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Astrocytes in Addictive Disorders

Anna Kruyer and Michael D. Scofield

 Overview of Addiction Biology

 Circuitry and Transmitters

The elevation of extracellular dopamine in the ventral striatum in response to salient 
and rewarding stimuli underlies several reinforcement and addiction-related behav-
iors extensively studied in preclinical models of substance use and relapse (Scofield 
et al. 2016a). Anatomically, the ventral striatum is divided into two subregions, the 
nucleus accumbens core (NAcore) and shell (NAshell), which both receive dopami-
nergic innervation from the midbrain nucleus the ventral tegmental area (VTA) 
(Ikemoto 2007) and that are both involved in encoding reward and motivation. 
Increased levels of extracellular dopamine in the ventral striatum are evoked by 
administration of addictive drugs (reviewed in (Willuhn et al. 2010)) including alco-
hol (Howard et al. 2008), as well as by sucrose intake (Bassareo et al. 2017), and a 
substantial body of lesion, microdialysis, voltammetry, and pharmacology studies 
has led to the general conception that the NAshell is involved in encoding the 
rewarding effects of addictive drugs, while the NAcore coordinates behavioral out-
puts in response to salient stimuli (Scofield et al. 2016a; Sellings and Clarke 2003; 
Salgado and Kaplitt 2015).
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Though natural (i.e., sucrose) as well as pathological (i.e., drugs of abuse) 
rewards elevate dopamine in the ventral striatum, dopaminergic signaling within 
this circuit is modulated by glutamatergic transmission, and glutamatergic signaling 
is uniquely disrupted following repeated intake of addictive substances (Kalivas 
et al. 1989, 2009; Kalivas 2009). In keeping with important but separable roles for 
these two transmitters in addiction-related behaviors are recent studies demonstrat-
ing that subpopulations of dopaminergic VTA neurons that project to the NAshell 
co-release glutamate along with dopamine (Stuber et al. 2010; Mongia et al. 2019; 
Mingote et al. 2019). Glutamate release from dopamine neurons in the NAshell is 
linked to intake of sucrose and psychostimulants and locomotor responses to acute 
and repeated psychostimulant administration (Hnasko et al. 2010; Alsio et al. 2011; 
Birgner et al. 2010; Bimpisidis and Wallen-Mackenzie 2019). Glutamate modulates 
dopamine neurotransmission through its action on glutamate receptors expressed on 
dopaminergic terminals (Floresco et  al. 1998; Howland et  al. 2002) and through 
facilitation of dopamine loading in synaptic vesicles (Hnasko et al. 2010; Hnasko 
and Edwards 2012). Though VTA inputs to the NAcore contribute to drug seeking 
induced by drug prime (Shen et al. 2014a), the impact of dopamine transmission on 
seeking behavior can be blocked by glutamate receptor antagonists even in the pres-
ence of dopamine (Cornish and Kalivas 2000), consistent with a critical role for 
glutamatergic transmission in drug seeking behavior.

The ventral striatum receives excitatory input from a number of brain regions, in 
addition to VTA. Cortical regions provide glutamatergic input to the NAcore and 
NAshell, with prelimbic (PL) cortical afferents in the NAcore or infralimbic (IL) 
afferents in the NAshell contributing to drug seeking or refraining behavior, respec-
tively. Glutamate transmission in the NAcore is necessary for initial learning of 
drug-reward associations (Kelley et al. 1997; Smith-Roe and Kelley 2000) and later 
for retrieval of drug-contingency information during reinstatement of drug seeking 
following extinction of behavioral responding (Kalivas 2009; Kalivas and Volkow 
2005; Koob and Volkow 2010). PL afferents in the NAcore are engaged during cue-, 
drug-, context- and stress-reinstated seeking of different classes of addictive sub-
stances, including opioids, psychostimulants, and alcohol (Rogers et al. 2008; Ball 
and Slane 2012; Rocha and Kalivas 2010; Doncheck et al. 2020; McFarland et al. 
2003; Willcocks and McNally 2013; Chaudhri et  al. 2008). The IL input to the 
NAshell, on the other hand, is recruited during extinction training, whereby operant 
responding for drug reinforcers is gradually reduced over time when the drug is no 
longer available (Peters et al. 2008).

The NAcore also receives significant glutamatergic input from basolateral amyg-
dala (BLA) that contributes to both acquisition of self-administration and reinstate-
ment initiated by cues (Carelli et  al. 2003; Whitelaw et  al. 1996; Di Ciano and 
Everitt 2004; Puaud et  al. 2020), through direct glutamatergic projections to the 
NAcore and/or projections to the PL (Stefanik and Kalivas 2013). BLA glutamate 
may also be engaged to a certain extent by operant training for natural reinforcers, 
since optogenetically stimulating BLA projections to the NAcore can initiate 
responding for sucrose (Stuber et al. 2011). A number of other brain regions have 
been strongly implicated in promoting addiction-related behaviors, including dorsal 
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and ventral hippocampus (Fuchs et al. 2005; Lasseter et al. 2010; Atkins et al. 2008), 
ventral subiculum (Bossert and Stern 2014), and lateral septum (McGlinchey and 
Aston-Jones 2018), though not necessarily via direct NAcore projections. 
Interestingly, excitatory projections to the NAcore can also suppress seeking behav-
ior, since glutamate release from the paraventricular thalamus in the NAcore serves 
to suppress seeking behavior in the absence of a reinforcer (Do-Monte et al. 2017), 
arguing that excitatory transmission in the NAcore is necessary, but not sufficient 
for reward seeking, and that unique innervation of postsynaptic targets may be an 
important factor in ultimate behavioral outputs.

Astrocytes are likely mediators of the long-lasting excitatory plasticity that arises 
within the corticostriatal circuitry in response to chronic drug intake. Astroglial pro-
cesses are positioned proximal to excitatory synapses, and their expression of neu-
rotransmitter transporters regulates stimulation of pre- and postsynaptic receptors. 
Moreover, astroglia are capable of signaling directly to synapses through transmit-
ter release and play critical roles in homeostatic regulation of synapses. Astroglial 
adaptations following exposure to addictive drugs are being actively investigated 
within the circuits outlined above. Given that vast brain region-dependent heteroge-
neity in astroglial structure and transcriptomic profiles has recently been described 
(Batiuk et al. 2020; Matias et al. 2019; Cuevas-Diaz Duran et al. 2019; Kohler et al. 
2019), astrocyte function as it pertains to addiction is likely unique in each region. 
Below we explore what is known regarding astroglial contributions to synaptic 
physiology at baseline and after use of addictive substances.

 Transmitter Uptake

 Glutamate

The glutamate transporter GLT-1 (EAAT2 in humans) conducts the majority of glu-
tamate uptake and is mostly expressed by astroglia in the adult brain (Danbolt 
2001), despite reports of low-level expression in some neurons (Rimmele and 
Rosenberg 2016). GLT-1 has long been thought to contribute to addiction-related 
glutamatergic dysregulation in the ventral striatum since its expression and/or func-
tion is disrupted after long-term use of psychostimulants, opioids, and alcohol 
(Roberts-Wolfe and Kalivas 2015). GLT-1 knockdown in astroglia during the early 
postnatal period leads to repetitive behaviors in drug-naïve animals and enhanced 
neuronal excitability in the dorsal striatum (Aida et al. 2015). In rats trained to self- 
administer cocaine, GLT-1 downregulation in the NAcore is dependent upon with-
drawal duration as well as cocaine intake, with increasing amounts of either 
exacerbating the severity of GLT-1 downregulation (Fischer-Smith et  al. 2012). 
Further, extended withdrawal from long-access cocaine self-administration (i.e., 
daily 6-hour sessions) reduces mRNA levels of the predominant of three GLT-1 
isoforms, GLT-1a (Holmseth et al. 2009), in the NAcore, coincident with enhanced 
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methylation of Slc1a2, the gene that encodes GLT-1 (Kim et al. 2018). Since the 
authors of this study found no changes in GLT-1a or b mRNA levels after with-
drawal or extinction from short access cocaine self-administration, but many other 
studies show GLT-1 downregulation in these paradigms (Roberts-Wolfe and Kalivas 
2015), it may be that posttranslational rather than transcriptional mechanisms are 
responsible for its reduced expression and/or function in short-access models. 
Interestingly, up- or downregulation of GLT-1 in the striatum disrupts spike-timing 
dependent plasticity, a type of long-term potentiation that requires a tight temporal 
relationship between pre- and postsynaptic activity (Valtcheva and Venance 2016). 
When the action of GLT-1 is blocked, long-term potentiation requires signaling 
through extrasynaptic GluN2B-containing NMDA receptors. Similarly, signaling 
through GluN2B is required for cue- or heroin prime-induced reinstatement of her-
oin seeking (Shen et al. 2011). These data are consistent with diminished function 
of GLT-1 after extinction from heroin self-administration (Shen et  al. 2014b). 
Further, disrupted forms of synaptic plasticity involving downregulated GLT-1 after 
drug use and/or withdrawal may conceivably impair mechanisms required for 
extinction learning, which is somewhat impaired in drug-trained compared with 
sucrose-trained animals (Martin-Fardon and Weiss 2017). Notably, operant sucrose 
training does not produce downregulation of GLT-1 (Kruyer and Kalivas 2020a), 
which may account for these behavioral differences.

A significant body of work has established that compounds that restore GLT-1 
expression reduce drug craving and relapse, both in animal models and in human 
clinical trials (Roberts-Wolfe and Kalivas 2015). For example, the antioxidant 
N-acetylcysteine, the ß-lactam antibiotic ceftriaxone, and the xanthine derivative 
propentofylline have all demonstrated promise in restoring GLT-1 expression after 
drug withdrawal and in blunting reinstated drug seeking in preclinical models (sum-
marized in (Scofield et al. 2016a)). N-acetylcysteine is extremely safe for use in 
humans but has proven only marginally efficacious in reducing craving and drug use 
in patients (summarized in (Roberts-Wolfe and Kalivas 2015)), potentially due to 
limited bioavailability. Given that recent studies indicate that GLT-1 upregulation 
alone is not sufficient to blunt reinstated cocaine seeking (Logan et al. 2018), it may 
very well be that additional manipulations are required to adequately suppress 
relapse vulnerability. Moreover, it may be the case that upregulation rather than 
homeostatic restoration of GLT-1 expression may not entirely restore mechanisms 
of synaptic plasticity, as both GLT-1 blockade and overexpression do not properly 
permit spike timing-dependent plasticity at striatal synapses (Valtcheva and 
Venance 2016).

Although drug-induced changes in GLT-1 expression after chronic use of addic-
tive drugs have been less well documented in the midbrain when compared to the 
ventral striatum, astroglial glutamate transporters in the VTA also play an important 
role in modulating avoidance behaviors (Gomez et al. 2019). As mentioned above, 
the VTA sends dopaminergic, glutamatergic, as well as GABAergic projections to 
the nucleus accumbens, and these projections encode the reinforcing and aversive 
aspects of drug use (Morales and Margolis 2017). Additionally, GABAergic inter-
neurons within the VTA regulate dopaminergic projection neurons that signal 
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avoidance vs. motivated approach behaviors (McCullough et  al. 1993; Tan et  al. 
2012). This was demonstrated with optogenetic stimulation of VTA astrocytes, 
which permits excitation of GABAergic interneurons that inhibit dopaminergic pro-
jections and promote avoidance behavior (Gomez et al. 2019). It was subsequently 
shown that astrocyte-dependent facilitation of GABAergic activation depends on 
GLT-1, as conditional knockout of GLT-1 in VTA astrocytes impairs the optogenetic 
stimulation-mediated GABAergic excitation (Gomez et al. 2019). While the authors 
do not clarify the mechanism by which GLT-1 contributes to GABAergic excitation, 
they illustrate that manipulation of astroglial GLT-1 interferes with conditioned 
place avoidance, but does not impact conditioned place preference (Gomez et al. 
2019), suggesting divergence of these circuits and a contribution of astrocytes 
through GLT-1 to avoidance, but not approach behavior (Gomez et  al. 2019). 
Although changes in GLT-1 expression have not been as clearly demonstrated in the 
VTA after drug use and withdrawal compared with the NAcore (Knackstedt et al. 
2009), analysis of GLT-1 function may be warranted given these surprising findings. 
These data also highlight the importance of analyzing transporter function in a 
pathway- specific manner, rather than in whole tissue, since functional changes that 
impact discrete subcircuits may not be discernable when protein levels are assessed 
in tissue extracts.

 GABA

While uptake of glutamate release from cortical terminals in the striatum is thought 
to directly regulate relapse-like behaviors in animal models (Kalivas 2008), cortical 
stimulation triggers uptake of both GABA and glutamate by striatal astrocytes and 
clearance of both transmitters contributes to postsynaptic excitation of MSNs 
(Goubard et al. 2011). These findings illustrate the relevance of local GABAergic 
signaling on corticostriatal synaptic transmission and the contribution of transporter 
uptake in regulating striatal outputs. In support of this concept, studies where Ca2+ 
signaling in astrocytes is inhibited in vivo through viral delivery of a genetically 
encoded plasma membrane Ca2+ pump that expels cytosolic Ca2+ from astrocytes 
(CalEx) (Yu et al. 2018) demonstrate the behavioral involvement of GABA trans-
porters expressed on striatal astrocytes in compulsive-like behaviors. Importantly, 
the CalEx vector reduces astroglial intracellular Ca2+ levels at baseline and also 
reduces the amplitude and duration of Ca2+ elevations. When delivered to astroglia 
in the dorsolateral striatum, CalEx expression results in upregulation of the largely 
astroglial GABA transporter GAT-3 and produces excessive self-grooming behav-
ior, reminiscent of features of obsessive-compulsive disorder (Yu et  al. 2018). 
Further, GAT-3 upregulation reduces tonic inhibition, a known role for GAT-3 that 
is expressed most densely in extrasynaptic zones (Melone et al. 2015), selectively at 
D1 receptor expressing MSNs (D1-MSNs) (Yu et al. 2018). Interestingly, when a 
different strategy was used to upregulate astroglial GAT-3 in a pathway-nonspecific 
manner, the authors found no impact on grooming behavior, suggesting that perhaps 
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the cell selectivity of the effects were necessary for the disrupted behavior observed 
by the authors.

The dorsal striatum is involved in habit learning (Yin et al. 2004) and is uniquely 
recruited in cases of substance use disorder characterized by compulsive seeking. 
For example, in humans who drink socially, but not compulsively, alcohol- associated 
cues stimulate activation of the ventral striatum. Instead, the same cues stimulate 
activation of the dorsal rather than the ventral striatum in heavy drinkers, and ven-
tral striatal activity in response to alcohol-associated cues is negatively associated 
with measures of compulsive craving in these individuals (Vollstadt-Klein et  al. 
2010). Interestingly, compounds effective in suppressing compulsive behaviors, like 
N-acetylcysteine, which reduces symptoms of trichotillomania (Farhat et al. 2020) 
and pathological gambling (Grant et al. 2007), also reduce reinstated drug seeking 
in animal models (Kalivas and Kalivas 2016). As mentioned above, N-acetylcysteine 
was most studied in the context of addiction for its ability to upregulate GLT-1 in the 
ventral striatum, but its impact on astroglial expression of GABA transporters like 
GAT-3 in the ventral or dorsal striatum has not been assessed.

 Dopamine

Although there is in vitro evidence that astrocytes can recover extracellular dopa-
mine through expression of the dopamine transporter (DAT), norepinephrine trans-
porter (NET), and/or plasma membrane monoamine transporter (PMAT) (Pelton 
2nd et al. 1981; Takeda et al. 2002; Naganuma et al. 2014), evidence is less clear-cut 
in vivo. The organic cation transporter 3 (OCT3), a low-affinity monoamine trans-
porter, has been reported on neurons and astroglia in the rodent substantia nigra and 
striatum (Cui et al. 2009), and electron microscopy studies revealed OCT3 on the 
plasma membrane of perisynaptic astroglial processes in the rodent amygdala, con-
sistent with its role in monoamine uptake near synaptic sites (Gasser et al. 2017). 
OCT3 was recently found to function in reverse in the presence of amphetamine, 
releasing dopamine into the extracellular space (Mayer et al. 2018). The authors 
also confirmed that while OCT3 was expressed by dopaminergic neurons, the 
majority of OCT3-expressing cells were likely glia as well as non-dopaminergic 
neurons (Mayer et al. 2018). Importantly, while astroglia express OCT3 and there-
fore may also theoretically employ this mechanism, releasing dopamine in the pres-
ence of amphetamine, amphetamine enters into dopaminergic neurons through DAT 
and not through OCT3 (Mayer et al. 2018). Thus, in the absence of a mechanism for 
amphetamine uptake by astroglia, astroglial OCT3 is not likely to be involved in this 
process. Because studies on the contribution of OCT3 to dopamine transport in the 
striatum and elsewhere have emerged relatively recently (Holleran et  al. 2020), 
there are no studies investigating changes in OCT3 expression in astrocytes follow-
ing drug use and withdrawal in brain regions that contribute to addiction-related 
behaviors, though it remains a fundamental research question.
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 Gliotransmission

 Glutamate

Gliotransmission by astrocytes is most often described as involving intracellular 
Ca2+ flux and vesicular exocytosis of transmitters, which signal to nearby neurons 
(Parpura et al. 1994; Araque et al. 2014; Papouin et al. 2017; Scofield 2018). Though 
electron microscopy and expression studies support the existence of vesicular 
release machinery in astrocytes, the relevance of this modality for gliotransmission 
has been contested by studies indicating a lack of glutamate receptor expression in 
astrocytes in the adult brain in vivo (Sun et al. 2013) as well as studies where dele-
tion of key mediators of intracellular Ca2+ flux in astrocytes had little impact on 
neuronal function (Petravicz et al. 2014; Bazargani and Attwell 2016). Despite this, 
there are a number of well-established mechanisms by which astroglia signal to 
neurons through non-exocytotic mechanisms and without associated changes in 
intracellular Ca2+ (Agulhon et al. 2010; Gomez-Gonzalo et al. 2018). Here we will 
discuss evidence for exocytotic and non-exocytotic mechanisms of transmitter 
release given the important role for excitatory signaling in formation of drug-cue 
associations and in reinstatement of drug seeking.

Perhaps the least controversial mechanism for glutamate transmission by astro-
glia is through the cystine-glutamate antiporter, system xc-, which contributes to 
60% of extracellular glutamate in the NAcore in drug-naïve animals (Baker et al. 
2002). Extracellular glutamate derived from system xc- tonically stimulates presyn-
aptic autoinhibitory mGluRs on glutamatergic and dopaminergic terminals, regulat-
ing transmitter release during neural firing (Baker et al. 2002). System xc-, which is 
expressed to the greatest extent by astroglia (Pow 2001; Sagara et  al. 1993), is 
downregulated after chronic intake of psychostimulants in the NAcore, and this 
downregulation is thought to disrupt autoinhibitory tone at presynaptic mGluR2/3 
on glutamatergic terminals, leading to enhanced glutamate release in response to 
drug-associated cues (Baker et al. 2002). It should be noted that system xc- is not 
similarly downregulated after chronic intake of opioids (Shen et al. 2014b), so this 
molecular adaptation may not generalize across all substances of abuse. However, 
the treatments described above that have been tested preclinically for their ability to 
attenuate reinstated seeking through restoration of GLT-1, including N-acetylcysteine 
and ceftriaxone, also increase expression of system xc- (Knackstedt et al. 2010), 
and N-aceytylcysteine may even increase extracellular cystine levels, promoting 
cystine-glutamate exchange. The contribution of GLT-1 and system xc- upregula-
tion to relapse suppression has been tested by pairing these pharmacological treat-
ments with morpholino knockdown of either GLT-1 or xCT, a subunit of system xc-, 
in the NAcore prior to reinstatement. In these studies, the authors found that GLT-1, 
not xCT, had the greatest impact on reinstated drug seeking (Reissner et al. 2015).

Studies exploring the involvement of exocytotic transmitter release by astrocytes 
in addiction-related behaviors has made use of transgenic mice that express a domi-
nant negative SNARE protein (dnSNARE) in astroglia. These mice lose the 
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capacity to exocytose transmitter-containing vesicles through SNARE mechanisms 
in astroglia but retain normal mechanisms for neuronal exocytosis (Pascual et al. 
2005). dnSNARE mice exhibit similar operant responding for food compared to 
wild-type animals but appear to take less cocaine during self-administration, despite 
similar rates of operant acquisition (Turner et al. 2013). dnSNARE mice also rein-
state less robustly to cocaine-paired cues (Turner et al. 2013). Whether this rein-
statement deficit derives in part from changes in cocaine intake is an important 
question, since dnSNARE animals appear to receive fewer cocaine infusions and 
consequently fewer cocaine-cue pairings during training. However, reinstatement of 
conditioned place preference (CPP) is also abolished in these mice, supporting a 
role for vesicular gliotransmission in reinstatement behaviors after exposure to psy-
chostimulants (Turner et  al. 2013). One limitation of these studies is that global 
dnSNARE expression in astroglia does not provide information regarding which 
brain region(s) orchestrate gliotransmission-dependent modulation of reinstate-
ment. Interestingly, it was found that chemogenetic stimulation of Gq signaling in 
NAcore astrocytes, a manipulation that engages flux of internal Ca2+ and activates 
SNARE-dependent vesicular release of glutamate, reduces reinstated cocaine seek-
ing initiated by cocaine-associated cues (Scofield et al. 2015). Similarly, astroglial 
Gq stimulation reduces methamphetamine (Siemsen et al. 2019) and ethanol seek-
ing (Bull et al. 2014). It was demonstrated that the suppression of cocaine seeking 
using this technique was a consequence of astroglial-glutamate release that stimu-
lated presynaptic mGluR2/3 and ultimately reduced transmitter release from pre-
synaptic terminals (Scofield et al. 2015).

In another study, engaging Gq signaling in cultured astrocytes evoked non- vesicular 
glutamate release through the glutamate-permeable anion channel Bestrophin 1 
(Best1) (Woo et al. 2012). Importantly, Best1 is situated near synapses in vivo and 
would be expected to raise extracellular glutamate levels less robustly than vesicular 
release. Consequently, release of glutamate through this modality is more likely to 
impact high-affinity NMDA receptors, compared with vesicular release which might 
also engage lower-affinity receptors. Accordingly, it might be expected that separate 
modalities of glutamate release from astrocytes engage functionally distinct intracel-
lular signaling cascades in nearby neurons, despite both modalities being linked to 
Gq-coupled receptor activation. Together, the findings described above lead to impor-
tant questions regarding how these cellular mechanisms are employed within the 
reward circuitry of drug-naïve animals and how their deployment may be impacted by 
chronic intake of and withdrawal from addictive substances.

One valid critique of studies where either optogenetic or chemogenetic manipu-
lation of astrocytes is employed to understand astroglial biology is that the abun-
dance of the exogenously expressed proteins, as well as their proximity to synapses, 
may not reflect normal physiological features of astroglia. Nonetheless, studies in 
the dorsal striatum and elsewhere clearly illustrate that astrocytes signal to local 
MSNs using endogenous mechanisms of glutamate release. Dorsal striatal astro-
cytes are uniquely tuned to respond functionally to electrical stimulation of D1- or 
D2-MSN subtypes in response to neuronally released endocannabinoids (eCBs), 
with Ca2+ flux and ultimately glutamate release (Martin et al. 2015). Astrocyte glu-
tamate release produces slow inward currents (SICs) in adjacent neurons of the 
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same subtype as the stimulated neuron, presumably through stimulation of extra-
synaptic NMDA receptors (D’Ascenzo et al. 2007), but SICs are rare in heterotypic 
pairs. These findings are particularly relevant given that stimulation of striatal 
D1-MSN projections or inhibition of D2-MSN projections trigger reinstated seek-
ing (Heinsbroek et al. 2017; Pardo-Garcia et al. 2019). There is not yet definitive 
evidence for how astrocytes distinguish between neural subcircuits. It is abundantly 
clear that striatal astrocytes encompass both D1- and D2-MSN somata within their 
cellular territories (Octeau et al. 2018), so spatial segregation does not seem a likely 
possibility. Further, studies using dye-filling strategies illustrate that astrocytes are 
extensively coupled to one another through gap junctions (Octeau et  al. 2018), 
forming large densely interconnected syncytia. Thus, it does not appear that segre-
gated astrocyte subpopulations are joined into networks through gap junctions, at 
least not in drug-naïve animals (but see “Homeostatic Functions” for a discussion of 
drug-induced changes in astrocyte gap junctions). Still, there are a number of hypo-
thetical ways that astrocytes might coordinate signaling within, but not between 
circuits, when the same receptors and transmitters are employed in both pathways. 
One possibility is that additional signaling molecules accompany transmitter release 
and astrocytes selectively express receptors for molecules released by one or the 
other pathway. As an example, in the ventral pallidum, D1- and D2-MSN terminals 
co-release unique neuropeptides, with D1-MSNs co-releasing substance P and dyn-
orphin and D2-MSNs co-releasing enkephalin and neurotensin (Kupchik et  al. 
2014). The same could occur postsynaptically, with the release of different eCBs 
following postsynaptic excitation of either D1- or D2-MSNs or unique expression 
patterns of cannabinoid receptors on astroglial subtypes. Whether release of unique 
pre- or postsynaptic signaling molecules selectively recruits astrocytes to signal to 
adjacent MSNs in a homotypic manner remains to be shown. Another possibility is 
that astrocytes are selective in their synaptic proximity, with each astrocyte exhibit-
ing unique proximity to D1- or D2-MSNs in order to receive and transmit signals 
selectively. While it does not appear that D1 or D2-MSN-containing synapses 
receive different degrees of astrocyte insulation overall, there is tremendous vari-
ability in synaptic insulation by astroglia in the striatum (Octeau et al. 2018; Chai 
et al. 2017). Thus, it remains possible that each astrocyte may exhibit some selectiv-
ity in which synapses it approaches most closely. This concept will be discussed in 
more depth in the subsequent section on astrocyte morphological plasticity.

 D-Serine

D-serine is the R-enantiomer of the amino acid serine and functions as an NMDA 
receptor co-agonist, with selective affinity for the glycine binding site (Mothet et al. 
2000; MacKay et al. 2019). D-serine has been studied for its improvement of posi-
tive and cognitive symptoms in schizophrenia patients when co-administered with 
antipsychotics (Tsai et  al. 1998), based on evidence of hypofunctional NMDA 
receptor activity in the disorder (Coyle 2012). Whether D-serine is released by 
astrocytes has been a somewhat controversial topic since serine racemase, the 
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enzyme that converts L-serine to D-serine in cells, is mostly expressed by neurons 
(Yoshikawa et al. 2007; Benneyworth et al. 2012). It appears that instead, D-serine 
is produced by serine racemase in neurons and is shuttled between neurons and 
astroglia for vesicular release (Wolosker 2011; Martineau et al. 2013). Regardless 
of its cellular origin, D-serine has been shown to play an important role in signaling 
via NMDA receptors in the accumbens. D-serine is required for NMDA-dependent 
synaptic potentiation and depression in the NAcore (Curcio et al. 2013), both of 
which are disrupted after withdrawal from cocaine self-administration (Moussawi 
et al. 2009). Linking these findings, researchers found that cocaine reduces D-serine 
concentration in the NAcore through increased expression of D-amino acid oxidase, 
an enzyme that degrades D-serine (Curcio et al. 2013; D’Ascenzo et al. 2014). The 
reduction in D-serine levels increases the relative proportion of AMPA/NMDA 
receptors in neurons postsynaptically and permits locomotor sensitization and CPP 
(Curcio et al. 2013; D’Ascenzo et al. 2014; Yang et al. 2013). Subsequent studies 
found that morphine also decreases D-serine in the nucleus accumbens and does so 
by reducing surface expression of AMPA receptors on astrocytes that normally trig-
ger Ca2+ flux and vesicular D-serine release (Wu et al. 2017). Despite these promis-
ing findings, additional experimentation is required to determine the precise role of 
D-serine gliotransmission in mediating addiction-relevant synaptic plasticity.

 ATP

Astrocyte-derived adenosine has been shown to contribute to synaptic modulation 
in various brain regions and in response to synaptically released glutamate as well 
as dopamine (Pascual et al. 2005; Zhang et al. 2003; Quon et al. 2018; Corkrum 
et al. 2020). In the dorsolateral striatum, high-frequency stimulation of cortical ter-
minals stimulates astroglial mGluR5, a Gq-coupled receptor, to produce Ca2+ 
increases, ATP release, and adenosine receptor-mediated long-term depression of 
postsynaptic cells (Cavaccini et  al. 2020). In a similar study in the dorsomedial 
striatum, the authors show that astroglial expression of the adenosine transporter 
equilibrative nucleoside transporter 1, ENT1 is required for astroglial Gq stimula-
tion to impact neural activity. Interestingly, triggering this signaling cascade alters 
firing properties of both D1- and D2-MSNs, reducing spontaneous EPSCs in D1- 
and increasing them in D2-MSNs, promoting goal-directed rather than habitual 
behaviors (Kang et al. 2020).

Altogether, Gq-dependent signaling in striatal astrocytes has been linked to 
vesicular glutamate release (Scofield et al. 2015), slow and low-volume glutamate 
transmission through Best1 (Woo et  al. 2012), and adenosine transport through 
ENT1 (Kang et al. 2020), and activation of astroglial mGluR5, a Gq-coupled recep-
tor, is linked to astrocyte release of ATP (Cavaccini et al. 2020). Perhaps it is not 
problematic that such a diverse range of outcomes can be recruited using the same 
tools or by engaging the same signaling cascade in astroglia. In most cases, it cannot 
be ruled out that multiple forms of gliotransmission occur following Gq receptor 
stimulation, as exhaustive tests are often not feasible. Also, gliotransmission in vivo 
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would be expected to be more refined, since local neural signals would be detected 
by receptors on astrocyte processes to tune local responses. Indeed, it has been dem-
onstrated previously that the same astrocyte is capable of signaling in distinct ways 
using different gliotransmitters depending on the dynamics of incoming signals 
(Covelo and Araque 2018), supporting the tremendous plasticity of this cell type.

 Synaptic Proximity

 Morphological Plasticity of Astrocytes

A central aspect underlying efficacy of transporter uptake and gliotransmission is 
the physical proximity of astroglial processes with synapses (see Fig. 1). The fidel-
ity of this spatial relationship is crucial for normal neurobiology since perisynaptic 
astroglial processes (PAPs) express machinery for uptake and release of transmitters 
and maintenance of homeostatic neuronal function. Interestingly, PAPs display 
morphological plasticity more dynamic than what is observed in dendritic spines 
(Haber et al. 2006), and astrocyte morphological plasticity has been reported in the 
presence of extracellular glutamate (Genoud et al. 2006; Bernardinelli et al. 2014a; 
Verbich et al. 2012; Perez-Alvarez et al. 2014) and dopamine (Galloway et al. 2018). 
In the hippocampus, astroglial processes exhibit enhanced physical interaction with 

Fig. 1 Super-resolution confocal imaging of an astroglial plasma membrane, GFAP arbor and 
neighboring dendritic segment on an NAcore-projecting PL neuron. Top, plasma membrane label-
ing of an astrocyte in the PL using the AAV-GFAP-LcK-GFP viral vector from the Khakh labora-
tory (green) (Shigetomi et  al. 2013). Immunohistochemical labeling of the cytoskeletal protein 
GFAP is shown in blue. Bottom, association of the astrocyte plasma membrane (green) with a 
retrogradely labeled dendritic segment from a neighboring PL neuron that projects to the NAcore 
(red). Here the neuron was labeled with retrograde delivery of Cre in the NAcore combined with 
Cre-dependent AAV-DIO-mCherry expression in the PL. For both the top and bottom series, pan-
els transition to higher magnification to show detail from left to right. The dashed box depicts the 
inset region, scale bars are 10, 5, 2 and 0.5 microns
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the postsynaptic compared with the presynaptic compartment (Lehre and Rusakov 
2002). Further, astroglial interaction with neurons in this region tends to be biased 
toward dendritic spines as opposed to the larger dendritic shaft (Gavrilov et  al. 
2018). The general consensus regarding this conformation is that PAPs are posi-
tioned to perform glutamate transport upon transmitter release while also permitting 
a degree of transmitter spillover presynaptically, allowing for stimulation of presyn-
aptic autoreceptors as a negative feedback loop that maintains elegant regulation of 
transmitter release probability.

In the striatum, there is a tremendous degree of variability in synaptic insulation 
by astroglial processes, perhaps due to the different input types (dopaminergic vs. 
glutamatergic), with astrocytes more closely abutting glutamatergic vs. dopaminer-
gic terminals (Octeau et  al. 2018). Regarding postsynaptic selectivity, high- 
resolution techniques have been applied to astrocytes and different synapse types in 
the striatum to demonstrate that astrocytes encompass similar numbers of D1- and 
D2-MSNs, with a slight bias toward D1-MSNs (Octeau et al. 2018). Nevertheless, 
both neuronal types receive similar degrees of synaptic insulation by astrocytes 
(Octeau et al. 2018).

 Impact of Synaptic Insulation on Synapse Function

Synaptic proximity of astrocyte processes promotes synapse stability and matura-
tion (Bernardinelli et  al. 2014b; Nishida and Okabe 2007; Blanco-Suarez et  al. 
2018), and it is taken for granted that transmitter uptake and release by astrocytes 
requires a high degree of synaptic proximity to effectively regulate synaptic physi-
ology. Not only would loss of synaptic apposition impact efficacy of these func-
tions, but synaptic retraction of astrocyte processes has been shown to favor synaptic 
recruitment at excitatory synapses, with transmitter spillover potentiating nearby 
synapses when astrocyte processes have retracted (Henneberger et  al. 2020). 
Retraction of astroglial processes may also permit stimulation of extrasynaptic glu-
tamate receptors (Pal 2018; Kruyer and Kalivas 2020b) and impact neuronal excit-
ability and plasticity. Extrasynaptic mGluRs pertinent to excitatory signaling 
underlying relapse include the aforementioned presynaptic mGluR2/3 that serves as 
a brake on glutamate and dopamine release (Xi et al. 2002) and mGluR5 expressed 
on nNOS interneurons that initiate degradation of the extracellular matrix and facili-
tate postsynaptic potentiation (Smith et al. 2017; Kruyer et al. 2019a).

Glutamate spillover permitted by retraction of astrocyte processes also recruits 
high-affinity NMDA receptors, which play an important role during drug relapse. 
The GluN2b (NR2b or NMDAR2b) subunit is largely extrasynaptic, as opposed to 
the mostly synaptic GluN2a (D’Ascenzo et  al. 2007). Stimulation of GluN2b- 
containing NMDA receptors contributes to postsynaptic potentiation during rein-
stated heroin seeking, and GluN2b knockdown or blockade prevents increases in 
AMPA/NMDA and spine head diameter induced by a priming heroin injection and 
reduces reinstated seeking induced by cues or heroin prime (Shen et al. 2011).
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 Drug-Induced Morphological Plasticity

Astrocytes exhibit profound morphological adaptations after exposure to substances 
of abuse. For example, astrocyte volume is reduced in the NAcore by exposure to 
both opioids and psychostimulants (Siemsen et  al. 2019; Scofield et  al. 2016b; 
Kruyer et al. 2019b). NAcore astrocytes are also more densely packed after alcohol 
and astrocyte density correlate positively with breakpoint for ethanol, a measure of 
motivation to acquire alcohol (Bull et al. 2014). Analysis of astrocyte plasticity is 
complicated given that both immunological and synaptic events can impact their 
morphology, and substances of abuse can trigger both types of CNS adaptations. 
For example, chronic cocaine or morphine exposure causes reactive astrogliosis 
characterized by changes in GFAP expression, a type of neuroinflammation that 
induces an altered functional and morphological state in astroglia (Beitner-Johnson 
et al. 1993; Sil et al. 2018; Bowers and Kalivas 2003). Whether changes in astrocyte 
proximity to synapses is a by-product of an immunoreactive state and whether syn-
aptic functions of astroglia are interrupted by immunological processes is an ongo-
ing question that necessitates further investigation.

Recent studies show that cues that stimulate drug seeking trigger morphological 
plasticity in NAcore astrocytes in animals trained to self-administer heroin, but not 
sucrose (Kruyer et al. 2019b). This plasticity appears homeostatic in nature, result-
ing from cue-induced neuronal activity and glutamate release. Moreover, interrupt-
ing the re-association of astroglial processes with synapse during reinstatement 
elevates responding for cues that signal heroin availability. Changes in synaptic 
proximity of astrocyte processes in this case are linked to phosphorylation of ezrin, 
an actin-blinding protein selectively expressed in astroglial processes (Derouiche 
and Frotscher 2001). Currently, neither the signaling cascade that drives ezrin phos-
phorylation nor the mechanism by which astrocyte process motility suppresses rein-
stated seeking has been uncovered. Additionally, whether NAcore D1- or D2-MSN 
synapses retain different degrees of astrocyte insulation during withdrawal from 
drug use or during reinstated seeking is a fundamental remaining question.

 Homeostatic Functions

 Synaptogenesis

Astrocytes play key roles in both synapse formation and elimination. Astrocytes 
express and release several signaling factors that contribute to formation of den-
dritic spines and spine density (Walker et al. 2020; Ikeda et al. 2010; Wang et al. 
2020a; Chung et al. 2015), a measure that is aberrantly altered in the striatum after 
drug use and during reinstated drug seeking (Shen et al. 2011; Dos Santos et al. 
2017; Anderson and Self 2017). During development, thrombospondins released by 
astrocytes promote genesis of new synapses that are postsynaptically silent 
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(Christopherson et al. 2005). In adult animals, thrombospondin expression is ele-
vated in response to cocaine exposure, and astrocyte thrombospondins in the 
NAshell contribute to generation of silent synapses (Wang et al. 2020b). In both 
cases, it is expected that presence of silent synapses facilitates induction of func-
tional synapses rapidly upon further signaling that induces postsynaptic insertion of 
AMPA receptors. Indeed blocking thrombospondin release by astroglia during 
exposure to cocaine cues blunts cued reinstatement of seeking (Wang et al. 2020b), 
which is strongly linked to measures of postsynaptic potentiation (Gipson et  al. 
2013). Astrocytes also participate in synapse elimination, through phagocytosis 
directly, and through coordinated signaling with microglia (Chung et  al. 2013, 
2015; Wilton et al. 2019). While astrocytes prune synapses to refine neural circuits 
during development, there is evidence that astrocytes express the machinery for 
synapse engulfment into adulthood (Chung et  al. 2015), and recruitment of this 
process during acquisition of drug taking behavior or extinction learning is a 
possibility.

BDNF, a growth factor expressed and released by both astrocytes and neurons 
(Zafra et  al. 1991; Ohno et  al. 2018; Bergami et  al. 2008), confers bidirectional 
effects on addiction-related behaviors (McGinty et al. 2010). For instance, animals 
that receive BDNF infusions in the VTA 2 h after a cocaine self-administration ses-
sion exhibit enhanced reinstated seeking after withdrawal (Lu et al. 2004). Instead, 
BDNF infusion in the PL attenuates reinstated seeking as well as reinstatement- 
associated increases in accumbens glutamate according to the same timeline 
(McGinty et al. 2010). Generally BDNF undergoes activity-dependent upregulation 
and contributes to synapse stability and plasticity (Gomez-Palacio-Schjetnan and 
Escobar 2013). Interestingly, BDNF also increases astrocyte morphological com-
plexity (Holt et al. 2019). Whether BDNF expression is altered selectively in astro-
cytes within corticostriatal or other circuitries pertinent to addiction and relapse or 
whether neuronal BDNF exerts its effects in part through astroglial signaling has 
not been determined.

 Network Homeostasis

The coupling of astroglia through gap junctions provides them with the unique 
capacity to scale network activity. Although some connexin proteins are expressed 
at relatively high levels in the nucleus accumbens of naïve animals, connexin pro-
tein expression is reduced up to 21 days after cocaine self-administration (Bennett 
et al. 1999). Consistent with this finding, methamphetamine reduces gap junction 
coupling when delivered to cultured astroglia directly, indicated by lack of dye 
transfer to nearby astroglia that are normally extensively coupled (Castellano et al. 
2016). The gap junction protein connexin 30 regulates excitatory synaptic strength 
broadly in the hippocampus by coordinating widespread synaptic insertion leading 
to efficient glutamate uptake through increased synaptic proximity, but not increased 
transporter expression (Pannasch et al. 2014). Perhaps relevant to these findings is 
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the discovery that inhibiting astrocytes in the medial prefrontal cortex impairs cog-
nitive flexibility, involving coordinated neural oscillations through astroglial trans-
mission (Brockett et al. 2018). How this may relate with flexibility in drug-related 
learned behaviors, such as extinction, is a relevant question given the involvement 
of corticostriatal glutamate in measures of drug seeking and refraining. Interestingly, 
blockade of gap junction proteins in astrocytes in the PL prevents extinction and 
reinstatement of cocaine CPP (Fitzgerald 2016). Research momentum on the 
involvement of gap junction proteins in addiction-related behaviors is slowly grow-
ing, and there is enthusiasm for the concept of lateral regulation by astroglia, where 
given their coupling, plasticity, and the multitude of mechanisms by which they 
impact synaptic function, astrocytes are poised to coordinate synapses that are nei-
ther directly nor indirectly linked otherwise (Covelo and Araque 2016).

 Conclusions

Emerging research highlights the critical contribution of astrocytes to synaptic func-
tion, and astroglial adaptations across a number of brain regions have been shown 
to contribute to the encoding and expression of motivated behaviors relevant to drug 
addiction. A majority of early literature on astroglial function was generated in vitro 
and ex vivo, providing information on general astroglial responses to neural activity 
or pharmacological manipulation. An accumulating body of work links these early 
findings with in vivo behavioral measures, highlighting new avenues for research 
and experimentation. Here, we have highlighted research avenues poised to pro-
mote future discovery. Generation of new tools, including CalEx and viruses for 
astroglial labeling and functional manipulation of gene expression, and improved 
imaging methodologies are facilitating studies of astroglial function in rodent mod-
els of drug addiction and relapse. We expect that advances made in the coming years 
using these tools will drastically expand our understanding of ways in which astro-
cytes impact synaptic physiology during normal motivated behavior and in psychi-
atric disorders such as drug addiction.
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