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Abstract A major challenge in the field of nonlinear system identification is the problem of selecting models that are not
just good in prediction but also provide insight into the nature of the underlying dynamical system. In this study, a sparse
Bayesian equation discovery approach is pursued to address the model selection problem, where it is treated as a Bayesian
variable selection problem and solved via sparse linear regression using spike-and-slab priors. The spike-and-slab priors
are considered the gold standard in Bayesian variable selection; however, Bayesian inference with spike-and-slab priors is
not analytically tractable and often Markov chain Monte Carlo techniques are employed, which can be computationally
expensive. This study proposes to use a computationally efficient variational Bayes algorithm for facilitating Bayesian
equation discovery with spike-and-slab priors. To illustrate its performance, the algorithm has been applied to four systems
of engineering interest, which include a baseline linear system, and systems with cubic stiffness, quadratic viscous damping,
and Coulomb friction damping. The results of model selection and parameter estimation demonstrate the effectiveness and
efficiency of the variational Bayesian inference compared to the conventional Markov-chain-Monte-Carlo-based Bayesian
inference.

Keywords Equation discovery · Nonlinear system identification · Spike-and-slab prior · Sparse Bayesian learning ·
Variational Bayes

1 Introduction

Characterising the behaviour of nonlinear structural dynamical systems plays a key role in shaping the fundamental
understanding of the underlying phenomena manifested by such systems. In forward analyses of these systems, generative
models are derived from first principles, in the form of governing differential equations of motion, which are then utilised
to analyse the behaviour of nonlinear structural dynamical systems and predict the possible future states. These governing
differential equations of motion for structural dynamical systems can often be conveniently represented in the state-space
form,

ẋ = M(x) + u (1)

where x is the state vector of system responses, ẋ is the time derivative of the state vector, u is the external input force, and
M(x) is the generative model embedding the equation of motion of the structure. When dealing with inverse problems, the
form of M is treated as unknown and one is tasked with positing a suitable generative model of M that best describes the
system dynamics, given some measurement data. This task constitutes the problem of model selection in nonlinear structural
system identification. One commonly estimates a black-box approximation [1, 2] to M, if the goal lies in only predicting
the future states, given some past measurements. However, when the goal extends beyond prediction and the user aspires to
select interpretable models—to understand the physics of the observed phenomenon—there arises a need to uncover the full
parametric form of an underlying governing equation of motion.

In the pursuit of interpretable dynamical models, standard model selection procedures postulate a small set of candidate
models based on expert intuition and use information-theoretic measures to select a best-fit model [3]. However, such
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procedures can become prohibitive when very little expert knowledge is available and the pool of candidate models is large.
With the rapid development of data-driven modelling, there has been an emergence of alternative frameworks of model
selection for nonlinear dynamical systems that depend more on data and much less on expert knowledge. An early effort in
this setting include the data-driven symbolic regression [4, 5] that searches through a library (or dictionary) of simple and
interpretable functional forms to identify the model structure or the governing equations of a nonlinear dynamical system.
While this strategy works well for discovering interpretable physical models, its dependence on evolutionary optimisation
for selecting the relevant variables from the dictionary makes it computationally expensive and unsuited to large-scale
problems. In a more recent study [6], the discovery process was reformulated in terms of sparse linear regression, which
makes the variable selection process amenable to solution using efficient sparsity-promoting algorithms, thus providing a
computationally cheaper alternative.

This study follows a sparse linear regression approach to equation discovery of nonlinear structural dynamical systems.
To describe the approach, consider a Single Degree-of-Freedom (SDOF) oscillator with equation of motion of the form,

mq̈ + cq̇ + kq + g (q, q̇) = u (2)

where m, c, k are the mass, damping, and stiffness, g is an arbitrary nonlinear function of displacement q and velocity q̇, and
u is the input forcing function. The first-order state-space formulation for this system is,

ẋ1 = x2 (3)

ẋ2 = 1

m
(u − kx1 − cx2 − g(x1, x2)) (4)

with x1 = q and x2 = q̇. Equation (3) can be ignored as it simply provides the definition of velocity; Eq. (4) captures the
governing equation of the structure’s motion. To uncover the underlying structure of the right hand side of equation (4), a
dictionary of basis functions is constructed, containing several simple and interpretable functional forms of the system states
and the input. The right hand side of equation (4) is then expressed as a weighted linear combination of the basis functions
of the dictionary as follows:

ẋ2 = θ1f1(x1, x2) + θ2f2(x1, x2) + · · · + θlfl(x1, x2) + θl+1u (5)

where, {f1(x1, x2), . . . , fl(x1, x2), u} represent the collection of basis functions/variables and {θ1, · · · , θl, θl+1} correspond
to the set of weights. Given noisy observations of time-series measurements of the system

{
x1,j , x2,j , ẋ2,j , uj

}N
j=1, where j

in the subscript indicates time point tj , the above problem reduces to a linear regression problem,
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(6)

where, y is the time-series vector of observations of the derivatives of x2, D is the dictionary matrix of basis variables, and
ε denotes the vector of residuals, taking into account model inadequacies and measurement errors. The task is now to select
which basis variables from the dictionary are to be included in the final model. The equation discovery approach followed
here assumes that only a few basis variables from the dictionary would actively contribute to the governing dynamics. As
such, the solution of θ would be sparse, i.e. would have only a few non-zero weights; hence, it is reasonable to seek sparse
solutions of θ in the above linear regression problem, as illustrated in Fig. 1.

There exists a variety of classical penalisation methods [7] such as lasso, elastic-net, etc. that promote sparsity by adding
a penalty term to the ordinary least-squares objective. Another deterministic sparsity-promoting method is the sequential
threshold least-squares, which runs a least-squares algorithm iteratively while eliminating the small weights at each iteration.
This method underpins the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm—introduced by Brunton et al. [6]
in their pioneering work on equation discovery of nonlinear dynamical systems. Nevertheless, the performance of classical
penalisation as well as sequential threshold least-squares often critically depends on a regularisation parameter that needs
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Fig. 1 Sparse linear regression for selection of relevant basis variables (shown in blue)

(a) (b)

Fig. 2 Probability density functions of (a) the Student’s-t prior, and (b) the spike-and-slab prior (with the spike displayed by an arrow pointing
upwards)

tuning via cross-validation. A sparse Bayesian framework [8, 9] provides a more appealing alternative in this context; apart
from the usual advantage of uncertainty quantification, it offers natural penalisation via sparsity-promoting prior distributions
and allows simultaneous estimation of model and regularisation parameters, thereby avoiding the need for cross-validation.

In a Bayesian framework, sparse solutions to Eq. (6) are obtained by placing sparsity-promoting (or shrinkage) priors on
the unknown weight vector θ . The densities of such priors feature a strong peak at zero and heavy tails: the peak at zero
enforces most of the values to be (near) zero while heavy tails allow a few non-zero values. Examples of such priors include
Laplace [10], Student’s-t [8], Horseshoe [11], and spike-and-slab [12]. Previous studies [13, 14] on sparse Bayesian model
discovery approaches employed the Relevance Vector Machine (RVM) [15]—a popular implementation of the Student’s-t
prior. Despite its remarkable computational efficiency, an issue with the RVM is that it often results in false discoveries [16].
This issue with the RVM arises due to the use of the Student’s-t prior, and is undesirable, as false discoveries introduce more
complexity and hinder the interpretability of the estimated model.

Compared to a Student’s-t prior, a spike-and-slab (SS) prior is capable of producing sparser solutions and reducing false
discoveries. An SS prior represents a mixture of two distributions—a point mass at zero (the spike) for small weights, and
a diffused density (the slab) for the large weights—and is considered as the gold standard in Bayesian variable selection
(BVS) [17]. It is capable of shrinking the small weights to exactly zero; hence, it has the potential to induce a greater degree
of sparsity among the weights compared to a Student’s-t prior. Figure 2 provides a visual depiction of the densities of the
Student’s-t and SS priors.

A disadvantage of the SS prior is that the Bayesian inference can be computationally demanding: the posterior
computation with the SS prior is analytically intractable and one typically employs Markov Chain Monte Carlo (MCMC)-
based approaches—most commonly Gibbs sampling—to draw samples from the posterior distribution. Employing a Gibbs
sampler, it was shown that equation discovery with SS priors lends to more interpretable models [18] compared to the RVM,
although the runtime of the Gibbs sampler could be prohibitive for large systems. A faster alternative to MCMC-based
approaches is to use a variational Bayesian approach. A few studies [19, 20] have previously proposed Variational Bayes
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(VB) algorithms with SS priors to reduce the computational burden in BVS. The implementation in [19] assumed complete
independence of the variational distributions of the model parameters, and it led to severe underestimation of the posterior
covariance of the model parameters. On the other hand, [20] relaxed the independence assumption to a greater extent and
was able to better control the underestimation of posterior covariance.

This paper presents a novel application of VB to Bayesian equation discovery of dynamical systems with SS priors. A VB
algorithm is derived for posterior inference with SS priors, and its performance has been compared with an MCMC-based
sampling approach. Furthermore, the efficiency of the proposed approach has been compared with two other algorithms: (a)
RVM (that uses a Student’s-t prior) and (b) the deterministic SINDy algorithm [6]. The rest of the paper is structured as
follows: Sect. 2 describes the SS prior model for linear regression, followed by Sect. 3 describing the variational Bayesian
approach for BVS. Section 4 presents numerical demonstrations of equation discovery for four SDOF oscillators: a linear
oscillator, a Duffing oscillator with cubic nonlinearity, an oscillator with quadratic viscous damping, and one with Coulomb
damping. Finally, Sect. 5 summarises the conclusions of the paper.

2 Linear Regression Model with Spike-and-Slab Prior

Consider once again the linear regression problem in Eq. (6), rewritten here in a compact matrix-vector form,

y = Dθ + ε (7)

where, y is a N × 1 vector of state derivatives (also referred to as the target vector), D is a N × P dictionary
matrix,1 θ is the P × 1 weight vector, and ε is the N × 1 residual error vector. The residual error ε is modelled as a vector
of independent Gaussian noise with diagonal covariance matrix σ 2IN

(
ε ∼ N (

0, σ 2IN
))
. With a known dictionary D, the

likelihood function can be written as,

y | θ , σ 2 ∼ N
(
Dθ , σ 2IN

)
(8)

To perform BVS with the SS prior, the linear regression problem is considered as part of a hierarchical model. The key
feature of the hierarchical model is that each component of θ is assigned an independent SS prior, defined as follows:

θi | zi, vs ∼ (1 − zi)δ (θi) + ziN
(
0, σ 2vs

)
(9)

The spike part of the prior is modelled by a Dirac delta function at zero [12], while the slab part is modelled by a continuous
zero-mean Gaussian density with a variance σ 2vs . Here vs is the slab variance and it is multiplied with σ 2 so that the prior
naturally scales with the scale of the outcome, that is, the results would not depend on the measurement units of y. Whether a
weight θi belongs to the spike or the slab is determined by an indicator variable zi : zi = 0 implies θi = 0, and zi = 1 implies
θi ∼ N (0, vs). In other words, zi = 0 or zi = 1 determines the inclusion or exclusion of the ith basis variable in the model.
Furthermore, each indicator variable zi is assigned an independent Bernoulli prior, controlled by a common parameter p0,

zi | p0 ∼ Bern(p0) (10)

Equation (10) implies that the selection of a basis variable is independent of the inclusion of any other basis variables from
the dictionary D. The parameter p0 ∈ (0, 1) represents the probability of zi = 1 and controls the degree of sparsity imposed
by the SS prior. Together, the weight vector θ and the vector of indicator variables z constitute the main parameters of the
SS prior model for linear regression. Finally, inverse-Gamma priors are assigned to the error variance σ 2,

σ 2 ∼ IG (aσ , bσ ) (11)

Note that vs , p0, aσ , bσ appearing in Eqs. (9)–(11) are treated as deterministic parameters, controlling the shape of the
respective priors. The hierarchical SS model for linear regression is illustrated in Fig. 3.

1Note the number of columns in the dictionary has been redefined as P = l + 1.
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Fig. 3 Graphical structure of the
hierarchical spike-and-slab model
for linear regression; the
variables in circles represent
random variables, while those in
squares represent deterministic
parameters
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3 Variational Bayesian Inference for Variable Selection

The information required for BVS using the SS prior is derived from the joint posterior distribution of the model parameters
p
(
θ , z, σ 2 | y

)
, which can be computed using Bayes’ rule in the form,

p
(
θ , z, σ 2 | y

)
= p

(
y | θ , σ 2

)
p
(
θ | z, σ 2

)
p (z) p

(
σ 2
)

p (y)
(12)

Here p
(
y | θ , σ 2

)
is the likelihood, p

(
θ | z, σ 2

)
p (z) is the SS prior over z and θ , p

(
σ 2
)
is the prior over measurement

noise variance, and p (y) is the normalising constant. Unfortunately, the posterior in Eq. (12) cannot be computed
analytically, and using MCMC-based sampling methods can be computationally expensive. Therefore, in this section, a
VB methodology is pursued for approximating the joint posterior distribution p

(
θ , z, σ 2 | y

)
by a simpler distribution.

However, the presence of the Dirac delta function in the SS prior makes the derivation of the VB algorithm difficult, and
hence the linear regression model with SS prior is reparameterised in a form that is more amenable to VB inference methods.
Specifically, the form of the SS prior is rewritten as [20],

y | θ , z, σ 2 ∼ N
(
D�θ , σ 2IN

)
, σ 2 ∼ IG (aσ , bσ ) ,

θi ∼ N
(
0, σ 2vs

)
, and zi ∼ Bern(p0), i = 1, . . . , P (13)

where the newly introduced term represents � = diag (z1, . . . , zP ).

3.1 Variational Bayes

In VB inference, a factorised distribution q(θ , z, σ 2) is chosen from a predetermined family of simple distributions Q and
then the distributional parameters are optimised such that the Kullback–Leibler (KL) divergence between the true posterior
p
(
θ , z, σ 2 | y

)
and the optimised variational approximation q∗(θ, z, σ 2) is a minimum. Put formally,

q∗(θ, z, σ 2) = argmin
q∈Q

KL
[
q(θ , z, σ 2) || p

(
θ , z, σ 2 | y

) ]
= argmin

q∈Q

Eq(θ ,z,σ 2)

[

ln

(
q(θ , z, σ 2)

p
(
θ , z, σ 2 | y

)

)]

(14)

where Eq(θ ,z,σ 2) [·] denotes the expectation with respect to the variational distribution q(θ , z, σ 2). The expansion of the KL
divergence term in Eq. (14) leads to an expression for the evidence lower bound (ELBO), which plays a key role in assessing
the convergence of VB methods.

KL
[
q(θ , z, σ 2) || p

(
θ , z, σ 2 | y

) ]
= Eq(θ,z,σ 2)

[

ln

(
q(θ , z, σ 2)

p
(
θ , z, σ 2 | y

)

)]
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= Eq(θ,z,σ 2)

[
ln q(θ , z, σ 2)

]

− Eq(θ,z,σ 2)

[
ln
(
p
(
y | θ , z, σ 2

)
p
(
θ , z, σ 2

))]
+ lnp (y)

= Eq(θ,z,σ 2)

[

ln

(
q(θ , z, σ 2)

p
(
θ , z, σ 2

)

)]

− Eq(θ ,z,σ 2)

[
lnp

(
y | θ, z, σ 2

)]
+ lnp (y)

= KL
[
q(θ , z, σ 2) || p

(
θ , z, σ 2

)]
− Eq(θ ,z,σ 2)

[
lnp

(
y | θ, z, σ 2

)]

︸ ︷︷ ︸
−ELBO

+ lnp (y)

= lnp (y) − ELBO ≥ 0 (15)

Since the KL divergence is non-negative and lnp (y) is constant with respect to the variational distribution q(θ , z, σ 2), the

ELBO can be seen as the lower bound to lnp (y), and hence, minimising KL
[
q(θ , z, σ 2) || p

(
θ , z, σ 2 | y

) ]
is equivalent

to maximising the ELBO, thus,

q∗(θ , z, σ 2) = argmax
q∈Q

Eq(θ ,z,σ 2)

[
lnp

(
y | θ, z, σ 2

)]
− KL

[
q(θ , z, σ 2) || p

(
θ , z, σ 2

)]

︸ ︷︷ ︸
ELBO

(16)

In this study, q(θ , z, σ 2) has been chosen to have the following factorised form [20]:

q(θ , z, σ 2) = q(θ) q(σ 2)

P∏

i=1

q(zi) (17)

and the corresponding individual variational distributions are selected as,

q(θ) = N (
μq,�q

)
,

q(σ 2) = IG (aq
σ , bq

σ

)
,

q(zi) = Bern
(
w

q
i

)
, for i = 1, . . . , P (18)

Here,
{
μq,�q, a

q
σ , b

q
σ , w

q
i

}
represents a set of deterministic variational parameters whose values need to be optimised to

draw the approximate variational distribution closer to the true posterior distribution, in the sense of KL divergence (see
Eq. (14)). The optimal choice of the set of variational parameters that maximise the ELBO in Eq. (16) satisfies the following
relations [21, 22]:

q∗(θ) ∝ Eq(z)q(σ 2)

[
lnp

(
y, θ , z, σ 2

)]

q∗(z) ∝ Eq(θ)q(σ 2)

[
lnp

(
y, θ , z, σ 2

)]

q∗(σ 2) ∝ Eq(θ)q(z)

[
lnp

(
y, θ , z, σ 2

)]
(19)

and on solving the above, the expression for the variational parameters can be obtained as

�q =
[
τ
((

DT D
)

� � + v−1
s IP

)]−1
, (20)

μq = τ�qWqDT y, (21)

aq
σ = aσ + 0.5N + 0.5P, (22)

bq
σ = bσ + 0.5

[
yT y − 2yT DWqμq + tr

{((
DT D

)
� � + v−1

s IP
) (

μqμqT + �q
)}]

, (23)
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τ = aq
σ /bq

σ , (24)

ηi = logit(p0) − 0.5τ
(
(μ

q
i )2 + �

q
i,i

)
f T

i f i + τf T
i

[
yμ

q
i − D−iW

q
−i

(
μ

q
−iμ

q
i + �

q
−i,i

)]
, (25)

w
q
i = expit(ηi) (26)

In the above expressions, logit(A) = ln(A) − ln(1 − A), expit(A) = logit−1(A) = exp(A)/(1 + exp(A)), wq =[
w

q

1 , . . . , w
q
P

]T
, Wq = diag(wq), � = wqwqT + Wq(IP − Wq), and the symbol � denotes the element-wise product

between two matrices. Additionally, f i denotes the ith column of D, and D−i represents the dictionary matrix with the ith
column removed. As the variational parameters do not have explicit solutions and their update expressions are dependent
upon each other, an iterative coordinate-wise updating procedure is followed for optimising them, in which they are first
initialised and then cyclically updated conditional on the updates of other parameters.

3.2 Initialisation and Convergence

To implement the VB algorithm, one needs to set the values of the prior parameters {vs, p0, aσ , bσ } and initialise the
variational parameters {wq, τ }. The prior parameters are set as follows: a slab variance vs = 10, noise prior parameters
aσ = 10−4, bσ = 10−4, and a small probability p0 = 0.1 to favour the selection of simpler models. The VB algorithm
is found to be quite sensitive to the initial choice of the variational parameter wq which represents the vector of inclusion
probabilities of the basis variables. To provide a good initial guess, a grid-search procedure was suggested in [20]; however,
such an initialisation procedure is time-consuming and deemed inconvenient here. In this work, wq is initialised by setting it
to the model diagnostic parameter vector γ output by the RVM algorithm. The RVM diagnostic parameter, γi ∈ (0, 1), can
be interpreted as a probabilistic measure of how important the ith basis variable is in explaining the target vector y [8]; as
such, it relates well with the idea of variable inclusion probabilities. Moreover, a RVM run is cheap, and therefore getting a
good initial point for w(0) takes very little time. Lastly, the initial value of τ , which represents the expected precision of the
noise σ 2, is set to τ (0) = 1000.

The VB algorithm iteratively and monotonically maximises the ELBO and converges to a local maximum of the bound.
Starting with the initial variational parameters, the VB iterations are continued until the relative increase in the ELBO
between two successive VB iterations is very small, that is, when

ELBO(t) − ELBO(t−1) < ρ (27)

the iterations are terminated. Here, ρ = 10−6 is considered. The value of ELBO, at each iteration t , is computed using the
simplified expression:

ELBO(t) = 0.5P − 0.5N ln(2π) − 0.5P ln(vs) + aσ ln(bσ ) − ln�(aσ ) + ln�(a(t)
σ ) − a(t)

σ ln�(b(t)
σ )

+ 0.5 ln|�(t)| +
P∑

i=1

[

w
(t)
i ln

(
p0

w
(t)
i

)

+ (1 − w
(t)
i ) ln

(
1 − p0

1 − w
(t)
i

)]

(28)

where �(·) is the Gamma function, and a
(t)
σ , b

(t)
σ , μ(t), �(t), w(t) denote the variational parameters at the t th iteration,

dropping the ‘q’ superscript. Upon convergence, the variational parameters from the final step are denoted by a∗
σ , b∗

σ , μ∗,
�∗, w∗.

3.3 Bayesian Variable Selection

With a total of P basis variables in the dictionary, there are 2P possible models, where a model is indexed by which of the
zis equal one and which equal zero. For example, the model with zero basis variables has z = 0, whereas the model that
includes all basis variables has z = 1. The relevant basis variables to be included in the final model are selected based on the
marginal posterior inclusion probabilities (PIP), p (zi = 1 | y). Specifically, the basis variables whose corresponding PIPs
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are greater than half, i.e. p (zi = 1 | y) > 0.5, i = 1, . . . , P , are included in the final estimated model. The corresponding
model is popularly known as the median probability model and is considered optimal for prediction [23]. In VB inference, the
estimated w∗

i s can be interpreted as an approximation to the posterior probability of p (zi = 1 | y). Therefore, post inference,
the set of basis variables which correspond to w∗

i > 0.5 are included in the estimated model. Furthermore, the estimated

mean and covariance of the vector of weights θ , denoted by μ̂θ and �̂θ , are respectively populated with values of μ∗ and
�∗ at the indices corresponding to the selected set of basis variables, and the rest of the entries of μ̂θ and �̂θ are set to zero.
Thereafter, predictions with the estimated model can be made using the mean and the covariance of the weights, as shown
below,

μy∗ = D∗μ̂θ (29)

Vy∗ = D∗�̂θD∗T + (
a∗
σ /b∗

σ

)−1 IN∗ (30)

where D∗ is the N∗ ×P test dictionary, defined at a set of N∗ previously unseen test data points, μy∗ is the N∗ × 1 predicted
mean of the target vector, and Vy∗ is the predicted covariance associated with the target vector.

4 Numerical Studies

This section presents numerical studies for exploring the performance of the SS-prior-based VB inference for model/equation
discovery. Four SDOF oscillators of the form expressed by Eq. (4) are considered, each having different forms of the
nonlinear term g(x1, x2), as enumerated in Table 1.

The four systems are simulated using the following parameters:

• The parameters of the linear system are taken as: m = 1, c = 2, and k = 103.
• The three other nonlinear systems use the same values of parameters for the underlying linear part and only differ in the

additional nonlinear term g(x1, x2). The respective forms and the values of g(x1, x2) are provided in Table 1.
• The systems are excited using a band-limited Gaussian excitation with standard deviation of 50 and passband of 0 to

100Hz.
• The displacement x1 and velocity x2 for each system are simulated using a fixed-step fourth-order Runge–Kutta numerical

integration scheme, with a sampling rate of 1 kHz.
• The acceleration ẋ2 is obtained using Eq. (4).

Noisy observations of the displacement x1, the velocity x2, the acceleration ẋ2, and the input force u are assumed, and the
noise is modelled as sequences of zero-mean Gaussian white noise with a standard deviation equal to 5% of the standard
deviation of the simulated quantities.

The equation discovery approach commences with a dictionary of candidate basis variables. In this work, the dictionary
D is composed of 36 basis variables, where each basis variable represents a certain function of the noisy measurements x1,
x2,

D =
{
P 1(x), . . . , P 6(x), sgn (x) , |x|, x ⊗ |x|, u

}
(31)

where, P γ (x) denotes the polynomial expansion of order γ of the sum of state vectors (x1 + x2)
γ . The dictionary consists

of basis variables that are terms from polynomial orders up to γ = 6 and certain other terms. The term sgn (x) represents
the signum functions of states, i.e., sgn (x1) and sgn (x2). Similarly, |x| denotes the absolute functions of states, i.e., |x1| and
|x2|. The tensor product term x ⊗ |x| represents the following set of functions: x1|x1|, x1|x2|, x2|x1|, and x2|x2|. Finally, the
measured input force u is included directly in the dictionary. Note that the total number of models that can be formed by

Table 1 Simulation cases System Name g(x1, x2)

1 Linear 0

2 Duffing k3x
3
1 k3 = 105

3 Quadratic viscous damping c2x2|x2| c2 = 2

4 Coulomb friction damping cF sgn (x2) cF = 1
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combinatorial selection of all 36 basis variables in the dictionary is 236, and it grows exponentially as the number of basis
variables increases.

The constructed dictionary in Eq. (31) is often ill-conditioned, due to a combined effect of large-scale difference among
the basis variables and the presence of strong linear correlation between certain basis variables. Appropriate scaling of the
columns (i.e. the basis variables) helps to reduce the difference in scales and improve the conditioning of the dictionary. For
the purpose of Bayesian inference, the columns of the training dictionary are standardised (i.e. they are centred and scaled to
have zero mean and unit standard deviation) and the training target vector is detrended to have zero mean. Formally put, the
transformed pair of dictionary and the target vector

(
Ds , ys

)
input to the Bayesian inference algorithm in the training phase

has the form,

Ds = (D − 1μD)S−1
D

ys = y − 1μy (32)

where, 1 denotes a column vector of ones, μD is a row vector of the column-wise means of D, SD is a diagonal matrix of the
column-wise standard deviations of D, and μy is the mean of the target training vector y. Note that this modification implies
that, post Bayesian inference, the estimated mean and covariance of the scaled weights θ s , denoted by μ̂θ s and �̂θ s , have to
be transformed back to the original space using the relations: μ̂θ = S−1

D μ̂θ s and �̂θ = S−1
D �̂θ s S−1

D .
As the VB methodology is based on approximating the posterior, it is worthwhile to compare the results of the VB

inference to that of the MCMC-based Bayesian inference that can yield arbitrarily accurate posteriors. In this study, the
MCMC-based Bayesian inference is conducted with a Gibbs sampler, with sampling steps as follows:

θ r | y, σ 2 ∼ N
(
ar , σ

2Ar

)
,with Ar =

(
DT

r Dr + v−1
s Ir

)−1
, ar = ArD

T
r y

σ 2 | y, θz ∼ IG
(
aσ + 0.5N, bσ + 0.5

(
yT y − aT

r A
−1
r ar

))

zi | y ∼ Bern(ξi),with ξi = p0

p0 + Ri(1 − p0)
, Ri = p (y | zi = 0, z−i )

p (y | zi = 1, z−i )
, i = 1, . . . , P (33)

where θ r is a r × 1 vector consisting of components of θ which belong to the slab (i.e. corresponding to zi = 1), Dr is a
N × r matrix that includes only those columns of D whose corresponding components of z are unity, and the calculation of
Ri uses the marginal likelihood of y given z

p (y | z) = �(aσ + 0.5N)

(2π)N/2(vs)r/2

(bσ )aσ

�(aσ )

∣∣∣
(
DT

r Dr + v−1
s Ir

)−1
∣∣∣
1/2

(
bσ + 0.5yT

(
IN − Dr

(
DT

r Dr + v−1
s Ir

)−1
DT

z

)
y

)(aσ +0.5N)
(34)

The Gibbs sampler is run with four chains, each chain having a total of 5000 samples and the first 1000 samples are discarded
as burn-in. The following values were set for the deterministic prior parameters: aσ = 10−4, bσ = 10−4, p0 = 0.1, and

vs = 10. The measurement noise variance σ 2(0)
for each chain was initialised with slightly perturbed values about a nominal

mean value—set equal to the residual variance from an ordinary least-squares regression. To facilitate faster convergence
of the Gibbs sampler to a good solution, the initial vector of binary latent variables z(0) was computed by starting off with
z1, . . . , zP set to zero and then activating the components of z that reduce the mean-squared error on the training target
vector, until an integer number (≈ p0P) of components of z is equal to one. The multivariate potential scale reduction factor
R̂ [24], which estimates the potential decrease in the between-chain variance with respect to the within-chain variance, was
applied to assess the convergence of the generated samples of θ . A value of R̂ < 1.1 was adopted to decide if convergence
had been reached.

Figure 4 demonstrates the procedure of basis variable selection applied to the four SDOF oscillator systems using PIP.
In the case of MCMC, the PIP is calculated for the ith basis variable by averaging over the posterior samples of zi , i =
1, . . . , 36. For VB, the PIP for the ith basis variable is approximated by w∗

i . Basis variables with higher values of PIP imply
greater relevance, and as mentioned in Sect. 3.3, only those basis variables are selected whose PIPs are greater than 0.5
(shown by a dotted line in red). It can be seen that the estimated models for all the four systems are able to select the true
basis variables out of the pool of 36 basis variables. In all cases, the computed PIPs corresponding to the true basis variables
are close to one, which indicates very strong selection probability; however, that may not always be the case. For example, in
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Fig. 4 Illustration of Bayesian variable selection using posterior inclusion probability (PIP), computed by p (zi = 1 | y) in case of MCMC (SS-
MCMC) and approximated by w∗

i in case of VB (SS-VB). (a) Linear. (b) Duffing. (c) Viscous damping. (d) Friction damping

the quadratic viscous damping case (see Fig. 4c), the SS-MCMC algorithm selects the true basis variable x2|x2| with a PIP
of 0.9, while it discards a correlated basis function x3

2 with a PIP of 0.15. Such situations can arise when there exist strong
correlations between certain basis variables, causing the Bayesian algorithm to get confused as to which among the set of
correlated basis variables should be selected.

For the sake of comparison, Fig. 5 plots the pairwise joint posteriors of the model parameters obtained from MCMC
samples and those obtained from VB (using means and 95% confidence ellipses). Posteriors using SS priors often tend to be
multimodal, as is demonstrated by the scatterplots from MCMC samples. Since VB uses a single approximating distribution,
it is impossible to capture the multiple modes of the true posterior. Instead, VB methods approximate the true posterior
around its maximum a posteriori (MAP) estimate. This feature is clearly indicated in the above plots where the mean of
the VB distribution (labelled by ×) is found to coincide with the MCMC MAP estimate (depicted by the regions where the
MCMC samples are most concentrated). Alongside the VB means, 95% confidence ellipses—representing the joint 95%
confidence bounds—of the model parameters are also plotted (shown by yellow lines). It is noted that the 95% confidence
ellipses from VB are always smaller than the support of posterior samples from MCMC, which signify the underestimation
of posterior covariances from VB—a well known issue with VB methods [25].

4.1 Performance Comparison Using Monte Carlo Simulations

In this section, Monte Carlo simulations are used to compare the performance of equation discovery by the VB algorithm
with that of MCMC. In addition, results from the popular sparse Bayesian RVM algorithm [8] and the deterministic SINDy
algorithm [6] are also included for comparison. The RVM is implemented following the algorithm outlined in [15]. As
mentioned in Sect. 1, SINDy implements a sequential threshold least-squares to promote sparsity and requires selection of
the value of a regularisation parameter via cross-validation. A naive sweep over a sequence of regularisation parameter values
was performed, and a value was selected for which the corresponding test set prediction error was a minimum.

Thousand different realisations for each of the four systems, as summarised in Table 1, were considered. The realisations
were created by introducing random perturbations of 0.1κ to the nominal values of the parameters c, k, k3, c2, cF , such that
the new realisations have parameters c̄ = (1 + 0.1κ)c, k̄ = (1 + 0.1κ)k, and so on. The variable κ was sampled from a
standard Gaussian distributionN (0, 1) for each realisation. Note that the nominal values of parameters are the ones that were
used in the previous numerical study. In order to assess the performance, the following performance metrics are defined:
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Fig. 5 Comparison of pairwise joint posteriors of the model parameters obtained by MCMC (shown as scatter-plot with posterior samples) and
VB (depicted by mean and 95% confidence ellipse) for the three nonlinear oscillators: Duffing, quadratic viscous damping, and Coulomb friction
damping; the red circle shows the true parameter values

• Weight estimation error, eθ =
∥∥∥θ̂−θ

∥∥∥
2‖θ‖2 , where θ̂ is the estimate of the true (unscaled) weight vector θ corresponding to the

unscaled dictionary. Similarly, one can also define a scaled weight estimation error, eθs =
∥∥∥SD

(
θ̂−θ

)∥∥∥
2‖SDθ‖2 . In the case of SS

priors, θ̂ is set to the estimated mean of the weights, whereas in the case of RVM, it is obtained as the MAP estimate.

• Test set prediction error, ep =
∥∥∥y∗−D∗ θ̂

∥∥∥
2‖y∗‖2 , where y∗ is the test set of responses, D∗ is the unscaled test dictionary, and θ̂ is

the estimate of weight vector obtained using training data. 2000 data points were used for training and another 2000 data
points for testing.

• False discovery rate (FDR), defined as the ratio of the number of false basis variables selected to the total number of basis
variables included in the estimated model.

• Exact model selection indicator, M̂ = M, is a variable that takes value one when the estimated model M̂ has the exact
same basis variables as the true model M, and is zero otherwise.

• Superset model selection indicator, M̂ ⊃ M, is a variable that takes value one when the estimated model M̂ includes all
the basis variables present in the true model M, and is zero otherwise.

The above performance metrics are evaluated for each of the 1000 different realisations for all four systems, and the averages
of the results are reported in Table 2.
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Table 2 Comparison of results from SINDy, RVM, SS-MCMC, and SS-VB algorithms, averaged over 1000 realisations; bold numbers highlight
the best performing metric

Type Alg. eθs eθ ep FDR M̂ = M M̂ ⊃ M
Linear SINDy 0.168 ≈ 3 × 104 0.302 0.580 0.190 0.778

RVM 0.010 502.261 0.097 0.576 0.005 0.999

SS-MCMC 0.004 5.863 0.072 0.002 0.992 1.000
SS-VB 0.004 0.164 0.071 0.003 0.991 0.997

Duffing SINDy 0.253 609.134 0.168 0.558 0.113 0.742

RVM 0.070 47.377 0.091 0.560 0.001 0.976

SS-MCMC 0.026 4.116 0.078 0.037 0.846 0.977
SS-VB 0.034 4.631 0.076 0.041 0.845 0.971

Quadratic damping SINDy 0.147 ≈ 4 × 105 0.097 0.488 0.106 0.520

RVM 0.017 1546.542 0.073 0.497 0.003 0.931
SS-MCMC 0.017 0.004 0.072 0.030 0.859 0.865

SS-VB 0.012 0.004 0.071 0.019 0.886 0.892
Coulomb damping SINDy 0.216 ≈ 4 × 105 0.257 0.592 0.021 0.371

RVM 0.013 1034.780 0.092 0.496 0.003 0.993
SS-MCMC 0.011 0.004 0.071 0.018 0.847 0.850

SS-VB 0.009 0.026 0.070 0.003 0.762 0.765

Table 3 Average computational runtimes for a single run of SINDy, RVM, SS-MCMC (single chain), and SS-VB

SINDy RVM SS-MCMC SS-VB

3.65s 0.03s 34.23s 0.33s

It is noted that for all four systems, the model selection and parameter estimation performance using SS priors are superior
to that using RVM and SINDy, with the deterministic SINDy algorithm performing worst among the four algorithms. Overall,
it can be inferred that SINDy and the RVM very rarely find the exact true model and will likely include many false discoveries.
The occurrence of false discoveries can be regarded a major deterrent in equation discovery, where selecting the correct set of
basis variables is crucial for drawing scientific conclusions from the estimated model. Both implementations of SS priors do
remarkably well, particularly in reducing the false discovery rate and in increasing the exact model selection rate. Moreover,
the results from VB are seen to closely match those from MCMC, even outperforming them on many occasions. Such
competitive performance demonstrated by VB makes it efficient compared to MCMC, as the VB takes much less run time
than MCMC. The average runtimes of the four algorithms on a PC with 64-bit Windows 10 with 128GB RAM and Intel
Xeon E5-2698 (version 4) CPU at 2.20GHz are enumerated in Table 3. The RVM is the cheapest in terms of computational
time, while the SS-MCMC is the most expensive. The SINDy algorithm run with a known regularisation parameter is often
faster than the RVM; however, when accounting for the time to find the appropriate regularisation parameter, the SINDy
can be much slower than RVM, as is shown in Table 3. The time reported for SS-VB is the combined time of running both
the RVM (required for initialising the VB) and the VB algorithm, and it is apparent that the SS-VB is much faster than
SS-MCMC, taking only 1/100th of the time used by SS-MCMC.

5 Conclusions

This paper investigates the use of an efficient variational Bayesian approach for performing equation discovery of nonlinear
structural dynamic systems. Using a dictionary composed of interpretable functions, the task of Bayesian equation discovery
is turned into a BVS problem, and solved using SS priors, which have the potential to derive more parsimonious and
interpretable models of the underlying structural dynamics. However, MCMC-based Bayesian inference with SS priors is
computationally demanding and can be prohibitive when the size of the dictionary grows and the number of observations is
large. Unlike the MCMC-based approaches, the VB methodology approximates the true posterior with a simple distribution;
it converts the Bayesian inference into a distribution-fitting optimisation problem and solves the optimisation at a much lower
computational cost.

Using a series of numerical simulations, it has been demonstrated that the SS-VB algorithm correctly identifies the
presence and type of various nonlinearities such as a cubic stiffness, a quadratic viscous damping, and a Coulomb friction
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damping. Most importantly, the SS-VB algorithm yields performance on par with the MCMC-based Gibbs sampler at a much
lower computational cost, making the VB approach very efficient in Bayesian equation discovery of nonlinear dynamical
systems.
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