms,
475 ms and 687 ms, respectively.

152 B. Yu et al.

5 Conclusion

In this paper, we propose a runtime verification method for Ethereum smart contracts
based on MSVL. To achieve this, a smart contract program is first modeled by MSVL.
In order to reduce a lot of manual operations in modeling, a translator tool, SOL2M,
is developed to convert the Solidity program to MSVL program. Then PPTL formulas
are used to describe the security properties of smart contracts from three aspects. After
that, runtime verification is used to verify whether the modeling program conforms to
the given security properties. Finally, a voting smart contract is employed as a case
study to show the efficiency and effectiveness of the proposed approach.

References

1. Lao, L., Li, Z., Hou, S., Xiao, B., Guo, S., Yang, Y.: A survey of iot applications in blockchain
systems: architecture, consensus, and traffic modeling. ACM Comput. Surv. 53(1), 1–32
(2020)

2. Yuan, Y., Wang, F.Y.: Blockchain and cryptocurrencies: model, techniques, and applications.
IEEE Trans. Syst. Man Cybern.: Syst. 48(9), 1421–1428 (2018)

3. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum
Proj. Yellow Pap. 151(2014), 1–32 (2014)

4. Peng, C., Akca, S., Rajan, A.: SIF: a framework for solidity contract instrumentation and
analysis. In: 26th Asia-Pacific Software Engineering Conference (APSEC). IEEE, vol. 2019,
pp. 466–473 (2019)

5. Belotti, M., Božić, N., Pujolle, G., Secci, S.: A vademecum on blockchain technologies:
wwhen, which, and how. IEEE Commun. Surv. Tutor. 21(4), 3796–3838 (2019)

6. Fan, K., Bao, Z., Liu, M., Vasilakos, A.V., Shi, W.: Dredas: decentralized, reliable and effi-
cient remote outsourced data auditing scheme with blockchain smart contract for industrial
iot. Futur. Gener. Comput. Syst. 110, 665–674 (2020)

7. Zhang, L., Zhang, H., Yu, J., Xian, H.: Blockchain-based two-party fair contract signing
scheme. Inf. Sci. 535, 142–155 (2020)

8. Song, A.Q., Chen, Y., Zhong, Y., Lan, K., Fong, S., Tang, B.R.: A supply-chain system
framework based on internet of things using blockchain technology. ACM Trans. Internet
Technol. 21(1), 1–24 (2021)

9. Tolmach, P., Li, Y., Lin, S.W., Liu, Y., Li, Z.: A survey of smart contract formal specification
and verification. arXiv:2008.02712 (2020)

10. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebraic Pro-
gram. 78(5), 293–303 (2009)

11. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press (2005)
12. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Comput. Pro-

gram. 70(1), 31–61 (2008)
13. Duan, Z., Koutny, M.: A framed temporal logic programming language. J. Comput. Sci.

Technol. 19(3), 341–351 (2004)
14. Duan, Z.: An extended interval temporal logic and a framing technique for temporal logic

programming. Ph.D. thesis, University of Newcastle upon Tyne (1996)
15. Duan, Z., Tian, C.: A practical decision procedure for propositional projection temporal logic

with infinite models. Theor. Comput. Sci. 554, 169–190 (2014)

http://arxiv.org/abs/2008.02712

Runtime Verification of Ethereum Smart Contracts Based on MSVL 153

16. Wang, X., Yang, X., Li, C.: A formal verification method for smart contract. In: 2020 7th
International Conference on Dependable Systems and Their Applications (DSA), pp. 31–36,
IEEE (2020)

17. Wang, X., Yang, X., Shu, X., Zhao, L.: Formal verification of smart contract based on MSVL.
Ruan Jian Xue Bao/J. Softw. 32(6), 1–20 (2021)

18. Yu, B., Duan, Z., Tian, C., Zhang, N.: Verifying temporal properties of programs: a parallel
approach. J. Parallel Distrib. Comput. 118, 89–99 (2018)

Automatic Generation of Specification
from Natural Language Based

on Temporal Logic

Xiaobing Wang1, Ge Li1, Chunyi Li1, Liang Zhao1(B), and Xinfeng Shu2(B)

1 Institute of Computing Theory and Technology and ISN Laboratory,
Xidian University, Xi’an 710071, People’s Republic of China

xbwang@mail.xidian.edu.cn, 0902140226@csu.edu.cn, lzhao@xidian.edu.cn
2 School of Computer Science and Technology, Xi’an University of Posts

and Communications, Xi’an 710061, People’s Republic of China
shuxf@xupt.edu.cn

Abstract. Formal specifications are usually used for describing safety
system properties and play an important role in formal verification. In
order to improve the effectiveness of formal specification generation and
formal verification, this paper proposes a framework for automatic con-
version from natural language describing properties to temporal logic
formulas, and implements a tool PPTLGenerator (Propositional Projec-
tion Temporal Logic formula Generator) for the conversion. First, PPTL-
Generator is developed based on JavaCC for automatic conversion from
natural language to PPTL. Then, the satisfiability of a PPTL formula
generated by PPTLGenerator is checked by a tool PPTLSAT. Finally, to
illustrate the principle and effectiveness of the framework, a case study
of the safety property of Level 3 autonomous car is provided.

Keywords: PPTL · Natural language processing · Temporal logic
specification · Formal methods

1 Introduction

With increase in the scale and complexity of software systems, the probabil-
ity of exposing software errors grows obviously. The software safety has been
focused in industry and academic circles [13,20]. To verify software correctness,
the formal method is proposed to check properties of the software which is an
important approach based on rigorous mathematical theories [10]. In particu-
lar, a formal specification is specified by a temporal logic formula, and then the
formal verification is employed to check whether or not the software meets the
formal specification.

This research is supported by National Natural Science Foundation of China Grant Nos.
61672403 and 61972301, National Natural Science Foundation of Shaanxi Province
Grant No. 2020GY-043, and Shaanxi Key Science and Technology Innovation Team
Project Grant No. 2019TD-001.

c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 154–171, 2021.
https://doi.org/10.1007/978-3-030-77474-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_11

Automatic Generation of Specification from Natural Language 155

The unified model checking approach based on MSVL (Modeling, Simula-
tion and Verification Language) [14] and PPTL (Propositional Projection Tem-
poral Logic) [5] has been widely applied in software systems, such as neural
networks, social networks, etc. [25,26]. In general, the steps of model checking
in the UMC4M (Unified Model Checker for MSVL) [4] are as follows: An MSVL
program M is used to describe the model, and a PPTL formula P is used to
describe properties [27]. Then ¬P is converted into an MSVL program P ′ and a
program M andP ′ is input into MC (MSVL Compiler). In this way, the model
checking problem is transformed into whether or not the program M andP ′ can
be executed successfully. If the program is executed successfully, it means that
the property is unsatisfied, otherwise it is satisfied.

In the unified model checking approach, it is essential to formalize the desired
properties. Experts need to understand specifications and use PPTL formulas to
describe properties. Generally, software requirements are informal and written
in natural languages. Hence, it is very difficult for untrained analysts to use
logic formulas to formalize properties. For this reason, it is crucial to study the
technique for automatic generation of specification from natural languages based
on PPTL.

There are three research techniques on the conversion from natural language
to formal specification. The first technique is to define a structured subset of
natural language and simplify the acquisition of semantics through the sub-
set [27]. At present, this technique is not suitable for processing complex sen-
tences. The second technique is to use semi-formal templates to analyze nat-
ural language [7,21]. However, templates have to be manually summarized by
professional designers. The third technique is to use NLP (Natural Language
Processing) and machine learning for extracting requirements. Nevertheless, it
is problematic to learn all temporal sequences for analyzers without enough
computational abilities [12,22].

To solve the above problems, we propose a PPTL generation framework for
automatic generation of specification based on PPTL. First, a tool PPTLGenera-
tor implements the conversion from natural language to PPTL specification, and
generates the formal specification with a full regular expressiveness for describing
behaviors of sequence, loop and concurrency. Then a tool PPTLSAT is used to
decide the satisfiability of the generated PPTL formula. If the formula is valid,
the unified model checking is unnecessary. If the formula is a contradiction, it
should be modified. After that, the formula can be input into the UMC4M at
a code level based on MSVL for model checking. Remarkably, to avoid learn-
ing all temporal sequences for analyzers, our framework uses a natural language
processing tool Stanford CoreNLP [15] which includes trained models for word
segmentation and part-of-speech tagging. In addition, to support compound sen-
tences, structured English grammar we defined has the capability of parsing
complex sentences. In the end, a typical case study illustrates the principle and
proves effectiveness of the framework.

The rest of the paper is organized as follows. Section 2 briefly introduces
the theoretical basis and tools of the method. Section 3 defines the rules for the

156 X. Wang et al.

automatic conversion from a natural language describing properties to PPTL
formulas. Section 4 illustrates the practicality and effectiveness of the method
with a specific case. Section 5 discusses the current related work. Finally, Sect. 6
gives conclusions and future work.

2 Background

2.1 PPTL

Temporal logic is usually used as a formal specification language for describing
system properties in model checking. PTL (Projection Temporal Logic) [3,6]
extends ITL (Interval Temporal Logic) [18,19] which includes a new temporal
operator prj. PPTL is a propositional subset of PTL, and a PPTL formula can
be reduced to NF (Normal Form) and LNFG (Labeled Normal Form Graph).
The finite and infinite paths in LNFG correspond to the finite and infinite models
of the PPTL formula respectively. Then, the decidability of PPTL is proved and
a decision procedure is obtained.

Generally, we use capital letters, possibly with subscripts, to represent PPTL
formulas. The syntax of PPTL is defined as follows:

P ::= p | ¬P | P1 ∧ P2 | ©P | (P1, . . . , Pm) prj P

where p is a proposition, © (next) and prj (projection) are temporal operators.
The derived formulas of PPTL are defined in the following, where the ¬, →,

↔ operators have the same meaning as the corresponding ones in classical logic,
and � (always) and ♦ (sometimes) are temporal operators in PPTL.

ε
def= ¬ © true more

def= ¬ε

P ;Q def= (P,Q) prj ε skip
def= ©ε

len(0) def= ε len(n) def= len(n − 1), n ≥ 1

♦P
def= (true, P) prj ε �P

def= ¬♦¬P

fin(P) def= �(ε → P) halt(P) def= �(ε ↔ P)

keep(P) def= �(¬ε → P)

The satisfiability of a PPTL formula is decided by the tool PPTLSAT. If
a PPTL formula p has an LNFG, it means that p is satisfiable, otherwise p
is a contradiction and unsatisfiable. In addition, the satisfiability of ¬p is also
checked in the PPTLSAT. If ¬p has no LNFG, it means that ¬p is unsatisfiable
and p is a tautology. If the formula is neither a contradiction nor a tautology, it
can be regarded as a property and input into the UMC4M for model checking.

Automatic Generation of Specification from Natural Language 157

2.2 NLP Tools

Three NLP tools are used in the framework for automatic generation of specifi-
cation based on PPTL, such as Stanford CoreNLP, WordNet and JavaCC. They
are briefly introduced in the following paragraphs.

Stanford CoreNLP is a natural language processing toolkit [15], which inte-
grates several practical modules, including word segmentation, part-of-speech
tagging, named entity recognition, syntax analysis and dependency analysis. Its
models are trained by deep learning techniques, and the accuracy of an automatic
natural language translation has been greatly improved compared with original
tools. In recent years, several natural language processing toolkits have been
developed, which can provide convenience to formalize properties of natural lan-
guage during the automatic generation. Word segmentation and part-of-speech
tagging in Stanford CoreNLP are used in our framework.

WordNet is an English dictionary based on cognitive linguistics jointly
designed by psychologists, linguists and computer engineers from Princeton Uni-
versity [17]. It not just arranges words in an alphabetical order, but also forms
a “word-net” according to the meaning of the words. It is a semantic web of
English vocabulary covering a wide range [1,16]. Nouns, verbs, adjectives and
adverbs are organized into a synonym network. Each synonym set represents a
basic semantic concept, and these sets are also connected by various relation-
ships. WordNet is utilized to extract words or phrases with the same semantic
information.

JavaCC is a parser generator for Java applications which is widely used in
formal language processing. A grammar specification is input into JavaCC and
converted to a top-down parser in a Java program that can recognize matches
to the grammar. Compared with YACC in generating bottom-up parsers [11],
JavaCC has a more general and readable grammar. In a JavaCC file, regular
expressions and BNF are used in lexical specifications and grammar specifi-
cations respectively. A grammar analyser is generated by JavaCC for lexical
analysis and syntax analysis in our framework.

3 Automatic Generation of Specification from Natural
Language to Temporal Logic

This section introduces the implementation process of the automatic conversion
based on the PPTLGenerator and the implementation of checking satisfiability
in detail. The overall structure of the thesis work is shown in Fig. 1. The specific
implementation of the tool can be divided into four parts:

a. Natural Language Tagging. Use the Stanford CoreNLP tool to implement
word segmentation and part-of-speech tagging of the input natural language
texts.

b. Tag Recognition. Recognize the clauses from the marked natural language
sentences, and extract information such as atomic propositions, logical oper-
ators, and temporal semantics to generate a standardized syntax tree by the
PPTLGenerator.

158 X. Wang et al.

Fig. 1. Overall work structure

c. Formula Generation. Traverse the tree paths and convert the informa-
tion of each clause node into atomic propositions according to the conversion
template. Then, a complete PPTL specification is generated by extracting
the temporal and logic information of the syntax tree. If necessary, the PPTL
formula can be modified secondary manually.

d. Formula Satisfiability Decision. Apply a tool PPTLSAT for checking
satisfiability of the PPTL formula, then generate an LNFG state transition
diagram and feedback the result to users.

3.1 Definition of Structured English Grammar

The structured English grammar is defined as a specification scheme to handle
semantic ambiguity in the complex sentence structures [27]. Instead of providing

Automatic Generation of Specification from Natural Language 159

translations for the full set of natural languages, we chose a special structured
subset which can meet requirements in the automatic conversion. In this subset,
it only supports the present tense and the future tense, and the correct grammar,
i.e. positive grammatical forms. In addition, the structured grammar allows to
extract temporal semantics from tenses, adverbs and prepositional phrases. The
definition of the structured English grammar is shown in Table 1.

∗(Star) indicates the existence of zero or more subcomponents. ?(Question
mark) indicates the existence of 0 or 1 sub-components. +(Plus sign) indicates
the existence of one or more sub-components. For nouns, verbs, participles, adjec-
tives and adverbs, we will not decompose them. Moreover, according to the defi-
nition of the structured grammar, a sentence consists of at least one clause which
consists of at least two components: a subject and a predicate. Clauses are used
to express the core interpretation to a sentence and we can also use the complex
clause to expand the interpretation of a sentence.

3.2 Formal Specification Generation

The descriptive properties of sentences in natural language can be expressed by
logic formulas through the PPTLGenerator. A general overview of Fig. 1, the
generation step of PPTL formula can be divided in four sub-steps. First, we use
a Stanford CoreNLP tool to decompose and tokenize each sentence in natural
language, which aims to extract all grammatical components. Then PPTLGen-
erator extracts atomic propositions after tag recognition, and infers the tense
operators of each atomic proposition according to tenses, adverbs and prepo-
sitional phrases. With the syntax analysis according to the structured English
grammar, a syntax tree is constructed simultaneously. Next, the satisfiability of
a PPTL formula is generated by PPTLGenerator and finally checked by the tool
PPTLSAT. The following is the specific operation process:

Step 1. Natural Language Tagging In order to process the input texts in
natural language, the Stanford CoreNLP tool is called to perform word segmen-
tation and part-of-speech tagging. Word segmentation is to split the text string
into the basic token unit of grammatical analysis. Part-of-speech tagging is the
process of marking up a word in a text as corresponding to a particular part
of speech based on both its definition and its context. In specific, we use a tag
module in the Stanford CoreNLP tool to generate the tagged results at a char-
acter level. The tag module utilizes both preceding and following tag context,
and many lexical features technologies. The part-of-speech tag is a special label
assigned to each token in a text corpus to indicate the part of speech and often
also other grammatical categories such as tense, number, case, etc. The part-of-
speech tags are used in corpus searches and in text analysis tools and algorithms.
The list of part-of-speech tags is shown in Table 2.

In the identification of part-of-speech tags, we ignore the symbols such as
and <CD>, because they have less specific impact on the identification

of the following recognition tasks.

160 X. Wang et al.

Table 1. Structured English grammar

sentence

clause

subordinator

markprj

conjunction

modifier

void subject

temporal

substantives

substantive

predicates

modality

predicate

be

complement

adjective

adverb

preposition

participle

verb

Step 2. Tag Recognition
The tag recognition module has the ability to recognize the components and
tenses of sentences that conform to the structured English grammar. More pre-
cisely, the module recognizes the tagged sentences and extracts information
including atomic propositions, logical semantics, temporal semantics, etc. Then
the tagged sentences are converted into a structured syntax tree in which tree
nodes are generated and connected according to the syntax structure of the

Automatic Generation of Specification from Natural Language 161

Table 2. Part-of-speech tags

Tag Description Tag Description

WRB Wh-adverb VBN Verb, past participle

NN Noun, singular or mass VBP Verb, non-3rd person singular present

NNS Noun, plural VBZ Verb, 3rd person singular present

CD Cardinal number IN Preposition or subordinating connector

CC Coordinating connector JJ Adjective

MD Modal RB Adverb

VB Verb, base form DT Determiner

VBD Verb, past tense PDT Predeterminer

VBG Verb, gerund or present participle

clauses. In the extraction of clause components and compound sentence struc-
ture, we also need to perform semantic analysis. We construct and modify syntax
tree nodes based on logical and temporal semantics, so as to complete the gen-
eration of the syntax tree.

In the process of logical semantic analysis, when at least two independent
clauses are connected by coordinating connectors, a new connector node will be
created and marked. When analyzing attributive clauses, it will first determine
whether the antecedent is a time noun. Remarkably, we use the synonym set in
the WordNet tool for synonym analysis. For example, if a word or a phrase is
synonymous with a time noun, it means that the word or phrase also needs to be
treated as a time noun. We should create a new antecedent node of attributive
clause, which connects the principal and subordinate sentences and describes the
logical relationship between the two clauses.

In the process of temporal semantic analysis, the recognition rule is for an
adverb, a prepositional phrase or a sentence tense. If the recognized string is
an adverb or a prepositional phrase, WordNet performs the synonym search
function that the corresponding temporal semantics will be matched according
to the search results. If it is a tense word, we mark the sentence according to
the tense type. To improve the performance of extracting logical semantics, we
define the priority for the extraction of adverbs, prepositional phrase semantics
and sentence tense semantics. The recognition priority of phrase semantics is
higher than the extraction of tense semantics, that is, if the current sentence
does not have adverbs or prepositional phrases that define temporal semantics,
the sentence tense will be extracted as the temporal semantics of the sentence.
Specially for the adverbial clause connectors, whenever the antecedent of an
adverbial clause are identified, such as when, whenever, while, if, etc. They have
the dual semantics of logical connectives and temporality. Therefore, when the
leading words of the adverbial clause are recognized, we use the antecedent to
describe the logical connectives and temporal semantic relations between the
two clauses.

162 X. Wang et al.

Through the lexical analysis and the syntax analysis, a syntax tree is con-
structed with the data structure includes: left and right subtree nodes, the node
value, the node type and the node label. The process of constructing a syntax
tree is shown as follow, and the syntax tree data structure is shown in Table 3.

Table 3. The syntax tree data structure

public int ivalue; //Node number: marking proposition

public int type; //Node type: 0, sentence 1, connector

public String svalue; //Node label: proposition content or connector

public TreeNode left; //Left or right subtree

public TreeNode right;

public int mark;

public class TreeNode

public TreeNode()

this.ivalue=0;

this.type=0; ////Node type: 0, sentence 1, connector

this.svalue=null;

this.left=null;

this.right=null;

this.mark=-1;

i) Whenever a clause is identified, we will create a new node, and assign it
to the svalue label of the node with removing the temporal information from
the identified clause. Meanwhile, we set the node type to 0 which indicates
that the node denotes a proposition node.

ii) Whenever a connective is identified, we will create a new node and
assign the identified connective to the node’s label svalue. Moreover, we set
the node type to 1, in order to indicate that the node is a connective node.

iii) Whenever an adverb, a prepositional phrase or a sentence tense
is recognized. If it is an adverb or a prepositional phrase, the temporal
tag of the sentence will be set according to the synonym recognition by
the WordNet. If it is a sentence tense, we will set the temporal tag of the
sentence according to the tense type, and modify the temporal tag of the
node according to the identified temporal semantic information.

Automatic Generation of Specification from Natural Language 163

Step 3. Formula Generation
The post-order traversal algorithm is used to access the syntax tree and the
PPTL formula is generated based on the accessed the node information. The
syntax tree traversal has two cases shown as follows:

i) If we encounter a proposition node, we need to decide whether the
node timing table is empty. If it is not empty, add a sequence operator to
the proposition according to the tag, take out the proposition description
information, and then store the argument and description of the proposition
in a hashmap.

ii) If we encounter a connector node, we need to analyze the description
information of the linked parent node, determine the logical operator based
on the description information, and connect the corresponding propositions.

In general, an atomic proposition in the syntax tree is derived from a subject
and corresponding predicate, that is, an atomic proposition is expressed in the
form of a subject-predicate. For multiple clauses connected with connectors, they
are decomposed to generate different atomic propositions which are connected by
logical operators. When the syntax tree traversal is completed, the final PPTL
formula is obtained with the corresponding atomic propositions preserved in the
hashmap. If the PPTL formula generated by the formula generation module does
not meet the user’s expectations, it can be modified manually. For example, we
can directly add PPTL operators in our developed software.

Step 4. Formula Satisfiability Decision
We apply a tool PPTLSAT for formula decision. In specific, a PPTL formula is
provided as a input parameter to the PPTLSAT, then a decision result is output
which can decide the satisfiability of the generated PPTL formula. The tool
PPTLSAT can create a folder to store the generated files automatically, in which
decision.txt and lnfg.bmp store results in text and image format separately.
To observed intuitively, the decision result can be displayed in an LNFG state
transition diagram.

4 Case Study

In recent years, many scholars have carried out research on the autonomous
driving takeover behavior. The takeover request time is an important factor
that affects the takeover behavior. It is usually defined as the time to collision
(TTC) between the vehicle and the obstacle ahead when the takeover request
warning signal of the automatic driving system is issued. Takeover time is one
of the important takeover performance indicators, which is usually defined as
the time interval from the start of the takeover request time to when the driver
turns off the autopilot mode. The closing mode of automatic driving is mainly
realized through the buttons on the steering wheel, braking and steering (setting
the brake pedal or steering wheel angle to exceed a certain threshold).

A natural language sentence in Table 4 aims to evaluate the safety of L3
autonomous vehicle takeover [8].

164 X. Wang et al.

Table 4. L3 autonomous vehicle takeover

When an anchor vehicle appears in front, the system sets the time in the next state,

then the system will send the message, then when the driver presses the switch button,

the vehicle switches modes.

Next, we will follow the steps mentioned above to process the sentence and
explain the principle of our work. Figure 2 shows the main interface and running
results of our tool.

Table 5. Part of speech tagging results

WRB When DT an NN anchor NN vehicle VBZ appears IN in NN front, DT the

NN system VBZ sets DT the NN time IN in DT the JJ next NN state, RB then

DT the NN system MD will VB send DT the NN message, RB then WRB when

DT the NN driver VBZ presses DT the NN switch NN button, DT the NN vehicle

VBZ switches NNS modes.

4.1 Natural Language Tagging

Stanford CoreNLP is utilized to quickly and painlessly get linguistic annotations
for the sentence, which performs word segmentation, part-of-speech tagging. A
part of tagging results corresponding to the sentence through word segmentation
is shown in Table 5, from which we can observe that each word has been tokenized
with a part-of-speech tag added before.

4.2 Tag Recognition

Then the tagged results are input into the tag-recognizing module in PPTL-
Generator. It can realize the function of recognizing tagged sentences: identify
components and tenses of the sentence, as well as extract atomic propositions to
construct a syntax tree through syntax analysis. The corresponding syntax tree
is shown in Fig. 3.

Automatic Generation of Specification from Natural Language 165

Fig. 2. PPTL formula generation

As shown in Fig. 3, the leaf nodes store atomic propositions and temporal
description information about the autonomous driving behaviors. In addition,
the internal nodes and root nodes store subordinate connectors and coordinating
connectors separately. In our case, we set different node types and node labels
to distinguish the role of nodes:

166 X. Wang et al.

Fig. 3. The syntax tree

i) when: The proposition in the left subtree holds can infer that the proposi-
tion in the right subtree holds. It corresponds to a logical symbol → which
connects the left and right subtrees of the when node, and the normal form
is written as: Pleft−subtree → Pright−subtree.

ii) then: If the proposition in the left subtree holds, the proposition in the right
subtree will hold in the next state. It have the sequential semantics which is
described as Pleft−subtree;Pright−subtree corresponding to the logical symbol;
(chop).

iii) in the next state: WordNet is used to recognize the synonym of this
phrase. The phrase is found synonymous with next and defined as next.
The semantics of the next tree node indicates that the current proposition
is established in the next state with the logical symbol © (next).

iv) will: The proposition in the current tree node holds in a certain future
state, and the current atomic proposition is defined with the logic symbol
♦ (sometimes).

4.3 Formula Generation

The generated syntax tree is traversed in a post order, and formulas are gen-
erated according to the information of tree nodes. When traversing the syntax
tree, we map the when connector node to a logical symbol →. The then node is
mapped to a logical symbol; (chop). The phrase in the next state is mapped to
© (next). The tense verb will is mapped to ♦ (sometimes). Then we split a sen-
tence into several atomic propositions, and compose PPTL formulas according
to conversion rules. The generated atomic propositions and formulas are shown
in Table 6.

We can see from the result that connectors and temporal description infor-
mation have been removed from the generated atomic propositions. The proposi-

Automatic Generation of Specification from Natural Language 167

Table 6. Formula generation result

P: an anchor vehicle appears

Q: the system sets the time

R: the system send the message

S: the driver presses the switch button

T: the vehicle switches modes

PPTL formula:

Fig. 4. LNFG

tional argument is marked. The generated formula that describes the properties
of the sentence about the automatic driving vehicle conforms to the information
of tree nodes expressed in the syntax tree.

4.4 Decision of Formula Satisfiability

In the end, the PPTLSAT is applied to check the satisfiability of the PPTL
formula. Meanwhile, an LNFG is generated to show the decision result in Fig. 4.

168 X. Wang et al.

Through the state transition diagram, the process that the satisfiability of
the PPTL formula is checked by the PPTLGenerator can be observed obviously.
Simultaneously, satisfiability decision can also provide the basis for inputting
into the UMC4M with an MSVL program for model checking in the follow-up
work.

5 Related Work

In order to help identify natural language effectively, there are three main
branches of current work. The first is the definition of a natural language struc-
tured English grammar subset, with the help of structured form to simplify
semantic acquisition. The second is to use semi-formal template to analyze nat-
ural language, and the third is using NLP technology and machine learning to
realize automatic extraction of requirements analysis.

In the use of structured English grammar, Fei Wang et al. [24] devise an auto-
matic transformation method from restricted natural language requirements to
AADL model. The ambiguity and uncertainty in requirement specification can
be reduced through restricted natural language. Rongjie Yan et al. [27] imple-
ment the automatic translation from natural language describing properties to
abstract temporal logic. It expands pure syntax analysis by adding semantic
reasoning and the division of input and output variables. The structured gram-
mar defined in this study focuses on defining some simple sentences, which is
slightly insufficient for describing the nature of complex requirements. Rongjie
Yan et al. [9] create a grammar which has the capability of capturing the writ-
ing style and sentence structure of a specification and facilitating the automatic
translation of English specification sentences into formal SystemVerilog Asser-
tions. In general, methods can reduce the ambiguities of automatic conversion by
structured English grammar with the technologies of structured data dictionary,
domain thesaurus and limited sentence description, etc.

A common writing style used in formal specification causes the number of
assertions in these clusters too large. To solve this problem, Mathias Soeken
et al. [21] propose an algorithm that uses natural language processing tech-
nology to automatically convert natural language assertions into SystemVerilog
Assertions. It divides all assertions into subsets based on sentence similarity, and
then provides a translation template for each subset. Shalini Ghosh et al. [7] pro-
pose a framework for the automatic extraction of requirement specifications from
natural language. The structure of natural language processed in this research
is semi-formal, and the Symbolic Analysis Laboratory(SAL) model generated in
the middle is a unified template defined manually. Fei Wang et al. [23] pro-
pose a semi-structured restricted natural language requirement template for
requirement specification in component-based embedded software and realizes
the transformation between software requirements based on the semi-structured
template and AADL model. Though multiple assertions can be translated using
the same template, which greatly reduces the verification work, the templates in
most methods are still summarized by professional designers manually.

Automatic Generation of Specification from Natural Language 169

Natural language requirement extraction using NLP technology performs
syntactic reconstruction to split a complex sentence into simple sentences to
extract assertions from the requirements document. Deva Kumar Deeptima-
hanti et al. [2] normalize NL requirements and develop UML models for nat-
ural language requirements using efficient Natural Language Processing. Brian
Keng et al. [12] propose a method that uses failed assertions, counter examples,
and mutation models to generate alternative attributes for design verification,
which can effectively find high-quality alternative assertions for empirical cases
by NLP. However, this process has not yet been automated. Moreover, in the field
of machine learning, Shobha Vasudevan et al. [22] propose a method to auto-
matically extract assertions based on simulation tracking using NLP techniques.
The assertion will be presented to the user (design or verification engineer) to
determine whether the assertion is a suitable for designing, but the difficulty of
learning all temporal sequences increases over time in this method.

6 Conclusions

This paper elaborates two main issues on the automatic generation of tempo-
ral logic converted by natural language. The first problem is abstracting the
automatic conversion from properties described by natural language to PPTL
formulas. The second problem is using the formula satisfiability decision tool to
decide the satisfiability of PPTL formulas. In response to these two issues, we
propose four specific steps to implement: First, tag the input natural language
texts by the Stanford CoreNLP tool, and save tagged results. Second, process
and identify the results, implement syntax analysis to build a syntax tree. Then,
convert the syntax tree into a PPTL formula according to the defined rules and
edit the obtained PPTL formula with necessary. Finally, call a tool PPTLSAT
to decide the satisfiability of the PPTL formula. In addition, an example is used
to illustrate the working principle of the method in detail. Our method reduces
the manual work on generating formal specifications in the formal verification
method. Future work will focus on extending structured natural languages to
general natural languages, making them more suitable for ordinary users.

References

1. Brown, K.: Encyclopedia of Language and Linguistics, vol. 1. Elsevier (2005)
2. Deeptimahanti, D.K., Babar, M.A.: An automated tool for generating UML models

from natural language requirements. In: 2009 IEEE/ACM International Conference
on Automated Software Engineering, pp. 680–682. IEEE (2009)

3. Duan, Z.: An extended interval temporal logic and a framing technique for temporal
logic proing. Ph.D. thesis, Newcastle University, Newcastle upon Tyne, UK (1996).
http://hdl.handle.net/10443/2075

4. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
167–186. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88194-
0 12

http://hdl.handle.net/10443/2075
https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1007/978-3-540-88194-0_12

170 X. Wang et al.

5. Duan, Z., Tian, C., Zhang, L.: A decision procedure for propositional projection
temporal logic with infinite models. Acta Informatica 45(1), 43–78 (2008)

6. Duan, Z., Yang, X., Koutny, M.: Semantics of framed temporal logic programs.
In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 356–370.
Springer, Heidelberg (2005). https://doi.org/10.1007/11562931 27

7. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSE-
NAL: automatic requirements specification extraction from natural language. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 41–46.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 4

8. Gold, C., Happee, R., Bengler, K.: Modeling take-over performance in level 3 con-
ditionally automated vehicles. Accid. Anal. Prev. 116, 3–13 (2018)

9. Harris, C.B., Harris, I.G.: GLAsT: learning formal grammars to translate natural
language specifications into hardware assertions. In: 2016 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 966–971. IEEE (2016)

10. Huang, S.Y., Cheng, K.T.: Formal Equivalence Checking and Design Debugging,
vol. 12. Springer, New York (1998). https://doi.org/10.1007/978-1-4615-5693-0

11. Johnson, S.C., et al.: YACC: Yet Another Compiler-Compiler, vol. 32. Bell Labo-
ratories Murray Hill (1975)

12. Keng, B., Safarpour, S., Veneris, A.: Automated debugging of systemverilog asser-
tions. In: 2011 Design, Automation & Test in Europe, pp. 1–6. IEEE (2011)

13. Koopman, P., Wagner, M.: Autonomous vehicle safety: an interdisciplinary chal-
lenge. IEEE Intell. Trans. Syst. Mag. 9(1), 90–96 (2017)

14. Ma, Y., Duan, Z., Wang, X., Yang, X.: An interpreter for framed tempura and
its application. In: First Joint IEEE/IFIP Symposium on Theoretical Aspects of
Software Engineering, TASE 2007, Shanghai, China, 5–8 June, pp. 251–260. IEEE
Computer Society (2007). https://doi.org/10.1109/TASE.2007.10

15. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics, ACL
2014, Baltimore, MD, USA, 22–27 June, pp. 55–60. The Association for Computer
Linguistics (2014). https://doi.org/10.3115/v1/p14-5010

16. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995). https://doi.org/10.1145/219717.219748

17. Miller, G.A.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge
(1998)

18. Moszkowski, B.C.: Compositional reasoning about projected and infinite time. In:
1st IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS 1995), Fort Lauderdale, Florida, USA, 6–10 November, pp. 238–245.
IEEE Computer Society (1995). https://doi.org/10.1109/ICECCS.1995.479336

19. Moszkowski, B.C.: Reasoning about digital circuits (1983)
20. Praitheeshan, P., Pan, L., Yu, J., Liu, J.K., Doss, R.: Security analysis methods

on ethereum smart contract vulnerabilities: a survey. CoRR (2019). http://arxiv.
org/abs/1908.08605

21. Soeken, M., Harris, C.B., Abdessaied, N., Harris, I.G., Drechsler, R.: Automat-
ing the translation of assertions using natural language processing techniques. In:
Proceedings of the 2014 Forum on Specification and Design Languages, FDL 2014,
Munich, Germany, 14–16 October, pp. 1–8. IEEE (2014). https://doi.org/10.1109/
FDL.2014.7119356

https://doi.org/10.1007/11562931_27
https://doi.org/10.1007/978-3-319-40648-0_4
https://doi.org/10.1007/978-1-4615-5693-0
https://doi.org/10.1109/TASE.2007.10
https://doi.org/10.3115/v1/p14-5010
https://doi.org/10.1145/219717.219748
https://doi.org/10.1109/ICECCS.1995.479336
http://arxiv.org/abs/1908.08605
http://arxiv.org/abs/1908.08605
https://doi.org/10.1109/FDL.2014.7119356
https://doi.org/10.1109/FDL.2014.7119356

Automatic Generation of Specification from Natural Language 171

22. Vasudevan, S., Sheridan, D., Patel, S.J., Tcheng, D., Tuohy, W., Johnson, D.R.:
GoldMine: automatic assertion generation using data mining and static analysis.
In: Design, Automation and Test in Europe, DATE 2010, Dresden, Germany, 8–
12 March, pp. 626–629. IEEE Computer Society (2010). https://doi.org/10.1109/
DATE.2010.5457129

23. Wang, F., et al.: Approach for generating AADL model based on restricted natural
language requirement template. J. Softw. 29(8), 2350–2370 (2018). http://www.
jos.org.cn/1000-9825/5530.html

24. Wang, F., Yang, Z.B., Huang, Z.Q., Liu, C.W., Zhou, Y., Bodeveix, J.P., Filali,
M.: An approach to generate the traceability between restricted natural language
requirements and AADL models. IEEE Trans. Reliab. 69(1), 154–173 (2019)

25. Wang, X., Guo, W., Zhao, L., Shu, X.: Runtime verification method for social
network security based on source code instrumentation. In: Duan, Z., Liu, S., Tian,
C., Nagoya, F. (eds.) SOFL+MSVL 2018. LNCS, vol. 11392, pp. 55–70. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-13651-2 4

26. Wang, X., Yang, K., Wang, Y., Zhao, L., Shu, X.: Towards formal verification of
neural networks: a temporal logic based framework. In: Miao, H., Tian, C., Liu, S.,
Duan, Z. (eds.) SOFL+MSVL 2019. LNCS, vol. 12028, pp. 73–87. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-41418-4 6

27. Yan, R., Cheng, C., Chai, Y.: Formal consistency checking over specifications in
natural languages. In: Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, DATE 2015, Grenoble, France, 9–13 March, pp.
1677–1682. ACM (2015). http://dl.acm.org/citation.cfm?id=2757200

https://doi.org/10.1109/DATE.2010.5457129
https://doi.org/10.1109/DATE.2010.5457129
http://www.jos.org.cn/1000-9825/5530.html
http://www.jos.org.cn/1000-9825/5530.html
https://doi.org/10.1007/978-3-030-13651-2_4
https://doi.org/10.1007/978-3-030-41418-4_6
http://dl.acm.org/citation.cfm?id=2757200

Testing and Formal Verification

Software Testing with Statistical Partial
Oracles

- Application to Neural Networks Software -

Shin Nakajima(B)

National Institute of Informatics, Tokyo, Japan
nkjm@nii.ac.jp

Abstract. With the advent of Bigdata analytics or machine learning
software, the characteristics of test target programs become more diver-
gent than before. It brings about two issues on the test oracle problems,
uncertainties of the testing conditions and unknown correctness criteria.
This paper proposes a new testing framework, which is general enough
to account for the existing statistical metamorphic testing and is further
amenable to adapt itself to the machine learning software testing. The
proposed approach is illustrated with an experiment of testing neural
network programs.

1 Introduction

Software testing [2] is a practical approach to assuring quality of computer pro-
grams, but the characteristics of test targets are more divergent than before.
Software systems are often data-intensive, such as CPS/IoT or Bigdata analyt-
ics, working on large sets of digital data that represent real-world phenomena on
human behavior or industrial Bigdata. These programs are not free from uncer-
tainties due to fluctuations in observed values or to data distributions. Therefore,
testing under the uncertainties [8] is one of the major research topics in software
testing of data-intensive systems including deep neural networks (DNN) [10,13].

Quality assurance of DNN programs is a challenging research topic [20,32].
Those programs extract valuable pieces of information from a given collection
of data. The trained DNN models are not predictable before the development,
always suffering from the uncertainties of the data distributions. Further the
prediction or inference results cannot be definite, but may be accompanied with
probabilistic certainties. These characteristics bring about new challenges to
software testing methods, in particular to test oracles [14].

A standard method for quantifying uncertainties is the probabilistic modeling
of the test target behavior, and adapts notions in statistics as a basis for testing;
the methods may employ statistical hypothesis tests to refute the correctness
of test target programs [17,26]. In addition, Metamorphic Testing (MT) [5],
originally proposed in [4], is a practical testing methodology for programs that
require derived test oracles [3]. MT is, indeed, successful in testing of machine
learning classifiers [19,21,30]. Although those two notions, the hypothesis tests
c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 175–192, 2021.
https://doi.org/10.1007/978-3-030-77474-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_12

176 S. Nakajima

and MT, are combined to be Statistical Metamorphic Testing (SMT) [11], the
method is introduced informally, and thus is not clear how it is instantiated
to the cases of DNN software testing, which involves programs of two different
roles, training and prediction [10,13].

This paper proposes a new testing framework general enough to account for
the SMT. The framework is amenable to adapt itself to testing of DNN software.
The proposed approach is illustrated with an experiment of testing DNN-based
machine learning classifier programs.

2 Statistical Approach to Software Testing

This section presents background materials on test oracles and statistical
approaches to software testing.

2.1 Test Oracles

A test oracle is informally a systematic method to check whether the test target
program is correct with respect to its expected behavior. Software testing is
a dynamic checking of programs, and the method consists of three technical
aspects; (a) selecting test input data, (b) determining a correct output value
for the input data, and (c) checking if the result of the execution satisfies the
correctness criteria. The checking method is either manual or automatic.

For simplicity, in this paper, a test target program is modeled as a func-
tion f∈D→D′, where D and D′ are the sets of data. An automatic test ora-
cle is a predicate G[N]

T (Ca, f(a))
def
= (Ca = f(a)), where a∈D is a test input

and Ca∈D′ is a correct output value for the particular input a. In addition,
= ∈D′×D′ is the equality relation. The correct value may be given as a spec-

ification or determined by means of theoretical considerations. Let Sa∈D′
A be

such a value, whose domain D′
A may be more abstract than D′. A specified

test oracle [3] needs a method of concretizing Sa to Ca. An abstraction function
abs∈D′→D′

A helps this translation; Sa = abs(Ca). The oracle now takes a form

that G[S]
T (Sa, f(a))

def
= (abs−1(Sa) = f(a)).

Correct values may not be known beforehand, and those programs are non-
testable [29]. Ca is replaced by an output from a program different from the test
target [6]. A derived test oracle G[D]

T [3] involves two programs, f(x) and g(x);

G[D]
T (g(a), f(a))

def
= (g(a) = f(a)). The program g(x) is another implementation

of the same specification as the test target f(x), and is developed by means of
an N-version programming methodology or design diversity [1] approach. This
notion of G[D]

T requires developing at least two versions of programs, namely
involves tremendous manual efforts. The testing method can be complex and
costly.

Metamorphic testing (MT), originally proposed in [4], is a property-based
testing method based on the notion of partial oracles [5]. The method checks
whether a program f() satisfies a metamorphic relation MR∈DN×D′N (N>1),

Software Testing with Statistical Partial Oracles 177

MR(x(1), . . ., x(N), f(x(1)), . . ., f(x(N)))

denoting a 2N -relationship on the N inputs x(n) and N outputs f(x(n)).
A specific class of MRs is appropriate in practice. Such an MR consists of an

input sub-relation in the form of a mapping Tf , and an output sub-relation RT

involving the outputs of the source input data and a follow-up one1.

MR(x(1), x(2), f(x(1)), f(x(2)))
def
= (x(2) = Tf (x(1)))⇒RT (f(x(1)), f(x(2)))

This subclass of MRs can further be specialized to be a basis of derived test
oracles; G[M]

T (f(a), f(Tf (a)))
def
= (f(a) = f(Tf (a))). Tf is a follow-up test gener-

ation function (Tf∈D→D), and the accompanying relation RT (f(a), f(Tf (a)))
is chosen as an equality. As seen in the above, the oracle G[M]

T , based on the MT
methodology, includes Tf and RT referring to two executions of the test target
f().

Up to now, the behavior of test targets is assumed to be deterministic; f(a)
always returns the same result for the same input data a. Some programs, how-
ever, violate this assumption. They, even for the same input data, may behave
differently resulting in different outputs from execution to execution. Such behav-
ior may be probabilistic, and is amenable to statistical analysis methods, which
requires extending the notion of test oracles as well.

2.2 Statistical Test Oracles

Next presents a brief review of test oracles based on statistical methods [17,26],
which is referred to statistical test oracles in this paper.

Hypothesis Testing. Basically, a statistical test oracle GT adapts the statis-
tical hypothesis testing method.

For simplicity, a test target program, showing probabilistic behavior, is mod-
eled as a function relying on a certain probabilistic variable p internally. Such a
program is denoted as fp∈D→D′, where p follows a probabilistic distribution ρ,
written as p∼ρ. For a certain input data a∈D, the output fp(a) is not definite,
but differs from execution to execution. If ya denotes an output for the input
data a, then a series of such executions form a set Ya = {ya

(j)} that follows a
certain probabilistic distribution as well. Further, the statistical average of the
output values (ya) is supposed to be a good observer, against which a known
correct value Ca is checked.

The hypothesis testing is one of the methods to reason about statistical
properties of a sample (a collection of data). First introduces a null hypothesis
H0 together with an alternative hypothesis H1; H0 states that ya = Ca, while H1

is that ya �=Ca. Second decides a significance level (α), defining a critical region
which is a set of statistic values to show evidence against H0. Third calculates a

1 For simplicity, it is assumed that N = 2.

178 S. Nakajima

test statistic ta to summarize the information of the sample distribution. Fourth
shows that the test statistic ta falls in the critical region. Then, H0 is rejected at
the certainty level of α, which implies that the test target program to produce
ya may be faulty because of H1 (ya �=Ca).

Now, a statistical test oracle GT (Ya, Ca) is defined in terms of the statistical
hypothesis testing procedure HT (〈ya, sa

2, N〉, Ca). In particular, for cases where
the sample distribution is Gaussian, written as Norm(μ, σ2), the test statistic,

ta =
ya − Ca√

sa
2/N

follows the t-distribution. With this ta, the procedure HT is written as

HT (〈ya, sa
2, N〉, Ca)

def
= if |ta| > tα/2(N − 1) then error else unknown

where error indicates that the H0 is rejected at the certainty level α. |ta| is
an absolute value of ta, and tα/2(N − 1) denotes the critical value of the t-
distribution of N − 1 degrees of freedom at the confidence level α; the test is
two-tailed as understood from the introduced hypotheses.

An auxiliary function U accepts a set of data or a sample (Ya), and returns a
tuple consisting of the average (ya), the standard variation (sa

2), and the sample
size (N). Let V be a set of ya, then Ya∈PV , and thus U∈PV →R×R×N , where
R is real numbers and N is natural numbers. For a set Ya, |Ya| denotes its size.

U(Ya as {ya
(j)})

def
=

let val ya = 1
N

∑
ya

(j) and sa
2 = 1

N−1

∑
(ya

(j) − ya)
2
and N = |Ya|

in 〈ya, sa
2, N〉 end

These lead to the oracle; GT (Ya, Ca)
def
= ¬(HT (U(Ya), Ca) = error).

Statistical Metamorphic Testing. Statistical Metamorphic Testing (SMT)
[11] is a refinement of the statistical test oracle to the case of the metamorphic
testing. Let fp(x) be a non-testable program to exhibit probabilistic behavior.
Given a test data a, a sample {y

(j)
a } (or Ya) is a set of executions of fp(a), and

{y
(j)
T (a)} (or YT (a)) is for fp(Tf (a)). SMT adopts the two-sample t-test. The two

samples, gathered from executions of a single test target program fp(), may
have the same population variance. Therefore, the test statistic is that

ta =
ya − yT (a)√
s2/N + s2/M

, and s2 =
(N − 1)sa

2 + (M − 1)sT (a)
2

N + M − 2

where N = |Ya| and M = |YT (a)|. Finally, the test oracle for SMT is that

GT (Ya, YT (a))
def
= ¬(HS(U(Ya),U(YT (a))) = error).

The hypothesis testing procedure HS(〈ya, sa
2, N〉, 〈yT (a), sT (a)

2,M〉) is similar
to HT , but refers to tα/2(N + M − 2) instead. As seen from the definition of ta
above, the null hypothesis H0 represents that ya = yT (a). This is consistent with
the fact that the predicate RT in the MR refers to equality relations.

Software Testing with Statistical Partial Oracles 179

3 Proposed Testing Framework

3.1 General Framework

This section starts with discussions on two extensions to SMT [11] (explained in
Sect. 2.2), and then introduces the proposed testing framework.

Two Extensions. First, a program showing probabilistic behavior is denoted
as fp(x) (Sect. 2.2), where p stands for a probabilistic variable p∈P and p∼ρ. The
program may also take a form of f∈D→(P→D′) when p is made explicit. Then,
f(a)∈P→D′ forms Ya if f(a)() accepts repeatedly an input data from a set of
values Iρ = {p∈P | p∼ρ}. With another function O′∈(P→D′)→(PP→PD′), the
executions O′(f(a))(Iρ) result in a set Ya. A statistical test oracle similar to GT

is applicable to f(a)() as well.
Second, O′ plays an important role in testing of machine learning (ML)

software. As in Sect. 3.2, ML software usually involves two kinds of non-testable
programs, a training program Lf and a prediction program If . Lf accepts a
training dataset and generates a trained machine learning model to provide the
functional behavior of If . If PV refers to the type of training dataset, Lf is
schematically a function of PV →(D→D′), and If is of type D→D′. Software
testing of Lf () is indirect and may be conducted only with If (). When Lf is
a test target program, If is, in a sense, an observer. A function O′ is so defined
as to play a role of the observer, to which the statistical test oracle GT refers.

Statistical Partial Oracle. Now introduces a general testing framework which
extends the notion of statistical metamorphic testing. A test target program is
modeled as a function F∈V →V ′. Additionally, an auxilary function may take a
form such as obs∈(V →V ′)→(V →(D→D′)). In some cases, V ′ is identified with
D→D′. For a set of evaluation data of size N , ES = {e(n)∈D | e(n)∼ρ} with
a certain probability distribution ρ, an observer O∈(V →V ′)→(V →(PD→PD′))
is defined as

O(F)(a)(ES as {e(n)}) = {obs(F)(a)(e(n))},

where a∈V is an input test data to the test target F . Then, U(O(F)(a)(ES))
returns a tuple of the statistical indicators (Sect. 2.2).

Some test targets may require partial test oracles. Two programs F(1) and
F(2) are involved together with a single set of evaluation data ES. As ES is
common, a revised statistical hypothesis testing procedure may take a form of

H ′
S(U(O(F(1))(A(1))(ES)), U(O(F(2))(A(2))(ES)))

where A(j)∈V is a test input to F(j) (j = 1 or 2). Because F(a)() = (F(a))(),
the proposed statistical test oracle GS is

GS(F(1)(A(1)), F(2)(A(2)))
def
= ¬(H ′

S(. . .) = error)

180 S. Nakajima

which encapsulates in itself the hypothesis testing procedure for a given pair of
partial oracles (F(1)(A(1)) and F(2)(A(2))) and the common evaluation dataset
ES whose data follow a certain probabilistic distribution.

Note, in this case, that the predicate RT in the MR is the equality between
the statistical averages of two series of executions (Sect. 2.2).

3.2 Framework for Neural Networks Testing

Testing of Deep Neural Networks (DNN) software is formulated as an instanti-
ation of the proposed general framework GS . In particular, in order to present
technical discussions concretely, the example case below concerns with the DNN
software of supervised classifier tasks. Note that standard practices of DNN soft-
ware [10,13] involve a training program Lf and a prediction program If .

Let Y (W ;x) be a machine learning model and W be a set of weight parame-
ters. Alternatively, the DNN model is written as YW (x) to represent a W -indexed
family of functions. Given definite values of weights W c, YW c∈V →T is a func-
tion. Then, the machine learning model is Y ∈W→(V →T) or Y ∈P(V →T) if W
is made implicit.

A training dataset LS is a set of data-points or tuples; each data-point
consists of a multi-dimensional vector data and a supervisor tag. The train-
ing dataset is LS∈P(V ×T) and LS = {〈x(n), t(n)〉}. A data-point is considered
to be sampled from a data distribution, 〈x(n), t(n)〉∼ρEMP , where ρEMP is the
empirical distribution of LS.

The training program Lf accepts LS, written as Lf (LS), and generates
a trained DNN model (a function): Lf∈P(V →T)→(P(V ×T)→(V →T)). Lf is
essentially a program to solve a numerical optimization problem and returns
YW ∗∈V →T .

W ∗ = arg min
W

E〈x,t〉∼ρEMP [[�(Y (W ;x), t)]]

where �(,) is an appropriate loss function, and E〈x,t〉∼ρEMP [[·]] represents an
average over the probability distribution ρEMP .

The prediction program If , if trained machine learning models YW ∗ are made
explicit, takes a form of If (YW ∗)(). It uses the trained DNN model, and returns
the calculated result for an input data vector (If ∈ (V →T)→(V →V ′)).

The observer function Of , that the oracle GS refers to, employs the trained
DNN model and calculates a sample with a specified set of the evaluation
data ES. With appropriate sets D and D′, Of ∈ (V →T)→(PD→PD′). Addi-
tionally, using an auxiliary function obsf working on an individual data e∈D,
Of (YW ∗)(ES as {e(j)}) = {obsf (YW ∗)(e(j))}.

Because YW ∗ = Lf (Y)(LS), the above definition of Of is rewritten to be
Of (Lf (Y)(LS))(), which illustrates the fact that the observer depends on the
DNN model Y and training dataset LS.

This revised form can capture two different notions of partial oracles from
a unified viewpoint for testing of machine learning programs. First, in a
design diversity approach in which the testing of Lf involves two alternative
DNN models, an instantiation of the framework refers to Of (Lf (Y(1))(LS))()

Software Testing with Statistical Partial Oracles 181

and Of (Lf (Y(2))(LS))(). Second, in a metamorphic testing approach in
which the training datasets are constructed systematically with the notion
of the dataset diversity [21], the framework refers to Of (Lf (Y)(LS))() and
Of (Lf (Y)(Tf (LS)))(). Tf is a follow-up test generation function, but is actu-
ally a dataset transformer, Tf∈P(V ×T)→P(V ×T).

3.3 Observers for Monitoring Neural Network States

Concrete examples of Of or obsf monitor the states of a trained DNN model
against an input data vector. Below introduces two of such observer functions,
taking a form of Of∈(V →T)→(P(V ×T)→P[0, 1]).

External Indices. The discussion here assumes that the machine learning
task is to classify data into one of the C classes. The prediction program,
If (YW ∗)∈V →[0, 1]C , accepts a vector data x(j)∈V , which is an element of a
tuple in an evaluation dataset ES∈P(V ×T) (〈x(j), t(j)〉∈ES), and returns a C-
dimensional vector π; each component π[c]∈[0, 1] represents a probability that
the input data x(j) belongs to the category c for c = 1, . . ., C. Furthermore, c∗

is the category that it makes π maximum (c∗ = argmax
c∈[1,C]

π[c]). An observer

function objprob(YW ∗)(x(j)) is defined to return a value π[c∗];

Oprob(YW ∗)(ES as {〈x(j), 〉}) = { π[c∗] }.

The accuracy is sometimes regarded as a good indicator to study whether the
search, in the training phase, proceeds as expected [13]. The supervisor tag
may adopt the one-hot vector representation, t(j)∈{0, 1}C ; t(j)[c0] = 1 if the
corresponding data x(j) is categorized to c0, and t(j)[c′] = 0 for c′∈[1, . . ., C] and
c′ �=c0.

An accuracy, Acc∈(V →T)→(P(V ×T)→[0, 1]), is defined as a ratio to show
how many data in ES reconstruct the corresponding supervisor tag;

Acc(YW ∗)(ES as {〈x(j), t(j)〉}) =
| {〈x(j), t(j)〉 | t(j)[c∗] = 1} |

| ES | .

However, this paper does not consider Acc as an observer, because its type is
different from that of Of .

Internal Indices. The second observer introduced here is based on the notion
of the neuron coverage [24], and is independent of the machine learning tasks.
A trained DNN model YW ∗ consists of neurons, which form a set denoted as
{νk}. A neuron νk is a function to define an input-output relationship such that
ok = σk(

∑
j w∗

j ×inj). Given a threshold th, a neuron is said active if ok>th
holds when present the input signals inj at νk; the signals are propagated along
the network from the vector data (x) input to the trained DNN model (YW ∗(x)).
The neuron coverage NC is a ratio of the active neurons.

182 S. Nakajima

An observer function obsact∈(V →T)→(V →[0, 1]) is the neuron coverage for
neurons at the penultimate layer of YW ∗ when an input vector data is presented.
Let PL be a set of neurons at the penultimate layer.

obsact(YW ∗)(x) =
| {νk∈PL|ok>th} |

| PL |

The observer is that Oact(YW ∗)(ES as {〈x(j), 〉}) = { obsact(YW ∗)(x(j)) }. Note
that obsact is defined to look at the neurons in the penultimate layer only.

4 A Case Study

This section presents results of an experiment, in which the proposed general
testing framework GS is instantiated to DNN programs of a classification task,
and studies how the internal indices are adequate for the software testing of
training programs Lf .

4.1 MNIST Classification Problem

MNIST dataset is a standard problem of classifying handwritten arabic numbers.
It consists of a training dataset LS of 60,000 sheets, and a testing dataset TS
of 10,000. Both LS and TS can be selected randomly from a pool of sheets, and
thus are considered to follow the same data distribution. The machine learning
task is to classify an input sheet, or a vector data, into one of ten categories
from 0 to 9. A sheet is presented as 28 × 28 pixels, each taking a value between
0 and 255 to represent gray scales. Pixel values represent hand-written strokes,
and each number appears as specific patterns of these pixel values.

In the experiments, the learning model is a classical fully-connected neural
network [13] with a hidden middle layer and an output layer. The activation
function of neurons in the hidden layer is ReLU ; its output is linear for positive
input values and a constant zero for negatives. A softmax activation function
is introduced so that the inference program If returns probabilities that an
incoming data belongs to each of the ten categories. This choice is consistent
with the discussion regarding to π and Oprob in Sect. 3.3.

4.2 Overview of Testing Method

Testing of a deep neural networks (DNN) training program Lf is difficult in
general. A resultant trained learning model YW ∗ , that Lf is searching for, is
not only unknown prior to the development, but also unable to be validated
directly. The validation can be conducted only with a prediction program If of
which behavior the model YW ∗ defines. Furthermore, the prediction results are
not decisive, and are accompanied with uncertainties (softmax values).

Because of these, testing Lf is conducted with an instance of the proposed
framework introduced in Sect. 3.1.

Software Testing with Statistical Partial Oracles 183

Fig. 1. Synthesized data with semantic noises

GS(Lf (Y)(LS), Lf (Y)(Tf (LS)))

In particular, it is based on the metamorphic testing method.
Note that Lf solves a non-convex optimization problem [13] to search for

an optimal solution. The solution is, indeed, a trained machine learning model.
Therefore, identifying an appropriate metamorphic property would be key to
adopting the testing framework successfully. It involves to find a follow-up test
generation function Tf with a metamorphic relation that the hypothesis testing
procedure HS refers to.

The details are the subjects of the rest of this section. Briefly, Tf is so chosen
to build up the dataset diversity [21,22], and the metamorphic relation is iden-
tified by means of studying the characteristics of the optimization problem [23].

4.3 Semantic Noises

A test input to Lf is a kind of training dataset. Since the dataset may be regarded
as implicit specifications of If or YW ∗ under development, any test input dataset
must serve to train the same machine learning task. In the experiment, a dataset
used as the test input is similar to, but different from the training dataset LS of
the MNIST classification task. Such datasets for software testing of Lf show the
dataset diversity [21], and each data-point in them is synthesized with semantic
noises.

Let Sf be a function to generate a data vector augmented with semantic
noises.

Sf∈(V →T)→(V ×T→V)

Given a trained learning model YW ∗ and a data-point 〈xc, tc〉, Sf (YW ∗)(xc, tc)
returns a new data vector X∗ to build a new data-point 〈X∗, tc〉. Sf is essentially
a program to solve a constrained optimization problem below [22]; its formulation
is based on the L-BFGS [27].

X∗ = argmin
X

�(YW ∗(X), tc) + λ·�′(X, xc)

s.t. 0 ≤ Xj ≤ 1 ∧ Ψ(X,xc)

184 S. Nakajima

where Xj is a j-th component of a vector X. In the above, �(,) and �′(,)
are appropriate loss functions, defined, for example, with the L2 norm. The first
term enforces that a prediction for X with YW ∗ must reconstruct the tag tc.
The second term specifies that X is close to xc measured in terms of the chosen
norm. Selecting a right value for the hyper-parameter λ will produce an optimal
solution being added semantic noises such that X∗ is indistinguishable from xc

for human eyes. Figure 1 shows a portion of a synthesized dataset with semantic
noises. Each obtained graphical image mostly preserves the original patterns,
and thus the dataset serves to train the same machine learning task as MNIST.

With a trained learning model YW ∗ obtained from the MNIST training
dataset that LS = {〈x(n), t(n)〉}, a new dataset LS′ is so constructed as below.

LS′ = {〈x∗(n), t(n)〉 | x∗(n) = Sf (YW ∗)(x(n), t(n))}
The expression can be rewritten compactly with a new function Tx,

Tx∈(V →T)→(P(V ×T)→P(V ×T))

and that LS′ = Tx(Lf (Y)(LS))(LS) because YW ∗ = Lf (Y)(LS).

Another function TY , so defined that TY (LS)
def
= Tx(Lf (Y)(LS))(LS), is a

dataset transformer,
TY ∈P(V ×T)→P(V ×T).

It shows that the functional behavior of TY is dependent on the given Y (W ;).
A series of datasets LS(K) = TY (LS(K−1)) is systematically synthesized with

TY where LS(0) is equal to LS of the MNIST training dataset. The series consti-
tute a set building up the dataset diversity; ΞY (LS) = {LS,LS(1), . . ., LS(N)}.
The MNIST testing dataset TS leads to ΞY (TS) as well.

4.4 Solving Two Optimization Problems Interleaved

Two basic ingredients of the metamorphic testing method are a follow-up test
generation Tf and its accompanying metamorphic relation RelT . Now, Tf refers
to the function TY or Tx generating the diverse datasets ΞY . The next question
is what properties RelT looks at. The discussion here depends on the view in
which the training machine learning model (Sect. 3.2) and the semantic noise
generation (Sect. 4.3) are both formulated as optimization problems. Two solu-
tions of optimization problems are involved; YW (K−1)∗ = Lf (Y)(LS(K−1)), and
LS(K) = Tx(YW (K−1)∗)(LS(K−1)).

Because of the second equation concerning to the semantic noises, LS(K)

is more fitted to YW (K−1)∗ than LS(K−1) is. In a sense, the data distribution
in LS(K) is more biased towards YW (K−1)∗ than LS(K−1) is. Owing to this,
the degree referring to how much LS(K) is biased towards YW (K)∗ is smaller
than the degree arising from LS(K−1) towards YW (K)∗ . Repeatedly solving the
two optimization problems, in an interleaving manner, leads to an index M
at which LS(M) and LS(M+1) are not distinguishable, because each resultant

Software Testing with Statistical Partial Oracles 185

trained machine learning model returns almost the same computation results
for a fixed set of evaluation data ES; Of (YW (M)∗)(ES)≈Of (YW (M+1)∗)(ES).
This implies that the metamorphic relation is simply the equality between some
indices obtained from the M -th and M+1 -th executions.

If a test target program Lf has faults in it, the interleaving process may not
reach such a stable index M . Therefore, GS is introduced as a test oracle making
use of the hypothesis testing procedure,

H ′
S(U(Of (Lf (Y)(LS(M)))(ES)), U(Of (Lf (Y)(TY (LS(M))))(ES)))

with a certain observer function Of (see Sect. 3.3).

4.5 Controlled Experiment

The controlled experiment concerns with two machine learning programs,
LPC

f (Y) and LBI
f (Y). The symbol PC is an abbreviation of Probably Correct,

and LPC
f is a faithful implementation of a standard machine learning algorithm

to adopt well-known methods such as the back-propagation and stochastic gra-
dient decent [13]. The BI stands for Bug-Injected, and LBI

f is a modification
of LPC

f . The machine learning model Y (W ;), common to both programs, is a
classical fully-connected neural network, in which the activation function of neu-
rons at the hidden layer is ReLU. The two test target programs are collectively
denoted as LMD

f where MD is either PC or BI.
The data used in the training process are MNIST training dataset LS and its

testing dataset TS. The experiment, as explained below, consists of two series,
one with LPC

f (Y) and another with LBI
f (Y) in parallel, and the derived informa-

tion is decorated similarly as LS
(K)
MD or TS

(K)
MD. The MNIST datasets are indexed

as LS
(0)
MD and TS

(0)
MD. In particular, LS

(0)
PC = LS

(0)
BI = LS by construction, and

similar relationships hold for TS
(0)
MD. Note that, for K ≥ 1, LS

(K)
PC may not be the

same as LS
(K)
BI and, neither is the case between TS

(K)
PC and TS

(K)
BI . Note that

LS
(K)
MD is used training in the process of searching for solutions while TS

(K)
MD

plays a role to check whether the search proceeds appropriately [13]. Thus, both
LS

(K)
MD and TS

(K)
MD are employed in obtaining Y MD

W (K)∗ .
Below are the steps of the experiment starting with K = 0.

1. Training conducted with LS
(K)
MD and TS

(K)
MD,

Y MD
W (K)∗ = LMD

f (Y)(LS
(K)
MD)

2. Using the original MNIST test dataset TS as a set of evaluation data to mea-
sure indices, Acc(Y MD

W (K)∗)(TS), Oprob(Y MD
W (K)∗)(TS) and Oact(Y MD

W (K)∗)(TS),
3. Generating a pair of datasets augmented with semantic noises,

LS
(K+1)
MD = Tx(Y MD

W (K)∗)(LS
(K)
MD) and TS

(K+1)
MD = Tx(Y MD

W (K)∗)(TS
(K)
MD)

4. Repeating the process so that K := K + 1 if not finished,

186 S. Nakajima

Fig. 2. External indices

The statistical test oracle GMD
S is evaluated at the end of each cycle above,

GMD
S (LMD

f (Y)(LS
(K)
MD), LMD

f (Y)(LS
(K+1)
MD))

It basically employs the hypothesis testing procedure referring to the observer
function for the internal states Oact,

HMD
S (U(Oact(LMD

f (Y)(LS
(K)
MD))(TS)), U(Oact(LMD

f (Y)(LS
(K+1)
MD))(TS)))

Since the evaluation data TS is common, the sample sizes are the same (N = M),
for which the t-value can be as simple as

t(K) =
y(K) − y(K+1)√

(s(K)
2 + s(K+1)

2)/N

The t(K) is in accordance with the identified metamorphic relation, namely the
equality between indices obtained from two executions. Furthermore, |t(K)| is
compared with tα/2(∞) because the sample size N is almost 10, 000 and can be
large enough.

4.6 Results and Discussions

External Indices. Figure 2 shows graphs concerning with the external indices.
The x-axis is common, and indicates the number of iterations K. The y-
axis in Fig. 2(a) denotes the accuracy Acc, and that in Fig. 2(b) refers to the
average of classification probability of Oprob. For simplicity, let AccMD

(K) be
Acc(Y MD

W (K)∗)(TS), and ProbMD
(K) be the average of Oprob(Y MD

W (K)∗)(TS).
Two graphs in Fig. 2 are monotonically decreasing. It is consistent with the

method of constructing LS(K). As K increases, semantic noises are repeatedly
added such that the empirical distribution of LS(K) is shifted from that of LS(0)

whose distribution may be the same as TS. In summary, the data shift TS with
respect to LS(K) is large as K increases, and thus the accuracies become lowered.

Software Testing with Statistical Partial Oracles 187

Fig. 3. Internal indices

The accuracies at K being 0 in Fig. 2(a), AccPC
(0) and AccBI

(0), are almost the
same nearly to be 99%. This ensures a previous observation in [21] that the
accuracy is not appropriate to check whether the test target program Lf may
contain faults.

As K increases, the accuracies decrease, both AccBI
(K) and ProbBI

(K) decrease
faster than AccPC

(K) and ProbPC
(K). This indicates that the degrees of the data shift

in LS
(K)
BI against TS are larger than those in LS

(K)
PC . In addition, Y BI

W (K)∗ is less
robust than Y PC

W (K)∗ because ProbBI
(K) is smaller than ProbPC

(K).

Internal Indices. Figure 3 shows graphs concerning with the internal indices.
In Fig. 3(a), the x-axis is the same as those in Fig. 2, but the y-axis refers to the
neuron coverage at the penultimate layer, indeed, to the average of Oact. Let
ActMD

(K) be the average of Oact(Y MD
W (K)∗)(TS).

The values of ActPC
(K) and ActBI

(K) are quite different. ActPC
(K) reach a stable

value just below 0.9 for K>1, while the values of ActBI
(K) are below 0.5 and

decrease down to below 0.4. These show that Y PC
W (K)∗ employ more neurons than

Y BI
W (K)∗ to make predictions for classifying data, but may imply that many neu-

rons in the machine learning model are void in Y BI
W (K)∗ . However, the difference in

the ActMD
(K) values is not usable for software testing of Lf , because the threshold

value to discriminate LPC
f from LBI

f is not apparent in general.
The discussion in Sect. 4.4 indicates that Lf , if free from faults, derives

trained machine learning models YW (K)∗ , for which the average of Oact is con-
verged. This is in accordance with the ActPC

(K) graph in Fig. 3(a), but it is still
not clear from the graphs alone whether the ActBI

(K) graph is similar or not. It
needs a detailed statistical analysis, which will be studied below.

Hypothesis Testing. As mentioned previously, the statistical oracle GMD
S is

essentially the two-sample hypothesis testing, HMD
S .

Figure 3(b) shows the t(K) values. The dotted line depicts the t-value at a con-
fidence level of 0.001, t0.001/2(∞). The graph concerning with LBI

f is well above

188 S. Nakajima

the dotted line for all the measured K. Thus, the hypothesis testing method
rejects the null hypothesis. It implies that the statistical averages of ActBI

(K) and
those of ActBI

(K+1) are not equal. Therefore, LBI
f does not satisfy the metamor-

phic property discussed in Sect. 4.4, which is consistent with the fact that LBI
f

is so implemented as to inject faults in it.
Although the graph for LPC

f goes below the t0.001/2(∞) value, it does not
ensure that LPC

f accepts the null hypothesis (equivalently satisfies the metamor-
phic property), and thus that the program is free from faults. It is because the
oracle uses the hypothesis testing method, which is usable for rejecting the null
hypothesis, but is not appropriate to provide a positive support for it. Namely,
the hypothesis testing is a methodology to find faults, if any, which is the same
as software testing in general, as is argued in [7], “program testing can be a
very effective way to show the presence of bugs, but is hopelessly inadequate for
showing their absence”.

5 Related Work

Adopting the statistical hypothesis testing method to software testing is not
new. Such statistical oracles are known effective, as presented in Sect. 2.2, for
testing of programs showing probabilistic behavior [11,17,26]. However, applying
the method to testing of machine learning software, particularly deep neural
networks, is new in this work.

Metamorphic Testing (MT) [4,5] is a standard approach to machine learning
testing [32], and identifying Metamorphic Properties (MPs) is a primary concern
for the successful application of the methodology. The work [30] introduces six
MPs for machine learning classifiers. Each MP is concretized to more than one
follow-up test generation functions, Tj .

Consider an example of supervised machine learning classifiers, Support Vec-
tor Machines (SVM) [25]. SVM is formulated as a Lagrangian-based optimization
problem, and the obtained Lagrange multipliers are employed to define the sep-
arating hyper-planes. The test oracle therein may be considered to take the form
of G[M]

T (Cf (LS), Cf (Tj(LS))) for such Tjs, if Cf represents the SVM results. The
work [19] further studies the MT for SVM, and discusses a systematic method
to derive the follow-up test generation function, each of which is so identified as
to make the Lagrangian invariant. This view is based on a fact that the obtained
hyper-planes are the same when the Lagrangian is not changed with invariant-
preserving transformations. Furthermore, the method proposes to apply such a
Tf () successively to obtain TK

f () for the application of K times. The test oracle

is G[M]
T (Cf (TK

f (LS)), Cf (TK+1
f (LS))) to compare the results, one with TK

f (LS)
and another with TK+1

f (LS) for a series of Ks. This view is generalized to the
notion of the dataset diversity [21]; the dataset diversity is also a basis of the
testing method that this paper presents (Sect. 4.3).

Some recent works [28,31,33] illustrate how the MT is effective in machine
learning software testing. Their focus is testing of If (YW ∗), namely testing

Software Testing with Statistical Partial Oracles 189

whether a trained machine learning model YW ∗ behaves as expected. The test
oracle takes a form of G[M]

T (If (YW ∗)(a), If (YW ∗)(Tj(a))), and the metamor-
phic relation is defined on the application properties such as the steering angles
of the auto-driving cars. Each work makes use of a different method for imple-
menting a set of follow-up test generation functions {Tj}. DeepTest [28] adapts
a classical data augmentation method [15], which is referred to as the test-time
augmentation. DeepRoad [31] uses a GAN-based data synthesis method UNIT
[16]. As GAN [9] ensures that the synthesized data follow the data distribution of
the original test data {a}, the method enlarges the coverage of positive testing.
On the other hand, negative testing, to study exceptional cases, is desirable as
well, and the follow-up generation function Tf in [33] adapts the idea of fuzz [18].

The approach proposed in this paper is best summarized as a statistical test
oracle to take a form of GS(Lf (Y)(TM

f (LS)), Lf (Y)(TM+1
f (LS))) for some

M where RT is the statistical equality as the null hypothesis indicates. The
rationale behind the testing method is the identified MR (Sect. 4.4). Although
the testing method to use the statistical hypothesis seems complicated, it is
more general than the approach in [21]. This previous work adopts a runtime
monitor for execution of training programs Lf , which may be dependent on
some heuristics to solve the machine learning optimization programs. On the
other hand, because the function T is also defined in terms of an optimization
problem (Sect. 4.3), the method in this paper does not need to monitor program
executions.

The group ΞY (LS) (Sect. 4.3) is diverce enough to be used either positive
or negative testing. Choosing Oact(YW ∗)(TS) as the observer is based on the
preliminary studies in [23]. It follows the observation that the ratio of active
neurons at the penultimate layer converges as the semantic noises, added to the
test input dataset, are large (Sect. 4.3). The function Sf to augment semantic
noises [22] is based on the L-BFGS [27], and builds up the dataset diversity that
ΞY (LS) exhibits.

Last, the neuron coverage (NC) is introduced in [24] as the test suite adequacy
criterion, and NC is calculated for all neurons in a trained machine learning
model YW ∗ . DeepTest [28] uses NC values as a guide to control the test data
generation process. The usefulness of NC is, however, questioned [12] in view
of efficiency in identifying hidden faults. The primary discussion is that NC has
little correlation with certain correctness criteria in regard to the external indices.
The view in [12] does not contradict with the key idea of the present paper in that
the internal indices based on NC are employed as the test indices. Particularly,
the results in Sect. 4.6 illustrate that the internal indices are appropriate to
discriminate the bug-injected program from the probably correct one, but the
accuracy, one of the standard correctness criteria, is inappropriate.

In summary, the notion of neuron coverages are used, in this paper, as test
indices for the quality assurance of DNN software, while the existing works,
including the original proposal [28], regard the NC as adequacy criteria of test
input data.

190 S. Nakajima

6 Concluding Remarks

Major contributions of the present paper are two fold: (1) to introduce a general
testing framework to account for machine learning software. Testing of such
software is conceptually complicated because two programs, a training program
Lf (Y) and a prediction program If (YW ∗), are involved, (2) to show a concrete
case of applying the proposed method to testing of a training program with
neural network models Lf (Y). Currently, the machine learning model is classical
fully-connected neural networks. Extending the approach to cases of other DNN
models, such as CNN or RNN [10], might be necessary to show the usefulness of
the proposed method.

Last, some might argue that testing of If is more important than of Lf ,
because If is the entity to make predictions for data at the operation time. We
conjecture that the proposed method will be usable to test the machine learning
frameworks provided as an open source platform. As in the case of component-
based software development, where black-box open source components are often
integrated into a software system, the system integrator is responsible for the
reliability of the whole system, and thus testing of the black-box platform is
mandatory.

Acknowledgment. The work is supported partially by JSPS KAKENHI Grant Num-
ber JP18H03224, and is partially based on results obtained from a project commis-
sioned by the NEDO.

References

1. Ammann, P., Knight, J.C.: Data diversity: an approach to software fault tolerance.
IEEE TC 37(4), 418–425 (1988)

2. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University
Press, Cambridge (2008)

3. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. IEEE TSE 41(5), 507–525 (2015)

4. Chen, T.Y., Chung, S.C., Yiu, S.M.: Metamorphic Testing - A New Approach
for Generating Next Test Cases, HKUST-CS98-01. The Hong Kong University of
Science and Technology (1998)

5. Chen, T.Y., et al.: Metamorphic testing: a review of challenges and opportunities.
ACM Comput. Surv. 51(1), 1–27 (2018). Article no. 4

6. Davies, M., Weyuker, E.: Pseudo-oracles for non-testable programs. In: Proceedings
of the ACM 1981, pp. 254–257 (1981)

7. Dijkstra, E.W.: The humble programmer. Comm. ACM 15(10), 859–866 (1972)
8. Elbaum, S., Rosenblum, D.S.: Known unknowns - testing in the presence of uncer-

tainty. In: Proceedings of the 22nd FSE, pp. 833–836 (2014)
9. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in NIPS 2014,

pp. 2672–2680 (2014)
10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press, Cam-

bridge (2016)

Software Testing with Statistical Partial Oracles 191

11. Guderlei, R., Mayer, J.: Statistical metamorphic testing - testing programs with
random output by means of statistical hypothesis tests and metamorphic testing.
In: Proceedings of the QSIC 2007, pp. 404–409 (2007)

12. Harel-Canada, F., Wang, L., Gulzar, M.A., Gu, Q., Kim, M.: Is neuron coverage a
meaningful measure for testing deep neural networks? In: Proceedings of the 28th
ESEC/FSE, pp. 851–862 (2020)

13. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson India (2016)
14. Howden, W.E.: Theoretical and empirical studies of program testing. In: Proceed-

ings of the 3rd ICSE, pp. 305–311 (1978)
15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. In: Advances in NIPS 2012, pp. 1097–1105 (2012)
16. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation net-

works. In: Advances in NIPS 2017, pp. 700–708 (2017)
17. Mayer, J., Guderlei, R.: Test oracles using statistical methods. In: Proceedings of

the SOQUA 2004, pp. 179–189 (2004)
18. Miller, B.P., Fredricksen, L., So, B.: An empirical study of the reliability of UNIX

utilities. Comm. ACM 33(12), 32–44 (1990)
19. Nakajima, S., Bui, H.N.: Dataset coverage for testing machine learning computer

programs. In: Proceedings of the 23rd APSEC, pp. 297–304 (2016)
20. Nakajima, S.: Generalized oracle for testing machine learning computer programs.

In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 174–179.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 13

21. Nakajima, S.: Dataset diversity for metamorphic testing of machine learning soft-
ware. In: Duan, Z., Liu, S., Tian, C., Nagoya, F. (eds.) SOFL+MSVL 2018. LNCS,
vol. 11392, pp. 21–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
13651-2 2

22. Nakajima, S., Chen, T.Y.: Generating biased dataset for metamorphic testing of
machine learning programs. In: Gaston, C., Kosmatov, N., Le Gall, P. (eds.) ICTSS
2019. LNCS, vol. 11812, pp. 56–64. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31280-0 4

23. Nakajima, S.: Distortion and faults in machine learning software. In: Miao,
H., Tian, C., Liu, S., Duan, Z. (eds.) SOFL+MSVL 2019. LNCS, vol. 12028,
pp. 29–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41418-4 3.
arXiv:1911.11596

24. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of
deep learning systems. In: Proceedings of the 26th SOSP, pp. 1–18 (2017)

25. Platt, J.C.: Fast training of support vector machines using sequential minimal
optimization. In: Advances in Kernel Methods - Support Vector Machine, pp. 185–
208. The MIT Press, Cambridge (1999)

26. Servcikova, H., Borning, A., Socha, D., Bleek, W.-G.: Automated testing of stochas-
tic systems: a statistically grounded approach. In: Proceedings of the ISSTA 2006,
pp. 215–224 (2006)

27. Szegedy, C., et al.: Intriguing properties of neural networks. In: Proceedings of the
ICLR 2014. arXiv:1312.6199 (2013)

28. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of the 40th ICSE, pp. 303–314
(2018)

29. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470
(1982)

https://doi.org/10.1007/978-3-319-74781-1_13
https://doi.org/10.1007/978-3-030-13651-2_2
https://doi.org/10.1007/978-3-030-13651-2_2
https://doi.org/10.1007/978-3-030-31280-0_4
https://doi.org/10.1007/978-3-030-31280-0_4
https://doi.org/10.1007/978-3-030-41418-4_3
http://arxiv.org/abs/1911.11596
http://arxiv.org/abs/1312.6199

192 S. Nakajima

30. Xie, X., Ho, J.W.K., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y.: Testing and val-
idating machine learning classifiers by metamorphic testing. J. Syst. Softw. 84(4),
544–558 (2011)

31. Zhang, M., Zhang, Y., Zhang, L., Liu, C., Khurshid, S.: DeepRoad: GAN-based
metamorphic testing and input validation framework for autonomous driving sys-
tems. In: Proceedings of the 33rd ASE, pp. 132–142 (2018)

32. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine Learning Testing: Survey,
Landscapes and Horizons. arXiv:1906.10742 (2019)

33. Zhou, Z.Q., Sun, L.: Metamorphic testing of driverless cars. Comm. ACM 62(3),
61–67 (2019)

http://arxiv.org/abs/1906.10742

Formalizing Spark Applications
with MSVL

Meng Wang(B) and Shushan Li

Cyberspace Security and Computer College, Hebei University, Baoding 071000, China
wangmenghbu@hbu.edu.cn

Abstract. Distributed computing framework Spark is widely used to
deal with big data sets efficiently. However, it is more demanding imple-
menting in Spark than coming up with sequential implementations. Thus,
formal verification is needed to guarantee the correctness of Spark appli-
cations. In order to verify Spark applications using verification tool
UMC4M, this paper presents an approach to formalizing Spark appli-
cations with Modeling Simulation and Verification Language (MSVL).
We first implement Spark operations with MSVL functions, then formal-
ize a Spark application with MSVL based on its directed acyclic graphs
(DAGs). As a case study, the word count application is used to show the
process.

Keywords: Spark · DAG · Big data · Formal verification

1 Introduction

As the volume of data to analyze grows rapidly, parallel computing frameworks
such as Hadoop [16], Spark [12], and Flink [1] are gaining significant momen-
tum for processing data on terabyte and petabyte scales. In simple terms, these
frameworks split a large computing task into smaller computing tasks on several
machines.

Hadoop MapReduce is widely used in the industry as a distributed computing
framework, and the programming process includes two stages: Map and Reduce.
A MapReduce job can only deal with data sets for one-pass computation, then
save results to a disk for a next job. However, if the data processing is com-
plex, it is often necessary to execute a series of MapReduce jobs in sequence.
This leads to a high time cost since each job must load data from a disk. In
contrast, Spark introduces an abstraction called resilient distributed datasets
(RDDs) to solve the problem. Users can explicitly cache an RDD in memory

This research is supported by Advanced Talents Incubation Program of the Hebei
University (No. 521000981346) and Hebei Natural Science Foundation under grant No.
F2020201018.
c© Springer Nature Switzerland AG 2021
J. Xue et al. (Eds.): SOFL+MSVL 2020, LNCS 12723, pp. 193–204, 2021.
https://doi.org/10.1007/978-3-030-77474-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77474-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-77474-5_13

194 M. Wang and S. Li

across machines and reuse it in multiple MapReduce-like parallel operations.
Moreover, Spark processes data through a more general directed acyclic graph
(DAG) of operators using rich sets of transformations and actions. Spark inher-
its the map and reduce operators provided by Hadoop and adds operators filter,
groupByKey, distinct etc. for parallel programming by developers. In order to
deal with different distributed tasks such as streaming analysis, graph analysis,
SQL interactive query and machine learning, Spark provides different compo-
nents, including Spark Streaming, Spark GraphX, Spark SQL and SparkMLib.
In addition, Spark supports several programming languages such as Scala, Java
and Python.

Spark exploits a master/worker architecture and the master is responsible for
the work scheduling of each node in the entire cluster. As the main abstraction
in Spark, RDD supports two kinds of operations: transformation operations and
action operations, where transformation operations includes map(), flatmap(),
filter(), reduceByKey(), groupByKey(), combineByKey, etc., while action oper-
ations includes collect(), count(), countByValue(), reduce(), foreach(), etc. The
actual calculation of Spark takes place when an RDD action operation is called.
Before that, for all transformations, Spark just records the trajectory generated
by RDD without triggering the actual calculation. The Spark kernel draws a
DAG of the computational path at the moment when it needs to compute. A
node in a Spark DAG is called stage, which is divided according to the wide
dependence. Then the DAG is used to organize the operations that compose a
Spark application.

It is of great importance to guarantee the correctness of big-data batch appli-
cations especially Spark applications. However, little research has been done
in this area. Grossman et al. [7] propose an SMT-based approach for verify-
ing the equivalence of interesting classes of Spark programs, and show that it
is complete under certain restrictions. Beckert et al. [3] prove the equivalence
between imperative and deterministic MapReduce algorithms by partitioning
the proof into a sequence of equivalence proofs between intermediate programs
with smaller differences, and demonstrate the feasibility by evaluating it on k-
means and PageRank algorithms. Baresi et al. [2] just focus on the verification
of evaluating execution time of Spark applications. They abstract each specific
execution of a Spark application as a DAG and formulate the identification of
the global execution time as a reachability problem. However, these efforts do
not verify temporal properties which Spark applications should be satisfied. In
[15], we formalize Hadoop Mapreduce with MSVL. Here, we focus on how specify
Spark applications in a formal way in order to verify temporal properties of the
programs.

Formalizing Scala Programs with MSVL 195

Modeling, Simulation and Verification Language (MSVL) [4,5] is a formal
language which is used for verifying properties of software. Support tools includ-
ing compiler MC [10], runtime verification tool PPTLCheck [11] and model
checker UMC4M [8] have been developed by researchers. Thus, we prefer to for-
malize Spark applications using MSVL programs. To do that, we first implement
the two kinds of RDD operations using MSVL functions. Then we abstract a
specific execution of a Spark application as a DAG. After that, we model the
Spark application according to its DAG using MSVL programs.

The following are the three main contributions of the paper: (1) The princi-
ple for formalizing RDD transformation operations and action operations using
MSVL is summarized. (2) The principle how to formalizing a Spark application
with the help of its DAG is proposed. (3) A unified model checking approach at
code level [6,8,14] to verifying Spark applications is demonstrated.

The paper is organized as follows. Section 2 briefly presents the syntax and
semantics of MSVL. Section 3 provides an overview of Apache Spark. In Sect. 4,
we summarize the principle for formalizing Spark applications with MSVL pro-
grams; then, a unified model checking approach at code level to verifying these
programs is demonstrated. In Sect. 5, as a case study, a word count problem is
given to show how a Spark application can be modeled and verified with MSVL.
Section 6 concludes the work.

2 Preliminaries

2.1 MSVL

As an executable subset of Projection Temporal Logic (PTL) [5], MSVL [4,5]
can be used to model, simulate and verify programs. The arithmetic and boolean
expressions in MSVL can be inductively defined as follows:

e ::= c | x | © e | -© e | g(e1, . . . , em) | ext f(e1, . . . , en)
b ::= true | false | ¬b | b0 ∧ b1 | e0 = e1 | e0 < e1

where c is a constant, and x a variable. -© e and © e stand for the value of a
variable at the previous state and the next one, respectively. The g(e1, . . . , em) is
a call of a state function g. Each usual arithmetic operation (+ | − | ∗ | %) can be
viewed as a two-arity function call g(e1, e2). ext f(e1, . . . , en) is an external call
of MSVL function f , which means we concern only the return value of function
f but not the interval over which the function is executed. These expressions can
be treated as terms in PTL. The statements of MSVL can be defined by PTL
formulas as follows.

196 M. Wang and S. Li

MSVL supports not only some basic control flow statements such as sequen-
tial, conditional and while-loop statements, but also non-determinism and con-
current programming including selection, conjunction, parallel and projection
statements. The termination statement empty indicates that the current state
is the final state of an interval. next φ means that at the next state φ will be
executed. More details refer to [5]. In addition, MSVL supports plenty of data
types including integer, float, char, string, array, pointer and structure [9], and
a mechanism for internal and external function calls [13]. Further, an MSVL
compiler MC [10] and a model checker UMC4M [8] have been developed to
execute and verify MSVL programs, respectively.

3 Spark Framework

Spark is usually deployed on a cluster of servers and exploits a master/worker
architecture. Multiple slave nodes and one master node are used to form the
cluster. The master node needs to schedule all tasks to complete a job, while
each slave node only completes tasks published by the master node. The basic
framework of Spark is as shown in Fig. 1.

In order to describe how Spark works, some Spark terminology definitions
are given as follows:

(1) Application: a spark application written by users, containing codes running
on Driver and Executor. An application consists of one or more jobs.

(2) Job: produced by executing an action operation. Each action in a Spark
application will be scheduled as a job by Spark.

Formalizing Scala Programs with MSVL 197

Fig. 1. Spark basic framework diagram

(3) Task: the smallest unit of work, which is responsible for performing and
completing specific tasks on an Executor.

(4) Stage, TaskSet: a set of related tasks that do not have Shuffle dependencies
on each other. Each job is split into stages.

(5) SparkContext: a process responsible for communication with Cluster Man-
ager, resource application, task allocation and task monitoring, etc.

(6) Driver Program: the host process executing the main function of an appli-
cation and creating SparkContext. It transforms an application into tasks
and coordinates the scheduling of tasks between Executor processes.

(7) Cluster Manager: responsible for resource allocation. It acts as the master
node in the Standalone mode of Spark. It controls the whole cluster and
monitors all workers.

(8) Worker Node: acting as a slave node. It is responsible to start an Executor
or a Driver.

(9) Executor: a process running on Work Node which is responsible for running
tasks and storing data to memory or disks. Each application has a separate
set of Executors.

(10) TaskScheduler: responsible for the actual physical scheduling of each specific
task. It submits Taskset to Executor to run and report the results.

The detailed operation process of Spark is as follows:

(1) The running environment of a Spark application is built. That is a Spark-
Context is created and initialized. After that, SparkContext submits regis-
tration to the Cluster Manager and requests to run Executors.

(2) Cluster Manager assigns Executors required for application execution, and
starts these Executors on Worker Nodes. Executors send heartbeat to the
Cluster Manager.

(3) The SparkContext builds a DAG and divides it into stages. A stage can been
seen as a TaskSet. The SparkContext sends TaskSets to TaskScheduler.

(4) Executors request Tasks from SparkContext, then the TaskScheduler issues
tasks to Executors for running. At the same time the SparkContext issues
application code to Executors.

(5) Tasks run through Executors. When the tasks are completed, all the
resources are released.

198 M. Wang and S. Li

Fig. 2. Dependency types

Each operation in Spark generates an RDD. The calculation of Spark takes
place when an action operation of an RDD executes, while for all transformation
operations before the action operation, Spark just records the trajectory gener-
ated by RDDs, without triggering the real calculation. Spark kernel will draw a
DAG about the calculation path when the calculation needs to take place. After
that the DAG is divided into stages according to narrow dependencies and wide
dependencies. As shown in Fig. 2, narrow dependencies require that a partition
of each parent RDD is used by at most one partition of each child RDD, while
for wide dependencies, a partition of each parent RDD may be used by more
than one partion of each child RDD and a partition of each child RDD usually
uses all partitions of parent RDDs.

4 Principle for Formalizing Spark Applications

Spark can be used to deal with large data sets effectively. However, it is more
demanding implementing in Spark than coming up with sequential implementa-
tions. Thus, checking the correctness of Spark application is of great importance.
In this paper, we concentrate on formalizing a Spark application with MSVL and
present the principle of formalization.

4.1 Data Storage System

Usually, large data sets to be processed are stored on external storages. Spark
can call a textFile operation to read data from a file to RDD, and call a saveAs-

Formalizing Scala Programs with MSVL 199

TextFile operation to write data to a file. Whereas MSVL supports C functions
as external functions. We can call these functions on external file management
such as fopen(), fgets(), fputs(), fclose(), etc. to read and write data. In addition,
in order to store data in local memory, MSVL supports multi-types to build var-
ious data structures. When data are read from a file, they can store to lists or
arrays in MSVL. If data are complicated consisting of several components, type
struct in MSVL can be used to store the data.

4.2 Spark Operations

Spark supports two kinds of operations, namely transformation operations and
action operations, where transformation operations include map(), flatmap(),
filter(), reduceByKey(), groupByKey(), combineByKey, etc., while action oper-
ations include collect(), count(), countByValue(), reduce(), foreach(), etc.
Whereas MSVL supports function definitions and statements similar to impera-
tive languages such as assignment, conditional, sequential and while statements.
We can write the corresponding functions using MSVL statements and add them
to the MSVL function library.

4.3 DAG-Based Formalization

Each operation in Spark generates an RDD. Connect RDDs with an edge, then
these RDDs and edges form a DAG. A DAG can be generated after a series of
transformations of original RDDs. The next task of Spark kernel is to divide
computation into task sets, namely stages, according to the DAG diagram, so
that tasks can be submitted to the computation node for real computation. Two
stages are connected if one uses the data produced by the other. A stage can only
be executed if and only if all of its predecessors are completed. The intermediate
result of default is kept in memory. When a DAG is divided into stages, Spark
considers which parts can be calculated pipelined in distributed computing in
order to improve the efficiency. That means operations in the same stage are
executed in a pipeline way. For different stages of a DAG, if there are no direct
or indirect connections between them, they can be calculated in parallel.

As you can see from Sect. 2, MSVL is a parallel programming language
with sequential construct P ;Q, several parallel or concurrent constructs such
as P and Q, P ||Q and (P1, . . . , Pm) prj Q. For one stage in RDD, parallel
construct P ||Q can be used to formalize the pipeline calculation on a series of
executors. For two stages which have direct connection between them, sequential
construct P ;Q can be used to formalize the relation. For two stages which have
no direct or indirect connections between them, parallel construct P ||Q can be
used to formalize it.

4.4 Verifying Programs

A compiler MC and a model checker UMC4M have been developed for MSVL.
These enable us to execute and verify properties of MSVL programs translated
from Spark applications automatically.

200 M. Wang and S. Li

5 Case Study: Word Count

In this section, we use the word count application as a case study to show our
work. The following subsections show the details of formalization.

5.1 Spark Application

Figure 3 shows Scala code of the word count Spark application that per-
forms a simple aggregation over a dataset read from a text file where each
line contains some English words. The variable fileRDD contains multi-
ple lines of text content after Spark textF ile operation is executed. Then
fileRDD.flatMap(line => line.split(””)) traverses each line of text content in
fileRDD. As it traverses the text content in one line, the text content is assigned
to variable line and line => line.split(””) is executed. line => line.split(””) is
a Lamda expression where the left side is an input parameter and the right side
is the processing logic executed in the function. Here executing line.split(””)
means that for a line of text content, using blank space as a delimiter to do the
word segmentation, we can get a set of words separated from the line of text
context. In this way, for each line in fileRDD, a word set can be obtained. The
fileRDD.flatMap() operation flattens the multiple word sets into one large
word set. Then, for this large set of words, Spark performs the map operation,
namely map(word => (word, 1)). The map operation iterates through each
word in the set. When iterating through one of the words, it assigns the current
word to variable word and executes the Lamda expression word => (word, 1),
which means that for the input word, a tuple (word, 1) is build, where word is
the key, and 1 is the value indicating the word appears once. Then an RDD can
be obtained and each element of this RDD is a tuple in the form of (key,value).
Finally, for this RDD, reduceByKey(_+_) operation is executed. Reduce oper-
ations will be conducted on multiple values with the same key and return the
(key,value) after reducing. Thus the word frequency of this word can be obtained.

Figure 4 is a DAG of the word count application in Fig. 3 and it shows how the
application is executed by Spark. Each blue rectangle in a stage is an RDD that
is produced by the associated operation; the arrows define the ordering relation
between the transformations in Stage 0 and Stage 1. Due to the lazy evaluation
of transformations, nothing happens until saveAsTextF ile is executed. At that
moment, Spark creates the DAG as in Fig. 4. Since flatmap and map do not
require data shuffling, the first three operations are grouped in a single stage
(Stage 0). Conversely, reduceByKey requires shuffling because tuples with the
same key are not guaranteed to be all in the same partition. For this reason,
Stage 1 is created and depends on Stage 0. Thus, it can be scheduled only when
Stage 0 has completed its execution.

Formalizing Scala Programs with MSVL 201

Fig. 3. Scala Code of Word Count

5.2 Formalization

According to the DAG of word count, we can obtain that two stages are executed
in a sequential way. Thus, we can formalize the whole application as follows:

WordCount
def= Stage0;Stage1

where Stage0 reads all words from the file, then performs flatmap and map
operations to rewrite each word to a key-value pair. Stage1 reduces the record
with the same key together and saves the result in a file.

Formalization of Stage 0. In this stage, the application reads records from
the file line by line, separates words from records and rewrites each record to
(word, 1), where word is the word string and 1 means the word appears once. In
order to do that, two structure types struct Words and struct KeyValue are
defined as follows.

1 struct Words
2 {
3 char *data and
4 int idle
5 };
6 struct KeyValue
7 {
8 char *key and
9 int value

10 };

In the struct Words, the component data stores words and idle represents
the state of this memory block, where idle = 1 indicates the memory block
is idle, idle = 2 means that entries are being processed and idle = 3 rep-
resents that the processing of entries are completed. To store original records

202 M. Wang and S. Li

Fig. 4. DAG of Word Count

read from the file, struct Words lineData[N] are defined, where N is an
integer constant and lineData[i].data (0 ≤ i < N) is used to store a line
of words, while to store records after flatmap(), struct Words word[M]
is defined, where M is an integer constant and word[i].data (0 ≤ i < M)
is used to store a word. In the struct KeyValue, key stores the word and
value represents the number of times the word appears. We define an array
struct KeyValue wordcount[T] to store the pairs (word, value). With
MSVL, Stage0 can briefly be specified as follows:

Stage0 def= ReadWords()||(flatmap(1)|| · · · ||flatmap(n))||
||(map(1)|| · · · ||map(n))

ReadWords reads entries of a line from the file into the memory when
there is an idle memory block lineData[i] (lineData[i].idle=1). Func-
tion flatmap separates all entries stored in lineData[i] (lineData[i].
idle=2) into words and stores each word in an idle memory block word[j]
(word[j].idle=1). After processing, lineData[i].idle is reset to 1 and
word[j].idle to 3. Thus, n flatmap processes execute in parallel. Function
map rewrites each word in word[i] (word[j].idle=3) into a key-value pair
(word, 1) and stores it in wordcount.

Formalization of Stage 1. We reduce the records with the same key
together and obtain the number of times each word appears in the file. To do
that, we define a structure type struct OutData as follows:

Formalizing Scala Programs with MSVL 203

1 struct OutData
2 {
3 struct KeyValue wordcount and
4 int idle
5 };

In the struct OutData, the component wordcount stores the word and its
appearance number, and idle has the same meaning with idle in struct
Words. An array struct OutData result[P] is defined to store results after
reduceByKey, where P is an integer constant. The reduce process can be defined
as follows:

Stage1 def= shuffle(); ((reduceByKey(0)|| · · · ||reduceByKey(n))||
WriteRecord())

Function shuffle puts all records with the same key together. Function
reduceByKey computes all entries with the same key to obtain final entries.
For a word that is not counted, an idle memory (result[i].idle=1)
(0 ≤ i < P) is used to store data (result[i].idle=2). If the count for a
word (result[j].wordcout.key) is finished, result[j].idle is set to
3. WriteRecord writes the processed records (result[j].idle = 3) into
another file.

6 Conclusion

In this paper, we present an approach to formalizing a Spark application with an
MSVL program. We first formalize Spark operations using MSVL functions, and
then based on DAGs of the application, we can formalize the whole application
using an MSVL program. In the future, we will further study properties these
Spark applications should satisfy and verify them using model checker UMC4M .

References

1. https://flink.apache.org/
2. Baresi, L., Bersani, M.M., Marconi, F., Quattrocchi, G., Rossi, M.: Using formal

verification to evaluate the execution time of spark applications. Formal Aspects
Comput., 1–38 (2020)

3. Beckert, B., Bingmann, T., Kiefer, M., Sanders, P., Ulbrich, M., Weigl, A.: Rela-
tional equivalence proofs between imperative and MapReduce algorithms. In:
Piskac, R., Rümmer, P. (eds.) VSTTE 2018. LNCS, vol. 11294, pp. 248–266.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03592-1_14

4. Duan, Z.: An extended interval temporal logic and a framing technique for temporal
logic programming. Ph.D thesis. University of Newcastle Upon Tyne (1996)

5. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press (2005)

https://flink.apache.org/
https://doi.org/10.1007/978-3-030-03592-1_14

204 M. Wang and S. Li

6. Duan, Z., Tian, C.: A unified model checking approach with projection temporal
logic. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp.
167–186. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88194-
0_12

7. Grossman, S., Cohen, S., Itzhaky, S., Rinetzky, N., Sagiv, M.: Verifying equivalence
of spark programs. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol.
10427, pp. 282–300. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63390-9_15

8. Wang, M., Tian, C., Duan, Z.: Full regular temporal property verification as
dynamic program execution. In: Proceedings of the 39th International Conference
on Software Engineering Companion, pp. 226–228. IEEE Press (2017)

9. Wang, X., Tian, C., Duan, Z., Zhao, L.: MSVL: a typed language for temporal
logic programming. Frontiers Comput. Sci. 11(5), 762–785 (2017)

10. Yang, K., Duan, Z., Tian, C., Zhang, N.: A compiler for MSVL and its applications.
Theor. Comput. Sci. 749, 2–16 (2017)

11. Bin, Yu., Duan, Z., Tian, C., Zhang, N.: Verifying temporal properties of programs:
a parallel approach. J. Parallel Distrib. Comput. 118, 89–99 (2018)

12. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. HotCloud 10(10-10), 95 (2010)

13. Zhang, N., Duan, Z., Tian, C.: A mechanism of function calls in MSVL. Theor.
Comput. Sci. 654, 11–25 (2016)

14. Zhang, N., Duan, Z., Tian, C.: Model checking concurrent systems with MSVL.
Sci. China Inf. Sci. 59, 118101 (2016)

15. Zhang, N., Wang, M., Duan, Z., Tian, C., Cui, J.: Implementing MapReduce with
MSVL. In: Tian, C., Nagoya, F., Liu, S., Duan, Z. (eds.) SOFL+MSVL 2017.
LNCS, vol. 10795, pp. 148–167. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-90104-6_10

16. Zikopoulos, P., Eaton, C., et al.: Understanding Big Data: Analytics for Enterprise
Class Hadoop and Streaming Data. McGraw-Hill Osborne Media, New York (2011)

https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1007/978-3-540-88194-0_12
https://doi.org/10.1007/978-3-319-63390-9_15
https://doi.org/10.1007/978-3-319-63390-9_15
https://doi.org/10.1007/978-3-319-90104-6_10
https://doi.org/10.1007/978-3-319-90104-6_10

Author Index

Chen, Hao 142
Cui, Jin 79

Emeka, Busalire 105

Feng, Zhe 3

Gao, Weiran 88

Hidaka, Soichiro 105
Huang, Jiewen 54

Jiang, Ningkang 34

Lei, Ming 142
Li, Chunyi 154
Li, Ge 154
Li, Shushan 193
Liu, Shaoying 105
Lu, Xu 126, 142

Mao, Hongyan 34

Nagoya, Fumiko 23
Nakajima, Shin 175

Shu, Xinfeng 3, 88, 154

Wang, Haiyang 69
Wang, Jingzi 34
Wang, Meng 193
Wang, Xiaobing 3, 88, 142, 154
Wang, Zhenyu 88

Xue, Jinyun 54

You, Zhen 54
Yu, Bin 126, 142

Zhao, Liang 3, 88, 154
Zhou, Zhehong 54
Zhu, Lianxiang 79

	 Preface
	 Organization
	 Contents
	Modeling and Specification
	An MSVL-Based Modeling Framework for Back Propagation Neural Networks
	1 Introduction
	2 Background
	2.1 The Language MSVL
	2.2 Back Propagation Neural Network

	3 Design of the Modeling Framework
	3.1 Design Principles
	3.2 Sketch of the Modeling Framework
	3.3 Modeling of the Structure
	3.4 Modeling of the Behavior

	4 Implementation of the Modeling Framework
	4.1 Implementation of the Data Structures
	4.2 Implementation of Operations
	4.3 Construction of a BP Neural Network

	5 Experiment
	6 Conclusions
	References

	A Case Study on Combining Agile Requirements Development and SOFL
	1 Introduction
	2 Background
	3 Requirements Development Process
	3.1 Informal Specification
	3.2 Semi-formal Specification
	3.3 A Combined Requirement Development Process

	4 Case Study
	4.1 Results
	4.2 Findings

	5 Related Work
	6 Conclusions
	References

	Formal Modeling and Verification of Microservice-Based Cyber-Physical System
	1 Introduction
	2 Related Work
	3 Microservice-Based CPS Framework
	4 CSP
	5 The Transformation Between MSBF and CSP
	6 The Museum System Architecture
	7 Museum System Modeling
	8 The Verification of Museum System Model
	9 Conclusion
	References

	Design and Implementation of Virtual Reality Geometric Modeling in Apla+VR
	1 Introduction
	2 Related Work
	2.1 Virtual Reality Geometric Modeling
	2.2 MAXScript Geometric Modeling Language and 3DSMax Framework
	2.3 PAR Platform

	3 Apla+VR Language Design and Code Generator Development
	3.1 Apla+VR Syntax
	3.2 Code Generator
	3.3 Development Steps of Virtual Reality Models Based on PAR Method

	4 A Case Study
	4.1 Apla+VR Implementation of 3D Model
	4.2 Generation
	4.3 Formal Verification

	5 Conclusions
	References

	Model Checking
	An Unified Model Checking Approach of APTL
	1 Introduction
	2 Preliminaries
	2.1 Alternating Projection Temporal Logic
	2.2 From APTL Formulas to BCGs

	3 Model Checking for APTL
	3.1 Model Checking Algorithm for APTL
	3.2 A Case Study

	4 Conclusion
	References

	Model Checking Multi-interruption Concurrent Programs with TMSVL
	1 Introduction
	2 Model Checking Approach
	3 Modeling Concurrent Programs with Interruption Using TMSVL
	3.1 Modeling Single-Interruption Concurrent Programs
	3.2 Modeling Multi-interruption Concurrent Programs

	4 A Case Study
	5 Conclusion
	References

	An MSVL Based Model Checking Method for Multi-threaded C Programs
	1 Introduction
	2 Preliminaries
	2.1 Introduction of MSVL
	2.2 Introduction of MSVL Semaphore

	3 Model Checking Mutli-threaded C Program
	3.1 Transforming C Program into MSVL Program
	3.2 Validation Procedures

	4 Case Study
	4.1 Problem Description

	5 Conclusion
	References

	Specification and Verification
	A Formal Approach to Secure Design of RESTful Web APIs Using SOFL
	1 Introduction
	2 REST and SOFL
	2.1 REST
	2.2 SOFL

	3 Our Proposed Approach
	3.1 Step 1: Identification of Informal Functional and Security Requirements
	3.2 Step 2: Transforming RAML Definitions to SOFL
	3.3 Step 3: Formalization of API Specifications

	4 Specification Based Conformance Testing
	5 Case Study
	6 Case Study Implementation Using Django REST Framework
	7 Related Work
	8 Conclusion and Future Works
	References

	Pointer Program Synthesis as Non-deterministic Planning
	1 Introduction
	2 FOND Planning
	3 Symbolic Heaps
	4 Symbolic Execution
	5 Compiling Symbolic Execution into FOND Planning
	6 Case Study and Experiment
	7 Conclusion
	References

	Runtime Verification of Ethereum Smart Contracts Based on MSVL
	1 Introduction
	2 Preliminaries
	2.1 MSVL
	2.2 PPTL

	3 Runtime Verification of Ethereum Smart Contracts
	3.1 Framework
	3.2 SOL2M Converter
	3.3 Runtime Verification

	4 Case Study: Runtime Verification for a Vote Smart Contract
	5 Conclusion
	References

	Automatic Generation of Specification from Natural Language Based on Temporal Logic
	1 Introduction
	2 Background
	2.1 PPTL
	2.2 NLP Tools

	3 Automatic Generation of Specification from Natural Language to Temporal Logic
	3.1 Definition of Structured English Grammar
	3.2 Formal Specification Generation

	4 Case Study
	4.1 Natural Language Tagging
	4.2 Tag Recognition
	4.3 Formula Generation
	4.4 Decision of Formula Satisfiability

	5 Related Work
	6 Conclusions
	References

	Testing and Formal Verification
	Software Testing with Statistical Partial Oracles
	1 Introduction
	2 Statistical Approach to Software Testing
	2.1 Test Oracles
	2.2 Statistical Test Oracles

	3 Proposed Testing Framework
	3.1 General Framework
	3.2 Framework for Neural Networks Testing
	3.3 Observers for Monitoring Neural Network States

	4 A Case Study
	4.1 MNIST Classification Problem
	4.2 Overview of Testing Method
	4.3 Semantic Noises
	4.4 Solving Two Optimization Problems Interleaved
	4.5 Controlled Experiment
	4.6 Results and Discussions

	5 Related Work
	6 Concluding Remarks
	References

	Formalizing Spark Applications with MSVL
	1 Introduction
	2 Preliminaries
	2.1 MSVL

	3 Spark Framework
	4 Principle for Formalizing Spark Applications
	4.1 Data Storage System
	4.2 Spark Operations
	4.3 DAG-Based Formalization
	4.4 Verifying Programs

	5 Case Study: Word Count
	5.1 Spark Application
	5.2 Formalization

	6 Conclusion
	References

	Author Index

