
On Qualitative Analysis of Lattice
Dynamical System of Two- and
Three-Dimensional Biopixels Array:
Bifurcations and Transition to “Chaos”

Oleksandr Nakonechnyi, Vasyl Martsenyuk, Mikolaj Karpinski,
and Aleksandra Klos-Witkowska

Abstract We consider the model of two- or three-dimensional biopixels array,
which can be used for design of biosensors. The model is based on the system of
lattice differential equations with time delay, describing interactions of biological
species of neighbouring pixels. The qualitative analysis includes permanence
and extinctions of solutions, stability investigation, bifurcations and transition to
chaos. The stability conditions are obtained with help of the method of Lyapunov
functionals. They are formulated in terms of the value of time necessary for immune
response. Numerical research is presented with the help of phase portraits, square
and hexagonal lattice plots and bifurcation diagrams.
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1 Introduction

Nowadays, reaction-diffusion models are used in designing and studies of a lot of
detecting, measuring and sensing devices. Immunosensor, which are studied here
as an example, is kind of them. Such spatial-temporal models are described by the
systems of partial or lattice differential equations.
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The biosensor models are traditionally studied from the viewpoint of their
qualitative analysis. Even in case of a small number of spatial elements they show
complex behavior. In [1] it was shown that the model describing the chemical reac-
tion of two morphogens (reactants), one of them diffusing within two compartments,
results in “bi-chaotic” behavior. The origin of such chaotic phenomena1 were also
explained with help of statistics of topological defects [2].

When considering continuously distributed reaction-diffusion models described
by nonlinear partial differential equations, Feigenbaum-Sharkovskii-Magnitskii
bifurcation theory can be applied, which results in a subharmonic cascade of
bifurcations of stable limit cycles [3].

The lattice differential equations describes the systems with the discrete spatial
structure, which is more consistent with pixel devices. These equations were also
called earlier by a series of authors as spatially discrete differential equations [4].

In [5] a lattice differential equation was presented in the form

u̇ξ = gξ ({uζ }ζ∈Λ), ξ ∈ Λ, (1)

where a lattice Λ ⊂ R
n can be determined as a discrete subset of Rn, arranged in

accordace with some regular spatial structure. Here uξ , ξ ∈ Λ are the values of
u = {

uξ

}
ξ∈Λ

at the the points of the lattice, gξ are the right sides of the equations
enabling us the existence of solution.

As a rule, without loss of generality, they consider Λ = Z
n, which is the integer

lattice in R
n. The methods developed can be easily applied to a different type of

lattices, namely, the planar rectangular and hexagonal lattice, the crystallographic
lattices in R

3.
They pay an attention to the notion of delay in lattice differential equations, so-

called delayed lattice differential equations. One of the application dealing with
them is the investigation of traveling wave fronts and their stability [5]. The main
results are applied to the delayed and discretely diffusive models for the population
(see, e.g. [6, 7]).

Lattice differential equations are used as models in a lot of applications, for
example, cellular neural networks, image processing, chemical kinetics, material
science, in particular metallurgy, and biology [5, 8]. Lattice models are extremely
attractive from viewpoint of population dynamics especially in case of spatially
separated populations [5, 6, 8–11].

There are few reasons requiring consideration the hexagonal grid instead of
rectangular ones (primarily in image and vision computing). Namely, the equal
distances between neighboring pixels for hexagonal coordinate systems [12];
hexagonal points are packed more densely [13]; since the “hexagons are ‘rounder’
than squares”, the presentation of curves are more consistent with help of hexagonal
systems [13]; hence, mathematical operations of edge detection and shape extraction
are more successfully when applying hexagonal lattices [14].

1They call it as “spiral turbulence” [2].
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With the purpose of indexing hexagonal pixels, as a rule, they use two-2 or three-
element3 coordinate systems [15]. Our reasonings will be based on the last one. In
contrary to skewed axes, the using of the cubic coordinates enables us symmetries
with respect to all three axises.

2 Lattice Model of Antibody-Antigen Interaction for
Two-Dimensional Biopixels Array

Let Vi,j (t) be concentration of antigens, Fi,j (t) be concentration of antibodies in
biopixel (i, j), i, j = 1, N (Fig. 1).
The model is based on the following biological assumptions for arbitrary biopixel
(i, j).

1. We have some constant birthrate β > 0 for antigen population.
2. Antigens are detected, binded and finally neutralized by antibodies with some

probability rate γ > 0.

Pixel
(i − 1, j)

Pixel (i, j)
Pixel

(i, j − 1)
Pixel

(i, j + 1)

Pixel
(i + 1, j)

Dvi−1,j(t)Dnvi,j(t)

Dvi,j+1(t)

Dnvi,j(t)Dvi,j−1(t)

Dnvi,j(t)

Dnvi,j(t)Dvi+1,j(t)

Fig. 1 Linear lattice interconnected four neighboring pixels model, n > 0 is disbalance constant

2So called “skewed-axis” coordinate system.
3It is also known as “cube hex coordinate system”.
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3. We have some constant death rate of antibodies μf > 0.
4. We assume that when the antibody colonies are absent, the antigen colonies are

governed by the well known delay logistic equation:

dVi,j (t)

dt
= (β − δvVi,j (t − τ))Vi,j (t), (2)

where β and δv are positive numbers and τ ≥ 0 denotes delay in the negative
feedback of the antigen colonies.

5. The antibody decreases the average growth rate of antigen linearly with a certain
time delay τ ; this assumption corresponds to the fact that antibodies cannot
detect and bind antigen instantly; antibodies have to spend τ units of time before
they are capable of decreasing the average growth rate of the antigen colonies;
these aspects are incorporated in the antigen dynamics by the inclusion of the
term −γFi,j (t − τ) where γ is a positive constant which can vary depending on
the specific colonies of antibodies and antigens.

6. In case of the lack of antigen colonies, the average growth rate of the antibody
colonies decreases exponentially due to the presence of −μf in the antibody
dynamics, and to incorporate the negative effects of antibody crowding, we have
included the term −δf Fi,j (t) in the antibody dynamics.

7. The positive feedback ηγVi,j (t − τ) in the average growth rate of the antibody
has a delay since mature adult antibodies can only contribute to the production
of antibody biomass; one can consider the delay τ in ηγVi,j (t − τ) as a delay
in antibody maturation.

8. While the last delay need not be the same as the delay in the hunting term and
in the term governing antigen colonies, we have retained this for simplicity.
We remark that the delays in the antibody term, antibody replacement term and
antigen negative feedback term can be made different and a similar analysis can
be followed.

9. We have some diffusion of antigens from four neighboring pixels (i − 1, j),
(i + 1, j), (i, j − 1), (i, j + 1) (see Fig. 4) with diffusion D > 0. Here
we consider only diffusion of antigens, because the model describes so-
called “competitive” configuration of immunosensor [16]. When considering
competitive configuration of immunosensor, the factors immobilized on the
biosensor matrix are antigens, while the antibodies play the role of analytes
or particles to be detected.

10. We consider surface lateral diffusion (movement of molecules on the surface on
solid phase toward an immobilizated molecules) [17]. Moreover, there are works
[18, 19] which assume and consider surface diffusion as an entirely independent
stage.

11. We extend definition of usual diffusion operator in case of surface diffusion in
the following way. Let n ∈ (0, 1] be a factor of diffusion disbalance. It means
that only nth portion of antigens of the pixel (i, j) may be included into diffusion
process to any neighboring pixel as a result of surface diffusion.
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For the reasonings given we consider a very simple delayed antibody-antigen
competition model for biopixels two-dimensional array which is based on well-
known Marchuk model [20–23] and using spatial operator Ŝ offered in [24]
(Supplementary information, p.10)

dVi,j (t)

dt
= (β − γFi,j (t − τ) − δvVi,j (t − τ))Vi,j (t) + Ŝ{Vi,j },

dFi,j (t)

dt
= (−μf + ηγVi,j (t − τ) − δf Fij (t)

)
Fi,j (t)

(3)

with given initial functions

Vi,j (t) = V 0
i,j (t) ≥ 0, Fi,j (t) = F 0

i,j (t) ≥ 0, t ∈ [−τ, 0),

Vi,j (0), Fi,j (0) > 0.
(4)

For a square N × N array of traps, we use the following discrete diffusion form
of the spatial operator [24]

Ŝ{Vi,j } =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
[
V1,2 + V2,1 − 2nV1,1

]
i, j = 1

D
[
V2,j + V1,j−1 + V1,j+1 − 3nVi,j

]
i = 1, j ∈ 2, N − 1

D
[
V1,N−1 + V2,N − 2nV1,N

]
i = 1, j = N

D
[
Vi−1,N + Vi+1,N + Vi,N−1 − 3nVi,N

]
i =∈ 2, N − 1, j = N

D
[
VN−1,N + VN,N−1 − 2nVN,N

]
i = N, j = N

D
[
VN−1,j + VN,j−1 + VN,j+1 − 3nVN,j

]
i = N, j ∈ 2, N − 1

D
[
VN−1,1 + VN,2 − 2nVN,1

]
i = N, j = 1

D
[
Vi−1,1 + Vi+1,1 + Vi,2 − 3nVi,1

]
i ∈ 2, N − 1, j = 1

D
[
Vi−1,j + Vi+1,j + Vi,j−1 + Vi,j+1 − 4nVi,j

]
i, j ∈ 2, N − 1

(5)

Each colony is affected by the antigen produced in four neighboring colonies,
two in each dimension of the array, separated by the equal distance Δ. We use the
boundary condition Vi,j = 0 for the edges of the array i, j = 0, N + 1. Further we
will use the following notation of the constant

k(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 i, j = 1; i = 1, j = N; i = N, j = N; i = N, j = 1,

3 i = 1, j ∈ 2, N − 1; i ∈ 2, N − 1, j = N; i = N, j ∈ 2, N − 1;
i ∈ 2, N − 1, j = 1

4 i, j ∈ 2, N − 1
(6)

which will be used in manipulations with the spatial operator (5).
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Results of modeling (3) are presented further. It can be seen that qualitative
behavior of the system is determined mostly by the time of immune response τ

(or time delay), diffusion D and constant n.

2.1 Stability Investigation

Steady States The steady states of the model (3) are the intersection of the null-
clines dVi,j (t)/dt = 0 and dFi,j (t)/dt = 0, i, j = 1, N .

Antigen-Free Steady State If Vi,j (t) ≡ 0, the free antigen equilibrium is at E0
i,j ≡

(
0, 0

)
, i, j = 1, N or E0

i,j ≡
(

0,−μf

δf

)
, i, j = 1, N . The last solution does not

have biological sense and can not be reached for nonnegative initial conditions (4).

When considering endemic steady state E∗
i,j ≡

(
V ∗

i,j , F
∗
i,j

)
, i, j = 1, N for (3)

we get algebraic system:

(
β − γF ∗

i,j − δvV
∗
i,j

)
V ∗

i,j + Ŝ
{
V ∗

i,j

}
= 0,

(
− μf + ηγV ∗

i,j − δf F ∗
i,j

)
F ∗

i,j = 0, i, j = 1, N.

(7)

The solutions
(
V ∗

i,j , F
∗
i,j

)
of (7) can be found as a result of solving lattice equation

with respect to V ∗
i,j , and using relation F ∗

i,j = −μf +ηγV ∗
i,j

δf

Then we have to differ two cases.

Identical Endemic State for All Pixels Let’s assume there is a solution of (7)

V ∗
i,j ≡ V ∗, F ∗

i,j ≡ F ∗, i, j = 1, N , i.e., Ŝ
{
V ∗

i,j

}
≡ 0. Then E∗

i,j =
(
V ∗, F ∗

)
,

i, j = 1, N can be calculated as

V ∗ = −βδf − γμf

δvδf − ηγ 2 , F ∗ = δvμf − ηγβ

δvδf − ηγ 2 . (8)

provided that δvδf − ηγ 2 < 0.

Nonidentical Endemic State for Pixels In general case we have endemic steady
state which is different from (8). It is shown numerically in Appendix B that it
appears as a result of diffusion between pixels D.

At absence of diffusion, i.e. D = 0, we have only identical endemic state for
pixels of external layer. At presence of diffusion D > 0 nonidentical endemic states
tends to identical one (8) at internal pixels, which can be observed at numerical
simulation. This phenomenon is clearly appeared at bigger amount of pixels.
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Basic Reproduction Numbers Here we define the basic reproduction number
for antigen colony which is localized in pixel (i, j). When considering epidemic
models, the basic reproduction number, R0, is defined as the expected number of
secondary cases produced by a single (typical) infection in a completely susceptible
population. It is important to note that R0 is a dimensionless number [25]. When
applying this definition to the pixel (i, j), which is described by the equation (3),
we get

R0,i,j = Ti,j ci,j di,j

where Ti,j is the transmissibility (i.e., probability of binding given constant between
an antigen and antibody), ci,j is the average rate of contact between antigens
and antibodies, and di,j is the duration of binding of antigen by antibody till
deactivation.

Unfortunately, the lattice system (3) doesn’t include all parameters, which allow
to calculate the basic reproduction numbers in a clear form. Firstly, let’s consider
pixel (i�, j�) without diffusion, i.e., Ŝ

{
Vi�,j�

} ≡ 0. In this case the non-negative
equilibria of (3) are

E0
i�,j� = (

V 0, 0
) := ( β

δv

, 0
)
, E�

i�,j� = (
V �, F �

)
.

Due to the approach which was offered in [26] (in pages 4 for ordinary differential
equations, 5 for delay model), we introduce the basic reproduction number for pixel
(i�, j�) without diffusion, which is given by expression

R0,i�,j� := V 0

V �
= β

δvV �
= β(ηγ 2 − δvδf )

δv(βδf + γμf )
.

Its biological meaning is given as being the average number of offsprings produced
by a mature antibody in its lifetime when introduced in a antigen-only environment
with antigen at carrying capacity.

Following the approach of population dynamics it has to be shown that antibody-
free equilibrium E0

i�,j� is locally asymptotically stable if R0,i�,j� < 1 and it is
unstable if R0,i�,j� > 1 (see, e.g. [27]). It can be done with help of analysis of
the roots of characteristic equation (similarly to [26], p.5). Thus, R0,i�,j� > 1 is
sufficient condition for existence of the endemic equilibrium E�

i�,j� .
We can consider the expression mentioned above for the general case of the

lattice system (3), i.e., when considering diffusion. In this case we have the “lattice”
of the basic reproduction numbers R0,i,j , i, j = 1, N satisfying to

R0,i,j := V 0
i,j

V �
i,j

, i, j = 1, N, (9)
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where E0
i,j , i, j = 1, N are nonidentical steady states, which are found as a result of

solution of the algebraic system

(
β − δvV

0
i,j

)
V 0

i,j + Ŝ
{
V 0

i,j

}
= 0, i, j = 1, N, (10)

endemic states E�
i,j =

(
V �

i,j , F
�
i,j

)
, i, j = 1, N are found using (7).

It is worth to say that due to the principles of population dynamics the conditions

R0,i,j > 1, i, j = 1, N (11)

have to be sufficient for the existence of endemic state E�
i,j . We will check it only

with help of numerical simulations.

2.2 Persistence of the Solutions

We will use the following definition which generalizes [28] for lattice differential
equations.

Definition 1 System (3) is said to be uniformly persistent if for all i, j = 1, N

there exist compact regions Di,j ⊂ intR2 such that every solution (Vi,j (t), Fi,j (t)),
i, j = 1, N of (3) with the initial conditions (4) eventually enters and remains in the
region Di,j .

Theorem 1 Let (Vi,j (t), Fi,j (t)), i, j = 1, N be the solutions of (3) with initials
conditions (4). If

βηγ − μf δv > 0, (12)

then

0 < Vi,j (t) ≤ Mv, 0 < Fi,j (t) ≤ Mf (13)

for some large values of t . Here

Mv = β

δv

eβτ , Mf = 1

δf

(
ηγMv − μf

)
. (14)

Proof Firstly, we can prove that there exists some large instant of time T1 that
Ŝ{Vi,j (t)} ≤ 0, i, j = 1, N , t > T1.

Let’s assume the contrary, i.e. there is i�, j� ∈ 1, N , that Ŝ{Vi,j (t)} > 0 at
t > T1, which is a contradiction with a balance principle.
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Since the solutions of the system (3), (4) are positive, then

dVi,j (t)

dt
≤

(
β − δvVi,j (t − τ)

)
Vi,j (t). (15)

Further we can apply the basic steps of proof of Lemma 3.1 [29] which is proved in
nonlattice case (i.e. without spatial operator).

Remark 1 Conditions of uniform persistence of system (3) in nonlattice case were
obtained in [30]. They resulted in inequality (12) provided that

βδf + μf γ > 0 (16)

holds.

2.3 Extinction Research

The next result introduces a sufficient condition for the underlying grid size ensuring
that the solution of (3) is non-vanishing.

Theorem 2 Let for the system (3) the positive orthant Ω be positive invariant.
Besides that, let N be such that fextnc(N) < 1 holds, where

fextnc(N) = max
k,l=1,N

∣∣∣∣β − 4D

Δ2

(
1 + cos

π(k + l)

2(N + 1)
cos

π(k − l)

2(N + 1)

)∣∣∣∣. (17)

Then limt→∞ Vi,j (t) = 0, i, j = 1, N .

Proof It requires a comparison principle for differential equations.
The following inequalities hold for Vi,j (t)

Vi,j (t)

dt
< βVi,j (t) + Ŝ

{
Vi,j (t)

}
.

Consider N2-vector of the form

V (n) =
(
V1,1(t), V1,2(t), . . . , V1,N (t), V2,1(t), . . . , V2,N (t), . . . ,

VN,1(t), . . . , VN,N (t)
)


.
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We compare V (t)
dt

≤ CV (t), where C = IN ⊗ A + B ⊗ IN ,

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

β − 4D
Δ2

D
Δ2

D
Δ2 β − 4D

Δ2
D
Δ2

D
Δ2

. . .

. . .

β − 4D
Δ2

D
Δ2

D
Δ2 β − 4D

Δ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N,

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 D
Δ2

D
Δ2 0 D

Δ2

D
Δ2

. . .

. . .

0 D
Δ2

D
Δ2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N,

IN is N × N identity matrix. The N2 eigenvalues of C are of the form (see [31],
Theorem 8.3.1) λk,l(C) = λk(A) + λl(B), k, l = 1, N , where the eigenvalues of A

λk(A) = β − 4D

Δ2
− 2D

Δ2
cos (πk/(N + 1)), k = 1, N,

the eigenvalues of B

λl(B) = −2D

Δ2 cos (πl/(N + 1)), l = 1, N.

The comparison system Z(t)
dt

= CZ(t) tends asymptotically to zero if
∣∣λk,l

∣∣ < 1.
That is,

max
k,l=1,N

∣∣∣∣β − 4D

Δ2
− 2D

Δ2

(
cos

πk

N + 1
+ cos

πl

N + 1

)∣∣∣∣ < 1.

2.4 Numerical Simulation of Square 4 × 4 Pixels Array

First of all we calculate the basic reproductive numbers R0,i,j , i, j = 1, 4 due
to (9) (See Table 1). We see that the conditions (11) hold. Thus, equilibrium without
antibodies E0

i,j , i, j = 1, 4 is unstable and there exists endemic equilibrium E�
i,j ,

i, j = 1, 4.
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Table 1 The values of R0,i,j ,
i, j = 1, 4

R�
0,i,j 1 2 3 4

1 3.218727 3.425273 3.474323 3.224824

2 3.171270 3.235043 3.236289 3.126438

3 3.092287 3.107824 3.096617 3.040443

4 2.997269 3.020902 3.012915 2.971442

Table 2 The phase plane plots of the system (3) for antibody populations Fi,j versus antigen
populations Vi,j , i, j = 1, 4. Numerical simulation of the system (3) at n = 0.9, τ = 0.28725. Here
• indicates identical steady state, • indicates nonidentical steady state. Trajectories are constructed
for t ∈ [550, 800]. The solution behavior looks chaotic

The numerical simulations were implemented at different values of n ∈ (0, 1].
Here we can see that when changing the value of τ we have changes of qualitative
behavior of pixels and entire immunosensor. We considered the parameter value
set given above and computed the long-time behavior of the system (3) for τ =
0.05, 0.22, 0.23, 0.2865, and 0.28725. The phase diagrams of the antibody vs.
antigen populations for the pixel (1, 1) are shown in Table 2.

For example, at τ ∈ [0, 0.22] we can see trajectories corresponding to stable
node for all pixels.

For τ = 0.23, the phase diagrams show that the solution is a limit cycle with
two local extrema (one local maximum and one local minimum) per cycle. Then
for τ = 0.2825 the solution is a limit cycle with four local extrema per cycle, and,
for τ = 0.2868, 0.2869, 0.28695 the solutions are limit cycles with 8, 16 and 32
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Fig. 2 The time series of the solutions to the system (3) for the antigen population V1,3 from
t = 0 to 700 with τ = 0.28725 for initial conditions V1,3(t) = 1 and V1,3(t) = 1.001 (deviated),
t ∈ [−τ, 0], and identical all the rest ones. At the beginning the two solutions appear to be the same,
but as time increases there is a marked difference between the solutions supporting the conclusion
that the system behavior is chaotic

local extrema per cycle, respectively. Finally, for τ = 0.28725, the behavior shown
in Table 2 is obtained which looks like chaotic behavior. In this paper, we have
regarded behavior as chaotic if no periodic behavior could be found in the long-
time behavior of the solutions.

The divergence of nearby trajectories in phase space is one of the most striking
properties of chaotic behavior of deterministic systems [32]. In order to evaluate
that the solution is chaotic for τ = 0.28725, we perturbed the initial conditions
to test the sensitivity of the system. Figure 2 presents two trajectories (in red and
blue) starting from initial conditions with a small deviation (0.001). It can be seen
that till the moment about t = 400 the is no significant difference between the
trajectories, whereas further nearby trajectories are being deviated. The divergence
of the trajectories with the small initial deviation evidences numerically the chaotic
behavior at τ = 0.28725.

We have also checked numerically that the solutions for the limit cycles are
periodic and computed the periods for each of the local maxima and minima in
the cycles. In the chaotic solution region, the numerical calculations (not shown in
this paper) confirmed that no periodic behavior could be found.

A bifurcation diagram showing the maximum and minimum points for the limit
cycles for the antigen population V1,3 as a function of time delay is given in Fig. 3.
The Hopf bifurcation from the stable equilibrium point to a simple limit cycle and
the sharp transitions at critical values of the time delay between limit cycles with
increasing numbers of maximum and minimum points per cycle can be clearly seen.
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Fig. 3 A bifurcation diagram showing the “bifurcation path to chaos” as the time delay is
increased. The points show the local extreme points per cycle for the V1,3 population. Chaotic-
type solutions occur at τ ≈ 0.28725 and are indicated in red in the figure with value 0 for the
number of extreme points
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3 Three-Dimensional Biopixels Array

When modeling three-dimensional pixels array it is natural way to apply the model
based on the hexagonal lattice. Such model may use the following assumption.
Namely, antigens are assumed to diffuse from six neighboring pixels, (i + 1, j, k −
1), (i+1, j −1, k), (i, j −1, k+1), (i−1, j, k+1), (i−1, j +1, k), (i, j +1, k−1)

(see Fig. 4), with diffusion rate DΔ−2, where D > 0 and Δ > 0 is distance between
pixels.

Taking into account prerequisites mentioned above, we get a simplified antibody-
antigen competition model with delay for a hexagonal array of biopixels, which uses
Marchuk model of the immune response [20–23] and using spatial operator Ŝ which
is constructed similarly to [24] (Supplementary information, p.10)

Fig. 4 Diffusion of antigens for the hexagonal lattice model. Antigens from six neighboring
pixels interact, n > 0 is the constant of disbalance. Here ‘1’, ‘3’, ‘5’, ‘8’, ‘9’, ‘11’ have to
be replaced with DΔ−2Vi,j,k(t), ‘2’ with DΔ−2Vi+1,j,k−1(t), ‘4’ with DΔ−2Vi+1,j−1,k(t), ‘6’
with DΔ−2Vi,j−1,k+1(t), ‘7’ with DΔ−2Vi−1,j,k+1(t), ‘10’ with DΔ−2Vi−1,j+1,k(t), ‘12’ with
DΔ−2Vi,j+1,k−1(t)
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dVi,j,k(t)

dt
= (β − γFi,j,k(t − τ) − δvVi,j,k(t − τ))Vi,j,k(t) + Ŝ{Vi,j,k},

dFi,j,k(t)

dt
= (−μf + ηγVi,j,k(t − τ) − δf Fi,j,k(t)

)
Fi,j,k(t)

(18)

with given initial functions

Vi,j,k(t) = V 0
i,j,k(t) ≥ 0, Fi,j,k(t) = F 0

i,j,k(t) ≥ 0, t ∈ [−τ, 0),

Vi,j,k(0), Fi,j,k(0) > 0.
(19)

We use the following spatial operator of discrete diffusion for a hexagonal array
of pixels4

Ŝ{Vi,j,k} = DΔ−2
[
Vi+1,j,k−1 + Vi+1,j−1,k + Vi,j−1,k+1 + Vi−1,j,k+1 + Vi−1,j+1,k

+ Vi,j+1,k−1 − 6nVi,j,k

]

i, j, k ∈ −N + 1, N − 1, i + j + k = 0.

(20)

Each pixel is affected by the antigens flowing out six neighboring pixels, two in
each of three directions of the hexagonal array. The adjoint pixels are separated by
the distance Δ.

Boundary conditions Vi,j,k = 0 for the edges of the hexagonal array, i.e. if i ∨
j ∨ k ∈ {−N − 1, N + 1}, are used.

We can present analytical results with respect to the model (18) in the form
of restrictions for the parameters, enabling us persistence and global asymptotic
stability. Moreover, we executed numerical research of the system qualitative
behavior in dependence of changes of the time of immune response τ (delay of
time), diffusion rate DΔ−2 and factor n.

3.1 Persistence and Extinction of the Solutions

Concerning persistence, for the hexagonal lattice can be obtained similar result as
for square one (Theorem 1), just adding the third index.

Unfortunately, we didn’t manage to present such clear condition of extinction as
in Theorem 2. We can check it only numerically in an experimental way.

4Without loss of generality we consider spatial operator for internal pixels only.
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3.2 Numerical Study

For numerical simulation we consider model (18) of hexagonal pixels array at N =
4, β = 2 min−1, γ = 2 mL

min ·µg , μf = 1 min−1, η = 0.8/γ , δv = 0.5 mL
min ·µg ,

δf = 0.5 mL
min ·µg , D = 0.2 nm2

min , Δ = 0.3nm. Numerical modeling was implemented
at different values of n ∈ (0, 1]. For this purpose we used RStudio environment.

Using local bifurcation plot, dynamics of the system (18) was analysed for
different values of n ∈ (0, 1]. We have concluded that oscillatory and then chaotic
behavior starts for smaller values of τ at smaller values of n. Further, increasing the
values of n we can observe asymptotically stable steady solutions for wider range
of τ .

Numerical integration of the system has shown the influence of time delay τ .
Namely, as it is agreed with the analytical results, we observe the stable focuses at
pixel-dependent endemic states for small delays τ ∈ [0, 0.18). At τ ≈ 0.18 min the
stable focus is transformed into a stable limit cycle of tiny radius, which corresponds
to Hopf bifurcation. A deeper study of this phenomenon requires obtaining the
condition of the appearance of the pair of purely imaginary roots of the characteristic
quasipolynomial of the linearized system. The limit cycles of ellipsoidal form are
observed till τ ≈ 0.285 min. Pay attention that when increasing τ , near τ = 0.285
we get period doubling (see Fig. 5).5

Qualitative behavior of immunosensor model can be analyzed with help of
hexagonal tiling plots also. For this purpose we can use both plots for antigens
(Fig. 6), antibodies (Fig. 7) and probabilities of binding antigens by antibodies
(Fig. 8).

4 Conclusions

In the work a reaction-diffusion models of two- and three-dimensional immunopix-
els array were considered. Mathematically it is described by the system of lattice
delayed differential equations on rectangular or hexagonal grids. The systems
include the spatial operator describing diffusion of antigenes between five and seven
neighboring pixels respectively.

The main results are dealing with qualitative investigation of the model. The
conditions of persistence were obtained. Also we have managed to get the result
dealing with the extinction of the solutions. Namely, it can be seen that the amount
of pixels determines their non-vanishing. In two-dimensional case this dependence
can be presented in a clear form.

The conditions of local or global asymptotic stability can be obtained using
construction of the Lyapunov functional. Because of cumbersome of evidence, we

5It can be approximately seen from local bifurcation plot also.
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Fig. 5 Phase plots of the system (18) at τ = 0.287. Here • indicates initial state, • indicates
pixel-independent endemic state, • indicates pixel-dependent endemic state. The solution tends to
a stable limit cycle with six local extrema per cycle

didn’t include it here. They results in inequality including the system parameters and
delay. So, estimation of the delay enabling us local or global asymptotic stability can
be obtained.

Numerical analysis of the model qualitative behavior is performed with the
help of the bifurcation diagram, phase trajectories, and rectangular or hexagonal
tile portraits. It has shown the changes in qualitative behavior with respect to the
growth of time delay. Namely, starting from the stable focus at small delay values,
then through Hopf bifurcation to limit cycles, and finally through period doublings
to deterministic chaos. It is agreed with the results on spatial-temporal chaos for
reaction-diffusion systems, which were previously obtained in [1–3].

As compared with rectangular lattice model, for hexagonal model we observe
Hopf bifurcation at smaller values of τ . That is hexagonal lattice accelerates changes
in qualitative behavior.



40 O. Nakonechnyi et al.

Fig. 6 Example of hexagonal tiling plot for V

Fig. 7 Example of hexagonal tiling plot for F

Note, that model can be applied for an arbitrary amount of pixels determined by
natural N ≥ 1. However, it can be numerically seen that qualitative behavior of the
entire immunosensor is determined by 5 or 7 pixels array for square and hexagonal
lattices respectively.

The results of the work differ from the results presented earlier since here we
try to show a comparative study of the model of biopixels array both in square
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Fig. 8 Example of hexagonal tiling plot for probabilities of binding antigens by antibodies, i.e.
V × F . In case of optical immunosensor it is fluorescence intensity

and hexagonal lattices. Such a comparative study is based on both analytical and
numerical results. Analytical outcomes include a comparison of the basic stability
characteristics like basic reproductive numbers, a comparison of the conditions for
persistence (permanence), and extinction. Numerical analysis use phase portraits
and bifurcation plots which are constructed on the basis of local extremes. Earlier
such studies were executed focusing on some type of the lattice. So, here we
investigate the effect of the lattice type on the qualitative behavior of the model.
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21. Foryś, U.: Marchuk’s model of immune system dynamics with application to tumour growth.
J. Theor. Med. 4(1), 85–93 (2002). https://doi.org/10.1080/10273660290052151. https://www.
tandfonline.com/doi/abs/10.1080/10273660290052151

22. Nakonechny, A.G., Marzeniuk, V.P.: Uncertainties in medical processes control. Lect.
Notes Econ. Math. Syst. 581, 185–192 (2006). https://doi.org/10.1007/3-540-35262-
7_11. https://www.scopus.com/inward/record.uri?eid=2-s2.0-53749093113&doi=10.1007
%2f3-540-35262-7_11&partnerID=40&md5=03be7ef103cbbc1e94cacbb471daa03f Cited By
2

23. Marzeniuk, V.P.: Taking into account delay in the problem of immune protection of
organism. Nonlinear Anal. Real World Appl. 2(4), 483–496 (2001). https://doi.org/
10.1016/S1468-1218(01)00005-0. https://www.scopus.com/inward/record.uri?eid=2-s2.
0-0041331752&doi=10.1016%2fS1468-1218%2801%2900005-0&partnerID=40&md5=
9943d225f352151e77407b48b18ab1a9. Cited By 2

24. Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L.S., Hasty, J.: A sensing array
of radically coupled genetic ‘biopixels’. Nature 481(7379), 39–44 (2011). https://doi.org/10.
1038/nature10722

25. Jones, J.H.: Notes on R0. Califonia: Department of Anthropological Sciences (2007)
26. Yang, J., Wang, X., Zhang, F.: A differential equation model of hiv infection of cd t-cells with

delay. Discrete Dynamics in Nature and Society (2008)
27. Elaiw, A.M., Almatrafi, A.A., Hobiny, A.D.: Effect of antibodies on pathogen dynamics with

delays and two routes of infection. AIP Advances 8(6), 065104 (2018). https://doi.org/10.
1063/1.5029483.

https://doi.org/10.1109/TC.1976.1674642
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/MARTIN/Hex.pdf
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/MARTIN/Hex.pdf
https://doi.org/10.1016/S0022-5193(05)80142-0
https://doi.org/10.1016/S0022-5193(05)80142-0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025819779&doi=10.1016%2fS0022-5193%2805%2980142-0&partnerID=40&md5=f850637085913dc18f8e52c5b3f28600
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025819779&doi=10.1016%2fS0022-5193%2805%2980142-0&partnerID=40&md5=f850637085913dc18f8e52c5b3f28600
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0025819779&doi=10.1016%2fS0022-5193%2805%2980142-0&partnerID=40&md5=f850637085913dc18f8e52c5b3f28600
https://doi.org/10.1080/10273660290052151
https://www.tandfonline.com/doi/abs/10.1080/10273660290052151
https://www.tandfonline.com/doi/abs/10.1080/10273660290052151
https://doi.org/10.1007/3-540-35262-7_11
https://doi.org/10.1007/3-540-35262-7_11
https://www.scopus.com/inward/record.uri?eid=2-s2.0-53749093113&doi=10.1007%2f3-540-35262-7_11&partnerID=40&md5=03be7ef103cbbc1e94cacbb471daa03f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-53749093113&doi=10.1007%2f3-540-35262-7_11&partnerID=40&md5=03be7ef103cbbc1e94cacbb471daa03f
https://doi.org/10.1016/S1468-1218(01)00005-0
https://doi.org/10.1016/S1468-1218(01)00005-0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0041331752&doi=10.1016%2fS1468-1218%2801%2900005-0&partnerID=40&md5=9943d225f352151e77407b48b18ab1a9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0041331752&doi=10.1016%2fS1468-1218%2801%2900005-0&partnerID=40&md5=9943d225f352151e77407b48b18ab1a9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0041331752&doi=10.1016%2fS1468-1218%2801%2900005-0&partnerID=40&md5=9943d225f352151e77407b48b18ab1a9
https://doi.org/10.1038/nature10722
https://doi.org/10.1038/nature10722
https://doi.org/10.1063/1.5029483
https://doi.org/10.1063/1.5029483


Lattice Dynamical System 43

28. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic
Press, New York (1993)

29. zhong He, X.: Stability and delays in a predator-prey system. J. Math. Anal. Appl. 198(2),
355–370 (1996). https://doi.org/10.1006/jmaa.1996.0087

30. Wendi, W., Zhien, M.: Harmless delays for uniform persistence. J. Math. Anal. Appl. 158(1),
256–268 (1991). https://dx.doi.org/10.1016/0022-247X(91)90281-4

31. Lancaster, P., Tismenetsky, M.: The Theory of Matrices: With Applications. Elsevier (1985)
32. Persson, P.B., Wagner, C.D.: General principles of chaotic dynamics. Cardiovascular Research

31, 332–341 (1996). https://cardiovascres.oxfordjournals.org/content/31/3/332.full-text.pdf

https://doi.org/10.1006/jmaa.1996.0087
https://dx.doi.org/10.1016/0022-247X(91)90281-4
https://cardiovascres.oxfordjournals.org/content/31/3/332.full-text.pdf

	On Qualitative Analysis of Lattice Dynamical System of Two- and Three-Dimensional Biopixels Array: Bifurcations and Transition to ``Chaos''
	1 Introduction
	2 Lattice Model of Antibody-Antigen Interaction for Two-Dimensional Biopixels Array
	2.1 Stability Investigation
	2.2 Persistence of the Solutions
	2.3 Extinction Research
	2.4 Numerical Simulation of Square 44 Pixels Array

	3 Three-Dimensional Biopixels Array
	3.1 Persistence and Extinction of the Solutions
	3.2 Numerical Study

	4 Conclusions
	References


