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Abstract Currently, for dynamic modeling in composite structures at low and
high speeds are used mainly Finite Element Method (FEM). For these analyzes
commercial FEM software ABAQUS/explicit, LS-DYNA, AUTODYN and PAM
CRASH, etc., are used in practice. In the present study, low-velocity impact
response of composite laminates was studied using ABAQUS/Explicit code (FEM)
to investigate damage by employing various damage criteria. The basic material
properties in and transverse to the fiber directions, such as the elastic moduli,
strains at failure, and plastic moduli among others are determined by simple tests
in tension, compression, and shear. The material properties AS4/PEEK was used in
numerical simulations and have been taken from the literature. Layer is considered
as homogeneous transversely isotropic and layer stacking sequence is symmetrical
or unsymmetrical. The solution in the form of time integration can be, depending on
the problem, accomplished via implicit or explicit methods. For many of dynamic
problems explicit methods have shown more suitable, cause they do not require
stiffness, mass and damping matrix decomposition. In the plates examined, von
Mises’s stress and damage caused shear stress in the matrix and fiber were evaluated.
From the results obtained, it was found that the von Mises stress was approximately
the same for all types layer stacking sequence.
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1 Introduction

Fiber reinforced polymers (FRP) are most commonly used materials in various fields
of industry. In the recent years quickly developing industries such as aerospace,
ship and car industry almost completely rely on composite materials, especially
on layered polymers reinforced with glass, aramid or carbon fibers and sandwich
constructions consisting of FRP coatings with a foam core. Such constructions offer
high strength at low weight, which considerably improve their performance (higher
loading capacity, lower fuel consumption, etc.) especially in ship and aerospace
industry [1, 2]. These materials also have good antiballistic properties, for example
modern bulletproof vests are made from aramid fibers.

The most important characteristic of the composite materials is that they can be
layered, with the fibers in each layer running in a different direction. This allows
an engineer to design structures with unique properties, furthermore a structure can
be designed so that it will bend in one direction, but not another. Impact damage is
one of the main problems that composite structures face, there needs to be a way of
reducing that damage when it occurs, reducing it enough so that the integrity of the
structure is not comprised.

Today, typically, numerical models based on lamina-level failure criteria are used
to simulate the damage of the fiber-reinforced composite material, although with
well-accepted limitations. In this constitutive models, composite, are modelled as
orthotropic linear elastic materials within the failure surface. The failure surface
is defined by the failure criterion as maximum stress/strain criterion, Hashin’s
criterion, Christensen’s criterion, Chang-Chang’s criterion, Puck’s criterion, LARC,
etc. [3, 4].

They are many definition of low velocity or low energy impact due of the great
number of parameters that should be study such as the velocity, the shape and the
mass of the impactor [5]. The dynamical response of the structure depends therefore
on the duration of the contact between the structure and the impactor. Cantwell
and Morton [6] have proposed that every dynamic solicitation corresponding to an
impact speed below 10–20 m/s can be considered as a low velocity impact. On other
hand, Abrate [7] considers that the impact speed limit defining a low velocity impact
is five to ten time greater than the one proposed by Cantwell and Morton (100 m/s).
Liu et al. [8] uses a different approach based on the internal damage of the impacted
structure. They postulate that a high velocity impact leads to fibres rupture where as
low velocity impact leads to internal delamination and matrix cracking.

2 Theory Background and Solution Method

The contact between two components or bodies is a static phenomenon if the two
bodies are static equilibrium. Otherwise the contact is a dynamic phenomenon. A
dynamic contact is often much complicated than static one. The term ‘contact-
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impact’ is often used to stress the dynamic effects in contact phenomena [9,
10]. By nature, contact phenomena always involve friction phenomena. However,
friction effects may be neglected in situations where frictional forces are sufficiently
small. Therefore, we may have a frictionless contact, which is a special case of
general contact. Mechanical problems involving contact are inherently non-linear
and contact problems involve unknown boundary conditions.

2.1 Transient Stress Analysis

Figure 1 shows the transient analysis model of laminate and punch. At the t moment,
the equilibrium equation can be deduced as:

σ t
ij,j = ρt üi + μt u̇i (1)

where ρt and μt are the density and dynamic friction coefficient of laminate at t
moment, respectively.

σ t
ij nj − T

t

i = 0 (on Sσ ) (2)

where, Sσ represents the stress boundary.
The equivalent integration of the equilibrium equation and the load boundary

condition can be expressed, as follows:

∫

V

δui

(
σ t

ij,j − ρt üi − μt u̇i

)
dV −

∫

sσ

δui

(
σ t

ij nj − T
t

i

)
dS = 0 (3)

As there will be geometric nonlinearity during the deformation of composite under
the low-velocity impact load, strain tensor at the t moment can be expressed, as
follows [11, 12]:

Fig. 1 Transient analysis
model of laminate and punch



174 J. Soukup et al.

εt
ij = 1

2

(
ut

i,j + ut
j,i + ut

k,i ut
k,j

)
, (i, j, k = x, y, z) (4)

Decompose the above equation in to linear and nonlinear terms

ε = εL + εNL (5)

There is the following relationship of σ t
ij and εt

kl at t moment

σ t
ij = Q

t−Δt

ijkl + εt
kl (6)

where Q
t−Δt

ijkl represents material elasticity matrix at t − �t moment, and it can be
obtained by coordinate transformation [13]

Q
t−Δt

ijkl = [T ] Q t−Δt [T ]T (7)

Using Eqs. (3) and (6), the stress equilibrium equation at each moment can finally
be deduced as
∫ (

δεij Q
t−Δt

ijkl εkl+δui ρt üi+δui μt u̇i

)
dV +

∫

Vn−1

σn−1
ij δ

(
Δηij

)
dV =

∫

Sσ

T
n

i δui dS

(8)

where T
t

i and T
n

i are the surface force at t moment and nth step in numerical analysis
respectively; δεij represents the strain at t moment; and, �ηij is the nonlinear term
of strain increment.

2.2 Solution Methods

Recently the most successful method for modeling the dynamic response of a
structure is FEM [14]. The solution in the form of time integration can be, depending
on the problem, accomplished via implicit or explicit methods. Although implicit
methods are unconditionally stable (they are not dependent on the time step size),
for wave propagation problems explicit methods have shown more suitable, cause
they do not require stiffness, mass and damping matrix decomposition. The system
of equations has the form

Mü(t) + Cu̇(t) + Ku(t) = Fext
(t) (9)

The solution of this system is carried out for each time step via the explicit central
difference method. Here, the acceleration in time t has the form
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ü(t) = M−1
[
Fext

(t) − (
Cu̇(t) + Ku(t)

)] = M−1
[
Fext

(t) − Fint
(t)

]
(10)

where Fext
t is the vector of external forces and Fint

t is the vector of internal forces
gives as

Fint
t =

∑ (∫
	

(
BT σndΩ + Fhg

))
+ Fcont (11)

Velocities and accelerations have the form

Δt2ü(t) = u(t−Δt) − 2u(t) + u(t+Δt) (12)

2Δt u̇(t) = u(t+Δt) − u(t−Δt) (13)

The starting procedure has the form

u(t−Δt) = u(0) − Δt u̇(0) + Δt2

2
ü(0) (14)

By applying zero initial conditions to the displacements and velocities, the starting
procedure has the form

ü(t−Δt) = M-1Fext
(0) (15)

The stability of the central difference method depends on the length of the time step,
which has to be divided into the shortest natural domains in the finite element mesh.
The critical time step is computed by following relation

Δtcrit = 2

ωmax
(16)

where ωmax is the maximum natural circular frequency. The calculation is based on
Courant-Friedrichs-Lewy condition (CFL condition) for solving partial differential
equations numerically by the method of finite differences

ωmax = 2
c

1
(17)

where c is the wave speed in the material and l is the characteristic length. By
substitution (Eq. 9) into (Eq. 7) we obtain relation for critical time step

Δt = l

c
(18)
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Fig. 2 Quadrilateral and triangular shell element

where �t is time required for wave propagation in rod with length l. During time
step calculation, ABAQUS/explicit program check size of all finite elements. For the
numerical stability of calculation was used coefficient 0.9 for time step reduction

Δt = 0.9
l

c
x (19)

Characteristic length of a shell element is given as

l = A

max (l1, l2, l3, l4)
(20)

where A is the element area, li are lengths sides of Fig. 2. For triangular shell element
the relation has the form

l = 2A

max (l1, l2, l3)
(21)

Wave propagation velocity in a shell element is given by relation

c =
√

E

ρ
(
1 − μ2

)x (22)

where E is the Young modulus, ρ is mass density and μ is the Poisson number.

3 Description of Problem and Modelling Approach

Today, typically, finite element numerical models based on lamina-level failure
criteria are used to simulate the damage of the fiber-reinforced composite material.
Damage modeling usually encompasses two phases: damage initiation and damage
evolution.
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3.1 Materials

In the present paper, Hashin’s criterion is implemented to identify fiber and matrix
failure initiation. This criterion involves four damage modes, namely, fiber tension,
fiber compression, matrix tension and matrix compression modes according to the
following equations:

1. Fiber tensile failure:
(
σ̂11 ≥ 0

)
:

(
σ̂11

XT

)2

+ σ̂ 2
12 + σ̂ 2

13

S2
12

=
{≥ 1 failure

< 1 no failure
(23)

2. Fiber compressive failure
(
σ̂11 < 0

)
:

(
σ11

XC

)2

=
{≥ 1 failure

< 1 no failure
(24)

3. Matrix tensile failure
(
σ̂22 ≥ 0

)
:

Fmt =
(

σ̂22

YT

)2

+
(

σ̂12

S12

)2

= 1 (25)

4. Matrix compressive failure
(
σ̂22 < 0

)
:

Fmc =
(

σ̂22

2S23

)2

+
[(

YC

2S23

)2

− 1

]
σ̂22

YC
+

(
σ̂12

S12

)2

= 1 (26)

where, σ ij
�
σ ij are effective stress, XT and XC are tensile and compressive

strength of composite laminate in fiber direction, YT and XC are tensile and
compressive strength in transverse direction, S12 and S23 are longitudinal and
transverse shear strength of the composite, respectively. The coefficient α is for
shear stress contribution on the fiber tensile failure.

The material of present composite is an AS4/PEEK quasi-isotropic laminate. For
the simulation of impact damage has been used four types of orientation layers
(layup):

[
0
0
0
0

]

S

,

[
0
0
90
90

]

S

,

[
45
45
45
45

]

S

(27)

Material parameters of the laminate plate are listed in Tables 1 and 2.
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Table 1 Material properties of AS4/PEEK

E11
(GPa)

E22
(GPa) ν12 (–)

G12
(GPa)

G13
(GPa)

G23
(GPa) ρ (kg/m3) XT (MPa) XC (MPa)

138 10.2 0.3 5.7 5.7 3.7 1570 2070 1360
YT
(MPa)

YC
(MPa)

SL
(MPa)

ST
(MPa)

86 230 186 86

Table 2 Fracture energy of
laminate (course of damage)
[15]

F t
f F c

f F t
m F tc

m

Fracture energy (N/mm) 12.5 12.5 1.0 1.0

Fig. 3 Geometry of composite plate and impactor (to the left), boundary conditions (to the right)

Fig. 4 Finite element mesh
of conventional shells

3.2 Finite Element Modeling

In the next simulations were considered composite plate with dimensions 120 ×
120 × 2 mm composed from eight layers. Due to the symmetry, only quarter of
the geometry was modelled to save the computational cost (Fig. 3). The composite
plate structure was created in ABAQUS/explicit using the composite module [16].
This module involves the formation of conventional and volumetric shells (Figs. 4
and 5). This module defines the individual layers of the composite structure, the
type of integration rule, symmetry, material properties, thickness, orientation and
the number of integration points of the layer.

The composite plate is composed from the eight-node brick hexahedral elements
with one integration point (C3D8R) and 50,000 elements were used in the simula-
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Fig. 5 Finite element mesh
of volumetric shells

tion. A refined, uniform mesh was used in the impact region. The ABAQUS/Explicit
simulations presented here examined the penetration of plate specimens.

The projectile has cylindrical shape with semi-spherical fillet with a radius R
= 5 mm. Since results from ballistic experiments showed negligible deformation,
plastic deformation of the projectile is not considered. The projectile impacts the
plate perpendicularly, right is center of the plate with a defined initial speed vi =
100 m/s and the plate was supported on all edges. FE mesh for the shell geometry
was created using 5450 linear triangular elements S3R and for solid geometry has
been used 39.520 linear SC6R brick elements (Fig. 5).

The composite structure consists of 8 layers, one layer having a thickness of
0.25 mm. The number of integration points has been set by default. The following
four types of layer orientation were used to simulate the impact damage (27).

4 Result

The ABAQUS/Explicit simulations presented here examined the penetration of
composite plate samples impacted with steel rod with a hemispherical. Figures 6
and 7 show the dependence of acceleration and velocity on time at the node where
is maximum displacement. The maximum value of acceleration is 5.2e+08 m/s2 and
maximum value of velocity is 139 m/s.

In the volumetric shell geometry, the maximum stress was von Mises 2090 MPa
and the shear damage occurred only in the area close to the impactor impact (Fig.
8). In conventional shell geometry, damage propagate from the impact point to the
edge of tested plate, and shear damage also occurred at the edges of the plate. The
maximum von Mises stress reached 2100 (Fig. 9).
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Fig. 6 Time history of acceleration at node with maximum displacement

Fig. 7 Time history of velocity at maximum displacement

5 Conclusion

In this paper for the analysis of laminate composite plates two models are used.
The first is the solid based model and other is shell based model. There were
also compared four different arrangement of the layers of the composite. As a
criterion damage the composite plate was used Hashin damage model. The results
obtained show that the von Mises stress have approximately the same value for
all types of arrangements of the layers. For solid model, and also for the shell
model was the largest von Mises stress in the arrangement of layers [0/0/90/90]s
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Fig. 8 Course of von Mises stress (to the left) and shear stress (to the right) for volumetric shell
geometry—[0/0/90/90]s

Fig. 9 Course of von Mises stress (to the left) and shear stress (to the right) for conventional shell
geometry—[0/0/90/90]s

the lowest von Mises stress was in the arrangement of the layers [90/0/0/0]s. For the
arrangement of layers [90/0/0/0]s, [45/45/45/45]s is the lowest von Mises stress for
shell based model. The largest shear stresses were in the arrangement of the layers
[45/45/45/45]s for solid as well as shell based model. The largest deformation was
at the area of impact, which gradually propagate to the depth of the material. From
the results we can see that the orientation of the layers in the composite structures
can have a significant effect on the behavior of the structure.
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