
On Use of Deep Learning for Side
Channel Evaluation of Black Box

Hardware AES Engine

Yoo-Seung Won(B) and Shivam Bhasin

Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
{yooseung.won,sbhasin}@ntu.edu.sg

Abstract. With the increasing demand for security and privacy, there
has been an increasing availability of cryptographic acclerators out of
the box in modern microcontrollers, These accelerators are optimised and
often black box. Thus, proper evaluation against vulnerabilities like side-
channel attacks is a challenge in absence of architecture information and
thus leakage model. In this paper, we show the use of deep learning based
side-channel attack can overcome this challenge, allowing evaluation of
black box AES hardware engine on a secure microcontroller, without the
knowledge of precise leakage model information. Our results report full
key recovery with only 3,000 traces under a profiling setting.

Keywords: Hardware AES engine · Side-channel analysis · Deep
learning

1 Introduction

With the rise in need for security and privacy across applications, reliance on
cryptography is ever growing. As a result, manufacturers integrate more and
more cryptographic functions in modern microcontrollers to facilitate design
of secure applications. For high performance applications, cryptographic func-
tions are often available as in-built accelerators, accessible through an API.
While these accelerators are secure in a classical setting, implementation secu-
rity remains a concern. These accelerators may be used in sensitive applications
requiring protection against attacks like side-channel attacks (SCA [8]) or faults
attacks [13]. Thus, it must be carefully evaluated against such attacks when
necessary. However, most if not all, accelerators are proprietary in nature and
their architecture and related details are not available in public domain, making
evaluation difficult. For instance, popular SCA like correlation power analysis
is performed with a leakage model assumption [4]. If the leakage model is not
precise, CPA is sub-optimal and may misguide security evaluation. The leakage
model is better understood with knowledge of the architecture, which are not
available in this setting.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

N.-S. Vo et al. (Eds.): INISCOM 2021, LNICST 379, pp. 185–194, 2021.

https://doi.org/10.1007/978-3-030-77424-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77424-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-77424-0_15


186 Y.-S. Won and S. Bhasin

In this paper, we investigate the side-channel security of a black-box hardware
AES engine on a commercial off the shelf microcontroller. The target microcon-
troller is recommenced for security critical applications like point of sale trans-
actions. We demonstrate that using a deep learning based side-channel attack
can allow better evaluation in the black box setting as compared to attacks like
CPA where a precise leakage model is required.

The rest of the paper is organised as follows. Section 2 provides general back-
ground on SCA and deep learning for SCA. Section 3 describes the target device
and evaluation platform. Section 4 reports experimental results and conclusions
are drawn in Sect. 5.

2 Preliminaries

In this section, we provide background information on side-channel attacks
(SCA) and use of deep learning for SCA.

2.1 Side-Channel Attacks

Side-Channel Analysis or Attacks (SCA) are a class of implementation level
attacks which observe and exploit unintended physical leakages from target
devices to gain information on underlying sensitive data. In context of cryp-
tography, SCA aim at recovering the underlying secret key. The information can
be observed by different channels including power consumption, electromagnetic
emanation, timing, etc.

SCA can be widely classified as profiled and non-profiled. A profiled attack
assumes a strong attacker with access to a clone device. By measuring traces
corresponding to known plaintext and key, the adversary characterizes a model
of the target device. On the victim device, the adversary captures only a few
traces (ideally 1) with known plaintext but the key is unknown. These traces
are then compared to the characterized model obtained from clone device to
learn information on the secret key used by victim device. Initially, Gaussian
templates [6] were used for model characterization but later machine learning
and deep learning [1,11,12] were also shown to advantageous for profiled SCA.

Non-profiled attack on the contrary are directly applied on victim device,
where adversary has access to plaintext or ciphertext but key is secret. Based on a
leakage model like Hamming distance or Hamming weight, the adversary predicts
a sensitive intermediate leakage value which depends on a part of secret kay (8-
bits for AES) and known plaintext/ciphertext. The adversary test dependency
of actual measurement with predicted leakage based on leakage model and all
key hypothesis, using statistical tools. The correct key hypothesis is expected
to show maximum dependency. In this work, we use Pearson correlation ρ as a
statistical tool [4] to perform a correlation power analysis (CPA).



On Use of Deep Learning for Side Channel Evaluation 187

2.2 Deep Learning Based SCA

Recent profiled SCA have seen the application of deep neural networks [5,9].
Especially, convolution neural network (CNN) architectures are shown to be
powerful for breaking countermeasures such as hardware jitter [5], shuffling [14],
and masking [15]. Recent finding report CNN structures on various SCA open
datasets [15] outperform the classical profiled SCA such as template attack [6].

3 Target Board and Setup

In this section, we report the target board and experimental setup. We target
the Okdo E1 development board which is based on ARM Cortex-M33 chip.

The OKdo E1 development board which is an ultra-low-cost Development
Board based on the NXP LPC55S69JBD1001 dual-core Arm Cortex R© M33
MCU. The intented application for this board are security sensitive like point-
of-sale terminal. The security features of LPC55S69JBD100 are explained in the
user manual [10]. It contains several hardware IPs such as an AES engine, a SHA
engine, a random number generator, a PRINCE engine, and a key storage block
that derive keys from an SRAM based Physically Unclonable Function (PUF).
These IPs are accessible from the main processor as well as from a DMA engine
for supporting functions like encryption and hashing. The hardware AES can be
configured to operate with user defined or device specific key which is derived
from the PUF. There are no security claims of the AES engine against physical
attacks. The public information on specification of hardware AES engine is as
follows.

– It supports key size: 128-bit, 192-bit or 256-bit key
– It supports following mode of operation: ECB, CBC, CTR, and ICB modes

(ICB mode only supports to 128-bit key)
– AES functionality is combined with SHA block, referred to as SHA-AES
– When using 128-bit keys, the AES block takes 35 cycles for each block to

encrypt, and additional 6 cycles for 192-bit key, and additional 12 cycles for
256-bit key.

We configure the main ARM Cortex R© M33 MCU to run at the default fre-
quency of 96 Mhz. The timing for AES-128 is determined by calling the encryp-
tion function between a LED toggle. The LED toggle then also serves as a trigger
for the oscilloscope to synchronise the measurements. The side channel traces
are measured on an oscilloscope via electromagnetic probe. We used a high-
sensitivity low noise EM probe from Riscure [7] which has sufficient bandwidth
to capture the activity at main clock frequency and clock frequency of hardware
AES IP engine, since the probe is connected to a DC-powered Riscure amplifier
with a frequency range of 100 kHz–2.5 GHz (Fig. 1).

1 The chip manufacturers do not claim side-channel security for embedded AES engine.
We have notified our findings to NXP PSIRT team and the details are under respon-
sible disclosure.



188 Y.-S. Won and S. Bhasin

(a) Okdo E1 Board [10] (b) Measurement
setup

Fig. 1. Measurement setup for Okdo E1 development board.

While the trigger based on LED synchronises the traces, the trigger in itself is
18.68µs but AES operation only takes 35 clock cycles which is about 0.35µs.
On further analysis, we found that apart from I/O manipulation, the processor
also performs some key management task before the actual AES operation, caus-
ing a total execution time of 18.68µs. The points corresponding to AES-128
operation only are thus determined by performing correlation power analysis on
side-channel traces with public information like plaintext and ciphertext. The
correlation peak corresponding to plaintext and ciphertext gives approximate
bounds on the AES operation, allows to significantly reduce the number of sam-
ples per trace by approximately 9×. Note that, the internal architecture of the
AES is not known and considered black box. Other techniques like normalised
inter-class variance (NICV [2]) can also be used.

3.1 Leakage Model

Since, the AES architecture is not known, it is hard to hypothesize the leakage
model. Based on available information, we know that its a hardware architecture
with 35 clock cyles. This means it is a parallel architecture which processes sev-
eral bytes of the block per clock cycle. Previous works on hardware architecture
target the last round with Hamming distance model i.e. leakage corresponding
to state register being updated from last round input to output ciphertext [3].
However, given that 35 clock cycles also indicate that a complete round is not
processed in every clock cycle. Thus, we assume a weak leakage corresponding
to computation of last round Sbox. This is not optimal in hardware but still
requires less assumption on the underlying architecture which is always com-
puted. The model can be written as Model 1: S-box−1[cti ⊕ k∗], i = 1, ..., 16,
where S-box−1 indicate the inverse of AES S-box, cti, k∗ mean the i-th byte of
ciphertext and the correct key respectively.



On Use of Deep Learning for Side Channel Evaluation 189

4 Experimental Results

In this section, we report the results of deep learning based side channel analysis
for the OKdo E1 board. We measured 500, 000 traces corresponding to fixed key
and random plaintext. All the analysis in this section are based on these traces.

4.1 Locating AES Activity

Since AES forms a small part of the triggered activity observed with toggling of
the LED. We determine boundaries of the AES operation by computing corre-
lation between traces and plaintext and ciphertext. As plaintext and ciphertext
are first and last part of the computation respectively, activity corresponding to
them will gives us bounds on AES activity in the trace. The result is shown in
Fig. 2. The leakage of the plaintext and ciphertext is likely due to their transfer
between main processor and hardware AES engine. For ciphertext, we observe
leakage at 4 different instances, each time leaking 4 bytes. This indicate a 32-bit
bus for data transfer between main processor and AES. The leakage of first,
second, third, and fourth 32-bit words of ciphertexts was found between 12,000
and 14,000 points. The leakage of 16 plaintexts occurs at two instances respec-
tively for first and last 8 bytes in Fig. 2b. This could be due to the loading of
plaintext into hardware engine. The separate leakage of first 8 and last 8 bytes
of the plaintext indicate a 64-bit architecture.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

0.2

0.4

0.6

0.8

Time

A
m

pl
it
ud

e

(a) A trace for hardware AES engine in LPC55S69-EVK

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

0

1

2

3

·10−2

Time

Am
pl

itu
de

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte

9th byte 10th byte 11th byte 12th byte 13th byte 14th byte 15th byte 16th byte

(b) Hamming weight leakage of 16 plaintexts

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

·104

0

2

4

6
·10−2

Time

Am
pl

itu
de

1st byte 2nd byte 3rd byte 4th byte 5th byte 6th byte 7th byte 8th byte

9th byte 10th byte 11th byte 12th byte 13th byte 14th byte 15th byte 16th byte

(c) Hamming weight leakage of 16 ciphertexts

Fig. 2. A trace of hardware AES engine and results for Hamming weight of plaintext
and ciphertext.



190 Y.-S. Won and S. Bhasin

4.2 Experimental Result for Deep Learning Based SCA

To perform a side-channel analysis based on deep learning, we use the state-of-
the-art neural network structure of CHES 2020 [15]. More precisely, we consider
the neural network structure as AES HD structure since our main target is also
hardware AES engine. As shown in Table 1, the CNN structure is quite simple.

Table 1. AES HD architecture

Arch. Convolution stage MLP

Filters Kernel size Pool size

AES HD 2 1 2 2

The attack is performed under a profiling setting. This means the adversary
has access to a profiling or training dataset where the key and plaintext are
known. The adversary then labels the dataset with the knowledge of key and
plaintext and trains the deep learning architecture. Next, on the attack traces,
where key is unknown, the unlabeled traces are queried against the trained
model to predict the label. The predicted label for several traces are collected to
determine the value of the secret key. The adversary then confirms the key with
a known plaintext-ciphertext pair. In case, the attack is unable to find few key
bytes, the attacker is able to brute force the remaining bytes using the known
plaintext-ciphertext pair, up to a computation limit.

As stated earlier, the likely target leakage without much information on the
hardware architecture can be tested with Model 1. We use Model 1 to label our
training set, leading to 256 classes. Using 256 classes instead of commonly used
Hamming weight of Model 1 (HW(Model 1)) will lead to an imbalanced dataset
and must be avoided [11].

For Model 1, we take 45,000 traces (like [15]) as the number of profiling traces
and 5,000 for the testing set. The testing set is unlabeled and queried against the
trained model to predict labels which is then used for key recovery. The results
are shown in Fig. 3a. It plots the guessing entropy of all the key bytes. A key byte
is considered to be recovered, when the guessing entropy reaches minimum. In
the current experiment, we can only recover 13 bytes of the 16 byte secret using
all the 5,000 traces. As stated before, the remaining 3 bytes can be brute-forced
using a known plaintext-ciphertext pair with a complexity of 224, which is easy
to perform on a standard computer.

4.3 On the Power of Detailed Profiling

Now we consider a stronger attacker who has access to a bigger training dataset.
For this, we used 200,000 traces for profiling. The rest of the experiments remain
the same i.e. the unlabeled testing dataset is 5,000 traces and the labels are
computed using Model 1. The results are shown in Fig. 4. As the deep learning



On Use of Deep Learning for Side Channel Evaluation 191

0 2,000 4,000
0

25

50

75

100

125

Number of Traces

G
u
es

si
n
g

E
n
tr

o
p
y

1st byte 2nd byte 3rd byte 4th byte

5th byte 6th byte 7th byte 8th byte

9th byte 10th byte 11th byte 12th byte

13th byte 14th byte 15th byte 16th byte

(a) 45,000 Training Traces

0 2,000 4,000
0

25

50

75

100

125

Number of Traces

G
u
es

si
n
g

E
n
tr

o
p
y

1st byte 2nd byte 3rd byte 4th byte

5th byte 6th byte 7th byte 8th byte

9th byte 10th byte 11th byte 12th byte

13th byte 14th byte 15th byte 16th byte

(b) 200,000 Training Traces

Fig. 3. Results of deep-learning based profiled SCA for 45,000 and 200,000 training
dataset sizes.

model is now trained with a bigger training set, the attack in this case needs
about 3,000 traces to recover the key. In fact, with less than 2,000 traces, 15 out
of 16 bytes can be successfully recovered, leaving only one byte to guess. Care
must be taken in choosing the training dataset size so as to not overfit the deep
learning model.

4.4 Is Model 1 an Optimal Leakage Model

Finally, we verify if Model 1 actually fits well as the leakage model for the target
black-box hardware engine. We performed correlation power analysis (CPA) in
a known plaintext setting using all the 500,000 traces, with Model 1 as our
leakage model. The results are shown in Fig. 4. The red line indicates the absolute
correlation coefficient for correct key and the gray lines means the key candidates
except for correct key. An attack is successful if red line stands out from all the
grey lines. It can be observed that the attack is successful for only one byte
(15th byte) and model Model 1 is not optimal for the given device. The brute
force attack has to recover 15 bytes of the key which is beyond limit on standard
computer, concluding the CPA to be unsuccessful.

Nevertheless, this highlights the power of deep learning based SCA. As shown
previously, even without knowledge of the perfect model but only general infor-
mation of the underlying architecture, deep learning based SCA could recover
the key successfully.



192 Y.-S. Won and S. Bhasin

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(a) 1st byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces
A

b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(b) 2nd byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(c) 3rd byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(d) 4th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(e) 5th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(f) 6th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(g) 7th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(h) 8th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(i) 9th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(j) 10th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(k) 11th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(l) 12th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(m) 13th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

0.15

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(n) 14th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(o) 15th byte

0 100k 200k 300k 400k 500k

0

0.05

0.1

Number of traces

A
b
s
o
lu

t
e

c
o
r
r
e
la

t
io

n
c
o
e
ffi

c
ie

n
t

(p) 16th byte

Fig. 4. CPA trend for 16 bytes. (Color figure online)

5 Conclusion

In this paper, we analyze the side-channel security of black box hardware AES
engine integrated in NXP LPC55S69JBD100 microcontroller. The microcon-
troller is developed for security applications like point of sale. By minimum
assumption on the AES architecture and considering a commonly manipulated
sensitive value as leakage, we demonstrate successful attack using deep learning
based SCA. The attack requires only 3,000 traces from the victim device when



On Use of Deep Learning for Side Channel Evaluation 193

performed with a commonly known CNN architecture. We also confirmed that
the leakage considered is not optimal for the architecture and could not recover
the complete key using CPA. This demonstrates the advantages of using deep
learning based SCA for targeting black box architecture. Further work can inves-
tigate precise leakage model and optimised CNN architecture for a worst case
analysis on the underlying hardware AES.

Acknowledgement. We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan XP GPU used for this research.

References

1. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ASCAD database. J. Cryptographic Eng.
10(2), 163–188 (2019). https://doi.org/10.1007/s13389-019-00220-8

2. Bhasin, S., Danger, J.L., Guilley, S., Najm, Z.: NICV: normalized inter-class vari-
ance for detection of side-channel leakage. In: 2014 International Symposium on
Electromagnetic Compatibility, Tokyo, pp. 310–313. IEEE (2014)

3. Bhasin, S., Guilley, S., Heuser, A., Danger, J.-L.: From cryptography to hardware:
analyzing and protecting embedded Xilinx BRAM for cryptographic applications.
J. Cryptographic Eng. 3(4), 213–225 (2013). https://doi.org/10.1007/s13389-013-
0048-4

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

7. Doerr, C.: Side-channel based intrusion detection for industrial control systems.
In: Critical Information Infrastructures Security: 12th International Conference,
CRITIS 2017, Lucca, Italy, Revised Selected Papers, 8–13 October 2017, vol. 10707,
p. 207. Springer (2018). https://doi.org/10.1007/978-3-319-99843-5 19

8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

9. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

10. NXP Semiconductors: UM11126 LPC55S6x/LPC55S2x/LPC552x User manual
Rev. 1.8 - 24 October 2019. https://www.mouser.com/pdfDocs/NXP LPC55S6x
UM.pdf

11. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class imbal-
ance and conflicting metrics with machine learning for side-channel evaluations.
IACR Trans. Cryptographic Hardw. Embedded Syst. 2019(1), 1–29 (2019)

https://doi.org/10.1007/s13389-019-00220-8
https://doi.org/10.1007/s13389-013-0048-4
https://doi.org/10.1007/s13389-013-0048-4
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-99843-5_19
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://www.mouser.com/pdfDocs/NXP_LPC55S6x_UM.pdf
https://www.mouser.com/pdfDocs/NXP_LPC55S6x_UM.pdf


194 Y.-S. Won and S. Bhasin

12. Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the perfor-
mance of convolutional neural networks for side-channel analysis. In: Chattopad-
hyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–
176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6 10

13. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 7

14. Wu, L., Picek, S.: Remove some noise: on pre-processing of side-channel measure-
ments with autoencoders. IACR Trans. Cryptographic Hardw. Embedded Syst.
2020(4), 389–415 (2020)

15. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for efficient CNN
architectures in profiling attacks. IACR Trans. Cryptographic Hardw. Embedded
Syst. 2020(1), 1–36 (2020)

https://doi.org/10.1007/978-3-030-05072-6_10
https://doi.org/10.1007/978-3-540-45238-6_7

	On Use of Deep Learning for Side Channel Evaluation of Black Box Hardware AES Engine
	1 Introduction
	2 Preliminaries
	2.1 Side-Channel Attacks
	2.2 Deep Learning Based SCA

	3 Target Board and Setup
	3.1 Leakage Model

	4 Experimental Results
	4.1 Locating AES Activity
	4.2 Experimental Result for Deep Learning Based SCA
	4.3 On the Power of Detailed Profiling
	4.4 Is Model 1 an Optimal Leakage Model

	5 Conclusion
	References




