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Preface

Model Validation and Uncertainty Quantification represents one of nine volumes of technical papers presented at the 39th
IMAC, A Conference and Exposition on Structural Dynamics, organized by the Society for Experimental Mechanics, and
held between February 8 and 11, 2021. The full proceedings also include volumes on nonlinear structures and systems;
dynamics of civil structures; dynamic substructures; special topics in structural dynamics and experimental techniques;
rotating machinery, optical methods, and scanning ldv methods; sensors and instrumentation, aircraft/aerospace, energy
harvesting, and dynamic environments testing; topics in modal analysis and parameter identification; and data science in
engineering.

Each collection presents early findings from experimental and computational investigations on an important area within
structural dynamics. Model validation and uncertainty quantification (MVUQ) is one of these areas.

Modeling and simulation are routinely implemented to predict the behavior of complex dynamical systems. These tools
powerfully unite theoretical foundations, numerical models, and experimental data, which include associated uncertainties
and errors. The field of MVUQ research entails the development of methods and metrics to test model prediction accuracy
and robustness while considering all relevant sources of uncertainties and errors through systematic comparisons against
experimental observations.

The organizers would like to thank the authors, presenters, session organizers, and session chairs for their participation in
this track.

Lowell, MA, USA Zhu Mao
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Effect of Inspection Errors in Optimal Maintenance Decisions
for Deteriorating Quoin Blocks in Miter Gates

Manuel A. Vega, Zhen Hu, and Michael D. Todd

Abstract Condition-based maintenance (CBM) is a modern maintenance approach that combines data-driven reliability
models and information from a condition monitoring process (e.g., inspections and continuous monitoring). Maintenance
schedules are predicted based on the results from diagnosis and prognosis. Due to aging, the US Army Corps of Engineers
(USACE) has equipped some of its navigation infrastructure with sensors to allow continuous monitoring. Miter gates are one
of the most important such structural assets because of their economic impact on navigation corridors. Miter gates prognosis
and maintenance schedule capabilities can be improved when a discrete-state deterioration model based on inspection data is
used. One of the sources of inspection data available for miter gates is the operational condition assessment (OCA) discrete
ratings. However, these discrete ratings are highly abstracted, assigned at variable frequencies, and very prone to human error
and to misinterpretations due to inspection protocols. In miter gates, OCA ratings are available for deteriorating components
such as quoin blocks. Over time, contact between these quoin blocks deteriorates, ultimately leading to failure, which can
be generally avoided with timely maintenance schedules. To overcome these issues, this paper proposes a structural health-
monitoring-based CBM framework that accounts for different levels of human observation errors in the inspection data. This
proposed framework shows (1) how to use physics-informed (e.g., finite element) simulations to perform damage diagnosis in
miter gates and (2) how to account for human observation errors to improve prognosis and maintenance schedule capabilities
for deteriorating components (e.g., quoin blocks) in miter gates.

Keywords Miter gates · Uncertainty quantification · Model updating · Prognosis and health management

1 Introduction

Miter gates are hydraulic steel structures that are considered the most common type of lock gate. The purpose of miter gates
is to allow the passage of ships, boats, and watercraft between various water elevation levels in navigation routes systems in
rivers. In the United States, the US Army Corps of Engineers (USACE) maintains and operates 236 locks at 191 sites [1].
Closure of a lock due to maintenance or repairs can cost up to $3 million per day to the US economy [2]. More than half of
these structural assets, including miter gates, have surpassed their 50-year economic design life [3]. To help in prioritizing
maintenance and repairs, operational condition assessment (OCA) ratings have been performed by USACE inspectors via
visual inspections [4]. However, the OCA ratings are highly abstracted and are assigned at a varying frequency, which ranges
from yearly to occurring to a maximum of every 5 years. Recently, many miter gates have been equipped with structural
health monitoring (SHM) systems that can collect strain measurement data in real time [5]. These continuous monitoring
systems aim to provide insight regarding deteriorating gates. A framework that integrates visual inspections accounting for
human discrepancies and SHM for damage diagnosis and prognosis has been developed and presented in this work.

M. A. Vega · M. D. Todd (�)
Department of Structural Engineering, University of California San Diego, La Jolla, CA, USA
e-mail: mdtodd@eng.ucsd.edu

Z. Hu
Department of Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, Dearborn, MI, USA
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Fig. 1 Mapping between reported OCA transition matrix to compensated/true OCA transition matrix

2 Reported OCA Transition Matrix to True OCA Transition Matrix

Based on a large historical OCA database, the number of times that a component transitioned from one rating category to
another (as determined by engineering expert elicitation) over a given inspection time step can be determined to generate
the rating transition matrix. The transition matrix P (see Eq. (1)) is defined as a square matrix with nonnegative values that
represents how some process “transitions” from one state to the next. In this application, an inspected state at time t, Ii, t (with
i = 1 . . . 6, corresponding to the six-letter ratings specified above), will transition to inspected state at time t + 1, Ij, t + 1,
j = 1...6, according to

PReport = P
(
Iobs
t+1

∣∣∣ Iobs
t

)
=
⎡
⎢⎣

P
(
AR

t+1

∣∣AR
t

) · · · P
(

CFR
t+1

∣∣AR
t

)
...

. . .
...

P
(
AR

t+1

∣∣CFR
t

) · · · P (CFR
t+1

∣∣CFR
t

)

⎤
⎥⎦ , (1)

In order to map the reported OCA rating transition matrix to the underlying “true” OCA transition matrix, the underlying
true OCA rating is defined at time t as I tr

t and that at t + 1 as I tr
t+1, the reported OCA rating from field engineers at time t as

I obs
t and that at time t + 1 as shown in Fig. 1.

As shown in Fig. 1, to map PReport to POCA, the human observation error matrix needs to be obtained/estimated as follows:

Phuman =

⎡
⎢⎢⎢⎣

Ph
11 Ph

12 · · · Ph
16

Ph
21 Ph

22 · · · Ph
26

...
...

. . .
...

P h
61 Ph

62 · · · Ph
66

⎤
⎥⎥⎥⎦

Assume→

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0.04 0.96 0 0 0 0

0 0.40 0.60 0 0 0
0 0.03 0.17 0.80 0 0
0 0 0 0.03 0.97 0
0 0 0 0 0.03 0.97

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

in which Ph
ik = Pr

{
I obs
t = k|I tr

t = i
}

is the probability that the reported OCA rating is k, given that the true OCA rating is i.
Now, the assumed Phuman represents the behavior of an inspector that regularly tends to assess a structural component to be
in a better condition than reality.
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Fig. 2 Diagnosis and prognosis of gap lengths in miter gates using compensated OCA ratings and SHM systems

3 Framework and Results

As shown in this Fig. 2, the proposed framework first estimates the damage state (i.e., gap length) using online SHM data
using sequential updating. After that, the estimated gap length is mapped from its continuous state to its corresponding gap
(OCA rating) state. The current state at time “n” with the true OCA transition matrix is used to estimate the rating state
at time “n + m,” which can be used to estimate the probability of failure and the remaining useful life at this time step,
as denoted in Fig. 2. This framework is categorized as a hybrid approach because it uses a physics-based (FE) model for
diagnosis and a data-driven model (the transition matrix) for prognosis.

4 Conclusion

This work proposed a new hybrid CBM approach that integrates high-fidelity FE-model-based SHM with inspection-data-
based transition matrix for an effective diagnosis or prognosis, which includes the quantification of the effects of uncertainty
in OCA ratings. Results capture correctly the true gap length and the true remaining useful life of the quoin blocks, assuming
its only deterioration mechanism is the formation of a bearing gap.

Acknowledgments This research was supported by the US Army Corps of Engineers through the US Army Engineer Research and Development
Center Research Cooperative Agreement W912HZ-17-2-0024. The support is gratefully acknowledged.
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Model Uncertainty Quantification and Updating of a Boundary
Condition Model of a Miter Gate Using Strain Measurements

Chen Jiang, Manuel A. Vega, Michael D. Todd, and Zhen Hu

Abstract This paper presents a model uncertainty quantification and updating approach for a boundary condition model of
a miter gate. A boundary condition model is used as the forward model to predict the boundary load condition of a miter
gate for a given gap length. The boundary force prediction is then employed as inputs to a strain analysis model that predicts
the strain response of the gate. Due to model simplifications, the boundary condition model may not accurately represent
the true physics. By following the Kennedy and O’Hagan (KOH) framework under a Bayesian scheme, this paper corrects
the unobservable boundary condition model using the strain measurements by simultaneously estimating the gap length and
quantifying the model uncertainty. Results show that the proposed approach can effectively estimate the unknown gap length
and improve the prediction of both the boundary condition model and the strain response model.

Keywords Miter gates · Boundary condition model · Model calibration · Uncertainty quantification · Model updating

1 Introduction

The US Army Corps of Engineers (USACE) maintains 236 miter gates at 191 sites [1]. One of the most common failures
of the miter gates is the deterioration of quoin blocks due to the rolling contact between the supporting wall and miter gate,
leading to the loss of contact, i.e., gap. An unexpected closure of miter gates will happen when a high-stress area where
boundary force exceeds the limit states emerges as the gap length increases. Early gap prediction is required before the gap
length becomes too large to maintain the normal operation of miter gates. Even though models have been developed to predict
the boundary forces along quoin blocks by using a contact model or by simplifying the contact as a pin boundary condition,
these models may not accurately predict the boundary load condition due to model assumptions and simplifications. In
addition, the unknown gap length of the quoin block further complicates the boundary load condition analysis. In this
work, we are going to implement Bayesian calibration to identify the gap length and correct the boundary condition model.
Since true boundary force is distributed and unobservable, we construct a multilevel model for miter gates and use strain
measurements for Bayesian calibration.

2 Multilevel Simulation Models

A high-fidelity ABAQUS finite element simulation model was developed for stress analysis and boundary contact analysis,
as shown in Fig. 1 [2], in which the distributed boundary forces at normal and tangential directions can be respectively
obtained for a given gap length. Based on the finite element model, a reduced-order model of strain analysis was developed
for the prediction of strain gauges using the static condensation method [3] with the distributed boundary force as input.
Even though both the boundary contact analysis model and the strain analysis model share the same finite element model,
the analyses are performed in a multilevel manner. As shown in Fig. 2, the boundary condition model, gm

BC, is called the

C. Jiang · Z. Hu (�)
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Fig. 1 Miter gate and finite element model (left: miter gate, middle: stress analysis, right: contact force analysis)

Fig. 2 Multilevel analysis model of miter gate

unobservable model since the distributed boundary force FBC(x, du) is unobservable, whereas the strain analysis model,
gm

o , is called the observable model because the strain gauge data yo(x,do) can be measured. Furthermore, the unobservable
distributed boundary force may be one of the inputs of the prediction model, such as the fatigue analysis model. In Fig. 2,
x pertains to the upstream and downstream water levels governing the hydrostatic load on the gates and θ∗

l is the unknown
true gap length since gap is underwater in practice. On the other hand, du, do, and dp are respectively the spatial coordinates
in the different model responses.

3 Modularized Bayesian Calibration of the Multilevel Model

The underlying true unobservable boundary force can be modeled by

Ftrue
BC (x,du) =

{
ρgm

BC

(
x,du, θ

∗
l

)+ δBC (x,du) , if du ≥ θ∗
l

0, otherwise
, (1)

where Nu is the number of spatial coordinates; du, δBC(x,du) represent the model discrepancy of gm
BC due to the model

assumptions or simplifications; and ρ is an unknown regression coefficient. Since unobservable distributed response
Ftrue

BC (x,du) ∈ R
2Nu×1 cannot be obtained in practice to calibrate gm

BC, we employed the strain measurements given below:

ye
o (x,do) = ytrue

o (x,do) + ε (do) = gm
o

(
x, do, θ∗

l , Ftrue
BC (x,du)

)+ ε (do) , (2)

where ε (do) = [ε (do,1
)
, . . . , ε

(
do,No

)]T are the measurement errors of strain data
{
xe, ye

o

}
and No is the number of do.

The modularized Bayesian scheme [4, 5] is adopted. In Module 1, a reduced-order model is constructed for gm
BC and gm

o
using the Lagrange multiplier method and static condensation method, respectively [3]. Module 2 estimates ρ̂ and constructs
the surrogate model δ̂BC (x,du, ω∗) based on the strain observations

{
xe, ye

o

}
, where ω∗ is the hyper-parameters of the

constructed discrepancy surrogate model. Module 3 updates the posterior distribution of θ l (i.e. fθ |y
(
θl|ye

o, xe, ω∗, ρ∗))
through the Bayesian inference scheme. In Module 4, the distributed boundary force after calibration and correction is
predicted as
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F̂BC (x,du) | ye
o, xe, ω∗, ρ∗ = ∫

θl
ρ∗gBC (x,du, θl) fθ |y

(
θl|ye

o, xe, ω∗, ρ∗) dθl

+ δ̂BC (x,du, ω∗) ∈ R
2Nu×1,

(3)

and the corrected strain response prediction is obtained in a similar manner to Eq. (3).

4 Results

For the purpose of demonstrating and verifying the proposed method, we assume the boundary force discrepancy functions
as

δN (x,du) = 3
(
xup − xdown

)
[(762 − du) /1200]3, if du ≥ θ∗

l , (4)

δT (x,du) = [(xup − xdown
)
/100

]2 sin (du/240) , if du ≥ θ∗
l , (5)

where both δN(x, du) and δT(x,du) will equal to zero if du < θ∗
l , δN(x, du) and δT(x,du) are the discrepancy of normal and

tangential boundary force, respectively. The formula x = [xup, xdown] denotes the upstream and downstream water levels
varying over [24, 744] inches; du denotes the height coordinates along the quoin block, whose height is equal to 762 inches
(i.e., du ∈ [0, 762]), θ∗

l represents the true gap length, which is assumed to be 150 inches for illustration. Building upon
the boundary condition model, assumed discrepancy functions, and gap length, 500 strain data are synthesized by Eq. (2)
with ρ = 0.8, and each group of data has seven strain responses collected through the strain gauges in Fig. 1. The standard
deviation of strain measurement error is assumed to be σε = 1. After that, θ∗

l , δN(x, du), δT(x, du), and ρ are assumed to
be unknown while performing Bayesian calibration. A noninformative uniform distribution θ l~Unif(135, 165) inches is
assumed to be the prior distribution of θ l.

The regression coefficient is estimated to be 0.83, and the maximum a posterior estimation of θ l is equal to 149 inches,
which is very close to the assumed true θ∗

l . Figure 3 shows the normal force prediction after correction. Figure 3a and 3b
respectively compare the normal force discrepancy and total normal force prediction at a certain water level (upstream level:
426 inches, downstream level: 120 inches). Figure 3c shows an error surface by fixing the downstream water level at 120
inches. The results show that Bayesian calibration improves the prediction accuracy of the boundary force analysis model.
Moreover, Fig. 4 depicts the comparison of strain response prediction errors at the seven sensor locations of 50 different input
settings by respectively fixing downstream and upstream levels. It indicates that the prediction accuracy of the observable
strain model can also be improved dramatically after the calibration and correction of the unobservable boundary condition
model.
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Fig. 4 Prediction errors of seven strain responses with downstream water level or upstream water level fixed

5 Conclusions

This work proposed a modularized Bayesian calibration method for the multilevel simulation model of miter gates, where
the observable strain measurements are employed to tackle the challenge of correcting the unobservable model with a
distributed boundary force response. Results show that the prediction accuracies of both unobservable and observable models
are improved.
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Fusion of Test and Analysis: Artemis I Booster to Mobile
Launcher Interface Validation

Joel W. Sills, Arya Majed, and Edwin E. Henkel

Abstract The National Aeronautics and Space Administration (NASA) is in the midst of bold and exciting next steps
in human exploration and spaceflight. The designs of the new Space Launch System (SLS), the Orion spacecraft, and
the Exploration Ground Systems (EGS) for vehicle processing and launch are essentially complete, and there has been
significant progress in the manufacturing and assembly of specific hardware for the Artemis I and Artemis II missions.
Equally as important, the program level and integrated system-level testing and analyses are also well underway to support
integrated verification, validation, and Certificate of Flight Readiness (CoFR) for Artemis I. Testing and analysis are key
to addressing technical challenges faced by the Artemis missions. Building block approaches are required that provide the
right balance between component, element, and/or system-level testing that satisfies verification and validation objectives
where uncertainties are quantified and minimized. Artemis I is a system of systems that requires a fusion of test and
analysis that adeptly characterizes critical interfaces between major program elements. An example of this fusion involves
characterizing the interface between the SLS booster and the Mobile Launcher (ML) Vertical Support Post (VSP) interfaces.
Proper characterization of this interface represents a number of challenges, beginning with the fact that it is a mating
of ground support structure in the form of a civil structure to flight hardware. Both sides of the interface are built to
different construction standards but are governed by interface requirements to ensure compatibility when mated. From past
program experience, the flexibility at the booster to the ML interface is critical in developing accurate prelaunch stacking
and cryogenic preloads, squat loads, and pad separation release of preloads and squat loads. This same premise holds for
Artemis I. To describe the asymmetric characteristics at this interface, careful consideration of static forces due to gravity
loading with the commensurate effects resulting from ML VSP leveling, spacing, and shimming during booster stacking and
associated geometric nonlinear forces due to booster lateral displacements are necessary for inclusion in pretest assessments.
This paper will look at these issues for the upcoming booster pull test, in which two boosters will be installed on the ML
and one of these boosters will undergo static lateral loading, followed afterward by dynamic excitation into resonance and
free decay. This paper evaluates the booster to the ML interface by characterizing the flexibility between the booster aft
skirt and the ML VSP. Furthermore, this paper methodically evaluates the effect of the following on the test outcome:
gravitational effects on the booster and ML; the effects of VSP leveling, spacing, and shimming under gravitational loading
during booster stacking; the effect of geometric nonlinear follower force due to center of gravity (CG) offset as the booster
is laterally displaced; and the system coupling between the booster under test, ML, and the second booster. Simulated results
for a static load pull and dynamic excitation provide insight into the differences in prediction vs measured response with and
without the inclusion of the abovementioned boundary condition and geometric nonlinear effects.
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1 Introduction

The booster pull test discussed herein evolved from a continuous reevaluation of the Artemis I dynamic building block test
program. The original building block included a partial stack modal test (PSMT) that included the booster systems and the
SLS core stage (CS); however, that test was removed from consideration. The PSMT served as a precursor to the integrated
modal test (IMT), which sought to gather system response data of the integrated SLS system mounted to the ML at eight
VSPs. With the removal of the PSMT, it was still recognized that characterization of the booster to the ML interface was
critical to informing the analytical models. This realization gave rise to the booster pull test to provide needed information
prior to the IMT. The IMT represents a convergence of civil structure, in the form of the ML, and aerospace structure, in the
form of the SLS system, with the ML serving as the test fixture for the IMT. This system of system tests represents a new
paradigm in testing and departs from the more traditional modal testing where you minimize any interactions between the
test fixture and the article under test.

For this effort, a smart dynamic test approach to testing is required. The following definition formulated by Dr. David
Ewins and Dr. Michael Hale states that a smart dynamic test is one that utilizes analytical models to take full account of the
influence of fixtures and vibration generation devices on the dynamic response of the test structure to ensure that in-service
dynamic conditions are accurately replicated in a controlled laboratory setting. Given that this testing involves flight hardware
and comes late in the ground system flow, a methodical process that embraces the smart dynamic test definition provides
the basis for determining the amount of success one will have in understanding the dynamic characteristics of the system.
To that end, the process pursued first seeks to characterize the interface flexibility between the booster aft skirt and the ML
VSP. This is critical to understanding the influence of each side of the interface on the coupled system. The next steps are to
methodically evaluate the effect of the following on the test outcome: (1) the effects of gravity (1-g) acting on both the booster
and ML and (2) the effects that booster stacking has on the system. Each booster is comprised of multiple segments, and these
segments are assembled onto the ML with the need for level, space, and shim to meet tolerance requirements. These effects
are captured using a Deformed Geometry Synthesis (DGS) approach [1, 2]. DGS determines induced preloads by modeling
components in their deformed geometry states and then enforcing compatibility by closing the resulting “deadbands.” The
next step is to determine the geometric nonlinear follower force effects resulting from CG offset as the booster is pulled to
a maximum load. Further, system coupling between the booster under test, ML, and the second booster is explored when
subjected to dynamic transient inputs. Lastly, an assessment is made of the sufficiency of test measurements to correlate
finite element models (FEMs) for the booster aft skirt, VSPs, and ML haunches, as well as a determination of the booster
cantilever bending mode.

2 Booster Pull Test Overview

The main objective of the booster pull test is to obtain lateral deflections (i.e., displacements) in two orthogonal directions.
This will be accomplished by applying applied loads near the top of the booster and recording deflection data at five separate
distributed locations along the length of the booster. Figure 1 provides an illustration of the test configuration, along with a
definition of ML VSP locations. The rationale for collecting data in two orthogonal directions is that the interface between
the booster and the ML is asymmetric. As a result of this geometric feature, one has a strong axis and a weak axis to measure
coupling stiffness. An attempt will also be made to record strain from strain gauges located on each VSP. Figure 2 shows the
location of the strain gauges for each VSP. Seven separate loads in increasing load amplitude up to 15,000 lbs (i.e., 15 kip)
will be applied by pulling at the lowest level first and incrementing to each subsequent higher pull load until reaching the
highest pull load, pausing for at least 30 seconds at each pull level to capture a steady-state measurement. Upon reaching the
highest pull load, the pull schedule will be executed in reverse order. The schedule will be completed three times for both
Y-direction and Z-direction pull configurations.

The ML underwent a modal survey inside the Vehicle Assembly Building (VAB), which was completed on June 27,
2019 [4, 5]. This test did not include any provision for mass loading the ML VSP interfaces. As a result, this critical interface
requires further verification and validation. Test data obtained during the booster pull test will be used to validate the stiffness
of the ML haunch, VSP, and booster aft skirt region of the stacked ML/SLS system. Dynamic models will be updated as
required based on the findings. The testing objectives also include a booster push test, which is synonymous with a sine
dwell test, followed by a free decay. The intent of this test is to characterize the booster cantilever bending mode and obtain
10 minutes of frequency and damping data from the decay on the booster.
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Fig. 1 Booster pull test setup and ML VSP definition

3 Historical Perspective

A booster pull test is not a new test or idea as there have been many instances of booster testing used to validate the
fundamental bending modes. For NASA, a similar test occurred in 1979 [3] using an inert booster mounted to the Shuttle-
era Mobile Launcher Platform (MLP). The necessity for this test was driven by concerns regarding Shuttle umbilical
capabilities. The objectives for this test were to measure stiffness and determine the frequency of the first pitch-bending
mode of the combined booster and MLP. In this test, five different loads up to 10,000 lbs were applied in one lateral direction
only to capture data. The instrumentation used to capture the data included accelerometers, optical measurements, and
potentiometers. These are shown in Fig. 3.

Results from this proved to be important as it indicated that the actual hardware was on the order 10% stiffer than the
FEM predictions. Posttest, it was determined that for this case, the cantilevered mode structural stiffness characteristics were
more sensitive to the booster stiffness rather than the MLP stiffness.

Fast-forwarding to the Constellation program and starting with the vintage of the Ares I Reusable Solid Rocket Motor
(RSRMV) finite element model (FEM), a decision was made to use the Shuttle vintage aft skirt model. This aft skirt best
matched the stiffness data obtained from the 1979 Step-Relaxation Test performed on the booster/MLP assembly. The SLS
aft skirt is directly derived from the Ares I RSRMV aft skirt.

4 Understanding Booster AFT Skirt to ML VSP Interface Flexibility

Since the past serves as a great mentor and teacher, the first step into understanding the envisioned test is to determine if the
findings from the 1979 testing still hold. Sensitivity analyses serve to inform what flexibility exists between the ML side of
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Fig. 2 Location of VSPs on ML and relative to the booster and location of strain gauges

Fig. 3 Circa 1979 Booster Pull Test Instrumentation Suite

the interfaces and the booster aft skirts. For this effort, one extracts the VSP flexibility matrix with a size of 24 × 24 (e.g.,
eight VSP locations × 3 translational degrees of freedom (DoFs) per location) using the ML VSP numbering (see Fig.~1).
Each flexibility matrix column (i) is a displacement vector, corresponding to DoFs 1 through 24, due to the unit force acting
at DoF (i). All calculations are relative to the ground supports upholding the ML. An excerpt of the full matrix for the right-
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Fig. 4 Excerpt of booster aft skirt to ML VSP interface flexibilities ratios

Fig. 5 Excerpt of booster aft skirt interface flexibilities due to aft skirt element promotion

hand booster is shown in Fig. 4. What is shown in Fig. 4 is the ratio of booster aft skirt to ML VSP interface flexibilities
with negative values indicating that the aft skirt side stiffness is less than the ML interface stiffness at the VSP interface. This
exercise is confirming of the conclusions from the 1979 testing. This is an important result as it indicates that an accurate
capture of aft skirt flexibilities during the pull test is critical to updating the booster aft skirt region of the stacked ML/SLS
system. This in turn is important as this interface has an impact on stacking preloads and SLS/ML liftoff separation.

Further sensitivity studies pursued an examination of the aft skirt modeling to understand the local stiffness effects. It is
well known that the booster/VSP interface flexibilities derive primarily from the membrane action of plate elements. The
aft skirt model consists of NASTRAN CQUAD4 elements that have been correlated to test data. Upon closer inspection,
the aft skirt mesh appears too coarse for accurate interface flexibility finite element method (FEM) predictions. CQUAD4
membrane stiffness derives from linear displacement field approximation (i.e., constant strain). To determine the element
member membrane displacement field sensitivity, the CQUAD4 elements were promoted to CQUAD8 elements. This has
the effect of promoting the plate element membrane displacement fields from linear to parabolic. A comparison of the booster
aft skirt VSP flexibilities between the CQUAD4 and CQUAD8 modeling is shown in Fig. 5. Note that Fig. 5 is an excerpt
similar to Fig. 4 and shows two of the VSP flexibility results. The conclusion from this exercise is that the booster aft skirt
interface flexibilities show considerable sensitivity to modeled membrane displacement field approximation.

5 Understanding Booster to ML Coupling

As we begin to understand the boundary conditions and the stiffness relationship between the booster and the ML, we turn
next to understanding the interactions between the two structures when coupled together. To start this process, the boosters
are coupled to the ML in the exact physical manner in which they are stacked for flight. To facilitate this exercise, the
Deformed Geometry Synthesis (DGS) technique [2] is invoked. The DGS is a specialized procedure in modal synthesis where
components are coupled in their deformed geometry states by enforcing compatibility at the interfaces using a process that
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Fig. 6 IATT FEM

Table 1 ML/IATT interface
forces with no VSP leveling and
spacing

VSP RIATT VSP LIATT

1 −2057.90 5 −1721.09
34398.98 −31673.17
93583.70 94989.98

2 2001.02 6 1777.96
71295.62 −70116.92
95796.21 96480.91

3 −204.11 7 −875.44
11223.19 −12856.48

−96251.65 −94423.23
4 320.13 8 759.42

58189.01 −60460.21
−92504.41 −97671.52

All forces in lbs SUM X 0.00
Y 0.00
Z 0.00

quasi-statically closes the resulting deadbands to lock in the preloads. The DGS allows a closer inspection of the effects due
to the gravitational effects on the booster and ML and the effects of VSP leveling, spacing, and shimming under gravitational
loading during booster stacking. This in turn provides necessary insight into how each of these effects contributes to the
expected test outcome.

As a first step, an Interface Alignment Testing Tool (IATT) FEM (Fig. 6) verified the VSP leveling and spacing processes
using DGS. The IATT is a stiff beam structure that is built to the undeformed geometry (i.e., zero G) of the VSPs with
two crossbeams for checking the leveling and spacing between the starboard (i.e., right) and port (i.e., left) sides. Coupling
the IATT to the ML and turning on the gravity (i.e., 1G) on the ML will only result in a set of redundant interface forces
between the two structures. If the ML VSPs are leveled and spaced under 1G, then no interface forces should be reacted
between the ML and IATT. To illustrate this verification, one computes the ML/IATT interface forces at the eight VSPs with
no leveling and spacing in 1G deformed geometry. Table 1 shows that with no VSP leveling and shimming, large redundant
forces are reacted at each VSP and the VSP loads sum to zero in each direction. Next, one computes the ML/IATT interface
forces at the eight VSPs with leveling and spacing in 1G deformed geometry. Table 2 contains the results, and one observes
that with VSP leveling and shimming, the ML/IATT interface forces are numerical zeros. This verifies the DGS numerical
implementation for VSP leveling and spacing.

As the boosters are stacked on the ML, they undergo leveling and spacing updates to assure that the boosters are in
the proper orientation and location on the ML and for Core Stage mating. Table 3 shows the VSP interface forces as a
percentage of overall weight when VSP leveling and spacing is or is not considered. Table 3 further delineates the individual
difference in interface force at each VSP interface degree of freedom when VSP leveling and spacing is or is not considered.
Negative values indicate an increase in load due to VSP leveling and spacing. Differences range as much as 14%, which is
not insignificant.

A similar exercise looked at the effects of shimming (X shim) in the booster longitudinal direction. Shimming is a pitch
and yaw procedure, much like leveling and spacing, to allow for correct positioning to mate the boosters with the Core Stage.
It is intended to be a small rigid body rotation shimming and does not introduce any additional inertial loads. It is done
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Table 2 ML/IATT interface
forces with VSP leveling and
spacing

VSP RIATT VSP LIATT

1 −1.1401E-05 5 8.4913E−06
6.7847E-04 9.5027E−05
9.4231E-05 6.3166E−05

2 8.3728E-06 6 −5.4628E−06
−3.9222E-04 −3.9177E−04

9.9758E-05 4.5312E−05
3 1.0383E-05 7 −1.2757E−05

−1.0396E-03 2.9178E−04
−8.9273E-05 −4.9359E−05

4 −6.7802E-06 8 9.1548E−06
1.3865E-03 −6.2816E−04

−1.0949E-04 −5.4346E−05
All forces in lbs SUM X 9.0000E−10

Y 2.7000E−08
Z −1.0000E−09

in a way not to introduce any redundant loading as well. Thus, there should be no change to the interface forces from this
process, and this was confirmed. However, one does expect small changes in displacement along the length of the booster as
a result of shimming. Figure 7 shows displacement plots for both boosters in the two lateral directions with and without the
shims. As expected, one sees changes in displacement with increasing delta displacement as one moves up to the top of the
booster. The displacements in Fig. 7 include 1G acting on the ML, 1G acting on the boosters, ML VSP leveling and spacing,
and ML VSP X-shim effects. The orange dots along the abscissa provide an approximate spatial reference for where planned
displacement measurements will be made during the pull tests.

The next exercise evaluated the effects of the center of gravity (CG) offset due to the lateral pull. Figure 8 illustrates the
effect of when the CG offset, a geometric nonlinear effect that increases the lateral displacements and overturning moments
at the booster base, is considered. The data shown in Fig. 8 constitute the “initial deformed state” of the system prior to pull
loads. The actual pull test will measure delta strains and displacements from this initial deformed geometry state.

From an evaluation of these exercises, it is clear that the 1G acting on the ML, the 1G acting on the boosters, ML VSP
leveling and spacing, ML VSP X-shim effects, and CG offset effects must be considered in preparing for the booster pull test
and subsequent dynamic test. If they are casually dismissed, the chances of a successful test and subsequent model updating
effort diminish.

6 Simulating the Booster Pull Test

As discussed in the booster pull test overview, an applied load of 15,000 lbs will be applied at the top of the booster in the two
lateral directions. For the purpose of this paper, the maximum load application and the resulting observation are discussed.
Loads are applied to the right-hand side booster (Fig. 1) in the +Y and +Z directions. It is noted that the geometric nonlinear
CG offset effects caused by the lateral pull increase the ML/booster aft skirt VSP loads by 7–10%. Booster tip displacements
are increased by 10–15% (Fig. 9). The static nonlinear analysis in Fig. 9 includes 1G on the ML, 1G on the boosters, ML
VSP leveling and spacing, ML VSP X-shims (toe-in), and lateral pull loads. Results are shown with and without CG offset
effects. The encircled areas indicate increased flexibility in the booster aft skirt region.

The encircled areas in Fig. 9 show where the stiffness begins to change, indicating increased flexibility in the booster in
this area and then changes again in the aft skirt range. This indicates multiple stiffness changes along the booster length.

7 Booster Dynamic Excitation

The booster testing provides an interesting challenge as each booster is coupled individually to four VSPs separated by a
distance apart. As already noted in this paper, the ML interface is stiffer than the booster aft skirt based on analytical data
and anecdotal data from 1979. To further understand if one can ideally separate one booster from another in a dynamic test,
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Table 3 Effect of VSP leveling
and spacing on ML/booster
interface forces (IFFs)

No VSP leveling/spacing
VSP Right booster VSP Left booster

1 11.97% 5 12.25%
−1.68% 1.75%

4.96% 5.06%
2 1305% 6 12.78%

1.93% −1.87%
5.43% 5.31%

3 13.02% 7 12.75%
−1.96% 1.89%
−5.40% −5.27%

4 11.96% 8 12.23%
1.70% −1.77%

−4.98% −5.10%

Sum X 100%
Y 0%
Z 0%

With VSP leveling/spacing
VSP Right booster VSP Left booster

1 12.19% 5 12.32%
−1.19% 1.95%

4.61% 4.66%
2 12.83% 6 12.70%

2.07% −2.04%
4.94% 4.88%

3 12.81% 7 12.67%
−2.07% 2.04%
−4.88% −4.80%

4 12.17% 8 12.31%
1.91% −1.95%

−4.68% −4.73%

SUM X 100%
Y 0%
Z 0%

Difference
VSP R_Booster VSP L_Booster

1 −1.77% 5 −0.64%
−14.11% −11.50%

7.06% 8.05%
2 1.62% 6 0.61%

−6.98% −8.95%
8.88% 8.13%

3 1.63% 7 0.61%
−5.70% −7.65%

9.73% 8.85%
4 −1.77% 8 −0.64%

−12.53% −10.08%
6.14% 7.30%

analyses were performed to evaluate the coupling effects. The plan for the actual test is to push on the booster to excite the first
cantilevered mode in each lateral direction. For analysis purposes and this study, the booster was displaced at 4 inches in each
of the lateral directions and displacements measured along the length of the booster. The displacement magnitude is arbitrary
and is sufficient enough to excite the first bending mode of the booster. Figure 10 shows the results from the Z-direction
displacement. Displacements include 1G acting on the ML, 1G acting on the boosters, ML VSP leveling and spacing, ML
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Fig. 7 Effect of VSP X-shims on booster displacements

Fig. 8 Effect of CG offset on booster displacements

VSP X-shim effects, 1G offset, and lateral enforced displacement. The results show that the left booster responds out of phase
as the right-hand booster responds. While the first inclination is to classify the response as a beat frequency, the response is
more indicative of a sympathetic vibration. A sympathetic vibration is a harmonic phenomenon wherein a formerly passive
vibratory body (in this case the left booster) responds to external vibrations to which it has a harmonic likeness. The motion
is transferred through the ML base through the VSP/haunches from one body to the next. This result clearly illustrates that
one cannot treat an individual booster as a singular entity and highlights the need to instrument the left booster to monitor its
response.
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Fig. 9 Booster displacements under a 15-kip load

Fig. 10 Booster displacement results from a 4-inch+ Z-SLS twang on right booster

Looking at the Y-direction excitation displacements due to the same magnitude input, one sees a very different response.
This is due in part to the differences in the symmetry between axes at the ML VSP to the booster aft skirt interface. Figure 11
shows the results from the Y-direction displacement. Displacements include 1G acting on the ML, 1G acting on the boosters,
ML VSP leveling and spacing, ML VSP X-shim effects, 1G offset, and lateral enforced displacement. Each time history
vibrates about its respective “X-shim + CG off-set” datum and will eventually settle at that value with simulation carried
for a longer duration. It is interesting to note how the left booster responds as the right-hand booster response decays in
Fig. 11. This result, while different from the Z-axis response, clearly illustrates that one cannot treat an individual booster as
a singular entity and highlights the need to instrument the left booster to monitor its response.
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Fig. 11 Booster displacement results from a 4-inch+ Y-SLS twang on right booster

8 Conclusion

The subject pretest analysis demonstrates that accurate capture of the booster aft skirt flexibilities is critical to updating the
booster FEM aft skirt region of the stacked ML/SLS system. This is in lieu of the fact that it is shown that the ML/VSP
interface stiffness is significantly greater than the booster/VSP interface stiffness in accordance with the latest generation
of models. Furthermore, the coupled ML/booster FEM centerline displacements clearly show an increased curvature as the
booster aft skirt region is approached. In fact, accurate modeling of the booster aft skirt determines that these interface
flexibility coefficients have a strong influence on stacking/cryogenic preloads, booster squat loads, and the release of strain
energy in the SLS pad separation, commonly known as liftoff “twang.” It was also found that the geometric nonlinear CG
offset effects as the booster is pulled laterally to the maximum load must be included in the simulations to properly establish
testing requirements. Errors in the interface forces can be between 7% and 10% and tip displacements 10% and 15% if these
CG offset forces are not considered. It was also found that the dynamic excitation of a single booster results in sympathetic
vibrations of the other booster since the two boosters that are attached to the ML haunches form a coupled dynamic system
and cannot be handled as decoupled components.

Several recommendations that flow from this work consist of (1) considering additional instrumentation to capture booster
aft skirt flexibility, booster/VSP interface flexibility, and the displacements of both boosters and the ML tower; (2) including
the geometric nonlinear CG offset forces in pretest and posttest correlations; and (3) utilizing the initial booster deformed
geometry (i.e., displacements, including the 1G on ML and boosters, ML VSP leveling and spacing, ML VSP X-shims (toe-
in), and 1G offset geometric nonlinear forces) as the reference configuration for pretest, test execution, and posttest analyses.
This requires obtaining displacement measurements of the boosters after stacking is complete and before the test starts to
establish the initial deformed geometry state.

In closing, this study is very much aligned with the smart dynamic test philosophy by implementing analytical models to
take full account of the influence of fixtures (i.e., the Mobile Launcher in this case) and vibration generation devices on the
dynamic response of the test structure to ensure that in-service dynamic conditions are accurately replicated in a controlled
laboratory setting. Given that this testing involves flight hardware and comes late in the ground system flow, this case study
provides a methodical process that embraces the smart dynamic test definition and provides a basis for determining the
amount of success one will have in understanding the dynamic characteristics of the system.
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Quantifying the Benefits of Structural Health Monitoring Using
Value of Information and Decision Risk Modeling

Mayank Chadha, Zhen Hu, and Michael D. Todd

Abstract The primary objective of the structural health monitoring (SHM) system is to continuously oversee and assess
the state of the structure and evaluate its integrity at any time based on the appropriate analysis of in situ measured data.
Therefore, among other things, an SHM system is an information-gathering mechanism. Gathering the information that is
representative of the structural state and correctly analyzing the data help us better understand the state of the structure
and mitigate possible losses by taking appropriate actions. However, the design, installation, maintenance, research, and
development of an SHM system is an expensive endeavor. Therefore, agreeing to pay for new information is rationally
justified if the reduction in the expected losses by new information is more than the intrinsic cost of the information-acquiring
mechanism. We investigate the economic advantage of installing an SHM system for damage detection as well as risk
and life-cycle management by using the value of information analysis. Among many possible choices of SHM system
designs, preposterior decision analysis can be used to pick the most feasible design that can be installed on the structure. We
demonstrate the framework on a miter gate application.

Keywords Value of information · Decision theory · Structural health monitoring · Uncertainty quantification · Miter
gate

1 Introduction

As is the case with an experiment, a structural health monitoring (SHM) system is an information-gathering mechanism. The
design, installation, maintenance, and operation of an information-gathering system (like an SHM system) are economically
expensive. Therefore, it is reasonable to question the value of the acquired information in terms of the monetary benefits it
yields as a consequence of decision-making (like performing maintenance) over the lifespan of the structure. Along the lines
of the discussion by Howard [1], the SHM system is desirable only if the benefit obtained using the acquired information
outweighs the cost of installing the SHM system. Hence, the value of SHM essentially depends on its design. In this paper,
we briefly lay the theoretical framework to evaluate the value of information (VoI) (refer to [2, 3]) for decision-making at a
given time instance.

The miter gate structure with a strain gauge network is considered as a demonstration case where the degree of damage
is defined by the continuous state parameter, i.e., the gap length of the miter gate, quantifying the gap degradation [4].
The gap degradation is defined by a large loss of contact between the gate and the wall quoin block. To evaluate the VoI,
we first discuss the decision-making framework. Finally, we present a VoI-focused application example for selecting an
appropriate/optimal information-gathering system from the available set of choices using preposterior decision analysis.
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2 Miter Gate and Decision-Making Framework

Consider that an SHM based decision-making problem (like choosing a maintenance action) that depends on the state
parameter (gap length) defined by the random variable �, such that θ ∈ �� = [θmin = 0, θmax = 180 in] (see Fig. 1) is
a realization of � and f�(θ ), is the prior distribution of the state parameter. Let θ true represent the true gap length value.
Consider a binary decision space �D = {d0, d1}, such that:

d0 : Label/rating indicating that the gate is undamaged with an
excellent operational capacity

d1 : Label/rating indicating that the gate is damaged and
is not safely operational

(1)

Let M0 and M1 represent the actions associated with the labels d0 and d1, respectively. That is, if the structure is
labeled/rated as di, then we perform the maintenance Mi, such that:

M0 : Do nothing
M1 : Shutdown, inspect, and repair or replace if required based

on the inspection results
(2)

Choosing either M0 or M1 will have an associated consequence cost depending on what the true state of damage is.
For instance, choosing M0 for a newly constructed gate (with the true gap length value being zero or small) is an optimal
decision. On the other hand, the same maintenance action M0 can lead to catastrophic consequences when the true value of
gap length is close to θmax (implying a heavily damaged gate). Similarly, choosing M1 for a pristine gate is unnecessary,
while it may be an optimal decision when the gate is approaching critical failure (with a larger value of true gap length).
Therefore, to consider the economical consequence of deciding a maintenance action (or equivalently choosing the state
label), the organization needs to estimate the cost of performing maintenance for all the possible true degrees of damage
defined by the state parameter gap length θ true. The organization estimates this cost based on a detailed cost analysis of past
maintenance data and/or their current maintenance policies. For the sake of demonstration problem, we assume a linear cost
function L(di, θ true) : �D × �� −→ R for decision di, such that:

L (d0, θtrue) =
(

L(d0,θmax)−L(d0,θmin)
θmax−θmin

)
θtrue + L (d0, θmin) ;

L (d1, θtrue) =
(

L(d1,θmax)−L(d1,θmin)
θmax−θmin

)
θtrue + L (d1, θmin) .

(3)

In the equation above, the extreme costs L(di, θmax) and L(di, θmin) are assumed to be known and fixed by the organization.
The base cost functions L(di, θ true) are defined by the organization. Although the base cost is assumed to be linear in this
paper, it can bear any form (step function, piecewise function, quadratic, etc.). In most cases, these costs are estimated based
on the available data and are approximate.

Fig. 1 Miter gate and the submerged gap. (a) Locks and miter gate. (b) Physics-based model of the miter gate and gap



Quantifying the Benefits of Structural Health Monitoring Using Value of Information and Decision Risk Modeling 23

When no new information is available, the gap length is described using its prior distribution f�(θ ). The expected loss
�prior(di) for the decision di and the optimal decision dprior ∈ �D are given by:

�prior (di) = EΘ [L (di, θ)] ;

dprior = argmindi

(
�prior (di)

)
. (4)

We now consider a scenario where additional information is available. For the sake of argument, we assume that the new
information is obtained by a mechanism z (for example, an SHM system). Let �Xz represent the continuous measurement
(or additional information) space, such that xz ∈ �Xz . Let Xz denote the random variable representing the new/additional
measurement/information obtained by the mechanism z. Installing the information-gathering system incurs an intrinsic cost
C(z). With the availability of additional information, we define our Bayes conditional risk Rz and obtain the optimal decision
dz as:

Rz (di; xz) = EΘ|Xz [L (di, θ) + C(z)] ;

dz (xz) = argmindi
(Rz (di; xz)) . (5)

3 Preposterior Decision Analysis and Expected Value of Information

Let �z represent the space of all the possible information-acquiring mechanisms or systems (synchronously called
experiments from here on), such that �z = {z0, z1, . . . , zm}. Here, z0 represents the null case of carrying no experiment. Let
Xzi represent the random variable denoting the outcome/measurement of the data obtained by carrying out the experiment
zi, such that xzi ∈ �Xzi

. Let C(zi) represent the intrinsic cost of conducting the experiment zi, with C(z0) = 0. However, our
goal for the preposterior analysis is to decide if the experiment and which experiment must be performed such that the new
information obtained adds to the value of decision-making. Since the experiment is actually not carried out, all the possible
outcomes must be considered. For that, the quantity that interests us is the expected value of the minimum Bayes conditional
risk Rzi

(
dj ; xzi

)
averaged over all the possible outcomes xzi ∈ �Xzi

. It is defined by the average Bayes risk �avg(zi),for an
experiment zi is then obtained as:

�avg (zi) = EXzi

[
Rzi

(
dj ; xzi

) ]
(6)

The Expected Value of Information for making a decision (at a given time) is defined as:

EVoI (zi) = EXzi

[
Rzi

(
dzi
(
xzi
) ; xzi

)− �prior
(
dprior

)] = �avg (zi) − �prior
(
dprior

) = −Csave (zi) + C (zi) . (7)

Here, Csave(zi) represents the monetary savings as a consequence of using the SHM system to make decisions. Therefore,
performing an experiment/inspection to gain new information is advantageous if and only if the cost of the experiment C(zi)
is less than the reduction in losses Csave(zi) ≥ C(zi).

4 A Simple Example of Preposterior Decision Analysis

To demonstrate a simple example of VoI analysis applicable to the miter gate problem, we consider one instance of decision-
making (not the life-cycle cost analysis). Consider �Z = {z0, z1, z2}, such that z0: no data acquisition, z1: send the diver
to measure the gap length, and z2: dewater the gate and measure the exact gap length. Assume C(z1) = $0.02 million and

C(z2) = $0.2 million. We assume the prior distribution of the gap length as fΘ (θ) = φ
(

θ−75
20

)
. We also assume that the gap

length measured by the diver has some noise modeled by Gaussian noise of zero mean and a standard deviation of 3 inches
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Table 1 Information-gathering
mechanisms and their expected
value of information

Strategy C(zi) �avg(zi) EVoI(zi) Csave(zi)

z0 0 0.254 0 0
z1 0.020 0.135 −0.119 0.139
z2 0.200 0.223 −0.031 0.231

leading to the likelihood fXz1 |Θ
(
xz1 |θ

) = φ
(

xz1−θ

3

)
. Since z2 is a perfect experiment (leading to the exact value of the state

parameter), we have fXz2 |Θ
(
xz2 |θ

) = δ
(
xz2 − θ

)
. For the given three inspection strategies, Table 1 represents the expected

costs and the value of experimentation/inspection EVoI(zi). Table 1 clearly indicates that performing both the experiments z1
and z2 will be beneficial because Csave(zi) ≥ C(zi) or EVoI(zi) < 0. However, although dewatering yields a higher net saving
Csave(z2) > Csave(z1), sending the diver in for taking measurement yields the best risk-adjusted reward.

5 Conclusion and Ongoing Investigation

In this brief paper, we have broadly discussed the framework to quantify the benefit of obtaining additional information/data
about the system. Our ongoing investigations are targeted on two fronts. Firstly, when it comes to maintenance decisions
guided by the organization’s maintenance policies or collective experience, in the real-world scenario inspection engineers
are authorized to execute those decisions. These decisions are subjected to the engineer’s experience and their thought
processes assumed commensurate with the broader policies or guidance provided by the organization. Therefore, the
maintenance decisions may have slightly different cost consequences, as defined by the base cost function. We are currently
investigating incorporating human behavioral subjectivity into decision-making. Secondly, the framework discussed here can
be extended to analyze the value of information acquired through an SHM system throughout the life cycle of the structure
by considering decision-making at different time steps. Over the lifecycle of the miter gate, the state evolves from pristine
condition (defined by 0 gap length value) to approaching critical failure (defined by the gap length being unacceptably high
as θmax). The efforts to analyze VoI for a lifecycle cost analysis for the miter gate problem are currently underway.
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Error Localization Examples: Looking for a Needle in a Haystack

Lucas G. Horta, Mercedes C. Reaves, and Clay W. Fulcher

Abstract Finite element models (FEM) are routinely developed and used during fabrication of high dollar-value hardware.
NASA, as part of the pre-flight certification of launch vehicles, routinely conducts vibration and static tests to calibrate
models used for flight-risk assessments. During model calibration, certain areas of the model are modified, using engineering
judgment and sensitivity analysis, to match the test results. Unfortunately, tools to identify problem areas in the FEM using
test data directly are scarce and infrequently applied. Over the years, error localization algorithms have been proposed with
very limited success. Recently, the Analytical Dynamics Model Improvement (ADMI) algorithm, which computes closed-
form mass and stiffness corrections to match the test data exactly, has been shown to be an effective Error Localization
Algorithm (ELA). The paper discusses three examples where ELA is used with simulated test data to locate problem areas.
To gain confidence in the approach, the exact answer is shown along with ELA results. Results show that ELA is able
to identify general problem areas consistent with known problem areas. In all examples, the ELA identified area is larger
than the exact problem area. Nonetheless, with proper optimization tools, calibration results using the ELA identified areas
provide excellent results.

Keywords Error localization · Modal test · Model calibration

1 Introduction

NASA and the aerospace industry routinely use Finite Element Models (FEM) to conduct analyses for risk assessments
and flight readiness reviews. During the development of such models, contributions from many different areas are brought
together to develop FEM, which are later validated and verified through carefully crafted tests. Because inputs from many
engineers are integrated into the model at various stages of the hardware development, the task of model calibration, as
defined in Refs. [1–4], often requires model developers to correct model deficiencies. Unfortunately, there is no universally
accepted approach to identify problem areas in the FEM, which is particularly difficult with high-dimensional models.
Often, analysts must correct model deficiencies with very little information about model flaws. Model adequacy is judged
using established calibration metrics. For dynamic problems, calibration metrics are expressed in terms of frequency errors
between test and analysis, cross-orthogonality errors [5], and frequency response principal values [6]. To reconcile the model
with test, the standard approach relies on engineering judgment, calibration metrics, sensitivity analysis, and energy analysis
to decide what areas of the model to correct. Although these tools provide information about what is important in the model,
this information is not necessarily related to problem areas in the model. Conventional metrics show the effects of model
flaws as opposed to the causes. On the other hand, Error Localization Algorithms (ELA) are tools, which guided by test data
provide recommendations for model corrections. Hence, this is the focus of our work.

Although several ELA approaches have been proposed over the years, no particular approach has been adopted in
commercial tools. Work here expands on the work in [7], which uses the Analytical Dynamics Model Improvements (ADMI)
approach developed in [8]. The ADMI algorithm computes in closed-form, explicit mass, and stiffness corrections to match
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test frequencies and mode shapes with analysis. Admittedly, many factors affect and even hinder our ability to compute
model corrections. For example, the number of sensors, the number of modes, the quality of the measured data, and more
importantly the fidelity of the nominal model are all extremely important factors. Nonetheless, under ideal conditions, ADMI
can compute both mass and stiffness corrections exactly to reconcile model with test. Even under less than ideal conditions,
ADMI can still provide model corrections, which can then be used to identify problem areas. The process of using ADMI
results to connect to elements in the FEM is effectively the ELA process.

To gain confidence in the ability of the ELA process to identify problem areas, our work here presents three analytical
examples: (1) a cantilever beam, (2) a tube, and (3) an isogrid panel. All three examples had their FEM perturbed to create
simulated test data for use in the study. Degrees-of-freedoms (DOFs) affected by mass and stiffness corrections are mapped
to elements, which are subsequently mapped to model properties. Results from applying ELA to each example are compared
visually to known problem areas. Quantitatively, results are compared in terms of orthogonality values and frequency errors.
Before showing the examples, a brief discussion of the model calibration process is presented.

2 Model Calibration Process

The model calibration process used with all examples starts with determining model areas in need of correction using the
measured frequencies and mode shapes. Calibration starts with a reduced mass and stiffness from the nominal FEM, referred
here as the Test Analysis Model (TAM). Because DOFs in the TAM connect the test data to potential problem areas in the
model, TAM matrices should be as large as computationally possible to reduced loss of accuracy in the mass matrix. More
importantly, TAM matrices are the basis from which corrections to the mass and stiffness are computed. DOFs or nodes
affected by the corrections are mapped to FEM elements and subsequently to element properties. This process has been
automated for FEM data decks generated using MSC Nastran [9] format.

Exact mass and stiffness corrections computed using ELA are difficult to implement through the physical FEM properties.
Instead, corrections must be approximated using optimization tools. To implement corrections, the FEM is partitioned into
zones according to the required changes. Specifically, the FEM bulk file is altered to have elements and properties renumbered
according to zones. Once renumbered, any commercial model update tool can be used to conduct parameter updates. In our
implementation, the MATLAB [10] optimization toolbox is used.

With the FEM bulk file altered, the next step is to solve for parameter values using optimization. The optimization
strategy seeks to determine model parameters to reconcile the measured frequencies and modes shapes with the analysis.
To accommodate both metrics, i.e., frequency and mode shapes, the objective function is defined in terms of a 2-norm

J = ∥∥w1�λT γ T γ�λ w2tr(AAT )
∥∥

2
(1)

The first scalar term in the objective function corresponds to the eigenvalue error defined as �λT =[
ω2

1 − μ2
1 ω2

2 − μ2
2 . . . ω2

n − μ2
n

]
, where ωi are the predicted frequencies, μi are the measured frequencies, n is the total

number of frequencies being reconciled, γ is a weighting vector for the individual frequencies, and w1 is a user-prescribed
scalar to adjust the objective function scaling. To apply Eq. 1, test and analysis frequencies must be paired first using
orthogonality. Pairing links a test mode to an analysis mode when the cross-orthogonality value is above a user-prescribed
threshold.

The second scalar term in Eq. 1 is the orthogonality error computed using the trace tr(AAT ),where A = �T M� − I .
This calculation includes the measured modes shapes �, the analysis mode shapes �, a reduced mass matrix M , an identity
matrix I , and an arbitrary user-prescribed scalar w2 to adjust the objective function scaling. Close-form expressions for the
gradient have been developed and used.

3 Error Localization Examples

To understand the capabilities and limitations of ELA, it is best to use examples where problem areas are known. For this
purpose, three examples are discussed where FEM alterations are implemented to create simulated test data. Data in terms
of frequencies and mode shapes from the altered models are used to identify problem areas. Because the altered locations
are known, results from ELA are easily verified qualitatively.
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3.1 Cantilever Beam

Our first example is a beam, shown in Fig. 1, with translations constrained at both ends and no longitudinal rotations. Ten
bar elements with rectangular cross-sections are used to construct the model. Heretofore, the term test data is used to refer
to simulated mode shapes and frequencies from a perturbed FEM. Test shapes contain displacements at 9 locations in the
lateral (y) and vertical (z) directions. In this example, the perturbed FEM has the cross-section height, in the area labeled
Mod 1, changed from 0.125 to 0.150, and the width in the area of Mod 2 reduced from 1.0 to 0.8 inches.

Starting with TAM matrices sized 27 × 27, six test modes are used with ELA to compute mass and stiffness changes
to match the test data. ELA results in Fig. 2a, show the sorted mass changes and Fig. 2b shows the sorted stiffness changes
a function of the number of degrees of freedom changed. In here, the number of degrees of freedom refers to the number
of changes as a function of diagonal elements in �M and �K to produce the necessary change. After reviewing the mass
changes, it should be apparent that only four DOFs show the largest change. However, stiffness changes include many more
DOFs.

When computing ELA corrections, the ability to correct a model depends on many factors. It is critical that TAM
mode shapes span the vector space of the measured modes. Cross-orthogonality (CO) results (i.e. triple product �T M�)
between test data (ordinate) and the corrected model (abscissa), shown in Fig. 3, are a way to verify the adequacy of the ELA
solution. CO values of 1 are shown in black. Note that the first six modes are matched exactly, as evident when comparing
test and corrected model frequencies. A corrected ELA model is simply the TAM model with corrections, i.e.,M + �M and
K+�K . These matrices are not necessarily realizable through the FEM parameters. FEM parameter changes to approximate
the corrected ELA solution must be implemented using numerical optimization.

Implementation of model changes begins by linking DOFs identified by ELA to elements and properties in the FEM.
Figure 4 shows such a link among the FEM elements and locations in need of corrections. Six bar elements, marked using
different colors, must be repaired based on ELA corrections. With elements identified, users must still choose among a large
number of parameters for calibration. Table 1 lists 16 parameters for the repaired area, comprised of 4 parameters per bar
element.

To set up the optimization problem, weights for the first six test modes are prescribed as

γ T =
[

10/μ2
1

10/μ2
2

10/μ2
3

1/μ2
4

1/μ2
5

1/μ2
6

]
and the objective function weights are set to w1 = 10 and w2 = 10. Parameter

sensitivities are computed using Solution 200 in MSC Nastran [9] while mode shape derivatives are computed using Nelson’s

Fig. 1 Beam model

Fig. 2 Error localization computed changes for (a) mass and (b) stiffness
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Fig. 3 Cross-orthogonality between test and ELA corrected model

Fig. 4 Beam repair areas identified using ELA

Method [11]. A gradient-based optimization algorithm is linked to MSC Solution 200 for optimization. After 148 iterations,
the optimizer found the solution listed in Table 1 under Cal. V alue. Of the 16 parameters, only 7 show appreciable changes
within four significant digits. Table 2 compares frequencies for the perturbed, nominal, and calibrated model. Note that
frequency errors for the calibrated model are all within 0.64%. In addition, Cross-orthogonality (CO) results are compared
in Fig. 5; test (ordinate) versus nominal (abscissa) is shown in Fig. 5a and test versus calibrated model is shown in Fig. 5b;
off-diagonal values are all within 5% for the calibrated model. A good rule-of-thumb is to have CO diagonal values near 1
and off-diagonal values less than 5%. Finally, because geometrical parameters are adjusted, it is worth noting that the total
mass after calibration increased from 0.5008 lbs to 0.5010 lbs. If one needs to maintain a fixed mass, mass can be included
as an additional constraint.

3.2 Cantilever Tube

The second example shown in Fig. 6 is a cantilever tube 36 inches long with diameter of 2 inches, modeled with 1589 grid
points and 768 CQUAD elements. For this study optimal sensor placement, conducted as part of the pretest analysis, selected
209 locations; marked with green arrows in Fig. 6. Optimal sensor placement is extremely important to ensure that modes
are distinguishable from each other. Table 3 lists the first 8 frequencies of the perturbed, nominal, and calibrated models.
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Table 1 Beam calibration
parameters

Par Zone Nominal Cal.
no. ID Units value Label value

1 555001 in2 0.1250 A 0.1179

2 1110001 in2 0.1250 A 0.1248

3 1665001 in2 0.1250 A 0.1250

4 2220001 in2 0.1250 A 0.1435

5 555001 in3 0.0002 I1 0.0002

6 1110001 in3 0.0002 I1 0.0002

7 1665001 in3 0.0002 I1 0.0002

8 2220001 in3 0.0002 I1 0.0002

9 555001 in3 0.0104 I2 0.0083

10 1110001 in3 0.0104 I2 0.0104

11 1665001 in3 0.0104 I2 0.0083

12 2220001 in3 0.0104 I2 0.0083

13 555001 in3 0.0006 J 0.0006

14 1110001 in3 0.0006 J 0.0006

15 1665001 in3 0.0006 J 0.0006

16 2220001 in3 0.0006 J 0.0006

Table 2 Beam frequencies for nominal, perturbed, and calibrated model

Par. no. Pert. freq. (Hz) Nom. freq. (Hz) Nom. freq. error (%) Cal. freq. (Hz) Cal. freq. error (%)

1 6.97 6.967 −0.04 6.976 0.09

2 28.304 27.867 −1.54 28.249 −0.19

3 52.159 55.666 6.72 52.194 0.07

4 64.340 62.730 −2.50 63.930 −0.64

5 114.534 111.630 −2.54 114.077 −0.40

6 177.693 174.807 −1.62 178.04 0.20

The perturbed FEM is created by altering the region indicated with magenta arrows in Fig. 6. Eight test modes, from the
perturbed model, are used to locate errors using ELA. After applying ELA, results produced mass corrections as shown in
Fig. 7a and stiffness corrections as shown in Fig. 7b. The ordinate in Fig. 7a and b shows the magnitude of diagonal elements
in �M and �K , respectively, sorted in descending order as a function of number of DOFs. Note that mass corrections are
very small, with the largest changes between 6.86×10−9 and 1.8×10−9, encompassing only 33 DOFs. In contrast, stiffness
corrections are significant and affect a large number of DOFs.

Because mass corrections are small, model repairs map only stiffness DOFs identified by ELA onto elements in the FEM.
Figure 8 shows ELA element mapping using color shading. Superimposed onto the tube in yellow is the perturbed area. Note
that the known perturbed area is within the stiffness changes recommended by ELA. As mentioned earlier, ELA corrections
are not linked to physical parameters in the FEM. In order to connect ELA corrections to physical parameters, the FEM must
be partitioned and elements renumbered according to ELA. Because of the large number of model changes required, the
process is automated and the partitioned FEM along with renumbered properties are created and stored in a separate file. In
this example, the partitioned FEM contains 123 zones, as shown in Fig. 8. To adjust stiffness values in the zones, the modulus
is used in the optimization process to reconcile the model with test.

Ideally, one would like to change physical parameters to match the computed ELA corrections exactly. Unfortunately,
this problem is very difficult and can only be approximated using numerical optimization. In this example, the optimization
starts by prescribing test frequencies weights γ T = 10

[
1/μ2

1 1/μ2
2 · · · 1/μ2

8

]
and objective function weights as w1 = 1 and

w2 = 0.1. As with the first example, a gradient-based optimization algorithm is used to reconcile model with test. After 48
iterations, the optimizer converged and the calibrated model frequencies are shown in Table 3 under Cal-1, frequency errors
less than 0.2%.

At this point, it is educational to compare calibration solutions when using ELA versus a standard approach where zoning
is based on engineering judgment and sensitivity. For that purpose, the tube model is also calibrated using standard zoning and
ATA Engineering Attune Software [12] and [13]. Frequencies, when using the calibrated parameters and standard zoning are
shown in Table 3 under Cal-2. Note that frequency matching is excellent with errors under 1%. When comparing frequencies
between calibrated models, it is not apparent that the actual stiffness changes with each approach are drastically different. A
way to examine these two calibrated models is to compare the actual stiffness changes produced by each solution. Figure 9a
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Fig. 5 Cross-orthogonality for: (a) test versus nominal, (b) test versus calibrated

shows contour plots of Cal-1 stiffness changes when using ELA zoning (front-view top, back-view at the bottom), and
Fig. 9b shows Cal-2 stiffness changes when using the standard zoning approach. Clearly, not only the stiffness changes
are dramatically different but also the affected regions. More importantly, ELA changes are concentrated near the known
problem area, whereas the standard approach produced changes over the entire tube.

Figure 10a shows CO results for test (ordinate) versus Cal-1 (abscissa), whereas Fig. 10b shows test versus Cal-2. CO
off-diagonal values for Cal-1 are all within 5% for the calibrated model, whereas for Cal-2 some values are about 10%. High
Cal-2 CO errors after calibration with Attune simply indicate that the solution has not converged and additional iterations
are needed.
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Fig. 6 Tube sketch with sensor placement (green arrows) and damaged area (magenta arrows)

Fig. 7 Error localization computed changes for (a) mass and (b) stiffness

Table 3 Tube frequencies for perturbed, nominal, and calibrated models

Mode no. Pert. freq. (Hz) Nom. freq. (Hz) Nom. freq. error (%) Cal-1 freq. (Hz) Cal-1 error (%) Cal-2 freq. (Hz) Cal-2 error (%)

1 53.8 54.4 1.0 53.8 −0.1 53.7 −0.3

2 58.6 61.1 4.1 58.7 0.2 59.1 0.8

3 334.0 332.6 −0.4 333.2 −0.2 334.5 0.1

4 368.6 367.1 −0.4 367.8 −0.2 366.7 −0.5

5 527.6 529.0 0.3 527.9 0.1 532.8 1.0

6 536.8 538.5 0.3 537.1 0.0 535.0 −0.3

7 543.1 546.9 0.7 543.6 0.1 543.7 0.1

8 551.5 555.8 0.8 551.9 0.1 547.2 −0.8

3.3 Isogrid Panel

The third example discussed here is motivated by a study conducted at NASA Langley to evaluate the adequacy of using
equivalent panel properties, derived from static approximations, to model the dynamic behavior of isogrid panels. Figure 11
shows on the left a picture of a rectangular isogrid panel 8 × 14 1/8 × 3/32 inches weighting 1.35lbf. For small panels,
modeling the complex pattern of the ribs is not difficult, but for large panels, the computational complexity is often large. In
1973, the McDonald Douglas Astronautics Company under contract for NASA [14] developed a computational handbook
with formulas to estimate the equivalent properties for isogrid designs to approximate their static behavior. On the right of
Fig. 11 is a sketch of the FEM, hereafter referred to as the Panel Equivalent Model (PaEM), developed using equivalent
isogrid properties. As before, simulated test data are created by perturbing the FEM. Specifically, the perturbed FEM has an
edge added along the border. For ELA evaluation, test data are collected at the 23 locations shown with arrows in Fig. 11.

Although the panel geometry is relatively simple, the panel itself has a slight curvature, which makes the modeling effort
somewhat more difficult. The PaEM, modeled with MSC Nastran while suspended from soft strings, has 496 nodes (2976
DOFs) and 450 CQUAD4 elements. Panel layers (i.e., skin and ribs) are modeled using composite laminate theory with
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Fig. 8 Mapping of ELA stiffness
corrections onto elements in the
FEM
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Fig. 9 Calibrated model changes using: (a) ELA zoning, and (b) standard sensitivity information
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Fig. 10 Tube cross-orthogonality of calibrated model when using (a) ELA zoning and (b) standard zoning

isotropic properties for the skin and isogrid properties for the rib, properties computed using the isogrid design formulas
[14]. Table 4 lists the first 6 modal frequencies excluding low frequency pendulum modes.

To implement the ELA, a TAM model for the PaEM is created with 1488 DOFs. TAM pendulum modes are shifted
outside the frequency range of interest in this study. The first 6 test modes, all perturbed modes, are used in ELA to compute
mass and stiffness corrections that reconcile the test frequencies and mode shapes with the analysis. Figure 12 shows mass
and stiffness corrections, sorted in descending order, as a function of the number of DOFs. Of importance is the relative
magnitude of the necessary changes to correct the model. If the magnitudes are large, this can be a reflection of either
bad test data, inadequacy of sensor placement, or a poorly constructed model. Linking of the affected DOFs (or nodes)
to elements in the FEM is what provides users with a more intuitive picture of problem areas. Figure 13 shows a contour
plot of ELA stiffness changes needed to reconcile the model. Also shown is the FEM perturbed area marked with green
arrows. Note that most of the perturbed area overlaps the ELA corrections but not all. The number of sensors and number of
modes have a significant impact on our ability to identify problem areas, and in this example, only 23 sensors and 6 modes
are used.
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Fig. 11 Isogrid panel (left) and FEM sensor placement (right)

Fig. 12 Sorted ELA corrections to repair 6 modes of the nominal model for (a) mass, and (b) stiffness as a function of the number of degrees of
freedom

Table 4 Panel equivalent model frequencies

Mode no. Pert. freq. (Hz) Nom. freq. (Hz) Nom. freq. error (%) Cal. freq. (Hz) Cal. error (%)

1 114.5 107.7 −5.94 115.2 0.61

2 378.2 359.2 −5.02 382.5 1.14

3 437.8 392.5 −10.35 434.9 −0.66

4 792.0 767.8 −3.06 798.0 0.76

5 881.3 795.7 −9.71 874.7 −0.75

6 992.0 953.9 −3.84 994.8 0.28

A more difficult task is to map ELA corrections to physical parameters. For this, the FEM is partitioned into 123 zones.
After extracting parameters for the 123 zones, the material modulus is optimized to reconcile the model with test.

To begin the optimization process, test frequencies weights are set to γ T = [
1/μ2

1 1/μ2
2 · · · 1/μ2

6

]
and the objective

function weights are w1 = 100 and w2 = 1. As before, a gradient-based optimization algorithm is used to reconcile the
model with test. After 40 iterations, the optimizer converged and the calibrated model frequencies, shown in Table 4 under
calibrated model, show that frequency errors have been reduced to less than 1.2%. Moreover, actual stiffness changes with
the calibrated model are shown in Fig. 14. In this problem, only the modulus of the material has been changed and therefore
the system mass is constant. Clearly, the optimization process is intended to reproduce the stiffness changes shown in Fig. 13.
To seek a closer solution, users can select other parameters within the 123 zones (like thickness, moments of inertia, etc.) for
optimization. Nonetheless, in spite of the obvious differences between ELA and the calibrated model stiffness, frequencies
errors are relatively small.
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Fig. 13 Computed stiffness corrections using ELA; green arrows correspond to the known perturbations

Fig. 14 Stiffness changes when using calibrated parameters

Finally, results for the CO are shown in Fig. 15. As before, color shading correspond to CO values between 0 and 1.
Standard practices often recommend CO off-diagonal values be less than 5%. Figure 15a shows that off-diagonal values
for the nominal and calibrated models are less than 30%. Improvements from calibration are primarily associated with the
frequencies and mode 6 alignment. Large errors in the CO off-diagonal are mainly due to a small sensor count.

As should be evident by these three example problems, the ELA method is able to identify problem areas in the model
when provided with adequate test mode shapes and frequencies. Nonetheless, readers are reminded that there are many
factors that affect our ability to determine problem areas in the FEM. For example, poorly planned tests, improper sensor
placement, missing modes, and inadequate FEM models are among the most critical. Until now, users have never been able
to use test data directly to identify problem areas in the model. From the perspective of a user, finding model flaws is like
finding a needle in a haystack.

4 Conclusions

The objective of this paper is to discuss the application of an Error Localization Algorithm (ELA) to identify problem areas in
a Finite Element Model using modal test data. Three examples are presented to demonstrate the ability of the ELA approach
to identify repair areas in the model. ELA determines numerical mass and stiffness corrections, which point to problem areas
in the model. Although ELA corrections are not linked directly to parameter changes, the link is established using numerical
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Fig. 15 Cross-orthogonality between (a) test versus nominal model, and (b) test versus calibrated model

optimization. The paper shows that ELA is able to identify general problem areas consistent with known problems. More
importantly, using the identified areas, models are reconciled successfully. In general, the identified areas are larger than the
exact answer.

Results from comparing stiffness changes using ELA versus a standard approach revealed that although model calibration,
in terms of mode and frequency matching, is certainly possible with more heuristic approaches, changes in the stiffness
between the two approaches can be drastically different. Without the benefit of knowing what areas to correct, the only
option is to adjust everything because commercial model update tools rely exclusively on sensitivity to implement model
changes. ELA can now provide a new capability to better localize update areas.
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WaveImage Bridges the Gap Between Measurement
and Simulation. An Application Example of How to Create
a Modal Digital Twin Using FE Model Updating

Mario Koddenbrock, Jan Heimann, Daniel Herfert, Johannes Pehe, and Lisa Wargulski

Abstract In this paper, a best-practice example of a digital twin is presented. For this purpose, the authors choose a test
model of a machine frame with a rotating motor to simulate a situation from an industrial context. During the manufacturing
process, this type of frame undergoes excitation from the imbalance forces of a single-speed drive. In order to avoid a
failure of a structure when operating conditions change, it is important to be able to simulate the impact accurately. This
accurate simulation requires an adequate digital twin. In this context, a good digital twin is one that reproduces the modal
characteristics of the structure properly.

In this paper, the modal parameters of the machine frame are determined by experimental modal analysis. Afterward,
model updating is performed to approximate the simulated modal parameters to the ones obtained from the real structure
experiment. The full process is executed using the software WaveImage, which provides an easy-to-use modular kit for
experimental modal analysis, finite element analysis, and finite element model updating.

Keywords Finite element simulation · Experimental modal analysis · Digital twin · Model updating

Nomenclature

K Stiffness matrix
M Mass matrix
K0 Initial stiffness matrix
M0 Initial mass matrix
K Stiffness matrix
M Mass matrix
α Scalar stiffness optimization factor
β Scalar mass optimization factor
n Number of experimentally measured modes
φii. Experimentally calculated eigenvector
ψ ii. Simulatively calculated eigenvector
λii. Experimentally calculated eigenvalue
μii. Simulatively calculated eigenvalue
a Scalar weighting of the eigenvalue deviation
b Scalar weighting of the eigenvector deviation
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1 Introduction

Awareness of the necessity and usefulness of an adequate digital twin has spread more and more in the field of structural
dynamics in recent years. With the integration of the digital twin creation process into the software WaveImage (gfai tech
GmbH), access to this technology has become substantially facilitated. This means that a digital twin model can now be
created in a short amount of time and with very little expert knowledge, without having to cut back on important details.

The key parameters that the digital twin must reproduce are the eigenfrequencies and mode shapes. These can be
determined by means of a classical experimental modal analysis (EMA) [1]. However, it is essential that the planning,
measurement, and mode extraction are accurately done in order to minimize uncertainties on the experimental investigation
side.

Once we have successfully extracted the modal parameters of a structure, the finite element model updating component
of WaveImage offers a multidimensional optimization of several material parameters. In practice, these parameters are often
unknown or incorrect, so that the modal parameters of the simulated results deviate from the actual behavior of the structure.
By generating a digital twin, the material parameters of the simulation are perfectly adapted to the modal parameters of the
real structure. Thus, external forces, fixations, or constructional modifications can be easily and adequately tested before
realization. All we need is a geometry of the structure in STL or OBJ format. Rotation, scaling, and translation according to
the coordinates of the measurement can be calculated and aligned in the software by selecting a few reference points.

2 Theory

The implementation of the model updating component in the WaveImage (gfai tech GmbH) software is based on a work by
Dong and Wang [2]. Its approach works with a formulation of differences in the modal properties. The optimization problem
is formulated by minimizing the differences between measured and simulated eigenvalues and eigenvectors of the dynamic
system. Therefore, the optimization variables α and β are introduced, which change the system matrices of the stiffness
K and the mass M of the linear structure until the differences in the modal properties between simulation and experiment
are minimized. The optimization variables α and β correspond to material parameters such as Young’s modulus and mass
density. The variables are scaled and indicate the percentage relative value change from the initial value. The matrices K and
M can be formulated as a function of the optimization variables (α,β) as follows:

K (α) = K0 + α · Kα

M (β) = M0 + β · Mβ.

K0 and M0 describe the determined system matrices of the simulation before the model updating. Kα and Mβ are constant
input matrices of the parameters to be updated, assigned according to the optimization variable. For each i between 0 and n,
the simulated eigenvalues (μi) and eigenvectors (ψ i) are obtained as a solution to the eigenvalue problem

(K (α) − μ · M (β)) ∗ ψi = 0.

In addition, the experimentally determined eigenvalues λi and eigenvectors φi are extracted from the measured data using
classical modal analysis.

The correlation rate between experimental and simulated modes must take into account the deviation of the natural
frequencies as well as the mode shapes. For this purpose, a combination of the Modal Assurance Criterion (MAC) and a
frequency difference is chosen as the minimization function to be optimized. Here, MAC is defined as the scalar product
between the normalized eigenvectors [2]:

MAC (φ,ψ) :=
(
φT ∗ ψ

)2
(
φT ∗ φ

) (
ψT ∗ ψ

)

With φ and ψ as eigenvectors, the MAC value is always between 0 and 1. This defines the minimization function as
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Fig. 1 Setup for the experimental modal analysis on the steel frame. With a roving-sensor approach, the system response was measured using
a triaxial accelerometer at 19 discrete points distributed over the surface. Therefore, the system was excited by an automated modal hammer
(WaveHitMAX, gfai tech GmbH) providing a constant and high force amplitude to introduce sufficient energy into the frame

δ :=
∑

i=1,...,n

(
a · λi − μi

λi

)2

︸ ︷︷ ︸
Frequency error

+
(
b · 1 − √

MAC (φi, ψi)√
MAC (φi, ψi)

)2

︸ ︷︷ ︸
Mode shape error

3 Measurement Setup

The vibration response of a steel frame to a selective force excitation was investigated to conduct the experimental modal
analysis. The steel frame consists of rectangular 20 × 20 mm solid profiles. It measures 500 × 500 × 1000 mm with fully
welded joints. On top, a 500 × 400 × 2 mm steel plate is screwed for mounting. The outer bottom corners of the frame were
fixed to a vibration-isolated laboratory table. Thus, fixed boundary conditions can be assumed for these four-corner points. To
determine the system response at different discrete measurement points distributed on the object, the roving sensor method
was chosen. Therefore, the steel frame was excited by an automated modal hammer (WaveHitMAX, gfai tech GmbH) on a
fixed position; see Fig. 1. This modal hammer offers the advantage of automated repetitions of single-hit excitation with a
defined and constant force amplitude. Equipped with a force sensor (PCB type 208C03), a plastic tip, and an additional mass
of 60 g, a repeatable excitation of 2 kN has been achieved in order to obtain the best signal-to-noise ratio at all measurement
points. The response of the steel frame into all three directions (X, Y, Z) to the impact excitation was measured with a triaxial
accelerometer (MMF KS943B.100) roving from point to point to repeat the measurement sequence for every single point. To
achieve a sufficient energy impact in every single direction, the modal hammer was repositioned to excite in the appropriate
direction, and the measurements were repeated. Nineteen measurement points distributed equidistantly over the whole top
surface of the frame were taken into account.
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Fig. 2 Peak picking on the first three CMIF curves, together with the first two driving points

Fig. 3 Modal Assurance
Criterion (MAC) matrix of the
four measured modes

4 Analysis

At the beginning of the creation of a digital twin, the modal behavior of the structure must be extracted from the measured
data. For this purpose, we used the experimental modal analysis of the software WaveImage (gfai tech GmbH) to extract the
eigenfrequencies and mode shapes using the CMIF-AI [3] algorithm. We concentrated on the frequency range between 20
and 60 Hz because we want to use a rotating machine with up to 3600 revolutions per minute on the frame.

In Fig. 2, you can see the peak picking on the first three complex mode indication function (CMIF) [4] curves, together
with the first two driving points. Furthermore, the frequency lines of the four identified modes are shown. The point indicates
the curve on which the peak picking was performed to extract this mode. In Fig. 3, you can see the Modal Assurance Criterion
(MAC) matrix of the four selected modes, and Figs. 4, 5, 6, and 7 show the mode shapes.

The MAC matrix is used to validate the independence of the detected modes. In our case, the MAC matrix only shows a
small dependence of the first two shear modes of 14%. This indicates that the measurement was performed correctly.
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Fig. 4 EMA mode 1: shearing mode in X direction at 26 Hz

Fig. 5 EMA mode 2: shearing mode in Y direction at 27 Hz

For the simulation, we only need the geometry of the examined structure. This is often already available during the design
phase of a machine or other structures. In the finite element component of WaveImage (gfai tech GmbH), the required mesh
can then be generated automatically.

In this paper, a mesh with 18,425 nodes is used. The only boundary condition was a fixation of the stands, as it was done
for the measured frame. The element size of the tetrahedral mesh ranged from 1.4 mm to 1.9 mm in diameter. The material
is initially set to unalloyed, common structural steel of type S235JR with the following material parameters [5]:

Mass density = 7800
kg

m3

Young′s modulus = 210 GPa

Poisson′s ratio = 0.3
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Fig. 6 EMA mode 3: bending mode at 37 Hz

Fig. 7 EMA mode 4: rotation mode at 48 Hz

Table 1 EMA and FEA
frequencies compared with their
absolute difference and relative
deviation before any optimization

EMA frequency FEA frequency Difference Deviation

26 Hz 34 Hz 8 Hz 30%
27 Hz 36 Hz 9 Hz 33%
37 Hz 50 Hz 13 Hz 35%
48 Hz 53 Hz 5 Hz 10%

In the initial finite element simulation, the same four modes as in the measurement can be found. However, the frequencies
still have a deviation up to 35% (Table 1, Figs. 8, 9, 10, and 11).

A problem when comparing mode shapes between measurement and simulation can be a different orientation of the
coordinate systems. WaveImage (gfai tech GmbH) offers a semi-automatic solution to this problem, which only requires a
selection of a few reference points by the user. In Fig. 12, the two geometries from the simulation and the measurement are
placed one upon the other. A tolerance for the identification of the points can be set manually. In our example, a tolerance of
11 mm was sufficient to assign all nodes of the measurement to the corresponding nodes of the simulation.

With this assignment of the geometries, the MAC values between the simulated and the measured modes can now be
calculated (Fig. 13). If the MAC values are not distinct, there may be problems with the identification of the modes. In
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Fig. 8 FEA mode 1: shearing mode in X direction at 34 Hz

Fig. 9 FEA mode 2: shearing mode in Y direction at 36 Hz

the worst case, two modes are identified and their frequencies are compared, which do not belong together. A manual user
assignment can help in this case.

In our example, the MAC matrix between the measured and simulated modes (Fig. 13) is very clear. So the model updating
can automatically identify and assign the modes. In order to minimize the frequency deviation, simultaneous optimization
of the material parameters mass density and Young’s modulus is performed in this paper. Due to the nonlinearity of the
minimization space, several starting points are chosen from which the iterative optimizer starts.

These starting points are shown in Fig. 14 with the respective value of the minimization function at the end of the iteration.
This chart shows an optimum at a mass density of 7800 kg/m3 and a Young’s modulus of 130 GPa. After the optimization,

we get the following frequencies in the simulation and thus a significantly lower deviation from the measured frequencies
(maximum 12%) (Table 2).
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Fig. 10 FEA mode 3: bending mode at 50 Hz

Fig. 11 FEA mode 4: rotation mode at 53 Hz

5 Conclusion

By using the model updating process, we have adjusted our finite element model to the modal parameters of the real structure.
The model now serves as a digital twin for future simulations, for example, in a transient analysis under varying loads or to
simulate constructional changes in order to shift resonance frequencies out of the excitation range. In this example, we see
that the optimization of the modal properties of the structure leads to material parameters that are no longer fully consistent
with the actual material. This is acceptable since the digital twin is designed to reproduce the modal properties of the
structure.
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Fig. 12 All 19 nodes of the measurement (green) are assigned to the nodes of the simulation (black)

Fig. 13 Modal Assurance Criterion (MAC) matrix of the four measured and the four simulated modes
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Fig. 14 Minimization function values depending on the two optimization parameters mass density and Young’s modulus

Table 2 EMA and FEA
frequencies compared with their
absolute difference and relative
deviation after the optimization

EMA frequency FEA frequency Difference Deviation

26 Hz 27 Hz 1 Hz 4%
27 Hz 28 Hz 1 Hz 4%
37 Hz 37 Hz 0 Hz 0%
48 Hz 42 Hz 6 Hz 12%
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Virtual Sensing for Wind Turbine Blade Full Field Response
Estimation in Operational Modal Analysis

Silvia Vettori, Emilio Di Lorenzo, Bart Peeters, and Eleni Chatzi

Abstract The inaccessibility of wind turbine components after their installation and the stochastic nature of the excitation
they are subjected to, render their dynamic behavior challenging for investigation. Wind turbine blade manufacturers are
required to carry out extensive test campaigns on each single blade individually prior to proceeding with commercialization.
Static and fatigue tests are usually performed on prototypes in order to ensure that each blade can stand extreme loads,
even after being subjected to high cyclic loading. The same instrumentation used for static and fatigue tests can be adopted
for performing Operational Modal Analysis with the purpose of identifying the blade modal parameters, which can help
analyzing failure modes and system stability problems. Measurements performed during tests are usually acquired at
accessible locations and with a limited number of sensors due to their high cost. This work focuses on providing alternatives
to costly and impractical physical measurements on wind turbine blades by combining information from cost-effective
simulated models and more realistic test data through the so-called Virtual Sensing techniques, e.g., Kalman-type filters
and Modal Expansion methods.

Keywords Wind turbine blades · Operational modal analysis · Virtual sensing · Dynamic tests · Response estimation

1 Introduction

Throughout the life cycle of a wind turbine, its blades are constantly exposed to irregular loading. The integrity of such blades
is usually ensured performing extensive test campaigns including not only static and fatigue tests, but also dynamic tests
aimed at identifying modal parameters and failure modes. Dynamic tests normally include shaker or hammer tests with the
blade in free-free or clamped-free boundary conditions, and the so-called pull and release tests. Output-only measurements
acquired during pull and release tests should give information about the full field response of the blade. The discrete nature of
standard sensors, the instrumentation cost, and the inaccessibility of some locations on the structure often limit the possibility
of retrieving the system response in a spatially continuous manner. Virtual Sensing (VS) techniques such as Kalman-type
filters [1], can be therefore adopted for predicting the operational responses of the tested blade at locations where physical
sensors could not be positioned [2, 3]. Moreover, joint input-state estimation techniques can be used for estimating unknown
inputs applied to the system. This work adopts the Augmented Kalman Filter (AKF) [4] for joint input-state-response
estimation of a 14.3 m long research blade during pull and release tests. The blade, manufactured by Olsen Wings, has
been designed, tested, and extensively studied [5] by the DTU Wind Energy department in the framework of the project
“BLATIGUE: Fast and efficient fatigue test of large wind turbine blades.” The estimation results, i.e., the predicted input
and strain responses at unmeasured locations during pull and release tests on the research blade in clamped-free boundary
conditions are hereby proposed.

S. Vettori (�)
Siemens Digital Industries Software, Leuven, Belgium

Institute of Structural Engineering, Zürich, Switzerland

E. Di Lorenzo · B. Peeters
Siemens Digital Industries Software, Leuven, Belgium
e-mail: emilio.dilorenzo@siemens.com; bart.peeters@siemens.com

E. Chatzi
Institute of Structural Engineering, Zürich, Switzerland
e-mail: chatzi@ibk.baug.ethz.ch

© The Society for Experimental Mechanics, Inc. 2022
Z. Mao (ed.), Model Validation and Uncertainty Quantification, Volume 3, Conference Proceedings of the Society for Experimental
Mechanics Series, https://doi.org/10.1007/978-3-030-77348-9_7

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77348-9_7&domain=pdf
mailto:emilio.dilorenzo@siemens.com
mailto:bart.peeters@siemens.com
mailto:chatzi@ibk.baug.ethz.ch
https://doi.org/10.1007/978-3-030-77348-9_7


50 S. Vettori et al.

2 Pull and Release Tests for Wind Turbine Blades Operational Modal Analysis

The object of this work concerns a 14.3 m long research blade made of glass fiber reinforced plastics. The blade was designed
by DTU Wind Energy and manufactured by Olsen Wings in the framework of the “BLATIGUE” project. The DTU Wind
Energy department has kindly provided the FE model of the blade required for the present work, along with the experimental
data on the tests this work refers to.

As shown in Fig. 1 (left), during the herein considered pull and release test, the blade was clamped to a rigid steel-
reinforced concrete block through the circular interface plate in a flapwise configuration. The test consisted in pulling the
blade downward by making use of a bungee applied at a distance of 13.1 m from the clamping. Once the blade tip reached
the desired displacement, it was released. The blade was instrumented via 76 strain gauges distributed on 12 sections along
its length and all measuring in the length direction of the blade. Figure 1 (right) shows the sensor locations along the blade.

The FE model has been developed in MSC Nastran and afterwards exported in Simcenter 3D, where it was validated using
modal parameters obtained from hammer tests performed on the blade in clamped-free conditions, i.e., the same boundary
conditions adopted during the pull and release test.

3 Response-Input Estimation During Pull and Release Tests on the Research Blade

The AKF has been applied in this work in order to simultaneously retrieve the full field strain response of the blade and the
applied input profile during the pull and release test herein taken into account. For employing the AKF for VS purposes, a
Reduced Order Model (ROM) of the blade has been built, following the procedure described in [6–8]. The ROM reduction
basis has been created including the first ten normal modes (frequency range of interest: 0–43 Hz) and one residual attachment
mode related to the unknown force to be estimated.

In order to prove the algorithm validity, only a selected set of sensors among the 76 strain responses acquired during
tests has been used as observations set for the AKF. The remaining responses have been predicted using the AKF and
then compared to the corresponding acquired time histories to evaluate the estimation performance. Figure 2 (left) reports
“measured” and “ unmeasured” sensor locations according to the adopted configuration, i.e., blade instrumented at a limited
number of sections.

Uncertainties on both the observations and the system model need to be taken into account when employing the AKF, i.e.,
when a Bayesian statistical framework is foreseen. In particular, the measurement noise covariance has been computed from
the available static measurements in order to assume a physically reasonable value. The process noise covariances related to
the input and the states instead have been respectively assumed to be equal to 108 and 101.

Figure 2 (right) shows the comparison between the actual force profile adopted during the previously mentioned pull
and release test and the input profile estimated via the AKF. Although the predicted input shows an offset with respect to
the actual null force after the blade release, it correctly detects the time instant when the force drops to zero. Moreover, it
approximately matches the actual value of the static force adopted to pull the blade during the test.

Response estimation results are reported in Fig. 3 for the three locations pointed out in Fig. 2 (left). Plots included in
Fig. 3 compare the estimated time histories not only to the measured ones, but also to the responses obtained by performing
a forward simulation of the blade ROM when the actual input is applied. The reported results show that employing the AKF
for response estimation allows to correct the model error throughout the entire time history, including the initial static frame.

Fig. 1 Wind turbine blade setup during the pull and release test (left). Test geometry (right)
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Fig. 3 Time histories (left) and detailed time histories (right) of strain responses at strain gauges St.6 (Sec1.5), St.5 (Sec4.0), St.7 (Sec8.25)

4 Conclusions

The use of the AKF for joint input-state estimation during the so-called pull and release tests on a wind turbine blade has
been proposed in this paper. The blade object of this work is a 14.3 m long research blade designed by DTU Wind Energy
and manufactured by Olsen Wings. Output-only measurements were carried out on the blade during the mentioned pull
and release test and the strain response was acquired at 76 locations. The blade was subjected to initial downward pull and
subsequent release after the desired tip displacement was reached. For this work, a set of measured responses has been used
as observations for the AKF implementation with the purpose of estimating the “unmeasured” quantities, i.e., the remaining
strain responses and the applied input. It has been demonstrated that the AKF can furnish an accurate response prediction.
Although the predicted input profile shows a non-zero mean value after the blade release, it is able to match the actual input
step profile. Moreover, the time instant when the blade is released is also correctly identified. Possible future investigations
will consist in studying the influence of the adopted physical sensing configurations on the virtual predictions delivered via
use of Kalman-type filters (AKF, DKF. . . ) for joint input-state estimation.
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Dynamics of a Nonlinear Oscillator: Dependencies on Extrinsic
Conditions and Model Form Uncertainty

Thomas P. Roberts, Scott A. Ouellette, and Adam J. Wachtor

Abstract Closed-cell polymer foams are commonly employed as support structures to absorb shock and vibration in
mechanical systems. Engineering analysts responsible for system designs that incorporate these closed-cell foams have a
need to understand the effect that extrinsic environmental conditions have on the dynamic response of the mass supported
by the foams. Environmental conditions such as preload, forcing energy, and forcing frequency, along with inherent model
form uncertainty, have the potential to drive such a system into nonlinear, and sometimes chaotic, behavior. A suite of
studies utilizing finite element (FE) analysis and numerical simulations of a material meta-model was used to perform
a parametric study on the extrinsic forcing conditions to understand such effects on the nonlinear system dynamics. A
simple two-dimensional (2D) plane strain FE model of a mass supported on both sides by foam was used to perform
two tasks—to implicitly determine stress states from precompression in the foam and to explicitly solve for the system’s
response when subject to a dynamic input. Using prior knowledge of uncertain quantities in the model and ranges of possible
environmental conditions, parameter sets of extrinsic conditions were used as inputs to the models to obtain the time-domain
responses of the suspended mass. The corresponding frequency domain characteristics of the suspended mass were used in
conjunction with the input parameter distributions to form conclusions about the influence of variation in each parameter
on the natural frequency of the system. Considering the results from the extrinsic property sensitivity analysis, the models
were perturbed from linear, harmonic oscillation to showing signs of nonlinear motion. Small changes in extrinsic conditions
while oscillating near the system’s nonlinear stiffness regime are hypothesized to cause sudden changes in a holistic response.
This work aims to discuss the effects of model form uncertainty and the effects of changing the extrinsic conditions in an
inherently nonlinear dynamic system.

Keywords Model uncertainty · Non-linear vibration · Sensitivity analysis · Parametric modeling · Closed-cell foam

1 Introduction

Hyperelastic material models are a special class of materials that respond elastically to large compressive or tensile
deformations [1]. Rubber-like materials are a common application for hyperelastic constitutive modeling techniques. These
materials can exhibit complicated behaviors that extend well beyond the linear elastic theory, such as large deformations,
plastic and viscoelastic properties, and stress softening (Mullins effect) [2]. Starting with a constitutive model form, Ogden or
neo-Hookean for example, experimental data are used to fit constitutive model parameters, and thus a hyperelastic material
model is born. The downside to constitutive models, however, is that they rely on a fitting process. A consequence of
such a process is the lack of physics involved in using the model outside of its calibration range [3]. Thus, it should be
obvious that the typical hyperelastic material models have shortcomings, and this work utilizes a material model that aims to
overcome such issues. At the heart of this work is the verification and uncertainty quantification of a physics-based porous
foam material model, CHIPFoam. The CHIPFoam material model developed by Lewis [4] was created to improve upon the
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hyperelastic modeling techniques that are commercially available in finite element codes, such as the ABAQUS UHYPER
subroutine. The CHIPFoam model consists of four components—small deformation for capturing a buckling behavior in the
foam, incompressible considerations for describing stiffening at large deformations, matrix compressibility to allow for a
consistent response at large compressive strains, and an optional term to model the effects of gas compression in the cells
of the foam [4]. CHIPFoam is designed to model the behavior of closed-cell polymer foams under large compressive loads.
It is much more common for hyperelastic materials to be tested and fit to tensile loading data [3, 5, 6]. This work tests the
CHIPFoam model in a purely compression regime with large values of compressive strain up to 48%.

The CHIPFoam model contains nine total parameters, some independent, some state-dependent, and others dependent on
state and independent parameters. The nature of these parameters points to global sensitivity analysis methods rather than
local as global methods can be used in large parameter spaces where coupling between parameters is of possible concern [7].
With any model, the exact value of any parameter is only known within some uncertainty. This is referred to as manufacturing
process uncertainty. Ultimately, analysts want to know the variability in the solution to their model, given the uncertainty
in each parameter in the model. By modeling the uncertainty of model parameters as a random set of variables, statistical
sampling measures can be used to sample a parameter space and generate a sensitivity index for model inputs [8]. In this
work, Latin hypercube sampling (LHS) is used to generate a suite of parameter sets that are used to evaluate finite element
models. The results from these models are used for a variety of purposes—performing a sensitivity analysis on the CHIPFoam
material model and simulating full responses of systems with closed-cell foam components.

The sensitivity of the model to parameter uncertainty will be evaluated based on the outputs of the suite of parameterized
finite element models. Simple partial derivative-based methods, such as that proposed in ref [9], can be used for systems
of multiple dependent inputs; however, this work uses a polynomial chaos expansion method within the Dakota toolbox, a
previously developed statistical data analysis tool from the Sandia National Laboratory [10]. Using the parameter sets from
the LHS process, models will be evaluated, and the resulting system responses will be recorded and processed for specific
metrics. To gain insight into parameter sensitivity at more than just a single value of foam precompression, the polynomial
chaos expansion method will be used, instead, at every value of displacement that is computed by the finite element models.
With these techniques, a sensitivity index of all parameters that were considered will be generated as a function of the
model’s displacement regime.

In addition to studying the effects of material parameter uncertainty, this work quantifies the effects of uncertainties
in the subsequent life cycle steps of the system—assembly conditions and environmental excitation. After manufacturing,
closed-cell foams are typically assembled as vibration absorbers subject to preloading conditions. Ideally, the preloading
process allows the dynamic response of the system to be easily targeted and adjusted; however, uncertainty in preloading
conditions can hinder that advantage. Finally, uncertainty in the environmental excitation imposed on the system can result
in unexpected dynamic behavior because of the complex mechanical response that is characteristic of closed-cell polymer
foams. The coupling of material parameter uncertainty, preload uncertainty, and excitation uncertainty is hypothesized to
result in large variation in frequency response and transitions to nonlinear vibration of an otherwise simple single degree of
freedom (SDOF) oscillator.

2 Modeling

This work considers three forms of uncertainty to encompass the entire engineering life cycle of a closed-cell foam vibration
absorber—manufacturing uncertainty, assembly condition uncertainty, and environmental excitation uncertainty. Each form
of uncertainty is studied independently via three parametric studies, all of which are implemented using the 2D, plane strain
finite element (FE) model shown in Fig. 1. The FE model consists of two instances of a closed-cell polymer foam; each
instance of foam was assigned the CHIPFoam material model [4]. Suspended between the foam instances is a solid stainless
steel mass. The choice of stainless steel as the suspended mass material is arbitrary as the material need only be rigid
compared to the foam. The model is precompressed, or preloaded, via a displacement boundary condition at one end, and
the other end is fixed. To help maintain the numerical stability of the CHIPFoam model, the long edges are constrained to
prevent an outward projection of the foam. A dynamic excitation is applied as a nearly instantaneous initial velocity at the
center of the suspended mass.

2.1 Manufacturing Process Uncertainty

Manufacturing process uncertainty is typically a result of uncertain control parameters involved in making the bulk material
and in the forming of the meta-material. Closed-cell polymer foams are typically manufactured by forcing gas through the
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Fig. 1 Full system FE model schematic consisting of two instances of closed-cell foam (green, left and right) and a rigid suspended mass (yellow,
center). The model is precompressed with a displacement boundary condition, x0, and excited with an initial velocity applied to the suspended
mass, V0

Table 1 Sampling bounds and nominal values of material parameters for the manufacturing process parametric study

Parameter Lower bound Nominal value Upper bound

Initial porosity (ϕ) 0.001 0.633 0.701
Bulk modulus [MPa] (K) 8.50 10.00 11.50
Neo-Hookean modulus [MPa] (C10) 0.0100 0.0148 0.0400
Nominal sample amount: 15
Total simulations: 76 (75 parameterized, one nominal)

A total of 76 FE simulations were generated using Latin hypercube sampling

heated bulk material [11]. Uncertainties in the mechanical properties of the bulk rubber and in the porosity that results from
the gas-blowing process are represented in the CHIPFoam material model as bulk modulus K and initial porosity ϕ. An
additional form of manufacturing process uncertainty that is considered in this parametric study is uncertainty in calibrated
material model quantities, such as the neo-Hookean modulus C10. Each of these three parameters encompasses relevant
uncertainty in the manufacturing of the material and the utilization of the material model.

Latin hypercube sampling (LHS) is used to generate a suite of simulations for evaluating the FE model’s dynamic response
with respect to the changing parameters. A nominal value of 15 samples is drawn from a normal distribution of each of the
three previously mentioned parameters. For each sample of the three model parameters, an additional two Null parameters
are sampled. Since the Null parameters have no effect on the model, they will be used to set a threshold for parameter
significance. The Null parameters are, essentially, setting a value for random noise in the simulation. Any noticeable effect
from the Null parameters is an indication that the sensitivity analysis is not effectively representing the interactions between
the physics of the model and the three selected parameters. A total of 76 parameter sets are generated; the nominal values
and boundaries for the parameter distributions in this study are summarized in Table 1.

The two output quantities of this parametric study are the mechanical response of the material and a parameter sensitivity
index for the material model. This study aims to illustrate the amount of variability in the material’s mechanical response and
the system’s frequency response because of manufacturing process uncertainty. The parameter sensitivity index will indicate
the extent to which small changes in material parameters affect the stiffness of the material. Polynomial chaos expansion
(PCE) is used to assess the variance of the model with respect to the changing parameters, and the computation is done using
tools within Dakota [10]. Polynomial chaos is chosen over other common variance analysis methods, such as analysis of
variance (ANOVA), because PCE allows for a global, multiinput sensitivity analysis (SA) that also considers effects from
dependent parameter coupling [12–14].

2.2 Assembly Condition Variability

The most significant source of uncertainty in the assembly process of a polymer foam vibration absorber is the
precompression, or preload, of the foam sections. Polymer foams are designed to be preloaded to tailor the dynamic response
of the object suspended between the foam sections. A typical force-displacement curve for the material is shown in Fig. 2,
where x0 is the equilibrium displacement of the suspended mass after preloading. After the application of precompression,
each foam section (represented as a simple spring in Fig. 2) operates at a different equilibrium displacement, x′

1 and x′
2. The

stiffness of the foam is the displacement derivative of the curve and is represented by the red-dashed tangent lines in Fig. 2.
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Fig. 2 Nonlinear stiffness
schematic for a system consisting
of a mass suspended by two
pieces of closed-cell foam
(shown as springs). Uncertainty
in preloading conditions
propagates to the static stress
state, and therefore the stiffness,
of each piece of foam

As the suspended mass vibrates, each piece of foam imposes a time- and displacement-varying restoring force on the mass.
When uncertainty in the initial precompression of the model is present, this propagates to uncertainty in the restoring forces
in the model and consequently uncertainty in the dynamic response of the suspended mass.

The effects of assembly condition uncertainty are quantified in a single-parameter study where the precompression value
is varied to encompass the entire operating strain regime of the material. Other parameters, such as forcing conditions and
material properties, are left constant for this parametric study.

2.3 Environmental Uncertainty

Uncertainty in the environment imposed on the system can accentuate the nonlinear behavior of the material, particularly
because of strain-rate sensitivity and unexpected large amplitude oscillations. Strain-rate sensitivity is a property of the
material where higher frequency oscillations cause the material to respond dynamically softer, i.e., a shift toward a lower
resonant frequency, thus changing the stiffness-displacement response entirely. While this phenomenon is not directly
addressed in this paper, the material model includes these effects in its formulation, and experiments have shown this
behavior [15, 16]. Large amplitude oscillations can result from environmental excitations being higher than expected, and
such oscillations can lead to drastic changes in the stiffness of the material. When the static stress state of the material is
uncertain (due to assembly condition uncertainty), large deflections can cause the material to displace to unstable regimes
of stiffness over time. This is qualitatively illustrated in Fig. 3. On the left, Fig. 3 depicts the typical force-displacement
response of the material. Overlaid on the F-Δ curve are representations of how the system oscillates over the curve in time.
Shown in green is a system that oscillates in the linear displacement regime and in blue a system that oscillates in a highly
displacement-sensitive regime. On the right, Fig. 3 depicts the resulting time-varying stiffness of the foam for both linear-
and displacement-sensitive systems.

It is important to note that the “linear” stiffness profile (shown in green) is not exactly linear as real data will rarely
produce such behavior. However, the standard deviation in stiffness over time is less than 1%, and it can be considered
linear compared to the displacement-sensitive stiffness profile. The displacement-sensitive stiffness profile (shown in blue)
has a standard deviation in stiffness of 79.2%, and the stiffness experiences large fluctuations over time. When coupled with
uncertainty in assembly conditions, unknown environmental conditions can drive a system from oscillating as expected (in
the linear regime) detrimental dynamic behavior (in the displacement-sensitive regime) with only small changes in extrinsic
properties.

The effects of environmental uncertainty are quantified in a single-parameter study where the magnitude of the shock
velocity is varied to encompass all exceptions that allow the material model to maintain numerical stability. Other parameters,
such as preload conditions and material properties, are left constant for this parametric study.
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Fig. 3 Effect of environmental uncertainties on the stiffness of the material over time. Left: typical F-Δ response for closed-cell polymer foam
with linear (green) and displacement-sensitive (blue) displacement regimes. As a system oscillates over these two displacement regimes, the
stiffness over time can be dramatically influenced by uncertainty in preloading and environmental excitation

Fig. 4 Computational workflow for parametric studies. The baseline model is varied based on the parameter sampling distributions. Independent
models can be solved, and data are extracted in parallel. Data are collectively analyzed with respect to the changing parameters

2.4 Computational Implementation

Each of the parametric studies starts with a baseline model with consistent geometry, meshing characteristics, and general
preprocessing information. The material model, boundary conditions, and dynamic excitation take the same form in each
parametric study. Sample sets are generated using a variety of strategies (LHS for multiple parameters, full factorial for
single parameters), and the baseline model’s preprocessing information is perturbated based on these parameter sets to fill
the parameter space. The result is a suite of independent models that can be solved in parallel, and data are extracted in
parallel to increase computational efficiency. The final step is to collectively analyze the data from all the models with
respect to the varying parameters. Figure 4 illustrates this computational workflow.

3 Analysis

In this paper, uncertainty is represented as the variability in the mechanical response of the material and the frequency
response of the suspended mass system. Manufacturing process uncertainty, assembly condition uncertainty, and envi-
ronmental uncertainty are evaluated independently; no coupling of material parameter uncertainty, preload uncertainty, or
excitation uncertainty is considered. A nominal model is defined with arbitrarily chosen precompression and shock excitation
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values, and material parameters are chosen to represent a single sample of closed-cell polymer foam. It should be noted that
the dynamic response of the system is expected to be dependent on all parameters simultaneously.

3.1 Material Parameter Uncertainty

The first output of the material model parametric study is the variability in the mechanical response of the foam as a result of
uncertainty in material parameters; this is shown on the left in Fig. 5. In certain strain regimes, especially after the cell wall
buckling phase, the restoring force from the foam is more than an order of magnitude different because of uncertain material
parameters. A brief inspection of the parameter sets that cause this variation leads to a suspicion that the initial porosity
drives the stiffness of the material. Qualitatively, the general shape of the force-displacement curves changes significantly
with uncertainty in the material parameters. For example, the sharp transition from bending to buckling of the cell walls
completely disappears as the material becomes less porous and more homogeneous, and the transition from elastic bending
to cell wall buckling has a significant influence on the stiffness of the material over time.

The second output of the material model parametric study is the material parameter sensitivity index, which is shown on
the right in Fig. 5. The sensitivity index supports the conclusions from the force-displacement results and physical intuition
that suggest that porosity has the most influence on the material’s stiffness. In addition, the sensitivity index provides insight
pertaining to the functionality of the material model. The sensitivity index provides verification that the material model is
working correctly as the strain-regime-dependent parameters (bulk modulus and neo-Hookean modulus) show significance
only in the strain regimes they are designed to model. Furthermore, the Null parameters account for other parameters in the
model that were not considered in the parametric study but might still have an effect on the model. The varying significance
of the Null parameters suggests that some variation happening in the model cannot be captured by the variation in ϕ, K, and
C10 alone.

As a result of significant changes in porosity, the natural frequency of the system is shown to be sensitive to uncertainties
in the material model parameters. Figure 6 shows the frequency response at the upper and lower ends of the parameter space
as well as the frequency response of the arbitrary nominal model. In this parameter space, the fundamental frequency of the
system shows over 71% variation. As previously mentioned, the nominal model is chosen with arbitrary properties, so it is
not of concern that the nominal model is biased toward one end of the parameter space.

Fig. 5 Variation in mechanical properties and material parameter sensitivity index from the manufacturing process parametric study. Left: 76
force-displacement curves are the direct output of the material model parametric study. Right: material parameter sensitivity index that maps the
influence of each parameter on the stiffness of the material to the operating strain of the material
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Fig. 6 Frequency response of the closed-cell foam and suspended mass FE model over the manufacturing process uncertainty parameter space.
Manufacturing process uncertainty results in 71% variation in the fundamental frequency of the system
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Fig. 7 Frequency response of the closed-cell foam and suspended mass FE model over the assembly condition uncertainty parameter space.
Preload uncertainty results in 185% variation in the fundamental frequency of the system

3.2 Preload Uncertainty

In the parametric study for preload uncertainty, the material parameters and shock excitation are held constant. The nominal
model is excited with relatively small excitation to keep the material model in a compressive state through all values of
preload in the parameter space; this is a requirement based on the formulation of the numerical subroutine used to implement
the material model. In addition, small excitations will result in small oscillations, so the effects of a time-varying stiffness of
the material are not meant to be captured in this parametric study. Figure 7 shows the frequency response of the upper and
lower ends of the parameter space. The variation in preload alone is enough to significantly change the stiffness of the foam,
even though the foam is locally acting linearly (small displacements). This parameter space results in over 185% variation in
the fundamental frequency of the system.
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Fig. 8 Frequency response of the closed-cell foam and suspended mass FE model over the environmental uncertainty parameter space.
Environmental excitation uncertainty results in a 16% variation in the fundamental frequency of the system. The upper end of the parameter
space indicates a transition from linear, harmonic oscillation to nonlinear vibration because of extreme loading conditions

3.3 Excitation Uncertainty

For the excitation uncertainty parametric study, shock velocities are chosen to fill the parameter space with the extremes of the
material model’s capability while still maintaining a compressive state for numerical stability. To allow this, the preloading
was still held constant but was increased compared to the other two parametric studies. Figure 8 shows the frequency response
of the upper and lower ends of the parameter space where the result is a 16% variation in fundamental frequency. Though
this variation is significantly less than that from the other two sources of uncertainty, Fig. 8 exhibits unique behavior as a
result of the time-varying stiffness characteristics of the material.

A truly linear, SDOF oscillator will have only one resonance in its frequency response; however, the upper edge of this
parameter space shows that extra peaks appear in the frequency response. In this case, the system is responding with multiple
resonances at higher energies than the fundamental frequency, and the amplitude of the entire response is of comparable
magnitude to the peak values at the other end of the parameter space. From a design perspective, this phenomenon is
problematic as there are now multiple resonance frequencies to avoid within the systems’ operating frequency range. In
addition, this parametric study shows behavior at the boundaries of the parameter space, but it is of interest to know what
parameter combinations cause such nonlinear behavior to occur.

4 Conclusion

In this paper, three sources of uncertainty were considered to analyze the effects of model form uncertainty throughout the
entire engineering life cycle of closed-cell polymer foam vibration absorbers.

Manufacturing process uncertainty can significantly affect the features present in the mechanical response of the material.
Foams are generally designed to be compressed to the plateau region of the F-Δ curve, but some combinations of material
parameters cause that characteristic of the F-Δ curve to disappear entirely. It is not possible to test every piece of foam that
is manufactured, so it is imperative to predict all possible outcomes that result from uncertainty in material parameters.

Assembly condition uncertainty has large effects on the stiffness of the material, even when small oscillations allow
the material to act locally linear. In addition, the nonlinear nature of the material’s stiffness causes each piece of foam to
have different, time-varying stiffness that is sensitive to the equilibrium stress state. When coupled with uncertain levels of
excitation, the material could bifurcate to strain regimes with unstable stiffness characteristics.

Environmental uncertainty that results in more extreme conditions than designed for can cause the amplitude and the
frequency(s) of the system’s response to shift significantly. In some cases, excitation becomes large enough that stiffness
fluctuations cause a previously linear vibratory system to exhibit nonlinear characteristics.



Dynamics of a Nonlinear Oscillator: Dependencies on Extrinsic Conditions and Model Form Uncertainty 61

Considerations for parametric modeling – model stability can be dependent on both physical and numerical constraints,
and both need to be equally considered in parametric modeling. One of the main considerations when employing a
computational model is numerical stability, which is independent of physical constraints. For example, the CHIPFoam model
used in this work must always be in a compressive state. Otherwise, the model yields unstable and unphysical results. The
problem may define a physical parameter space that exceeds the stability limits of the computational model (i.e., assumed
excitation uncertainty has upper limits that exceed the capabilities of the model). In this case, an engineering analyst has two
choices—tighten the threshold on physical uncertainties or improve the capabilities of the model.

Considerations for parametric modeling – bounding versus explicit modeling: the response of the system can yield a
wide range of results with varying implications. In general, the three parametric studies discussed in this paper are cases of
bounding studies. The results presented illustrate the system’s response at the edges of the parameter space to determine total
uncertainty and assess the effects of changing parameters. This is efficient as we postprocess and analyze fewer data sets,
and this is a reasonable approach so long as the entire parameter space exhibits the same general characteristics. Bounding is
problematic when there are significant changes to the architecture of the response within the parameter space. For example,
the excitation uncertainty parametric study did not quantify the transition from a linear to a nonlinear vibration of the system.
When only a single bounding metric (i.e., fundamental frequency) is considered, analysts risk overlooking other detrimental
behaviors hidden within the parameter space.

Explicit modeling entails studying, in detail, the solution to every parameter set. This is expensive as a full-fidelity solution
needs to be computed for all parameters. However, an explicit modeling strategy allows the advantages of bounding as well
as identifying unexpected behavior within the parameter space.
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Uncertainty Quantification and Effectiveness of Cantilevered
Pipeline Conveying Fluid with Constraints

Timothy Alvis, Samantha Ceballes, Michael Ross, and Abdessattar Abdelkefi

Abstract Researchers have studied cantilevered pipelines conveying fluid for many decades for their practical applications
and interesting dynamic behaviors. These applications can include oil pipelines and risers, mechanical pumps, and micro-
/nanofluidic nanotubes, which can be used in drug delivery. Because the stability of these systems is so important to
companies and industries, many researchers have investigated methods to improve their overall system stability. Some of the
implemented methods include adding a mass to the tip of the pipe and motion-limiting constraints. The constraints introduce
an impacting force that can produce interesting nonlinear chaotic behavior. The implementation of ideas and strategies
that improve system stability leads to increasingly more complex systems with a greater number of input parameters. The
cantilevered pipe conveying fluid itself already has many parameters to consider, including the flow speed, smoothness
of the internal structure, size of the pipe, and position of motion-limiting constraints, to name a few. Additionally, each
input parameter possesses its own uncertainty. The propagation of uncertainty in these parameters can significantly alter
the dynamic response and stability of the proposed system. It is important for engineers to design the system with a firm
understanding of how the system is going to behave and respond in the presence of these uncertainties. Therefore, it is
necessary to employ uncertainty quantification methods. In this study, a sensitivity analysis is performed on a cantilevered
pipeline conveying fluid with motion-limiting constraints to determine which parameters in the system are most dominant.
By finding these dominant parameters, more uncertainty quantification methods can be employed to better understand the
response of the system.

Keywords Uncertainty quantification · Nonlinear behavior · Fluid-structure interaction

1 Introduction

Researchers have been studying the cantilevered pipeline system conveying fluid and its highly nonlinear behavior for
decades. This is because the system has a wide variety of practical applications, including mechanical pumps [1], pipelines
and risers [2], and micro-/nanosystems that are often used in drug delivery applications [3]. The cantilever pipeline conveys
fluid at varying flow speeds, and once the flow speed reaches a critical velocity, the pipeline begins to oscillate periodically
and can eventually become chaotic. In an attempt to better control the system, many researchers have implemented different
additions to the cantilevered pipeline systems. Some of these additions include a mass to the tip of the pipe and motion-
limiting constraints. Many improvements have been observed by these additions, but research is still needed to fully
understand how the uncertainties in the input affect the behavior of the system.

Understanding how a system behaves in all scenarios is one of the most important aspects engineers must study during
the design process. This is particularly challenging because many of the parameters that can affect the system in any way are
unknown to the engineers designing the system. Therefore, it is important that researchers study many different variations
of parameters to ensure that the system will work for various combinations of input parameters. Some of these unknown
parameters that engineers must research are different environmental factors like wind speeds and forces imparted by strong
gusts of wind or how temperature shifts may affect the materials used to make the system. Other parameters come from the
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manufacturing of the system itself. The material properties alone can slightly change by the way the material was refined.
Additionally, the machines cutting and drilling the different parts of the system are not completely accurate and can lead to
the finished product being slightly different than it was designed to be. Although the differences caused by these inaccuracies
are usually very close to the original design, these small differences in the input can have significant impacts on the output of
the system. This work shows the modeling of a cantilevered pipeline system that conveys fluid and studies how uncertainty
in several of the inputs affects at which flow speed the onset of instability occurs.

2 Modeling

The extended Hamilton’s principle is employed to find the system’s equations of motion following the work of Semler et
al. [4]. Many assumptions are made that make the calculations easier, including that the fluid is incompressible, the pipeline
is inextensible, and the pipeline diameter is small compared to the length, allowing for the use of the Euler-Bernoulli beam
theory. Using Galerkin’s method to discretize the equation of motion and following the work of Taylor et al. [5], the following
reduced-order model is obtained:

q̈i + [Cij + u(Cu)ij
]
q̇j + [Kij + u2(Ku)ij

]
qj + [Mijkl

]
q̇j q̇kql

+ [uNijkl

]
q̇j qkql + [Pijkl + u2(Pu)ijkl

]
qjqkql = 0

(1)

Because this research only focuses on the onset of instability, the nonlinear terms can be disregarded due to the fact that
an eigenvalue problem analysis is all that is required to find the critical flow speed. This is because the onset of instability
occurs when the damping coefficient changes sign.

3 Analysis

This effort investigates how a uniform input distribution with ±5% uncertainty applied to the following five parameters:
outer diameter (OD), inner diameter (ID), length (L), density (ρ), and modulus of elasticity (E), which can alter the system’s
output. Each parameter is varied at the same time by randomly selecting a value that is plus or minus a percent of the designed
value. The output distribution for the onset speed of instability for this analysis is shown in Fig. 1.

Fig. 1 Output distribution of onset speed of instability while varying five parameters
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Output distribution while varying four parameters and keeping one constant. The constant parameters in each graph are (a) outer diameter,
(b) inner diameter, (c) length, (d) density, (e) modulus of elasticity, and (f) both outer diameter and density

Usually while performing an uncertainty quantification analysis, the output distribution is Gaussian around the designed
output. This is preferable because the system behaves close to how it was designed even though there is some uncertainty
introduced into it. It is clear to see by investigating Fig. 1, however, that this is not the case with this system. There is a
wide range of uncertainty in the output, and there is a peak of outputs above the designed flow speed. This behavior is likely
caused by the interaction between the parameters, and a nonlinear reaction from the parameters. To have the system behave
as close to the designed case as possible, it is important to find which parameters are most impacting the system. Once the
most influential parameters are determined, the designing engineers can find the best methods to decrease the uncertainty in
those specific parameters to keep the output as close to the designed response as possible. To determine the most influential
parameter, the same uncertainty analysis is run another five times where one parameter is kept at its original value while
the other parameters are varied. The results are shown in Fig. 2. It is clear that the outer diameter and density are the most
influential parameters. Keeping them constant results in obtaining output-dominant results near the ideal case, as shown in
Fig. 2f.

4 Conclusions

For the system under investigation, it was determined that the most influential parameters are the outer diameter and density.
This is clear because the other parameters show the same output distribution as when they are held constant. Because the
density has a similar output distribution but lower range of uncertainty, it can be determined that the outer diameter is more
influential than the density. It is important for designing engineers to keep the uncertainty in these two parameters as low as
possible.
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Playability of a 1734 Guarneri Cello: Info-Gap Robustness
Analysis of Uncertainty

R. Viala, S. Le Conte, S. Vaiedelich, S. Cogan, and Y. Ben-Haim

Abstract Mechanical stresses due to strings are imposed on an instrument when it is played. Such stress can lead to long-
term strains or damages. In the cultural heritage domain, this can prevent an instrument from being played if the risk of
damage is too high. Most of the properties of such instrument are uncertain, such as mechanical parameters, relative humidity
or already existing cracks. Model-based approaches dealing with deep uncertainties can be a very efficient approach for
decision support. In this paper, an example is given with an antique cello, which exhibits damages, especially boreholes or
galleries created by wood-eating insects. A model is created for static analysis to compute the stress field that will be used
as a basis for the info-gap robustness analysis of the uncertainties and their impact on the sustainability of the instrument,
considering defects, probabilistic distributions of elastic constants and Knightian uncertainties of yield stresses of wood.

Keywords Cultural heritage · Chordophones · Info-gap robustness analysis · Uncertainties · Wood mechanics ·
Decision support tool

1 Introduction

Substantial mechanical stresses are imposed on a musical instrument when it is played. These stresses can result in damage
to the instrument, and the decision to allow the use of an instrument depends on assessing the potential for this damage. This
decision is particularly difficult and important when dealing with a heritage instrument of great cultural value but of uncertain
mechanical properties. Numerous mechanical properties are relevant, including environmental humidity and temperature. In
addition, typical string instruments contain components made of maple, ebony, and spruce, and these types of wood have
different and variable rigidity, density and elastic limits. Finally, the criterion for mechanical failure depends on mechanical
properties, geometry, temperature and humidity, in a functional form that may be uncertain.

Models can be used to support decisions on playability. However, models – and the data and knowledge upon which they
are based – are sometimes subject to deep uncertainty, as mentioned above. Deep uncertainty refers to situations involving
substantial disparity between what is known and what needs to be known in order to support a responsible decision. Deep
uncertainty is a nonprobabilistic state of ignorance about some important aspects of the decision. Under deep uncertainty, it
is useful to assess the model-based decision for its robustness to ignorance, error or surprise. This will enhance the decision-
maker’s confidence that the outcome of the decision will be acceptable. In this paper, we develop a model as a basis to
employ the info-gap decision theory [1] to evaluate robustness and support decision-making.

The study focuses on an antique cello, made by Pietro Guarneri in 1734 and kept at La cite de la Musique – Philharmonie
de Paris. The cello exhibits numerous previously repaired cracks and a gallery made by wood-eating insects. As curators aim
at bringing the cello to a playable state, the issue of the gallery has been raised as a potential weakness and cause of crack
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ignition when the strings will be stretched. The application will be performed on a model of the cello, similar to the one
presented in ref. [2]. The model of the cello is developed to evaluate the stress field subsequent to the tension of strings when
they are tuned to be played. The Hill yield criterion [3] is used as an estimator of the potential damage near a defect due to
wood-eating insects. The elastic constants of the back are modified, and the evolution of the Hill criterion is studied. This
study is a starting point for info-gap decision-making under severe uncertainties.

2 Analysis

The robustness analysis is based on the Hill yield criterion. This mechanical feature is computed using the finite element
method applied on the computer-aided design of the cello, shown in Fig. 1. The computer-aided design is made of 40 solids
constructed to match the dimensions of the real cello, following steps close to the ones used by makers for real instruments.
The study focuses on the existing defect due to wood insects that carve a gallery on the bottom left part of the back. The
gallery is modelled as an application area of the Hill yield criterion. The gallery is simplified as a circular-shaped removal of
material. The Hill yield criterion is based on stress field components and yield stresses of wood in different directions.

The cello is modelled as a mechanical system, under continuous linear orthotropic elastic hypotheses, where stress is
associated with strain, as given in Eq. (1):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22
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σ12

σ23

σ31

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= [S]−1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
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ε11

ε22

ε33

ε12

ε23

ε31

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1)

With S as the compliance matrix, given by Eq. (2):

[S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 = 1
E11

S12 = − ν12
E11

S13 = − ν13
E11

S21 = − ν21
E22

S22 = 1
E22

S23 = − ν23
E22

S31 = − ν31
E33

S32 = − ν32
E33

S33 = 1
E33

0

0

S44 = 1
G12

S55 = 1
G23

S66 = 1
G31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Fig. 1 Computer-aided design of the 1734 Pietro Guarneri cello. Left: top view, right back view
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Table 1 Initial values of the
elastic and physical constants,
values from refs. [4–6]

Species
Spruce Maple Ebony Rosewood

EL (MPa) 12,350 12,200 15,700 15,700
ER (MPa) 955 1820 2500 2500
ET (MPa) 655 1030 1570 1450
νLR 0.37 0.33 0.33 0.33
νRT 0.48 0.68 0.68 0.68
νTL 0.02 0.03 0.03 0.03
GLR (MPa) 800 1370 1850 1610
GRT (MPa) 44 430 650 610
GTL (MPa) 770 1010 1370 1300
Specific gravity 0.44 0.64 1.09 0.78

Table 2 String tension and
tuning frequency of the four
strings of the cello, for a string
length equal to 690 mm

Strings
C G D A

Frequency (Hz) 65.4 98 146.8 220
Tuning tension (N) 130 135 135 160

Where Eii corresponds to Young’s moduli of wood in ii direction, Gij corresponds to shear moduli in ij plane, and νij
corresponds to Poisson’s ratios in the ij plane. The initial values of the elastic constants are given in Table 1.

The stiffness matrix [K] of the system is created using the finite element method based on the computer-aided design of
the instrument. The static analysis is performed following Eq. (3):

[K] {u} = {f } (3)

with {u} as the translation displacement vector of n degrees of freedom and {f } the vector of the forces applied on the system.
The strain field [ε] is based on the displacement results. The stress field [σ ] is then calculated following a linear elastic
behaviour. The yield criterion, H, is given by the Hill criterion, for an orthotropic material, in Eq. (4):

H = E(σ22 − σ33)
2 + F(σ33 − σ11)

2 + G(σ11 − σ22)
2 + 2Lσ 2

23 + 2Mσ 2
31 + 2Nσ 2
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In Eqs. (4) and (5), σ ii corresponds to the axial stress value in ii direction, σ ij the shear stress value in ij plane, σy
ii the

yield axial stress of maple wood in ii direction (whose values can differ between compression and tension), and σ
y
ij the

yield shear stress of maple wood in ij plane. A value of H equal to 1 corresponds to the limit of elastic behaviour and the
beginning of plastic behaviour. Under standard relative humidity (50%) and temperature (21 ◦C) values, resulting in moisture
content between 8% and 12%, the plasticity of wood is reduced, and therefore reaching such values can result in cracks and
irreversible strains. The string tension has been evaluated using a tension bench. For a given length (690 mm), the string was
tuned and the corresponding tension has been measured, given in Table 2. The string tension is projected on the bridge, pegs,
top and bottom saddle, and tailpiece button on the finite element model.
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3 Results

The displacement in the Z direction due to the string tension is shown in Fig. 2. The displacement comprised between −0.8
and 1 mm is consistent with what is generally observed by makers, especially the elevation of the head and lowering of the
fingerboard end when the strings are tuned.

The strain field is computed with initial values of elastic constants of wood, as shown in Fig. 3. It is interesting to observe
that the strain field is consistent with the usual location of cracks and damages on real instruments, such as sound post cracks
of the soundboard and back cracks, f holes, top and bottom heel cracks of the soundboard, and breaking of the neck and
pegbox.

The Hill criterion is computed for discretised varying values of the longitudinal and radial Young’s modulus of maple.
The varying values of maple elastic constants are taken from ref. [7]. The Hill criterion increases for decreasing values of the
radial modulus of maple, which is the most influential parameter. Therefore, it is possible to consider the probability density
function of the values of radial and longitudinal moduli EL and ER of maple in order to match realistic variable values. The
info-gap robustness analysis will therefore be computed with the Knightian uncertainty of each yield stress σ

y
ij value whose

variability is still unknown. This approach will enable the info gap robustness analysis and provide robustness curves of the
Hill yield criterion (Fig. 4).

Fig. 2 Displacement (mm) along the Z axis subsequent to string tension
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Fig. 3 Strain field in the cello due to strings tension, for initial values of wood

Fig. 4 Evolution of the Hill yield criterion at the back gallery for varying values of longitudinal and radial directions of young modulus of the
back, made with maple
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4 Conclusion

This paper aimed at proposing a methodology for cultural heritage conservation by performing an info-gap robustness
analysis under severe uncertainties. As a first step, this study proposes an application case on an antique instrument. This
study highlights the capacity of models to compute the stress field of a complex assembly and to observe realistic patterns
of displacement, strain or stress fields when the strings are stretched on the instrument to match a modern tuning. The area
corresponding to the wood-eating insect gallery has been studied, and the Hill yield criterion has been computed for multiple
equi-probabilistic values of elastic constants. It was observed that the Hill yield criterion was mainly dependent on the radial
modulus of maple wood used to make the back of the instrument. Therefore, the next step is to consider a probabilistic
definition of the radial modulus of maple as well as the Knightian uncertainties on yield stress components of maple wood,
leading to an info-gap robustness analysis, which will be the topic of a further study.
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Uncertainty Quantification of Axially Loaded Beams
with Boundary Condition Imperfections

A. Binder, M. Cheng-Guajardo, M. Vasquez, S. Ceballes, S. Zimmerman, and A. Abdelkefi

Abstract Manufacturing process errors and inaccurate readings of material properties in beam-based systems can result in
uncertainties in the static and dynamic responses of the system. For this reason, this study focuses on the critical buckling
loads, buckling mode shapes, and natural frequencies of the axially loaded beam by introducing uncertainties in the length,
width, height, density, and Young’s modulus. Ideal fixed boundary conditions are first considered, and the output uncertainties
in the natural frequencies and critical buckling load are determined. Then flexibility in the beam’s boundary conditions is
introduced by modeling them with torsional springs, allowing for uncertainty in the boundary conditions to be studied. The
results show that a 5% uncertainty in the input parameters may lead to 15% uncertainties in the system’s outputs. The results
also show the importance of accurately determining the input parameter properties and boundary conditions of the system in
order to avoid any wrong estimation of the critical buckling load and natural frequencies of the system.

Keywords Axially loaded beams · Parameter uncertainty · Gaussian distribution · Critical buckling load · Sensitivity
analysis

1 Introduction

Errors in manufacturing and inaccurate material property characterization are sources of input parameter uncertainties in
systems that can propagate through the anticipated output [1, 2]. Manufacturers are typically expected to construct systems
and report their material properties within a specified tolerance. The tolerance ranges can be represented as input uncertainties
that will alter the linear and nonlinear dynamic response of the system. In the design of any system, acceptable tolerance
ranges for part and material accuracies are included in the assembly of the system. In many cases, these tolerance ranges can
cause very large effects on the expected dynamical response of the system. Variations in the length, width, height, density,
and Young’s modulus of a beam system are all possible sources of input uncertainties, which may result in uncertainties in
the system’s response, including critical buckling, natural frequencies, amplitudes, etc. When manufacturing error becomes
large, catastrophic effects can become present in the system. When studying simple or complex systems, manufacturing
tolerance ranges can be modeled as input parameter uncertainties and used in the modeling of the dynamic response. Utilizing
a clamped-clamped beam, input parameter uncertainties can be modeled and tested for various ranges, and output uncertainty
and sensitivity in the natural frequency, critical buckling loads, and buckling mode shapes can be studied.

Though many researchers have studied input parameter uncertainties, boundary conditions are often assumed as perfect in
order to omit extensive modeling. Because boundary condition uncertainties can be very difficult to measure, they are often
neglected in the uncertainty conditions, leaving them as idea clamped, free, or hinged boundaries. By modeling the boundary
conditions as torsional springs [3], their uncertainties can be quantified. In this way, ideal clamped-clamped boundary
conditions can be modeled as torsional springs with infinite stiffness and hinged-hinged as zero stiffness. Taking this
modification into account, beam system response uncertainties can be accurately measured using varying input distribution
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Fig. 1 Schematic of an axially loaded beam with torsional spring boundary conditions

models. Utilizing uniform and Gaussian distributions, different input uncertainty ranges are considered in geometric,
material, and boundary conditions and compared to an ideal system.

2 System’s Modeling

The system under consideration is a simple beam with flexible boundary conditions modeled as torsional springs, as shown
in Fig. 1. The applied axial load is denoted by P. The beam is of length L with cross-sectional area A and second area moment
of inertia I. Young’s modulus of the beam is denoted by E, while density is represented by ρ. Lastly, the torsional springs at
the left and right end are k1 and k2, respectively.

In order to derive the governing equations of motion and boundary conditions, the extended Hamilton principle and Euler-
Bernoulli beam theory are considered. Additionally, the von Kármán strain-displacement relationship is used to account for
mid-plane stretching of end-constrained beams. Using these, the equation of motion and boundary conditions are [3, 4]:

m
∂2ŵ

∂t̂2
+ P̂

∂2ŵ

∂x̂2 + EI
∂4ŵ

∂x̂4 = EA

2L

∂2ŵ

∂x̂2

∫ L

0

(
∂ŵ

∂x̂

)2

dx̂ (1)

⎧⎪⎪⎨
⎪⎪⎩

ŵ(0) = 0
ŵ′′(0) − k1ŵ

′(0) = 0
ŵ(L) = 0

ŵ′′(L) + k2ŵ
′(L) = 0

(2)

3 System’s Sensitivity to Input Parameter Uncertainties

In Fig. 2, the static bifurcations diagrams are plotted for several configurations. In Fig. 2a, clamped-clamped boundary
conditions are considered to focus only on the uncertainties in the beam geometry and material properties. In this case, all
input parameters are varied by ±5% around a nominal configuration, shown in red. From this figure, it is concluded that
varying the input parameters can alter both the critical buckling load and the displacement at the midspan of the beam by
up to 20%. In Fig. 2b, c, an emphasis is placed on the imperfections in the boundary conditions rather than the geometric or
material parameters. Leaving all other parameters constant at the ideal values, boundary conditions are varied up to 100%.
This adjustment resulted in dynamic response uncertainties of up to 40%, with critical buckling loads ranging from 3 kN to
5 kN.

In the obtained results in Fig. 2, an extended parametric study was used to create an envelope of the output uncertainty
around a nominal configuration. The natural frequencies of the system are studied next, as depicted in Fig. 3. Two different
input distributions are considered for uncertainty quantification. Overall, it is shown that small uncertainties in the system
geometry and material properties lead to large dynamic response uncertainties. Given a 5% uncertainty in the five geometric
and material properties of the beam, the first bending mode frequency of up to 18% is obtained. There is an important
characteristic that differentiates between the two output distributions. In Fig. 3a, uniform distribution for the input parameter
is considered. In Fig. 3b, normal distribution is selected for the input parameters. In both cases, the bounds or tolerance for
the geometric and material properties is the same. However, for the uniform case, the likelihood that all parameters have
an uncertainty of +5% is the same as the probability of having input parameters equal to their ideal values. In the case of
a normal input distribution, the input parameters are centered around the ideal configuration. For the normal distribution,
the probability of selecting an input parameter with +5% uncertainty is much lower than selecting an input parameter equal
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Fig. 2 (a) Buckling error analysis for a clamped-clamped case given a 5% input uncertainty and (b, c) 100% uncertainty in spring stiffness given
nondimensionalized values of k1 = 24.5 and k2 = 27 at (b) 48 mm and (c) half-beam length

to the ideal value. Because of this, the shapes of the output distributions cannot be expected to be the same. For a uniform
distribution, the output distribution is broader and is not well fit by normal distribution. The opposite is true for the normal
input distribution. It should be noted that the system’s natural frequency uncertainty may reach up to 15% with a 5% input
parameter uncertainty.

4 Conclusions

This research focused on uncertainty quantification for an axially loaded beam with imperfect boundary conditions. The
purpose of this was to demonstrate that small uncertainties in any of the system’s inputs can lead to rather large uncertainties
in the outputs. The uncertainties propagate and thus cause the output uncertainty to grow. It was shown that these uncertainties
can lead to changes in the critical buckling loads and first natural frequency. It was also shown that different input distributions
clearly do not lead to the same output distributions. Better characterization of these uncertainties in the boundary conditions
and the beam’s geometry and material properties will lead to more reliable and robust systems in the future.
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Fig. 3 First natural frequency error analysis given a 5% uncertainty in length, height, width, elastic modulus, and density for both (a) uniform and
(b) Gaussian input distributions
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Parameter Uncertainty Effects on the Buckling Characteristics
of Cylindrical Structures in a Thermal Environment

M. Vasquez, A. Binder, M. Cheng-Guajardo, S. Ceballes, S. Zimmerman, and A. Abdelkefi

Abstract Material and geometric input parameter uncertainties and their effects on the static and dynamic responses
of a cylindrical structure subject to thermal loading with clamped-clamped boundary conditions are studied. Different
thermal loads acting as an induced axial force are considered, including uniform, linear, and nonlinear thermal distributions.
Following the derivation of the governing equations of motion and boundary conditions, several methods for sensitivity
analysis and uncertainty quantification are introduced. Then static and dynamic analyses are performed for different
variations of the material and geometric parameters and thermal loads. Specifically, the critical buckling temperatures and
prebuckling natural frequencies are discussed via sensitivity analysis methods, including the Morris method, correlation
coefficients, parametric studies, and output distributions. Utilizing these methods allows for the determination of the most
influential input parameters for the proposed system as well as the output uncertainties.

Keywords Sensitivity analysis · Uncertainty quantification · Thermal loading · Buckling analysis · Probability density
function

1 Introduction

In recent years, there have been several studies that investigated beam structures in a thermal environment [1, 2]. These studies
can be useful for different applications, such as rocket or weapon systems [3]. Though the geometry and thermal environment
can be complex in nature, starting by considering these structures with a simple geometry is a necessary step [4]. In this field
and others, uncertainty quantification and sensitivity analysis are being implemented to evaluate the characteristic behavior
on the output responses of a system due to the uncertainty of the system’s input parameters. As systems become more
complex, there are typically more input parameters. With more input parameters, their uncertainties may propagate and lead
to higher output uncertainty. Previous researchers have implemented uncertainty quantification and sensitivity analysis in
many fields and applications, including dynamic milling models and building energy-model-based investigations [5, 6]. The
application of sensitivity analysis and uncertainty quantification methods to dynamical systems, especially those including
thermal effects, is limited. The goal of this study is to emphasize a specific geometry subject to clamped-clamped boundary
conditions and thermal effects and understand the static and dynamic responses. Different sensitivity analysis methods are
implemented to determine the effects of material parameters and geometric uncertainty on the critical buckling temperature
and natural frequencies. Understanding which parameters are most influential toward the system’s response should prove
useful to other researchers.
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Fig. 1 Cylindrical structure with clamped-clamped boundary conditions

2 Thermal Load Representations and System’s Modeling

A hollow cylinder of length L is considered, as shown in Fig. 1. The coefficient of thermal expansion is represented by α.
The governing equations of motion are derived using Hamilton’s principle and the Euler-Bernoulli beam theory. The von
Kármán strain-displacement relationship is considered to account for mid-plane stretching nonlinearity. Three different types
of thermal loads are considered, including a uniform, linear, and nonlinear temperature distribution. The difference between
these thermal load representations and the ambient temperature is denoted by �T. The three cases of �TUTR, �TLTR, and
�TNLTR are expressed as [1]:

�T UTR = TUTD − Tref (1)

�T LTD = − (To − Ti)

(
ro − r

ro − ri

)
+ To − Tref (2)

�T NLTD = (To − Ti)

ln
(

ro
ri

) ln(r) − (To − Ti)

2 ln
(

ro
ri

) ln (riro) + (To + Ti)

2
− Tref (3)

where Ti and To are the inner and outer temperatures while ri and ro are the inner and outer radii. The reference temperature
is Tref and r is the change in length with respect to the wall thickness. Considering these different distributions, the final
governing equation of motion can be expressed as [1, 4]:

EI
∂4w

∂x4 + ρA
∂2w

∂t2 −
⎛
⎝EA

2L

L∫

0

(
∂w

∂x

)2

dx −
∫

A

Eα �T dA

⎞
⎠ ∂2w

∂x2 = 0 (4)

3 Results and Discussion

Statistical methods are used to model the uncertainty in the input parameters, including the cylinder length, the inner and
outer radii, density, Young’s modulus, and the coefficient of thermal expansion. The sampling method used for this study is
the Monte-Carlo sampling method. In Fig. 2, a sensitivity analysis is performed to determine the critical buckling load for
uniform and linear thermal loads. In Fig. 2a, an extended parametric study is performed around a set of nominal material
and geometric parameters. Each input parameter is varied individually in the region at ±5% of its ideal configuration. The
slopes in this figure demonstrate the trend of the input parameter and its strength. In Fig. 2b, the Morris method elementary
effects [7] are shown. Finally, Fig. 2b shows the correlation coefficients for the uniform and linear thermal distribution.
The correlation coefficient can be thought of as the covariance of the two variables divided by the product of their standard
deviations. A correlation coefficient of +1 indicates a total positive linear correlation, −1 indicates a total negative linear
correlation, and 0 indicates no linear correlation between the input and output. From all figures, it is first concluded that the
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uniform thermal load representation overestimates the critical buckling load. Additionally, it is shown that the length of the
cylinder is the most influential in altering this critical value, while the inner radius has nearly negligible effects.

In Fig. 3, uncertainty quantification is performed for the first natural frequency of the hollow cylinder. In this case, it
is assumed that all of the parameters are altered by ±5%. The input distributions are shown in Fig. 3a, and the resulting
natural frequency output distribution uncertainty is shown in Fig. 3b. There are several conclusions that can be drawn from
these results. First, referring to the extended parametric study, it is shown that the length is the most influential in altering
the natural frequency, while the inner radius is the least influential. From the input-output distributions, it is shown that the
uniform and linear input distributions yield nearly identical output distributions and that the distribution is rather broad. For
all other input distributions, the output distribution is nearly identical and narrow. Further, the output distributions show that
varying the input parameters by ±5% causes the natural frequency to vary between approximately −17%and +22%.

4 Conclusions

In this effort, a cylindrical structure with clamped-clamped boundary conditions subject to thermal effects was evaluated.
Different thermal loads were introduced showing the importance of developing reliable reduced-order models. Following
the derivation of the governing equations, several sensitivity analyses and uncertainty quantification methods were applied
to further investigate the critical buckling temperature for the uniform and linear thermal loads and the natural frequency
for the unloaded case. These methods included an extended parametric study, the Morris method elementary effects, and the
correlation coefficients. Different input uncertainty distributions were considered for uncertainty quantification of the natural
frequency. Overall, it was shown that the length plays an important role in both the critical buckling temperature and natural
frequency and that the input parameter uncertainties significantly propagate through the observed output for this system.
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An Initial Concept for an Error-Based Digital Twin Framework
for Dynamics Applications

Lara J. Edington, Nikolaos Dervilis, Paul Gardner, and David J. Wagg

Abstract This work introduces the beginnings of an error-based mathematical framework for digital twins, with the intention
of providing an effective platform from which digital twins of engineering applications can be built. The framework assumes
a digital twin to be some optimal combination of a physics- and data-based model and operates by weighting the contribution
of each model depending on its relative mean square error compared to data measured from the physical system being twinned
(the so-called physical twin). These weightings then provide a quantifiable measure of the ratio of physics- to data-based
components in the resulting digital twin, and this offers a means of consistently comparing different digital twin models.
The framework aims to improve the initial physics-based model of the system over time by updating it to the optimal model
combination.

The initial framework is applied to a simulated Duffing oscillator, where the equivalent linear system is assumed as
the physics-based model. The data-based model is learnt by identifying the system parameters from the measured system
response with polynomial regression. The digital twin framework aims to detect the type of nonlinearity from the measured
data (cubic in this case) and is successful in improving the physics-based model.

The framework is then extended to acceleration data recorded from the vibration response of a physical 3 degree-of-
freedom structure, in order to analyse its performance in a real-world application. In this case, the assumed physics-based
model uses estimated system parameters, and the data-based model is trained with a genetic algorithm to improve the
accuracy of results. The digital twin framework improves the parameter estimations of the physics-based model.

It is anticipated that by developing this error-based framework and incorporating other aspects such as uncertainty analysis
and optimisation, a unified method of implementing digital twins will be enabled for future research efforts.

Keywords Digital twin · Mathematical · Framework · Dynamics · Uncertainty

1 Introduction

Over recent years, the modern world has seen the initiation of a digital industrial revolution. A plethora of related concepts
have emerged amidst this revolution, due to significant improvements in computing power, sensor technology, and data
management. Such concepts include the digital twin, which is often described as a real time, virtual representation of some
physical system/product that fuses high-fidelity computational models with data measured from the system/product. The
digital twin aims to mirror and make accurate predictions of its physical system’s behaviour for specific contexts of interest.
The concept has received considerable attention from a range of disciplines since it was devised by Michael Grieves in 2002
[1], and interest in the concept continues to grow exponentially.

This fast-paced growth has resulted in a multitude of varying definitions of the concept, which have brought a lack of
clarity and coherence. While there exist numerous examples of case-specific digital twin applications to engineering systems
throughout the literature, see for example [2–8], and attempts at defining the concept [9, 10], there is no widely accepted
framework to govern their implementation and, consequently, it is a challenge to consistently compare the performance of
different digital twin models.
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This paper introduces the beginnings of an error-based mathematical framework in the hope of providing a clearly defined
and consistent way by which to evaluate the performance of digital twins of dynamic systems. The framework is based
on the central idea that a digital twin model can be produced as some evolving optimal combination of a physics-based
model (PBM), which models all known (or assumed) physics of the system to be twinned, and a data-based model (DBM),
trained using data measured from the system. The advantages of combining both PBMs and data-based techniques are well-
recognised, and this approach is used in multiple digital twin applications [2, 3, 9, 11].

It is anticipated that, in developing such a mathematical framework, the aforementioned issues will begin to be addressed.

2 An Error-Based Mathematical Framework

2.1 Initial Framework

The initial framework was developed from an equation provided by Kennedy and O’Hagan [12], which describes the
relationship between a true process and a computer model of that process, and is given as follows:

zi = ζ(xi ) + ei = ρη(xi , θ) + δ(xi ) + ei, (1)

where zi denotes the ith of N recorded observations of the true process ζ , given inputs xi with observation error (or noise)
ei . Here η is a computer model of the true process, with parameters θ and model discrepancy of δ, and ρ is a yet-to-be-
determined regression parameter.

This equation was modified to apply to a digital twin model, ηDT , with parameters θDT and discrepancy δDT,i (considered
as a residual error and not functional) at observation i. In this context, the physical system would be represented by ζ and
data measured from that system by zi . The digital twin model was taken as a weighted combination of a PBM, η1, and a
DBM, η2, as follows:

zi = ηDT (xi , θDT ) + δDT,i + ei (2)

= ρ[η1(x1,i , θ1) + δ1,i] + (1 − ρ)[η2(x2,i , θ2) + δ2,i] + ei, (3)

where the PBM (resp. DBM) has parameters θ1 (resp. θ2) and discrepancy δ1,i (resp. δ2,i) from the physical system and
x1,i , x2,i ⊆ xi . The parameter ρ ∈ [0, 1] in Eq. (3) is defined to weight the contributions of each model to the digital twin.
By tuning ρ, the digital twin can be more or less influenced by one model over the other. This parameter would then provide
a measure of the composition of the digital twin in terms of the ratio between the physics- and data-based components, so
may be thought of as the physics-to-data model ratio of the digital twin.

The value of the physics-to-data model ratio should be optimised to produce the best digital twin model from the available
PBM and DBM. With this in mind, the weight was based on the relative discrepancies of the two models. If the PBM was a
worse reflection than the DBM of the physical system, it would be weighted to provide a smaller contribution to the digital
twin. This is represented for the ith observation only as

ρ

1 − ρ
= δ2,i

δ1,i
. (4)

However, rather than take only one observation into account, this should be generalised to apply to all N observations
measured from the physical twin. To do this, the root mean square discrepancy was used to provide an averaged measure
over all observations while penalising larger model discrepancies, and ensuring positive and negative values would not cancel
each other out:

ρ

1 − ρ
=
√

1
N

∑N
i=1 δ2

2,i√
1
N

∑N
i=1 δ2

1,i

=
√√√√
∑N

i=1 δ2
2,i∑N

i=1 δ2
1,i

. (5)

From Eq. (1), this can be written in terms of the observations, model outputs, and observation error as
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ρ

1 − ρ
=
√√√√
∑N

i=1(zi − η2(x2,i , θ2) − ei)2

∑N
i=1(zi − η1(x1,i , θ1) − ei)2

, (6)

which, if the observation error is assumed to be small, can be approximated as

ρ

1 − ρ
≈
√√√√
∑N

i=1(zi − η2(x2,i , θ2))2

∑N
i=1(zi − η1(x1,i , θ1))2

=
√

J2

J1
, (7)

where J1,2 = 1
N

∑N
i=1(zi − η1,2(x1,2,i , θ1,2))

2 are the mean square error (MSE) values of the PBM and DBM respectively,
compared to the data.

Defining the value β =
√

J1
J2

gives a simple approximation for ρ as

ρ ≈ 1

β + 1
(8)

and it is this value of the physics-to-data model ratio that is assumed throughout the applications of the framework in this
paper. As it may be thought of as a proportion of relative trust in the two models, the ratio may be used to determine the
parameters θDT of a digital twin model given the parameters θp and θd of the PBM and DBM respectively as:

θDT = ρθp + (1 − ρ)θd . (9)

2.2 Parameter Updating Procedure

This approach to determining the digital twin parameters made two assumptions, namely that the optimal combination of
PBM & DBM responses would also give the optimal combination of their parameters, and that the parameter errors of the
two models could compensate for one another, given ρ ∈ [0, 1] (i.e. if the parameters of one consistently over-estimated
those of the physical system, and the parameters of the other consistently under-estimated). However, initial trials showed
this was often not the case, and either the PBM or DBM response would have a smaller error than the resulting digital twin
response.

To address this caveat, an automatic parameter updating procedure was implemented. If the MSE of either the PBM or
DBM was less than that of the digital twin model, then the model ratio would update to a value of 1 or 0, respectively. These
conditions can be summarised as

ρ =

⎧
⎪⎪⎨
⎪⎪⎩

1
β+1 , if JDT < J1 and JDT < J2

0, if JDT < J1 and JDT > J2

1, if JDT > J1 and JDT < J2,

(10)

where JDT is the MSE of the originally determined digital twin model. In essence, this original digital twin model provides
a third option in addition to the PBM and DBM. The framework simply chooses the model option with the minimum MSE.

2.3 Temporal Evolution

The ability to update in (at least near-) real time is a defining characteristic of a digital twin that distinguishes it from a
general computational model. For this reason, the framework was developed to incorporate temporal evolution.

To approximate a continuously updating digital twin, the time history of the data measured from the system would be
split into sections (batches), and the implementation of the framework would become iterative. A new DBM is trained for
each data section, which is compared to a PBM over the corresponding time period to produce multiple model ratios and
digital twin models. The PBM for each time period is taken as the digital twin model of the previous period, so is updated
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Fig. 1 Iterative implementation of the framework, applied to the recorded displacement signal (in blue) of a physical system, to incorporate
temporal evolution

with each section as necessary. Figure 1 illustrates the iterative process on a changing recorded displacement signal, where
the red, green, and purple expressions represent the PBM, DBM, and digital twin, respectively. Each “window” within the
figure identifies a new section of the data.

3 Single Degree-of-Freedom Oscillator

The initial framework was first applied to a computationally simulated single degree-of-freedom (SDOF) Duffing oscillator,
the response of which was generated to act as data measured from a “physical system” by numerically integrating the equation
of motion using the ode45 MATLAB solver. This measured data was sectioned into quarters to allow for four iterations of
the framework. The SDOF system to be analysed is described by Eq. (11), where m, c, k, and k3 are the system parameters,
y is the displacement response to input x, and the dot denotes the derivative with respect to time.

mÿ + cẏ + ky + k3y3 = x. (11)

The physical system had parameters m = 10 kg, c = 20 N·s/m, k = 10 N/m, and a cubic stiffness value of k3 = 10 N/m3

until time t = 31.4 s (the beginning of the third section), when it changed to k3 = 1 N/m3. The input was x = 100 cos(t),
where t is a vector of time values with sampling frequency Fs = (100/2π) Hz.

An initial linear PBM was assumed by ignoring the cubic nonlinearity to introduce some model-form error. It was intended
that the framework would detect the nonlinearity and update the corresponding parameter as it changed in the “physical
system”. The DBM parameters were learnt using polynomial regression, with ÿ, ẏ, ẏ2, ẏ3, y, y2, and y3 as the feature vectors
and x as the target vector. This meant the DBMs of the four sections were not restricted to the form of a Duffing system, as
the nature of the nonlinearity was assumed unknown. To ensure the digital twin parameters could be determined for the first
iteration, using Eq. (9), any nonlinear DBM parameters were assigned counterparts in the initial linear PBM of value 0.

The training data used to learn the four DBMs were the recorded simulated system input and response, which were noise-
free, and a test dataset was produced by adding random noise to the training response (resp. input) sampled from distribution
N (0, 0.5) (resp. N (0, 100)). Once trained, the DBMs were compared to the PBMs by applying either the training input or a



An Initial Concept for an Error-Based Digital Twin Framework for Dynamics Applications 85

Table 1 MSE of the models and ρ values over each section of training data

MSE ρ

Data section JPBM JDBM Original JDT Original Updated

1 7.684 3.373×10−4 6.128×10−4 0.007 0

2 2.822×10−4 4.434×10−5 8.539×10−5 0.284 0

3 2.685 6.382×10−6 4.926×10−6 0.002 0.002

4 1.356×10−4 8.319×10−6 3.763×10−6 0.199 0.199

Table 2 MSE of the models and ρ values over each section of test dataset

MSE ρ

Data section JPBM JDBM Original JDT Original Updated

1 12.467 1.032 1.623 0.223 0

2 0.990 0.991 0.990 0.500 1

3 3.900 1.003 1.373 0.336 0

4 0.998 0.997 0.997 0.500 0.500

Fig. 2 (Top) Comparison of PBM, DBM, and digital twin model responses to the sectioned test data response. (Bottom) Evolution of physics-to-
data model ratio over time before and after the parameter updating procedure

test input to each one. The resulting responses were finally compared to the training or test response of the Duffing system to
determine the four model ratios and digital twin models. Tables 1 and 2 show the MSE of each model over the four sections
of the training and test data, respectively.

The resulting responses of the PBM, DBM, and digital twin compared to the test data response are displayed in Fig. 2,
along with a plot illustrating the evolution of the model ratio as determined before and after the parameter updating procedure.

The framework ensures that the model ratio produces the digital twin response with the minimal error, updating ρ for the
first three iterations. It is interesting to note that the original ratios for sections two and four of the test data show the PBM
is almost exactly as accurate as the DBM, so there is very little improvement to be made after just one iteration. It is clear
that, for both datasets, the framework was successful in significantly improving the initial PBM by utilising the measured
data from the “physical system”, and again once the system’s nonlinear stiffness parameter changed. The results show that
the digital twin model is a good approximation of the system, with MSEs under 2.
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4 Three Storey Building

Its simplistic nature meant the simulated Duffing system was ideal for trialling the beginnings of the framework. However,
it did not reflect a realistic application, and so the error-based framework was also applied to an experimental multiple
degree-of-freedom system set-up, with the aim of improving parameter estimates of a PBM. The three storey building
system analysed by Wagg et al. [9] was taken as the focus of the proceeding work. Two input signals and the corresponding
acceleration responses of the building were taken as a training and test set, which were both sectioned into quarters to produce
an evolving digital twin model.

The system in [9] incorporated a buffer which introduced a harsh nonlinearity at certain displacements; however, this
paper only considers the acceleration responses that were recorded when the buffer was not activated. For this reason, both
the PBM and DBM were assumed to be linear 3 degree-of-freedom systems. The PBM parameters were estimated by adding
errors to those identified by Wagg et al.; the mass values were all chosen as m1 = m2 = m3 = 10 kg, damping values as
c1 = c2 = c3 = 1 N·s/m, and stiffness values as k1 = k2 = k3 = 1000 N/m.

The DBM was trained using self-adaptive differential evolution (SADE), a form of genetic algorithm, which improves an
initial population of randomly sampled values by iteratively proposing new potential solutions, comparing them with a cost
function and keeping only the best options [13]. In this case, the solution was the collection of system parameters and the
cost function, J , determined from the normalised MSE:

J (θ) = 1

3

3∑
i=1

⎛
⎝ 100

Nσ(i)2

N∑
j=1

[
z
(i)
j − ÿ

(i)
d,j (θ)

]2

⎞
⎠ , (12)

where i = 1, 2, 3 denotes the floor, j = 1, 2, . . . , N denotes the training data point, σ 2 is the variance of the training dataset,
z is the data response, ÿd is the DBM response, and θ is the potential solution. The SADE algorithm implemented had the
following parameters: crossover ratio 0.5, scaling factor 1.5, population size 200, and maximum generations 100, with 5
runs. The initial ranges selected for the mass, damping, and stiffness values were [4, 8], [0, 10], and [0, 104], respectively.

With responses of three masses (instead of one), there were three different ρ values calculated for the system. These three
values were averaged into a singular physics-to-data model ratio which was employed in determining θDT . The framework
was successful in improving the PBM of the building, as it was for the SDOF system, and this is shown by the MSE of the
model responses compared to the training and test data in Tables 3 and 4.

The model responses compared to the test data responses are shown in Fig. 3 and the evolution of the physics-to-data
model ratio (as determined before and after the parameter updating procedure) in Fig. 4.

The results show that, by the 3rd section, the digital twin was a very good fit and the improvement in the PBM was
most significant over the first iteration, decreasing with each further iteration after this. This is not surprising given that the
precise initial conditions of the system were unknown, hence the transient responses would affect the accuracy of the initial
DBM. However, it also suggests that the framework extracts most of its information from the data within the first couple of
iterations, given the system properties are not changing and the forcing is relatively constant. The relative improvement of the

Table 3 MSE (averaged over all floors) of PBM, DBM, and digital twin model and ρ values over each section of training data

MSE ρ

Data section JPBM JDBM Original JDT Original Updated

1 0.5812 0.0722 0.6255 0.2606 0

2 0.2841 0.0615 0.0750 0.3175 0

3 0.0609 0.0130 0.0230 0.3162 0

4 0.0285 0.0361 0.0213 0.5295 0.5295

Table 4 MSE (averaged over all floors) of PBM, DBM, and digital twin model and ρ values over each section of test data

MSE ρ

Data section JPBM JDBM Original JDT Original Updated

1 0.7361 0.1520 0.7770 0.3124 0

2 0.1472 0.1059 0.0879 0.4589 0.4589

3 0.0458 0.0156 0.0180 0.3859 0

4 0.0300 0.0372 0.0278 0.5270 0.5270
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Fig. 3 Comparison of PBM, DBM, and digital twin model responses to the sectioned test data response for (top) floor 1, (middle) floor 2, and
(bottom) floor 3

Fig. 4 Evolution of physics-to-data model ratio (averaged over all floors) over time before and after the parameter updating procedure
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PBM compared to the DBM is illustrated by the evolution of the original model ratio, which shows that the PBM discrepancy
is roughly equal to that of the DBM (which itself has been noticeably reduced) by the final section. The framework updated
the model ratio for the first and third sections because the weighted average model did not produce the minimal MSE of
the three model options, as confirmed by Table 4. However, the framework did produce a better weighted average model for
sections two and four so offered an advantage over simply fitting one model to a system.

5 Discussion

The systems analysed in the presented work were simplistic, although the objective of the work was to clearly demonstrate
the framework itself and not to produce extremely high-fidelity digital twins of complex systems. However, in progressing
with this work, other techniques could be employed to produce models of less simplistic systems; the presented DBMs were
produced using methods which made assumptions on underlying physics, but more “black-box” methods such as Gaussian
processes [14, 15], neural networks [16], or support vector machines [17] would not be constrained by such assumptions.
Another consideration is the computational cost of the models, as the SADE algorithm used for the three storey building was
highly intensive, and this would affect the ability of the resulting digital twin to update in real time as required. However,
this was more a concern of the specific application of the framework and not of the framework itself.

The temporal evolution aspect of the initial framework could also be improved. The existing work arbitrarily splits the data
signals into four sections, which was suitable for demonstrating the iterative process clearly, but did not produce frequently
updated digital twin models. It may give better results to shorten the sections (although this would be at the expense of less
training data for the DBMs), or to maintain a longer section but translating it as a “window” along the signal. This method
of updating the digital twin model as it receives new data has similarities to model predictive control [18], which involves
controlling a system’s independent variables by following an algorithm to minimise some cost function so that its outputs
(dependent variables) optimally reflect a given reference.

Other elements would need to be incorporated into the existing mathematical framework if it was to be realistically useful
for digital twins of dynamic systems. For example, some form of uncertainty quantification is required to assign a level of
trust to a digital twin’s predictions, which may be introduced using measures of entropy or Bayesian regression techniques.
There is also further work to be considered in terms of the optimisation element of the framework, such as employing more
model options for the framework to choose from, using different optimisation criteria, and using decision trees to enable the
digital twin to act as a decision-maker.

6 Conclusion

The digital twin is a concept which has recently garnered significant interest amidst the current data-driven industrial
revolution and is set to offer a whole range of potential benefits to many disciplines. However, there arguably exist as
many obstacles to the development and application of the digital twin, one of which is the inconsistency in the employed
definitions of the concept and it is a challenge to reliably compare and evaluate the performance of different digital twin
models as a result.

This paper presented the beginnings of an error-based mathematical framework, with the aim of starting to address this
issue by introducing a means to quantify the performance of digital twins of dynamic engineering systems. The foundational
concept of the framework is that a digital twin model could be produced from an evolving, optimal combination of a PBM
and a DBM, the contribution of each related to their relative discrepancies from data measured from the physical system.

This initial framework was applied to two simplistic systems for clear demonstration: a SDOF Duffing oscillator, assuming
a linear PBM and aiming to improve the incorrect model form, and the physical three storey building analysed by Wagg et al.
[9] in order to improve PBM parameter estimates. The framework was successful in improving the models in both examples,
but must be further developed to incorporate other aspects of a digital twin before it may realistically be applied to a range
of engineering systems.
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Hierarchical Bayesian Model Updating for Nonlinear Structures
Using Response Time Histories

Xinyu Jia, Omid Sedehi, Lambros S. Katafygiotis, Babak Moaveni, and Costas Papadimitriou

Abstract This paper presents a novel hierarchical Bayesian modeling (HBM) framework for the model updating and
response predictions of dynamic systems with material nonlinearity using multiple data sets consisting of measured response
time histories. The proposed framework is capable of capturing the uncertainties originating from both structural and
prediction error parameters. To this end, a multilevel probabilistic model is proposed aiming to characterize the variability
of both model and noise parameters. Moreover, a new Laplace approximation is formulated within the HBM framework to
reduce the computational burden up to a great extent. Finally, a multidegree of freedom (MDOF) nonlinear system modeled
by Bouc-Wen hysteresis elements is employed to demonstrate the effectiveness of the method.

Keywords Nonlinear model updating · Hierarchical Bayesian modeling · Structural parameter uncertainty · Prediction
error uncertainty · Time-domain response

1 Introduction

Updating models and predicting responses using data-driven approaches have garnered attention over the last three decades.
Although most structures exhibit a nonlinear behavior to some extent, the majority of model updating techniques are
applicable to linear ones. In the context of structural health monitoring, the characterization of such nonlinearities is required
as it allows for more accurate and efficient representations of real structures. Thus, the calibration of nonlinear models is
likely to be more appropriate for the identifications of real-life structures.

Bayesian inference is a powerful probabilistic tool for updating finite element (FE) models [1]. It provides a powerful
probabilistic tool for updating nonlinear models and handling the uncertainties of nonlinear model parameters. Nevertheless,
the variability of the nonlinear-model parameters owing to the alterations of environmental and loading conditions seems
to be neglected in the conventional Bayesian framework. A hierarchical Bayesian modeling (HBM) framework has been
introduced recently to capture this variability when dealing with linear models [2–4]. However, the implementation of
nonlinear model updating based on the HBM approach is still in its early stages.

In this paper, a new time-domain HBM framework is developed for the identification of nonlinear models modeled by a
Bouc-Wen hysteresis element [5], aiming to quantify the uncertainties of the nonlinear model parameters and the prediction
errors and to further propagate overall uncertainties to the system outputs. The proposed methodology can capture the
statistical properties of the model parameters together with the prediction error parameters by introducing a joint distribution
of their hyper-parameters. The presented methodology also adopts a novel asymptotic approximation approach, which can
significantly reduce the computational burden of the HBM framework. A 5-DOF spring-mass chain model with simulated,
noise-contaminated, “measured” acceleration time history data is used to demonstrate the effectiveness of the proposed
approach.
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2 Methodology

The differential equation of motion for a Bouc-Wen (BW) model is written in the form [5]:

Mü(t) + Cu̇(t) + αK0u(t) + K0 (1 − α) z(t) = P(t) (1)

where M and C are the mass and the viscous damping matrices, u(t) is the displacement response, K0 denotes the initial
tangent stiffness, α defines the share of linear part while 1 − α defines the share of nonlinear hysteretic part, and z(t) is the
virtual hysteretic displacement. Without including the pinching effect and degradation functions in this paper, the formulation
of the implemented hysteretic displacement z(t) can be simplified as:

ż(t) = Au̇(t) − β |u̇(t)| z(t)|z(t)|n−1 − γ u̇(t)|z(t)|n (2)

where the parameter A determines the tangent stiffness and the parameters β, γ and n affect the shape and smoothness of the
hysteretic model, respectively. The implemented BW model can be fully parameterized by six parameters. However, due to
the fact that the nonlinear parameters are interrelated, various combinations of those parameters can simulate similar model
responses, which may cause difficulties in updating the model parameters [6]. The nonlinear parameters α, β, γ , along with
the linear parameter K0, are calibrated in this paper, and the remaining parameters will be fixed in further applications.

Let Di =
{
Ŷi (j�t) ∈ RN0 , i = 1, 2, . . . , ND, j = 1, 2, . . . , Nd

}
be the i - th experimental data set consisting of a

sequence of acceleration data measured at N0 degrees of freedoms (DOFs), where Nd is the number of the sampled data
using a sampling rate �t. Consider a parameterized class of nonlinear structural model M with a Bouc-Wen hysteresis type.
Let θ ∈ RNθ be the set of structural model parameters composing the parameters K0, α, A, β, γ , n, where Nθ is the total
number of the unknown updated parameter θ. Herein, uncertainties are embedded into the model parameters by assigning
Gaussian distribution for θ with hyper-mean μθ and hyper-covariance matrix �θ [7]. The realization of θ is free to vary
across the data sets, where θi corresponds to Di and is considered as an independent sample from N(θ| μθ,�θ). Let also
gi (t; θi ) = {Yi (t; θi ) ∈ RNs , t = j�t

}
be the predicted response time histories generated from the model M corresponding

to a particular value of the i - th model parameter set θi, where Ns denotes the number of DOFs. The discrepancy between
the i - th experimental data set and the i - th predicted response time histories can be defined as:

εi,l = gi,l (j�t; θi ) − Ŷi,l(j�t) (3)

where l denotes the l - th DOF of the system and l = 1, 2, . . . , N0. The notation εi, l represents the prediction error modeled
by Gaussian variables εr ∼ N( εr| 0,�i, l) with zero mean and covariance matrix �i, l = (σ iai, l)2I, where σ 2

i is the variance
corresponding to the i - th data set and ai, l denotes the intensity of the response time histories in the l - th DOF, given as

ai,l =
√

1
Nd

Nd∑
j=1

Ŷ2
i,l (j�t) . Note that the parameter σ 2 = {σ 2

i , i = 1, 2, . . . , ND
}

is the one that needs to be identified, and

it is used to elucidate the uncertainty of the prediction error arising from a modeling error or measurement noise. Inverse
gamma (IG) distribution is employed here for the prediction error, as shown below:

p
(
σ 2; λ1, λ2

)
= IG

(
σ 2; λ1, λ2

)
= (λ2)

λ1

Γ (λ1)

(
σ 2
)−λ1−1

exp

(
− λ2

σ 2

)
(4)

The parameters λ1 and λ2 are the shape parameter and scale parameter, respectively.
According to Bayes rules, the joint posterior distribution of all parameters is built as follows:

p
(
{θi}ND

i=1,
{
σ 2
i

}ND

i=1,μθ,Σθ, λ1, λ2|{Di}ND
i=1

)
∝ p

(
{θi}ND

i=1,
{
σ 2
i

}ND

i=1,μθ,Σθ, λ1, λ2

)

p
(
{Di}ND

i=1|{θi}ND
i=1,

{
σ 2
i

}ND

i=1,μθ,Σθ, λ1, λ2

) (5)

The joint prior distribution is taken as:

p

(
{θi}ND

i=1,
{
σ 2
i

}ND

i=1
,μθ,Σθ, λ1, λ2

)
= p

(
μθ,Σθ, λ1, λ2

) ND∏
i=1

p
(
θi |μθ,Σθ

)
IG
(
σ 2
i |λ1, λ2

)
(6)
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The likelihood function can be simplified as the product of individual function p
(
Di |θi , σ 2

i

)
, and therefore the joint

posterior distribution can be rewritten as:

p
(
{θi}ND

i=1,
{
σ 2
i

}ND

i=1,μθ,Σθ, λ1, λ2|{Di}ND
i=1

)
∝ p

(
μθ,Σθ, λ1, λ2

) ND∏
i=1

p
(
Di |θi , σ 2

i

)

N
(
θi |μθ,Σθ

)
IG
(
σ 2
i |λ1, λ2

) (7)

The posterior PDF of the hyper-parameters are obtained through the marginalization of Eq. (7). Using an efficient
asymptotic approximation to evaluate each one of the ND independent multidimensional integrals over the space of the
parameters θi that arise in the marginalization process, and carrying out the marginalization integrals over the prediction
error parameters exactly, one can derive the marginal distribution over σ 2

i as:

p
(
{θi}ND

i=1,μθ,Σθ, λ1, λ2|{Di}ND
i=1

)
∝ p

(
μθ,Σθ, λ1, λ2

)
T
(
θ̂i , λ1, λ2

)

ND∏
i=1

[
N
(
θi |μθ,Σθ

)
N
(
θi |θ̂i ,ΣL

(
θ̂i , λ1, λ2

))] (8)

where θ̂i is obtained by minimizing L (θi , λ1, λ2) = f (λ1) ln
(

1
2J (θi ) + λ2

)
and ΣL

(
θ̂i , λ1, λ2

)
is the inverse of the

Hessian matrix of L, f (λ1) = NdN0+2λ1
2 , and J (θi ) =

N0∑
l=1

1
a2
i,l

Nd∑
j=1

(
Ŷi,l(j) − gi,l (j ; θi )

)2
. Herein T

(
θ̂i , λ1, λ2

)
is

calculated as:

T
(
θ̂i , λ1, λ2

)
=
[
(λ2)

λ1

Γ (λ1)
Γ (f (λ1))

]ND ND∏
i=1

[
1

2
J
(
θ̂i

)
+ λ2

]−f (λ1)
√∣∣∣ΣL

(
θ̂i , λ1, λ2

)∣∣∣ (9)

Then the marginal distribution of the hyper-parameters can be obtained analytically by integrating with the model
parameters to yield the following expression:

p
(
μθ,Σθ, λ1, λ2|{Di}ND

i=1

)
∝ p

(
μθ,Σθ, λ1, λ2

)
T
(
θ̂i , λ1, λ2

)

ND∏
i=1

N
(
μθ|θ̂i ,Σθ + ΣL

(
θ̂i , λ1, λ2

)) (10)

The aforementioned formula requires solving ND optimization problems and computing the Hessian ND times, which
involve FE model runs. The posterior distribution of the model parameters and prediction error parameter can be then
obtained as:

p
(
θ, σ 2|D

)
≈ 1

Ns

Nm∑
m=1

N
(
θ|μ(m)

θ ,Σ
(m)
θ

)
IG
(
σ 2|λ1

(m), λ2
(m)
)

(11)

where Nm is the number of samples. The transitional Markov chain Monte Carlo (TMCMC) algorithm [8] is used to generate
the samples. The FE model parameter uncertainty and prediction error can be then propagated for predicting the system
output.

3 Application

Consider a 5-DOF spring-mass chain system representing a shear building model excited at the first floor and suppose the
same nonlinear properties in each floor. The nominal values of nonlinear parameters are assumed as α = 0.1, β = 1, γ = 1,
A = 10, and n = 1. One hundred acceleration data sets are generated from a mass-perturbed FE model, where the nominal
mass is added by a 2% error. As mentioned before, the linear parameter K0 and nonlinear parameters α, β, γ are assumed
to be estimated. Grouping strategy is employed herein to reduce the total number of identified parameters. Each parameter
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Fig. 1 Posterior distribution of (a) hyper-means, (b) hyper-standard deviations, and (c) hyper-parameters of prediction error

is assembled in a specific group. For normalization purposes, four unknown parameters θ = (θ1, θ2, θ3, θ4) are introduced
and respectively multiply the nominal values of the corresponding quantities. The proposed HBM framework is then applied
to estimate the hyper-parameters of the model parameters and prediction error parameter, as shown in Fig. 1. It is noted that
the hyper-means are deviated from their nominal values; this is because of the presence of model error. It is also noted that
the hyper-standard deviations are around 2%, which shows the variability uncertainty of each parameter. The parameters
λ1, λ2 aim to capture the statistical properties of the prediction error parameter. It is obvious that the two parameters are
strongly correlated, as shown in its sample region and contour plot. This is reasonable since those two parameters determine
the distribution of the prediction error parameter. The obtained uncertainties are then propagated to the quantities of interest
(QoI). Two cases are considered for predicting the responses. The first case only considers the variability uncertainty for the
predictions of the accelerations of the fifth floor, while the second case includes the prediction error as well. Figure 2 shows
the results of case 1 by using the conventional Bayesian method (CBM) and hierarchical Bayesian method (HBM). It can be
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Fig. 2 Predictions of accelerations of the fifth floor considering only variability uncertainty using (a) CBM and (b) HBM

Fig. 3 Predictions of accelerations of the fifth floor considering the overall uncertainties using (a) CBM and (b) HBM

seen that the proposed HBM delivers a reasonable confidence interval (CI) of the predictions, which contains the most part
of the measurement, while the CBM gives an extremely thin uncertainty bound where the measurement falls outside. Figure
3 shows the results of considering both uncertainties for the predictions. The uncertainty bounds for the HBM are slightly
affected by the model error, while the CBM approach provides also reasonable uncertainty bounds, similar to the HBM,
only if the prediction error model uncertainties are included. However, for unobserved quantities, prediction error models
are not available, and so the CBM approach will severely underestimate uncertainties, while the proposed HBM is expected
to provide reasonable uncertainty bounds.
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SLS Integrated Modal Test Uncertainty Quantification Using
the Hybrid Parametric Variation Method

Daniel C. Kammer, Paul Blelloch, and Joel Sills

Abstract Uncertainty in structural loading during launch is a significant concern in the development of spacecraft and launch
vehicles. Small variations in launch vehicle and payload mode shapes and their interaction can result in significant variation
in system loads. In many cases involving large aerospace systems, it is difficult, not economical, or impossible to perform a
system modal test. However, it is still vital to obtain test results that can be compared with analytical predictions to validate
models. Instead, the “Building Block Approach” is used in which system components are tested individually. Component
models are correlated and updated to agree as best they can with test results. The Space Launch System consists of a number
of components that are assembled into a launch vehicle. Finite element models of the components are developed, reduced to
Hurty/Craig-Bampton models, and assembled to represent different phases of flight. The only opportunity to obtain modal
test data from an assembled Space Launch System will be during the Integrated Modal Test. There is always uncertainty
in every model, which flows into uncertainty in predicted system results. Uncertainty quantification is used to determine
statistical bounds on prediction accuracy based on model uncertainty. For the Space Launch System, model uncertainty is
at the Hurty/Craig-Bampton component level. Uncertainty in the Hurty/Craig-Bampton components is quantified using the
hybrid parametric variation approach, which combines parametric and nonparametric uncertainties. Uncertainty in model
form is one of the biggest contributors to uncertainty in complex built-up structures. This type of uncertainty cannot be
represented by variations in finite element model input parameters and thus cannot be included in a parametric approach.
However, model-form uncertainty can be modeled using a nonparametric approach based on the random matrix theory. The
hybrid parametric variation method requires the selection of dispersion values for the Hurty/Craig-Bampton fixed-interface
eigenvalues and the Hurty/Craig-Bampton stiffness matrices. Component test/analysis frequency error is used to identify
fixed-interface eigenvalue dispersions, while test/analysis cross-orthogonality is used to identify stiffness dispersion values.
The hybrid parametric variation uncertainty quantification approach is applied to the Space Launch System Integrated Modal
Test configuration. Monte Carlo analysis is performed, and statistics are determined for modal correlation metrics, frequency
response from Integrated Modal Test shakers to selected accelerometers, as well as other metrics for determining how well
target modes are excited and identified. If the predicted uncertainty envelopes future Integrated Modal Test results, then there
will be increased confidence in the utility of the component-based hybrid parametric variation uncertainty quantification
approach.

Keywords Uncertainty quantification · Hurty/Craig-Bampton · Random matrix · Model form
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DOF Degree of freedom
FEM Finite element model
FI Fixed interface
GP Gaussian process
HCB Hurty/Craig-Bampton
HPV Hybrid parametric variation
ICPS Interim Cryogenic Propulsion Stage
ISPE Integrated Spacecraft Payload Element
IVGVT Integrated Vehicle Ground Vibration Test
IMT Integrated Modal Test
LSRB Left Solid Rocket Booster
LV Launch vehicle
LVSA Launch Vehicle Stage Adapter
MC Monte Carlo
MEM Modal effective mass
ML Mobile Launcher
MPCV Multipurpose Crew Vehicle
MSA MPCV Stage Adapter
MSO Mass Simulator for Orion
NMIF Normal mode indicator function
NPV Nonparametric variation
RMS Root mean square
RMT Random matrix theory
RSRB Right Solid Rocket Booster
RSS Root sum square
RV Residual vector
SLS Space Launch System
SRB Solid Rocket Booster (Solid Rocket Motor)
TAM Test-analysis model
UQ Uncertainty quantification
VAB Vertical Assembly Building
XO Cross-orthogonality

1 Introduction

The National Aeronautics and Space Administration (NASA) has historically tested launch vehicles in an integrated
configuration with boundary conditions controlled to approximate the boundary conditions expected in flights. Integrated
Vehicle Ground Vibration Tests (IVGVT) increase the confidence that the structural loads predicted using system finite
element models are within specified limits with respect to accuracy and uncertainty. However, to save cost and schedule,
a cross-program decision was made to not perform the IVGVT for the Space Launch System (SLS) and rely more heavily
on analytical methods supported by component test results. This process is referred to as the “building-block approach,” in
which system components are tested individually and component models are correlated and updated to agree with test results
as closely as possible.

In spite of this decision, an integrated SLS system will still undergo testing, referred to as the Integrated Modal Test
(IMT). The IMT is a ground test of the integrated vehicle, assembled on the Mobile Launcher (ML) in the Vehicle Assembly
Building (VAB) facility at Kennedy Spaceflight Center. The results of the IMT will provide an opportunity to validate
or update previously correlated SLS component models such that, in an assembled configuration, they provide agreement
with integrated system test results. For this test, the integrated SLS is mounted to the launch pad at the base of the Solid
Rocket Boosters with the Multi-Purpose Crew Vehicle (MPCV) being replaced by the Mass Simulator for Orion (MSO). The
IMT/MSO configuration, shown in Fig. 1, is resting on the six VAB support posts with no Crawler Transporter (CT). The
analytical model used in this study consists of SLS Hurty/Craig-Bampton (HCB) components developed based on the IMT
integrated finite element model (FEM). The Interim Cryogenic Propulsion Stage (ICPS) and core stage (CS) are empty, with
CS pressurization stiffness included corresponding to approximately 4 psi. The integrated model was divided into six HCB
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Fig. 1 IMT with MSO on six
VAB mounts

[1] components, including the MSO combined with the MPCV Spacecraft Adaptor (MSA), a combined ICPS and Launch
Vehicle Stage Adapter (LVSA), the CS, left and right Solid Rocket Boosters (LSRB, RSRB), and the ML.

There is some level of uncertainty in every analytical model, which flows to a level of uncertainty in predicted results.
The purpose of uncertainty quantification (UQ) is to provide statistical bounds on prediction accuracy based on model
uncertainty. This is distinct from model updating, which attempts to modify models to improve their accuracy. Uncertainty
quantification does not improve the accuracy of models but accepts the fact that the models are inaccurate and attempts to
quantify the impact of that inaccuracy on predicted results. Previously, a new method for UQ, called the hybrid parametric
variation (HPV) method, was applied to SLS HCB components to predict system-level statistics for SLS attitude control
transfer functions [2] and CS section loads due to buffet [3]. The HPV method combines a parametric variation of the HCB
fixed-interface (FI) modal frequencies with a nonparametric variation (NPV) method that randomly varies the HCB mass
and stiffness matrices as Wishart [4] random matrix distributions using the random matrix theory (RMT). The HPV method
anchors uncertainty at the HCB level to component modal test results by matching HCB modes to test configuration modes
based on either modal effective mass (MEM) or mode descriptions and then applying differing levels of frequency variation.
The specific variations depend on the degree to which a component FEM has been verified through modal testing. The
NPV method is then layered on top of the frequency variation to match the modal test cross-orthogonality (XO) results.
Component uncertainty is propagated to the system level using a Monte Carlo (MC) approach, which generates statistics for
system-level results. This provides a UQ method that can be traced directly to available test data and that can be updated as
additional data, and better correlated models become available.

The purpose of this study was to apply the HPV UQ approach to the IMT/MSO ground vibration test. Projection of
component test-based uncertainty into the system provides estimates of the system-level uncertainty that can be expected
in target modal parameters, such as frequencies and mode shapes. Component uncertainty is also propagated into system-
level frequency response and normal mode indicator functions (NMIF) [5]. Statistics for NMIF and modal orthogonality can
be used during pretest analysis to determine the probability that the target modes will be adequately excited and separated
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during the modal test using the proposed sensor and shaker configurations. This study was completed prior to the IMT;
however, during a future posttest analysis, the test results can be compared to the UQ predictions. If the uncertainty predicted
by the UQ analysis covers the test results, there is increased confidence that the HPV UQ method and the approach used
to assign component uncertainty models are valid. This paper presents a brief summary of the theory behind the NPV
and HPV methods, including new developments, a description of the IMT components and the corresponding component
uncertainty models, followed by the presentation of MC-based statistics for target modal parameters, selected frequency
response functions, and normal mode indicator functions. At the time of this study, model correlation and updating of the
ML were still in progress, meaning that the sensor set and shaker locations were still evolving. It has been found that the
ability of the shaker configuration to adequately excite the target modes is very much dependent on the most recent updated
ML model version. Therefore, some of the statistics presented in this report must be considered preliminary.

2 Theory

The SLS consists of components that are assembled into the launch vehicle. In order to predict system performance, FEMs
of the components are developed, reduced to HCB representations, and assembled to represent different phases of flight. The
same approach is used for IMT. There is always uncertainty in every model, which flows into uncertainty in predicted system
results. For the SLS, it is natural to treat the model uncertainty at the HCB component-model level. The HCB component-

model displacement vector is given by uHCB = {xT
t qT

}T
, where xt is the vector of physical displacements at the component

interface and q is the vector of generalized coordinates associated with the component fixed-interface (FI) modes. Given the
assumption that the FI modes are mass normalized, the corresponding HCB mass and stiffness matrices have the form

MHCB =
[

MS Mtq

MT
tq I

]
KHCB =

[
KS 0
0 λ

]
(1)

in which MS and KS are the component physical mass and stiffness matrices statically reduced to the interface, Mtq is the
mass coupling between the interface and the fixed-interface modes, I is an identity matrix, and λ is a diagonal matrix of the
FI mode eigenvalues. Details of the HCB component-model derivation can be found in reference [1].

In this work, uncertainty in the component HCB representations is quantified using the HPV approach, which combines
parametric with nonparametric uncertainty. Purely parametric uncertainty approaches are the most common in the structural
dynamics community. Component parameters that are inputs to the FEM, such as Young’s modulus, mass density, geometric
properties, etc., are modeled as random variables. Parametric uncertainty can be propagated into the system response
using a method such as stochastic finite element analysis [6]. The advantage of the parametric approach is that each
random set of model parameters represents a specific random FEM. However, there are disadvantages associated with the
parametric method: it can be very time-consuming, there are infinite number of ways to parameterize the model, and the
selected parameter probability distributions are generally not available. The most significant drawback is that the uncertainty
represented is limited to the form of the nominal FEM. It is known that most errors in a FEM stem from modeling assumptions
or model-form errors, not parametric errors. Therefore, in practice, the parameter changes are merely surrogates for the actual
model errors. In the case of HPV, the HCB components are parameterized in terms of the FI eigenvalues, not the inputs to the
original FEM. While there is not a simple direct connection between the random FI eigenvalues and a random component
FEM, there is a direct connection to the corresponding random HCB component.

Model form is likely the largest contributor to uncertainty in complex built-up structures as it cannot be directly
represented by model parameters and thus cannot be included in a parametric approach. Familiar examples include
unmodeled nonlinearities, errors in component joint models, etc. Instead, model-form uncertainty can be represented using
RMT, where a probability distribution is developed for the matrix ensemble of interest. RMT was introduced and developed
in mathematical statistics by Wishart [4], and more recently, Soize [7, 8] developed an NPV approach to represent model-
form uncertainty in structural dynamics applications. Soize’s approach was extended by Adhikari [9, 10] using Wishart
distributions to model random structural mass, damping, and stiffness matrices. The nonparametric matrix-based approach
to representing structural uncertainty has been used previously in several aeronautics and aerospace engineering applications
[11–13].

The maximum entropy (ME) principle was employed by Soize [8] to derive the positive and positive-semidefinite
ensembles SE+ and SE+0, which follow a matrix variate gamma distribution and are capable of representing random
structural matrices. This means that the matrices in the ensembles are real and symmetric and possess the appropriate sign
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definiteness to represent structural mass, stiffness, or damping matrices. As the dimension of the random matrix n increases,
the matrix variate gamma distribution converges to a matrix variate Wishart distribution. The matrix dimensions in structural
dynamics applications are usually sufficient to give a negligible difference between the two distributions. In letting ensemble
member random matrix G be any of the random mass, stiffness, or damping matrices, it is assumed that G follows a matrix
variate Wishart distribution, G~Wn(p,�). A Wishart distribution with parameters p and � can be thought of as the sum
of the outer product of p independent random vectors Xi all having a multivariate normal distribution with zero mean and
covariance matrix �. Parameter p is sometimes called the shape parameter. The random matrix G can be written as

G =
p∑

i=1

XiX
T
i Xi ∼ Nn (0, �) (2)

where the expected value is given by

E(G) = G = p� (3)

The dispersion or normalized standard deviation of the random matrix G is defined by the relation

δ2
G =

E
(∥∥G − G

∥∥2
F

)

E
(∥∥G∥∥2

F

) (4)

in which ‖∗‖2
F is the Frobenius norm squared, or trace(∗T∗). It can be shown that Eq. (4) reduces to the expression

δ2
G = 1

p

⎡
⎣1 +

(
tr
(
G
))2

tr
(
G

T
G
)
⎤
⎦ = 1

p
[1 + γG] (5)

where γG =
(
tr
(
G
))2

tr
(
G

T
G
) can be thought of as a measure of the magnitude of the matrix. The uncertainty in the random matrix

G is dictated by the shape parameter p, the number of inner products in Eq. (2). The larger the value of p, the smaller
the dispersion δG. There may be instances when it is desirable to have the same amount of uncertainty in two or more
substructures. Suppose G1 and G2 represent structural matrices, such as stiffness, from two different system components.
In order to have equivalent uncertainty in the two matrices, the shape parameter p must be the same for both ensembles.
However, Eq. (5) shows that even if p1 = p2 = p, the dispersion values are not the same in general, δ2

G1
�= δ2

G2
, unless

γ 1 = γ 2. A more useful definition of matrix dispersion is the normalized dispersion

δGn = δG1√
1 + γ1

= δG2√
1 + γ2

= 1√
p

(6)

which is independent of the matrix magnitude γG.
Adhikari [9] referred to the random matrix method developed by Soize [7, 8] as Method 1. The Wishart parameters

are selected as p and � = Go/p where Go is the nominal value of G. The mean of the distribution is given by Eq. (3) as
G = p� = p (Go/p) = Go. Therefore, Method 1 preserves the nominal matrix as the mean of the ensemble. In general,
the nominal matrix can be decomposed in the form

Go = LLT (7)

In the case of a positive definite matrix, this would just be the Cholesky decomposition. Let (n × p) matrix X be given by

X = [x1 x2 · · · xp
]

(8)

in which xi is an (n × 1) column vector containing standard random normal variables such that xi~Nn(0, In). Note that p ≥ n
must be satisfied in order for G to be full rank. An ensemble member G~Wn(p,Go/p) can then be generated for MC analysis
using the expression
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G = 1

p
LXXT LT (9)

It has been found that ensembles of random component mass matrices are best represented using Method 1. Adhikari [9]
noted that Method 1 does not maintain the inverse of the mean matrix as the mean of the inverse; that is

E
(
G−1

)
�= [E(G)]−1 = G

−1
(10)

The two can be vastly different in some cases, which is clearly not physically realistic. Instead, he proposed Method 3, in
which the Wishart parameters are selected as p and � = Go/θ , where

θ = 1

δ2
G

[1 + γG] − (n + 1) (11)

An ensemble member G~Wn(p,Go/θ ) can then be generated using the relation

G = 1

θ
LXXT LT (12)

In this case, the inverse of the mean matrix is preserved as the mean of the ensemble inverses, where the mean matrix is
now given by

G = p� = p (Go/θ) = p

θ
Go (13)

In Method 3, the dispersion defined in Eq. (4) is now calculated with respect to the mean given in Eq. (13), while Eqs. (5)
and (6) still hold. It has been determined that ensembles of random component stiffness matrices are best represented using
Method 3. Therefore, the nonparametric portion of the HPV method is based on a Method 1 randomization of the component
mass matrix and a Method 3 randomization of the component stiffness matrix. In IMT application, only the component
stiffness matrices are randomized. The component mass matrices are assumed to have little uncertainty and are considered
to be deterministic.

The Wishart matrix uncertainty model results in uncertainty in both frequencies and mode shapes. However, an extensive
amount of MC simulation and analysis performed during this and previous assessments has shown that, in comparison
to modal frequencies, the corresponding component mode shapes tend to be much more sensitive to the nonparametric
matrix randomization provided by Methods 1 and 3. Therefore, the HPV approach possesses a parametric component of
uncertainty in which the eigenvalues of the FI modes in the component HCB representation are assumed to be random
variables. The FI eigenvalues are then random parameters within the HCB component stiffness matrix. During each iteration
within an MC analysis, a random draw of HCB FI eigenvalues is selected to generate a random HCB component stiffness
matrix. Note that the mean of this ensemble would just be the nominal HCB stiffness matrix. However, for the current
iteration, the parametrically randomized HCB stiffness is treated as the nominal matrix for NPV, and Method 3 is applied
to provide model-form uncertainty on top of the FI eigenvalue uncertainty. This is analogous to the approach proposed
by Capiez-Lernout [11] for separating parametric and nonparametric uncertainty. In contrast to the nonparametric model-
form uncertainty, the mode shapes are relatively insensitive to the parametric FI eigenvalue uncertainty. Therefore, the HPV
approach provides the capability to almost independently adjust the uncertainty in the component frequencies and mode
shapes when the uncertainty levels are not too high.

The HPV method also has the capability of preserving rigid body motion and rigid body mass properties. It can also
preserve the certainty of subsets of component modes. For example, in previous assessments, the component slosh modes
were assumed to have no uncertainty. Details on how to handle these special cases are presented in reference [2].

2.1 Randomization of Component FI Eigenvalues Using Gaussian Process Models

In past work [2, 3], the component FI eigenvalues were considered as independent random variables. It was shown in
reference [3] that even though the variation of the FI eigenvalues is parametric with respect to the HCB representation,
if they are varied independently, it results in a nonparametric variation of the stiffness matrix in physical space. In contrast, if
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the FI eigenvalues are varied in unison, i.e. perfectly correlated, it produces a purely parametric variation of the component
stiffness matrix in physical space. As a component stiffness matrix varies, it is common to see the corresponding eigenvalues
vary in a correlated manner to some extent, especially when they are closely spaced. Therefore, reality is somewhere between
treating the FI eigenvalues as totally independent and treating them as perfectly correlated.

In this study, Gaussian process (GP) modeling [14] was used to represent the random space of component FI eigenvalues.
This means that any finite ensemble of component FI eigenvalue realizations follows a multivariate normal distribution.
The characteristics of the realizations therefore are completely determined by the mean vector λ and covariance matrix
� or covariance function �(x, x

′
). In general, the covariance matrix or function corresponding to the FI eigenvalues of a

component is unknown. However, a robust assumption [14] that was used in this study is that the covariance function can
be defined based on Euclidean distance. Therefore, if Y(x) is a realization of the FI eigenvalues, the covariance function is
defined as

Cov
(
Y (x), Y

(
x′)) = �

(
x, x′) = exp

(
−∥∥x − x′∥∥2

)
(14)

where x and x
′

are two points in FI eigenvalue space. The covariance between Y(x) and Y(x
′
) decays exponentially fast as

the distance between x and x
′

increases. The covariance matrix �n is then generated by evaluating �(xi, xj) in Eq. (14) at all
pairs of the n component FI eigenvalues.

It is apparent that the covariance matrix derived based on Eq. (14) corresponds to unit scale or variance. In practice, it
is desired to have the variance of the FI eigenvalues be based on the difference between the FEM and test eigenvalues or
frequencies from the component modal test. Suppose that �λ is a vector of root-mean-square (RMS) uncertainties assigned
to the FI eigenvalues based on the component modal test correlation results. In the case of a Gaussian distribution, the RMS
uncertainty is just the standard deviation. The FI eigenvalue covariance matrix with the proper variance is then given by

�nv = diag (�λ) ∗ �n ∗ diag (�λ) (15)

where diag(�λ) is a diagonal matrix. If the jth eigenvalue λj is not uncertain, then �λj = 0 and the jth row and column of
�nv are null, meaning that �nv is positive semi-definite. Within MATLAB®, the command

Y = mvnrnd
(
λ,�nv, 1

)
(16)

produces a finite realization of the random FI eigenvalues under a GP prior with a specific mean and covariance, which can
be easily implemented within an MC analysis.

2.2 Mixed-Boundary Approach for Assigning HCB Eigenvalue Dispersions

The HPV approach for modeling component uncertainty requires the selection of dispersion values for the HCB component
FI eigenvalues, mass matrix, and stiffness matrix. Ideally, these dispersion values are selected for each component based on
component modal test results. This is because test-analysis modal correlation metrics are used to determine the dispersions.
Test-analysis frequency error is used to identify the HCB FI eigenvalue uncertainties, but one of the biggest challenges in the
propagation of component test-analysis frequency error into uncertainty in the HCB flight configuration FI modes is that the
component test configuration and the component flight configuration boundary conditions and/or hardware are almost never
the same. Because of this, it is difficult to match test configuration modes with flight configuration FI modes. The boundary
condition mismatch can be alleviated using a mixed-boundary approach. In general, the HCB flight configuration FI modes
will be overconstrained when compared with the test configuration modes. Therefore, the HCB stiffness matrix in Eq. (1)
can be written as

KHCB =
[
KS 0
0 λ

]
=
⎡
⎣

Kcc Kcb 0
Kbc Kbb 0

0 0 λ

⎤
⎦ (17)

where the HCB flight configuration set of boundary degrees of freedom (DOFs) has been divided into two subsets: the c-set
contains all DOFs that are free in the component test configuration, and the b-set contains the DOFs that are constrained in
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the component test configuration. When the HCB flight configuration is constrained at the test configuration interface DOF
(b-set), it produces mass and stiffness matrices

MC =
[
Mcc Mcq

Mqc Mqq

]
KC =

[
Kcc 0

0 λ

]
(18)

with corresponding eigenvalues λC and mass normalized eigenvectors φC =
[
φT

cc φT
cq

]T
. These eigenvalues and eigenvectors

are consistent with the boundary conditions of the test configuration modes used in the component test-analysis correlation.
Error or uncertainty in the analytical test configuration eigenvalues can be much more easily mapped onto uncertainty ΔλC in
the eigenvalues of the system in Eq. (18). The HCB representation of the component using λC and φC as FI modal properties
has the stiffness matrix and corresponding displacement vector given by

KB =
[
KSb 0

0 λC

]
uB = { xT

b qT
C

}T
(19)

where KSb is KS statically reduced to the b-set, xb is the physical displacement of the b-set, and qC are the modal
coordinates of the FI modes with the c-set free. The transformation between the displacement vector uB and the original
HCB displacement vector uHCB is given by

uHCB =
⎧⎨
⎩

xc

xb

q

⎫⎬
⎭ =

⎡
⎣

ψ φcc

I 0
0 φcq

⎤
⎦
{
xb

qC

}
= T uB (20)

The relation between KB and KHCB is then

KB = T T KHCBT (21)

The test configuration HCB FI eigenvalues λC can be randomized (λCr) based upon the component test-analysis
correlation results, and the uncertainty can be propagated into the random flight configuration HCB component stiffness
(KHCBr) using the expression

KHCBr = T −T KBrT
−1 = T −T

[
KSb 0

0 λCr

]
T −1 (22)

3 Hurty/Craig-Bampton Uncertainty Models

The IMT/MSO components used in this UQ analysis were based on the integrated FEM. The FEM was divided into six
components and reduced to HCB representations for an efficient MC UQ analysis. The frequency range of interest for the
IMT is approximately 0.0–7.0 Hz; therefore, component FI modes were calculated to 15.0 Hz and augmented with residual
vectors (RV) corresponding to the component interfaces and the IMT shaker locations. A few of the component uncertainty
models are described in detail, while the remaining are summarized.

3.1 Mass Simulator for Orion

Due to possible scheduling conflicts and the fact that the MPCV would add a multitude of complexities to the IMT, the
MPCV was replaced by a mass simulator. The IMT MSO and MSA, shown in Fig. 2, were combined into a single FEM and
reduced to an HCB component representation. The HCB component contains 152 DOFs, including 144 physical DOFs at
the interface between the MSA and the ICPS and eight FI modal DOFs. Only two of the FI modes have frequencies below
15.0 Hz. The component test/analysis correlation results for the updated MSO are listed in Table 1.
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Fig. 2 CAD representations of MSO and MSA

Table 1 Test/analysis
correlation results for updated
MSO

Mode % Error XO
Freq Eigen

1 2.42 4.90 99
2 −3.91 −7.97 99
3 3.57 7.27 97
4 4.83 9.89 93
5 3.03 6.15 89
6 5.14 10.55 89
7 3.83 7.81 95
8 1.59 3.20 96
9 5.25 10.78 96
10 3.86 7.88 80
11 4.62 9.44 72
12 6.26 12.92 80
13 5.24 10.76 92
14 3.97 8.09 75

Note that the percentage modal frequency errors are computed relative to the FEM frequencies for UQ analysis. There
were not enough sensors in the modal test to describe modes 10–14; therefore, they were excluded in the formulation of the
MSO/MSA uncertainty model. Based on the results in Table 1, the first MSO/MSA HCB FI mode (1st bending along Y)
was assigned an RMS uncertainty of 7.97%, and the second MSO/MSA HCB FI mode (1st bending along Z) was assigned
an RMS uncertainty of 4.90%. The remaining six FI modes, corresponding to RVs, were assigned an eigenvalue uncertainty
of 7.81%, which corresponds to the median eigenvalue uncertainty in MSO FEM test configuration modes 3–9 listed in
Table 1. During the process of combining the MSO and MSA FEMs, it was found that the MSO/MSA fixed-base modal
frequencies could vary by as much as 10%, depending on just how the interface between the MSO and MSA was modeled.
This additional uncertainty was addressed by adding an extra 10% frequency uncertainty, corresponding to approximately
21% eigenvalue uncertainty, to the uncertainties already assigned to the MSO/MSA FI eigenvalues based on the test results.
This results in an eigenvalue uncertainty of 28.97% for FI mode one, 25.90% for FI mode two, and 28.81% for the other six
FI modes.

Once the eigenvalue uncertainty is applied to the HCB stiffness matrix, the dispersion of the stiffness matrix is then applied
using the NPV method. The dispersion level is determined based on the diagonal cross-generalized mass (DCGM) metric,
which is the RMS value of the diagonal of the test/analysis XO matrix. Based on the XO results listed in Table 1, the value
of DCGM for the MSO test over the first nine modes is given by DCGMTest = 94.84. An MC analysis was then performed
in which the HCB stiffness matrix dispersion was selected and then 3000 random MSO/MSA components were generated.
The XO between the nominal and random HCB modes and the corresponding DCGM value were computed for each of the
ensemble members for the first nine nominal modes, analogous to the test. The root-sum-square (RSS) cross-orthogonality
[15] was computed as the cross-orthogonality for a linear combination of random modes within 3% of the frequency of the
unique-best-fit mode. The most probable value of DCGM was then computed over the ensemble and compared with the test
value. The stiffness matrix dispersion was adjusted such that the most probable DCGM value for the corresponding ensemble
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matched the test value. For the MSO/MSA, a stiffness dispersion of δK = 21% produced a most probable DCGM value of
94.54, which is comparable to the test value. The average RMS frequency uncertainty over the nine HCB modes is 6.72%.

3.2 Interim Cryogenic Propulsion Stage

The IMT ICPS and LVSA, shown in Fig. 3, were combined, and the corresponding FEM was reduced to a single HCB
component. The HCB representation contains 306 DOFs, including 288 physical DOFs, 144 at the interface between the
MSA and the ICPS, and 144 at the interface between the LVSA and the CS. There are 18 HCB FI modes. The IMT ICPS
is empty, so there are no slosh modes. Dispersion values for the updated ICPS/LVSA HCB component were based on the
Integrated Spacecraft Payload Element (ISPE) modal test-analysis correlation results. There were 11 FEM target modes
matched to 11 of the 19 test modes. Only these target modes were considered in this analysis because the other eight modes
were dominated by the MSA/MPCV simulator, which is not part of the ICPS/LVSA component. The test-analysis frequency
correlation results are listed in Table 2.

Fig. 3 CAD representations of ICPS and LVSA

Table 2 Test-analysis frequency
comparison for configuration 3
updated model

FEM mode Test mode % error XO

5 2 −2.70 94
6 1 −0.89 95
7 3 1.43 95
8 4 1.23 95
9 5 3.96 97
10 6 3.50 96
13 10 −0.57 97
14 9 −0.23 97
19 15 −0.33 95
20 14 −0.01 94
24 19 −4.72 94
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Table 3 ISPE updated FEM MEM magnitude by bin

ISPE FEM mode MEM (%) Bin % Freq. dispersion % Eigen. dispersion

6 22.30 1 2.02 4.08
5 22.26 1 2.02 4.08
24 2.19 2 4.72 9.66
20 0.02 3 1.95 3.93
19 0.02 3 1.95 3.93
8 0.01 3 1.95 3.93
7 0.00 3 1.95 3.93
9 0.00 3 1.95 3.93
10 0.00 3 1.95 3.93
14 0.00 3 1.95 3.93
13 0.00 3 1.95 3.93

The ISPE was tested in a fixed-base configuration, while the ICPS/LVSA HCB FI modes are constrained at both the base,
which is at the interface between the LVSA and the CS and at the interface between the ICPS and the MSA. This mismatch
in boundary conditions makes it difficult to directly match ISPE test configuration modes with the HCB FI modes to assign
modal frequency uncertainty. Therefore, the mixed-boundary approach was used on the ICPS/LVSA HCB component. The
DOF at the interface between the ICPS and the MSA were released during the component mode calculation, resulting in
162 fixed-base component modes that were compared with the fixed-base modes from the test configuration. However, there
are still significant differences between the ICPS/LVSA flight article and the ISPE used in the test. For example, there was
no fuel in the test article and the test article included the MSA, a CS simulator, and an MPCV simulator. This makes it
difficult to use frequency to match ICPS/LVSA fixed-base modes with ISPE test configuration modes. In many cases, test
mode descriptions can be used to match modes, but this works best when the modes are low order and the descriptions are
relatively simple. In the case of the ISPE, only three of the 11 target modes were easily described and probably insensitive to
the hardware differences. Therefore, test-analysis frequency or eigenvalue error was mapped to the ICPS/LVSA fixed-base
modes using modal effective mass (MEM). The updated FEM ISPE configuration 3 MEM is dominated by the fundamental
bending and, to a lesser extent, the second-order bending modes. The LVSA shell modes have little or no MEM. Table 3 lists
the updated ISPE configuration 3 FEM modes matched to test modes sorted by uncertainty bin based on the MEM Euclidean
norm, normalized to a maximum length of

√
6 and multiplied by 100.

Bin 1 was assigned a frequency dispersion of 2.02%, corresponding to the RMS error in the prediction of the first bending
test mode pair. Bin 2 was assigned a frequency dispersion of 4.72%, corresponding to the test-analysis frequency error
of the second-order bending test mode. The remaining LVSA shell test modes have little or no MEM. These modes define
uncertainty Bin 3 with a frequency dispersion of 1.95%, corresponding to the RMS frequency error in the LVSA shell modes.
MEM was also computed for the ICPS/LVSA fixed-base modes. The first 22 modes to approximately 91 Hz account for
approximately 99% of the effective mass over all six rigid body directions. Table 4 lists the first 25 ICPS/LVSA HCB fixed-
base modes matched to the test configuration modes sorted by uncertainty bins based on the normalized MEM Euclidean
norm. During the UQ analysis, the fixed-base mode uncertainty is then mapped into the HCB FI mode uncertainty.

Based on the XO results listed in Table 2, the value of DCGM for the ISPE configuration 3 test over the 11 FEM/test mode
pairs is given by DCGMTest = 95.44. An MC analysis was performed in which the stiffness matrix dispersion was selected
and then 3000 random ICPS/LVSA components were generated. The 3% RSS XO between the nominal and random HCB
modes and the corresponding DCGM value were computed for each of the ensemble members for the first 19 nominal modes
below 15 Hz. A stiffness dispersion of δK = 15% produced a most probable DCGM value of 95.74, which is comparable to
the test value. The average RMS frequency uncertainty over the 19 HCB modes is 2.78%.

3.3 Core Stage

The IMT CS FEM, shown in Fig. 4, was reduced to an HCB component with 224 DOFs, including 168 physical DOFs, 144 at
the interface between the LVSA and the CS, and another 24 DOFs at the interfaces between the CS and the SRBs. There are
56 HCB FI modes. The IMT CS is empty, so there are no slosh modes, but CS pressurization stiffness is included. The IMT
CS test-analysis correlation results are shown in Table 5. Eight test configuration IMT CS modes were matched with eight
test modes. The CS was tested in a simulated free-free configuration; therefore, as in the case of the ICPS/LVSA, there is a



108 D. C. Kammer et al.

Table 4 IMT ICPS/LVSA HCB fixed-base sorted MEM magnitude and frequency uncertainty by bin

Bin Number FB mode MEM % Freq. dispersion % Eigen dispersion

1 1 14 31.91 2.02 4.08
2 22 27.29 2.02 4.08
3 18 25.60 2.02 4.08
4 13 24.52 2.02 4.08
5 21 14.54 2.02 4.08
6 15 12.51 2.02 4.08
7 9 11.34 2.02 4.08
8 6 10.18 2.02 4.08

2 9 19 6.68 4.72 9.66
10 20 5.00 4.72 9.66
11 5 3.98 4.72 9.66
12 16 3.79 4.72 9.66
13 10 3.69 4.72 9.66
14 4 3.66 4.72 9.66
15 3 1.21 4.72 9.66
16 2 1.21 4.72 9.66
17 7 1.13 4.72 9.66
18 17 0.97 4.72 9.66

3 19 23 0.61 1.95 3.93
20 25 0.51 1.95 3.93
21 8 0.29 1.95 3.93
22 1 0.17 1.95 3.93
23 11 0.16 1.95 3.93
24 24 0.05 1.95 3.93
25 12 0.03 1.95 3.93

Fig. 4 CS finite element model
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Table 5 IMT CS modal
test-analysis correlation results

Test mode % error XOR
Freq Eigen

1 −2.90 5.88 99
2 −6.90 14.27 98
3 10.71 22.58 43
4 3.27 6.66 79
5 4.23 8.65 87
6 0 0 89
7 −0.44 0.89 95
8 −0.29 0.59 89

Table 6 IMT CS HCB free-free
mode eigenvalue dispersions

% dispersion
Mode Freq Eigen

23 2.90 5.88
24 6.90 14.27
25 2.90 5.88
26 10.72 22.58
28 10.72 22.58
31 10.72 22.58
32 10.72 22.58
36 3.28 6.66
45 10.72 22.58
46 10.72 22.58
47 10.72 22.58
48 10.72 22.58
57 0.44 0.89
67 0.29 0.59
72 4.24 8.65
73 4.24 8.65
78 4.24 8.65
79 4.24 8.65

mismatch between the test configuration boundary conditions and the boundary conditions applied to the CS HCB FI modes.
Therefore, the mixed-boundary approach was also applied to the IMT CS. In order to match the test configuration boundary
conditions, all 168 HCB interface DOFs were released, resulting in 224 free-free CS HCB modes that were compared with
the CS test configuration modes. The eigenvalue dispersions of the HCB component modes were based on the test-analysis
correlation results listed in Table 5. However, matching modes between the two sets to determine uncertainty could not
be performed using MEM, as in the case of the ICPS/LVSA, because the modes are unconstrained, so they possess no
MEM. Instead, the free-free CS HCB component modes were matched to the eight test configuration modes purely by the
mode description listed in Table 5. The corresponding test-analysis eigenvalue error was then assigned to the HCB free-free
component mode as the RMS eigenvalue uncertainty. The resulting eigenvalue uncertainties for the IMT CS HCB free-free
component modes are listed in Table 6. Note that there are 18 HCB modes matched to the eight test configuration modes
because there are eight HCB engine pendulum modes and the HCB bending modes are not purely bending and instead are
more complex bending mode pairs. In addition, to be conservative, all HCB modes that were matched to the second bending
about Z test configuration mode were given an eigenvalue uncertainty that is equal to the 8.65% uncertainty corresponding
to the second bending about Y test configuration mode instead of the 0% uncertainty listed in Table 5. The remaining 188
elastic HCB free-free modes were assigned an eigenvalue dispersion of 6.27%, which corresponds to the median eigenvalue
uncertainty in the eight test configuration modes listed in Table 4. The median was used instead of the mean such that no one
mode would have too much influence.

Based on the XO results listed in Table 4, the value of DCGM for the CS test over the seven FEM/test mode pairs,
excluding the engine pendulum mode pair, is given by DCGMTest = 91.09. The XO value for the engine pendulum mode
was excluded because it was uncommonly low and not reflective of the overall quality of the test. An MC analysis using
3000 ensemble members and 3% RSS XO was performed to determine the HCB stiffness matrix dispersion. The DCGM
metric for each ensemble member was calculated over the first 48 elastic modes. For the CS HCB, a stiffness dispersion of
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Table 7 Test-analysis
correlation results for IMT ML
on VAB support posts

Test FEM % error
mode mode Freq Eigen XO

1 1 0.30 0.60 98
2 2 1.97 3.97 100
3 3 −23.36 −52.19 95
4 4 3.30 6.72 98
5 5 0.49 0.99 92
6 6 −2.57 −5.21 94
7 7 −3.17 −6.43 95
8 8 −0.43 −0.87 95
9 9 1.24 2.50 86
10 10 3.59 7.32 98
11 11 −2.56 −5.20 93
12 12 −0.81 −1.64 82
13 13 −1.36 −2.74 88
14 14 3.39 6.89 70
16 21 −0.77 −1.55 57

δK = 8.5% produced a most probable DCGM value of 91.03, which approximates the test value. The average RMS frequency
uncertainty over the 48 HCB modes is 4.70%.

Uncertainty models were also generated for the SRBs and the ML using the approaches outlined in the previous
subsections. There was no specific modal test performed for the SLS SRBs; however, due to the SRB’s heritage, the
uncertainty models for the IMT SRB HCB components were assumed to be at the updated level. It was also assumed that the
SRBs have approximately the same level of test-analysis correlation, or uncertainty, as found in the updated ISPE, listed in
Table 3. This means that the three HCB FI eigenvalue uncertainty bins are given by 4.08%, 9.66%, and 3.93%, and the HCB
stiffness dispersion of 2.5% was adjusted to produce a most probable DCGM value of 95.44 corresponding to the updated
ISPE DCGM test value. The RSRB HCB component was assigned the same uncertainty model as the LSRB.

The IMT ML FEM was constrained at the six VAB support posts and reduced to an HCB representation with 401 DOFs,
including 24 DOFs that interface with other components, 366 FI modes to 15.0 Hz, and 11 RVs. A modal survey of the
ML only on the VAB support posts was performed at Kennedy Space Center on June 16–26, 2019. Test-analysis correlation
results for the IMT ML are shown in Table 7 for 15 target modes, 14 primary and one secondary. Note that target mode 3
is a Crew Access Arm (CAA) mode that was in a different orientation during the modal test than what was modeled in the
ML, therefore producing the large frequency error listed. For that reason, ML mode 3 was eliminated from the target mode
set during the derivation of the IMT ML uncertainty model.

There is a mismatch between the ML test configuration boundary conditions and those applied to the ML HCB FI modes.
Therefore, the mixed-boundary approach was also applied to the ML HCB to assign eigenvalue dispersions. The 24 HCB
interface DOFs were released during HCB mode computation, resulting in 401 fixed-base modes. The HCB fixed-base
modes were directly matched to the test configuration target modes listed in Table 7 using MEM and mode descriptions.
The corresponding test configuration eigenvalue errors were assigned as dispersions to the corresponding HCB fixed-base
modes. The remaining HCB fixed-base modes were assigned an eigenvalue dispersion of 3.35%, corresponding to the median
eigenvalue error for the 14 target modes remaining after mode 3 was removed. Based on the XO values in Table 7, the test
value of the DCGM metric over the 14 target modes is 89.77. During the MC stiffness dispersion analysis, the DCGM
metric was computed for each ensemble member for the first 44 elastic modes with frequencies less than 8.0 Hz. An HCB
stiffness dispersion of 4% produced a most probable DCGM value of 90.58, which was comparable to the test value. The
corresponding mean RMS frequency uncertainty was 2.25% over the 44 modes.

4 IMT UQ Analysis

A UQ analysis was performed for the IMT configuration using MC analysis with an ensemble of 10,105 random models.
The goal of the analysis was to determine the amount of primary target mode frequency and shape uncertainty that could be
expected during the actual IMT, as well as the corresponding probability that the selected shaker and sensor configurations
will adequately excite and separate the primary target modes. This work was completed prior to the IMT; however, during a
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Table 8 IMT primary target
modes

No. Mode Description

1 1 SLS rocking XZ plane
2 2 ML tower 1st bending XZ plane
3 3 SLS 1st XY bending
4 4 ML tower 1st bending XY plane
5 6 Core 1st torsion
6 7 SLS 1st XZ bending
7 8 SLS 2nd XZ bending
8 9 SLS 2nd XY bending
9 10 SRB 1st bending
10 11 SLS 3rd XY bending
11 12 ML tower torsion
12 13 ML tower 2nd XZ bending
13 14 ML tower/SLS 2nd XY bending
14 15 ML trampoline
15 16 CAA vertical/SLS bending
16 17 CAA vertical/SLS bending
17 18 CAA vertical
18 19 ML twisting/tower torsion
19 21 SLS 2nd torsion
20 22 ML tower bounce/3rd bending
21 23 ML tower 3rd XZ bending
22 27 SRB 2nd XY bending/CAA lateral

Table 9 IMT uncertainty model

Component Uncertainty level Assigned HCB FI frequency dispersion % Stiffness dispersion % Normalized stiffness dispersion %

MSO Updated Modes: 3.91, 2.42; RVs: 3.83 21 3.11
ICPS/LVSA Updated 3 bins: 2.02, 4.72, 1.95 15 1.78
CS Updated Table 6 8.5 0.88
LSRB Updated 3 bins: 2.02, 4.72, 1.95 2.5 0.75
RSRB Updated 3 bins: 2.02, 4.72, 1.95 2.5 0.75
ML Updated Table 7 4 1.16

future posttest analysis, it is expected that the test results will be compared to the UQ predictions. If the uncertainty predicted
by the UQ analysis covers the test results, there will be increased confidence in the HPV UQ method and the approach used
to assign component uncertainty models.

The reduced IMT model contains 941 DOFs, and there are 70 modes below approximately 7 Hz. Twenty-two primary
target modes were considered in this assessment. Table 8 lists the primary target modes with partial mode descriptions. The
component uncertainty models described previously are summarized in Table 9.

Based on the UQ analysis, the RMS uncertainty for the 22 target modes is illustrated in Fig. 5. The greatest uncertainty,
3.23%, is in mode 19, which corresponds to the ML twisting/tower torsion mode. Figure 6 presents error bars for the target
mode frequencies representing the range between the upper tolerance level at P99/90 and the lower tolerance level at P01/90.
The corresponding interval provides an estimate of 98% enclosure with 90% confidence (P98/90). It can be seen that all of
the modes possess a relatively small amount of frequency uncertainty. The nominal and median target mode frequencies are
close in all 22 target modes. Figure 7 shows the corresponding primary target mode RMS XO. Twenty of the target modes
possess an RMS XO value greater than 0.90, while two have values between 0.80 and 0.90. Note that no RSS analysis was
performed to compute the XO values in this case.

The IMT sensor set contains 195 accelerometers. Figure 8 shows the XO between the nominal primary target modes
and the nominal IMT modes below approximately 6 Hz, with unobservable modes 20, 24, and 32 removed. The XO was
computed using the IMT test-analysis model (TAM) with the modes’ mass normalized with respect to the TAM mass. The
largest off-diagonal value of 0.058 indicates that the target modes are nicely decoupled from the other observable IMT modes
using the IMT sensor configuration and TAM mass matrix.

During each iteration of the MC analysis, the random system modes were uniquely matched to the nominal system
modes. The random modes were then recovered at the sensor DOF and mass normalized with respect to the nominal TAM
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Fig. 5 RMS frequency uncertainty for IMT primary target modes

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Mode Number

F
re
qu

en
cy

 -
 H
z

Frequency Uncertainty for R4 Primary Target Modes

Nominal Frequency
Median Frequency

Fig. 6 P98/90 coverage intervals for IMT primary target mode frequencies



SLS Integrated Modal Test Uncertainty Quantification Using the Hybrid Parametric Variation Method 113

Fig. 7 IMT primary target mode RMS cross-orthogonality

Fig. 8 XO between target modes and all observable IMT modes below 5.46 Hz
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Fig. 9 Maximum off-diagonal statistics for XO between target and all observable IMT modes below 6 Hz

Table 10 IMT shaker
configuration

Shaker label Dir.

1 S32 X
2 S35 X
3 S36 X
4 S38 Y
5 S40 Z
6 S50 X
7 S51 Y

mass matrix. The XO between the random target modes and the random observable modes using the TAM mass matrix was
computed, and the largest off-diagonal magnitude for each target mode was saved. Figure 9 shows the nominal, median, and
P98/90 enclosure intervals for the maximum off-diagonal values for each of the target modes. All nominal values are below
0.04. For the most part, the median values are close to the nominal values. The P99/90 maximum off-diagonal values are
less than 0.06 for all the target modes, except target mode 27, which is the SRB second bending/CAA lateral bending mode.
Figure 9 shows that the P99/90 value for mode 27 is much larger than both the nominal and median values, indicating that
there is a large tail in the distribution of the maximum off-diagonal values. Even though the P99/90 maximum off-diagonal
value is greater than 0.25, it can be shown that there is over a 92% probability that the maximum off-diagonal value is less
than or equal to 0.10, which is often cited as the orthogonality criterion. These results indicate that during the actual IMT,
there is a high probability and confidence that the first 21 target modes can be separated from the observable modes below
approximately 6 Hz. In addition, there is a significant probability that target mode 27 can also be separated.

Statistics were also computed for acceleration frequency response and normal mode indicator functions for the selected
shaker and sensor configurations. A modal damping level of 1.0% and modes up to 16.0 Hz were included in the simulations.
The shaker configuration selected for this assessment is listed in Table 10. A typical acceleration frequency response in the
Y direction on the ICPS/LVSA due to input at shaker S36 along X is shown in Fig. 10. The nominal as well as the P99/90
and P01/90 response levels are illustrated. During IMT posttest analysis, the corresponding test result can be compared with
the predicted uncertainty interval shown in the figure. If the test result lies within the uncertainty interval, confidence in the
validity of the HPV UQ method is enhanced.
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Fig. 10 Acceleration frequency response on ICPS along Y due to input from shaker S36X

The NMIF can be used to determine how effectively each of the primary target modes is excited and measured using the
proposed shaker/sensor configuration. In practice, an NMIF value of 0.3 or smaller indicates that the mode is sufficiently
excited and measured to be extracted from the test frequency response data. Therefore, for a mode to be sufficiently excited
and measured, it must have an NMIF value less than or equal to 0.30 for any of the shakers. Figure 11 illustrates the
minimum NMIF value over all of the shakers for each of the primary target modes for the nominal system. The values
were determined by evaluating the NMIF functions at the nominal target mode frequencies. This approach is conservative
because the minimum of the NMIF does not in general occur at the resonance, so this approach does not always capture
the true minimum value. Using the criterion of NMIF being less than or equal to 0.30, 20 of the 22 primary IMT target
modes are sufficiently excited and measured using the proposed IMT shaker/sensor configuration. Figure 11 also shows the
minimum P99/90 and P01/90 NMIF values for each target mode over all seven shakers. The NMIF values corresponding to
the random systems are determined by uniquely matching each of the nominal system target modes to a random mode and
then evaluating the random NMIF function at the corresponding random resonant frequency. It can be seen from the figure
that there is a significant amount of uncertainty in the NMIF values for all of the target modes except the first. The median
values of the target mode NMIF values over the ensemble are also presented in Fig. 10. In many cases, the median NMIF
values are close to the nominal values. Applying the 0.30 criterion to the median NMIF values, the figure indicates that there
is a 50% probability of identifying all of the target modes during the IMT. Seven of the target modes have P99/90 NMIF
values less than 0.30.

5 Conclusion

NASA has historically tested launch vehicles in an integrated configuration with boundary conditions controlled to
approximate the boundary conditions expected in flight. However, to save cost and schedule, a cross-program decision
was made to not perform an IVGVT and rely on analytical methods supported by component test results. However, there
will still be an integrated system that will undergo testing, called the Integrated Modal Test. The IMT is a ground test of the
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integrated vehicle, assembled on the ML in the VAB facility at Kennedy Space Center. The results of the IMT will provide an
opportunity to validate or update previously correlated SLS component models such that, in an assembled configuration, they
provide agreement with integrated system test results. The purpose of this assessment was to apply the HPV UQ approach to
the IMT/MSO ground vibration test configuration. Projection of component test-based uncertainty into the system provided
estimates of the system-level uncertainty that can be expected in IMT target modal parameters, such as frequencies and mode
shapes. Component uncertainty was also propagated into system-level acceleration frequency response and the corresponding
mode indicator functions. The HPV method combines a parametric variation of the HCB FI modal frequencies with an NPV
method that randomly varies the HCB stiffness matrices as Wishart random matrix distributions using RMT. Uncertainty
models were developed for each of the HCB components using the test-analysis correlation results from component test
configuration modal tests. Component uncertainty was propagated to the system level using an MC approach that generated
statistics for system-level results. This provided a UQ method that can be traced directly to available test data and that can
be updated as additional data, and better correlated models become available. In order to be more consistent with future
IMT test and analysis, the most recent IMT configuration model was used in the UQ analysis. The finite element model was
divided into six elements and reduced to the corresponding HCB components. Model correlation and updating of the ML is
still in progress, meaning that the sensor set and shaker locations are still evolving. It has been found that the ability of the
shaker configuration to adequately excite the target modes is very dependent on the most recent updated ML model version.

During the MC analysis, the off-diagonal elements in the XO between the random target modes and the random observable
modes using the TAM mass matrix were computed and the largest off-diagonal magnitude for each target mode tracked. All
nominal system maximum off-diagonal values were below 0.05, except target mode 14. The P99/90 maximum off-diagonal
values were less than 0.10 for all the target modes, except target mode 27, which is the SRB second bending/CAA lateral
bending mode. Even though the P99/90 maximum off-diagonal value for mode 27 was greater than 0.25, there was still more
than a 92% probability that its value would be less than or equal to 0.10, which is often cited as the orthogonality criterion.
These results indicate that during the actual IMT, there is a high probability and confidence that the first 21 target modes can
be separated from the observable modes below approximately 6 Hz. In addition, there is a significant probability that target
mode 27 can be separated. Using the criterion that the NMIF must be less than or equal to 0.30, 20 of the 22 primary IMT
target modes are sufficiently excited and measured using the proposed IMT seven-shaker/sensor configuration. Applying
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the 0.30 criterion to the median NMIF values, there is a 50% probability of identifying all of the target modes during the
IMT. Seven of the target modes have P99/90 NMIF values less than 0.30. While the results of this UQ assessment provide
meaningful insight into the effects of component uncertainty on system-level results, the assessment was not meant to be a
comprehensive UQ analysis of the SLS IMT. For simplicity, noteworthy sources of uncertainty, such as component damping,
were neglected in this assessment. In future work, it is believed that the HPV approach can also be applied to the dispersion
of the component damping matrix. Finally, while the HPV method provides a valuable tool for complex system UQ analysis
using only a limited amount of data, it is believed that confidence in predicted results could be improved through a rigorous
validation program.
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A Forward Model Driven Structural Health Monitoring
Paradigm: Damage Detection

Robert J. Barthorpe, Aidan J. Hughes, and Paul Gardner

Abstract Structural Health Monitoring (SHM) involves determining the health state of an engineered structure based upon
measured, damage-sensitive features such as natural frequencies, modeshapes and time-domain model coefficients. One of
the key challenges in SHM is the difficulty associated with gathering experimental data from a structure in its damaged
state. This challenge is particularly acute for purely data-based supervised learning methods. Numerical modelling offers
the potential to overcome the lack-of-data problem by making physically informed predictions of how the structure will
behave once damaged. However, numerical modelling raises challenges of its own, with a major question being how one
incorporates uncertainties and errors arising from the model prediction process within SHM decision-making. In addition,
variability inevitably arises in the observed experimental responses and this, too, should be incorporated in the decision
process. Finally, it is desirable that the cost of misclassification be incorporated within the decision process, with risk-based
approaches being an attractive option for moving from classification to decision-making. This paper introduces a practical
application of a Forward Model Driven (FMD) paradigm for SHM. A key tenet of the approach is that numerical model
predictions may be used to inform a statistical classifier. The method is demonstrated for the case of damage detection on
an experimental truss bridge structure for which an associated finite element (FE) model has been developed. A framework
based upon a sequence of binary classifiers is introduced, with attention drawn to the importance both of the choice of
individual classifier and the strategy for their combination.

Keywords Structural health monitoring · Finite element modelling · Damage identification

1 Introduction

Structural Health Monitoring (SHM) refers to the process of assessing the health state of a structure via changes in global
dynamic response. The SHM process involves the continual or periodic gathering of data from a network of sensors attached
to a structure, application of appropriate data normalisation and cleansing techniques, extraction of damage-sensitive features
from the processed data, and statistical analysis of these features to make a statement of system health. The potential benefits
of such systems if they can be developed range from the life-safety benefits that arise from being able to identify defects
before they progress to system failure, through to the economic benefits that arise through increased maintenance efficiency
and the potential to either extend the life of existing systems or to create new systems that are designed to be damage-tolerant.
Various paradigms exist for tackling the SHM problem. The method that has received most attention in the literature is the
data-driven approach, which makes use of measured data and statistical pattern recognition (SPR) to identify the damage
state of the structure (see [1] for a comprehensive overview of approaches). This has been demonstrated to be extremely
effective in detecting, locating and classifying damage in both laboratory-based and real-world structures in cases where
damaged-state data is available. An alternative approach which has also received significant attention, referred to herein as
the inverse model-based approach, makes use of physics-based models and inverse methods in order to infer the location and
extent of damage in the structure [2]. These techniques are often found to suffer from non-identifiability issues due the nature
of the inverse problem solved, with individual model parameters or subsets of parameters updated on the basis of observed
data [3].
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A third approach, referred to herein as the forward model driven approach, represents a hybrid of the above, with the
physics-based model used in a predominantly forward mode in order to make predictions that are subsequently used to inform
a statistical classifier [4, 5]. In this way, physics-based modelling offers the possibility of generating feature predictions for
those damage scenarios of interest that it is not possible to observe experimentally. The potential advantages of such an
approach include:

• Enabling the application of model validation and uncertainty quantification (UQ) concepts to build systems that are robust
to identified sources of uncertainty.

• The possibility of performing SHM system evaluation at the design stage, enabling rigorous assessment of feature
sensitivity and the identifiability of health states.

• The major computational expense—generating feature predictions for health states—being incurred at the design stage,
with the ongoing costs of solving an inverse problem online either reduced or avoided completely.

A fuller review of recent trends in forward model driven SHM is presented in [6]. This approach naturally faces challenges of
its own. Perhaps the greatest of these is in overcoming the perception that physics-based models are (1) expensive to produce
and (2) nonetheless offer insufficient predictive accuracy for use in an SHM context. The latter point may be addressed to
some extent by application of methods for model validation, although this gives rise to the linked question of how models
of the structure in its damaged state may be validated given that such data is hard to come by. Possibilities here include the
pursuit of validation at the component or sub-system level, where damaged-state testing may be feasible. The contention
in this paper, however, is that by selecting a classification architecture that allows for a degree of error in the damaged-
state model predictions, a classifier may be trained that offers satisfactory performance without reliance on the availability of
damaged-state data. The paper thus introduces a practical application of a Forward Model Driven (FMD) paradigm for SHM,
with the focus initially being restricted to the damage detection stage. The methodology employed is described in Sect. 2,
with an experimental case study presented in Sect. 3. Outcomes and future work are briefly summarised in Sect. 4.

2 Methodology

The work presented in this study focuses initially on the damage detection case, with extension to the more challenging case
of damage localisation to be pursued in follow up studies. The detection strategy pursued broadly follows that presented in
[7], which set out a Bayesian risk minimisation framework for optimal sensor placement focusing on active sensing. This
approach enables the costs associated with different actions to be included in the decision-making process. In this way, a
design that minimises risk under uncertainty may be found, where ‘design’ is taken to incorporate sensor placement, feature
selection and the setting of localised damage thresholds. The presented approach essentially casts damage identification as
a set of binary hypothesis testing problems, weighted by the cost of making a correct/incorrect decision. The structure is
considered to consist of k = 1 . . . K discrete regions. In the simple case of binary local damage states (i.e. the local region is
either considered ‘damaged’ or ‘undamaged’) the local health state in region k is denoted hk0 in the undamaged case and hk1
in the damaged case. The approach proceeds by setting local thresholds on the features arising from each damage state using
a principled Bayesian approach that incorporates the costs involved with both correct and incorrect health state decisions.
In order to facilitate this approach, a number of simplifying assumptions are made: only single-site damage is considered;
the features used for damage detection are assumed to be Gaussian distributed; a simple linear detector is employed; and
features are drawn from a deterministic physics-based model, with no model uncertainty quantification considered.

The aim of the present study is to move towards a general forward model driven (FMD) SHM classification framework.
This will be pursued through (1) investigation of generalised classification options based on SPR methods and (2)
incorporation of both the uncertainty associated with the model predictions and the variability observed in the experimental
data in the predictions of p(xtrn|hk0) and p(xtrn|hk1), where xtrn are the feature values associated with each health state
that are used to train the SPR classifier. Initially this will be demonstrated for the case of damage detection, with the ultimate
goal being extension to damage localisation and classification of damage type.

The strategy adopted for damage detection in this context is as follows:

1. A physics-based model is used to make system-level predictions across health states of interest, with appropriate
uncertainty quantification applied to capture modelling and experimental uncertainties.

2. An acceptable local damage threshold is defined and applied within each discrete region. This could be a maximum
permissible crack length, for example.
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3. The model-predicted feature vectors are labelled as belonging to either the undamaged class hk0 or damaged class hk1 for
each local region k.

4. For each region k, a classifier is developed using training data xtrn and used to predict the local health state of the structure
when presented with new test data xtst . Classification options include:

• Using a generative method. Here, the joint distribution of the training data and the class labels p(xtrn|hk0) and
p(xtrn|hk1) is learnt. When test data xtst are presented, the joint distribution is used to report probabilities of class
membership P(hk0|xtst ) and P(hk1|xtst ).

• Using a discriminative method. In this case, the class conditional distributions P(hk0|xtrn) and P(hk1|xtrn) are learnt
directly using labelled training data xtrn. When test data xtst are presented, the predicted local class label hk0 or hk0 is
reported.

5. An appropriate decision rule is applied to combine the outputs of the individual classifiers.

The latter option for classifier training is explored in the current paper. In this instance, Support Vector Machine (SVM)
classification is adopted, with the predictions of multiple binary classifiers being combined. While the above is conceptually
simple, challenges nonetheless arise and a number of decisions must be taken by the system designer. Setting of the local
thresholds (alternatively decision boundaries) on acceptable damage is key among these. The compromise here is between
maximising the true positive rate (equivalently minimising the false negative rate, promoting detectability) while minimising
the false positive rate. The risk-based framework proposed in [7] offers a principled means of making such decisions on the
basis of the costs associated with each outcome; note that while not explored in this study, the SPR classifiers adopted remain
amenable to use within a risk-based framework.

3 Case Study

The approach introduced in Sect. 2 is demonstrated in this paper via an experimental case study on a truss bridge structure,
shown in Fig. 1. The finite element (FE) model developed to make predictions of the dynamic response of the structure in the
presence of damage is introduced in Sect. 3.1 with the experimental procedure adopted introduced in Sect. 3.2. The selection
of comparable features is discussed in Sect. 3.3, alongside details of the classification architecture in Sect. 3.4. The results
of applying a classifier trained purely on the FE results to data from the experimental structure are presented and discussed
in Sect. 3.5.

Fig. 1 The experimental truss bridge structure, here set up for testing using shaker excitation
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Fig. 2 Finite element model of the truss bridge structure

3.1 Model Description

A finite element model of the truss bridge structure was developed in ANSYS. The trusses were modelled using Timoshenko
beam elements and the deck with shell elements. Damage was introduced via a geometric reduction in the beams at the
same dimensions as the saw cut, simulating the type of damage in the physical structure. The model was used to extract
modal properties that could be compared with the test data, with modal coordinates being extracted at nodes equivalent to
the locations where sensors had been positioned on the structure. An illustrative example of the model output is shown in
Fig. 2. In this instance, no calibration of the model to test data was performed—the model may be considered purely white
box in nature.

3.2 Experimental Procedure

Damage was introduced, in turn, on the three vertical struts lying on the front elevation of the structure as shown in Fig. 3.
The damage itself consisted of sawcuts implemented at the midpoint of the truss. These were increased in 2.5 mm increments
from the undamaged state through to a maximum extent of 17.5 mm, with the trusses being 20 mm in depth. Between each
introduction of damage, the structure was returned to its undamaged state by replacing the damaged truss. All tests were
conducted in ambient conditions at a nominal temperature of 20 ◦C. Data acquisition was performed using a Siemens Mobile
SCADAS system, with the test programme proceeding in two stages. First, an impact hammer test was conducted at a total
54 locations with the aim of establishing a comprehensive dataset for modal matching between the experimental data and
model predictions. Secondly, the structure was set up for shaker excitation, with sensor locations informed by the modeshape
observations from the impact hammer test. Accelerometers were placed as closely as possible to the ‘nodes’ on the deck
of the structure, where the vertical and diagonal truss elements meet. The sensor layout was repeated on front and rear
elevations, resulting in 12 sensors locations. Uniaxial PCB 353B16 accelerometers were used, all oriented in the vertical
direction (denoted as the y-direction in Fig. 3). The shaker was also mounted in the vertical direction, suspended via bungee
cords. The shaker attachment point lay at deck level on the rear elevation of the structure with a PCB force transducer used
for force acquisition. Band limited white noise excitation in the range 0–1024 Hz was applied via the shaker. Modal analysis
was performed using the PolyMax algorithm.

3.3 Feature Selection

Accurately matching the features predicted by the model to those observed experimentally represents an important step in
the presented paradigm. In this paper, changes in the natural frequencies were adopted as the damage-sensitive features of
interest. The selection of those features that it was deemed most important to match was principally guided by their sensitivity
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Fig. 3 Schematic diagram of the truss bridge structure, indicating damage scenarios and shaker and excitation locations

Fig. 4 Features adopted for damage detection

to damage as indicated by model. Mode matching was pursued using data from the impact hammer test, comprising responses
at 54 locations. An initial set of 10 ‘well-matched’ mode pairs was identified based on comparison of modeshapes and
associated natural frequencies. Good agreement was observed in the modeshapes, and these proved central to successfully
pairing the modes. As may be expected from an uncalibrated model of a comparatively complex structure, substantial
deviation was observed in the natural frequency values. In this paper, just two of the available paired features are adopted
for illustration, enabling simple visualisation of the feature space without recourse to dimensionality reduction techniques.
The individual matched features are presented in Fig. 4, with the two-dimensional feature space visualised in Fig. 5. Note
that in practical applications of the approach one would not have access to experimental damaged-state data at the feature
selection stage; the results are included here to offer an initial visual indication of the agreement between model predictions
and experimental observations.
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Fig. 5 Schematic diagram of the truss bridge structure

3.4 Classifier Training

A global damage classifier was developed using training data from the FE model only. In this case, the damage threshold
was set such that local damage of greater than or equal to 12.5 mm would be labelled as damaged. Experimental variability
was simulated via the addition of multivariate Gaussian distributed noise, with a variance of σ = 0.01 Hz on each feature.
The overall classification architecture comprised K ‘one-vs-one’ classifiers, in this instance with K = 3 local regions to
consider. Each binary classifier was trained to separate predicted feature vectors resulting from damage in one of the local
regions from those of the undamaged state. Classification was pursued using a binary SVM for each region. A linear kernel
was adopted for each SVM, with the classifier hyperparameters (the scale parameter and misclassification tolerance) set via
k-folds cross-validation. In order to provide an overall label for the predicted damage state of the structure, a decision rule
must be adopted in order to combine the classification labels returned by the K individual classifiers. In this case, the decision
rule used was that the structure should be labelled as globally damaged (+1) if the health state of any local region is labelled
as damaged.

A useful outcome of the model driven approach is that the predicted performance of the SHM system may be evaluated
at this stage. At its simplest, this may be conducted by assessing the overall classifier performance on the training set used
to develop the individual binary classifiers (i.e. via recall). For the case study presented, this evaluation returned an overall
probability of detection of PD = 99.33% and probability of false alarm PFA = 17.73%. It may be noted from these metrics
that while the probability of detection was exceptionally high, this came at the cost of a substantial number of false positives.
By considering the confusion matrices for the individual binary classifiers, it was apparent that this false positive rate could
be ascribed to the performance of Classifiers 1 and 3, relating to damage at struts V1 and V3, respectively. This information
is useful as it enables tailoring of the system design through, for example, the adoption of further features to offer greater
discrimination of damaged health states or tailoring of the classification thresholds. As highlighted in Sect. 2, one attractive
possibility here is that risk-based approaches may be utilised to inform the choice of decision boundary.
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Table 1 Classifier outcomes for
strut V1

Classifier

Damage (mm) 1 2 3 Prediction

0.0 −1 −1 −1 −1

2.5 −1 −1 −1 −1

5.0 −1 −1 −1 −1

7.5 −1 −1 −1 −1

10.0 −1 −1 −1 −1

12.5 1 1 −1 1

15.0 1 1 −1 1

17.5 1 1 1 1

Table 2 Classifier outcomes for
strut V2

Classifier

Damage (mm) 1 2 3 Prediction

0.0 −1 −1 −1 −1

2.5 −1 −1 −1 −1

5.0 −1 −1 −1 −1

7.5 −1 −1 −1 −1

10.0 −1 −1 −1 −1

12.5 −1 1 −1 1

15.0 1 1 −1 1

17.5 1 1 −1 1

Table 3 Classifier outcomes for
strut V3

Classifier

Damage (mm) 1 2 3 Prediction

0.0 −1 −1 −1 −1

2.5 −1 −1 −1

5.0 −1 −1 −1 −1

7.5 −1 −1 −1 −1

10.0 −1 1 −1 1

12.5 1 1 −1 1

15.0 1 1 1 1

17.5 1 1 1 1

3.5 Classification Results

Having trained the damage detector purely on model-predicted data (with an assumed level of experimental variation), the
classifier was applied to the features observed from experimental damage cases. The results observed for damage introduced
into each strut are summarised in Tables 1, 2, and 3. The undamaged class is denoted −1 and the damaged class 1. As can be
observed from the tables, completely accurate classification was seen for both struts V1 and V2. For strut V3, the classifier
returned a false positive for the 10 mm damage case, arising from a misclassification by Classifier 2. Overall, this can be
viewed as an extremely promising result given that only two features were used for classification and no model calibration
was performed.

4 Conclusion

The aim of the current paper has been to present a forward model driven methodology for structural health monitoring. This
represents a generalisation of earlier approaches to allow consideration of SPR classification techniques and incorporation
of model uncertainty and measurement variability. An experimental case study based on a truss bridge structure has
been presented with a classifier trained purely using FE model predictions being shown to perform extremely well on
experimentally observed data. The case study represents a successful application of this paradigm to an experimental
structure for the purposes of damage detection. The immediate focus of future work will be extension to the localisation



126 R. J. Barthorpe et al.

case. This comprises a much more nuanced classification task, with greater sensitivity to discrepancies in model predictions
being expected.
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Uncertainty Quantification of Inducer Eigenvalues Using
Conditional Assessment of Models and Modal Test of Simpler
Systems

Andrew M. Brown, Jennifer L. DeLessio, and Timothy J. Wray

Abstract The low-pressure fuel pump inducer of the new Space Launch System RS25 core stage engine operates in a highly
complex environment that substantially affects its modal characteristics. Some of the more important effects are fluid-added
mass (FAM) resulting from operation within a light liquid (hydrogen) and the magnification of this effect due to tight tip
clearance (TC). Since higher-order cavitation has been identified as a significant harmonic driver, knowledge of the natural
frequency of potentially excitable modes is critical for safe operation, but this frequency cannot be measured during the severe
operational environment. A comprehensive testing and analysis program has therefore been performed over the last 4 years
to identify the nominal value and uncertainty of the frequency by modeling and testing two simpler structures in several
configurations that share some of the characteristics of the operational inducer. This testing was used to assess and adjust
modeling techniques, and an excellent correlation was achieved. Identification of the uncertainty in the inducer frequency
itself was still problematic, however. This difficulty led to an investigation of Bayesian uncertainty quantification techniques
and to the application of the relatively simple technique of multivariate normal conditional distributions to calculate the
inducer natural frequency uncertainty. Assumptions on the prior distributions of the uncertainty of the fluid-added mass
and tip clearance effect are initially applied to the models of each of the simple structures and the inducer itself, and these
uncertainties are propagated to generate natural frequencies using the design of experiments. Simple response surfaces are
then created from this data in order to calculate a covariance matrix relating all of these natural frequencies. Finally, the results
from the modal test of the simple structures are considered to be observations and used to calculate the conditional variance
of the desired inducer frequencies. As this method is less rigorous than more complicated Bayesian methods reported in the
literature, a conservative factor is applied to the result, but the resulting uncertainty is still significantly less than originally
estimated and will greatly assist the certification of the inducer for use in the engine.

Keywords Uncertainty quantification · Structural dynamics · Modal test · Liquid hydrogen · Bayesian techniques ·
Model updating
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CB Cantilever beam
DOF Degrees of freedom
DOE Design of experiments
E Young’s modulus
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HOC Higher-order cavitation
HOSC Higher-order surge cavitation
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LPFP Low pressure fuel pump2
MAC Modal Assurance Criterion
ND Nodal diameter
PDF Probability density function
RT Room temperature
ρf Fluid mass density
RV Primitive random variable
SLS Space Launch System
SSME Space Shuttle Main Engine
SS Subscale
SSP Simply supported plate
Ti Titanium

1 Introduction

Liquid rocket engines are powered by the combustion of two propellants at very high pressure, a fuel and an oxidizer.
Frequently, the fuel is liquid hydrogen (LH2). While the pressure can be provided by a very-high-strength storage tank,
usually this would be weight prohibitive, so a turbopump or a series of turbopumps is required to provide these extremely
high pressures. The staged-combustion cycle of the RS-25 engine powering the core stage of the National Aeronautics and
Space Administration’s (NASA’s) Space Launch System, which is an adaption of the Space Shuttle Main Engines (SSME)
that operated successfully for 30 years, has low- and high-pressure fuel and oxidizer turbopumps. The low-pressure fuel
pump, which is fed directly by the fuel tank via ducting, uses an inducer to pressurize the liquid hydrogen fuel to several
hundred psi (Fig. 1).

As with most other turbopump inducers, there is some level of cavitation, which is a “phenomenon in which rapid changes
of pressure in a liquid lead to the formation of small vapor-filled cavities in places where the pressure is relatively low”
[1]. The usual problem with cavitation is that these cavities collapse, and the liquid then impacts the blade surface, causing
extensive damage, but in the RS-25 inducer, a different type of cavitation field is formed, called “higher-order surge cavitation
(HOSC)” [2], which forms an acoustic wave that emanates both upstream and downstream. This wave has been empirically
determined to be at a frequency between 6.4 and 6.7 times the engine speed for this inducer and has a high enough magnitude
to resonate with modes of structures impinging on the wave, especially the inducer blades.

It was recognized during the design of the RS-25 that the differing operating conditions would cause operation in HOSC,
which was not seen during the SSME operation. Although no empirical evidence of cracking in this inducer had been seen
during testing or operation, this new potentially resonant condition requires a structural dynamic assessment for assured
safe operation. The assessment requires knowledge of the natural frequency of potentially excitable modes, of course, but

Fig. 1 Typical rocket engine
turbopump inducer (not to scale)
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in this case a large number of complicating factors cause both considerable adjustments from in vacuo natural frequencies
and uncertainty in those adjustments. These include a large adjustment of Young’s modulus of the titanium alloy used
because of operation in a cryogenic (−423 ◦F) environment, the effect of the fluid-added mass of the liquid hydrogen, the
magnification of this effect due to tight blade tip clearances with the housing, the effect of structural-acoustic interaction
for a slightly compressible fluid, and the effect of multiphase fluid density where the liquid is cavitating. The magnitude
of these adjustments was initially estimated by Aerojet Rocketdyne (the engine contractor) by using either available test
data from similar structures or closed-form, theoretical extrapolations from the underlying physics. The uncertainties in
each adjustment, on the other hand, were based purely on subjective “low, medium, or high” confidence levels, which were
translated into percentages of the adjustment. As the actual values of the natural frequencies cannot be measured in operation
due to the extreme environment and sensitive nature of the hardware, these adjustment and uncertainty estimates play a
critical role in qualifying the turbopump for flight. This qualification uses a combination of physics-based and empirically
based techniques, which will not be discussed here.

An extensive analytical and testing campaign was initiated in 2017 to help determine these adjustments, as documented
by the authors [3, 4]. This campaign consisted of four modal/ping tests of hardware that have some similarity to the actual
hardware and in environments that have some similarity to the actual environment. Those performed in LH2 are the first
documented in the literature. These tests consisted of the following (Fig. 2):

1. Ping tests in air and LH2 of cantilever beam (CBeam) made of the same titanium alloy as the actual inducer
2. Ping test of cantilever beam in LH2 with a tight tip clearance
3. Modal test of subscale inducer with medium tight tip clearance in water
4. Modal test of stainless steel subscale (SS) inducer in air and water, ping test in LH2

These tests were largely successful, with consistent results that enabled updates to the adjustments and modeling
techniques due to a number of various effects. In particular, the effect of cryogenic temperatures on the stiffness properties of
the titanium alloy, the effect of fluid-added mass (for both LH2 and water), and the effect of tight tip clearance were refined.

However, it was still unclear how to improve the subjective uncertainty estimates. Table 1 shows the test/analysis error of
the updated models, and it is not clear how to implement these into a global uncertainty estimate for a particular effect.

After a considerable study, a methodology based on the Bayesian updating of the variance of correlated random variables
was identified as a reasonable technique to quantify the total uncertainty in the full-scale (FS) operational inducer. In
particular, the eigenvalues from the four tested configurations and the untested actual configuration are used as the correlated
random variables, and the modal tests give information that can be used with the correlation to infer an improved (reduced
variance) posterior distribution of the desired eigenvalue. This application of the Bayesian techniques in this way has not
been previously presented in the literature and is the subject of this paper.

Fig. 2 Modal and ping test series

Table 1 Test/analysis error summary

Description Error analysis from test Error note Effect tested

SS inducer, LH2, open −3.23% Fluid-added mass
SS inducer, water, open −3.70% Fluid-added mass
SS inducer, water, tight −1.80% Fluid-added mass, tip clearance
Ti CBeam water, open 0.80% Approximate weighted average of modes Fluid-added mass
Ti CBeam, water tight 3.00% Approximate weighted average of modes Fluid-added mass, tip clearance
Ti CBeam, LH2, open 0.80% Approximate weighted average of modes Fluid-added mass, E = f(temp),
Ti CBeam, LH2, tight 2.00% Approximate weighted average of modes Fluid-added mass, tip clearance, E = f(temp)
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2 Literature Survey

An extensive literature survey was undertaken to determine an approach for quantifying the uncertainties of numerous
complicating effects on the dynamic characteristics of the full-scale actual inducer. Investigation into the implementation of
this concept led to a vast number of papers on uncertainty quantification (UQ), with a small subset focused on structural
dynamics. Atamturktur et al. [5] looked at the UQ of the natural frequencies and modes of the National Cathedral in
Washington, D.C., based upon a correlation to primitive random variables (RVs), such as material properties, and formulated
a Bayesian approach to quantifying the inference uncertainty of these properties using Gaussian process emulators. The
final result was a new posterior distribution of the dynamic characteristics, which is what is being sought here. As with our
study, the experiment used to make this updated inference is the modal test. The experimental data are used to quantify the
primitives, which are then filtered and propagated to obtain the desired output variance. These techniques are also applied to
the dynamics of wind turbine blades by Van Buren and Atamturktur [6]. As defined here, inference UQ is the determination of
a posterior that “is the probability law that leads to predictions of resonant frequencies that are statistically consistent with the
experimental data.” In these two papers, the Markov chain Monte Carlo methodology, which essentially is the development of
output statistics by numerous expensive simulations of the finite element models, is replaced by Gaussian process emulators.
The end result of this model updating process is a nondeterministic model rather than a typical deterministic one. Marwala
also uses the modal test to update the model via a Bayesian updating of the primitive random variables [7].

Mullins and Mahadevan do not look at structural dynamics specifically but do generate a Bayesian framework
encompassing all of the issues in the discipline, examining differences in propagation for aleatory versus epistemic
uncertainties, evaluating the impact of sparse data, incorporating experimental results, and examining model-form errors.
The number of considerations brought up in this paper is somewhat overwhelming, and the techniques necessary to address
them are quite advanced [8].

3 Conditional Covariance

As the focus of this study was only to quantify the uncertainty of the final model of the full-scale inducer rather than update
the model, which had been previously performed, it was deemed excessively complex to apply the techniques shown in the
literature, which focus on improving the primitive random variable posterior distributions and generating nondeterministic
models that would then be propagated. The initial concept was generated based on studies by the lead author identifying the
uncertainty in the new NASA Space Launch System Flight vehicle primary mode based on a ground modal testing of the
vehicle [9]. In that study, a quartile linear regression technique was used to obtain the flight mode purely as a regression on
a single ground mode, as opposed to this case, where dependence on a number of modes from different configurations was
sought.

Here, we have four different modal-tested configurations whose resulting dynamic data could be used to improve the
posterior distribution of the full-scale inducer natural frequency of concern. Based on the papers discussed above, a text on
the Gaussian processes by Gramacy was examined, which led to the definition of multivariable conditional covariance [10].
Derived from the Bayes theorem, which is

p (θ |x) = p (x|θ) p (θ)

p(x)
(1)

where θ is the parameter being inferred and x is the variable observed experimentally, it is stated that for a multivariate
random distribution where the random variables are expressed as vector x, this vector can be partitioned into x1, which is the
random variables for which updated statistics are sought, and x2, which is the random variable that has data that can be used
for inference:

x =
[
x1

x2

]
with sizes

[
q × 1

(N − q) × 1

]
(2)

The means of the RVs are partitioned similarly, and the covariance matrix relating the RVs is partitioned as

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
with sizes

[
q × q q × (N − q)

(N − q) × q (N − q) × (N − q)

]
(3)
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The distribution of x1 conditional on x2 equaling a, a known vector (in our case, the vector of modal test natural
frequencies), is therefore multivariate normal (x1| x2 = a) ~ N

(
μ,Σ

)
, where

μ = μ1 + Σ12Σ
−1
22 (a − μ2) and covariance matrix Σ = Σ11 − Σ12Σ

−1
22 Σ21. (4)

The concept of how this conditional calculation improves (reduces) the posterior variance is somewhat illustrated
graphically in Fig. 4. The multivariate surface is reduced to a two-dimensional (2-D) curve by taking a slice where the
information (the modal test natural frequency results) is given. This explains the odd fact that the information from the
modal test (i.e., x2 = a) is not in the formula for the covariance, which can be understood by realizing that for a multivariate
normal, any 2-D slice will have the exact same probability distribution function. Of course, this is based on the assumption
of normality, so an error depending on the level of nonnormality will exist.

The applicability of eigenvalue covariance as used here to infer a reduction in the posterior variance of a correlated
desired output eigenvalue is not conclusive (the authors do not claim to be experts in this complex discipline). However,
the methodology was presented to the author of the Gaussian process text, R. Gramacy, who believed that it was legitimate
[11]. In addition, although this technique itself was not found in the study of numerous papers, no rejection of the idea was
discovered either. Some ideas for technique validation will be proposed in the concluding section of this paper.

4 Application of Technique to Pathfinder Case

Although somewhat simplified from more advanced techniques presented in the literature, implementation onto the complex
fluid/structure models of the four modal tests as well as the actual inducer was anticipated to be a large challenge. A much
simple “pathfinder” case was first processed, therefore, to at least verify the mathematical accuracy of the techniques. The
ANSYS™ Workbench and Six-Sigma toolboxes proved critical for enabling the technique. For this case, a cantilever plate
(CP) in water with a tight clearance from the sides was modeled and a pseudo-modal test value assigned to the first two natural
frequencies. A model of a simply supported plate (SSP) in water was also modeled, with its fundamental frequency being
the sought-after variance to be reduced by conditioning upon the cantilever plate (CP) eigenvalues. The model of the beam,
cutaway of the surrounding fluid mesh, and model of the simply supported plate (SSP) with a partial visualization of the fluid
mesh are shown in Fig. 3. After much effort, it was realized that for this technique to work, every conceivable source of error
in the modal-tested structure (and only those sources) needed to be represented by primitive random variables. Therefore,
RVs “fluid-added mass (FAM) with tight tip clearance (TC) factor,” “cantilever plate geometric imperfection factor (GIF),”
and “flat plate geometric imperfection factor” with means of 1.0 and standard deviations of 0.05 were created. The FAM
factor was multiplied by the density of the water in both models, and as a simplification on varying the actual geometry, the
GIF factors were multiplied by the Young’s modulus of their models.

The goal of the process is to generate an accurate covariance matrix relating selected eigenvalues from both systems.
Rather than go through the Markov chain Monte Carlo with the models themselves, which would be completely intractable
for the complex inducer system, the ANSYS response surface system methodology is applied. Based upon the variation in
the given primitive random variables, a design of experiment set was established to generate the response surface. For each
design point, the first two eigenvalues were calculated and a second-order polynomial response surface created. A covariance
matrix between all the random variables (primitives as well as eigenvalues) was then calculated by performing a Monte Carlo
on the response surfaces 10,000 times. Statistics for each RV were also calculated. To ensure that the pseudo modal test value
was physically realizable, samples from the primitives were selected and a modal analysis performed to obtain these values
for the two cantilever plate modes.

A smaller covariance matrix relating only the eigenvalues was then selected and imported into Matlab, which is shown
in Table 2. The means and standard deviations of the eigenvalues as well as the pseudo-modal test values were also inputted
into Matlab and are shown in Table 3. The conditional mean and covariance values were then calculated using Eq. (4).

For this test case, only a small improvement in the coefficient of variation is obtained, but this is consistent given the poor
correlation between the two systems. For illustration, the response surface polynomial was imported into Matlab to enable a
separate Monte Carlo analysis to show the correlation between the fundamental modes of each system. A multivariate normal
probability density surface from this calculation for the fundamental modes is shown in Fig. 4, and a red line identifies the
pseudo-modal test value of the cantilever plate. The 2-D PDF curve obtained by slicing the surface at this point will be
posterior PDF of the simply supported plate given only that single input modal test. A great deal was learned from this
pathfinder case, particularly the importance of the selection of relevant random variables.
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Fig. 3 Cantilever plate with fluid mesh cutaway, simply supported plate in fluid

Table 2 Eigenvalue correlation
matrix

CP M1 CP M2 SSP M1 SSP M2

1.0 1.0 0.3803 0.2995
1.0 1.0 0.3565 0.2821
0.3803 0.3565 1.0 1.0
0.2995 0.2821 1.0 1.0

Table 3 Eigenvalue initial
statistical parameters, modal test
values, and conditional results

Mode Mean Coeff variation Modal test

Cant plate
mode 1

39.02 Hz 2.56% 42.991

Cant plate
mode 2

258.01 2.49% 278.52

Conditional
coeff
variation

SS plate
mode 1

231.9 2.79% 2.40%

SS plate
mode 2

434.33 2.43% 2.24%

5 Application of Technique to Inducer

As usual, the implementation of the technique to the actual inducer case proved orders of magnitude that are much more
difficult than those for the pathfinder case. Based upon the extensive literature survey and the pathfinder, five primitive
random variables were chosen to represent the first three of the modal test configurations (the SS inducer in LH2 was not
used to save modal-tracking review time, which will be discussed below). These primitive random factors are the fluid-added-
mass (FAM) effect on liquid density, tip clearance (TC) effect on liquid density, cryogenic (Cryo) effect on the titanium
alloy, geometric imperfection effect on the subscale inducer, and geometric imperfection effect on titanium tight clearance
and open clearance cantilever beams. As with the pathfinder case, the geometric effects are multiplied by the appropriate
Young’s modulus. Since only the effect on the full-scale inducer of the variances for FAM, TC, and Cryo are sought, it was
decided (after much debate) that a geometric imperfection factor for the FS inducer was not necessary; i.e., the correlation of
the FS inducer relative to the modal-tested cases needs to include all potential uncertainties in the tested cases but only those
effects whose variance will be conditionally inferred in the FS. There is a substantial incentive for reducing the number of
primitive RVs as each one doubles the number of design points, but this reasoning may not be rigorous and could lead to
error in the results if it is incorrect.
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Fig. 4 Multivariate normal probability density function with 2-D slice at given information value

Some simplifying assumptions were made to limit the number of independent primitive RVs. One is that the tip clearance
effect factor was assumed to be the same for the SS inducer in water with a medium tip clearance (see description in reference
[4]), the cantilever beam in LH2 with a tighter clearance, and the full-scale inducer with the tightest clearance. We believe
that the acoustic modeling technique for the tight tip regions, which is consistent for all of these models and gave excellent
results upon a direct test/analysis, will have this same unknown error.

One complicating factor is the modeling of the cavitating region on the full-scale inducer. That has not been discussed in
the author’s previous papers, and the details will be discussed in a future paper. For now, we simply state that there are two
cavitating regions on the blade, and different void fractions are assumed for each region. Each of these regions is assumed to
have the same effect of uncertainty due to the use of FAM and TC as the noncavitating regions.

The same general procedure using ANSYS was followed as with the pathfinder. Even though the FS 0ND second bending
mode was being sought, it is clear that this mode would be correlated with more than one of the other system’s modes, so
both the first and second of the cantilever beam modes were chosen, as well as the 0ND and 1ND modes of the SS inducer.
Upon completion and further understanding of the process, we realize that since these pairs are almost fully correlated with
each other, they probably do not yield any additional useful information to the final posterior inference, so they could be
deleted. In reality, the geometry imperfections might cause different correlations with the FS inducer mode, so if a more
precise method of representing that uncertainty was used, the extra mode would be useful. Another way to implement this
extra information would be to include a separate modal test error for each mode, but each extra parameter doubles the design
points, as noted earlier.

Compared to the pathfinder, though, this procedure had two additional severe complications. First, the acoustic/structure
models are each quite large, and since the five primitives require 54 design points (as determined automatically by ANSYS),
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Fig. 5 Zero nodal diameter, second bending mode of FS inducer (illustration warped)

the analyses had to be ported from a local computer to a Linux server and then results ported back using the ANSYS RSM
utility. As this utility is fairly new, and since the Linux server does not easily run more than a few analyses in parallel, this
effort resulted in quite a few failed runs before a step-by-step procedure for running the many design points developed. The
second complication was that it was determined that the modes chosen from each model switched in order quite frequently as
the primitives were altered from their nominal values in the design points. Although identifying the correct mode potentially
could have been performed automatically using a Modal Assurance Criterion calculation, implementing this would have
been quite difficult, so instead the modes for each design point were animated and reviewed manually to determine which
mode was the correct one to be tracked. The particular mode shape of the FS inducer is shown in Fig. 5. Table 4 shows the
information of most of the parameters used in the study (titanium alloy cryogenic Young’s modulus not shown due to export
control concerns).

As with the pathfinder case, the correlation matrix was calculated based on the response surface and so is dependent
on the accuracy of the surfaces. Both a full second-order polynomial and Kriging fits were attempted. ANSYS enables the
creation of a normalized plot of the response surface prediction versus actual design point calculation, where the closer the
points are to the diagonal the better the prediction is. As the plot for the second-order polynomial method shows in Fig. 6,
the match is fairly good. A 3D plot of the response surface and design points can also be generated (obviously only two of
the five primitives can be examined on a single plot), and this also shows a good match since most of the points lie on the
surface (some of those that do not are hidden) (Fig. 7). The Kriging technique, in contrast, does a better job of matching the
surface to the design points, but the response surface has large local warpages to try to match every point, so the second order
was chosen as an overall better predictor of the output eigenvalue parameter correlation, which outliers should not overly
influence.

6 Conditional Variance Results for FS Inducer 0ND Mode

The correlation matrix resulting from the process described results in the values shown in Table 5. The results are in the
range that would indicate useful answers as the correlations are good (generally above 0.5) and yet not perfect, which would
indicate that uncertainty is not being captured. This matrix and the parameter statistics were inputted into the Matlab code and
the conditional variance calculated as described in the pathfinder case. The results yield a posterior coefficient of variation
of the FS inducer 0ND mode of 0.68%, substantially yet believably improved from the unimproved value obtained directly
from the propagation of the primitive RVs of 1.18%. While this improvement may not sound noteworthy, it is multiplied
by three to incorporate a “three-sigma” overall range and is double sided, so the actual reduction in uncertainty is 3.02%,
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Table 4 Inducer parameters

Parameter Nominal/mean value Standard deviation Modal test Notes

FAM effect on liquid density ρ

(FAM)
1 0.05 Not applicable Primitive random variable

Tip clearance effect on liquid density
ρ (TC)

1 0.05 NA Primitive random variable

Cryogenic effect on Ti E (Cryo) 1 0.05 NA Primitive random variable
Geometric uncertainty effect on SS
inducer E (GeomSSE)

1 0.05 NA Primitive random variable

Geometric uncertainty effect on cant
beams E (GeomCBE)

1 0.05 NA Primitive random variable

SS inducer H2O tight tip clearance
ρ* FAM*TC

998.52 kg/m3 56.323 kg/m3 NA Derived input RV

SS inducer E*GeomSSE 2.001e11 Pa 8.0037e9 NA Derived input RV
Ti CBeam, open clearance LH2 ρ

*FAM
70.8 kg/m3 2.832 NA Derived input RV

Ti CBeam, open, E*GeomCBE*Cryo Not shown Not shown NA Derived input RV
Ti CBeam, tight clearance LH2 ρ

*FAM*TC
70.8 kg/m3 3.9935 NA Derived input RV

Ti CBeam, tight clearance LH2
E*GeomCBE*Cryo

Not shown Not shown NA Derived input RV

Full-scale inducer, tight clearance,
noncavitating region ρ *FAM*TC

70.8 kg/m3 3.9935 NA Derived input RV

FS inducer, tight LH2 cavitating
region 5% void fraction ρ *FAM*TC

67.26 kg/m3 3.7939 NA Derived input RV

FS inducer, tight LH2 cavitating
region 5% void fraction ρ *FAM*TC

63.72 kg/m3 3.5942 NA Derived input RV

SS inducer H2O tight tip clearance
0ND 2nd bending mode

1477.7 Hz 46.623 Hz 1509.4 Hz* Output parameter
*Modal test adjusted by 95.8%
to account for not modeling
fillet

SS inducer H2O tight tip clearance
1ND mode

1693 Hz 49.454 Hz 1689.6 Hz Output parameter

Ti CBeam, open clearance LH2 1st
bending mode

41.182 Hz 1.554 Hz 42.5 Hz Output parameter

Ti CBeam, open clearance LH2 2nd
bending mode

259.71 Hz 7.279 Hz 267.5 Hz Output parameter

Ti CBeam, tight clearance LH2 1st
bending mode

38.437 Hz 1.1013 Hz 40.252 Hz Output parameter

Ti CBeam, tight clearance LH2 2nd
bending mode

245.16 Hz 6.9753 Hz 256 Hz Output parameter

FS inducer 0ND 2nd bending mode 1505.3 Hz 17.859 Hz NA Sought-after uncertainty

which is quite significant in achieving the programmatic goals of the effort. Because of the considerable uncertainties in the
methodology itself, this value was compared with the test/analysis errors shown in Table 1, and a rough “upper bound” on
uncertainty of 3% is chosen for use in the final inducer assessment. As this value still reduces the original estimated total
range of uncertainty by 3%, it is of major value.

7 Conclusion and Future Work

A new methodology for quantifying the uncertainty of a fundamental natural frequency of a complex, untested system based
upon the Bayesian conditional covariance with modal-tested models of simpler systems has been presented. Although it
was intended on being somewhat simpler than other methodologies presented in the literature, the final process was still
extremely difficult due to the logistics of running a large number of central processing unit (CPU)-intensive simulations and
because of mode switching. In addition, a number of questions remain on the accuracy of the final variance value obtained,
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Fig. 6 Matching capability of second-order response surface

Fig. 7 Response surface for FAM and TC

in particular exactly how many and which uncertainties to represent for each configuration, how this value should relate to
test/analysis error, and the theoretical accuracy of this methodology in the context of the overall Bayesian UQ hierarchy
(as presented by Mahadevan). Nevertheless, if this value is considered along with simple test/analysis errors of the simpler
modal-tested systems, the resulting conservative estimate of the variance still has proven to be of tremendous value to the
program in assessing the susceptibility of the inducer to possible resonant excitation.

There are a number of possible courses of future work that could help assess the validity of the technique. The most
valuable would be to generate a somewhat simpler system of tested structures informing a more complex structure for which
the modes could actually be measured; it is not clear to the authors, however, exactly how the uncertainties themselves could
be measured for comparison to prediction. In addition, the primitive RV-focused methodology described by Atamturktur
could be implemented and the results compared with this eigenvalue covariance conditional technique. Finally, more study
on the response surface validation, normality of the multivariate PDF, and implementation of automatic modal tracking based
on the MAC would add information to the validation efforts.
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Application of Speaker Recognition x-Vectors to Structural
Health Monitoring

Kyle L. Hom, Homayoon Beigi, and Raimondo Betti

Abstract The domain overlap between speech and structural vibration presents opportunities to leverage advances in
speaker recognition for structural health monitoring. Classification of x-vectors, which are the outputs of a pre-final layer
from a time-delay neural network (TDNN) acoustic model, has been used to recent success in speaker discrimination. x-
Vectors present a flexible speaker representation for increased classification robustness, as they contain intermediate speaker
parameterizations rather than distinct class predictions for a specific identification task. In investigation of the parallels
between speech and structural acoustics, this paper explores the viability of the x-vector speaker recognition system for
structural damage detection. A TDNN following the x-vector structure is trained to classify damage scenarios from the Z24
Bridge Benchmark, using cepstral and pitch features from accelerometer measurements. x-Vectors are calculated for each
measurement, which are used to train a probabilistic linear discriminant analysis (PLDA) model for Z24 damage scenario
categorization. This approach yields strong performance in damage detection and classification, and we attempt a transfer
learning approach to use this developed TDNN for training a modified x-vector system for local damage. We also apply the
developed x-vector system to the LANL SHM Alamosa Canyon Bridge and UC-Irvine Bridge Column studies to explore
generalization of this method, obtaining strong results in damage detection. We find that the x-vector system demonstrates the
feasibility of speaker recognition techniques for structural health monitoring and shows significant potential for output-only
structural health assessment.

Keywords Structural health monitoring · Time-delay neural networks · x-Vectors · Transfer learning · Z24 bridge

1 Introduction

Structural health monitoring (SHM) and speaker recognition both leverage hidden information to find dynamic behavior
and recognize identifying characteristics of an acoustic system. The challenges unique to SHM are often difficult to
disentangle; natural degradation over the life of a structure is often unrecorded until failure, and the necessary sparsity
of sensor instrumentation provides limited representation of modified dynamics. Though much work in SHM has focused
on constitutive models to improve observation of hidden dynamics, there may be much to be gained from investigating
developments in speaker recognition. For example, nonlinear dynamics have been captured by data-driven mapping
techniques such as neural networks, i-vectors, and Gaussian mixture models, which are topical to the current research efforts
in speaker recognition [1]. In this paper, we introduce a recently developed technique in speaker recognition to improve
damage detection for SHM.

As both speech and structural vibrations fall under the acoustic domain, we can use a structural measurement dataset to
test speaker recognition techniques. One established resource is the Z24 Bridge Benchmark provided by the KU Leuven
Structural Mechanics Section for development of damage detection techniques [2, 3]. Efforts in constitutive modeling have
yielded some success in identifying damage for the Z24 Bridge Benchmark, though limited by how slight the changes in
spectral features are over the progressive introduction of damage [4, 5]. However, with current integration of techniques from
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machine learning into conventional structural analysis tools [6], and the success of speaker recognition features in damage
identification [7, 8], nonlinear structural behaviors may be better captured via data-driven methods.

To explore this research path, we use Kaldi, a robust open-source speech recognition toolkit [9]. The Kaldi team at
Johns Hopkins University has recently developed the x-vector speaker recognition technique, which is leading the field
in speaker classification [10–12]. x-Vectors are the intermediate layer outputs from a time-delay neural network (TDNN)
trained to classify speakers from speech audio. TDNNs were first used in 1989 to learn temporal relationships between
speech sequences for phoneme recognition [13], and were recently rediscovered as effective and computationally efficient
alternatives to other sequence-detecting neural networks, such as RNNs or LSTMs. Once trained as an acoustic model to find
these temporal relationships within speech, the TDNN’s penultimate layers provide outputs, or embeddings, which represent
speaker characteristics. By extracting these embeddings for classification, instead of using the final, discrete output classes
of the TDNN, the x-vector formulation can robustly tolerate variations of the speaker’s behavior.

As speaker classification is an analogous problem to damage classification in structural health monitoring, this paper
applies the x-vector formulation to damage classification for the Z24 Bridge Benchmark to assess the technique’s potential
value in the field. We present three tasks to this x-vector method: global damage scenario classification using x-vectors, local
damage severity classification using the damage relationships learned in the damage scenario task, and application of the
global damage scenario x-vector system to identify structural modification for unseen LANL SHM datasets.

2 Data Preparation

2.1 Data Resources

We use the Z24 Bridge Benchmark Progressive Damage Test (PDT) provided from the KU Leuven Structural Mechanics
Section [2, 3]. The PDT dataset has 17 cases of applied damage (Table 1) for the instrumentation in Fig. 1 with ambient
and forced vibration testing. The sensor measurements are sampled at 100 Hz for 65k samples, for a total of approximately
5800 min of data per damage case. Anomalies in the sensor data are recorded in the test documentation and are removed or
addressed with the recommended processing from the documentation.

The accelerometer measurements must be adjusted so that the frequency content is mapped to the Mel-frequency ranges
used for Kaldi’s speech features. As the relationship between frequency and Mel-frequency is nearly linear up to 1 kHz,
we perform a frequency warping of the waveforms to stretch the native sampling rate of 100 Hz to 2 kHz and the Nyquist
frequency from 50 Hz to 1 kHz. The waveforms are normalized by the largest amplitude in the dataset, to preserve low-
amplitude signals from the quantization inherent in conversion to audio file formats. Detrending is performed for all
waveforms, as several instances of sensor drift are recorded in the Z24 documentation.

2.2 Training and Test Data

Assignment of class labels corresponds to the damage scenarios in Table 1. The damage case numbers are assigned to all
sensor waveforms from the same damage scenario. Sensor locations for the training set are selected after removing sensor
locations which have absent or degraded waveforms during at least one damage scenario, as we want to train the TDNN on a
balanced number of waveforms per damage scenario. All removed sensor locations are shown in Fig. 1, and we supplement
the test set with these sensors’ valid waveforms from the other damage scenarios. Hence, the test set in Fig. 1 is constructed
from the Z24 reference sensor locations (R1, R2, and R3), a 3-DOF sensor opposite R1 (208), two column 3-DOF sensors
(432, 531), and the available non-degraded waveforms from the degraded accelerometer set (99V, 199L, 203L, 512L, 512V).
These 19 sensor waveforms per scenario in our test set constitute approximately 7% of the 263 total available waveforms per
scenario from the Z24 PDT test. Consequently, the training set consists of the remaining 244 sensor waveforms.

2.3 Local Damage Labeling

In the interest of leveraging the granularity of the Z24 PDT sensor arrangement, local damage severity (‘Estimated Location’
and ‘Assigned Severity’) is assigned in Table 1. Severity is labeled as described in the Z24 documentation, from a scale of 1
to 7. We assign severity to sensor measurements at the given Location Label (e.g. only waveforms from HH4 are assigned
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Fig. 1 Front and top view of the Z24 bridge instrumentation [3, 14]. Sensor locations reserved from the training dataset R1V, R2(L,V,T), R3V,
208(L,V,T), 432(L,V,T), and 531(L,V,T) are represented by the yellow-filled circles, and sensors with missing data from damage tests 99V, 199L,
203L, 512L, 512V are represented by the orange-filled circles. Both orange and yellow sensors are used in the test set

Table 1 Z24 progressive damage tests and assigned local damage severity

Damage
case

Estimated
location

Assigned
severity Damage scenario

Damage
case

Estimated
location

Assigned
severity Damage scenario

1 None 0 Undamaged condition 9 HH1,2,3 3 Spalling of concrete at
soffit, 12 m2

2 HH4 1 Installation of pier
settlement system

10 HH1,2,3 3.5 Spalling of concrete at
soffit, 24 m2

3 HH4 2 Lowering of pier, 20 mm 11 Setup1,9 4 Landslide of 1 m at abutment

4 HH4 2 Lowering of pier, 40 mm 12 Setup1,9 4.5 Failure of concrete hinge

5 HH4 3 Lowering of pier, 80 mm 13 Setup1,9 5 Failure of 2 anchor heads

6 HH4 3 Lowering of pier, 95 mm 14 Setup1,9 5.5 Failure of 4 anchor heads

7 None 1 Lifting of pier, tilt of
foundation

15 HH1,3 6 Rupture of 2 out of 16 tendons

8 None 1 New reference condition 16 HH1,3 6.5 Rupture of 4 out of 16 tendons

– – – – 17 HH1,3 7 Rupture of 6 out of 16 tendons

Severity 1–3 for Cases 2–8). As damage for cases 9–17 are cumulative, severity only increases at the location of induced
damage (e.g. waveforms from HH1-3 shifts in Severity from 3.5 to 6 due to Cases 10–15).

3 Analysis

3.1 Data Augmentation

The available sensor data for training a neural network can be increased, or augmented, through speed perturbation and
addition of foreground and background noise [12]. Speed variation of 0.9×, 1.0×, and 1.1× is performed before noise
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corruption. The augmentation is applied with three independent noise sources, consisting of foreground and background
white and brown noise, and background traffic recordings from [15]. In total, this augmentation expands the dataset
approximately eightfold.

3.2 Feature Selection

Mel-Frequency Cepstral Coefficients (MFCCs), pitch, delta-pitch, and probability of voicing features are standard features
used in speaker recognition, and are chosen for a preliminary foray into damage detection. Each measurement is divided
into evenly spaced sections, or frames, of 25 ms duration sliding over 10 ms intervals, over which features are calculated and
mean- and variance-normalized.

In Kaldi, the MFCCs are calculated from an inverse discrete cosine transform of the log of the signal’s power spectral
density [9]. MFCCs represent periodic behavior of frequency spectra over an auditory frequency warping. The dynamics of
spectral shifting captured in cepstra is assumed to be of similar utility in the structural domain as it is in the speech domain.
As damage is introduced to a structure, modes may shift and new acoustic behaviors may appear, as illustrated in Fig. 2. In
this study, we assess the effect of varying MFCC resolution on damage detection. We use speech standards of high and low
MFCC resolution, or 13 and 30 coefficients, respectively. We refer the reader to [1] for a formal description of the calculation
of MFCCs.

Normalized pitch, delta-pitch, and probability of voicing features calculated in Kaldi [16] are analogous to a structure’s
natural frequency, shifts in natural frequency, and the likelihood of such a shift happening. These features are appended to
the MFCC features to construct the feature vector per frame, resulting in 16-dimensional and 33-dimensional feature vectors.

3.3 Time-Delay Neural Network Architecture

We use a TDNN with the same structure presented in the x-vector formulation [12] to find distinguishing structural damage
characteristics across the Z24 PDT scenarios. The TDNN captures vibration dynamics by learning relationships between
features over a sequence of frames corresponding to the damage scenario. Exposure to past or future features from a given
point in the sequence is accomplished by defining a range of frames, or context, that are connected in a layer. As the
input layer is restricted to an ordered sequence of time-dependent features, the outputs of the following hidden layer are a
compressed representation of structural damage dynamics over the defined context.

As shown in Fig. 3, the first four layers (TDNN1–TDNN4) collect several frames of context from the sensor waveform
before and after the frame being assessed. To reduce sensitivity to the selection of frames when segmenting the signal,
a statistics pooling layer is inserted after sufficient frame-level representations are collected. This statistics pooling layer
collects all of the TDNN5 outputs in the segment of the measurement input and returns the mean and standard deviation
for the segment, compressing the context of the following layers into segment-level representations. The following layers
(TDNN6, TDNN7) fit the statistics from the T sequences to the corresponding damage scenarios, and a softmax output layer
provides the predicted class of the 17 damage scenarios. This TDNN is trained over eight epochs and thus sees all training
data eight times.

The x-vectors for each accelerometer signal are obtained from the outputs of TDNN6, yielding 512 × 1 dimensional
vectors. We can improve the damage classification performance by attempting to use an intermediate layer’s output as the
identifier of damage [11, 12]. The final output of the network is supposed to be the best-estimate of the classes, but this is
often not the case; variations in the test dataset may be uncaptured by the network, and the output at the end of the network
may be inflexible in distinguishing between classes (as the final layer is a softmax output layer, and tends to learn the
‘strongest’ separations between discrete classes). We hope that extracting outputs at a layer close, but not at the final output
layer may yield better class representations and reduce the effect of overfitting the network to particular damage scenarios.

3.4 PLDA Classification

We apply a LDA transformation to the x-vectors for dimensionality reduction from 512 to 200 dimensions. To perform
classification in the LDA-transformed space, a Probabilistic LDA (PLDA) classifier [17] is developed from the training set
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Fig. 2 Timeseries, spectrogram, and the first six MFCCs for R1V from damage cases 1 (left) and 17 (right). Though the spectral content has some
characteristic banding after the full damage procedure is performed on case 17, the differences between signals are more readily apparent from the
MFCC trajectory. In particular, case 17 has sharper and closer bands of MFCCs around durations of 0.0–0.2s and 0.7–1.0 s corresponding to the
‘clicks’ and ‘pops’ audible around that periodicity, likely due to the anchor and tendon failures
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t−7 · · · t−3

TDNN1

t−5 t−3 t−1

TDNN4

t3t0t−3

TDNN5

stats

TDNN6

TDNN7

Global

TDNN7.1

TDNN8

Local

Layer Layer Context Total Context Input × Output
TDNN1 [-2,-1,0,1,2] 5 (N -D×5)×512
TDNN2 [-2,0,2] 9 (512×3)×512
TDNN3 [-3,0,3] 15 (512×3)×512
TDNN4 [0] 15 (512×1)×512
TDNN5 [0] 15 512×1500
stats [0:T ) T (1500×T )×3000

TDNN6 [0] T 3000×512
TDNN7 [0] T 512×512
Global [0] T 512×17

TDNN7.1 [0] T 512×512
TDNN8 [0] T 512×512
Local [0] T 512×12

Fig. 3 15 Frames (t−7 ≤ t0 ≤ t7) are provided to the input layer (TDNN1). Following the red arrows, TDNN2’s t−5 node receives 5 frames
(corresponding to t−7 ≤ t−5 ≤ t−3) of N -D features (where N = 16 or N = 33) as inputs. The TDNN for global damage scenario classification
follows the standard x-vector configuration, while the TDNN for local damage severity appends two additional layers (TDNN7.1, TDNN8) to the
TDNN6 layer and is retrained on the local severity labels. Bold indicates layers for intermediate output extraction

of x-vectors and the LDA transform. The PLDA technique assigns continuous probabilities to the classes used in LDA, and
so can be used to determine log-likelihood ratios for the test set’s membership in the probability distributions of the damage
scenarios, within the LDA-transformed space. Hence, where LDA presents the ‘primary directions’ to maximize between-
class scatter and minimize within-class scatter, PLDA provides the probability an example belongs in the class groupings
separated along these ‘primary directions’. Classification is then performed based on the log-likelihood ratios, scoring a test
example against the clusters of training examples (as visualized in Fig. 4).

3.5 Local Damage Identification

Given the spatial granularity of the Z24 PDT sensor grid, we attempt to identify local damage severity over the damage
scenarios, utilizing the learned structural acoustic relationships from the previous TDNN. Following the transfer learning
technique from [18–20], we initialize a new network with the pretrained Z24 damage scenario TDNN’s TDNN1-TDNN6
layers, and append new layers TDNN7.1, TDNN8, and a softmax output layer as shown in Fig. 3. This local damage TDNN is
trained on the 12 local damage severity labels from Table 1 for only three epochs, as less training is required after initializing
with the pretrained global damage TDNN. We then follow the same LDA/PLDA classification procedure, extracting local
damage embeddings at TDNN7.1.

3.6 Validation on LANL Datasets

Though the Z24 damage scenario TDNN’s output layer is fitted to the Z24 PDT’s 17 damage scenarios, we can use this
TDNN to provide x-vectors for other structures. Using the Los Alamos National Lab SHM Experimental Datasets for the
Alamosa Canyon Bridge and UCI Column tests [21, 22], we perform the aforementioned data preparation procedure and feed
the converted measurements forward through the TDNN. The resulting x-vectors are then classified via the PLDA procedure
to assess how well they distinguish between structural modifications. For the Alamosa Bridge, we attempt to detect the
addition of a stiffener placed on the midspan of the bridge. For the UCI Column tests, we attempt to distinguish between six
cases of progressive loading for two columns with different reinforcement techniques.
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Fig. 4 Visualization of the LDA-transformed x-vectors from the first four largest eigenvalues (or LDA dimensions), demonstrating separability
of the x-vectors. Separation appears to follow intuitive groupings of the damage scenarios and order of importance for discrimination (where first
and second eigenvalues correspond to damage mechanisms, and third and fourth to levels of severity). The PLDA technique finds the centers and
covariances of these clusters, and provides a log-likelihood ratio for class membership scoring of a presented test example. (a) Separation of pier
lowering, spalling/landslide, and failure with first and second LDA dimensions. (b) Delineation of pier lowering depth with third LDA dimension,
failure severity with fourth LDA dimension

4 Results

The results for applying the x-vector formulation to the Z24, Alamosa, and UCI datasets are provided in Table 2. We use
accuracy, equal-error rate (EER), and area-under-the-curve (AUC) to assess the performance of this technique on these
datasets. Our best-performing x-vector damage scenario setup has an EER of 3.919%, which is comparable to the x-vector
performance on the VoxCeleb corpus and Speakers in the Wild Core with a minimum EER of 4.16% [12].

For the global damage scenarios in Fig. 5, the softmax output performs best, as it was directly trained to predict the
classes. Though the x-vectors do not perform as well in identifying damage type for low-damage scenarios, we see in later
results that their flexibility proves beneficial for classifying unseen data.
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Table 2 Damage classification via x-vector approach

13 MFCCs, 3 Pitch 30 MFCCs, 3 Pitch

Augmentation Acc.(%) EER(%) AUC Acc.(%) EER(%) AUC

Z24 Global x-vector – 87.977 5.938 0.989 91.372 3.919 0.994
x-vector (aug.) 83.451 7.525 0.983 88.967 5.658 0.986

softmax – 97.171 0.643 0.999 98.161 0.455 0.999
softmax (aug.) 95.757 1.225 0.999 96.322 1.067 0.999

Z24 Local TDNN7.1 – 71.146 11.376 0.954 72.419 12.414 0.951
TDNN7.1 (aug.) 63.366 14.120 0.929 66.195 13.626 0.932

softmax – 80.057 6.909 0.969 82.885 6.376 0.9709

softmax (aug.) 85.572 6.244 0.977 85.997 5.741 0.979
Alamosa x-vector – 99.972 0.023 0.999 99.954 0.046 0.999

x-vector (aug.) 99.954 0.037 0.999 99.935 0.065 0.999

UCI Column x-vector – 96.005 5.261 0.991 98.707 3.063 0.996

x-vector (aug.) 99.745 1.592 0.999 99.530 1.364 0.999

Bold indicates best-performing configuration.
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Fig. 5 Selected damage scenario confusion matrices. The x-vector approach appears to be biased towards predicting damage case 3, which is the
first instance of pier lowering. This may be a level of damage that is not well associated with increased pier lowering, and may emulate effects of
other damage cases. (a) Unaugmented 30 MFCCs, 3 Pitch Softmax Output. (b) Unaugmented 30 MFCCs, 3 Pitch x-Vector Output

When classifying local damage severities, the TDNN7.1 output confuses lower severities for higher severities more often
than the softmax output in Fig. 6. We believe this was caused by the population bias towards lower damage across the sensor
locations. This is in part due to the localization of damage methods: for example, tendon failures only increase severity
for the sensor locations distributed along the tendon. However, the flexibility of the intermediate layer output classification
appears to manifest for prediction of higher severity damage, as the TDNN7.1 output predicts this severity more accurately.

The detection-error-threshold (DET) curves for the damage classification tradeoff space indicate how much we can tolerate
false alarms in exchange for lower detection of damage scenarios [1]. From Fig. 7, we observe that the miss probability for
global damage can be reduced to 1% if we accept a 15% false alarm probability, indicating that the x-vector approach for
global damage classification may be effective for use in bridge inspections and damage assessments.

Strong performance is observed from the x-vector classification for the unseen LANL datasets. Of note is the improvement
which data augmentation during training of the Z24 TDNN provides for classifying the UCI Column damage: both
low-resolution MFCC and high-resolution MFCC feature configurations perform well with data augmentation. Speaker
recognition with x-vectors has shown improved performance with training on noise-corrupted and speed-perturbed signals,
and it is postulated that this sort of variation in data ‘loosens’ the fit of the x-vectors to the particular training data [12]. In
applying the learned acoustic knowledge from the Z24 dataset in the developed TDNN, this sort of data augmentation may
have increased the flexibility of the network in separating damage types across different structures.
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(b)

Fig. 6 Selected local damage severity confusion matrices. The TDNN7.1 output classification performs worse on the lower damage severities, but
errs on the side of conservatism in predicting more severe damage at more sensor locations. It correctly identifies severe damage more often than
the softmax outputs. (a) Augmented 30 MFCCs, 3 Pitch, Softmax Output. (b) Augmented 30 MFCCs, 3 Pitch, TDNN-7.1 Output
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Fig. 7 DET curves for x-vectors. (a) Global damage scenario. (b) Local damage severity

5 Conclusion

The application of x-vectors for structural damage recognition has been investigated using the Z24 Bridge Benchmark and
the LANL SHM Dataset. Damage scenario and local damage identification were performed, through development of two
TDNNs for these tasks and PLDA classification of their intermediate outputs. Several feature enhancement techniques
were explored to assess impact on damage assessment performance of these methods, including MFCC resolution and
noise augmentation. These acoustic representations replicated the success of their parent models for speaker recognition
in application to structural damage detection, with very strong results in distinguishing between damage scenarios across
various SHM datasets. The x-vector system developed on the Z24 Bridge Benchmark demonstrated flexible and accurate
performance in diagnosing structural health for all structures presented to the model.

In particular, the extension of damage scenario classification to local damage at particular sensors presents a promising
field for investigation. As this approach does not explicitly utilize the physical interactions between adjacent sensors,
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constitutive modeling may contribute physics-based structure to the x-vector framework’s adaptation to empirical data.
Future work in this area will encompass merging data-driven approaches (such as those presented in this paper) with
constitutive analysis methods, and extension of this technique to assess bridges with sparse instrumentation.
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Equation Discovery Using an Efficient Variational Bayesian
Approach with Spike-and-Slab Priors

Rajdip Nayek, Keith Worden, and Elizabeth J. Cross

Abstract A major challenge in the field of nonlinear system identification is the problem of selecting models that are not
just good in prediction but also provide insight into the nature of the underlying dynamical system. In this study, a sparse
Bayesian equation discovery approach is pursued to address the model selection problem, where it is treated as a Bayesian
variable selection problem and solved via sparse linear regression using spike-and-slab priors. The spike-and-slab priors
are considered the gold standard in Bayesian variable selection; however, Bayesian inference with spike-and-slab priors is
not analytically tractable and often Markov chain Monte Carlo techniques are employed, which can be computationally
expensive. This study proposes to use a computationally efficient variational Bayes algorithm for facilitating Bayesian
equation discovery with spike-and-slab priors. To illustrate its performance, the algorithm has been applied to four systems
of engineering interest, which include a baseline linear system, and systems with cubic stiffness, quadratic viscous damping,
and Coulomb friction damping. The results of model selection and parameter estimation demonstrate the effectiveness and
efficiency of the variational Bayesian inference compared to the conventional Markov-chain-Monte-Carlo-based Bayesian
inference.

Keywords Equation discovery · Nonlinear system identification · Spike-and-slab prior · Sparse Bayesian learning ·
Variational Bayes

1 Introduction

Characterising the behaviour of nonlinear structural dynamical systems plays a key role in shaping the fundamental
understanding of the underlying phenomena manifested by such systems. In forward analyses of these systems, generative
models are derived from first principles, in the form of governing differential equations of motion, which are then utilised
to analyse the behaviour of nonlinear structural dynamical systems and predict the possible future states. These governing
differential equations of motion for structural dynamical systems can often be conveniently represented in the state-space
form,

ẋ = M(x) + u (1)

where x is the state vector of system responses, ẋ is the time derivative of the state vector, u is the external input force, and
M(x) is the generative model embedding the equation of motion of the structure. When dealing with inverse problems, the
form of M is treated as unknown and one is tasked with positing a suitable generative model of M that best describes the
system dynamics, given some measurement data. This task constitutes the problem of model selection in nonlinear structural
system identification. One commonly estimates a black-box approximation [1, 2] to M, if the goal lies in only predicting
the future states, given some past measurements. However, when the goal extends beyond prediction and the user aspires to
select interpretable models—to understand the physics of the observed phenomenon—there arises a need to uncover the full
parametric form of an underlying governing equation of motion.

In the pursuit of interpretable dynamical models, standard model selection procedures postulate a small set of candidate
models based on expert intuition and use information-theoretic measures to select a best-fit model [3]. However, such
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procedures can become prohibitive when very little expert knowledge is available and the pool of candidate models is large.
With the rapid development of data-driven modelling, there has been an emergence of alternative frameworks of model
selection for nonlinear dynamical systems that depend more on data and much less on expert knowledge. An early effort in
this setting include the data-driven symbolic regression [4, 5] that searches through a library (or dictionary) of simple and
interpretable functional forms to identify the model structure or the governing equations of a nonlinear dynamical system.
While this strategy works well for discovering interpretable physical models, its dependence on evolutionary optimisation
for selecting the relevant variables from the dictionary makes it computationally expensive and unsuited to large-scale
problems. In a more recent study [6], the discovery process was reformulated in terms of sparse linear regression, which
makes the variable selection process amenable to solution using efficient sparsity-promoting algorithms, thus providing a
computationally cheaper alternative.

This study follows a sparse linear regression approach to equation discovery of nonlinear structural dynamical systems.
To describe the approach, consider a Single Degree-of-Freedom (SDOF) oscillator with equation of motion of the form,

mq̈ + cq̇ + kq + g (q, q̇) = u (2)

where m, c, k are the mass, damping, and stiffness, g is an arbitrary nonlinear function of displacement q and velocity q̇, and
u is the input forcing function. The first-order state-space formulation for this system is,

ẋ1 = x2 (3)

ẋ2 = 1

m
(u − kx1 − cx2 − g(x1, x2)) (4)

with x1 = q and x2 = q̇. Equation (3) can be ignored as it simply provides the definition of velocity; Eq. (4) captures the
governing equation of the structure’s motion. To uncover the underlying structure of the right hand side of equation (4), a
dictionary of basis functions is constructed, containing several simple and interpretable functional forms of the system states
and the input. The right hand side of equation (4) is then expressed as a weighted linear combination of the basis functions
of the dictionary as follows:

ẋ2 = θ1f1(x1, x2) + θ2f2(x1, x2) + · · · + θlfl(x1, x2) + θl+1u (5)

where, {f1(x1, x2), . . . , fl(x1, x2), u} represent the collection of basis functions/variables and {θ1, · · · , θl, θl+1} correspond
to the set of weights. Given noisy observations of time-series measurements of the system

{
x1,j , x2,j , ẋ2,j , uj

}N
j=1, where j

in the subscript indicates time point tj , the above problem reduces to a linear regression problem,
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(6)

where, y is the time-series vector of observations of the derivatives of x2, D is the dictionary matrix of basis variables, and
ε denotes the vector of residuals, taking into account model inadequacies and measurement errors. The task is now to select
which basis variables from the dictionary are to be included in the final model. The equation discovery approach followed
here assumes that only a few basis variables from the dictionary would actively contribute to the governing dynamics. As
such, the solution of θ would be sparse, i.e. would have only a few non-zero weights; hence, it is reasonable to seek sparse
solutions of θ in the above linear regression problem, as illustrated in Fig. 1.

There exists a variety of classical penalisation methods [7] such as lasso, elastic-net, etc. that promote sparsity by adding
a penalty term to the ordinary least-squares objective. Another deterministic sparsity-promoting method is the sequential
threshold least-squares, which runs a least-squares algorithm iteratively while eliminating the small weights at each iteration.
This method underpins the Sparse Identification of Nonlinear Dynamics (SINDy) algorithm—introduced by Brunton et al. [6]
in their pioneering work on equation discovery of nonlinear dynamical systems. Nevertheless, the performance of classical
penalisation as well as sequential threshold least-squares often critically depends on a regularisation parameter that needs
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Fig. 1 Sparse linear regression for selection of relevant basis variables (shown in blue)

(a) (b)

Fig. 2 Probability density functions of (a) the Student’s-t prior, and (b) the spike-and-slab prior (with the spike displayed by an arrow pointing
upwards)

tuning via cross-validation. A sparse Bayesian framework [8, 9] provides a more appealing alternative in this context; apart
from the usual advantage of uncertainty quantification, it offers natural penalisation via sparsity-promoting prior distributions
and allows simultaneous estimation of model and regularisation parameters, thereby avoiding the need for cross-validation.

In a Bayesian framework, sparse solutions to Eq. (6) are obtained by placing sparsity-promoting (or shrinkage) priors on
the unknown weight vector θ . The densities of such priors feature a strong peak at zero and heavy tails: the peak at zero
enforces most of the values to be (near) zero while heavy tails allow a few non-zero values. Examples of such priors include
Laplace [10], Student’s-t [8], Horseshoe [11], and spike-and-slab [12]. Previous studies [13, 14] on sparse Bayesian model
discovery approaches employed the Relevance Vector Machine (RVM) [15]—a popular implementation of the Student’s-t
prior. Despite its remarkable computational efficiency, an issue with the RVM is that it often results in false discoveries [16].
This issue with the RVM arises due to the use of the Student’s-t prior, and is undesirable, as false discoveries introduce more
complexity and hinder the interpretability of the estimated model.

Compared to a Student’s-t prior, a spike-and-slab (SS) prior is capable of producing sparser solutions and reducing false
discoveries. An SS prior represents a mixture of two distributions—a point mass at zero (the spike) for small weights, and
a diffused density (the slab) for the large weights—and is considered as the gold standard in Bayesian variable selection
(BVS) [17]. It is capable of shrinking the small weights to exactly zero; hence, it has the potential to induce a greater degree
of sparsity among the weights compared to a Student’s-t prior. Figure 2 provides a visual depiction of the densities of the
Student’s-t and SS priors.

A disadvantage of the SS prior is that the Bayesian inference can be computationally demanding: the posterior
computation with the SS prior is analytically intractable and one typically employs Markov Chain Monte Carlo (MCMC)-
based approaches—most commonly Gibbs sampling—to draw samples from the posterior distribution. Employing a Gibbs
sampler, it was shown that equation discovery with SS priors lends to more interpretable models [18] compared to the RVM,
although the runtime of the Gibbs sampler could be prohibitive for large systems. A faster alternative to MCMC-based
approaches is to use a variational Bayesian approach. A few studies [19, 20] have previously proposed Variational Bayes
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(VB) algorithms with SS priors to reduce the computational burden in BVS. The implementation in [19] assumed complete
independence of the variational distributions of the model parameters, and it led to severe underestimation of the posterior
covariance of the model parameters. On the other hand, [20] relaxed the independence assumption to a greater extent and
was able to better control the underestimation of posterior covariance.

This paper presents a novel application of VB to Bayesian equation discovery of dynamical systems with SS priors. A VB
algorithm is derived for posterior inference with SS priors, and its performance has been compared with an MCMC-based
sampling approach. Furthermore, the efficiency of the proposed approach has been compared with two other algorithms: (a)
RVM (that uses a Student’s-t prior) and (b) the deterministic SINDy algorithm [6]. The rest of the paper is structured as
follows: Sect. 2 describes the SS prior model for linear regression, followed by Sect. 3 describing the variational Bayesian
approach for BVS. Section 4 presents numerical demonstrations of equation discovery for four SDOF oscillators: a linear
oscillator, a Duffing oscillator with cubic nonlinearity, an oscillator with quadratic viscous damping, and one with Coulomb
damping. Finally, Sect. 5 summarises the conclusions of the paper.

2 Linear Regression Model with Spike-and-Slab Prior

Consider once again the linear regression problem in Eq. (6), rewritten here in a compact matrix-vector form,

y = Dθ + ε (7)

where, y is a N × 1 vector of state derivatives (also referred to as the target vector), D is a N × P dictionary
matrix,1θ is the P × 1 weight vector, and ε is the N × 1 residual error vector. The residual error ε is modelled as a vector
of independent Gaussian noise with diagonal covariance matrix σ 2IN

(
ε ∼ N (

0, σ 2IN
))

. With a known dictionary D, the
likelihood function can be written as,

y | θ , σ 2 ∼ N
(
Dθ , σ 2IN

)
(8)

To perform BVS with the SS prior, the linear regression problem is considered as part of a hierarchical model. The key
feature of the hierarchical model is that each component of θ is assigned an independent SS prior, defined as follows:

θi | zi, vs ∼ (1 − zi)δ (θi) + ziN
(

0, σ 2vs

)
(9)

The spike part of the prior is modelled by a Dirac delta function at zero [12], while the slab part is modelled by a continuous
zero-mean Gaussian density with a variance σ 2vs . Here vs is the slab variance and it is multiplied with σ 2 so that the prior
naturally scales with the scale of the outcome, that is, the results would not depend on the measurement units of y. Whether a
weight θi belongs to the spike or the slab is determined by an indicator variable zi : zi = 0 implies θi = 0, and zi = 1 implies
θi ∼ N (0, vs). In other words, zi = 0 or zi = 1 determines the inclusion or exclusion of the ith basis variable in the model.
Furthermore, each indicator variable zi is assigned an independent Bernoulli prior, controlled by a common parameter p0,

zi | p0 ∼ Bern(p0) (10)

Equation (10) implies that the selection of a basis variable is independent of the inclusion of any other basis variables from
the dictionary D. The parameter p0 ∈ (0, 1) represents the probability of zi = 1 and controls the degree of sparsity imposed
by the SS prior. Together, the weight vector θ and the vector of indicator variables z constitute the main parameters of the
SS prior model for linear regression. Finally, inverse-Gamma priors are assigned to the error variance σ 2,

σ 2 ∼ IG (aσ , bσ ) (11)

Note that vs , p0, aσ , bσ appearing in Eqs. (9)–(11) are treated as deterministic parameters, controlling the shape of the
respective priors. The hierarchical SS model for linear regression is illustrated in Fig. 3.

1Note the number of columns in the dictionary has been redefined as P = l + 1.
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Fig. 3 Graphical structure of the
hierarchical spike-and-slab model
for linear regression; the
variables in circles represent
random variables, while those in
squares represent deterministic
parameters
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3 Variational Bayesian Inference for Variable Selection

The information required for BVS using the SS prior is derived from the joint posterior distribution of the model parameters
p
(
θ , z, σ 2 | y

)
, which can be computed using Bayes’ rule in the form,

p
(
θ , z, σ 2 | y

)
= p

(
y | θ , σ 2

)
p
(
θ | z, σ 2

)
p (z) p

(
σ 2
)

p (y)
(12)

Here p
(
y | θ , σ 2

)
is the likelihood, p

(
θ | z, σ 2

)
p (z) is the SS prior over z and θ , p

(
σ 2
)

is the prior over measurement
noise variance, and p (y) is the normalising constant. Unfortunately, the posterior in Eq. (12) cannot be computed
analytically, and using MCMC-based sampling methods can be computationally expensive. Therefore, in this section, a
VB methodology is pursued for approximating the joint posterior distribution p

(
θ , z, σ 2 | y

)
by a simpler distribution.

However, the presence of the Dirac delta function in the SS prior makes the derivation of the VB algorithm difficult, and
hence the linear regression model with SS prior is reparameterised in a form that is more amenable to VB inference methods.
Specifically, the form of the SS prior is rewritten as [20],

y | θ , z, σ 2 ∼ N
(
D�θ , σ 2IN

)
, σ 2 ∼ IG (aσ , bσ ) ,

θi ∼ N
(

0, σ 2vs

)
, and zi ∼ Bern(p0), i = 1, . . . , P (13)

where the newly introduced term represents � = diag (z1, . . . , zP ).

3.1 Variational Bayes

In VB inference, a factorised distribution q(θ , z, σ 2) is chosen from a predetermined family of simple distributions Q and
then the distributional parameters are optimised such that the Kullback–Leibler (KL) divergence between the true posterior
p
(
θ , z, σ 2 | y

)
and the optimised variational approximation q∗(θ, z, σ 2) is a minimum. Put formally,

q∗(θ, z, σ 2) = arg min
q∈Q

KL
[
q(θ , z, σ 2) || p

(
θ , z, σ 2 | y

) ]
= arg min

q∈Q

Eq(θ ,z,σ 2)

[
ln

(
q(θ , z, σ 2)

p
(
θ , z, σ 2 | y

)
)]

(14)

where Eq(θ ,z,σ 2) [·] denotes the expectation with respect to the variational distribution q(θ , z, σ 2). The expansion of the KL
divergence term in Eq. (14) leads to an expression for the evidence lower bound (ELBO), which plays a key role in assessing
the convergence of VB methods.

KL
[
q(θ , z, σ 2) || p

(
θ , z, σ 2 | y

) ]
= Eq(θ,z,σ 2)

[
ln

(
q(θ , z, σ 2)

p
(
θ , z, σ 2 | y

)
)]
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= Eq(θ,z,σ 2)

[
ln q(θ , z, σ 2)

]

− Eq(θ,z,σ 2)

[
ln
(
p
(
y | θ , z, σ 2

)
p
(
θ , z, σ 2

))]
+ lnp (y)

= Eq(θ,z,σ 2)

[
ln

(
q(θ , z, σ 2)

p
(
θ , z, σ 2

)
)]

− Eq(θ ,z,σ 2)

[
lnp

(
y | θ, z, σ 2

)]
+ lnp (y)

= KL
[
q(θ , z, σ 2) || p

(
θ , z, σ 2

)]
− Eq(θ ,z,σ 2)

[
lnp

(
y | θ, z, σ 2

)]
︸ ︷︷ ︸

−ELBO

+ lnp (y)

= lnp (y) − ELBO ≥ 0 (15)

Since the KL divergence is non-negative and lnp (y) is constant with respect to the variational distribution q(θ , z, σ 2), the

ELBO can be seen as the lower bound to lnp (y), and hence, minimising KL
[
q(θ , z, σ 2) || p

(
θ , z, σ 2 | y

) ]
is equivalent

to maximising the ELBO, thus,

q∗(θ , z, σ 2) = arg max
q∈Q

Eq(θ ,z,σ 2)

[
lnp

(
y | θ, z, σ 2

)]
− KL

[
q(θ , z, σ 2) || p

(
θ , z, σ 2

)]
︸ ︷︷ ︸

ELBO

(16)

In this study, q(θ , z, σ 2) has been chosen to have the following factorised form [20]:

q(θ , z, σ 2) = q(θ) q(σ 2)

P∏
i=1

q(zi) (17)

and the corresponding individual variational distributions are selected as,

q(θ) = N (
μq,�q

)
,

q(σ 2) = IG (aq
σ , b

q
σ

)
,

q(zi) = Bern
(
w

q
i

)
, for i = 1, . . . , P (18)

Here,
{
μq,�q, a

q
σ , b

q
σ , w

q
i

}
represents a set of deterministic variational parameters whose values need to be optimised to

draw the approximate variational distribution closer to the true posterior distribution, in the sense of KL divergence (see
Eq. (14)). The optimal choice of the set of variational parameters that maximise the ELBO in Eq. (16) satisfies the following
relations [21, 22]:

q∗(θ) ∝ Eq(z)q(σ 2)

[
lnp

(
y, θ , z, σ 2

)]

q∗(z) ∝ Eq(θ)q(σ 2)

[
lnp

(
y, θ , z, σ 2

)]

q∗(σ 2) ∝ Eq(θ)q(z)

[
lnp

(
y, θ , z, σ 2

)]
(19)

and on solving the above, the expression for the variational parameters can be obtained as

�q =
[
τ
((

DTD
)

� � + v−1
s IP

)]−1
, (20)

μq = τ�qWqDT y, (21)

aq
σ = aσ + 0.5N + 0.5P, (22)

bq
σ = bσ + 0.5

[
yT y − 2yTDWqμq + tr

{((
DTD

)
� � + v−1

s IP
) (

μqμqT + �q
)}]

, (23)
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τ = aq
σ /b

q
σ , (24)

ηi = logit(p0) − 0.5τ
(
(μ

q
i )

2 + �
q
i,i

)
f T

i f i + τf T
i

[
yμ

q
i − D−iW

q
−i

(
μ

q
−iμ

q
i + �

q
−i,i

)]
, (25)

w
q
i = expit(ηi) (26)

In the above expressions, logit(A) = ln(A) − ln(1 − A), expit(A) = logit−1(A) = exp(A)/(1 + exp(A)), wq =[
w

q

1 , . . . , w
q
P

]T
, Wq = diag(wq), � = wqwqT + Wq(IP − Wq), and the symbol � denotes the element-wise product

between two matrices. Additionally, f i denotes the ith column of D, and D−i represents the dictionary matrix with the ith
column removed. As the variational parameters do not have explicit solutions and their update expressions are dependent
upon each other, an iterative coordinate-wise updating procedure is followed for optimising them, in which they are first
initialised and then cyclically updated conditional on the updates of other parameters.

3.2 Initialisation and Convergence

To implement the VB algorithm, one needs to set the values of the prior parameters {vs, p0, aσ , bσ } and initialise the
variational parameters {wq, τ }. The prior parameters are set as follows: a slab variance vs = 10, noise prior parameters
aσ = 10−4, bσ = 10−4, and a small probability p0 = 0.1 to favour the selection of simpler models. The VB algorithm
is found to be quite sensitive to the initial choice of the variational parameter wq which represents the vector of inclusion
probabilities of the basis variables. To provide a good initial guess, a grid-search procedure was suggested in [20]; however,
such an initialisation procedure is time-consuming and deemed inconvenient here. In this work, wq is initialised by setting it
to the model diagnostic parameter vector γ output by the RVM algorithm. The RVM diagnostic parameter, γi ∈ (0, 1), can
be interpreted as a probabilistic measure of how important the ith basis variable is in explaining the target vector y [8]; as
such, it relates well with the idea of variable inclusion probabilities. Moreover, a RVM run is cheap, and therefore getting a
good initial point for w(0) takes very little time. Lastly, the initial value of τ , which represents the expected precision of the
noise σ 2, is set to τ (0) = 1000.

The VB algorithm iteratively and monotonically maximises the ELBO and converges to a local maximum of the bound.
Starting with the initial variational parameters, the VB iterations are continued until the relative increase in the ELBO
between two successive VB iterations is very small, that is, when

ELBO(t) − ELBO(t−1) < ρ (27)

the iterations are terminated. Here, ρ = 10−6 is considered. The value of ELBO, at each iteration t , is computed using the
simplified expression:

ELBO(t) = 0.5P − 0.5N ln(2π) − 0.5P ln(vs) + aσ ln(bσ ) − ln�(aσ ) + ln�(a(t)
σ ) − a(t)

σ ln�(b(t)
σ )

+ 0.5 ln|�(t)| +
P∑

i=1

[
w

(t)
i ln

(
p0

w
(t)
i

)
+ (1 − w

(t)
i ) ln

(
1 − p0

1 − w
(t)
i

)]
(28)

where �(·) is the Gamma function, and a
(t)
σ , b

(t)
σ , μ(t), �(t), w(t) denote the variational parameters at the t th iteration,

dropping the ‘q’ superscript. Upon convergence, the variational parameters from the final step are denoted by a∗
σ , b∗

σ , μ∗,
�∗, w∗.

3.3 Bayesian Variable Selection

With a total of P basis variables in the dictionary, there are 2P possible models, where a model is indexed by which of the
zis equal one and which equal zero. For example, the model with zero basis variables has z = 0, whereas the model that
includes all basis variables has z = 1. The relevant basis variables to be included in the final model are selected based on the
marginal posterior inclusion probabilities (PIP), p (zi = 1 | y). Specifically, the basis variables whose corresponding PIPs
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are greater than half, i.e. p (zi = 1 | y) > 0.5, i = 1, . . . , P , are included in the final estimated model. The corresponding
model is popularly known as the median probability model and is considered optimal for prediction [23]. In VB inference, the
estimated w∗

i s can be interpreted as an approximation to the posterior probability of p (zi = 1 | y). Therefore, post inference,
the set of basis variables which correspond to w∗

i > 0.5 are included in the estimated model. Furthermore, the estimated

mean and covariance of the vector of weights θ , denoted by μ̂θ and �̂θ , are respectively populated with values of μ∗ and
�∗ at the indices corresponding to the selected set of basis variables, and the rest of the entries of μ̂θ and �̂θ are set to zero.
Thereafter, predictions with the estimated model can be made using the mean and the covariance of the weights, as shown
below,

μy∗ = D∗μ̂θ (29)

Vy∗ = D∗�̂θD∗T + (a∗
σ /b

∗
σ

)−1 IN∗ (30)

where D∗ is the N∗ ×P test dictionary, defined at a set of N∗ previously unseen test data points, μy∗ is the N∗ × 1 predicted
mean of the target vector, and Vy∗ is the predicted covariance associated with the target vector.

4 Numerical Studies

This section presents numerical studies for exploring the performance of the SS-prior-based VB inference for model/equation
discovery. Four SDOF oscillators of the form expressed by Eq. (4) are considered, each having different forms of the
nonlinear term g(x1, x2), as enumerated in Table 1.

The four systems are simulated using the following parameters:

• The parameters of the linear system are taken as: m = 1, c = 2, and k = 103.
• The three other nonlinear systems use the same values of parameters for the underlying linear part and only differ in the

additional nonlinear term g(x1, x2). The respective forms and the values of g(x1, x2) are provided in Table 1.
• The systems are excited using a band-limited Gaussian excitation with standard deviation of 50 and passband of 0 to

100 Hz.
• The displacement x1 and velocity x2 for each system are simulated using a fixed-step fourth-order Runge–Kutta numerical

integration scheme, with a sampling rate of 1 kHz.
• The acceleration ẋ2 is obtained using Eq. (4).

Noisy observations of the displacement x1, the velocity x2, the acceleration ẋ2, and the input force u are assumed, and the
noise is modelled as sequences of zero-mean Gaussian white noise with a standard deviation equal to 5% of the standard
deviation of the simulated quantities.

The equation discovery approach commences with a dictionary of candidate basis variables. In this work, the dictionary
D is composed of 36 basis variables, where each basis variable represents a certain function of the noisy measurements x1,
x2,

D =
{
P 1(x), . . . , P 6(x), sgn (x) , |x|, x ⊗ |x|, u

}
(31)

where, Pγ (x) denotes the polynomial expansion of order γ of the sum of state vectors (x1 + x2)
γ . The dictionary consists

of basis variables that are terms from polynomial orders up to γ = 6 and certain other terms. The term sgn (x) represents
the signum functions of states, i.e., sgn (x1) and sgn (x2). Similarly, |x| denotes the absolute functions of states, i.e., |x1| and
|x2|. The tensor product term x ⊗ |x| represents the following set of functions: x1|x1|, x1|x2|, x2|x1|, and x2|x2|. Finally, the
measured input force u is included directly in the dictionary. Note that the total number of models that can be formed by

Table 1 Simulation cases System Name g(x1, x2)

1 Linear 0

2 Duffing k3x
3
1 k3 = 105

3 Quadratic viscous damping c2x2|x2| c2 = 2

4 Coulomb friction damping cF sgn (x2) cF = 1
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combinatorial selection of all 36 basis variables in the dictionary is 236, and it grows exponentially as the number of basis
variables increases.

The constructed dictionary in Eq. (31) is often ill-conditioned, due to a combined effect of large-scale difference among
the basis variables and the presence of strong linear correlation between certain basis variables. Appropriate scaling of the
columns (i.e. the basis variables) helps to reduce the difference in scales and improve the conditioning of the dictionary. For
the purpose of Bayesian inference, the columns of the training dictionary are standardised (i.e. they are centred and scaled to
have zero mean and unit standard deviation) and the training target vector is detrended to have zero mean. Formally put, the
transformed pair of dictionary and the target vector

(
Ds , ys

)
input to the Bayesian inference algorithm in the training phase

has the form,

Ds = (D − 1μD)S−1
D

ys = y − 1μy (32)

where, 1 denotes a column vector of ones, μD is a row vector of the column-wise means of D, SD is a diagonal matrix of the
column-wise standard deviations of D, and μy is the mean of the target training vector y. Note that this modification implies
that, post Bayesian inference, the estimated mean and covariance of the scaled weights θ s , denoted by μ̂θ s and �̂θ s , have to
be transformed back to the original space using the relations: μ̂θ = S−1

D μ̂θ s and �̂θ = S−1
D �̂θ sS−1

D .
As the VB methodology is based on approximating the posterior, it is worthwhile to compare the results of the VB

inference to that of the MCMC-based Bayesian inference that can yield arbitrarily accurate posteriors. In this study, the
MCMC-based Bayesian inference is conducted with a Gibbs sampler, with sampling steps as follows:

θ r | y, σ 2 ∼ N
(
ar , σ

2Ar

)
,with Ar =

(
DT

r Dr + v−1
s Ir

)−1
, ar = ArD

T
r y

σ 2 | y, θz ∼ IG
(
aσ + 0.5N, bσ + 0.5

(
yT y − aT

r A
−1
r ar

))

zi | y ∼ Bern(ξi),with ξi = p0

p0 + Ri(1 − p0)
, Ri = p (y | zi = 0, z−i )

p (y | zi = 1, z−i )
, i = 1, . . . , P (33)

where θ r is a r × 1 vector consisting of components of θ which belong to the slab (i.e. corresponding to zi = 1), Dr is a
N × r matrix that includes only those columns of D whose corresponding components of z are unity, and the calculation of
Ri uses the marginal likelihood of y given z

p (y | z) = �(aσ + 0.5N)

(2π)N/2(vs)r/2

(bσ )
aσ

�(aσ )

∣∣∣ (DT
r Dr + v−1

s Ir
)−1

∣∣∣
1/2

(
bσ + 0.5yT

(
IN − Dr

(
DT

r Dr + v−1
s Ir

)−1
DT

z

)
y

)(aσ +0.5N)
(34)

The Gibbs sampler is run with four chains, each chain having a total of 5000 samples and the first 1000 samples are discarded
as burn-in. The following values were set for the deterministic prior parameters: aσ = 10−4, bσ = 10−4, p0 = 0.1, and

vs = 10. The measurement noise variance σ 2(0) for each chain was initialised with slightly perturbed values about a nominal
mean value—set equal to the residual variance from an ordinary least-squares regression. To facilitate faster convergence
of the Gibbs sampler to a good solution, the initial vector of binary latent variables z(0) was computed by starting off with
z1, . . . , zP set to zero and then activating the components of z that reduce the mean-squared error on the training target
vector, until an integer number (≈ p0P) of components of z is equal to one. The multivariate potential scale reduction factor
R̂ [24], which estimates the potential decrease in the between-chain variance with respect to the within-chain variance, was
applied to assess the convergence of the generated samples of θ . A value of R̂ < 1.1 was adopted to decide if convergence
had been reached.

Figure 4 demonstrates the procedure of basis variable selection applied to the four SDOF oscillator systems using PIP.
In the case of MCMC, the PIP is calculated for the ith basis variable by averaging over the posterior samples of zi , i =
1, . . . , 36. For VB, the PIP for the ith basis variable is approximated by w∗

i . Basis variables with higher values of PIP imply
greater relevance, and as mentioned in Sect. 3.3, only those basis variables are selected whose PIPs are greater than 0.5
(shown by a dotted line in red). It can be seen that the estimated models for all the four systems are able to select the true
basis variables out of the pool of 36 basis variables. In all cases, the computed PIPs corresponding to the true basis variables
are close to one, which indicates very strong selection probability; however, that may not always be the case. For example, in
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Fig. 4 Illustration of Bayesian variable selection using posterior inclusion probability (PIP), computed by p (zi = 1 | y) in case of MCMC (SS-
MCMC) and approximated by w∗

i in case of VB (SS-VB). (a) Linear. (b) Duffing. (c) Viscous damping. (d) Friction damping

the quadratic viscous damping case (see Fig. 4c), the SS-MCMC algorithm selects the true basis variable x2|x2| with a PIP
of 0.9, while it discards a correlated basis function x3

2 with a PIP of 0.15. Such situations can arise when there exist strong
correlations between certain basis variables, causing the Bayesian algorithm to get confused as to which among the set of
correlated basis variables should be selected.

For the sake of comparison, Fig. 5 plots the pairwise joint posteriors of the model parameters obtained from MCMC
samples and those obtained from VB (using means and 95% confidence ellipses). Posteriors using SS priors often tend to be
multimodal, as is demonstrated by the scatterplots from MCMC samples. Since VB uses a single approximating distribution,
it is impossible to capture the multiple modes of the true posterior. Instead, VB methods approximate the true posterior
around its maximum a posteriori (MAP) estimate. This feature is clearly indicated in the above plots where the mean of
the VB distribution (labelled by ×) is found to coincide with the MCMC MAP estimate (depicted by the regions where the
MCMC samples are most concentrated). Alongside the VB means, 95% confidence ellipses—representing the joint 95%
confidence bounds—of the model parameters are also plotted (shown by yellow lines). It is noted that the 95% confidence
ellipses from VB are always smaller than the support of posterior samples from MCMC, which signify the underestimation
of posterior covariances from VB—a well known issue with VB methods [25].

4.1 Performance Comparison Using Monte Carlo Simulations

In this section, Monte Carlo simulations are used to compare the performance of equation discovery by the VB algorithm
with that of MCMC. In addition, results from the popular sparse Bayesian RVM algorithm [8] and the deterministic SINDy
algorithm [6] are also included for comparison. The RVM is implemented following the algorithm outlined in [15]. As
mentioned in Sect. 1, SINDy implements a sequential threshold least-squares to promote sparsity and requires selection of
the value of a regularisation parameter via cross-validation. A naive sweep over a sequence of regularisation parameter values
was performed, and a value was selected for which the corresponding test set prediction error was a minimum.

Thousand different realisations for each of the four systems, as summarised in Table 1, were considered. The realisations
were created by introducing random perturbations of 0.1κ to the nominal values of the parameters c, k, k3, c2, cF , such that
the new realisations have parameters c̄ = (1 + 0.1κ)c, k̄ = (1 + 0.1κ)k, and so on. The variable κ was sampled from a
standard Gaussian distribution N (0, 1) for each realisation. Note that the nominal values of parameters are the ones that were
used in the previous numerical study. In order to assess the performance, the following performance metrics are defined:
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Fig. 5 Comparison of pairwise joint posteriors of the model parameters obtained by MCMC (shown as scatter-plot with posterior samples) and
VB (depicted by mean and 95% confidence ellipse) for the three nonlinear oscillators: Duffing, quadratic viscous damping, and Coulomb friction
damping; the red circle shows the true parameter values

• Weight estimation error, eθ =
∥∥∥θ̂−θ

∥∥∥
2‖θ‖2
, where θ̂ is the estimate of the true (unscaled) weight vector θ corresponding to the

unscaled dictionary. Similarly, one can also define a scaled weight estimation error, eθs =
∥∥∥SD

(
θ̂−θ

)∥∥∥
2‖SDθ‖2
. In the case of SS

priors, θ̂ is set to the estimated mean of the weights, whereas in the case of RVM, it is obtained as the MAP estimate.

• Test set prediction error, ep =
∥∥∥y∗−D∗ θ̂

∥∥∥
2‖y∗‖2
, where y∗ is the test set of responses, D∗ is the unscaled test dictionary, and θ̂ is

the estimate of weight vector obtained using training data. 2000 data points were used for training and another 2000 data
points for testing.

• False discovery rate (FDR), defined as the ratio of the number of false basis variables selected to the total number of basis
variables included in the estimated model.

• Exact model selection indicator, M̂ = M, is a variable that takes value one when the estimated model M̂ has the exact
same basis variables as the true model M, and is zero otherwise.

• Superset model selection indicator, M̂ ⊃ M, is a variable that takes value one when the estimated model M̂ includes all
the basis variables present in the true model M, and is zero otherwise.

The above performance metrics are evaluated for each of the 1000 different realisations for all four systems, and the averages
of the results are reported in Table 2.
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Table 2 Comparison of results from SINDy, RVM, SS-MCMC, and SS-VB algorithms, averaged over 1000 realisations; bold numbers highlight
the best performing metric

Type Alg. eθs eθ ep FDR M̂ = M M̂ ⊃ M
Linear SINDy 0.168 ≈ 3 × 104 0.302 0.580 0.190 0.778

RVM 0.010 502.261 0.097 0.576 0.005 0.999

SS-MCMC 0.004 5.863 0.072 0.002 0.992 1.000
SS-VB 0.004 0.164 0.071 0.003 0.991 0.997

Duffing SINDy 0.253 609.134 0.168 0.558 0.113 0.742

RVM 0.070 47.377 0.091 0.560 0.001 0.976

SS-MCMC 0.026 4.116 0.078 0.037 0.846 0.977
SS-VB 0.034 4.631 0.076 0.041 0.845 0.971

Quadratic damping SINDy 0.147 ≈ 4 × 105 0.097 0.488 0.106 0.520

RVM 0.017 1546.542 0.073 0.497 0.003 0.931
SS-MCMC 0.017 0.004 0.072 0.030 0.859 0.865

SS-VB 0.012 0.004 0.071 0.019 0.886 0.892
Coulomb damping SINDy 0.216 ≈ 4 × 105 0.257 0.592 0.021 0.371

RVM 0.013 1034.780 0.092 0.496 0.003 0.993
SS-MCMC 0.011 0.004 0.071 0.018 0.847 0.850

SS-VB 0.009 0.026 0.070 0.003 0.762 0.765

Table 3 Average computational runtimes for a single run of SINDy, RVM, SS-MCMC (single chain), and SS-VB

SINDy RVM SS-MCMC SS-VB

3.65s 0.03s 34.23s 0.33s

It is noted that for all four systems, the model selection and parameter estimation performance using SS priors are superior
to that using RVM and SINDy, with the deterministic SINDy algorithm performing worst among the four algorithms. Overall,
it can be inferred that SINDy and the RVM very rarely find the exact true model and will likely include many false discoveries.
The occurrence of false discoveries can be regarded a major deterrent in equation discovery, where selecting the correct set of
basis variables is crucial for drawing scientific conclusions from the estimated model. Both implementations of SS priors do
remarkably well, particularly in reducing the false discovery rate and in increasing the exact model selection rate. Moreover,
the results from VB are seen to closely match those from MCMC, even outperforming them on many occasions. Such
competitive performance demonstrated by VB makes it efficient compared to MCMC, as the VB takes much less run time
than MCMC. The average runtimes of the four algorithms on a PC with 64-bit Windows 10 with 128GB RAM and Intel
Xeon E5-2698 (version 4) CPU at 2.20 GHz are enumerated in Table 3. The RVM is the cheapest in terms of computational
time, while the SS-MCMC is the most expensive. The SINDy algorithm run with a known regularisation parameter is often
faster than the RVM; however, when accounting for the time to find the appropriate regularisation parameter, the SINDy
can be much slower than RVM, as is shown in Table 3. The time reported for SS-VB is the combined time of running both
the RVM (required for initialising the VB) and the VB algorithm, and it is apparent that the SS-VB is much faster than
SS-MCMC, taking only 1/100th of the time used by SS-MCMC.

5 Conclusions

This paper investigates the use of an efficient variational Bayesian approach for performing equation discovery of nonlinear
structural dynamic systems. Using a dictionary composed of interpretable functions, the task of Bayesian equation discovery
is turned into a BVS problem, and solved using SS priors, which have the potential to derive more parsimonious and
interpretable models of the underlying structural dynamics. However, MCMC-based Bayesian inference with SS priors is
computationally demanding and can be prohibitive when the size of the dictionary grows and the number of observations is
large. Unlike the MCMC-based approaches, the VB methodology approximates the true posterior with a simple distribution;
it converts the Bayesian inference into a distribution-fitting optimisation problem and solves the optimisation at a much lower
computational cost.

Using a series of numerical simulations, it has been demonstrated that the SS-VB algorithm correctly identifies the
presence and type of various nonlinearities such as a cubic stiffness, a quadratic viscous damping, and a Coulomb friction
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damping. Most importantly, the SS-VB algorithm yields performance on par with the MCMC-based Gibbs sampler at a much
lower computational cost, making the VB approach very efficient in Bayesian equation discovery of nonlinear dynamical
systems.
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Bayesian Finite Element Model Updating Using an Improved
Evolution Markov Chain Algorithm

M. Sherri, I. Boulkaibet, T. Marwala, and M. I. Friswell

Abstract Model updating algorithms are used to minimise the differences between the experimental results of a structure
and the analytical solutions of its finite element model (FEM). In simple model updating procedures, iterative optimisation
techniques can be easily used to update models and reduce the errors between experimental and analytical results.
Unfortunately, experimental results as well as analytical models may have some degree of uncertainty that comes from
different sources. As a result, iterative optimisation techniques may not be enough to quantify the uncertainty associated
with structures. Uncertainty quantification approaches, such as the Bayesian approach, have the ability to incorporate
the uncertainties associated with experiments as well as the modelling process into the updating procedure. In Bayesian
finite element model updating, the uncertainty associated with the structural system is described by a posterior distribution
function, while numerical tools are essential to approximate the solution of the complex posterior distribution function.
In this paper, an improved evolution Markov chains Monte Carlo algorithm is used to solve the Bayesian model updating
problem. In the proposed approach, the Markov chain Monte Carlo (MCMC) method is combined with the differential
evolution optimising algorithm, while the final updating procedure is modified and extended with a snooker updater. The
proposed approach is tested by updating a structural example, and the results are compared with the results obtained by the
Metropolis-Hastings and the standard Differential Evolution Markov Chain (DE-MC) methods.

Keywords Bayesian model updating · Markov chain Monte Carlo · Differential evolution · Finite element model ·
Snooker updater

1 Introduction

The finite element method (FEM) is by far the most common technique for numerical analysis [1, 2]. It has wide application in
engineering, including structural dynamics. The principle of FEM is based on dividing the physical system into small regions
called “elements” and finding local solutions that satisfy the model equations on the boundaries of individual elements.
Combining individual solutions for all elements gives the global solution for the physical system. Generally, FEM accurately
predicts behaviour in simple structural dynamics. However, it can be relatively inaccurate when applied to the modelling of a
complex structural system. Usually, a significant mismatch between FEM outputs and experimental results appears, and the
final outcomes of FEM need to be updated to reduce the differences between modelling results and measurements.

Finite element model updating (FEMU) is a numerical procedure aimed at minimising the errors between FEM solutions
and experiment data [3–6]. FEMU can be classified into two main classes: direct updating methods and iterative updating
methods. The direct procedures are computationally inexpensive since no iterative process is involved. This method provides
an improved model by determining the system matrices (mass and stiffness) that give the experimental modal results (natural
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frequencies and mode shapes). However, the direct approach may lead to unrealistic results with no physical meaning. The
iterative updating methods, also referred to as indirect updating approaches, construct an objective function, which is defined
as the error between the experiment results and the FEM solutions, and then iteratively minimise this objective function. The
variation of the system matrices is bounded during the minimisation process, and thus the updated parameters tend to be
realistic.

Unfortunately, uncertainties are associated with FE models as well as experimental results, which consequently impacts
the correctness of the FEM solutions. These uncertainties can be resolved by uncertainty quantification techniques, which
can be applied during the iterative updating process. The Bayesian probability framework is well known for uncertainty
quantification, where the uncertain parameters are modelled by a probability distribution function. In Bayesian theory, a
posterior probability density function (PDF) is employed to identify the unknown (uncertain) parameters. However, the
posterior PDF of complex structures cannot be determined analytically. Therefore, sampling techniques are used to obtain
approximate solutions for the posterior PDF.

Markov chain Monte Carlo (MCMC) [7] methods are the most recognised techniques to generate samples from complex
probability distributions. These methods are based on generating samples from a posterior PDF, while each new sample
is either accepted or rejected according to the Metropolis acceptance criterion. However, the performance of the MCMC
methods declines proportionally with the complexity of the posterior PDF, and optimums may not be discovered for complex
problems during the sampling process. Thus, an extensive sampling procedure is recommended to avoid MCMC limitations.
Differential evolution (DE) is an evolutionary algorithm [8–11] that is often used for optimisation problems. The DE
algorithm solves the objective function by exploiting a population of particles and the interaction between these particles
until the optimal solution is reached. The DE algorithm can be merged with the Metropolis-Hasting (M-H) algorithm, a
basic MCMC algorithm, to generate samples at a population level instead of adopting only the local jump state. The DE-MC
algorithm is an advanced algorithm that combines the DE and M-H algorithms and can be applied to draw samples from a
posterior PDF. This method requires N chains to be evolved in order to provide the new samples.

Recently, more work has been conducted in order to improve the computational performance of the DE-MC algorithm.
The Differential Evolution Markov Chain with snooker update (DE-MCS) algorithm requires a smaller number of chains
and extends the exploration for optimal solutions to improve the DE-MC sampling procedure and sequentially solve the
posterior PDF. This paper introduces the DE-MCS algorithm to solve the Bayesian finite element model updating problem.
In addition, the performance of the DE-MCS method is investigated by updating a structural system. The obtained results
are then compared with the M-H and DE-MC algorithms. Section 2 explains Bayesian inference for model updating. Section
3 details the theory of the updating methods. Sections 4 presents the updating results of the DE-MCS algorithm. Finally, the
paper is concluded in Sect. 6.

2 Bayesian Inference

Generally, the model updating process can be formulated as a Bayesian procedure, while the uncertain parameters can be
easily obtained by the numerical solution of the posterior PDF. This function can be described by Bayes’ rule [12–14]:

P (θ |D,M) ∝ P (D| θ ,M) P (θ |M) (1)

where M represents the model class of the system, where each model class is defined by a different set of updating
parameters. θ is the vector of updating parameters θ ∈ Θ ⊂ Rd . D is the experimental data of the structural system,
represented by the natural frequencies f m

i and mode shapes φm
i . P (θ |M) refers to the prior PDF that expresses the initial

knowledge of the uncertain parameters θ given M and with the absence of D. The likelihood function P (D| θ,M) describes
the difference between the measured data and FEM solutions. P (θ |D,M)is the posterior PDF of the updating parameters
given a model class M and the measured data D. Only one model class is studied here, and hence M is neglected for a
simple Bayesian formulation.

The likelihood function is given by:

P (D| θ) = 1(
2π
βc

)Nm/2∏Nm
i=1f

m
i

exp

(
−βc

2

∑Nm

i

(
f m
i − fi

f m
i

)2
)

(2)
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where Nm is the number of measured modes, βc is a user-defined constant, and f m
i and fi are the i th measured and analytical

natural frequencies.
The prior P(θ ), which provides preliminary knowledge of the updating parameter θ , is defined by a Gaussian probability

distribution:

P (θ) = 1

(2π)Q/2∏Q
i=1

1√
αi

exp

(
−
∑Q

i

αi

2

∥∥∥θi − θi
0

∥∥∥
2
)

= 1

(2π)Q/2∏Q
i=1

1√
αi

exp

(
−1

2
(θ − θ0)

T Σ−1 (θ − θ0)

)
(3)

where Q is the number of the uncertain parameters, θ0 represents the mean value of the uncertain parameters, αi is the
coefficient of uncertain parameters, i = 1, . . . , Q, and the Euclidean norm of ∗ is noted by ‖∗‖.

The posterior PDF P (θ |D) of the updating parameters θ given the measured data D can be now described by substituting
Eqs. (2) and (3) with Eq. (1):

P (θ |D) ∝ 1

Zs (α, βc)
exp
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−βc
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(4)

where

Zs (α, βc) =
(

2π

βc

)Nm/2∏Nm

i=1
f m
i (2π)Q/2

∏Q

i=1

1√
αi

(5)

As can be observed from Eq. (4), the more is the structural complexity, the more difficult is the acquisition of the analytical
solutions for the posterior PDF. The dimensionality of the unknown parameters, along with the search space complexity, may
significantly affect the updating process, and the global solutions of the uncertain parameter may not be easily obtained.

3 Markov Chain Monte Carlo Algorithms

This section explains the three sampling techniques that are applied to approximate the posterior PDF in the Bayesian
framework. The methods are M-H, DE-MC, and an improved version of the stranded DE-MC referred to as the Differential
Evolution Markov Chain with snooker update (DE-MCS). Finally, the three algorithms are used to update a structural
example with real experimental data.

3.1 Metropolis-Hastings (M-H) Algorithm

The Metropolis-Hastings algorithm [15, 16] is one of the basic sampling algorithms used to approximate the posterior PDF
through generating new samples, also known as proposals, from a predefined proposal distribution. A transition probability
is later applied to accept the proposal or remain on the current Markov chain. Let θ = {θ1, θ2, θ3, . . . , θd} be a d-dimensional
updating vector, and P (θ |D) is the target distribution function. To acquire proposals from the P (θ |D) distribution, another
proposal density function q(θ | θ t − 1) is used to generate samples. Every new sample θ ∗ is proposed randomly, given the
value of the chain at the last iteration θ t − 1. Finally, the generated sample is accepted or rejected by the Metropolis-Hastings
rule:

α
(
θ∗, θt−1

) = min

{
1,

P
(
θ∗|D) q

(
θt−1|θ∗)

P (θt−1|D) q
(
θ∗|θt−1

)
}

(6)

The M-H algorithm for FEMU is as follows:

1. Initialise the algorithm using the prior probability distribution, with vector θo and set t = 1.
2. At each iteration t, generate a new sample θ ∗ from the proposal density q(θ ∗ | θ t − 1).
3. Update the FE model and calculate the posterior PDF, P

(
θ∗|D).

4. Determine the acceptance probability using the M-H rule, Eq. (6).
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5. Draw u from the uniform distribution U(0, 1).
6. If u < α(θ ∗ , θ t − 1), accept θ ∗ ; otherwise, reject θ ∗ .
7. Repeat 2–6 steps until the maximum number of iterations is achieved.

3.2 Standard DE-MC Algorithm

The DE-MC algorithm is an evolutionary-based MCMC algorithm that exploits the interaction among multichains to draw
new proposals. Consider θ is a d-dimensional vector of the updating parameters, θ = {θ1, θ2, · · · , θd}. Each updating
parameter has N chains of states, θ (d) = {θ1, θ2, . . . , θN}. The entire set of chains represents the population that evolves
during the iterations (generation process). The initial population is drawn from the prior probability distribution, Eq. (3). The
new proposal (state) θ∗

i of the i th chain, i ∈ {1, 2, . . . ,N}, is determined as [17, 18]:

θ∗
i = θ i + γ (θb − θa) + ε (7)

where θa and θb are two randomly selected vectors, with θ i �= θa �= θb. The symbol γ is a scaling factor that controls the
jumping distribution and can vary on a scale of 0.4 – 1. The default choice of γ is 2.38/

√
2d , which gives better mixing

of chains and preferable acceptance probability. The symbol ε is a small value added to the proposed chain to avoid the
degeneracy problem, and it is drawn from a normal distribution with mean μ = 0 and small variance σ 2; i.e., ε~N(0, σ 2).

The conditional detailed balance of the new value of the chain θ∗
i with respect to the posterior PDF is obtained by applying

the Metropolis ratio to accept or reject the proposed samples:

r = min

{
1,

P
(
θ∗

i

∣∣D)

P (θ i |D)

}
(8)

The jump in Eq. (7) is almost parallel to the direction θa — θb. If the small value ε is neglected, then all new proposed
samples are contained in a space of dimension min(d,N − 1). To efficiently sample over the entire search space, N must be
greater than d; e.g., N = 2d. Figure 1 shows the sampling process of the DE-MC and M-H methods.

As shown in Fig. 1, the new proposed chain by the DE-MC algorithm is determined by the magnitude of two randomly
selected chains, while the M-H method only adopts the random walk jump to propose the new sample state.

Below is the DE-MC algorithm for FEMU:

1. Initialise the population θ i, o, i ∈ {1, 2, . . . ,N}.
2. Set the scaling factor γ (γ = 2.38/

√
2d , and d is the dimension of the updating parameters).

3. For all chains N, determine the posterior PDF P (θ |D).
4. For all chains, i ∈ {1, 2, . . . ,N}.

4.1 Select at random two other vectors θa, θb, where θa �= θb �= θ i.
4.2 Sample the random term ε with small variance ε~N(0, σ 2).
4.3 Calculate the proposed sample, θ∗

i = θ i + γ (θb − θa) + ε, then estimate P
(
θ∗

i

∣∣D).

Fig. 1 Illustration of new sample proposition. Blue circles represent the chains. (a) M-H method. (b) DE-MC method
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4.4 Determine the Metropolis ratio, r = min
{

1,
P( θ∗

i |D)
P (θ i |D)

}
.

4.5 Accept the proposed sample θ i ← θ∗
i with probability min(1, r); otherwise, θ i remains.

5. Repeat steps 4.1 to 4.5 until the number of samples required is achieved.

3.3 Standard DE-MCS Algorithm

Generally, the DE-MC algorithm requires Ns > d to propose a new sample θ ∗ , and the difference vector (θb − θa) is
determined by means of the current interacting chains, Eq. (7). In contrast, the modified version of the DE-MC algorithm,
DE-MCS [19], requires fewer chains (e.g. Ns = 3), and the difference vector is obtained from the past states of the chains.
As a result, reducing the value of N helps to overcome several common disadvantages:

(i) All chains from the initial population by the prior distribution must move to the high-density region of the posterior
function. Thus, the convergence of the solutions is a factor of Ns.

(ii) Outlier problems occur more often with large Ns. If Ns − 1 chains have converged to a confidence level, it might require
extensive time for the last chain (outlier) to reach the same convergence.

(iii) Real-time processing takes longer to draw large Ns chains. Accordingly, the lower is the number of chains required, the
greater the practical applicability to deal with computationally demanding problems.

Generally, the DE-MCS algorithm has more algorithmic parameters than the standard DE-MC, which is due to
improvements made to enhance the DE-MC performance. Let � denote an Ns × d matrix that contains the states of the
chains at the current iteration, and M is the matrix that preserves the current and past states of the chains. The initial number
of rows in M is defined by R0, which has a default set to R0 = 10d as a computational effective initial size of the matrix. At
each generation (iteration), the updated chains (Ns rows) of � are appended to M, which expands the size of M through time
t by R + Ns. Therefore, a thinning rate Z is added to reduce the storage capacity, which decreases the change of M by order
Ns/R = Z/t.

The chain proposal of the DE-MCS algorithm is illustrated in Fig. 2. The proposal is generated along a reference line
through the current chain θ i and another state θx

M from the past position matrix M. The proposed chain θ∗
i is generated by

randomly selecting two other chains, θa
M and θb

M, then projecting them orthogonally on the reference line (θPa
M and θPb

M )
and adding the scaling factor γ s multiplied by the difference between the projection chains θPa

M and θPb
M to θ i. The proposal

generation of the new chain θ∗
i by DE-MCS is given as:

θ∗
i = θ i + γs

(
θPa

M − θPb
M

)
(9)

The default choices of DE-MCS parameters are Ns = 3, R0 = 10d, Z = 10, and γs = 2.38/
√

2d . In the DE-MCS
algorithm, the scaling factor γ s uses d = 1 for all d; thus, γs = 2.38/

√
2 ≈ 1.7. The reason for this choice (d = 1) is that the

projection step minimises the variance of the difference, which adjusts the resulting dimensionality. This default set returns
a better acceptance rate. Finally, the generated sample θ∗

i is accepted by the Metropolis ratio:

Fig. 2 DE-MCS new chain
proposal. Blue circles represent
the chains
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r = min

{
1,

P
(
θ∗

i

∣∣D) ∥∥θ∗
i − θx

M

∥∥d−1

P (θ i |D) ‖θ i − θx
M

∥∥d−1

}
(10)

The DE-MCS algorithm for FEMU is the following:

1. Initialise the R0 × d matrix M.
2. Sample the initial population from the prior distribution, copy the first Ns rows of M to �, and set R ← R0.
3. Z times update the population �:

(a) Select randomly another chain from the store matrix θx
M, and sample along the line θ i—θx

M.
(b) Select randomly two other random chains θa

M and θb
M.

(c) Project θa
M and θb

M orthogonally on the line θ i—θx
M yielding θPa

M and θPb
M .

(d) Determine the new chain proposal, θ∗
i = θ i + γs

(
θPa

M − θPb
M

)
.

(e) Calculate the posterior function P
(
θ∗

i

∣∣D), then estimate the Metropolis ratio:

r = min

{
1,

P( θ∗
i |D) θ∗−θx

M
d−1

P(θ i |D) θ i−θx
M

d−1

}
.

(f) Accept the proposal with probability min(1, r); otherwise, remain at θ i.

4. Append the current rows (generations) of � to M, so that R ← R + Ns.
5. Repeat steps 3 and 4 until the maximum number of iterations is achieved.

4 Application: F-shaped Structure

Figure 3 illustrates the structural system to be updated, which is constructed as an F-shaped structure [20]. The structure is
assembled by four square cross-sectional beams. The vertical beams are welded to each other and fixed to the base plate. The
horizontal beams are joined by bolts to the vertical side, forming an F-shaped skeleton. The structure is made of industrial
steel and weighs 13.8 kg. Young’s modulus is 2 × 1011 N/m2, and the material density is 7850 kg/m3. The cross-sectional
area A, the moment of inertia Ix, and the torsional constant J are 14.21 × 10−4 m2, 1.68 × 10−7 m4, and 3.36 × 10−7 m4,
respectively.

The structure was excited using an impact hammer, and the response was measured using an accelerometer fixed
at the upper half of the vertical beam (see Fig. 3). The experimental natural frequencies of the first five modes are

Fig. 3 The F-shaped structure
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ωm = {34.95, 104.02, 133.96, 317.52, 980.16} Hz. An FE model was developed using beam elements, where each beam
of the structure is divided into 50 small elements. The analytical frequencies for the first five modes of the FE model are
illustrated in Table 2.

In this section, the moment of inertia Ix for the main four beams of the F-shaped structure is chosen as the updating param-
eter, shown by Ixi in Fig. 3. Thus, the updating vector is θ = {Ix1, Ix2, Ix3, Ix4}. The moment of inertia of beam 1 is given by Ix1,
Ix2 for beam 2, etc. The updating vector is bounded by θmax={1.8834×10−7, 1.8834×10−7, 1.8834×10−7, 1.8834 × 10−7},
and θmin = {1.4834 × 10−7, 1.4834 × 10−7, 1.4834 × 10−7, 1.4834 × 10−7} to keep the updating results realistic.

The number of samples is set as T = 5000 for all algorithms, and the dimension of the updating vector is d = 4. The
number of chains (population) for DE-MC is N = 10, and the scaling factor is γ = 2.38/

√
2 × 4 ≈ 0.84. The parameters

of the DE-MCS method are set as the default choices, the number of chains Ns = 3, the number of rows for the initial store
matrix is R0 = 40, the thinning rate Z = 10, and the scaling factor γs = 2.38/

√
2 ≈ 1.7. For each algorithm, the updating

procedure of the F-shaped structural was run more than 15 separate times for each algorithm to verify their convergence and
accuracy. The outcomes for all runs are found to be almost identical for each algorithm.

Figures 4, 5, and 6 show the half boxplots with the sample distribution from the M-H, DE-MC, and DE-MCS algorithms,
respectively. The plots illustrate the sampling performance of the algorithms for each updating parameter θ i, and the median
line indicates the resulting updated value for each parameter. As seen in the plots, the algorithms have converged successfully
to high-density intervals, in which the generated samples are normally distributed around the mean. The outlier samples
(green dots) located outside the whiskers of the boxplot (range within 1.5|QR) are observed more often in the samples of
the M-H algorithm. On the other hand, the DE-MC method has fewer outliers than the M-H method, which means that the
DE-MC requires only a few iterations in order to reach the area with high probability. The DE-MCS algorithm, however,
has the fewest outliers overall, and only very few iterations were required to find the area with high probability. The fewer
outliers demonstrate the advantage of using a population-based sampling technique to obtain sufficient sampling proposals.
This means that the smaller number of chains, Ns � N, in the DE-MCS updating method is preferable to avoid outlier
solutions.

The updating parameters given by the three algorithms are listed in Table 1. As expected, the algorithms have successfully
updated the uncertain parameters and produced physically realistic values. Furthermore, the table includes the coefficient of
variation (c.o.v), which is defined as the ratio of the standard deviation σ i to the mean value of θ i. The c.o.v values are
considered as a standardised measure of dispersion of probability distribution. Overall, the c.o.v values in Table 1 for all

θ1 θ2 θ3 θ4

1.45E-007

1.50E-007

1.55E-007

1.60E-007

1.65E-007

1.70E-007

1.75E-007

1.80E-007

1.85E-007

1.90E-007

1.95E-007

ecaps
hcraes

gni tadp
U

25%~75%
Range within 1.5IQR
Median Line
 Samples

Fig. 4 Half boxplot with sample distribution (M-H method)
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Fig. 5 Half boxplot with sample distribution (DE-MC method)

θ1 θ2 θ3 θ4

1.45E-007

1.50E-007

1.55E-007

1.60E-007

1.65E-007

1.70E-007

1.75E-007

1.80E-007

1.85E-007

1.90E-007

1.95E-007

ecaps
hcraes

gni tadp
U

25%~75%
Range within 1.5IQR
Median Line
 Samples

Fig. 6 Half boxplot with sample distribution (DE-MCS method)
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Table 1 The updated parameters of the F-shaped structure using the M-H, DE-MC, and DE-MCS methods

Updating the moments of inertia Ix (m4)
Initial M-H method c.o.v (%) σi

θi
DE-MC method c.o.v (%) σi

θi
DE-MCS method c.o.v (%) σi

θi

Ix1 1.683 × 10−7 1.815 × 10−7 2.31 1.808 × 10−7 2.14 1.757 × 10−7 1.18
Ix2 1.683 × 10−7 1.555 × 10−7 3.03 1.522 × 10−7 2.68 1.550 × 10−7 1.58
Ix3 1.683 × 10−7 1.542 × 10−7 2.34 1.508 × 10−7 3.02 1.490 × 10−7 1.01
Ix4 1.683 × 10−7 1.765 × 10−7 5.55 1.770 × 10−7 6.79 1.709 × 10−7 4.64

Fig. 7 Parameter correlation on MH method

Fig. 8 Parameter correlation (DE-MC method)

updating parameters by all algorithms reflect an accurate sampling tendency toward the sampled distribution. A maximum
percentage for c.o.v is noticed at Ix4 for all algorithms. Nevertheless, DE-MCS gives the smallest c.o.v for Ix4 as 4.64%.

Figures 7, 8, and 9 show the correlation between the updating parameters using the M-H, DE-MC, and DE-MCS methods.
A small correlation means that the parameters are weakly correlated (<0.3), and a high correlation (>0.7) means there is



172 M. Sherri et al.

Fig. 9 Parameter correlation (DE-MCS method)

Table 2 The updated natural frequencies of the F-shaped structure using the M-H, DE-MC, and DE-MCS methods

Modes

Measured
frequency
(Hz)

Initial
frequency
(Hz) Error (%)

M-H
method
frequency
(Hz) Error (%)

DE-MC
method
frequency
(Hz) Error (%)

DE-MCS
method
frequency
(Hz) Error (%)

1 34.95 34.34 1.73 34.87 0.22 34.86 0.27 34.91 0.12
2 104.02 113.42 9.04 108.49 4.30 106.71 2.59 106.19 2.09
3 133.96 129.85 3.07 125.91 6.01 129.11 3.62 130.33 2.71
4 317.52 329.85 3.88 317.99 0.15 316.66 0.27 316.55 0.31
5 980.16 1039.30 6.03 1008.40 2.88 1002.30 2.26 996.46 1.66
TAE – 4.75 – 2.71 – 1.80 – 1.38

a logical relationship between the parameters. Correlation can be positive or negative, which indicates the way that the
parameters affect each other. Usually, the updated parameters in the Bayesian framework are correlated. These figures
show that all of the updated parameters estimated by the three algorithms are weakly correlated. This suggests a minimal
relationship between the variables.

The updated natural frequencies are given in Table 2. The analytical and measured natural frequencies are also provided

within the same table. The absolute error of each mode is estimated by |f m
i −fi |
f m
i

, and the total average error for the five modes

is also estimated as TAE = 1
Nm

∑Nm
i=1

|f m
i −fi |
f m
i

, Nm = 5. As listed in Table 2, the updated frequencies by DE-MCS give

the best results compared to the other algorithms. DE-MCS has decreased the TAE compared to its initial state from 4.75%
to 1.38%. The updated frequencies by DE-MC and M-H have better TAE percentages than the initial FE model. DE-MC
and M-H have minimised the TAE down to 1.8% and 2.71%, respectively. As expected, the evolutionary-based updating
techniques have demonstrated an advanced ability to explore the search space through finding new solutions by sampling at
a population level. Additionally, the evolutionary-based algorithms exploit the experience of the past chains and the current
interacting population to propose further accurate solutions.

The evaluation of the TAE at each iteration for all algorithms is plotted together in Fig. 10. The convergence for all methods
has occurred in under 1000 iterations. The TAE in the first few iterations (<30) is affected by the very early proposed samples.
This means that the selection of the solutions with experience from another sample anticipates a lower TAE in the first few
iterations for the population-based methods. Contrastingly, the opposite result is expected for the M-H method since it only
adopts the random local step to find new solutions.
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Fig. 10 Convergence of the total average error of the F-shaped structure using the M-H, DE-MC, and DE-MCS algorithms

5 Conclusion

This paper has introduced the Differential Evolution Markov Chain method with snooker update (DE-MCS) for the Bayesian
FE model updating problem. The DE-MCS algorithm is an improved version of the standard Differential Evolution Markov
Chain (DE-MC) algorithm that requires fewer chains and employs the past states from the storage matrix to generate new
proposals. In contrast, the standard DE-MC method requires a large number of chains and uses its ongoing population to
propose new solutions. In this paper, three algorithms, namely Metropolis-Hastings, DE-MC, and DE-MCS, are used to
update a structural system. The F-shaped structure was employed to investigate the performance of the algorithms to solve
the Bayesian FE model updating problem. The obtained results are discussed, and the differences are explained. The solutions
attained by the multichain methods (DE-MC and DE-MCS) are superior to the results of the single-chain method (M-H).
Furthermore, it is demonstrated that fewer chains for the DE-MCS procedure are sufficient to update the FE model. The
outcomes of the DE-MCS method are the best overall, and outliers are observed less. In addition, the real-time processing
required for the DE-MCS method with fewer chains is much shorter than for the standard DE-MC method since a large
number of chains are involved. Finally, as future work, the DE-MCS algorithm will be compared with the performance of
other evolutionary-based Markov chain Monte Carlo approaches.
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Using Dead and Thermal Loads to Capture the Behavioral
Changes of a Cable-Stayed Bridge

Christos Aloupis, Harry W. Shenton, and Michael J. Chajes

Abstract To enhance the maintenance process of the Indian River Inlet Bridge, the Delaware Department of Transportation
worked with the Center for Innovative Bridge Engineering (CIBrE) of the University of Delaware (UD) to install a structural
health monitoring (SHM) system on the bridge during construction. The SHM system collects data in real time 24/7. For this
research, data collected are transformed into 10-minute average values. These average values represent the response of the
bridge to slowly changing thermal loads or to constant loads such as dead loads.

This paper presents a method for identifying damage from the structures’ strain vs. temperature response. The
methodology is evaluated based on both actual response and response simulated using a calibrated finite element model
(FEM).

Using data collected over 8 years since the bridge was opened to traffic, a finite element model (FEM) was used to
evaluate the ability of the SHM to identify different types and severity of damage. To do this, different levels of severity were
simulated, and their effect on the structural response was compared with the observed response, including the variability of
that response. Using this approach, the ability to assess various levels of damage has been determined.

Keywords Structural health monitoring (SHM) · Thermal loads · Dead loads · Cable-stayed bridge ·
Temperature-driven SHM

1 Introduction

In structural health monitoring (SHM), different types of measurements can be used to evaluate the condition of structures
under various types of loads. In most cases, truck loads are used as they are easy to measure and apply, and they represent
a major load type. These truck loads can be applied during controlled load tests [1] or can be captured from ambient traffic
response. In either case, temperature loads are neglected by zeroing the measurements before the passes or removing the
effect of slowly changing loads using a moving average. In temperature-driven SHM (TD-SHM), the focus is on the effect
of thermal loads on the structure [3]. It has been shown that the strains developed due to thermal loads can be significantly
higher than those caused by traffic loads.

2 Background

The Indian River Inlet Bridge (IRIB) is a three-span cable-stayed bridge that was built with an embedded SHM system
consisting of more than 120 individual sensors [2]. Since 2012, when the IRIB opened to traffic, the system has operated
24/7, collecting and storing data. Among the collected data are strain and temperature measurements, which have been used
in this research. To reduce the effect of traffic loads and ambient noise on the strain measurements, 10-minute averages have
been applied to the data.

For the purposes of this research, the focus was on a controlling location of the back span, monitoring the strain
measurements captured in the top and bottom of the two edge girders in relation to the measured temperature.
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Fig. 1 Example of regression model for strain-temperature relation for a sensor located in the top of east girder in a controlling location for the
back span

3 Analysis

Using the 10-minute average data, regression analysis was conducted to define the relationship between the strain and
ambient temperature (Fig. 1). The slope and the intercept of the regression line were selected as the parameters to be
monitored to identify the behavioral changes of the bridge. To get these two parameters, we first needed to identify the
window of time that should be used (e.g., 1, 3, 5, 10 days, etc.) and the nature of the data that should be used (e.g., 24-h data
or night-only data). By selecting data that provide more consistent results, smaller changes can be captured. Furthermore, if
smaller time windows can be used, earlier alerts of a change are possible.

For all the different sets of data (different time windows and 24 h vs night data), it was observed that both the slope and
the intercept followed seasonal patterns. The effect of environmental parameters (e.g., average temperature) on the slope and
the intercept was evaluated. Data mining (DM) models that captured these effects were trained. These trained DM models
were used to predict the slope and the intercept based on the characteristics of the sample (average/max temperature, season,
average/max relative humidity), and these predictions were compared with actual values. The statistical characteristics of the
residuals show a significant improvement in the sensitivity of the method.

To evaluate the ability of the method to capture changes in bridge behavior, a finite element model (FEM) of the bridge was
used. The model was used to calculate strains developed on the bridge for dead loads and thermal variations. Two baselines
were generated for these two different loads to show the healthy condition of the structure. A comparison between the strains
due to thermal loads with the measured strains showed that the model was sufficiently accurate. Once the baseline was ready,
damage to various bridge elements (cables, girders, and bearings) was simulated using the model. For each damage scenario,
the same analyses were conducted for dead and thermal loads. The difference between the baselines and the calculated strains
reflects damage to the structure.

Regarding thermal loads, when a change in temperature results in different strains for the damaged and undamaged system,
this causes the slope of the regression line to change. Regarding dead load effect, when there is no change in temperature but
the strains for the damaged and undamaged system are not the same, this causes the intercept to be affected.

4 Conclusion

In this research, a method for capturing the behavioral changes of the IRIB based on the use of thermal and dead loads was
developed. DM models were trained to predict the slope and intercept that a linear regression model should have. These
models increased the accuracy of monitoring behavioral changes that affect strains which developed due to dead and thermal
loads. When damage was simulated using FEM, it was observed that changes associated with the bridge bearings affect the
slope of the regression line, while changes that cause a redistribution of loads (cable or beam damage) affect the intercept.
The sensitivity of this method allows one to capture these changes in earlier stages (i.e., smaller changes).
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Vibration-Based Damage Detection Framework of Large-Scale
Structural Systems

O. Markogiannaki, A. Arailopoulos, D. Giagopoulos, and C. Papadimitriou

Abstract The main objective of this work is to present a vibration-based damage estimation framework for structural
systems by integrating vibration experimental measurements in a high-fidelity, large-scale, finite element (FE) model. Using
the measured responses of a healthy structural system under operational vibrations, a parameterized FE model could be
tuned using state-of-the-art FE model updating techniques in order to develop a high-fidelity model of the structural system,
representing the healthy reference model. These methods provide much more comprehensive information about the condition
of the monitored system than the analysis of raw data. The diagnosed degradation state, along with its identified uncertainties,
can be incorporated into robust reliability tools for updating predictions on the residual useful lifetime of structural
components and safety against various failure modes, taking into account stochastic models of future loading characteristics.
A fault or damage would cause a sudden change in the operational responses of the structure. Incorporating the unhealthy
response under measured operational excitations, a series of FE model updating runs of incrementally reparameterized FE
models could be automated. The sensitivity of the unhealthy response to the parameter change pertains to the sensitive parts
of the FE model, where damage or fault is located. A recursive reparameterization of those sensitive parts, followed by an
FE model updating, leads toward both the detection localization and the type and magnitude of the fault or damage. The
proposed framework is applied on a small-scale laboratory steel truss bridge.

Keywords FE model update · Transmittance functions · Damage identification

1 Introduction

A fault or damage on structures under operation can cause a sudden change in their response, which gives rise to safety
issues and a potential loss of their functionality. Damage can develop due to either sudden extreme load events (such as
strong winds, earthquakes) or variable operational loading and environmental effects (e.g., fatigue due to heavy vehicle
traffic, corrosion due to environmental conditions). The application of systems for structural health monitoring (SHM) can
prevent failures by detecting damage at an early stage before it becomes critical for the safety or functionality of the structure.

A large number of studies on SHM techniques focus on using vibration-based methods to assess the dynamic properties
or response changes of structures in order to identify the development of damage. These vibration-based methods are derived
from the premise that any physical property changes in a structure will alter its dynamic characteristics, which can in turn be
used to identify any damage or deterioration in the structure [1].

One main concern in damage detection techniques has been the selection of appropriate damage indicators. Several
techniques consider the variation in modal characteristics such as natural frequencies and mode shapes as damage indicators.
For this purpose, the modal assurance criterion (MAC), firstly raised in the late 1970s, has served as an essential indicator
[2, 3]. A recent approach [4] is based on a probabilistic treatment of the MAC criterion between the predicted model and the
experimental mode shapes applied on reduced-order finite element (FE) modes of the structure. However, the capabilities of
modal-based methods may be limited in cases in which local damage does not significantly alter the modal characteristics
[5], especially when the level of damage is low. Therefore, different SHM methods have been also developed accounting for
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Fig. 1 Flow diagram of the proposed damage identification methodology

response models (frequency response functions (FRFs), operational deflection shapes (ODS), transmissibilities) as damage
indicators [6]. A characteristic of such methods is that they depend solely on output measurements. For instance, Maia et al.
[7] presented a damage detection method using frequency response models. Fassois and colleagues [8, 9] have proposed the
use of functional-model-based methods (FMBMs) for damage detection. Zhan et al. [10] introduced the use of transmittance
functions (TFs) in damage detection. Since then, several researchers have worked toward the development of damage
indicators based on transmissibility. Chesné and Deraemaeker [11] presented a thorough review on the use of transmittance
functions as damage indicators. Poulimenos and Sakellariou [12] introduced recently a novel data-based response-only
methodology that is founded on an autoregressive model with an exogenous excitation parametric representation of the
transmittance function between vibration measurements at two different locations on the structure. Such methods use data-
based models that detect a deviation from the initial health condition based only on undamaged-state data measured on the
monitored structure. Although data-based techniques are appealing as they require fewer resources (software, hardware) and
engineering knowledge than do physical model-based methods, model-based methods have more potential to address the
needs of monitoring systems, from damage detection to damage prediction.

In the present study, a novel approach for damage detection on large-scale structural systems for unknown input
excitation is introduced that integrates vibration experimental measurements in a high-fidelity finite element (FE) model
and uses transmissibility as an indicator for damage detection. The proposed methodology includes the development of a
parameterized FE model. The FE model is optimized using state-of-the-art FE model updating techniques [13–15] based
on experimental vibrational measurements on the healthy structure. The optimal model is then subjected to various damage
scenarios. A sensitivity analysis is performed for the “healthy” and “damaged” derived transmittance functions to acquire the
optimal sensor location for each damage scenario. Finally, experimental measurements can be conducted using appropriate
sensor locations to detect damage based on transmissibility as a damage indicator. The flow diagram in Fig. 1 summarizes
the proposed approach applied on a laboratory steel truss bridge.
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2 Transmittance Function Theoretical Basis

The transmittance function (TF) in accordance with the frequency response function (FRF) (admittance, mobility, inertance)
[16–18] is computed by the ratio of the response spectra of two vibration response signals (accelerations, velocities,
displacements) measured at two different locations of the structure for a given excitation location and direction regardless of
the amplitude and frequency content of the input. Given the definition of the spectral densities, the transmittance function is
expressed as the ratio

T r
jk (ω) = Sr

jk (ω)

Sr
kk (ω)

= hr
j
∗ (ω) hr

k (ω)

hr
k
∗ (ω) hr

k (ω)
(1)

assuming h(ω) to be a n × 1 column vector of the n × n transfer function matrix H(ω) and Sr
jk (ω) is the cross-spectral

density (CSD) between the j − th and k − th degrees of freedom (DOFs) of the structural system and Sr
kk (ω) is the

auto-spectral (power spectral) density (PSD) at the k − th degree of freedom, both for a given input located at the r − th
degree of freedom. The above expression clearly denotes the independence of the transmittance function from the excitation,
being a nondimensional complex quantity that is easy and simple to compute, defining how the amplitude and phase of the
transmitted vibration as a function of frequency is propagated between DOFs j and k of the structural system [10].

3 Transmittance Function Based Damage Detection

The sensitivity of transmittance functions to damage detection is fairly high because the transmitted vibration across any
chosen portion of the structure is characterized by a continuous function with peaks and valleys, similarly to the frequency
response functions but devoid of the limitation of the distance between the location of the input and the intended response
point needed to detect damage [11, 12, 19]. An indicator for damage detection and localization at a single-damaged-case
scenario is a scalar value DIjk, which quantifies the discrepancy between healthy and damaged transmittance functions
across j and k points for a given frequency band as
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where � � denotes amplitude and equivalently the damage indicator with values between [0, 1] for single node-node
transmitted signal as at a specific frequency band is
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for the amplitude and phase difference, respectively.

4 Transmittance Based Finite Element Model Updating Formulation

Derived from the MAC for any measured frequency point, ωi, a global correlation coefficient may be used [20, 21]:

xs (ωi) =
∣∣{TX (ωi)}H {TN (ωi)}

∣∣2
({TX (ωi)}H {TX (ωi)}

) ({TN (ωi)}H {TN (ωi)}
) (4)

where {TX(ωi)}and {TN(ωi)} are the experimental (measured) and the numerical (predicted) transmittance functions at
matching excitation – response locations. As the MAC value, xs(ωi) assumes a value between 0 and unity and indicates
perfect correlation with xs(ωi) = 1. For xs(ωi) = 0, no correlation exists [21].
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A supplementary correlation coefficient xa(ωi) is used by targeting the discrepancies in amplitude. The amplitude
correlation coefficient is defined as:

xa (ωi) = 2
∣∣{TX (ωi)}H {TN (ωi)}

∣∣
({TX (ωi)}H {TX (ωi)}

)+ ({TN (ωi)}H {TN (ωi)}
) (5)

where the response vectors are identical to those used for xs(ωi). Thus, two measures of fit are proposed using xs
(
ω̂r

)
and

xa
(
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)
, which correspond to the identified resonant frequencies of the system:
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Minimizing at global minimum the following single objective traditionally solves the parameter estimation problem:

J
(
θ;w) = w1J1

(
θ
)+ w2J2

(
θ
)

(7)

formed by the two objectives Ji

(
θ
)
, using the weighting factors wi ≥ 0, i = 1, 2, with w1 + w2 = 1. The objective function

J
(
θ;w) represents an overall measure of fit between the measured and the model predicted TFs [13, 22–27].

5 Experimental Application and FE Model Updating

In order to examine the applicability of the proposed damage detection and localization methodology, a laboratory-scale steel
truss bridge has been constructed. Various experimental tests were conducted where all the necessary elements of the TF
matrix required for determining the response of the structure were determined by imposing impulsive loading. The measured
frequency range was 0–2048 Hz, which includes the analytical frequency range of interest for the truss, 0–250 Hz. An initial
investigation indicated 15 natural frequencies for the truss bridge, in this frequency range. A schematic illustration of the
experimental arrangement is presented in Fig. 2. In this figure, the locations and directions of acceleration measurements
are presented, applying an impulsive load in various directions and at several locations. Specifically, the red circles present
the locations of the five triaxial accelerometers, while the green dots present the preferred locations where impact hummer
excitations were imposed.

Measurements from this experimental arrangement led to all combinations of transmittance functions between all
measured points, used for the subsequent finite element model update, in order to acquire a high-fidelity optimal FE model
of the healthy physical structure, which could be later interrogated in reference to optimal sensor placement for capturing
damage. The nominal material parameters of the steel material of the laboratory truss bridge are E = 210 GPa for the
modulus of elasticity, v = 0.3 for the Poisson’s ratio, and ρ = 7850 kgr/m3 for the density.

The developed FE model, along with its parameterization for FE model update, is introduced in order to facilitate the
applicability of the updating framework. The parameterized model is consisted of eight (8) parts, as shown in Fig. 3.

All members of the FE model of the truss bridge are modeled with shell elements, whereas all steel plates in connections
and supports are modeled with solid elements [28]. The covariance matrix adaptation evolution strategy (CMA-ES)
framework [13] is applied at t ±10% from the nominal values as design bounds, in order to update the developed FE
model applying the objective function of Eq. (7) using response residuals, which include shape and amplitude correlation
coefficients, and considering measured and numerical transmittance functions, including components at all sensor locations
and directions. The updated FE model was used to simulate five different damage scenarios where, in each scenario, a single
member of the truss was modeled with aluminum material properties, where E = 69 GPa is the modulus of elasticity, v = 0.3
is the Poisson’s ratio, and ρ = 2750 kgr/m3 is the density introducing damage of approximately 5% based on the healthy and
damaged FE models’ eigenfrequency differences. After assessing the sensitivity of the TF locations’ combination in order to
detect a single-damage scenario, the following results are presented.
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Fig. 2 Experimental setup of a laboratory-scale truss bridge

Fig. 3 Parts of the parameterized FE model. Detail of the FE model of the laboratory-scale truss bridge

6 Damage Detection

The following Fig. 4 presents the optimal sensor placement results after a sensitivity analysis in order to detect and localize
the damage in an indicative damage scenario, where the middle-lower member of the truss is modeled with aluminum
material properties.

During the experimental measurements, triaxial accelerometers were placed at optimal locations, as presented in Fig. 4,
and a series of experimental measurements were performed using an impulse hummer exciting the laboratory truss bridge at
critical locations to provide clear data for the computation of the equivalent TF matrix.

The following Fig. 5 presents a comparison of the simulated TFs computed by the optimal FE model produced by the
updating process depicted by a green continuous line and the respective experimentally measured TFs depicted by a red
continuous line. These graphs correspond to an approximate 5% damage of the above indicative damage scenario of the
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Fig. 4 Measurement locations for TF comparison for damage identification and localization in an indicative damage scenario

Fig. 5 Healthy optimal FE-model-simulated TFs (green line) against damaged experimentally measured TFs (red line) for 5% damage at element
number 1 (material differentiation). Comparison of TFs between members 1 and 4

middle member’s material change. Specifically, the left graph presents a comparison between the optimal simulated TFs and
the experimental ones in nodes 1 and 2, referring to member number 1, whereas the right graph presents the same comparison
between nodes 2 and 4, referring to member number 4. The frequency range is 0–250 Hz, which is the frequency band of
interest.

The reason that the two indicative members 1 and 4 were selected to be presented in this comparison is that these two
members demonstrate the maximum damage indicator (DI), shown in the bar graph in Fig. 6.

As presented in Fig. 6, the maximum damage indicator between accelerometers 1 and 2 isDI1 = 0.175. This is actually
the correct location of the damage as it refers to member 1, which is the one with material differentiation. Additionally, the
damage indicator between nodes 2 and 4 is DI4 = 0.116, which is a relatively high value for member 4, which is next to the
correct location of the damage. This approach indicated that measuring and comparing the TFs between two adjacent node
damage could be conveniently detected and localized, although the damage affects the TFs of the members in the proximity
of the actual damage.

7 Conclusion

In this work, an output-only vibration-based methodology for developing a high-fidelity FE model of a laboratory-scale
truss bridge, which could be interrogated for damage detection and identification, is presented. A damage detection
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Fig. 6 Damage indicators for 5% damage at element number 1 (material differentiation)

approach having unknown input excitation is introduced that utilizes an optimal high-fidelity finite element (FE) model
and transmittance functions as the indicator for damage detection. At first, a parameterized FE model was developed
and updated using a state-of-the-art FE modeling evolution strategy based on experimental vibrational measurements on
the healthy structure. Various damage scenarios are then simulated, and a sensitivity analysis follows for optimal sensor
location placement in order to acquire the most informative transmittance functions for each damage scenario. Experimental
measurements are conducted using appropriate sensor locations to detect damage based on an indicative damage scenario of
less than 5% damage in the first 15 eigenfrequencies. Results proved the potential of the proposed approach as damage was
accurately identified and detected.
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