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Abstract Perovskite-based photocatalysts are oxides with the general formula
ABO3 are interesting materials that remained essential in solving a great deal of
energy and environmental remediation challenges. Recent key issues for
high-efficiency solar or visible light photocatalysis are the effectiveness in rapid
transport to the semiconductor surface and the separation of photo-generated
electron-hole pairs; thus, substantial efforts have been made to design and develop
new generation of perovskite-based photocatalyst systems to improve their possible
use. The present article provides an up-to-date review of recent development of
perovskites-and its related materials, including titanate-based, tantalite-based,
niobium-based, ferrites and others, demonstrating a remarkably rapid development
and promising results in photocatalytic performance particularly in visible
light-driven applications. Furthermore, the review also includes modification
strategies that are commonly employed to improve the photocatalytic performance
of perovskites. Finally, the summary of recent developments of perovskites-based
photocatalysis for viable applications.
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13.1 Introduction

Visible-light-induced chemical transformations or photocatalytic is a procedure of
significantly speed up reactions in the presence of a photocatalyst (single-electron
redox mediator) which absorbs photon energy from light irradiation to generate
photoinduced electrons and holes pairs. In particular, the photocatalysis transpire
through single-electron pathways, utilizing visible-light response of organic reac-
tions for the applications of wastewater treatment and environmental protection [12,
114, 163]. This procedure is environmentally and ecologically friendly, green and
produced clean energy as opposed to conventional organic reactions [83]. The
process particularly refers to heterogeneous photocatalysis that has remarkable
interest nowadays and mainly focuses on perovskites semiconductors that possess
distinctive electronic and optical properties, as well as the ability to photogenerated
electron-hole pairs [24, 152] with higher stability and potential recyclability [42, 83,
183]. Mostly semiconductors with wide band gaps i.e. TiO2, ZnO, etc. will restrict
its applicability to ultraviolet (UV) wavelengths, reflecting just 5% of the universe’s
available solar light energy. Moreover, the rapid recombination of photogenerated
electron-hole pairs results in a rapid dissemination of energy that decreases the
performance of photocatalyst [89, 121].

Some conventional approaches to prevail over the drawbacks listed compasses
the extension of the absorption to the spectrum of visible range [22, 86], and
decreasing the recombination rate of the photogenerated electrons and holes
[38, 156]. The solutions explored to boost photocatalytic performance include the
construction of appropriate band gaps [77, 170], the employment of nanosized
architechtures [183, 172, 174, 168], the implementation of interface design and
facet-engineered surface [13, 52], utilization of dopants, as well as metal and
non-metal co-catalysts [6, 95, 111], surface modification [54, 199] and the
heterostructure construction [16, 189, 69, 101].

Amongst the most photocatalytic materials, perovskite-based catalytic
(PCB) materials are auspicious photocatalytic materials with fascinating control-
lable physico-chemical and optoelectronic properties, such as electron mobility,
redox performance, structural flexibility, efficient photocatalytic performance, long
charge carrier lifetimes, excellent charge carrier mobilities, high absorbance coef-
ficients, and uncomplicated bandgap engineering with facile fabrication route [126,
193, 194, 7, 106]. The complete replacement of cation A or B by other metals leads
to variant interesting properties and alteration of the surface facets to create catalytic
activity enhancement [73, 113, 127, 94]. As opposed to other visible-light active
inorganic semiconductors, perovskite-type catalytic materials exhibited facile and
effortless materials construction, application, and permit simple alteration of their
semiconductor bandgap. In our study, we present a concise review to the current
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findings and noteworthy properties of perovskite materials, accompanied by the
enhancement techniques and their recent representative applications for improved
photocatalytic properties.

13.2 Overview and Design of Perovskites-Based
Photocatalysts

Perovskites are materials having similar crystalline unit cell as calcium titanate
(CaTiO3), that was first discovered by Aleksevich von Perovski in 1839 [18, 118].
They have general chemical formula ABX3, where ‘A’ and ‘B’ are cations of
different ionic radii (A larger than B), and ‘X’ which is a halogen or oxygen anion,
holds ‘A’ and ‘B’ together through an ionic bond [44, 65, 191]. Such different
anions and various cations form oxide perovskites and halide perovskites, both of
which have BX6 octahedra in their crystal structures, with ‘A’ cation located in the
interstitial voids of the neighbouring octahedra (Fig. 13.1).

The catalytic activity of the perovskites is primarily attributed to the transition
metal ion at the B-site, while their thermal endurance is mainly due to the rare earth
ion at the A-site [5]. As a result of their photoelectric [141], luminescent [187],
magnetic [9], and electrical properties [82], perovskites are used in the areas of
biological imaging, ionic conductors, sensing, photocatalytic, electro-catalytic,
information sensing and other numerous technological applications [191].

Among the perovskite materials, the perovskite oxide with the formula ABO3 is
a typical structure in inorganic chemistry [79]. It has demonstrated outstanding
potential in the development of solid oxide fuel cells [207], solar cells [206], and
ferroelectrics [40]. Various oxide perovskites such as titanates [109], ferrites [37],
and tantalates [98] are photocatalytically active. The flexibility in the composition
and structure of the oxide perovskites greatly influences their photocatalytic per-
formance [143, 193, 194].

Fig. 13.1 ABX3 perovskite
unit cell (Reproduced with
permission from Ref. [118])
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Previously, perovskite materials were usually prepared using the traditional
solid-state reaction method, but the produced materials are mostly heterogeneous,
impure, have low light absorption in the visible region, are very sensitive to tem-
perature changes, and the excited states have short lifetimes [2, 47]. To overcome
these defects, alternative methods, including sol–gel [36], freeze-drying [88],
combustion synthesis [92], electrospinning method [35], sonochemical method
[110], coprecipitation method [81], microemulsion method [5], glycine-nitrate route
[167] and microwave-assisted method [162] have been introduced. According to
Tanaka and Misono [161], the main strategies of designing perovskite catalysts for
the enhancement of their catalytic activity are; (1) selection of B-site elements
which principally determine its catalytic activity, (2) valency and vacancy control
by the selection of A-site elements, (3) synergistic effects of mainly B-site elements,
(4) enhancement of surface area via formation of fine particles or dispersion on
supports, and (5) addition of precious metals with their regeneration.

The efficiency of the catalyst, including perovskite materials during photocat-
alytic reactions, depends on three steps: (a) photon absorption and generation of
charge carriers, (b) separation and transfer of charge carriers to the active sites of
the surface, and (c) consumption of photogenerated charge carriers on the active
sites during redox reaction [120]. Since most perovskites have a wide bandgap,
several strategies have been employed to improve their visible light absorption and
enhance the separation of photogenerated charge carriers. According to Moniruddin
et al. [118], the key strategies include (a) bandgap engineering to achieve suitable
band edge position, (b) enhancing the separation of charge carriers by changing
particle size and crystal nanostructure, (c) improving visible absorption via the use
of plasmonic metal nanoparticles (Ag or Au), (d) formation of heterojunctions to
enhance separation of charge carriers, and (e) introduction of ferroelectric material
to capitalize on its polarization field towards photoexcited charge separation.
Specifically, various photo-active perovskites catalysts will be discussed in the
following sub-sections.

13.2.1 Titanite Perovskites

One of the classified perovskite with general formula of MTiO3 (M = Sr, Ba, Ca,
Mn, Fe, Co, Ni, Pb, Cd) known as titanate perovskites [74]. They are promising
photocatalysts with structural simplicity and flexibility [125]. Although most tita-
nates are only active under UV light because of their wide bandgap, however, those
containing transition metal oxides with d0 and d10 orbitals, including Co2+, Fe2+,
Ni2+, Zn2+, Pb2+, and Cd2+, would favour narrowing of the bandgap [21]. In
general, titanates remain attractive materials in photocatalysis due to their high
thermal stability and excellent resistance to photocorrosion [4, 100].

Among the titanate perovskites, SrTiO3 happens to be the most widely studied
titanate [164]. It is an n-type semiconductor posseseses an indirect bandgap
between 3.1 and 3.7 eV, having a basic framework of Ti–O polyhedron as TiO2,
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and remarkable charge transport properties [47, 166, 200]. Furthermore, SrTiO3 is
cheap, less toxic, and easily doped to control its electrical properties [45, 173].
Although some narrow bandgap titanates such as NiTiO3 (2.10 eV) and CoTiO3

(2.28 eV) are visible light active, their conduction band is below the water oxi-
dation potential. This limitation makes them unpopular [2]. Fortunately, despite its
wide bandgap, the band edge for SrTiO3 straddles the water splitting redox potential
[74].

13.2.2 Tantalate Perovskites

Tantalates perovskites have the general formula ATaO3 (A = Li, Na, K), and the
bandgap of lithium, sodium and potassium tantalates was found to be 4.7, 4.0 and
3.6 eV, respectively [67, 122]. Although the tantalates are only active under UV
light, however, they are interesting photocatalysts due to their good quantum yield,
structural feasibility and environment-friendly nature [3, 41, 184]. Moreover, the
respective Ta 5d orbital was placed at a negative site as compared to titanates. This
could make the tantalates paramount during a photocatalytic reaction [15].

The high photocatalytic activity of tantalates has been related to their layered
structure with a corner-shared framework of TaO6, allowing easy transport and
separation of photogenerated charge carriers [208]. NaTaO3 is the most active
tantalates perovskite [153], nevertheless it needs to be modified to extend their
photodetection to the visible region to harness more solar energy [164].

13.2.3 Vanadate Perovskites

Vanadate perovskites have the general formula RVO3 [177]. Among the vanadate
perovskites, AgVO3 is an efficient photocatalyst with favourable morphology and
nanocrystalline nature [150]. It has two crystalline phases of a-AgVO3 and
b-AgVO3, both of which have an intense absorption in the visible light region and
are strongly dependent on temperature [50, 182]. At higher temperatures beyond
200 °C, a-AgVO3 phase starts to convert into b-AgVO3, and the process reaches
completion at 300 °C [80]. Due to its more narrow bandgap, larger structural and
chemical stability, b-AgVO3 has gained more attention and wider application than
a-AgVO3 [81]. Although the CB potential of AgVO3 is suitable for O2 evolution
and degradation of volatile organic compounds (VOCs), it is not sufficient for H2

evolution [26].
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13.2.4 Niobate Perovskites

Niobate perovskites can be identified as ANbO3 (A = Na, K, Ag, Cu) [47].
Although they are only active under UV light due to their wide bandgaps (>3 eV),
they can induce both photocatalytic water splitting and oxidative degradation of
organic contaminants [208].

Among the niobate perovskites, sodium vanadate (NaNbO3) and potassium
vanadate (KNbO3) are less toxic and environmentally friendly materials and have
attracted considerable interest [56]. They are both indirect bandgap semiconductors,
with NaNbO3 having a bandgap of 3.4 eV, while KNbO3 has a slightly narrow
bandgap of 3.1 eV [78]. Band structure calculation revealed that the mobilities of
both charge carriers are higher in KNbO3 than in NaNbO3 [151]. This, in addition
to better light absorption, resulted in higher photocatalytic performance by KNbO3

compared to NaNbO3 [151].

13.2.5 Ferrite Perovskites

Ferrite perovskites have been identified as AFeO3 (A = Bi, La, Gd, etc.), with their
original bandgap in the visible area [74, 164]. Among the ferrite perovskites,
BiFeO3 photocatalyst is now parallel with the famous TiO2-based photocatalysts
[43]. Apart from its narrow bandgap, other interesting features of BiFeO3 are
non-toxic nature, high chemical stability, and the coexistence of ferromagnetic and
ferroelectric behaviours at room temperature [64].

13.2.6 Bismuthate Perovskites

Bismuthate perovskites have the general formula MBiO3 (M = Li, Na, K, Ag), and
bandgap in the order NaBiO3 (2.53 eV) > KBiO3 (2.04 eV) > LiBiO3

(1.63 eV) > AgBiO3 (0.87 eV) [132, 159]. They consist of Bi5+ with 6 s empty
orbital, contributing to both the valence band top and the conduction band bottom
[204]. Such a feature can narrow the bandgap and vary the band edge positions,
leading to improved photocatalytic performance [97, 96].

Despite the narrow bandgap of AgBiO3, the large radius of Ag+ and the strong
contact between Ag atoms and O atoms hinders the free transfer of Ag+ ions.
However, due to small ionic radii of Li+, Na+, or K+ and the weak interaction with
[BiO6] octahedrons, Li

+, Na+, or K+ ions may easily transfer in the tunnelled or
layered space to harness solar energy [204].
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13.2.7 Cobaltite Perovskites

Cobaltite perovskites have the general formula ACoO3 (A = Gd, Sm, La, Pr, Eu,
etc.) [51]. Among them, LaCoO3 is considered as a promising catalytic material, as
lanthanum (La) plays a vital role in the catalytic performance due to its partly
occupied 4f levels [66, 115]. At the same time, the cobalt (Co) is considered active
due to its mixed-valence state, excellent electrochemical behaviour, high electrical
and ionic conductivities [49, 66]. However, partial visible light-harvesting ability, a
short lifetime and recombination of photogenerated charge carriers limits its prac-
tical application [66].

13.2.8 Nickelate Perovskites

Nickelate perovskites have the general formula RNiO3 (R = La, Pr, Nd, etc.), and
LaNiO3 has attracted considerable attention in multiple fields [63, 140]. As a result
of its outstanding optoelectronic properties, inexpensiveness, suitable bandgap
(1.9 eV) and non-toxic nature, LaNiO3 has been deemed as an interesting and
hopeful visible light photocatalyst for wastewater purification [188]. However, the
conduction band position of LaNiO3 is below the H+/H2 potential, and therefore
electrons in the conduction band of LaNiO3 could not be used for H2 evolution
[175].

13.2.9 Antimonate Perovskites

Antimonate perovskites have the general formula ASbO3 (A = K, Ag, Cs, etc.), and
AgSbO3 has been reported as a promising material with positive response towards
visible light [71]. The two main polymorphs of AgSbO3 are the pyrochlore and
ilmenite phases. The ilmenite AgSbO3 phase was reported to show better photo-
catalytic performance towards the degradation of organic compounds under visible
light irradiation than the pyrochlore AgSbO3 phase [148]. However, the ilmenite
AgSbO3 phase is metastable and transforms into the stable pyrochlore AgSbO3

phase by heat treatment under appropriate conditions [72].
The conduction band bottom of AgSbO3 mainly consists of hybridized Ag 5 s

and Sb 5 s orbitals, while the valence band top consists of hybridized Ag 4d and O
2p orbitals. The hybridization of orbitals leads to a continuous dispersion in a
relatively wide energy range, resulting in high photocatalytic performance [90].
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13.2.10 Chromite Perovskites

Chromite perovskites have the general formula RCrO3 (R = La, Ce, Pr, Nd, Sm,
Eu, Gd, Tb, etc.) [139]. Among the chromite perovskites, LaCrO3 has been
extensively examined due to its wide application in various fields, including pho-
tocatalysis [149]. It is a p-type visible light active perovskite photocatalyst with a
bandgap of 2.6 eV [124]. The Cr-sites on the LaCrO3 surface are better adsorption
centres for atomic oxygen than Mn in LaMnO3 or Fe in LaFeO3 [169]. Such a
feature in LaCrO3 endows more favourable properties for photocatalytic applica-
tions [124].

13.2.11 Others

Apart from the above-discussed oxide perovskites, other oxide perovskites such as
zirconates (RZrO3 (R = Ca, Sr, and Ba)) [76], cerates (RCeO3 (R = Ca, Sr, and
Ba)) [28] and stannates [RSnO3 (R = Ca, Sr, and Ba)] [201] also exists. However,
they are barely used as photocatalysts, possibly due to their wide bandgaps [62, 70,
201].

13.3 Design and Modification Strategies

Solid-state technique is conventionally used to synthesize perovskites in the pres-
ence of basic salts at high thermal condition [39, 165]. Nevertheless, this method
restricts the control of the particles dimension and its crystallinity [53]. On that
account, an alternative method recently employed for the fabrications of tantalate
perovskites, for instance, hydrothermal, [23, 25, 68, 84, 108]. solvothermal [29,
129] and polymerized complex method [178] to ensure the possibility of tuning the
particle size with high surface area. It is interesting to note that, several modification
strategies along with the alternative method are necessary to produce effective PCB
with high photocatalytic performance. For example, the modification strategies
particularly in defect engineering, doping and co-doping, sensitization, facet control
and others.

The light absorption ability of the perovskite-based catalyst (PCB) was found to
be enhanced when compared particularly with common wide band gap semicon-
ductors (e.g., TiO2), significant to the efficacy of photon and its carrier conversion.
It is relevant to extend the duration of these carriers to further enhanced the pho-
tocatalytic performance. A befitting band gap is mostly crucial to optimize the
absorption of light by the photocatalyst. Practically, the greater absorption in the
visible range, the effectiveness of light absorption can be enhanced by tuning the
band gap to be narrower [23, 25] The construction of the band structures is vital in
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modulating the optical and electronic properties of perovskite nanostructures for
achieving multifunctional the efficacy and efficiency [123].

In particular, the perovskite material has a direct band gap for the whole visible
light range, therefore, the charge carriers were effectively generated at lower
energies in particularly for photocatalytic application [123, 17]. Among all, PBC
has been reported perspicuous approach for tuning the band gap, by simply
adjusting the defects of crystal structure, including the vacancy, impurity and the
interstitial atoms. It can be useful strategy for improving its performance [128, 197,
196] and lead to reduction in band gap value, thus improving the light absorption
within visible range, subsequently possessed higher photocatalytic activity [10, 48].

13.4 Design and Modification Strategies

One of the internal influences that profoundly impact the performance of the
photocatalyst is its configuration and modification in the physical structure and
composition. To be an ideal photocatalyst, the material should have narrow band
gap, high charge separation efficiency and a reasonable absorption efficiency
under visible light. Many photocatalytic materials suffer from wide band gap
energy which couldn’t be stimulated by visible light (Zheng et al. 2015) and high
recombination rate [57].

Conventional solid-state technique is commonly for synthesize perovskites
perovskite materials at high temperatures [39, 165]. However, this approach limits
regulation of crystallinity and particle size [53]. On that basis, for the manufacture
of tantalate perovskites, hydrothermal technique currently used as an alternative
strategy [23, 25, 29, 68, 84, 108, 129] and polymerized complex method [178] has
been reported to ensure the possibility of tuning the particle size with better surface
area. It is important to note that several modification strategies, along with the
alternative method, are required to produce successful perovskite-based catalyst
(PBC) with high photocatalytic efficiency. Several techniques have been developed
to address these limitations, such as defect engineering, doping, heterojunction,
sensitization, and other greener technique, i.e. integrated carbon-based material or
biopolymers [111].

The light absorption ability of the perovskite-based catalyst was improved
compared to typical large band gap semiconductors (e.g., TiO2), as reported by
Jiang and co-worker (2018). This improvement leading to the enhance the effi-
ciency of photon to electron mobility. They proposed that it is important to increase
the lifespan of these carriers to boost the overall performance of photocatalysts. An
appropriate band gap is fundamentally crucial for optimizing the absorption of
photocatalysts. In general, since the visible light range is greater, the absorption
efficiency can also be enhanced by modulating the band gap to lower values [23,
25]. To achieve multifunctional efficacy and effectiveness, the engineering of band
structures is crucial in tuning the optical properties and electronic states of per-
ovskite nanostructures [123].
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Some researcher reported the perovskite material has a direct band gap through
the visible spectrum, so the charge carriers have been produced efficiently at lower
energies, particularly for photocatalytic application [123, 17]. Relevant approach
for tuning the band gap, by simply tuning the crystal structure defects, including the
vacancy, impurity, and interstitial atoms, has been documented among the
advanced features of different photocatalysts. According to [197, 196, 128], a
proper tuning mechanism can be useful to enhance its efficiency and contribute to
decreases in the value of the band gap, thereby increasing the light absorption in the
visible spectrum and consequently allowing greater photocatalytic performance
[10, 48].

13.4.1 Defect Engineering

The improvement in light absorption, catalytic efficiency, charge transfer and sta-
bility can be constructed by defect engineering. The defects were graded according
to the defects and atomic structures of the semiconductor. In theory, structural
discrepancies of photocatalysts can be classified into four such as point defects
[146], line defects [131], planar defects [97, 96], and volume defects [99]. In
addition, many photocatalysis with cation vacancies have been established by many
researchers, and therefore significant to monitor the development of defects in
perovskite materials by generating vacancies and self-doping.

For instance, one of the perovskites reported by Liu and Solhberg, [100] called
strontium titanate, have been designed by defect engineering. SrTiO3, a semicon-
ductor of simple cubic and n-type with superior physical properties with bandgap
between 3.1 and 3.3 eV. Despite the advantages, its wide optical bandgap restricts
its capacity to absorb light, leaving most of the energy from solar light unused.
Strategies to increase the photocatalytic potential of SrTiO3 by controlling its
bandgap to allow use of a wider visible and solar spectrum range. In this example,
introducing defect or doping technique was done for the tuning of the SrTiO3

bandgap.
Xie and co-workers [181] constructed self-doped SrTiO3 through one-step

combustion technique. The samples were treated with argon, Ti3+ ion vacancies and
oxygen (O2) were injected into the lattice, serving as a template to activate water
molecules, helping to restore the efficacy of artificial photosynthesis. This study
was able to show that these oxygen deficiencies are accommodated by inducing the
gap that enables photoexcitation within the visible light region from the defect band
to the conduction band, consequently encourage the adsorption for reduction of
CO2 under visible light irradiation.

In another study investigated by Luo et al. [107], they stated that the link
between strontium titanate surface and its photocatalytic behaviour on CO2

reduction. As reported, the surface of TiO2-terminated surface is in low pH, so the
electronic properties of the two Sr and Ti surfaces experienced significant different,
where the Sr 4d orbital is more negative than the Ti 3d orbital in the conduction
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band, resulting in greater SrO-terminated surface reduction potential. The study
indicates that SrTiO3 surface-Ti-rich had the greatest potential for reducing CO2.

Kwak and Kang [87] have attempted to comprehend the effect of the Ca: Ti ratio
towards CaTiO3 and its potential efficiency. They reported a s the molar ratio of Ti
in the catalyst extends up, a reaction between the reactive sites and carbon dioxide
molecules occur. Nevertheless, it is reported that an excess of Ti will prohibit both
metals from having a synergistic impact. CaTiO3 encapsulated basalt fibre was
recorded as an assisted material to create the highest numbers of oxygen vacancies
on the planes {001} and sufficient pores size that allowed facilitating of CO2 as
indicated by Im et al. [61]. The fiber consisting of large amounts of SiO2 with
impurities of CaO, Al2O3, and Fe2O3 [27] having a role as photosensitizer to
enhance photocatalytic efficiency [30, 61].

In a separate approach, Hou et al. [55] disclosed the presence of nitrogen and
oxygen vacancy are able to modulate the electronic bandgap NaTaON, thereby
increasing the absorption of visible light. As these vacancies able to shifts the
absorption of visible light from the UV region, resulting in a reduction in the
2.18 eV bandgap. The heterojunction also increased the separation of charged and
improved the durability of the materials, thus improved the activity of CO2

reduction.

13.4.2 Doping or Co-doping

Doping or co-doping, which is modulated by the inclusion of a foreign element in
photocatalysts, is another alteration technique. Metal impurities are introduced into
the lattice of perovskite as foreign atoms in the doping technique. Doping modifies
the band gap and the material’s atomic composition, thus making it possible to
employ the visible light. In addition, Huang et al. [57] stated the additional energy
levels can be added that help trap excitons in separate carriers while avoiding
recombination. Many researchers utilized metallic elements and non- metallic
elements doped perovskite [14, 102, 144, 192, 198] to modulate the band com-
position and electronic behaviour of studied photocatalysts.

The assortment of modifications has been investigated to broaden the photo-
catalyst bandgap and thus expand their photo-response to the visible light field, as
reported by Samsudin and Abd Hamid [136] utilising noble metal deposition or
known as doping. In other work, the significant observation by Anzai et al. [8]
stated that the photocatalyst Ag-doped CaTiO3 showed a higher generation rate and
greater CO formation selectivity. In this study, Ag nanoparticles serve as unique
active site within CaTiO3 that reduced the production of H2, and subsequently
increased the creation of CO in water splitting.

Furthermore, by co-doping with La and Cr rare-earth metal, Wang et al. [172,
174, 168] successful modified hollow CaTiO3 cubes to reduce the bandgap and
boost their light-harvesting. In contrast to the small bandgap of pristine CaTiO3, the
hollow cubes exhibited stronger photocatalytic activity. This was primarily due to
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the improved photon interactions in La/Cr co-doping as well as the shorter charge
transport paths. Another series of La/Cr perovskite compounds co-doped with
ATiO3, of which A 1⁄4 Ca, Sr and Ba were studied by Lu et al. [105] to see the
differences in crystal structure as well as their optical and physicochemical prop-
erties. Critical structural contortions can be found for Ca0.9La0.1Ti0.9–Cr0.1O3,
indicating that Cr is responsible for the apparent light photoactivity. Lu et al. [105]
discovered that the divergence away from the bond angle of Ti–O–Ti contributed to
low catalytic efficiency as visible light absorption deteriorates. However, the
existence of Ti–O–Ti bond angle ensures optimum overlap between Ti 3d orbitals
and O 2p orbitals, resulting in broad band distribution and raised in charge
movement for effective H2 generations under visible light illumination.

Huang et al. [58] explored the properties of BaTiO3 perovskite structure, by
adjusting the concentrations of dopant elements such as selenium, tellurium and
sulfur. These dopants substantially minimize the energy gap of BaTiO3, thereby
increasing absorption of the catalyst in the visible region. The catalytic properties of
potassium tantalate, KTaO3, studied by Chen et al. [23, 25] was doped with carbon
and evaluated in the H2 generation under sunlight illumination. From the obser-
vation, carbon-doped KTaO3 demonstrated improved efficiency in the H2 genera-
tion rate relative to the parent materials. In contrast, Krukowska et al. [84]
investigated the role of lanthanides for KTaO3-doped material and its efficiency
towards generation of H2. Synergistic results found between ion-doped perovskites
of KTaO3 and lanthanides and have strengthened the formation of H2.

Depending on the crystallographic orientation, BiFeO3 a perovskite oxide in
rhombohedral unit cell and space group of R3c has known to be readily visible light
active with a direct bandgap between 2.2 and 2.7 eV [138, 186]. In addition, doped
or pristine ferrites materials are extensively studied in photocatalysis. For example,
Yang and co-workers (2019) used Gd-doped BiFeO3 as an efficient catalyst in
generating H2 in water splitting application. Meanwhile, Satar et al. [137] suggested
that the band gap of BiFeO3 decreased substantially in the presence of yttrium
doped, increasing the percentage degradation of cationic dye, MB under sunlight
irradiation. The authors claim, changes in performance are primarily due to elec-
trons and holes being effectively produced, separated, and migrated.

13.4.3 Heterojunction

Heterojunction is another technique to improve the performance of the photocat-
alytic by increasing the efficiency of charge separation. Several studies conducted
by Dutta et al. [33] and Ola and Maroto-Valer [121] showed, by bridging the
semiconductor with metals or non-metals, heterostructures are produced that
introduce new energy states that help to separate photogenerated charges and
thereby preventing the electron from recombining. Ruzimuradov et al. [134], for
instance, developed lanthanum- and N-co-doped strontium titanate-heterostructured

368 N. H. Mohd Kaus et al.



macroporous monolithic materials with a bi-continuous morphology of titanium
dioxide in visible light-active condition.

A number of works reported [11, 75] based on the effect of p-type coupled with
n-type materials to form a p–n heterojunction photocatalyst in addition to doping. In
specific, the efficacy of CO2 reduction in the presence of BiFeO3–ZnO p–n
heterojunction has been investigated by Karamian and Sharifnia [75]. The author
reported that the composite showed higher optical responses in the visible light
spectrum with higher performance in charge separation. This is largely due to the
existence of the p–n heterojunction that has supplied the CO2 photoconversion with
an excess of energetic electrons.

In another study, Bagvand et al. [11] investigated the role of ZnS for the pro-
duction of n-type photocatalyst of BiFeO3 and its efficiency effect by controlling
ZnS and ZnO molar ratios. The findings demonstrated the highest efficiency of
photocatalytic CO2 reduction at the equivalent molar ratio of both ZnO, ZnS and
BiFeO3 in the experiments. They claim that p–n structure will produce localized
electrical field that contributes to the transition in the opposite direction of charge
carriers, leading to a reduction of the recombination rate.

13.4.4 Sensitization and Facet Defect

Another strategy in crafting heterojunction for improved photocatalyst efficiency is
facet engineering. Facet engineering is a potent approach to intensify the crystal’s
photocatalytic efficiency by inducing the creation of the facet defect by modulating
the environment in which the crystal is being formed. The variation of surface
energy of facets will affect the photocatalytic behaviour. There are several types of
facets of the semiconductor lattice. Studies by Liu et al. [103] detected facets {110}
and {101} possess low surface energy and stable, while the {001} facet has the
greatest surface energy and highly reactive, respectively.

Interesting research finding by Yu et al. [190] has shown that {101} and {001}
facets of high-energy TiO2 nanocrystals exhibit different band configurations, and
these co-exposed {101} and {001} facets of nanocrystals establish unique surface
heterojunctions within single particles of TiO2 that are advantageous for the rapid
transfer of photo-induced electrons. In addition, building 3D/2D heterojunctions
between two contact semiconductors with profound and broad facet-dependent
contact areas will provide more effective gap and improved the efficiency as
claimed by Cao et al. [20]. Through efficient synthesis of TiO2/g-C3N4 hetero-
junction composites with a simple calcination route it resulted the photo-generated
holes appear to stay in the TiO2 valence band, while the electrons initially transfer
from the conduction band of TiO2 to the valence band of g-C3N4, which further
excited the g-C3N4 VB [190].

Dye sensitization and reactive facet exposure have recently become a successful
way to extend the spectrum of light reaction and prolong the lifespan of
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photogenerated electrons and holes. Owing to its greatest p-conjugated framework,
good thermal stability, and better absorption on visible irradiation, metallopor-
phyrin is known as one of outstanding photosensitizer. Most of the studies by
several researchers involved metalloporphyrin sensitized metal composites [85,
116, 154, 183, 104, 197, 196, 46], has been shown to effectively increase the
photocatalytic activity of certain semiconductor materials. Furthermore, metallo-
porphyrin processes suitable energy levels as one form of organic semiconductor
and can comprise effective Z-scheme heterojunction hybrid photocatalysts with
n-type TiO2. This hybrid system will prevent the possibility of recombination of
photogenerated charge carriers and boost photocatalytic activity through hetero-
junction interfaces as claimed by Low et al. [104].

Another study from Jeyalakshmi et al. [68], the team reported that sensitization
of cobalt(II) tetraphenylporphyrin controls the electronic configuration in La
changed perovskite of NaTaO3, adjusting the bandgap to be narrow bandgap. No
major change in the crystal structure of the pristine NaTaO3 nanocubes were
observed, but an absorption shift to 330 nm was observed. In addition, sensitization
increased the ability to minimize CO2 and decreased the recombination rate of the
charge carrier. After longer irradiation, the material has been shown to be chemi-
cally stable. In other works, Zhong et al. [202] reported the effect of exposed
catalyst crystal facets on water splitting using CdSe quantum dot (QD) sensitized
BaTiO3 nanocubes. They reported that CdSe QDs located on anisotropic planes of
(230) and (001) of 30-face cubic of barium titanate exhibited higher efficiency
compared to isotropic (001) facets of 6-face cubic of similar perovskite.

13.4.5 Others

Another alternative and practical modification, by involving carbon-based materials
due to their appropriate function, large surface areas, good conductivity and
chemical stability, as described by Sun et al. [155], Wang et al. [172, 174, 168], Tan
et al. [160]. Thus, the electron transfer of p–n heterojunctions is predicted to be
strongly promoted to achieve enhanced photocatalytic behaviour when coated with
a carbon film. Besides, the conductive carbon layer will also prevent p–n hetero-
junction nanostructure accumulation, which is helpful for the increased the stability
of p–n heterojunctions.

Zhou et al. [203] reported the production of ATiO3 hierarchical structure in 3D
utilizing the natural green leaves that aimed to decrease the emission of carbon
dioxide in the presence of A: 1⁄4 Sr, Ca and Pb. The porous network provided by
leave vein has a wide surface area that enhances gas diffusion, thus improving
overall efficiency. Furthermore, with a similar 3D structure, worked with numerous
cocatalysts, such as Pt, Cu, NiOx, Au, Ag and RuO2. The highest evolution of CO
and CH4 among all gold (Au) was observed, followed by Cu and Ag under visible
light illumination.
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Shi and co-workers [142] have been investigating the impact of the manufac-
turing approach on the catalytic efficiency of NaNbO3 through a solid-state reaction
and hydrothermal. Different morphologies were observed from those reactions.
Smooth and straight nanowires produced from hydrothermal reaction while bulk
particles in homogenous sizes were formed by solid-state reaction. The two
methods provided perovskite with a similar bandgap of 3.4 eV and the activity was
examined under UV illumination by the generation of CH4. The homogeneous
nanowires with increased crystallinity and greater surface area showed better CH4
behaviour relative to pristine NaNbO3 [142]. Further combination of NaNbO3

nanowires with g-C3N4 steered to greater performance compared to pristine
NaNbO3 or g-C3N4 for reduction of carbon dioxide. The overlap of NaNbO3 and
C3N4 coordinated band structures increased the efficiency of photocatalytics [142].

By using rGO carbon derivative as an electron separator and transporter to
improve H2 photocatalytic performance in water splitting, Humera et al. [60] further
enhanced the production of LaFeO3. The analysis shows that the integration of rGO
was able to improve the efficiency of the studied material. In addition, several
researchers team like Moniruddin et al. [117] and Dong et al. [31] stated the
calcination temperature and the concentration of precursors play a crucial role in
improving the photocatalytic perovskite performance. The study of Moniruddin
et al. [117] found the size of SrTiO3 is greatly increased with heating temperatures
up to 800 °C. The H2 production rate increases as the temperature rises. It can be
seen that with increasing precursor concentration in EtOH at 800 °C, the H2 pro-
duction rate reduces simultaneously as the size of SrTiO3 decreases.

The effect on the size and structure of CaTiO3 by changing the temperature,
molar ratio of water to ethanol and reaction time was successfully studied by Dong
et al. [31]. The shape varies from inhomogeneous structure to microspheres with
longer reaction time and temperature elevation. The morphology of microspheres
demonstrated greater photocatalytic activity as opposed to randomly aggregated
nanosheets [31]. The growth in photocatalytic activity is largely due to the greater
redox potential of CaTiO3. The synergistic impact of morphology and visible facets
in a photocatalytic system is therefore crucial to determine the efficiencies of
photocatalyst [202].

13.5 Application of Perovskite Photocatalyst

13.5.1 Water Purification

Water purification is the process of discarding contaminants from water such as
algae, bacteria, fungi, viruses as well as parasites as in a biological group, mean-
while in the chemical group consists of organic pollutants, inorganic pollutants,
toxic metals and suspended solids. Conventional purification processes use filtration
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and adsorption to remove the impurities from water sources. However, there are
several problems encountered, such as producing secondary waste, needing extra
treatment to unclog the filter and the pollutant not completely degraded. Therefore,
photocatalysis provides new insight into the water purification process. Due to the
ability of photocatalyst in degrading pollutants, it overcomes all the drawbacks of
conventional processes.

Figure 13.2 shows the basic mechanism of water purification by the photo-
catalysis process. The general photocatalysis process by perovskite photocatalyst
describe as following (i) the photon from light source hit the perovskite photo-
catalyst surface and produce electrons and holes; the light energy must overcome
the band gap in order to produce electrons and holes (ii) electron travel to the
conductive band (CB), simultaneously hole travelled to valence band (VB) (iii)
holes react with water molecules to produce hydroxyl ions and hydrogen ions.
Further reaction of hydroxyl ions with holes produce hydroxyl radicals which are an
active species to degrade the pollutants (iv) simultaneously, electrons react with
electrophilic oxygen to form superoxide radical anions also one of active species.
When superoxide reacts with hydrogen ions, create hydroperoxyl radicals. Two
hydroperoxyl radicals react, forming the hydrogen peroxide. Hydrogen peroxide
acts as fuel in producing an abundance of hydroxyl ions and hydroxyl radicals.
Therefore, most of the pollutants can be degraded when they react with these active
species and usually produce oxygen, carbon dioxide, water among the end
products.

When light source hit the perovskite photocatalyst surface,
Perovskite photocatalyst + hm ! h+ + e− (perovskite photocatalyst)
At CB,

hþ þH2O ! OH� þHþ

Fig. 13.2 Basic mechanism
of perovskite photocatalysis
[112]
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hþ þOH� ! �OH

Simultaneously, at VB,

e� þO2 ! O��
2

O��
2 þHþ ! HO�

2

HO�
2 þHO�

2 ! H2O2 þO2

H2O2 þO��
2 ! �OHþOH� þO2

H2O2 þ e� ! �OHþOH�

Therefore, after generate the active species,
The pollutants + specific active species ! degradation products
Absalan et al. [1] synthesis to degrade bromophenol blue wastewater. The band

gap was found at 3.80 eV required visible light of 410 W halogen lamp. In
120 min, 0.05 mol perovskite photocatalyst dosage successfully degraded 82% of
10.5−14 mol/L bromophenol blue solution. The reaction was repeated for 3 cycles
to prove the stability of that perovskite photocatalyst. Due to high crystallinity and
highly photoinduced, CoTiO3 creates electrons at CB and holes at VB after
obtaining the required light source. At the surface, the same mechanism as previ-
ously stated in general perovskite photocatalysis was observed in degradation of
bromophenol blue solution. Meanwhile, Fig. 13.3 shows the mechanism of BaBiO3

perovskite photocatalyst in degradation of Rhodamine B wastewater. 0.5 g/L of
perovskite photocatalyst is able to tackle 5 mg/L of Rhodamine B solution by both
discoloration (83%) and mineralization (80%) within 240 min and shows high
stability for 4 cycles of reaction under visible light (450 W Xenon lamp). Active
species generated by excitation of BaBiO3 (2.02 eV band gap) such as holes,
hydroxyl and superoxide radicals, break the aromatic rings to form smaller
molecular weight and intermediates, which further reaction produce the end
products such as CO2, NH4

+ and water. It proves that perovskite photocatalyst can
enhance the charge mobility in the crystalline network due to high crystallinity, the
low particle size promotes short diffusion length of the charge carrier to reach the
photocatalyst surface and reduce the electron-hole recombination [59].

Doped-perovskite photocatalysis for water purification shows a different
mechanism. Usually, the doping acts as an electron trapper to avoid electron-hole
recombination. Therefore, the electron acceptor such as diffuse oxygen can easily
trap electrons to produce superoxide radicals and other active species to degrade
pollutants. It is observed by Wang et al. [176, 171], 91.4% of 48 mg/L rhodamine B
wastewater degraded within 120 min under visible light (300 W Xenon lamp) by
Bi/BiOCl/ZnSn(OH)6 doped-perovskite photocatalyst. Figure 13.4 two-part energy
level for Bi/BiOCl and ZnSn(OH)6; Firstly, light energy hit BiOCl to produce
electrons at CB and holes at VB. Due to Fermi level of Bi is lower than CB of
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BiOCl, the electron trap at Bi-metal instead. Then, the electrons transfer to ZnSn
(OH)6 and react with diffuse oxygen to produce superoxide. The superoxide further
reacts and produce hydroxyl radicals to degrade Rhodamine B molecules partly into
water and CO2. Interestingly, at dopant, due to the accumulated electrons, the same
mechanism also applied to produce hydroxyl radicals and able to degrade
Rhodamine B. Next, the holes created by perovskite photocatalyst act as powerful
active species to directly degrade Rhodamine B molecules. Aligned with Safari
et al. [135], the methylene blue molecules purified by photogenerated holes and
superoxide anion radicals produced by Gd-doped NiTiO3. The doping of
gadolinium (Gd) ion helps in improving the porosity of NiTiO3 perovskite pho-
tocatalyst by decreasing the perovskite size, improving the specific surface area and
reducing the recombination of electron-hole. Thus, it enhanced the production of
holes and superoxide anion radicals. Therefore, the degradation of methylene blue
achieved 88.64% within 120 min.

Gd3þ þ e� ! Gd2þ electron trapping stepð Þ

Gd2þ þO2ðadsÞ ! Gd3þ þO��
2ðadsÞ electron transferring stepð Þ

Fig. 13.3 Mechanism of BaBiO3 perovskite photocatalyst in Rhodamine B wastewater degra-
dation and hydrogen production [59]
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O��
2ðadsÞ þHþ

ðadsÞ ! HO�
2ðadsÞ

HO�
2ðadsÞ þHþ

ðadsÞ þ e� ! H2O2

H2O2ðadsÞ þ e� ! �OHðadsÞ þOH�
ðadsÞ

13.5.2 Bacteria Disinfection and Air Purification

Bacteria is a unicellular microorganism from prokaryote group. It can be divided
into two types: gram-positive and gram-negative. Gram-positive bacteria have a
thick cell wall made of peptidoglycan, meanwhile gram-negative bacteria have a
cell wall made from outer membrane and thin peptidoglycan layer. Bacteria dis-
infection is physical or chemical treatment to reduce bacteria amount until obtaining
desired concentration. Bacteria disinfection by photocatalysis can be achieved when
the light source hits the perovskite photocatalyst to generate electrons and holes. In
the CB, there are two paths to deactivate the bacteria. Powerful active species in
deactivating bacteria is superoxide radicals which produce when electrons react
with oxygen. In the presence of water molecules, superoxide radicals can react with
it to create another active species, hydroxyl radicals to deactivate the bacteria.
Meanwhile, at VB, the holes itself have the ability to deactivate the bacteria
directly.

At CB,

Fig. 13.4 Doped-perovskite photocatalyst [176, 171]
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e� þO2 ! O��
2

O��
2 þ bacteria ! deactivated bacteria

O��
2 þH2O ! �OH

�OHþ bacteria ! deactivated bacteria

Simultaneously at VB,

hþ þ bacteria ! deactivated bacteria

The study by Shi et al. [145] found that CuBi2O4/Bi2MoO6, a perovskite pho-
tocatalyst (Bi2MoO6) with heterojunction p-type semiconductor (CuBi2O4), disin-
fect Escherichia coli (E. coli) almost completely within 4 h under visible light.
Figure 13.5 shows the mechanism of photocatalytic disinfection that produces the
active species such as holes, superoxide radicals, and hydroxyl radicals to inactivate
E. coli. The band gap of perovskite photocatalyst is 2.72 eV can highly absorb
420 nm visible light and create the holes after the electrons excite to CB. At CB of
perovskite photocatalyst, the electrons accumulate and follow the same paths as the
stated general mechanism to produce superoxide radical and hydroxyl radicals for
bacteria deactivation. Concurrently, the holes accumulate at p-type semiconductor
attack the cell membrane and cause the inactivation of E. coli. The large specific
surface area of CuBi2O4/Bi2MoO6 provides a more reactive site and reaction
interface between photocatalyst and the bacteria. Hence, slow recombination rate,

Fig. 13.5 Photocatalytic disinfection mechanism of E. coli by CuBi2O4/Bi2MoO6 [145]
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high efficiency for separation, high utilization rate of light and large specific surface
area are the valuable characteristics for photocatalyst during photo-disinfection.
Meanwhile, Li et al. [93], study the application of perovskite photocatalyst for both
gram-positive and gram-negative under the same factors. Under 400 nm visible
light (300 W Xenon lamp) irradiation, E. coli gram-negative and Staphylococcus
aureus (S. aureus) gram-positive were successfully degraded by Pb–BiFeO3/rGO.
The complete inactivation of E. coli within 30 min, meanwhile S. aureus achieved
99.7% degradation within 90 min. Gram-positive is more highly resistant due to
their cell wall structure, made up of 3D spatial network structure composed of many
layers of teichoic acids and peptidoglycan compare to gram-negative bacteria
consists of single layer scattered structure only.

Air purification is a process to kill airborne pathogens that can cause airborne
disease to humans or animals such as allergies, influenza, flu and measles. The
treatment reaction must be able cut-off the spread routes of pathogens either via
aerosol or contaminated fluid. The perovskite photocatalyst, La0.9MnO3 demon-
strates high oxidative ability towards influenza A virus. The illustration in Fig. 13.6
shows hemagglutinin and neuraminidase, the amino acid residue of envelope
proteins on influenza virus oxidized by La0.9MnO3. The oxidative species might
penetrate the virus and damage the genetic materials. In 15 min, almost 76% of the
virus has been disinfected. Therefore, prefer features of perovskite photocatalyst as
air purifier utilize visible light despite of UV light due to its carcinogenic potential
to humans and animals, able to self-disinfecting the airborne pathogens without
requiring external energy sources and working continuously, less harsh and also
high stability.

13.5.3 Photocatalytic Hydrogen and Oxygen Production

Hydrogen energy is the latest renewable energy discovered by scientists in this
century. In the meantime, it was developed for the purpose of hydrogen vehicles
that use internal combustion engines and fuel cells that are still under progress and
expected extensive study. The benefits of this approach are low greenhouse gas
emissions and can obtain by various fuel sources. For energy storage, gives eco-
nomic benefits due to efficient remote power systems and also reduction in pro-
duction and operational costs compared to fossil fuel energy.

Photocatalytic hydrogen evolution requires electrons as major active species.
Water splitting is a reversible process in hydrogen and oxygen production, so
photocatalyst is introduced in the reaction in order to produce an abundance of
hydrogen gas that can be collected.
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Water splitting by exert energy

2H2Oþ energy� 2H2 þO2

In presence of photocatalyst, at CB, water molecules reduce to form hydrogen
gas

2H2Oþ 2e� ! H2 þ 2OH�

And water molecules oxidize to form oxygen gas

2H2Oþ 4hþ ! O2 þ 4Hþ þ 4e�

Existing research recognizes the critical role played by perovskite photocatalyst
in hydrogen and oxygen production. BaBiO3 produces 61 µmol g−1 h−1 hydrogen
gas in 3 h under irradiated 450 W Xenon visible lamp. The water molecule is

Fig. 13.6 Deactivation of amino acids residue of envelope proteins influenza A virus by
La0.9MnO3 perovskite photocatalyst [179]
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reduced to produce hydrogen gas, meanwhile it is oxidized to form oxygen gas as
shown in Fig. 13.3.

Water molecule reduction to form hydrogen gas

2H2O ! 4Hþ þ 4e� þO2

4Hþ þ 4e� ! 2H2

This perovskite photocatalyst synthesis with slow and good crystal growth with
a less formation of defects. The defects can act as a recombination center. Thus, the
high crystallinity promotes better electrons and holes mobility in the crystal net-
work to reach the surface. Next, the particle is small in size to decrease the diffusion
length of photogenerated charges transfer to the surface, short distance directly
related to low resistance. It also implies low probability for electron-hole pair
recombination. Furthermore, small particles contribute to high surface area and
increase the adsorption capacity between perovskite photocatalyst and water
molecules. Hence, the stable photocatalytic hydrogen evolution must be attributed
to high crystallinity, low particle size, low recombination of electron-hole and low
resistance to improve the hydrogen production.

13.5.4 Photocatalytic Reduction of CO2

Almost 77% of carbon dioxide emission mainly contributed by transportation,
electricity and industry was reported by the United States Environmental Protection
Agency (EPA) due to large consumption of limited fossil fuels. Therefore, the
endeavour to convert CO2 into chemical fuels such as carbon monoxide, methane
and methanol to solve the global energy and environmental issues. Photocatalysis
has been recognized as one of promising strategies to tackle this problem. As
artificial photosynthesis, photocatalysts utilize solar energy to combine with CO2

and H2O to produce the chemical fuels and carbon monoxide as shown in Fig. 13.7.
As shown in Fig. 13.8, there are two paths for CO2 reduction either as CO or

CH4 can be achieved simultaneously during photocatalytic reactions. The influence
of H+ ion amounts towards CO2 molecules play an important role for the end
product yields. When the light reaches SrTiO3 perovskite photocatalyst, the elec-
trons excite to CB leaving the holes on VB. The active species on VB react with
H2O to produce H+. Meanwhile, the electrons at CB transfer to the dopant, Pt and
react with H+ to produce CO and CH4.

CO2 þ 2Hþ þ 2e� ! COþH2O Eh ¼ �0:53 V
� �

CO2 þ 8Hþ þ 8e� ! CH4 þ 2H2O Eh ¼ �0:24 V
� �
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Meanwhile, the morphology of perovskite photocatalysts influences light har-
vesting. The 3D ordered macroporous (3DOM) morphology of SrTiO3 perovskite
photocatalyst improves the light absorption by slowing the light source from
reaching Pt/SrTiO3 and separating the charge carriers. Next, the alkali earth metal,
Sr in the SrTiO3 helps the adsorption and initiate activity for CO2 reactant due to
high alkalinity of Sr. The Pt dopant helps to separate the photogenerated charges by
transferring the electrons and react directly with H+ ions. Therefore, perovskite
photocatalyst shows potential in CO2 reduction by undergoing artificial
photosynthesis.

13.5.5 Application of Visible-Light-Driven Perovskite
as Photovoltaic Solar Cell (PSCs)

Current global power demand is increasing significantly every year aligned with the
improvement of the technologies and industries need. Nowadays it was reported
that the energy usage is 16TW globally and expected to increase up to 30TW in
2050 [133]. Therefore, a lot of research has been done since then with only one
purpose to find an alternative source that can add-on to the current or conventional
source of energy such as petroleum-based fuel. Among the various sources of
energy, solar energy was found to be the most significant and promising since it is
easily and readily available. This is possible by converting the solar energy to
electricity. Therefore, using photovoltaic solar cells for power generation seems to
be a promising way as they convert the sunlight directly into electricity.

Nowadays, the market was dominated by the crystalline silicon solar cells.
However, the production of the solar cells is costly due to the expensive raw
materials. Because of that, most of the researchers come up with new ideas of
utilizing PV technology that has low efficiency and cost manufacturing. Despite all

Fig. 13.7 List of carbon dioxide reduction reactions produce different chemical fuel products
[185]
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the facts, poor device stability and short lifetime are creating interferences in the
path of commercialization of PSCs, the perovskite materials are gaining huge
attention among the researchers because of their excellent PV performance, cheap
raw material, and requires of easy processing parameters [205]. Furthermore, it also
does not entail any complicated processing conditions, since it can be created by
using simple low-cost methods such as screen printing, dual-source evaporation,
spin and dip coatings techniques which can be developed on flexible substrate.

Si et al. [147] have studied the fundamentals on the absorption of PSCs. It was
found that the perovskite layer tends to absorb UV and visible light bands,
meanwhile, the electrode layer favours to absorb IR bands. Interestingly, plasmonic
was used to create hot spots in active layer via light-flow-circulating and nonlinear
absorption mechanisms so that, the light can be localized through perovskite
material. Si et al. [147] also reported that the absorption of IR-band has been
extended to 58.2% when the plasmonic was used in the materials.

Figure 13.9a, b shows the mesoscopic architecture and the planar heterojunction
structure of PSCs, respectively. Recently, the mesoporous materials have been
studied and applied as PSCs due to their high porosity and large specific surface
area up to 1000 m2/g [205]. It potentially increases the light response of photo-
sensitize material and improves the effectiveness of the instrument.

Basically, a solar cell consists of metal electrode layer, a hole transport layer as
Hole Transporting Material (HTM), a perovskite layer, a porous oxide layer, a
dense electron transport layer as Electron Transporting Material (ETM), and

Fig. 13.8 The mechanism of Pt doped SrTiO3 perovskite photocatalyst in carbon dioxide
reduction into carbon monoxide and methane [180]
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Flourine-doped Tin Oxide (FTO) electrode. This structure arrangement not just
effective to decrease the recombination rate of electrons and holes, but also provides
the necessary diffusion length for the accumulation of electrons and holes effec-
tively [34]. The TiO2 layer in the middle layer plays a significant function such as
conducting the electrons, blocking the holes and inhibits the electron-hole pairs
recombination in the FTO conductive substrate. Thus, it contributes to improve the
photoelectric conversion efficiency of the studied materials. Furthermore, other than
TiO2, materials like ZnO, Al2O3, and ZrO2 are typically used. Meanwhile, the
function of hole transport layer is to accept the generated holes and transfer them to
the surface of the metal electrodes. Commonly, the hole transport material and
counter electrode materials are Spiro-OMeTAD (2,2’,7,7’-Tetrakis [N,N-di
(4-methoxyphenyl)amino]-9,9’-spirobifluorene) and noble metals, such as Au,
Ag, and Pt, respectively.

Based on Fig. 13.9b, the distinction from the mesoscopic structure is that the
planar structure has no porosity of materials between the two layers of the electron
transport and the hole transport, as a result, the electron-hole pairs can be parted
effectively. Additionally, it contributes enlightenment the mechanisms of light
absorption and electron-hole separation, thus, enhance the versatility of device
optimization for the development of highly effective and advanced coated per-
ovskite solar cells.

Fig. 13.9 Schematic diagram and SEM section image of a mesoscopic architecture PSCs and
b planar heterojunction structure PSCs (adapted from [205]
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Latest research by Ren et al. [130] they studied power conversion efficiency and
efficient light capture and prepared the ultraviolet-ozone assisted strategy on the
TiO2 interface for perovskite solar cells. Interestingly, the modified perovskite
PSCs with ultraviolet ozone TiO2 efficiently suppress the decomposition of per-
ovskite films under light illumination. They found that this device has better per-
formance and remarkable stability as compared to the pristine perovskite solar cells.

13.5.6 Application of Visible-Light-Driven Perovskite
as Photocatalytic Nitrogen Fixation

Ammonia (NH3) is an essential and important substance in the present-day industry
as the major component of production of many types of chemicals such as fertilizers
and bleaching agents for the cleaning process. Conventionally it has been produced
in big scale industries via Haber-Bosch reaction, which requires very high tem-
perature ranging from 400 to 500 °C and pressure ranging from 15 to 25 Mpa
[195]. Recently, numbers of research papers reported on the new and advanced
techniques which are simpler and environmentally friendly known as nitrogen
fixation. Previously, biological nitrogen fixation was introduced and applied in
many applications. During this process, the nitrogen gas from the environment will
be activated by the organism to produce NH3 at ambient temperature and pressure,
for example of the organism is nitrogenase enzymes which catalyze the reduction of
N2 to NH3 [19]. Recently, artificial solar-powered nitrogen fixation was introduced,
where the concept is by using the energy from light source such photons to excite
electron which will be used to create radicals. This can be divided into two major
steps; step (i) semiconductor is excited under light irradiation producing photo-
generated electrons excited to the CB leaving holes in the VB. Step (ii) the pho-
togenerated holes oxidize water to O2 while the photogenerated electrons reduce N2

to NH3. Figure 13.10 shows the mechanism for the production of NH3 by using the
photocatalytic N2 fixation technique.

Fig. 13.10 Propose mechanism for the photocatalytic N2 reduction [195]
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As reported by Li et al. [91], the bismuth molybdate nanosheet with oxygen
vacancies can be prepared via NaOH etching treatment at room temperature. The
function of oxygen vacancies is to boost the photocatalytic nitrogen fixation to
produce ammonia under the visible light source at room temperature and ambient
pressure. They found that the oxygen vacancies had improved the photogenerated
charge carrier separation and improve the capability of the materials for the N2

adsorption and activation. As a result, production of ammonia was increased up to
800 µmol g−1 h−1. Furthermore, these materials also show a good tolerance to the
oxygen in the N2 source for the replacement of pure N2 with air under simulated
solar conditions. The pictorial illustration of relaxed slab model of BMO sample
and the Vo–BMO–OH sample surfaces and the schematic representation of pho-
tocatalytic N2 fixation process under visible light illumination is shown in
Fig. 13.11.

Wang et al. [176, 171], reported the importance of oxygen vacancies with
abundant localized electrons, where it can assist or improve the ability of the
material to capture and activate N2. They proved that the bismuth
oxybromide-based semiconductor that they have prepared produced higher NH3

generation with rate up to 1.38 mmol h−1 g−1 under visible-light-induced OVs. It
also resulted in the stable photoreduction of atmospheric N2 into NH3 in pure water,
which serves as both solvent and proton source. Figure 13.12 shows that the
photocatalytic N2 fixation of the Bi5O7Br–NT can be divided into 4 major steps;
(i) under visible light irradiation, part of the O will escape in the form of O2 from
the surface of Bi5O7Br–NT creating sufficient surface OVs, (ii) the N2 is chemi-
sorbed and activated on the OV sites, (iii) the excited electrons s injected into the
activated N2 and reduce it to NH3 and the last step (iv) the photoinduced OVs
would be refilled by seizing O atoms from water, leading to a good recovery to the
original stable OV-free composition.

Fig. 13.11 Illustration of a the pictorial views of a relaxed slab model for the BMO sample and
the Vo–BMO–OH sample surfaces, and b the schematic illustration of the photocatalytic N2

fixation process on the Vo–BMO–OH sample under visible light illumination [91]
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13.5.7 Application of Visible-Light-Driven Perovskite
Photocatalyst for Anti-fogging Glass

Fog or fogging phenomenon is the formation of small water droplets from the water
condensation on the surface of glasses, goggles, camera lenses and binoculars. This
is possible due to high surface tension resulting in a single droplet of water. Here,
anti-fog or antifogging is very useful to avoid or to reduce the fogging phenomena,
it can be done by reducing the surface tension and altering the degree of wetting by
introduction of antifogging film, resulting in the super hydrophilic, non-scattering
film or water instead of droplets.

Takata et al. [158], reported that they prepared the antifogging glass by coating
the glass with the TiO2 layer. It was observed that the TiO2 has super hydrophilic
properties which is very likely attracted to water other than common ability such as
anti-bacterial, anti-pollution and deodorant materials. They mentioned that when
the surface of TiO2 is irradiated with UV-light could decrease the contact angle
(CA) and reaches almost zero with time as illustrated in Fig. 13.13 where the
incident light will not be diffracted. This finding also aligned with the statement
reported by Duan et al. [32] stated that the super hydrophilic TiO2 film reduces the
CA 150° (hydrophobic TiO2) to less than 5° (hydrophilic TiO2). When the TiO2

coated glass expose to the condensed water, the droplets will create or form very
thin water film and become transparent, automatically, due to the self-cleaning
effect it will repel oil layer and when exposed to the light source it activated and
catalyzed the degradation of any possible bacteria and fungi, etc. Because of that
ability, it was known that the TiO2 has vast application as antifogging and also the
antibacterial or self-cleaning assisted material.

Fig. 13.12 Schematic illustration of the photocatalytic N2 fixation model in which water serves as
both the solvent and photon source as well as the reversible creation of light-induced OVs [176,
171]
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Nundy et al. [119] studied the performance of the super hydrophilic ZnO
microstructure coating for photovoltaic and glazing applications. They reported on
the wettability and photovoltaic behaviour can be affected by the different structures
of ZnO by affecting the CA of each structure as shown in Fig. 13.14. From this
Figure, we can see that the hydrophilic surfaces for nanorods ZnO with higher CA
and super hydrophilicity of microflower and microsphere ZnO with lesser CA,
respectively. This is due to the changes of crystallinity and microstructural during
the synthesis of ZnO. Thus, microstructure ZnO is good for the many antifogging
and photovoltaic applications.

According to Takagi et al. [157], there are numbers of application of TiO2 that
has been studied as the sterilizer, cleaner, decomposer, and antifogging agent. This

Fig. 13.13 Illustration of water drops on a glass surface a uncoated side: hydrophobic (CA = 65°)
and b coated side: hydrophilic (CA < 10°)

Fig. 13.14 Contact angle measurement (CA) of a water drop before contact to the ZnO-coated
surface; b nanorods ZnO, c microflowers ZnO, and d porous microspheres ZnO [119]
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is because of the TiO2 that has high oxidizing power when it is irradiated by solar
light. They also studied the sputter deposition technique to apply the TiO2 film on
the surface of the glass or any targeted clean surface. Based on our previous studies,
a lot of research papers were discussed on the potential of photocatalyst as an
antifogging agent by increasing the wettability and reducing the contact angle of the
surfaces especially TiO2 and ZnO. However, best in our knowledge, studies on the
perovskite structure of photocatalyst as potential antifogging glass is not yet
reported or discussed elsewhere. This will become a good opportunity for the
researchers to study, evaluate and conduct research on the application of perovskite
photocatalyst as the antifogging agent.

13.6 Conclusion

This chapter revealed the theory of perovskite-based photocatalyst for various
environmental remediation applications specifically under visible light and solar
irradiation. Moreover, the different type of perovskite materials together with its
advantages is thoroughly discussed. Its unique characteristic enables it to incor-
porate with other metal and non-metal nanomaterials and such modification
strategies leads to an improve ability of perovskite-based photocatalyst especially in
harvesting of visible or solar light and prolong the life span of the charge carriers
has been further explained. The promising outcome of the fabrication perovskite
materials and its development pathway for various applications for energy con-
version and other environmental applications. Hence, the perovskite-based photo-
catalysts are a versatile material in terms of its recurrent development that enable
performance enhancement and its practicality towards environment protection in
the time ahead.
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