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Preface

15th International Conference “Dynamical Systems – Theory and Applications”
(DSTA 2019) took place in Lodz, Poland, from December 2 to 5, 2019. It was
the 15th edition in the series of conferences organized every 2 years in Lodz by the
Department of Automation, Biomechanics and Mechatronics of the Lodz University
of Technology.

For this edition, the scientific committee composed of 64 scientists had to review
over 360 submitted topics to choose 200 that were to be presented during the DSTA
2019 by participants representing 40 countries from all over the world.

It resulted in the program of conference that covered both theoretical and
experimental approaches to widely understood dynamical systems, including topics
devoted to bifurcations and chaos, control in dynamical systems, asymptotic
methods in nonlinear dynamics, stability of dynamical systems, lumped mass and
continuous systems vibrations, original numerical methods of vibration analysis,
nonsmooth systems, dynamics in life sciences and bioengineering, as well as to the
engineering systems and differential equations.

All papers included in this book were submitted and presented during DSTA
2019. They contribute partially to the diverse approaches and topics covered by
wide scope of dynamical systems.

A brief description of the book content is provided as follows.
The periodic solutions of governing system of motion obtained utilizing the

Poincaré small parameter method up to the first order approximation for a rotational
motion of a rigid body about a fixed point under the influence of Newtonian field
and a gyro moment are addressed in chapter “On the Spinning Motion of a Disc
Under the Influence a Gyrostatic Moment”.

Nishiyama and Yamashita in chapter “Suppression of Impact Oscillations in
a Railway Current Collection System with an Additional Oscialltory System”
conducted series of experiments to verify proposed model of pantograph and a
conductor line in a railway current collection system. They investigated the effects
of the added system on the impact oscillations between the main mass and the
excitation source in the model consisting of a single-degree-of-freedom system.

v
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vi Preface

Nakonechnyi et al. in chapter “On Qualitative Analysis of Lattice Dynami-
cal System of Two- and Three-Dimensional Biopixels Array: Bifurcations and
Transition to “Chaos”” analyzed the effect of the lattice type on the qualitative
behavior of the model of the immunosensor. The model based on the system of
lattice differential equations with time delay, describing interactions of biological
species of neighboring pixels, is investigated numerically with a help of phase
portraits, square and hexagonal lattice plots, and bifurcation diagrams as well
as analytically by a comparison of the basic stability characteristics like basic
reproductive numbers, through a comparison of the conditions for persistence
(permanence), and extinction.

Chapter “Response Sensitivity of Damper-Connected Adjacent Structural Sys-
tems Subjected to Fully Non-stationary Random Excitations” is devoted to a new
method for the evaluation the sensitivities of nongeometric spectral moments of
the structural response of the non-classically damped coupled systems subjected
to fully non-stationary zero-mean Gaussian excitation, through simple integrals in
frequency domain.

New approach to optimization for non-isothermal chemical reactions with
simultaneous modulation of the input concentration and the volumetric flow rate
was proposed by Benner et al. in chapter “Analysis of Switching Strategies for
the Optimization of Periodic Chemical Reactions with Controlled Flow-Rate”.
Focusing on parametrization of optimal controls in terms of switching times in
order to estimate the cost under different switching strategies, the authors considered
control problem with non-convex for a class of nonlinear control systems with
periodic boundary conditions.

In chapter “Quaternion Based Free-Floating Space Manipulator Dynamics Mod-
eling Using the Dynamically Equivalent Manipulator Approach”, dynamical model-
ing approaches dedicated to freefloating spacecraft based on a modified dynamically
equivalent manipulator method are developed, illustrated, and discussed. Applying
space manipulators dynamics in quaternion parameterization instead Euler angles
allowed to increase the computational efficiency of the dynamics modeling of space
manipulators.

Numerical study of a quarter car vehicle-tank model by investigating motion of a
linear pendulum model without baffles is presented in chapter “Slosh Analyzes of a
Full Vehicle-Tank Model with SDRE Control with a Hydraulic Damper”. Results of
this study indicated that the pendulum model can adequately map the fluid behavior
in the tank and that state-dependent Riccati equation method can be used to calculate
damping force necessary to stabilize the sloshing motion.

In chapter “A Comparison of the Common Types of Nonlinear Energy Sinks”,
a numerical investigation, optimization, and comparison for energy transfer and
dissipation for an impulsive excitation into a large-scale nine-story dynamical
structure for three most common nonlinear energy sinks is presented.

Results of the simulation of the impact of driving speed on the lateral stability
of the designed and developed prototype of a narrow, three-wheeled vehicle with
electric drive designed as a delta type vehicle are reported in chapter “Stability of
Three Wheeled Narrow Vehicle”.

http://dx.doi.org/10.1007/978-3-030-77314-4_3
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Preface vii

Chapter “Testing and Analysis of Vibration of a Tension Transmission with
a Thermally Sealed Belt” is focused on results of experimental investigations of
vibration of a draw gear with a thermally sealed belt. Investigated was also the
influence of the gearbox load on the value of the point measures of vibration signals,
what yielded results useful for designers and technicians involved in the operation
of drawstring drives with thermally weldable belts.

Model for computing motion resistance of double-flanged rollers while rolling
over rubber tracks that can be used for the losses caused by the indentation of the
rollers into the inner surface of the tracks as well as the sliding friction between the
rollers and guide lugs of the tracks were proposed and experimentally validated
in chapter “Modeling and Experimental Tests on Motion Resistance of Double-
Flanged Rollers of Rubber Track Systems Due to Sliding Friction Between the
Rollers and Guide Lugs of Rubber Tracks”.

Chapter “Structural Dynamic Response of Coupling Between Transmission
Line and Tower Under Random Excitation” provides analyses of an overhead
transmission line under different types of random wind excitation that simulate
natural phenomena in situ represented by white noise. In addition, Kani-Tajimi and
Firstorder filter spectrum using spectral element method to decrease computational
time and simplify access to the model formulation are successfully employed.

Results of impact tests used to determine the values of the natural frequencies
of the most stressed parts of the supporting structure for basic and reinforced
support frame of the test station designed for gearing and belt transmissions testing
are presented in chapter “Experimental Assessment of the Test Station Support
Structure Rigidity by the Vibration Diagnostics Method”. Conducted experiment
allowed to determine necessary design modifications for eliminating the danger of
resonance and increasing the stiffness during vibration diagnostics.

In chapter “Experimental Dynamical Analysis of a Mechatronic Analogy of the
Human Circulatory System”, results of an experimental test of the designed and
constructed model of a human circulation system are presented. The conducted
numerical simulation and mathematical description of an experimental model
proved that while testing system solutions such as membrane tanks, control system
and measurement method work correctly, but the dynamics of the system is not
sufficiently convergent with real circulatory system.

Taylor et al. in chapter “Robust Design of Inhibitory Neuronal Networks
Displaying Rhythmic Activity” developed a novel two-stage estimation method
allowing to avoid associated with estimating all network parameters simultaneously
in the artificial central pattern generators. This approach can be further utilized
for a hardware implementation of artificial networks designed for integration with
biological nervous systems.

In chapter “Nonlinear Dynamics of the Industrial City’s Atmospheric Ventila-
tion: New Differential Equations Model and Chaotic Ventilation”, Khetselius et al.
present a new generalized mathematical approach to analysis and modelling the
characteristics of the chaotic atmospheric dynamical system, including natural air
ventilation in the atmosphere of the industrial city based on the generalized model
of the tensor equations for turbulent tensions.
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Experimental study designed for exploration of the trajectory of the center
of pressure in foot morphology control when maintaining an upright standing
posture on a dynamic support surface with continuous periodical multidirectional
perturbations is presented in chapter “Biomechanical Analysis of Different Foot
Morphology During Standing on a Dynamic Support Surface”.

Birs et al. in chapter “Comparison of Various Fractional Order Controllers on
a Poorly Damped System” focus on the issue of controlling a poorly damped
system. In the study, two different fractional order control strategies are compared
experimentally with the use of highly nonlinear experimental stand consisting of a
vertical take-off and landing platform.

The physical parameters’ impact on the motion of the two-degrees-of-freedom
model of a damped spring pendulum in an inviscid fluid flow is investigated in
chapter “Asymptotic Analysis of Submerged Spring Pendulum Motion in Liquid”.
The time histories of the achieved solutions, resonance cases, and steady-state
solutions are discussed and illustrated graphically.

In chapter “Parametric Identification of Nonlinear Structures Using Particle
Swarm Optimization Based on Power Flow Balance Criteria”, a novel concept of
nonlinear parameter identification using instantaneous power flow balance objective
function in time domain is introduced and implemented on a 10-DOF nonlinear
system. Its simulation results show the accuracy of proposed method in nonlinear
parameter identification procedure even at high noise contamination cases.

New approach based on applications of the R-functions theory and variational
Ritz’s method for analysis of vibration and stability problems for laminated
composite plates under non-uniform edge compressions are studied in chapter
“Vibration and Buckling of Laminated Plates of Complex form Under In-plane
Uniform and Non-uniform Loading”.

Material instability problems for non-local cases, when fractional derivatives
are used to model non-locality in constitutive equations, are analyzed in chapter
“Dynamical Systems and Stability in Fractional Solid Mechanics”. Presented
research is concentrated on how the type of fractional derivatives effects the
problems of stability investigation.

The methods based on results from graph theory, Lyapunov operator, Dini
derivative, and some known inequality techniques are applied by Tojtovska and
Ribarski in chapter “Stability of Coupled Systems of Stochastic Cohen-Grossberg
Neural Networks with Time Delays, Impulses and Markovian Switching” to study
the topic of the pth moment (p ≥ 2) stability of coupled systems of stochastic Cohen-
Grossberg neural networks with time delays, impulses, and Markovian switching.
The obtained theoretical results are validated by a numerical example.

In chapter “Stability of Steady States with Complex Behavior in Time”, advan-
tages and limitations of applying the numerical-analytical procedure based on the
classical Lyapunov definition of stability and the Ince algebraization method to solve
problem of stability of steady states are presented and discussed.

Chapter “Modelling of Torsional Vibrations in a Motorcycle Steering System”
is focused on using mathematical modelling and computer simulation for identi-
fication of torsional vibrations of steering systems exhibited by motorcycles. The
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authors applied Laplace transformation based on determination of the transfer
functions, and frequency analysis combined with Bode plots allowed to reduce
transfer functions and to carry out final calculation of state equations to synthesize
the active damper control algorithm.

Szlachetka at al. in chapter “Free Vibration Frequencies of Simply Supported
Bars with Variable Cross Section” described and experimentally validated new
procedure based on Rayleigh method for determination of higher natural frequencies
and derived formulas for frequencies of first three modes of free (transverse)
vibrations of simply supported bars having the shape of truncated cone and truncated
wedge.

For system consisting of a rigid block installed on a viscoelastic foundation, the
influence of the system parameters as well as of the amplitude and frequency of the
excitation upon characteristics of oscillations of the induced by horizontal harmonic
motion of the foundation are studied in chapter “On Dynamics of a Rigid Block on
Visco-Elastic Foundation”.

The DSTA Conferences are aimed to provide a common platform for exchange
of new ideas and results of recent research in the field of scientific and technological
advances in modern dynamical systems. Over the last 25 years, both approaches and
understanding of sciences significantly evolved to include new ideas and trends, but
the traditional views are still present and provide the basic understanding. Therefore,
as both head of the organizing and scientific committees of DSTA 2019 and as the
volume editor of Springer Proceedings, I hope this book will provide readers with
both answers to their problems and ideas for their novel approaches to studying
nonlinear dynamical systems.

I greatly appreciate the help of Springer Editor Dahlia Fisch, Springer Project
Coordinators Murugesan Tamilsevan and Saveetha Balasundaram as well as project
manager at SPi Global Kannan Sudha in publishing this volume in the Springer
Proceedings in Mathematics and Statistics series. I would like also to express my
gratitude to the scientific committee of DSTA 2019 and all reviewers for their help
and professional support during book preparation.

Łódź, Poland Jan Awrejcewicz
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On the Spinning Motion of a Disc under
the Influence a Gyrostatic Moment

M. A. Bek, Tarek Amer, and Yasser Gamiel

Abstract This work outlines the motion of a disc about one of its fixed point
different from its center of mass in the presence of a constant gyrostatic moment
about the principal axes of inertia. The governing system of motion consists of
six nonlinear differential equations and their first integrals are reduced to another
quasilinear autonomous one of 2DOF besides one first integral. Initially, it is hypoth-
esized that the body is rapidly spun about one of its principal axes. The method of
small parameter of Poincaré is used to achieve the desired approximate solutions
of the equations of motion. Euler’s angles are used to interpret the motion of the
body at any blink. The numerical solutions of autonomous system are investigated
using the fourth order Runge-Kutta algorithms (RKA). The comparison between
both two solutions reveals that the numerical solutions are in well agreement
with the approximate ones and the deviation between them is very slightly. The
importance of this work is focused on its great applications in many fields such as in
engineering, physics and industrial applications for example ships stabilizers, racing
cars, pointing devices for computer, satellites and like.

Keywords Spinning motion · Disk · Gyrostatic moment
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2 M. A. Bek et al.

1 Introduction

The rigid body motion about a fixed point had shed the interest of many researchers
during the last six decades e.g. [1–10] because it is considered one of the important
problems in theoretical classical mechanics due to its great artificial applications in
life. In [1], the author studied this problem under the action of Newtonian field of
force when the value of one of the principal moments of inertia equals to the sum
of the other two ones. Hass case for the rigid body motion is studied in [2]. The
method of small parameters is used in [3] to obtain the periodic solutions of a heavy
solid body. It is considered in [4] that, the kinetic energy of asymmetric rigid body
is greater than the potential one while in [5], the large angle theory is developed to
solve the equations of motion without the requirement of solving any new integrals.
The stability of the steady motions of this problem in a central gravitational field
is studied in [6]. The authors considered that the body consists of a collection of
point of mass. The small parameter method is used in [7] to investigate the solution
of a disc when the natural frequency of motion equals unity. Burov in [7], studied
the restricted motion of a heavy rigid body and investigated in [9] the existence of
integrable case of the Euler-Poisson equations.

A great accuracy of the analytic solutions were obtained in [8, 9] for the
problem of attitude motion of a self-excited rigid body. The analytical solution for
asymmetric rigid body is studied in [10] when the third component of the gyro
moment is acted addition to a Newtonian field using the small parameter method
of Poincarè. On the other hand, the motion a symmetric rigid body is studied in
[11] when the body is subjected under the influence of gravitational field and a
constant gyro moment. The generalization of this problem, when the gyro rotates
under external forces represented by the Newtonian field of force and the gyro
moment, is investigated in [12]. The author determined Euler’s angles through the
geometric interpretation of motion. It is found that these angles depend on four
arbitrary independent constants. Moreover, the graphical representations for the
achieved analytical solutions are presented for the physical parameter of the gyro
to reveal the good effect of both the Newtonian field and the gyro moment on the
motion.

The method of Krylov-Bogoliubov-Mitropolski (KBM) [13, 14] is used in [15]
and [16] to gain the periodic solutions for the motion of a heavy solid in a uniform
field. Unfortunately, the obtained solutions have singular points when the natural
frequency takes integer values or the multiple inverses of these values. This problem
was generalized in [17] when the body moves under the presence of two components
of the constant gyrostatic moment vector while the attained solutions don’t have any
singular points at all, due to that the authors used another frequency different from
the used frequency in [15, 16] by a small quantity depends on the third component
of the gyrostatic moment vector. Recently, KBM method is utilized in [18] to the
solutions of the equations of motion of a rigid body in a general case, i.e. without
any restrictions on the locations of the body center of mass and one the values of
principal moments of inertia. The motion of a rigid body close to Kovalevskaya’s
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case is studied in [19] in the presence of gyro moment vector. The problem of rigid
body is investigated in [20, 21] under the action of electromagnetic field due to a
point charge located on the dynamic symmetry axis of the body and gyro moments.
Some applications are presented in [21].

This work addresses the motion of a rigid body according to the disc case taking
into consideration the effect of a gyro moment about the principal axes of inertia.
It is assumed that the body has initially high speed about one these axes. One
of the most common and important perturbation techniques namely; the Poincaré
small parameter method is used to obtained the periodic analytical solutions of
the equations of motion. These equations with their first integrals are reduced to
a quasilinear autonomous system of two degrees of freedom (2-DOF) and one
first integral. The attained solutions are considered generalization of the works
included in [1] and [7], and represented graphically to reveal the physical different
parameter of the body on the motion. The significant applications of this work in
many different fields such as in Engineering, Physics and industrial applications
gives an indication of its importance.

2 Modeling of the Problem

Consider the motion of a rigid body about a fixed point O, which will be taken as
the origin of a dynamical model, subjected to the gyrostatic moment vector � about
the principal axes of inertia. Two systems of reference are considered; a fixed one
OX1X2X3 and another moving one Ox1x2x3, fixed in the disc, and whose axes are
directed along the principal axes of inertia at O.

Initially, we assume that, the body rotates with a high angular velocity r0 about
x3-axis in which this axis makes an angle θ0 close to π /2. Therefore, the governing
system of motion corresponding to the disc case has the form [22].

ṗ1 + q1 r1 + (A r0)
−1 q1 �3 = ε a−1x′

20 γ
′′
1 ,

q̇1 − p1 r1 − (B r0)
−1p1 �3 = −ε b−1 x′

10 γ
′′
1 ,

ṙ1 = ε2
(
x′

10 γ
′
1 − y′

0 γ1 − C1 p1 q1
)
,

γ̇1 − r1 γ
′
1 + ε q1 γ

′′
1 = 0,

γ̇ ′
1 + r1 γ1 − ε p1 γ

′′
1 = 0,

γ̇ ′′
1 − ε

(
q1 γ1 − p1 γ

′
1

) = 0;

(1)

where

p
p1

= q
q1

= c

√
γ ′′

0 , r = r0 r1, ( . ≡ d/dτ ) ,

γ
γ1

= γ ′
γ ′

1
= γ ′′

γ ′′
1

= γ ′′
0 , τ = r0t, γ0 > 0, 0 < γ ′′

0 < 1; (2)
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A+ B = C, C1 = (B − A ) /C, a = A/C, b = B/C,

a + b = 1, ε = c

√
γ ′′

0 /r0, c2 = M g l/C,

x10 = l x′
10, x20 = l x′

20, l2 = x2
10 + x2

20.

(3)

Here, (A, B, C) represent the principal moments of inertia, (x10, x20, x30) denote
to the coordinates of the center of mass in which x30 = 0, (γ , γ

′
, γ ′′) refer to the

components of the unit vector in the direction X3-axis, (p, q, r) are the angular
velocity components, �3 is the third component of the gyrostatic moment vector
acted along the principal axis Ox3, M is the mass of the body, g is the gravitational
acceleration and p0, q0, r0, γ0, γ

′
0 and γ ′′

0 are the initial values of the corresponding
variables.

By virtue of system (1), the three first integrals for the considered motion take
the form

r2
1 = 1 + ε2 S1, r1 γ

′′
1 = 1 + ε S2, γ 2

1 + γ ′2
1 + γ ′′2

1 = (
γ ′′

0

)−2; (4)

where

S1 = a
(
p2

10 − p2
1

)
+ b

(
q2

10 − q2
1

)
− 2

[
x′

10 ( γ10 − γ1 )+ x′
20

(
γ ′

10 − γ ′
1

) ]
,

S2 = a ( p10 γ10 − p1 γ1 )+ b
(
q10 γ

′
10 − q1 γ

′
1

)+
(
c C

√
γ ′′

0

)−1 [
�3
(

1 − γ ′′
1

) ] ;
(5)

Our principal aim now is to reduce the governing system of motion (1) and their
first integrals (4) to another convenient system and one first integral. Therefore, we
can express the variables r1 and γ ′′

1 from (4) as

r1 = 1 + 1
2ε

2 S1 + · · · ,
γ ′′

1 = 1 + ε S2 − 1
2ε

2 S1 + · · · , (6)

Differentiating both of the first and the fourth equations of system (1), using (6)
and taking into account that r0 is very large, therefore r0

−2, r0
−3, . . . are neglected.

Consequently, the four remaining equations of system (1) can be reduced to the
following form

p̈1 + ω′2p1 = ε b−1
[
x′

10 + (A r0)
−1x′

10 �3
]+ ε2 { [ − ω2 S1p1 + b−1x′

10 S2 + C1p1q
2
1

− q1
(
x′

10 γ
′
1 − x′

20 γ1
)+ a−1 x′

20

(
q1 γ1 − p1 γ

′
1

) ]− 1
2 r0

−1 �3 p1 (Ab)
−1S1

+ (A br0)
−1x′

10 S2 �3

}
− 1

2 ε
3(Ab r0)

−1 x′
10 S1 �3 + · · · ,

(7)

γ̈1 + γ1 = −ε (B r0)
−1 �3p1 + ε2

{
x′

10

(
γ ′

1
2 + b−1

)
− γ1

[(
x′

20 γ
′
1 + q2

1

)
+ S1

]}

+ ε3
(

2 b−1x′
10

)
S2 + · · · ,

(8)
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where
ω′2 = 1 + �3

Abr0
.

On the other hand, the variables q1 and γ ′
1 can be obtained from system (1)

by solving the first and the fourth equations of this system, with the aid of the
approximation form of r1 and γ ′′

1 in (6), in the form

q1 = r1
−1

[
1 − (A r0 r1)

−1 �3 + · · · ] (−ṗ1 + ε a−1x′
20 γ

′′
1

)
,

γ ′
1 = r−1

1

(
γ̇1 − ε q1 γ

′′
1

)
.

(9)

To accomplish our previous aim, we consider the following new variables

p2 = p1 − ε χ, γ2 = γ1 − ε a p2, (10)

where

χ = x′
10

bω′2

(
1 + �3

A r0

)
, y3 =

(
c C

√
γ ′′

0

)−1

�3 .

Therefore, the variables q1 and γ ′
1, in terms of these variables, have the form

q1 = X
(
a−1y2 − ṗ2

)+ ε X a−1 x′
20 + 1

2 ε
2
[
(2X − 1) S11 ṗ2 + 2X a−1 x′

20 S21
]+ · · · ,

γ ′
1 = γ̇2 + ε (a −X) ṗ2 + 1

2 ε
2
[
2X

(
a−1 x′

20 − S21 ṗ2
)− S11 γ̇2

]+ · · · ,
(11)

where

X = 1 − �3

A r0
.

Substituting (11) and (10) into (5), yields S1 and S2 in terms of power series of
the small parameter ε as

Si = Si 1 + 22−i ε Si 2 + · · · , ( i = 1, 2 ) (12)

where

S11 = a
(
p2

20 − p2
2

)+ b X2
(
ṗ2

20 − ṗ2
2

)− 2
[
x′

10 ( γ20 − γ2 )+ x′
20 ( γ̇20 − γ̇2 )

]
,

S12 = a
(
χ − x′

10

)
( p20 − p2 )− x′

20

[
a +X

(
ba−1X − 1

)]
( ṗ20 − ṗ2 ) ,

S21 = a ( p20 γ20 − p2 γ2 )− b X [ ( ṗ20 γ̇20 − ṗ2 γ̇2 )] ,

S22 = a
[
a
(
p2

20 − p2
2

)+ χ ( γ20 − γ2 )
]− b X

[
(a −X)

(
ṗ2

20 − ṗ2
2

)

− a−1 x′
20 ( γ̇20 − γ̇2 )

]
− y3 S21 .

(13)
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Substituting (12) and (13) into (6), gives

r1 = 1 + 1
2 ε

2 S11 + ε3S12 + · · · ,
γ ′′

1 = 1 + ε S21 + ε2
(
S22 − 1

2 S11

)
− ε3S12 + · · · .

(14)

The substitution from (10), (11), (12), (13) and (14) into (7), (8) and (4), gives
the desired quasilinear autonomous system of two degrees of freedom and one first
integral in the forms

p̈2 + ω′2p2 = ε2 F ( p2, ṗ2, γ2, γ̇2, ε ) ,

γ̈2 + γ2 = ε2 Φ ( p2, ṗ2, γ2, γ̇2, ε ) ,
(15)

γ 2
2 + γ̇ 2

2 + 2 ε [ a γ2p2 + (a −X) ṗ2 γ̇2 + S21] + ε2
[
a2p2

2 + (a −X)2ṗ2
2

+ 2 X γ̇2
(
a−1 x′

20 − S21 ṗ2
)+ S2

21 + 2
(
S22 − 1

2 S11

) ]
= (

γ ′′
0

)−2 − 1 .

(16)

where

F = f1 + ε f2 + · · · , Φ = A2r0

B�3
χ + φ1 + ε (φ2 − a f2)+ · · · ,

f1 = x′
10 b

−1S21 + C1X
2p2

(
ṗ2

2 − 2a−1 x′
20 ṗ2

)−
[
x′

20 X
(
1 + a−1

)
γ2

− x′
10 X γ̇2

]
ṗ2 − a−1p2 x

′
20 γ̇2 + 1

2 S11p2
[
�3( Abr0)

−1 − 2
]
,

φ1 = −γ2 S11 + x′
10

(
b−1 + γ̇ 2

2

)− γ2
(
x′

20 γ̇2 +X2ṗ2
2

)+ 2S21x
′
10b

−1,

f2 = b−1x′
10 S22 − (2 p2 S12 + S11 χ)+ C1X

2 χ ṗ2
(
ṗ2 − 2 a−1 x′

20

)− a−1X x′
10 x

′
20γ̇2

− a X ṗ2
[
p2 x

′
20

(
1 + a−1

)− x′
10 ṗ2

]− a−1 x′
20p2 ( q1 + a ṗ2 )− a−1x′

20 χ γ̇2

+ 1
2 �3(Abr0)

−1 (S11χ + 2 p2 S12 − S11x
′
10

)
,

φ2 = 2 x′
10

[
(a −X) ṗ2 γ̇2 + b−1S21

]− x′
20 [(a −X) γ2ṗ2 + a p2 γ̇2] − ( ap2 S11 + 2 γ2 S12 )

+X2ṗ2
(
2 a−1 x′

20 γ2 − a p2ṗ2
)
.

(17)

3 Construction of Periodic Solutions

The goal of this section is to obtain the periodic solutions of the previous system
(15). To accomplish this purpose we will rely that, system (15) is autonomous
therefore the following conditions

p2 (0, 0) =, ṗ2 (0, 0) = 0, γ̇2 (0, ε) = 0, (18)
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do not affect the generality of the solutions [19]. The generating system of (15)
admits the following periodic solutions with period T0 = 2π n as

p
(0)
2 = M1 cos ω′τ +M2 sin ω′τ, γ

(0)
2 = M3 cos τ. (19)

Here (Mi; i = 1, 2, 3 ) are constants can be determined. Referring to the
solutions (19), we suppose the required general periodic solutions take the form

p2 (τ, ε) = ( M1 + β1 ) cosω′τ + ( M2 + β2 ) sinω′ τ +
∞∑
k=1

εk Gk (τ) ,

γ2 (τ, ε) = ( M3 + β3 ) cos τ +
∞∑
k=1

εk Hk (τ) ,

(20)

with period T(ε) = T0 + α(ε).
The quantities β1, ω

′
β2 and β3 refer to the deviations of the initial values of

p2, ṗ2 and γ 2 of system (15) from their initial values of its generating system;
these deviations are functions of ε and vanish if ε = 0. Then the initial conditions
of (20) can be expressed as

p2 (0, ε) = M1 + β1, ṗ2 (0, ε) = ω′ ( M2 + β2 ) ,

γ2 (0, ε) = M3 + β3, γ̇2 (0, ε) = 0.
(21)

Now we define two functions namely (Gk(τ ), Hk(τ ); k = 1, 2, 3, · · · )
according to the following operator [23]

U = u+ ∂ u

∂M1
β1 + ∂ u

∂M2
β2 + ∂ u

∂M3
β3 + 1

2

∂2u

∂M2
1

β2
1 + · · · ,

(
U = Gk,Hk

u = gk, hk

)

(22)

in which the functions gk(τ ) and hk(τ ) have the form

gk (τ ) = 1
ω′
τ∫

0
f
(0)
k (t1) sin ω′ (τ − t1) d t1,

hk (τ ) =
τ∫

0
φ
(0)
k (t1) sin ω′ (τ − t1) d t1; (k = 1, 2, 3) .

(23)

In order to obtain the expressions of the functions f (0)1 and φ(0)1 , we can rewrite
the periodic solutions (19) in the form

p
(0)
2 = E cos

(
ω′τ − η

)
, γ

(0)
2 = M3 cos τ, (24)
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where E =
√
M2

1 +M2
2 and η = tan−1M2/M1. Substituting (24) into (13) yields

S
(0)
11 = 1

2E
2
[
a
(
2 cos2η − 1

) + b X2ω′2 ( 2sin2η − 1
)+

(
b X2ω′2 − a

)
cos 2

(
ω′τ − η

) ]

− 2 M3
[
x′

10 ( 1 − cos τ )+ x′
20 sin τ

]
,

S
(0)
21 = 1

2M3 E
{

2a cos η + (
bω′X − a

)
cos

[ (
ω′ − 1

)
τ − η

]− (
bω′X + a

)

× cos
[(
ω′ + 1

)
τ − η

] }
,

S
(0)
12 = E

{
a X

[
cos η − cos

(
ω′τ − η

) ]− ω′{ a−1b X2x′
20

[
sin η + sin

(
ω′τ − η

) ]

− [
a x′

10 + (a −X) x′
20

] [
sin η + sin

(
ω′τ − η

) ] }} ,
S
(0)
22 = a

{
a E2

[
cos2η − cos2

(
ω′τ − η

) ]+ χ M3 ( 1 − cos τ )
}

+ b X
{
a−1x′

20 M3 sin τ − E2ω′2 (a −X)
[

sin2η − sin2 (ω′τ − η
) ]}− y3 S

(0)
21

(25)

Substituting (24) and (25) into formulas (17) gives

f
(0)
1 = L

(
ω′) (M1 cosω′τ +M2 sinω′τ

)+ · · · ,
φ
(0)
1 = M3 N

(
ω′) cosω′τ + · · · , (26)

where

L
(
ω′ ) = − 1

4

[
( a B r0)

−1�3 + 2ω2
] {
a
(
2M2

1 − 1
)+ 2

[
b ω′2X2

(
2M2

2 − 1
)−M3 x

′
10

]

−
(
b ω′2X2 − a

) (
M2

1 +M2
2

) }+ · · · ,
N
(
ω′ ) = X2ω′2 [ ( 1 + b )

(
M2

1 +M2
2

)− b M2
2

]+ 2 x′
10 M3 − a M2

1 + · · · .
(27)

Substituting (26) and (27) into (23) gives

g1 (T0) = −π n
(
ω′ )−1

M2 L
(
ω′) , ġ1 (T0) = π n M1 L

(
ω′ ) ,

h1 (T0) = 0, ḣ1 (T0) = π n M3 N
(
ω′ ) .

(28)

Making use of conditions (21) and the integral (16) for τ = 0, we get
M2

3 + 2 M3β3 + β2
3 + 2 a ε ( M1 + β1 ) (M3 + β3)+ · · · = (

γ ′′
0

)−2 − 1.
Assuming γ ′′

0 is independent of ε,we obtain M3 and β3 in the form

M3 =
(

1 − γ ′′2
0

) 1
2 (
γ ′′

0

)−1 0 < M3 < ∞, β3 = −ε a ( M1 + β1 )+ · · · .
(29)

The independent conditions for the periodicity of the solutions [19] lead to

−π n β2
(
ω′)−1

[
L1

(
ω′ )− ω′2N1

(
ω′ )

]
+ ε [ G2 (T0)+ · · · ] = 0,

π n β1
[
L1

(
ω′ )+N1

(
ω′ ) ( b−1y1 − ω′ β1

)]+ ε
[
Ġ2 (T0)+ · · · ] = 0,

ε (M3 + β3)
−1 [

Ḣ1 (T0)+ ε Ḣ2 (T0)+ ε2 Ḣ3 (T0)+ · · · ] = α (ε) ,

(30)
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Replacing M1, M2 and M3 by β1, β2 and M3 + β3 into (28), we obtain L1(ω
′
)

and N1(ω
′
). Therefore, we get

L1
(
ω′ )− ω′2N1

(
ω′ ) =

(
β2

1 + β2
2

)
W1

(
ω′ ) , (31)

where

W1
(
ω′ ) = 1

4

[
b
(
ω′X

)2 − a
] [

2 ω′2 − ( aBr0)
−1�3

]
− (1 + b)

(
ω′2X

)2
.

From the condition that the z−axis has to be directed along the major or the
minor axis of the ellipsoid of inertia of the body, it follows that W1(ω

′
) > 0 for all

ω
′

under consideration.
By use of (30), the expression of β1 and β2 are obtained in the form of a power

series of integral powers of ε. These expansions begin with terms of order higher
than ε2. Consequently, the first terms in the expansions of the periodic solutions and
the quantity α(ε) are expressed in the following forms

p1 = ε x′
10

(
bω′2

)−1 (
1 + (A r0)

−1 �3
)+ · · · ,

q1 = ε a−1 x′
20 X + · · · ,

r1 = 1 − ε2M3
[
x′

10 ( 1 − cos τ )+ x′
20 sin τ

]+ · · · ,
γ1 = M3 cos τ + · · · ,
γ ′

1 = −M3 sin τ + ε2X
{
a−1x′

20 −M2
3 sin τ

[
x′

10 ( 1 − cos τ )+ x′
20 sin τ

] }+ · · · ,
γ ′′

1 = 1 + ε2 M3
[(
a χ + x′

10

)
( 1 − cos τ )+ (

X ba−1 + 1
)
x′

20 sin τ
]+ · · · ,

α (ε) = −2 ε π n x′
10 M3 + · · · .

(32)

An inspection of the previous solutions shows that there are no singular points
at all owing to the introduction of Amer’s frequency ω

′
[10–12] instead of ω. This

means that these solutions are valid for all rational values of ω
′

and are considered
as a general case of [1] and [7].

4 Discussion of the Results

This section is devoted to reveal the affection of different parameters on the body
motion. Therefore, we consider the following data which determine the motion of
the body

A = 8.53 kg.m2, B = 21.49 kg.m2, r0 = 1000 m, γ ′′
0 = 0.352,

M = 300 kg, x10 = 1 m, x20 = 2 m, T = 12.566371,
�3 = ( 100, 150, 200, 300, 400, 500) kg.m2.s−1.
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An inspection of Figs.1 and 2 shows that, they are calculated when �3 = ( 100,
150, 200) kg. m2. s−1 and �3 = ( 300, 400, 500) kg. m2. s−1 respectively, in
which they are representing the variation of the solution p1 via t. It clears that when
the third component �3 of the gyro moment � increases, periodic waves are obtained,
the amplitude of the waves decreases while the numbers of oscillations remain
unchanged which give an induction about the motion is stable and free of chaos. On
the other hand Figs.3 and 4 represent the variation of solution γ 1 against time t. It is
evident that periodic waves are obtained when time goes on, the number numbers of
fluctuations behaves a stable manner while the amplitudes increases to some extent
when �3 increases. Figures 5, 6, 7, and 8 reveal the phase plane diagrams for the
solutions p1 and γ 1via their corresponding velocities in which closed curves are
obtained. They indicate the solutions p1 and γ 1 behave a stable manner.

Fig. 1 Time history of the
solution p1when �3 = ( 100,
150, 200)

Fig. 2 Time history of the
solution p1 when �3 = ( 300,
400, 500)
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Fig. 3 Variation of the
solution γ 1when �3 = ( 100,
150, 200)

Fig. 4 Variation of the
solution γ 1 when �3 = ( 300,
400, 500)

Fig. 5 Phase portrait of the
p1at �3 = 100
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Fig. 6 Phase portrait of
thep1at �3 = 400

Fig. 7 Phase portrait of the
γ 1at �3 = 100

Fig. 8 Phase portrait of the
γ 1at �3 = 400
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5 Conclusion

The rotational motion of a rigid body about a fixed point under the influence of
Newtonian field and a gyro moment about is investigated. The system of equations
of motion and their first three integrals are reduced into a quasilinear autonomous
one with 2DOF and one first integral. The periodic solutions of governing system
of motion are obtained utilizing the Poincaré small parameter method up to the first
order approximation. These solutions are considered as a generalization of some
previous cases like [1] and [7]. The solutions and the correction of the period for the
latter problems can be deduced from the attained solutions as limiting cases. These
solutions do not have any singular points at all and are performed by computer codes
to get their graphical representations.
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Suppression of Impact Oscillations in a
Railway Current Collection System with
an Additional Oscillatory System

Naoto Nishiyama and Kiyotaka Yamashita

Abstract A railway current collection system consists of a wire and a pantograph.
The wave-like wear on the surface of an overhead rigid conductor line can
cause contact loss between the conductor line and the pantograph. To explain the
dynamical features of this problem, the essential model of the impact oscillations
between the pantograph and the rigid conductor line has been previously proposed.
This model consists of a single-degree-of-freedom system and an external excitation
source that pushes against the system. In the present study, we add an oscillatory
system is coupled to this model. We investigate the effects of the added system on
the impact oscillations between the main mass and the excitation source. When
the excitation frequency is near the second mode natural frequency, the impact
oscillations are suppressed. In particular, a series of experiments are conducted with
slowly increasing the excitation frequency to verify this theoretical result.

Keywords Impact oscillation · Nonlinear oscillation · Suppression ·
Experiments

1 Introduction

The impact oscillations between the mechanical elements are often produced by
various reasons [1, 2]. In some cases, these impact oscillations are unacceptable and
should be eliminated. A railway current collection system consists of a wire and a
pantograph. The contact forces acting on the pantograph can fluctuate for various
reasons. When the fluctuations become large, the pantograph will separate from the
wire leading to contact loss and arching. Therefore, it is important to prevent contact
loss to prolong service life and reduce maintenance.
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A rigid conductor line is commonly used in tunnels. The wave-like wear on
the surface of a conductor line forms over time and is one of the causes of
contact loss. To explain the dynamical features of a pantograph after contact loss,
Kawamura et al. [3] proposed an essential model of the impact oscillations between
a pantograph and a rigid conductor line based on the results of experiments on
an actual pantograph system. This model consists of a single-degree-of-freedom
system and an external excitation source that pushes against the system. Nonlinear
analyses showed periodic impact oscillations, periodic doubling motions and chaos.
They conducted experiments and verified the theoretical results. In our previous
study [4], we investigated the effects of the flexural vibrations of a pantograph on
bifurcating motions. The pantograph was modeled as a flexural beam supported at
the midpoint by a spring. When the excitation frequency is near the second mode
natural frequency, we theoretically confirmed that the impact oscillations could be
strongly suppressed.

For an undamped single-degree-of-freedom system, the application of dynamic
vibration absorbers eliminates the forced excitation caused by a harmonic external
force with constant frequency. In the present study, we couple a spring supported
mass to the single-degree-of-freedom system (main mass) and construct a two-
degree-of-freedom system. To examine the effects of the additional mass-spring
system on the impact oscillations, we numerically investigate the bifurcating impact
oscillations. We then conduct a series of experiments with slowly increasing
the excitation frequency to confirm the bifurcating motions. When the excitation
frequency is near the second mode natural frequency, the impact oscillations can be
widely suppressed, as predicted by the numerical investigations.

2 Experiments

2.1 Experimental Apparatus

Figure 1 shows the experimental apparatus. Two aluminum blocks are used as the
main massm1 and the added massm2. Linear guides are used to restrict the motions
of the two masses in the horizontal direction. A vibration generator periodically
changes the displacement of the aluminum frame, which is used as the external
excitation source that is pushed against the main mass. The main mass and the added
mass are elastically supported by two coiled springs k1 and k2. Experiments were
carried out using the parameters determined for the system: m1 = m2 = 0.52 kg
and k1 = k2 = 750 N/m. The displacements of the main mass, added mass, and
excitation source are measured by three eddy current displacement sensors. The
data are stored on a computer. The first and second mode natural frequencies are
ω1/2π = 3.8 Hz and ω2/2π = 9.8 Hz, respectively.
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Fig. 2 Time histories of x1 and y with slowly increasing ω. (a) Variation of ω and results for (b)
ω/2π = 6 Hz (impact oscillation), (c) ω/2π = 10 Hz (no impact oscillation), (d) ω/2π = 15 Hz
(impact oscillation), and (e) ω/2π = 18 Hz (periodic impact oscillation)

2.2 Experimental Results

In the experiments, the excitation frequency ω/2π was slowly varied from 5 Hz to
20 Hz. Figure 2 shows the time histories of the displacements of the main mass and
the excitation source. y, x1, and x2 are the displacements of the excitation source,
main mass, and added mass, respectively. Figure 2a shows the variation of the
excitation frequency ω/2π . The solid and broken lines in Figs. 2b–e represent y and
x1, respectively. For 5.0 Hz ≤ ω/2π ≤ 7.1 Hz, we observed impact oscillations, as
shown in Fig. 2b. When ω is near the second mode natural frequency ω2/2π = 9.8
Hz (7.2 Hz ≤ ω/2π ≤ 14.0 Hz), Fig. 2c shows that the impact oscillations between
the main mass and the excitation source are suppressed and that the main mass
is always in contact with the excitation source. When ω is increased further, the
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Fig. 3 Time histories of x1 and x2. x1 and x2 move in opposite directions (ω/2π = 9.8 Hz)

main mass gradually separates from the excitation source, as shown in Fig. 2d. For
ω/2π > 15.3 Hz, we observe periodic impact oscillations, as shown in Fig. 2e.

Figure 3 shows the time histories of x1 and x2 (ω/2π = 9.8 Hz), respectively. In
the region without contact loss (Fig. 2c), the main mass and the added mass move
in opposite directions. Therefore, second mode vibration plays an important role in
the suppression of impact oscillations.

3 Theoretical Analysis

3.1 Analytical Model and Basic Equation

Figure 4 shows the analytical model for impact oscillations between the sinusoidal
excitation source and the main mass. m1 and m2 denote the main mass and the
additional coupled mass, respectively.m1 is connected to a fixed plane using a linear
spring and is coupled to the additional mass m2. k1 is the spring coefficient between
the fixed plane and the main mass. k2 is the spring coefficient between m1 and m2.
The origin of the coordinates is set where the springs do not expand. x1 and x2
denote the displacements of the main mass and added mass, respectively.

The excitation source is pushed against the main mass. The displacement of the
excitation source y is written as y = −d+y0 sinωt , where d is the push up distance,
y0 is the excitation amplitude, and ω is the excitation frequency. When the main
mass comes in contact with the excitation source (x1 = y), the reaction force acts on
the main mass. The reaction force at the nth impact time t = tn can be written in the
form F(t)δ (t − tn). The Dirac delta function δ (t − tn) indicates that the reacting
force is applied only at t = tn.

With the introduction of non-dimensional variables y∗ = y/d, x∗
1 = x1/d, x∗

2 =
x2/d, and t∗ = √

k1t/
√
m1, the non-dimensional governing equations for the two-

degree-of-freedom spring-mass system can be written as follows:

ẍ1 + (1 + α) x1 − αx2 = −
∞∑

n=1

f (t)δ (t − tn) , (1)
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Fig. 4 Analytical model for impact oscillations between the excitation source and the main mass
is coupled to the additional mass

μẍ2 − αx1 + αx2 = 0. (2)

The asterisks which indicate the non-dimensional variables are omitted in Eq. (1)
and hereafter. The non-dimensional displacement of the excitation source is

y = −1 + ε sin�t. (3)

When we express the velocity of the main mass ẋ−
1 immediately before the nth

impact time tn, the velocity after impact ẋ+
1 is given as

ẋ+
1n = −eẋ−

1n + (1 + e) ẏ (tn) , (4)

where e is the coefficient of restitution and the subscript n indicates the nth impact.
In Eqs. (1)–(4), the following four non-dimensional parameters are involved:

α = k2

k1
, ε = y0

d
, � = ω

√
m1

k1
, e. (5)

Letting x = Py, we rewrite the governing equations with the modal coordinates
y = (y1 y2)

t , where x = (x1 x2)
t and P is a transformation matrix. P is written as

P = (p1 p2), where p1 = (ξ11 ξ12) and p2 = (ξ21 ξ22) are the normalized first and
second eigen-vectors, respectively. From the governing equations written in modal
coordinates, we obtain the following velocity relationship during the nth impact:

ẏ+
1n = Z1ẏ

−
1n + Z2ẏ

−
2n + Z3ẏ (tn) , ẏ+

2n = Z4ẏ
−
1n + Z5ẏ

−
2n + Z6ẏ (tn) , (6)
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where the coefficients Z1 through Z6 are given as follows

Z1 = ξ2
21 − ξ2

11e

ξ2
11 + ξ2

21

, Z2 = −ξ11ξ21 (1 + e)

ξ2
11 + ξ2

21

, Z3 = ξ11 (1 + e)

ξ2
11 + ξ2

21

,

Z4 = −ξ11ξ21 (1 + e)

ξ2
11 + ξ2

21

, Z5 = ξ2
11 − ξ2

21e

ξ2
11 + ξ2

21

, Z6 = ξ21 (1 + e)

ξ2
11 + ξ2

21

. (7)

3.2 Theoretical Results

Using Eqs. (1), (2), (3) and (6), we numerically investigate the effects of the
additional mass on the impact oscillations between the main mass and the excitation
source. Figure 5a shows the bifurcation diagram for the impact oscillations between
the main mass and the excitation source. �tn modulo 2π is the phase of y at the
impact time tn. Figures 5b,c and d show the time histories of x1 and y. As seen
in Figs. 5b and d, impact oscillations occur in the regions 0.88 ≤ � ≤ 1.18 and
2.37 ≤ �. When � is near the second mode natural frequency ω2 = 1.68, the main
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Fig. 5 Impact oscillations between the main mass and the excitation source. (a) Bifurcation
diagram (α = 1, μ = 1, , e = 0.65, ε = 0.3), (b) time histories of x1 and y (� = 1), (c)
time histories of x1 and y (� = 1.68), and (d) time histories of x1 and y (� = 2.8)
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Fig. 6 Bifurcation diagrams (α = 1, μ = 1, e = 0.65, ε = 0.3) for (a) μ = 0.25, (b) μ = 0.5,
(c) μ = 0.75 and (d) μ = 1.25

mass is always in contact with the excitation source. RL = 1.18 and RH = 2.37 are
the lower and upper limit excitation frequencies, respectively, in the contact region.
Therefore, it is confirmed that the additional spring-mass system widely suppresses
the impact oscillations between the main mass and the excitation source.

Next, we examine the effect of μ on the contact loss between the excitation
source and the main mass. The bifurcation diagram forμ = 0.75 is shown in Fig. 6c.
RL and RH are 1.33 and 2.40, respectively. The impact oscillations are widely
suppressed when ω is near ω2. Figure 6a and b shows the results for μ = 0.25
and 0.50. μ decreases as the second mode natural frequency ω2 becomes larger.
Therefore, the contact zone (RL ≤ � ≤ RH) shifts to higher frequency. Figure 6d
shows the results for μ = 1.25. In this case, RL and RH are 1.07 and 2.37,
respectively.

4 Conclusions

The impact oscillations between a pantograph and a conductor line in a railway
current collection system were investigated. The system was modeled as a mass-
spring system subjected to a sinusoidal excitation source that pushed against the
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mass. We numerically examined the effect of the additional mass-spring system
couples to the main mass on the impact oscillations between the main mass and the
excitation source. It was found that when the excitation frequency is near the second
mode natural frequency, the impact oscillations are suppressed and contact loss
does not occur. Finally, we conducted the experiments with slowly increasing the
excitation frequency. We observed the suppression of the impact oscillations for the
case where the excitation frequency is near the second mode natural frequency. In
the region without contact loss, the main mass and the added mass move in opposite
directions. The second mode vibration plays an important role in the suppression of
the impact oscillations.
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On Qualitative Analysis of Lattice
Dynamical System of Two- and
Three-Dimensional Biopixels Array:
Bifurcations and Transition to “Chaos”

Oleksandr Nakonechnyi, Vasyl Martsenyuk, Mikolaj Karpinski,
and Aleksandra Klos-Witkowska

Abstract We consider the model of two- or three-dimensional biopixels array,
which can be used for design of biosensors. The model is based on the system of
lattice differential equations with time delay, describing interactions of biological
species of neighbouring pixels. The qualitative analysis includes permanence
and extinctions of solutions, stability investigation, bifurcations and transition to
chaos. The stability conditions are obtained with help of the method of Lyapunov
functionals. They are formulated in terms of the value of time necessary for immune
response. Numerical research is presented with the help of phase portraits, square
and hexagonal lattice plots and bifurcation diagrams.

Keywords Biopixels array · Delayed dynamic system · Qualitative analysis

1 Introduction

Nowadays, reaction-diffusion models are used in designing and studies of a lot of
detecting, measuring and sensing devices. Immunosensor, which are studied here
as an example, is kind of them. Such spatial-temporal models are described by the
systems of partial or lattice differential equations.
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The biosensor models are traditionally studied from the viewpoint of their
qualitative analysis. Even in case of a small number of spatial elements they show
complex behavior. In [1] it was shown that the model describing the chemical reac-
tion of two morphogens (reactants), one of them diffusing within two compartments,
results in “bi-chaotic” behavior. The origin of such chaotic phenomena1 were also
explained with help of statistics of topological defects [2].

When considering continuously distributed reaction-diffusion models described
by nonlinear partial differential equations, Feigenbaum-Sharkovskii-Magnitskii
bifurcation theory can be applied, which results in a subharmonic cascade of
bifurcations of stable limit cycles [3].

The lattice differential equations describes the systems with the discrete spatial
structure, which is more consistent with pixel devices. These equations were also
called earlier by a series of authors as spatially discrete differential equations [4].

In [5] a lattice differential equation was presented in the form

u̇ξ = gξ ({uζ }ζ∈Λ), ξ ∈ Λ, (1)

where a lattice Λ ⊂ R
n can be determined as a discrete subset of Rn, arranged in

accordace with some regular spatial structure. Here uξ , ξ ∈ Λ are the values of
u = {

uξ
}
ξ∈Λ at the the points of the lattice, gξ are the right sides of the equations

enabling us the existence of solution.
As a rule, without loss of generality, they consider Λ = Z

n, which is the integer
lattice in R

n. The methods developed can be easily applied to a different type of
lattices, namely, the planar rectangular and hexagonal lattice, the crystallographic
lattices in R

3.
They pay an attention to the notion of delay in lattice differential equations, so-

called delayed lattice differential equations. One of the application dealing with
them is the investigation of traveling wave fronts and their stability [5]. The main
results are applied to the delayed and discretely diffusive models for the population
(see, e.g. [6, 7]).

Lattice differential equations are used as models in a lot of applications, for
example, cellular neural networks, image processing, chemical kinetics, material
science, in particular metallurgy, and biology [5, 8]. Lattice models are extremely
attractive from viewpoint of population dynamics especially in case of spatially
separated populations [5, 6, 8–11].

There are few reasons requiring consideration the hexagonal grid instead of
rectangular ones (primarily in image and vision computing). Namely, the equal
distances between neighboring pixels for hexagonal coordinate systems [12];
hexagonal points are packed more densely [13]; since the “hexagons are ‘rounder’
than squares”, the presentation of curves are more consistent with help of hexagonal
systems [13]; hence, mathematical operations of edge detection and shape extraction
are more successfully when applying hexagonal lattices [14].

1They call it as “spiral turbulence” [2].
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With the purpose of indexing hexagonal pixels, as a rule, they use two-2 or three-
element3 coordinate systems [15]. Our reasonings will be based on the last one. In
contrary to skewed axes, the using of the cubic coordinates enables us symmetries
with respect to all three axises.

2 Lattice Model of Antibody-Antigen Interaction for
Two-Dimensional Biopixels Array

Let Vi,j (t) be concentration of antigens, Fi,j (t) be concentration of antibodies in
biopixel (i, j), i, j = 1, N (Fig. 1).
The model is based on the following biological assumptions for arbitrary biopixel
(i, j).

1. We have some constant birthrate β > 0 for antigen population.
2. Antigens are detected, binded and finally neutralized by antibodies with some

probability rate γ > 0.

Pixel
(i − 1, j)

Pixel (i, j)
Pixel

(i, j − 1)
Pixel

(i, j + 1)

Pixel
(i + 1, j)

Dvi−1,j(t)Dnvi,j(t)

Dvi,j+1(t)

Dnvi,j(t)Dvi,j−1(t)

Dnvi,j(t)

Dnvi,j(t)Dvi+1,j(t)

Fig. 1 Linear lattice interconnected four neighboring pixels model, n > 0 is disbalance constant

2So called “skewed-axis” coordinate system.
3It is also known as “cube hex coordinate system”.
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3. We have some constant death rate of antibodies μf > 0.
4. We assume that when the antibody colonies are absent, the antigen colonies are

governed by the well known delay logistic equation:

dVi,j (t)

dt
= (β − δvVi,j (t − τ))Vi,j (t), (2)

where β and δv are positive numbers and τ ≥ 0 denotes delay in the negative
feedback of the antigen colonies.

5. The antibody decreases the average growth rate of antigen linearly with a certain
time delay τ ; this assumption corresponds to the fact that antibodies cannot
detect and bind antigen instantly; antibodies have to spend τ units of time before
they are capable of decreasing the average growth rate of the antigen colonies;
these aspects are incorporated in the antigen dynamics by the inclusion of the
term −γFi,j (t− τ) where γ is a positive constant which can vary depending on
the specific colonies of antibodies and antigens.

6. In case of the lack of antigen colonies, the average growth rate of the antibody
colonies decreases exponentially due to the presence of −μf in the antibody
dynamics, and to incorporate the negative effects of antibody crowding, we have
included the term −δf Fi,j (t) in the antibody dynamics.

7. The positive feedback ηγVi,j (t − τ) in the average growth rate of the antibody
has a delay since mature adult antibodies can only contribute to the production
of antibody biomass; one can consider the delay τ in ηγVi,j (t − τ) as a delay
in antibody maturation.

8. While the last delay need not be the same as the delay in the hunting term and
in the term governing antigen colonies, we have retained this for simplicity.
We remark that the delays in the antibody term, antibody replacement term and
antigen negative feedback term can be made different and a similar analysis can
be followed.

9. We have some diffusion of antigens from four neighboring pixels (i − 1, j),
(i + 1, j), (i, j − 1), (i, j + 1) (see Fig. 4) with diffusion D > 0. Here
we consider only diffusion of antigens, because the model describes so-
called “competitive” configuration of immunosensor [16]. When considering
competitive configuration of immunosensor, the factors immobilized on the
biosensor matrix are antigens, while the antibodies play the role of analytes
or particles to be detected.

10. We consider surface lateral diffusion (movement of molecules on the surface on
solid phase toward an immobilizated molecules) [17]. Moreover, there are works
[18, 19] which assume and consider surface diffusion as an entirely independent
stage.

11. We extend definition of usual diffusion operator in case of surface diffusion in
the following way. Let n ∈ (0, 1] be a factor of diffusion disbalance. It means
that only nth portion of antigens of the pixel (i, j)may be included into diffusion
process to any neighboring pixel as a result of surface diffusion.



Lattice Dynamical System 27

For the reasonings given we consider a very simple delayed antibody-antigen
competition model for biopixels two-dimensional array which is based on well-
known Marchuk model [20–23] and using spatial operator Ŝ offered in [24]
(Supplementary information, p.10)

dVi,j (t)

dt
= (β − γFi,j (t − τ)− δvVi,j (t − τ))Vi,j (t)+ Ŝ{Vi,j },

dFi,j (t)

dt
= (−μf + ηγVi,j (t − τ)− δf Fij (t)

)
Fi,j (t)

(3)

with given initial functions

Vi,j (t) = V 0
i,j (t) ≥ 0, Fi,j (t) = F 0

i,j (t) ≥ 0, t ∈ [−τ, 0),

Vi,j (0), Fi,j (0) > 0.
(4)

For a square N × N array of traps, we use the following discrete diffusion form
of the spatial operator [24]

Ŝ{Vi,j } =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
[
V1,2 + V2,1 − 2nV1,1

]
i, j = 1

D
[
V2,j + V1,j−1 + V1,j+1 − 3nVi,j

]
i = 1, j ∈ 2, N − 1

D
[
V1,N−1 + V2,N − 2nV1,N

]
i = 1, j = N

D
[
Vi−1,N + Vi+1,N + Vi,N−1 − 3nVi,N

]
i =∈ 2, N − 1, j = N

D
[
VN−1,N + VN,N−1 − 2nVN,N

]
i = N, j = N

D
[
VN−1,j + VN,j−1 + VN,j+1 − 3nVN,j

]
i = N, j ∈ 2, N − 1

D
[
VN−1,1 + VN,2 − 2nVN,1

]
i = N, j = 1

D
[
Vi−1,1 + Vi+1,1 + Vi,2 − 3nVi,1

]
i ∈ 2, N − 1, j = 1

D
[
Vi−1,j + Vi+1,j + Vi,j−1 + Vi,j+1 − 4nVi,j

]
i, j ∈ 2, N − 1

(5)

Each colony is affected by the antigen produced in four neighboring colonies,
two in each dimension of the array, separated by the equal distance Δ. We use the
boundary condition Vi,j = 0 for the edges of the array i, j = 0, N + 1. Further we
will use the following notation of the constant

k(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 i, j = 1; i = 1, j = N; i = N, j = N; i = N, j = 1,
3 i = 1, j ∈ 2, N − 1; i ∈ 2, N − 1, j = N; i = N, j ∈ 2, N − 1;

i ∈ 2, N − 1, j = 1
4 i, j ∈ 2, N − 1

(6)

which will be used in manipulations with the spatial operator (5).
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Results of modeling (3) are presented further. It can be seen that qualitative
behavior of the system is determined mostly by the time of immune response τ
(or time delay), diffusion D and constant n.

2.1 Stability Investigation

Steady States The steady states of the model (3) are the intersection of the null-
clines dVi,j (t)/dt = 0 and dFi,j (t)/dt = 0, i, j = 1, N .

Antigen-Free Steady State If Vi,j (t) ≡ 0, the free antigen equilibrium is at E0
i,j ≡

(
0, 0

)
, i, j = 1, N or E0

i,j ≡
(

0,−μf
δf

)
, i, j = 1, N . The last solution does not

have biological sense and can not be reached for nonnegative initial conditions (4).

When considering endemic steady state E∗
i,j ≡

(
V ∗
i,j , F

∗
i,j

)
, i, j = 1, N for (3)

we get algebraic system:

(
β − γF ∗

i,j − δvV
∗
i,j

)
V ∗
i,j + Ŝ

{
V ∗
i,j

}
= 0,

(
− μf + ηγV ∗

i,j − δf F
∗
i,j

)
F ∗
i,j = 0, i, j = 1, N.

(7)

The solutions
(
V ∗
i,j , F

∗
i,j

)
of (7) can be found as a result of solving lattice equation

with respect to V ∗
i,j , and using relation F ∗

i,j = −μf+ηγV ∗
i,j

δf

Then we have to differ two cases.

Identical Endemic State for All Pixels Let’s assume there is a solution of (7)

V ∗
i,j ≡ V ∗, F ∗

i,j ≡ F ∗, i, j = 1, N , i.e., Ŝ
{
V ∗
i,j

}
≡ 0. Then E∗

i,j =
(
V ∗, F ∗

)
,

i, j = 1, N can be calculated as

V ∗ = −βδf − γμf

δvδf − ηγ 2 , F ∗ = δvμf − ηγβ

δvδf − ηγ 2 . (8)

provided that δvδf − ηγ 2 < 0.

Nonidentical Endemic State for Pixels In general case we have endemic steady
state which is different from (8). It is shown numerically in Appendix B that it
appears as a result of diffusion between pixels D.

At absence of diffusion, i.e. D = 0, we have only identical endemic state for
pixels of external layer. At presence of diffusion D > 0 nonidentical endemic states
tends to identical one (8) at internal pixels, which can be observed at numerical
simulation. This phenomenon is clearly appeared at bigger amount of pixels.
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Basic Reproduction Numbers Here we define the basic reproduction number
for antigen colony which is localized in pixel (i, j). When considering epidemic
models, the basic reproduction number, R0, is defined as the expected number of
secondary cases produced by a single (typical) infection in a completely susceptible
population. It is important to note that R0 is a dimensionless number [25]. When
applying this definition to the pixel (i, j), which is described by the equation (3),
we get

R0,i,j = Ti,j ci,j di,j

where Ti,j is the transmissibility (i.e., probability of binding given constant between
an antigen and antibody), ci,j is the average rate of contact between antigens
and antibodies, and di,j is the duration of binding of antigen by antibody till
deactivation.

Unfortunately, the lattice system (3) doesn’t include all parameters, which allow
to calculate the basic reproduction numbers in a clear form. Firstly, let’s consider
pixel (i�, j�) without diffusion, i.e., Ŝ

{
Vi�,j�

} ≡ 0. In this case the non-negative
equilibria of (3) are

E0
i�,j� = (

V 0, 0
) := ( β

δv
, 0
)
, E�i�,j� = (

V �, F �
)
.

Due to the approach which was offered in [26] (in pages 4 for ordinary differential
equations, 5 for delay model), we introduce the basic reproduction number for pixel
(i�, j�) without diffusion, which is given by expression

R0,i�,j� := V 0

V �
= β

δvV �
= β(ηγ 2 − δvδf )

δv(βδf + γμf )
.

Its biological meaning is given as being the average number of offsprings produced
by a mature antibody in its lifetime when introduced in a antigen-only environment
with antigen at carrying capacity.

Following the approach of population dynamics it has to be shown that antibody-
free equilibrium E0

i�,j� is locally asymptotically stable if R0,i�,j� < 1 and it is
unstable if R0,i�,j� > 1 (see, e.g. [27]). It can be done with help of analysis of
the roots of characteristic equation (similarly to [26], p.5). Thus, R0,i�,j� > 1 is
sufficient condition for existence of the endemic equilibrium E�i�,j� .

We can consider the expression mentioned above for the general case of the
lattice system (3), i.e., when considering diffusion. In this case we have the “lattice”
of the basic reproduction numbers R0,i,j , i, j = 1, N satisfying to

R0,i,j := V 0
i,j

V �
i,j

, i, j = 1, N, (9)
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where E0
i,j , i, j = 1, N are nonidentical steady states, which are found as a result of

solution of the algebraic system

(
β − δvV

0
i,j

)
V 0
i,j + Ŝ

{
V 0
i,j

}
= 0, i, j = 1, N, (10)

endemic states E�i,j =
(
V �
i,j , F

�
i,j

)
, i, j = 1, N are found using (7).

It is worth to say that due to the principles of population dynamics the conditions

R0,i,j > 1, i, j = 1, N (11)

have to be sufficient for the existence of endemic state E�i,j . We will check it only
with help of numerical simulations.

2.2 Persistence of the Solutions

We will use the following definition which generalizes [28] for lattice differential
equations.

Definition 1 System (3) is said to be uniformly persistent if for all i, j = 1, N
there exist compact regions Di,j ⊂ intR2 such that every solution (Vi,j (t), Fi,j (t)),
i, j = 1, N of (3) with the initial conditions (4) eventually enters and remains in the
region Di,j .

Theorem 1 Let (Vi,j (t), Fi,j (t)), i, j = 1, N be the solutions of (3) with initials
conditions (4). If

βηγ − μf δv > 0, (12)

then

0 < Vi,j (t) ≤ Mv, 0 < Fi,j (t) ≤ Mf (13)

for some large values of t . Here

Mv = β

δv
eβτ , Mf = 1

δf

(
ηγMv − μf

)
. (14)

Proof Firstly, we can prove that there exists some large instant of time T1 that
Ŝ{Vi,j (t)} ≤ 0, i, j = 1, N , t > T1.

Let’s assume the contrary, i.e. there is i�, j� ∈ 1, N , that Ŝ{Vi,j (t)} > 0 at
t > T1, which is a contradiction with a balance principle.
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Since the solutions of the system (3), (4) are positive, then

dVi,j (t)

dt
≤
(
β − δvVi,j (t − τ)

)
Vi,j (t). (15)

Further we can apply the basic steps of proof of Lemma 3.1 [29] which is proved in
nonlattice case (i.e. without spatial operator).

Remark 1 Conditions of uniform persistence of system (3) in nonlattice case were
obtained in [30]. They resulted in inequality (12) provided that

βδf + μf γ > 0 (16)

holds.

2.3 Extinction Research

The next result introduces a sufficient condition for the underlying grid size ensuring
that the solution of (3) is non-vanishing.

Theorem 2 Let for the system (3) the positive orthant Ω be positive invariant.
Besides that, let N be such that fextnc(N) < 1 holds, where

fextnc(N) = max
k,l=1,N

∣∣∣∣β − 4D

Δ2

(
1 + cos

π(k + l)

2(N + 1)
cos

π(k − l)

2(N + 1)

)∣∣∣∣. (17)

Then limt→∞ Vi,j (t) = 0, i, j = 1, N .

Proof It requires a comparison principle for differential equations.
The following inequalities hold for Vi,j (t)

Vi,j (t)

dt
< βVi,j (t)+ Ŝ

{
Vi,j (t)

}
.

Consider N2-vector of the form

V (n) =
(
V1,1(t), V1,2(t), . . . , V1,N (t), V2,1(t), . . . , V2,N (t), . . . ,

VN,1(t), . . . , VN,N (t)
)
.
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We compare V (t)
dt

≤ CV (t), where C = IN ⊗ A+ B ⊗ IN ,

A =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

β − 4D
Δ2

D
Δ2

D
Δ2 β − 4D

Δ2
D
Δ2

D
Δ2

. . .

. . .

β − 4D
Δ2

D
Δ2

D
Δ2 β − 4D

Δ2

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N,

B =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 D
Δ2

D
Δ2 0 D

Δ2

D
Δ2

. . .

. . .

0 D
Δ2

D
Δ2 0

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

∈ R
N×N,

IN is N ×N identity matrix. The N2 eigenvalues of C are of the form (see [31],
Theorem 8.3.1) λk,l(C) = λk(A)+ λl(B), k, l = 1, N , where the eigenvalues of A

λk(A) = β − 4D

Δ2
− 2D

Δ2
cos (πk/(N + 1)), k = 1, N,

the eigenvalues of B

λl(B) = −2D

Δ2 cos (πl/(N + 1)), l = 1, N.

The comparison system Z(t)
dt

= CZ(t) tends asymptotically to zero if
∣∣λk,l

∣∣ < 1.
That is,

max
k,l=1,N

∣∣∣
∣β − 4D

Δ2
− 2D

Δ2

(
cos

πk

N + 1
+ cos

πl

N + 1

)∣∣∣
∣ < 1.

2.4 Numerical Simulation of Square 4 × 4 Pixels Array

First of all we calculate the basic reproductive numbers R0,i,j , i, j = 1, 4 due
to (9) (See Table 1). We see that the conditions (11) hold. Thus, equilibrium without
antibodies E0

i,j , i, j = 1, 4 is unstable and there exists endemic equilibrium E�i,j ,

i, j = 1, 4.
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Table 1 The values of R0,i,j ,
i, j = 1, 4

R�0,i,j 1 2 3 4

1 3.218727 3.425273 3.474323 3.224824

2 3.171270 3.235043 3.236289 3.126438

3 3.092287 3.107824 3.096617 3.040443

4 2.997269 3.020902 3.012915 2.971442

Table 2 The phase plane plots of the system (3) for antibody populations Fi,j versus antigen
populations Vi,j , i, j = 1, 4. Numerical simulation of the system (3) at n = 0.9, τ = 0.28725. Here
• indicates identical steady state, • indicates nonidentical steady state. Trajectories are constructed
for t ∈ [550, 800]. The solution behavior looks chaotic

The numerical simulations were implemented at different values of n ∈ (0, 1].
Here we can see that when changing the value of τ we have changes of qualitative
behavior of pixels and entire immunosensor. We considered the parameter value
set given above and computed the long-time behavior of the system (3) for τ =
0.05, 0.22, 0.23, 0.2865, and 0.28725. The phase diagrams of the antibody vs.
antigen populations for the pixel (1, 1) are shown in Table 2.

For example, at τ ∈ [0, 0.22] we can see trajectories corresponding to stable
node for all pixels.

For τ = 0.23, the phase diagrams show that the solution is a limit cycle with
two local extrema (one local maximum and one local minimum) per cycle. Then
for τ = 0.2825 the solution is a limit cycle with four local extrema per cycle, and,
for τ = 0.2868, 0.2869, 0.28695 the solutions are limit cycles with 8, 16 and 32
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Fig. 2 The time series of the solutions to the system (3) for the antigen population V1,3 from
t = 0 to 700 with τ = 0.28725 for initial conditions V1,3(t) = 1 and V1,3(t) = 1.001 (deviated),
t ∈ [−τ, 0], and identical all the rest ones. At the beginning the two solutions appear to be the same,
but as time increases there is a marked difference between the solutions supporting the conclusion
that the system behavior is chaotic

local extrema per cycle, respectively. Finally, for τ = 0.28725, the behavior shown
in Table 2 is obtained which looks like chaotic behavior. In this paper, we have
regarded behavior as chaotic if no periodic behavior could be found in the long-
time behavior of the solutions.

The divergence of nearby trajectories in phase space is one of the most striking
properties of chaotic behavior of deterministic systems [32]. In order to evaluate
that the solution is chaotic for τ = 0.28725, we perturbed the initial conditions
to test the sensitivity of the system. Figure 2 presents two trajectories (in red and
blue) starting from initial conditions with a small deviation (0.001). It can be seen
that till the moment about t = 400 the is no significant difference between the
trajectories, whereas further nearby trajectories are being deviated. The divergence
of the trajectories with the small initial deviation evidences numerically the chaotic
behavior at τ = 0.28725.

We have also checked numerically that the solutions for the limit cycles are
periodic and computed the periods for each of the local maxima and minima in
the cycles. In the chaotic solution region, the numerical calculations (not shown in
this paper) confirmed that no periodic behavior could be found.

A bifurcation diagram showing the maximum and minimum points for the limit
cycles for the antigen population V1,3 as a function of time delay is given in Fig. 3.
The Hopf bifurcation from the stable equilibrium point to a simple limit cycle and
the sharp transitions at critical values of the time delay between limit cycles with
increasing numbers of maximum and minimum points per cycle can be clearly seen.
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Fig. 3 A bifurcation diagram showing the “bifurcation path to chaos” as the time delay is
increased. The points show the local extreme points per cycle for the V1,3 population. Chaotic-
type solutions occur at τ ≈ 0.28725 and are indicated in red in the figure with value 0 for the
number of extreme points
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3 Three-Dimensional Biopixels Array

When modeling three-dimensional pixels array it is natural way to apply the model
based on the hexagonal lattice. Such model may use the following assumption.
Namely, antigens are assumed to diffuse from six neighboring pixels, (i+ 1, j, k−
1), (i+1, j−1, k), (i, j−1, k+1), (i−1, j, k+1), (i−1, j+1, k), (i, j+1, k−1)
(see Fig. 4), with diffusion rateDΔ−2, whereD > 0 andΔ > 0 is distance between
pixels.

Taking into account prerequisites mentioned above, we get a simplified antibody-
antigen competition model with delay for a hexagonal array of biopixels, which uses
Marchuk model of the immune response [20–23] and using spatial operator Ŝ which
is constructed similarly to [24] (Supplementary information, p.10)

Fig. 4 Diffusion of antigens for the hexagonal lattice model. Antigens from six neighboring
pixels interact, n > 0 is the constant of disbalance. Here ‘1’, ‘3’, ‘5’, ‘8’, ‘9’, ‘11’ have to
be replaced with DΔ−2Vi,j,k(t), ‘2’ with DΔ−2Vi+1,j,k−1(t), ‘4’ with DΔ−2Vi+1,j−1,k(t), ‘6’
with DΔ−2Vi,j−1,k+1(t), ‘7’ with DΔ−2Vi−1,j,k+1(t), ‘10’ with DΔ−2Vi−1,j+1,k(t), ‘12’ with
DΔ−2Vi,j+1,k−1(t)



Lattice Dynamical System 37

dVi,j,k(t)

dt
= (β − γFi,j,k(t − τ)− δvVi,j,k(t − τ))Vi,j,k(t)+ Ŝ{Vi,j,k},

dFi,j,k(t)

dt
= (−μf + ηγVi,j,k(t − τ)− δf Fi,j,k(t)

)
Fi,j,k(t)

(18)

with given initial functions

Vi,j,k(t) = V 0
i,j,k(t) ≥ 0, Fi,j,k(t) = F 0

i,j,k(t) ≥ 0, t ∈ [−τ, 0),

Vi,j,k(0), Fi,j,k(0) > 0.
(19)

We use the following spatial operator of discrete diffusion for a hexagonal array
of pixels4

Ŝ{Vi,j,k} = DΔ−2
[
Vi+1,j,k−1 + Vi+1,j−1,k + Vi,j−1,k+1 + Vi−1,j,k+1 + Vi−1,j+1,k

+ Vi,j+1,k−1 − 6nVi,j,k
]

i, j, k ∈ −N + 1, N − 1, i + j + k = 0.
(20)

Each pixel is affected by the antigens flowing out six neighboring pixels, two in
each of three directions of the hexagonal array. The adjoint pixels are separated by
the distance Δ.

Boundary conditions Vi,j,k = 0 for the edges of the hexagonal array, i.e. if i ∨
j ∨ k ∈ {−N − 1, N + 1}, are used.

We can present analytical results with respect to the model (18) in the form
of restrictions for the parameters, enabling us persistence and global asymptotic
stability. Moreover, we executed numerical research of the system qualitative
behavior in dependence of changes of the time of immune response τ (delay of
time), diffusion rate DΔ−2 and factor n.

3.1 Persistence and Extinction of the Solutions

Concerning persistence, for the hexagonal lattice can be obtained similar result as
for square one (Theorem 1), just adding the third index.

Unfortunately, we didn’t manage to present such clear condition of extinction as
in Theorem 2. We can check it only numerically in an experimental way.

4Without loss of generality we consider spatial operator for internal pixels only.



38 O. Nakonechnyi et al.

3.2 Numerical Study

For numerical simulation we consider model (18) of hexagonal pixels array at N =
4, β = 2 min−1, γ = 2 mL

min ·μg , μf = 1 min−1, η = 0.8/γ , δv = 0.5 mL
min ·μg ,

δf = 0.5 mL
min ·μg , D = 0.2 nm2

min , Δ = 0.3nm. Numerical modeling was implemented
at different values of n ∈ (0, 1]. For this purpose we used RStudio environment.

Using local bifurcation plot, dynamics of the system (18) was analysed for
different values of n ∈ (0, 1]. We have concluded that oscillatory and then chaotic
behavior starts for smaller values of τ at smaller values of n. Further, increasing the
values of n we can observe asymptotically stable steady solutions for wider range
of τ .

Numerical integration of the system has shown the influence of time delay τ .
Namely, as it is agreed with the analytical results, we observe the stable focuses at
pixel-dependent endemic states for small delays τ ∈ [0, 0.18). At τ ≈ 0.18 min the
stable focus is transformed into a stable limit cycle of tiny radius, which corresponds
to Hopf bifurcation. A deeper study of this phenomenon requires obtaining the
condition of the appearance of the pair of purely imaginary roots of the characteristic
quasipolynomial of the linearized system. The limit cycles of ellipsoidal form are
observed till τ ≈ 0.285 min. Pay attention that when increasing τ , near τ = 0.285
we get period doubling (see Fig. 5).5

Qualitative behavior of immunosensor model can be analyzed with help of
hexagonal tiling plots also. For this purpose we can use both plots for antigens
(Fig. 6), antibodies (Fig. 7) and probabilities of binding antigens by antibodies
(Fig. 8).

4 Conclusions

In the work a reaction-diffusion models of two- and three-dimensional immunopix-
els array were considered. Mathematically it is described by the system of lattice
delayed differential equations on rectangular or hexagonal grids. The systems
include the spatial operator describing diffusion of antigenes between five and seven
neighboring pixels respectively.

The main results are dealing with qualitative investigation of the model. The
conditions of persistence were obtained. Also we have managed to get the result
dealing with the extinction of the solutions. Namely, it can be seen that the amount
of pixels determines their non-vanishing. In two-dimensional case this dependence
can be presented in a clear form.

The conditions of local or global asymptotic stability can be obtained using
construction of the Lyapunov functional. Because of cumbersome of evidence, we

5It can be approximately seen from local bifurcation plot also.
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Fig. 5 Phase plots of the system (18) at τ = 0.287. Here • indicates initial state, • indicates
pixel-independent endemic state, • indicates pixel-dependent endemic state. The solution tends to
a stable limit cycle with six local extrema per cycle

didn’t include it here. They results in inequality including the system parameters and
delay. So, estimation of the delay enabling us local or global asymptotic stability can
be obtained.

Numerical analysis of the model qualitative behavior is performed with the
help of the bifurcation diagram, phase trajectories, and rectangular or hexagonal
tile portraits. It has shown the changes in qualitative behavior with respect to the
growth of time delay. Namely, starting from the stable focus at small delay values,
then through Hopf bifurcation to limit cycles, and finally through period doublings
to deterministic chaos. It is agreed with the results on spatial-temporal chaos for
reaction-diffusion systems, which were previously obtained in [1–3].

As compared with rectangular lattice model, for hexagonal model we observe
Hopf bifurcation at smaller values of τ . That is hexagonal lattice accelerates changes
in qualitative behavior.
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Fig. 6 Example of hexagonal tiling plot for V

Fig. 7 Example of hexagonal tiling plot for F

Note, that model can be applied for an arbitrary amount of pixels determined by
natural N ≥ 1. However, it can be numerically seen that qualitative behavior of the
entire immunosensor is determined by 5 or 7 pixels array for square and hexagonal
lattices respectively.

The results of the work differ from the results presented earlier since here we
try to show a comparative study of the model of biopixels array both in square
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Fig. 8 Example of hexagonal tiling plot for probabilities of binding antigens by antibodies, i.e.
V × F . In case of optical immunosensor it is fluorescence intensity

and hexagonal lattices. Such a comparative study is based on both analytical and
numerical results. Analytical outcomes include a comparison of the basic stability
characteristics like basic reproductive numbers, a comparison of the conditions for
persistence (permanence), and extinction. Numerical analysis use phase portraits
and bifurcation plots which are constructed on the basis of local extremes. Earlier
such studies were executed focusing on some type of the lattice. So, here we
investigate the effect of the lattice type on the qualitative behavior of the model.
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Response Sensitivity
of Damper-connected Adjacent
Structural Systems Subjected to Fully
Non-stationary Random Excitations

Giuseppe Muscolino , Federica Genovese , and Tiziana Alderucci

Abstract In the last decades, due to the growing population, civil engineers
faced with the problem of the design of adjacent buildings in limited areas;
this could lead to mutual pounding if those structures are subjected to dynamic
excitation such as ground motion accelerations. Among the possible solutions to
this problem, the connection with vibration control devices, such as dampers, could
be an innovative way. The sensitivity analysis represents a powerful tool in the
optimization procedure, especially when the design of vibration control devices is
required; in fact, it is possible to determine the alterations of the structural response
with the reference structural parameters changes. In this paper a method for the
evaluation of the sensitivity of the response of two adjacent buildings connected
through fluid dampers is presented; the sensitivity of the structural response statistics
is obtained through very simple frequency domain integrals. The proposed approach
requires the evaluation of explicit closed form solutions of the derivatives of time-
frequency response vector functions with respect to the parameters, that define the
modified structural model.

Keywords Sensitivity analysis · Adjacent buildings · Non-stationary processes

1 Introduction

Interconnecting adjacent buildings with supplemental active or passive devices is
a practical and effective approach to get dual advantage of avoiding pounding
and response reduction if the parameters of devices are select properly. Notice
also that adjacent buildings connected by discrete viscoelastic dampers form a
non-classically damped system. Moreover, it is well known that the most realistic
representation of seismic excitations is as fully non-stationary zero-mean Gaussian
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stochastic process. The analysis of adjacent structures has been an active research
area in recent years. In particular Gurley et al. [1] investigated the possibility of
using a passively damped elastic link to couple adjacent buildings for control of
response to wind. Luco et al. [2] determined the optimal values for the distribution
of passive dampers minimizing the peak amplitudes of the transfer functions for
the response at the top of the taller structure in the vicinity of the first and second
modes of the structure. Xu et al. [3] investigated earthquake resistant performance of
adjacent buildings connected by a number of damped elastic links. They found the
optimum parameters of dampers through extensive numerical parametric studies.
Zhang and Xu [4] proposed an analytical method, combining the complex mode
superposition method with the pseudo-excitation method, for investigating both
dynamic characteristic and seismic response of adjacent buildings connected by
viscoelastic dampers. Zhu et al. [5] evaluate for 2-DOF coupled system analytical
formula of optimal parameters of devices (Kelvin-Voigt and Maxwell models are
analyzed), then they verified the relationships for multi degree of freedom (MDOF)
systems.

The sensitivity analysis represents a powerful tool in the optimization procedure
when it is possible to determine the alterations of the structural response once the
reference structural parameters changes. The main limit in using the sensitivity
approach is the cumbersome analytical and the numerical effort especially for non-
classically structural systems subjected to seismic excitations modeled as fully
non-stationary zero-mean Gaussian processes.

In this study, the sensitivities of nodal time-frequency varying response (TFR)
vector function of the nodal structural response of the non-classically damped
coupled system subjected to fully non-stationary zero-mean Gaussian excitation
processes are evaluated in explicitly closed form. Then, performing simple integrals
in frequency domain it is possible to evaluate the sensitivities of non-geometric
spectral moments of response. The main steps of this study are: (i) to determine, for
the non-classically dynamic structure composed of two adjacent buildings linked
by viscoelastic dampers represented by the Kelvin-Voigt model, the TFR vector
function of the nodal response; (ii) to evaluate the sensitivity of TFR vector function
of the nodal response; (iii) to find the optimal parameters of dampers through
parametric studies, analyzing the sensitivity of nodal response for both stationary
and non-stationary zero-mean Gaussian stochastic process.

2 Equations of Motion

Let us consider two adjacent linear structures of n1 and n2 stories, respectively,
connected by viscous dampers at some stories. It is assumed that the two structures
are symmetric, with their symmetric planes coincident with each other. The two
structures are subjected to a seismic acceleration assumed in the direction of the
symmetric planes. Therefore, the problem can be regarded as a one-dimensional
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problem and the structures can be simply modeled by two plane frames. Fur-
thermore, the two structures are assumed to be subjected to the same seismic
acceleration, so the spatial variability of the ground motion is herein not considered.
The equations of motion of the coupled quiescent structural system, can be written
as:

MS Ü (α, t)+ [CS + CD (αc)] U̇ (α, t)+ [KS + KD (αk)] U (α, t) = −MS τ üg(t),

(1)

where MS, CS and KS are the n × n (n = n1 + n2) mass, damping and stiffness
matrices of the system without coupling damping devices, whose mathematical form
can be found in [3], U(α, t) is the n-dimensional vector of nodal displacements
relative to the ground; τ is the n-dimensional array listing the influence coefficients
of the ground shaking; üg(t) is the seismic acceleration which is modeled as a
zero-mean Gaussian stochastic process; a dot over a variable denotes differentiation
with respect to time. Moreover, in Eq. (1) CD(αc) and KD(αk) are the n × n
additional damping and stiffness matrices due to the installation of the damping
devices. Finally, the vector αT = [

αTc αTk
]
, of order r (r = rc + rk), collects

the dimensionless parameter which must be evaluated by the design procedure,
the superscript T denotes the transpose operator. Obviously, the structural response
depends on vector α. Since the structural modifications, due to the introduction of
damping devices, leads to a non-classically damped structural system, the equations
of motion of the quiescent structural system are written in state variables:

Ż (α, t) = D (α)Z (α, t)+ wF(t), (2)

where Z(α, t) is the state variable vector of order 2n, D (α) is a matrix, of order
2n × 2n, and the w is a vector, of order 2n, respectively defined as:

Z (α, t)=
[

U (α, t)

U̇ (α, t)

]

; D (α)=
[

On,n In
− M−1

S [KS + KD (αk)] −M−1
S [CS + CD (αc)]

]

; w =
[

0n
− τ

]

(3)

where In and On, n are respectively the identity and the zero matrices of n × n order
while 0n stands for a n-dimensional zero vector. In order to evaluate the structural
response, the 2n × 2n transition matrix �(α, t) has to be introduced, this matrix for
non-classically damped systems can be evaluated as:

Θ (α, t) = exp [D (α) t] = Ψ (α) exp [Λ (α) t] Ψ T (α)A (α)

≡ Ψ ∗ (α) exp
[
Λ∗ (α) t

]
Ψ ∗T (α)A (α)

(4)

in which D(α) has been defined in Eq. (3). In Eq. (4) �(α), is a complex matrix, of
order 2m × 2m, and �(α) is complex matrix, of order 2n × 2m, collecting the m ≤ n
eigenvalues and eigenvectors respectively. These matrices, depending on uncertain



48 G. Muscolino et al.

parameters α, are evaluated by formally solving the following algebraic complex
eigenproblem:

D−1 (α)Ψ (α) = Ψ (α)Λ−1 (α) ; Ψ T (α)A (α)Ψ (α) = I2m (5)

Notice that �(α) is a diagonal matrix and

A (α) = AS + AD (αc) =
[

CS MS

MS On,n

]
+
[

CD (αc) On,n

On,n On,n

]
. (6)

3 Dynamic Response Sensitivity for Fully Non-stationary
Stochastic Load Processes

3.1 Closed Form Solutions for the Time-frequency Varying
Response Vector Function

In the framework of non-stationary analysis of structures, the non-geometric spectral
moments can be evaluated in compact form by introducing the pre-envelope
covariance (PEC) matrix. This matrix, in nodal space, is a 2n × 2n Hermitian
matrix, that, for non-classically damped systems, can be evaluated formally as [6,
7]:

ΣZZ (α, t) = E
〈
Z (α, t)Z∗T (α, t

)〉
=
[

Λ0,UU (α, t) iΛ1,UU (α, t)

− iΛ∗T
1,UU (α, t) Λ2,UU (α, t)

]

(7)

where i = √−1 is the imaginary unit, Z(α, t) is the nodal state variable vector
solution of Eq. (2), while the matrices �i, UU(α, t) collect the non-geometric spectral
moments (NGSM) [6, 8, 9]. Introducing the following coordinate transformation:

Z (α, ω, t) = Ψ (α) X (α, ω, t) (8)

where Z(α,ω, t) is the time-frequency varying response (TFR) vector function of
the nodal response of order 2n × 1, and X(α,ω, t) is the TFR vector function of the
modal response, of order 2m × 1, defined as [10]:

X (α, ω, t) =
t∫

t0

exp [Λ (α, t − τ)] exp (iωτ) a (ω, τ) dτ v (α) , v (α) = Ψ T (α)A (α)w.

(9)
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It follows that, after few mathematical steps, the nodal PEC matrix, can be
evaluated in time-domain, for quiescent structural systems as [10]:

ΣZZ (α, t) = Ψ ∗ (α)

⎡

⎣
∞∫

0

G0 (ω) X∗(α, ω, t
)

XT
(

α, ω, t
)

dω

⎤

⎦Ψ T (α)

(10)

where the one-sided evolutionary power spectral density (EPSD) [11, 12]
GFF(ω, t) = |a(ω, t) |2 G0(ω) is introduced, with a(ω, t) ≡ a∗ (−ω, t) the modulating
function, that for fully non-stationary processes depends on both time and
frequency, and G0(ω) is the one-sided PSD function of the stationary counterpart of
the fully not stationary input process. It has been demonstrated that for the following
modulating function:

a (ω, t) = ε (ω) (t) exp [−αa (ω) (t)] ; t > 0 (11)

the vector X(α,ω, t), of the quiescent structural systems (X0(α,ω) = 0) can be
evaluated in explicit form as [10, 13]:

X (α, ω, t) = −
{

exp [−β (ω) t]
[

Γ 2 (α, ω)+ t Γ (α, ω)
]

− exp [Λ (α) t] Γ 2 (α, ω)
}

× ε (ω) v (α) ; t > 0
(12)

where β(ω) = αa(ω) − iω and 
(α,ω) is a diagonal matrix, defined as:

Γ (α, ω) = [Λ (α)+ β (ω) I2m]−1. (13)

3.2 Closed Form Solutions for the Sensitivity
of Time-Frequency Varying Response Vector Function

In order to evaluate the optimal parameters a sensitivity analysis is performed. The
sensitivity analysis consists in the evaluation of the change in the system response
due to system parameter variations in the neighborhood of prefixed values, α = α0,
called “nominal parameter”. By differentiating the PEC matrix, defined in Eq. (10),
it is possible to evaluate its sensitivity with respect to the i-th parameter, as follows:

Σ sZ,i (α0, t) = ∂ΣZZ(α,t)
∂αi

∣∣∣
α=α0

= ∂
∂αi

[
Λ0,UU (α, t) iΛ1,UU (α, t)

− iΛ∗T
1,UU (α, t) Λ2,UU (α, t)

] ∣
∣∣∣∣
α=α0

=

= E

〈
Z∗ (α0, t)

∂ZT (α,t)
∂αi

∣∣∣
α=α0

〉
+ E

〈
Z∗ (α0, t)

∂ZT (α,t)
∂αi

∣∣∣
α=α0

〉∗T

(14)
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The elements of this matrix are the sensitivities of the non-geometric spectral
moments of the response. It has been recently demonstrated that the following
relationship holds [14]:

E

〈
Z∗ (α0, t)

∂ZT (α,t)
∂αi

∣
∣
∣
α=α0

〉
= Ψ ∗

0

{∞∫

0
X∗ (α0, ω, t)YT

i

(
α0, ω, t

)
G0 (ω) dω

}

Ψ T
0

(15)

where α0 is the “nominal parameter vector”, and Yi(α0,ω, t) is the sensitivity of
TFR vector function with respect to the parameter αi, given as:

Yi (α0, ω, t) =
t∫

0
exp [Λ0 (t − τ)] Bi,0X (α0, ω, τ ) dτ ; Bi,0 ≡ Bi (α0) = Ψ T

0 A0D′
i,0Ψ 0;

(16)

with �0 and �0 evaluated by solving the eigenproblem (5) for the “nominal
system”, in which α = α0; A0 = A(α0) and

D′
i,0 = ∂

∂αi
D (α)

∣∣∣
∣
α=α0

=
[

On,n On,n

− M−1
S

∂KD(αk)
∂αi

∣
∣∣
α=α0

−M−1
S

∂CD(αc)
∂αi

∣
∣∣
α=α0

]

(17)

The sensitivity of TFR vector function, given in Eq. (16), can be evaluated as
solution of the following differential equation with zero start conditions:

Ẏi (α0, ω, t) = Λ0 Yi (α0, ω, t)+ Bi,0X (α0, ω, τ ) ; t > 0, Yi (α0, ω, 0) = 0.
(18)

To perform the solution of this set of differential equations the vector X(α0,ω, t) ,
defined in Eq. (12), is rewritten as [14]:

X (α0, ω, t) = X1 (α0, ω, t)+ X2 (α0, ω, t) (19)

where:

X1 (α0, ω, t) = −ε (ω) exp [−β (ω) t]
[

Γ 2
0 (ω)+ t Γ 0 (ω)

]
v0; t > 0

X2 (α0, ω, t) = ε (ω) exp [Λ0 t] Γ 2
0 (ω) v0; t > 0 .

(20)

In the previous equations 
0(ω) and v0 are evaluated by Eq. (13) and the last
relationship of Eq. (9), respectively, for the “nominal system” (α = α0).

It follows that it is possible to split the vector solution of Eq. (18) as the sum of
two vectors, solutions of the following two sets of differential equations, with zero
start initial conditions:
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X1 (α0, ω, t) = −ε (ω) exp [−β (ω) t]
[

Γ 2
0 (ω)+ t Γ 0 (ω)

]
v0; t > 0

X2 (α0, ω, t) = ε (ω) exp [Λ0 t] Γ 2
0 (ω) v0; t > 0 .

(21)

Then, the sensitivity TFR‘s vector function can be evaluate in closed form
solution as:

Yi (α0, ω, t) = Yi,1 (α0, ω, t)+ Yi,2 (α0, ω, t) = {
Yi,1,p (α0, ω, t)+ Yi,2,p (α0, ω, t)

− exp [Λ0 t]
[
Yi,1,p (α0, ω, 0)+ Yi,2,p (α0, ω, 0)

]} ; t > 0
(22)

where the particular solution vectors of Eqs. (21), can be evaluated, after some
algebra, as:

Yi,1,p (α0, ω, t) = ε (ω) exp [−β (ω) t] Γ 0 (ω)
[
Γ 0 (ω)Bi,0 + Bi,0 Γ 0

(
, ω
)

+ t Bi,0
]
Γ 0 (ω) v0

Yi,2,p (α0, ω, t) = ε (ω)Pi,0 (α0, t) exp [Λ0 t] Γ 2
0 (ω) v0;

(23)

where Pi(α0, t) is a matrix of order 2m × 2m whose elements, Pi, jk(α0, t), are
defined as:

Pi,jj (α0, t) = t Bi,jj (α0) ; Pi,jk (α0, t) = Bi,jk (α0)

λk − λj
, j �= k (24)

with Bi, jk(α0) elements of the matrix Bi, 0 defined in the last of Eq. (16).
Note that, the sensitivity of non-geometrical spectral moments, with respect to the

parameter αi, which are elements of sensitivity of PEC matrix defined in Eq. (14),
can be evaluated by substituting Eqs. (20) and (23) into Eq. (15).

3.3 Sensitivity of Frequency Response Vector Function for
Stationary Excitations

Notice that the sensitivities of spectral moments of structural response, for zero-
mean stationary Gaussian excitation stochastic process can be evaluated particular-
izing Eqs. (9) and (16). In fact, assuming the modulating function equal to unit step
function (Heaviside function, a(ω, t) = 1; t > 0), and taking the limit as t → ∞, the
first of Eq. (9) leads to:

X (α, ω) = lim
t→∞ X (α, ω, t) = exp (i ω t) [i ω I2m − Λ (α) ]−1v (α) (25)
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while the first of Eqs. (16) leads to:

Y (α0, ω) = lim
t→∞ Y (α0, ω, t) = exp (i ω t) [i ω I2m − Λ0 ]−1Bi,0 [i ω I2m − Λ0 ]−1v0

(26)

It follows that the sensitivity of PEC matrix, with respect to the i-th parameter, is
not a time-dependent matrix and can be evaluated as:

Σ sZ,i (α0)= ∂ΣZZ(α)
∂αi

∣∣
∣
α=α0

= ∂
∂αi

[
Λ0,UU (α) iΛ1,UU (α)

− iΛ∗T
1,UU (α) Λ2,UU (α)

] ∣
∣∣
∣
∣
α=α0

=

= E

〈
Z∗ (α0, t)

∂ZT (α,t)
∂αi

∣
∣
∣
α=α0

〉
+ E

〈
Z∗ (α0, t)

∂ZT (α,t)
∂αi

∣
∣
∣
α=α0

〉∗T

(27)

which gives the sensitivity of PEC matrix for stationary excitations, with respect to
the parameter αi, whose elements are the sensitivity of spectral moments. Eq. (27),
according to Eq. (15), gives:

E

〈
Z∗ (α0, t)

∂ZT (α,t)
∂αi

∣∣
∣
α=α0

〉
=

= Ψ ∗
0

{∞∫

0
G0 (ω)

[
i ω I2m − Λ∗

0

]−1v0vT0 [i ω I2m − Λ0 ]−1BTi,0[i ω I2m − Λ0 ]−1dω
}

Ψ T
0 .

(28)

4 Numerical Results

In order to verify the applicability of the proposed approach, a numerical application
has been conducted on two adjacent buildings, connected each other through
fluid dampers devices. The connected three-storey structures have the same floor
elevations (see Fig. 1).

The buildings have a global floor stiffness equal to 4 × 109 N/m and 2 × 109

N/m, respectively for building 1 and building 2, and the same tributary mass per
storey, equivalent as 1.29 × 106 kg. The same damping ratio ξ = 0.02 has been
assumed for all the modes of vibrations of the two unlinked structures. The main
characteristics, circular frequency ωi, period Ti and modal participating mass ratio
εi, of the unlinked structures, together with the global one, are summarized in
Table 1.

The global structure undergoes to a seismic input modeled as a stationary and
fully non-stationary stochastic model; the stationary PSD is defined according to
the Tajimi-Kanai filter:
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Fig. 1 Geometric configuration of the analyzed system

Table 1 Modal information of the analyzed buildings

Building 1 Building 2 Global system
ωi[rad/s] Ti[s] εi[%] ωi[rad/s] Ti[s] εi[%] ωi[rad/s] Ti[s] εi[%]

24.782 0.254 91.408 17.524 0.359 91.408 17.524 0.359 47.704
69.438 0.090 7.488 49.099 0.128 7.488 24.782 0.254 47.704
100.340 0.063 1.104 70.951 0.089 1.104 49.099 0.128 3.744

G0 (ω) = GW
4 ζ 2

K ω2
K ω2 + ω4

K
(
ω2

K − ω2
)2 + 4 ζ 2

K ω2
K ω2

(29)

where GW = 0.1 m2/s3, ωK = 4 π rad/s is the filter frequency that determines
the dominant input frequency and ζK = 0.6 is the filter damping coefficient that
indicates the sharpness of the PSD function.

The fluid dampers are modeled as a combination of a linear spring and a
linear dashpot; the parameters of each fluid damper device, stiffness kd and
damping coefficient cd, have been chosen to obtain the optimal system, for dynamic
performances and costs. First, a parametric cost benefit analysis has been conducted
to define the optimal stiffness value kd. As evidenced from Fig. 2, in order to have
the greater reduction of the variance of the displacement of the topper floor λ0,u3 ,
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Fig. 2 Trend of the first spectral moment of the topper floor λ0,u3 [m2] versus damper device
stiffness kd[N/m]: (a) Building 1; (b) Building 2
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Fig. 3 Sensitivity of the first spectral moment of the third floor with respect to the damping
coefficient: (a) Building 1; (b) Building 2

the best value of the stiffness of the damper devices should be chosen as 108 N/m;
although, it has to be highlighted that this reduction is insignificant if compared to
the other devices, in front of an higher cost. For this reason, the stiffness kd for all
the devices has been set equal to 30 N/m.

Then, in order to define the best damping coefficient value, a parametric study has
been conducted, analyzing the sensitivity of nodal response for both stationary and
non-stationary zero-mean Gaussian stochastic process. It is necessary to remember
that a positive sensitivity indicates an increment of the corresponding NGSM,
when the parameter α changes, while a negative sensitivity means that the NGSM
decreases when the parameter changes. Then, the best parameter to choose in design
phase is the corresponding to the minimum of the sensitivity parameter. Figure 3
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Fig. 4 Time-varying sensitivity of the first spectral moment of the third floor with respect to
the dissipation parameter of i-th floor, Sλ0,u3 [t] [m2], versus damping coefficient cd [N s/m]: (a)
Building 1; (b) Building 2

shows, for both buildings, the trend of the sensitivity of the first spectral moment

of the top floor displacement Sλ0,u3 = ∂λ0,u3
∂αi

∣∣∣
α=α0

, with respect to the dissipation

parameter of i-th floor αc, i, versus the damping coefficient cd.
As evidenced from Fig. 3, the greatest influence on the reduction of the system

response is caused by the device positioned at the top (red line); for both buildings,
the best parameter for the viscous damping is equal to cd = 106 [N s/m] where the
sensitivity reaches its lower value for all the three elevations. For the fully non-
stationary seismic input, according to [11, 12] the stationary counterpart of the
EPSD G0(ω) has been defined in Eq. (29) and the modulating function has been

chosen according to Eq. (11), where αa (ω) = 1
2

(
0.15 + ω2

25π2

)
, ε (ω) =

√
2

5π
ω [15].

As evidenced from Fig. 4, the optimal value of the damping coefficient cd, where
the sensitivity with respect to the dissipation parameter of i-th floor Sλ0,u3 [t] =
∂λ0,u3 [t]
∂αi

∣∣∣
α=α0

assumes its lower value, is very close to the one of the stationary case.

This important result leads to the immediate consequence that, in the design phase
of plane frames it is sufficient to analyze the stationary model, with a remarkable
gain in terms of computational time.
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5 Conclusions

During last decades, among the various proposed solutions for the mutual pounding,
connecting structures through dampers could be the right innovative way. So, the
engineers have to face to the problem of the design of these vibration control
devices, taking into account also the modeling of the dynamics loads as fully non-
stationary zero-mean Gaussian stochastic process; in this framework the sensitivity
analysis represents a powerful tool in the optimization procedure.

This work dealt with a new method for the evaluation the sensitivities of non-
geometric spectral moments of the structural response of the non-classically damped
coupled systems subjected to fully non-stationary zero-mean Gaussian excitation,
through simple integrals in frequency domain. The main steps of this study are: i)
to determine, for the non-classically dynamic structure composed of two adjacent
buildings linked by viscoelastic dampers represented by the Kelvin-Voigt model,
the TFR vector function of the nodal response; ii) to evaluate the sensitivity of TFR
vector function of the nodal response in explicit closed form; iii) to find the optimal
parameters of dampers through parametric studies, analyzing the sensitivity of nodal
response for both stationary and non-stationary zero-mean Gaussian stochastic
process.

A numerical application has been conducted in order to optimize a damping
system; from the analysis of the results it can be stated that: (a) the system stiffness
does not play a central role in the reduction of the relative displacements of the
studied structure; (b) since stationary and non-stationary input conducted to the
same optimal value of the damping coefficient, during the design phase of plane
frames it could be sufficient to take into account only the results of the stationary
analysis, with a remarkable gain in terms of computational time.
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Analysis of Switching Strategies
for the Optimization of Periodic
Chemical Reactions with Controlled
Flow-Rate
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Abstract An isoperimetric optimal control problem with non-convex cost is con-
sidered for a class of nonlinear control systems with periodic boundary conditions.
This problem arises in chemical engineering as the maximization of the product
of non-isothermal reactions by consuming a fixed amount of input reactants. It
follows from the Pontryagin maximum principle that the optimal controls are
piecewise constant in the considered case. We focus on a parametrization of optimal
controls in terms of switching times in order to estimate the cost under different
switching strategies. We exploit the Chen-Fliess functional expansion of solutions
to the considered nonlinear system with bang-bang controls to satisfy the boundary
conditions and evaluate the cost analytically for small periods. In contrast to the
previous results in this area, the system under consideration is not control-affine,
and the integrand of the cost depends on the state. This approach is applied
to non-isothermal chemical reactions with simultaneous modulation of the input
concentration and the volumetric flow-rate.
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1 Introduction

Strategies for the dynamic optimization of chemical reaction models have been
studied in the mathematical literature by using the Pontryagin maximum princi-
ple [1, 15], vibrational control technique [2], frequency-domain methods [9–11],
center manifold theory [7], flatness-based approach and extremum seeking [5],
model predictive control methodology [4], and other approaches.

A remarkable result in this area was formulated for a mathematical model of an
isothermal reaction the type “ν1A1 + ν2A2 → Product” with the power law rate
r = kC

n1
1 C

n2
2 in [6]. Namely, it was shown that the conversion of A1 and A2 to the

product cannot be improved by using time-varying controls if 0 < n1 < 1, 0 <

n2 < 1, and n1 + n2 ≤ 1. In the non-isothermal case, it turns out that it is possible
to improve the performance of first-order reactions of the type “A → Product” by
using sinusoidal periodic inputs [9]. For a realistic non-isothermal reaction of this
type, it was shown that the optimal controls are bang-bang, and periodic switching
strategies have been described by applying the Pontryagin maximum principle
in [15]. An analytic approach for computing the switching parameters of τ -periodic
controls has been developed in [3] for the case of small periods τ .

Note that the above papers deal with reaction models with a constant flow-rate,
while the periodic flow-rate modulation is shown to be an important ingredient for
improving the reaction performance [8]. The corresponding isoperimetric optimal
control problem is rigorously formulated in [16] for a non-isothermal mathematical
model with two independent inputs: the inlet concentration and the flow-rate. As
in the case of constant flow-rate, it is shown in [16] that the optimal controls are
piecewise constant, and their switching times are defined in terms of zeros of certain
auxiliary functions. However, the structure of switching controllers has not been
analyzed so far. This paper aims at developing an efficient approach for computing
periodic bang-bang controls and evaluating the cost for the isoperimetric optimal
control problem introduced in [16].

2 Optimization Problem

Consider a nonlinear control system describing non-isothermal chemical reactions
of the type “A → Product” and order n̄ [8, 16]:

ẋ = f0(x)+ v1v2g1(x)+ v2g2(x), x = (x1, x2)
T ∈ R

2, (1)
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where x1 is the dimensionless concentration ofA in the reactor, x2 is the dimension-
less temperature,

f0(x) =
⎛

⎝
−k1(1 + x1)

n̄ exp
(
− γ
x2+1

)

δ − St (1 + x2)− k2(1 + x1)
n̄ exp

(
− γ
x2+1

)

⎞

⎠ ,

g1(x) =
(

1 + k1 exp (−γ )
0

)
, g2(x) =

( −1 − x1

k2 exp (−γ )+ St − δ − x2

)
,

(2)

and k1, k2, St , γ , and δ are physical parameters (cf. [8]). The dimensionless
control variables v1 ∈ [vmin1 , vmax1 ] and v2 ∈ [vmin2 , vmax2 ] correspond to the inlet
concentration of A and the flow-rate, respectively. We assume that 0 < vmini ≤ 1
and vmaxi ≥ 1 for i = 1, 2. Then it is easy to see that x1 = x2 = 0 is an equilibrium
of system (1) that corresponds to a steady-state operation of the considered chemical
reactor with v1 = v2 = 1.

System (1) can be transformed to the control-affine form with respect to the
inputs u1 = v1v2 and u2 = v2 as follows [16]:

ẋ = f0(x)+ u1g1(x)+ u2g2(x), x ∈ R
2, u = (u1, u2)

T ∈ U = ConvUb,
(3)

where

Ub =
{(

umin1
umin2

)
,

(
umax1
umax2

)
,

(
u−

1
umax2

)
,

(
u+

1
umin2

)}
,

umin1 = vmin1 vmin2 , u−
1 = vmin1 vmax2 , u+

1 = vmax1 vmin2 , umax1 = vmax1 vmax2 .

As maximizing the conversion of A to the product over a given time period t ∈
[0, τ ] can be treated in the sense of minimizing the remaining mass of A in the
outgoing stream, our goal is to minimize the cost

J = 1

τ

∫ τ

0

(
x1(t)+ 1

)
u2(t)dt. (4)

We also assume that the consumption of A over the period is fixed as

1

τ

∫ τ

0
u1(t)dt = ū1,

which yields the following isoperimetric optimal control problem.

Problem 2.1 ([16]) Given τ > 0, ū1 ∈ R, and x0 ∈ R
2, the goal is to find

an admissible control û ∈ L∞
(
[0, τ ];U

)
that minimizes the cost J along the
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trajectories of (3) corresponding to the admissible controls u ∈ L∞
(
[0, τ ];U

)

such that

1

τ

∫ τ

0
u1(t)dt = ū1 and x(0) = x(τ) = x0. (5)

If û(t) (0 ≤ t ≤ τ) is an optimal control for Problem 2.1, then it follows
from the results of [16] that û(t) ∈ Ub almost everywhere on [0, τ ], and the
switching times of û(t) are related to zeros of the following functions: I1(t) I2(t),
u−

1 −umin1
umax2 −umin2

I1(t) + I2(t),
umax1 −u+

1
umax2 −umin2

I1(t) + I2(t), where I1(t) and I2(t) are defined

by solutions of the associated Hamiltonian system. It should be noted that I1(t)

and I2(t) are parameterized by initial values of the adjoint variables. In this paper,
we will not use any information on the behavior of adjoint variables and define
the switching parameters directly from (5). Then the cost (4) will be approximated
analytically to estimate the performance improvement for the considered class of
bang-bang controllers.

3 Computation of the Switching Controls

Assuming that a bang-bang control û(t) ∈ Ub (0 ≤ t ≤ τ) has a finite number of
switchings, we enumerate the switching times

0 = t0 < t1 < . . . < tN = τ with some N ∈ N (6)

and denote

uj = û(t) ∈ Ub for t ∈ Sj = (tj−1, tj ), j = 1, 2, . . . , N. (7)

Our goal is to analyse the cost J on the trajectories of system (3) with piecewise-
constant controls of the form (7) depending on the parameters

(t1, t2, . . . , tN ), (u1, u2, . . . , uN).

A straightforward computation of
∫ τ

0 û1(t)dt for the piecewise-constant con-
trol (7) shows that the isoperimetric constraint in (5) is equivalent to

N∑

j=1

αju
j

1 = ū1 with αj = tj − tj−1

τ
> 0. (8)

In order to satisfy the periodic boundary condition x(0) = x(τ) and estimate the
cost (4) analytically for small τ , we exploit the Chen–Fliess expansion of solutions
to system (3) with the initial value x(0) = x0 and control u = û(t) (see, e.g., [14]):
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x = x0 +
2∑

i=0

gi (x
0)Vi (t)+

2∑

i,j=0

(
Lgj gi

)
(x0)Vij (t)+

2∑

i,j,l=0

(
Lgl Lgj gi

)
(x0)Vij l (t)+O(t4), (9)

where we assume that g0(x) = f0(x), Lgi gj (x) = ∂gj (x)

∂x
gi(x) is the directional

derivative of gj (x) along gi(x), and

Vi(t) =
∫ t

0
ui(s)ds, u0(t) ≡ 1, Vij (t) =

∫ t

0

∫ s

0
ui(s)uj (p)dp ds,

Vij l(t) =
∫ t

0

∫ s

0

∫ p

0
ui(s)uj (p)ul(r)dr dp ds, t ∈ [0, τ ].

The remainder of formula (9) is of order O(t4) for small t > 0 if the vector fields
gj (x) are of class C3 in a neighborhood of x0.

As in [3], we restrict our analysis to the cases N ≤ 4, motivated by the estimate
of the number of switchings in isoperimetric problems proposed in [15]. The main
analytical result of our study is summarized as follows.

Proposition 3.1 Let û(t), t ∈ [0, τ ] be a bang-bang control represented by (7) with
the parameters 0 < t1 ≤ t2 ≤ t3 ≤ t4 = τ and u1, u2, u3, u4 ∈ Ub, and let x(t),
t ∈ [0, τ ] be the corresponding solution of (3) such that x(0) = x0 ∈ R

2. Then the
isoperimetric constraint (8) is equivalent to

4∑

j=2

αj (u
j

1 − u1
1) = ū1 − u1

1, α1 = 1 − α2 − α3 − α4, (10)

and the periodic boundary condition x(0) = x(τ) reduces to

4∑

j=1

αj fj + τ

2

{
α2

1Lf1
f1 + α2

2Lf2
f2 − α2

3Lf3
f3 − α2

4Lf4
f4 + 2α1α2Lf1

f2 − 2α3α4Lf4
f3
}

+ τ2

6

{
α3

1L
2
f1
f1 + α3

2L
2
f2
f2 + α3

3L
2
f3
f3 + α3

4L
2
f4
f4 + 3α1α2Lf1

(α1Lf1
+ α2Lf2

)f2

+ 3α3α4Lf4
(α4Lf4

+ α3Lf3
)f3

} = O(τ3),

(11)

where fi(x) = f0(x) + ui1g1(x) + ui2g2(x), i = 1, 2, 3, 4. Moreover, the cost (4)
evaluated for x(t) admits the representation J = ū2 +X1, where

ū2 = 1

τ

∫ τ

0
û2(t)dt = u1

2 +
4∑

j=2

αj (u
j

2 − u1
2) (12)



64 P. Benner et al.

and X1 is the first component of the vector X ∈ R
2:

X = 1

τ

∫ τ

0
x(t)û2(t) dt = ū2x

0 + τ

2

(
α2

1u
1
2f1 − (1 − α1)

2u2
2f2

)

+ τ 2

6

(
α3

1u
1
2Lf1f1 + (1 − α1)

3u2
2Lf2f2

)

+ τ 3

24

(
α4

1u
1
2Lf1Lf1f1 − (1 − α1)

4u2
2Lf2Lf2f2

)
+O(τ 4).

(13)

The vector fields fi(x) and their directional derivatives in (11), (13) are evaluated
at x = x0.

The assertion of Proposition 3.1 is obtained from the Chen–Fliess expansion (9)
for the solution x(t) of system (3) with u = û(t).

Note that the cases with N < 4 can be considered as particular cases of N = 4
with some of the αj being zero. In particular, the case N = 2 is treated by assuming
α3 = α4 = 0 in (8). In this case, the Eqs. (10), (11), and (12) are reduced,
respectively, to

α1 = ū1 − u2
1

u1
1 − u2

1

∈ (0, 1), α2 = 1 − α1 if u1
1 �= u2

1, (14)

α1(f1 − f2)+ f2 + τ

2

(
α2

1Lf1
f1 − (1 − α1)

2Lf2
f2

)
+ τ2

6

(
α3

1L
2
f1
f1 + (1 − α1)

3L2
f2
f2

)
= O(τ3), (15)

and

ū2 = 1

τ

∫ τ

0
û2(t)dt = α1u

1
2 + (1 − α1)u

2
2. (16)

4 Simulation Results

We take the following parameters for numerical simulations for the first-order (n̄ =
1) adiabatic reaction considered in [3] with δ = St = 0:

γ=EA

RT̄
= 17.77, k1 = k0C̄

n̄−1
A

V

F̄
= 5.819 ·107, k2=ΔHRk0C̄

n̄
AV

ρcpT̄ F̄
= −8.99 ·105.

The above dimensionless parameters are computed with the gas constant R =
8.3144598 J

K·mol and the activation energy EA = 44.35 kJ
mol , the collision factor

k0 = 1.4 · 105 s−1, the reaction heat ΔHR = −55.5 kJ
mol , and ρcp = 4.186 kJ

K·l
being the product of the density and the heat capacity. This model corresponds to
the chemical reaction (CH3CO)2O + H2O → 2 CH3COOH in the CSTR of volume
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V = 0.298 l with the steady-state outlet concentration C̄A = 0.3498 mol
l and the

steady-state temperature T̄ = 300.17 K. We assume that the flow-rate and the inlet
concentration can be controlled around their steady-state values F̄ = 7.17 · 10−4 l

s
and C̄Ai = 0.74 mol

l , respectively, within the range of 85%, i.e. vmini = 0.15,
vmaxi = 1.85, i = 1, 2. This choice of control constraints corresponds to the
following components of the points in Ub:

umin1 = 0.0225, umax1 = 3.4225, u+
1 = u−

1 = 0.2775, umin2 = 0.15, umax2 = 1.85.
(17)

In the sequel, we impose the isoperimetric constraint (5) with ū1 = 1. The
constraint ū1 = 1 is satisfied, in particular, by the constant controls u1 = u2 = 1
for system (3) (or, equivalently, v1 = v2 = 1 for system (1)). As it was already
mentioned, system (3) admits the equilibrium x1 = x2 = 0 with u1 = u2 = 1,
and this equilibrium corresponds to the cost J̄ = 1 in (4). In this section, we will
compare the steady-state value J̄ with the values of J for the periodic trajectories
corresponding to controls (7). As the goal of Problem 2.1 is to minimize the cost
J , we will treat the periodic trajectories with J < J̄ as improving the reactor
performance in comparison with its steady-state operation. The results of numerical
simulations with controls of the form (7) are summarized in Figs. 1, 2 and Table 1
for the following switching strategies:
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umax1
umax2

)
, u2 =

(
umin1
umin2

)
, (18)

N = 2, u1 =
(
umax1
umax2

)
, u2 =

(
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1
umin2

)
, (19)
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(
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umax2

)
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(
umin1
umin2

)
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u−

1
umax2

)
, (20)
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(
umax1
umax2

)
, u2 =

(
umin1
umin2

)
, u3 =

(
u+

1
umin2

)
, (21)

N = 3, u1 =
(
umax1
umax2

)
, u2 =

(
u+

1
umin2

)
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(
u−

1
umax2

)
, (22)
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(
umax1
umax2

)
, u2 =

(
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1
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)
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(
u+

1
umin2

)
, (23)

N = 4, u1 =
(
umax1
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)
, u2 =

(
u+

1
umin2

)
, u3 =

(
umin1
umin2

)
, u4 =

(
u−

1
umax2

)
, (24)
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a:

c:

b:

d:

Fig. 1 Periodic trajectories of system (3) withN = 2. (a) Strategy (18), τ = 0.5. (b) Strategy (18),
τ = 1. (c) Strategy (18), τ = 2. (d) Strategy (19), τ = 10

N = 4, u1 =
(
umax1
umax2

)
, u2 =

(
u−

1
umax2

)
, u3 =

(
umin1
umin2

)
, u4 =

(
u+

1
umin2

)
. (25)

Note that we only keep the switching strategies compatible with the constraint
ū1 = 1 in formulas (18)–(25), given the numerical values of controls in (17). These
formulas also allow the analysis of strategies obtained by cyclic permutations of
(u1, u2, u3, u4) because of the periodic nature of the considered control problem.
In Table 1, the switching parameters αj = tj−tj−1

τ
are chosen according to the

initial value x0 of system (3) by solving the algebraic equations (10), (11) in
Proposition 3.1.
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a:

c:

b:

d:

Fig. 2 Periodic trajectories of system (3) with N = 3 and N = 4. (a) Strategy (23), τ = 0.5. (b)
Strategy (25), τ = 0.5. (c) Strategy (24), τ = 1. (d) Strategy (24), τ = 10

5 Conclusions

The presented simulation results confirm that the best performance improvement
in the sense of the cost (4) is achieved by bang-bang controls of the form (7)
in the case (19) (up to a permutation of u1 and u2). In contrast to the previous
works [3, 15], we have considered the case of variable flow-rate in this paper. Note
that the periodic trajectories in Figs. 1 and 2 are obtained as numerical solutions
of system (3), (7), and their orbital stability (or partial stability [12, 13]) remains
to be verified in future work to justify the practical relevance of the proposed
discontinuous control strategies.
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Table 1 Simulation results for system (3) with controls (7), τ = 0.5

Control Parameters Initial data Cost

strategy αj = (tj − tj−1)/τ x0T J

(18) α1 = 0.2875, α2 = 0.7125 (−0.307, 0.0219) 0.6293

(19) α1 = 0.2297, α2 = 0.7703 (−0.3259, 0.0325) 0.4883

(20) α1 = 0.2365, α2 = 0.0833, α3 = 0.6802 (−0.2413, 0.017) 0.653

(21) α1 = 0.2703, α2 = 0.5, α3 = 0.2297 (−0.198, 0.00078) 1.055

(22) α1 = 0.2297, α2 = 0.0833, α3 = 0.6870 (−0.3305, 0.0312) 0.502

(22) α1 = 0.2297, α2 = 0.1667, α3 = 0.6036 (−0.3326, 0.0299) 0.5169

(22) α1 = 0.2297, α2 = 0.25, α3 = 0.5203 (−0.332, 0.0287) 0.5326

(22) α1 = 0.2297, α2 = 0.3333, α3 = 0.4370 (−0.3306, 0.0273) 0.5488

(22) α1 = 0.2297, α2 = 0.4167, α3 = 0.3536 (−0.3269, 0.026) 0.5659

(22) α1 = 0.2297, α2 = 0.5, α3 = 0.2703 (−0.323, 0.0249) 0.5828

(23) α1 = 0.2297, α2 = 0.5, α3 = 0.2703 (−0.271, 0.00076) 1.0591

(24) α1 = 0.264, α2 = 0.083, α3 = 0.417, α4 = 0.236 (−0.329,−0.0056) 1.1259

(24) α1 = 0.237, α2 = 0.417, α3 = 0.083, α4 = 0.263 (−0.263, 0.0133) 0.7179

(24) α1 = α2 = α3 = α4 = 0.25 (−0.266, 0.00066) 0.9465

(25) α1 = 0.264, α2 = 0.083, α3 = 0.417, α4 = 0.236 (−0.2077, 0.0007) 1.057

(25) α1 = 0.237, α2 = 0.417, α3 = 0.083, α4 = 0.263 (−0.256, 0.0007) 1.0604

(25) α1 = α2 = α3 = α4 = 0.25 (−0.228, 0.00067) 1.0616
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Quaternion Based Free-Floating Space
Manipulator Dynamics Modeling Using
the Dynamically Equivalent Manipulator
Approach

Elz̈bieta Jarzębowska and Marcin Kłak

Abstract The paper presents a dynamics modeling method dedicated to free-
floating spacecraft, e.g. manipulators, based on a modified Dynamically Equivalent
Manipulator (DEM) method. DEM enables dynamics modeling of space manip-
ulators by their suitable substitution by ground fixed manipulator models. This
provides attractive modeling and control design tools. It enables carrying tests and
experiments for space manipulators in Earth labs multiple times what contributes
to mission cost and failure reductions. Originally, DEM is developed in Euler
angles. The paper contribution is the modification of DEM to present space
manipulators dynamics in quaternion parameterization. Quaternions do not share
Euler angles’ drawbacks and they are computationally more efficient, but their
implementation reveals challenges due to nonlinear relations for space manipulator
angular velocities and a constraint equation they add to its dynamics. The motivation
for DEM modification is to make dynamic models suitable for description of
arbitrary space manipulator maneuvers and missions like debris removal, servicing,
space mining and on-orbit docking and assemblies. The development of DEM
in quaternion parameterization is illustrated by an example of space manipulator
attitude dynamics and reorientation control.

Keywords Dynamically equivalent manipulator · Quaternion-based dynamics ·
Space robot attitude · Free-floating maneuvers
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72 E. Jarzȩbowska and M. Kłak

1 Introduction

Servicing dedicated spacecraft equipped with robotic manipulators become more
widely used in variety of applications like on-orbit servicing, asteroid mining, active
space debris removal and space mining. Examples of such missions can be found in
[1] and references there. Operating a robotic manipulator on a spacecraft results in a
complex system falling into disciplines of robotics and aerospace engineering. The
dynamics between the manipulator and the base-spacecraft are coupled, the system
requires nonlinear control systems to meet the capture or manipulation goals and
ensure mission completion. The effects of manipulator operations on the orientation
and position of the base were studied in many works, e.g [2]. Specifically, effects
of fast-moving manipulators mounted on small base-spacecraft were critical to
position and orientation disturbances of the base as discussed in [3, 4]. There are
thus many reasons, like the already mentioned, increasing needs for spacecraft
applications and understanding their complex dynamics and control behaviors, for
which engineers developing spacecraft control and sensor systems, communications
systems and operation plans have to understand the complex dynamics. However,
dynamics modeling and control of space manipulators (SM) are not part of a
typical robotics, aerospace and control activities. Literature dedicated to dynamics
modeling, control and application and performance analysis of SM is vast, see
example an overview in [5]. Generally, two commonly used methods for modeling
SM are based on the recursive Newton-Euler and the Lagrangian methods. In [6]
presentation of the Newton-Euler dynamics for developing motion equations of
SM is provided. When SM is equipped with flexible links, equations of motion
can be developed using the direct path method [7]. The Lagrangian method based
upon a system kinetic and potential energies uses a set of generalized coordinates
describing link positions. However, the most often Euler angles are used for SM
reorientation description.

When controlling motion of a SM system, the dynamic coupling between its base
and the manipulator may become dominant. The base may not be actuated and then
any manipulator motion will cause its rotation and translation. From the point of
view of most servicing tasks it is not desirable. A detailed overview of methods of
how to take into account dynamic coupling in SM systems in control applications
can be found in [8]. Our paper is not focused directly on control, however, the
new modeling method, which we present is intended to serve controller designs.
The developed methods, worth listing are the Virtual Manipulator (VM) approach,
the Dynamically Equivalent Manipulator (DEM) approach, and the Generalized
Jacobian Matrix (GJM) approach. The VM approach, which is purely kinematic
computational model, replaces a physical SM system with a dynamically consistent
VM system, see [9] for details. There, the base of the VM is a spherical joint located
at the center of mass of the physical space manipulator system. The orientation
of this joint is the orientation of the base of SM in the inertial frame. In absence
of external forces, the system center of mass remains fixed and the free-floating
SM is replaced by a dynamically consistent fixed-base system. The VM cannot be
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represented by a physical manipulator but in the DEM approach it can be done
[10]. In the DEM approach the base joint is also a spherical joint at the system
center of mass, and geometry of the SM system is the same in the DEM and VM
methods. The difference is that DEM takes link masses and inertia into account
rescaling them appropriately. DEM can then be used in experimental tests on the
ground. One more widely used method is the GJM approach originally proposed
in [11] and modifying the dynamic analysis previously introduced in [12]. The
GJM method was successfully used in developing control algorithms for the ETSVII
demonstrator mission [13].

The paper presents a dynamic modeling method dedicated to free-floating space-
craft, specifically SM systems, based on the modified DEM method. Considering
free SM rotation in space, quaternions are the more suitable parameters for attitude
description. Not only they do not share Euler angles’ drawbacks, but they are also
computationally more efficient. However, implementation of quaternions reveals
other challenges due to nonlinear relations with respect to SM angular velocities
and a constraint equation they add to the SM dynamics. Introduction of quaternion
parameterization to the Lagrange based dynamics modeling can be found in some
works but the derivation procedure was developed for ground fixed manipulators
subjected to position constraints only [14]. Preliminary studies, including the best
method selection for derivation the SM dynamics in quaternion parameterization,
and simulation tests are presented in [15].

The paper contribution is the application of the modified DEM method to enable
SM kinematics and dynamics presentation in quaternions. The modified DEM
method delivers a tool for conducting reliable simulation studies and tests for
various maneuvers and mission scenarios for SM and it offers an attractive control
design tool.

The paper is organized as follows. After Introduction, Sect. 2 presents the SM
dynamics modeling using the DEM method in quaternion parameterization. The
application of the DEM quaternion based method is illustrated by an example of
SM reorientation maneuver in Sect. 3. The paper closes with conclusions and the
reference list.

2 Space Manipulator Dynamics Modeling Using the DEM
Method Modified for Quaternion Parameterization

2.1 Quaternion Parameterization Properties for Attitude
Dynamics Description

Attitude dynamics of SM is of a special interest due to its reorientation maneuvers
inherent to most of its operations. Attitude can be described in various ways. The
most popular representations are rotation matrices, Euler angles and quaternions.
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The quaternion originates in Euler’s rotation theorem and it describes attitude as a
single rotation about a vector in 3D space.

A unit quaternion consists of four elements constrained by its norm. Thus, a
quaternion has 3 degrees of freedom and it is not the minimum representation, as for
instance in the case of Euler angles. Quaternions come in different conventions and
in this paper the Hamilton convention is adopted, see [16] for details. Specifically,
the quaternion is represented as:

q =
[
q0

qv

]
= [

q0 q1 q2 q3
]T

(1)

The scalar part of the quaternion is a function of rotation magnitude only. The
latter elements describe direction of the rotation axis, preserving the unit norm.
Describing the rotation magnitude as θ and the unit vector of the rotation axis as
e the formula for the quaternion yields:

q =
[

cos
(
θ
2

)

e sin
(
θ
2

)
]

(2)

Quaternions can be easily related to the more intuitive SM angular velocity vector
ω expressed in its body frame (x, y, z). These relations yield:

q̇ = 1

2
q ⊗

[
0
ω

]
= 1

2

⎡

⎢⎢
⎣

0 −ωx
ωx 0

−ωy −ωz
ωz −ωy

ωy −ωz
ωz ωy

0 ωx

− ωx 0

⎤

⎥⎥
⎦ q (3)

Equation (3) applies the quaternion product described with the operator
⊗

and zero is appended to the velocity vector to form the so-called pure quaternion
making the multiplication possible. However, a matrix multiplication form is also
applicable. The quaternion multiplication can be written in following form:

q ⊗ p =
[

q0p0 − qvpv
q0pv + p0qv + pv × qv

]
(4)

In comparison to other parameterizations, quaternions possess a couple of
advantages:

• They are intuitive, unlike Euler angles where the sequential nature is more
difficult to comprehend than a single rotation.

• The representation is not susceptible to gimbal lock as for the Euler angles.
• Any rotation can be presented as a continuous trajectory of quaternions.
• Quaternion algebra does not use trigonometric functions, just basic operations on

numbers and thus is usually more computationally efficient than Euler angles.
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• Any rotation represented by quaternions can be linearly interpolated by efficient
methods [16].

• Four elements construct a more compact representation than the 9-element
rotation matrix.

There are also some disadvantages of adopting quaternion description, e.g.:

• The attitude is not represented uniquely, in particular q and −q describe the same
rotation.

• Algebra behind quaternions requires some preprocessing work to start with this
representation.

Another useful formula can be applied to guidance and control design and
analysis of SM quaternion based dynamics. The rotation of a vector is more complex
than using the rotation matrix. The relation between vectors in two different
reference frames, say A and B, is as follows:

vB = qB
A ⊗ vA ⊗ qB

A
∗

(5)

In Eq. (5) the subscript “*” stands for quaternion conjugate, which is simultane-
ously the quaternion inverse, i.e.:

q∗ =
[

q0

− qv

]
=
[
q0 −q1 −q2 −q3

]T
(6)

qq∗ = q∗q =
[

1 0 0 0
]T

(7)

qB
A

∗ = qA
B (8)

Composition of consecutive rotations can be written as:

qC
A = qC

B ⊗ qB
A (9)

For attitude control applications, the convenient description of a control error in
quaternions takes the form:

qerr = q∗
ref ⊗ qest (10)

The vector part of the error quaternion computed in Eq. (10) can be used as a
direct input to a controller. The error does not change linearly due to trigonometric
relations, however, it behaves monotonically, and in most applications additional
operations are not required. Note that the sequence of quaternions in Eq. (10) may
differ with respect to the selected convention [16]. Since the quaternions are based
on half angles, see Eq. (2), the quaternion error is often multiplied by two to align
the values with the angular rates.
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2.2 The DEM Method for Space Manipulators Modeling

As described in introduction the concept of mapping a free-floating SM equivalent
fixed base manipulator has been introduced by Liang, Xu and Bergerman [10].

To map a free-floating SM into a fixed-base robotic one, the base is replaced
by another link. To reproduce unconstrained attitude of the base, the link is fixed
with a spherical joint. It can be either passive or actuated if the SM’s attitude is
controlled. The latter joints are actuated according to the original SM design. In
Fig. 1 modeling structures of (a) Space Manipulator (SM) and (b) Dynamically
Equivalent Manipulator (DEM) are shown. There (φ, θ ,ψ) are Euler’s angles, θ i

are joint angles, ui is a vector of a rotation axis. Li is a vector connecting joint Ji to
the center of its mass Ci and Ri connects Ci to joint Ji + 1. Wi is a vector from Ji to
Ji + 1. All variables with a superscript “prime” refer to DEM.

Mass, inertia and centers of masses of the DEM structure are scaled by
transformations provided in [10]. Specifically:

m′
1 = m1 (11)

m′
i = M2

t mi∑i−1
k=1 mk

∑i
k=1mk

, i = 2, . . . , n+ 1 (12)

I ′i = I i , i = 1, . . . , n+ 1 (13)

W 1 = r1 (14)

W i = r i + li , i = 2, . . . , n+ 1 (15)

lc1 = 0 (16)

lci =
∑i−1

k=1 mk
Mt

Li , i = 2, . . . , n+ 1 (17)

(a) (b)

LINK 2

LINK n+1 LINK (n+1)’

LINK 1

LINK 1’

LINK 2’

LINK i LINK i ’ui

Ji Li

Ci C’i
Wi

u’i+1

j’i+1

Ici

J’i

u’i

Ri Ji+1

ui+1

θ2

θn+1

J2
J’2

θ’2

θ’n+1

Jn+1 J’n+1

φ,θ,ψ φ’,θ’,ψ’

passive
spherical
joint

Fig. 1 Model structures of (a) Space Manipulator and (b) Dynamically Equivalent Manipulator
[10]
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In Eq. (12) Mt = ∑
imiis a total mass of SM.

Equations of motion for SM are derived in [10] using Euler’s angles for attitude
representation. Due to the reasons emphasized in Introduction, this description is
not the most suitable for SM system missions. Therefore, authors have introduced
the quaternion representation to the DEM approach. Two concepts have been
researched. The first attempt was to develop the Lagrange equations using quater-
nions and then derive SM equations of motion. This approach, however, occurred to
be computationally inefficient for increasing number of manipulator links. Due to
poor scalability, authors decided to model SM as a set of links, which for modeling
purposes are considered separate bodies subjected to position constraints. In this
formulation each link has 6 degrees of freedom and its state is described by the
following 13-element state vector. In notation that follows, time dependency is
skipped for clarity.

xi =
[

rT
i vT

i qT
i ωT

i

]T
(18)

where:
ri are global, translational coordinates of the center of mass of a body i,
vi = ṙ i is global translational velocity,
q i = q i

I
B is a quaternion rotating from the body to the inertial.

ωi is the angular velocity determined in the i-th body frame.
The Lagrange multipliers method is adopted then and equations governing DEM

composed of b rigid bodies are of the following form:
[

M BT

B O

] [
ẋ

λ

]
=
[

f

μ

]
(19)

In Eq. (19) M = diag
[
m1 I 1 . . . mb Ib

]
is a mass matrix, B is a matrix

satisfying the equation:

φ̇ = Bw + φt = O (20)

where:
φ represents the position constraint equation,

w =
[

vT
i ωT

i

]T
,

• λ is a vector of Lagrange multipliers,
• f is a vector of forces and torques,
• μ satisfies the equation:

φ̈ = Bẇ − μ = O (21)
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Each two consecutive links of SM are connected by two constraint equations that
describe a revolute joint. A position constraint of the form:

φ1 = ri + sP1i − rj − sP1j = O (22)

is needed to connect extremities of links i and j. sP1i and sP1j are vectors from the
centers of mass of links i and j to the joint location.

Another equation is required to constrain the rotational motion to a single axis.
It has the form:

φ2 = sP2i × sP2j = O (23)

The vectors sP2i and sP2j describe joint rotation vectors of links i and j. Equation
(23) preserves that those axes are parallel. Combined Eqs. (22) and (23) force
revolute joint connection between links i and j.

Constrained mechanical system models when solved numerically, tend to exhibit
unstable solutions and instabilities increase with simulation time. To stabilize the
solution the Baumgarte numerical stabilization method is used [17]. It requires that
the differentiated constraint Eq. (20) is augmented as follows:

φ̈ + 2αφ̇ + β2φ = O (24)

In (24) α and β are gains which must be selected. The constraint equation in the
form (24) secures the constraints satisfaction during the SM model simulation. With
the Baumgarte method introduced, Eqs. (19) turn into:

[
M BT

B O

] [
ẋ

λ

]
=
[

f

μ − 2αφ̇ − β2φ

]
(25)

The system of Eqs. (25) is the final form of the SM motion equations in the
quaternion parameterization.

3 Space Manipulator Reorientation Using the Quaternion
Based DEM Method

An experimental simulation study has been performed to verify, evaluate and
compare the correctness and possible applicability of the modified, quaternion based
DEM method. An example of a planar manipulator model using the original DEM
method is presented in [10]. However, it was meaningless to verify a quaternion
based dynamics model on a plane. Thus, a spatial model was prepared for the
simulation experiment and a 2-link SM model has been selected. Firstly, the
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Table 1 Space manipulator
properties

Link number Li[m] Ri[m] mi[kg] Ii[kg m2]

1 – 0.75 4 1*I3

2 0.75 0.75 1 0.2 * I3

3 0.75 0.75 1 0.2 * I3

Table 2 DEM properties Link number Wi[m] lci[m] mi[kg] Ii[kg m2]

1 0.5 0 4 1*I3

2 1.125 0.5 1.8 0.2 * I3

3 1.375 0.625 1.2 0.2 * I3

properties of the SM must be mapped to DEM. These are presented in Tables 1
and 2.

To demonstrate the quaternion based DEM method to SM maneuvers, a control
system needs to be applied. A complex maneuver for SM composed of a base and
two arms is selected. Attitude of the base is also controlled. The maneuver consists
of two simultaneous tasks:

1. Rotation of the SM base by 90 degrees around two axes
2. Folding the manipulator arms

In the initial configuration the SM arms are straighten, i.e. all angles as in Fig. 1
are equal to zero. Velocities and angular rates are also null. The reference state of
the SM base is described by base quaternion q = [0.5 0.5 0.5 0.5]T. The quaternion
corresponds to the subsequent 90 degrees rotations around z and x axes in base
body frame. The quaternion description allows for smooth attitude change. The arm
reference positions are 90 and − 90 degrees respectively for the first and second
joint. The angles are specified with respect to base attitude.

To perform the maneuver, PD controllers are used. The controller selection
may not be optimal for highly nonlinear systems, however it is sufficient for this
simulation experiment.

Figure 2 shows diagram of the SM model evolving in time. Thin, solid lines show
trajectories of links’ centers of masses. Circles mark the joints. On the left hand side
of the figure the initial configuration is shown. The final state for the folded arms
can be seen on the right hand side of the figure.

In Fig. 3 quaternion control errors are shown. The unit on vertical axis is 2qerr,
so that for small angles it provides results in radians. Three error functions in time
are for the base and the latter two are for the joint angles. The experiment has
demonstrated that the quaternion description is convenient for control application.
The quaternion control error does not expose problems with large and complex
slews. In contrast, the Euler angles can exhibit problems due to the sequential nature
of rotation description.
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4 Conclusions

The paper presented a dynamic modeling method dedicated to free-floating space-
craft, specifically manipulators, based on the modified DEM method. DEM enables
dynamics modeling of space manipulators, e.g. free-floating maneuvers, via their
suitable substitution by ground fixed manipulator models. As a result, the SM
dynamics is equivalent to the ground one. This provides attractive modeling and
control design tools since it enables conducting tests and experiments for SM
in earth laboratories. The basic motivation for the DEM modification was to
make dynamic and kinematic models suitable for description of arbitrary space
manipulators maneuvers and their missions like debris removal, servicing, space
mining and on-orbit docking and assemblies. It may also support SM attitude
controller designs. The paper contribution was the modification of DEM to enable
space manipulator kinematics and dynamics representation in quaternions. The
modified DEM method delivers a tool for conducting reliable simulation studies and
tests for various maneuvers and mission scenarios for SM and it offers a promising
control design tool. The application of DEM to a complex reorientation maneuver
of the SM model and simulation of its controlled motion using PD controllers was
demonstrated in the paper. Future works are planned to include elastic links into SM
modeling and development of nonlinear control systems for them.
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Slosh Analyzes of a Full Vehicle-Tank
Model with SDRE Control with a
Hydraulic Damper

Wagner B. Lenz , Mauricio A. Ribeiro , Angelo M. Tusset ,
Jose M. Balthazar , and Elżbieta Jarzebowska

Abstract Slosh has been one of the main concerns for transportation vehicles,
specifically with partially filled tanks trucks. The liquid movement due to changes
of vehicle velocity magnitude and direction as well as external excitation can
be the source of instability problems in trucks and passenger vehicles. Due to
intrinsic characteristics, the natural frequency of sloshing is similar to the human
input frequency, wind excitation and road displacement. Thus, managing and
controlling the vehicle-tank system dynamics is required to maintain the desired
safety standards. In this paper a numerical study of a quarter car vehicle-tank
model is conducted by investigating motion of a linear pendulum model without
baffles. A numerical analyses of the roll dynamics, bifurcation diagram and 0–1
test, is performed and a controller based upon the State-Dependent Riccati Equation
method controlling the movement on the damper. The results demonstrate hat the
pendulum model adequately maps the fluid behavior in the tank. Nevertheless, due
to low dissipation of slosh motion, around the natural frequency the displacement
increases significantly and the vehicle motion can cause loss of control and roll
over. In this case, the passive control is unable to significantly reduce the slosh.
Nevertheless, it significantly reduce the pendulum motion and avoids the overturn
and improving the driviblility and safety.
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1 Introduction

Slosh is the interaction between liquid and the surrounding vessel during a forced
excitation. This interaction creates waves and changes the behaviour compared with
a solid structure. It is a complex phenomena and it commonly study as a damper
[1, 2].

It can be used to dissipate energy as Tunnel Liquid Damper, where tanks are
tuned for a specific frequency to allow waves to grow and dissipate energy as it
impact itself [3–5]. As shown, on [3] have a optimum ration of mass of water and
anchoring mass, and have a slow frequency, usually below 2 Hz.

In addition, slosh can be dangerous, creating huge moving waves and shifting
the center of mass. Thus, surges on lateral forces leads can lead lateral instability.
Especially on rockets and liquid transportation, such as tank trucks and liquid cargo
vessels. Slosh has been a concern on tank truck since the invention of the fire truck.
To avoid overturn, slow speed were recommend on the first fire truck that did not
have baffles [2, 6]. Recently, the main focus is on proving mechanical models with
Computational Fluid Dynamics (CFD) [7, 8]. In addition, lateral stability in rockets
or trucks. In this case, the slosh can be self induced by the controller. As the fuel
is consumed, the liquid height decrease and the system has a different frequency
[9, 10].

The current model of road transport allows tank truck to carry different partial
loads of different liquids. The lateral slosh on truck is connected to two main factors,
partial loads and slow natural frequencies. The partial loads are responsible to allow
the liquid movement. The slow natural frequencies are due to the large amount of
mass moving and the characteristics of the vessel. The slows frequency match the
same response frequency of the drives input. Thus, a self induce slows can occur on a
tank truck as the drivers avoid a pothole, or an overtaking maneuver. Thus, the linear
slosh is where the liquid surface is intact, at this stage the mechanical simplification
as pendulum or mass is equivalent [1]. As excitement, the displacement of water
begins to change the continuity of the surface. At this stage, the mechanical
representation is no longer valid. However, in nonlinear mode, there is no continuous
surface of the liquid, movements begin to have impacts and large waves hit each
other, which we must consider as nonlinear equations.

2 Mathematical Model

The mathematical model of truck is considering a single pendulum and the
interaction with a quarter-car model. As describe on [1, 11] the main division on
the slosh modeling is the orientation of the characteristic length (Cl) in relation
to wave propagation. For rockets, the gravity is in the same direction of the (Cl) ,
know as cylindrical slosh. For tank trucks, the (Cl) is a perpendicular to gravity,
in this cases most shapes of tanks can be approximate as a rectangular slosh
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[11]. Both models can be converted to mass-spring-damper models or pendulum-
spring-damper models. Seamlessly, they are interchangeable. Nevertheless, it is
recommend to use pendulum for rotational movement as in rocket, and mass to
linear displacement for break and acceleration models [12]. In this paper, the
pendulum half a car interaction was modeled to investigate the effects of a rough
terrain on the roll movement.

2.1 Truck Dynamics with Pendulum

The truck dynamics with a pendulum is a complex coupling between the vertical
acceleration ẍ, roll acceleration α̈2, rotation acceleration β̈2 [1]. The coupling is
shown on Fig. 1.
where: s is the distance of center of mass (cm), zl is the excitation on the left tire,
zr is the excitation on the right tire, β2 is the angle of pendulum, α2 is the roll angle
of the chassis, ha is the height of the pendulum until it attachment. h1 the distance
between attachment and free surface, lwp is the length of the pendulum, mwp is the
mass of free flowing liquid, m0 is the stationary fluid, I0 is the moment of inertia of
stationary fluid. Using the same methodology as [1].

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(m0 +mwp +mT )ẍT +mwplwp sin (β2)β̈2 +mwplwp cos (β2)β̇
2
2 +∑

FSusp = 0

(IT +mwph
2
a + IT )α̈2 +mwplwpha cos (β2)β̈2 −mwplwpha sin (β2)β̇

2
2 +∑

MSusp = 0

mwplwp sin (β2)ẍT +mwplwpha cos (β2)α̈2 +mwp(l
2
wp sin (β2)

2 + lwpha cos (β2)
2β̈2 . . .

+2mwplwp cos (β2)ẋT β̇2 − 2mwplwpha sin (β2)α̇2β̇2 + lwp
∑
FSusp + lwpg sinβ2 = 0

(1)

Fig. 1 Half-car model coupled with slosh pendulum model, (a) the body diagram, (b) the
schematic representation for the tank truck
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where: FSusp = −(Fssl + Fsdl + Fssr + Fsdr ), and MSusp = s
2 (−Fssl − Fsdl +

Fssr + Fsdr ).

2.2 Pendulum Slosh

The unsprung masses can be calculate by the 2nd Newton Law. The Pendulum slosh
mechanical model divide the bulk mass (ml) of the liquid in two masses, a fraction
of the mass is static to roll (m0) and a part swings with the roll motion (mwp).
Thus, the mass of the liquid is divided in a static and Moment of Inertia (I0), and
another part has a mass a known length (lwp), with a specific point of attachment
(ha). The pendulum analogy cam be further improve by creating nmore pendulums.
Nevertheless, it is not recommend more than 1 pendulum [11]. The main parameters
are describe on the equation [1, 11].

2.3 Tire Dynamics

Tire dynamics is a complex subject,that involves the angles of suspension, tire
manufacturing, air pressure. The mechanical modeling is It is a important issues
when aquaplane is involve. Tire can be represented as a simple tire spring, a non-
linear spring to avoid [13, 14]. Nevertheless, when including the suspension angles a
common representation is the magic formula that incorporates the relation between
angles of the suspension, material saturation [15], it is shown as Eq. (2):

Ftm(xr) = P1sin(P2atan(P3xr − P4(P3xr − atan(P3xr)))); (2)

where: xr is the relative displacement, and parameter P1, P2, P3, P4 related to the
tire and suspension orientation presented on [15].

2.4 Damper Dynamics

The damper is the element that dissipate the energy of the vertical motion of the car.
The common models are shown in Fig. 2.

As shown in Fig. 2a dynamics is commonly express a linear function. Never-
theless, Fig. 2b, the non linearity associate with the shaft and hydrodynamic were
mitigate by center relief channels. In (c), the relief channels are at the end travel.
Figure 2d shows an damper model where the pressure on the lower chamber can
be used to create a restriction patch and further dissipate energy. This patch can
be fully controlled by activating a valve that transfer fluid and it assume massless.
Thus operating between all the position between close and open. In this paper, the
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Fig. 2 Models of damper (a) Without relief channels (b) Center relief channels (c) Extremity
Center relief channels (d) External valve relief pressure Adapted from: [16, 17]

parameter c4 will be used as variable parameter on the Eq. (3) that describes the
dampers dynamics [18–20].

Fd(ẋ) = c1ẋ − c2ẋsign|ẋ| + c3c4
√|ẋ| (3)

where: |ẋ| is the relative speed on the damper.

2.5 Spring Dynamics

The spring is the element that maintains the contact and of the tire on the soil, by
applying a constant pressure. Usually is model as linear e proportional to the relative
displacement. However, the more realist modeling is a nonlinear modeling, with an
additional cubic factor, to take in account the vary pitch, that is a desire increase on
stiffness. Thus, the spring force is

Fs(xr) = k1xr + k2x
3
r (4)

where, k1 is the linear factor, k2 is the nonlinear factor.

2.6 Road Profile and External Forces

The external forces such as lateral forces or slope contribute to slosh movement.
Usually, lateral forces are the main concerns because it can alternate sides and have
a consider magnitude with a similar frequency as slosh natural frequency [1]. The
slope or road inclination is a contribution because moves the angle of the liquid
slowly in on direction. Thus, increasing the speed of the traveling fluid. The road
profile could have a significant impact on the car dynamics. It can be model as white
noise, sine or sign wave with specific amplitude.

{
zl(t) = ampsign[sin(2πf t))]
zr(t) = ampsign[sin(2πf t + β)] (5)
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2.7 Simplified Controllers

Before the advent of Multiple Input Multiple Output, many strategies of control
were elaborated based on states of the car. The three more used are On/off, sky hook
and ground hook [13, 21]. The On/off control has only two states, on and off. Thus,
to optimize the energy consumption it is only activate when the force is maximum,
and on stand-by during other period, shown on equation

cOn =
{
if (V1 > 0 ∧ V 1 > V 2) ∨ (V1 < 0 ∧ V 1 < V 2) → cmax

cmin
(6)

where V1 is the upper mass, and V2 is the lower mass.
The sky-off methodology aims to reduce the vibration on the chassis. Thus,

virtually connecting the sprung mass to a damper to a ground reference. Thus, the
logic of actuation is shown on Eq. (8)

Fsky = cskyV1 =
{

if V1(V1 − V2) > 0 → cmax

cmin
(7)

On the other hand, the ground hook virtually connects the unsprung masses to a
ground reference. Thus, reducing the displacement of the wheels.

Fgr = cgrV2 =
{

if − V2(V1 − V2) > 0 → cmax

cmin
(8)

2.8 State-Dependent Riccati Equation Control

The State-Dependent Riccati Equation (SDRE) control consists in a variable
adaptive control that relies on an adaptive state matrix (A(x)). This means that
A(x) is a function of states and varies along with the simulation, where the B,Q,R
usually remain constant over time. The employment of SDRE control has been
investigate for [13], using the methodology allows to a refine control. Nevertheless,
some step must be taken on account to assure contrability and a define control matrix
(K), thus the same methodology used on[13] was deployed calculate the amount of
force required.After that the coefficient c4 of the damper was calculated by bisection
method. Using the following equation.

c4 =

⎧
⎪⎪⎨

⎪⎪⎩

c3
√|ẋ| × Fcontrol ≤ 0 −→ c4 = 0

0 < c3
√|ẋ| × Fcontrol < 1 −→ c4 = Fcontrol

c3
√|ẋ|

c3
√|ẋ| × Fcontrol ≤ 1 −→ c4 = 1

(9)
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3 Methodology

The parameters utilized on tire magic dynamic are p1 = 190 × 102, p2 = 1.9,
p3 = 13, p4 = 0.97. The parameters utilized on the damper dynamics are k1 =
238(102), k3 = 238(104), mT = 4000, mwp = 2128.9, h1 = 0.3, I0 = 250,
lwp = 0.75, cp1 = 0.0557, s

2 = 3, m0 = 2089.5, c1 = 700, c2 = 400, c3 = 200,
c4 = 0.1, where c4 is the control parameter that varies according to opening of the
valve. In this paper the road profiles has the following parameters, amp = 0.05 m,
αl = 0◦, αr = 180◦, the frequency is variable. The numerical integration was made
with a fixed step of 10−3.

4 Results and Conclusions

The dynamic analyses was made by the bifurcation diagram and Scalograms for the
XT .

As Shown on Fig. 3 there is burst of displacement that have multiple periods.
Thus, the square waves enter in resonance with the system and can damage, roll the
vehicle. The roll movement α2 shows similar behavior with multiple periods and
large oscillations.

As shown on Fig. 4, the roll moment of the car is compressed lower than
10◦. Nevertheless, at regions close to the natural frequency of the fluid the roll
movement is exacerbate by the road profile. Despite the linear dynamics been used
the big displacements indicates the natural frequencies, similar analyses should be
compared and contrast to further investigate the dynamics using the nonlinear slosh
models. Analyzing the displacement of the pendulum on Fig. 5.

The pendulum dynamics it was extremely coupled with the vertical motion, and
induced the roll over presented on Fig. 3. Due to square wave to simulate the road

(B)(A)
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Fig. 3 Dynamic state of XT (a) Bifurcation (b) Scalograms
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Fig. 4 Dynamic state of α2 (a) Bifurcation (b) Scalograms

Fig. 5 Dynamic state of β2 (a) Bifurcation (b) Scalograms

at lower frequencies the pendulum swing freely at the natural frequency, after the
impact. Thus, analyzing the temporal displacement for f = 0.8124 [Hz].

As shown in Fig. 6, before 200s of simulation the rollover event occur. The lateral
movement start to violent swing and the pendulum start to rotate. Nevertheless, all
the four control technique stabilized the motion. The first two present are the On/Off
and the Sky in Fig. 7.

Similarly, the SDRE and Ground are presented on Fig. 8.
To further elucidate the improvement the Table 1 summarizes the Rms values

and Max values for t = 500 s.
Because the system is constantly excited, the effectives of the controllers should

not just be reflected on the displacement of the selected variables. The amount of
force constantly been demand and applied by the variable c4, must be taken in
account as well. This values are summarized on Table 2.
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Table 1 Summary of selected parameters

Rms Max

Var. Sky On Ground Sdre Unco. Sky On Ground Sdre Unco.

XT 0.004 0.004 0.004 0.004 0.591 0.007 0.006 0.006 0.006 1.621

ẊT 0.004 0.009 0.009 0.012 1.424 0.013 0.026 0.026 0.032 6.766

α2 2.58 2.82 2.82 2.84 14.17 5.01 5.83 5.83 6.35 65.41

α̇2 29.39 36.58 36.58 36.90 90.99 74.83 98.43 98.43 95.88 496.59

β2 2.37 4.24 4.24 5.21 4886 4.82 9.31 9.31 10.14 15162

β̇2 44.83 76.77 76.77 95.60 848 91.26 173.81 173.81 189.29 5227

Table 2 Summary of applied
forces by controllers

Sky On Ground SDRE

rmsleft 430.30 532.91 532.91 339.23

maxlet 1703.75 1701.55 1701.55 1723.03

rmsright 431.65 528.81 528.81 419.87

maxrigth 1710.14 1674.33 1674.33 1689.97

5 Conclusions

The linear dynamics of the pendulum slosh model is a good representation and is
a very good tool to determinate and show the regions of instability. Nevertheless,
after 200s of excitation the pendulum motion is no longer available to be passive
control. All the controller proposed were able to reduce significantly the vertical
and roll motion. Nevertheless, due to internal logic, some controller required more
Rms force because there is periods without actuation. Whereas the SDRE control
can uses this moments as and advantage and further reduce the energy levels. Thus,
having a lower RMS force.
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A Comparison of the Common Types
of Nonlinear Energy Sinks

Adnan S. Saeed and Mohammad A. AL-Shudeifat

Abstract Real life dynamical structures are subjected to different sources of exci-
tations such as earthquakes, blasts, collisions, fluid-structure interaction, impacts,
etc. that may induce high vibration levels and increase the risk of system failure.
Hence, linear vibrations absorbers have been employed to protect such dynamical
structures from collapse. However, these are only effective at a specified primary
structure natural frequencies and their performance significantly deteriorates as the
frequency changes. The newly proposed vibration absorbers, usually referred to as
Nonlinear Energy Sinks (NESs) incorporate the essential nonlinear property that
enables efficient and rapid vibration mitigation for wide frequency-energy domain.
Consequently, many types of NESs have been proposed in literature and those
are classified by the method of nonlinearly attaching the NES to the associated
floor of the primary structure into stiffness-based, rotary-based and impact-based
NESs. This paper presents a numerical investigation in which the most common
NES types: cubic-stiffness NES, rotary NES, double-sided and single-sided vibro-
impact (SSVI) NESs, are optimized, discussed and compared for energy transfer
and dissipation for an impulsive excitation into a large-scale nine-story dynamical
structure. The system description and governing equations of each coupled system
are given first followed by a numerical optimization to maximize energy transfer
and dissipation. It is found that an optimized SSVI NES gives the best performance
to achieve highly efficient targeted energy transfer (TET).
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1 Introduction

To account for shock and seismic hazards, it is essential to avoid the inelastic
response by integrating structural control systems that rapidly suppress the high
vibration amplitudes and therefore prevent human and economic losses. To this
end, these structural control systems, which must not significantly increase the
weight, size or complexity of the system, can be classified into: active, semi-active,
passive and hybrid systems. However, despite the promising shock and seismic
mitigation performance of hybrid, active and semi-active control systems, factors
such as the complexity of the design, increased capital and maintenance costs and
requirement of constant power source limited the full-scale implementation in real-
world structures. As a result, passive control systems are widely implemented due
to their application simplicity and comprehensive theoretical development.

Passive linear vibration absorbers, such as tuned mass damper, require careful
tuning of the parameters to a specific natural frequency to enable efficient energy
transfer and vibration absorption. The maximum mitigation capacity is obtained
when the natural frequency of the linear vibration absorber is equivalent to the
frequency of a particular mode of the primary structure. Because of this equivalence,
the absorber engages in resonance capture with that mode which increases the
amplitude of oscillations of the absorber leading to localization and dissipation of
energy. However, the performance of passive linear vibration absorbers deteriorate
significantly if the natural frequency slightly fluctuates which might occur due
to aging, unexpected practice, extreme loading conditions, or poor estimation.
Consequently, this very narrow dissipation bandwidth ignited interest in finding
new methods to passively dissipate the induced energy into the primary structures
to protect them from damage. Accordingly, the passive Targeted Energy Transfer
(TET) or nonlinear energy pumping concept was developed for nonlinear energy
transfer and dissipation [1]. It refers to the process of transferring energy in a nearly
one-way irreversible manner from a primary structure to a nonlinear attachment
known as Nonlinear Energy Sink (NES). As per the definition, the NES possesses
essentially nonlinear coupling element which enables it to interact with a primary
structure in relatively broad range of frequency-energy domain by engagement in
single or cascade of resonance captures with the nonlinear normal modes (NNMs)
branches and backbones of the whole system in the frequency-energy plot [1]. As a
result, unlike linear vibration absorbers, the nonlinear nature of the NES indicates
that it does not have a preferential frequency and can tune itself to nonlinear
frequencies of the whole system in the vicinity of the primary system frequencies.
Therefore, the NESs are capable of passive energy transfer by dissipating vibration
energy induced into a primary structure for a broadband frequency-energy domain.
Accordingly, recent studies showed that properly designed essentially nonlinear
vibration absorbers known as NESs are capable of providing efficient TET.

Based on different kinds of nonlinear coupling elements, the three most common
types of NESs can be named as stiffness-based NESs [1–5], rotary-based NESs
[5–9], and impact-based NESs [10–18]. Stiffness-based NESs employ a nonlinear
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coupling spring of cubic stiffness which is usually realized by transversely coupled
linear stiffness springs. Being the first studied NES in the literature, this set has
three subtypes, the most common of which is Type I which employs a nonlinear
restoring stiffness force accompanied with linear viscous damping element. A freely
rotating rigid arm forms the nonlinear inertial coupling element of the rotary NESs.
The NES mass freely rotates about a vertical axis perpendicular to the direction
of motion of the primary structure. Similar to TMDs, the impact-based NESs are
composed of linear stiffness and viscous damping coupling elements. However, the
nonlinear element is introduced by vibro-impacts (VIs) between the NES mass and
the associated floor of the primary structure via rigid barriers fixed to the floor of
primary structure. Impact-based NESs are categorized into two subtypes known as
Double-Sided Vibro-Impact (DSVI) and Single-Sided Vibro-Impact (SSVI). In the
DSVI NES, two rigid barriers are fixed symmetrically with respect to the initial
position of the NES. This will engage the NES mass in consecutive impacts with
the associated floor of the primary linear structure. In the SSVI NES, one rigid
barrier is removed and the NES impacts with the associated floor on one side only
(asymmetrically). The goal of this paper is to demonstrate a comparison of the
aforementioned common types of NESs to engage in efficient TET when employed
to a large-scale nine-story primary structure under impulsive loading. In addition,
their robustness to changes in the magnitude of the impulse is compared.

2 System Description and Governing Equations

The nine-story structure analyzed in [8, 15–16, 18] is considered as the primary
structure in this investigation as shown in Fig. 1(a) where the displacement of the
jth mass is denoted by xj. The 9-by-9 mass, stiffness and damping matrices of the
structure denoted by M, K and C respectively can be found in [8, 15–16, 18]. Type
I, rotary, DSVI and SSVI NESs are attached to the top floor (j = 1) of the structure
separately as shown in Fig. 1 to investigate the capability of each absorber to
significantly reduce the shock response of the structure by dissipating initial induced
energy through its local damping and scattering energy from low- to high- frequency
structural modes. In this study, a constant NES mass of 500kg is considered which
corresponds to approximately 5% of the total mass of the structure. All NESs are
designed to be nonparasitic (i.e. they do not add mass to the structure, their mass is
taken from the floor to which it is attached). The governing equation of motion of
the primary system is given as

Mẍ + Cẋ + kx = fnes (1)

where x =
[
x1 x2 · · · xj · · · x9

]T
and fnes is the 9-by-1 force vector acting on

the primary structure due to the addition of the NES. This force varies for different
types of NESs and is discussed next.
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Fig. 1 (a) Illustration of the nine-story structure with a schematic of (b) Type I NES, (c) Rotary
NES, (d) SSVI NES, and (e) DSVI NES on the top floor of the structure

Type I NES as shown in Fig. 1 consists of a cubic nonlinear stiffness and linear
viscous damping elements given by knes and dnes respectively. Consequently, the
force fnes is given as

fnes =
[
knes(xnes − x1)

3 + λnes ( ẋnes − ẋ1) 0 · · · 0
]T

(2)

where xnes denotes the displacement of the NES mass. The added governing
equation describing Type I NES mass motion is given by

mẍnes + λnes (ẋnes − ẋ1)+ knes(xnes − x1)
3 = 0 (3)

As shown in Fig. 1(c), the rotary NES mass rotates about a vertical axis
perpendicular to the direction of motion and on a plane parallel to the floor plate.
This inertial coupling causes the essential nonlinear property required by the NESs
to extract and scatter induced impulsive energies to the high-frequency structural
modes of the primary structure. The nonlinear force vector fnes for this type of NES
is given as

fnes =
[
mẍ1 +mr

(
θ̈ sin θ + θ̇2cosθ

)
0 · · · 0

]T
(4)

and the added governing equation describing the rotary NES mass motion is given
by

mr2θ̈ −mrẍ1sinθ + dnes θ̇ = 0 (5)
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where θ defines the angular rotation of the NES mass from the positive horizontal
displacement of the top floor, r is the length of coupling arm from the vertical
axis to the NES mass and dnes is the torsional viscous damping associated with
the NES mass rotary motion. Impact-based NESs consist of linear stiffness and
viscous damping elements analogous to a tuned mass damper. However, in addition
to that, they incorporate rigid barriers fixed to the top floor of the primary structure to
cause consecutive vibro-impacts generating nonsmooth strongly nonlinear coupling
between the NES and the structural modes of the primary structure. This causes
energy scattering from the low-frequency structural mode of the primary structure
to higher frequency structural modes and to the NES itself leading the energy
dissipation through the NES’s viscous damping element, inelastic collisions and
the structures inherent damping. For DSVI and SSVI NESs, the force fnes is given
as

fnes =
[
knes (xnes − x1)+ λnes ( ẋnes − ẋ1) 0 · · · 0

]T
(6)

the added governing equation describing the NES mass motion between the impacts
is given by

mẍnes + λnes (ẋnes − ẋ1)+ knes(xnes − x1) = 0 (7)

The numerical integration of the governing equations is continued until the
impact condition is satisfied. As shown in Fig. 1(d), for SSVI NES where the motion
is constraint asymmetrically in one direction, the impact condition is given as

xnes − x1 ≥ zc (8)

and for DSVI NES where the motion is constrained on both directions of motion
symmetrically, the impact condition is given as

|xnes − x1| ≥ zc (9)

Then, the velocities of the NES and top floor after the impact are derived from the
conservation of momentum and Newtonian concept for the coefficient of restitution
as

ẋ+
1 = mẋ−

nes +M1ẋ
−
1 −mrc

(
ẋ−

1 − ẋ−
nes

)

m+M1
(10)

ẋ+
nes = ẋ+

1 + rc
(
ẋ−

1 − ẋ−
nes

)
(11)
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where M1 and m are the masses of the top floor and NES respectively and
the superscripts + and − indicate the velocities after and before the impacts
respectively.

One way to quantify the performance of an NES-coupled system for achieving
efficient TET is by measuring the enhancement in the damping of the respective
effective modal oscillators. This is quantified by the time-independent averaged
effective modal damping measures λeff, i expressed as

λeff,i =
q̇i (T0)

2 − q̇i
(
Tf
)2 + ω2

i

(
q̇i (T0)

2 − q̇i
(
Tf
)2
)

2
∫ Tf
T0

q̇2
i dt

= E (T0)− E (Tf)
∫ Tf
T0

q̇2
i dt

(12)

where q̇i is the modal velocity of the i-th mode, T0 and Tf are the initial and
final simulation times, E is the instantaneous energy and ω2

i is the effective modal
stiffness. The nominal modal damping λi of the i-th structural mode can be obtained
using Eq. 12 by considering the modal response of a linear primary structure
without the NES leading to energy scattering between the structural modes. The
nonlinear interaction of the NES causes energy exchange between the structural
modes and therefore the energy in each mode is not conserved. The normalized
weighted-averaged effective damping measures λ̂eff,i is defined as the ratio of the
time-independent averaged effective damping measures λeff, i to the nominal modal
damping λi of the NES-free system. If λ̂eff,i > 1, then energy is transferred out of
the i-th mode in the given time interval and it is eventually dissipated by the NES’s
local damping and other modes and vice versa.

3 Results and Discussion

The parameters of each type of NES are optimized to obtain the maximum
value of normalized weighted-averaged effective mode 1 damping measure λ̂eff,1
which indicates the maximum amount of energy transferred out from the lowest
fundamental (highly-energetic) mode to be dissipated locally by the NES or by
the inherent structural damping of the higher frequency structural modes. For the
optimization purposes, the simulation time Tf is set to 5 seconds to ensure efficient
and rapid TET. The initial impulsive energy is input through an identical initial
velocity of 0.25m/s induced equally to all floors of the primary structure with zero
initial displacements. The clearance zc of DSVI and SSVI NESs is fixed to 0.020m
to ensure non-smooth vibro-impacts will occur and the coefficient of restitution
during the inelastic impacts is assumed to be 0.7 which corresponds to steel-to-
steel impacts. The initial angle of the rotary NES is taken as π/2 to excite it with
the maximum possible angular velocity. The linear or nonlinear stiffness coefficient
and linear viscous damping coefficient are the optimizing parameters for Type I,
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DSVI and SSVI NESs. The length of the coupling arm and the angular damping
coefficient are the optimizing parameters for the rotary NES. The contour plots
showing the normalized weighted-averaged effective mode 1 damping measures for
varying parameters of each NES type is shown in Fig. 2.

The optimal normalized weighted-averaged effective mode 1 damping measures
resulting from the optimization in Fig. 2 (indicated by black crosses) are compared
in Fig. 3. Type I and SSVI NESs engage in the most effective frequency-energy
scattering to transfer energy out of the fundamental mode. Although the rotary
and DSVI NESs show poorer performance in energy transfer and dissipation, they
still result in λ̂eff,1 that are greater than unity indicating that significant energy has
been transferred from the fundamental to the NES or other modes. Additionally, the
performance of the optimized NESs at an initial velocity of 0.25m/s are compared
in Fig. 4(a) for varying initial velocities applied equally to all floors. The optimized
SSVI NES showed very robust performance over a wide range of initial input shock
loadings signifying its capability to engage efficient TET even for severe loadings

Fig. 2 Contour plots of λ̂eff,1 by the Type I NESin (a), rotary NES in (b), DSVI NES in (c)
and SSVI NES in (d) for varying parameters for the nine-story primary structure; identical initial
velocity 0.25 m/s is considered for each floor; black crosses indicate optimal system parameters
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Fig. 3 The resulting
optimum λ̂eff,1 for each type
of NES; indicated by black
crosses in Fig. 2

Fig. 4 The performance of
the optimized NESs for
varying initial impulsive
energies induced by identical
velocities to all floors
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unlike other types whose performance deteriorate drastically. This outcome can also
be seen from Fig. 4(b) which shows the corresponding energy dissipated by each
NES for varying input energies. The enhanced performance of the SSVI NES makes
it eligible for efficiently protecting structures under severe seismic or blast loadings
as well.

4 Conclusions

The NES performs rapid and passive energy transfer and dissipation for a significant
portion of the induced vibration energy into primary structures. Therefore, it
can be utilized in a wide variety of aerospace, mechanical and civil engineering
applications since vibration absorption is a major aspect of such small- and large-
scale dynamical structures. An optimized design of the NES when attached to a
dynamic structure is expected to significantly protect the structure from impacts,
blast loadings, earthquakes, wind gusts, typhoons, etc. which saves human life as
well as the structure itself. A thorough comparison of the common types of NESs is
carried here for an impulsively loaded large-scale nine-story real physical structure.
It was found that the SSVI NES provides the most energy transfer from the first
fundamental (destructive) mode to be dissipated locally by the NES itself or through
the inherent structural damping of the higher modes for a wide range of impulsive
energies. Consequently, it can be said that the SSVI NES is the most efficient passive
structural control device.
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Stability of Three Wheeled Narrow
Vehicle

Krzysztof Weigel-Milleret and Witold Grzegożek

Abstract A serious problem in modern cities are congestions and a lack of parking
space, especially in cities centers. The narrow, three-wheeled vehicles seems to
be solution to these problems. The work presents a description of the designed
and developed urban individual mean of transport. The implemented prototype
is a narrow, three-wheeled vehicle with electric drive designed as a delta type
vehicle. Road tests of controllability were performed — a constant radius of turn
and constant steering angle tests and stability of the vehicle using the single lane
change maneuver. A mathematical vehicle model with three degrees of freedom
(3DOF) was arranged, including lateral displacement, roll and yaw angle rotation.
These road tests were used to validate parameters in the vehicle model. A vehicle
motion simulation was performed in accordance with the NHTSA J-turn maneuver
procedure. The results of the simulation allowed the assessment of the impact of
driving speed on the lateral stability of the vehicle by the determination of the
dynamic roll angle.

Keywords Narrow vehicle · Torque Vectoring · Active Roll Mitigation

Nomenclature

m mass of the vehicle [kg],
δ1 steering angle of the front wheels [rad],
δ2 steering angle of the rear wheels [rad],
l1 distance from front axle to centre of mass [m],
l2 distance from rear axle to centre of mass [m],
h height of a center of mass [m],
b track width [m],
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Mext additional yaw moment [Nm],
Fext additional horizontal force [N],
K1 cornering stiffness of the front axle [N/rad],
K2 cornering stiffness of the front axle [N/rad],
c rolling stiffness of a vehicle [Nm/rad],
k torsion damping factor [Nm/rad/s].

1 Introduction

Designing today’s vehicles forces manufacturers to create more fuel-efficient
structures. One of the ideas is to build smaller, with more aerodynamic shapes or
tailored to specialized tasks vehicles. The idea of personal transportation especially
at urban agglomerations leads to introducing the three wheel platform and narrow
vehicles.

The narrow cars are a special kind of microcars. These are small-dimension
vehicles with limited range. The range of several dozen kilometers is enough on one
tank or charging is sufficient for most residents of modern cities. They are designed
for only driver or a driver with one passenger with a small luggage. Due to their
small dimensions, high maneuverability, dynamic driving performance and lower
fuel consumption the narrow cars perform perfectly in the urban agglomeration
spaces. A lack of parking space, traffic jams and road congestions are a serious
problem in modern cities. In academic papers it is estimated that more than 5 billion
hours are annually spent waiting on freeways in traffic congestions [1]. The efficient
utilization of existing infrastructure (e.g. roads, parking places) seems to be good
solution. Especially since the costs of road construction are rising [2]. The design
of small vehicles, with a better weight/load relation, has been proposed in several
studies, e.g. [3–5].

Vehicle rollover should be consider as an important safety problem. Accidents
involving vehicle rollover often have fatal consequences [6]. The narrow cars are
very susceptible to rollover, because they have a small track and a high center of
gravity.

In this paper the MIST car was chosen for tests. This narrow car was designed
and developed in Institute of Automobiles and Internal Combustion Engines of the
Cracow University of Technology. MIST body is made as a welded space frame
with a front suspension subframe. This design provides high rigidity and torsialonal
stiffness of the body. Vehicle body has enough space for the driver and a small
luggage. It is driven by two electric motors built in the rear wheel hubs. Its basic
technical data is presented in Table 1 [7]. The combination of trailing-arm and
pushed-arm suspension causes the rolling axis of the vehicle body to be located
in the plane of the road. That increase the rolling stiffness of the vehicle. MIST
is a four-wheeled vehicle, however, the short wheelbase and parallel suspension
movement of the front axle means that the vehicle can be considered a three-wheeler.
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Table 1 MIST technical data

Frame steel, welded space frame

Front suspension dependent suspension with parallel wheel movement, doubled pushed arm
Rear suspension semi-independent twist beam with towed arms
Motor 2 × Brushless DC motor (3.5 kW peak power)
Brakes Hydraulic, disc brakes
Vehicle mass 197 kg unloaded; 268 kg with driver
Wheelbase 1560 mm
Track width 470 mm front axle, 870 mm rear axle

Fig. 1 Balance of forces
acting on a car in a curve

2 Narrow Vehicle Stability

In automotive industries the vehicle, developing the dynamics control (VDC) system
was considered important. The VDC system improves the vehicle response in
critical cornering situations. It is achieved by distributing asymmetric brake forces
to the wheels. Due to its significant benefit the VDC system installed on top of the
ABS/TCS system have already been commercialized. The systems are nowadays
installed in passenger vehicles. Some researchers proposed PID controls or LQ-
optimal controls to compensate the error between the actual state and desired state
of the vehicle [8, 9]. The most common approach at VDC systems is to use vehicle
brakes to create the deflection or tilting moment of the vehicle. However, each
activation of the vehicle’s brakes dissipates a portion of kinetic energy of the vehicle
as heat. Therefore, each operation of the vehicle’s stabilization system contributes
to reducing the range of the electric vehicle. The range of the vehicle is limited due
to the weight and dimensions limitation of narrow vehicle, which limits the size of
the battery.

The vehicle resistance to overturning is called a rollover stability. It is assumed
that the vehicle loses rollover stability when the normal reaction under at least one
wheel on the vehicle’s side drops to zero. This case is showed in Fig. 1. It should be
noticed that the vehicle is considered as a rigid body (impact of the suspension of
the vehicle is not taken into account).
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The quotient of lateral force and vehicle’s weight must be less than tangent of
the line between the center of mass and rolling axis [10]:

Fy

mg
≤ tanϕr (1)

Fy ≤ b

2h
mg (2)

For short maneuvers lateral acceleration may exceed the value described above,
and do not cause the vehicle rollover. The limitation of lateral acceleration in
roll mitigation systems may reduce the possibility of cornering while traveling at
high longitudinal velocity and significantly reduces maneuverability of the vehicle.
That approach is highly inadequate for narrow vehicles. On the other hand more
complicated maneuvers undertaken to defend against an obstacle may lead to lateral
swinging of the vehicle and, as a result, its overturning. Based on own research,
it has been noticed that a single lane change is often the driver’s basic defensive
maneuver. Interestingly, this maneuver is often undertaken too vigorously, which
can cause the vehicle to rollover. The function of the active roll control system,
which is developed by the authors, described in this paper allows to change the
vehicle’s steerability characteristics in order to reduce the risk of rollover.

Development of active roll mitigation systems have been described in the
literature. Nowadays the roll mitigation systems based on static or steady-state
rollover models are widely used in the automotive industry [11]. Less commonly
used dynamic models are presented in academic papers [12]. The roll mitigation
systems for dynamics are usually based on continuous normal load force calculation.
It is difficult to measure the value of the vertical load of particular wheel, so the
lateral load transfer ratio during maneuvers parameter is commonly used. However,
the dynamic model should take into account changes in the mass of the vehicle
that are difficult to measure or predict. Therefore, the use of dynamic models is
complicated. For microcars with low payloads, which are designed only for the
driver, it is easier to predict the total weight and its distribution in the vehicle.
The distribution of driving forces on individual wheels of the driven axle can be
used to prevent rolling over and to stabilize the vehicle motion. Such solution
can be implemented only in vehicles with independent power supply for electric
motors, which drive a single wheel. It causes the increase of the energy efficiency
of the vehicle, which makes increasing the maximum range of the vehicle possible.
Currently, active torque vectoring control systems are mainly used to limit the yaw
rate and vehicle slip angle [11, 12].

3 Vehicle Dynamics Model

In order to manage the active roll mitigation system a model with three-degrees of
freedom (3DOF) including yaw, roll (around the rollover axis) and lateral motion
of vehicle is used [13]. The model consider the suspension stiffness and damping



Stability of Three Wheeled Narrow Vehicle 109

Fig. 2 3DOF model used for simulations

to predict vehicle movement. Because one of the assumption is the a constant
longitudinal speed (vx = const) the x-axis motion of the vehicle is not taken into
account. Fig. 2. shows the vehicle’s motion in two perpendicular planes. The forces
and moments acting on the vehicle can be calculated as:

⎧
⎨

⎩

∑
Fy = mÿ∑
Mz = Izψ̈∑
Mϕ = Iϕϕ̈

(3)

Where Fy, Mz and Mϕ are lateral force and the moments around z and rolling axis;
Iz and Iϕ represent the moment of inertia around vertical and rolling axels. y, ψ, ϕ

denote lateral position, yaw and roll angles. Suspension model is taken into account
as presented in Fig. 2.

The equations of forces and moments acting on the vehicle take the form:

−Fint y + F1y cos δ1 + F2y cos δ2 + Fext y = 0 (4)

−Mint z + F1y cos δ1l1 − F2y cos δ2l2 +Mext z = 0 (5)

−Mint ϕ + Fyh cosϕ +mgh sin ϕ − cϕ − kϕ̇ +Mext ϕ = 0 (6)

Moment of inertia around the rolling axis:

Iϕ = Ix +mh2 (7)

One of the simpler mathematical models of the tire is the linear model. When
the magnitude of the wheel slip is small, the tire forces generated by the wheel are
proportional to the slip:



110 K. Weigel-Milleret and W. Grzegożek

Fix = kx • λ (8)

Fiy = ky • α (9)

These forces are proportional to the longitudinal slip of the wheel and the wheel
drift angle. The coefficients of slip resistance and wheel drift kx and ky are constant
values. This model is accurate for wheel slip λ <0.15 and wheel drift angle α <0.1
rad. For larger values of wheel slip or drift angle, the forces calculated from the real
model are higher than the real forces at the contact point of the tire and the road.
For narrow cars, the linear tire model gives sufficient compatibility over the entire
speed range with which the vehicle moves.

The lateral forces of the front and rear axles can be determined as:

F1y = K1α1 (10)

F2y = K2α2 (11)

After taking into account other assumptions: δ2 = 0; cos δ1 ≈ 1; cosβ ≈
1 and β = ẏ

ẋ the equations take form:

mÿ = K1δ1 − K1 +K2

v
ẏ − K1l1 −K2l2 +mv2

v
ψ̇ (12)

Izψ̈ = K1l1δ1 − K1l1 −K2l2

v
ẏ − K1l1

2 +K2l2
2

v
ψ̇ +Mext z (13)

Iϕϕ̈ = Fyh cosϕ +mgh sinϕ − cϕ − kϕ̇ (14)

4 Preliminary Simulations

Matlab R2015b software was selected for the motion simulation. The geometric
and mass parameters of the vehicle were determined at preliminary tests. Previously
determined [14] cornering stiffness for the front and rear axles were used in the
3DOF model. Basic model parameters are presented in Table 2. The input to the
model was the steering angle as a function of time. The result of the simulation is
the lateral movement of a vehicle y(t), y’(t) in local CS, yaw angle ψ(t), yaw rate
ψ’(t), roll angle ϕ(t) and roll rate ϕ’(t) as a function of time.

In the preliminary simulations, limit values for the vehicle speed and steering
angle were determined, exceeding which for a single lane change maneuver results
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Table 2 Model parameters

Parameter Unit Value

m – mass of the vehicle kg 305
l1 – distance from front axle to centre of mass m 1.03
l2 – distance from rear axle to centre of mass m 0.53
h ¬ height of a center of mass m 0.8
K1 – cornering stiffness of the front axle N/rad 15000
K2 – cornering stiffness of the front axle N/rad 25000
Iz – moment of inertia around vertical axis kg m2 80
Iϕ – moment of inertia around rolling axis kg m2 370
c – rolling stiffness of a vehicle Nm/rad 5000
k – torsion damping factor Nm/rad/s 3000

Fig. 3 Speed and steering
angle limit function

in loss of stability by raising one of the wheels from the surface. The maximum
safe roll angle range of the car body is ϕ = 14O ≈ 0.25 rad. At this angle the
inner wheel of the vehicle is detached from the road surface. For safety reasons, the
determination of the vehicle speed and the steering angle limit was based only on
simulation. The adopted vehicle model needs a lot of computing power and cannot
be used in an active real-time system based on simple controller. For this reason
from the calculated limits, a function combining the speed and the steering angle
was created. The function combining the speed and steering angle is presented in
Fig. 3.

5 Controller Design

To improve the vehicle handling and stability velocity, yaw rate of the vehicle
and steering wheel angle are controlled not to exceed their maximum value and
to calculate the limit function. The controller block diagram is shown in Fig. 4.

While driving without the risk of overturning the vehicle, the controller performs
the functions of an electronic differential. When driving in an arc, the current
supplying the engines is divided in proportion to the steering wheel angle. Normally,
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Fig. 4 Block diagram of Active roll control system

when driving in an arc, the inner wheel rotates at a lower speed than the outer wheel
of the vehicle. Earlier studies showed that this action reduces understeer of the
vehicle, even to neutral steering characteristic, which increases its maneuverability
and the vehicle’s response to movement of the steering wheel becomes faster. When
the function limit is exceeded, the program reverses the drive torque distribution sign
of the electronic differential for a set time. Greater driving force is created under the
inner wheel to the arc.

In addition, the controller continuously monitors the vehicle’s roll angle. If the
value of the roll angle exceeds the set maximum, the controller shuts off power to
the propulsion engines.

The Arduino platform was chosen to support active control of electric motors.
It is a platform created for embedded systems based on Open Hardware. The
programming language used by Arduino is based on the Wiring environment and
on the C / C ++ language.

The Arduino Mega board used consists of an 8-bit Atmel AVR microcontroller.
On the Arduino driver board most of the microcontroller input / output pins are
derived for use by other systems.
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The following sensors are installed in the vehicle:

• Honeywell RTY 270HVNAX Hall-Effect rotary position sensor measuring the
steering angle,

• MPU-6050 integrated 6-axis MotionTracking device that combines a 3-axis
gyroscope, 3-axis accelerometer, and a Digital Motion Processor™ (DMP)
measuring lateral, longitudinal yaw and roll accelerations. The device is used
to calculate the roll angle of the vehicle.

6 Simulations and Road Tests

The 3DOF model described above was used in simulations. The only modification
was the additional yaw moment implemented in the model as a function of the
steering angle (and time). Other input data was the steering angle as a function of
time and vehicle velocity. Steering angle function was obtained from real road tests.
The result of the simulation is the lateral movement of a vehicle y(t), y’(t) in local
CS, yaw angle ψ(t), yaw rate ψ’(t), roll angle ϕ(t) and roll rate ϕ’(t) as a function
of time.

Except the sensors used to controller following test equipment was installed in
the vehicle:

• Datron Correvit apparatus measuring the longitudinal and lateral velocities of the
vehicle,

• Crossbow measuring velocities and lateral, longitudinal and rolling accelerations,

Road tests were conducted with an active roll limitation system built according to
the assumptions described in point 5. The tests and the simulations included a single
turn and single lane change maneuver performed at different driving velocities.
The road tests of a single lane change were carried out on a track adapted to the
dimensions and speeds of the tested vehicle. The diagram of the test track is shown
in Fig. 5.

Simulations were carried out at multiple vehicle velocities for the equal driving
torque distribution, for use of the electronic differential which minimizes the vehicle
understeer and for use of the active roll control system. The obtained data of the roll
angle was compared with the value measured during the tests. Figures 6 and 7. show
examples of simulation result examples carried out at vehicle speed 3,5 m/s.

The above simulations results coincide with the results obtained during road
tests. For the presented maneuvers minimization of understeer by driving torque

Fig. 5 Single line change
track
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Fig. 6 Steering angle
function δ, calculated and
measured roll angle ϕ for
different torque distribution.
Single turn maneuver

Fig. 7 Steering angle
function δ, calculated and
measured roll angle ϕ for
different torque distribution.
Single line change maneuver

distribution leads to the safe value of vehicle roll angle being exceed. Active roll
angle control system reduces the roll angle which remained in safe value.

7 Conclusion

A. Studies have shown the need to use an active roll angle reduction system. The
absence of such a system results in exceeding the rollover limit of the narrow
vehicle under test. A single lane change maneuver can be considered a frequent
defensive maneuver against an unexpected obstacle.
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B. Due to the developed system, the tested narrow vehicle achieved a reduction of
the roll angle by about 21%.

C. The basic limitation of narrow vehicles is rollover.
D. The conducted tests are consistent with the tests carried out for typical passenger

cars. The results indicate the usefulness of the developed system that allows
proper torque distribution for different values of v and δ so that the vehicle
remains stable.

E. The subjective feelings of drivers of a vehicle equipped with an active roll
limitation system are positive.
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Testing and Analysis of Vibration
of a Tension Transmission
with a Thermally Sealed Belt

Grzegorz M. Szymański and Piotr Krawiec

Abstract The advantages of heat-sealable belts include: the possibility of welding
of their ends (allows obtaining a strip of any length and a quick replacement in case
of damage), excellent resistance to abrasion, resistance to oil, grease, dirt and some
chemicals, resistance to temperatures from −30 ◦C to +80 ◦C, significant elasticity
at a relatively low level of stretching, high value of the friction coefficient (thus very
good anti-slip properties even at load changes), safety when in contact with food.
There are few publications devoted to these belts, therefore the authors have built a
test stand for experimental studies of such drives. The analysis of vibration of a draw
gear with a thermally sealed belt was carried out in accordance with the assumptions
of an active experiment. The following input parameters were adopted: belt tension
force, torque loading the gearbox, rotational speed of the drive shaft. The following
output parameters were adopted: the values of vibration acceleration of selected
elements of the test stand (the transducers are mounted on the bearing housings
of the drive and the driven shafts). During the research, the load of the gearbox
was changed and the influence of its impact on the value of the point measures
of vibration signals was observed. The following point measures were analyzed: the
RMS value, the peak value and the kurtosis. The results of the research will certainly
be useful for designers and technicians involved in the operation of drawstring drives
with thermally weldable belts.
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Poznan University of Technology, Faculty of Civil and Transport Engineering, Institute of
Transport, Poznan, Poland
e-mail: grzegorz.m.szymanski@put.poznan.pl

P. Krawiec
Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Machine
Design, Poznan, Poland
e-mail: piotr.krawiec@put.poznan.pl

© Springer Nature Switzerland AG 2021
J. Awrejcewicz (ed.), Perspectives in Dynamical Systems III: Control and Stability,
Springer Proceedings in Mathematics & Statistics 364,
https://doi.org/10.1007/978-3-030-77314-4_10

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77314-4_10&domain=pdf
https://orcid.org/0000-0002-2784-9149
https://orcid.org/0000-0003-3076-0337
mailto:grzegorz.m.szymanski@put.poznan.pl
mailto:piotr.krawiec@put.poznan.pl
https://doi.org/10.1007/978-3-030-77314-4_10
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1 Introduction

The causes of vibration and its influence on selected machine drives were thoroughly
discussed in [1–4]. Multiple examples of analytical assessments of the vibration
in belt transmissions [5–13] can be found, however, the attempts to evaluate them
through experiment are scarce [14–16]. This paper will present the results of
proprietary research concerning the gearing with the PU 75 A belt. Figures 1.a and
1.b present the test stand for the measurements of the vibration of the transmission
with the polyurethane belt. The source of mechanical vibration may be as follows:
inaccuracies in the manufacturing and assembly process of the machines and devices
[17–19], unbalanced components in rotational motion [20, 21], component wear [22,
23], slider-crank components, reciprocating components.

2 Research Methodology

The analysis of the belt transmission fitted with a heat-sealable belt was carried
out according to the assumptions of the active experiment. It was assumed that the
input parameters were: the tensile force of the belt, the precise loading moment
of the transmission and the rotational speed of the transmission shaft, whereas
the output parameters were the values of the vibration acceleration of individual
components (the transducers were mounted on the housings of the bearings of the
transmission and the driven shafts). The measurement system shown in Fig. 1a

a) b)

c)

Fig. 1 The examination of the transmission with the PU 75 A belt; (a) view of the test stand, (b)
location of the vibration transducers, (c) directions of vibration measurements
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allows a simultaneous recording of fast-varying time tracings in 12 measurement
channels with the dynamics of up to 160 dB. The 4504 Brüel & Kjær vibration
transducers described in [1] were selected based on the guidelines provided in
[12]. The linear frequency range of the selected transducers was 0.1 Hz to 18 kHz.
During the investigations, the signals in the range from 0.1 Hz to 25 kHz were
recorded. The sampling frequency was set to 65,536 Hz. A principle was adopted
that the accelerometer should be placed as close to the precise point of the source
of the vibration signal as possible [1]. Two triaxial transducers (P1, P2) connected
to the measurement module were used to record the signals. The directions of the
measurement of the vibration signals were set as: X – parallel to the axes of both
shafts, Z – radial (vertical), Y – perpendicular to the other two (Fig. 1c).

3 Broadband Analysis of the Point Measures

Using point measures is one of the ways to describe the signals such as: displace-
ment, velocity or acceleration of the vibration signals. The point measures allow
characterizing the vibration signal using a single number, therefore, the changes of
the vibroacoustic signal resulting from the current state of an object can be easily
detected. Throughout the investigations, the load on the transmission was changed
in order to observe its impact on the value of the point measures of the vibration
signal. The point measures that were analyzed were: the RMS value, the peak value
and the kurtosis. Filtration was not used in the analysis process. The speed of the
transmission shaft was set at 500 rpm. The authors adopted a principle that the
results of the measurements obtained on the transmission shaft were referred to as
‘the motor’ and the results of the measurements obtained on the driven shaft were
referred to as ‘the brake’.

Figure 2 presents the changes of the kurtosis of the vibration acceleration signals
depending on the load on the belt drive. Based on the said analyses, it was observed
that the value of the kurtosis falls when the load on the transmission increases.

Those relations are not monotonic in the case of the signals recorded on the
driven wheel along the X and Z axes, whereas in the case of the wheel driven along
the X and Z axes, the changes can be approximated by the exponential curve. It is
noteworthy that the dynamics of the changes of the kurtosis is similar for the X and
Z axes, which is approximately 30 dB.

In order to examine the influence of the changes of the belt drive speed on the
point measures of the signals of vibration acceleration, an experiment was carried
out. During this experiment, the shaft load was changed by applying two different
speed values of the transmission shaft (500 rpm and 1000 rpm). The following point
measures were analyzed: the rpm value, the peak value and the kurtosis. Figure 3
shows the shifts in the rpm value of the vibration acceleration signals in relation
to the load on the belt. Based on the analysis of these results it was determined
that increasing the speed of the shaft results in an increase in the rpm value of the
vibration signals recorded along all the axes both on the transmission and the driven
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Fig. 2 Relation of the kurtosis of the signals of vibration acceleration and the load applied to the
belt with the shaft speed of 500 rpm

shafts. A correlation was observed between the results recorded along the Z axis at
the motor and along the X and Z axes at the brake.

Figure 4. shows the changes in the peak value of the vibration acceleration signals
in relation to the load on the belt. As a result, it was determined that increasing the
speed of the shafts results in an increase in the peak value of the vibration signals
recorded at the driven shaft along all the axes. The peak values of the vibrations
recorded at the driven wheel decreased when small loads on the belt were applied.

Figure 5. presents the changes of the kurtosis of the vibration acceleration signals
in relation to the load on the transmission. As a result, it was determined that
increasing the rpm of the transmission shafts results in a decrease of the kurtosis
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Fig. 3 Relation between the rpm value of vibration acceleration signals and the load on the belt,
with the speed of 500 rpm (blue) and 1000 rpm (orange)

of the vibration signals along all the axes, for both the transmission and the driven
shaft, with small loads applied to the transmission.

4 Results of the Analysis of the Influence of the Change
in the Belt Tension on Selected Point Measures

In order to assess the influence of the change in the belt tension on the values of the
point measures of vibration accelerations, an experiment was conducted consisting
in changing the transmission load by applying two values of the belt tension. Three
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Fig. 4 Relation between the peak value of the vibration acceleration signals and the load on the
transmission with the speed of 500 rpm (blue) and 1000 rpm (orange)

point measures were analyzed: the rpm value, the peak value and the kurtosis (for
reasons of brevity, this paper discusses only the relation of the kurtosis of the signal
acceleration and the load on the transmission with different belt tensions).

Figure 6 shows the changes of the kurtosis in the vibration acceleration signals
in relation to the belt load. From the figure it can be determined that increasing the
belt tension by 40 N results in an increase of the kurtosis of the vibration signals
along the Z (recorded along the transmission shaft) and X axes.
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Fig. 5 Relation between the kurtosis of the vibration acceleration signals and the load on the
transmission with the speed of 500 rpm (blue) and 1000 rpm (orange)

5 Determining the Vibration Frequency Generated
by the Belt Drive

Based on the geometry of the belt drive and using kinematic relationships (e.g. belt
transmission ratio), the hypothetical values of vibration frequencies can be assumed,
which may later be searched for in the amplitude or envelope spectra. They were
determined assuming the belt diameter (when formed in a circle) of 112 mm, and
it’s length 1420 mm. The vibration frequency caused by the interaction of the shaft
and the belt has been shown in Table 1.
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Fig. 6 Relation between the value of the kurtosis of the vibration acceleration signals and the load
applied to the belt of two values (belt tension): 120 N (blue) and 80 N (orange)

6 Analysis of the Spectra of the Vibration Signal

Important for the vibration analysis is the assessment of the influence of the input
parameters (speed of the shafts, load on the transmission, belt tension) on the spectra
of the vibration acceleration signals. Figure 7a presents the influence of the changes
in the load applied to the transmission on the vibration spectra measured on the
housing of the of the transmission shaft bearing (the shaft speed of 500 rpm and
the belt tension of 80 N). Figure 7b presents the changes in the vibration spectra
with the shaft speed of 500 rpm and the belt tension of 120 N. The blue line in both
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Table 1 Characteristic
vibration frequencies related
to the interaction between the
transmission shaft and the
belt

n [rpm] fw-p [Hz] 2fw-p [Hz] 3fw-p [Hz] 4fw-p [Hz]

500 17.06 34.13 51.19 68.25
495 16.72 33.45 50.17 66.89
490 16.39 32.78 49.16 65.55
485 16.05 32.11 48.16 64.22
480 15.73 31.45 47.18 62.90
475 15.40 30.80 46.20 61.60
470 15.08 30.15 45.23 60.31
465 14.76 29.52 44.27 59.03
460 14.44 28.88 43.33 57.77
455 14.13 28.26 42.39 56.52
450 13.82 27.64 41.46 55.29

Motor, n=500 rpm, M_0, Tens. 2
Motor, n=500 rpm, M_50, Tens. 2

Motor, n=500 rpm, M_0, Tens. 1
Motor, n=500 rpm, M_50, Tens. 1

[d
B

]

[d
B

]

Fig. 7 The spectra of the vibration signal recorded on the belt transmission; (a) n = 500 rpm.
Tension 1 = 80 N. (b) n = 500 rpm. Tension 2 = 120 N

figures indicates the spectra for the minimum load applied to the transmission and
the red line - the spectra for the maximum load applied to the transmission.

The analysis of Fig. 7 leads to the following conclusions: when the belt tension
equals 80 N, an increase in the vibration acceleration in the 2.8÷6 kHz band is
observed with the maximum load on the transmission compared to the minimum
load.

When the tension equals 120 N, the values of vibration acceleration increase in a
wider band of 2.8÷6 kHz and 7÷10 kHz for the maximum load on the transmission
compared to the minimum load. When comparing the frequency characteristics for
the same loads, an increase is observed in the vibration activity in the 2.8–10 kHz
band.
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Motor, n=500 rpm, M_0, Tens. 2
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Fig. 8 Spectra from the envelope of the transmission vibration signals: (a) n = 500 rpm, tension
1 = 80 N. (b) n = 500 rpm, tension 2 = 120 N

7 Analysis of the Spectra in the Envelope of the Vibration
Signal

During the final stage of the vibration assessment, the signal was filtered through a
band-pass filter equivalent to the range of the resonance frequency. Then, the signal
was demodulated in order to extract the signal envelope.

These signals could contain low-frequency modulations corresponding to the
cyclical impulse phenomena resulting from the possible interaction of the belt
contact with the pulley. Later on in this paper, the Hilbert’s Transform was
implemented for the time signals a(t).

Figure 8a shows the influence of the changing load on the transmission on
the vibration spectra measured for the transmission shaft with the shaft speed of
500 rpm and the belt tension of 80 N. Figure 8b presents the changes in the
amplitude spectra with the shaft speed of 500 rpm and the belt tension of 120 N.

The analysis of Fig. 8 allows a conclusion that for smaller belt tension forces
higher values are observed in the spectrum from the vibration acceleration envelope.
Irrespective of the belt tension, with the increase in the load applied to the belt drive,
a decrease in the values of the characteristic vibrations occurs.

8 Conclusions

This paper presented an analysis of the heat-sealed PU75A belt drive vibration. One
of the belt’s multiple advantages is the possibility of its heat-sealing at its ends,
which allows making up a belt of any length, should a quick replacement become
necessary. Based on the conducted research and its analysis, it was determined that
the value of the kurtosis decreases along with the increase in the transmission load.
An increase in the speed of the transmission shafts resulted in an increase in both
the RMS and the peak values of the vibration signals recorded in all axes along
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the transmission shaft as well as the driven shaft, with simultaneous increases of
the kurtosis for the vibration signals along all axes along the transmission as well
as the driven shafts with small loads applied to the transmission. An increase of
tension by 40 N results in the elevated kurtosis along the Z axis (recorded along the
transmission shaft) and along the X and Y axes (recorded along the driven shaft). It
was also observed that the level of vibration acceleration in the 2.8 ÷ 6 kHz band
increased when using the maximum transmission load compared to the minimum
load and when the applied belt tension force was 120 N, the level of vibration
acceleration increased in a wider band, i.e. 2.8 ÷ 6 kHz and 7 ÷ 10 kHz for the
maximum transmission load compared to the minimum load. With the increase in
belt load, the values of the characteristic frequencies decrease regardless of the belt
tension. The test results will certainly be useful for designers and people involved
in the operation of belt transmissions where modern transport belts are applied.
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Modeling and Experimental Tests
on Motion Resistance of Double-Flanged
Rollers of Rubber Track Systems Due
to Sliding Friction Between the Rollers
and Guide Lugs of Rubber Tracks

Piotr A. Dudziński and Jakub Chołodowski

Abstract Modern off-road vehicles are often equipped with rubber tracked under-
carriages. While designing a rubber tracked crawler, an issue of high importance
is to distinguish a power unit whose performance corresponds well with the actual
power demand of the vehicle. In order to do so, algorithms for determination of
external and internal motion resistance of rubber tracked vehicles are required. The
Department of Off-Road Machine and Vehicle Engineering (DORMVE, Wrocław
University of Science and Technology) conducts theoretical and experimental
research aimed at development of advanced computational models of this type.
Motion resistance of rollers (road wheels) is one of the factors affecting the energy
consumption of rubber tracked undercarriages. Firstly, since the rollers are loaded
with vertical force, they indent into rubbery envelope of the track. Consequently,
some amount of energy is lost due to mechanical hysteresis of rubber. Secondly,
motion resistance of rollers is attributed to sliding friction between the rollers and
guide lugs of the track. Energy losses caused by this phenomenon are noticeable if
rollers are loaded with high lateral force, i.e. while turning or operating a vehicle
on a slope inclined along the lateral axis of the vehicle. The article presents
a model for estimation of motion resistance of double-flanged rollers of rubber
tracked undercarriages allowing for both abovementioned phenomena. The results
of exemplary model computations will be compared with experimental data.
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1 Introduction

Undercarriages of modern earthmoving and agricultural machinery as well as other
commercial vehicles are often fitted with rubber tracks nowadays. On the other
hand, the literature review does not bring any comprehensive model summarizing
motion resistance of the most common rubber tracked vehicles, enabling detailed
analyses of the phenomena leading to losses in rubber track systems, e.g. interaction
between rollers (road wheels) and tracks, repetitive bending of the tracks while
passing over drive and idler wheels of track systems, transverse vibrations of the
tracks, etc. [1]. Consequently, while designing a rubber tracked vehicle, it is hard
to distinguish a power unit of performance meeting the actual power demand of
the vehicle. It is also challenging to optimize the undercarriage design so that its
energy consumption were possibly small. Therefore, The Department of Off-Road
Machine and Vehicle Engineering (DORMVE, Wrocław University of Science and
Technology) has been conducting extensive theoretical and experimental research
contributing to development of the abovementioned models.

The research conducted by DORMVE includes considerations on the losses
caused by the interaction between road wheels and rubber tracks. These losses are
attributed to two phenomena. Firstly, since the rollers indent into the rubbery surface
of the tracks, some amount of energy is lost due to mechanical hysteresis of rubber.
Secondly, sliding friction between the rollers and guide lugs of the tracks occurs.
The authors of the article have already carried out the experiments on exemplary
double-flanged rollers for “pure rolling” case, i.e. where the losses are caused only
by the indentation of rollers into the track surface, as well as in the load conditions
where sliding friction between the rollers and the guide lugs occurs [2, 3].

According to the results obtained in [2, 3] and the literature data [4], the
indentation losses can be successfully calculated with the models derived as a
result of the theoretical considerations on the resistance caused by indentation of
idlers into conveyor belts, discussed e.g. in [5, 6]. In [3] the authors of the article
estimated the parameters of these models for exemplary double-flanged rollers
coupled with rubber tracks. Furthermore, in [2, 7], they carried out experiments and
presented a theoretical-empirical model illustrating the influence of non-uniform
contact pressure distribution between a double-flanged roller and inner track surface
on rolling resistance coefficient.

The resistance attributed to sliding friction between road wheels and guide lugs of
rubber tracks has not been discussed in the literature in many details. Any analogies
cannot be also found in the literature pertaining to belt conveyors. On the other hand,
the research done in this field by the authors [2] indicates that in the conditions
where sliding friction between rollers and the guide lugs occurs, the overall motion
resistance of the rollers is higher by 1.5 . . . 7.7 times than the resistance noted
in the “pure rolling” case. The magnitude of the increase depends basically on the
vertical load of the rollers. Thus, a strong need to formulate a model representing
motion resistance of rollers in these conditions was revealed. In the previous papers
the authors presented a simplified, empirical model whose only parameter was the
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roller vertical load. The following article presents an upgraded one, which allows
for the roller vertical and lateral load as well as geometrical dimensions of the track
and sliding friction coefficient for roller-guide lug contact surface.

2 Model Assumptions

Figure 1 illustrates a double-flanged roller, a rubber track and forces acting on
both of them. The scheme was involved in formulating the model representing
motion resistance of a double-flanged roller in the conditions where sliding friction
between the roller and guide lugs of the track occurs. The vertical and lateral load
of the roller, represented by G and Fs, equal the ground vertical and lateral reaction
forces Fz and Fy. Considering the equilibrium of forces acting on the roller, it was
assumed that forces acting from the track on the roller are: the normal reaction
force acting from the guide lug on the roller Fn, the reaction force tangent to the
roller-guide lug contact surface T attributed to sliding friction and the Fv which
represents the overall vertical reaction force acting from the inner track surface on
the circumference of the roller. According to the assumptions, the roller lateral load
Fs is balanced completely by the forces acting from the guide lug on the roller. A
lateral reaction force that could occur in the contact area between the inner track
surface and the roller circumference was neglected. The only force acting from the
inner track surface on the roller is the Fv, which counteracts the roller vertical load
G. Since some fraction of the roller vertical load is balanced by the roller-guide lug
contact reaction forces, the G and Fv forces do not equal each other.

In the load conditions described above the overall roller motion resistance force
FR is given with Eq. 1. Namely, it is a sum of the FRoll (Eq. 2) and Fμ (Eq. 3) forces
that represent the losses caused by the indentation of the roller into the inner track
surface and the sliding friction between the roller and the guide lugs, respectively.

Fig. 1 A drawing illustrating the main assumptions of the model
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Equations 5 and 6, representing forces Fn and Fv, were derived on the basis of
equations of equilibrium of forces acting on the roller. The reaction force T tangent
to the roller-guide lug contact surface is given with Eq. 4.

FR = FRoll + Fμ (1)

FRoll = A • Fq
v (2)

Fμ = μFn (3)

T = μFn (4)

Fn = Fs

cosβ − μ sinβ
(5)

Fv = G− Fn (sinβ + μ cosβ) (6)

• A [1/Nq−1] – a coefficient representing the indentation losses – depends on
elasticity modulus and damping properties of the rubber track as well as radius
and width of the roller,

• q [-] – an exponent representing the indentation losses – is defined by the shape
of the roller and track surface,

• μ [-] – sliding friction coefficient for contact surface between the roller and guide
lugs,

• β [
◦
] – an angle representing the slope of side surface of the guide lug (vide

Fig. 1)

3 Experimental Tests and Model Verification

3.1 Course of the Experiment

The model was verified on the basis of the data collected during the experiments
carried out on the double-flanged roller and the 72 mm pitched rubber track with
transverse stiffening metal molds depicted in Fig. 2. The roller and the track are
commercially available spare parts of the mini dump truck IHIMER Carry 107.

The test stand depicted in Fig. 3 was involved in the experiments. It is fitted with
a measurement plate for measuring vertical, lateral and longitudinal force acting on
the upper surface of the plate. Referring to the Fig. 1, these forces correspond to
the vertical and lateral load of the roller and the force representing roller motion



Modeling and Experimental Tests on Motion Resistance of Double-Flanged. . . 133

Fig. 2 Dimensions of the
roller and the rubber track
involved in verification of the
model

Fig. 3 The test stand involved in the experimental tests on motion resistance of double-flanged
rollers carried out in the laboratory of DORMVE at Wrocław University of Science and
Technology

resistance. The investigated track was aligned along the plate and fixed to its upper
surface. On the other hand, the roller was connected with an upper arm of the stand
with a revolute joint and pressed against the inner track surface by the gravity force
acting on the upper arm and weights optionally attached to the arm. The roller rolls
over the track when the measurement plate is moved along the stand. During the tests
being in the scope of the article the axis of symmetry of the track was intentionally
misaligned with respect to the axis of symmetry of the roller so that sliding friction
between the roller and guide lugs of the track occurred. The experiments conducted
herein were divided into two sessions. In the first one the misalignment between
the axes of symmetry of the roller and the track was kept at constant, whereas the
vertical load of the roller was set at various values. On the other hand, in the second
session the tests were carried out at constant vertical load and variable amount
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of the misalignment. Consequently, a variety of load conditions, including roller
vertical loads of 150 N . . . 2500 N and lateral load varying from 0 N to 360 N,
was considered. Every dataset acquired during the experiments consisted of three
values representing the average value of roller vertical and lateral load as well as
roller motion resistance.

3.2 A Method for Estimation of Model Parameters

Before the model was verified, its parameters had been estimated for the considered
roller and track. The values of the A and q parameters were estimated at the
ones determined in [3], where the experiments on the same roller and track in
the “pure rolling” case were carried out. The β angle was calculated on the basis
of geometrical dimensions of the guide lugs measured with a caliper. Eventually,
sliding friction coefficient μ was estimated involving the assumed values of the A, q
and β parameters as well as selected datasets obtained as a result of the first session
of the experiments. Namely, the μ coefficient was estimated at a value minimizing
the Eq. 7.

errμ
(
μ̂
) =

N∑

i=1

([
Fs,exp,i

cosβ − μ̂ sinβ
μ̂+ A

(
Gexp,i − Fs,exp,i

sinβ + μ̂ cosβ

cosβ − μ̂ sinβ

)q
− FR,exp,i

]2
)

(7)

• μ̂ [-] – the estimate of sliding friction coefficient for contact surface between
considered double-flanged roller and rubber track guide lug,

• Gexp,i [N] – average roller vertical load determined in i-th experiment involved
in sliding friction coefficient estimation,

• Fs,exp,i [N] – average roller lateral load determined in i-th experiment,
• FR,exp,i [N] – average roller motion resistance determined in i-th experiment.

The function given with the Eq. 7 was obtained by squaring the left-hand side of
Eq. 8, which was derived by substituting the formulas Eqs. 2, 3, 5 and 6 into the Eq.
1 and performing further transformations.

Fs

cosβ − μ sinβ
μ+ A

(
G− Fs

sinβ + μ cosβ

cosβ − μ sinβ

)q
− FR = 0 (8)

If the model properly reproduces the phenomenon discussed in the paper and the
model parameters are correct, the equality given with the Eq. 8 is true for every
experimental dataset. However, if at least one of these conditions is not fulfilled, the
Eq. 7 represents the overall estimation error for a specific set of model parameters
and N experimental datasets.
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3.3 Verification of the Model and Model Computations

The model parameters for the roller and the track shown in Fig. 2 were estimated at
the following values:

• A = 0.0034 N-0.35,
• q = 1.35,
• β = 14◦,
• μ = 0.21.

The results of the first and the second measurement session are presented in Figs.
4 and 6, respectively. Motion resistance of the investigated roller was expressed with
a coefficient of motion resistance f calculated according to Eq. 9.

f = FR

G
(9)

Referring to the results of the first measurement session, the model was verified
using only the experimental data that were not involved in μ parameter estimation
discussed in the Sect. 3.2. At medium and high roller vertical loads, i.e. G > 450 N,
the estimation error did not exceed the values determined in the experiments by no
more than 12%, whereas the average error was not higher than 2.2%. The estimation
error did not indicate any specific trend.

A significant overestimation of roller motion resistance was noted at small
vertical loads. For example, in the load conditions defined by G = 172 N and
Fs = 218 N the coefficient of motion resistance computed with the model exceeded
the experimental value by 85%. This discrepancy might be explained by the fact
that the actual character of the interaction between the roller and the track does not
strictly follow the model assumptions.

The model assumes that while the roller is rolling over the track, it always makes
contact with the inner track surface as well as it slides against at least one guide lug
of the track. During the experiments some specific load conditions could have been
distinguished where the roller did not touch the guide lugs continuously. In order to
represent roller motion resistance in these conditions, the relationship Eq. 10 should
be used instead of the Eq. 1.

FR = λ • (Fnμ+ A • Fq
v

)+ (1 − λ) • A •Gq (10)

λ = ssf /sovl (11)

• ssf [m] – a distance covered by the roller while rolling over the track and sliding
against the surface of the guide lugs,

• sovl [m] – the overall distance covered by the roller while rolling over the track.

The λ parameter introduced in the Eq. 10 is a dimensionless coefficient that
changes its value from 0 to 1, depending on the roller load conditions. Equation 10
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Fig. 4 Coefficient of motion resistance of the roller depicted in Fig. 3 as a function of roller
vertical load – experimental results of the first measurement session compared with the results of
the model computations

Fig. 5 The character of interaction between the roller and rubber track observed in the experiments
conducted herein depending on load conditions of the roller

allows for the fact that if the roller does not make contact with any guide lug while
rolling over the track, the entire roller vertical load is counteracted by the vertical
reaction force acting from the inner track surface on the roller circumference. Value
of the λ parameter was computed for every dataset presented in Fig. 4, assuming
sliding friction coefficientμ= 0.21. The λ parameter was equal to 1 at roller vertical
loads exceeding 478 N, whereas at smaller loads it was smaller than 1. For example,
in the load conditions defined by G = 320 N and Fs = 290 N the λ parameter was
estimated at 0.64.

Furthermore, during the experiments in the conditions where G ≤ Fs, the
circumferential surface of the roller lost contact with the inner track surface, whereas
the contact area between the roller and the guide lugs was so small that it resembled
a single point (vide Fig. 5). This also does not correspond well with the model
assumptions discussed in Sect. 2.
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Fig. 6 Coefficient of motion resistance of the roller depicted in Fig. 3 as a function of roller
lateral load – experimental results of the second measurement series compared with the results of
the model computations

The model was also verified with reference to all the data obtained in the second
measurement session. Assuming a constant value of sliding friction coefficient
μ = 0.21, the maximum estimation error was not higher than 8.1%, whereas the
average one did not exceed 4.2%. The magnitude of the error was acceptable,
however, the results of the model computations generally underestimated the
experimental data. For this reason, in order to improve the model accuracy, the
following approach was embodied in the model. Firstly, friction coefficient μ was
estimated individually for various combinations of the roller vertical and lateral load
considered in the experiments, according to the method discussed in the Sect. 3.2.
Afterwards, the relationship between the μ coefficient and the normal reaction force
acting from the guide lugs on the roller Fn was found (vide Fig. 7) and implemented
in the model. This approach improved the performance of the model. The maximum
estimation error was decreased to 2.5%, whereas the average one was 0.8%.

Every value of the μ coefficient shown in Fig. 7 was estimated on the basis
of the results obtained in three separate experiments conducted in particular load
conditions. The values of the Fn forces were calculated according to the Eq. 5,
using the averaged results of the experiments. The relationship presented in Fig. 7
might be claimed to be reliable. A decrease in the normal reaction force acting from
the guide lug on the roller resulted in an increase in sliding friction coefficient μ.
Moreover, the relationship can be successfully approximated with a power function
whose exponent equals −1/9 . . . −1/3, which corresponds well with the literature
[8–10] where sliding friction between rigid bodies against surfaces made from
rubber was broadly discussed. It should be underlined, that while estimating the
μ values presented in the Fig. 7, λ= 1 was assumed (vide Eq. 10). If smaller values
of the λ parameter were involved in the considerations, the estimated sliding friction
coefficient μ would be higher.
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Fig. 7 The estimated values of sliding friction coefficient for roller-guide lug contact surface as a
function of normal reaction force acting on the roller from the guide lugs

Fig. 8 Exemplary results of model computations of motion resistance for the roller depicted in
Fig. 3 in load conditions defined by various vertical and lateral loads

Figure 8 summarizes the considerations presented in the paper. It shows the
results of exemplary model computations of motion resistance coefficient carried
out for the roller and the track investigated in the article in various load conditions.
The results allow for the relationship represented by the Fig. 7, however, λ = 1 was
assumed.

The biggest increase in roller motion resistance due to sliding friction between
the rollers and the guide lugs was observed at relatively small roller vertical loads.
For example, if lateral load of 35 N were applied to the roller loaded with a vertical
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load G = 400 N, motion resistance of the roller would increase by up to 2.3 times
in comparison with the resistance to motion manifested by the roller while rolling
with no contact with the guide lugs. On the other hand, if the same lateral load
were applied to the roller loaded with a vertical load of 1200 N, the analogous
increase would be 1.28 times. Using the model formulated in the paper, a ratio of
the roller motion resistance attributed to sliding friction between the roller and the
guide lugs to the overall roller motion resistance might be calculated. According to
the computations performed herein, the smaller the roller vertical load, the higher
the ratio is. For example, in the load conditions defined by the roller lateral load of
35 N and vertical load of 400 N the ratio was estimated at 60%. On the other hand,
at the same lateral force and vertical load of 1200 N it was as small as 24%. The
ratio also increases with increasing lateral load of the roller.

The situation discussed above arises from the fact that the relationship between
the force representing losses due to the roller indentation into the inner track surface
and the force Fv which causes the indentation is approximated by a power function
whose exponent is greater than 1. In practice, the Fv force is close to the roller
vertical load. The fraction of the roller vertical load balanced by the reaction forces
acting from the guide lugs on the roller is relatively small because sliding friction
coefficient μ and the β angle representing the slope of the side surface of the guide
lugs are very limited.

4 Summary and Conclusions

The article presents a model for computing motion resistance of double-flanged
rollers while rolling over rubber tracks. The model represents the losses caused by
the indentation of the rollers into the inner surface of the tracks as well as the sliding
friction between the rollers and guide lugs of the tracks. It allows for the vertical and
lateral load of the rollers.

The model might be successfully applied in engineering computations of the
internal motion resistance of double-flanged rollers in rubber track systems. At
medium and high vertical loads and high lateral load of the roller involved in
model verification, motion resistance of the roller was correctly estimated with a
basic version of the model, i.e. assuming that sliding friction coefficient for the
roller-guide lugs contact surface could have been approximated with a constant
value. However, it is advisable to implement in the model the relationship between
the sliding friction coefficient for roller-guide lugs contact surface and the normal
reaction force acting on the roller from the guide lugs. Otherwise, at small roller
lateral loads the model would underestimate motion resistance of the roller. The
results of model computations given in Fig. 8 allow for this relationship.

The model verification carried out herein revealed that if the vertical load of the
roller investigated in the article is small, the model overestimates the roller motion
resistance. This was caused by the differences between model assumptions and the
actual character of the interaction between the roller and the track – mainly by the
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fact that in some load conditions the roller did not maintain an unbroken contact
with the guide lugs while rolling over the track. In order to solve this problem,
an improved formula for determination of motion resistance of rollers was proposed
(Eq. 10). The formula involves the λ coefficient representing the ratio of the distance
covered by a roller while rolling over a track and sliding against the surface of guide
lugs to the overall distance covered by the roller. The forthcoming research by the
authors will be focused on developing a method for predicting the λ coefficient
depending on the roller load conditions. The results of the model computations
presented herein (Fig. 8) were obtained assuming that the investigated roller made
continuous contact with at least one guide lug while rolling over the track (λ = 1).

The experiments and the model calculations performed in the paper indicate
that sliding friction between double-flanged rollers and guide lugs of rubber tracks
leads to significant increase in motion resistance of the rollers. The increase is
exceptionally high at small vertical and high lateral loads of the rollers. Sliding
friction between the rollers and the guide lugs may arise while a vehicle performs
turning maneuvers or negotiates a terrain inclined along the vehicle’s lateral plane.
Thus, the problem highlighted in the paper cannot be neglected in engineering
computations pertaining to energy consumption of rubber tracked vehicles.

The forthcoming research by the authors will be focused on integrating the model
presented herein with the one derived in [7] in order to formulate a comprehensive
model for determination of motion resistance of double-flanged rollers over rubber
tracks.
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Structural Dynamic Response
of Coupling Between Transmission Line
and Tower Under Random Excitation
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Abstract The study of the dynamic behaviour of the overhead transmission line is
highly relevant when the objective is to ensure its stability and maintenance. This
paper aims to analyse an overhead transmission line under different types of random
wind excitation that simulate natural phenomena in situ represented by white
noise, Kani-Tajimi and First-order filter spectrum. The numerical model regards the
Spectral Element Method (SEM) to overcome the dynamic analysis from low to high
frequencies and simple implementation. The numerical analysis performed through
the SEM investigates the overhead transmission receptance and natural frequency
and compares with the results obtained by the Finite Element Method (FEM). Since
SEM is an exact method of solution, there is no need for discretised continuous
elements, which means less computational time-consuming and easy access to the
model formulation. The vibration responses of the system suffered greater variations
when the overhead transmission is under random wind excitation, which leads in
challenging to design vibration control devices and performs its health monitoring.
SEM model performed satisfactorily and accurate results in comparison with FEM.
It shows to be an alternative tool for analysing the dynamics of structures.
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1 Introduction

In many countries, as well as in Brazil, electric energy travels large distances
from the generation points to the final consumer, increasing the demand for energy
transmission systems. In this context, overhead transmission lines (OTL) appear as
a widely used solution. Theoretical and experimental studies on overhead transmis-
sion lines are presented in [1–4]. As the high and extension of the transmission
systems increase, the demand for safety and reliability of these structures increases
with the high and extension of the transmission systems [5]. Transmission towers
are responsible for supporting their weight, resisting the effects of conductor cables,
wind and rain loads that enhance the complexity of dynamic analysis of the system.
Leon and Smith [6] analysed the transmission lines with cross suspension through
experimental and numerical tests employing FEM. McClure and Lapointe [7]
presented the OTL dynamic analysis using the software ADINA and performed
studies about failures in the OTL. Dua et al. [8], and Desai et al. [9] carried out a
dynamic analysis of the OTL using FEM to demonstrate the vibrational amplitudes
behave at different OTL intervals and showed the interaction of the cables-towers
by adding equivalent stiffness and fixed supports. Fu and Li [10] presented a
study on OTL with the effect of random excitation of wind and rain forces and
compared the results of experimental and numerical tests. Generally, the structural
and dynamic analyses are usually performed using FEM, although this method in
medium and high frequencies or structures with high modal density presents a high
computational cost. In this way, a fast and easy method that considers all the loads
and uncertainties necessary for an accurate study is required.

SEM is a mesh method similar to FEM, where the functions of approximate
forms of the element are replaced by functions of the exact solution of differential
equations of government. Therefore, a single element is enough to model any
continuous and uniform part of the structure. This feature significantly reduces the
number of elements required in the structure model and improves the accuracy of the
dynamic system solution. An extensive study of the fundamentals and a variety of
new applications of SEM, such as composite laminates, periodic structure, damage
detection was presented in [11]. The behaviour of the waves in composites and
non-homogeneous media are studied in [12–14]. Theory of elementary and high
order bars was performed in [15–17], and in a conductor cable of transmission line
in [1, 18–21]. However, SEM has some disadvantages when compared to FEM as
the unavailability of exact wave solutions for more complex 3D structures. In these
cases, approximate spectral element modelling can be used and can still provide very
accurate solutions. Besides, SEM guarantees an accurate response in the frequency
domain, and for time-domain solutions, which require special attention is needed
to obtain the inverse DFT. Dynamic excitations arise from natural phenomena
such as impacts, gusty winds, rain, earthquake ground motion, sea waves. There
are situations where devices are operating under unknown or random excitations.
In structural analysis, random excitation is generally modelled as a white noise
which is a Gaussian stochastic process [22]. However, random excitation is better
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represented by other spectrum types such as first-order filter (FOF) and Kanai–
Tajimi models. Several approaches have been proposed to treat with the challenging
problem of characterizing the random response of a structural system under
stochastic excitation [23–25]. The random excitation is usually specified regarding
its power spectral density (PSD), which is a function that describes the power
content distribution of a quantity over a given frequency band. This paper treats
the dynamic analysis of an overhead transmission span composed by tower and
conductor-cable under random wind excitation. The tower is a massive structure
compared with the conductor. However, both component presents its local and
global vibration characteristic. Therefore, the dynamic coupling behaviour between
tower and cable structural is analysed. The SEM is used to model the whole system
under random excitation that represents the wind force action. Numerical analyses
showed that the efficiency to use SEM in such application.

2 Spectral Element Theory

2.1 Beam Spectral Element with Axial Load

By considering a simplified cable model as illustrate in Fig. 1, the governing
differential equation for the undamped free vibration is given by [15, 26],

EI
∂4v(x, t)

∂x4 + ρA
∂2v(x, t)

∂t2
− T

∂2v(x, t)

∂x2 = 0 (1)

For a simply supported beam under axial force, the natural frequency expressed
as

ωn = π2

L2

√
EI

ρA

(
n4 + n2T L2

π2EI

)
(2)

where ρA is mass per unit length, EI the uniform bending rigidity, L cable length,
T is tension force, and v(x, t) is the cable displacement as a function of the position
x and time t .

Fig. 1 Two-node cable spectral element
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Structural internal damping is introduced into the beam formulation by adding
into Young′s modulus weighted by a complex damping factor iη,i = √

(−1), η is
the hysteretic structural loss factor, to obtain E = E(1 + iη). By considering a
constant coefficient, the displacement solution can be written as,

v(x, t) = v0e
−i(kx−ωt) (3)

where v0 is a amplitude, ω is the frequency and k is the wave number. Substituting
Eq. (3) into Eq. (1), yields a fourth-order characteristic polynomial equation in k

k4EI + k2T − ω2ρA = 0 (4)

The solution of Eq. (4) leads to four roots solution representing two sets of wave
mode pairs, which are the two pairs of wave modes, in the positive and negative
directions,

k1 = ±
√

−T +√
T 2 + 4EIρAω2

2EI
(5)

k2 = ±i
√

−T −√
T 2 + 4EIρAω2

2EI
(6)

where k1 is the real part of the wavenumber and k2 the imaginary part [21]. The
general solution for the Euler-Bernoulli beam spectral element subjected to axial
load of length L, can be expressed in the form as

v̂(x, ω) = a1e
−ik1x + a2e

−k2x + a3e
ik1(L−x) + a4e

k2(L−x) = s(x;ω)a (7)

where

s(x, ω) = [e−ik1x, e−k2x, e−ik1(L−x), e−k2(L−x)

a = [a1, a2, a3, a4]T

The spectral nodal displacements and slopes of the beam element are related to
the displacement field at node 1 (x=0), and node 2 (x=L) are represented in a matrix
form by

d =

⎧
⎪⎪⎨

⎪⎪⎩

v̂1

φ̂1

v̂2

φ̂2

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

v̂(0)
v̂′(0)
v̂(L)

v̂′(L)

⎫
⎪⎪⎬

⎪⎪⎭
(8)
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By substituting Eq. (7) into the right-hand side of Eq. (8) and written in a matrix
form gives

d =

⎧
⎪⎪⎨

⎪⎪⎩

s(0, ω)
s′(0, ω)
s(L, ω)

s′(L, ω)

⎫
⎪⎪⎬

⎪⎪⎭
a = G(ω)a (9)

where

G(ω) =

⎡

⎢⎢
⎣

1 1 e−ikL e−kL
−ik −k −ike−ikL −ke−kL
e−ikL e−kL 1 1

−ike−ikL −ke−kL −ik −k

⎤

⎥⎥
⎦ (10)

The frequency-dependent displacement within an element is interpolated from
the nodal displacement vector d, by eliminating the constant vector a from Eq. (7)
and using Eq. (10) it is expressed as

v(x, ω) = g(x, ω)d (11)

where the shape function is

g(x, ω) = s(x, ω)G−1(ω) (12)

The dynamic stiffness matrix for the spectral beam element under axial tension
can be determined as:

Sc = EI

[∫ L

0
g′′(x)T g′′(x)dx − k4

∫ L

0
g(x)T g(x)dx

]
+ T

∫ L

0
g′(x)T g′(x)dx

(13)

where ′ express the spatial partial derivative. By solving the integral, the dynamic
stiffness matrix. As far as cable structure is uniform without any sources of
discontinuity, it can be represented by a single spectral element with very accurate
solutions. However, if there exist sources of discontinuity such as the point loads
the beam should be spatially discretised into spectral elements. Analogous to the
FEM [27], the spectral elements can be assembled to form a global structure matrix
system [11].
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2.2 Bar Elementar Spectral Element

The elementar bar model showed in Fig. 2 used to build up the tower considers only
axial loads and unidimensional deformations.

Since E is the elastic modulus of the material, A is the cross section of the
element, ω is the circular frequency, u is the longitudinal displacement, and q is
the excitation force, the undamped bar equation of motion is given by,

EA
∂2u(x, t)

∂x2 − ρA
∂2u(x, t)

∂t2
= 0 (14)

In the spectral form, the equation can be described as

EcA
∂2û

∂x2
+ ω2ρAû = 0 (15)

where ˆ is used to indicate that it is the result of the Fourier transform, Ec = E(1 +
iη) represents the structural damping model introduced in the Young’s modulus, and
η is a loss factor. The homogeneous solution of the displacement regarding the wave
propagation into the bar is given by

û(x, ω) = a1e
−ikx + a2e

−ik(L−x) (16)

Amplitude a1 and a2 are constants, L is the length of the bar and k is the wave
numbers expressed as

k = ω

√
ρ

Ec
(17)

By applying the boundary conditions, it is assumed x = 0 and x = L, so that

û(0) = a1 + a2e
−ikL = û1 (18)

û(L) = a1e
−ikL + a2 = û2 (19)

The axial force given to the bar is given as

F̂x = EA
∂û

∂x
(20)

Fig. 2 Two-node bar spectral element
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The frequency-dependent dynamic stiffness matrix, Sb, which relates the nodal
spectral forces with the nodal spectral displacements as F̂ = Sbû and expressed by

{
F̂0

F̂L

}
= EcA

L

ikL

(1 − e(−2kL))

[
1 + e−i2kL −2e−i2kL
−2e−i2kL 1 + e−i2kL

]

︸ ︷︷ ︸
Sb

{
û1

û2

}
(21)

2.3 Spectral Elements in Global Coordinate

The cable and bar spectral elements are formulated in the local coordinate system,
defined referencing the axial and transverse directions terms of the element axis
[28]. As the tower were built up with bars connected at different angles, it is
necessary to transform the local coordinates into global coordinates.

The nodal displacements in the truss as showed in Fig. 3 are given by u2 and
v2 and the corresponding global displacements given by U3 and U4 relating to
the θ angle. As the global and local displacements must be the same, it has
u2 = U3cos(θ) + U4 sin(θ), and v2 = −U3 sin(θ) + U4cos(θ). The rotational
matrix used for the elementar bar that has one-degree of freedom per node is given
as,

τ =

⎡

⎢⎢
⎣

cos(θ) sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 cos(θ) sin(θ)
0 0 sin(θ) cos(θ)

⎤

⎥⎥
⎦ (22)

and the dynamic stiffness matrix for the truss is written as St (ω) = τ ′Sbτ . For the
cable the rotational matrix is of the form,

τ =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

cos(θ) sin(θ) 0 0 0 0
sin(θ) cos(θ) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(θ) sin(θ) 0
0 0 0 sin(θ) cos(θ) 0
0 0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

(23)

and the stiffness matrix for the cable is St (ω) = τ ′Scτ .

Fig. 3 Single node element
global displacements
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3 Wind Force and Random Spectra

The determination of the acting force of the wind takes into account several factors
such as transmission line height, terrain relief, wind turnaround time and many
other factors that are determined in specific standards. In these standards are found
formulas for calculating wind speed, given by:

Vh = Vb

(
h

10

) 1
n

KrKD (24)

where Vh is the wind speed at a height h, Vb the basic wind speed, n the coefficient
depending on the roughness of the terrain, Kr the coefficient of roughness, KD

the correction coefficient of the integration period to 10 min. The dynamic wind
pressure is determined with the following ratio.

q0 = 1

2
ρV 2

h (25)

where ρ is the specific mass of air, given in kg/m3, so that the dynamic action as a
result of applying wind to the cable can be determined as follows:

A0 = q0Cxcαd
( z

2

)
sin2 β (26)

The coefficient Cxc is the drag coefficient, d the cable diameter, α the dimen-
sionless effectiveness factor obtained by the specified standards, and β the angle
of incidence of the wind. In the literature there are several spectra that represent
random wind loads as highly dynamic excitations. However, wind spectra describe
the distribution of the wind energy fluctuating in the frequency domain, and there are
large differences between fluctuations in wind speeds generated by different wind
spectra. In this paper we chose the white noise, Kanai-Tajimi, and First order filter
spectrum.

The Wiener–Khinchin theorem relates the autocorrelation funcion R(τ) to a
frequency domain Power Spectral Density (PSD) by a Fourier transform pair [25].
The time series can be numerically generated by a Fast Fourier Transform (FFT)-
based algorithm by taking the inverse discrete Fourier transform (IDFT) of the
discretized target PSD. Therefore, the spectra amplitude is estimated as the square
root of the discretized PSD (

√
Sf ), and a random phase is generated from a uniform

distribution within the interval [0, 2π ].
The white noise PSD model is given by Sf (ω) = S0, where S0 has zero mean and

unitary standard deviation [29]. It is an idealization in which the signal frequency
content is equally distributed over the frequency band (band-limited white noise).
This assumption is not physically sound and other PSD models can be used like as
the First Order Filter (FOF),
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Sf (ω) = S0

ν2 + (2 ∗ π ∗ ω)2 (27)

or the Kanai-Tajimi model, a second order type of filter given by

Sf (ω) = 1 + 4ξ2
g (ω/ωg)S0

(1 + (ω/ωg)2 + 4ξ2
g (ω/ωg)

2
(28)

where the constant ν, ξ and ωg are adjusted according to specific features of the
random load. An important relations used in the analysis of the dynamic response
of any system to random excitation is that the PSD of the response of a system to an
input PSD is given by the following expression:

PDSout (ω) = |H(ω)|2 · Sf (ω) (29)

where the function H(ω) = S−1
t (ω) is the transfer function.

4 Numerical Analysis

The numerical study presents four analyses regarding on tower, cable, coupling
cable-tower model and coupling subject to random wind force load.

Tower
The tower is modelled as a steel structure whose mechanical properties are, modulus
of elasticity E of 210 GPa, density equal to ρ = 7860 kg/m3, the area is A 0.01 m,
and the tower high is 26 m. Figure 4 shows a span transmission line of 100 m used
in this study. Receptances responses are obtained at (a), (b) tower (red dot), (c)
coupling point (yellow dot), (d) cable at 1 m from coupling point (blue dot), (e)
middle of the cable (blue dot), and (f) end of the cable (blue dot).

Fig. 4 Overhead transmission line with 100 m spam
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Table 1 Tower’s resonance frequency

Mode

Resonance frequency [Hz] per meshed size [m]

SEM FEM

N/A N/A 1 0.5 0.1 0.01

1 5.58 4.1221 5.17 5.35 5.53 5.572

2 30.69 18.864 27.24 28.72 30.25 30.64

3 39.79 28.388 36.88 38.18 39.45 39.76

4 61.24 40.776 55.79 58.17 60.56 61.17

5 107.1 63.538 94.10 100.45 105.68 106.92

(a) (b)

0 50 100
Frequency [Hz]

150 200

10-8

10-9

10-10

10-11D
is

pl
ac

em
en

t [
dB

 r
e 

1 
m

s-2
/N

]

0 50 100
Frequency [Hz]

150 200

10-8

10-9

10-10

10-11D
is

pl
ac

em
en

t [
dB

 r
e 

1 
m

s-2
/N

]

Fig. 5 FRF of the tower obtained at point ‘a‘ (red dot) by: (a) SEM, and (b) FEM with meshed
element sizing 0.01 m

The vibrational frequency range goes up to 200 Hz. SEM and FEM by the
software ANSYS modelled tower and cable. In the tower modelled with SEM, there
is no discretisation in the bars of the tower. It has 22 nodes, and 48 continuous bar
elements, the boundary condition is assumed to be fixed in its base. For the model
using ANSYS, the bar is meshed in different levels of discretisation to improve
the accuracy of the structural dynamic response. Each bar element has meshed
with elements sizing 1, 0.5, 0.1, and 0.01 m. Table 1 presents the firsts five-tower
resonance frequencies calculated by SEM and FEM without and meshed elements.

By comparing SEM and FEM resonance frequencies, the best approximation was
achieved with the FEM meshed element size of 0.01m. Thus, Fig. 5a and b show the
FRF obtained with FEM (mesh sizing 0.01m length) and SEM at point ‘a‘ (red
dot) by unitary excitation at the same position. Both methods presented a similar
number of resonant frequencies and close mode shapes. The FRF curves have good
approximation in the whole frequency range, which validated the SEM model.

Cable
The cable is made of aluminum with mechanical properties of E = 74 GPa, ρ =
2700 kg/m3, η = 0.01; and geometrical characteristics: area of A = 0.005 mm2,
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Table 2 Cable conductor’s
resonance frequency

Mode

Resonance frequency

SEM Analytical FEM (No
¯ elements)

10 20 50 100

1 0.43 0.43 0.42 0.43 0.43 0.43

2 0.86 0.86 0.83 0.85 0.86 0.86

3 1.29 1.29 1.18 1.28 1.29 1.29

4 1.72 1.72 1.21 1.69 1.72 1.72

(a) (b)

Fig. 6 Receptance FRF of the cable using: (a) SEM, (b) FEM with 20 elements

length L = 100 m and a tension load of 1000 kN. Table 2 shows the resonance
frequencies of the cable estimated by analytical solution [30], SEM, and FEM with
a different number of elements. The SEM presented the same resonance frequencies
values of the analytical solution showing the accuracy of the method. As in the
Tower study, FEM solution improves the approximation with the solution estimated
by SEM and analytical as the number of elements increases, which implies in high
computational cost.

The cable presented a good approximation of the results obtained with FEM
by comparing with SEM from up to 20 elements in the discretization and lower
computational effort by comparing the 50 and 100 elements. Thus, the tests
performed using the FEM model considered 20 elements in the cable discretization.
The cable presented a good approximation of the results from the discretization in
20 elements, Fig. 6a and b show the acceptance FRFs obtained at the left end of the
cable with SEM and FEM with 20 elements, respectively. The resonance frequencies
up to 10 Hz are similar, from 10Hz the resonances have a small difference due to the
assumed discretization. The mode shapes are close in the whole frequency range.

Coupling Interaction Tower-Cable
A unitary excitation is adopted at node ‘a’ and measured in six points over the
overhead transmission. The interaction between cable and tower are demonstrated
in Fig. 7a–f. The receptance responses obtained in the tower shown in Fig. 7a–c, the
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Receptances obtained at: (a), (b) tower; (c) coupling point, (d) cable at 1 m from coupling
point; (e) middle of the cable; (f) end of the cable

Table 3 Resonance
frequencies of the system Mode

Resonance frequency

Tower Connection Cable (1 m) Cable (50 m)

1 5.7 5.7 5.7 1.4

2 31.5 31.5 9.4 4.1

3 40.8 40.8 12.1 5.7

4 62.7 62.7 14.8 6.8

5 108.7 108.7 17.5 9.4

system coupling point, Fig. 7b,c, the FRF has only the influence of the tower. The
receptance obtained on the cable at 1 m of the connection from the tower coupling
points is shown in Fig. 7d, in this point it is observed the cable and tower interaction,
where is possible to recognise some mode shape of the tower and the cable. The
receptance FRFs obtained in the middle of the cable and end presented in Fig. 7e,f,
respectively, the cable has great influence in the vibration, and the vibrational
response of the tower is difficult to identify. Therefore the cable presented a high
modal density, the measured FRFs at the cable points are modulated by the tower
response.

Table 3 presented the list o the firsts fifth-resonance frequencies obtained in the
tower, at the connection point, in the cable from 1 m of the connection, and in the
middle of the cable. As in the receptance response analyses, it is also possible to
identify the interaction between the tower and cable by the resonance peaks.



Transmission Line and Tower Under Random Excitation 155

4.1 Effect of the Wind Random Excitation in the Transmission
Line

In general, wind load acting throughout the cable. In all cases, the wind PSD was
applied at point ‘c’ and the PSD responses measured along the transmission line
(Fig. 8). Wind parameters adopted are: basic speeds of the wind equal to 20 m/s,
ground clearance h = 244 m, coefficient n = 12 (Fig. 9). The terrain assumed
as category D, which correspond to urban areas and land with high trees, applies
Kr = 0.67 and KD = 1.6 for a 10 s integration period. To obtain the specific mass
of air was adopted at a temperature of 25◦C at sea elevation. Cxc = 1, α = 0.65,
and z being the span length considered the total length of the transmission line
thus z = 100 m. Since the wind has random behaviour, it is compared to different
wind spectra as white noise spectra shown in Fig. 10, FOF Fig. 11 and Kanai-Tajimi
Fig. 12.

The Power Spectral Density of tip excitation force for each signal is shown in
Fig. 8. The white noise spectra presented as continuous line, that means a good
level and constant excitation in the whole frequency range. It is noticed that Kanai-
Tajimi and FOF spectra show more dominant low-frequency components and since
Kanai-Tajimi is a second-order filter, the formation of a peak near its characteristic
frequency. Both spectra presented a decay along with the frequency band, limiting
the excitation level to low frequencies.

Figure 9 shows the random wind load spectrum in the time domain modelled
with the three theories. The white noise spectra maintain a no correlated dispersion
around the mean value in the whole time range. Kanai-Tajimi spectra has a large
correlated distribution and behaves irregularly around the mean value. The FOF has

100 101 102 103 104

10−10

10−5

100

Frequency [Hz]

S(
ω

) 
N

2 /
H

z

White noise
FOF
Kanai−Tajimi

Fig. 8 Power Spectral Density of tip excitation force for white noise (blue), First Order Filter (red)
and Kanai-Tajimi (green)
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Fig. 9 Time domain white
noise, Kanai-Tajimi, and FOF
wind spectrum

(a) (b)

(c)

Fig. 10 PSD calculated with white noise excitation spectrum: (a) obtained in points of the tower;
(b) in the cable at 1 m from the tower fixture;c)obtained at 50m

small variability and follows the mean value; however, FOF’s PSD has a higher
correlation variable.

The knowledge about how the structure will behave under a specific excitation
is crucial, for example, for the vibration control, structure reliability or fatigue
analyses. Thus, in all case, the effect of the random excitation has a great influence
on the FRFs. The conductor PSDs presented a random vibration following the
input spectrum. It caused difficulties in estimate the resonances in some points.
The PSDs obtained from a white noise input showed constant amplitude in
the whole frequency range, and similar amplitude of the FRFs obtained using
unitary excitation, see Fig. 10. PSD calculated with input as FOF spectrum and
Kanai-Tajimi decay its energy along of he frequency in reason of the input PSD
phenomena.
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(a) (b)

(c)

Fig. 11 PSD calculated with FOF spectrum: (a) obtained in points of the tower; (b) in the cable
at 1 m from the tower fixture; (c) obtained at 50m

(a) (b)

(c)

Fig. 12 PSD calculated with Kanai-Tajimi excitation: (a) obtained in points of the tower; (b) in
the cable at 1 m from the tower fixture; (c) obtained at 50m
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5 Conclusion

This paper presents a numerical model of overhead transmission line towers and
their interaction through the Spectral Element Method. Responses obtained with the
SEM is compared with the vibrational responses obtained analytically and via the
FEM to validate the proposed model. SEM accuracy and efficiency are observed
when comparing the discretisation number required by the FEM method. The cable
tower is shown to have a dynamic interaction coupling at some points that should
be taken into account. Different results were also obtained due to wind excitation
spectra. The vibration responses of the system suffered greater variations when the
overhead transmission is under random wind excitation, which leads in challenging
to design vibration control devices and performs its health monitoring. SEM shows
to be an alternative tool for analysing the dynamics of complex structures.
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Experimental Assessment of the Test
Station Support Structure Rigidity
by the Vibration Diagnostics Method

Anna Šmeringaiová and Imrich Vojtko

Abstract The paper presents the results of the impact test. The test has been done
to assess the rigidity of the test station support frame. Test station was designed
and constructed to test different types of gearing and belt transmissions. The test
station allows to simulate different operating conditions. The procedure of the
tests can be both short-term and long-term with different load levels. The basic
support frame structure of the test station was evaluated as unsufficient based on
the results of measurement and processing of the measured low and high frequency
vibration values in the verification series of experimental tests. The basic failure
of the original design were the significant resonance actions that were the results
of the dominant sources of vibration being near the natural frequencies of the
vertical and horizontal beams of the test station base. A structural design of the
test station supporting frame was designed and implemented. The impact tests
were used to determine the values of the natural frequencies of the most stressed
parts of the supporting structure - vertical and horizontal beams, before and after
implementation of structural modifications. The comparability of the impact test
results was determined by adherence to identical measurement conditions.

Keywords Test Station · Impact test · Natural frequency

1 Testing Station for Dynamic Testing of Toothed and Belt
Gear Drives

When designing the gearbox, it is appropriate to know its dynamic characteristics.
With improperly selected gearbox parameters, especially in transient states, there
can be a high dynamic stress on their functional parts. There was designed and built a
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Fig. 1 Dynamic Transmission Testing Station. (a) Real testing station, 3D stand model (b) before
and (c) after the structural modification

test station to realize the dynamic tests of gears at Department of Technical Systems
Design and Monitoring, Faculty of Manufacturing Technologies of the Technical
University of Košice with the seat in Prešov (see Fig. 1a). Designed test station
allows to realize both, short and long-term comparative tests of various types of
gearboxes. It is possible to test gearboxes with various design and technological
modifications, to reduce their dynamic load in order to improve their parameters
and increase their service life. The principle scheme and functional description of
the test station is shown in [10].

1.1 Functional Testing of the Test Station and Verification
of the Proposed Methodology for Dynamic Testing

The basic requirement for functional use of the test station was the achievability
of objective and comparable results of the experiments. The main goal of the tests
first stage was to verify the functionality of the test station and of used measuring
instruments and equipment. From this point of view, the selection of methods for
measuring the wear of the functional parts of gears and diagnostic methods to
assess their technical condition were also considered. Commonly manufactured
Z80-J-010-P single-stage worm gear units were used as a test object. During
the experimental operation, the technical conditions of the worm gear units were
monitored in two different operating modes. The operating conditions have been
according to recommendations [9] deliberately designed to achieve a maximum
of 70 ÷ 80% of the nominal transmission power guaranteed by the manufacturer
and to stabilize the oil temperature below the limit. The following parameters
(dynamic characteristics) were measured and evaluated for the tested worm gear
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units: load amplitude magnitudes and frequency, oil temperature, worm gear teeth
wear. A detailed description of the preparation and course of a series of validation
experimental measurements are described in [10, 11].

1.2 Verification Test Results Evaluation

According to [11], results of measurements of dynamic quantities (temperature,
vibration, ultrasound) were found:

• significant difference in measured parameters depending on transmission load,
• significant changes in the measured parameters during heating, the effect of

thermal expansion on the clearance in the teeth of the worm gear, bearings and
chain, until the temperature has stabilized,

• significant resonance events, high mechanical vibrations above the Alarm 2 rec-
ommended limit (hazard according to Vibration Severity Standard [3]) especially
in area of the vertical beam and the horizontal frame under the sprocket, the
transmission of these vibrations to the gearbox and a significant deterioration of
the meshing conditions on the gears,

• unfavorable operating conditions when starting the engine (gearbox), mainly due
to higher load, oscillation and insufficient chain guidance, and again transfer of
vibrations to the gearbox.

The elementary structure of the test station was evaluated as unsatisfactory based
on the results of measurement and processing of measured values of low-frequency
and high-frequency vibrations in the verification series of experimental tests. The
main drawback of the original design were significant resonance events, which were
due to the fact that the dominant sources of vibration were close to the natural
frequencies of the vertical and horizontal beam of the test station base structure.

In order to ensure acceptable measurement results of the tested gearboxes, it was
necessary to prevent the occurrence of adverse resonance events and the occurrence
of high mechanical vibrations inside the mechanical system (testing facility). The
issue of objective experimental results is discussed also in [5] and [6].

2 Solving Adverse Resonance Events

In vibrodiagnostics and when performing rotating machine failures identification,
in addition to common failures, we occasionally encounter a special error that
is not actually a malfunction [1]. It is a feature of a device that, in a given
configuration, adversely affects the operation of the device. It is a resonance,
resonance phenomenon or operation at critical speed. The problem arises with
devices in which the excitation force frequency is identical to the intrinsic resonant
frequency. For example, if the electric motor speed is the same as the natural
resonant frequency of the mechanical system. In this case, even a small imbalance



164 A. S̆meringaiová and I. Vojtko

causes a high response in the system and high vibrations are generated. In order to
eliminate this phenomenon, it is first of all necessary to identify it and to determine
its intrinsic resonant frequencies. Usually, the natural frequencies are determined by
the impact tests (Bump Test). Several studies offer valuable insights on research and
response to adverse resonance events (see in particular [2], [4], [8] and [12]).

In general, there are two options how to solve resonant phenomena:

1. changing the frequency of the driving force, (engine shaft revolutions),
2. tuning the system, that means moving the resonant band to a frequency range

where there is no excitation.

Generally for resonant frequency fr:

fr = 1

2π

√
k

m
[Hz], (1)

where k is force constant (stiffness) [N.m-1] and m is weight [kg]. From the Eq. (1)
it follows that as the rigidity (k) increases, the resonance frequency increases and
with the increase in mass (m) the resonance frequency decreases.

In this case, the option 2. – optimization of the structure of the supporting frame
was chosen for the solution of resonance phenomena. The aim is to increase the
rigidity of the test station base structure. Frame reinforcement and other measures,
such as chain guiding and adequate fastening of weights, should have a positive
effect on eliminating vibrations and shifting the resonant band of the base structure
beyond the frequency range of the driving forces. The design of the supporting frame
of the testing station was developed and implemented. The 3D model of the test
station with the designed structural modification is shown in Fig. 1c. By measuring
and comparing the natural frequencies of the basic design of the test station before
and after the design changes, the control of the fulfillment of the expected target was
performed.

3 Impact Test (Bump Test)

The natural frequencies of the mechanical system were determined by the bump test
in the resting state of the mechanical system:

1. Before design of the test station, after completion of the functional tests described
in [11].

2. After modification of the test station frame support design.

The natural frequencies of the most stressed parts of the supporting structure
(vertical and horizontal beam) and of the tested worm gearbox before and after the
design modifications were determined. The comparability of the bump test results
was conditioned by observing identical measurement conditions.
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3.1 Description of the Bump Test Conditions

Used measuring instruments and aids:

• measurement system OKTALON, graphical programing software LabVIEW
with measurement algorithms – recording and processing of the measured signal,

• vibration acceleration sensor – ACC-100 mV/g, fixing - flat magnet,
• impact hammer.

3.2 Measurement Procedure

• Calculation of expected excitation force frequencies (operating frequencies
values) – Table 1.

• Preparation of measuring system and vibration measuring aids.
• Choice of united coordinate system – Fig. 1.
• Determination of measuring points, location of sensors, direction and sense of

impact – Fig. 2a, 5a, 7a and 9a.
• Measurement at selected measurement locations: vibration acceleration sensor

mounting, bump hammer strike near the sensor, vibration acceleration dumping
time recording.

• Signal processing: vibration velocity waveform as a result of vibration accel-
eration time wave integration, FFT vibration velocity time waveform analysis,
graphical and tabular processing of dominant frequencies.

• Comparison of bump test results before and after design – Table 2.

Table 1 Expected frequency – basic calculation [11]

Frequency
Structural Node Cycles / min Hz

Engine, input into gearbox, Clutch, Worm 1400 23,3
Output of the Gearbox, Sprocket 45,16 0,753
Transmission chain, frequency of chain links 768 12,80

Table 2 Frequencies with dominant vibration values before and after design

Frequency [Hz]
Measurement 1 Measurement 2 Measurement 3 Measurement 4

Condition
before design change

34,5 32,9 6,6 33,7

45,5 36,5 10,4 78,6
89,3 88,9 55,7 88,4

Condition
after design change

797,6 137,5 68,2 68,3

865,5 800,4 162,7 100,9
896,2 902,6 326,59 226,2
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Fig. 2 Measurement 1. Measurement of the natural frequency in vertical direction: (a) measure-
ment execution, (b) frequency spectre before the design change

a) b)

FFT_velocity

Fig. 3 Measurement 1. (a) time course of vibration acceleration, (b) FFT velocity after design
change

3.3 Bump Test – Measurements Results

At Figs. 2a, 5a, 7a and 9a the location and course of the bump test at selected
locations are shown. The direction of sensing the vibration signal and the direction
of the modal hammer bump are indicated. After bumping in the indicated direction,
the vibrations generated were recorded by a vibration acceleration sensor.

Measurement 1 Measurement of the natural frequency in vertical direction.

Figure 2b is shown details of frequency analysis of the shock damping time
course with the indication of the dominant frequencies obtained from the measure-
ment before test station redesign and at Figs. 3 and 4 are shown the results of a
frequency analysis time course of the shock damping after design changes have
been made.

Regarding the determination of natural frequencies, it does not matter whether
the spectrum is calculated from the ACCELERATION or VELOCITY time course.
The frequencies in the spectrum are in the same positions on the “x” axis. The only
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Fig. 4 Measurement 1. Frequency spectre after design modification
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Fig. 5 Measurement 2. Measurement of natural frequency of the table in horizontal direction: (a)
measurement execution, (b) frequency spectre before the design

difference is that VELOCITY is calculated from acceleration by integration. This
proportionally amplifies the lower frequencies and suppresses the higher frequencies
(see Fig. 3b and 4).

Measurement 2 Measurement of natural frequency of the table with drive mecha-
nism in horizontal direction (Figs. 5 and 6).

Measurement 3 Measurement of natural frequency of vertical frame (Figs. 7 and
8).

Measurement 4 Measurement of the natural frequency of worm gear – horizon-
tally in worm gear axis direction (Figs. 9 and 10)
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Fig. 6 Measurement 2. Measurement of natural frequency of the table in horizontal direction.
Dominant frequencies identified after the design change
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Fig. 7 Measurement 3. Measurement of natural frequency of the vertical frame: (a) measurement
execution, (b) frequency spectre before the design modification

4 Evaluation of Natural Frequency Measurement Results

To suppress possible resonance events in the process of experimental operation of
the tested gearboxes, we chose to tune the system by changing the rigidity of the
base frame of the test station. Based on the analysis of the results of the above
described functional tests of the worm gears and results of the bump test, there were
found high mechanical vibrations of mainly vertical “lift” beams and horizontal
table beam under the sprocket were found. The transmission of these vibrations to
the gearbox during operation in the short term significantly worsened the meshing
conditions in the worm gear. The aim of the design modifications was to increase
the stiffness of the basic structure, especially the vertical frame and table base on
which the machine drive mechanism is mounted.
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Fig. 8 Measurement 3. Measurement of natural frequency of vertical frame. Dominant frequen-
cies identified after the design change
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Fig. 9 Measurement 4. Measurement of the natural frequency of the worm gearbox: (a) meaure-
ment execution, (b) frequency spectre before the design change of the frame

A repeated bump test revealed a significant shift of the natural frequencies
of both vertical and horizontal beams in the frequency spectrum (see Table 2).
After the frame has been reinforced, there has been a significant decrease in the
vibration velocity amplitude and a shift of the dominant frequencies far beyond
the operating values of the excitation forces frequencies. This occurrence had
happened in both the vertical and horizontal directions. For example, in the case
of a horizontal table beam, the dominant frequencies have shifted from the range
from 30 Hz to 90 Hz to near 800 Hz. This is a prerequisite for obtaining objective
results of planned experimental measurements also for other transmissions and other
operating conditions.
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Fig. 10 Measurement 4. Measurement of gearbox natural frequency in worm gear axis direction.
Dominant frequencies identified after the design change

The natural frequencies of the worm gear housing were also measured repeatedly.
The drift of dominant frequency values with significant amplitude peaks can be
explained as a result of gearbox disassembly and reattachment on a reinforced table.

5 Conclusions

Vibration diagnostics belongs to modern methods of non-destructive technical
diagnostics, by means of which it is possible to determine the current technical state
of various production machines and equipment directly in the process of operation
[7]. The aim of the design modifications of the testing station for dynamic testing
of toothed and belt drives was to eliminate the danger of resonance and increase
the stiffness of the basic stend structure. A bump test performed under the same
conditions before and after frame reinforcement confirmed that by the structural
modification of the testing facility was achieved a higher rigidity of the base frame.
Shifting the natural frequencies, especially of the vertical and horizontal beam,
outside the operating frequencies of the tested transmissions is a necessary condition
for achieving objective results of the planned experiments.
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Experimental Dynamical Analysis
of a Mechatronic Analogy of the Human
Circulatory System

Paweł Olejnik , Fryderyk Wiądzkowicz, and Jan Awrejcewicz

Abstract The purpose of the work is to numerically simulate and mathematically
describe an experimental model of a mechatronic analogy of a human circulation
system. The examined laboratory system consists of pneumatic elements to model
the blood circulation system. Two containers with rubber membranes model heart
ventricles, another four similar containers model the capacity and elasticity of
arteries and veins. Two pneumatic valves are used to control the pressure in main
chambers. To analyze the dynamics of the system, four digital pressure sensors are
used to measure the system pressures. The step and ascending linear input signal
responses were examined.

Keywords Circulation system · Mechatronic analogy · Experimental station

1 Introduction

The human circulatory system is a complex system that performs a number of key
functions in the body. This system transports oxygen throughout the body, ensures
a constant supply of nutrients to its organs, distributes vitamins and minerals, also
participates in the removal of metabolic products from cells, transporting them to
the excretory organs. The proper functioning of the circulatory system is crucial
for the functioning of the whole organism. Therefore, it is extremely important to
create an artificial circulatory system that could replace the biological system in the
case of its inability to continue functioning. The circulatory system is exposed to
many threats, such as: diseases, mechanical damage to the most important organs,
inefficiency, incorrect functioning and many more.
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The main elements of the circulatory system, the construction and functioning of
which will be described in the following chapters are: heart, blood vessels, blood,
spleen.

The heart is the key organ of the circulatory system. It ensures constant blood
flow throughout the body. From a mechanical point of view, the heart is a pump.
In many non-technical studies, the heart is presented as an embossing and suction
pump. This is a mistaken belief. In the event that the heart would be a pressing-
sucking pump in our bodies, a negative pressure would be created at each blow,
which would destroy the blood vessels and ultimately lead to immediate death. From
the biological point of view, the heart is an organ constructed of transversely striated
muscle. The shape resembles a distorted cone, pointing vertically downwards. The
heart reaches its normal size in relation to the rest of the body at the age of 18–20.

The most important elements of the heart’s construction are the two left and right
vestibules and the right and left chambers. Through the upper and lower main vein,
the un-oxygenated blood from the body goes to the right vestibule. Through the
contraction of the vestibule, the blood gets into the right ventricle, then after the
contraction of the right ventricle it is pumped through the lungs to the lungs where
it oxygenates. Oxygenated blood returns to the left atrium via pulmonary veins,
where it is passed to the left ventricle after its contraction. Due to left ventricular
contraction, the already oxygenated blood is thrown further through the aorta to all
organs in the human body.

1.1 Mechanical Operation of the Heart

The mechanical activities of the heart are limited to contraction and relaxation of
the chambers and atria. Ventricular spasm occurs alternately with atrial contraction.
During ventricular contraction, blood is ejected into the small blood circulation
from the right ventricle and into the large blood circulation from the left ventricle.
However, during atrial contraction, blood gets from the atria into the chambers. All
phases are cyclic and repeat at rest with a frequency of about 1.2 Hz. The duration
of a single cycle (total duration of ventricular contraction and diastole) is approx.
800 ms. Time of duration of main phases of the heart cycle is as follows (in ms):
ventricular contraction (270), ventricular diastole (530).

1.2 The Time History of Blood Pressure

In this work, main emphasis was placed on the pressure measurement in the system
under examination. Sensors are located in four places of the system for in-depth
analysis of its operation. The approximate course of pressure, depending on the
blood vessel and the place in the human body can be encountered, as it follows
(mm Hg): left atrium (about 4), left ventricle (0–120), aorta (80–120), large arteries
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(70–130), small arteries (55–110), arterioles (20–60), capillaries (4–20), veins and
atriums (constant, about 5), right ventricle (0–27), pulmonary arteries (5–27).

Both in the left and right atrium the pressure is low and its fluctuations are
minimal. The largest pressure amplitudes occur in the left ventricle, from 0 to
120 mm Hg. Pressure in the aorta is the blood pressure measured, e.g., when visiting
a doctor. In an adult, a healthy person ranges from 80 to 120 mm Hg. In the large
arteries, the pressure values are close to the pressure in the aorta. In small arteries,
the course is similar to large but the average pressure values and its amplitude
are smaller. A similar situation occurs in arterioles. In capillaries and veins, the
blood flows under a small, constant pressure, about 10 mm Hg. In the right ventricle
the amplitude of the pressure increases and amounts to 20 mm Hg. In pulmonary
arteries, the pressure is about 20 mm Hg, while its amplitude is relatively small.

2 Concepts and Implementation of Model Circulatory
Systems

Creation of circulatory systems and simulation of the main pump behavior, i.e., heart
pulsation, involves many mechanisms and biophysical phenomena, which interact
in many ways. One encounters, between others [1]: tissue fluids, heart rate and
stroke volume, oxygen in non-muscle, oxygen in muscle, local autoregulation in
muscle, vascular stress relaxation, kidney dynamics, capillary system, angiotensin
control, aldosterone control, autonomic control, electrolytes and cell water, pul-
monic dynamics.

After analyzing the literature related to the subject of artificial heart a few
interesting solutions of the artificial heart model were selected.

A very interesting solution of the mechatronic model of the circulatory system
is the model proposed in [2] by Shi and Chew. In contrast to the model studied in
this work, they modeled the circulatory system using electrical components. For the
modeling of atria and chambers, capacitors were used. The diodes model the valves
which correspond to the check valves in the tested system. Throttling valves, i.e.,
lungs in an electric circuit, are modeled using resistors. In addition, the coils used in
the circuit are used to model the inertia of the fluid flowing through the vessels, and
additional capacitors are the equivalent of tanks that model the capacities of veins
and arteries and their elasticity.

An electrical network analog of a human cardiovascular system has been also
simulated in [3]. The results of the numerical simulations performed by the authors
are confirmed in this work, i.e., in the mechatronic pneumo-hydraulic model by
registration of similar shapes time histories of pressures in the pulmonary veins and
aorta.

A ventricular assist device proposed in [4] can model the characteristics of the
natural human blood circulatory system, including the pressure and flow of the
aortic root, as well as mathematical model of the system has been established. A
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new mock circulatory system has been established using basic hydraulic elements.
Numerical computation has been employed on the basis of modelling of fluid
dynamics and ideal gas flow by means of mechatronic devices, such as: centrifugal
pump, electromagnetic switch valve, vessels with a certain volume and a throttling
valve. Other attempts of building of mock circulatory systems for testing pediatric
rotary blood pumps [5], and ventricular assist device differ in the realization of the
cardiac function [6–8].

Numerical simulations of circulatory systems are widely used, allowing a
medical physicist for a better understanding of the mechanisms and the functions
thereof. In this context, a systemic circulation simulator developed in Automation
Studio is considered in [9]. The work describes a computational approach for a
mechanical model of the systemic circulation. It reproduces with high accuracy the
physiological hemodynamic function. Quite universal model allows for changing
of the vascular parameters and the construction of pressure-blood flow curves in
various components of the system at a physiological conditions.

Dynamic behavior of the cardiovascular system was simulated in [2] with the
use of a mechanical simulator. The simulator including the coronary circulation
modelled by a nonlinear hydraulic resistance device, the aorta modelled by different
wall thickness rubber tubes, the arterial vascular resistance modelled by a thin,
variable length tube and other was mainly created for teaching purposes.

Electric equivalent as a net has been used in [10] to develop a model of greater
of the human circulatory system. The designed model allows to simulate the
biological vascular system and to analyze the greater circulation in physiological
and pathological cases.

Application of a PExSim for modeling a POLVAD artificial heart and the human
circulatory system with left ventricle assistance is considered in [11]. There are
presented simulation results of the physiological conditions, left ventricle failure
and pathological conditions with parallel assistance.

3 Laboratory Station

3.1 Analogy to Reality

It was inevitable that some simplifications were applied to reality in order to allow
the construction of the system under examination. As a consequence, in the system
shown in Fig. 1, the atria and their contraction are not explicitly modeled, and water
that simulates blood enters the chambers due to the elasticity of the membranes used
in the system.

The thesis was also made that blood circulates throughout the body due to the
elasticity of the blood vessel system. In order to reproduce this assumption, two
tanks were built, equipped with membranes that represent the elasticity of blood
vessels. In addition, veins and arteries in the human body have an unmatched
volume.
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Fig. 1 View of the experimental station modelling the mechatronic circulatory system: 1 heart
chambers, 2 artery capacity and veins, 3 electromagnetic valves, 4 non-return valve, 5 pressure
sensors, 6 microcontrollers, 7 electric relays

To make the model realistically, two more tanks were added, the volume of
which corresponds to the amount of blood in the veins and arteries in the human
body. The throttling valves used in the system are used to model the throttling of
blood flow in organs in the human body. In the analogy, one of the throttling valves
models the throttling in the capillaries of all organs (except the lungs), while the
other two model the choking in the capillaries in the left and right lung. However,
it is nowhere described how exactly the blood flow on the organs is suppressed, in
addition, in each of the organs the choking is different. Simplifying the heart cycle
is also simplified. In the examined system, the heart cycle consists of two phases:
valve opening, during which the pressure in the chamber increases and the liquid is
thrown onto the circulation, corresponds to ventricular contraction, and phases when
the valves are closed, chambers are vented and thanks to elasticity, the membranes
return to the original shape and the liquid fills the chambers again, it is a phase
similar to the atrial contraction and the rest of the heart. The heart cycle consists of
many different phases that differ from each other by pressures, valve status, duration
and blood ejection. It is also worth mentioning that the valves present in the heart in
the system under test correspond to check valves.

3.2 Construction and Components

In order to model the heart chambers, special tanks (1) made of two fragments of a
Plexiglas tube with a diameter of 84 mm, a height of 65 mm and a thickness of 3 mm
were used. Both pieces of pipe were connected with silicone with aluminum flat bars
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serving as covers. A rubber membrane about 1 mm thick was inserted between the
combined halves of the tanks. The whole was screwed using threaded rods and nuts.
The reservoirs modeling artery capacity and veins were made in the same way (2).
Both tanks have a diameter of 32 mm, and their height in the case of a venous tank
is 40 mm and in the case of an arterial reservoir is 22 mm.

Pneumatic parts are used as PU wire connections: Ø10/8 mm – red, green, blue;
Ø6/4 mm – red, blue; Ø4/2 mm – blue.

Connectors are created by three-way joint Ø10 mm and Ø6 mm; four-way joint
Ø10; angular connector Ø10 mm; reducing connectors Ø10/6 mm, Ø6/4 mm and
Ø8/6 mm screw-in straight connector with thread G1/4′′ to the line Ø10 mm.

The system includes control valves: shut-off electromagnetic valve 3/2 G1/4′′
(3), directly controlled, normally closed (flow: 300 l/min, working pressure range:
0–1.0 MPa) and throttle valves: G1/4′′ valve restricting input; Trunking check valve
Ø10 mm; non-return valve (4).

The pressure measurement was carried out using the Honeywell digital pressure
sensor ABPDANN005PG2A3 (5).

In order to activate the valves and to read measurement signals from the sensors
and write data in a form allowing their subsequent processing, it was decided to
use the Arduino UNO microcontroller (6). The selected platform is used to control
valves, download data from 4 digital pressure sensors and send downloaded data by
means of UART transmission to a PC. Control is carried out indirectly, i.e., a logic
signal from the microcontroller is sent to two separate relays (7) (after each on the
valve), which after receiving the high signal short circuit to ground, which results in
the required voltage on the valves controlling the air flow. The voltage required to
control the valves is provided by an additional pulse power supply (8) set to 24 V.

4 Control System

Figure 2 shows the block diagram of the tested system, including pneumatic and
electronic parts.

Looking at the diagram at the very bottom there are the elements responsible
for controlling the pneumatic valves. The dotted line in the schematic indicates the
digital signal. A high or low signal is required to control the valves, and a 14-bit
digital signal is sent in the case of sensors. The diagram includes the division into
the left and right parts of the heart and the veins and arteries connected directly to
the heart. A small and large blood circulation was also distinguished. At the top
of the diagram you can see a set of elements responsible for the acquisition and
analysis of the data collected by the sensors. From the constructed diagram it also
follows that this system is an open control system. Based on the diagram shown, the
operation of the entire system can be described. When there is a high signal on the
Arduino output pins on the relays, a voltage of 3.3 V will flow, thanks to which the
relays will be shorted to ground, which will cause the valves to be 24 V, which will
open them.
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Fig. 2 Block diagram of the laboratory experimental system station modelling the mechatronic
circulatory system

Then, the air will flow through the valves at the pressure set on the compressor. It
will deform the membranes in the main tanks, which will make it similar to reality,
the water will be pushed into the small and main circuit. This corresponds to the
ventricular contraction phase. When the high signal on the Arduino output pins
disappears, the valves will close and the atrial and resting phase will start, which
will fill the tanks again.
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5 Measurements and Analysis of Time Characteristics
of Dynamic Responses

5.1 Sensor Characteristics and Signal Processing

Four digital sensors from the Honeywell series of ABPs were used to measure the
pressure. Selected models are 14-bit sensors operating in the 0–5 PSI range, com-
municating with the microcontroller using the I2C bus. The problem encountered
during the installation of the sensors were the identical bit addresses of all 4 sensors,
which is why it was decided to use the I2C bus expander, which makes it possible to
distinguish up to 8 devices on the address bus. Before the measurements were made,
the static characteristics of all sensors were removed. To do this, a 1.5 m long PU
wire 10/8 pneumatic conduit was attached to an even and flat surface, which was
filled with water using a syringe. The whole system was set vertically and then the
height of the liquid column in the transparent conduit was measured to determine the
pressure. The hydrostatic pressure was calculated p = ρgh, where: p – hydrostatic
pressure [Pa], g – acceleration of gravity [m/s2], ρ – the density of the liquid used
during the measurement [kg/m3], h – the height of the liquid column [m].

Pressures p1 . . . 4 versus voltage readings by sensors 1–4 are experimentally
estimated as follows: p1(v) = 0.0265v − 45.227, p2(v) = 0.0264v − 44.376,
p3(v) = 0.0272v − 48.091, p4(v) = 0.0262v − 42.766. The sensors are connected
to the expander ports 6, 3, 2, 7, respectively. The formulas of functions for each
sensor describe the obtained relationships between the sensor’s indications and the
pressure value in mm Hg.

The characteristics p1 . . . 4(v) were obtained by measuring at several points and
then the obtained results were approximated with a straight line. The correlation
coefficient (R2) for each sensor is greater than 99%, so it can be concluded that
each sensor has a linear static characteristic. In order to collect data from the
sensors, a program for the Arduino platform was written, the task of which is to
communicate with the sensors, process the signal and further transfer of data to
the computer. Communication with sensors takes place on the I2C bus through
an expander separating signals from 4 sensors into 4 different addresses. The
microcontroller downloads data at a frequency of 20 Hz. Then, programmatically
using the analytical relations obtained during the identification of the sensors, the
received values are converted into pressure values in mm Hg. The last stage of the
program’s operation is sending the converted values to the PC computer via UART
communication. One can view the received values on the computer in the serial port
monitor.

5.2 Measurement Method

Sensors have been incorporated into the system in four places. Sensor 1 measures
the pressure corresponding to the pressure in the pulmonary veins, delivering
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oxygenated blood to the left atrium. The pressure of water corresponding to the
pressure in the main veins entering the right atrium is measured by the sensor 4. The
sensor 3 examines the pressure in the pulmonary trunk that goes directly from the
right ventricle and delivers blood to the lungs. An important factor, from the point
of view of comparison between the model and the reality, is sensor 2. It measures
the water pressure in the place corresponding to the aorta. The blood pressure is
measured in the aorta at the left ventricular output.

5.3 Results

First, the system response to linear excitation was investigated. The measurement
was made by reading the data from the sensors while increasing the pressure
reference value from 0 to 3 bar (0–2250 mm Hg). The response of 4 sensors was
obtained as a function of time, which is shown in Fig. 3. The set point signal
was generated by a compressor whose output signal was manually regulated by
a reducing valve.

According to the observed response, the system can be used at a set pressure of
not more than approx. 800 mmHg which corresponds to 1 bar on the pressure gauge
connected to the reducing valve of the used compressor. Above this value each of
the sensors will show the maximum of its range.

It can be seen that the system’s response has a certain inertia due to the elasticity
of the membranes used. Unfortunately, the inertia when venting the space under
the membrane is so large that it disturbs the heart cycle. This is evident during the
operation of the system when the valves are reopened before the pressure under
the membrane equalizes with the atmospheric one then measurements were made
during the normal work cycle. Forcing pressure was 1 bar, valve opening time
corresponding to ventricular contraction was 600 ms, while valve closing time,
corresponding to atrial contraction and cardiac rest phase, was 1000 ms. It was
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decided to increase the heart’s working time twice as much as the real one due to
the inertia of the air. With a shorter opening and closing time, diaphragm deflections
were observed (Fig. 4).

The graphs shown below in Figs. 5, 6, 7, and 8 present the data collected by each
of the sensors. The measurement was made every 0.05 s.

The time history of pressure shown in Fig. 5 corresponds to the pressure in the
pulmonary veins delivering oxygenated blood to the left atrium. The pressure value
varies from about 15 to 275 mm Hg.
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The value read by sensor 2 is the arterial pressure present in the aorta. In an
adult, the average upper (systolic) pressure is about 120 mm Hg, while the lower
(diastolic) pressure is about 80 mm Hg. In the tested system, the value of the upper
pressure is about 130 mm Hg, while the lower pressure is about 30 mm Hg.

Sensor 3 collects data behind the throttling valve, modeling the organs. The
pressure values collected correspond to the blood pressure flowing into the right
atrium. The pressure ranges from 30 to about 115 mm Hg.

The data from sensor 4 corresponds to blood pressure after lung ejection from
the right ventricle. The read pressure varies from 0 to approx. 250 mm Hg.

The obtained pressure waveforms show a certain periodicity and regularity. This
means that the system under test works correctly and smoothly.

6 Conclusions

After examining the response of the system to an increasing signal, it can be noticed
that when the forced force exceeds 1 bar, the pressure in the system exceeds the
measuring range of the sensors.

During the experiment, the system’s response to a step signal of 3 bar was also
tested. Despite the high pressure, it can be seen that in the case of sensor 3, the
pressure has settled after almost a second. This is due to the fact that the sensor 3 is
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located farthest from the source of pressure, which in the system appears first in the
main tanks.

The readings from the sensor 2, showing the arterial pressure are not consistent
with the reality. Their values range from 15 to 130 mm Hg. It is similar to the course
of pressure in the left ventricle.

Sensors 1 and 3 show the blood pressure in the veins. The waveforms deviate
significantly from reality, which should be almost linear. This may indicate that
both the system under test and the proposed simulation model incorrectly reflect the
mechanics of the circulatory system.

When analyzing the graphs, there is a large similarity between pressure 1 and 4
and between pressure 2 and 3. This is due to the layout of the system, which sensors
1 and 4 are in one circuit (pulmonary circuit), while sensors 2 and 3 in the other
circuit (main circuit).

The pressure values in the main circulation are close to the real ones, while those
from the pulmonary circulation exceed more than twice the values observed in the
human body. This is due to the fact that the work of non-return valves, as opposed
to valves, depends on the pressure behind the valve. Valves may not open properly
or remain closed for some time. This problem could be solved by separating these
roads or by explicit modeling of the atria.

A drawback of the system is the fact that it has been adapted to work horizontally.
In fact, the circulatory system works most of the time in many different positions. It
can affect the correlation between read and real values. In addition, the capacity of
the system should be about 2 liters of water, since it was more than twice less than
the amount of blood in an adult human.

Finally, it can be concluded that in the tested system solutions such as membrane
tanks, control system and measurement method work correctly, however, after
analyzing the dynamics of the system it can be stated that it does not sufficiently
well maps the real circulatory system.
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Robust Design of Inhibitory Neuronal
Networks Displaying Rhythmic Activity

Joseph D. Taylor, Kamal Abu-Hassan, Joanne J. A. van Bavel, Marc A. Vos,
and Alain Nogaret

Abstract Central pattern generators (CPGs) are neuronal networks that
autonomously produce patterns of phase-locked activity. The need for bioelectronic
implants that adapt to physiological feedback calls for novel methods for designing
synthetic CPGs that respond identically to their biological counterparts. Here,
we consider optimization-based parameter estimation for identifying network
parameters that give rise to activity with specific temporal properties. We
demonstrate that reducing a network to the phase resetting curves (PRCs) of its
component neurons allows for the sequential parameter estimation of each single
neuron separately. In this way, the challenges associated with estimating all network
parameters simultaneously may be avoided. We highlight a possible application of
our approach by estimating parameters of a CPG emulating the phase-locked
activity associated with ECG data. This work paves the way for the design of
synthetic networks which may be interfaced with nervous systems.

Keywords Parameter estimation · Central pattern generators · Neuronal
networks

1 Introduction

Synchronization in networks of coupled oscillators is a phenomenon which holds
particular importance in the central nervous system. The onset of synchrony and
phase-locking has long been studied in the context of smaller networks known as
central pattern generators (CPGs), circuits of neurons whose synaptic interactions
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can autonomously produce rhythmic patterns of activity in which the component
neurons burst with fixed phasic relationships [4]. The precise phasic timing of CPG
networks depends sensitively on the interplay between the intrinsic dynamics of the
component neurons and the strength and time-dependent properties of the synapses
which connect them. This nonlinear dependence makes estimating all parameters
of a network model a formidable problem. Nonlinear optimization has previously
been used to estimate single neuron model parameters [6], but such methods quickly
become intractable when optimizing large network models composed of complex
neurons. In this paper, we propose a solution to this challenge by describing a
novel two-stage estimation method. We first reduce the network oscillators to their
individual phase resetting curves (PRCs). We show that these curves can be used
to determine how each oscillator must behave individually for the network to
generate specific rhythmic patterns. This allows each oscillator to be optimized
entirely separately, enabling the estimation of all neuron and synapse parameters
of the network while avoiding the challenges associated with searching the high-
dimensional parameter space of a whole-network model. We apply our approach to
the problem of estimating synaptic conductances for a four-cell CPG designed to
predict the sequence of heart chamber contractions in an ECG recording. This work
paves the way for the development of bioelectronic implants that adapt appropriately
to physiological feedback [7]. The rest of the paper is organised as follows: Sect. 2
describes the model system used throughout this work, and Sect. 3 shows examples
of the limit cycle dynamics available to multistable CPGs; Sect. 4 demonstrates
that the PRCs of the constituent neurons contain all the information necessary to
predict these network dynamics; Sect. 5 explains how the shape of neuron PRCs
determines the existence and character of phase-locked modes; Sect. 6 describes
the optimization-based method that we use to estimate network parameters, which
we use in Sect. 7 to construct a four-cell CPG. Finally, we conclude with possible
directions for future work.

2 Model System

In this paper, we consider networks of identical neurons coupled by inhibitory
chemical synapses (Fig. 1a). The neurons are described by an extended Morris-
Lecar (ML) model that includes a Ca2+-dependent K+ current that allows them
to be parameterized in a bursting regime [5]. In isolation, each individual neuron
displays periodic bursting with period T0 in response to a fixed stimulation current.
The membrane voltages obey the current balance equation:

Cm
dV

dt
= −ICa − IK − IKCa − IL − Isyn + Istim, (1)

where Cm = 20 μF/cm2 is the neuron membrane capacitance and Istim =
45 μA/cm2 is the injected current. The leak current IL = gL(V − EL) has a
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Fig. 1 (a) Bursting Morris-Lecar neurons were interconnected with mutually inhibitory synapses,
gsyn = 10μS/cm2. (b) The network initially converged towards a steady-state mode
(N1→N2→N3) labeled A. The application of a brief depolarizing current pulse to neuron N2
switches the circuit to a second steady-state mode, labeled B, in which the neurons burst in a
different order. Both modes of activity are stable solutions of the network dynamics with a cycle
period of T = T1

conductance gL = 2.0 mS/cm2; EL = −60 mV. The spike-generating Ca2+ and K+
voltage-dependent ionic currents (ICa and IK) are of the Hodgkin-Huxley type. The
transient calcium current is given by ICa = gCam(V − ECa), where the activation
variable m is assumed to respond instantaneously to changes in membrane voltage
and has a steady-state response given by m∞ = 0.5[1 + tanh((V + 1.2)/18))].
The delayed rectifier current is given by IK = gKn(V − EK), where the activation
variable obeys the first-order kinetics: dn/dt = ψ(0.5[1+ tanh((V −12)/17.4))]−
n)/τn; τn = 1/ cosh((V − 12)/34.8); ψ = 0.23, gK = 8.0 mS/cm2, EK =
−84 mV. For bursting dynamics, we include IKCa = gKCaz(V − EK), where
z = Ca/[Ca + 1] and Ca is the intracellular calcium concentration which obeys
dCa/dt = ε(−μICa − Ca); ε = 0.006, μ = 0.02, gK = 0.25 mS/cm2.

The synaptic currents are given by Isyn = gsyns(V − Esyn), where gsyn is
the maximal synaptic conductance and Esyn = −75mV is the synaptic reversal
potential. The gating variable s represents the fraction of docked synaptic neuro-
transmitters and obeys the first-order kinetics ds/dt = αF(Vpre)(1 − s) − s/τsyn,
where α = 6.25ms−1, τsyn = 100ms, and F(Vpre) is a sigmoid function of the
presynaptic membrane voltage F(Vpre) = 1/(1 + exp(−(Vpre − θsyn)/2)). The
threshold parameter θsyn is the value that the presynaptic membrane voltage must
exceed for neurotransmitter release to occur. Setting θsyn = 0mV ensures that
postsynaptic inhibition occurs only when the presynaptic cell spikes [8].

3 Network Configuration and Dynamics

The interplay of mutual synaptic inhibition in CPG circuits leads to stable patterns of
oscillation in which the neurons phase-lock one another, bursting with fixed phasic
relationships. In designing artificial CPG networks, we are interested in tailoring
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the precise timings of these bursts relative to one another. We first demonstrate this
type of behaviour by interconnecting three indentical ML neurons with reciprocally
inhibitory synapses. We plot the membrane voltage of the three interconnected cells
over thirteen cycle periods, with the raster plot representing neuronal spike times
(Fig. 1b). This network initially stabilises in a steady-state mode labeled A, in which
the bursting of N1 is followed by N2, which is followed by N3. In this stable mode
the bursting of N2 and N3 are delayed relative to that of N1 by ΔΦ = 1

3T1 and
ΔΦ = 2

3T1, respectively. We refer to these delays as phase lags. The network
will maintain this stable mode unless it receives additional input. ‘Multistable’ CPG
circuits can simultaneously support several stable modes, and transient perturbations
to a such a circuit may induce a shift from one stable pattern of behavior to
another. We demonstrate this property by allowing the network to stabilize and
applying a brief current pulse to neuron N2 (Fig. 1b). This perturbation switches the
network to a second stable mode, labeled B, in which the neurons fire in a different
order.

In order to simplify the circuit analysis, following references [3, 9], we show how
the full network dynamics may be visualized in two-dimensional return maps. We
begin with some useful notation. First, we explicitly define the phase lag ΔΦi1 for
each neuron i as the time delay in burst initiation relative to that of the reference
neuron N1, normalised by the bursting period T1 (see Fig. 1). Let the onset of
bursting in N1 define the start of a new cycle. The state of the system in any
given cycle may be defined as the the phase lag pair ΔΦ = (ΔΦ21,ΔΦ31). We
can initialize the network in a particular phase lag state by staggering the onset
of stimulation Istim for each cell. The phase lags in successive cycles can then be
measured as the system tends towards a stable mode of oscillation and this set
of evolving lags can be plotted as a trajectory in a 2D (ΔΦ21,ΔΦ31) coordinate
system. Figure 2a shows the phase portrait of trajectories for a reciprocally-
coupled network with homogenous synaptic strengths gsyn = 1μS/cm2, where
each trajectory emanates from a different initialization of ΔΦ. The state trajectories
converge towards five attracting fixed points (or attractors) in the phase map, each
corresponding to a different stable mode of oscillation. Each attractor has a color-
coded ‘basin of attraction’, the set of initial phase lags for which the network
arrives in the corresponding stable mode. Figure 2b shows the phase lag map for
a ring network, similar to the reciprocal CPG, but with the conductances of the
counterclockwise synapses set to gsyn = 0μS/cm2. This CPG is still multistable,
but a smaller range of dynamics is observed, with only two attractors present. By
generating these phase lag maps, the full dynamics available to their respective
networks may be visualized. Our goal of designing CPGs with particular stable
rhythms can now be viewed as a question of finding network parameters which give
rise to particular attractor positions in the network phase portraits.
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4 PRCs Determine Network Dynamics

It has recently been demonstrated that the existence of synchronous modes of a
network can be predicted by an analysis of the PRCs of the constituent neurons [1].
Here, we demonstrate that the PRCs of the constituent neurons contain sufficient
information to predict both the stable and transient network dynamics presented
in the previous section by reproducing the phase lag map shown in Fig. 2a. In
doing so, we justify our subsequent use of the PRC for estimating neuron and
synapse parameters. We start by describing the method of generating a PRC, which
is schematically illustrated in Fig. 3a. In short, a single-oscillator PRC encodes the
transient effect of synaptic inhibition on the cycle period of a running oscillator.
Specifically, we wish to determine the effect of synaptic inhibition on a bursting
ML neuron. To this end, two bursting ML neurons are connected as shown, with
a presynaptic neuron N2 inhibiting a postsynaptic neuron N1. Initially, N1 is
stimulated with Istim = 45μA/cm2 and exhibits intrinsic bursting with a cycle
period T0. This constitutes our running oscillator. Subsequently, N2 is momentarily
stimulated such that it produces a single burst that arrives at some phase ϕ ∈ [0, 1]
into the bursting cycle of N1. The synaptic inhibition from N2 then acts to peturb
N1, temporarily lengthening or shortening its cycle period by some time ΔT ,
causing its next burst to occur later or earlier than it otherwise would have. We
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Fig. 3 Generation of the phase resetting curve. (a) Solid vertical bars indicate the bursting times
of the neurons to their left. N1 represents a regular bursting ML model neuron with intrinsic period
T0. A burst in the N2 causes N1 to burst later or earlier than it otherwise would have (grey bar),
depending on when it occurs. The change ΔT in the period as a result of the perturbation received
at a phase ϕ is used to generate the phase-resetting curve. T1 represents the period of the cycle
in which the stimulus is received. (b) Example phase resetting curves f (ϕ) for an ML neuron at
increasing synaptic strengths gsyn. Induced delays correspond to positive regions in the PRC and
advances correspond to negative regions

denote the transiently adjusted period in which this perturbation is received as T1.
By expressing this delay as a fraction of the typical cycle period T0, and repeating
this process for multiple phases ϕ, the phase resetting curve f (ϕ) = (T1(ϕ)−T0)/T0
of the neuron can be plotted. Figure 3b shows the PRC calculated for the Morris-
Lecar neuron at increasing synaptic strengths gsyn.

We now briefly describe a model-free algorithm that we use to extract infor-
mation from the PRC, and show that it can successfully predict the full dynamics
of our CPG network [2]. The only inputs to the iterative algorithm are the PRCs
of the component neurons, the initial phase of each neuron, and the intrinsic
bursting period of each neuron. The iterator begins by determining which neuron(s)
will burst next (i.e. whichever oscillator has the shortest time remaining before
reaching a phase of one). Any oscillators that do not burst at this time have their
phases incremented by the (normalised) time to this bursting event. Next, any
phase resetting occurring as a result of the bursting neuron is subtracted from these
phases. Then, the phase of the bursting oscillator is reset to zero. This completes
one iteration of the algorithm. Once the program has iterated over NB = 1000
bursting events, we can calculate the associated phase lags in each cycle period and
plot these evolving phase lags as a trajectory on a return map. By initialising this
algorithm with a host of different initial neuron phases, we can probe the entire
phase space of the network, as before (see Sect. 2). This phase lag map is shown
in Fig. 4, which shows a remarkable likeness to the observed dynamics (Fig. 2a).
This is strong evidence in favour of our hypothesis that the PRC may be used to
effectively analyse the behaviour of CPG networks.
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Fig. 4 (a) PRC-generated phase lag map for the reciprocal network. Just as in the observed
network phase-lag map, there are five stable FPs at (ΔΦ21,ΔΦ31) = (0.5, 0.5), (0, 0.5), (0.5, 0),
(0.33, 0.66), and (0.66, 0.33). In addition to correctly predicting the attractor locations, the PRC-
generated map displays a strikingly similar trajectory flow globally. (b) Enlarged area of the
PRC-generated phase lag map corresponding to a saddle point and its environment. (c) Enlarged
area of the same saddle point in the observed network phase lag map. Note the slight repositioning
of the saddle point

5 Stable Modes Correspond to Specific PRC Shapes

Recall that our aim is to estimate parameters for a CPG network which displays
specific rhythmic patterns. It is useful to briefly derive the necessary criteria for
the existence of stable oscillatory modes. We simplify our analysis by considering
a ring network of N identical oscillators in which each neuron is inhibited by
the preceeding neuron in the ring, though a more detailed analysis is possible if
these assumptions are relaxed. In any phase-locked oscillatory mode, by definition,
the relative phases of the oscillators have ceased to change (Fig. 1b). This is only
possible if the cycle period of all neurons in the network are equal after the phase
resetting effects of synaptic inhibition are taken into account [2]. Therefore, if each
neuron i receives synaptic inhibition from the preceeding neuron at a phase ϕi , then
the new entrained cycle period of all neurons must be equal to T1 = T0 + fi(ϕi)
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in the stable phase-locked mode. In our system, all (identical) cells have the same
intrinsic period T0, and so our first existence criterion for phase-locked modes is:

f1(ϕ1) = f2(ϕ2) = . . . = fn(ϕn) = . . . = fN(ϕN). (2)

In other words, all neurons must have equal values of fi(ϕi) in order to posess
the same entrained period after phase resetting. The second criterion is the trivial
fact that since an oscillator must be in phase with itself, the sum of all the phase
differences around the ring must add up to the common entrained period (or some
integer multiple thereof). Our second existence criterion for a phase-locked mode is
therefore:

N∑

i=1

ϕi = m[1 + fn(ϕn)], (3)

for some integer m ∈ [0, N]. So, if we desire an N -cell network that displays a
particular stable mode, these criteria inform us that: (1) each oscillator i must posess
a particular PRC which passes through a specific (ϕi, fi(ϕi)) coordinate, and that
(2) all fi(ϕi) must be equal. We can then use this insight to perform N individual
parameter estimations, each one optimizing the parameters of a single neuron to
produce a model cell with particular PRC characteristics. By analysing the network
in terms of individual cells in this way, we are able to avoid difficulties associated
with estimating parameters of an entire network simultaneously. In the next section,
we demonstrate how this estimation is performed.

6 Parameter Estimation Procedure

In order to estimate parameters for a single neuron which posesses a desired
phase resetting characteristics, we begin by designing artificial ‘target data’ Vdata(t)

resembling the membrane voltage of a neuron whose PRC would pass through
the desired (ϕ, f (ϕ)) coordinate. Recall that fi(ϕi) encodes the delay induced in
the cycle period of a neuron i which receives a synaptic perturbation Isyn(t) at
phase ϕi . The target data therefore consists of a bursting ML neuron waveform
with intrinsic period T0 receiving a synaptic perturbation (blue) at phase ϕ. We use
linear interpolation of duration f (ϕ) to artificially tune the inter-burst interval to
the required delay (Fig. 5b). To reiterate, this data is what would be observed in an
ML neuron which possessed the desired PRC. Next, we use an optimization-based
parameter estimation method to fit a neuron model to the target data. Here, we use
nonlinear optimization software IPOPT, which seeks to minimize a least-squares
mismatch between the membrane voltage V (t) of a neuron model and the target
data Vdata(t) by adjusting the model neuron parameters p described in Sect. 2. The
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Fig. 5 Schematic of estimation procedure. (a) Attractors in a CPG phase portrait correspond
to phase-locked modes, and the precise rhythms are determined by points on the PRCs of the
constituent neurons. (b) Using equations (2) and (3), we can calculate the necessary PRC properties
(ϕ, f (ϕ)) which will give rise to a desired attractor. We then generate an artificial time series
Vdata(t) in which a neuron burst is delayed for a duration f (ϕ) by synaptic inhibition Isyn(t)

received at phase ϕ. Established parameter estimation methods can be used to extract the neuronal
and synaptic parameters which would give rise to Vdata(t)

mismatch is represented by the following cost function: C(p) =
T∑

t=0
[Vdata(t) −

V (t)]2. This cost function is minimized subject to the neuron model equations
of motion (Eq. 1), which are held as constraints on the optimization procedure
(see [6] for more details on the optimization method). When the minimization
has been performed, the adjusted set of K free parameters p = [p0, p1, . . . , pK ]
should correspond to those of a neuron which matches the target data, producing a
completed neuron model which possesses the desired PRC. Recall that a PRC is a
function of both intrinsic neuron parameters and the strength gsyn of the synaptic
perturbation Isyn(t) (see Fig. 3b). Thus, by choosing which parameters may be
adjusted by the optimization procedure, one can use this approach to estimate
intrinsic neuron parameters, synaptic parameters, or some combination of the two.

7 Application to ECG Recordings

We now demonstrate how this approach can be used to design functional networks
by successfully fitting the phases of a four-cell ring CPG to particular features of
an ECG recording. In the neuron model optimizations performed in this section,
we only allow one parameter gsyn to vary, holding all other neuron parameters
fixed (Sect. 2, Eq. 1). Our approach, however, is sufficiently general to allow for the
estimation of any chosen neuron and synaptic network parameters. It requires only
that these chosen parameters also be left free during the optimization procedure.
In order to fit the phasic timings of the ECG recording in Fig. 6b, we must first
determine the relative phases of the four target features of the ECG: the start (Pi)
and end (Pf ) of the P wave, corresponding to atrial depolarization (black and
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Fig. 6 (a) Three-dimensional phase lag portrait displaying trajectories converging to the ECG
‘target’ attractor for a four-cell ring network CPG. The target attractor corresponds to the four-
phase ECG rhythm shown in the top-right panel. (b) Stable ECG recording obtained from an
anaesthetised dog. We attempt to match four target features: the start (Pi ) and end (Pf ) of the P
wave, corresponding to atrial depolarization; the peak of the QRS complex (Qp), corresponding to
ventricular depolarization; and the peak of the T wave (Tp), representing ventricular repolarization.
(c) Stable four-phase rhythm of the ‘completed’ CPG. The onset of bursting in the four cells aligns
exactly with the onset of the four target features of the ECG recording

orange dashed lines, respectively); the peak of the QRS complex (green line, Qp),
corresponding to ventricular depolarization; and, finally, the peak of the T wave
(blue line, Tp), representing ventricular repolarization. Taking Pi ≡ N1 as the zero-
phase reference, the phase lags of the three other features (in the notation of Sect. 2)
are as follows: ΔΦPf ,Pi = ΔΦ41 = 0.137, ΔΦQp,Pi = ΔΦ31 = 0.296, and
ΔΦTp,Pi = ΔΦ21 = 0.614. Now, we begin by assuming g4→1

syn = 1μS/cm2 and note
that in the stable mode N1 receives perturbations from N4 at a phase ϕ = 0.137. The
PRC for the ML cell generated with gsyn = 1μS/cm2 (Fig. 3b) gives us a value of
f1(ϕ1 = 0.137) = −0.00321. Since N2 receives perturbations from N1 at a phase of
ϕ2 = (1−0.614) = 0.386, we must ensure that the PRC of N2 also posesses a value
of f2(0.386) = −0.00321, in order to satisfy Eq. (2). By generating the appropriate
target data (Fig. 5b), we can minimize the cost function C(p) to obtain an estimated
optimum synaptic weight g1→2

syn = 4.94μS/cm2. Continuing this process around the
ring, ensuring Eq. (2) is satisfied for each cell, we obtain estmates for all remaining
synapses, thus completing our network model (see Table 1).

By forward-integrating the model completed with the estimated synaptic param-
eters, we can see whether the network predicts the ECG rhythm as desired. Figure 6c
shows that the network exhibits stable bursting precisely aligned with the ECG
targets. It is important to note that while the phase-locked mode estimated here
is clearly dynamically stable (Fig. 6a), the criteria in Eqs. (2) and (3) only guarantee
that such a mode will exist. It is possible that such an estimation procedure would
result in the existence a mode which is unstable to dynamical perturbations and



Design of Inhibitory Neuronal Networks 197

Table 1 Synapse parameters for the four-cell identical neuron CPG estimated using the PRC-
based optimization method. Forward integrating the completed network model with these
parameters gives rise to a phase-locked mode that precisely matches the sequence of heart chamber
contractions as recorded in the ECG data

Parameter Value (μS/cm2)

g1→2
syn 4.94

g2→3
syn 7.53

g3→4
syn 2.80

g4→1
syn 1.00

noise. Future work should address this issue by deriving further stability criteria
that may be used when generating target data.

8 Conclusion

Biological CPGs exhibit rhythmic behaviour with precise phasic delays between
the onset of activity in each constituent neuron. The ability to design artificial
CPGs for integration with biological nervous systems requires robust methods for
estimating parameters giving rise to this rhythmic behaviour. We have demonstrated
that reducing the network dynamics to the PRCs of its constituent neurons enables
the estimation of network parameters one neuron at a time, avoiding the prohibitive
computational costs associated with the optimization of whole-network models.
By fitting a network rhythm to four target features of an ECG recording, we have
demonstrated how this method can be used for the development of artificial CPGs
with desired phasic timings. This work paves the way for a hardware implementa-
tion of artificial networks designed for integration with biological nervous systems.
The CPG networks considered in this work were composed of identical neurons.
Future work may seek to relax this assumption, which could enable the building
of networks composed of different neuron types, further expanding the range of
dynamics available to artificial CPG designs.
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Nonlinear Dynamics of the Industrial
City’s Atmospheric Ventilation: New
Differential Equations Model
and Chaotic Ventilation

Olga Yu Khetselius, Alexander V. Glushkov, Sergiy M. Stepanenko,
Andrey A. Svinarenko, and Vasily V. Buyadzhi

Abstract We present a new generalized mathematical approach to analysis and
modelling the characteristics of the chaotic atmospheric dynamical system, includ-
ing natural air ventilation in the atmosphere of the industrial city. The approach is
based on the Arakawa-Schubert model of calculation of cloud convection, modified
to calculate the current involvement of the ensemble of clouds, and hydrodynamical
prediction model (with correct quantitative accounting for the turbulence in an
atmosphere of the urban zone) and theory of a complex geophysical field. The
method for computing a turbulence spectra inside the city’s (urban) zone is based
on the generalized model of the tensor equations for turbulent tensions. The velocity
components of an air flux over the city area are determined in an approximation of
“shallow water” and found on the basis of the advanced spectral series expansion
approach. The results of the PC simulation experiments for an chaotic air ventilation
and a chaotic heat transfer in atmosphere of industrial city, including the data of
modelling ventilation (mesocirculation) parameters over territory of Odessa are
presented. The numerical data on a current function and velocity potential are
computed and analyzed presented for a few hydrodynamic (synoptic) situations in
the Odessa city.

Keywords Nonlinear dynamics · Chaotic ventilation · Atmosphere system

1 Introduction

The intensive development of the effective methods of the theory of dynamic
systems and chaos theory made it possible to achieve quite substantial progress not
only in the study of, say, classical dynamic (mechanical) systems, but to provide
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breakthrough solutions in the theory of chemical, physical, biological, economic
and other systems.

Moreover, the application of modern methods of a chaos theory allows us to
describe the most complex nonlinear and chaotic processes in many dynamical
systems from a new point of view. The aim of our work is a quantitative study of
nonlinear, chaotic phenomena in the nonequilibrium atmosphere of industrial cities
based on the methods of the theory of dynamical systems, classical models with
systems of hydrodynamic differential equations, generalized to the case of taking
into account the chaos phenomenon, as well as the characteristics of chaotic (vortex)
ventilation [1–14].

Investigation of regular and chaotic energy-, heat-, mass-transfer in continuous
mediums and systems is very actual and complex problems of the modern physics
of dynamical systems, computational hydrodynamics and atmosphere physics etc.
At present time one could remind about different simplified models that allow
to estimate the temporal and spatial structure of chaotic air ventilation in an
atmosphere. However, these approaches are based on the known classical laws of
molecular diffusion, as well as the known regression relations models [1–5]. It
explains a number of disadvantages; for example, these models do not work if the
atmosphere contains elements of chaotic convective instability.

More sophisticated approaches such as different versions of the Lagrangian
particle dispersion models and similar one (e.g., [1–3]) provide significantly more
accurate results, however, such approaches require very complicated simulation and,
as minimum, very correct input data.

Over the past decade, a new class of dynamical atmospheric models has emerged,
namely, chemical and physical, cybernetic and other weather forecasting models,
fueled by the rapid build-up of supercomputer capabilities (e.g., [1, 2]).

As recognized by the authors of the above cited models, along with their
advantages associated with the rapid growth of supercomputer capabilities and the
operational availability of high-resolution digital weather forecast data (as input
to atmospheric transport models) and others, and significant shortcomings are
mainly related to the insufficiently adequate level of consideration of the non-linear,
chaotic features of low-frequency atmospheric processes and atmospheric macro-
circulation, atmospheric macro-turbulence (including the eddy-diffusion, stochastic,
chaos-dynamical mechanisms) and other factors.

An effective approach to a number of these nonlinear problems can be found by
using efficient methods and algorithms of a modern theory of dynamical systems
and a chaos theory.

In this chapter we present an elaborated advanced approach to the simulation of
chaotic heat and air ventilation in atmosphere of an industrial region. It is based
on the Arakawa-Schubert model of calculation of cloud convection, modified to
calculate the current involvement of the ensemble of clouds, and hydrodynamical
prediction model (with correct quantitative accounting for the turbulence in an
atmosphere of the urban zone) [2–14]. The key moment of the total approach is
linked with using complex geophysical plane field method. Very complicated topic
of the approach is connected with computing the turbulence spectra inside the urban
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(or city’s) zone. The standard method for this calculation is based on the advanced
tensor equations for turbulent tensions. The velocity components of an air flux over
the city area are determined in a generalized model of “shallow water” and firstly
determined by means of the advanced, relatively efficient spectral series expansion
method (see details in Ref. [14]).

2 Nonlinear Dynamics of Chaotic Atmospheric Ventilation

We present a new generalized mathematical approach to analysis and modelling the
natural air ventilation in the atmosphere of the industrial city, which is based on the
new methods of plain complex field theory combined with the Arakawa-Schubert
generalized model (its generalization is in a possibility of computing a current
involvement of the clouds ensembles) and nonlinear hydrodynamical forecast model
(with correct quantitative accounting for the turbulence in an atmosphere of the
urban zone) [2–4].

The modified by us Arakawa-Schubert method [13] allows computing the cumuli
convection and shifting cumulus cloud ensemble from surrounding city regions
and computing a cloud work for situation of the city’s landscape. Firstly we have
developed a generalized mathematical model for air masses circulation at the urban
zone. The plain complex geophysical field theory methods have been used for
computing the atmospheric (air) masses circulation and also for computing the
main criteria of non-stationary turbulence in a medium. The balance relation’s
calculations for the inside-urban zone turbulence have been carried out for turbulent
regime kinetic energy equation.

We present a new effective scheme for calculation of the ventilation potential
and stream’s function of winds in the urban zone. We present the key principles of
the cloud convection phenomenon and corresponding air circulation to calculate the
ventilation potentials for any industrial city in different periods of year. To calculate
the involving streams (the real involving masses effect is created due to misbalance
of vertical and down-running streams), reaching the territory of city, the modified
Arakawa-Schubert equations system [13] for humidity and warm flow equations are
solved [14]. Scheme of ventilation of the urban zone by air flows in a presence of
the chaotic cloud’s convection is presented in Ref. [7].

The physical and mathematical aspects of the chaotic ventilation processes in
an atmosphere of the industrial city are described in ref. [2, 7–10]. Speech is
about effect of the ventilation currents as the Couette flows, characteristics of the
ventilation currents and so called dry thermions in a standard atmosphere.

It should be noted that in principle, any typical city area is characterized by
sufficiently complex relief from the geometric viewpoint. A simplified approach to
describing the dynamics of the origin and evolution of thermions can be described
in the framework of the Boussinesq fine convection theory [7]. Indeed, a turbulent
convective layer is formed over a flat surface by uniform heating of the medium.
Then the known Boussinesq fine convection theory equation with a given neutral
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stratified potential temperature profile works and one can get different turbulent
moments of the convective layer.

From the atmospheric-physical viewpoint, the known convective thermions
originate in a relatively thin surface layer near the heated surface, and then rise
up under the action of the standard Archimedes force. It is also very important to
note that the process of thermions creation is associated with the instability of the
surface layer, and is significantly stochastic (chaotic), as well as the interaction of
convective vortices with each other and with their environment.

That is, for further consideration, it is important to keep in mind that the thermion
system is a stochastic ensemble. A significant part of the convective layer is the so-
called layer of intensive mixing, in which the value of the second turbulent moment
of the vertical velocity is almost constant. This analogy between the thermostat and
the mixing layer allows to use a system of thermions and an ensemble of Brownian
particles random forces of the same structure in the known Langevin equations (see
[7–12]).

The most effective method of comprehensive empirical study of turbulent
convection in the atmosphere of an industrial city is actually measurement using
laboratory aircraft, as well as the use of lidars and Doppler radars. The typical size
of atmospheric thermions varies from a few tens of centimetres to several tens of
meters. Typical values of velocity and positive temperature ripple of atmospheric
thermions are of the order of 0.5 m × s−1 and 0.3 ◦C respectively.

It is fundamentally important that when using the known K-form of the stochastic
Fokker-Planck equation with variable coefficients, the nonstationary distributions
of vertical velocities converge to the known Maxwell distribution at large times.
This point is usually significantly used in the further consideration at formation of
the generalized Arakawa-Schubert model. Note that the possibility of extending the
methods of physical kinetics to turbulent flows of a homogeneous fluid is discussed
in detail in monographs [2, 14].

The standard methods proved to be effective in describing homogeneous
isotropic turbulence, but when generalizing turbulent convection to academic
problems, the methods require a significant complication. At the same time, in
the case of considering these processes in the atmosphere of industrial cities, as a
rule, the classical concepts seem too simplistic and in fact at the present time are
still not adequately developed. In fact, at the fundamental and quantitative level,
this is done by us here for the first time.

It is important to note that since the meaning of the studied process is to correctly
describe the process of stabilization of turbulent vortices, divergent at different
intervals of the spectrum, the linear theory naturally only distorts the solution
without introducing useful information. According to the linear theory, the diffusion
from the source spreads evenly by the spot in the isotropic space, while in the real
diffusion the impurities are captured by large vortices and carried away by the flow
over much greater distances. This process is called a wave or vortex diffusion. It
should be noted that this very clear aspect is still ignored in most papers on the
modelling atmospheric ventilation and computing a distribution of pollutants in
atmosphere of industrial cities.
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Indeed the redistribution of energy over the spectrum of vortex sizes is usually
called spectral transformation, the study of which is possible only if there is a
real introduction of nonlinearity in the equation of turbulent motion. In principle,
the phenomenon of vortex diffusion must be described in the framework of an
adequate nonlinear theory. This, however, provokes a significant complication of
the mathematical apparatus. In the case of collision of flows with real urban relief,
this process of transformation is the main one (not the dissipation of energy into the
spectrum of micro- pulsations). Such dissipation is justified by a long movement
of the flow over the uniform surface roughness (for example, over the forest,
sea or field). In the urban conditions, impurities from the source of pollution
can be transported over much greater distances than in conventional diffusion,
which introduces ambiguities and creates known problems in the development of
recreational activities.

As a rule, the application of linear theories of turbulence for the typical industrial
city is hopeless. This explains why there is still no scientifically sound program
for the theoretical study of the processes of spread of harmful impurities in the
atmosphere of industrial cities. Moreover, at present, in the conditions of growth and
emergence of new modern megacities, as a rule, a sophisticated analysis of possible
atmospheric ventilation taking into account geographical, climatic and other factors
is especially necessary.

Below we will realize a computing the velocity field, which consists of the
total picture of the involvement of air masses in convective thermions (ensemble
of thermions, “urban thermion island”). The physics of these processes in details is
described in Refs. [2–14]). Here it is important to remind that turbulent vortices over
the urban area should be in the interaction of resonant contact with turbulent vortices
of cloud masses. This condition provides an effective (excellent) air ventilation.
These physical points provide the corresponding generalization of the Arakawa-
Schubert model, which results in a few budget equations for total water content,
mass, energy, namely (e.g.) [13, 14]:

E
∼
s −Dsc − ∂Mcsc

∂z
+ pLc = 0,

E
∼
q −Dqc − ∂Mcqc

∂z
+ pc = 0,

E −D − ∂Mc

∂z
= 0, (1)

Mc =
∑

pwiσi = pwcσ,

wc, sc = cpT + gz,
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Here wi, c are velocity and horizontal cross-section square for i-th cloud, E is an
inflow, D is an outflow, Mc is a vertical air mass flow in a cloud; p - air density; c is

an amount of the condensed moisture; qc
∼
, s,

∼
q - weighted average values of vertical

speed, statistical energy and the ratio of the mixture of water vapor. Then one could
writh the corresponding equations of heat and moisture influx (e.g. [2, 7, 14]).

The spectral representation of E in an ensemble of clouds is as follows:

E(z) =
∫

ε (z, λ)mA (λ) dλ (2)

and analogous expression for quantity D (Eq. (1)). The standard balance relations
for the convection cloud work A and work of down falling streams in the
neighbourhood of cloud with using definition of an air mass mA(λ) are as follows:

dA
dt

= dA
dtc

+ dA
dtdown

= 0
dA

dtdown
= ∫ λmax

0 mA

(
λ′)G

(
λ, λ′) dλ′,

(3)

Here λ is a velocity of drawing, G(λ, λ
′
) is a kernel of the Eq. (3); the latter

determines the dynamical interaction between neighbour clouds. As a new element
we introduce a parameter δ into Eq. (3) and it determines the imbalance of the
cloud due to the return of part of the cloud energy on the organization of the wind
field in their vicinity, and additionally introduces a balance ratio that regulates
the contribution of the cloud with the weather process. Namely, the imbalance of
vertical and descending currents should create the effect of the mass of the real

retraction. Taking into account dA
dtdownstr

= T
(
λ), the mass balance equation in the

convective thermion is as follows:

δ

∫ λmax

0
G
(
λ, λ′)mA

(
λ′) dλ′ + T (λ) = mA (λ) (4)

A detailed expressions for kernel functions are given in Ref. [13]. It easily to
write a general solution of the modified Arakawa-Shubert equation with accounting
for air streams superposition of some synoptic process as:

mA (λ) = T (λ)+ δ

∫ λmax

0
G(s)R (λ, t : δ) dt, (5)

Here R is a resolvent of the Eq. (5), which is usually defined as follows:

R (λ, t : δ) =
∞∑

m=1

δm−1Gm (λ, t) (6)
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According to Refs. [2, 7], the quantity R is further determined in the form of the
Laurent expansion R = ∑∞

n=−∞ an(ξ − c)n in a complex plane ξ (its centre is a
centre of urban heating island and internal cycle coincides with its periphery).

The next important point is using the known “shallow water” model in order to
describe an atmosphere circulation above a city’s zone [2, 3]. Let us note that an
effective algorithm to solution of the problem is connected with using methods of
the plane geophysical complex field theory [2, 14]. The cloud masses on the urban
periphery can be defined in the wind field as follows (complex velocity potential):

vx − ivy = df
dξ
,

df
dξ

= Γ
2πi

[
1

ζ−ζ0
+∑∞

k=1

(
1

ζ−ζ0−kr + 1
ζ−ζ0+kr

)]
+ d

dζ

[∑n
k=1Γk ln (ζ − ck)

]
.

(7)

The system of parameters in Eq. (7) is described in Ref. [7]. Here we shortly
note that quantities ¦k, Γ are circulations on the atmospheric vortex and Carman
chain elements respectively; ck – co-ordinates of this forming; r – distance between
standard Carman chain vortexes; ζ, ζ − kr and ζ + kr are a centre co-ordinate, co-
ordinate of beginning and co-ordinate of end for the convective perturbation line
respectively.

At last it is important block of the whole approach is conned with computing the
turbulence spectra inside the city’s (urban) zone. Here one could apply the standard
tensor equations of turbulent tensions (see details in Refs. [14]). Computing balance
relationships for inside-urban zone is fulfilled on the basis of equation for kinetic
energy of turbulent regime.

Equating the velocity components determined in the model (7) and the corre-
sponding components of the “shallow water” model one could obtain the spectral
matching between the wave numbers that define the functional elements in the
Fourier-Bessel series with source element of a the plane geophysical complex field
theory. More details are in Refs. [2–10, 14–17]. All computing is carried out with
using the PC codes “Geomath”, “Quantum Chaos”, “ScanPoints” [18–34].

3 Some Numerical Results and Conclusions

As application of a new approach, some illustrative PC simulation results on
modelling an air ventilation field for the Odessa region are presented. As usu-
ally, arbitrary vector field, say v = ∇ψ + vχ , has the rotational and divergent
components; in a case of the horizontal wind, ψ is a current function (rotational
component) and χ is a velocity potential (divergent one).

Below these components are computed for a concrete synoptic process in the
Odessa region with input data parameters (such as cloudiness and convection
intensities) from [2, 3] and listed in Figs. 1 and 2.
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Fig. 1 Potential of ventilation χ for atmospheric situation (Odessa city; see text)

Fig. 2 Current function ψ for the atmospheric situation, presented in Fig. 1 (Odessa city)

The key basic assumptions and numerical parameters are as follows: the clouds
(black squares in Figs. 1, 2) with distance between them 500–700 m are coming
to the city by a few lines of convective instability and penetrate deep into the Gulf
of Odessa and the city with some distribution of the dry thermions (black circles in
Figs. 1, 2). The latter create their involvement currents and support a heat circulation
in the urban zone. The velocity field variation in time is about 0.5 m/s and the density
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of current lines is about 1 m/s to 0.5 cm of gradient in Fig. Obviously, if, say, vx > 0,
then the velocity increases in the direction of positive foci (and similarly on y) that
is marked with sign “+” (sign “−”). Figure 1 shows the picture of penetration of air
ventilation for most of the city, but the penetration of ventilation is expressed more
weakly for a current function field (Fig. 2).
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Biomechanical Analysis of Different Foot
Morphology During Standing
on a Dynamic Support Surface

Yang Shu, Jan Awrejcewicz , and Bartłomiej Zagrodny

Abstract Foot is a significant element during the balance as the main organ
that connects with surface. From the research of habitually barefoot people and
habitually shod people, there were significant differences in distance between the
hallux and the interphalangeal joint of the second toe. Habitually shod males had a
high risk of injury because of the lack of toes function. Based on these differences in
foot morphology and importance of hallux during activities, expanding the distance
between the hallux and other toes could increase the ability of hallux, especially
the balance. In order to analyse the influence of hallux during balance tests, three
conditions were set with light silica instruments: (1) normal toes, (2) expanding
toes, (3) binding toes. During the experiments, the 6-DOF transportation vibration
platform had continuous sinusoidal translation in the anterior-posterior and medial-
lateral directions with a sine wave. From the results, binding toes showed larger
movement of centre of pressure than normal toes and expending toes. In addition,
people with normal toes also indicated larger sway than expending toes. It could
conclude that control the toes function causes instability during static balance but
improve the hallux function can increase the balance ability.
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1 Introduction

Balance is an important ability in dynamic and static features of human in
biomechanics, and it maintains the line of gravity (vertical line from centre of
mass) of a body within the base of support with minimal postural sway [1].
The factors influencing balance ability including: (1) internal adjustment including
somatosensory, visual and vestibular systems and motor response [2], and (2) the
mechanical factors which could disrupt the orientation information. The pertur-
bation or change of center of Mass needs somatosensory to main balance. The
influence of support surface, such as support area and instability of support, would
affect the somatosensory and visual inputs.

Different ethnicities, pathological factors and different forms of sport partici-
pation could bring about foot morphology differences [3–5]. Treating foot as a
lever, fulcrum of Habitually shod people was forefoot but hallux and forefoot for
habitually barefoot people. Habitually barefoot people have more loading under the
hallux rather than the medial forefoot, could reduce the loading of the fulcrum. The
functions of the remaining toes balance control under static and dynamic conditions
[6]. Some studies found that tactile information feedback could be a benefit to
the postural control and balance [7]. plantar perception exercises contribute to
controlling balance [8]. My research of foot morphology indicated that hallux angle
and the minimal distance between the hallux and the interphalangeal joint of the
second toe were the main morphological differences between habitually shod people
and habitually barefoot people [9, 10]. However, most normal people are habitually
shod. It is convenient to expand the angle and distance forwardly. On the other
hand, decreasing hallux grip force was associated with weakening and worsened
balance [11]. In addition, it concluded that the active function of toes could prevent
foot injuries based on the research between running between binding toes and
normal toes, such as metatarsal fracture and plantar fasciitis [12]. This study is to
explore the trajectory of the COP in foot morphology control when maintaining an
upright standing posture on a dynamic support surface with continuous periodical
multidirectional perturbations.

2 Methods

Eighteen healthy young male students volunteered to attend the experiment (see
Table 1). All participants were free of lower limb pain and injury and had no history
of major surgery on the lower back or lower limbs for the past 12 months. They
were informed of the experimental procedure and gave written consent.

For this study, the light silica instrument was used to set the position of hallux
in three conditions: (1) Normal Toes; (2) Expending Toes; (3) Binding Toes (see
Fig. 1). The experiments tested 3 days in every foot condition. It aimed to prevent the
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Table 1 Participant
demographics

Total

Participants 18
Age (years) 25 ± 2.1
Height (cm) 176 ± 2.3
Weight (kg) 64 ± 5.5
Right leg length (cm)* 88.3 ± 2.8
Body mass index 22.4 ± 2.0
LEFS score 81.0 ± 1.0
Tegner activity score 6.0 ± 1.0
VAS 0.0 ± 0.0

Note: Right leg length, the measure-
ment from right anterior superior iliac
spine to the medial malleolus

Fig. 1 2D foot print image of Natural Toes (a), Expanding Toes (b) and Binding Toes (c)

influence of wearing instruments. Before the experiments, participants wore these
instruments and socks for both feet. Then they had free activities for 1 hour to adapt.

The Easy-Foot-Scan (EFS), OrthoBaltic (Kaunas, Lithuania) was used to scan
the foot of participants. From the results of foot scan after wearing instruments,
length of foot was 261.4 ± 12.3 mm, width was 119.8 ± 15.0 mm. Table 2 showed
the hallux angle and distance between three different conditions:

A six degrees of freedom (6-DOF) transportation vibration platform is a motion
simulation technology that can generate an infinite floor with various surfaces.
Users could use this interface to experience life-like movements in multidirectional
perturbations even virtual environment with various terrains. This research used the
6-DOF transportation vibration platform (MTD 6.0, TARCH, Wuhan, China). which
consists of a movable platform (diameter: 2 m), six servo valves and pistons and a
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Table 2 One-way analysis of variance of hallux angle and distance between Natural Toes,
Expanding Toes and Binding Toes people

Natural Toes Expanding Toes Binding Toes

Hallux angle (deg) 10.20 ± 5.33*,# 6.54 ± 3.05*,& 16.87 ± 4.65#,&
Distance (mm) 3.56 ± 2.31*,# 24.00 ± 5.74*,& 0.00 ± 0.12#,&

*, #, and & indicate significant differences (p < 0.05) for comparison between Natural Toes
and Expanding Toes, between Natural Toes and Binding Toes, and between Expanding Toes and
Binding Toes, respectively

Fig. 2 Structure of the 6-DOF transportation movable platform (a: back, b: side)

fixed base. The movable platform can move in three linear movements (vertical,
longitudinal and lateral), three rotations (pitch, roll, and yaw), and any combination
movements in space. Each participant performed on the 6-DOF platform (see
Fig. 2).

The PEDAR insole system (Novel, GmBH, Munich, Germany) was used to
measure the plantar pressure distribution and the trajectory of the COP. The insoles
are approximately 2.6 mm thick and contain 99 sensors which are able to measure
pressures up to 120 N/cm2.

During the experiments, the 6-DOF transportation vibration platform had con-
tinuous sinusoidal translation in the anterior-posterior (AP) and medial-lateral (ML)
directions with a sine wave (frequency: 1 rad/s; amplitude: 3, see Fig. 3):

y = 3 sin 2πx, (1)

All trials were obtained from the right lower limbs of each participant, the in-
shoe data recorded by the PEDAR system included the coordinates and trajectory of
the COP. In the coordinates (Cx, Cy) of COP trajectory, Cx is coordinated in the ML
direction and Cy is coordinated in the AP direction. COP excursion was defined as
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Fig. 3 6-DOF transportation vibration platform undergoing continuous sinusoidal translation.
Data were collected when the amplitude of the platform reached an integral sine wave

the distance between the furthest points in the A-P and M-L directions of the COP
in each sine wave.

The statistical measures were performed with SPSS 19.0 software. One-way
analysis of variance with post hoc Bonferroni correction was performed to inves-
tigate the variation tendency among different weight of loads. If p < 0.05, statistical
results were considered significant.

3 Results and Discussion

From Fig. 4, in M-L Direction, A-P Direction and COP Excursion, the length
of binding toes was significantly higher than normal toes and expending toes;
Moreover, the length of normal toes was also significantly higher than expending
toes.

Stability is generally defined as the ability of a person to maintain or restore the
equilibrium state of an upright posture without changing the support base [13]. The
increase of COP parameters, such as excursion, conclude the increase of instability
[14]. Recent studies indicated that lateral balance is more challenging than in the
A-P direction [15, 16]. From this experiment, Binding Toes showed large postural
sway in not only M-L direction, but also A-P direction and Excursion. It indicated
that control the toes function would cause instability. Conversely, Expending Toes
has less postural sway and instability than normal toes and binding toes. It suggested
that the balance ability would increase with the increasing of toes function.
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Fig. 4 6-DOF transportation vibration platform undergoing continuous sinusoidal translation.
Data were collected when the amplitude of the platform reached an integral sine wave

4 Conclusions

Balance ability is crucial for movement in daily life. There were many factors could
affect the performance of stability. Foot is a significant element during the balance as
the main organ that connects with surface. From the research of habitually barefoot
people and habitually shod people, there were significant differences in distance
between the hallux and the interphalangeal joint of the second toe. Habitually shod
males had a high risk of injury because of the lack of toes function. Based on
these differences in foot morphology and importance of hallux during activities,
expanding the distance between the hallux and other toes could increase the ability
of hallux, especially the balance.

During standing on the dynamic support surface, binding toes showed larger
movement of centre of pressure than normal toes and expending toes. In addition,
people with normal toes also indicated larger sway than expending toes. It could
conclude that control the toes function causes instability during static balance but
improve the hallux function can increase the balance ability. Finding of this study
provides detailed and important information for further studies on improving human
movement ability.
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Comparison of Various Fractional Order
Controllers on a Poorly Damped System

Isabela Birs, Ioan Nascu, Eva Dulf, and Cristina Muresan

Abstract Poorly damped systems exhibit a high oscillatory behavior making them
harder to control. The paper explores the possibilities of controlling a poorly damped
system using different fractional order control approaches such as the Fractional
Order Internal Model Control (FOIMC) and the Fractional Order Proportional
Integral (FOPI) controllers. The case study is chosen to be a highly nonlinear
experimental platform consisting of a vertical take-off and landing platform. The
performances of the closed loops with the two fractional order controllers are
compared experimentally by analyzing reference tracking, disturbance rejection and
robustness.

Keywords Fractional order control · Internal model control · Fractional order
proportional integral control · Poorly damped process

1 Introduction

The classical Proportional Integeral Derivative (PID) controller is dominant in most
industrial control applications based on feedback control loops. Among the years,
multiple tuning strategies have been developed for the PID, satisfying different
process requirements [5, 19]. However, as the processes became more complex or
the specifications more demanding, other control options have emerged for process
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control such as the Internal Model Control (IMC) approach. Applications for IMC
strategies are mostly abundant in controlling processes with dead time, proving
superior to the PID controller [20]. Comparisons between the two strategies show
that the PID is easier to understand than the IMC, but the tuning of the IMC
controller is easier for dead time processes [8].

Poorly damped processes feature a high-oscillatory response in the time domain
with the presence of resonance peaks in the frequency domain representation of
the process, increasing the difficulty of the control task. The transfer function of
the classical PID controller has a single pair of zeros to compensate the poorly
damped process, motivating the need of a higher order controller to compensate for
the poorly damped characteristics of the plant [6]. Hence, the development of more
complex tuning procedures is needed for controlling processes with poorly damped
dynamics.

One of the most popular extensions of the traditional PID controller represents its
generalization based on the fractional calculus theory. A popular approach for mod-
ern control engineering, fractional order control gives the differentiation operation
an infinite dimension. The PID controller features integration and differentiation
operations of order 1. It’s fractional order generalization, known as the Fractional
Order Proportional Integral Derivative (FOPID) controller, allows any rational order
for the integral and derivative terms. Hence, the obtained FOPID controller can
simultaneously satisfy more constraints than the classical PID approach as well as
providing increased stability of the closed loop system [11, 12, 17, 21, 22].

Variations of the FOPID controller such as the Fractional Order Proportional
Derivative (FOPD) and Fractional Order Proportional Integral (FOPI) controllers
have been tuned with the purpose of controlling poorly damped systems. A
poorly damped mass-spring-damper system expressed through a second order
transfer function is controlled using the FOPI controller in [6]. The paper also
compares the FOPI with the integer order PI controller, showing the superiority
of the FOPI controller. FOPD controllers are developed by [2, 15, 18] for high-
oscillatory vibration suppression processes with low damping ratios. The controllers
are validated experimentally proving once more the superiority of the fractional
approach for poorly-damped processes. In [13], the FOPID controller is compared
to the traditional PID for a high-oscillatory thyristor controlled series capacitor
process.

The Internal Model Control (IMC) approach also has a generalization in the
fractional calculus field, known as the Fractional Order Internal Model Control
(FOIMC). This implies the usage of a fractional order filter in favor of the integer
order one for integer order processes [14] or inverting a fractional order model [23].
The available research surrounding the FOIMC controller is focused on time delay
plants, where the superiority of this approach has been widely proven [7, 10, 24–
26]. However, the development of FOIMC controllers for poorly damped time delay
systems has been neglected.

The novelty of the present study lies in the development of an FOIMC control
strategy for a poorly damped process with time delay. In addition, an FOPI is
developed for the same process with the purpose of comparing the two methods.
Both control strategies are implemented on a real life platform and the validation



Comparison of FO Controllers on a Poorly Damped System 221

of both methods is realized experimentally. Ultimately, the best approach will be
determined by analyzing the closed loop response of the poorly damped system
in terms of steady state error, settling time, overshoot, robustness and disturbance
rejection performance.

The paper is structured as follows: Sect. 2 details the tuning methodology of
the FOPI controller, Sect. 3 presents the mathematical background of the FOIMC
approach; Sect. 4 presents the case study with an in-depth analysis of the process,
system identification; controller tuning and experimental results; while Sect. 5
concludes the study.

2 Fractional Order Proportional Integral Control

The negative feedback control structure with the FOPI controller is presented in
Fig. 1.

Several approaches are available for the tuning of an FOPI controller spanning
from graphical tuning methodologies [3, 27] to optimization techniques [4]. The
chosen design strategy of the FOPI controller is based on imposing frequency
domain requirements of the open loop system given by

Hol(s) = HFOPI (s)Hp(s), (1)

where Hp(s) is the transfer function of a poorly damped process with time delay

Hp(s) = k

s2 + 2ζωns + ω2
n

e−τs (2)

and HFOPI (s) is the FOPI controller

HFOPI (s) = kp + ki

sλ
. (3)

The process’ poorly damped dynamics is given by the low value of the damping
ratio ζ . The time delay amount is expressed through τ , while the process’ gain and
natural frequency are enclosed in k and ωn.

The FOPI controller is characterized by the proportional and integral gains kp
and ki , respectively, and by the fractional order of differentiation which is denoted
by λ. The fractional order λ can be any rational number from the (0, 2) interval. For

Fig. 1 FOPI control structure
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the particular case of λ = 1, the transfer function from Eq. (3) becomes the classical,
integer order, PI controller.

The tuning of the FOPI controller consists in determining kp, ki and λ. For this
purpose, a set of frequency domain constraints are imposed targeting gain crossover
frequency ωgc, phase margin φm and the iso-damping property. This is one of the
most popular methods for tuning FOPID-type controllers [4]. One of the main
advantages of this method is it’s suitability on multiple processes such as the time
delay family.

Replacing s = jω gives the frequency domain representation of the open loop
transfer function from Eq. (1). The first two constraints regarding gain crossover
frequency and phase margin influence the damping ratio and the settling time of the
closed loop system. The mathematical representation of the first two constraints can
be written as

|Hol(jωgc))| = 1 (4)

� (Hol(jωgc)) = −π + φm. (5)

The iso-damping property is the closed loop system’s robustness to gain vari-
ations. The specification translates into a straight line of the phase representation
around the gain crossover frequency. This means that for a certain range of gain
changes, the phase remains constant, guaranteeing a robust behavior. The iso-
damping equation is given by the derivative of the phase which is known to be
zero for a constant line [1].

d( � Hol(jωgc))

dω
|ω=ωgc = 0 (6)

The three equations from Eqs. (4), (5) and (6) form a system of nonlinear
transcendental equations. The system is solved by imposing the desired gain
crossover frequency ωgc and phase margin φm. Reference [16] presents a set of
guidelines for choosing adequate values for ωgc and φm such that the obtained
controller has physical meaning. There are multiple possibilities to solving the
system of equations such as classical graphical approaches or more complex
optimization techniques using MATLAB’s Optimization Toolbox with constraints
regarding λ ∈ (0, 2) and kp, ki > 0.

3 Fractional Order Internal Model Control

Figure 2 shows the control scheme of the FOIMC controller applied to a time
delayed process. The IMC control strategy uses the process in an explicit manner,
while the FOPI structure from Fig. 1 uses it in an implicitly. The FOPI parameters
are tuned based on the process model, without always knowing how the process will
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Fig. 2 FOIMC control structure

influence the control parameters. The FOIMC control structure is based directly on
the process transfer function. For the integer order IMC case, there is one parameter
that needs to be determined, usually denoted by λ, representing the filter coefficient
[20]. It is important to specify that the parameters λ has different meanings for the
FOPI and FOIMC.

In order to develop the tuning methodology of the FOIMC controller, the time
delay τ from Eq. (2) is approximated using the series approach

e−τs ≈ 1 − τs, (7)

giving the approximated process model

Hm(s) = k(1 − τs)

s2 + 2ζωns + ω2
n

. (8)

The FOIMC controller from Fig. 1 is expressed as

HFOIMC(s) = s2 + 2ζωns + ω2
n

k

1

λsα + 1
, (9)

where λ is the filter coefficient and α ∈ (0, 2) is the filter’s fractional order. The
control structure with the FOIMC controller can be written as

Hc(s) = HFOIMC(s)

1 −HFOIMC(s)Hm(s)
= s2 + 2ζωns + ω2

n

k(λsα + τs)
(10)

obtaining the open loop system

Hol(s) = 1

λsα + τs
e−τs . (11)

The FOIMC controller from Eq. (9) has two parameters that need to be deter-
mined: α and λ. A similar approach as for the tuning of the FOPI controller
from Sect. 2 can be employed based on the gain crossover and phase equations
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from Eqs. (4) and (5). A gain crossover frequency ωgc and a phase margin φm are
imposed for the open loop system in Eq. (11), resulting in a system of two nonlinear
transcendental equations. Solving the system can be performed in a similar fashion
as for the FOPI controller, obtaining α and λ.

The experimental implementation of the FOIMC controller is realized by
splitting the control structure transfer function from Eq. (10) in an integer order
PID controller and a fractional order filter

HFO(s) = 1

λsα−1 + τ
. (12)

4 The Poorly Damped Case Study

4.1 Process Description

An oscillating, highly nonlinear process, consisting of a Vertical Take-Off and
Landing (VTOL) platform has been chosen as the experimental case study. The
platform is manufactured by Quanser for didactic purposes and is compatible with
NIElvis boards from National Instruments. The VTOL process is displayed in Fig. 3.

The red cantilever beam is attached to a rotating component allowing angular
movements on a single axis around the pivot point. The beam is equipped with

Fig. 3 VTOL platform
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Fig. 4 Non-linearity and poor damping of the VTOL process

a balancing weight (left) and with a fan (right) that thrusts the cantilever beam
upwards through its rotation. The input of the process is considered the voltage
(V) applied to the motor connecting to the fan, while the output is the angular
displacement of the beam. The displacement is measured with respect to the 0 deg
position which is considered to be parallel to the base platform of the experimental
setup. The maximum movement interval is [−26, 60] deg due to construction
limitations.

The experimental test presented in Fig. 4 proves the high oscillating and nonlin-
ear nature of the process. The test implies stabilizing the platform at the 0 position
using a 6.3 V input and changing the value by 1.5 V and −1.5 V.

The desired closed loop system behavior is to impose a setpoint position for
the beam which is honored with a short settling time and minimum overshoot. A
discrete control law is computed and sent to the platform with a sampling time of
0.005 s using LabVIEW graphical programming and the NIElvis microcontroller.
The control loop is closed using built-in encoders to measure the real-time position
of the beam used as feedback.

The process is described by a second order transfer function with time delay. The
system identification is based on a step input of amplitude 6.3 V that stabilizes the
beam at the 0 position. The experimentally obtained model based on Eq. (2) is given
by

Hp(s) = 22.24

s2 + 0.6934s + 5.244
e−0.8s . (13)

The damping ratio ζ = 0.1514 suggests a poorly damped process response which
is also confirmed by Fig. 4.
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4.2 Tuning of the Fractional Order Controllers

The main requirement of the process described in the previous section is the zero
steady state error, motivating the choice of the FOPI controller. The parameters are
determined by imposing the gain crossover frequency ωgc = 0.4 rad/s and a phase
margin φm = 75 deg. The system of equations formed by Eqs. (4), (5) and (6) is
translated into a minimization problem and is handled using optimization routines
provided by MATLAB. The obtained controller

HFOPI (s) = 0.0422 + 20.7745

s0.9288 (14)

has a fractional order of differentiation λ = 0.9288.
For the experimental implementation of the FOPI controller on the VTOL unit,

the discrete control law has been computed based on the method detailed in [9]. The
method provides a direct mapper between the fractional transfer function and the
discrete domain using frequency domain approximations, without the need of the
intermediary step where the fractional order transfer function is approximated to a
high order integer order model. The discrete controller is obtained using a fifth order
approximation and a sampling time Ts = 0.005 s.

The same frequency domain specification as for the case of the FOPI tuning are
imposed in order to determine the FOIMC controller, ωgc = 0.4 rad/s and φm =
75 deg. Solving the system of equations formed by Eqs. (4) and (5) with the open
loop system from Eq. (11) gives the following FOIMC controller

HFOIMC(s) = s2 + 0.6934s + 5.244

k

22.24

1.09s0.8536 + 1
. (15)

Note the fractional order of the filter that has been obtained as α = 0.8536.
Furthermore, the control structure is obtained as

Hc(s) = s2 + 0.6934s + 5.244

22.24(1.09s0.8536 + 0.8s)
(16)

A first order filter with the time constant Tf = 0.1 s is added to the equivalent
controller from Eq. (16).

The discrete form of the FOIMC control structure with the added filter is
obtained using the same approximation method and the same parameters as the
FOPI controller.
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4.3 Experimental Results and Comparisons

Both FOIMC and FOPI controllers are implemented on the experimental VTOL
platform using the same discrete time approximation. For the physical implementa-
tion, the command signal applied to the platform is saturated in the [0,10] V interval.

A set of steps with different amplitudes is applied as reference values and the
behavior of both control strategies are disseminated in Fig. 5. The test involves
applying the step references r = (−15,−10,−15,−23) deg at times t =
(0, 30, 45, 60) s. The settling time obtained with the FOPI controller is ts−FOPI ≈
10 s, while the FOIMC performance is ts−FOIMC ≈ 6 s. It is clear that for every
step change, the FOIMC controller is the better choice. The FOIMC causes a spike
of 30 V, at the beginning of the test which leads to a reduced time delay of the closed
loop system, compared to the FOPI command which is smoother and has no abrupt
changes (Figs. 6 and 7).

For the disturbance rejection test scenario, a setpoint of −15 deg is imposed
for the duration of the test. After the closed loop systems stabilize at the desired
position, an input disturbance of −0.5 V is introduce at t1 = 30 s which is further
removed at t2 = 60 s. The FOIMC controller is the better choice for this test also,
due to it’s reduced overshoot and settling time.

The last test involves adding a 50 g weight to the right end of the rotating beam
with the purpose of slightly altering the process. The robustness is assessed by
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Fig. 5 Experimental reference tracking
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Fig. 6 Experimental disturbance rejection
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Fig. 7 Experimental robustness assessment

applying a single step reference of −15 V to the process. Both controllers produce 0
overshoot, but the FOIMC provides a smaller settling time and reduced time delay.
The initial command spike is also present for the FOIMC controller.
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5 Conclusions

Two different control strategies are developed and experimentally validated on a
poorly damped process representing by a VTOL platform. The first strategy involves
the tuning of an FOPI controller, while the second targets an FOIMC approach. Both
controllers are tuned using the same frequency domain specifications: gain crossover
frequency and phase, while the FOPI uses an extra robustness requirement. In
addition, physical implementation of the control law uses the same discretization
procedure with identical parameters. The two controllers are tested experimentally
and their performance is assessed in terms of step reference tracking, disturbance
of the input signal and robust behavior. For every test, the performance of the
FOIMC control is superior to the FOPI. However, regardless of the performance of
the two strategies for this particular process, the paper proves that fractional order
controllers can be successfully applied to real life poorly damped processes.
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Asymptotic Analysis of Submerged
Spring Pendulum Motion in Liquid

T. S. Amer , M. A. Bek , and Asmaa Arab

Abstract In the current work, the response of two degrees of freedom nonlinear
dynamical model represented by the motion of a damped spring pendulum in an
inviscid fluid flow is investigated. Lagrange’s equations are utilized to deduce
the descriptive equations of motion. The approximate solution up to the second
order is obtained using the multiple scales perturbation technique. Classifications
of different resonance cases were presented along with the modulation equations.
The resonance curves, steady-state solution, and time history are presented. These
types of models are essential as it represents several engineering applications.

Keywords Non-linear dynamics · Multiple scales technique · Fixed points ·
Stability

1 Introduction

The parametrical non-linear systems such as spring pendulum motion are of great
interest for many types of research. These models have several industrial applica-
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tions such as swaying buildings, sieves, and roto dynamics [1–6]. These models
provided a rich source for many applications, such as controlling the vibrations
caused by external forces. A few researchers have investigated the pendulum motion
in a fluid, see [7–9]. The multiple scales (MS) perturbation technique is used
widely to obtain the systems’ asymptotic solutions governing motion equations, as
presented in [10–12].

Similarly, the small parameter method was used, and the fourth-order Rung-Kutta
method is used in [13–15] to obtain the approximate and numerical solutions. The
model investigated in the paper can represent various engineering applications or
can simulate the motion of an autonomous underwater vehicle (AUV). The used MS
method allows for identifying the system’s harmful parameters due to the resonance.
Also, the steady-state solution’s stability can be carried out after transferring the
modulation equations into an autonomous form. The modulation system of both
amplitudes and modified phases in terms of time scales parameter is obtained. The
time histories for the gained solutions are represented graphically to describe these
solutions’ behavior at any instant. Fixed points are calculated from the intersection
of the curves in each plot. The stabilities of the steady-state solutions are checked
through the Routh-Hurwitz criterion.

In this work, we will investigate the 2DOF dynamical model’s behavior consists
of the motion of a pendulum in a fluid flow. The equations of motion are obtained
using Lagrange’s equations up to the second-order approximation using the MS
perturbation technique. Classifications of different resonance cases were presented
in light of the obtained modulation equations. Time histories of these solutions are
represented graphically to reveal the physical parameters’ impact on the motion
of the considered model. The importance of this model is due to its various
applications, which centric on engineering vibrating systems.

2 Dynamical Model Description

The considered model represents the planar motion of a damped massless spring
pendulum moving in a liquid with stiffness k.

The spring is hinged at a fixed point O, and the other side is attached with a mass
M as presented in Fig. 1. The pendulum arm is subjected to an external harmonic
force F(t) = F0 cos (�t). Where� and F0 are the frequency and the force amplitude.
The spring initial length and elongation are denoted as �, r where θ denotes the
inclination angle on the vertical downward axis OY.

Therefore the kinetic and potential energies can be written in the form

V = (Mg − FB) (�+ r) (1 − cos θ)+ 1

2
kr2,

T = 1

2
M
[
(�+ r)2θ̇2 + ṙ2

]
,

(1)

where g are the gravitational acceleration.
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Fig. 1 The dynamical model

Now, let us consider ρ as the liquid density, v refers to the velocity of the
pendulum, A represents the cross-sectional area, Vol is the mass volume, CL is a
lift coefficient and CD is a drag one.

Therefore, the applied forces on the dynamical are:

1. The external force F(t) = F0 cos (�t),
2. The buoyancy force FB = ρgVol,
3. The drag force FD = 1

2ρv
2ACD represents the resistance force due to the motion

of a mass through a liquid. Therefore, it acts in the opposite direction of the
movement,

4. the lift force FL = 1
2ρv

2ACL, clarifies a net force that acts perpendicular to the
direction of the relative motion. It is created by different pressures on opposite
sides of a mass due to the motion.

It is also worth mentioning that the motion of the system is damped by viscous
force c1ṙ of the damper and viscous rotation force c2θ̇ ; where c1 and c2 are the
damping coefficients.

Using the above, we can obtain directly the Lagrangian L = T − V, and according
to Lagrange’s equations [16] of the second type, one gets the governing equations
of motion as follow:

M
[
r̈ − (�+ r) θ̇2

]
+ (Mg − FB) (1 − cos θ)+ kr

= F0 cos (Ωt)− c1ṙ − 1

2
ρACL

[
(�+ r)2θ̇2 + ṙ2

]
,

M

{
θ̈ (�+ r)2 + (�+ r)

[
2θ̇ ṙ +

(
g − FB

M

)
sin θ

]}

= −1

2
ρACD × [

(�+ r)2θ̇2 + ṙ2
]− c2θ̇ .

(2)
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The above system (2) consists of two non-linear second order differential
equations of r and θ .

Let us use the following parameters

r

�
= ε r̃, θ = ε θ̃, F0 = ε3 f̃ , FB = ε2 f̃B,

ω2
1 = k

M
, ω2

2 = g

�
, f = f̃

� M
,

c1

M
= ε2c̃1,

fB = f̃B

�M
, G1 = g

2�
,

c2

M
= ε2c̃2,

HD = ρACD�

2Mε
, HL = ρACL�

2Mε
.

(3)

where ε is a small parameter.
Approximating the trigonometric functions sinθ and cosθ up to third order and

according to (3), the governing system (2) is converted into

¨̃r + ω1
2r̃ = ε

(
˙̃
θ

2 −G1θ̃
2
)

+ ε2
(
r̃
˙̃
θ

2 − c1 ˙̃r
)

+ ε2
[
f cos (Ωt)+ fB +HL

(
˙̃
θ

2 + ˙̃r2
)]

,

¨̃
θ + ω2

2θ̃ = −ε
(

2 ˙̃
θ ˙̃r + 2r̃ ¨̃

θ − ω2
2r̃ θ̃ − fBθ̃

)
− ε2

[
2 ˙̃
θ ˙̃rr̃ + r̃2 ¨̃

θ − ω2
2

3! θ̃
3

+ c2
˙̃
θ +HD

(
˙̃
θ

2 + ˙̃r2
)

+ fBr̃θ̃
]
.

(4)

3 The Proposed Method

In order to obtain the asymptotic solutions of the governing system (4) and to get
the modulation equations, we utilize the multiple scales method [12]. Therefore, let
us assume the desired asymptotic uniform solutions r and θ have the forms of power
series of a non-dimensional bookkeeping small parameter, say 0 < ε � 1, as

r =
∑2

k=0
εkrk (T0, T1, T2)+O

(
ε3
)
,

θ =
∑2

k=0
εkθk (T0, T1, T2)+O

(
ε3
)
,

(5)

where Tn = εnT; (n = 0, 1, 2) are independent different time scales, in which T0 and
T1, T2 are the fast and slow time scales respectively.

It is convenient to express the general solutions of equations in the following
complex form

r0 = A1 e
iω1T0 + A1 e

−iω1T0 ,

θ0 = A2 e
iω2T0 + A2 e

−iω2T0 .
(6)
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Here Ai ( i = 1, 2) are defined as unknown complex functions of T1 and T2 can
be determined later while Ai denotes to their complex conjugate.

Substituting the above solutions (6) into the system equations, then eliminating
terms that lead to secular terms, we have the first-order approximation solution in
the forms

r1 = −
(
G1 + ω2

2

)

(
ω2

1 − 4ω2
2

)A2
2e

2iω2T0 +
(
2ω2

2 − 2G1
)

ω2
1

A2A2 + c.c,

θ1 = −ω2 (2ω1 + ω2)

ω1 (ω1 + 2ω2)
A1A2e

i(ω1+ω2)T0 + ω2 (2ω1 − ω2)

ω1 (ω1 − 2ω2)

× A1A2e
i(ω1−ω2)T0 + c.c.

(7)

The conditions for the elimination of secular terms for the first approximation
required that

2iω1
dA1

dT1
= 0;

2iω2
dA2

dT1
= 0.

(8)

Consequently,

r2 = 1

2
(
ω2

1 −Ω
)f eiT0Ω + 1

ω2
1

fB +HL

[2ω2
2

ω2
1

(
A2A2 + A1A1

)

+ A1
3

3
e2iω1T0 − ω2

2A2(
ω2

1 − 4ω2
2

)e2iω2T0
]

+ ω2
2A1A

2
2

4ω2 (ω1 − ω2)
ei(ω1+2ω2)T0 + c.c.,

θ2 = ω1ω2A
2
1

2ω1

[
A2

(ω1 + ω2)
ei(2ω1+ω2)T0 − A2

(ω1 − ω2)
ei(2ω1−ω2)T0

]

− ω2
2A2

2ω1
×
[

A2
1

(ω1 + ω2)
ei(2ω1+ω2)T0 + A

2
1

(ω1 − ω2)
ei(ω2−2ω1)T0

]

− A2
3

64
e3iω2T0 −HD

[
2A2A2 + A2

2

3ω2
2

e2iω2T0 − ω2
1A

2
1

ω2
2 − 4ω2

1

e2iω2T0

+ 2
ω2

1

ω2
2

A1A1

]
+ fB

(
A1A2e

i(ω1+ω2)T0

ω1 (ω1 + 2ω2)
+ A1A2e

i(ω2−ω1)T0

ω1 (ω1 − 2ω2)

)

+ c.c.

(9)
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Eliminating the terms that lead to secular ones form the second approximation
demands that

2ω2
2A2A2A1 − d2A1

dT1
2

− iω1

(
c1A1 + 2

dA1

dT2

)
= 0,

2ω2A1A2
(
ω2A1 − ω1A1

)− iω2

(
c2A2 + 2

dA2

dT2

)
= 0.

(10)

As mentioned before, the unknown functions Ai(i = 1, 2) can be determined from
the removing conditions of the secular terms.

There are many resonance cases, primary external and internal secondary cases.
The Primary external resonance occurs at � = ω1, while the Internal or secondary
resonance occurs at ω1 = ± ω2, ω1 = 2ω2, ω1 = 0, ω2 = 0. Hence a complicated
dynamical behaviour is excepted.

4 Stability of the System

The following part contains the system stability investigation at the two resonance
cases. Where, � ≈ ω1 and ω2 ≈ ω1 are satisfied. This means that � and ω2
are closer to ω1. Therefore, the detuning parameters σ i( i = 1, 2) are introduced
according to the following form

Ω = ω1 + σ1, ω2 = ω1 + σ2. (11)

These new parameters σ i can be looked as a distance of the oscillations from the
strict resonance, and then we can write σ i as

σi = εσ̃i
�← �← �← �← (i = 1, 2) . (12)

By using conditions (11) and (12) and eliminating terms that lead to secular terms
in order to obtain the solvability conditions:

1

2
f eiσ1T1 + 2ω2

2A2A2A1 − 2iω1
∂A1

∂T2
− iω1c1A1 = 0,

ω2
2

2
A2

2A2 − 2iω2
∂A2

∂T2
+
(

2ω2
2 − 2ω1ω2

)
A1A1A2

− ic2ω2A2 +HDω1
2A1

2e−iσ2T1 = 0.

(13)

It is noticed from (13) that these functions depend on T2 only and then we can
express them as follow:

Ai = ãi (T2)

2
eiψ̃iT2 , ai = εãi; i = 1, 2. (14)
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Here ãi and ψ i (i = 1, 2) represent the real functions amplitudes and phases for
the solutions of r, θ .

The functions Ai can be expressed in the form

∂Ai

∂T
= ε2 ∂Ai

∂T2
(i = 1, 2) . (15)

Therefore Eq. (13) mutate into ordinary differential equations. The following
modified phases can be introduced to transform these equations into autonomous
ones

θ1 (T1, T2) = T1σ̃1 − ψ1 (T2) ,

θ2 (T1, T2) = −T1σ̃2 − ψ2 (T2)+ 2ψ1 (T2) .
(16)

Using (13), (14), (15), and (16) and identifying real parts and imaginary ones,
we obtain the following system of four first-order ordinary differential equations
(modulation) of the amplitudes ai and the modified phases θ i (i = 1, 2) for the
examined resonance cases

da1

dT
= f

2ω1
sin θ1 − 1

2
a1c1,

a1
dθ1

dT
= a1σ1 − f

2ω1
cos θ1 − ω2

2

ω1

a1a2
2

4
,

da2

dT
= −a2c2

2
−HD

a1
2ω1

2

4ω2
sin θ2,

a2
dθ2

dT
= a1

2a2

8
(ω2 − ω1)+ ω2

a2
3

16

−HD

a1
2ω1

2

4ω2
cos θ2 − a2σ2.

(17)

An inspection of the above system, we can conclude that this system has the
solutions ai and θ i which describe the amplitudes and phases modulation in terms
of the time scale T. These solutions are demonstrated graphically as in Figs. 2, 3, 4,
and 5 using the following parameters:

ω1 = (1.5, 2.5, 3.5) rad.s−1, f = 10−3 M = 10 kg,
c1 = (0.004, 0.012, 0.02) kg.m2.s−1, g = 9.8 kg.s−2,

c2 = (0.001, 0.008, 0.03) kg.m2.s−1, cD = 0.47,
� = (1.2, 1.3, 1.5) m, R = 0.113 m, ε = 0.005
σ̃2 = 0.01 rad.s−1, σ̃1 = 0.005 rad.s−1, cL = 0.25.
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Fig. 2 Represents the time
history of the amplitude a1
versus T when
ω1 = (1.5, 2.5, 3.5)rad. s−1

Fig. 3 Represents the
influence of variance of T on
the amplitude a2 when
ω1 = (1.5, 2.5, 3.5)rad. s−1

Fig. 4 Examines the
variance of the modified
phase θ1 with T when
ω1 = (1.5, 2.5, 3.5)rad. s−1

It is of interest to continue studying the shapes of Fig. 2 that represent the
variance of a1 via T where Fig. 2 illustrates the progressive wave amplitude variance
of a1 with time using different values of ω1. The oscillation amplitude shows
gradual decrement with the increase of ω1 values. Moreover, the change of the
waves becomes tiny when ω1, c1 and c2 have different values, as seen in Fig. 3.
However, Figs. 4 and 5 represent the effects of changing ω1 on the behavior of the
modified phases θ1 and θ2 respectively. It is clear that these drawings indicate that



Asymptotic Analysis of Submerged Spring Pendulum Motion in Liquid 241

Fig. 5 Explores the effects
of time T on the modified
phase θ2 when
ω1 = (1.5, 2.5, 3.5)rad. s−1

the monotonic decrease of the behaviour of the modified phases, as shown in Eqs.
(24) and (26).

5 Steady-State Solutions

In order to study the steady-state vibration, we assume dθi
dT

= dai
dT

= 0 (i = 1, 2) in
(17) to obtain the following system of four algebraic equations of the unknowns ai

and θ i.; i = 1, 2

f

2ω1
sin θ1 − 1

2
a1c1 = 0,

f

2ω1
cos θ1 + ω2

2

ω1

a1a2
2

4
− a1σ1 = 0,

a2c2

2
+HD

a1
2ω1

2

4ω2
sin θ2 = 0,

a1
2a2

4
(ω2 − ω1)+ ω2

a2
3

16
−HD

a1
2ω1

2

4ω2
cos θ2 − a2σ2 = 0.

(18)

After eliminating the modified phases θ1 and θ2, from Eq. (18), we have a system
of two implicit non-linear algebraic equations of amplitudes ai and frequencies ωi

besides the detuning parameters σ i.

f 2

4ω1
2 = 1

4a1
2c1

2 +
(
a1σ1 − ω2

2 a1a2
2

4

)2
,

HD
2 a1

4ω1
4

16ω2
2 = a2

2c2
2

4 +
(
a1

2a2
4 (ω2 − ω1)+ ω2

a2
3

16 − a2σ2

)2
.

(19)

Figure 6 represents the variance of a1 via σ 1 when ω1 = (1.5, 2.5)rad. s−1. and
the variance of a1 via σ 1 when c1 = (0.004, 0.02)kg. m2. s−1 is shown in Fig. 7,
however, Fig. 8 displays the variance of a2 via σ 1 when c2 = (0.001, 0.03)kg. m2.
s−1. It is concluded the steady-state amplitudes are decreased monotonically with
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Fig. 6 Displays the
resonance curves a1 via σ 1
when ω1 = (1.5, 2.5, 3.5)rad.
s−1

Fig. 7 Illustrate of the
resonance curves a1 via σ 1
when c1 = (0.004, 0.02)kg.
m2. s−1

the increasing of the value of ω1. While the higher value of c2 the lower readings of
a1.

In order to further investigate the stability near fixed points, we consider:

a1 = a10 + a11, a2 = a20 + a21,

θ1 = θ10 + θ11, θ2 = θ20 + θ21,
(20)
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Fig. 8 Illustrate the
resonance curves a2 via σ 1
when c2 = (0.001, 0.03)kg.
m2. s−1

where a10, θ10, a20 and θ20 are the steady-state solutions of (17) and a11, θ11, a21
and θ21 are the assumed corresponding small perturbations. Substituting (20) into
(17), one obtains the linearized equations in the form

da11

dT
= f

2ω1
cos θ10θ11 − 1

2
a11c1,

a10
dθ11

dT
= f

2ω1
sin θ10θ11 − ω2

2

4

(
2a10a20a21 + a11a

2
20

)
+ a11σ1,

da21

dT
= −HD

ω1
2

4ω2
a10

2 cos θ20θ21 − 1

2
a21c2,

a20
dθ21

dT
= 3

16
ω2a

2
20a21 + ω1

2

2ω2
a10

2HD sin θ20θ21 + 1

4
(ω2 − ω1)

×
[
a10

2a21 + 2a10a20a11

]
+ a21σ2.

(21)

Bearing in mind that a11,θ11,a21 and θ21 are unknown perturbation functions.
Each solution can be expressed as a linear combination of ki eλτ , in which ki

(i = 1, 2, 3, 4) are constants and λ is the eigenvalue corresponding to the unknown
perturbation. In this regards, if the steady-state solutions (fixed points) a10,θ10,a20
and θ20 are asymptotically stable, then the real parts of the roots of the following
characteristic equation of the set of Eq. (21)

<?pag? > λ4 +  1λ
3 +  2λ

2 +  3λ+  4 = 0, (22)

must be negative.
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Here  1,  2,  3,  4 depend on a10,θ10,a20,c1,c2,f and take the forms

 1 = c1 + c2

2
− f sin (θ10)

2a10ω1
− sin (θ20) a10

2HDω1
2

2a20ω2
,

 2 = 1

32a10a20ω1ω
2
2

{
8f a2

10HDω
2
1ω2 sin θ10 sin θ20 − 8f a20

[
(c1 + c2) sin θ10

+ 2σ1 cos θ10

]
ω2

2 + 8a10a20c1c2ω1ω
2
2 + 4f a3

10ω
4
2 × cos θ10

+ 4a5
10HDω

3
1ω2 (ω2 − ω1) cos θ20 + a3

10HDω
3
1

[
ω2

×
(

16σ2 + 3a2
20ω2

)
cos θ20 − 8ω2 (c1 + c2) sin θ20 ]} ,

 3 = 1
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2
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{
4a2

10HDω
2
1ω2 sin θ20

[
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2
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20ω

2
2

)
cos θ10

]
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2
2
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20ω
2
2
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20
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2
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2
20ω

3
2
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20 − 4a2

10 )} .

(23)

Therefore, one can obtain the essential conditions for the stability of the steady-
state solutions according to the Routh-Hurwitz criterion in the form

 1 > 0,  3 ( 1 2 −  3)− 34 
2
1 > 0,

 1 2 −  3 > 0,  4 > 0.
(24)
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The stability of the solutions is tested according to the graphical representations
of the system of Eq. (19). The results are displayed in Figs. 9 and 10 to show
the variance of a2 versus a1 for different values of c2 and σ 2. These figures are
calculated according to the following parameters:

ω1 = (1.5, 2.5, 3.5) rad.s−1, c1 = 0.012 kg.m2.s−1,

c2 = (0.001, 0.008, 0.03) kg.m2.s−1, � = 1.2 m,
f = 0.0001, σ1 = 0.005 rad.s−1, M = 10 kg,
σ2 = (0.01, 0.04, 0.05, 0.09) rad.s−1.

Fig. 9 Clarifies the
intersection of the amplitudes
a1 and a2 in order to obtain
the fixed points: eight fixed
points in which four of them
are stable, and the others are
unstable when c2 = 0.03kg.
m2. s−1

Fig. 10 Clarifies the
intersection of the amplitudes
a1 and a2 in order to obtain
the fixed points: 16 fixed
points in which four of them
are stable, and the others are
unstable when σ 2 = 0.04.
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The intersection between the two curves gives the fixed points where small black
circles mark the stable fixed points, satisfies all of the conditions (24), while hollow
circles characterise the unstable ones. Figures 9 and 10 present the location of the
fixed points eight and sixteen, respectively, with the following data: c2 = 0.03 to
with only four stable fixed points that meet the conditions (23) out of eight. Finally,
Fig. 10 has been calculated when σ 2 = 0.04 with the constancy of other values
to produce 16 fixed points. Eight of the fixed points meets the conditions (23) and
tends to be stable.

6 Conclusion

This work discusses the analysis of the damped spring pendulum, which is moving
in liquid. The equation of motion is obtained using Lagrange’s equations in the
presence of external forces acting on the system. The MS method is successfully
used to get the approximate solution to the second-order and to gain the modulation
equations in the frame work of the solvability conditions. Two cases of resonance
cases are introduced as primary external resonance and the internal one. The possi-
ble fixed points are determined, and then their stability is checked out according to
the Routh–Hurwitz criterion. The time histories of the achieved solutions, resonance
cases and steady-state solutions are represented graphically. The importance of this
work is to go back to its direct applications in the fields of shipbuilding, submarines
and engineering machines which have damping to deal with vibrations.
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Parametric Identification of Nonlinear
Structures Using Particle Swarm
Optimization Based on Power Flow
Balance Criteria

R. Anish and K. Shankar

Abstract This paper discusses a novel approach for nonlinear parameter iden-
tification of structures. An inverse problem was formulated as an optimization
problem, using two objective functions in time domain. The first objective function
is formulated as an error between measured acceleration and predicted acceleration
of the model. While the second objective function minimizes the substructure
Instantaneous Power Flow Balance, which is the sum of input power, dissipated
power, transmitted power and time rate of kinetic and strain energy to zero. Here
a cubic nonlinearity in spring (Duffing equation) and a quadratic nonlinearity
in damper are used to model the nonlinear system. Numerical simulations were
performed on a 10-DOF nonlinear system under harmonic excitation using Particle
Swarm Optimization tool under noise-free and 5% noisy cases. Identified results
are compared in terms of mean absolute percentage error, with other methods in
nonlinear parameter identification available in literature. Simulation results show
the accuracy of proposed method in nonlinear parameter identification even at high
noise contamination cases.

Keywords Parameter identification · Power flow balance · Substructure ·
Particle swarm optimization

1 Introduction

Structural identification problems are inverse analysis problems, which are con-
cerned with system modeling from input output information. Most commonly used
parameter identification problems are vibration-based identification techniques,
because of many reasons like, it is simple, reasonably accurate and cheaper
compared to other methods. It is also possible to do analysis on running machines
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using vibration-based methods. In recent years many of the researchers are more
biased towards the area of nonlinear structural parameter identification with the
objective to develop more accurate mathematical model. One such attempt is carried
out in this paper using substructure acceleration matching objective function and a
novel instantaneous power flow balance criteria.

Nonlinear parameter identification problems are more generic in nature and there
exists no common analysis procedure that can be applied to all nonlinear problems at
all instances. An extensive number of literatures are available in nonlinear parameter
identification. Kerschen et al. [1] reviewed the state of art nonlinear structural
parameter identification techniques, to understand the theoretical backgrounds,
assets, limitations and the possible applications of various methods. Noel and
Kerschen [2] conducted a detailed survey on key developments in nonlinear
parameter estimation methods over the last decade. It also explains different stages
in identification process like detection, localization and estimation of nonlinearities.
Timlison and Woden [3] described various identification techniques in time and
frequency domain. A number of experimental case studies are also discussed to
demonstrate the nonlinear system identification methods.

Koh et al. [4, 5] used the substructure technique to decomposes a large system to
small manageable subsystems to improve the convergence of structural parameter
identification and computational time. Varghese and Shankar [6] developed a Multi
Objective (MO) optimization formulation to detect and quantify the crack damage
parameters in beam structure at various locations in substructure level. Koh and
Shankar [7] suggested a new methodology for system parameter identification of
substructure without the need of interface measurement, which are difficult to get
in certain cases like beam or frame rotational response. Power flow analyses, which
describe the energy interaction between various subsystems, are studied by many
researchers. Mace [8] used the wave approach to study the power flow between two
point coupled wave bearing subsystems under time harmonic excitation and work by
Stephen [9] to explain the theory behind the base excitation concepts of harvesting
and dissipation of energy of elastically mounted system are notable contributions in
this field. Varghese and Shankar [6] introduced an inverse identification technique,
which investigates the application of substructural power flow to linear structural
parameter estimation.

Kapaniya [10] introduced a two-step identification process using Time Finite
element Method (TFM) for the structural parameter identification of both linear
and nonlinear terms separately. Kumar and Shankar [11] worked on structural para-
metric identification with cubic nonlinearity in springs and quadratic nonlinearities
in dampers. They treated the problem as inverse using substructure acceleration
matching objective function with Genetic Algorithms (GA) optimization search
tool. Eberhart and Kennedy [12] were the first to propose a population-based opti-
mization technique called Particle Swarm Optimization (PSO). Thereafter, several
studies conducted by a number of researchers revealed the superiority of the Particle
Swarm Optimization Algorithm over other non-classical algorithms like Genetic
Algorithm in terms of its convergence speed, simplicity in coding, computational
inexpensiveness etc. Perez and Behdinan [13] successfully implemented the particle
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swarm optimization into constraint structural optimization problems. Xue et al. [14]
used a modified PSO algorithm with a feasibility strategy to deal with various
constraints of the problem. It also discusses the influences of the availability
of limited response measurements on the performance of PSO for parameter
identification.

2 Objective Functions

The optimization problems were formulated separately by using the conventional
acceleration matching and instantaneous power flow balance objective functions.
The substructure identification method used in this work, allows the researchers
to concentrate, the sensor measurements to a smaller zone of interest and thereby
reducing the computational time.

2.1 Substructure Acceleration Matching

The concept of sub structuring is based on the ‘divide and conquer’ rule, in which
the global structure is divided into substructures so that the number of unknown
parameters to be identified is reduced into manageable ones. The first fitness
function is formulated by comparing the measured and estimated acceleration as
weighted error cost function as [15].

f1 =
∑M

i=1

∑T

j=1

(ẍm − ẍe)
2

T ∗M (1)

Where, the subscripts ‘m’ and ‘e’ represents the measured and estimated accel-
eration response for fitness evaluation. ‘M’ is the number of measurement points or
sensor locations and ‘L’ is the number of time steps. Here the measured acceleration
response was simulated numerically and noise has been added to compensate the
measurement error.

2.2 Instantaneous Power Flow Balance

Power flow balance is another form of law of conservation of energy. The power
balance criteria states that within a substructure the net sum of power that is net sum
of input, damping and transferred power is zero. The main purpose of instantaneous
power study is to formulate an objective function in terms of instantaneous power
flow balance as

f2 = 1

T

T∑

i=1

(
IP b

e

)2
(2)
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Where, ‘T’ is the number of time steps and superscript ‘e’ denotes the estimated
instantaneous power balance for objective function evaluation.

Thus, the two objective functions are combined together to form a multi objective
optimization problem using weighted aggregation approach. The combined objec-
tive function can be represented as [16].

f = w1f1 + w2f2 (3)

Where, w1 and w2 are non-negative weighting factors, which takes values
between 0 and 1, such that

∑
wi = 1, where ‘i’ is the number of objective functions.

For this particular study, weighting factors of {0.5,0.5} was chosen as explained in
[6].

3 Numerical Modeling

The substructure nonlinear parameter identification is explained through a numeri-
cal model of 10DOF lumped mass model in Kumar and Shankar [11] was selected
with different excitation load conditions. The global and substructure considerations
are as shown in Fig. 1. All masses were considered as unity (1 kg). The values of
all linear springs and linear dampers considered are taken as 25 N/m and 1Ns/m
respectively. The nonlinear spring damper pairs are attached to fourth and seventh
DOF. A cubic nonlinearity (Duffing equation) in spring and quadratic nonlinearity
in damper were selected for the analysis and the nonlinear relations are as follows.

Knδn = anδn + bnδn
3 (4)

Cn
(
δn, δ̇n

) = cnδ̇n

(
1 + δn

2
)

(5)

Where, an is the linear coefficient term in nonlinear spring, bn and cn are the
coefficients of nonlinear spring force and nonlinear damper force corresponding to
nth (say 4th and 7th) node/DOF of the structure to be analyzed. δn, δ̇n are the relative
displacement and relative velocity corresponding to nth node.

4 Parameter Identification

The substructure method without overlap is chosen for parameter identification
study. The global structure is sub-divided into substructures and is shown in Fig.
1. The first substructure (SS1) is considered here for demonstration purpose. It has
two interface nodes (2 and 5 in global structure) and two interior nodes (3 and
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Fig. 1 Global structure and
substructure classifications

4). The masses correspond to interface nodes are not considered for substructure
formulation. The nonlinear elements are placed between the interior nodes as shown
in Fig. 1. The responses for internal DOF of the substructures are simulated using
the time span of 0–1 seconds and sampling time step of 0.0002 seconds using
the Runge Kutta 4th order numerical integration method in MATLAB®. In the
substructure parameter identification procedure, the coefficients of nonlinear spring
and damper terms (a4, b4 and c4 in SS1) are assumed as unknown parameters. A
Particle Swarm Optimization (PSO) with population size of 30, generation of 125,
acceleration coefficients (c1 = c2 = 2) and an inertia weight 0.9 has been used for
identification. Analysis was conducted with and without the application of noise to
study the robustness of the proposed approach in noise contamination cases.
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Fig. 2 Comparison of acceleration response of global structure and substructure at third DOF of
10 DOF nonlinear System

Fig. 3 Components of Instantaneous Power Flow balance for Substructure-1 without noise

The acceleration response obtained through substructure formulation and global
structure at measurement location (M) corresponding substructure-1, are as shown in
Fig. 2. From the plot it can be observed that both the global (actual) and substructure
responses match very closely and hence the accuracy of the substructure formulation
is verified. The components of instantaneous power flow such as input power,
transmitted power, dissipated power and power due to kinetic and strain energies
in substructure (SS1) without the noise case are shown in Fig. 3. From the plot it is
clear that at each sampling point the system satisfies the power balance criteria as
stated earlier.

In this study both the nonlinear springs are considered to be Hardening Springs
for numerical analysis. Table 1 gives the mean results of identified nonlinear coef-
ficients using a harmonic load of 1.5 N magnitude and 20 Hz excitation frequency
under noise free and noise contamination cases. The loads are applied on third,
sixth and ninth nodal positions as shown in Fig. 1. The identified results obtained
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Table 2 Comparison of Identification results of 10DOF nonlinear system with literature

Substructure SS1 Without noise With 5% noise
Kumar and
Shankar [11] Present method

Kumar and
Shankar [11] Present method

Maximum % error −7.81 −3.412 −9.55 8.82
Mean absolute % error 3.61 0.933 3.99 3.077

using acceleration matching with multiple sensors and combined objective of both
acceleration matching and instantaneous power flow balance method are shown in
Table 1. In terms of mean absolute error for substructure-1, the identification results
are found to be with 2.61% and 4.326%, respectively for acceleration matching
objective, noise free and 5% noisy cases. For the same cases the respective errors are
reduced to 0.371% and 2.622% in multi objective of both acceleration matching and
IPFB objective approach. That means, a significant reduction in mean absolute error
of 85.78% (noise free) and 39.39% (noisy case) were observed in multi objective
case, compared with single objective of acceleration matching case in substructure-
1. A convergence study of two methods of identification process was also conducted.
It was found that the multi objective of both Acceleration Matching (AM) and IPFB
method convergence faster than the single objective Acceleration Matching with
multiple sensor method. For brevity, the convergence plot is not shown here.

The analysis was repeated with increased number of unknown variables (all 7
parameters in SS1) and an impulsive load of 10 N applied in the form of initial
velocity on mass m1. The identified results are compared with those from the
original research paper [11] from which the example was taken, and is furnished
in Table 2. There, the estimated nonlinear parameters have a mean absolute error
of 3.61% (noise free case) was noted on Substructure-1, with only acceleration
matching objective function using Genetic Algorithm (GA) search tool. In the
present study using PSO, the mean absolute error is reduced to 0.933% (noise
free). That is, a reduction of 74.15% in mean absolute error was achieved using
the proposed multi objective approach. Similarly, for 5% noise case, the reduction
is 22.88%.

5 Conclusions

A novel concept of nonlinear parameter identification using instantaneous power
flow balance objective function in time domain has been introduced. The proposed
method was successfully implemented on a 10DOF nonlinear system. Comparing
the Mean Absolute % Error, a reduction of 85.78% and 39.39% in noise free and
noisy cases are obtained for substructure-1, using the proposed multi objective
method. The convergence study on parameter identification reveals the effect
of instantaneous power flow balance objective function method on parameter
identification.
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Vibration and Buckling of Laminated
Plates of Complex Form under in-Plane
Uniform and Non-uniform Loading

Lidiya Kurpa , Victoriya Tkachenko, and Anna Linnik

Abstract The vibration and buckling analysis of symmetrically laminated plates
with complex form subjected to in–plane uniform and non–uniform loading is
performed using variational Ritz’s method and the R-functions theory. First order
shear deformations theory of Timoshenko’s type are adopted. Each ply is assumed
to be an orthotropic homogeneous one without slip at interfaces. The developed
approach includes several stages: determination of the heterogeneous subcritical
state of the plate; finding buckling critical load; solving linear vibration problem.
Ritz’s method is applied on each stage. Systems of the admissible functions,
that satisfy at least main (kinematic) boundary conditions have been built by the
R-functions method. Validation of the proposed method and created software is
confirmed by comparison of buckling load and frequencies vibration with known
results for square laminated plates with free circular or rectangular cut-outs.
Buckling loads for laminated clamped plates with complex form under non-uniform
edge compressions have been obtained. It is assumed that plates can be made of
different materials and have the different ply orientations. The effect of the cut-outs
sizes on critical load and frequencies values are studied. Number of layers, degree
of orthotropic, boundary conditions, type of loading (uniform and non-uniform) on
buckling critical load and frequencies value are investigated.

Keywords Buckling · Laminate plates · Non-uniform load · R-functions
theory · Rayleigh-Ritz method

1 Introduction

Many elements of modern structures are made of composite materials in order to
reduce its weight and make structure stronger. So, it is important to develop methods
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and software to calculate dynamical behavior of such structural elements. One of the
important components of this calculation is determination of the natural frequencies
and values of the critical load.

The study of the stability and oscillation of loaded multilayer plates is signifi-
cantly complicated when the plates have a complex shape and non-uniform loading.
It is connected with occurrence of inhomogeneous subcritical state of the plate.
Many theories and methods for solving the stability and vibration problems have
been proposed today. Review of research in analysis of composite plates can be
found in the works [1–3], and others. It should be noted that these problems are
usually solved by approximate methods due to the complexity of mathematical
models. One of the more universal and popular approaches is the finite element
method. Despite the large number of publications concerning the stability and
vibration problems of loaded multilayer plates, most of them consider the simply
supported or clamped rectangular plates. There is essentially small number of works
dealing with plates of another geometric shape or loaded non-uniformly according
to some law (for example, linear, parabolic, ets.) [3, 4], that is subcritical state of the
laminated plate is inhomogeneous. As it was shown in works [5, 6] the R-functions
method (RFM) can take into account the complex shape, type of the boundary
conditions and inhomogeneous subcritical state. In the present work RFM is applied
to the problems of the stability and vibration of the loaded in plane composite plates
under uniform and non-uniform loading.

2 Problem Formulation

Consider a symmetrically laminated plate subjected to uniaxial uniform (see Fig. 1)
or non-uniform (see Figs. 3 and 5) varying in plane loading. In general case plate
can have an arbitrary planform. It is supposed that symmetrically laminated plate
is equivalent to an anisotropic plate with mechanical characteristics calculated by
a special way. We will assume that the subcritical stress state is heterogeneous
and described by the relations of linear elasticity theory. All external loads are
proportional to a parameter λ. Within the framework of the refined first-order
layered plate theory, based on the straight line hypothesis, the complete system of
motion equations in displacements has the following form [6].

L11u+ L12v = 0,
L21u+ L22v = 0; (1)

L33w + L34ψx + L35ψy = m1w,tt − λ
(
N0

11
∂2w
∂x2 +N0

22
∂2w
∂y2 + 2N0

12
∂2w
∂x∂y

)

L43w + (L44 − C55) ψx + (L45 − C54) ψy = m2ψx,tt ,

L53w + (L54 − C45) ψx + (L55 − C44) ψy = m2ψy,tt .

(2)
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Fig. 1 Plan form of the plate

The unknown functions u, v, w coincide with the displacements of the points of
the middle surface in the directions of the axes, ±x, ±y, ±z respectively, and the
functionsψx,ψy determine the angles of rotation of the normal to the middle surface
relatively to the axes ±y and ±x. Linear operators Lij

(
i, j = 1, 5

)
are presented

in [6].
The coefficients Cij, Dij (ij = 11, 22, 12, 16, 26, 66) which are included in linear

operators Lij
(
i, j = 1, 5

)
and m1, m2 are defined as

(
Cij , Dij

) =
N∑

s=1

hs+1∫

hs

Bsij

(
1, z2

)
dz, m1,2 =

n∑

s=1

hs+1∫

hs

ρ
(s)
0

(
1, z2

)
dz, (3)

where ρ(s)0 is the material density of the s-th layer. These coefficients are matrix
elements C = [Cij] , D = [Dij]:

C =
⎛

⎝
C11 C12 C16

C21 C22 C26

C16 C26 C66

⎞

⎠ D =
⎛

⎝
D11 D12 D16

D21 D22 D26

D16 D26 D66

⎞

⎠ (4)

The systems of Eqs. (1)–(2) are supplemented by the corresponding boundary
conditions, which depend on the way of edge fixing of the plate and its loading way.
In Eq. (2), the forces N0

11, N
0
22, N

0
12 correspond to the value of the parameter λ = 1,

and in general case may be determined by the solution of system (1), supplemented
by the corresponding inhomogeneous boundary conditions.
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3 Method of Solution

By the assumption of heterogeneity of the subcritical state the proposed method is
reduced to the sequential solution of two boundary value problems: (a) the problem
of elasticity theory (1), in order to determine the subcritical state of the plate and
calculate the values N0

11 (x, y) ,N
0
22 (x, y) ,N

0
12 (x, y): (b) eigenvalue problem (2),

in order to find the critical load and frequencies. Each of these problems is solved
by the Ritz’s variational method and application of the R-function theory.

The variational formulation of the boundary value problem (1), is minimized to
the following functional:

I (u, v)=1

2

∫∫

Ω

(N11ε11+N22ε22+N12ε12) dΩ+
∫

∂Ω1

Pnagr (u1 cosα+v1 sinα) ds,

(5)

where α is the angle between the outer normal to the boundary of the region and the
axis Ox, Pnagr is function depending on loading way of the plate border. Forces
{N} = {N11, N22, N12} in the case of symmetrical arrangement of the layers are
defined as

{N} = [C] {ε} , (6)

The deformations {ε}L = {
εL11, ε

L
22, ε

L
12

}
are determined by relations

εL11 = ∂u

∂x
, εL22 = ∂v

∂x
, εL12 = ∂v

∂x
+ ∂u

∂y
, (7)

In this paper, the critical load is determined by dynamic approach, that is, as a
result of solving a sequence of eigenvalues problems provided P0 is varied in the
functional:

J = 1
2

∫∫

Ω

[M11χ11 +M22χ22 +M12χ12+
(
Q1

(
∂w
∂x

+ ψx
)+Q2

(
∂w
∂y

+ ψy

))
+

+P0

(
N0

11

(
∂w
∂x

)2+N0
22

(
∂w
∂y

)2+N0
12
∂w
∂x

∂w
∂y

)
−Λ2

(
m1w

2+m2

(
Ψ 2
x +Ψ 2

y

))]
dxdy.

(8)

The deformations {χ} = {χ11,χ22, χ12} in (8) are calculated as follows [7]:

χ11 = ∂ψx

∂x
, χ22 = ∂ψy

∂y
, χ12 = ∂ψx

∂y
+ ∂ψy

∂x
, (9)

and moments {M} = {M11, M22, M12} are {M} = [D]{χ}.
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The transverse shear force resultants in (8) are defined as:

{
Q1

Q2

}
=
[
C55 C45

C45 C44

]{
ε13

ε23

}
, (10)

where ε13 = (
∂w
∂x

+ ψx
)
, ε23 =

(
∂w
∂y

+ ψy

)
, Cij = K2

N∑

s=1

hs+1∫

hs

Bsij dz, i, j = 4, 5.

The shear correction factor is assumed to be equal 5/6 in this work. Changing
the value of the parameter P0, we get a set of natural frequencies corresponding to
different compression loads. The value of the parameter P0 corresponding to the
smallest value of the natural frequency will be critical parameter.

4 Numerical Results

There are existed many situations when subcritical state of a plate may be
inhomogeneous: a plate has cut-out or complex form; external load acting along
boundary is non-uniform and in other cases also. The proposed method allows to
solve a wide class of similar problems, including plates with cut-outs. Below we
present some results obtained by the proposed method.

4.1 Problem 1

Let us consider the laminated plate (0◦/90◦)s shown in Fig. 1. We assume that the
thicknesses of the layers are the same. The plate is uniformly loaded along the edges
parallel to the Oy axis.

Mechanical properties and geometric parameters are taken from paper [8]:
E11 = 141.0 Gpa, E22 = 9.23 Gpa, G12 = G13 = 5.95 Gpa, G23 = 2.96 Gpa,
ν1 = 0.313, a = b = 0.5 m, h = 0.005 m. Suppose that plate is simply supported on
external border and free on cut-out. Comparison of the dimensionless parameter of

the critical load Ncr = Nxb
2

E2h
3 with the results of work [8] is presented in Fig. 2.

The deviation of the results does not exceed 3%. From this it follows reliability
of the proposed approach and the created software. Note that authors of paper [8]
do not take into account the heterogeneous subcritical state of the plate, and the
problem is solved by the finite element method.

The values of the natural frequencies for rectangular plate (a / b = 2) with cut-
outs are presented in Table 1 for different values of the ratio p0/pkr.

As the cut-out increases, the frequencies increase, and when the load increases,
frequencies decrease, which corresponds to the physical sense.
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Fig. 2 Effect of the size cut-out on the critical load

Table 1 Effect of cut-out
size and ratio p0/pkr on
natural frequencies
Λ = ΩLa

2
√
ρ/E2h2

p0/pkr c/b
0.1 0.2 0.25 0.4

0 19.290 22.533 23.825 31.874
0.25 16.886 19.602 20.842 28.546
0.75 9.923 11.453 12.556 19.504

4.2 Problem 2

Consider symmetrically laminated (0◦/90◦/0◦) rectangular plate under parabolic
edge compressions (Fig. 3). Parabolic load is defined by formula P = P0(1 − y2/b2)

Material properties and plate dimensions are taken from paper [3]:

E1 = 127.3 GPa;E2 = 11 GPa;G12 = 5.5 GPa; ν12 = 0.34;

A comparison of the buckling coefficient k = 4σcr h b2√
D1D2

for different value of the
ratio a/b with results obtained in paper [3] is shown in Fig. 4. Obvious one can be
seen from the graph, the best match of the results occurs when the aspect ratio varies
from 0.75 to 2.25.
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Pparab

0

X

O a

b

Y

Fig. 3 Plate under parabolic load

Fig. 4 Effect of ratio a/b on coefficient k

4.3 Problem 3

Consider laminated clamped plate (0◦/90◦/0◦) with shape shown in Fig. 5. Mechani-
cal characteristics of layers are: G/E2 = 0.5; ν1 = 0.25. And the relations of Young’s
modulus E1/E2 are changed as follows: E1/E2 = 3; 10; 20; 30; 40.
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Fig. 5 Plate loaded on part of the border

Fig. 6 Effect of the ratio modulas E1/E2 and loading area on dimensionless parameter of the
critical load

Suppose that plate is loaded only on part of the border (Fig. 5). Geometric
parameters are:

a

b
= 1,

h

2b
= 0, 01,

a1

2b
= 0, 3,

b1

2b
= 0, 4.

Using the R-functions theory, we have constructed system of basic functions
needed for minimizations of the corresponding functionals. The obtained results for

dimensionless critical parameter λ = 4Ncrb
2

E2h
3 of the plate are presented in Fig. 6.

The qualitative effect of the ratio E1/E2 on critical parameter for the plates loaded
along some part of the sides is the same as for the rectangular plate. In addition,
it should be noted that critical parameter increases if the degree of orthotropic
increases.
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5 Conclusions

In the paper vibration and stability problems are studied for laminated composite
plates under non-uniform edge compressions. The first-order theory of the symmet-
rically laminated plates is adopted to describe the mathematical formulation of the
problem. The proposed approach is based on applications of the R-functions theory
and variational Ritz’s method. It takes into account inhomogeneous subcritical state
and allows to consider the plates with different planform. The developed software
is applied to investigation of the plates compressed in plane by uniform and non-
uniform loading, that complex planform and cut-out.
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Dynamical Systems and Stability
in Fractional Solid Mechanics

Péter B. Béda

Abstract The use of fractional calculus gets more and more importance in material
modeling. It can take into account non-localities in both space and time domains.
Quite simply, for example, by changing (local) conventional derivative to one of the
non-local fractional derivatives, the effect of the time history (or of the values in a
neighborhood) can “automatically” be taken into consideration. The reason is that
such fractional derivative is a combination of a derivation and an integral operator. In
stability analysis such models may cause problems starting from stability definitions
to the complicated forms of characteristic equations. The selection of the fractional
derivative (Caputo, Riemann-Liouville, Caputo-Fabrizio, Atangana-Baleanu etc.)
has an important effect on that. The paper studies how the type of fractional
derivatives effects the problems of stability investigation. From engineering point of
view, the study aims constitutive modeling via instability phenomena. By observing
the stability/instability behavior of some material we can be informed about the
form of fractional derivative in its mathematical model.

Keywords Fractional calculus · Bifurcation · Dynamical system

1 Introduction

There are several ways to include non-locality into continuum mechanics. As a
starting point two basic ways are presented for that. The first one could lead
directly to the introduction of fractional derivatives, while it uses an integral in
a general form and a more or less obvious consequence could be an expression
of Caputo’s fractional derivative. The second approach adds gradient term to the
constitutive equations. A third problem seems to be some different problem, the
model of visco-elastic (-plastic) behavior. Hovewer, we will see that it can also
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be treated as a non-locality in time. This study concentrates on material instability
problems for non-local cases, when fractional derivatives are used to model non-
locality in constitutive equations. For reader’s convenience a brief overview of
elementary fractional calculus is included to show the basics. Fractional integral
and differentials, the most important functions are presented there. In the following
section non-local materials are treated with various types of fractional derivatives
in bifurcation problems. Solid body is modeled by its basic equations. Then a
dynamical system is defined and stability and bifurcation investigation could be
performed as in the theory of dynamical systems.

2 Non-locality in Space and Time

Various concepts of non-localities are used. Most of them may lead to a more or less
obvious generalization by using fractional derivatives as the non-local extension of
derivation. This section serves as a kind of historical background.

2.1 Eringen’s Approach to Non-locality

As a first impression, non-locality is related to some spatial neighbourhood of a
point or a particle in mechanics. In such sense local stress is determined by the
strain in a neighbourhood [1]. Then integration is used to encounter that

σij (r, t) = Cijklεkl (r, t)+
∫
cijkl

(
r − r′) εkl

(
r′, t

)
dr′, (1)

by using the displacement field

σ = C
∂u (x)

∂x
+
∫
c (x − ξ)

∂u (ξ)

∂ξ
dξ (2)

is obtained. By specifying kernel c (x − ξ) of the second term of (2) as in [2]

c (x − ξ) := (x − ξ)−α

Γ (1 − α)
(3)

one has

σ = C
∂u (x)

∂x
+
∫
(x − ξ)−α

Γ (1 − α)

∂u (ξ)

∂ξ
dξ. (4)

In (4) the second term on the right hand side is the so-called Caputo fractional
derivative.
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2.2 Gradient Materials

As it was done by Aifantis [3], let us introduce gradient term(s) into constitutive
equations

σij = Cijklεkl − l2Cijkl�εkl . (5)

There are several explanations of the origin and use of formula (5). Sometimes it
is called gradient regularization, because with (5) material instability studies avoid
mesh-sensibility in numerical analysis.

However, there are lots of other, more physical interpretation including internal
lengths, micro-structural effect theories. Early studies from the sixties of the last
century use the notion of polar bodies [4] and couple stress effect and then gradient
of deformation gradient appears, which can be interpreted as a constitutive equation
containing first order strain gradient. The appearance of higher gradients can be
explained as the property of multipolar materials: [5, 6].

At the end of this subsection one should remark that there are still a lot of
controversies in the thermodynamics of gradient materials [7, 8].

2.3 Visco-Elastic Materials

Relaxation can be included into constitutive equations as Rabotnov treats them. In
[9] relaxation of elastic materials is added by Volterra integral

ε (t) = 1

E

(
σ (t)+ χ

∫ t

0
G(t − τ) σ (τ) dτ

)
, (6)

where Volterra operator

K∗u =
∫ t

−∞
K (t − τ) u (τ) dτ (7)

is a convolution integral with kernel K .
By searching for the solution of

K∗u = v (8)

and assume, similarly to (3), that Abel operator Iα is used

K = Iα ≡ tα

Γ (1 + α)
, (9)
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equation (8) is solved to

u = d

dt
I ∗−α−1v. (10)

Here

d

dt
I ∗−α−1v ≡ 1

Γ (−α)
d

dt

∫ t

−∞
(t − τ)−α−1 u (τ) dτ (11)

is called the Liouville fractional derivative. In the following section a short summary
is presented of the basics of fractional calculus.

3 Elements of Fractional Calculus

Fractional order (say αth) generalization of an integral is a key element. When
such operator is combined with an “ordinary”, first order, derivation the result is
an (1 − α)th order fractional derivative. In this section that way is followed to
construct fractional derivatives. The most important functions used here are also
briefly mentioned.

3.1 Two Important Functions

First Euler’s gamma function should be mentioned, being an integral of the two
most important functions of analysis, power function and exponential functions:

Γ (α) =
∫ ∞

0
ξα−1e−ξ dξ (12)

It can also be interpreted as a generalization of factorial to non-integers, because

Γ (n) = (n− 1)! . (13)

Mittag-Leffler function

Eα,β (z) =
∞∑

j=0

zj

Γ (jα + β)
(14)
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can be considered as a generalized exponential function, because

E1,1 =
∞∑

j=0

zj

Γ (j + 1)
=

∞∑

j=0

zj

j ! = exp (z) . (15)

This function gets importance as eigenfunctions of fractional derivatives.

3.2 Integral Operators and Classical Fractional Derivatives

Construction of fractional derivatives starts with Cauchy’s original integral formula

aI
1
x f (x) =

∫ x

a

f (ξ) dξ. (16)

For repeated integration its nth (integer) order generalization

aI
n
x f (x) = 1

(n− 1)!
∫ x

a

f (ξ) (x − ξ)n−1 dξ (17)

can be applied.
By using αth fractional order generalization, Riemann-Liouville integral operator

can be defined

aI
α
x f (x) = 1

Γ (α)

∫ x

a

f (ξ) (x − ξ)α−1 dξ. (18)

In (18) integration goes from left to right, (a < x), it is called the left integral
operator. By taking derivative of left Riemann-Liouville integral operator

d

dx
aI

α
x f (x) = aD

α
x f (x) = 1

Γ (1 − α)

d

dx

∫ x

a

f (ξ) (x − ξ)−α dξ (19)

is a non-local derivative for interval [a, x] . Then right Riemann-Liouville derivative
can also be defined as

xD
α
b f (x) = − 1

Γ (1 − α)

d

dx

∫ b

x

f (ξ) (ξ − x)−α dξ (20)

for interval [x, b] .
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By changing operators of derivation and integration in (19), Caputo’s derivative
is defined

aI
α
x

(
d

dξ
f

)
(x) = C

a D
α
x f (x) = 1

Γ (1 − α)

∫ x

a

df (ξ)

dξ
(x − ξ)−α dξ (21)

for interval [a, x] . Hence right Caputo derivative

C
x D

α
b f (x) = − 1

Γ (1 − α)

∫ b

x

df (ξ)

dξ
f (ξ) (ξ − x)−α dξ (22)

is defined for interval [x, b] .
In non-local mechanics of small deformations, the kinematic equation will use

uniaxial non-local strain:

εα = ∂αu

∂xα
, (23)

where ∂αu
∂xα

should be some symmetric, non-local derivative. For example such
derivative can be constructed from left and right Riemann-Liouville

∂αu

∂xα
= 1

2

(
aD

α
x u (x)− xD

α
b u (x)

)
(24)

or Caputo derivatives

∂αu

∂xα
= 1

2

(
C
a D

α
x u (x)− C

x D
α
b u (x)

)
(25)

or similarly from other types of left and right fractional derivatives.
In the last part of this subsection connection of symmetric Caputo derivative and

Riesz derivative [10] is presented. Let us start from an equivalent forms of the left
and right Caputo derivatives

C
a D

α
x f (x) = 1

Γ (1 − α)

d

dx

∫ x

a

(f (ξ)− f (a)) (x − ξ)−α dξ, (26)

C
x D

α
b f (x) = − 1

Γ (1 − α)

d

dx

∫ b

x

(f (ξ)− f (b)) (ξ − x)−α dξ. (27)

Then take “asymptotic case” (a → ∞, b → ∞) and combine them into a symmetric
form

CDα+f (x)− CDα−f (x) = 1

Γ (1 − α)

d

dx

∫ ∞

−∞
f (ξ) |x − ξ |−α dξ. (28)

Derivative (28) is called the Riesz fractional derivative, Dα .
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3.3 Generalized Fractional Derivatives

Fractional derivatives are convolutions of two functions. In case of Caputo’s
derivative

df (x)

dx
∗ 1

xα
=
∫ x

a

df (ξ)

dξ
(x − ξ)−α dξ (29)

In (29) the second function is a power function and it is singular at zero. Caputo and
Fabrizio suggest to use exponential function instead to construct an operator with a
non-singular kernel

CFDαf = M (α)

(1 − α)

∫ t

a

df (ξ)

dξ
exp

(
−α (t − ξ)

1 − α

)
dξ (30)

where M (0) = M (1) = 1, defining a new fractional derivative [11].
A further generalization is done by Atangana and Baleanu [12] by changing

exponential function to its version in fractional calculus, the Mittag-Leffler function

ABDαf = B (α)

1 − α

∫ t

a

df (ξ)

dξ
Eα,1

(
− α

1 − α
(t − ξ)α

)
dξ. (31)

4 Fractional Derivatives in Non-local Mechanics

In this section fractional calculus is applied to study stability and bifurcation
problems in material instability investigations for non-local materials. First the set of
basic equation is formed for a simple case and by using dynamical systems theory
stability and bifurcation conditions are formed. The aim is to select constitutive
equations, which lead to a generic bifurcation. In that cases at the loss of stability a
non-trivial critical eigenspace can be found. Its basis vectors (functions) can be used
to study post-bifuraction by projecting the equation on them. Thus the existence of
such non-trivial critical eigenspace is essential in non-linear stability analysis.

In Sects. 4.1 and 4.2, a brief summary is presented for stability and bifurcation
analysis via dynamical systems theory (details in [13]). Then the two basic non-
locality concepts are studied by using the method described in Sects. 4.1 and 4.2
while constitutive equations and types of fractional derivatives are varied. Materials
in Sect. 4.3 are referred as weakly non-local, while in Sect. 4.4 as strong non-
locality. The investigation in both cases uses the whole set of basic equations of
continua (see Sect. 4.1).
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4.1 Dynamical Systems Approach

The classical description of continuum mechanics consists of the set of basic
equations of continua:

– Cauchy’s equations of motion
– kinematic equation
– constitutive equation.

In the simplest possible case (uniaxial problem with small deformations) such
equations are

ρv̇ = σ∇, (32)

ε̇ = 1

2
(v∇ + ∇v) , (33)

F (ε, σ, ε̇, σ̇ , . . .) = 0. (34)

From the basic equations (32), (33), (34) a dynamical system can be defined

d

dt

⎡

⎣
v

ε

σ

⎤

⎦ = F (v, ε, σ ) , (35)

where

F (v, ε, σ ) =
⎡

⎢
⎣

1
ρ
σ∇

1
2 (v∇ + ∇v)

− (
∂F
∂σ̇

)−1
((

∂F
∂ε

)
ε + (

∂F
∂σ

)
σ + (

∂F
∂ε̇

) 1
2 (v∇ + ∇v)

)

⎤

⎥
⎦ . (36)

4.2 Stability and Bifurcation for Conventional Derivatives

Assume that y0 = (v0, ε0, σ0) is an equilibrium of (35). Then by introducing
homogeneous perturbations

v = v0 + ṽ, ε = ε0 + ε̃, σ = σ0 + σ̃ (37)

the linearization of (35) and (36) is satisfied for the perturbations. As it is presented
in [13], the eigenvalues and eigenvectors of linearized operator

(
d

dy
F
)∣∣∣∣

y=y0

(38)
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play the key role in stability and bifurcation analysis. For this reason the character-
istic equation of (38) should be solved and stability conditions are formed for its
solutions λi in a usual way.

State y0 of the material is stable, if Reλi < 0 for all solutions. Loss-of-stability
happens, when at least for one i, Reλi= 0. Then two ways of instabilities can be
distinguished, the static (λ = 0) and the dynamic (Reλ = 0, Imλ �= 0) bifurcations.
Non-linear analysis can be performed, if operator (38) has non-trivial critical
eigenspace. Such case is referred as generic bifurcation and non-linearity should
be projected to this eigenspace resulting bifurcation equations [14].

To show briefly how it works, let the constitutive equation be of a second gradient
dependent material

σ̇ = c1ε̇ + c2ε̈ − c3
∂2ε̇

∂x2 . (39)

Its characteristic equation is

λ2y1 − λc2
∂2

∂x2 y1 −
(
c1
∂2

∂x2 − c3
∂4

∂x4

)
y1 = 0. (40)

The condition for static bifurcation is

(
c1
∂2

∂x2
− c3

∂4

∂x4

)
y1 = 0. (41)

For c1 = c1crit < 0 there exist critical eigenfunctions

y1crit = exp

(
ix

√
−c1crit

c3

)
, (42)

which can be used for projection in non-linear studies to derive bifurcation equations
(see details in [13, 14]).

4.3 Non-local Strain

First, static bifurcation is studied at non-local strain as in [15]. A linear constitutive
equation in form

σ = Bεα +Dε̇α (43)

is used, where non-local strain is

εα = ∂αu

∂xα
. (44)
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At non-local strain the characteristic equation of (38) has the form

ρλ2y1(x)−D
∂

∂x
λy1(x)+ B

∂

∂x

∂α

∂xα
y1(x) = 0 (45)

and then static bifurcation condition reads

B
∂

∂x

∂α

∂xα
y1(x) = 0. (46)

Second Gradient Dependent Materials In case of some generalized second
gradient dependent material, the constitutive equation reads

σ̇ = Bε̇α + C
∂2

∂x2 ε̇α. (47)

Having been transformed the basic equations to the velocity field

ρv̈ = B
∂α

∂xα

∂

∂x
v + C

∂α

∂xα

∂3

∂x3
v (48)

is obtained.
Similarly to Sect. 4.2, for such constitutive equation a critical perturbation can

be identified. The static bifurcation condition for periodic perturbations

y1(x) = exp (iωx) (49)

is

∂α

∂xα

∂

∂x

((
B − ω2C

)
y1(x)

)
= 0. (50)

Equation (50) implies

Bcrit = ω2C. (51)

Then critical perturbation frequency is

ω =
√
Bcrit

C
, (52)

and the non-trivial eigenfunction is

y1 (x) = exp

(

i

√
Bcrit

C
x

)

. (53)

From (51), (52) and (53) we find no dependence on the type of fractional derivative.
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Static and Dynamic Bifurcations Let the constitutive equation be the so-called
Malvern-Cristescu equation

σ +Dσ̇ = Eεα +Hε̇α (54)

Now the characteristic equation of the appropriate form of (38) is

−Dρλ3y1(x)− ρλ2y1(x)+H
∂

∂x

∂α

∂xα
λy1(x)+ E

∂

∂x

∂α

∂xα
y1(x) = 0. (55)

Static bifurcation condition to (55) reads

E
∂

∂x

∂α

∂xα
y1(x) = 0, (56)

while dynamic bifurcation condition requires the existence of a non-trivial solution
of

(
E2

D2 ρ2 + H 2 β2

D2 ρ2

)
∂2α+2

∂x2α+2 y1 +
(

2E β2

D2 ρ

+2H β4

D ρ

)
∂α+1

∂xα+1 y1 +
(
β6 + β4

D2

)
y1 = 0. (57)

Static Bifurcation for Non-local Strain As it was presented earlier in this section,
for simple non-local strain static bifurcation condition in most cases contains

∂

∂x

∂α

∂xα
y1(x) = 0. (58)

To get non-trivial solution of (58) we need such a solution, which is a non-
zero function satisfying homogeneous boundary conditions. Assume that Riesz
derivative is used in non-local strain

εα = Dα. (59)

After integration and by using Fourier transform (58) implies

− 2Bωα sin
(πα

2

)
Fy1 = √

2πδ (ω) , (60)

which is solved to

Fy1 = −
√

2πδ (ω)

2Bωα sin
(
πα
2

) . (61)



280 P. B. Béda

The Use of Atangana-Baleanu Derivative A symmetric derivative can also be
based on left and right Atangana-Baleanu derivatives. For such operators left and
right derivatives differ only in sign [16], thus

∂α

∂xα
= 1

2

((
AB
a Dαu

)
(x)−

(
−
(
AB
a Dαu

)
(x)

))
=
(
AB
a Dαu

)
(x) . (62)

In this case, static bifurcation condition (58) leads to
(
AB
a Dαu

)
(x) = C, u (0) = 0. (63)

Its solution is known [17]

u (t) = 1

B (α)

(
(1 − α)+ C

(
1 + 1

1 − α

1

Γ (α)
tα
))

. (64)

Riesz Derivative in Carpinteri’s Equation By using a symmetric generalized
version of Eringen’s integral non-locality (4) the constitutive equation, following
Carpinteri’s idea [2] reads

σ = Cε + B
∂α

∂xα
u (x) . (65)

With Riesz derivative in case of Carpinteri’s equation the static bifurcation condition
is

∂

∂x

(
C
∂

∂x
+ B

∂α

∂xα

)
y1 = 0. (66)

By using Fourier transform we have
(
Cω − 2Bωα sin

(πα
2

))
Fy1 = √

2πδ (ω) (67)

and its solution reads

Fy1 =
√

2πδ (ω)

Cω − 2Bωα sin
(
πα
2

) . (68)

4.4 Fractional Gradient Material

In Aifantis-Tarasov material model [18] the idea is to use fractional derivative at
gradient material

σ̇ = Bε̇ + C
∂α

∂xα

∂α

∂xα
ε̇ (69)
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or simply

σ̇ = Bε̇ + C
∂β

∂xβ
ε̇. (70)

Here a gradient material is selected, that is, on-locality is already involved. That
makes the use of local fractional derivatives possible. Recently, in such cases the
use conformable derivative [19], gets more and more importance [20]. Conformable
derivative is defined by

Dα (f ) (x) = lim
ε→0

f
(
x + εx1−α)− f (x)

ε
. (71)

It has several beneficial properties:

Dα (f ) (x) = x1−α df (x)
dx

and Dα

(
e

1
α
xα
)

= e
1
α
xα . . . (72)

which make calculations much simpler.
As an application of conformable derivative let the constitutive equation be in

form

σ̇ = Bε̇ + CD2
αε̇. (73)

In this case the characteristic equation for the appropriate form of (38) reads

λ2y1 − ∂2

∂x2

(
B + CD2

α

)
y1 = 0. (74)

For perturbations sin
(

1
α
xα
)

the static bifurcation condition is

Bcrit = C. (75)

The basic function of the non-trivial kernel is (see in Fig. 1.)

y1 = sin

(
1

α
xα
)
, (76)

where α can be calculated from homogeneous perturbations, (for example L =
1, α = 0.318).



282 P. B. Béda

0 10 20 30 40 50 60 70
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1 Plot of sin
(

1
α
xα
)

5 Conclusions

The use of fractional calculus can be traced back to the origin of field theories
of continuum mechanics, in visco-elasticity Liouville derivative appeared already
in 1948. There are two ways to study non-locality in space. Strong non-locality
concept includes an integral operator into the constitutive equation, which can easily
and quite obviously be generalized to a fractional operator on displacement field.
Weak non-locality adds gradient dependence. For such constitutive equations the
type of fractional derivative has less effect on bifurcation conditions, than at strong
non-locality. The presence of integral operator in fractional derivative adds more
types of functions, because differentiability is not a condition for the field variables.
Moreover the large variety of possible derivatives widens possibility of constitutive
modeling.
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Stability of Coupled Systems of
Stochastic Cohen-Grossberg Neural
Networks with Time Delays, Impulses
and Markovian Switching

Biljana Tojtovska and Panche Ribarski

Abstract This paper covers the topic of the pth moment (p ≥ 2) stability of
coupled systems of stochastic Cohen-Grossberg neural networks with time delays,
impulses and Markovian switching. This model generalises many models in the
literature and to the best of our knowledge has not been analysed before. The
methods are based on results from graph theory, Lyapunov operator, Dini derivative
and some known inequality techniques. Additionally, we consider the stability with
respect to a general decay function which includes exponential, but also more
general lower rate decay functions as the polynomial and the logarithmic ones.
This fact gives us the opportunity to study general decay stability, even when the
exponential one cannot be discussed. The presented theoretical results are supported
by a numerical example.

Keywords Coupled stochastic neural networks · Time delays · Impulses ·
Markovian switching · Moment stability · General decay function

1 Introduction

Coupled networks consist of parts with individual dynamics which mutually interact
based on some coupling structure. Examples of these complex networks can be seen
both in nature and in engineering, among which maybe the most fascinating is the
human brain [1]. Such networks can be studied with the methods from graph theory.
This revolutionary approach was suggested by [2] and [3] in their work presented
at the end of the last century. They have considered the systems as graphs, where
each dynamical unit is represented by a node and the graph structure is defined
by the interaction of the nodes. This powerful idea can be applied to different
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models, which cover networks with time varying connections and directed weighted
edges between the nodes. This includes also the models of networks where the
nodes represent systems with nonlinear or stochastic dynamics. Thus, the theory
of dynamical systems and stochastic differential equations are often a basic tool to
study the properties of the networks.

One aspect of dynamical systems which received great attention since the
ground breaking work of Lyapunov, is stability of the system and the stability of
the synchronous state (complete synchronisation). Stability of the solution of a
stochastic differential equation indicates that the system is not sensitive to small
changes of the initial state or parameters of the model. However, it is known
that dynamical systems may loose this property after coupling. In [4] the authors
give an example which shows that the existence of Lyapunov functions for each
vertex system is not sufficient for the existence of global Lyapunov function for the
coupled system. The example shows that even if all the individual systems are stable,
the coupled dynamical system may not be stable. Hence, it is important to give
conditions on the network and the coupling structure which will imply existence
of a global Lyapunov function, i.e. it will imply stability of the coupled system.
For results on stability of coupled systems on networks, both deterministic and
stochastic we refer to [4–10].

Stability has a practical importance in the case of neural networks, since it
implies existence of thermal equilibrium, which is essential for the learning process.
There are many results on stability of stochastic neural networks with different
model characteristics. The literature on this topic is extensive and here we give only
few references: [11–15] cover the analysis of mean-square, pth moment and almost
sure exponential stability of stochastic neural network models with and without
impulsive effects. The results presented in [16–19] are examples of stability analysis
of models with time delays, and the models considered in [20–22] also include
Markovian switching. In many cases, stability with respect to a general decay
function is also of interest. Only few results in the literature consider this general
decay in the case of neural networks—in [23–25] the authors analyze models of
stochastic neural networks with and without time delay and impulses. However,
to best of our knowledge, there are no results on stability analysis on a system of
coupled stochastic Cohen-Grossberg neural networks, which include time delays,
impulses and Markovian switching. This is a very general model and it includes as a
special case many neural networks (see the cited papers and the references therein).
The goal of this paper is to give sufficient conditions on pth moment general decay
stability for this generalized model of coupled stochastic neural networks. The study
of this paper is motivated by the results in [5, 23, 26]. In [5] the authors discuss pth
moment exponential stability of coupled system of stochastic differential equations
with Markovian switching. In [26] Li et al. extended the ideas from [5] and discussed
stability of a system of coupled stochastic functional differential equations with no
Markovian switching, defined on a graph. The authors also give sufficient conditions
for the pth moment and almost sure exponential stability based on the M-matrix
method and they extend their discussion to stochastic coupled systems with time-
varying delays. However, the theory in both [5, 26] does not consider a model with
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both time-varying delays and Markovian switching, and also impulsive effects have
not been assumed in the systems. Even more, both [5, 26] base their models on
one-dimensional Brownian motion. This is not very realistic, since the system may
be influenced by different independent random sources and thus the model should
include an n-dimensional Brownian motion. These results motivated us to extend
the methods to a model of stochastic neural networks which includes these network
characteristics. In [23] the authors discuss pth moment and almost sure general
decay stability of a model of stochastic Cohen-Grosberg impulsive neural network
with mixed time delays without Markovian switching, which is a special case from
our model.

The important contribution of this paper is that we consider a general model—a
system of n stochastic neural networks with a coupling given by interconnection
functions, which represent the influence between two coupled neural networks.
The model includes time varying delays, impulses and Markovian switching
and additionally it is driven by n-dimensional Brownian motion. This leads to
generalisation of many models in the literature. Even more, we discuss pth moment
general decay stability which includes as a special case the exponential stability, and
also allows us to discuss the pth moment stability even when results for exponential
stability cannot be applied. The discussion in our paper is based on graph theory
methods from [5, 26] and on the Lyapunov method and Dini derivative from [23].

The paper is organised as follows. In Sect. 2, we present the model and
we introduce some notions from graph theory and results from the cited papers
which will be used in the sequel. Additionally, we give assumptions about the
parameters of the model. In Sect. 3, we give our main result, new criteria of a pth
moment general decay stability for the equilibrium point. The theoretical results
are supported by a numerical example which is presented in Sect. 4. We draw our
conclusions in Sect. 5.

2 Formulation of the Problem and Preliminary Results

In this section, we study a network constructed by coupling of M neural networks
which have own internal dynamics. We assume that the kth network, k =
1, 2, . . . ,M consists of lk connected neurons. However, to simplify the notations,
we define n = max{M, l1, l2, . . . , lM } and assume that all the neural networks have
dimension n and also that the whole system consists of n such networks. This can
be achieved by adding “dead” neurons in the system which have zero dynamics
modeled by functions which are constantly zero and do not affect the dynamics of
the whole system. Such a system can be represented by a directed graph G with n
vertices, where each vertex represents one neural network from the system. The
directed edge (k, j) exists if the kth network is connected to the j th network.
The model is defined on a complete probability space (Ω,F , {Ft }t≥t0,P) with a
natural filtration {Ft }t≥t0 generated by a standard n-dimensional Brownian motion
W(t) = (W1(t),W2(t), . . . ,Wn(t)), t ≥ t0.
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The dynamics of the ith neuron in the kth vertex, k ∈ N = {1, 2, . . . , n}, is
given by the following stochastic differential equation with time delays, Markovian
switching and impulses at times tm ∈ R:

For t ≥ t0, t �= tm, and i, k ∈ N = {1, 2, . . . , n}

dX
(k)
i (t) = −h(k)i

(
X
(k)
i (t), r(t)

)
[
c
(k)
i

(
t, X

(k)
i (t), r(t)

)

−
n∑

j=1

a
(k)
ij

(
t, r(t)

)
f
(k)
j

(
X
(k)
j (t), r(t)

)−
n∑

j=1

b
(k)
ij

(
t, r(t)

)
g
(k)
j

(
X
(k)
j,τk

, r(t)
)

−
n∑

j=1

d
(k)
ij

(
t, r(t)

) ∫ t

−∞
l
(k)
ij (t − s)k

(k)
j

(
X
(k)
j (s), r(s)

)
ds

]
dt

+
n∑

j=1

η
(kj)
i

(
t, X

(k)
i (t), X(j)(t), r(t)

)
dt

+
n∑

j=1

σ
(k)
ij

(
t, X

(k)
j (t), X

(k)
j,τk

, r(t)
)
dWj (t)+

n∑

j=1

ζ
(kj)
i

(
t, X

(k)
i (t), X(j)(t), r(t)

)
dWj (t)

≡
(
J
(k)
i

(
t, X(k)(t), X(k)

τk
(t), r(t)

)+
n∑

j=1

η
(kj)
i

(
t, X

(k)
i (t), X(j)(t), r(t)

)
)
dt

+
n∑

j=1

(
σ
(k)
ij

(
t, X

(k)
j (t), X

(k)
j,τk

, r(t)
) + ζ

(kj)
i

(
t, X

(k)
i (t), X(j)(t), r(t)

))
dWj (t), (1a)

and for t = tm > t0, m ∈ N,

X
(k)
i (t)= Iim

(
X
(k)
1 (t−),. . . , X(k)

n (t−)
)+Jim

(
X
(k)
1

(
t−−τk(t−)

)
,. . . , X(k)

n

(
t−−τk(t−)

))
, (1b)

X
(k)
i (t0 + s) = ξ

(k)
i (s), s ∈ (−∞, t0]. (1c)

Here X
(k)
i ∈ R is the state stochastic process of the ith neuron in the kth

vertex at time t . We denote that X(k)(t) = (X
(k)
1 (t), X

(k)
2 (t), . . . , X

(k)
n (t))T ∈

R
n is the process which describes the dynamics in the kth vertex and X(t) =(
X(1)(t), . . . , X(n)(t)

) ∈ R
n×n is the stochastic process which describes the

dynamics of the whole coupled system. ξ (k)i ∈ C((−∞, t0];R) is an initial

condition for the corresponding neuron, and we also denote ξ (k) = (ξ
(k)
1 , . . . , ξ

(k)
n )T

and ξ = (ξ
(k)
i )n×n. X(k)

τk = (X
(k)
1,τk

, . . . , X
(k)
n,τk )

T ∈ R
n is the delayed process in the

kth vertex, whereX(k)
i,τk

= X
(k)
i (t−τk(t)) is the delayed process of the corresponding

neuron dependent on transmission delay τk(t). For simplification, we assume that
the delay τk is the same for the whole vertex k and is such that 0 ≤ τk(t) ≤ τ , where
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τ is a constant. For the delayed process in the whole network, we use the notation
Xt = (

X
(1)
τ1 , . . . , X

(n)
τn ).

The switching function r(t) is a right-continuous Markov chain independent
of the underlying Brownian motion, taking values in the finite space P =
{1, 2, . . . , m0}, with r(t0) = ρ0 and with a generator matrix P given by (2)

P
(
r(t +Δ) = j |r(t) = i

) =
{
πij + o(Δ), i �= j,

1 + πij + o(Δ), i = j,
(2)

where Δ > 0, πij ≥ 0 is the transition rate from i to j if i �= j , while πii =
−∑

j �=i πij .

To simplify the notation, we fix one mode r(t) = ρ ∈ P and write X(k)
i (t) =

X
(k)
i , X(k)(t) = X(k), h(k)i

(
X
(k)
i (t), ρ

) = h
(k)
i,ρ , c(k)i (t, r(t)) = c

(k)
i,ρ and so on. Then,

the equation (1) can be shortly written as

dX
(k)
i =

(
J
(k)
i,ρ +

n∑

j=1

η
(kj)
i,ρ

)
dt +

n∑

j=1

(
σ
(k)
ij,ρ + ζ

(kj)
i,ρ

)
dWj . (3)

The meaning of the functions in the model is as following: h(k)i,ρ are amplification

functions at time t , c(k)i,ρ are appropriately behaved functions dependent on t and

on the state processes X(k)
i , while a(k)ij,ρ , b(k)ij,ρ and d(k)ij,ρ(t) describe the strength of

the neuron interconnections in the kth vertex network at times t , f (k)i,ρ , k
(k)
i,ρ and g(k)i,ρ

are activation functions of the ith neuron in the kth vertex at time t and t − τk(t)

respectively, and l
(k)
ij are delay kernel functions. The term σ

(k)
ρ (t, X(k), X

(k)
τk ) =

(
σ
(k)
ij,ρ(t, X

(k)
j , X

(k)
j,τk

)
)
n×n is a diffusion-coefficient matrix. New in this model

are the interconnection functions η(kj)ρ = (
η
(kj)

1,ρ , η
(kj)

2,ρ , . . . , η
(kj)
n,ρ

)T and ζ
(kj)
ρ =

(
ζ
(kj)

1,ρ , ζ
(kj)

2,ρ , . . . , ζ
(kj)
ρ

)T which represent the influence from the j th vertex to the

kth vertex when k �= j and for k = j we take η
(kj)
ρ = ζ

(kj)
ρ ≡ 0. Here

η
(kj)
i , ζ

(kj)
i : [t0,∞) × R × R

n × P → R depend on the time t, the state of the
ith neuron in the kth vertex, the state of the vertex j and the switching function r(t).

The impulses in the whole coupled network happen at fixed moments
tm > t0,m ∈ N satisfying t1 < t2 < . . . and limm→∞ tm = ∞,
Iim

(
X
(k)
1 (t−), . . . , X(k)

n (t−)
) ∈ R are impulsive perturbations of the ith neuron

in the kth vertex at time tm, where X
(k)
j (t−) is the left limit of X

(k)
j (t),

Jim
(
X
(k)
1 (t− − τk(t

−)), . . . , X(k)
n (t− − τk(t

−))
) ∈ R are impulsive perturbations of

the ith neuron in the kth vertex at time tm caused by transmission delays. We denote
Im = (I1m, . . . , Inm)T and Jm = (J1m, . . . ,Jnm)T .
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If we define J (k)ρ := (J
(k)
1,ρ, . . . , J

(k)
n,ρ)

T and ζ (k)ρ := (ζ
(kj)
i,ρ )n×n the system (1) can

be represented in the matrix form,

dX(k) = (
J (k)ρ +

n∑

j=1

η(kj)ρ

)
dt+(

σ (k)ρ +ζ (k)ρ

)
dW, t ≥ t0, t �= tm, k ∈ N, (4a)

with impulsive perturbations

X(k)(t) = Im(X(k)(t−))+ Jm(X(k)
τk
(t−)), t = tm, k ∈ N, m ∈ N, (4b)

and initial condition

X(k)(t0 + s) = ξ (k)(s), s ∈ (−∞, t0]. (4c)

We consider R
n with the norm ||x|| =

( n∑

i=1

|xi |p
) 1
p

, for p ≥ 1. We note that

C
(
(−∞, t0];Rn

)
is the space of continuous functions ϕ, equipped with the norm

||ϕ|| =
(

sup
s∈(−∞,t0]

||ϕ(s)||p
) 1
p

, and LpFt0
((−∞, t0];Rn) is the family of all Ft0 -

adapted C
(
(−∞, t0];Rn

)
-valued random variables ϕ satisfying E||ϕ||p < ∞.

For any interval J ⊂ R or for J = R, we define the space

PC[J ;Rn] = {
X : J → R

n
∣∣X is continuous on J \ J0,where J0 is at most countable

set and for s ∈ J \ J0, X(s
+),X(s−) exist andX(s+) = X(s)

}
.

For X ∈ PC[R;Rn], let us take ||Xt || =
( n∑

i=1

sup
s∈[t−τ,t]

|Xi(s)|p
) 1
p

, t ≥ t0. Also,

for bounded functions φ ∈ C[J ;Rn] or φ ∈ PC[J ;Rn], we introduce the norm

||φ|| = (sup
J

|φ(s)|p) 1
p .

For a given function λ : R → R
+, we define the space

℘(λ) = {
f : R+ ∪ {0} → R

∣∣ f is piecewise continuous and there are constants

0 ≤ γ ∗
0 < γ ∗

1 such that
∫ ∞

0
|f (s)|λγ (s) ds < ∞ for all γ ∈ [γ ∗

0 , γ
∗
1 ]}. (5)

Since our research is focused on stability problems, we assume with no emphasis
on conditions that there exists a unique global solution X(t; ξ, ρ) to the system (1)
satisfying E supt∈R ||X(t; ξ, ρ)||p < ∞, as well as that all the Lebesgue and Itô
integrals employed further are well defined. The considered coupled system is in
fact a large system of stochastic functional differential equations with impulses,



Stability of Coupled Systems of Stochastic Cohen-Grossberg Neural Networks. . . 291

time delays and Markovian switching and because of that, we can use the known
literature which discusses existence and uniqueness of a solution. For more details
on stochastic functional differential equations with Markovian switching, we refer
to the work by Mao et al. [27, 28].

For the stability purpose, we usually assume that J (k)ρ (t, 0, 0) = η
(kj)
ρ (t, 0, 0) =

σ
(k)
ρ (t, 0, 0) = ζ

(k)
ρ (t, 0, 0) ≡ 0 so that system (1) admits a trivial solution X ≡ 0.

We additionally assume that if there exist “dead” neurons in the system, they are
modeled by constant zero functions and have no influence on the dynamics on the
other neurons.

The following definitions on the pth moment stability with a certain decay rate
λ(t) and stochastic Lyapunov operator will be used in the sequel.

Definition 1 Let λ ∈ C
(
R;R+) be a strictly increasing function on [t0 − τ,∞),

with λ(t) = 1 for t ∈ (−∞, t0 − τ ] and lim
t→∞ λ(t) = ∞. Additionally, we assume

that it is differentiable on [t0,∞), such that λ′(t) ≤ λ(t) and also let λ(s + t) ≤
λ(s)λ(t) for all s,t in its domain. Then, the system (1) (or equivalently, its trivial
solution) is said to be pth moment stable with a decay λ(t) of order γ if there exist
a pair of constants γ > 0 and cξ > 0 such that

E||X(t; ξ, ρ)||p ≤ cξ λ
−γ (t), t ≥ t0,

holds for any ξ ∈ LpFt0
((−∞, t0];Rn×n) and ρ ∈ P .

Clearly, this definition covers exponential, logarithmic and polynomial stability
as its special cases.

Definition 2 For V (k)(t, x(k), ρ) ∈ C1,2(R+ ×R
n×P;R+), we define an operator

LV (k)(t, x(k), ρ) associated with the kth vertex of system (1) by

LV (k)(t, X(k), ρ) =
m0∑

j=1

πρjV
(k)(t, X(k), j)+ ∂V (k)(t, X(k), ρ)

∂t
(6)

+ ∂V (k)

∂x(k)

[
J (k)(t, X(k), X(k)

τk
, ρ)+

n∑

j=1

η(kj)(t, X(k), X(j), ρ)

]

+ 1

2
trace

{[
σ (k)(t, X(k), X(k)

τk
, ρ)+ ζ (k)(t, X(k), X(j), ρ)

]T

× ∂2V (k)

∂(x(k))2

[
σ (k)(t, X(k), X(k)

τk
, ρ)+ ζ (k)(t, X(k), X(j), ρ)

]}
, (7)
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where ∂V (k)

∂x(k)
and ∂2V (k)

∂(x(k))2
are given by (8) and (9)

∂V (k)

∂x(k)
=
(∂V (k)(t, x(k), ρ)

∂x
(k)
1

, · · · , ∂V
(k)(t, x(k), ρ)

∂x
(k)
n

)
, (8)

and

∂2V (k)

∂(x(k))2
=
(
∂2V (k)(t, x(k), ρ)

∂x
(k)
i ∂x

(k)
j

)

n×n
. (9)

The global Lyapunov function will later be defined as a linear combination of the
vertex Lyapunov functions.

The system of coupled neural networks (1) is built on a graph and thus it is
important to introduce some basic concepts and notations from graph theory. For
more details we refer to [5].

A directed graph or digraph G = (VG, EG) consists of a set of vertices (nodes)
VG = {1, 2, . . . , n} and a set EG of edges (arcs, links) (k, j) directed from initial
vertex k to terminal vertex j . A subgraph S of G is unicyclic if it is a disjoint union
of rooted trees whose roots form a directed cycle. A digraph G is weighted if each
edge (j, k) is assigned a nonnegative weight akj ≥ 0, where akj > 0 if and only
if (j, k) ∈ EG . We define the weight of a subgraph S , denoted by w(S), to be the
product of the weights of all its edges, i.e. w(S) = ∏

(j,k)∈ES akj . For a weighted
graph G, we define its weight matrix AG = (akj )n×n as a matrix whose entry akj
equals the weight of the edge (j, k), when such an edge exists, or it is 0 otherwise.
We denote such a weighted digraph by (G, AG). A weighted digraph (G, AG) is said
to be balanced if w(C) = w(−C) for all directed cycles C, where −C is constructed
by reversing the directions of all edges in C.

For a weighted graph (G, AG)we also define its Laplacian matrix LG = (lkj )n×n
as follows

LG =

⎡

⎢⎢⎢⎢
⎣

∑
j �=1 a1j −a12 · · · −a1n

−a21
∑

j �=2 a2j · · · −a2n
...

...
. . .

...

−an1 −an2 · · · ∑j �=n anj

⎤

⎥⎥⎥⎥
⎦

= (
lkj
)
n×n (10)

i.e. lkj = −akj if k �= j and lkk = ∑
j �=k akj . The cofactor of the kth diagonal

element of LG is denoted by ς(k).
The following result is used in our discussion of the pth moment stability of

a coupled neural network presented in the next section. Its proof can be found in
[4], where the authors discuss the global stability of coupled systems of differential
equations on networks.



Stability of Coupled Systems of Stochastic Cohen-Grossberg Neural Networks. . . 293

Lemma 1 Let n ≥ 2 and ς(k), k = 1, 2, . . . , n, be defined as before. Then, for any
arbitrary functions Fkj (xk, xj ), Gk(xk), k, j = 1, 2, . . . , n, the following identities
hold:

(i)
∑n

k,j=1 ς
(k)akjFkj (xk, xj ) = ∑

S∈Sw(S)
∑

(s,r)∈ECS
Frs(xr , xs),

(ii)
∑n

k,j=1 ς
(k)akjGk(xk) = ∑n

k,j=1 ς
(k)akjGk(xj );

where x = (x1, x2, . . . , xn) ∈ R
n, S is the set of all spanning unicyclic graphs of

(G, AG) and CS is the directed cycle of S with weight w(S).
Next, we present two results from [23] which help us study the pth moment

general decay stability of system (1).

Lemma 2 Suppose that λ ∈ C(R;R+) is a decay function and a, b, c ∈
C([t0,∞);R+). For l ∈ ℘(λ), let us define I := max

γ∈[γ ∗
0 ,γ

∗
1 ]

∫ ∞

0
l(s)λγ (s) ds. Also,

let there exist constants α0 > 0 and 0 < η0 < 1 such that a(t) − c(t)I ≥ α0 and
b(t) ≤ η0[a(t)− c(t)I ] for t ≥ t0. Then, for every fixed t ∈ [t0,∞), the equation

γ = a(t)− c(t)I − b(t)λγ (τ ) (11)

has a unique positive solution γ = γ (t). In addition, γ ∗ := inf
t≥t0

γ (t) > 0.

The following lemma holds when γ ∗ ∈ [γ ∗
0 , γ

∗
1 ].

Lemma 3 Suppose that λ is a decay function, a, b, c ∈ C([t0;∞),R+), l ∈ ℘(λ),
and that I, γ ∗ are defined as in Lemma 2. Moreover, let γ ∗ ∈ [γ ∗

0 , γ
∗
1 ] and let

u ∈ PC[R;R+] satisfy the following inequality

D+u(t) ≤ −a(t)u(t)+ b(t) sup
θ∈[t−τ,t]

u(θ)+ c(t)

∫ ∞

0
l(s)u(t − s) ds, t ≥ t0,

(12)

where D+u(t) is the upper-right Dini derivative of u(t) defined by

D+u(t) = lim sup
δ→0+

u(t + δ)− u(t)

δ
.

If

u(t) ≤ c
λ−γ ∗

(t)

λ−γ ∗
(t0)

, t ∈ (−∞, t0] (13)

for some positive constant c, then

u(t) ≤ c
λ−γ ∗

(t)

λ−γ ∗
(t0)

, t ≥ t0. (14)
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In order to prove the main results, we introduce some additional assumptions
for the coefficients of the coupled system (1). We generally assume that all the
coefficients are Borel measurable on their domains. For a decay function λ(t),
i, j, k ∈ N and ρ ∈ P , we suppose that:

(H1) The functions h
(k)
i,ρ(x) are locally Lipschitz continuous and there exist

positive constants h(k)i,ρ, h
(k)

i,ρ and c(k)i,ρ such that

0 < h
(k)
i,ρ ≤ h

(k)
i,ρ(x) ≤ h

(k)

i,ρ, x ∈ R,

c
(k)
i,ρx

2 ≤ xc
(k)
i,ρ (t, x), (t, x) ∈ [t0,∞)× R.

(H2) The functions c(k)i,ρ (t, x) are globally Lipschitz continuous, that is, there exist

constants c(k)i,ρ > 0 such that

|c(k)i,ρ (t, x)− c
(k)
i,ρ (t, y)| ≤ c

(k)
i,ρ |x − y|, t ∈ [t0,∞), x, y ∈ R.

(H3) The activation functions f
(k)
i,ρ (x), g

(k)
i,ρ (x), k

(k)
i,ρ (x) are globally Lipschitz

continuous, that is, there exist positive constants f
(k)

i,ρ, g
(k)
i,ρ, k

(k)

i,ρ such that
for all x, y ∈ R,

|f (k)i,ρ (x)− f
(k)
i,ρ (y)| ≤ f

(k)

i,ρ |x − y|,
|g(k)i,ρ (x)− g

(k)
i,ρ (y)| ≤ g

(k)
i,ρ |x − y|,

|k(k)i,ρ (x)− k
(k)
i,ρ (y)| ≤ k

(k)

i,ρ |x − y|.

(H4) The functions a(k)ij,ρ(t), b
(k)
ij,ρ(t), d

(k)
ij,ρ(t) are bounded, that is, there exist non-

negative constants a(k)ij,ρ, b
(k)

ij,ρ, d
(k)

ij,ρ such that, for all t ∈ [t0,∞),

|a(k)ij,ρ(t)| ≤ a
(k)
ij,ρ, |b(k)ij,ρ(t)| ≤ b

(k)

ij,ρ, |d(k)ij,ρ(t)| ≤ d
(k)

ij,ρ .

(H5) The drift functions σ (k)ij,ρ(t, x, y) are globally Lipschitz continuous, uni-

formly in t , and there exist non-negative constants μ(k)ij,ρ and ν(k)ij,ρ such that

(
σ
(k)
ij,ρ(t, x, y)

)2 ≤ μ
(k)
ij,ρ x

2 + ν
(k)
ij,ρ y

2, (t, x, y) ∈ [t0,∞)× R
2.
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(H6) For l(k)ij (t), t ∈ [0,∞), there exists a continuous function l(t), t ∈ [0,∞)

with l ∈ ℘(λ) such that

|l(k)ij (t)| ≤ l(t), t ∈ [0,∞).

(H7) The connection functions η(kj)i,ρ (t, x, y), ζ
(kj)
i,ρ (t, x, y) are globally Lipschitz

continuous and there exist positive constants η(kj)ρ , ζ
(kj)

ρ such that for all
i ∈ N and (t, x, y) ∈ [t0,∞)× R × R

n,

|η(kj)i,ρ (t, x, y)| ≤ η(kj)ρ (|x| + ||y||),
(
ζ
(kj)
i,ρ (t, x, y)

)2 ≤ ζ
(kj)

ρ (|x|2 + ||y||2).

(H8) There exist non-negative matrices I(m) = (Iij,m)n×n and J(m) =
(Jij,m)n×n such that for all x = (x1, . . . , xn)

T ∈ R
n and y =

(y1, . . . , yn)
T ∈ R

n, i ∈ N, m ∈ N,

|Iim(x)− Iim(y)| ≤
n∑

j=1

Iij,m|xj − yj |,

|Jim(x)− Jim(y)| ≤
n∑

j=1

Jij,m|xj − yj |.

The boundedness of the functions is not necessary for the methods presented
further. These assumptions are made only to simplify the notations. More general
conditions can be assumed, similar as in [23].

3 General Decay Stability

In this section, we present the main result of the paper, theorem which gives
sufficient conditions under which the system (1) is pth moment stable with a decay
λ(t) of order γ . The proof is based on the lemmas presented in the previous section,
the defined Lyapunov operator and some important inequalities. To shorten the
discussion, we introduce the following notations

p
(k)
ij,ρ

=
(
h
(k)
i,ρa

(k)
ij,ρ

f
(k)
j,ρ + 2(p − 1)μ(k)

ij,ρ

)
, i �= j,

p
(k)
i,ρ

= 1

θ
(k)
ρ

m0∑

j=1

πρj θ
(k)
j

− ph
(k)
i,ρ
c
(k)
i,ρ



296 B. Tojtovska and P. Ribarski

+ (p − 1)h
(k)
i,ρ

n∑

j=1

(
a
(k)
ij,ρ

f
(k)
j,ρ+b(k)ij,ρg(k)j,ρ+d(k)ij,ρk(k)j,ρ

∫ ∞
0

|l(k)
ij
(s)|ds

)

+ h
(k)
i,ρa

(k)
ii,ρ

f
(k)
i,ρ + 2(p − 1)μ(k)

ii,ρ
+ (p − 1)(p − 2)

n∑

j=1

(
μ
(k)
ij,ρ

+ν(k)
ij,ρ

)

+
n∑

j=1

(
(2p − 1)η(kj)ρ + 2(p − 1)2ζ

(kj)
ρ

)
,

w
(k)
ij,ρ

= h
(k)
i,ρb

(k)
ij,ρg

(k)
j,ρ

+ 2(p − 1)ν(k)
ij,ρ

,

q
(k)
ij,ρ

(t) = h
(k)
i,ρd

(k)
ij,ρk

(k)
j,ρ l(t), t ∈ [0,∞)

η
(j)
ρ = max

k∈N
(
η
(kj)
ρ + 2(p − 1)ζ

(kj)
ρ

)
,

p
(k)
ρ = max

i∈N
(
p
(k)
i,ρ

+
∑

j �=i
p
(k)
j i,ρ

)
,

ε
(k)
ρ = p

(k)
ρ + n(n− 1)η(k)ρ ,

w
(k)
ρ =

n∑

i=1

max
j∈Nw

(k)
ij,ρ

,

q
(k)
ρ (t) =

n∑

i=1

max
j∈Nq

(k)
ij,ρ

(t), t ∈ [0,∞).

(15)

where i, j, k ∈ N, ρ ∈ P and θ(k)ρ are some positive constants.

Theorem 1 Let us suppose that λ is a decay function, ϕ ∈ LpFt0
((−∞, t0];Rn×n)

and that the assumptions (H1)− (H8) are satisfied for the coupled system (1). Also,
let

ερ = max
k∈N ε

(k)
ρ , qρ(t) = max

k∈N

n∑

i=1

max
j∈N q

(k)
ij,ρ(t), t ∈ [0,∞),

wρ = max
k∈N

n∑

i=1

max
j∈N w

(k)
ij,ρ, Iρ = max

γ∈[γ ∗
0 ,γ

∗
1 ]

∫ ∞

0
qρ(s)λ

γ (s) ds. (16)

Additionally, let ερ + Iρ < 0 and ερ + Iρ + nwρ < 0 for any ρ ∈ P and some

choice of the constants θ(k)ρ , and define γ = minρ∈P γρ , where γρ is the unique
solution of the equation γρ = −ερ −nwρλ

γρ (τ )−Iρ , and let γ ∈ [γ ∗
0 , γ

∗
1 ]. Assume

that for every m ∈ N
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2p−1
n∑

i=1

[( n∑

j=1

(Iij,m)
p
p−1

)p−1 + n
( n∑

j=1

(Jij,m)
p
p−1

)p−1
(λ(τ ))γ

]
≤ 1. (17)

Then, the coupled system (1) is pth moment stable with a decay function λ of order
γ .

Proof Let x(k) = (x
(k)
1 , . . . , x

(k)
n )T ∈ R

n and x = (x(1), . . . , x(n)) ∈ R
n×n. Let

V
(k)
i,ρ (x

(k)
i ) = V

(k)
i (x

(k)
i , ρ) = θ

(k)
ρ |x(k)i |p be the Lyapunov function corresponding

to the ith neuron in the kth vertex, where θ(k)ρ > 0 are some constants. Also, let

V
(k)
ρ (x(k)) = V (k)(x(k), ρ) = ∑n

i=1 V
(k)
i,ρ (x

(k)
i ) = ∑n

i=1 θ
(k)
ρ |x(k)i |p. Then, for the

coupled system (1) we have

LV
(k)
i,ρ

(X
(k)
i
)=

m0∑

j=1

πρjV
(k)
i,j

(X
(k)
i
)+

∂V
(k)
i,ρ

(X
(k)
i
)

∂t
+
∂V

(k)
i,ρ

(X
(k)
i
)

∂x
(k)
i

(
J
(k)
i,ρ

+
n∑

j=1

η
(kj)
i,ρ

)

+ 1

2

∂2V
(k)
i,ρ

(X
(k)
i
)

∂(x
(k)
i
)2

n∑

j=1

(
σ
(k)
ij,ρ

+ ζ
(kj)
i,ρ

)2

≤
m0∑

j=1

πρj θ
(k)
j

|X(k)
i

|p + pθ
(k)
ρ |X(k)

i
|p−2X

(k)
i
J
(k)
i,ρ

+ pθ
(k)
ρ |X(k)

i
|p−1

n∑

j=1

|η(kj)
i,ρ

|

+ p(p − 1)θ(k)ρ |X(k)
i

|p−2
n∑

j=1

(σ
(k)
ij,ρ

)2 + p(p − 1)θ(k)ρ |X(k)
i

|p−2
n∑

j=1

(ζ
(kj)
i,ρ

)2.

Using (H1)–(H7), Young’s inequality and the techniques presented in [23], we
obtain the following estimate

LV
(k)
i,ρ

(X(k)) ≤ θ
(k)
ρ

(
1

θ
(k)
ρ

m0∑

j=1

πρj θ
(k)
j

− ph
(k)
i,ρ
c
(k)
i,ρ

+ (p − 1)h
(k)
i,ρ

n∑

j=1

(
a
(k)
ij,ρ

f
(k)
j,ρ + b

(k)
ij,ρg

(k)
j,ρ

+ d
(k)
ij,ρk

(k)
j,ρ

∫ ∞
0

|l(k)
ij
(s)|ds

)

+h
(k)
i,ρa

(k)
ii,ρ

f
(k)
i,ρ + 2(p − 1)μ(k)

ii,ρ
+ (p − 1)(p − 2)

n∑

j=1

(
μ
(k)
ij,ρ

+ ν
(k)
ij,ρ

)

+
n∑

j=1

(
(2p − 1)η(kj)ρ + 2(p − 1)2ζ

(kj)
ρ

)
)

|X(k)
i

|p

+ θ
(k)
ρ

∑

j �=i

(
h
(k)
i,ρa

(k)
ij,ρ

f
(k)
j,ρ + 2(p − 1)μ(k)

ij,ρ

)
|X(k)
j

|p
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+ θ
(k)
ρ

n∑

j=1

(
h
(k)
i,ρb

(k)
ij,ρg

(k)
j,ρ

+ 2(p − 1)ν(k)
ij,ρ

)
|X(k)
j,τk

|p

+ θ
(k)
ρ h

(k)
i,ρ

n∑

j=1

d
(k)
ij,ρk

(k)
j,ρ

∫ ∞
0

l(s)|X(k)
j
(t − s)|pds

+ θ
(k)
ρ

∑

j �=k

(
η
(kj)
ρ + 2(p − 1)ζ

kj
ρ

)
||X(j)(t)||p

≤ θ
(k)
ρ p

(k)
i,ρ

|X(k)
i

|p + θ
(k)
ρ

∑

j �=i
p
(k)
ij,ρ

|X(k)
j

|p + θ
(k)
ρ max

j∈N w
(k)
ij,ρ

||X(k)τk ||p

+ θ
(k)
ρ

∫ ∞
0

max
j∈N q

(k)
ij,ρ

||X(k)(t − s)||pds + θ
(k)
ρ

∑

j �=k
η
(j)
ρ ||X(j)||p (18)

where p(k)ij,ρ , w(k)ij,ρ , q(k)ij,ρ and η(j)ρ , i, j, k ∈ N are given with equations (15).

Taking V (k)
ρ (x(k)) = ∑n

i=1 V
(k)
i,ρ (x

(k)
i ) and summing (18) for all i ∈ N , we get

LV (k)
ρ

(
X(k)

) ≤ θ(k)ρ

n∑

i=1

max
i∈N

(
p
(k)
i,ρ +

∑

j �=i
p
(k)
ji,ρ

)
|X(k)

i |p + θ(k)ρ w(k)ρ ||X(k)
τk

||p

+ θ(k)ρ

∫ ∞

0
q(k)ρ (s)||X(k)(t − s)||p + θ(k)ρ

n∑

i=1

∑

j �=k
η(j)ρ ||X(j)||p

= θ(k)ρ

(
p(k)ρ + n(n− 1)η(k)ρ

)
||X(k)||p + θ(k)ρ w(k)ρ ||X(k)

τk
||p

+
∫ ∞

0
q(k)ρ (s)||X(k)(t − s)||p + θ(k)ρ n

∑

j �=k

(
η(j)ρ ||X(j)||p − η(k)ρ ||X(k)||p

)

= θ(k)ρ ε(k)ρ ||X(k)||p + θ(k)ρ w(k)ρ ||X(k)
τk

||p +
∫ ∞

0
q(k)ρ (s)||X(k)(t − s)||p

+ nθ(k)ρ

∑

j �=k
F (kj)

(
X(k), X(j)

)
(19)

where p(k)ρ , ε
(k)
ρ , w(k)ρ and q(k)ρ are given by (15) and

F (kj)
(
X(k), X(j)

) = η(j)ρ ||X(j)||p − η(k)ρ ||X(k)||p

For each ρ ∈ P , let us denote by Gρ the corresponding complete directed graph

Gρ and assign weight α(kj)ρ = θ
(k)
ρ to each directed edge (j, k), j �= k. Let AG,ρ =

(α
(kj)
ρ )n×n represent the weight matrix of the graph Gρ . Then, the corresponding

Laplacian matrix is given by
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LG,ρ =

⎡

⎢⎢⎢⎢
⎣

(n− 1)θ(1)ρ −θ(1)ρ · · · −θ(1)ρ

−θ(2)ρ (n− 1)θ(2)ρ · · · −θ(2)ρ

...
...

. . .
...

−θ(n)ρ −θ(n)ρ · · · (n− 1)θ(n)ρ

⎤

⎥⎥⎥⎥
⎦
.

Let ς(k)ρ be the cofactor of the kth diagonal element of LG,ρ and let us take

Vρ(x) = ∑n
k=1 ς

(k)
ρ V

(k)
ρ (x(k)) for x ∈ R

n×n denoted as before. Then,

LVρ(X) ≤
n∑

k=1

ς(k)ρ ε(k)ρ θ(k)ρ ||X(k)||p +
n∑

k=1

ς(k)ρ w(k)ρ θ(k)ρ ||X(k)
τk

||p

+
n∑

k=1

ς(k)ρ

∫ ∞

0
q(k)ρ (s)θ(k)ρ ||X(k)(t − s)||p ds

+ n

n∑

k=1

ς(k)ρ θ(k)ρ

n∑

j=1

F (jk)(X(j), X(k)).

Since each edge starting at vertex k has the same weight θ(k)ρ , we conclude that the
graph Gρ is a complete balanced graph. By Lemma 1, we have

n∑

k,j=1

ς(k)ρ θ(k)ρ F (kj)(X(k), X(j)) =
∑

S∈S
w(S)

∑

(s,r)∈ECS

F (rs)(X(r), X(s)) = 0,

(20)

where S is the set of all spanning unicyclic graphs S of (Gρ,AG,ρ) with weight
w(S), whose unique cycle is denoted by CS . Thus

LVρ(X) ≤ max
k∈N ε

(k)
ρ

n∑

k=1

ς(k)ρ θ(k)ρ ||X(k)||p + max
k∈N w

(k)
ρ

n∑

k=1

ς(k)ρ θ(k)ρ ||X(k)
τk

||p

+
n∑

k=1

ς(k)ρ

∫ ∞

0

(
max
k∈N q

(k)
ρ (s)

)
θ(k)ρ ||X(k)(t − s)||p ds

= ερVρ(X(t))+ wρ

n∑

k=1

ς(k)ρ θ(k)ρ ||X(k)
τk

||p +
∫ ∞

0
qρ(s)Vρ(X(t − s)) ds,

(21)
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where ερ,wρ and qρ(t) are given by equations (16).
Next, we apply the Itô’s formula and, similar to the proof in Theorem 1 in [23],

we obtain

D+
EVρ(X(t)) ≤ ερEVρ(X(t)) + nwρ sup

s∈[t−τ,t]
EVρ(X(s))

+
∫ ∞

0
qρ(s)EVρ(X(t − s)) ds (22)

Since ερ + Iρ < 0 and ερ + Iρ +nwρ < 0 hold for any ρ ∈ P , it follows that the
equation γρ = −ερ −nwρλ

γρ (τ )− Iρ has a unique positive solution for any ρ ∈ P .
This is a consequence of Lemma 2, if we take constant functions a(t) = −ερ ,
b(t) = nwρ , c(t) = 1 and I = Iρ . For each ρ, we denote the solution by γρ and we
define γ = minρ∈P γρ and γ = maxρ∈P γρ .

Since ξ ∈ LpFt0
((−∞, t0];Rn×n) and λ(t) is a non-decreasing function on

(−∞, t0], we find for t ≤ t0 and for any ρ ∈ P that

EV (k)
ρ (X(k)(t)) ≤

n∑

i=1

θ(k)ρ E||ξ (k)i ||p ≤ max
ρ∈P

θ(k)ρ E||ξ (k)||P λ−γρ (t)
λ−γρ (t0)

≤ cξ(k)
λ

−γ (t)

λ−γ (t0) ,

(23)

where cξ(k) = maxρ∈P θ(k)ρ E||ξ (k)||p. Hence, (22), (23) and Lemma 3 imply that

EVρ(X(t)) ≤ max
k∈N,ρ∈P ς

k
ρθ

(k)
ρ E||ξ ||p λ

−γρ (t)
λ−γρ (t0)

≤ cξ
λ−γ (t)
λ−γ (t0)

, t ∈ [t0, t1), (24)

where cξ = maxk∈N,ρ∈P ς(k)ρ θ
(k)
ρ E||ξ ||p.

Let us suppose that for i = 1, 2, . . . , m and all k ∈ N ,

EV (k)
ρ (X(k)(t)) ≤ cξ(k)

λ−γ (t)
λ−γ (t0)

, t ∈ [ti−1, ti).

Thus, for i = 1, 2, . . . , m,

EVρ(X(t)) ≤ cξ
λ−γ (t)
λ−γ (t0)

, t ∈ [ti−1, ti ).
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For t = tm, by applying (H8) and the Jensen’s inequality, we get

EV
(k)
ρ (X(k)(tm)) =

n∑

i=1

θ
(k)
ρ E

∣
∣
∣Iim(X(k)(t−m))+ Jim(X(k)τk (t−m))|

∣
∣
∣
p

≤
n∑

i=1

θ
(k)
ρ E

[ n∑

j=1

Iij,m|X(k)
j
(t−m)| +

n∑

j=1

Jij,m|X(k)
j,τk

(t−m)|
]p

≤ 2p−1θ
(k)
ρ

n∑

i=1

[
E

( n∑

j=1

Iij,m|X(k)
j
(t−m)|

)p + E

( n∑

j=1

Jij,m|X(k)
j,τk

(t−m)|
)p]

.

Using the Hölder inequality and (17), we find that

EV (k)
ρ

(
X(k)(tm)

)

≤ 2p−1θ(k)ρ

n∑

i=1

[( n∑

j=1

(Iij,m)
p
p−1

)p−1

E||X(k)(t−m )||p +
( n∑

j=1

(Jij,m)
p
p−1

)p−1

E||X(k)
τk
(tm)||p

]

≤ 2p−1
n∑

i=1

[( n∑

j=1

(Iij,m)
p
p−1

)p−1

+
( n∑

j=1

(Jij,m)
p
p−1

)p−1

λ
γ
(τ )

]
cξ(k)

λ
−γ
(tm)

λ−γ (t0)

≤ cξ(k)
λ

−γ
(tm)

λ−γ (t0)
.

Here we have used

EV (k)
ρ (X(k)

τk
(tm)) ≤ cξ(k)

λ−γ (tm − τk(t))

λ−γ (t0))
≤ cξ(k)λ

γ (τ )
λ−γ (tm)
λ−γ (t0)

.

Thus, (17) and Lemma 3, imply that

EV (k)
ρ (X(k)(t)) ≤ cξ(k)

λ−γ (tk)
λ−γ (t0)

, t ∈ [tm, tm+1)

and, therefore,

EVρ(X(t)) ≤ cξ
λ−γ (t)
λ−γ (t0)

, t ∈ [tm, tm+1).

Hence, the last inequality holds by induction for every t ≥ t0. Finally,

E||X(t)||p ≤ 1

min
k∈N,ρ∈P

ς
(k)
ρ θ

(k)
ρ

EVρ(X(t)) ≤ cξ

min
k∈N,ρ∈P

ς
(k)
ρ θ

(k)
ρ

λ
−γ
(t)

λ−γ (t0)
= cξ

λ
−γ
(t)

λ−γ (t0)
,

(25)
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where cξ is a generic constant. Thus, the trivial solution of the coupled system (1)
is pth moment stable with a decay function λ(t) of order γ .

Remark 1 We note again that the boundedness of the model functions (as defined
in the assumptions (H1)–(H7)) is not necessary for the presented result. Also, it is
not necessary to choose equal values for the constants θ(k)ρ and the time delays τk(t)
for the kth network. Similar as in [23], more general conditions can be assumed. We
also remark that with some additional assumptions, the result on almost sure general
stability from [23] can be extended to system (1).

4 Numerical Example (General Decay Stability)

Let us consider the 4th moment general decay stability of the coupled system of
stochastic Cohen-Grossberg neural network represented by (1), where t0 = 2, x0 =
ξ ∈ L4

F0
((−∞, 2];R2), W(t) is a two-dimensional Brownian motion, τ1(t) = 1 +

| sin(t)|, τ2(t) = 1 + | cos(t)| are delay functions, τ = 2, x = (x1, x2)
T , y =

(y1, y2)
T ∈ R

2, z = [zij ]2×2 ∈ R
2×2 and tm = 2(m + 1), k ∈ N are the impulsive

moments. The two state Markov chain has the following generator matrix P =(
2 2
2 2

)
.

For ρ = 1 the model functions are given by

h
(1)
1,1(x1) = 1.75 + 0.25 sin x1, h

(1)
2,1(x2) = 1.6 + 0.1 cos x2,

h
(2)
1,1(x1) = 2.75 + 0.25 sin x1, h

(2)
2,1(x2) = 2.2 + 0.5 cos x2,

c
(1)
1,1(t, x1) =

(
400 + 4

1 + t

)
x1, c

(1)
2,1(t, x2) =

(
420 + 5

1 + t

)
x2,

c
(2)
1,1(t, x1) =

(
800 + 3

1 + t

)
x1, c

(2)
2,1(t, x2) =

(
820 + 2

1 + t

)
x2,

a
(1)
11,1(t) = 0.4 + 0.1

1 + t
, a

(1)
21,1(t) = 0.1 + 0.2

1 + t
, a

(1)
12,1(t) = 0.2 + 0.1

1 + t
, a

(1)
22,1(t) = 0.3 + 0.3

1 + t
,

a
(2)
11,1(t) = 0.4 + 0.4

1 + t
, a

(2)
21,1(t) = 0.5 + 0.2

1 + t
, a

(2)
12,1(t) = 0.9 + 0.1

1 + t
, a

(2)
22,1(t) = 0.2 + 0.1

1 + t
,

b
(1)
11,1(t) = 0.1

1 + t
, b

(1)
21,1(t) = b

(1)
12,1(t) = 1.5 + 0.5

1 + t
, b

(1)
22,1(t) = 0.3,

b
(2)
11,1(t) = 0.6

1 + t
, b

(2)
21,1(t) = b

(2)
12,1(t) = 0.7 + 0.8

1 + t
, b

(2)
22,1(t) = 1.8,

f
(1)
1,1 (x1) = 0.2 tanh(x1), f

(1)
2,1 (x2) = 0.4 tanh(x2),

f
(2)
1,1 (x1) = 0.5 tanh(x1), f

(2)
2,1 (x2) = 0.7 tanh(x2),

g
(1)
1,1(y1) = 5 tanh(y1), g

(1)
2,1(y2) = 7 tanh(y2),

g
(2)
1,1(y1) = 2 tanh(y1), g

(2)
2,1(y2) = 2 tanh(y2),
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d
(1)
11,1(t) = 1

6et
, d

(1)
21,1(t) = 1

9(1 + t)
, d

(1)
12,1(t) = 0.3

1 + t2
, d

(1)
22,1(t) = cos t

12et
,

d
(2)
11,1(t) = 1

6et
, d

(2)
12,1(t) = 0.2

1 + t2
, d

(2)
21,1(t) = 5

9(1 + t)
, d

(2)
22,1(t) = sin t

10et
,

k
(1)
1,1(x1) = x1

3
, k

(1)
2,1(x2) = x2

2
, k

(2)
1,1(x1) = x1

3
, k

(2)
2,1(x2) = x2

4
,

η
(21)
1,1 (t, x1, y) = 2.5

1 + t2
(x2

1 + y2
1 + y2

2 ), η
(21)
2,1 (t, x2, y) = 2.5

1 + t2
(x2

2 + y2
1 + y2

2 ),

η
(12)
1,1 (t, x1, y) = 0.8| sin t |(x2

1 + y2
1 + y2

2 ), η
(12)
1,1 (t, x2, y) = 0.8| sin t |(x2

2 + y2
1 + y2

2 ),

ζ
(21)
1,1 (t, x1, y) =

√
1.35x1 + √

0.675(y1 + y2)

e2t
, ζ

(21)
2,1 (t, x2, y) =

√
1.35x2 + √

0.675(y1 + y2)

et
,

ζ
(12)
1,1 (t, x1, y) = 2|x1| 1

2 |8y1y2| 1
4

1 + t2
, ζ

(12)
2,1 (t, x2, y) = 2|x2| 1

2 |8y1y2| 1
4

et
,

σ
(1)
11,1(t, x1, z11) =

√
20x1 + √

3z11√
1 + t2

, σ
(1)
21,1(t, x1, z21) = √

8x1 + √
2.5z21e

− t
3 ,

σ
(1)
12,1(t, x2, z12) = 2

√|x2z12| sin t, , σ (1)22,1(t, x2, z22) = 2x2 sin t + z22√
1 + t2

,

σ
(2)
11,1(t, x1, z11) = 3

√
2x1 + √

2z11

1 + t2
, σ

(2)
21,1(t, x1, z21) = √

12|x1z21| exp−2t ,

σ
(2)
12,1(t, x2, z12) = x1 + √

0.5z12e
−t , σ (2)22,1(t, x2, z22) =

√
7x2 + z22 cos t
√

2(1 + t2)
,

For ρ = 2 the model functions are given by

h
(1)
1,2(x1) = 1.95 + 0.25 sin x1, h

(1)
2,2(x2) = 1.8 + 0.1 cos x2,

h
(2)
1,2(x1) = 2.9 + 0.3 sin x1, h

(2)
2,2(x2) = 2.4 + 0.5 cos x2,

c
(1)
1,2(t, x1) =

(
450 + 10

1 + t

)
x1, c

(1)
2,2(t, x2) =

(
430 + 2

1 + t

)
x2,

c
(2)
1,2(t, x1) =

(
850 + 1

1 + t

)
x1, c

(2)
2,2(t, x2) =

(
830 + 3

1 + t

)
x2,

a
(1)
11,2(t) = 0.1 + 0.8

1 + t
, a

(1)
21,2(t) = 0.2 + 0.4

1 + t
, a

(1)
12,2(t) = 0.3 + 0.3

1 + t
, a

(1)
22,2(t) = 0.4 + 0.1

1 + t
,

a
(2)
11,2(t) = 0.8 + 0.3

1 + t
, a

(2)
21,2(t) = 0.1 + 0.5

1 + t
, a

(2)
12,2(t) = 0.1 + 0.5

1 + t
, a

(2)
22,2(t) = 0.2 + 0.1

1 + t
,

b
(1)
11,2(t) = 0.2

1 + t
, b

(1)
21,2(t) = b

(1)
12,2(t) = 1.6 + 0.2

1 + t
, b

(1)
22,2(t) = 0.6,

b
(2)
11,2(t) = 1.2

1 + t
, b

(2)
21,2(t) = b

(2)
12,2(t) = 0.6 + 0.2

1 + t
, b

(2)
22,2(t) = 2,

f
(1)
1,2 (x1) = 0.3 tanh(x1), f

(1)
2,2 (x2) = 0.5 tanh(x2),

f
(2)
1,2 (x1) = 0.6 tanh(x1), f

(2)
2,2 (x2) = 0.8 tanh(x2),
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g
(1)
1,2(y1) = 6 tanh(y1), g

(1)
2,2(y2) = 8 tanh(y2),

g
(2)
1,2(y1) = 3 tanh(y1), g

(2)
2,2(y2) = 3 tanh(y2),

d
(1)
11,2(t) = e−t /3, d(1)21,2(t) = 1

3(1 + t)
, d

(1)
12,2(t) = 0.6

1 + t2
, d

(1)
22,2(t) = e−t cos t /4,

d
(2)
11,2(t) = e−t /2, d(2)21,2(t) = 1

9(1 + t)
, d

(2)
12,2(t) = 0.6

1 + t2
, d

(2)
22,2(t) = e−t sin t /2,

k
(1)
1,2(x1) = x1, k

(1)
2,2(x2) = x2

7
, k

(2)
1,2(x1) = x1

3
, k

(2)
2,2(x2) = 2x2

3
,

η
(21)
1,2 (t, x1, y) = 2.5

1 + t2
(x2

1 + y2
1 + y2

2 ), η
(21)
2,2 (t, x2, y) = 2.5

1 + t2
(x2

2 + y2
1 + y2

2 ),

η
(12)
1,2 (t, x1, y) = 0.8| sin t |(x2

1 + y2
1 + y2

2 ), η
(12)
1,2 (t, x2, y) = 0.8| sin t |(x2

2 + y2
1 + y2

2 ),

ζ
(21)
1,2 (t, x1, y) =

√
0.75x1 + √

0.375(y1 + y2)

1 + et
, ζ

(21)
2,2 (t, x2, y) =

√
0.75x2 + √

0.375(y1 + y2)

1 + t3
,

ζ
(12)
1,2 (t, x1, y) = x1 + 2− 1

2 (y1 + y2)

1 + t2
, ζ

(12)
2,2 (t, x2, y) = x1 + 2− 1

2 (y1 + y2)

et
,

σ
(1)
11,2(t, x1, z11) = 7

√
2x1 + √

7z11

2
√

1 + t2
, σ

(1)
21,2(t, x1, z21) = 3x1 + √

3z21

et
,

σ
(1)
12,2(t, x2, z12) = 24

1
4
√|x2z12| sin 2t, σ (1)22,2(t, x2, z22) =

√
10x2 cos t + z22√

2(1 + t2)
,

σ
(2)
11,2(t, x1, z11) = 2

√
5x1 + 2z11√

1 + t2
, σ

(2)
21,2(t, x1, z21) = √

6x1cos(t)+ √
3z21,

σ
(2)
12,2(t, x2, z12) = 40

1
4
√|x2z12| exp−2t , σ

(2)
22,2(t, x2, z22) =

√
10x2 sin t + z22√

2 + t2
,

For the delay kernel functions which do not depend on the state of the Markov
chain, we have: for k ∈ {1, 2}

l
(k)
11 (t) = 4

(1 + t2)2
, l

(k)
12 (t) = cos t

e4t
, l

(k)
21 (t) = l

(k)
22 (t) = arctg t

(1 + t2)2
and l(t) = 4

1 + t4
.

In the impulsive moments tm,m ∈ N, we assume that I1m(x) = x1/4, I2m(x) =
x2/4, J1m(y) = 2−(m+2)y1, J2m(y) = 2−(m+2)y2.

Using the simple inequality (a + b)2 ≤ 2(a2 + b2), we can easily calculate the
following parameters and verify the assumptions (H1)− (H8).

For ρ = 1

h
(1)
1,1 = 1.5, h

(1)
1,1 = 2, h(1)2,1 = 1.5, h

(1)
2,1 = 1.7, h(2)1,1 = 2.5, h

(2)
1,1 = 3, h(2)2,1 = 1.7, h

(2)
2,1 = 2.7,

c
(1)
1,1 = 400, c(1)2,1 = 420, c(2)1,1 = 800, c(2)2,1 = 820,

a
(1)
11,1 = 0.5, a(1)21,1 = 0.3, a(1)12,1 = 0.3, a(1)22,1 = 0.6, a(2)11,1 = 0.8, a(2)21,1 = 0.7, a(2)12,1 = 1, a(2)22,1 = 0.3,
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b
(1)
11,1 = 0.1, b

(1)
21,1 = 2, b

(1)
12,1 = 2, b

(1)
22,1 = 0.3, b

(2)
11,1 = 0.6, b

(2)
21,1 = 1.5, b

(2)
12,1 = 1.5, b(2)22,1 = 1.8,

f
(1)
1,1 = 0.2, f

(1)
2,1 = 0.4, f

(2)
1,1 = 0.5, f

(2)
2,1 = 0.7, g(1)1,1 = 5, g(1)2,1 = 7, g(2)1,1 = 2, g(2)2,1 = 2,

d
(1)
11,1 = 1

6
, d

(1)
21,1 = 1

9
, d

(1)
12,1 = 0.3, d

(1)
22,1 = 1

12
, d

(2)
11,1 = 1

6
, d

(2)
21,1 = 5

9
, d

(2)
12,1 = 0.2, d

(2)
22,1 = 0.1,

k
(1)
1,1 = 1

3
, k

(1)
2,1 = 0.5, k

(2)
1,1 = 1

3
, k

(2)
2,1 = 0.25,

η
(11)
1 = 0, η(21)

1 = 2.5, η(12)
1 = 0.8, η(22)

1 = 0, ζ
(11)
1 = 0, ζ

(21)
1 = 2.7, ζ

(12)
1 = 4, ζ

(22)
1 = 0,

μ
(1)
11,1 = 40, μ(1)21,1 = 16, μ(1)12,1 = 4, μ(1)22,1 = 8, μ(2)11,1 = 36, μ(2)21,1 = 12, μ(2)12,1 = 2, μ(2)22,1 = 7,

ν
(1)
11,1 = 6, ν(1)21,1 = 5, ν(1)12,1 = 1, ν(1)22,1 = 2, ν(2)11,1 = 4, ν(2)21,1 = 3, ν(2)12,1 = 1, ν(2)22,1 = 1.

For ρ = 2

h
(1)
1,2 = 1.7, h

(1)
1,2 = 2.2, h(1)2,2 = 1.7, h

(1)
2,2 = 1.9, h(2)1,2 = 2.6, h

(2)
1,2 = 3.2, h(2)2,2 = 1.9, h

(2)
2,2 = 2.9,

c
(1)
1,2 = 450, c(1)2,2 = 430, c(2)1,2 = 850, c(2)2,2 = 830,

a
(1)
11,2 = 0.9, a(1)21,2 = 0.6, a(1)12,2 = 0.6, a(1)22,2 = 0.5, a(2)11,2 = 1.1, a(2)21,2 = 0.6, a(2)12,2 = 0.6, a(2)22,2 = 0.3,

b
(1)
11,2 = 0.2, b

(1)
21,2 = 1.8, b

(1)
12,2 = 1.8, b

(1)
22,2 = 0.6, b

(2)
11,2 = 1.2, b

(2)
21,2 = 0.8, b

(2)
12,2 = 0.8, b

(2)
22,2 = 2,

f
(1)
1,2 = 0.3, f

(1)
2,2 = 0.5, f

(2)
1,2 = 0.6, f

(2)
2,2 = 0.8, g(1)1,2 = 6, g(1)2,2 = 8, g(2)1,2 = 3, g(2)2,2 = 3,

d
(1)
11,2 = 1

3
, d

(1)
21,2 = 1

3
, d

(1)
12,2 = 0.6, d

(1)
22,2 = 0.25, d

(2)
11,2 = 0.5, d

(2)
21,2 = 1

9
, d

(2)
12,2 = 0.6, d

(2)
22,2 = 0.5,

k
(1)
1,2 = 1, k

(1)
2,2 = 1

7
, k

(2)
1,2 = 1

3
, k

(2)
2,2 = 2

3
,

η
(11)
2 = 0, η(21)

2 = 0.5, η(12)
2 = 0.4, η(22)

2 = 0, ζ
(11)
2 = 0, ζ

(21)
2 = 1.5, ζ

(12)
2 = 2, ζ

(22)
2 = 0,

μ
(1)
11,2 = 49, μ(1)21,2 = 18, μ(1)12,2 = 6, μ(1)22,2 = 10, μ(2)11,2 = 40, μ(2)21,2 = 12, μ(2)12,2 = 5, μ(2)22,2 = 10,

ν
(1)
11,2 = 7, ν(1)21,2 = 6, ν(1)12,2 = 1, ν(1)22,2 = 1, ν(2)11,2 = 8, ν(2)21,2 = 6, ν(2)12,2 = 2, ν(2)22,2 = 1.

Let V (k)
ρ (x(k)) = θ

(k)
ρ |x(k)1 |4 + θ

(k)
ρ |x(k)2 |4, where θ(1)1 = θ

(2)
2 = 1 and θ(1)2 =

θ
(2)
1 = 2. Using the calculated parameters, and equations (15) and (16), we obtain

ε1 = −1547.12, q1(t) = 2.667

1 + t4
, w1 = 84,

ε2 = −2104.5, q2(t) = 8.9867

1 + t4
, w2 = 102.48,
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The choice of the decay function depends straightforwardly on the kernel
functions. Since l(k)ij (t) ≤ l(t) = 4

1+t4 for i, j, k = 1, 2 and since
∫∞

0
4eγ s

1+s4 ds

does not converge for any γ > 0, condition (H6) is not fulfilled and, therefore, we
cannot discuss exponential stability.

Let λ(t) = 1 for t < 0 and λ(t) = 1 + t for t ≥ 0 be a decay function.
Since λ(τ) = λ(2) = 3 and

∫∞
0

4(1+s)γ
1+s4 ds < ∞ for all γ ∈ [0, 3), we can take

[γ ∗
0 , γ

∗
1 ] = [0, 2.9] and compute I1 = maxγ∈[0,2.9]

∫∞
0 q1(s)λ

γ (s)ds = 42.992 and
I2 = maxγ∈[0,2.9]

∫∞
0 q2(s)λ

γ (s)ds = 144.884. Next, we can easily check that for
ρ = 1, 2 the equations

γρ + ερ + nwρλ
γρ (τ )− Iρ = 0

have unique solutions γ1 = 1.992 and γ2 = 2.054. Also, γ = min{γ1, γ2} =
1.992 ∈ [0, 2.9].

For the impulsive moments m ∈ N, in view of (H8), we take I11,m = I22,m =
1
4 , J11,m = J22,m = 2−(m+2) and I12,m = I21,m = J12,m = J21,m = 0. The
condition (17) holds, since it is in the form

8
(
I 4

11,m + I 4
22,m + 2(J 4

11,m + J 4
22,m)3

γ
) = 1

24 (1 + 21−4m3γ ) ≤ 1

Thus, by virtue of Theorem 1 we conclude that the system is 4th moment
polynomially stable with Lyapunov exponent γ = 1.992.

Remark 2 With a different choice of the delay kernel functions l(k)ij (t), we can also
give a suitable example for pth moment exponential stability. Due to the space
constraint, we chose to give an example only on pth moment general decay stability,
to illustrate the importance of the generalized approach.

5 Conclusions

In this paper, we study the pth moment stability (p ≥ 2) on a general decay rate for a
model of coupled systems of stochastic Cohen-Grossberg neural networks with time
delays, impulses and Markovian switching. The results are based on methods from
graph theory, the Lyapunov functional method, Dini derivative and some famous
inequalities. Additionally, we extend the usual notion on the general decay function.
The presented techniques allow us to discuss the pth moment stability even if the
exponential stability cannot be shown. The new results improve the results in earlier
publications and since the considered model is very general, the results could be
applied to different models in the literature and they can be extended to some other
types of coupled networks and dynamical systems. A numerical example is given to
support the theoretical results.
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Stability of Steady States with Complex
Behavior in Time

Yuri V. Mikhlin and Nataliia S. Goloskubova

Abstract A stability of the NNMs and standing or traveling waves is analyzed
by two approaches. One of them is the method of Ince algebraization (IA),
when a new independent variable associated with the unperturbed solution is used
as independent one. In this case equations in variations transform to equations
with singular points. A problem of determination of solutions, corresponding to
boundaries of the stability/ instability regions, is reduced here to problem of
determination of ones that have singularity at the mentioned points. An advantage
of the IA is that in the stability problem we do not need in use of the unperturbed
solution time-presentation. Other approach of the steady states stability investigation
is associated with the classical Lyapunov definition of stability. An implementation
of this definition permits to obtain boundaries between the stability/instability
regions in the system parameter space. Such analytical-numerical test can be used
in stability problem for periodic vibrations or waves with complex behavior in time
when the stability problem has no analytical solution.

Keywords Stability of steady states · Ince algebraization · Lyapunov definition

1 Introduction

Concept of nonlinear normal modes (NNMs), first proposed by Kauderer and
Rosenberg [1, 2], is an important step of investigation of the nonlinear systems
behavior. In regime of NNM a nonlinear n-DOF system behaves like to the
conservative single DOF system. Principal fundamentals of the NNMs theory and
different applications of the theory are presented in some books and reviews [3–5].
Stationary standing or traveling waves can be considered as generalization of the
NNMs to chains or continuous structures [3, 6].
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Different approaches can be used to solve a problem of the vibration modes or
stationary waves stability. We refer here only few of numerous books on this subject
[7–10]. The stability can be effectively analyzed by the so-called Algebraization
by Ince [11]. This approach is performed by choosing a new independent variable
associated with the solution under consideration. An advantage of this approach is
that we do not need to use a specific form of the solution in analysis of the stability
problem. This approach was successfully used in a problem of the NNMs stability
in some nonlinear conservative systems [3, 4, 12]. The Ince algebraization (IA) can
be used also in a problem of stability of nonlinear stationary traveling waves.

The NNMs concept can be used not only for periodic vibrations. In particular,
the NNMs having smooth trajectories in configuration space and chaotic in time
behavior can be found in some non-conservative systems. Such vibration modes
are observed in post-buckling dynamics of elastic systems that have lost stability
under external compressive force. The energy transfer from some vibration mode
to another one is possible in such systems. Thus one can formulate a problem of
the stability of periodic/ chaotic vibration mode in the higher-dimensional spaces.
Taking into account that analytical approaches in a case of chaotic motions are
absent, moreover, an analysis of stability of stationary states with complex behavior
in time, is difficult, the numerical-analytical test which is based on the known
Lyapunov definition of stability [7] is used in such stability problem [13]. This test
can be used also in a problem of the nonlinear standing waves stability.

The paper is organized as follow. The method of IA is presented in Sect. 2 for
the stability of stationary states, in particular, in a problem of stability of NNMs
in the so-called sonic vacuum system (Sect. 2.1), and in a problem of the traveling
waves stability in the Klein-Gordon equation (Sect. 2.2). The numerical-analytical
test of stability (Sect. 3) is used both for problems of stability of NNM in the so-
called stochastic absorber (Sect. 3.1), and for standing waves in the model of DNK
by Peyrard, Bishop and Dauxois (Sect. 3.2).

2 The Ince Algebraization of Equations in Variations for
Nonlinear Normal Modes and Traveling Waves

2.1 Stability of Nonlinear Normal Modes

Consider a problem of stability of the so-called similar NNMs by Rosenberg [2], that
is, NNMs with rectilinear trajectories in configuration space. The IA presupposes
that in corresponding equations in variations the variable t is replaced by the variable
x which defines motion along the rectilinear trajectory. In particular, a use of the
IA permits to transfer equations in variations for the homogeneous systems which
potential energy is a homogeneous function of generalized coordinates, to the form
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of the known hypergeometric equations with two singular points, z = 0 and z = 1
[3, 4, 12]:

z (1 − z) vzz +
[

r

r + 1
− 3r + 1

2 (r + 1)
z

]
vz + λ v = 0; (1)

here λ is eigenvalue of the stability problem. Indexes of the singular point z = 0 are
equal to 0 and 1/(r + 1), indexes of the singular point z = 1 are equal to 0 Ë 1/2.
Solutions corresponding to boundaries of the stability/ instability regions are named
as degenerate solutions of the equation [14] and can be presented as

v = zμ1(1 − z)μ2qn(z), (2)

where qn(z) are polynomials, μ1, μ2 are indexes of the singular points. These
solutions are so-called Gegenbauer polynomials [14]. Values of the parameter λ,
corresponding to change of stability, can be obtained in closed form [3, 4, 12]:

One considers now a stability of NNMs in the system of connected oscillators on
grounding elastic support under conditions of the so-called sonic vacuum [15, 16].
The system dynamics is described by the following equations:

{
μd2v1

dt2
+ v1

3 + μ
6

[
v1

2 + (v2 − v1)
2 + v2

2
]
(2v1 − v2) = 0

μd2v2
dt2

+ v2
3 + μ

6

[
v1

2 + (v2 − v1)
2 + v2

2
]
(2v2 − v1) = 0

, (3)

where the parameter μ presents an influence of the elastic support. After the
following transformation, z1 = v1+v2√

2 ,z2 = v1−v2√
2 , the Eq. (3) can be rewritten

as

{
μd2z1

dt2
+ 0.5

(
z1

2 + 3z2
2
)
z1 + μ

3

[
z1

2 + 3z2
2
]
z1 = 0

μd2z2
dt2

+ 0.5
(
z2

2 + 3z1
2
)
z2 + μ

[
z1

2 + 3z2
2
]
z2 = 0

(4)

The system (4) allows two similar nonlinear normal modes, namely,

1. z2 = 0, z1 = z1(t); where an equation in variations in direction which is
orthogonal to the NNM, is the following:

μ
d2u

dt2
+ (1.5 + μ) z1

2u = 0 (5)

2. z1 = 0, z2 = z2(t); where an equation in variations in direction which is
orthogonal to the NNM, is the following:

μ
d2u

dt2
+
(

1.5 + μ

3

)
z2

2u = 0 (6)
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Integral of energy for the first NNM is the following:

μ

2

(
dz1

dt

)2

+
(

0.5 + μ

3

) z4
1

4
= h (7)

Equation of motion along the first NNM is presented as

μ
d2z1

dt2
+
(

0.5 + μ

3

)
z1

3 = 0 (8)

We use the IA introducing a new independent variable z1 instead of t. After some
transformations using relations (7) and (8), one obtains the equation in variations in
the form of the following equation with singularities:

d2u

dz1
2

(
2h−

(
0.5 + μ

3

) z1
4

2

)
− du

dz1

{(
0.5 + μ

3

)
z1

3
}

+ u
(

1.5μ+ μ2
)
z1

2 = 0

(9)

The singularities are calculated from the equation

2h−
(

0.5 + μ

3

) $0
4

2
= 0, (10)

Indices of these singularities are equal to r1 = 0 and r2 = 1
2 . It is known

[7–10] that T- and 2T-periodic solutions of the equation in variations determine
boundaries of the stability/ instability regions for the NNM under consideration in
the system parameter space, where T is a period of the equation coefficients. In
the equation with singularities such “boundary” solutions are determined by the
following expansions [10, 12]:

u = zr (a0 + a1z+ . . . ) , (11)

where r is one of two indices of the singularity point; z = z1 − Φ0; here Φ0 is a
root of the Eq. (10). Introducing the series (11), corresponding to zero index, to Eq.
(9), and equating coefficients of the same degree by z, one obtains the following
infinite recurrent system of linear homogeneous algebraic equations to determine
coefficients of the series (11):

z0 : a0
[
1.5μ+ μ2

]
$0

2 + a1
(
0.5 + μ

3

)
$0

3 + a2
{
4h− (

0.5 + μ
3

)}
$0

4 = 0;
z1 : a0

{
3μ+ 2μ2

}
$0 + a1

(
1.5 + 2.5μ+ μ2

)
$0

2 − a2 (3 + 2μ)$0
3 = 0;

z2 : a1
{(

1.5 + 4μ+ 2μ2
)
$0 + [

1.5μ+ μ2
]}+ a2

[−2 − 2.5μ+ μ2
]
$0

2 = 0,
(12)

etc.
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The system (12) has non-trivial solution if determinant of the system equal to
zero. This determinant is calculated up to the 5-th order inclusively, and, thus,
relations connecting the system parameters are obtained; so, boundaries of the
stability/instability regions in the system parameter space can be constructed. Note
that boundaries obtained by calculation of determinants of the 4-th and 5-th orders
are close, thus, we did not calculate determinants of the highest order than five.

Substituting the expansion (11), corresponding to the second index r2, to the
equation in variations (9) and equating coefficients of the same degree by z, one
obtains the following infinite recurrent system of linear homogeneous algebraic
equations to determine coefficients of the series (11):

z− 1
2 : 0.75a1

(
2h− (

0.25 + μ
2

)
$0

4
) = 0;

z
1
2 : a0

{
1.25μ − 0.375 + μ2

}
$0

2 − a1

(
1 + 2

3μ
)
$0

3 + a2
15
4

(
2h− (

0.25 + μ
2

)
$0

4
) = 0;

z
3
2 : a0

(
2.5μ+ 2μ2 − 0.5

)
$0 − a1

(
3.375 + 0.75μ− μ2

)
$0

2 − a2

(
5 + 10μ

3

)
$0

3 = 0

(13)

etc.
Thus, it is obtained one more system of linear homogeneous algebraic equations,

which has non-trivial solution if the system determinant equal to zero. This determi-
nant is calculated up to the 5-th order inclusively, and, thus, relations connecting the
system parameters are obtained; so, boundaries of the stability/instability regions in
the system parameter space can be constructed. Similar transformations are made in
Eq. (6) for variations which are orthogonal to the second NNM.

In Fig. 1 boundaries between regions of the both NNMs stability/ instability on
place of the system energy h and the parameter μ are shown. In Fig. 1a the boundary
is shown for the first NNM; one has from Eq. (10) that here Φ0∈ [0.941;1.682]. The
boundary is the same for both indices r1 and r2. In Fig. 1b the boundary is shown
for the second NNM; one has from Eq. (10) that here Φ0∈ [0.404;1.185]. Boundary
is coinciding for both indices r1 and r2 too. Regions of stability here are situated
from the left of the boundary in Fig. 1a, and from the right in Fig. 1b.

a) b)

Fig. 1 Boundaries of regions of stability/ instability on place (h,μ) for the first NNM of the system
under consideration (a) and for the second one (b)
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a) b)

c) d)

Fig. 2 Limited and unlimited solutions of the equation in variations; (a) h = 0.2, μ = 0.008; (b)
h = 0.9, μ = 0.002; (c) h = 0.6, μ = 0.002; (d) h = 0.4, μ = 0.009

As illustration of the obtained results, limited and unlimited solutions of the
equations in variations are constructed by the Runge-Kutta method. Parameters μ
and h for the calculations are chosen from regions of stability/ instability presented
in Fig. 1. In particular, in Fig. 2 such solutions are chosen from regions of stability
or instability, shown in Fig. 1a, for the following cases: (a) h = 0.2, μ = 0.008; (b)
h = 0.9, μ = 0.002; (c) h = 0.6, μ = 0.002; (d) h = 0.4, μ = 0.009. In Fig. 3 such
solutions are chosen from regions of stability or instability, shown in Fig. 1b, for the
following cases: (a) h = 0.2, μ = 1.25; (b) h = 0.6, μ = 1; (c) h = 0.05, μ = 1; (d)
h = 0.5, μ = 1.2.

2.2 Stability of Traveling Waves in the Klein-Gordon Equation

One considers the Klein-Gordon equation [17] with cubic nonlinearity:

∂2u

∂t2
− c0

2 ∂
2u

∂x2
+ ω0

2u = −qu3 (14)
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a) b)

c) d)

Fig. 3 Limited and unlimited solutions of the equation in variations; (a) h = 0.2, μ = 1.25; (b)
h = 0.6, μ = 1; (c) h = 0.05, μ = 1; (d) h = 0.5, μ = 1.2

Stationary traveling waves are presented here in the following form:

u = $(ϕ) , ϕ = kx − ωt (15)

where ϕ is the wave phase. Substituting (15) into Eq. (14), we obtain the following
ordinary differential equation to describe the traveling waves:

d2$

dϕ2

(
ω2 − c0

2k2
)

+ ω0
2$+ q$3 = 0 (16)

The energy integral can be written here as

1

2

(
d$

dϕ

)2 (
ω2 − c0

2k2
)

+ ω0
2 �2

2
+ q

�4

4
= h (17)
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In addition, from Eq. (16), (17) we can obtain the following relations, which will
be used later in analysis of the traveling waves stability:

d2$

dϕ2 = −ω0
2$− q�3

ω2 − c0
2k2 ,

(
d$

dϕ

)2

=
2
(
h− ω0

2 �2

2 − q �4

4

)

ω2 − c0
2k2 . (18)

To study the stability of stationary waves, we write out, first of all, the linearized
equation in variations V(t, x) obtained for the solution (15). One has from the Eq.
(14) the following:

∂2V

∂t2
= c0

2 ∂
2V

∂x2 − V
(
ω0

2 + 3q$2
)
, (19)

where the function Φ (ϕ) is determined by the Eq. (16).
As the first step, we now introduce the independent variables ϕ, t instead of the

variables x, t. The Eq. (19) in the new variables is presented as follows:

∂2V

∂ϕ2

(
ω2 − c0

2k2
)

− 2ω
∂2V

∂ϕ∂t
+ ∂2V

∂t2
= −V

(
ω0

2 + 3q$2
)
. (20)

Then we use the separation of variables as V=est ž (ϕ) and the transformation,
ž (ϕ) = eAϕW, where A = sω

ω2−c0
2k2 . As a result, the Eq. (20) can be presented as

d2W

dϕ2

(
ω2 − c0

2k2
)

= −W
(
B − ω0

2 − 3q$2
)
, (21)

where B = s2

c0
2k2−ω2 . Note that since namely the parameter s2 is presented in Eq.

(16), in the case of real values of the parameter s, values of the parameter can be both
positive and negative. In view of the preceding transformation, it leads to increase
of the variations, that is, to instability. Thus, stability can be observed only if s2 < 0.
One has from here that for the stability there should be the following inequalities:

B > 0, if c0
2k2 − ω2 < 0 and B < 0, if c0

2k2 − ω2 > 0. (22)

Then, as a new independent variable, the variable Φ, determining the traveling
wave under consideration, is chosen instead of ϕ. Use of the relations (18) permits
to present the equation of variations as the following equation:

2 d
2W
d$2

(
h− ω0

2 �2

2 − q �4

4

)
− dW

d$

(
ω0

2$+ 3q$3
)+W

(
B − ω0

2 − 3q$2
) = 0,

(23)
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whose singular points can be obtained from the equation

h− ω2
0
$2

2
− q

$4

4
= 0 (24)

The transformation of the equation in variations to the form of Eq. (23)
corresponds to the IA of the stability problem. Here we do not need in use of
the specific form of the solution Φ(ϕ). According to the preceding sub-Section
boundaries of the stability/instability regions in the parameter space of the equation
in variations with singular points are connected with solutions presented by the
following series:

W = zr (a0 + a1z+ . . . ) . (25)

Here r is one of two indices of singularity of the equation in variations;

z = (Φ −Φ0);Φ0 is some root of the Eq. (24). One has r1 = 0 and r2 = − 2q$2
0

ω0
2+q$2

0
.

Substituting then the series (25) corresponding to the zero index to the equation
in variations (23) and equating coefficients with the same degrees by z, we get the
infinite recurrent system of linear homogeneous algebraic equations to determine
coefficients of the series, which are not presented here. Such systems allow a
non-trivial solution if their determinants are equal to zero. The determinants are
calculated up to the 5-th order inclusively, and, thus, relations connecting the
system parameters are obtained; so, boundaries of the stability/ instability regions
in the system parameter space can be constructed. Note that boundaries obtained by
calculation of determinants of the 4-th and 5-th orders are close, thus, we did not
calculate determinants of the highest order than five. Similar transformations are
made for the index r2.

Obtained boundaries of the stability/ instability regions in the place of the
parameters B, h are presented in Fig. 4 for both indices. Here we fix the traveling
wave amplitude, namely, it is assumed that Φ0 = 1; thus, the frequency ω = 1.5;
c0 = 1; k = 0.1. Here the parameter q is calculated from the Eq. (24); thus, one
has c0

2k2 − ω2 = − 2.24. In Fig. 4 region of instability is situated between the
boundaries.

The Runge-Kutta test for the equation in variations (23) is used to show limited/
unlimited solutions when parameters are chosen from the stability/ instability
regions presented in Fig. 4. Such limited solutions are shown in Fig. 5. Here the
system energy h = 0.4 and the parameter B = 2 are used for Fig. 2a; h = 14 and
B = 3 are used for Fig. 2b. Other parameters correspond to ones used for Fig. 4.
Unlimited solutions of the equation in variations are presented when the parameters
are chosen in the instability region showed in Fig. 4, where h = 1, B = 2 (Fig. 2c);
h = 5, B = 1 (Fig. 2d).
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Fig. 4 Boundaries of the stability/ instability regions in the place (B, h) for the index r1 (right
boundary) and for the index r2 (left boundary)

a) b)

c) d)  

Fig. 5 Limited and unlimited solutions of the equation in variations chosen in regions of
stability/instability. Calculations are made for h = 0.4, B = 2 (a); h = 10, B = 2 (b); h = 1,
B = 2 (c); h = 5, B = 1 (d)
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3 Analytical-Numerical Criterion of Stability for Nonlinear
Normal Modes and Traveling Waves

3.1 Stability of Nonlinear Normal Mode with Complex
Behavior in Time

Often a problem of stability of modes or stationary waves with complex behavior in
time has no analytical solution. It particular, it concerns to stability problem in post-
buckling behavior of elastic systems, such as roads, plates, shells, when chaotic
in time behavior can be observed [18, 19]. The stability of NNMs with complex
behavior in time is considered here by use of the numerical-analytical approach
based on the known Lyapunov definition of stability [7]. One has the following test
for the system under consideration [18]. Instability of the solution y = 0 is fixed if

|y(t)| ≥ ρ |y(0)| (0 ≤ t ≤ T ) (26)

In contrast to the Lyapunov definition a time of calculations T is limited in the
test (26). We discuss now a choice of the constant T. All concrete calculations are
made at points of some chosen mesh of the system parameter space. Calculations are
conducted as long as boundaries of stability/instability regions in a chosen scale on
the system parameter space are variable. This is a principal criterion for the choice of
the calculation time T [18]. There is also some arbitrariness in a choice of the value
ρ. In fact, in the instability region the variations leave the solution ε-neighborhood
under increase of t for any choice of the parameter ρ. We can choose, in particular,
ρ = 10.

One considers now a stability of horizontal vibration mode in model of the so-
called stochastic absorber. Such model exhibiting one-directional long-term trends
in energy exchange flows is introduced in [20]. The stochastic absorber is shaped
as a typical contour of the potential energy determining interactions with one or
few inner particles with the container wall. The container is attached with massive
well by linearly elastic spring (Fig. 6). Equations of motion of the single particle
for the system in a small neighborhood of the NNM y = 0 are the following
[20]:

ẍ + x2n−1 = μ

1 + μ
+
[

ẍ + (α − β)2

γ
X

]

ÿ + λx2ny = 0 (27)

Ẍ + μ
(
Ẍ + ẍ

)+X = 0



320 Y. V. Mikhlin and N. S. Goloskubova

Fig. 6 Model of the stochastic absorber

Fig. 7 Boundary of stability/ instability regions for the mode y = 0

Here β is the main geometrical parameter determining the contour’s curvature
κ in the rigid-body limit n → ∞; α and μ are shown in Fig. 6; λ = −2β (α-
β). The second equation of the system (27) is the equation in variations for the
vibration mode y = 0. The test (26) is used. It permits to obtain boundary of the
stability/ instability regions in the place (X(0), β). This boundary is shown in Fig.
7 for α = 0.5 μ = 0.01, n = 10. The stability region is disposed on the right in the
Fig. 7. Trajectories of particle inside the container during the time interval t ≤ 3000
are shown in Fig. 8 for parameters corresponding to stability/ instability regions
presented in Fig. 7. Here α = 0.5, G = 1, n = 10. Different forms of the contour are
chosen, namely, Fig. 8: (a) = −0.3, ¸ = −0.03; (b) = −0.1, ¸ = 0.09; (c) =
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a) b)

c) d)

e) f)

Fig. 8 Trajectories of particle inside the container during the time interval t ≤ 3000, obtained for
α = 1

2 , G = 1, n = 10 and different forms of the contour, namely, (region of instability) (a)= −0.3,
¸ = −0.03; (b)= −0.1, ¸ = 0.09; (c)= −0.15, ¸ = 0.08; (d)= −0.05, ¸ = 0.094; (region of
stability) (e)= −0.2, ¸ = −0.04; (f)= −0.1, ¸ = 0.04

−0.15, ¸ = 0.08; (d) = −0.05, ¸ = 0.094; Fig. 9: (a) = −0.2, ¸ = −0.04; (b)
= −0.1, ¸ = 0.04. Here X ≡ X(0). For all cases initial position of the particle is (x,
y) = (0.0,0.01) with zero velocities.
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3.2 Stability of Localized Standing Waves in the
Peyard-Bishop-Doksua DNA Model

Many recent works are devoted to study of wave processes in the DNA molecule.
One of the most successful models of the DNA molecule dynamics is the model
developed by Peyrard, Bishop and Dauxois (the PBD model) [21, 22] which is
considered here. In the PBD model two strands of the DNA are represented by
linked chains of hard disks, where the bonds within base pairs are described by the
anharmonic potential and the interaction between opposite discs of different chains
is represented by the Morse potential. In this model, the transfer of the DNA duplex
in space as a whole is not considered, and only a divergence of different chains is
studied.

The PBD model is presented in Fig. 9. A mass of the discs is assumed as m = 1.
An interaction between opposite discs of different chains is represented by the
Morse potential, V = d(exp(−a(un − vn)) − 1)2. Introducing new coordinates as
zn = un+vn√

2
, yn = un−vn√

2
, one describes so-called staking interaction between nodes

of the same chain by using the anharmonic potential,

W (yn, yn+1) = k

a2

(
1 + ρe−γ (yn+1+yn)(yn+1 − yn)

2
)

(28)

Here γ is the damping coefficient for the staking interaction, ρ is a parameter
of anharmonicity, which characterizes a nonlinearity in the chain; d is an energy
of dissociation of the polynucleotide chains, a is a parameter inversed to distance
between disks, k is a constant which characterizes an interaction between bonds
within chain. As it was written above, only a divergence of different chains, which
is described by variables yn, is considered. Passing on to unidimensional time and

displacement, τ = t

√
da2

m
, u = ayn,, then returning to initial notations of variables,

τ → t, u → y,one presents, as a result, the system of equations describing a
divergence of chains in the PBD model as follows:

Fig. 9 Model DNK by
Peyrard, Bishop and Dauxois
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d2yn
dt2

= k
a2 (yn+1 − 2yn + yn−1)+ k

a2 ρ
{
e−γ (yn+1+yn) (yn+1 − yn)

[
1
2γ (yn+1 − yn)+ 1

]

+e−γ (yn+yn+1) (yn − yn−1)
[

1
2γ (yn − yn−1)− 1

]}
− 2

√
2De−

√
2yn

[
1 − e−

√
2yn
]

(29)

Localized standing waves are excited by either the initial displacement yn, describ-
ing the divergence of the chosen opposite discs of two chains, or the corresponding
initial velocity.

The stability of the localized standing waves in the PBD model is investigated
here by using the numerical-analytical procedure presented in preceding sub-
Section.

Here we compare values of initial value of the kinetic energy of the excited
disk yn and current values of kinetic energies of the neighboring elements of the
chain. Instability of localized standing wave is fixed if more than 10% of the initial
kinetic energy is transferred to neighboring discs. We consider a chain consisting
of nine elements. Calculations are made in nodes of some mesh in chosen domain
of the system parameters with mesh width equal to h = 0.1. As it was pointed
out above, calculations are stopped when boundaries of the stability / instability
regions are stabilized in the chosen mesh. This is a principal criterion of the choice
of the calculation time. Results are presented in Fig. 10, where boundaries of the
stability/ instability regions are shown in places of some chosen parameters. It is
assumed that α = 0.65, γ = 0.577. Besides, in Fig. 10a the parameter d = 0.9 (eV);
the parameter k

(
eV/Å2

)
changes on the interval [0; 0.025]; the unidimensional

parameter ρ changes on the interval [0; 6]. For Fig. 10b the parameter d = 0.33 (eV);
k changes on the interval [0; 0.023]; the parameter ρ belongs to the interval [0; 6].
For Fig. 10c the parameter ρ = 0.5; k belongs to the interval [0.011; 0.051]; d
changes on the interval [1.25; 3.1]. For Fig. 10d the parameter ρ = 1; k changes
on the interval [0.01; 0.1]; d changes on the interval [0.1; 1.75]. Here regions of
stability are situated on the left side of the obtained boundaries.

To illustrate obtained results calculations of the considered chain dynamics (9
nodes) are made using the Runge-Kutta method of the 4-th order. Let α = 0.65,
γ = 0.577. The following parameters are chosen for region of stability: =
0.001 eV/Å2; ρ = 0.01, d = 0.9 eV (Fig. 11), and for region of instability:
= 0.1 eV/Å2; ρ = 0.1, d = 0.9 eV (Fig. 12). Here only the single central disc
in the model under consideration is excited, y5(0) = 0.782;initial displacements of
other nodes and all initial velocities are equal to zero, that is, the localized standing
wave is excited. Displacements in time for each of nine nodes of the model are
presented both for the stable localized wave (Fig. 11), and for the unstable one (Fig.
12).
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a) b)

c) d)

Fig. 10 Boundaries of the stability/ instability regions for the system (29): in place (k, ρ) for
d = 0.9 (Ã) and d = 0.33 (b); boundaries in place (k, d) for ρ = 0.5 (c) and ρ = 1 (d)

Fig. 11 Stable standing localized wave for k = 0.001; ρ = 0.01; d = 0.9
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Fig. 12 Unstable standing localized wave for k = 0.1; ρ = 0.1; d = 0.9

4 Conclusions

It is shown that both the method of Ince algebraization, and the numerical-
analytical procedure which is a consequence from the classical Lyapunov definition
of stability, can be successfully used in a problem of stability of steady states. An
advantage of the IA is that we do not need in use of the unperturbed solution time-
presentation. Limitation of the IA consists in that only conservative systems must
be considered, and that the stability problem must be reduced to a single equation in
variations. Investigation of stability of traveling nonlinear waves in nonlinear media
is possible too. The second numerical-analytical approach permits to analyze a
stability of NNMs, including modes with complex in time behavior when analytical
solution of the stability problem is absent. Investigation of stability of traveling or
standing nonlinear waves in nonlinear chains can be also realized by the approach.
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Modelling of Torsional Vibrations
in a Motorcycle Steering System

Andrzej Dębowski and Dariusz Żardecki

Abstract Torsional vibrations of steering systems are significant problems for
the active safety of motorcycles. These vibrations may occur even with slight
disturbances of the steady state motion, and their causes result from the improper
mechanical parameters and characteristics of the steering system affecting the
dynamic properties of the vehicle. In many cases, full elimination of torsional vibra-
tions requires the use of special dampers acting as mechatronic systems. Identifying
the causes of vibrations and finally the proper synthesis of the active damper requires
research studies using mathematical modelling and computer simulation. Due to the
complex nature of motorcycle dynamics, which prompts the creation of complex
forms of the mathematical model, and at the same time the obvious paradigm of the
relative simplicity of the model used in mechatronic systems, the synthesis of such a
model requires a special approach. The paper presents a method of model synthesis
including determination of nonlinear equations of motion in an extreme “expanded”
version, then their linearization, Laplace transformation and determination of the
transfer functions, frequency analysis based on Bode plots, reduction of the transfer
functions and finally calculation of state equations allowing a synthesis of the active
damper algorithm.

Keywords Wobble · Steering system · Motorcycle · Vibrations · LabVIEW ·
Bode plots · Shimmy

1 Introduction

Dynamic peculiarities occurring in the movement of a motorcycle are a significant
problem of motorcyclist safety. The behavior of the motorcycle results from the
complex dynamic properties of the driver-vehicle-road system as well as internal
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and external interactions disturbing steady motion. The source of these distur-
bances may be balancing, steering control, acceleration and braking. Stimulation
of vibrations can also come from wheel imbalance or from uneven roads. The
variety of peculiar behavior of motorcycles is demonstrated by their classifications
emphasizing the specificity of non-oscillation processes and the vibrations of the
vehicle and its components [2]. Vibration in the motorcycle steering system can be
counteracted by proper selection of parameters, as well as by introducing special
dampers (especially electronically controlled dampers) [4].

Modeling of motorcycle motion dynamics (including vibrations) was undertaken
by many researchers and has significantly changed after the spread of MBS-
type software. The most important achievements in terms of testing vibrations in
motorcycles from the last 50 years are presented in Table 1 (based on works [2, 5,
7–9, 11–15]), and a broader historical perspective can be found in [4, 6].

Modeling of torsional vibrations in the steering system of a motorcycle is
discussed in this paper. The presented models are used to analyze the vibration
sensitivity to changes in motorcycle parameters (the initial model, then linearized
and transformed to the transmittance form) and to synthesize the control of the
vibration damper (the reduced model resulting from the transmittance model).

Table 1 Major works related to motorcycle vibrations testing

Year Author The most important report

1971 Sharp Stability analysis of rectilinear motorcycle movement including tire
properties

1974 Sharp Study on the effect of frame flexibility on lateral stability of a motorcycle.
1974 Jennings Observing the relationship between the lateral movement of the

motorcycle and weave-type vibrations.
1976 Sharp Presentation of the relationship between motorcycle lateral movement and

weave-type vibrations at high speeds.
1978 Kane Analysis of the impact of frame flexibility on weave-type vibrations at

high speeds.
1983 Koenen Investigations of motorcycle vibrations in steady state conditions for a

cornering case and a model taking into account suspension compliance.
1994 Sharp Taking into account current reports in the field of studying the dynamics

of motorcycles in a single model.
1994 Sharp Review of modeling methods for multi-body systems and their application

to mathematical modeling of vehicles
2002 Cossalter The first book on motorcycle dynamics
2004 Evangelou Torsional vibration damper for sports motorcycles due to their poor

stability at high speeds.
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2 Mathematical Model and Its Application in Sensitivity
Analysis

The physical model corresponding to the steering system of the motorcycle mounted
in a special drum test stand is shown in Fig. 1.

The model takes into account the key features of the motorcycle’s steering
system and is in accordance with the fundamental development of Cossalter [2].
This model has five degrees of freedom, which are vertical movement of the
wheel and body, rotational movement of the wheel relative to the wheel axis and
angular movement of the steering wheel and wheel around the axis of the steering
head frame (see Fig. 2). The model includes longitudinal suspension work and
its torsional flexibility. Due to the fact that the analysis of dynamics concerns
vibrations in the range of small amplitudes, small deformations and displacements,
the impact of the lateral tilt of the suspension (considered around the X axis) is
ignored. The model includes the gyroscopic effect. Between the steering wheel
and the head of the frame there is a spring-damping element representing the
driver’s hands and a damping element representing the torsional vibration damper.
In the field of tire modeling, works [2, 10, 16] were used. Therefore, a simplified
wheel-road cooperation model was adopted, with passing over the phenomenon of
tire dynamics and with a simplified description of the stabilizing moment (due to
the large overtaking distance, it has a small share in the total stabilizing moment
[11, 16]).

Due to small angular movements and constant wheel speed, all characteristics
of the elements are linear (in particular, this also applies to the description of
wheel/road interaction). The model’s non-linearity results only from geometric
conditions.

Fig. 1 Test stand of
motorcycle steering system
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Fig. 2 Physical model of motorcycle steering system

List of variables and parameters (examples of parameter values are presented in
this list):

• ψ1, ψ2 – the steering angle of the wheel and steering wheel, respectively,
• ϕ1 – wheel rotation angle,
• z1, z2 – vertical displacement of elements associated with the wheel and frame,
• ϕ2 – head angle (24 degrees),
• m1, m2, m – reduced mass of elements associated with the wheel (15 kg) and

frame (200 kg) respectively, and the sum of the mass m1 i m2,
• J1, J2 – the equivalent moment of inertia of the elements associated with the

wheel (0.21 kgm2) and steering handlebar (0.4 kgm2),
• cr, ca, csz, cz, Co – damping coefficient of the driver’s hands (10 Nms/rad),

vibration damper (0–3 Nms/rad), torsional suspension (1 Nms/rad), longitudinal
suspension (2.6 kNs/m), tire damping coefficient (150 Ns/m) respectively,

• kr, ksz, kz, Kz - stiffness coefficient of the driver’s hands (0.8 kN/rad), torsional
suspension (7 kNm/rad), longitudinal suspension (14 kN/m), radial tires (190
kN/m) respectively,

• p1, p2, p3 – point of suspension end, wheel rim and wheel contact with the road,
respectively,

• X, Y, Z – axes of the coordinate system,
• rd – dynamic radius of the wheel (0.3 m),
• l – wheelbase of road wheels (1.35 m),
• l1 – distance between the center of mass and the axis of the front wheel (0.6 m),
• lk – offset the wheel axis from the steering head axle (0.03 m),
• wpo – tire tread height (0.08 m),
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• a1 – actual overtaking distance (0.1 m),
• Mnk, Mb, Mor, Msk – the moment stimulating vibrations, driving from the drum

and resistance to movement, steering wheel turning, respectively,
• W0 – excitation from the road surface.

To write the equations of motion, Lagrange equations of the second type were
used and a system of non-linear differential equations (initial model) was obtained
with the general structure expressed by relations (1–5).

f1
(
z̈1, ψ̈1, ψ̇1, ż2, ż1, ψ1, z1, z2;W0

) = 0 (1)

f2
(
z̈2, ψ̈1, ψ̇1, ż2, ż1, ψ1, z1, z2

) = 0 (2)

f3
(
ϕ̈1, ψ̈1;Mb,Mor

) = 0 (3)

f4
(
ψ̈1, ψ̈2, z̈1, z̈2, ϕ̇1, ψ̇1, ψ̇2, ż1, ż0, ψ1, ψ2;Msk,Mnk

) = 0 (4)

f5
(
ψ̈2, ψ̇1, ψ̇2, ψ1, ψ2

) = 0 (5)

The initial mathematical model has a complicated non-linear form. For example,
the form of Eq. (1) is as follows.

z̈1 = 1
lm1

(
lKz

(
rk − wpo

)
cos (ϕ2sin (ψ1))− ϕ2lcos (ψ1) ψ̇1Co

(
rk − wpo

)
sin (ϕ2sin (ψ1))

+ sin (ϕ2) sin (ψ1) lkm1ψ̈1l + sin (ϕ2) ψ̇
2
1 cos (ψ1) lkm1l + Colkψ̇1sin (ψ1) sin (ϕ2) l

− l (Co + cz) ż1 + Coż0l + czż2cos (ϕ2) l −Kzlkcos (ψ1) sin (ϕ2) l

+lkl (Kz + kz) sin (ϕ2)+ kzz2cos (ϕ2) l − l (Kz + kz) z1 +Kzz0l − g (lm2 − l1m))

(6)

Linearization of the initial mathematical model would lead to extremely complex
records. That is why model linearization and then determination of Laplace trans-
mittances was “automated” using the Maple programming tool, which, however,
requires the numerical form of the model. The model was linearized assuming a
work point:

z1 = 0 (7)

z2 = 0 (8)

ϕ̇1 = 15.9 rad/s (9)

ϕ̇2 = 0.42 rad/s (10)
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For a system with two inputs and five outputs, ten different transmittances
can be obtained that describe the steering system in question. However, from the
perspective of further analysis, the most important is the transmittance between the
steering angle &2(s) the stimulating moment Mnk(s). The steering model will then
be of the transmittance form given by the following equation:

Ψ2(s)

Mnk(s)
= b1s + b0

a4s4 + a3s3 + a2s2 + a1s + a0
. (11)

Assuming the example values of parameters (in accordance with the list pre-
sented earlier), the numerical form of this transmittance is as follows:

Ψ2(s)

Mnk(s)
= 4.37 • 10−4 • (s + 1)

5.52 • 10−9s4 + 2.25 • 10−7s3 + 5.48 • 10−4s2 + 5.16 • 10−4s + 1
.

(12)

For transmittance (12), the logarithmic characteristics of the module and phase
have a graph, as in Fig. 3.

The next stage, which facilitates the analysis of system dynamics, is the
distribution of transmittance (having fourth order polynomial) on the sum of
two more simple transmittances (having second order polynomials). After such
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decomposition, it is possible to do the frequency analysis of these components
and reveal the dynamic features that will be assigned in this case to the vibrations
associated with the steering handlebar and the wheel. Applying the decomposition
method to simple fractions described, among others in [3] one obtains:

Ψ2(s)

Mnk(s)
= G1(s)+G2(s) = 1.7 • 10−5s + 3.1

s2 + 0.18s + 1857.0
+ −9.55 • 10−6s − 3.1

s2 + 40.6s + 97380.9
(13)

In this way, values were obtained for individual resonance frequencies, where
for the steering wheel it is 314 rad/s (50 Hz) (left side on Fig. 4), and for the wheel
47 rad/s (7.5 Hz) (right side on Fig. 4).

Stability analysis was also carried out using Routh and Hurwitz methods, on the
basis of which it was found that the steering system is on the limit of stability, which
requires the use of additional damping systems.

Using the previously presented method of separating two resonance frequencies,
it is possible to assess the impact of selected steering system parameters. Examples
of them are presented below (Figs. 5 and 6).
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3 The Reduced Model and Its Application in the Synthesis
of the Algorithm by a Vibration Damper

Based on the distribution of higher order transmittance to the sum of two lower order
transmittances, it can be seen that the essence of the problem of torsional vibration
in the steering system is represented by the transmittance of the reduced form:

Ψ2(s)

Mnk(s)
= b0

a2s2 + a1s + a0
. (14)

This form is useful to project a control system for active vibration damper using
modern methods of the optimal control theory. One of them is the LQR method
dedicated to synthesis linear regulators [1]. It requires the model in the state equation
form and quadratic optimized functional.

If the object description is done by vector state equation:

ẋ = Ax + bu, (15)
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and optimized functional is

J (u) = 1

2

∞∫

0

(
xTQx + uTRu

)
dt, (16)

where A, B, Q, R are given matrices.
The optimal control signal fulfills equations

û(t) = −R−1BTKx(t), (17)

where:

−KA − ATK + KBRBTK = 0 (18)

In our case: X1 = ψ , X2 = ψ̇ , u = Mnk, A =
[

0 1
− a0 −a1

]
, b =

[
0
b0

]
,

Q =
[
q1 0
0 q2

]
, R = r.where: r – control signal weight, q1, q2 – object condition

weights.
After solving the non-linear algebraic Riccati equation, the optimal regulator is

obtained, which is the PD regulator, and the optimal LQR control is obtained as:

Mnk(t) = Kx(t) = K11ψ(t)−K22ψ̇(t) (19)

In the case, when r = 1, q1 = 0.05, a q2 = 0.087, one calculates K11 = 5.37 and
K22 = 0.14.

Based on the synthesis of the regulator presented above, the damper control
system was obtained (Fig. 7):

Fig. 7 Diagram of the vibration damping regulation system in the motorcycle steering systemNo-
tation: ψ20 – reference value, ψ2 – current value of the steering wheel angle, ε – control error,
Mnk – optimal value of damping force, Us – control voltage, FT – actual damping force
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regulator and without it after increasing the driving speed to 30 km/h

The developed regulator was tested using computer simulation, in which typical
traffic conditions were varied (e.g. vehicle speed, see Figs. 8 and 9).

4 Conclusion

The paper presented a method of model synthesis including determination of nonlin-
ear equations of motion in an extreme “expanded” version, then their linearization,
Laplace transformation and determination of the transfer functions, frequency
analysis based on Bode plots, reduction of the transfer functions and finally
calculation of state equations allowing a synthesis of the active damper control
algorithm. Based on the simulation investigations, it was found that the developed
damper’s regulator works correctly in various traffic conditions. Additionally, it can
be stated that the time needed to reduce the impact of a disorder is similar to the basic
driver response time. And this time is crucial, because then wobble vibrations may
occur if the damping in the motorcycle steering system does not increase quickly
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enough. Typical driver response time is much longer than the response time of
actuators, and therefore the use of a damper with a regulator in the steering system
is justified.
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Free Vibration Frequencies of Simply
Supported Bars with Variable Cross
Section

Olga Szlachetka , Jacek Jaworski, and Marek Chalecki

Abstract Using the Rayleigh method, the authors developed a procedure for
determination of higher natural frequencies and derived formulas for frequencies of
first three modes of free (transverse) vibrations of simply supported bars having the
shape of truncated cone and truncated wedge. The bars are made of a homogeneous
and elastic material and are considered as Bernoulli-Euler beams. It was assumed
that the shape of the bar axis deflected during vibration corresponds to a deflection
line resulting from action of a specific continuous static load. Dimensionless
frequency parameters for bars with various truncation factors, obtained as a result,
were compared to those known from literature and to results of application of
FEM. High concordance of results was found for the first natural frequency. For
the second and third frequencies, however, the results acceptable from engineer’s
point of view (i.e. burdened with an error lower than 6%) were obtained only for
bars with the truncation factor not lower than 0.6 (for the truncated cone) and 0.4
(for the truncated wedge). It means that the hypothesis assumed in the study for
the shape of a beam axis deflection line during vibrations, enabling determination
of higher frequencies of free vibrations and being proper for bars having shapes
close to a solid cylinder or cuboid, loses its appropriateness for bars approaching
the shape of cone or wedge.

Keywords Simple supported bar · Non-uniform section · Natural frequencies

1 Introduction

Variable cross-section beams can ensure a better mass and strength distribution
than the constant cross-section ones what makes them more popular in common
application in building and machine constructions. Higher natural frequencies of
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such beams can be determined from the differential equation of Bernoulli-Euler
beam. An analytical solution of this equation for truncated cone and truncated
wedge beams, obtained with use of the Bessel functions of the first kind, was
presented by Conway and Dubil [4]. Naguleswaran [8] obtained the exact solution
using Frobenius method and presented (in tables) first three dimensionless natural
frequencies for 16 combinations of supporting schemes and various values of
truncation factors. Many researchers extended the analysis to beams with other
shapes of the cross-section. For example, Ece, Aydogdu and Taskin [5] investigated
a bar with exponentially varying width, Caruntu [3] analyzed a bar with circular
cross-section and parabolic variability of radius, Keshmiri, Wu and Wang [7] studied
exponentially and trigonometrically tapered cone beams with different taper ratios.

In some papers (e.g. [6]) it was proven that the application of the Rayleigh’s
method for determination of first natural frequency of transverse vibrations of
variable cross-section cantilever bars – with assumption that the shape of the bar
axis deflected during vibration corresponds to a deflection line resulting from action
of a uniform continuous static load – gives results which can be acknowledged as
accurate for practical engineering calculations. Bagdasaryan et al. [1] checked that
the differences between frequencies calculated in such way and results obtained in
FEM did not exceed 1.7% for truncated cone beams and 0.5% for truncated wedge
beams, supported in any form. For simply supported beams, these differences did
not exceed 0.6%.

For a beam with length L and constant bending stiffness (EJ = const), higher
natural frequencies can be also calculated using the assumption mentioned in
the previous paragraph. The deflection of the beam (Fig. 1a) is described by the
equation:

u(x) = q

24EJ

(
x4 − 2Lx3 + L3x

)
(1)

The potential energy in the deflected position of the beam is equal to

Fig. 1 (a) Uniformly loaded,
simply supported beam. (b)
Scheme for determination of
an n-th natural frequency
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Ep =
L∫

0

1

2
qu(x)dx = 1

2

q2L5

120EJ
(2)

whereas the kinetic energy in the non-deflected position

Ek =
L∫

0

1

2
ω2u2(x)ρAdx = 1

2
ρAω2 31q2L9

242 · 630(EJ )2
(3)

where q – continuous static load, ρ – mass density, A – cross-section area, ω –
natural frequency.

Comparing both energies, one obtains the frequency for the first mode:

ω1 = 12

√
21

31

1

L2

√
EJ

ρA
(4)

Higher frequencies can be obtained considering a shape of the vibrating beam
as in Fig. 1b. If a simply supported beam with the length L is replaced by n simply
supported beams with the length L/n, then – as it results from (4) – the n-th frequency
will be n2 times greater than the first one:

ω2 = 4ω1;ω3 = 9ω1;ωn = n2ω1 (5)

The comparison of these results to the well-known solution for the first natural
frequency of the transversal vibrations of a simply supported beam (cf. e.g. [2])

ω1 = π2

L2

√
EJ

ρA
,ωn = n2ω1 (6)

allows to state that the difference (relative error) of the simplified solution amounts

∣
∣∣∣π

2 − 12

√
21
/

31

∣
∣∣∣

π2 100% = 0.0715% (7)

The aim of this work is an attempt to apply the aforementioned method of
calculation of higher natural frequencies for beams with variable cross-section. The
detailed description of the approach will be presented on the example of a simply
supported truncated cone beam.
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2 Materials and Methods

2.1 Truncated Cone Beam – Deflection and First Natural
Frequency

Assume that a truncated cone beam is subjected to a continuous load with a constant
value q (Fig. 2). The diameter δ, cross-section area A and second area moment J in
any cross section of the beam are functions of the coordinate x:

δ(x) = d + D − d

L
x = αx + β;A(x) = πδ(x)2

4
; J (x) = πδ(x)4

64
(8)

where

α = D − d

L
, β = d (9)

The differential equation of a deflected neutral axis of the beam can be written as

EJ(x)
d2u(x)

dx2
= q

2

(
x2 − Lx

)
(10)

Arranging this equation and putting J(x), one obtains

πE

32q

d2u(x)

dx2 = x2 − Lx

(αx + β)4
(11)

The integration yields a slope angle (12) and deflection (13) of the section:

πE

32q

du(x)

dx
= C1 − 1

α3 (αx + β)
+ 2β + αL

2α3(αx + β)2
− β (αL+ β)

3α3(αx + β)3
(12)

d (x) Dd

y

x

q

L

Fig. 2 Simply supported, truncated cone beam
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πE

32q
u(x) = C1x + C2 − 1

α4 ln (αx + β)− 2β + αL

2α4 (αx + β)
+ β (αL+ β)

6α4(αx + β)2

(13)

where C1, C2- integration constants:

C1 = − 1

α4L
ln

β

αL+ β
− 2αβ + α2L2

3α4βL (αL+ β)
;C2 = 1

α4 lnβ − 5β + αL

6α4β
(14)

The comparison of the potential and kinetic energy yields a formula for the first
natural frequency of the beam which can be transformed into a form

ω1 = 3

√
5

2

D

L2

√
E

ρ

√
(η − 1)5η (P1 − 6η (1 + η) ln [η])

P2 − 3η ln [η] (P3 − P4 ln [η])
(15)

where

η = d
D

P1 = η3 + 9η2 − 9η − 1
P2 = 4η8 + 9η7 + 36η6 + 311η5 − 720η4 + 311η3 + 36η2 + 9η + 4
P3 = 8η6 + 13η5 + 80η4 − 80η2 − 13η − 8
P4 = 12η

(
1 + η + η2 + η3 + η4

)

(16)

2.2 Truncated Cone Beam – The Second Natural Frequency

The slope angle of the left end (x = 0) of the beam from Fig. 2 fulfils the equation:

πE

32q

du(x)

dx
= 1

α4L

(
− ln

β

αL+ β
− 2αβ + α2L2

3β (αL+ β)
− 2αβL− α2L2

6β2

)
(17)

and that of the right end (x = L) – the equation:

πE

32q

du(x)

dx
= 1

α4L

(
− ln

β

αL+ β
− 2αβ + α2L2

3β (αL+ β)
− αL

αL+ β
− 4αβL+ 3α2L2

6(αL+ β)2

)

(18)

Considering the shape of the beam in the second vibration mode, as it is presented
in Fig. 3a, one can determine the position of an inflection point B of the deflection
curve using the condition of equality of the slope angles of the beam on both sides
of the point B and knowing that the point B is in the distance of L1 from the support
A and the beam diameter in the point B is equal to '. On the right end of the left
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Fig. 3 Scheme of a beam for
determination of an inflexion
point of the deflection curve:
(a) for the second natural
frequency, (b) for the third
natural frequency

a)

b)

Dd

x

L

A B CL L1 2

Dd

x

L

A B CL L1 2

Δ

DL3

21

Δ

Δ

part of the beam (Fig. 3a – in the point B–), using Form. (18) with an appropriate
sign and assuming that L → L1, d → d, D → ', α → Δ−d

L1
one obtains

ϕB− = −32q

πE

L3

(Δ− d) (D − d)3

[
− ln

d

Δ
− (Δ− d) (Δ+ 4d)

3dΔ
+ (Δ− d) (3Δ+ d)

6Δ2

]

(19)

In analogical way, on the left end of the right part of the beam (in the point B+),
using Form. (17) and assuming that L → L − L1, d → ', D → D, α → D−Δ

L−L1
, the

slope angle in the point B+ is equal to

ϕB+ = 32q

πE

L3

(D −Δ) (D − d)3

[
− ln

Δ

D
− D2 −Δ2

3dΔ
− (D −Δ) (3Δ−D)

6Δ2

]

(20)

It has been used a connection:

L1 = Δ− d

D − d
L (21)

The condition ϕB
− = ϕB

+ yields dependence:

−D −Δ

Δ− d

[
ln
d

Δ
+ (Δ− d) (Δ+ 4d)

3dΔ
− (Δ− d) (3Δ+ d)

6Δ2

]

=
[

ln
Δ

D
+ D2 −Δ2

3ΔD
+ (D −Δ) (3Δ−D)

6Δ2

] (22)

which allows calculation of ' and then, using (21), L1. Knowing that the length L
is divided into two parts L1 and L2 = L − L1, one can write energy expressions and
compare them (23), what enables to determine the second natural frequency:

EABp + EBCp = EABk + EBCk (23)
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2.3 Truncated Cone Beam – Higher Natural Frequencies

A similar approach concerns determination of higher natural frequencies, what is
presented on the example of the third natural frequency. The bar of length L has
been divided into three parts and their lengths L1, L2, L3 have been determined from
the condition of equality of slope angles on both sides of the points B and C (Fig.
3b). The expression for the slope angle in the point B− has been written with use of
(18), where

L → L1, d → d,D → Δ1, α → Δ1 − d

L1
:

ϕB− = −32q

πE

L3
1

(Δ1 − d)3

[

− 1

Δ1 − d
ln

d

Δ1
− Δ1 + d

3dΔ1
− 1

Δ1
+ 3Δ1 + d

6Δ2
1

]

(24)

whereas in the point B+ − with use of (17), where L → L2, d → '1, D → '2,
α → Δ2−Δ1

L2
:

ϕB+ = 32q

πE

L3
2

(Δ2 −Δ1)
3

[

− 1

Δ2 −Δ1
ln
Δ1

Δ2
− Δ2 +Δ1

3Δ1Δ2
− 3Δ1 −Δ2

6Δ2
1

]

(25)

Comparison of these angles, after simplification, yields:

− 1

Δ1 − d
ln

d

Δ1
− Δ1 + d

3dΔ1
− 1

Δ1
+ 3Δ1 + d

6Δ2
1

= 1

Δ2 −Δ1
ln
Δ1

Δ2
+ Δ2 +Δ1

3Δ1Δ2
+ 3Δ1 −Δ2

6Δ2
1
(26)

In similar way, from the condition of equality of slope angles on both sides of the
point C, one obtains:

− 1

Δ2 −Δ1
ln
Δ1

Δ2
− Δ1 +Δ2

3Δ1Δ2
− 1

Δ2
+ 3Δ2 +Δ1

6Δ2
2

= 1

D −Δ2
ln
Δ2

D
+ Δ2 +D

3DΔ2
+ 3Δ2 −D

6Δ2
2
(27)

The values of '1 and '2 can be determined from the set of equations (26)
and (27) and then, after calculation of values of L1 = Δ1−d

D−d L, L2 = Δ2−Δ1
D−d L,

L3 = L − L1 − L2, one can write equations of the deflection lines for each part of
the beam what allows to calculate the energies and the third natural frequency.

In aim to calculate an n-th natural frequency, one must divide the beam into n
parts and obtains n – 1 equations which serve to determine the beam diameters on
the ends of each part and the lengths of these parts. Finally, the comparison of the
energies yields the n-th natural frequency.
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2.4 Truncated Wedge Beam

For a simply supported truncated wedge beam, subjected to a continuous load with
constant value q and having a constant width B (Fig. 4a) as well as variable height
κ , cross-section area and second area moment for any given cross section described
by formulas

κ(x) = h + H − h

L
x,A(x) = Bκ(x), J (x) = Bκ3(x)

12
(28)

the first natural frequency can be determined analogically as in Form. (15):

ω1 = 6
√
2

H

L2

√
E

ρ

√
(φ − 1)5

(
3 − 3φ2 + (

1 + 4φ + φ2
)
ln [φ]

)

R1 + R2ln2 [φ] − R3 ln [φ]
(29)

where

φ = h
H

R1 = 551φ5 − 783φ4 + 232φ3 + 232φ2 − 783φ + 551
R2 = 72φ5 + 360φ4 + 648φ3 + 648φ2 + 360φ + 72
R3 = 396φ5 + 744φ4 − 312φ3 + 312φ2 − 744φ − 396

(30)

Then, using the methodology described in the previous chapter consisting in
comparison of the slope angles on both sides of the point B (Fig. 4b)

(
2H + K

H − K
ln

K

H
+ 5K + H

2K

)
= −

(
K + 2h

K − h
ln

h

K
+ 5K + h

2K

)
(31)

a)

b)

(x) Hh

y

x

q

LB

HK

x

L

A B CL L1 2

h

k

Fig. 4 (a) Simply supported, truncated wedge beam. (b) Scheme for determination of an inflection
point of the deflection curve for the second natural frequency
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one can determine the value of the beam height K in this point and then the distance
L1 = K−h

H−h
L, what – after consideration of an expression analogical to (23) –

enables to determine the second natural frequency.
In aim to determine the third natural frequency one must solve the following set

of equations:

−
(

2h+K1
K1−h

ln h
K1

+ h+5K1
2K1

)
= K1+2K2

K2−K1
ln K1

K2
+ K2+5K1

2K1

−
(

2K1+K2
K2−K1

ln K1
K2

+ K1+5K2
2K2

)
= K2+2H

H−K2
ln K2

H
+ H+5K2

2K2

(32)

It enables to determine the cross section heights K1 and K2 in the inflection points
of the deflection curve which allow to establish the bar division into three parts with
lengths L1 = K1−h

H−h
L, L2 = K2−K1

H−h
L, L3 = L − L1 − L2, what finally allows

to calculate the third natural frequency from the condition of equality of sums of
potential and kinetic energies from each parts.

3 Validation of Results

Data for calculation of frequencies for the first three modes of free transversal
vibrations of simply supported beams are presented in Tables 1 and 2. The simply
supported beams have various truncation factors of lateral faces η and φ, defined

Table 1 Comparison of the authors’ results (A) to the benchmark solution (N) and the FEM results
for truncated cone beam

�m η

0.2 0.4 0.6 0.8 1

Ω
(A)
1 4.3761 6.2259 7.6423 8.8326 9.8767

Ω
(N)
1 4.3527 6.2086 7.6314 – 9.8696

Ω
(FEM)
1 4.3779 6.2121 7.6223 8.8032 9.8340

δ(N)[%] 0.54 0.28 0.14 – 0.07
δ(FEM)[%] 0.04 0.22 0.26 0.33 0.43

Ω
(A)
2 14.904 23.16 29.7951 35.1812 39.5066

Ω
(N)
2 21.9379 26.8518 31.2871 – 39.4784

Ω
(FEM)
2 22.1738 26.9419 31.2094 35.1454 38.7934

δ(N)[%] 32.06 13.75 4.77 – 0.07
δ(FEM)[%] 32.79 14.04 4.53 0.10 1.84

Ω
(A)
3 32.0626 51.2924 66.6978 72.533 88.8899

Ω
(N)
3 48.4030 59.9914 – – 88.8264

Ω
(FEM)
3 49.4424 60.2383 68.9557 74.7285 86.9421

δ(N)[%] 33.76 14.50 – – 0.07
δ(FEM)[%] 35.15 14.85 3.27 2.94 9.42
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Table 2 Comparison of the authors’ results (A) to the benchmark solution (N) and the FEM results
for truncated wedge beam

�m φ

0.2 0.4 0.6 0.8 1

Ω
(A)
1 4.9292 6.4743 7.73622 8.8527 9.8767

Ω
(N)
1 4.9198 6.4666 7.7295 – 9.8696

Ω
(FEM)
1 4.9265 6.4627 7.7144 8.8175 9.8246

δ(N)[%] 0.19 0.12 0.09 – 0.07
δ(FEM)[%] 0.05 0.18 0.28 0.40 0.53

Ω
(A)
2 18.1676 25.1138 30.6347 35.179 39.5066

Ω
(N)
2 21.3445 26.6002 31.1937 – 39.4784

Ω
(FEM)
2 21.4544 26.5600 30.9313 34.8649 38.4471

δ(N)[%] 14.88 5.59 1.79 – 0.07
δ(FEM)[%] 15.32 5.45 0.96 0.90 2.76

Ω
(A)
3 40.2265 56.1797 68.7985 79.4622 88.8899

Ω
(N)
3 47.4820 59.5969 67.5630 – 88.8264

Ω
(FEM)
3 48.2732 58.4444 65.0345 66.7546 92.6655

δ(N)[%] 15.28 5.73 1.83 – 0.07
δ(FEM)[%] 16.65 3.87 5.79 7.56 4.07

in formulas (16) and (30), respectively, what corresponds to various values of
diameters d (for the truncated cone beam) or heights h (for the truncated wedge
beam). Results of authors’ calculations are compared to the results of a benchmark
solution given by Naguleswaran [8] in Table 1 for truncated cone beam and in Table
2 for truncated wedge beam. A dimensionless frequency parameter �m, presented
in these tables, is described by:

Ωm = ωmL2

√
AL

JL

√
ρ

E
(33)

where AL and JL are cross-section area and second area moment for x = L,
respectively. In Tables 1 and 2, δ is a relative error of authors’ calculations in relation

to the benchmark solution (δ(N) =
∣
∣
∣Ω(N)

m −Ω
(A)
m

∣
∣
∣

Ω
(N)
m

· 100%) and results obtained in FEM

(δ(FEM) =
∣
∣
∣Ω(FEM)

m −Ω
(A)
m

∣
∣
∣

Ω
(FEM)
m

· 100%).

The value of Ω
(FEM)
m has been obtained from (33) once the frequencies for the

analyzed steel beams had been calculated with use of the finite element method (in
ANSYS).

It must be emphasized that the derived formulas for natural frequencies do not
concern a beam with constant cross section – the values of the parameter �(A) for
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η = 1 (cylinder) and φ = 1 (cuboid) have been calculated from the formulas (4) and
(5).

As it has been mentioned in Introduction, application of the Rayleigh method
for calculation of first natural frequency of beams with assumption that the shape
of the bar axis deflected during vibration corresponds to a deflection line resulting
from action of a uniform continuous static load leads to well approximated results.
The relative error between the parameters �(A) and �(N) does not exceed 0.3% for
truncated wedge beams and 0.6% for truncated cone beams.

For second and third natural frequencies of transversal vibrations, if the beam
shape approaches cylinder or cuboid, the differences between the solutions are
satisfactory from engineer’s point of view, whereas for η <0.6 (for truncated cone
beam) and φ <0.4 (for truncated wedge beam) the results obtained with use of the
proposed approach are unacceptable.

It is worth to notice that, for small truncation factors, the second and third natural
frequencies were lower than those in the reference solutions. In this case, the error
magnitude depends mainly on the beam type (cone or wedge) and the truncation
factor value, whereas the error magnitudes for second and third natural frequencies
are of similar order.

4 Conclusions

The Rayleigh’s method can be applied with good accuracy for calculations of
the first natural frequency of transverse vibrations of non-prismatic bars, but for
calculations of the second, third or higher natural frequencies this method can be
successfully applied only for beams with the truncation factor of the walls η ≥0.6
for truncated cone beam and φ ≥0.4 for truncated wedge beam. It probably means
that the assumed shape of the neutral axis resulting during vibrations does not
correspond to the real deflection line. It is interesting that the error of the obtained
results strongly increases along with the increase of the truncation factor, however
the errors for the second and third frequencies are similar.

Acknowledgements The authors would like to express their sincere thanks to Jan Grudziński,
Ph.D. Eng., for his help in the FEM calculations in the ANSYS.
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On Dynamics of a Rigid Block
on Visco-Elastic Foundation

Yury D. Selyutskiy , Rinaldo Garziera , and Luca Collini

Abstract We consider a rigid block installed on a viscoelastic foundation in such
a way that the foundation interacts both with bottom and lateral sides (partially)
of the block. The foundation is modeled using distributed springs and dashpots. It
is supposed that oscillation amplitudes are small, so that the bottom of the block
always remains in contact with the foundation. Oscillations of the system induced
by horizontal harmonic motion of the foundation are studied. The influence of
parameters of the system, as well as of the amplitude and frequency of the excitation,
upon characteristics of such oscillations is analyzed.

Keywords Rocking · Stability · Rigid block · Viscoelastic foundation

1 Introduction

Dynamics of slender bodies installed on an oscillating foundation has been of
theoretical and technical interest for many years. This problem involves develop-
ment of approaches to describe the contact between body and supporting surface;
besides, it is related with prevention of overturning of structures (monuments,
towers, chimneys, oil or water tanks, etc.) during earthquakes.

The first model of rocking of a rigid block on moving horizontal rigid plane
was proposed in [1]. Later this topic attracted attention of many researchers (for
example, [2–6]). In these works, an extensive study was performed of behavior of
rocking rigid blocks, both free and forced, and ways to damp such rocking were
discussed.
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Different approaches were used to simulate the contact interaction between the
block and the foundation. In [7], such interaction is simulated using vertical and
horizontal springs in contact points, in order to take into account the compliance.
In [8], only vertical springs are used, and non-linear analysis of body dynamics is
performed. In [9], the interaction with the supporting plane is described using the
Hunt-Crossley nonlinear impact force model. In both last works, the center of mass
of the block is constrained to the vertical motion only.

Rocking of blocks partly embedded into elastic foundation was studied in [10].
In [11], the flexibility of foundation is described with a system of horizontal and
spiral springs.

In this paper, we consider planar dynamics of a rigid block partly embedded into
a visco-elastic foundation, and simulate elastic properties of the foundation with a
system of distributed horizontal and vertical springs.

2 Equations of Motion

Consider a rigid block installed on a visco-elastic foundation (see Fig. 1). Suppose
that there is a rectangular cut in the foundation (shown with dashed line in Fig. 1),
the width of which equals to the width of the block 2a, and the depth is equal to
d0. The block is installed into this cut and, as the foundation is elastic, it can move
horizontally and vertically, as well as rotate. We assume that the block base always

Fig. 1 Rigid block on
visco-elastic foundation

C

G

b

a
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X

ξ
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remains in contact with the foundation (no bouncing takes place), and there is a
perfect bond between the sides of the block and the foundation. The foundation can
move translationally along horizontal axis.

We introduce a coordinate system OXY fixed to the foundation so that OX axis
is horizontal and directed along the foundation surface, and OY axis coincides with
the symmetry axis of the cut. In order to determine position of the block with respect
to the foundation, we use generalized coordinates x, y, and theta (the angle between
the base and the horizontal axis OX, or tilt angle). We assume that the center of
mass G of the block is located on the line normal to the base and passing through
the point C, and denote the distance GC with b.

The interaction between the foundation and the block is simulated with indepen-
dent springs and dashpots (horizontal an vertical). If only vertical springs would be
considered, this would correspond to the well-known Winkler foundation.

When the block is installed into the cut, the cut is deformed. We assume that
it remains rectangular, and its deformation is constrained to deepening, so that the
new coordinate of the cut bottom in OXY system becomes −d0 + y0 (thus, y0 < 0
is deformation caused by the block weight). We suppose also that lateral springs in
this position are non-deformed.

We also introduce another coordinate system Cξη linked to the block itself; the
axis Cξ is directed along the base.

The horizontal and vertical forces acting on an element of the base are given by
the following formulae:

fxb = −k(x + ξ cos θ − ξ) − c(ẋ − ξ θ̇ sin θ),

fyb = −k(y + ξ sin θ + d0) − c(ẏ + ξ θ̇ cos θ).
(1)

Here ξ is the coordinate of the element, k (units of force per unit width per unit
deformation) is the stiffness coefficient, c (unit of force per unit width per unit
deformation velocity) is the damping coefficient.

The horizontal and vertical forces acting on an element of the side of the block
are given by the following formulae:

left-hand side:
fxl = −k(x − a cos θ − η sin θ + a) − c(ẋ + aθ̇ sin θ − ηθ̇ cos θ),

fyl = −k(y − a sin θ + d0 − y0 − η) − c(ẏ − aθ̇ cos θ − ηθ̇ sin θ);
right-hand side:
fxr = −k(x + a cos θ − η sin θ − a) − c(ẋ − aθ̇ sin θ − ηθ̇ cos θ),

fyr = −k(y + a sin θ + d0 − y0 − η) − c(ẏ + aθ̇ cos θ − ηθ̇ sin θ).

(2)

Here ξ and η are coordinates of the element in the Cξη coordinate system, and a is
half width of the base.
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Hence, expressions for components of the integral elastic force acting on the
block are as follows:

Fx = ∫ a

−a
fxbdξ + ∫ ηl

0 fxldη + ∫ ηr

0 fxrdη,

Fy = ∫ a

−a
fybdξ + ∫ ηl

0 fyldη + ∫ ηr

0 fyrdη.
(3)

Here ηl and ηr are ordinates of intersection of the corresponding sides of the block
with OX axis in Cξη coordinate system:

ηl = −y+a sin θ
cos θ

, ηr = −y−a sin θ
cos θ

. (4)

It is also necessary to find the integral moment of elastic forces about the center
of mass of the block:

Mz = −
∫ a

−a

fxb(ξ sin θ − b cos θ)dξ +
∫ a

−a

fyb(ξ cos θ + b sin θ)dξ

−
∫ ηl

0
fxl(−a sin θ − (b − η) cos θ)dη +

∫ ηl

0
fyl(−a cos θ + (b − η) sin θ)dη (5)

−
∫ ηr

0
fxr(a sin θ − (b − η) cos θ)dη +

∫ ηr

0
fyr(a cos θ + (b − η) sin θ)dη.

Now, using relations (1)–(5), we can write down equations of motion of the block
using the momentum theorem and the theorem of angular momentum about the
center of mass:

m(ẍ − bθ̈ cos θ + bθ̇2 sin θ) = Fx − mẌ,

m(ÿ − bθ̈ sin θ − bθ̇2 cos θ) = Fy − mg,

mρ2θ̈ = Mz.

(6)

Here m is the block mass, ρ is the radius of inertia of the block about its center of
mass, g is the gravity acceleration, Ẍ is the horizontal acceleration of the foundation.

“Normal” position of the block (i.e., x = 0, y = −d0 +y0, θ = 0) is equilibrium,
hence,

y0 = − mg

2ka
.

In order to simplify the notation, we introduce the following non-dimensional
variables and parameters:

τ = t

√
g

b
, ā = a

b
, x̄ = x

b
, ȳ = y

b
, d̄0 = d0

b
,

ρ̄ = ρ

b
, k̄ = kb2

mg
, c̄ = cb

m

√
b

g
.
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Hereinafter, we omit bars over non-dimensional values and denote derivatives with
respect to τ with dots.

3 Stability and Free Oscillations

First, we discuss the question of stability of the “normal” equilibrium.
Characteristic polynomial of equations of motion (6) linearized in the vicinity of

this equilibrium is rather cumbersome, and we don’t show it here. Its constant term
looks as follows:

16(ka)4
(

4a2 − 2a2
√

3 + 2d0a + d2
0

) (
4a2 + 2d0a + 2a2

√
3 + d2

0

)

+32(ka)3 (a + d0)
(

4a2 + 2ad0 + d2
0 − 3a

)
(7)

+24(ka)2
(

2a2 + 2ad0 + d2
0 − 2a

)
+ 8ka (a + d0) + 1.

Evidently, under some conditions expression (7), which represents a quartic polyno-
mial in k, can have positive solutions. In such case, there will exist ranges of values
of the stiffness coefficient, where the equilibrium in question will be unstable. Note
that for block on an absolutely rough rough rigid plane such equilibrium is always
stable.

Domains of instability obtained by numerical calculations are shown in Fig. 2 in
plane (k, a) with grey colors for different values of d (for ρ = 0.5 and c = 10).

One can readily see that increase in cut depth d results in decrease of the
instability area. Increase in a (base width) leads also leads to stabilization. These
results are quite natural.

As for k, it is interesting to note that, under certain conditions, the equilibrium
is stable both for small and large values of stiffness, while being unstable for
“intermediate” k. This looks somewhat unexpected.

However, it is necessary to mention that, for small k, the value y0, as well as ηl

and ηr become large. This means that the height of the block also must be large.
Otherwise, there would appear segments of the side walls of the cut that are not in
contact with the block, and our scheme for calculation of elastic forces would not
be applicable.

In Fig. 3, time histories of the tilt angle θ are shown for k = 10,000, c = 500,
and different values of the cut depth d0 and base half-width a.

Note that increase in d0, as could be expected, results in quicker decay of
oscillations. Besides, the frequency of oscillations also increases.

The effect of a is similar. Efficient damping and frequency of free oscillations of
more slender blocks (i.e., blocks with smaller a) is lower.
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Fig. 2 Domains of instability (grey color)

4 Response to Excitation

First, let us consider the oscillations of the block induced by a single-sine excitation.
For computations, we select the following values of non-dimensional parameters:

c = 100, ρ = 0.5, d0 = 0.1, Ẍ =
{

sin(2πτ), τ ≤ 1
0, τ > 1

We suppose that, at τ = 0, the block is in its “normal” position: θ = 0, x = 0,
y = −d0 + y0.
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Fig. 3 Tilt angle time history for different a and d0

Fig. 4 Response of the block to a one-sine pulse for different a

In Fig. 4, time histories of the tilt angle θ and block horizontal displacement x

are shown for different values of a and k. Parameters are chosen in such a way that
the equilibrium position is asymptotically stable.

It is interesting to note that the maximum displacement of the center of the
bottom x depends on the body width a in a non-monotonic way. However, this non-
monotonicity becomes less pronounced with the increase in k. In the same time, the
maximum tilt angle monotonically decreases, as a gets larger.

Besides, increase in the body width results in larger efficient damping, and larger
rate of decay of oscillations.
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Fig. 5 Block tilt angle amplitude vs. excitation frequency

Now, let us discuss the response of the system to purely harmonic excitation:

Ẍ = 0.1 sin(2πντ)

In Fig. 5, dependence of the amplitude Aθ of the tilt angle upon the excitation
frequency ν is shown for different values of the cut depth. In calculations, the
following values of the other parameters were taken: a = 0.1, k = 10,000, c = 100.

One can readily see the resonance peak. It should be noted that the resonance
frequency increases as the cut depth d0 increases. The rocking amplitude monoton-
ically decreases with the decrease in d0, which is quite natural.

5 Conclusions

Rocking of a rigid block partly embedded into a viscoelastic foundation is consid-
ered. Interaction between the block and the foundation is described with a system
of distributed horizontal and linear springs.

Stability of the “nominal” position of the block is analyzed depending on stiffness
of the springs.

Rocking response of the body to single-sine and harmonic excitation of the
foundation is studied for different values of parameters.

As a future work, it is supposed to perform experiments in order to devise the
way to identify parameters of the model and to identify the area of applicability of
this approach to description of rocking of a rigid block on visco-elastic foundation.
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