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Preface

Fifteenth International Conference “Dynamical Systems—Theory and Applica-
tions” (DSTA 2019) took place in Lodz, Poland from 2nd to 5th December 2019.
It was the 15th edition in the series of conferences organized every 2 years in Lodz
by the Department of Automation, Biomechanics and Mechatronics of the Lodz
University of Technology.

Its Scientific Committee composed of 64 scientists has been hand-picked over
the years by originator and main organizer of the whole DSTA Conference Series—
Prof. Jan Awrejcewicz.

For this edition, they had to review over 360 submitted topics to choose 200
that were to be presented during the DSTA 2019 by participants representing 40
countries from all over the world.

It resulted in the program of conference that covered both theoretical and
experimental approaches to widely understood dynamical systems, including topics
devoted to bifurcations and chaos, control in dynamical systems, asymptotic
methods in nonlinear dynamics, stability of dynamical systems, lumped mass and
continuous systems vibrations, original numerical methods of vibration analysis,
nonsmooth systems, dynamics in life sciences and bioengineering, as well as to the
engineering systems and differential equations.

All papers included in the following book were submitted and presented during
DSTA 2019. They contribute partially to the diverse approaches and topics covered
by a wide scope of dynamical systems.

What follows is a brief description of the book content.
Comparison study between the Proportional-Integral Derivative and Linear-

Quadratic-Regulator control schemes while employing the fully functional and
nonlinear simulation model of two-wheel self-balancing human transporter is
presented in chapter “Nonlinear Modelling and Control of Self-Balancing Human
Transporter.”

Chapter “Nonlinear Tourist Flows in Barcelona” is focused on the mathematical
model of nonlinear differential equations, which allows to study the dynamic
interaction between the main factors that affect the tourist flows of Barcelona
using nonlinear ordinary differential equations to represent the interactions between

v
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residents, tourists, and investors and political/economic decisions and geopolitical
factors as external forces.

Chapter “Convergence of Dual Infinity Series” presents the solution of the
system of the partial differential motion equations describing the movement of
plate element by Fourier’s series for function expressed by-product of three or four
functions of the particular variables.

Application of the full spectrum analysis for the existence of the new backward
whirl phenomena that immediately appear after the passage through the critical
forward whirl rotational speed in accelerated intact and cracked rotor-disk systems
is illustrated in chapter “Full Spectrum Analysis for Studying the Backward Whirl
in Accelerated Rotor Systems.”

In chapter “Switched Reluctance Motor Dynamic Eccentricity Modelling,” the
dynamic eccentricity occurring in the brushless electric motor built of iron when the
center of the rotor is not at the center of rotation and minimum air gap revolves with
the rotor has been simulated using the finite element method of the FEMM software.

Using modified Tikhonov regularization for calculating the transmissibility
function matrices of a complex, flexible structure like a commercial wine refrig-
erator, Hörtnagel et al. in chapter “Harmonic Transfer Path Analysis of a Wine
Refrigerator” developed novel and multi-stage robust algorithm improving the
stability of the estimation process by making the selection of the regularization
parameter more robust.

In chapter “Risk Related Prediction for Recurrent Stroke and Post-stroke
Epilepsy Using Fractional Fourier Transform Analysis of EEG Signals,” application
of the Fractional Fourier Transform to analyze component of the EEG signals, for
detection of pre-stroke events in the EEG signal in cases of recurrent stroke and
post-stroke epilepsy, is demonstrated.

Glushkov et al. in chapter “Chaos, Bifurcations and Strange Attractors in
Environmental Radioactivity Dynamics of Some Geosystems” proposed application
of fractal sets, chaos, and dynamical systems theories to analyze, predict, and
compute a temporal chaotic dynamics of arbitrary chaotic radioactive geosystems
(ecosystems) and to provide accurate numerical modelling and analysis of temporal
dynamics of the atmospheric pollutants.

In chapter “Dynamics of Chains as a Tool to Study Thermomechanical Properties
of Proteins,” application of the methodology based on the chain dynamics to study
thermodynamic protein properties exhibited by the non-Markovian processes is
presented.

Based on the Lagrange equations of the second kind mathematical model of
the crane supported flexibly, numerical calculations of the influence of the jib’s
flexibility and load’s mass on the maximum stresses due to the deformations of the
actuators at a given crane’s working moment are performed in chapter “Evaluation
of the Crane’s Actuators Strength Based on the Results Obtained from Dynamics
Model.”

Chapter “Nonlinear Dynamics of Atomic and Molecular Systems in an Elec-
tromagnetic Field: Deterministic Chaos and Strange Attractors” presents a novel
computational approach to studying deterministic chaos and strange attractors
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exhibited by nonlinear processes in atomic and molecular systems embedded into
electromagnetic field.

Results of modelling, analysis, and forecasting of the dynamics for relativistic
backward-wave tube with accounting for relativistic effects, dissipation factor, and
an effect of presence of the space charge are presented in chapter “Deterministic
Chaos, Bifurcations and Strange Attractors in Nonlinear Dynamics of Relativistic
Backward-Wave Tube.”

In chapter “Detection of Chaotic Behavior in Dynamical Systems Using a
Method of Deformable Active Contours,” problem of automatic detection of the
chaotic behavior of the dynamical system is numerically studied with a special
Hamiltonian structure and using Poincaré sections composed of point clouds in
chaotic cases with the help of active contour method.

Dynamic version of the principle of virtual displacements, the modified couple-
stress theory, and the third-order theory of laminated composite plates and shells
was applied by Barulina et al. in chapter “Dynamics of Sensing Element of
Micro- and Nano-electromechanical Sensors as Anisotropic Size-Dependent Plate”
to obtain the differential equations of motion and natural boundary conditions for
nanoelectromechanical sensor.

In chapter “Dynamic Analysis and Damage of Composite Layered Plates
Reinforced by Unidirectional Fibers Subjected Low Velocity Impact,” solid-based
model and shell-based model are used for dynamic analysis and investigation of low
velocity impact response of composite layered plates reinforced by unidirectional
fibers.

Anish and Shankar in chapter “Identification of Nonlinear Joint Interface Param-
eters Using Instantaneous Power Flow Balance Approach” proposed novel approach
of using combined acceleration matching and instantaneous power flow balance as
objective functions in time domain for identification of the nonlinear joint interface
parameters.

Numerical procedure for the sensitivity analysis of hybrid systems based on the
evaluation of adjoint equations which are consistent with discrete-time equations
resulting from the numerical integration of the governing equations by an implicit
Runge–Kutta method is presented in chapter “Numerical Procedure for the Sensi-
tivity Analysis of Hybrid Systems.”

Mozyrska et al. in chapter “Asymptotic Stability of Fractional Variable-Order
Discrete-Time Equations with Terms of Convolution Operators” formulated new
asymptotic stability conditions while analyzing the stability of the linear systems
with the Caputo fractional and variable-order difference operators of convolution
type.

Chapter “Dynamics of Circular Plates Under Temperature and Mechanical
Loadings” is devoted to the study of nonlinear vibrations of the mathematical model
of a heated plate subjected to harmonic loading based on the application of the
geometrically nonlinear Reissner-Mindlin plate theory.

Theoretical and numerical investigation of a fractional-order version of the
Rulkov neuronal model, involving Caputo fractional variable-order differences of
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convolution type are presented in chapter “A Rulkov Neuronal Model with Caputo
Fractional Variable-Order Differences of Convolution Type.”

In chapter “Electrostatically Actuated Initially Curved Micro Beams: Analytical
and Finite Element Modelling,” equilibria forms branching for various initial curva-
ture and geometry parameters of initially curved microbeam loaded by a nonlinear,
configuration dependent and subjected to electrostatic forces is investigated by a
model order reduction technique and numerical continuation methods.

Dohnal et al. in chapter “Numerical and Analytical Investigation of Chatter
Suppression by Parametric Excitation” present concept of increasing process stabil-
ity during milling the time-periodic modulation of the tool support. For this purpose,
the numerical results of stability charts are discussed in terms of spindle speed
and cut depth and show classic chatter lobes that are modified by the parametric
excitation.

In chapter “Nonlinear Study of a Pneumatic Artificial Muscle (PAM) Under
Superharmonic Resonance Condition Using Method of Multiple Scales,” nonlinear
behavior, dynamic stability, and bifurcation exhibited by a one degree-of-freedom
system consisting of nonlinear pneumatic artificial muscle with additional external
spring are modelled and analyzed.

Two-mode long-wave low-frequency approximation of the full dispersion rela-
tions incorporating both the fundamental mode and the first harmonic for anti-plane
shear deformation of a high-contrast three-layered laminate of an asymmetric struc-
ture are presented in chapter “Two-Mode Long-Wave Low-Frequency Approxima-
tions for Anti-Plane Shear Deformation of a High-Contrast Asymmetric Laminate.”

Saeed and Al-Shudeifat in chapter “A Study on the Coefficient of Restitution
Effect on Single-Sided Vibro-Impact Nonlinear Energy Sink” offer studies on the
effect of a ratio of restitutive to deformative impulses during impact on the capability
to irreversibly transfer-induced impulsive energy out of the fundamental, highly
energetic mode for the single-sided vibro-impact nonlinear energy sink.

DSTA Conferences are aimed to provide a common platform for exchange of
new ideas and results of recent research in the field of scientific and technological
advances in modern dynamical systems. Over the last 25 years, both approaches and
understanding of sciences significantly evolved to include new ideas and trends, but
the traditional views are still present and provide the basic understanding. Therefore,
both as Head of Organizing and Scientific Committees of DSTA 2019 and as the
Editor of volume of Springer Proceedings, I hope that this book will provide the
readers with both answers to their problems and ideas for their novel approaches to
study nonlinear dynamical systems.

I greatly appreciate the help of the Springer Editors, Elizabeth Leow and
Dahlia Fisch, as well as Springer Project Coordinator—Murugesan Tamilsevan in
publishing this volume of the Springer Proceedings in Mathematics and Statistics.
I would also like to express my gratitude to Scientific Committee of DSTA 2019 and
all reviewers for their help and professional support during the book preparation.

Lodz, Poland Jan Awrejcewicz
December 2020
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Andrzej Urbaś and Krzysztof Augustynek

Nonlinear Dynamics of Atomic and Molecular Systems
in an Electromagnetic Field: Deterministic Chaos and Strange Attractors 113
Alexander V. Glushkov, Anna V. Ignatenko, Anna A. Kuznetsova,
Elena V. Bakunina, Oleg V. Dykyi, Alexandra O. Makarova,
and Eugeny V. Ternovsky

Deterministic Chaos, Bifurcations and Strange Attractors
in Nonlinear Dynamics of Relativistic Backward-Wave Tube. . . . . . . . . . . . . . . 125
Alexander V. Glushkov, Andrey V. Tsudik, Valentin B. Ternovsky,
Dmytro V. Astaykin, Andrii V. Bondarenko, Dmytro V. Danylenko,
and Vasily V. Buyadzhi

Detection of Chaotic Behavior in Dynamical Systems Using
a Method of Deformable Active Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Alexander Ruchkin and Constantin Ruchkin

Dynamics of Sensing Element of Micro-
and Nano-Electromechanical Sensors as Anisotropic
Size-Dependent Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Marina Barulina, Alexey Golikov, and Sofia Galkina

Dynamic Analysis and Damage of Composite Layered Plates
Reinforced by Unidirectional Fibers Subjected Low Velocity Impact . . . . . 171
Josef Soukup, Milan Zmindak, Pavol Novak, Frantisek Klimenda,
Michal Kaco, and Lenka Rychlikova

Identification of Nonlinear Joint Interface Parameters Using
Instantaneous Power Flow Balance Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
R. Anish and K. Shankar

Numerical Procedure for the Sensitivity Analysis of Hybrid Systems . . . . . 193
Radosław Pytlak, Damian Suski, and Tomasz Tarnawski

Asymptotic Stability of Fractional Variable-Order Discrete-Time
Equations with Terms of Convolution Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Dorota Mozyrska, Małgorzata Wyrwas, and Piotr Oziablo

Dynamics of Circular Plates Under Temperature and Mechanical
Loadings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Simona Doneva, Jerzy Warminski, and Emil Manoach

A Rulkov Neuronal Model with Caputo Fractional
Variable-Order Differences of Convolution Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Oana Brandibur, Eva Kaslik, Dorota Mozyrska, and Małgorzata Wyrwas



Contents xi

Electrostatically Actuated Initially Curved Micro Beams:
Analytical and Finite Element Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Nadezhda Mozhgova, Alexey Lukin, Ivan Popov, and Dmitriy Indeitsev

Numerical and Analytical Investigation of Chatter Suppression
by Parametric Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Fadi Dohnal, Wolfgang Alois Hörtnagel, and Mariusz Zamojski

Nonlinear Study of a Pneumatic Artificial Muscle (PAM) Under
Superharmonic Resonance Condition Using Method of Multiple Scales . . 261
Bhaben Kalita and Santosha K. Dwivedy

Two-Mode Long-Wave Low-Frequency Approximations
for Anti-Plane Shear Deformation of a High-Contrast
Asymmetric Laminate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Mohammed Alkinidri, Julius Kaplunov, and Ludmila Prikazchikova

A Study on the Coefficient of Restitution Effect on Single-Sided
Vibro-Impact Nonlinear Energy Sink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Adnan S. Saeed and Mohammad A. Al-Shudeifat



Non-linear Modelling and Control of
Self-Balancing Human Transporter

Saransh Jain, Sarthak Jain, and Mohit Makkar

Abstract Various modelling and control strategies have been developing in quest
for efficiently managing non-linear systems, which is majorly done by incorporating
maximum possible aspects of behaviour of a system into mathematical equations
and then implementing the control schemes to track the desired trajectories. Though
some of these developed control schemes are still struggling to produce satisfying
results when it comes to controlling non-linear systems, Proportional-Integral-
Derivative (PID) and Linear-Quadratic- Regulator (LQR) are the two very efficient
control schemes known for their stability properties and optimal control when
applied to non-linear systems. Self Balancing Human Transporter (SBHT) is one
such non-linear system which is widely used and needs to be effectively controlled
to maintain uniform speed and dynamic stability. It is very crucial to work on both,
the dynamics and efficient control of two wheel SBHT. This article will show the
design and analysis of more advanced and recently developed algorithms of the
above mentioned control schemes being applied on the new, more precise, fully
functional and non-linear simulation model of two wheel SBHT. Comparison study
between the two has also been done on various parameters.

Keywords PID control · LQR control · SBHT · Non-linear systems ·
Non-linear control

1 Introduction

Two wheel SBHT is a highly unstable system consists of a platform between the two
wheels for a human being to stand on it and a lever connected to the platform and
wheels to control velocity of SBHT. The movement of the lever guides the direction
and speed of SBHT. The lever or SBHT for that matter needs to be controlled to
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maintain its balance and the balance of the human being. The dynamics of the
system revolves around wheel velocity, lever velocity, wheel position and lever
position.

The dynamics of the two wheel SBHT is very closely related to the model of
inverted pendulum. Prasad et al. [10], Garzón et al. [4] and [9] discussed in detail the
modeling of an inverted pendulum. The assumptions regarding the system dynamics
are taken from [9]. Muhammad et al. [9] assumed that the wheels of the vehicle
always remain on the road and the tires retain the grip, sticking to the road. The
driving lever is balanced at an upright position, the friction of the tires included is
by due analysis and is an approximate value. Further, model of self balancing robot
in [2, 6, 12] and [14] was studied followed by the study of model of mobile robot
with alternative use of human transporter in [1, 3, 5] and [8].

PID control is one of the most used control methods. It works on efficient tuning
of proportional, integral and derivative constants depending on the required desired
performance. By tuning the PID gain system can be stablize to the desired states.
Various researchers used PID in controlling two wheel SBHT [7, 11]. Arvidsson
and Karlsson [1] achieved a stable configuration using PID controller. PID control
scheme used by Jamil et al. [6] and Villacres et al. [13] gave good results.

LQR control on the other hand has very unique properties; e.g. it provides the
optimal control law, the best gain matrices for the particular initial and the final
states of the system. It also provides the design flexibility in terms of Q and R
matrices. Switching the values of R matrix can check the control input of the system
and by tweaking the Q matrices one can penalize the change of the states if they are
not at the reference states. Many researchers such as [10, 14] and [1] implemented
LQR controller on the system similar to two wheel SBHT.

In this paper, a new non-linear simulation model of two wheel SBHT is taken
which is to be controlled by specially designed control algorithms of PID and LQR
for the new model. The model in this paper is closest to the actual scenario with
very few acceptable assumptions. The control schemes developed are also accurate
and exact in their behaviour. All the simulation results were obtained on MATLAB
/ Simulink. This article also compares the performance of PID and LQR controllers
with reference to control of two wheel SBHT.

Section 2 will discuss the mathematical model of TW-SBHT followed by the
simulation results of its open kinematic model in section III. Section IV and V will
show the design and development of control schemes of PID and LQR controller
respectively which will also be validated by respective simulation results. In section
VI, the comparison of the two, PID and LQR is done. Section VII will conclude and
talk about future prospects.

2 Mathematical Model

In this section, we introduce the kinematics and the dynamical behaviour of the
self-balancing human transporter. This mathematical model is further developed on
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Table 1 Parameters of the system

Parameter Symbol Units

Gravitational constant g = 9.81 m/s2

Wheel weight m = 4.6 Kg

Radius of wheel Rw = 0.24 metre

Wheel inertia Jw = mR2
w kgm2

Transporter body weight Mv = 30.05 Kg

Mass of driver Mr = 80 kg

Total mass M = Mr+Mv Kg

Body height H = −0.03 Metre

Length of driver Lr = 1.8 Metre

Distance between centre of mass and wheel axle L = 0.7155 Metre

Inertia of driver Jr = MrLr2/3 kgm2

Body pitch Inertia Jb = 87.89 kgm2

Inertia of DC motor Jm = 0.0075 kgm2

Resistance of motor Rm = 0.14 �

Back EMF constant of DC motor Kb = 0.72 Vs/rad

Torque constant of DC motor Kt = 0.833 Nm/A

Gear Ratio of DC motor n = 14 –

Friction coefficient axle and bearings Fm = 0.3 –

Friction between tyres and ground fw = 0.5 –

Input voltage V = 24 Volt

Table 2 Coordinates of the
system

Parameter Symbol
xl, yl , zl Position coordinates of left wheel
xr , yr , zr Position coordinates of right wheel
xb, yb, zb Position coordinates of centre of mass

the various already existing models [1–5, 13] and [8]. The equation of motion of
SBHT is derived using the Lagrangian mechanics. The model derived in this article
includes the dynamics of pitch angle, the mass of the rider, height of the driver and
frictional forces involved. It also considers the chassis inertia as the part of body
inertia.

ψ = Pitchangleofthedrivinglever

θ = Averageangleofthecorrespondingwheel

The expression of the total energy is derived from the Lagrangian function. The
total energy can be written as the sum of translation kinetic energy (T1), rotational
kinetic energy (T2) and potential energy (U) (all the values of symbols are mentioned
in Table 1 and the coordinates in the Table 2).
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T1 = 1

2
m(ẋ2

l + ẏ2
l + ż2

l ) + 1

2
m(ẋ2

r + ẏ2
r + ż2

r ) + 1

2
M(ẋ2

b + ẏ2
b + ż2

b) (1)

T2 = 1

2
JW θ̇2

l + 1

2
JW θ̇2

r + 1

2
JW ψ̇2 + n2Jm(θ̇l − ψ̇)2 + 1

2
n2Jm(θ̇r − ψ̇)2 (2)

U = mgzl + mgzr + Mgzb (3)

Coordinates can be expressed as:

(xm, ym, zm) = (

∫
Rwθ̇dt, 0, Rw)

(xl, yl, zl) = (xm,
W

2
, zm)

(xr , yr , zr ) = (xm,−W

2
, zm)

(xb, yb, zb) = (xm + Lsin(ψ), ym, zm + Lcos(ψ)

Substituting the Lagrangian L in Eqs. (4) and (5):

d

dt
(
∂L

∂θ̇
) − (

∂L

∂θ
) = Fθ (4)

d

dt
(
∂L

∂ψ̇
) − (

∂L

∂ψ
) = Fψ (5)

By solving equations (4) and (5), the final two equations of two wheel SBHT comes
out to be:

((2m+M)R2
w+2Jw+2n2Jm)θ̈+(MLRwcos(ψ)−2n2Jm)ψ̈−MLRwψ̇

2sin(ψ) = Fθ

(6)
(MLRwcos(ψ)−2n2Jm)θ̈ + (ML2 +Jb +2n2Jm)ψ̈ −MgLsin(ψ) = Fψ (7)

The generalized forces Fθ and Fψ are calculated by considering the DC motor
torque, viscous friction between the body and motor axle and the friction between
the wheels and ground.

By applying Kirchoff’s Law on the DC motor we get the final equations of Fθ

and Fψ as:

Fθ = a(V ) − 2(b + Fw)θ̇ + 2bψ̇ (8)

Fψ = −a(V ) + 2bθ̇ − 2bψ̇ (9)
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a = nKt

Rm

b = nKtKb

Rm

+ Fm

Now, substituting (8) and (9) into (6) and (7) and then solving for the angular
acceleration of wheel θ̈ and the angular acceleration of the driving lever ψ̈ , we
get:

θ̈ = (JbV a + 2Jbbψ̇ − 2Jbbθ̇ − 2JbFwθ̇ + L2MVa + 2L2Mbψ̇ − 2L2Mbθ̇ − 2L2MFwθ̇

−4JmFwn
2θ̇ + L3M2Rwψ̇

2sin(ψ) − L2M2Rwgcos(ψ)sin(ψ)

+JbLMRwψ̇
2sin(ψ) + 2JmLMgn2sin(ψ) + LMRwV acos(ψ)

+2LMRwbψ̇cos(ψ) − 2LMRwbθ̇cos(ψ)

+2JmLMRwn
2ψ̇2sin(ψ))/(2JbJw + L2M2R2

w + 2JwL
2M + JbMR2

w

+2JbJmn
2 + 4JmJwn

2 + 2JbR
2
wm + 2JmL

2Mn2 + 2JmMR2
wn

2

+2L2MR2
wm + 4JmR

2
wmn2 − L2M2R2

wcos(ψ)2 + 4JmLMRwn
2cos(ψ))

(10)

and

ψ̈ = −(2JwV a + 4Jwbψ̇ − 4Jwbθ̇ + MR2
wV a + 2MR2

wbψ̇ − 2MR2
wbθ̇ + 2R2

wV am

+4R2
wbmψ̇ + 4Jmfwn

2θ̇ − 4R2
wbmθ̇ − LM2R2

wgsin(ψ)

−2JwLMgsin(ψ) − 2JmLMgn2sin(ψ) − 2LMR2
wgmsin(ψ)

+LMRwV acos(ψ) + L2M2R2
wψ̇

2cos(ψ)sin(ψ)

+2LMRwbψ̇cos(ψ) − 2LMRwbθ̇cos(ψ) − 2LMRwfwθ̇cos(ψ)

−2JmLMRwn
2ψ̇2sin(ψ))/(2JbJw + L2M2R2

w + 2JwL
2M + JbMR2

w

+2JbJmn
2 + 4JmJwn

2 + 2JbR
2
wm + 2JmL

2Mn2 + 2JmMR2
wn

2

+2L2MR2
wm + 4JmR

2
wmn2 − L2M2R2

wcos(ψ)2 + 4JmLMRwn
2cos(ψ)).

(11)



6 S. Jain et al.

3 Kinematics of Two Wheel SBHT

θ , θ̇ , ψ and ψ̇ are the four states of the system. There responses are plotted in Figs. 1,
2, 3 and 4.

The top most position of the driving lever is considered to be zero radian. Figure
3 clearly explains the instability of the lever. Initially the lever completes two circles
and then comes to rest due to the friction while in the case of wheel, speed become

Fig. 1 Displacement

Fig. 2 Velocity
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Fig. 3 Lever displacement

Fig. 4 Lever velocity

constant after some time because we consider the DC motor connected to power
supply of 24 V model while simulating. The to and fro motion of the lever makes
the movement of the wheels oscillatory as shown in the graph of Fig. 1

3.1 Controller Design

As shown in Fig. 3, the lever is unstable at operating point (zero radian). SBHT
is to be controlled using Non-linear closed loop controller for speed control and
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balancing the lever. The objective of the control design is to stabilize the lever so
that rider does not fall off from the vehicle and to control the speed of SBHT.

The goal of the controller is to maintain a constant speed. In this case, the SBHT
can be brought to a constant speed when lever maintains the constant deflection at
particular angle after giving an initial disturbance.

4 PID Controller

the PID controller has been applied to the state which plays an important role in
stabilizing the system and works according to the control design. Hence, two PID’s
are used for this system. The first PID is to control the pitch angle of the lever and
another for wheel speed. The PID control is applied to the full non-linear system
and Simulink model on MATLAB is designed for the purpose. The control law of
the PID controller is given by:

u(t) = Kpe(t) + Ki

∫
e(t) dt + Kd

de

dt
(12)

where, Kp is the proportional gain, Ki is integral gain, Kd is the derivative gain and
e(t) represents the tracking error. Initial pitch angle of the lever is taken to be as
18◦ and desired final angle of 6◦. The simulation was performed, and results were
plotted as shown in Figs. 5, 6, 7 and 8

The following inferences were drawn from the simulation outcomes: There is a
large positive notch in the speed of the SBHT, initial deflection of 18◦ in the forward
direction is the reason behind the sudden increase in the resulting speed. In order to
achieve the final value of pitch angle of 6◦ the Tw-SBHT moves in forward direction
to minimize the error in the angle between the desired and the actual values of the
deflections. The initial reference value of θ̇ is set to be 0 radian per second and 0.27
radian per second as the final speed of the wheel. When the pitch angle achieves the
desired value 6◦, at the same time value of θ̇ becomes constant that is 0.9 radian per
second. The value of θ̇ in Fig. 6 does not approach to zero because deflection of 6◦
in is still present in forward direction hence it is moving in forward direction with
constant speed. With the above simulation results we can claim that PID control
technique works effectively as a non-linear controller.

5 LQR Controller

Optimization is necessary to make the system fast and user friendly. LQR is the best
possible solution for a given constraint. The control system works in a sequence
in which the control signal passes from a controller to a process (plant) and then
diverges into two sections out of which one gives the result and one is feedback
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Fig. 5 PID: SBHT displacement

Fig. 6 PID: SBHT velocity

which overcomes some physical constraints to give us the maximum performance
which is determined by performance index (PI) or cost function. The problem
statement is to locate and optimize the given system at a value or follow some
state variable and simultaneously get the maximum value of performance index by
various tests.

The LQR controller is optimal version of the pole placement method. The LQR
controller provides the best control law which moves the system to the desired
eigenvalue [12]. In order to get the system matrices A and B, linearization is applied
on the full nonlinear system at the operating point, the value of all the four states (θ
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Fig. 7 PID:lever displacement

Fig. 8 PID:lever velocity

θ̇ ψ and ψ̇) is taken as x0 = [0, 0, 0, 0]T . The controllability matrix (A, B) is full
rank. Hence, the system is controllable. The linear state space is obtained as:

ẋ = Ax − Bu (13)

where
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x = [θ, θ̇ , ψ, ψ̇]T . (14)

The full state feedback controller, U = −Kx where K is the gain matrix. K is
computed by minimizing the cost function. The cost function indicates how bad the
system is if states are not at the reference state.

J =
∫
(xT Qx + uT Ru) (15)

In Eq. (15), Q and R are the positive semi-definite and positive symmetric
matrices, respectively. The gain matrix of control law are Eq. (16):

ẋ = (A − BK)x. (16)

The gain matrix is calculated by solving the Eq. (17):

K = R−1BT P. (17)

In Eq. (17), P is a positive semi-definite matrix which is calculated by solving
Algebraic Riccati Equation (ARE) Eq. (18)

AT P + PA − PBR−1BT P + Q = 0. (18)

System matrix A and B after linearization of the non-linear model are computed as:

A =

⎡
⎢⎢⎣

0 1 0 0
0 −15.4409 −8.6018 15.4901
0 0 0 1
0 2.4999 6.0160 −2.4998

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0
10.6735

0
−1.7225

⎤
⎥⎥⎦

and the weight matrices are computed by hit and trial method, which comes out to
be:

Q =

⎡
⎢⎢⎣

6 0 0 0
0 1e8 0 0
0 0 1e6 0
0 0 0 32

⎤
⎥⎥⎦ and
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Fig. 9 LQR:SBHT displacement

R = [
0.001

]

After computing A, B, Q and R matrices, eigenvalue (gain value) K was calculated
with the help of MATLAB. The desired state of system was taken similar to PID
controller, which made the comparison study easier. The desired value of states (θ ,
θ̇ , ψ and ψ̇) are taken as xd = [4 .27 π/30 0]respectively. Initial condition is taken as
x0 = [0 0 π /18 0]. The control input U is fed to the full nonlinear system thereafter
simulation is performed, and graphs were plotted.

Response of all the four states (θ , θ̇ , ψ and ψ̇) were plotted as shown in Figs. 9,
10, 11, and 12. ψ (Fig. 11) was initially taken as 18◦ and after few seconds it
smoothly attains the desired value (6◦). In Fig. 10, the initial overshoot of velocity
is due to the positive deflection of pitch angle in forward direction. According to
control objective it should move in forward direction and attain the desired angle
which is clearly reflected from Fig. 11. SBHT moves with constant velocity in
forward direction because pitch angle has the constant deflection of 6◦ in positive
direction. These simulation results justify that LQR fulfills all the control objectives
and works according to the control strategy.

6 Comparison of PID Controller and LQR Controller

After the simulation of PID and LQR controller, the system state responses namely
SBHT wheel velocity (θ̇ ) and lever displacement (ψ) were observed and compared.
The performance of these controllers was compared in terms of the settling time
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Fig. 10 LQR:SBHT velocity

Fig. 11 LQR:lever displacement

of the response, percentage of overshoot and the steady state error of both the
controller. The data was taken from the graphs and mention in the table for better
assessment. Firstly, the state ψ , the pitch angle of the lever is compared and
graphs were plotted. As seen from the simulation results Fig. 13, the LQR controller
achieves the final state of control objective little bit smoother as compared to the PID
controller. The percentage overshoot in both the controller is almost zero but steady
state error in LQR controller is slightly greater than the PID controller. The settling
time of the LQR controller is lesser as compared to the PID controller. The data in
the Table 3 shows that LQR controller respond faster than PID controller. But in PID
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Fig. 12 LQR:lever velocity

Fig. 13 PID VS LQR: ψ

Table 3 PID VS LQR: θ̇ Parameter LQR controller PID controller

Settling time 0.2440 0.2627

Steady state error 2.703% 0%

Rise time −4.47 0.614
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Fig. 14 PID VS LQR: θ̇

Table 4 PID VS LQR: ψ Parameter LQR controller PID controller

Settling time 5.4229 5.4015

Steady state error 0% −0.299%

Rise time −3.8527 −0.4891

controller there is no steady state error while in LQR controller steady state error
of 2.703% is present. The comparison graph of θ̇ was plotted in Fig. 14, the PID
controller take very long time to reach the final reference value of θ̇ . However, in
LQR controller, the settling time is 0.2440 sec ( Table 4), which is less as compared
to the PID controller. Although PID controller respond slowly but its steady state
error is lesser than the LQR controller. Their is a trade off in notch and settling time
if settling time is reduced, the notch will reduce as well. The notch is set similar to
LQR controller, which make the comparison easier.

7 Conclusion

In this paper performance of the conventional control design like PID controller is
compared with the modern nonlinear control technique like LQR controller. The
control design is evaluated on the basis of settling time etc. As observed from the
graphs and the data, it shows that there is the trade off in the performance of LQR
and PID controller. The LQR response time is better than PID controller on the other
hand in terms of accuracy and steady state error PID controller outperforms then the
LQR controller. However, the accuracy of LQR is better than the PID controller.
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This paper conclude that for the application where faster response is a priority then
LQR is preferable. However, in the cases where minimum steady state error is key
concern than PID controller is preferable.
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Nonlinear Tourist Flows in Barcelona

Enric Trullols, Immaculada Massana, Joana d’Arc Prat,
Josefina Antonijuan, and Gerard Olivar

Abstract Tourism is not only a source of wealth, but also a positive way of
knowing and mixing local and foreign cultures. However, overexploitation of natural
resources and inadequate behaviours (among other factors) can lead to a conflict
between tourists and locals that makes the tourist economy not sustainable. The
modelling of tourist flows is a good tool to face and overcome this problem, looking
for the balance between natural and socioeconomic resources, the interests and
rights of tourists and locals. This paper proposes a mathematical model of nonlinear
differential equations, which allows to study the dynamic interaction between the
main factors that affect the tourist flows of Barcelona. We have used non-linear
Ordinary Differential Equations to represent the interactions between residents,
tourists and investors. Political/economic decisions and geopolitical factors have
been added as external forces.

Specific aspects of Barcelona have been taken into account, such as the impos-
sibility of extending the city, the lack of regulation (and excessive regulation), the
affluence of investors and the increase in prices (which pressures residents outside
from the city).

Our results show that sustainability, that is, the positive values of the population
of tourists, locals and investors, in the long run is possible under the appropriate
economic and social decisions.
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1 Introduction

Barcelona, the capital of Catalonia, is one of the most popular European destinations
for international tourism. The number of overnight stays in Barcelona reached 9.5
million in 2017. The international expense of visitors to Barcelona has increased
progressively in recent years, in line with the growing volume of tourists arriving in
the city. Passenger traffic to Barcelona airport has increased more than doubled since
2000 to reach 47.3 million by 2017 (50 million by 2018). The city is also affected by
cruise tourism, with more than 700 cruises arriving at the Port of Barcelona every
year. Approximately 2.7 million cruise passengers embarked, landed or moved to
the port in 2017 [1–3].

Some residents are not satisfied with the strong increase in tourism and describe
Barcelona as a saturated city where prices have skyrocketed and locals have trouble
finding a flat at an affordable price. The first confrontations between tourists and
locals have arrived, and the city council takes drastic measures such as the freezing
of tourist licenses [4].

Dynamic interactions between populations and natural resources has been
studied by several authors, starting with the predator-prey seminal work of Lotka
and Volterra [5, 6]. Brander and Taylor [7] presented a simple predator–prey
model of renewable resource use which simulates the history of the Easter Island
Civilisation, describing the presence of feast–famine cycles. They showed that
the overexploitation of natural resources caused a sharp reduction in the human
population. Several other authors have developed this model taking into account
additional aspects such as institutions, property rights and technical progress [8].

2 The Model

Regarding tourist flows and the impact on the environment Rinaldi and Casagrandi
[9] proposed a model referring to a non-specific site that includes tourism (T),
environment (E) and capital (C). Tourists (T) and capital (C) impact negatively
on environmental quality (E), while environmental quality and infrastructure are
attractive for tourists. The positive flow of T to C represents the investment of part
of the benefits associated with tourism in new facilities for visitors.

Our work presents a model adapted to Barcelona, which includes only two actors,
tourists (T) and residents (R). In some way the model can be seen as a simplification
of the model of Rinaldi and Casagrandi [9] in which the residents (R) play the role
of environment (E). We have assumed that the capital (C) is proportional to the
tourist (T) as follows C = aT − bT where a is the average spend per tourist and
b is related to taxes and local investments. As capital (C) is proportional to tourists
(T), it seems appropriate to proceed only with two variables (T and R).

Let’s consider the number of tourists T (t) and residents R (t). Both are functions
of time. More specifically, T and R are the number of daily overnight stays.
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According to the literature [7] we have assumed that natural growth can be
characterized by simple logistic dynamics. The associated equation modelizes a
first step of rapid growth proportional to the population (P) and a second step of
deceleration proportional to the square of the population in which the population
tends to stabilize reaching its maximum capacity.

Ṗ = αP

(
1 − P

k

)
(1)

Barcelona is one of the most densely populated cities in Europe, limited by the
mountains and the sea and has no possibility to expand. Even more, Barcelona has
achieved its maximum capacity (around two million beds including tourists and
locals). This is a notorious difference with respect to other cities and this fact must
be taken into account in our model.

With regard to the tourist equation (2), the first term is associated with the novelty
and the attraction of the city by itself and driven by the shared positive experiences
of tourists. The second term, of slowdown, is related to negative experiences of
the tourists associated with the massification, price increase, loss of originality and
crimes among others [10]. A new term has been added to the logistics equation to
model the direct action of the residents against the tourists (or in favor).

Ṫ = α1T

(
1 − T

k1

)
− α2R (2)

where,

– α1 is the natural growth factor (the area become known by word-a-mouth
recommendations of the tourists).

– α2 is a factor related to the actions and policies in favour or against the tourist.
– k1 is the asymptotic maximum (carrying capacity).

In the absence of tourists, the population of residents R can also be modeled
with a logistics equation. The model (3) assumes an initial growth of the population
associated with new opportunities and free spaces and a process of slowdown until
it reaches its maximum capacity. In presence of a parallel population of tourists,
who share the same spaces in the city, the logistic equation must be modified. The
first modification deals with the maximum capacity of the city, as explained above,
Barcelona has no possibility to increase its capacity and the increase of tourism
population implies a decrease of the residents population. A second modification
deals with the fact that a small population of residents does not support the tourist
pressure and tends to disappear (Alee effect). Investors mobbing against locals could
be included in these Allee effect.

Ṙ = α3R

(
1 − R

(k − k1)

)(
R

k2
− 1

)
− α4RT (3)
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where,

– α3 is the natural growth factor (intrinsic regeneration rate).
– α4 is a factor related to the actions and policies in favour or against the tourist.
– k1 is the asymptotic maximum (carrying capacity).
– k − k1 is the asymptotic maximum, being k the capacity of the city.
– k2 is the survival number (values under this tends to extinguish the population).

Consequently, the system that relates tourists to residents, is given by,

⎧⎨
⎩
Ṫ = α1 T

(
1 − T

k1

)
− α2 R

Ṙ = α3 R
(

1 − R
(k−k1)

) (
R
k2 − 1

) − α4 R T .
(4)

3 Static Solutions and Their Stability

The proposed Eqs. (4) are time-independent when Ṫ and Ṙ are simultaneously equal
to zero.

⎧⎨
⎩

0 = α1 T
(

1 − T
k1

)
− α2 R

0 = α3 R
(

1 − R
(k−k1)

) (
R
k2 − 1

) − α4 R T .
(5)

Discussion about the stability of the solution is done according the values of the
eigenvalues of Jacobian matrix,

J =
(
α1 − 2 T α1

k1
−α2

−α4 R α3

(
−1 + 2R

k2
+ 2R

k−k1
− 3R2

k−k1

)
− α4 T

)
(6)

– For T = 0, R = 0,

J =
(
α1 −α2

0 −α3

)
(7)

This solution (zero tourists and zero residents) is unstable because the eigenvalue
α1 (the natural growth ratio of tourists) is a real positive number.

– For T = k1, R = 0,

J =
(−α1 −α2

0 −α3 − α4 k1

)
(8)
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In this case, stability depends on the sign of the parameters −α3 − α4 k1.
Describes a scenario without residents, being the city only for tourists, which
we call “theme park”.

– For (R �= 0 and Ṙ = 0), we obtain,

T = α3

α4

(
k − k1 + k − 2

k2 (k − k1)
R − 1 + R2

k2 (k − k1)
.

)
(9)

and a 4◦ polynomial, that,

• May not have any real solution. Then, there would be only two stationary
solutions, the null and so-called “theme park”.

• May have two real solutions and two complexes. There would be 4 stationary
solutions.

• May have four real solutions. In total there would be 6 stationary solutions.

4 Results and Discussion

There is some freedom in the choice of parameters and the results strongly depend
on these values. The authors would like to emphasize the methodology and the
discussion of the results, rather than the specific results, which have been understood
as one of the possible scenarios. In our model, natural growth factors (α1 = 0.08
and α3 = 0.025 ) are taken from the literature and previous works by the authors
[11]. K-parameters are reasonable values for Barcelona, related to their capacity to
hold residents and tourists k = 2e6, k1 = 2e5, k2 = k1.

A bifurcation analysis have been done varying some meaningful parameters like
α2 and α4 (starting values of α2 = 0.00005, α4 = 0.0000002 have been selected in
order to study the range around the bifurcation points).

There are at least six real time independ solutions of the dynamical system that
can be found solving the Eqs. (4).

1. T = 0, R = 0.
2. T = k1, R = 0.
3. T = 125.22, R = 200,225.43.
4. T = 1130.11, R = 1,797,963.20.
5. T = 199,210.99, R = 1,257,434.16.
6. T = 199,533.68, R = 744,377.21.

Figure 1 shows the time independent solutions for tourist and residents for a
range of α4 values. The stationary solution T = 200,000, R = 0 (“theme park”) is
also represented. Only the “theme park” solution stands to the right of the limit
point (LP = 2.2e-7). Between the branch point (BP = -1.2e-6) and limit point (LP =
2.2e-7) there are two stable stationary solutions.
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Fig. 1 Time independent solutions for tourists (T) and residents (R) for a range of the parameter
α4. BP stands for Branch Point and LP for Limit Point. Red and blue are for unstable and stable
solutions respectively

LP bifurcation is associated to the disappearance of sustainable equilibrium,
leading to the extinction of a population. It usually appears when policy factors
(α2 and α4) grow too much in absolute value.

The existence of negative values of α4 can be understood as a positive effect of
residents, increasing the affluence of tourists.

Figure 2 shows the time independent solutions for tourist and residents for a
range of α2 values. Limit points are LP = -0.0020048609 and LP = 0.0107725061.

5 Conclusions

The dynamic interaction between tourists and residents has been modeled through
a nonlinear system of ordinary differential equations. The model takes into account
the natural growth of both populations and external actions associated with political
decisions and reaction actions of tourists and resident populations. Initially, the
model has been applied to the city of Barcelona, but it will be necessary to do more
future work to calibrate the parameters of this city.



Nonlinear Tourist 23

1500000

1000000

500000

R

a2

0
–4 –2 0

× 10–3

2 4 6 8 1210

a2
–4 –2 0 2 4 6 8 1210

200000

100000
T

0

LP

LP

LP

LP

Fig. 2 Time independent solutions for tourists (T) and residents (R) for a range of the parameter
α2. BP stands for Branch Point and LP for Limit Point. Red and blue are for unstable and stable
solutions respectively

The proposed equations describe the problem and the expected behavior, but the
specific results must be taken with some caution because of the strong dependence
of the associated parameters. It is a non-systematic study and the specific results
must be understood as one of the possible scenarios. In this scenario, our results
show that sustainability, that is, the positive values of the population of tourists and
residents, is possible under the appropriate economic and social decisions.

Our bifurcation analysis varying the parameters associated to political and
reacting actions have found several stable stationary solutions. The existence of
Limit Points indicates that stationary solutions can not be found when policy factors
grow beyond that point. There is also a stationary solution corresponding to zero
residents.
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Convergence of Dual Infinity Series

Frantisek Klimenda , Josef Soukup , Blanka Skocilasova ,
Jan Skocilas , and Lenka Rychlikova

Abstract The solution of the system of the partial differential motion equations
describing the movement of plate element by Fourier’s series is presented in the
article. The investigated function is expressed by product of three or four functions
of the particular variables. These functions are demanded relation for the calculation
of the displacement components, rotation components and stress components.
These functions are defined in the form of the dual infinite series. The sum of
these functions is necessary to perform by the numerical summarization process—
element by element. The convergence of these series has to be proved before,
namely in the equations of stresses. The methodology is presented by the calculation
of the shear stress for Kirchhoff’s models of thin isotropic and orthotropic plates
without corrections. This methodology is valid in general for the solution of motion
partial differential equations of plate elements by Fourier’s method.

Keywords Dual infinity series · Kirchhoff’s model · Isotropic thin plate ·
Orthotropic thin plate

1 Introduction

Many problems of the body mechanics are defined by the system of partial
differential equations. The analytical methods are preferred to solve the system.
One of the suitable method is application of Fourier’s method. This method can be
applied for solution of the system of motion partial differential equations of plate
elements (thin plates).
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Fourier’s method is based on neglecting the mutually dependence of the vari-
ables. Solution has been searched in form of product of functions. The number of
functions is equal to number of variables and each function corresponds to one
variable. In case of the solution of system of partial differential motion equations
three or four variables have to be defined by product of three or four functions.
The demanded relationships for evaluation of the particular components of the
displacement, rotation and stress are expressed in form of double infinite series.
The sum of the series has to be determined by sequent numerical summarization
process—element by element. Before the evaluation of series, their convergence
has to be validated.

2 Materials and Methods

The process of convergence evaluation of double infinity series is shown for case of
shear stress solving of Kirchhoff’s model for thin isotropic and orthotropic plates
without correction. The plate is supported on its perimeter. The load is acting at
top face of the plate by alone force with normal direction to the surface or more
precisely by continuous load acting on the small area. The equations of the plate
deformation is not presented here. It is necessary to determine components of the
displacement (u, v, w), velocities (u̇, v̇, ẇ) (and stress (σ x, σ y, τ xy, τ xz, τ yz) in
direction of particular axes in the general point of the thin rectangular elastic plate
(dimensions a × b × h) [1], see Fig. 1.

Fig. 1 Thin plate—coordinates, dimensions and stress components



Convergence of Dual Infinity Series 27

The most important is to determine the shear components of stress τ xz, τ yz, and
tensile stress σ x, σ y for particular plate models under calculations of thin plate by
approximate analytic methods. According to [1, 2], normal stresses in direction x
and y of thin plate induced by force F are defined (see Fig. 1)

σx (x; y; z; t)= Exz

1−μyxμxy

4F

ab

∑∞
m=1

∑∞
n=1

pmn


mn

α2
n+μyxβ

2
m

ωmn

sinαnxsinβmyT (t)

(1)

σy (x; y; z; t)= Eyz

1−μyxμxy

4F

ab

∑∞
m=1

∑∞
n=1

pmn


mn

β2
m+μxyαn

2

ωmn

sinαnxsinβmyT (t)

(2)

where Ex, Ey—Young’s tensile modules, F—alone force (Heaviside’s jump function
with radius c), T—function of harmonic oscillation, a, b, h—plate dimensions,
pmn—dimensionless parameter, μyx, μxy—Poisson’s numbers, ωmn—eigen fre-
quency of oscillation, Ψ mn—parameter (for Kirchhoff’s model Ψ mn = ρh), αn,
βm—parameters

αn = nπ

a
for n = 1, 2, 3, . . . n, βm = mπ

b
for m = 1, 2, 3, . . . m (3)

Similarly the components of shear stress are defined

τxz (x; y; z; t) =
[

1−
(

2z

h

)2
]
Fρh2

2ab
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sinαnxcosβmyT (t) (5b)

where Ax, Ay—parameter depends on stiffness module.
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2.1 Isotropic Thin Plate: Kirchhoff’s Model Without
Corrections

The solution of the partial differential equations is performed by Fourier’s method.
For this plate, the normal stresses are defined (without solving procedure) in
direction x and y

σx (x, y, z, t)= Ez

1−μ2
.

16

abc
.
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2
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σy (x, y, z, t)= Ez
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where J1(γmnc)—Bessel’s function of first kind, first order (index) for argument
γmnc. μ = μxy = μyx—Poisson’s number.

Similarly the components of shear stress are defined

τxz (x, y, z, t) =
[

1 −
(

2z

h

)2
]

24F
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2.2 Orthotropic Thin Plate: Kirchhoff’s Model Without
Corrections

For orthotropic plate the same equations are valid, where μ �= μxy �= μyx. Normal
stresses

σx (x, y, z, t) = Exz
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Shear stresses

τxz (x, y, z, t) =
[
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βm
[
2Dxyαn

2 + Dy

(
βm

2 + μxyαn
2
)]

ω2
mn

.

.sinαnxF .sinβmyF .sinαnx. (13b)

cosβmy.sin2ωmn

2
t (13c)

The functions of the stresses (and displacements and velocities) are expressed in
form of double infinity series. By each derivation the rate of series convergence
is decreasing, eventually series after derivation is not convergent. Therefore the
convergence of particular series is necessary validated. The criteria of convergence
are rather complicated [3, 4]. Absolute or equiconvergence of series is possible to
validate by direct comparison test. The determination of the sum is achieved by
addition process element by element. Necessary number of series element, those
has to be summarized, depends on rate of convergence and required accuracy of
calculation. The maximum number of elements of finite series substituting infinite
series is possible to determine from series rest or subset. With respect to slow
rate of convergence of some series, e.g. for qxz and qyz (shearing force) and its
corresponding components of stress τ xy, τ yz, the different solution of the system
of three differential equations has to be find but the solution always lead to double
infinity series.

3 Results and Discussion

The convergence has to be validated for particular calculation plate model which
is obvious from series comparison. Especially for series in equations for stress
components τ yz, and τ yz, or σ x, and σ y the convergence has to be validated. If
these series converge (it can be assumed as upper bound of series in equations
for other variables—displacements, velocities, shear forces, moments, etc.), then
simple series also converge with higher rate of convergence, i.e. the lower number
of elements can be summarized for required accuracy of calculation.

During validation of convergence it is necessary to apply three basic observations
[5] beside common rules for infinite series operations. These observations are
presented by followed statements

Statement 1 (comparison criteria)

Assumed series A = a1 + a2 + a3 + . . . . . .

and series Ā = ā1 + ā2 + ā3 + . . . . . .
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are series with positive elements and ai ≤ ai for almost all indexes i. Series
Ā is upper bound to series A. From convergence of series Ā arise series A
convergence.

Statement 2

If A = a1 + a2 + a3 + . . . . . .

B = b1 + b2 + b3 + . . . . . .

then they are series with positive elements, from which series B converge, and
also an+1

an
≤ bn+1

bn
for almost all n, i.e. for n with exception finite number of

elements, then also series A converge.

Statement 3

Assuming series
∑∞

k=1 |aik| converge for each index i. If sum of this series is si =∑∞
k=1 |aik| and series

∑∞
i=1si converge, then double series

∑∞
i=1

∑∞
k=1aik is

absolutely convergent.

3.1 Convergence of Double Infinite Series

First of all the proof of convergence of double series will be performed. The example
is for calculation of component of shear stress (8a) and (8b), i.e. τ xz = konst. f (z). A
for Kirchhoff’s model of isotropic plate (without correction)
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It is valid

J1 (γmnc) < 1 and lim J1 (γmnc) = 0 (15)

for m → ∞ and n → ∞.
And also

∣∣∣sinβyF .sinβy.sin2ωmn

2
t

∣∣∣ ≤ 1

For arguments γmn = √
α2 + β2 is valid
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Based on these raw assumptions it is possible to choose upper bound to double series
A (14a) and (14b) in form
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After these steps convergence of double series has to be proved by the application
of statement 1 and 3
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Series for m elements is absolutely convergent for every n and its summary sn is [6]
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Next, the series convergence has to be validate
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∑∞
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Both series converge, which can be proven by suitable selection of convergence
upper bound series. With respect to
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And series is
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which converge and for 0 < x < a the sum is [6]
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After multiplication of this series (Ā1) k1 this series is upper bound to first series
(8a) and (8b) and therefore this series also converge.

Because it is valid
∣∣sin nπxF

a
.cosnπx
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∣∣√
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. 1
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≤ 1 = k2 (29)

The series is absolutely converging A2 = ∑∞
n=1

1
n2 = π2

6 multiplied by constant
k2, because it is upper bound to second series (8a) and (8b) and therefore the series
absolutely converge as well.
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The proof of series convergence Ā1 and Ā2 thereby Ā the convergence of double
series A is also proven by 3 statement in relationship to τ xz for Kirchhoff’s model.
Its sum is possible to determine by consequent summarization of series elements.
For sum of series A the followed relation has to be valid

A <

(
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π

)2

.
1

2
.
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b

[
πk1A1 − a

b
.k2A2

]
(30)

The performed selection of the upper bound to particular series is motivated by the
simplest establishment of convergence. For better estimation of the series sum, it
is possible to select “more close” upper bounds. The calculation procedure will be
more complicated and extensive.

For Kirchhoff’s model of orthotropic plate, the relevant series with relation to
calculation of shear stress component τ xz = konst. f (z). A
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which corresponds to series (6a), (6b), (7a), (7b). For series (31a) and (31b) where
D1 = Dxμxy + Dyμyx and D2 = Dxμxy + 2Dxy is possible to arrange element
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And after next arrangement it is possible to select for upper bound
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Then it is possible to select upper bound to series (31a) and (31b) in form
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where
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Gxy—shear modulus in plane xy, Dxy—stiffness modulus in torque, Dx—stiffness
modulus in direction x, Dy—stiffness modulus in direction y.

Next process of proof for series (35) is similar to series (18) for isotropic plate.
The validation of series convergence for shear stress components τ yz and τ xy

and for normal stress components σ x and σ y is possible to perform by the same
procedure.

4 Conclusion

Application of Fourier’s method on solution of motion partial differential equations
was presented. The solution for components of displacements, velocities and
stresses are derived for oscillation of the thin isotropic and orthotropic plate excited
by alone force. The limitation and calculation procedure of solving the convergence
problems using Fourier’s method were proposed with application to example of
isotropic and orthotropic thin plate described by Kirchhoff’s model.
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2. Leitmann, M.J.: The linear theory of viscoelasticity. In: Encyklopedia of Physics. Springer,
Berlin (1973)



36 F. Klimenda et al.
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Full Spectrum Analysis for Studying
the Backward Whirl in Accelerated
Rotor Systems

Mohammad A. Al-Shudeifat , Oleg Shiryayev , Tariq Alzarooni ,
and Chandrasekhar Nataraj

Abstract The backward whirl (BW) phenomena in intact and cracked rotor
systems that exhibit recurrent acceleration and deceleration during startup and
coast down operations has not been well-studied in the literature. However, for
startup and coast down operations during which a frequent passage through critical
forward whirl (FW) speeds takes place, the BW orbits are found to be immediately
captured after the passage through these critical FW rotational speeds. The zones
of BW orbits are observed to be significantly affected by the appearance of crack
damages that are accompanied with isotropic or anisotropic bearings at the shaft
supports. The finite element model of the cracked rotor-bearing-disk system is
employed here to obtain the linear-time-variant (LTV) equations of motion for the
numerical simulation. The obtained LTV mathematical model represents a nonlinear
dynamical model of the system. Consequently, the full spectrum analysis (FSA) is
successfully employed here to the numerical simulation and the experimental whirl
responses of the considered system to confirm the existence of the BW zones of shaft
rotational speeds that exist after the passage through the critical and subcritical FW
whirl rotational speeds. The obtained results for the intact and cracked rotor systems
with anisotropic bearings verify the robustness of the FSA as a powerful tool of
capturing the BW zones in cracked rotor systems, especially in the experimental
whirl response.

Keywords Cracked rotor · Backward whirl · Full spectrum analysis
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1 Introduction

The study of backward whirl (BW) phenomena in a rotary system could help
assessing the rotor condition in terms of predicting premature failures. Such
phenomena could be found linked to poor rotor conditions including crack initiation
and propagation, bearings tears and wears, shaft rubbing and so on. Consequently, it
is of interest to investigate BW-based features that could be utilized in a damage
detection technique for enhancing vibration health monitoring of miscellaneous
rotary systems. The effect of propagation of fatigue cracks and bearing damages
on BW excitation in accelerated rotor systems that exhibits recurrent passage
through their critical forward whirl rotational speeds during startup and coast down
operations has not been well-established in literature. In [1–3], it was numerically
and theoretically found that the propagation of the crack in rotor systems could
excite backward whirl orbits during the passage through critical forward whirl
rotational speeds. In [4], the effect of crack depth of a rotor-bearing-disk system
on FW and BW amplitudes and whirl orbit shapes were investigated through the
whirl response obtained by the harmonic balance solution using open and breathing
crack models followed by experimental verification. The finite element (FE) model
was employed in [5] whereby whirl orbits near critical and sub-critical speed ranges
of the rotor were discussed. It was shown that there exists some speed range near the
critical speed, where the temporary whirl direction reversal to backward and phase
shift were noticed.

The BW response was also investigated in [6] for a cracked shaft using the
FE model. It was reported that BW zones are easily captured for higher bearing
clearance value regardless of crack condition, which was attributed to bearing film
cross-coupled stiffness. The BW was studied in [7] whereby FE model was also
employed to analyze the dynamic response of functionally graded (FG) shaft with
multiple cracks. Results show that besides being affected by crack locations, orien-
tations and size, the extent of percentage of reductions in fundamental frequencies
and critical speeds are also influenced by the power-law gradient index of the FG
shaft. The BW has been experimentally investigated in [8] using double-disk and
multi-bearing apparatus on which vibration displacement data were acquired. It was
reported that BW orbits have been captured when rubbing and misalignment forces
were present.

Numerical and experimental analysis were used to analyze the existence of FW
and BW zones during rotor’s run-up and coast down operation using solely an
open crack model in [9–11]. It was noticed that BW zones appear after passing the
critical FW speed at low vibration amplitudes between local transient peaks of FW
amplitudes. In [11], a 4-DOF rotor system was studied by incorporating gyroscopic
effect into the classical Jeffcott Rotor system model. However, the backward whirl
zones were not captured in the numerical simulation response of this model even
though they have been captured in the experimental whirl response.

The full spectrum transform analysis was utilized by a few researchers of rotary
systems for fault diagnostic purpose [11–15]. More detailed description of FSA
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concerning the benefits, the methodology, and signal correlations can be reviewed
in [12, 13]. In a nutshell, the FSA plot displays the correlation between the
vibration displacement data from the lateral X (Real) and vertical Y (Imaginary)
components of the rotor or casing responses. These displacement components can
be obtained either by using theoretical analysis or measurement hardware (i.e.,
proximity probes).

A few examples of analysis of failure scenarios have already been outlined
in [12]. Experimental-based FSA was used in [14] to investigate rotor-bearing
system failure including unbalance, crack, rotor-stator rub, and misalignment at sub-
critical rotational speeds. The authors reflected that FSA is favorable considering
the limitation of conventional Fourier Spectrum (i.e., FFT) in addressing the whirl
nature (i.e., forward/backward whirl) of rotor faults. It was found out that the spectra
of the cracked rotor or the rotor with rubbing were drastically dominated by FW
frequencies; whereas for misalignment, whether it was parallel or angular type, the
spectrum was strongly dominated by harmonics corresponding to BW frequencies
especially at higher components. Furthermore, experimental-based FSA was also
compared against classical theoretical analysis results of overhung rotor-disk system
for validation purpose [15].

The FSA will be investigated here considering finite element model rather than
the four degree-of-freedom model in [11] of the cracked rotor-bearing-disk system.
By using the FE model rather than the 4-dofs model, anisotropic bearings can be
incorporated with the cracked rotor in the numerical simulation. Subsequently, the
FSA is employed here to analyze the whirl response obtained numerically from the
FE model and the corresponding experimental whirl response to further confirm the
existence of BW zones of rotational speeds in the transient operation regime.

2 Cracked Rotor Modeling

The open transverse crack in the shaft cross-section is shown in Fig. 1, where the
depth of the crack in the radial direction is represented by h. At the beginning of
shaft rotation, the crack opening orientation is assumed to be at zero angle with
respect to the stationary X axis as shown in Fig. 1a. The unbalance force vector
angle is measured with respect to the crack opening direction and represented by β.

The area moments of inertia Ix and Iy of the cracked shaft cross-section in Fig. 1
with respect to the rotating coordinates x and y are, respectively, given as in [1, 2]:

Ix = πR4

4
− R4

12

(
(1 − μ)

(
2μ2 − 4μ − 3

)
γ + 3sin−1γ

)
(1)

Iy = πR4

4
+ R4

4

(
(1 − μ)

(
2μ2 − 4μ + 1

)
γ + sin−1 (1 − μ)

)
(2)
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Fig. 1 Schematics of the crack in the shaft cross-section: (a) before rotation, and (b) after rotation
by angle θ(t)

where, μ = h/R is the ratio of crack depth h to the shaft radius R, andγ =√
μ (2 − μ). The uncracked area Ace in the cross-section and its centroid location e

on the x-axis are calculated respectively as

Ace = R2
(
π − cos−1 (1 − μ) + (1 − μ) γ

)
(3)

e = 2R3

3Ace

[μ (2 − μ)]
3
2 . (4)

If the open crack appears n the jth element, the stiffness matrix in the rotating
centroidal coordinates axes x and y is given as in [1, 2]:

kjR = E

l3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12Iy 0 0 6lI y −12Iy 0 0 6lI y
0 12Ix −6lI x 0 0 −12Ix −6lI x 0
0 −6lI x 4l2Ix 0 0 6lI x 2l2Ix 0

6lI y 0 0 4l2Iy −6lI y 0 0 2l2Iy
− 12Iy 0 0 −6lI y 12Iy 0 0 −6lI y

0 −12Ix 6lI x 0 0 12Ix 6lI x 0
0 −6lI x 2l2Ix 0 0 6lI x 4l2Ix 0

6lI y 0 0 2l2Iy −6lI y 0 0 4l2Iy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where Ix = Ix , Iy = Iy − Acee
2, E is the elastic modulus of the shaft material, and

l is the element length. Accordingly, the stiffness matrix in the fixed coordinates X
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and Y is obtained by the following transformation:

kjF = � kjR�T (6)

where � is the 8 × 8 transformation matrix given in [1, 2]. Therefore, the cracked
element stiffness matrix kjF in the fixed centroidal coordinates is obtained as

kjF = kj1 + kj2 cos (2θ(t)) + kj3 sin (2θ(t)) (7)

where kj1, kj2, and kj3have been derived in [1, 2, 9], and θ (t) is the rotation angle.
Accordingly, the FE equations of motion of the cracked rotor system in the fixed X
and Y coordinates are expressed as:

Mq̈(t) + Ĉq̇(t) + (K1 + K2 cos (2θ(t)) + K3 sin (2θ(t))) q(t) = F1 cos (θ(t))+
+ F2 sin (θ(t)) + Fg

(8)

where M is the mass matrix, K1 is 4(N + 1) × 4(N + 1) stiffness matrix in
which kj1 is merged. In K2 and K3, the entries are zeros except for the cracked

element where kj2 is merged in K2 and kj3 is merged in K3. The vectors F1 and F2
represent the unbalance force amplitudes and Fg represents the gravity force vector.
The sum of gyroscopic and damping matrices is represented by Ĉ = �G + C.
The translational and rotational oscillations are expressed by the vector q (t) =[
qT

1 qT
2 . . . qT

i . . . qT
N+1

]T
, where qT

i (t) = [
ui vi ϕ

x
i ϕ

y
i

]
is the vector of the ith

node translational and rotational coordinates.
Incorporating a constant angular acceleration α during the transient startup and

coast down operations of the considered rotor system converts the equations of
motion and their corresponding state-space representation into linear-time-varying
(LTV) systems. Therefore, running the rotor system from standstill at constant
angular acceleration alters the equations of motion where the angle of rotation and
the angular rotational speed becomes θ (t) = αt2/2 and �(t) = αt, respectively,
for �(0) = 0 and θ (0) = 0. Accordingly, the gyroscopic matrix is rewritten as
G(t) = αtG and the unbalanced force vector components at the i-th node are
rewritten as

f i
x (t) = mεα2t2 cos

(
αt2/2

)
− mεα sin

(
αt2/2

)

f i
y (t) = mεα2t2 sin

(
αt2/2

)
+ mεα cos

(
αt2/2

)
(9)

where the mε is the product of the unbalance mass m and the unbalance mass
eccentricity ε. The numerical integration whirl response of the above LTV equa-
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tions of motion is obtained and compared with the experimental whirl response.
Accordingly, the FSA is applied to both numerical simulation and experimental
whirl responses to identify the zones of rotational speeds at which BW orbits are
captured.

3 Experimental Setup and Model Parameters

The double-disk rotor-bearing configuration in Fig. 2 of which the physical param-
eters are listed in Table 1 is considered here for obtaining the numerical simulation
and the experimental whirl responses. The system is divided into 6 elements to
obtain the numerical simulation whirl response near the location of the right-side
bearing by the numerical integration of the LTV equations of motion shown in Eq.
(8).

The physical damping is obtained from C = γM + ξK where γ = 5 × 10−4 s−1

and ξ = 5 × 10−4 s. In addition, anisotropic bearings with stiffness values
kxx = 5 × 106 N/m and kyy = 7 × 107 N/m are incorporated in the numerical
simulation. The experimental whirl amplitudes are collected near the right bearing
using two perpendicular proximity probes. For both numerical and experimental

225 mm

700 mm

225 mm

15 mm

160 mm

Crack location
Unbalance mass

Steel Shaft

Rigid disk

Journal bearing

Steel ShaftRigid diskBearing

Proximity probe

15
0 

m
m

Fig. 2 Rotor-disk setup for experimental testing in for double-disk configuration (DD)
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Table 1 Physical parameters of the considered rotor-disk system

Description Value Description Value

Length of the rotor, L 0.7 m Disk outer radius, Ro 75 × 10−3 m
Radius of the rotor, R 19.06 × 10−3 m Disk inner radius, Ri 19 × 10−3 m
Density of rotor, ρs 7850 kg/m3 Density of disk, ρd 2700 kg/m3

Modulus of elasticity, E 2.1 × 1011 N/m2 Mass of the disk, md 0.663 kg
Bearing stiffness (kxx, kyy) 5 × 106, 7 × 107 N/m Mass unbalance, med 2 × 10−5 kg m
Bearing damping (cxx, cyy) 5 × 102 N s/m Mass unbalance angle, β Varying

Fig. 3 Numerical and experimental whirl amplitudes in (a) and (b), respectively, versus shaft
rotation speeds and unbalance force vector orientations for the cracked DD configuration

results, the envelope of the resultant whirl amplitudes z = √
u2 + v2 of the

horizontal and vertical displacements is plotted for comparisons.
The zones of BW shaft rotational speeds have been found in [9], to immediately

appear after passing the first critical FW speed in the neighborhood of a local
minimum of whirl amplitudes. The effect of the unbalance force vector angle β on
these BW zones and on the peak FW amplitudes is illustrated in Fig. 3 at constant
angular acceleration rate of α = 20 rad/s2. The zones BW rotational speeds are
observed to nearly disappear for some range of unbalance force vector angles.

In Fig. 4 the BW zones are identified for selected values of angular acceleration
rates, unbalance force angle and crack depth where several zones of BW rotational
speeds are captured at higher angular acceleration rate of α = 50 rad/s2. Therefore,
the number of BW zones is observed to be sensitive to the angular acceleration rate
and the unbalance force angle orientation for the cracked rotor systems.

The FSA is applied to confirm the BW whirl zones in the numerical and
experimental results for the considered intact and the corresponding cracked DD
rotor configurations. The FSA plots are shown in Fig. 5a, b for the numerical whirl
results and in Fig. 6a, b for the corresponding experimental whirl results. In these
figures, the FSA plots clearly identify and confirm the existence of BW zones of
rotational speeds in the intact and cracked DD configurations. The intensity and
the extent of the BW zone/zones are observed to be affected by the appearance
of the crack as shown. Moreover, an excellent agreement between the FSA of the
numerical simulation whirl response and that of the experimental whirl response is
clearly observed in Figs. 5 and 6 in identifying the BW zone of rotational speeds
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Fig. 4 Numerical whirl amplitudes of the cracked DD configuration in (a) for α = 20 rad/s2 and
in (b) for α = 50 rad/s2

Fig. 5 FSA of the numerical whirl responses of the intact DD system in (a) and the cracked one
in (b) at β = 2π/3 rad

near � ≈ 54.5 Hz. In Fig. 7, the effect of higher acceleration rate on the extent of
the BW zone is also observed in the experimental results.

The BW zones are also captured by the FSA after the passage through the
subcritical (�/2) rotational speeds. The corresponding FSA plot for the BW zones of
rotational speeds after the passage through the subcritical rotational speed is shown
in Fig. 8 for low and high acceleration rates. Consequently, the FSA is also found
to be very sensitive and efficient tool in capturing BW zones of rotational speeds
after the passage through the critical forward whirl speeds and their corresponding
subcritical frequency components.

4 Concluding Remarks

The FSA method is applied here to confirm the existence of the new backward
whirl phenomena that immediately appear after the passage through the critical
forward whirl rotational speed in accelerated intact and cracked rotor-disk systems.
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Fig. 6 FSA of the experimental whirl responses of the intact DD system in (a) and the cracked
one in (b) at β = 2π/3 rad

Fig. 7 FSA of the experimental whirl response of the cracked DD system for a high angular
acceleration rate

The FSA method is applied to the numerical and experimental whirl responses
where the effect of the angular acceleration of the shaft and the unbalance force
vector orientation were also investigated. The extent and the number of BW zones
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Fig. 8 FSA of numerical whirl response of the cracked DD configuration in (a) for α = 20 rad/s2

and in (b) for α = 50 rad/s2

is observed to be sensitive to the angular acceleration rate, the unbalance force
angle orientation, and the crack depth. In addition, an excellent agreement between
the numerical simulation predictions and the experimental validation results in the
FSA and the whirl response plots has been observed. Therefore, this study verifies
the robustness of the FSA method in confirming the new BW phenomena in the
numerical and experimental whirl responses of the intact and cracked rotor system
with anisotropic bearings.
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Switched Reluctance Motor Dynamic
Eccentricity Modelling

Jakub Lorencki

Abstract SRM is a brushless electric motor built of iron. It is used in places where
durability and efficiency are important. This is related to its increased resistance to
damage than in other electric motors. Due to these applications, proper diagnostics
of such a motor is a very important factor. Like any other electric motor it can be
susceptible to various mechanical and electrical damages. One of the most common
faults is dynamic eccentricity which occurs when the center of the rotor is not at the
center of rotation and minimum air gap revolves with the rotor. This phenomenon
will be simulated using the finite element method of the FEMM software. And then
the data from this method is used in the Matlab program for dynamic simulations.
Then it will be possible to see how this mechanical fault affects the motor’s
performance. This study can also compared with experimental research on a test
stand that had been performed before.

Keywords SRM · Eccentricity · Motor diagnostics

1 Introduction

In recent years, significant environmental degradation can be observed as a result of
such factors as: global warming, greenhouse effect, depletion of fossil fuels, increase
in their prices and increasing amount of carbon dioxide in the atmosphere [1]. These
phenomena indirectly motivated the industry to return to the electric drive in many
applications, especially for electric and hybrid vehicles [2, 3].

The electric drive located there must face a number of requirements. One of the
motor type that can be applied there is the switched reluctance motor (SRM) (Fig. 1).
Despite the weaker energy properties compared to the more popular electric motors,
in particular for the permanent magnet motor (BLDC), SRM has some advantages,
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Fig. 1 Illustration of
cross-section of Switched
Reluctance Motor

e.g. in the form of greater availability of rare-earth materials (especially outside
China) from which electrotechnical plates are made for it (i.e. different iron alloys).
It is also cheaper to produce SRM and its safety of assembly in comparison to the
high mass and attraction force of rare earth magnets [4, 5]. The lack of magnets
also eliminates the risk of demagnetizing the material by electromagnetic pulses
or high temperatures, therefore SRM a application can have a great success in the
army or other specialization, where reliability is extremely important, i.e. in such
locations where the replacement of the machine, and therefore long-term shutdown
of the drive can cause significant damage and costs. Due to its extremely durable
construction (lack of windings on the rotor and salient poles on the stator and rotor),
the motor can reach rotational speeds of over 10,000 rpm without the danger of rotor
damage by centrifugal force.

2 Purpose of Research

The SRM, like other types of electric motors, is susceptible to various types
of damages during its operation. These damages can be divided generally into
electrical and mechanical ones. This work deals only with mechanical damages.

The most frequent mechanical damages that may occur in electric motors
are: eccentricity (misalignment) static and dynamic, imbalance, bearing damage,
mechanical looseness or shaft deflection [6, 7].
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2.1 Mechanical Damages of Electrical Motor

Each type of mechanical defect causes negative effects in the operation of the
electric motor and therefore the entire drive, such as higher vibrations, and therefore
noise, higher torque pulsation, energy losses and others [8, 9].

The purpose of this work is to indicate whether the introduction of static
eccentricity introduces losses at the motor torque. This is a prelude to further, more
complex analyzes in motor modeling.

2.2 Eccentricity

Eccentricity is a very common damage in electric motors and to a lesser or
greater extent it occurs in every motor. It is characterized by a non-homogeneous
irregularity of the air gap between the rotor and the stator. This phenomenon can be
observed in the current spectrum as a harmonic caused by the changing inductance
causing a non-uniform flux in the air gap. In the worst case, eccentricity can lead to
rubbing the rotor with the stator, and therefore to permanent damage of them.

There are two types of eccentricity: static and dynamic (Fig. 2). Static eccen-
tricity occurs when the axis of rotation of the rotor identical with its geometrical
axis does not coincide with the geometric axis of the stator. Dynamic eccentricity
occurs when the axis of rotation of the rotor identical with the geometric axis of
the stator does not coincide with the geometric axis of the rotor [10]. Due to the
unevenness of the air gap, the magnetic flux changes causing irregular current values
visible in the spectrum. In real conditions static and dynamic eccentricity occur
simultaneously. There may be many reasons, such as defects in the rotor design
(e.g. imbalance, deformation of round geometry), missing or damaged structural
elements (e.g. screws), incorrect assembly or damaged bearings [11].

3 Finite Element Magnetic Method for Magnetostatic
Analysis

In order to simulate dynamic eccentricity of the 8/6 SRM a Finite Element Method
Magnetics (FEMM) was used. It is a software that has 2D interface and static
analysis is possible.

A model of the motor (its cross-section) was designed by a FEMM package. It
was inspired by the real SRM motor that was previously used for the experiments
on the test bench. The iron sheet that was used for the stator and rotor is M-19 steel
and its B-H magnetization curve is depicted in Fig. 3.

Number of turns per phase is equal to 70 and the magnitude of the current is of
20 A.
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stator

rotor

rotating center

static eccentricity dynamic eccentricity

Fig. 2 Illustration of static dynamic eccentricity

Fig. 3 Magnetization curve for iron sheet of M-19 steel

The other parameters of this motor are: number of phases = 4; stator poles = 6;
rotor poles = 8; Coil turns per winding = 70; motor length = 22.5 mm; stator
outer diameter = 40.2 mm, air gap length = 0.105 mm, rotor outer diame-
ter = 20.79 mm, shaft diameter = 4.73 mm, stator inner diameter = 21 mm, height
of tooth = 5.5 mm, width of tooth tip = 3.5 mm, height of tooth foot = 0.5 mm,
width of tooth = 3 mm, rotor inner diameter = 4.73 mm, width of lobe = 3 mm,
height of lobe = 2.51 mm. Static torque and magnetizing curve are measured every
5◦ angles from 0◦ to 900◦. The results are shown in Figs. 4 and 5.
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Fig. 4 Flux distribution density and density shadow from a healthy motor (0.105 mm air-gap)

Fig. 5 Flux distribution density and density shadow from 95% eccentric air-gap (0.005 mm of
air-gap)
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4 Results

The study compares a motor with a healthy state and static eccentricity introduced.
The difference between them is the air gap has been reduced from 0.105 to
0.005 mm respectively, that is by 95%.

As can be seen in the Fig. 6, despite such a significant change in the air gap
and, consequently, physical quantities in the motor and dynamic parameters, its
flux linkage does not change much and it is difficult to state clearly whether the
flux linkage has increased or decreased value in eccentric state. In any case, this
experiment shows that such a big modification in the motor’s geometry does not
affect its operation. Perhaps it results from the fact that it is a small-sized machine
and maybe with larger geometry and larger powers, such differences would be much
more visible.

The differences between electromagnetic torque plots are much more visible than
in previous comparison (Fig. 7). Not only the eccentric torque has higher value,
also the differences between phases in this torque plot are also distinguishable, very
interesting is the peak in the third phase. This shows that non-linearity plays crucial
role in this type of phenomenon.

Lastly in Figs. 8 and 9 were presented 3D plots. They have been concentrated five
times using the Matlab interpolation function. In these graphs, a constant value of
current and angle of rotation was given, and flux and torque values were calculated.
The charts are given for the correct operation of the motor.
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Fig. 6 Flux linkage difference between eccentric and non-eccentric motor
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The regularity with the real functioning and phenomena in electric motors an
be observed here. With misalignment, the graphs are linear, with coaxial, when
saturation occurs, the graphs are non-linear.

5 Conclusions

By using the FEMM package, the author wanted to initiate the process of modeling
mechanical damages in the reluctance motor in static mode. Despite its simplicity,
this package offers many possibilities for modeling and comparing different mag-
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netic parameters, e.g. in an SRM electric motor. This work is only the beginning
of the author’s experiments, and in the future it is possible to combine the look-up
table with FEMM and incorporate it into a dynamic model realized in cooperation
with Matlab.

It would be a good comparison as the experiments once achieved on the research
stand have to be modeled in the FEMM environment. It would perhaps also answer
the question whether the phenomena of disturbance of physical quantities, i.e.
current and acceleration (vibration) in the damaged motor were caused strictly by
the phenomenon of dynamic eccentricity or the disturbance from the imperfections
of the test bench or other factors connected with this experiment. Also, certainly,
further accurate research related to damage modeling in the SRM motor will answer
many bothering and interesting issues.
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Harmonic Transfer Path Analysis of a
Wine Refrigerator

Wolfgang Alois Hörtnagel, Stefan Plagg, and Fadi Dohnal

Abstract Transfer path analysis (TPA) is increasingly being applied in the industry
when it comes to a new product generation of lightweight and therefore highly
flexible structures. TPA helps identifying critical locations and components of
the overall structure that contribute to specific vibration observations. Typically
TPA needs to be balanced between needed accuracy and time efficiency/cost.
Several TPA methodologies exist and need to be adapted to the specific system
under consideration. We develop a robust algorithm for the estimation of the
frequency response functions of a complex, flexible structure like a commercial
wine refrigerator. This algorithm leads to an improved TPA of the overall system and
can help optimizing future designs by defining desirable characteristics of critical
locations.
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1 Introduction

Transfer path analysis (TPA) has been widely used for analyzing the transfer
characteristics of vibration and noise for example in [1]. Van der Seijs et al. [2]
have reviewed a wide range of TPA techniques and classified them into three
categories, namely classical, component-based and transmissiblity-based TPA. TPA
is particularly useful when the actual vibrating mechanisms are too complex to
model or measure directly, as it allows the representation of a source by forces and
vibrations acting at the interfaces of the passive side. In this way the source excita-
tions can be separated from the structural/acoustic transfer characteristics, allowing
us to identify and to troubleshoot the dominant paths of vibration transmission.
Due to environmental noise and unavoidable measurement errors, the problem of
estimating the path distributions often becomes ill-posed. This paper proposes a
multi-stage approach for this issue that could improve both, the smoothness as well
as the accuracy of the estimation.

A wine cabinet as depicted in Fig. 1 was examined when conducting the
necessary experimental measurements. The long term effect of storage conditions
on wine has been previously researched. Notable is the experiment of Chung et al.
[3] whose group conducted a chemical analysis after subjecting wine to various long
term vibrations during an 18-month storage. The results showed that some physico-
chemical properties continously change during storage and vibration can result in
significant changes in the composition of wine. Minimizing the vibration assists
retaining the wine aroma and is therefore recommended for optimal storage of wine.
Tao et al. [4] came to the same conclusion, that for the production of high-quality
wine, vibration of bottles should be avoided.

2 Bias of Power Estimations

One of the fundamental questions when discussing estimation techniques is whether
the expected value of the estimate matches the properties of the measured quantity.
Estimation biases can be introduced by noise and have to be taken into considera-
tion.

2.1 Power Spectral Density

The spectral properties of signals can be characterised by various functions like the
Fourier transform. This paper focuses on power spectral densities as a descriptor.
To illustrate the basic concepts, we introduce two signals x(t) and y(t) and additive
noise labelled as m(t) and n(t), respectively,
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Fig. 1 Wine cabinets need to
offer protection against UV
light and vibrations to prevent
outside factors from
degrading the wine’s quality.
Optimal storage conditions
are prerequisite for long-term
storage

x̃(t) = x(t) + m(t) ỹ(t) = y(t) + n(t) (1a)

X̃(Ω) = X(Ω) + M(Ω) Ỹ (Ω) = Y (Ω) + N(Ω) (1b)

Sxx(Ω) = lim
T→∞

1

2T

{
X∗
T (Ω)XT (Ω)

}
Sxy(Ω) = lim

T→∞
1

2T

{
X∗
T (Ω)YT (Ω)

}
(1c)

Herein, tilde denotes the noisy signals and X and Y the Fourier transforms of the
underlying time signals. Ω is the Fourier frequency and T the time interval of
the measurement. The auto power spectral density (APSD) Sxx of a time signal
x indicates how its power is distributed over the frequency range Ω . It is a real
function and does not contain phase information. One cannot backcalculate the
original signal from its APSD. The cross power spectral density (CPSD) Sxy is
calculated similarly and is proportional to the product of two signals x and y. It
is complex-valued and dependent on the relative phase difference between the two
signals.
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Under the assumption of stochastically independent and zero-mean noise, the
auto power spectral density of a noisy signal is slightly bigger than the APSD of a
noise-free signal

Sx̃x̃(Ω) = Sxx(Ω) + Smm(Ω) ≥ Sxx(Ω) (2)

The CPSD is unbiased under our assumptions.

2.2 Hx-Estimators

The simplest estimation method calculates the transfer function between x and y as
the ratio of its Fourier transforms. This definition is usually labelled H0-estimator,
see [5]. Repeated measurements can be averaged but this method will lead to a
biased result that depends on the properties of the overlaying noise within the
measured signals

H0(Ω) = Ỹ (Ω)

X̃(Ω)
≈

∑
i

[
Ỹi (Ω)

]

∑
i

[
X̃i(Ω)

] (3)

The expected relative error of this estimator can be calculated by introducing
additive noise to the noise-free signals of input x and output y according to Eqs. 1.
The estimation can be slightly higher or lower than the true value. The total relative
error can be approximated by the difference betweem the relative output noise and
the relative input noise

ΔH0(Ω)

H(Ω)
= H0 − H

H
= N(Ω)/Y (Ω) − M(Ω)/X(Ω)

1 + M(Ω)/X(Ω)
≈ N(Ω)

Y (Ω)
− M(Ω)

X(Ω)
(4)

Note that all quantities represent complex functions which may become negative
at some phase values. The subtly different approach of the H1-estimator utilizes
the CPSD and the APSD. The CPSD Sx̃ỹ of two signals can be approximated by
averaging the product of the Fourier transforms X and Y within a period of stable
or broadband excitation

H1(Ω) = Sx̃ỹ(Ω)

Sx̃x̃(Ω)
≈

∑
i

[
X̃∗
i (Ω)Ỹi(Ω)

]

∑
i

[
X̃∗
i (Ω)X̃i(Ω)

] (5a)

ΔH1(Ω)

H(Ω)
= H1 − H

H
= − Smm(Ω)/Sxx(Ω)

1 + Smm(Ω)/Sxx(Ω)
≈ −Smm(Ω)

Sxx(Ω)
(5b)
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The expected relative error of an H1-estimator is real-valued and negative. The
resulting estimate will be of smaller magnitude but in phase with the original system.
While the H1 estimator focuses on the input signal x, the H2-estimator focusses on
the output signal y. The H2-estimator uses the APSD Sỹỹ and the CPSD Sỹx̃ to
obtain an approximation that consistently overestimates the true value

H2(Ω) = Sỹỹ(Ω)

Sỹx̃(Ω)
≈

∑
i

[
Ỹ ∗
i (Ω)Ỹi(Ω)

]

∑
i

[
Ỹ ∗
i (Ω)X̃i(Ω)

] (6a)

ΔH2(Ω)

H(Ω)
= H2 − H

H
≈ Snn(Ω)

Syy(Ω)
(6b)

The expected relative error of an H2-estimator is real-valued and positve. The
resulting estimate will be of higher magnitude but in phase with the original system.
Using these two estimates as boundaries, we can assume that the true absolute value
of the transfer function H will be higher than H1 but lower than H2 (see Eq. 7)

|H1(Ω)| ≤ |H(Ω)| ≤ |H2(Ω)| (7)

By averaging the two previous estimates H1 and H2, the resulting heuristic H3
estimator respects the two boundaries by placing the estimate in the middle

H3a(Ω) = 1

2
[H1(Ω) + H2(Ω)] (8a)

ΔH3a(Ω)

H(Ω)
= H3a − H

H
≈ 1

2

[
Snn(Ω)

Syy(Ω)
− Smm(Ω)

Sxx(Ω)

]
(8b)

The expected relative error of an H3-estimator is the average of the errors of the H1-
and the H2-estimators. In frequency ranges where one of the previous estimators has
a much better estimate than the other the H3 error will be halve as big as the worse
estimator. In the frequency range of resonance, this estimator will perform worse
than a H2-estimator would, whereas in regions of antiresonance its performance
would be worse than that of the H1-estimator. A best of both worlds result can be
achieved by the use of an H4-estimator that is calculated as a weighted average
between H1 and H2 (see Eqs. 9). The weight-function κ is used to indicate which of
the two estimators H1 or H2 will have a more reliable result. In ranges of resonance
where κ ≥ 0.5 the H4-estimator will be closer to the H2 result. In antiresonance the
H1 estimate will be preferred

κ(Ω) = |H3(Ω)|
max
Ω

{|H3(Ω)|} (9a)

H4(Ω) = [1 − κ(Ω)]H1(Ω) + κ(Ω)H2(Ω) (9b)
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All higher ordered Hx-estimators have relative errors that are real valued whereas the
H0 estimator has a complex valued relative error. Thus the phase information of the
more complex Hx-estimators is more reliable than the results of theH0 approach. All
previous measurements show that the H4-estimator approximates the true transfer
function better than the H1, H2 and H3 variants.

3 Tikhonov Regularization

A transfer path analysis considers the interference between multiple chosen paths.
The problem of estimating the multiple-input-multiple-output dependencies is one
of the core issues of a TPA

XTT = Y (10)

Noise can significantly influence the solutions of Eq. 10 and may produce spurious
solutions without physical meanings. Various regularization algorithms can be
used to overcome ill-conditioned problems and improve the stability of solutions.
The Tikhonov regularization in [6] considers both, fitting degrees and stability of
solutions and is thus a common choice in this context.

The key in this process is the introduction of the regularization parameter λ. By
minimizing the Euclidean norm

min
T

{
‖XTT − Y‖2 + λ2‖TT ‖2

}
⇔

(
XT X + λ2I

)
TT = XT Y (11)

the transmissiblity function matrix can be identified according to

TT
λ =

(
XT X + λ2I

)−1
XT Y (12)

Utilizing the singular value decomposition (SVD) on X, we can obtain the parame-
ters σ j , uj and vj

X = UΣVT =
m∑
j=1

σ jujvTj (13)

The generalized cross validation (GCV) can then be used to select optimal parame-
ters λ for Tikhonov regularization
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GCV (λ) = min
λ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖XTT
λ − Y‖2

m − n +
m∑
j=1

(
λ2

λ2 + σ 2
j

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(14)

These optimal values of λ can then be inserted into

TT
λ =

n∑
j=1

σ 2
j

λ2 + σ 2
j

uTj Y

σ j

vj (15)

With our previously calculated SVD-parameters, the estimate of the transmissiblity
function matrix TT

λ is fully defined.

4 Multi-Stage Estimators

4.1 Combinatory Approach

Based on the previous section, the heuristic idea of combining the two con-
cepts seems promising. The basic Tikhonov regularization calculates the optimal
transmissibility matrix from X to Y. This concept is similar to the H0-estimator
introduced in Eq. 3. Exploiting this analogy for the calculation of the transmissibility
from Sx̃x̃ to Sx̃ỹ , an effective H1-estimator is the result of

TT
λ,1 =

(
STx̃x̃Sx̃x̃ + λ2I

)−1
STx̃x̃Sx̃ỹ (16)

H2- to H4-estimators are constructed according to the same rules

TT
λ,2 =

(
STỹx̃Sỹx̃ + λ2I

)−1
STỹx̃Sỹỹ (17a)

TT
λ,3 = 1

2

(
TT
λ,1 + TT

λ,2

)
(17b)

TT
λ,4 = [1 − κ(Ω)] TT

λ,1 + κ(Ω)TT
λ,2 (17c)
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4.2 Staging

Performing a real measurement, usually not all measurement points are recorded
simultaneously. However independent measurements can be affected by different
environmental effects. A noise-peak that is present in one measurement but not
the other can lead to estimation error. This paper proposes the calculation of part-
transmissibility functions that specify the relation between the point of interest
and a constantly measured reference point which is fixed for all measurements.
This single-input-single-output relation can be established comfortably by the
H4-estimator. Using these part-transmissibility functions as a basis for further path-
calculations reduces the impact of environmental noise in the estimation of the
transfer paths.

4.3 Summary

The Eqs. 17 summarize the proposed procedure. Performing the Tikhonov reg-
ularization while substituting X and Y with the corresponding auto or cross
power spectral density leads to multi-stage estimators. In addition to the pure
transmissibility calculation, it is recommended to perform an intermediate step
of calculating part-transmissibility functions that establish a relation between an
optional measurement point and a fixed reference measurement point. Using these
part-transmissibility functions as a basis for the path-estimations leads to further
improvements.

First tests of this proposed estimator have resulted in improved performance. Fig-
ure 2 shows a decidedly smoother estimate with pronounced peaks. The smoothness
of this transmissiblity function helps greatly in visualizing the transfer functions in
false-colours which is common for comparing multiple path contributions in TPA. In
addition to the smoother estimation result, the tests have shown a more robust result
of the GCV procedure in Eq. 14 when calculating the regularization parameter λ.

5 Conclusions

We developed a robust algorithm for the estimation of the frequency response
functions of a complex, flexible structure like a commercial wine refrigerator. This
algorithm leads to an improved TPA of the overall system and can help optimizing
future designs by defining desirable characteristics of critical locations. In this paper
a novel multi-stage approach to transfer path estimation is proposed. The procedure
uses a modified Tikhonov regularization for calculating the transmissibility function
matrices for a transfer path analysis. First tests have shown improved smoothness
and accuracy in the results compared to the commonly applied approach. The
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Fig. 2 The proposed estimation process results in a smoother transfer function. This is especially
beneficial when performing a transfer path analysis and visualizing the paths in false-colours

proposed algorithm seems to also improve the stability of the estimation process by
making the selection of the regularization parameter more robust. Further studies
are necessary for validating mathematically the proposed heuristical approach.
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Risk Related Prediction for Recurrent
Stroke and Post-stroke Epilepsy Using
Fractional Fourier Transform Analysis
of EEG Signals

Eva-H. Dulf and Clara-M. Ionescu

Abstract Stroke is a medical condition which can easily affect the quality of life,
depending on how extended the stroke is and what regions of the brain are involved.
According to the most recent data cited in WHO, Romania is in top three of the
countries with increased frequency of stroke and has the second place for having the
most deaths and disabilities caused by stroke. Actually, stroke is the second death
cause in Romania after cardiac arrest. Today, there are various prevention methods
concerning stroke. The hypothesis of the research context is that EEG signal can
provide useful information on risk related prediction for recurrent stroke and post-
stroke epilepsy. Knowing that there is a certain risk on developing secondary
epilepsy after stroke, based on the EEG rhythms, may help in prevention and maybe
in reconsidering a new approach in the treatment of this pathology. On the other
hand Fractional Fourier Transform (FrFT), a generalization of conventional Fourier
Transform, is used with success in many applications like detection of signals
in noise, image compression, reduction of side lobe levels using convolutional
windows, time-frequency analysis, etc. It can be used in more effective manner
compared to Fourier transform with additional degrees of freedom. That was the
motivation to analyze the spectra of each component of the EEG signals using FrFT
in order to predict recurrent stroke and post-stroke epilepsy incidence. The results
prove the efficiency of the method.

Keywords EEG signal analysis · Fractional Fourier Transform · Recurrent
stroke · Epilepsy
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1 Introduction

Patient well-being and healthcare can be best described as bringing longer life and
an improved quality of life for patients. The value of the treatment is determined
by the amount of clinical benefit it can achieve balanced against its cost, beside its
effects. Next to chronic pain and rehabilitation management, epilepsy, stroke and
aneurysm are significant phenomena with long tails in the socio-economic impact
on total costs for healthcare. A brain aneurysm is a bulge in an artery in the brain
that has the potential to burst or rupture. A ruptured aneurysm can cause a type
of stroke called a subarachnoid hemorrhage. An estimated 3% of United States of
America population may have or develop a brain aneurysm each year, according to
the Mayfield Clinic [1]. Not all aneurysms cause stroke, and vice-versa. However,
if a person is at risk for a burst aneurysm, treatment is often required to prevent
this potentially life-threatening occurrence. Medical specialists do not pre-detect an
estimated 85% of aneurysms (only after they burst). A stroke may occur due to either
the blood supply to the brain being blocked or a blood vessel in the brain rupturing.
Two stroke types exists: hemorrhagic and ischemic. Hemorrhagic strokes are usually
the result of one of two causes: an aneurysm or a collection of abnormal blood
vessels in the brain that can rupture. Ischemic strokes are those that result from a
blockage in an artery in the brain. When a blood clot breaks free from its place in an
artery, it can lodge in a portion of the brain. This keeps blood from flowing freely to
the brain. Without the oxygen and nutrients that the blood brings to the brain tissue,
the tissue dies. The result can be impaired body functioning or death, while some
of impairment is indirectly related to other dysfunctions such as multiple sclerosis,
semi-paralysis, speech/mobility impairment, etc. In practice, the decision of whether
to treat incidental intracranial saccular aneurysms is complicated by limitations in
current knowledge of their natural history. A systematic review and pooled analysis
of individual patient data from 8382 participants in six prospective cohort studies
with subarachnoid haemorrhage as outcome was reported in [2]. Rupture occurred
in 230 patients during 29,166 person-years of follow-up. The mean observed 1-
year risk of aneurysm rupture was 14% (with 95% confidence interval 1.1–1.6)
and the 5-year risk was 34% (with 95% confidence interval 2.9–4.0). Prediction
factors were age, hypertension, history of subarachnoid haemorrhage, aneurysm
size, aneurysm location, and geographical region. In study populations from North
America and European countries other than Finland, the estimated 5-year absolute
risk of aneurysm rupture ranged from 0.25% in individuals younger than 70 years
without vascular risk factors with a small-sized (<7 mm) internal carotid artery
aneurysm, to more than 15% in patients aged 70 years or older with hypertension,
a history of subarachnoid haemorrhage, and a giant-sized (>20 mm) posterior
circulation aneurysm. By comparison with populations from North America and
European countries other than Finland, Finnish people had a 3.6-times increased risk
of aneurysm rupture and Japanese people a 2.8-times increased risk. SAFE (Stroke
Alliance For Europe) commissioned the Burden of Stroke study to show each EU
country where it stands compared to others in terms of the stroke burden and how
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well it is meeting the need for acute and follow-up care, including examples of
good practice (https://strokeeurope.eu/). The Burden of Stroke in Europe research
shows in 2017 shocking disparities between and within countries along the entire
stroke care pathway. Europe-wide comparisons of stroke and stroke care are
vital to help each country prevent stroke and provide better care and support for
everyone affected by it. To make accurate comparisons between different countries,
populations and health systems, we need coordinated Europe-wide data collection.
Therefore, European policy-makers, in particular the European Commission and the
Joint Research Centre, should support and promote the use of a robust Europe-wide
stroke register to assess quality of care along the whole stroke pathway. In Romania,
the majority of population is covered through contributions to social insurance
system; free at point of use for all [3]. For stroke epidemiology, on the population
of 19,043,767 the incidence estimate (Global Burden of Disease—GBD 2015) is
61,552 strokes/year, 191 strokes per 100,000 inhabitants annually, the prevalence
estimate (GBD 2015) is 252,774 strokes, 833 per 100,000 inhabitants and mortality
(GBD 2015) is 54,272 deaths due to stroke/year, 156 deaths per 100,000 inhabitants
annually, all numbers age- and sex-adjusted [4]. The information is based on
registries from Targu Mures Registry (local, only hospitalized patients) [5] and the
healthcare cost of stroke: total 163.1 million EUR, i.e. 8 EUR per capita [6]. In
Belgium, for a total population of 11,007,020 we have an incidence estimate of
(GBD 2015): 10,397 strokes/year, 50 strokes per 100,000 inhabitants annually, a
prevalence estimate of (GBD 2015): 63,535 strokes, 348 per 100,000 inhabitants
age- and sex-adjusted [4]. The case fatality of ischemic stroke is: 9.2 per 100
discharges, adults aged 45 or older, age- and sex-adjusted, and a mortality rate of
9501 deaths due to stroke/year, 387 deaths per 100,000 inhabitants annually age-
and sex-adjusted [7]. The information is based on mandatory hospitalization data,
Belgian Sentinel Network of General Practitioners, Institute of Health population
surveys and the healthcare cost of stroke in Belgium: total 3937 million EUR,
i.e. 35 EUR per capita [6]. Several major risk factors of aneurysm growth and
rupture have been identified. There exist recommendations on diagnostic work up,
monitoring and general management (blood pressure, blood glucose, temperature,
thromboprophylaxis, anti-epileptic treatment, use of steroids). Apart from the above,
leading risks for ischemic stroke are (1) hypertension and (2) surgery and anesthesia
[8]. In today’s EU vision and mission for health and wellbeing, an important
role is played by decision support systems. It has been long acknowledged that
medicine and engineering must go hand-in-hand for better results [9]. There is
evidence to maintain the claim that decision support systems related to computer
based (and implicitly mathematical patient model based) systems for titrating drugs
during anesthesia have positive effect on reducing post-surgery secondary effects
(time to recovery, post-surgery depression, etc.) [10]. One of the most debilitating
complications in the perioperative period with serious clinical sequelae is cerebral
ischemia [11]. In this paper, we propose a first hand solution and preliminary results
for detecting ‘out of the ordinary’ events in the EEG signal which may indicate
a prevalence for stroke in post-surgery anesthetized patients. To the best of the
author’s knowledge, this is the first work using fractional Fourier transform for

https://strokeeurope.eu/
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stroke analysis. The motivation of the work was the good results of this powerful
tool in other domains of signal processing [12].

The paper is organized as follows. The next section provides a summary of
the method used to extract information from the signals followed by a section on
results and discussion on further use of the tools proposed. A conclusion section
summarizes the main outcome of this work and points to further steps.

2 Materials and Methods

It is possible to characterize a signal in time or frequency domain. However none of
these two can cover the main features of the signal completely. Some characteristics
are better shown in frequency domain while the other features may be determined
more effectively in time domain [12]. In other word, we may not be able to capture
some important information in time domain; while, they are clearly apparent in
frequency domain and vice versa. Time-Frequency analysis is one of the approaches
that gives a wider view towards the signal, because it has the advantages of
both time- and frequency-analysis. Fourier Transform is a classic tool to analyze
and process stationary signals, but it appears incapable for non-stationary or time
varying signals. To estimate the spectral density of the EEG signal strength, the
Fractional Fourier method is used in the present study, being a generalization of
conventional Fourier method with an order parameter α. Mathematically, the αth
order fractional Fourier transform is the αth power of the Fourier transform operator.
The α = first order fractional transform is the ordinary Fourier transform. In this
paper Discrete Fractional Fourier Transform (DFFT) with different fractional orders
is proposed as feature extraction technique for EEG signals. When α = π/2, it
is obtained the Fourier transform, while for α = 0, it can be obtained the signal
itself. Any intermediate value of α produces a signal representation that can be
considered as a rotated time–frequency representation of the signal. The fractional
Fourier transform enables continuous movement between the time and frequency
domains, allowing the simultaneous retention of both frequency and time domain
information. Being a generalization of the ordinary Fourier transform, the fractional
Fourier transform is more flexible in its applications and hence of potential interest
to any area in which the Fourier transform is frequently implemented [13]. The used
definition of the fractional Fourier transform is (FrFT) [14]:

fp(u) =
∫ +∞

−∞
Kp (u, t) f (t)dt (1)
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Fig. 1 The EEG signal processing workflow

where Kp (u, t) =
⎧⎨
⎩
Aαexp

[
jπ

(
u2cotα − 2utcscα + t2 cotα

)]
, α �= nπ

δ (u − t) , α = 2nπ
δ (u + t) , α = (2n + 1) π

is the

kernel function of the fractional Fourier transform, Aα = exp
[
−jπ

sgn(sinα)
4 + jα

2

]

|sinα|1/2 , α =
pπ
2 , n is integer and δ represents the Dirac function.

The workflow is presented in Fig. 1.
The processing method functions are performed in Matlab

®
software.

The Bonn EEG database has been employed in this study, which is a well-known
benchmark dataset for this problem [15].

3 The Results Obtained with the Proposed Tool

With the goal to provide a powerful tool for accurately localizing the source of
stroke in brain activity by doctors, the authors combine the latest techniques for
determining electrical activity in the brain by EEG signal processing.

The used EEG signal can be obtained on maximum 32 channels, as it is illustrated
in Fig. 2. By selecting the corresponding button in the user interface, it can be
selected one or more channel for interest, Fig. 3. The position of electrodes can be
visualized in 2D or 3D plots, in order to obtain the best distribution by the medical
staff, Fig. 4. The preprocessing stage of the signal consists on changing the data
sampling rate (for example to reduce the sampling rate to save memory and disk
storage) and filtering the data. The proper filter and the corresponding filter order
and frequency specifications can be selected as it is presented in Fig. 5.

In order to estimate the spectral density of the signal strength, FrFT method is
used, obtaining the plot from Fig. 6. The feature extraction result is marked with red
squares for each channel, in order to be evaluated by the doctor for final diagnosis,
Fig. 7.

Although these are preliminary first hand results, they suggest that the proposed
methodology and tools may be suitable for the objective of stroke detection
and later on prevention (by detecting pre-stroke events in the EEG signal). The
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Fig. 2 The used EEG signal type

proposed model structure seems over-parameterized, but investigation into other
events related to stroke visible in EEG signal may require the extra parameters -
this study is ongoing.

4 Conclusions

This paper introduced emerging tools from fractional calculus and afferent models
for EEG signal processing. It is provided a user-friendly tool for medical staff to
establish a final diagnosis. The preliminary results indicate redundancy in model
parameters, but further analysis of this study is ongoing. The next step consist on
real patient data tests for a large number of acquired signal.
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Fig. 3 Channel selection for analysis. In this case study are selected channels no. 1, 2, 5, 10, 20
and 32

Fig. 4 2D or 3D plot of the electrodes
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Fig. 5 User interface for filter design
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Fig. 6 Power spectra using fractional Fourier method

Fig. 7 Peak mark for channel 1
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Chaos, Bifurcations and Strange
Attractors in Environmental
Radioactivity Dynamics of Some
Geosystems
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and Eugeny V. Ternovsky

Abstract The theoretical foundations and further application of an effective uni-
versal chaos-geometric approach to analysis and processing the data of radioactivity
dynamics in environment are presented. The approach presented includes a group of
advanced available methods or new ones (the correlation integral and fractal analysis
methods, the average mutual information and false nearest neighbors algorithms,
the Lyapunov’s exponents and Kolmogorov entropy analysis, the surrogate data
method, different algorithms of non-linear prediction models, spectral methods,
etc.) to provide accurate numerical modeling and analysis of temporal dynamics
of the atmospheric pollutants. The numerical results of analysis, modelling the
radon concentration in the atmospheric environment are listed. The topological and
dynamical invariants data for the 222Rn concentration time series are computed with
using the measurements data by the US Environmental Measurements Laboratory
and Goddard Institute of Space Studies.

Keywords Dynamical system · Chaos · Environmental radioactivity · Radon

1 Introduction

One of the most urgent and important problems of theory of environmental systems
and environmental protection is related to the correct description of the quantitative
dynamics of environmental radioactivity (see, for example, [1–6]). Usually it is
worth mentioning problems that are so urgent, such as long-term study of the
evolutionary (fluctuation) dynamics of radionuclides in various environments as in
spatial as in temporal aspects, elucidation of mechanisms of radionuclide transfer in
hydro- and atmospheric systems, atmospheric transfer, transportation of radioactive
substances with accounting for meteorological and other factors, etc.
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The key tasks of the study of the dynamics of atmospheric radionuclides include
the study of the transport of radionuclides in various atmospheric conditions using
the hierarchy of models of air circulation, modeling the spatial and temporal
structure of the fields of concentrations of impurities in the atmosphere. In this case,
possible scenarios for the propagation of impurities are based on the analysis of their
behavior, depending on the variation of deterministic and random parameters of the
models. Recall [1–4] that most models are currently used to estimate the state (as
well as forecast) and dynamics of the environmental systems within deterministic
models, or simplified ones, based on the simple statistical regressions. The success
of these models, however, is limited by their inability to describe the nonlinear
characteristics of the pollutant concentration behavior and the lack of understanding
of the physical and chemical processes involved.

It is possible to distinguish multifactor, hydrodynamic (for example, the models
of “torch”, “molecular diffusion”, “shallow water”, “equation of hydrodynamics of
the surface layer”), probabilistic-statistical approaches, as well as numerous numer-
ical approaches [1–20]. Of particular importance are the torch models and standard
classical diffusion models. The scattering of pollutants entering the natural environ-
ment is subject to the laws of classical or turbulent diffusion [1–3]. In whole one
could remind about such widespread methods as MLDP0 (Modèle Lagrangien de
Dispersion de Particules d’ordre 0), HYSPLIT (Hybrid Single-Particle Lagrangian
Integrated Trajectory Model), NAME (Numerical Atmospheric-dispersion Mod-
elling Environment), RATM (Regional Atmospheric Transport Model), FLEXPART
(Lagrangian Particle Dispersion Model), model ECMWF (the European Center for
Medium-Range Weather Forecasts) and others [1–8].

The following factors have a significant influence on the process of their
dispersion of the radioactive substances in atmosphere: the thermodynamic state of
atmosphere, the physical and chemical properties of harmful substances, the height
and diameter of the emission source, the location of the sources and many others.
But, in any case, classical-diffusion and standard probability-statistical models
allow, strictly speaking, to obtain mainly only qualitative features of the process of
distribution of substances, but the best quantitative level of description based on, for
example, classical-diffusion models, as a rule, is achieved in the absence of vortex
turbulence elements in the environment.

Adequate correct analysis, modeling and prediction of the propagation of
radioactive material in natural environments should be based on a complex of both
stochastic-diffusion models and apparatus of complex nonlinear dynamic systems
theory and chaos theory.

New field of investigations of the environmental dynamical systems has been
provided by a great progress in a development of a chaos and dynamical systems
theory methods [14–25]. In our previous papers [4–8, 20–30] we have given a review
of new methods and algorithms to analysis of different systems in the fields of
Environmental and Earth sciences, quantum physics, electronics and photonics and
used the nonlinear method of chaos theory and the recurrence spectra formalism to
study stochastic futures and chaotic elements in dynamics of the environmental,
chemical, biological and physical (namely, atomic, molecular, nuclear systems
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in an free state and an external electromagnetic field) systems. The non-trivial
manifestations of a chaos phenomenon have been discovered.

In this paper we present the theoretical foundations and further application of
an effective universal complex chaos-geometric and quantum-dynamic approach to
analysis, processing, forecasting data of radioactivity dynamics in various environ-
ments and list some new numerical results of analysis, modelling the atmospheric
radon 222Rn concentration in the atmospheric environment. The complex chaos-
geometric and quantum-dynamic approach includes a group of advanced available
methods or new ones (the known correlation integral and fractal analysis methods,
the mutual information and false nearest neighbors algorithms, the Lyapunov’s
exponents and Kolmogorov entropy analysis, different algorithms of non-linear
prediction models, different spectral methods and algorithms, etc.) to provide
accurate numerical modeling and analysis of temporal dynamics of the atmospheric
pollutants, in particular, the atmospheric 222Rn. The topological and dynamical
invariants data for the radon 222Rn concentration time series are computed with
using the measurements data by the US Environmental Measurements Laboratory
and the Goddard Institute of Space Studies [2, 3].

2 A Chaos-Geometric Approach to Analysis, Processing,
Modelling and Forecasting the Environmental
Radio-Activity Geosystem Dynamics

In our previous papers [2–8, 22–26] we have given a review of new methods and
algorithms of the chaos-geometric (combined with quantum-dynamic) approach to
analysis, processing, modeling and forecasting a temporal evolution of different
dynamical systems.

As many blocks of the used approach have been developed earlier and need only
to be reformulated regarding the problem studied in this paper, here we pay the
attention at the most principal points and some new elements. The main stages
of a chaos-geometric (combined with quantum-dynamic) approach to analysis,
processing and forecasting data of the environmental radioactivity dynamics are as
follows:

1. General qualitative analysis (in terms of ordinary differential equations or the
Arnold analysis) of the radioactivity dynamics; the transport of radionuclides in
various atmospheric conditions using the hierarchy of models of air circulation,
modeling the spatial and temporal structure of the fields of concentrations of
impurities in the atmosphere.

2. Application of the different chaos-geometric tests on the presence of chaotic
(stochastic) elements, functions and modes in a system; the Gottwald-Melbourne
test, etc.
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3. Fractal and quantum geometry of a phase space (choice of time delay, determi-
nation of embedding dimension by methods of correlation dimension algorithm
and false nearest neighbors algorithm).

4. Analysis and computing the dynamic and topological invariants of a chaotic
system and nonlinear forecasting of a temporal (spatial) evolution of radioactive
system dynamics.

5. The key points of the whole approach are reflected in the flowchart in Table 1.

The fundamental ideas of the combined chaos-geometric and quantum-dynamic
(plus differential equations one and the Armold analysis) approach to modelling,
processing and prediction of chaotic dynamics are ideologically reduced to repro-
duction (and reconstruction) of a phase space of the radioactive geosystems,
prediction of the temporal evolution of the main parameters of a system. From
the viewpoint of mathematical modelling it is a question of consideration of
unambiguous representations of a kind:

F i+1 = G (Fi) , (1)

where F ∈ RD—is the state vector, D is the dimension, i—discrete time, G is the
D-dimensional mapping. To implement the ideology of simulation of a compact
geometric attractor and the use of chaos-cybernetic algorithm of predicted phase
trajectories of the system to restore the phase space of the system, it is possible to use
several concepts, first, the concept of average mutual information, and secondly, the
concept of using the properties of the corresponding linear autocorrelation function
(see Table 1). An alternative to the method of correlation dimension (integral) is
the method of false nearest neighboring points. This approach allows to determine
the dimensionality of the embedding for the reconstruction of the phase space, as
well as to verify the results obtained by the method of correlation dimensionality.
The technical details of realization these conceptions can be found in Refs. [4–10,
20–26].

The basic model for determining G can be, for example, a polynomial of order
K:

G (F1, F2, . . . , FD) =
K∑

l1=l2=···=lD=0

bl1l2...lD

D∏
i=1

t
li
i

D∏
i=1

lj , (2)

where the corresponding coefficients are determined so that the standard error of the
approximation ε is minimal as follows:

ε2 = 1

Ntr − D

Ntr−D∑
i=1

[Fi+D − G(Fi, Fi+1, . . . , Fi+D−1

]
2 = min (3)

One of the principally important points of the whole approach to modeling and
forecasting chaotic dynamics of the radioactive geosystems is computing the topo-
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Table 1 Flowchart of the combined chaos-geometric and quantum-dynamic (plus differential
equations one and the Armold analysis) approach to modelling, processing and prediction of
chaotic dynamics of the radioactive geosystems (ecosystems)

I. General qualitative analysis (in terms of ordinary differential equations or the Arnold 

analysis) of the radioactivity dynamics in atmosphere; the atmospheric general dynamics dif-

ferential equations analysis)

II. Application of the different chaos-geometric and quantum-dynamic tests on a  presence of 

chaotic (stochastic) elements,  functions and modes in the radioactive geosystem;

1. Gotwald-Melbourne test; Chirikov test; Naïve model tests;

2. Energy and spectral methods and algorithms: energy and power spectra, energy 

level statistics, random matrix analysis; characteristic distributions of the Wigner-
Dyson type

III. Multifractal and quantum geometry of a phase space and dynamics of resonances 

3. Computing the fractal parameters, multifractal spectra; wavelet 

analysis; cepstrum analysis

4. The Packard-Takens algorithm; the advanced autocorrelation func-

tion or average initial information algorithms; The Green’s function 

method

5. Reconstruction of a phase space; Computing embedding dimen-

sion, correlation dimensions; using the methods of the correlation 

integral by Grassberger-Procaccia OR the false nearest neighbor 

points formalism

IV. Forecasting chaotic dynamics of the radioactive geosystems

6. Computing the invariants; The global Lyapunov’s

dimension analysis; Kolmogorov entropy analysis; The 

Kaplan-York dimension analysis; Method of nearest

neighboring points

7. New methods and algorithms of nonlinear forecasting

chaotic dynamics of the radioactive geosystems and ecosystems

(“minmax” algorithms, methods of the stochastic propagators;

Neural networks modelling algorithms with application of the 

polynomial or B-spline models, wavelets etc …

⇓⇓

⇓

⇓

⇓

⇓

⇓

⇓

logical and dynamical invariants. The latter include, in particular, local and global
Lyapunov’s dimensions or Lyapunov’s exponents. It is worth to remind the classical
definition of the Lyapunov’s exponents through e logarithms of absolute values of
eigen-values of linearized dynamics focused on the attractor, more precisely:
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λ = lim
t → ∞
d(0) → 0

(
1
t

)
log2

[
d(t)
d(0)

]

d(t) =
[

n∑
i=1

δF 2
i (t)

]1/2
(4)

Here, the norm determines the degree of divergence of two adjacent trajectories,
that is, the master trajectory and the adjacent trajectory with initial conditions
S(0) + δS(0)(S = F). It is important to note that the negative dimensions indicate
the local average compression rate and the positive ones indicate the expansion one.
The most significant is the maximal Lyapunov’s exponent, the positivity of which
indicates the existence of a chaos in the system. In fact, if one manages to derive
the whole spectrum of the Lyapunov’s exponents, other invariants and parameters
of the system, i.e. Kolmogorov entropy (Kent) as well as an average predictability,
the Kaplan-Yorke conjecture and the attractor’s dimensions, can be determined
and computed. It should be noted that there are several algorithms for computing
a spectrum of the Lyapunov’s exponents, among which the most common is the
method based on the Jacobian mapping. All technical details can be found in Refs.
[4–10, 20–26]. All calculations are performed with using “Geomath”, “Superatom”
and “Quantum Chaos”, “ScanPoints” PC computational codes [31–45].

3 Analysis of Atmospheric Radon Concentration Time
Series, the Topological and Dynamical Invariants
and Conclusion

Here we list the results of applying a chaos-geometric (quantum-dynamic) approach
to studying temporal dynamics (time series) of the atmospheric radon concentration
fluctuations. The data of measurements of the radon concentrations at 5 USA sites
were presented by the US Environmental Measurements Laboratory, Department of
Energy and Goddard Institute for Space Studies (e.g., [2, 3] and references therein)
and were actually integrated into a long-term measurement system. Meteorological
data (wind characteristics, air temperature, etc.) were obtained simultaneously.
Measurements were made during 1979–1981 at 15 heights (6–200 m). In [3], the
radon-222 was actually used as a quantitative indicator (tracer; 3-D chemical tracer
model) of convective transfer in the general circulation model (the so-called GISS
general circulation model). As the input data we have used the time Series of the
daily average radon concentrations at Chester (New Jersey) during 1978 (8192
points).

Below we present the data of numerical experiments on the restoration of
the embedding dimension (dE), using the method of correlation integral and the
algorithm of false nearest neighboring points. In order to calculate the correlation
dimension d2 it one should calculate the correlation integrals C(r) for different
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Table 2 Calculational data for the K chaotic index (KÔh) and different dynamical and topological
invariants: time delay τ, correlation dimension (d2), embedding space dimension (dE), Lyapunov
exponent (λi), Kolmogorov entropy (-ent), Kaplan-York dimension (dL), predictability limit
(PrmaØ) for the atmospheric radon time series (1978; Chester, New Jersey)

222Rn KÔh τ d2 dE
1978 0.91 16 6.03 7
λ1 λ2 -ent dL PrmaØ

0.0194 0.0086 0.028 5.88 35

embedding dimensions. The correlation dimension of the attractor (dA) is defined as
the value of the correlation dimension, in which it does not change as the embedding
dimension increases.

Table 2 summarizes all the results for the recovery of attractors, as well as
the calculational data for the K chaotic index (KÔh) and different dynamical and
topological invariants (time delay τ, correlation dimension (d2), embedding space
dimension (dE), Lyapunov’s exponent (λi), Kolmogorov entropy (-ent), Kaplan-
York dimension (dL), etc. for the atmospheric radon time series) (1978; Chester,
New Jersey).

In the case considered, the values of the chaos parameter K in all cases exceed
0.8, that is, the considered time series are subject to the influence of chaotic
dynamics. The analysis of the dynamical and topological invariants shows that,
for example, the resulting Kaplan-York dimension is very close to the correlation
dimension and is smaller than the dimension of attachment, which confirms the
correctness of the choice of the latter. This conclusions is fully analogous the
conclusions [6].

The Lyapunov’s exponents computational data demonstrate the chaotic elements
in the corresponding time series. It is interesting that the randomness inherent in
the studied series of radon concentrations for the Chester (New Jersey) site is
much higher than in the analogous studying the radon dynamics in the Southern
Finland [6, 10]. This resulted in a greater value of the Kolmogorov entropy and a
correspondingly lower predictability limit.

To conclude, we have presented the theoretical foundations of an universal,
complex chaos-geometric (plus quantum-dynamic) approach to analysis, process-
ing, forecasting data of radioactivity dynamics. We have listed the numerical
results of application of this approach to analysis and processing the radon 222Rn
concentration time series (1978; Chester, New Jersey) and obtained values of the
topological and dynamical invariants. The data allows to reveal the deterministic
chaos elements. The results presented show that the application of chaos theory
methods to analysis and processing the time series of radon concentrations in the
atmosphere is quite effective from both a theoretical and practical viewpoints.

Using the methods and algorithms [4–20], there is a possibility to solve a problem
of recovery and forecasting temporal dynamics of the radioactive radon concentra-
tion fluctuations in both the short- and medium-term interval. It is clear that for the
full implementation of this program, in addition to knowing the necessary fractal-
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chaotic properties, one will also need to use the formalism of conformal mapping
of the corresponding modified series of the atmospheric pollutant concentrations
within, say, a neural network approach (look in details [28, 42]).

It is of a great importance the development of a complex of the nonlinear chaotic-
geometric models for the analysis, modeling of contamination, description of the
transfer of radionuclides in the territories for which the relevant data on radioactive
contamination is very scanty. The use of fractal sets, chaos and dynamical systems
theories allows to analyze, predict and compute a temporal chaotic dynamics of
arbitrary chaotic radioactive geosystems (ecosystems).
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Dynamics of Chains as a Tool to Study
Thermomechanical Properties of Proteins

Piotr Weber

Abstract Polymer dynamics can be formulated on different levels of detail. One
approach eliminates microscopic degrees of freedom and a polymer molecule is
represented by a simplified structure—a chain. In the simplest case monomers of
ideal chain have fixed length, and their orientation is independent of the orientations
and positions of neighbouring monomers. This is reason that two monomers can
co-exist at the same place. Ideal chain model doesn’t describe correctly the local
structure of polymer, but correctly describe the property on large-scale. In this
scale chain can be treated as a thermodynamical system, which their dynamic
have to fulfill laws of nonequilibrium thermodynamics. In a living systems there
are a special polymers-proteins, that can operate under non-equilibrium conditions.
During biochemical processes, they changes its states and are treated as free energy
transducers. I will present a certain formalism of non-equilibrium thermodynamic
when non-Markovian processes appear.

Keywords Mesoscopic nonequilibrium thermodynamics · Protein dynamics ·
Non-markovian processes

1 Introduction

Properties of proteins dynamics are crucial for understanding a biological processes
at molecular level. They are fundamental constituent of all known organisms and
play many diverse functions in organisms [1, 2]. All these specific functions are
associated with their three-dimensional structure, that is maintain under physiolog-
ical conditions. These structure, co-called native states, are determine by sequence
of α-amino-acids, that was used by organism to build its proteins. Studies of

P. Weber (�)
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these structures, conditions of their change and stability are important to know the
mechanism of the action of a protein in a cell [3].

Coarse-grained models are one possible way to model protein activity. In this
approach some microscopic degrees of freedom are eliminated and a polymer
molecule is represented by a simplified structure. There are many methods for
building coarse-grained models that can be formulated at different levels of detail.
Sometimes only consideration about a classes of atoms in a molecule can give us
a valuable information about dynamics of biomolecule [4]. In other situations, a
more detailed model must be used. One can assume that length of monomers of the
polymeric molecule has fixed length that way instead a molecule one can descibe
a chain. Its state can be described by parameters: θi—bond angles and γi dihedral
angles [3], where i = 1, 2, . . . , N−1 and N is a number of monomers. Additionally
another parts of the protein, like a functional group can be also simplified to a beads,
which have some volume and simplified shape. This simplification is the basis for
some methods of protein simulation described in [3]. From the theoretical point
of view, the probability density of the above mentioned angles can be considered.
These parameters can changes its values due to thermal energy, which is a reason a
transitions between polymer’s conformational states and simultaneously changes in
distribution. Dynamics of this transitions can be described by continuum diffusion-
like model. In the simplest case the Fokker-Planck equation can be used, which
results of assumption about Markovian character of transitions. However there are
also evidence that non-Markovian processes appear and dynamics of a biomolecule
can be describe by subdiffusive-like model [5].

Not all angles must always be taken into account. If we can distinguish Kuhn
segments in a protein, for example α—helises, then the angles between these rigid
segments significantly change. Other angles located inside these rigid structures
change rapidly under the influence of thermal energy and have a certain average
value. The protein system can be then described by reduced number of variables.
The above mentioned time-dependent probability density is also described in this
reduced set of parameters.

Biologically-functional state of the protein changes according to function which
are realize in physiological phenomena. For example there is one biological state
when a ion channel in the cell membrain is open and there is another when it
is closed. However each biological state (chemical states as was named in [6]) is
realize by many conformational substates. It has consequences in kinetic description
of dynamics between biologically-functional states of protein.

In the simplest case one can consider transitions between two biologically-
functional states of the one protein:

E1 ↔ E2, (1)

where E1 represents one biologically—functional state of given protein and E2
another biologically—functional state of the same protein. Arrow between E1 and
E2 means that they can transform from one state into another. From macroscopic
point of view the solution of kinetic equations of that system, which describe their
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Fig. 1 Schematic
representation of two
biologically functional form
of the protein E1 or E2. Dots
represents substates, that
realize the same biological
function

E1 E2

dynamics as a time dependent concentrations of these two states, is non-exponential
and depends on the initial values [6]. Relaxation function of the system, has a power
law character. As explained at work [7] it is due to protein’s self-similar energy
landscape. In the Fig. 1 there is schematic representations of the idea. Each point
in the E1 or E2 represents one conformational substate. One set of points represent
one biologically—functional state of the protein.

One can see protein as a thermodynamic system operating in isothermal con-
dition. Such treatment of the molecule is possible due to assumption, that the
biomolecule is large enough to make a such thermodynamic description appli-
cable. Isothermal conditions are assumed because most of biochemical reactions
is much faster that changes of temperature in organism (for example during its
circadian rhythm). Finite speed of change during biochemical transformations
reason that assumption about quasi-static nature of this processes is very poor.
Therfore transformtions between biologically-functional states has to fulfill laws
of nonequilibrium thermodynamics. During this process the derivative of entropy in
time consists with two components:

dSsys.

dt
= dSe

dt
+ dSi

dt
, (2)

where first term describes transfer velocity of entropy across the boundaries of the
system and second describe velocity of entropy production within the system.

All processes in nature have to fullfils the second law of thermodynamics. Also
chemical transformations, that constitued a methabolism of the organism, as a
whole, occure in this way that the amount of chemical energy dissipated is positive.
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Fig. 2 Enzyme as a free
energy transducer. Free
energy donating chemical
reaction A → B. Reaction
D → C is a free energy
acceptor. It can also
symbolize a work

C

B D

E1

E2

Free energy

However when one analyze a single reaction catalysing by enzyme one can see that
some of them perform according to second law of theromdynamics, but other one are
forced by them to proceed against the second law. Such situations can occur when
two reactions are coupled by the same enzyme [8]. During this process first reaction
transfers a part of its free energy recovered from dissipation to force the second
reaction [9]. In the Fig. 2 there is schematic picture of this process. Reaction A → B

(green arrow) is free energy donor, catalyse by biologically—functional state of
ensyme E1, and reaction D → C (red arrow) is a free energy aceptor, catalyze by
biologically—functional state of enzyme E2. Arrow (yellow) from reaction A → B

to D → C represents a free energy transfer.
There are many examples of processes that take place in an organism according

to the scenario presented above. As an example is the reaction of ATP hydrolysis
which is coupled to transport of ions across membranes in the direction of increasing
ion concentration. Such structures are called ion pump. Another example is the
ATP hydrolysis that can result in a mechanical motion of single protein along
microtubules or nucleic acid chains. Such proteins are called molecular motors. In
this coupled reactions protein play a role of a free energy transducer [10]. Taking
into account the physical meaning of changes of the free energy in isothermal
conditions as a work, one can treat proteins as a chemochemical machines—an idea
that is wildly presented in [6, 8, 9].

The results of the chemochemical machines operation can be measure on
the micrometer spatial scale or sometimes macroscopically (for example muscle
contraction). These results depend on its spatial organization in the cell. For example
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ionic pomps are embedded in the two—dimensional phospholipid membrain. They
transport of a selected ions in one direction across the membrane which results
in appearance a difference in the electrochemical potential between two side of
the membrane. Another example is transport inside the cell. It is possible due to
microtubules that are organized around centrosome (only in animal cell) [11] and
molecular motors moving on them. Motors change the location of cell organelles
and transports many substances in a small vesicles. Results of the transport are
visible in microscope [12].

From perspective of the protein as a free energy transducer, catalyzing the
dissipating reaction and then force other reaction or performing work are only a
ways to changes its thermodynamical state. During this process protein changes its
biologically—functioning state to another. If one come back to idea of a chain, it
is equivalent to change one conformation, described by angles, to another. In this
way, all processes in the cell and the thermomechanical properties of proteins can
be considered through the use of common formalism.

To describe these changes only selected angles, important in the process, can
be used. These n paramerters are noted by the (α1, . . . , αn). The one biological—
functioning state of the protein is represented by specific configurations of angle
ranges. Using these parameters time dependent density of probability can be define
and then an unspecified currents in that space. Such currents are results of thermo-
dynamic forces [13], which also have to be defined in that space. Using continuity
equation with modified current and a mesoscopic nonequilibrium thermodynamics
[14, 15] it is possible to obtain formula for derivative of entropy in time, which is
similar to Eq. 2, but refers to more detailed description of the system.

2 Thermodynamical Considerations and Formalism

Dynamics of protein in the simplest case can be defined by a system of discrete
master equation [6]:

d

dt
Pi(t) =

∑
j

[
vijPj (t) − vjiPi(t)

]
, (3)

where Pi(t) represents a probability of a i state and the coefficient vij describe the
transition probability per unit time from state j to state i.

Let’s consider a sum of probabilities, which is connected with state A:

PA =
∑
i∈A

pi (4)
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This quantity describe probability of a chemical state A. It is proportional to the
molar concentrations [A]. Similar quantity PB can be calculated for chemical state
B and also it is proportional to the molar concentrations [B].

Equation 3 can be written in a more compact way using appropriate matrices:

d

dt
P̂ (t) = V̂ P̂ (t), (5)

where P̂ (t) is a vector that presents a probabilities of a states and matrix V̂ obtains
all coefficiens vij . Distinction of a chemical state, for example A, can be formally
carried out by projection operator Â which act on a vector P̂ (t). This operation
distinguishes a subset from a set of states according to formula ÂP̂ (t) = P̂A(t).
The projector operator onto chemical state B can be seen as B̂ = 1̂ − Â, where 1̂
is a identity operator. In this case we obtains a vector of probabilities for a subset
representing chemical state B according to formula B̂P̂ (t) = P̂B(t).

One can use projection operator Â and obtains equation of motion for P̂A(t).
To obtain this goal operator Â on Eq. 3 and uses the Laplace transform technique.
Equation of motion for P̂A has a form [16]:

d

dt
P̂A(t) = V̂AP̂A(t) +

∫ t

0
K(t − τ)P̂A(τ )dτ + F(t), (6)

where: V̂A = ÂV̂ , V̂B = B̂V̂ , K(t) = V̂A exp
(
V̂Bt

)
V̂B and

F(t) = V̂A exp
(
V̂B t

)
B̂P̂ (0). (7)

The last term in Eq. 6 represents influence of omitted states on evolution of state
A. Probabilities connected with chemical state B appear only in Eq. 7 as a initial
conditions B̂P̂ (0). It is possible to choose initial value in a such way that the last
term vanish. Another possibilities is to treat B̂P̂ (0) as noise with average equal
zero. That way P̂A(t) satisfies its own equation. Now equation of evolution is non-
Markovian. Second term on the right side of Eq. 6 there is term which represents a
memory effect in the evolution.

A different view on dynamics of biomolecule, than this presented by Eq. 3, is to
consider the biomolecule transformation as a progressively transforms. Biomolecule
passing through successive molecular configurations. Then the continuous master
equation should be consider as a starting point in simulations.

Let’s introduce a vector of molecular parameters X = (x1, . . . , xn). Time
dependent probability density function of a molecular parameters X is denote by
a symbol ρ(X). For this density of probability multidimensional master equation
has the following form:

∂ρ(X, t)

∂t
=
∫
Γ ′

(
W(X|X′)ρ(X′, t) − W(X′|X)ρ(X, t)

)
dX′, (8)
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where Γ is a space of the parameters X.
In this other approach the chemical states, A or B, can be distinguished as a

subset in the Γ space. In this perspective here also we have a Markov process. In
the simplest case is when there is one dimensional space, wchih represents reaction
coordinate. Equation 8 can be write as a Fokker-Planck equation:

∂ρ(x, t)

∂t
= − ∂

∂x
(A(x)ρ(x, t)) + ∂2

∂x2 (B(x)ρ(x, t)) . (9)

All processes in nature following rather Eq. 6 than Markov 3, therefore one can use
generalization of Eq. 5 in the following form:

d

dt
P̂ (s) =0 D1−α

t

[
V̂ P̂ (t)

]
. (10)

where:

0D
1−α
t f (t) = 1

Γ (α)

(
∂

∂t

)∫ t

0

f (τ)

(t − τ)1−α
dτ (11)

is the so-called Riemann-Liouville fractional derivative and 0 < α < 1 [17].
Memory effect is here incorporated by using this non-local operator. For continuos
variables we can obtain continuos general master equation:

∂ρ(x, t)

∂t
=0 D1−α

t

[∫ +∞

−∞
(
W(x|x′)ρ(x′, t) − W(x′|x)ρ(x, t)) dx′

]
. (12)

This equation can be use to obtain Generalize Fokker-Planck equation [18, 19]:

∂ρ(x, t)

∂t
=0 D1−α

t

[
− ∂

∂x
(A(x)ρ(x, t)) + ∂2

∂x2 (B(x)ρ(x, t))

]
. (13)

In the approach treating the molecule as a chain simultaneously as a thermodynamic
system, we can distinguish two types of parameters—angles. Some of them are
equilibrated and have a certain average value. Another angles are not equilibrated
and give the opportunity to define, mentioned in introduction, an important param-
eters (ξ1, . . . , ξn) of the system during some process. Following [22] they measure
differences between equilibrated angles and nonequlibrated angles:

ξi = αi − α0
i (14)

where:

α0
i =

∫
Γ

αiPeq(A)dA, (15)
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represents values αi in equlibrium state described by Peq(A). State of polymer is
defined by time dependent density of probability P(ξ , t) in a space of molecular
parameters ξ = (ξ1, . . . , ξn) necessary to determine its configuration. When the
system is not at equilibrium, the distribution P(ξ , t) will change in time according
to continuity equation:

∂P (ξ , t)

∂t
= −∇ξ · J(ξ , t), (16)

where J(ξ , t) is a current in a space of parameters ξ and ∇ξ is a divergence defined
in the same space.

Subdiffusion is describe by Eq. 13, which can be written in the form a modified
continuity equation:

∂P (ξ , t)

∂t
= −0D

1−α
t

[∇ξ · J(ξ , t)
]
, (17)

where 0D
1−α
t is Riemann-Liouvill derivative defined by Eq. 11.

Derivatives can be taken in any order, therefore subdiffusive Eq. 17 can be written
as continuity equation with modification of the current:

∂P (ξ , t)

∂t
= −∇ξ · J̃i (ξ , t) , (18)

where:

J̃(ξ , t) = 0D
1−α
t J(ξ , t). (19)

In nonequilibrium thermodynamics there is the Gibbs entropy postulate [13], which
can be presented in a form [20]:

S = Seq − k

∫
P(ξ , t) ln

P(ξ , t)

Peq(ξ)
dξ , (20)

where Peq(ξ) is the equilibrium distribution, k—Boltzmann’s constant and Seq is
the entropy of the equilibrium state. Differentiating expression 20 with respect to
time one can obtains:

dS

dt
= −k

∫
∂P (ξ , t)

∂t
ln

P(ξ , t)

Peq(ξ)
dξ . (21)

In Eq. 21 time derivative of P(ξ , t) can be replaced according to Eq. 17. Using
properties of divergence of the n dimensional vector field, which is defined in
arbitrary coordinate, one can obtain:
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dS

dt
= −k

∫
∇ξ · JS(ξ , t)dξ + σ, (22)

where:

JS(ξ , t) = J̃ (ξ , t) ln
P(ξ , t)

Peq(ξ)
(23)

is a flux of entropy exchange with an environment and

σ = −k

∫
J̃ (ξ , t) · ∇ξ ln

P(ξ , t)

Peq(ξ)
dξ (24)

presents an entropy production in a system. Gradient in 24 is a vector:

∇ξ ln
P(ξ , t)

Peq(ξ)
=
(

∇ξ1 ln
P(ξ , t)

Peq(ξ)
,∇ξ2 ln

P(ξ , t)

Peq(ξ)
, . . . ,∇ξn ln

P(ξ , t)

Peq(ξ)

)
. (25)

This notation allow to write entropy production in the following form:

σ = −k

n∑
i=1

∫
J̃i (ξ , t) · ∇ξi ln

P (ξ , t)

Peq (ξ)
dξ i . (26)

Equation 26 is a sum of products, each of which consists with flux vector
component and thermodynamic force component:

Ai = −k∇ξi ln
P (ξ , t)

Peq (ξ) ,
(27)

which is associated with ξi coordinate. Equation 26 is extension a one-dimension
case presented in [21]. One can say that thermodynamic forces are not affected by
subdiffusive environment however the fluxes are affected.

3 Conclusions

Presented in this work formalism can be applied to many kind polymers, in
particular to protein, where there are natural ways of parametrization of a molecules.
It combines many other ideas presented in literature into one idea, where protein
(polymer) is a nonequilibrium termodynamical system, free energy transducer and
chain. Such protein operate in subdiffusive environment therfore this formalism can
be treated as extension of mesoscopic nonequilibrium thermodynamics formalism.
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6. Kurzyński, M., Chełminiak, P. Mean first-passage time in the stochastic theory of biochemical
processes. Application to actomyosin molecular motor. J. Stat. Phys. 110(112), 137–180 (2003)

7. Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein
dynamics. Biophys. J. 68(1), 46–53 (1995)

8. Hill, T.L.: Free Energy Transduction and Biochemical Cycle Kinetics. Springer, New York
(1989)
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10. Kurzyński M.: The Thermodynamic Machinery of Life. Springer, Berlin (2006)
11. Solomon, E.P., Berg, L.R., Martin, D.W.: Biology. Belmont, Brooks/Cole, Thomson Learning,

San Diego (2006)
12. Hancock W.O.: Bidirectional cargo transport: moving beyond tug-of-war. Nat. Rev. Mol. Cell

Biol. 15(9), 615–628 (2014)
13. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland Publishing,

Amsterdam (1962)
14. Gadomski, A., Siódmiak, J., Santamaria-Holek, I., Rubi, J.M., Ausloos, M.: Kinetics of growth

process controlled by mass-convective fluctuations and finite-size curvature effects. Acta Phys.
Pol. B 36, 1537–1559 (2005)

15. Perez-Madrid, A., Rubi, J.M., Mazur, P.: Brownian motion in the presence of a temperature
gradient. Physica A 212, 231–238 (1994)

16. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)
17. Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999)
18. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics

approach. Phys. Rep. 339, 1–77 (2000)
19. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments

in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37,
R161–R208 (2004)

20. Rubi, J.M., Perez-Madrid, A.: Mesoscopic non-equilibrium thermodynamics approach to the
dynamics of polymers, Physica A 298, 177–186 (2001)

21. Weber, P., Bełdowski P., Bier, M., Gadomski, A.: Entropy production associated with aggrega-
tion into granules in a subdiffusive environment. Entropy 20(9), 1–5 (2018)

22. Mazur, P.: Fluctuations and non-equilibrium thermodynamics. Physica A 261, 451–457 (1998)



Evaluation of the Crane’s Actuators
Strength Based on the Results Obtained
from Dynamics Model

Andrzej Urbaś and Krzysztof Augustynek

Abstract The strength analysis of the crane’s actuators is presented in the paper.
The analysis is performed using the loads obtained from the dynamics analysis.
The mathematical model of the flexible supported crane is formulated using the
Lagrange equations of the second kind. The main structure of the crane is built
of the five bodies forming an open-loop kinematic chain. The actuators form the
closed-loop kinematics chains. The crane performs an assumed motion aimed at
transferring a load in the form of lumped mass of various values. The mathematical
model takes into account the jib’s flexibility, which is discretized by means of the
Rigid Finite Element Method (RFEM). The formalism of the joint coordinates and
homogeneous transformation matrices are used to describe the crane’s kinematics.
The equations of motion are supplemented by the constraint equations formulated
for the cut-joints. The Lagrange multipliers corresponding to reaction forces at
the cut-joints, are used to the actuators’ quasi-statics analysis. The Finite Element
Method (FEM) is used to model the actuators’ flexibility. The numerical calculations
present the influence of the jib’s flexibility and load’s mass on the maximum stresses
due to the deformations of the actuators at a given crane’s working moment.

Keywords Crane · Dynamics analysis · Quasi-statics analysis

1 Introduction

Nowadays it can be observed a tendency to design transportation devices like cranes
whose construction is light, can carry higher loads, can be efficiently controlled
and satisfy safety requirements. Mathematical models for statics and dynamics
allow us to evaluate deformations and stresses of the cranes’ components forced by
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operating conditions at the design stage. There are many papers devoted to model
cranes’ dynamics [1–12]. Analyzing literature, two approaches to modeling crane
dynamics can be distinguished lumped mass and distributed mass models [12]. The
first approach is the most widely used due to applied simplifications: the hoisting
rope is treated as a massless cable and the load with the hook is modelled as a mass
point. The flexibility of the carried structure can be approximated using the Finite
Element Method [13] together with modal reduction methods [5]. Another method,
developed mainly in Poland, is the Rigid Finite Element Method [8–11, 14]. In this
method, a flexible link is replaced by means of a set of rigid elements interconnected
by means of spring damping elements.

This paper is a continuation of the previous ones dedicated to develop models of
the cranes with flexible supports, drive and links and also frictions in joints [8–11].
In first models, actuators were omitted and the carrier structure was modelled as the
open-loop kinematics chains [8, 10]. In further works, the models were developed
by introduction force actuators [9, 11]. As a result, cranes form the structure of
the closed-loop kinematic chain. The force actuators were treated as rigid and their
motion was enforced using assumed driving functions. The contribution of the paper
is the proposed method of evaluating the elastic deformations of the actuators. In
the proposed approach, deformations of the actuators in each integrations step are
calculated by a solution of the quasi-statics problem formulated for replacement
models of actuators. The replacement models are obtained by means of the Finite
Element Method using planar beam elements with 3 dof in each node [13]. The
joint coordinates together with homogeneous transformations matrices are used to
describe the kinematics of the crane. The dynamics equations of motion are derived
using the Lagrange equations of the second kind. In the numerical simulations, the
stresses due to the deformations of the actuators during the motion of the crane are
analyzed.

2 Dynamics Analysis of the Crane

Figure 1 presents the simplified model of the crane. The crane contains the main
structure (mc) mounted on the chassis (c). The chassis is supported by means of
eight supports (ns = 8).

The main structure contains four bodies
(
n
(mc)
b = 4

)
which form the open-loop

kinematic chain. Additional the main structure consists the actuators (two closed-
loop kinematics sub-chains

(
sci
)∣∣
i=1,2). Each of the actuator contains two bodies(

n

(
sci

)
b

∣∣∣∣
i=1,2

= 2
)

. The bodies of the crane are driven by means of torque
(

t(mc,1)
dr

)

and forces

(
f
(
sc1 ,2

)
dr , f

(
sc2 ,2

)
dr , f(mc,4)

dr

)
.

The carried load (l) is treated as a mass point connected with the main structure
by flexible rope (r). It is assumed that link (mc, 2) can be treated as flexible.
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Fig. 1 Model of the crane

2.1 Modelling the Flexibility of the Link: RFEM

The Rigid Finite Element Method is used to discretise (mc, 2) link [14].
As a result, the flexible link is replaced by the system of rigid elements(

rfe (mc, 2, r)
∣∣∣
r=1,...,n(mc,2)

rf e

)
interconnected by means of spring-damping elements

(
sde (mc, 2, r)

∣∣∣
r=1,...,n(mc,2)

sde

)
—Fig. 2.

2.2 Generalized Coordinates and Homogeneous
Transformation Matrices

The kinematics of the crane is described by the joint coordinates formalism and
homogeneous transformation matrices [15]. Figure 3 shows model of the crane with
assigned local frames and assumed joint coordinates.

The vector of the generalised (joint) coordinates can be written in the following
form:
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( ,2 )cmd

( ,2)cml

rfe ( ,2,0)cm

rfe ( ,2,1)cm

( , 2)
rfe ( ,2, 1)cm

c rfem n

( , 2)
rfe ( , 2, 2)cm

c rfem n

rfe ( , 2, 1)cm r

rfe ( ,2, 1)cm r

sde( ,2,1)cm

sde ( ,2, )cm s

( , 2)sde ( , 2, )cm
c sdem n

rfe ( ,2, )cm r
( ,2 )cmd

( , 2)cmd

( , 2)cmd

( , 2)cmd

( ,2 )cmd

( , 2, 1)cm ry

( ,2 , 1)cm rz

sde ( , 2, )cm s

( ,2 , 1)cm rl

( ,2 , )cm rl

( ,2 , 1)cm rx

( , 2, 1)cm rψ

( , 2, )cm rx
( , 2, )cm ry

( , 2, )cm rz

( ,2 , )cm rθ ( ,2 , )cm rφ

( ,2 , ) ( ,2 , )
,c cm r m r

θ θs d

( , 2, ) ( ,2 , )
,c cm r m r

ψ ψs d

( ,2, ) ( ,2 , )
,c cm r m r

φ φs d

Fig. 2 Discretization link (mc, 2)—RFEM

q = (
qj
)
j=1,...,ndof

=
[
q(c)

T

q(mc)
T

q
(
sc1

)T
q
(
sc2

)T
q(l)

T
]T

, (1)

where:

– chassis c: q(c) = (
q(c)

)
j=1,...,n(c)dof

= [
x(c) y(c) z(c) ψ(c) θ (c) ϕ(c)

]T
,

– main chain mc: q(mc) = (
q(mc)

)
j=1,...,n(mc)

dof

=
[

q(c)
T

q(mc)
T
]T

,

q(mc) =
[

q̃(mc,1)T q̃(mc,2)T q̃(mc,3)T q̃(mc,4)T
]T

, q̃(mc,1) = [
ψ(mc,1)

]
,

q̃(mc,2) =
[

q̃(mc,2,0)T · · · q̃(mc,2,r)T · · · q̃

(
mc,2,n

(mc,2)
rf e

)T ]T
, q̃(mc,2,0) =

[
ψ(mc,2,0)

]
,

q̃(mc,2,r)
∣∣
r=1,...,n(mc,2)

rf e

= [
ψ(mc,2,r) θ (mc,2,r) ϕ(mc,2,r)

]T
, q̃(mc,3) = [

ψ(mc,3)
]
,

q̃(mc,4) = [
z(mc,4)

]
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– sub-chain
(
sc1

)
: q

(
sc1

)
=
(
q

(
sc1

)
j

)
j=1,...,n

(sc1)
dof

=
[

q(c)
T

q̃(mc,1)T q
(
sc1

)T ]T
,

q
(
sc1

)
=

(
q

(
sc1

)
j

)
j=1,...n

(sc1)
dof

=
[

q̃
(
sc1 ,1

)T
q̃
(
sc1 ,2

)T ]T
, q̃

(
sc1 1

)
=

[
ψ
(
sc1 ,1

)]
,

q̃
(
sc1 ,2

)
=
[
z
(
sc1 ,2

)]

– sub-chain
(
sc2

)
: q

(
sc2

)
=
(
q

(
sc2

)
j

)
j=1,...n

(sc2)
dof

=
[

q(c)
T

q̃(mc,1)T q̃(mc,2,0)T · · · q̃(mc,3,r2)
T

q
(
sc2

)T ]T
,

q
(
sc2

)
=

(
q

(
sc2

)
j

)
j=1,...n

(sc2)
dof

=
[

q̃
(
sc2 ,1

)T
q̃
(
sc2 ,2

)T ]T
, q̃(sc,2,1) = [

ψ(sc,2,1)
]
,

q̃
(
sc2 ,2

)
=
[
z
(
sc2 ,2

)]
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– load l: q(l) =
(
q
(l)
j

)
j=1,...,n(l)dof

= [
x(l) y(l) z(l)

]T
.

The transformation matrices from local frames to the global reference frame are
defined by following formulas:

T(c) = T̃(c), (2a)

T(mc,b)
∣∣∣
b=1,...,n(mc)

b

= T(mc,b−1)T̃(mc,b), (2b)

T
(
sc1 ,b

)∣∣∣
b=1,...,ñ

(sc1)
b

= T(mc,1)T̃
(
sc1 ,b

)
, (2c)

T
(
sc2 ,b

)∣∣∣
b=1,...,ñ

(sc2)
b

= T(mc,2,r2)T̃
(
sc2 ,b

)
, (2d)

where: T(mc,0) = T(c).

2.3 The Lagrange Equation of the Second Kind

The dynamics equations are derived using the formalism of Lagrange equations of
the second kind [14]:

d

dt

∂Ek

∂q̇
− ∂Ek

∂q
+ ∂Ep

∂q
+ ∂R

∂q̇
= 0, (3)

where: Ek is kinetic energy of the system, Ep = Ep,g+E
(sup)
p,s +E

(fl)
p,s +E

(dr)
p,s +E

(r)
p,s

is potential energy of gravity forces and spring deformations (supports, link, drives
and rope), R = R(sup) + R(fl) + R(dr) + R(r) is the Rayleigh function. Detailed
formulas for determining components of Eq. (3) are presented in the following
sections.

2.4 Kinetic Energy and Potential Energy of Gravity Forces

The total kinetic energy of the crane Ek is a sum of the kinetic energy of all
subsystems and can be determined in the following way [14, 16]:
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Ek = E
(c)
k + E

(mc)
k +

nsc∑
i=1

E

(
sci

)
k + E

(l)
k , (4)

where: E(•)
k = 1

2 tr
{

Ṫ(•)H(•)Ṫ(•)T
}

, H(•) is pseudo-inertia matrix.

The potential energy of gravity forces can be calculated in a similar way:

Ep,g = E(c)
p,g + E(mc)

p,g +
nsc∑
i=1

E

(
sci

)
p,g + E(l)

p,g, (5)

where: E(•)
p,g = m(•)gj3T(•)r(•)

C(•) , E
(l)
p,g = m(l)g, m(•) is mass of body, g is gravity

acceleration, j3 = [
0 0 1 0

]
, r(•)

C(•) is position vector of centre of mass.

2.5 Modelling of the Supports

The supports
(

sup s|s=1,...,ns

)
are modelled by means of one directional spring-

damping elements (Fig. 4).
Forces due to element deformations (e(sup, s)) are included in the equations of

motion as the vector generalized forces in the following form:

s(sup) =
(
s
(sup)
i

)
i=1,...,ndof

=
(
∂E

(sup)
p,s

∂q
+ ∂R(sup)

∂q̇

)
, (6)

where:E(sup)
p,s = 1

2

nsup∑
s=1

(
e(sup,s)

)T
S(sup,s)e(sup,s),R(sup)= 1

2

nsup∑
s=1

(
ė(sup,s)

)T
D(sup,s)ė(sup,s),
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s
(sup)
i =

⎧⎨
⎩

nsup∑
s=1

((
∂e(sup,s)

∂qi

)T
S(sup,s)e(sup,s)+

(
∂ ė(sup,s)

∂q̇i

)T
D(sup,s)ė(sup,s)

)
if qi ∈ q(c),

0 otherwise,

e(sup,s) = JT(mc,1)r(mc,1)
E(sup,s) is vector of deformation of support, J =

⎡
⎣ j1

j2

j3

⎤
⎦ =

⎡
⎣ 1 0 0 0

0 1 0 0
0 0 1 0

⎤
⎦, r(mc,1)

E(sup,s) is position vector of sup s, S(sup, s), D(sup, s) are stiffness and

damping matrices of sup s.

2.6 Modelling of the Flexible Body

Flexible deformation forces due to link flexibility are included in the equations of
motion as the vector generalized forces in the following form:

s(fl) =
(
s
(fl)
i

)
i=1,...,ndof

=
(
∂E

(fl)
p,s

∂q
+ ∂R(fl)

∂q̇

)
, (7)

where: E(fl)
p,s = 1

2

n
(mc,2)
sde∑
s=1

(
q̃(mc,2,s)

)T
S(mc,2,s)q̃(mc,2,s), R(fl) = 1

2

n
(mc,2)
sde∑
s=1

( ˙̃q(mc,2,s)
)T

D(mc,2,s) ˙̃q(mc,2,s),

s
(fl)
i

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n
(mc,2)
sde∑
s=1

(
∂q̃(mc,2,s)

∂qi

)T
S(mc,2,s)q̃(mc,2,s) +

(
∂ ˙̃q(mc,2,s)

∂q̇i

)T
D(mc,2,s) ˙̃q(mc,2,s)

if qi ∈
{

q̃(mc,2,1), . . . , q̃

(
mc,2,n

(mc,2)
rf e

−1
)}

,

0 otherwise,

S(mc,2,s),D(mc,2,s) are stiffness and damping matrices of sde (mc, 2, s).

2.7 Modelling of the Flexible Drives

The selected links of the crane are driven by means of the flexible drives (Fig. 5).

The forces due to driving torque
(
t
(mc,1)
dr

)
and driving forces(

f
(α)
dr

∣∣∣
α∈

{
(mc,4),

(
sc,1,2

)
,

(
sc,2,2

)}) can be presented as vector generalised forces



Evaluation of the Crane’s Actuators Strength Based on the Results Obtained. . . 107

Fig. 5 Model of drive
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vector in the following form:

s(dr) =
(
s
(dr)
i

)
i=1,...,ndof

=
(
∂E

(dr)
p,s

∂q
+ ∂R(dr)

∂q̇

)
, (8)

where:

E(dr)
p,s = 1

2
s(dr,1)

(
ψ(dr,1) − ψ(mc,1)

)2 + 1

2
s(dr,4)

(
z(dr,4) − z(mc,4)

)2 + 1

2

∑
i∈{1,2}

s(dr,2)
(
z(dr,2) − z

(
sci ,2

))2

R(dr) = 1

2
d(dr,1)

(
ψ̇(dr,1) − ψ̇(mc,1)

)2 + 1

2
d(dr,4)

(
ż(dr,4) − ż(mc,4)

)2 + 1

2

∑
i∈{1,2}

d(dr,2)
(
ż(dr,2) − ż

(
sci ,2

))2

s
(dr)
i =

{
− (

s(dr,•)
(
q(dr,•) − qi

) + d(dr,•)
(
q̇(dr,•) − q̇i

))
if qi ∈

{
ψ(mc,1), z(mc,4), z

(
sc1 ,2

)
, z

(
sc2 ,2

)}
,

0 otherwise.

2.8 Modelling of the Load and Rope

It is assumed that the load is suspended on the flexible rope (Fig. 6). Forces due
to rope deformation (e(r)) are included in the equations of motion as the vector
generalized forces as follows:
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Fig. 6 Model of rope K
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∂q̇

)
, (9)

where: E(r)
p,s = 1

2δ
(r)s(r)

(
e(r)

)2
, R(r) = 1

2δ
(r)d(r)

(
ė(r)

)2
,

s
(r)
i =

⎧⎨
⎩
δ(r)

(
s(r) e

(r)

l(r)
rTKL + d(r)ṙTKL

)
JT(mc,4)

i r(mc,4)
K for qi ∈ q(mc),

− δ(r)
(
s(r) e

(r)

l(r)
rTKL + d(r)ṙTKL

)
ji , for qi ∈ q(l),

e(r) = l(r) − l
(r)
0 , δ(r) =

{
1, e(r) > 0
0, e(r) ≤ 0

, l(r) =
√

rTKLrKL, rKL = J
(

r(0)K − r(0)L

)
.

2.9 Equations of Motion

The dynamics equations of motion with the constraint equations can be written in
the following general form [8–11, 14]:

[
M (q) −C(q, q̇)T

C (q, q̇) 0

] [
q̈
fj

]
=
[−e (q, q̇) − s (q, q̇)

c (q, q̇)

]
, (10)

where: M(q) is mass matrix, C (q, q̇) is constraint matrix, fj is the vector of the
reaction forces in the cut-joints, e (q, q̇) is the vector of the Coriolis, gyroscopic and
centrifugal forces, s (q, q̇) = s(sup) + s(fl) + s(dr) + s(r) is the vector of the spring
and damping forces formulated for the supports, link, drives and rope, c (q, q̇) is the
vector of the right sides of constraint equations.

The dynamics of the crane forms the set of differential-algebraic equations with
index 1. The dynamics equations of motion and state equations, are integrated using
the Runge-Kutta method of the fourth order with a constant step size.
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3 Quasi-Statics Analysis of the Actuators: FEM

The proposed model of the actuator is presented in Fig. 7. The Finite Element
Method is used to model its flexibility [13]. It is assumed that actuator sci is forced
by reaction force acting in cut-joint (f

B(sci )
) and described in α system and gravity

forces due to the weight of the actuator. It is assumed that the flexibility of seals is
omitted.

The cylinder body
(
sci , 1

)
, piston rod

(
sci , 2

)
and common part of cylinder and

rod
(
sci , c

)
are discretized by means of a beam element with 3-dof in the node.

The number of the deformable finite elements (dfe) is equal to n

(
sci

)
df e = n

(
sci ,1

)
df e +

n

(
sci ,2

)
df e + n

(
sci ,c

)
df e .

The nodal displacement vector of dfe
(
sci , 1, k

)
is defined as follows:

u
(
sci ,1,k

)
=
[
x

(
sci ,1,k

)
i y

(
sci ,1,k

)
i ψ

(
sci ,1,k

)
i x

(
sci ,1,k

)
j y

(
sci ,1,k

)
j ψ

(
sci ,1,k

)
j

]T
. (11)
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Fig. 7 Discretization of the actuator—FEM
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The statics equations of the actuator based on the FEM are expressed in the
following form:

K
(
sci

)
u
(
sci

)
= f

(
sci

)
ext , (12)

where: K
(
sci

)
is global stiffness matrix, u

(
sci

)
is nodal displacement vector, f

(
sci

)
ext is

vector of external forces.
The vector of internal forces occurring in dfe

(
sci , 1, k

)
is calculated as follows:

f
(
sci ,1,k

)
int = K

(
sci ,1,k

)
u
(
sci ,1,k

)
, (13)

where: f
(
sci ,1,k

)
int =

[
f

(
sci ,1,k

)
n,i f

(
sci ,1,k

)
t,i m

(
sci ,1,k

)
g,i f

(
sci ,1,k

)
n,j f

(
sci ,1,k

)
t,j m

(
sci ,1,k

)
g,j

]T
,

K
(
sci ,1,k

)
is stiffness matrix of dfe

(
sci , 1, k

)
.

The nodal stress vector of dfe
(
sci , 1, k

)
is defined as follows:

σ
(
sci ,1,k

)
=
[
σ

(
sci ,1,k

)
i σ

(
sci ,1,k

)
j

]T
, (14)

where: σ
(
sci ,1,k

)
α

∣∣∣∣
α∈{i,j}

= f
(sci ,1,k)
n,α

A(sci ,1,k)
+ m

(sci ,1,k)
g,α

W(sci ,1,k)
, A

(
sci ,1,k

)
is cross-sectional area of

dfe
(
sci , 1, k

)
, W

(
sci ,1,k

)
is section modulus of dfe

(
sci , 1, k

)
.

4 Numerical Calculations

The influence of the flexibility of link and mass of load on the time courses of
maximum stress in actuators are presented in Fig. 8.

Analyzing results obtained, it can be seen the significant oscillations in the time
courses of the stress occurring in the actuators in the case when the flexibility of the
link is taken into account. It can be also observed that higher mass of the load leads
to increase the amplitude of the stresses.

5 Conclusions

In the paper is presented the method of evaluating stresses of the crane’s actuators.
The proposed method relies on a solution of the quasi-statics problem formulated for
the replacement models of the actuators in each integration step. The replacement
models are based on the planar finite beam elements which are loaded by reaction
forces obtained from the dynamics model of the crane. Due to the changing
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Fig. 8 Time courses of stress in actuators

configuration of the actuators during the simulation, the presented method requires
discretization of the actuators in each integration step. In numerical simulations, the
influence of the mass of the load on stresses in the actuators were analyzed. In the
future, the dynamics model of the crane will be extended to analyze the interaction
between flexible actuators and other components of the crane.
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11. Urbaś, A., Augustynek, K.: Mathematical model of a crane with taking into account friction
phenomena in actuators. In: Kecskeméthy, A., Geu, F.F. (eds.) Multibody Dynamics 2019.
ECCOMAS 2019 Computational Methods in Applied Sciences, vol. 53. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-23132-3_36

12. Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review.
J. Vib. Control. 9(7), 863–908 (2003). https://doi.org/10.1177/1077546303009007007

13. Zienkiewicz, O., Taylor, R., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals.
Butterworth-Heinemann, Amsterdam (2013)
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1 Introduction

In the last decade, the theory of dynamical systems and the theory of chaos are
characterized by significant progress both in the development of new concepts, as
well as new methods and new applications. Modern theory of nonlinear dynamical
systems has established the main mechanisms of instability and scenarios of
transition to chaos in many nonlinear classical systems and devices with many
applications in various sciences, including mechanics, chemistry, biology, physics
and others.

In real, especially quantum systems, chaotic dynamics take much more complex,
partially or not completely understood forms. According to modern concepts, the
theory of quantum chaos actually studies quantum-mechanical systems that are
chaotic in the classical limit.

Traditionally, quantum chaos refers to the set of effects observed in quantum-
physical systems relating to purely nonlinear effects, which are manifested in
quantum systems described by equations of the Schrödinger type or density matrix.
It is well known that quantum mechanics, which has existed for over 60 years, allows
us to describe both systems that integrate in the classical limit (such as a hydrogen
atom) and classically unintegrated systems (such as a helium atom).

The well-known principle of correspondence indicates that quantum mechanics
in the quasiclassical domain at scales of the system comparable to the de Broglie
wavelength continuously goes to the classical one. On the other hand, in quantum
mechanics, the concept of trajectory, at least in pragmatic or Copenhagen interpre-
tation, loses its usual meaning (it reappears only in the quasiclassical domain).

There is an opinion that in the interpretation of the phenomenon of quantum
chaos it is more correct to speak about such characteristic manifestations as the
intersection of energy levels in multivariable space, elements of stochasticity in
the spectra of particularly highly excited states of atomic and molecular systems,
phenomena of clustering states, interference, fluctuations, and merging of reso-
nances, etc. From the other side, it was considered the most natural study of the
phenomenon of chaos on the basis of methods of classical mechanics and qualitative
theory of differential equations, within which it is natural to operate concepts such
as bifurcation, instability, boundary cycle, strange attractor, etc. [1–18].

Their application to quantum systems is also quite acceptable, moreover, often
the scenario of emergence of a chaotic dynamics in quantum models is (not always)
similar to the classical one. For example, the stochastic motion of an electron in an
atom in the external fields is naturally interpreted in the language of consideration
of a certain type of resonance interactions of modes corresponding to the motion in
these fields, and its manifestation area narrows as an interaction increases.

The qualitative picture of the process of emerging chaotic dynamics in quantum
systems in general is reduced to the following scenario: an external, for example,
a magnetic field leads to the appearance of primary nonlinear resonances, a strong
interaction between which leads to the appearance of secondary resonances and the
emergence of stochastic oscillations, right down to the formation of the Arnold’s
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web. When the external field strength is above a certain critical value, the various
stochastic layers merge, resulting in global stochasticity in the system.

An analysis of the chaotic phenomena in quantum systems was carried out not
only based on the methods of classical mechanics (in fact, within the framework
of the Newtonian dynamics), but also on the basis of semiclassical or semi-
quantum methods, in particular, the method of quantum trajectories (quantization of
classical mechanics), and path integrals by Feynman-Higgs, the Gutswiller’s theory
of “periodic orbits”, the Delos closed orbit method, complex coordinate method, a
random matrix theory, diagonalization methods and some others (e.g. [1–8]).

New field of investigations of chaotic effects in theory of quantum systems has
been provided by a great progress in a development of a chaos and dynamical
systems theory methods [6–22].

In previous our papers [7, 8, 17–19] we have presented a few new computational
quantum algorithms to study stochastic futures and chaotic elements in dynamics
of atomic and molecular systems in an external electromagnetic fields. The known
mathematical tools such as power spectrum analysis, correlation integral and fractal
algorithms, the Lyapunov’s exponents analysis and others have been applied to
numerical analysis of chaotic features in dynamics of the quantum systems.

In this paper we present an effective mathematical approach to studying deter-
ministic chaos and strange attractors in dynamics of nonlinear processes in atomic
and molecular systems in an electromagnetic field.

To treat a chaotic dynamics of systems it is proposed the theoretical scheme
that includes new quantum-dynamic models (based on the finite-difference solution
of the Schrödinger equation, optimized operator perturbation theory and realistic
model potential method) and advanced nonlinear analysis and a chaos theory
methods such as power spectrum analysis, the correlation integral algorithm, the
Lyapunov’s exponents and Kolmogorov entropy analysis, etc. The approach is
applied to study of chaotic phenomena in some atomic and diatomic systems in
an external electromagnetic (magnetic) field.

2 A Quantum-Geometric Approach to Analysis, Processing,
Modelling Chaotic Dynamics of the Quantum Systems
in Electromagnetic Field

In Refs. [7, 8, 17–19] we have given a review of new methods and algorithms of
the chaos-geometric approach to analysis, processing, modeling and forecasting a
chaotic dynamics for different classical and quantum systems.

So, here we pay attention only at main elements. The total scheme for studying
chaos-dynamical phenomena in quantum systems (in particular, atomic systems in
magnetic, crossed electric and magnetic fields, Rydberg atoms in a electromagnetic
field, molecular systems in a infrared electromagnetic field, etc.) and computing the
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topological and dynamical invariants in application to quantum systems include the
following:

1. Quantum-dynamical computing of quantum systems: Schrödinger (Dirac) equa-
tion for quantum system in an external field (numerical solving, the finite
differences, model potential, operator perturbation theory, etc. methods); Pre-
liminary analysis and processing dynamical variable series of physical system;

2. Preliminary study and assessment of the presence of chaos: the Gottwald-
Melbourne test; Fourier decompositions, irregular nature of change—chaos;
Spectral analysis, Energy spectra statistics, the Wigner distribution, the spectrum
of power, “Spectral rigidity”;

3. The multi-fractal geometry: computation time delay τ using autocorrelation
function or mutual information; Determining embedding dimension by the
method of correlation dimension or algorithm of false nearest neighbouring
points; Calculation of multi-fractal spectra; wavelet analysis;

4. Computing global Lyapynov’s exponents, Kaplan-York dimension, Kolmogorov
entropy, average predictability measure; Methods of nonlinear prediction (classi-
cal and quantum neural network algorithms, the algorithm optimized trajectories,
stochastic propagators, memory functions, etc.)

The key idea in the study of the spectra of chaotic systems and, in particular,
quantum systems, is provided by the fact that a definition of quantum chaos is
interpreted primarily as a property of a group of states of the spectra of the system.
It is the interpretation of one of the mechanisms of quantum chaos through the
induction of resonances in the spectrum of the system, their strong interaction with
subsequent overlapping, the emergence of stochastic layers and further transition to
a global stochasticity in the system.

It has led to the most common criterion for chaos in spectral research (especially
from the point of view of the mechanism of overlapping and merging of resonances),
i.e. the criterion of a chaos by Chirikov.

In this scheme, the overlap of nonlinear resonances is defined as the ratio of the
sum of the half-widths of the resonances to the distances between them

K = [(�1/2) + (�1/2)] / | E2 − E1 |, (1)

where ¦i Ãnd ¨i are, respectively, the width and energy of the “i”th resonance. It is
usually assumed that at sufficiently large values (K ≥ 4) the phenomenon of chaos
is realized in the system.

Among the spectral characteristics, which are usually calculated when studying
the elements of chaos in the spectra of systems, one should include:

1. The relative value of the interlevel distances Sn, which is standardly defined as:

Sn = (En − En−1) ρ (En) , (2)

where ρ(E) is a density of levels.
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2. Function P (S) of the distribution of the relative value of the interlevel distances
Sn; if the position of the levels in the spectrum is not chaotic, then P(S), as a rule,
has the form of a Poisson distribution Pp(S) = exp (−S); if there is chaos in
the system, then the Wigner-Dyson distribution is realized (in general, the Brody
distribution).

3. Characteristics of the degree of ordering of levels in the spectrum at large (in
comparison with the interlevel distance) ε the spectral stiffness Δ3(L), which is
defined as follows:

Δ3 (x, L) = 1

L
minA,B

x+L∫

x

(n (ε) − Aε − B)2dε (3)

It should be borne in mind that for a sequence of levels εn, normalized to a
unit density (εn = εn − 1 + Sn), a step function n(ε), equal to the number of levels
with εn ≤ ε is used.

By construction, n(ε), has the form of a ladder with a single average slope.
The value of 〈Δ3(x, L)〉, averaged over the values of x from the region in which
the nature of the fluctuations of the spectrum can be considered constant, depends
only on L and is denoted by Δ3(L). The function Δ3(L) describes the ordering
of the spectrum over large areas: the slower the growth of Δ3(L) with increasing
L, the less probable in the spectrum are close clusters of levels and gaps with
reduced level density.

4. Correlation coefficients C(n) values of energy intervals, divided by a fixed
number of levels, determined in the usual way:

C(n) =
∑

i (Si−n − 1) (Si − 1)
[∑

i (Si+n − 1)2 ∑
i (Si − 1)2] 1

2

. (4)

Finally, another of the most common characteristics of nonlinear (chaotic)
dynamics is the so-called power spectrum, which is determined in a standard
way. More detailed characteristics of spectral methods are given, for example, in
[7–19].

In Table 1 we present the main blocks of the combined quantum-dynamical and
chaos-geometric approach to nonlinear analysis, modelling and prediction of chaotic
dynamics of quantum system in an electromagnetic field.

In Refs. [7, 8] the total approach has been used for studying the chaotic features in
spectrum of the hydrogen atom in a magnetic field, diatomic molecules interacting
with a linearly polarized electromagnetic field. It is shown that the chaotic features
are realized in the nonlinear dynamics of diatomic molecules in a linearly polarized
electromagnetic field that is in a reasonable agreement with the classical modelling
data by Berman, Kolovskii, Zaslavsky, Zganh et al. [1–5]. The detailed description
of the every stage in the scheme (Table 1) is earlier presented in Refs. [7, 8, 17–
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Table 1 Combined quantum-dynamical and quantum-geometric approach to nonlinear analysis,
modelling and prediction of chaotic dynamics of quantum (atomic, molecular and nuclear) system
in an electromagnetic field

I. Quantum-dynamical computing of quantum systems:

1. Schrödinger (Dirac) equation for quantum system in an external field

(numerical solving, the finite differences , model potential , operator per-

turbation theory etc methods)

2. Preliminary analysis and processing dynamical variable series of 

physical system

II. Study and assessment of the presence of chaos:

3. Fourier decompositions, irregular nature of change – chaos;

4. Spectral analysis, Energy spectra statistics, the Wigner distribution, the spec-

trum of power, "Spectral rigidity";

III. The multi-fractal geometry of the phase space. :

5. Autocorrelation function and mutual information;

5. Method of correlation dimension

6.  Wavelet analysis;

IV.Prediction model:

6. Computing global Lyapynov indicators; Kaplan-York dimension,  

7. Methods of nonlinear prediction. 

⇓⇓

⇓

⇓

30]. All calculations are performed with using “Geomath”, “Superatom”, “Quantum
Chaos”, “ScanPoints” computational codes [7, 9, 17–19, 24, 31–43].

3 Chaotic Dynamics of Atoms and Molecules
in Electromagnetic Field: Numerical Solution
of the Schrödinger Equation and Power Spectrum Analysis

In this subsection we present the results of modeling the hydrogen and rubidium
spectra in an external magnetic (crossed electric and magnetic) filed. In Refs.
[7, 8, 18, 43] it has been developed an effective nonperturbative quantum and
chaos-dynamic approach to modeling the chaotic dynamics of atomic systems in
homogeneous magnetic field, which is based on the operator optimized perturbation
theory and finite-difference solution of the Schrödinger equation for an atom in the
field (in a cylindrical coordinate system z||¥; 
~eiMϕ). The cited equation can be
written as follows:
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[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ ∂2

∂z2
− M2

ρ2
− 4γ 2ρ2 + 4

r
+ Vc(r) +

(
E

Ry

− γM

)]

 (ρ, z) = 0

(5)

where γ = ¥/¥Ñ, ¥Ñ = 2.3505 × 105 µ, Vc(r)—potential electron self-consistent
field, including the Hartree potential plus the Kohn-Sham exchange-correlation
potential (other notations are standard).

The quantitative modeling of regular and chaotic dynamics, computation power
and spectral parameters for the atoms of hydrogen, neon in a uniform magnetic
field (γ = 0.01–10,000) showed that the system generated quantum chaos, which
is manifested in a very complex and irregular dependences of state energies upon
the magnetic field amplitude, the presence of the level intersections (as example, for
the Ne quasi-intersections in dependence of the energy states �0N> and �2p0> upon
the magnetic field amplitude at γ = 158.7, �2p0> and �1s2> states at γ = 40.2), in a
photoionization cross sections, power spectra, etc.

We have calculated and carried our analysis of the photoionization spectrum,
power spectrum, the energies and widths of resonances, the distribution of reso-
nances in the hydrogen atom in the special magnetic field with the strength 5.96 T
(the energy interval 20–80 cm−1).

According to our data, the density of states in the middle of each channel (Landau
resonances) is 33 cm−1 for the average resonance width—0.004 cm−1, which is
consistent with experimental data Kleppner et al.: 0.004–0.006 cm−1 (e.g. [7, 8, 18,
43]).

Further we present the results of modelling the chaotic dynamics of atomic
systems in the crossed electric F1 and magnetic γ fields, based on the numerical
solution of the Schrödinger equation:

H = 1/2
(
p2
ρ + l2z /ρ

2
)

+ γ lz/2 + (1/8) γ 2ρ2 + (1/2) p2
z + F1z · sin (ωt) + V (r)

(6)

the operator perturbation theory and density functional method [18, 43].
Here we use the following denotations: f̃ = F1γ

−4/3, ε = Eionγ−2/3, where
Eion is an ionization energy of a free atom. We have carried out modelling a chaotic
dynamics for the Rydberg Li, Rb (n ~ 100, m = 0) atoms in a static magnetic
(B = 4.5 T) and oscillating electric field with frequency ω = 102¯ÆÙ (ε = −0.03,
� = 0.32, γ-1/3 in the range 35–50; f = 0.000–0.070).

Figure 1 shows the power spectrum of Rb: (a) in a magnetic field (f = 0, the
electric field is absent); (b) in a static magnetic field and oscillating electric field
f = 0.0035 (our data).

The scenario of transition to chaos in the system includes the induction of
nonlinear resonances by a magnetic field, their strong interaction and further
merging with the appearance of global chaos when critical field strength is exceeded.

Further we shortly present the advanced data for the modeling the temporal
dynamics (polarization parameter) of the diatomic molecule PbO in the resonant
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Fig. 1 The power spectrum of Rb: (a) in a magnetic field (f = 0, the electric field is absent); (b)
in a static magnetic field and oscillating electric field f = 0.0035 (our data)

Table 2 The correlation dimension Dc, Lyapunov’s exponents (Li, i = 1, 2), Kaplan-York
attractor dimension (DL), Kolmogorov entropy (KE)

Dc L1 L2 DL KE

2.83 0.153 0.0185 2.58 0.172

electromagnetic field. This molecule in the linearly polarized field has been studied,
for example, in Refs. [7, 8]. All information about the key characteristics of
electromagnetic field as well as spectral molecule parameters is listed in the
cited Refs. The new element here is using more efficient approach to solving the
Schrödinger equation with the realistic density functional theory potential curve of
diatomic molecule U(x) [7, 8]. We numerically studied the corresponding temporal
dependence of a polarization (which is normalized to the intensity of the field
interaction with the molecule) on the basis of the quantum-geometric approach to
analysis of a chaotic dynamics of the molecule interacting with a resonant linearly
polarized field.

The concrete step is an analysis of the corresponding time series with the
n = 7.6 × 103 and �t = 5 × 10−14 s. In Table 2 we list the computed values
of the correlation dimension Dc, the Kaplan-York attractor dimension (DL), the
Lyapunov’s exponents (Li, i = 1–3), the Kolmogorov entropy (KE). In conclusion
of this subsection let us underline, that difference between the presented data and
data of Ref. [8] on the topological and dynamical invariants can be explained by
processing different polarization time series.

4 Conclusions

We presented the fundamentals of a computational approach to studying determin-
istic chaos and strange attractors in dynamics of nonlinear processes in atomic and
molecular systems in an electromagnetic field. To treat chaotic dynamics of systems
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it is constructed effective scheme that includes new quantum-dynamic models
(based on the finite-difference solution of the Schrödinger equation, optimized
operator perturbation theory and realistic model potential for quantum systems) and
advanced analysis methods of dynamical systems and chaos theory. As illustration
we presented some numerical results for atoms of hydrogen and rubidium in a
magnetic and crossed magnetic and oscillating electric field and diatomic molecule
of PbO in a resonant resonant linearly polarized field. The data presented the
numerical values for a set of dynamical and topological invariants are listed.
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Abstract We present the results of modelling, analysis, forecasting the dynamics
of relativistic backward-wave tube (RBWT) with accounting for relativistic effects
(γ0 = 1.5–6.0), dissipation factor (factor D) and an effect of presence of the
space charge. There are computed the temporal dependences of the normalized
field amplitudes (power) in a wide range of variation of the controlling parameters
(electric length of an interaction space N, bifurcation parameter proportional to
current I, the Pirse parameter J and relativistic factor γ0), which are characteristic
for distributed relativistic electron-waved self-vibrational systems. The computed
temporal dependence of a field amplitude (power) Fmax in a physically reasonable
agreement with theoretical estimates and the using the pulsed accelerator “Saturn”
experimental data by Ginzburg et al. (IAP, Nizhny Novgorod). The nonlinear
analysis technique (including a multi-fractal approach, the methods of correlation
integral, false nearest neighbours, surrogate data, the Lyapunov’s exponent’s algo-
rithm and others) is applied to analysis of numerical parameters of the RBWT
chaotic dynamics. There are computed the dynamic and topological invariants of
the RBWT dynamics in auto-modulation (AUM)/chaotic regimes. The bifurcation
diagrams with definition of the dynamics self-modulation/chaotic areas in planes
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1 Introduction

At present, one of the most relevant and very complex areas of physics of
elements, systems and devices of electronics is certainly a study of regular and
chaotic dynamics of nonlinear processes in different classes of devices of so-called
relativistic high-frequency or even ultrahigh-frequency microwave electronics [1–
10]. Among the main problems of relativistic microwave electronics, of course,
there is, first of all, the quantitative study of the mechanisms of energy conversion
accelerated to relativistic velocities of high-intensity electron flows into powerful
coherent electromagnetic radiation and their use in various devices for further
application in science and technology, for example, for the purposes of nanosecond
location, special radio applications, accelerators with ultra-fast particle energy rate.
The generators of chaotic oscillations of the microwave range are of great practical
interest in the problems of plasma heating in controlled fusion installations and other
applications. However, their application in practice faces a number of problems, in
particular, the need to increase the stability and efficiency of generation, increase
the energy in the microwave pulse, maintain high coherence of radiation for high
values of lasing power, the possibility of wide adjustment of lasing frequency and
so on [1–12].

A fundamentally new direction in the study of the dynamics of complex
processes in microwave generators, and in particular in one of the most known
classes, namely, backward-wave tubes (BWT) was the application of methods of
the dynamical systems and chaos theories. To date, non-relativistic BWT have been
experimentally and theoretically well studied.

The authors [1–4] presented results of studying dynamics of a non-relativistic
BWT, including computing the phase portraits, modeling the fundamental electro-
magnetic characteristics and their chaotic properties. Investigation of the quantita-
tive role of such effects as spatial charge and relativistic effects, energy losses etc.
has been studied within a nonlinear theory for the O-type BWT [3].

The peculiarity of relativistic BWT (RBWT) is that the interaction of the
microwave field with the electron beam is carried out through a synchronous
wave harmonic, which propagates towards the electron flow. In contrast to non-
relativistic BWT, the study of nonlinear dynamics of complex processes, different
modes of operation in the RBWT is characterized by a significantly lower level of
understanding.

A consistent dynamic theory of relativistic BWT (RBWT) is developed in Ref.
[7]. One of the most important details of these works is the serious attempts to study
the conditions for the emergence of chaotic and super chaotic regimes in the RBWT
dynamics.

The discrepancy between the calculated and experimental values of the RBWT
dynamic parameters is due, in particular, to the use of simplified numerical
models that do not adequately describe its relativistic dynamics, not a sufficiently
correct approximation of the capacitive charge, etc. The description of such a new
phenomenon in the dynamics of nonlinear processes in the RBWT as a relativistic
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chaos necessitates the construction of more quantitatively adequate dynamic models
of RBWT functioning with elements of chaos. An effective opportunity to reduce
the threshold for the transition to a regime of relativistic chaos can be provided
through the use of a chain of two related RBWT etc.

In this paper we present the results of the modelling, analysis, forecasting the
dynamics of relativistic backward-wave tube (RBWT) with accounting for key
relativistic effects (the corresponding relativistic γ0 = 1.5–6.0), dissipation factor
(factor D) and an effect of presence of the space charge. There are computed the
temporal dependences of the normalized field amplitudes (power) in a wide range
of variation of the controlling parameters (electric length of an interaction space N,
bifurcation parameter proportional to current I, the Pirse parameter J and relativistic
factor γ0), which are characteristic for distributed relativistic electron-waved self-
vibrational systems. The computed temporal dependence of a field amplitude
(power) Fmax in a physically reasonable agreement with theoretical estimates and
the using the pulsed accelerator “Saturn” experimental data by Ginzburg et al. (IAP,
Nizhny Novgorod).

2 Nonlinear Dynamics of Relativistic Back-Ward Tube
and Chaos-Geometric Approach to Analysis, Modelling
and Forecasting Time Series of the Tube Power

2.1 Non-Stationary Dynamics of Relativistic Back-Ward Tube

Let us consider the RBWT nonlinear dynamics, using the standard non-stationary
theory [2–8]. Despite the papers [3, 4], we will consider the RBWT model with
direct accounting for relativistic, dissipation and effects [7–9].

As the dynamical system, RBWT has three governing parameters:

1. a standard relativistic factor, which is defined as follows:

γ0 =
(

1 − β2
0

)−1.2
(1)

where β0 = ν0/c, ν0 is the initial velocity of the electrons;
2. a parameter N, which defines an electric length of the interaction space;
3. a parameter, which is proportional to the current of the electron beam:

L = 2πCN/γ0 (2)

The Piers parameter C in Eq. (2) is as follows:

C = 3
√
I0K0/(4U), (3)
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where I0 is a constant component of the beam current, U is an accelerating voltage,
and K0 is a communication resistance of the deceleration system.

The equation in the usual dimensionless form for a phase θ(ζ, τ, θ0) of relativistic
electron (that flew into the space of interaction with the phase θ0 and has a
coordinate ζ at time τ) and a dimensionless complex amplitude (of the high-
frequency field E(x, t) = Re [ε(x, t) exp (iω0t − iβ0x)]) F (ζ, τ) = Ẽ/

(
2β0UC2

)
are as follows:

∂2θ/∂ζ 2 = −L2γ 3
0

[(
1 + 1

2πN
∂θ/∂ζ

)2

− β2
0

]3/2

Re
[
F exp (iθ)

]
,

∂F/∂τ − ∂F/∂ζ = −LĨ , (4)

Ĩ = − 1

π

2π∫

0

e−iθdθ0

with the boundary and initial conditions:

θ |ζ=0 = θ0,

∂θ/∂ζ |ξ=0 = 0,

F |ζ=1 = 0, (5)

F |τ=0 = F 0 (ζ ) ,

and θ0∈[0; 2π] is the initial phase.
Based on the system (4) and (5), we formulate a generalized model of system

dynamics, which takes into account the effect of dissipation, in particular, the impact
of energy losses in the deceleration system of the RBWT. Remaining the equation
of motion of relativistic electrons and the boundary conditions the same as in model
(4) and (5), one could take into account the energy loss during wave propagation
in the deceleration system by including an additional term in the left part of the
excitation equation (4). Namely, the term d·F. Here d is the normalized dissipation
parameter, which is expressed through the level of losses in decibels in the “cold”
system D and the normalized length L:

d = 0.115D/L. (6)
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It should be noted that, from the qualitative viewpoint, a formal consideration of
the dissipation effect in the form of energy losses during wave propagation in the
deceleration system in the BWT at realistic values of the dissipation parameter
should be reduced to shifting the bifurcation values of L to increase. Indeed,
according to the Refs. [5–7], in the absence of the required energy losses, the
instability of the equilibrium state F ≡ 0 in an infinitely long system “electron
flow—reverse wave” has a absolute character. The localized perturbation in the
system evolves as it happens its distribution in space in both directions with
increasing amplitude.

With an increase of the dissipation parameter there is the moment when the
absolute instability changes to convective one. The increase in perturbation during
propagation occurs only in the direction of beam motion.

It should also be added that the feedback modulation mechanism in BWT,
which takes into account the propagation of wave perturbations toward the electron
beam from the region where the regrouping takes place, is actually affected by
dissipation to a greater extent than the mechanism responsible for self-excitation at
the fundamental operating frequency. Indeed there is an additional important effect,
namely, the wave reflections at the ends of the decelerating system of the RBWT.
Obviously, from the viewpoint of the influence on the dynamics of processes it
should be taken into account too.

In order to find the corresponding solutions of the systems of differential
equations of type (4) and (5) and to make further numerical modeling dynamics
of nonlinear processes in the RBWT. It is used the PC complex of programs
based on the use of finite-difference schemes such as “predictor-corrector” and
the Thomson’s run method to solve the corresponding system of linear algebraic
equations (e.g. [7–16]).

2.2 Chaos-Geometric Approach to Analysis, Modelling
and Forecasting Time Series of the Tube Power

In this subsection we briefly describe a fundamental chaos-geometric approach
to analysis, modeling and forecasting a temporal dynamics of the fundamental
characteristic parameters of the system studied. In a series of the papers [11–14] the
authors have given a review of new methods and algorithms of this approach, which
includes a multi-fractal approach, the methods of correlation integral, false nearest
neighbours, surrogate data, the Lyapunov’s indicators’s algorithm and others. Below
it will be applied to analysis and processing numerical parameters of the RBWT
chaotic dynamics.

As many blocks of the used approach have been described in detail earlier (e.g.,
[11–14]), here we are limited to presenting the key moments. The detailed flowchart
of the combined chaos-geometric and dynamical differential equations approach to
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nonlinear analysis, processing and prediction of the chaotic dynamics is presented
in Refs. [11–15].

The main stages of a chaos-dynamical approach in application to analysis and
modeling the RBWT temporal dynamics the following stages [8, 11–14]:

1. General qualitative analysis of the RBWT temporal dynamics, including qualita-
tive analysis of the non-stationary differential equations solutions; analytical and
numerical solution of systems of dynamic equations describing the correspond-
ing systems and devices of relativistic microwave electronics with obtaining the
corresponding the time series of basic characteristics of systems.

2. A set of the procedures to check a presence of chaotic (stochastic) features and
modes, including the known Gottwald-Melbourne test etc. It allows to present
a preliminary study and conclusion about the presence of chaos in the system.
Besides, it is useful to calculate the energy and power spectra too.

3. Geometry of a phase space and multi-fractal geometry; reconstruction of a
phase space for the dynamical system (choice of time delay, determination
of embedding dimension by methods of correlation integral and the and false
nearest neighbors algorithm).

4. Prediction of the RMBT nonlinear dynamics; calculation of the dynamical and
topological invariants of the system, including computing the Lyapunov’s expo-
nents, Kolmogorov energy, the Kaplan-York dimension and the predictability
limits on the basis of the advanced algorithms; Determining the number of
nearest neighboring points NN for the best forecast results (analysis of qualitative
indicators) etc.

5. Prediction of temporal (spatial) fluctuations of the fundamental dynamical
parameters of the system studied; such new methods and algorithms of nonlinear
prediction as methods of predicted trajectories, stochastic propagators with
blocks of the polynominal and other approximations etc.

In fact the latter point includes a high level chaos-geometric (cybernetic) study of
the characteristics of chaos in the dynamics of systems and devices and construction
of the first models for predicting relativistic chaos. The detailed description of
every point is presented in Refs. [11–20]. All calculations are performed with using
“Geomath”, “Superatom” and “Quantum Chaos”, “ScanPoints” computational
codes [6–14, 20–34].

3 Solution of the Relativistic Back-Ward Tube Dynamical
Equations System and Results of the Chaos-Geometric
Analysis and Modelling the Power Time Series

As input data, we used the following parameters: the energy of electrons—150 keV,
starting current of 7 A composed impedance connection 0.5 �, length of interaction
space—0.623 m, the average radius waveguides—1.38 sm period corrugating—
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Fig. 1 Results for temporal
dependence of power at
injection currents: (a) 55 A,
(b) 120 A

1.73 sm radius of the electron beam—0.67 sm. The dynamic model (1)–(4) has
been implemented in two ways: (a) consideration of the effects of space charge; (b)
accounting for and the effect of slowing the loss of energy in the system (at the ends
of reflection and some other factors discussed more etc.). The bifurcation parameter
is:

J = eI | Z | /
(

2β2
0mc2

)
.

Here Z—resistance connection, I—beam current; the parameter space charge is:
Q = Ieg/(mcω2b), where the transverse wave number g = ω/(cβ0γ 0), coefficient of
reduction space charge fk = 0.55 and space charge density is as follows:

qk = (1/π)

2π∫

0

e−kθdθ0. (7)

In Fig. 1 we list the calculated theoretical temporal dependence of the RMBT power
at the injection currents: (a) 55 A, (b) 90 A, (c) 120 A.

At current 7 A it is set stationary mode that with increasing value of current
strength transited to the periodic automodulation (I = 30 A, on our data, the period
of Ta = 7.3 ns; experimental value [3, 4]: 8 ns), and then when I = 55 A it is
realized the chaotic auto-modulation mode (Fig. 1a). By increasing the amount of
current to 75 A there is the quasi-periodical auto-modulation (period 13.8 ns) and,
finally, when the current value is more than 100 A it is realized essentially chaotic
regime. Note that reset of the quasi-periodic auto-modulation mode can be explained
by an effect of space charge. The similar theoretical estimates (however without the
dissipation effect) and experiment results data have been obtained by Ginsburg et
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Table 1 Correlation dimension d2, embedding dimension, determined on the basis of false nearest
neighbours algorithm (d) with percentage of false neighbours (%) calculated for different values
of lag τ

Chaos (I) Hyperchaos (II)
τ d2 (dN) τ d2 (dN)

60 3.6 5 (5.5) 67 7.2 10 (12)
6 3.1 4 (1.1) 10 6.3 8 (2.1)
8 3.1 4 (1.1) 12 6.3 8 (2.1)

Table 2 The Lyapunov exponents (λi), the dimension of the Kaplan-York attractor, the Kol-
mogorov entropy Kentr. (our data)

Chaos λ1 λ2 λ3 λ4 Kentr.

(I) 0.261 0.0001 −0.0004 −0.528 0.26
(II) 0.514 0.228 0.0000 −0.0002 0.74

al. [3, 4]. Let us note that all results are in a physically reasonable agreement with
each other.

Further let us present the results of the chaos-geometric analysis and processing
the data for the RMBT power time series. In Table 1 we list our data on
the correlation dimension d2, embedding dimension, determined on the basis of
false nearest neighbours algorithm (dN) with percentage of false neighbours (%),
calculated for different values of lag τ (I—chaos, Fig. 1a; II—hyperchaos, Fig. 1b).

In Table 2 we list our calculational data on the Lyapunov’s exponents (λi),
the dimension of the Kaplan-York attractor, the Kolmogorov entropy (Kentr.). As
analysis shows, there are the positive and negative Lyapunov’s exponents values.
The resulting Kaplan York dimension in both cases are very similar to the correlation
dimension (calculated by the algorithm by Grassberger-Procaccia [19]).

Further, in Fig. 2 we present the firstly obtained original (continuous line)
and predicted (dotted line) dependences of power in the chaotic regime (I): (a)
without energy loss effect, (b) taking into account the effect of loss. We have
used the prediction model [11, 12] of the Schreiber type [17] with the polynominal
approximation. The details can be found in Refs. [11–14]. The presented mechanism
of changing different modes in the RBWT dynamics due an increasing a current
value and the bifurcation parameter J corresponds to certain value relativistic factor,
namely γ0 = 1.3. More important is the analysis of the RBWT nonlinear dynamics
in the plane “relativistic factor—bifurcation parameter.” Our analysis shows that
there are the quantitative limits of auto-modulation in the plane of parameters:
bifurcation parameter J-relativistic factor γ0.

A characteristic feature of the chart is the presence of so-called effect of “beak”,
which is based on relativistic factor goes far deeper automodulation area. Firstly
this effect was predicted in Refs. [3, 4]. In essentially relativistic limit (see Fig. 3)
the frequency of auto-modulation falls by about half. Obviously, that all of the
above characteristics is much more complicated compared to the dynamics of non-
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Fig. 2 Original (continuous line) and predicted (dotted line) dependences of power in the chaos
mode (I): (a) without energy loss effect, (b) taking into account the effect of loss

Fig. 3 The dependence of
the frequency of
auto-modulation upon
relativistic factor

relativistic back-ward tube. So, it will be more correct to say about relativistic chaos
phenomenon in the RBWT dynamics.

4 Conclusions

In this work we have performed quantitative modelling, analysis, forecasting the
RWBT dynamics with accounting relativistic (γ0 = 1.5–6.0) and dissipation effects
and the effects of presence of a space charge, reflection of waves at the end of
deceleration system etc. The computed temporal dependence of a field amplitude
(power) Fmax in a physically reasonable agreement with theoretical estimates and
the using the pulsed accelerator “Saturn” experimental data by Ginzburg et al. (IAP,
Nizhny Novgorod). The nonlinear analysis technique (including a multi-fractal
approach, the methods of correlation integral, false nearest neighbours, surrogate
data, the Lyapunov’s exponent’s algorithm and others) is applied to analysis of
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numerical parameters of the RBWT chaotic dynamics. There are computed the
dynamic and topological invariants of the RBWT dynamics in auto-modulation
(AUM)/chaotic regimes. The bifurcation diagrams with definition of the dynamics
self-modulation/chaotic areas in planes “J-γ0”, “D-J” are constructed.
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Detection of Chaotic Behavior
in Dynamical Systems Using a Method
of Deformable Active Contours

Alexander Ruchkin and Constantin Ruchkin

Abstract In this article we investigated the problem of detecting the chaotic
behavior of the dynamical system with a Hamiltonian structure using pattern
recognition methods. We carried out a numerical constructed of the phase space
structure of these dynamical system which represented on 2D Poincare’ sections of a
special points cloud in chaotic cases. This chaotic regions are characterized by many
various bad formalizing analytically forms. We are classified these forms on 2d
sections in simply and multiply connected, inside and outside located. We adapted
a deformable active contours method for closed curves to automatic detecting these
chaotic regions of the dynamical system.

Keywords The dynamical systems · The Hamiltonian systems · The regular and
chaotic behavior system · The recognition image methods · The active contour
method

1 Introduction

Currently existing methods of the KAM theory of research of dynamical systems
make it possible to unambiguously characterized of a dynamical system and
indicate its behavior under given initial conditions: regular, quasi-regular, or chaotic.
However, in practice it is quite difficult to conduct a full analytical study of dynamic
systems since many systems have a large dimension and many parameters. As a
result, the solutions obtained are very local and rude. In most cases, when dynamic
systems are studied by numerical methods, there are also errors and cumulative
calculation errors. It is rather difficult to investigated regular global cases by
numerical methods.
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Now for the analysis of nonlinear dynamical systems are increasingly used
new computer-based methods: statistical methods of ergodic theory, statistical
forecasting methods, numerical methods of research of high accuracy and per-
formance, computer cognitive research methods, methods of computational and
artificial intelligence. New approaches give better results if they combine analytical,
numerical and algorithmic idea simultaneously.

Using pattern recognition methods in conjunction with numerical integration
methods will reduce the effect of accumulation errors over time and give a
more accurate result. The numerical researches of phase space, which consist of
set of not intersected phase trajectories, have convenient to make by means of
Poincare’s sections. Poincare’s section, which are constructed in the phase space,
have dimensionality on unit is less than dimensionality of researched dynamical
system. The exceptional interest the dynamical systems of the third and fourth order
is represented. The result of these researches can be displayed graphically on the
computer monitor. Poincare’s sections images on a plane or in space accordingly.
If points of a phase flow form on a curve it is possible to speak about the regular
behavior of Hamilton systems. The cloud of points appearing in section of Poincare
of a phase flow will testify to approach of a chaotic behavior of system.

In this paper, the problem of constructing an intelligent computer system for the
automatic investigation of dynamic systems has continued [1, 2]. A mathematical
and algorithmic apparatus has developed to highlight chaotic areas. The detection
of the boundary of chaotic regions has allowed the detection of the boundary of
regular regions. Therefore, the task of identifying chaotic regions is also important
and necessary in the study of dynamical systems.

2 Actual Related Researches

Currently, many researchers pay much attention to the investigation of the regular
and chaotic behavior of dynamical systems of various origin using new combined
methods—analytical and numerical methods. Of particular interest are methods
and models such as: models of an object, a pattern, a recognition and recognition
training; the 0-1 test for chaos; method of smaller alignment index (SALI); method
of swarm optimization localization periodic orbit; active contour method detection
chaotic regions.

Next we consider them in more detail.

2.1 Pattern Recognition Method of Dynamical System

For the first time mathematical models of pattern recognition for dynamical system
Neumark Yu. has discussed in the article [3]. Further the dynamic systems are



The Dynamical System 139

studied by methods of pattern recognition scientists: Neumark Yu. I., Teklina L.G.,
Kotelnikov I.V in [3–6].

In the works [4, 5] authors propose used to models of an object, a pattern, a
recognition and recognition training. The possibilities of using pattern recognition
methods to study mathematical models with a large number of parameters are
discussed. The principal point is to study models by constructing phase and
parametric portraits. This allows one to solve problems of predicting the states of
the object described by the mathematical model in hand and controlling the object
and analyzing and studying problems that follow from the particular content of the
model. Examples of three known mathematical models are given to illustrate this
problem.

In [6] the problem of constructing the structure of the phase space of the
computer methods of pattern recognition. Practical construction of a computer for
a specific phase portrait of a dynamical system is based on a certain way calculated
array of end segments of the phase trajectories in the forward and backward time.
To build a computer structure of the phase space authors had to solve next problems:
the definition of the form of the phase trajectory (state of equilibrium, limit cycle,
chaotic motion); finding the limit of stable subsets (attractors) and select areas of
attraction. To reach these goals, they used the methods of data mining and pattern
recognition. So if the phase trajectory seen as a time series (data set), the task
of analyzing the form of the phase trajectory is reduced to the construction of
training set for this set of data. Cluster analysis of data from the training set and the
construction of local decision rules are suitable for finding attractors. The problem
of recognition of attractive region for sustainable building possible subsets solved
by dividing the decision rules.

2.2 The 0-1 Test for Chaos

Another research method is called the 0-1 test for chaos. The development of this
method for detecting chaotic cases is carried out Gottwald G.A., Melbourne I in
series [7–15] and Zachilas L., Psarianos I. in [16].

In work [7] authors review theoretical and practical aspects of the 0-1 test
for deterministic dynamical systems. The test is designed to distinguish between
regular, i.e. periodic or quasi-periodic, dynamics and chaotic dynamics. It works
directly with the time series and does not require any phase space reconstruction.
This makes the test suitable for the analysis of discrete maps, ordinary differential
equations, delay differential equations, partial differential equations and real world
time series. To illustrate the range of applicability authors apply the test to examples
of discrete dynamics such as the logistic map, Pomeau-Manneville intermittency
maps with both summable and nonsummable autocorrelation functions, and the
Hamiltonian standard map exhibiting weak chaos. In article authors also consider
examples of continuous time dynamics such as the Lorenz-96 system and a driven
and damped nonlinear Schrodinger equation. Finally, they show the applicability
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of the 0-1 test for time series contaminated with noise as found in real world
applications.

In work [16] authors perform the stability analysis and they study the chaotic
behavior of dynamical systems, which depict the 3-particle Toda lattice truncations
through the lens of the 0-1 test, proposed by Gottwald and Melbourne. Authors
prove that the new test applies successfully and with good accuracy in most of the
cases. Authors perform some comparisons of the well-known maximum Lyapunov
characteristic number method with the 0-1 method, and they claim that 0-1 test
can be subsidiary to the LCN method. The 0-1 test is a very efficient method for
studying highly chaotic Hamiltonian systems of the kind and is particularly useful
in characterizing the transition from regularity to chaos.

2.3 Method of Smaller Alignment Index (SALI)

The development of method of Smaller Alignment Index (SALI) for detect-
ing chaotic cases is carried out by a group of researchers: Ch. Skokos, Ch.
Antonopoulos, T.C. Bountis, M.N. Vrahatis, N. Kyriakopoulos, V. Koukouloyannis,
P. Kevrekidis in [17–21].

In article [17] they used the Smaller Alignment Index (SALI) to distinguish
rapidly and with certainty between ordered and chaotic motion in Hamiltonian
flows. This distinction is based on the different behavior of the SALI for the two
cases: the index fluctuates around non–zero values for ordered orbits, while it tends
rapidly to zero for chaotic orbits. They present a detailed study of SALI’s behavior
for chaotic orbits and show that in this case the SALI exponentially converges to
zero. Exploiting the advantages of the SALI method, in work authors demonstrate
how one can rapidly identify even tiny regions of order or chaos in the phase space
of Hamiltonian systems of 2 and 3 degrees of freedom.

In [18] authors investigate a system of vortex dynamics in an atomic Bose-
Einstein condensate (BEC), consisting of three vortices, two of which have the same
charge. These vortices are modeled as a system of point particles which possesses
a Hamiltonian structure. This tripole system constitutes a prototypical model of
vortices in BECs exhibiting chaos. By using the angular momentum integral of
motion they reduce the study of the system to the investigation of a two degree
of freedom Hamiltonian model and acquire quantitative results about its chaotic
behavior. This investigation tool is the construction of scan maps by using the
Smaller Alignment Index (SALI) as a chaos indicator. Applying this approach
to a large number of initial conditions they manage to accurately and eminently
measure the extent of chaos in the model and its dependence on physically important
parameters like the energy and the angular momentum of the system.
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2.4 Method of Swarm Optimization for Locating Periodic
Orbits

Method of swarm optimization for dynamical system used of C. Skokos, K.
Parsopoulos, P. Patsis, M.Vrahatis, Antonopoulos Ch., Bountis T. in [18–20].

In [18] authors propose particle swarm optimization (PSO) as an alternative
method for locating periodic orbits in a three-dimensional (3D) model of barred
galaxies. Authors develop an appropriate scheme that transforms the problem of
finding periodic orbits into the problem of detecting global minimizers of a function,
which is defined on the Poincare surface section of the Hamiltonian system. The
method succeeded in tracing the initial conditions of periodic orbits in cases where
Newton iterative techniques had difficulties.

In work [19] the detection of periodic orbits bears significance for the study of
nonlinear mappings, since they can reveal crucial information on their dynamics.
Recently, population–based stochastic optimization algorithms were introduced to
address problems where traditional gradient–based approaches failed. The effi-
ciency of these approaches in a applications, triggered further research towards the
development of more efficient variants. This work presents the principal concepts
of applying concurrent stochastic population–based approaches for the detection of
periodic orbits, and also reports new results attained by the application of Memetic
Algorithms on well–known chaotic maps for periodic orbits with high period.

In [20] authors are proposed a new approach for the identification of the
resonances appearing in symplectic maps. In the proposed methodology, they make
use of Evolutionary Algorithms which are population based search strategies used
for global optimization. Authors have applied the proposed methodology to the
2-dimensional (2D) Hénon map and obtained promising results which can be
generalized to symplectic maps of higher (2m) dimensions. As is well-known,
such maps are representative of Hamiltonian systems and occur in many physical
applications.

2.5 Method of Clustering of the Phase Trajectory

The paper [21] describes an approach to quantitative analysis of multivariate
dynamic system in phase space by means cluster analysis. The system is used
as mathematical model for various living systems. The model is used in various
applications. One of the related problems is to represent a phase trajectory as a
sequence of clusters to classify the system’s state.

The algorithm for partitioning a phase trajectory into clusters is presented. Input
data for the algorithm is a data matrix which is corresponds to a set of sequential
samples of the given phase trajectory. Optional parameters are dimension of the
space in which the clusters lie, and phase trajectory noise variance. The algorithm
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results in a tree-like graph. The graph nodes contain given phase trajectory clusters
and might be used for system’s state classification.

Phase trajectory of a dynamic system with Lorenz attractor is considered as a test
problem to demonstrate the approach. The initial phase trajectory lies in 3D-space.
It was projected into N-dimensional space and distorted with non-correlated additive
Gaussian noise. The given phase trajectory was partitioned into clusters using the
described algorithm. The clusters make a tree T. The root of the tree corresponds
to the phase trajectory that lies in r-dimensional space Rr. The next level of the tree
consists of cluster nodes that lie in (r-l)-dimensional space, etc., up to the last level
that corresponds to one dimensional cluster nodes. The algorithm was examined
with various test trajectories.

The above studies show the importance and relevance of developing new methods
for investigation the regular and chaotic behavior of dynamical systems. They
allow obtaining new results for existing and new dynamical systems. One of such
methods is a computer analysis of chaotic region of the Poincare section for dynamic
systems using active contour methods, which is proposed in this article and will be
considered in the next section. This method is a new technique used in the study of
dynamical systems, and is of great interest for constructing a general system for the
automatic detection of regular and chaotic behavior of dynamical systems [1, 2].

3 Active Contour Method for Dynamical System

3.1 Active Contour Method and There Modification

So, in this chapter we investigation images section Poincare for detection closed
chaotic clouds. One of the general task in image processing to split the image into
several parts like objects: foreground and background set of pixels. This procedure
called segmentation. There is two way to define the segments of the image. The
first if we locate the surface pixels of the object areas. The second way to do
that if we define the boundaries of the area of interested. Wide spectrum of the
different segmentation techniques known from the simple threes holding—during
region growing and edge detection methods -until different kind of machine learning
techniques, like clustering methods or neural networks segmentation. The active
contour models belong to the class of the boundaries methods and the edge detection
methods.

The active contour method considers various modifications, their features and
applications. The active contour model algorithm (snake) introduced by Michael
Kass, Andrew Witkin and Demetri Terzopoulos in 1988 [22]. A snake is an energy
minimizing technique guided by external constraint and influenced by image forces.
The algorithm deforms a contour to lock onto features of interest on an image.
Usually the features are edges, lines or boundaries. It is working in 2D, 3D or in
even higher dimensions. Its 3D version is often called as deformable models or
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active surfaces. But the original algorithm, introduced by Kass, suffers from some
problems. Now the snake method has of two kind modifications (geometric active
contours (geodesic active contours) and active model method).

Geometric active contours are designed to highlight the segments of an object
based on the fact that there is a clear boundary between the object and its segment.
In this method, the circuit tends to maximize smoothing and in the absence of
clear boundaries—tends to the point, to solve the problem of closing the path to
the point—added the force of the contour. This modification is designed to solve
the problem of highlighting complex contours that could be divided into explicit
individual segments. Since the force that breaks the circuit is set arbitrarily, in
most algorithms, it becomes unclear exactly how accurately it will affect the overall
functionality of the contour. To solve this problem, geodesic active contours have
been developed in which the force of the contour is calculated on the basis of
force, which determines the path of the path to the boundaries of the object. This
modification solves the problem of interaction of forces that affect the contour,
which allows you to enter the coefficients of forces that affect the contour and
balance them.

The active shape method [23] is a modification of the classic active contour
method. Its peculiarity is that it uses the original shape of the contour and the
approximation goes to it. The main difference is in the parameters of internal
energy—if the active contours internal energy tends to approach the shape of the
circle, in active models—to the form, minimally different from the original. In the
active model algorithm, at every step of the algorithm, a valid deviation from a
given path is set. The advantage of this modification is that it improves the accuracy
of calculating the contour of an object, but at the same time reduces the scope of the
already configured algorithm. The reason for the emerging flaw is that because of the
existing approximation pattern, the variability of the resulting contours decreases.
But if you want to detect the boundaries of pre-known objects, or boilerplate
objects—this modification will have a big advantage over the classic algorithm. This
modification solves the problem of highlighting the outline of an object by active
contours, in case the form of the initial approximation with acceptable deviations is
known, but the exact position of the initial approach is not known.

3.2 Development Mathematical Model of Active Contour
Model

The basis of the active contours methods (snakes) is that the contour even before
the contouring of the desired object has a kind of initial form and, due to various
conditions affecting it, changes its shape (contouring object)—deformed. In this
model, the task of finding the boundaries of an object is formulated as a change
in the positions of the contour points to the new ones, in which the functionality
of E—“energy” reaches a minimum. The behavior of the active contour and its
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properties are completely determined by its functionality E (energy). The energy
of the contour depends on its shape, the size of the contour and its position in the
image. It is recorded as the sums of two functions: “internal” energy—Eint and
“external” energies—Eext (1).

E (vi) = aEint (vi) + bEext (vi) (1)

where a and b—weights coefficients;
Eint—the inner energy of the points;
Eext—the external energy of the points.

The inner energy is the energy of the breaking of the contour. This option is
responsible for regulating the shape of the contour. The inner energy minimizes
the breaking of the contour. External energy is responsible for the inconsistency
of the contour of the image. The outer contour seeks to minimize the difference
between the contour and boundary of the object that is contoured, and the smaller
the difference, the less the value of the external energy. As described above, the
basic concept of this contouring method is to find a new position for each point of
the contour, by identifying a position with a minimum amount of two energies that
affect the contour: external and internal, among the matrix of energies For every
point. The outer one is responsible for changing the shape of the contour, and the
inner one is responsible for reducing the brokenness of the contour line. To get a
new position for the point—calculated energy matrix (2). After calculation, they are
added elementally and among them a position with a minimum value is searched.

Ematrix =
⎛
⎝ E [0] [0] (vi) . . . E [0] [N ] (vi)

. . . E [j ] [k] (vi) . . .

E [N ] [0] (vi) . . . E [N ] [N ] (vi)

⎞
⎠ (2)

To describe the classic algorithm, let the outline be labeled as V (2).

V = {v1, . . . , vN } (3)

where v1, . . . vN—these are the dots of this contour;
N—the number of these points.

Each point is a pixel of an image, with coordinates x and y, so vi =
(xi, yi) , and i = {1, . . . , N} Then, for each point of the circuit, the function of
finding a mini mum of energy will be decided, for the amount of energies of those
forces acting on the contour. Energy, in this case, is called a function that converts
pixels of the input image and other parameters into a field of forces and is considered
by formula (1) and consists of calculations of internal energy and external. Internal
energy—energy is responsible for preserving the shape of the contour. It consists of
two parts: continuity energy and energy expansion, and is defined by formula (4).

Eint (vi) = c · Econ (vi) + d · Ebal (vi) (4)
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where c and d—weight coefficients;
Econ—the energy of continuity;
Ebal—expansion energy.

Continuity energy (1) is responsible for maintaining a sequence of dots in the
contour (no intersections in the contour line). If the circuit is unclosed—this energy
directs it to the deformation in a straight line, for cases with closed circuits—the
direction goes into a circle. For each point of the circuit, this energy is calculated
relative to the deviation of the point position relative to the adjacent points (5)–(7).

Econjk (vi) = 1

l (V )
· ∥∥pjk (vi) − γ (vi+1 + vi−1)

∥∥2 (5)

γ = 1

2 · cos
(

2π
n

) (6)

l (V ) = 1

n
·

n∑
i=1

‖vi+1 − vi‖2 (7)

where pjk (vi)—position of the point accordingly of the matrix element;
γ—smoothing factor;
l (V )—overall smoothness of the contour.

Expansion energy provides extension or compression of the contour, provides a
general change in the area of the contour cover. The expansion energy matrix, for
the contour points, is calculated relative to the deviation from the normal vector to
the point (8).

Ebaljk (vi) = ni · (vi − pjk (vi)
)

(8)

where ni—vector normal to point vi .
External energy is the energy responsible for the movement of the contour points

to the brightness of the image. It consists of two energies: the energy of the image
and the energy of the gradient, and is determined by the formula (9).

Eext (vi) = m · Emag (vi) + g · Egrad (vi) (9)

where m and g—weight coefficients;
Emag– the image energy;
Egrad is the energy of the gradient.

Image energy is responsible for the movement of contour points to positions with
high image intensity values, and is defined by formula (10).

Emagjk = I
(
pjk (vi)

)
(10)
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From the energy of the gradient, depends on the movement of points to places
with the maximum difference in brightness of the image, as reflected in the formula
(11).

Egradjk = ∇ [
Gσ · I (pjk (vi))] (11)

After calculating the total energy, the point takes a position in which there is a
minimum of energy among the array of Ejk(vi) (12).

v
′
i = Ejk (vi) → min. (12)

These are the basic principles of calculating the energies of the contour. In a large
number of modifications, additional forces are added that affect the contour, and the
influence of forces on the change of the contour changes. Although this method is
not designed to work with video image, but if you solve the problem with computing
power and reduce it to the required level—this method will be extremely effective in
solving the problem. The reason why this method is appropriate is that the method
partially performs the condition of adaptability (any information about the outline is
needed only in the first steps of the method—the initial approximation). So, if you
solve the problem with computing power and implement adaptive execution of the
initial approximation, this method will be able to effectively solve the problem. Due
to the interest in this method, analysis of its various modifications were carried out
to obtain more information about the possibilities of the method.

As mentioned earlier, this paper will use the previously developed algorithm
described in previous paragraph as the basis. By this method, the result of
calculating the energies acting on the circuit will be vectors of action of forces and
distances to the minimum energies of these forces. In this case, the action vector
and distance can be expressed through the coordinates of the position of the point
to which this force is trying to move the starting point of the path. Since the vector
of force is the opposite of energy, and the task is to find a position with the value
of the minimum energy amount of forces acting on the circuit, then for this method,
the solution to the problem of energy minimization will be to find a point relative
to which the amount the energies needed to shift it to the calculated positions of the
active forces will be minimal. So the positions in which the contour point moves
relative to the energies acting on it, have the appearance of the points of the image,
the new position of the point of the contour can be calculated as a point, the sum of
races (Figs. 1 and 2).

3.3 Adaptive Method of Active Contour for Dynamical System

In this method, classical energy calculations were replaced by calculations of
energies along vectors and search for positions on each energy separately, instead of
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Fig. 1 Calculating the action
of forces influencing the
contour

V(i)int

V(i)ext

Eext

Eint

V(i)

Fig. 2 Calculating a new
position for the contour point

V(i)int

V(i)ext

Eint→min Eext→min

E→min

V(i)

V(i)

calculating the total matrix of energies. The classic internal energy calculation (4)
has been replaced by a position calculation for a minimum of energy (13)–(14) over
the vector (16), which is directed towards the middle between the adjacent points,
for the contour point of the vect i (17) and depends on the parameters of the image.
All resulting vectors are normalized under formulas.

Eintj (vi) = 1

(vect i · I (pj (vi))) (13)

P int (vi) = Eintj (vi) → min; (14)

vect i = p (middlei) − p (vi) ; (15)

p (middlei) = (p (vi−1) + p (vi−1))

2
; (16)
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vect i = vect i

length(vect i)
(17)

where I (pj (vi))—image value (after threshold processing) at a point along the
vector;
p (vi)—point position;
length(vect i)—long vector vect i;
P int (vi)—new position for point, relative to the energy of the action of internal
strength.

The classic calculation of external energy was modified by a grouping of several
parameters at the same time: expansion energy, gradient energy, image energy,
and combination with the method of adding an additional contour. External energy
consists of the impact of force expansion relative to the normal vector and relative
to the vector to the center of the mass of the figure. The position relative to the
normal vector is calculated by calculating the position with a minimum of energy
during the normal vector (18)–(19). The normal vector is calculated relative to the
neighboring, for the point of the contour of the points (20) and is directed inside
the contour, or outward (depending on the value of the image), and normalized by
(19). The minimum of energy is by finding the positions, the closest and the most
gradient of the image. Where K—Image Processing Threshold.

Enormj (vi) = 1

(vect i · I (pj (vi)) · ∥∥Gσ · I (pj (vi))∥∥) (18)

Pnorm(vi) = Enormj (vi) → min; (19)

vect i(x, y) =
{
p (vi+1) (y,−x) − p (vi−1) (y,−x) , if I

(
pj (vi)

)
> K;

p (vi+1) (−y, x) − p (vi−1) (−y, x) , if I
(
pj (vi)

)
< K.

(20)
We calculate the relative position of the figure’s center of mass using the

minimum energy position vector (21)–(24). The center of the mass of the contour
is calculated by searching the center of the masses for the supporting points of the
contour (21). The vector is calculated against the point of the contour of the v and the
center of the masses (24), and is directed inside the contour, or outward (depending
on the value of the image), and then normalized by formula (24). The minimum of
energy is by finding the positions, the closest and the most gradient of the image.

Ecenterj (vi) = 1

(vect i · I (pj (vi)) · ∥∥Gσ · I (pj (vi))∥∥) ; (21)

Pcenter(vi) = Ecenterj (vi) → min; (22)

p (center) = 1

N

N∑
i=1

p (vi) ; (23)
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vect i =
{
p (center) − p (vi) , I

(
pj (vi)

)
> K;

p (vi) − p (center) , I
(
pj (vi)

)
< K.

(24)

After calculating the positions of points with a minimum energy value of forces,
relative to the point of the contour, a new position is sought for the point for which
the amount of energies of forces directing this point of the outline of calculated
positions will be minimal (25).

p
(
v

′
i

)
= (a · P int (vi) + b · Pnorm (vi) + c · Pcener (vi))

a + b + c
, (25)

where a, b, c—action factors affecting the contour of forces.
The algorithm calculation consists of next stages:

(1) The stage of calculating the position of minimum energy for the force that
moves the point of the circuit relative to the neighbor points.

(2) The stage of calculating the position of minimum energy for the force that
moves the point of the contour relative to the normal vector to the contour at
this point.

(3) The stage of calculating the position of minimum energy for the force that
moves the point of the circuit relative to the center of the mass of the contour.

(4) The final stage at which a new position for the point, relative to the calculated
positions for each of the active forces and the influence of these forces is
calculated.

The sequence of the algorithm steps consists in calculating new positions for all
points of the contour (see Fig. 3).

The peculiarity of this modification is that: calculations in two-dimensional
arrays are replaced by calculations in one-dimensional, which adds speed to the
calculation of new positions for the points of the contour; vectors are used to direct
the change in point position. The basic principles of active contours are preserved:
dynamic deformation of the contour and preserved, but modified, the basic principle
of calculations and search of the energy of the contour.

4 The Practical Results and Mechanical Examples

In this section, we will consider the practical application of the active contour
method for detecting chaotic regions in Poincare’ sections. So, in the framework
of constructing a general concept for studying dynamic systems, software and
algorithmic support for an intelligent system has been developed that automatically
detects regular and chaotic regions of a dynamic system by Poincare’ sections [2].

Also in [2], the problem of detecting regular cases on Poincaré sections was
considered using an example of a mechanical system.

The area detection program performs the following steps.
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Start

End

Calculating the vector
by formula (16)

j=(1,M) j=(1,M) j=(1,M)

Calculating a new position
relative to the vector to
the middle between the

formula-neighboring 
points (14)-(15)

Calculating a new position
relative to the vector to
the middle between the

formula-neighboring 
points (18)-(19)

Calculating a new position
relative to the vector to
the middle between the

formula-neighboring 
points (21)-(22)

Calculating a new point position Vi, regarding 
the positions calculated by the formula

Calculating the 
vector by 

formula (20)

Calculating the 
vector by 

formula (24)

For all the contour points Vi (i=1,N)

Fig. 3 Algorithm for a modified active contour method

(1) Firstly, we select the image and selects the σ values for the Gaussian smoothing.
(2) Then we select the initial position of the snake by clicking on the image and

selecting control points which are later interpolated into a contour.
(3) As the initial approximation, a set of points close to the regular case is chosen.

The more accurately you can select the starting points, the more accurately the
boundary of the chaotic region will be detected.

(4) We specifies various control parameters for the snake. These include α—
specifies the elasticity of the snake; this controls the tension in the contour
by combining with the first derivative term; β—specifies the rigidity in the
contour by combining with the second derivative term; γ—specifies the step
size; κ - acts as the scaling factor for the energy term; Eline—weighing factor
for intensity based potential term. Eedge—weighing factor for edge based
potential term. Eterm—Weighing factor for termination potential term.
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(5) Then we specifies the number of iterations for which contour’s position is to be
computed.

(6) For the standard test cases provided with the assignment, predefined values for
all the variables are hard-coded for convenience, though they can be changed at
any point.

The algorithm proposed in the previous section requires a fairly complex setup,
the main points of which are as follows.

If the snake is initialized “too far” from the object boundary, it is possible that
the contour may not be able to converge onto object boundary. An increase in the
amount of smoothing (σ value) increases the range from which a snake can converge
onto an object smoothing. This can be seen as that blurring of edges increases there
“enactment” area. If the energy scaling factor is “too big” for a given image than
though active contour can converge onto image boundary but keeps on wiggling
along the object boundary. In most cases it ends up losing track on object boundary.
The Eedge value must be carefully chosen in case of binary images which has
very high gradient values. The Eterm defines the contribution of curvatures to the
overall energy term. When weight associated with this component in dominant in
the overall energy, the snakes seems to be attracted to corners first before converging
onto the object boundary. In cases where its weight is not dominant, edges are traced
before the corners by the snake.

From the KAM theory, we know that regular cases border on chaotic cases,
therefore, highlighting the boundary of a chaotic region will allow us to distinguish
the boundary of the region of regular cases.

A computer study was carried out for the problem considered in [1, 2]. For a
given Hamiltonian system, chaotic regions can have a complex shape, be single or
multiply connected. The studies performed allowed us to identify typical cases of
chaotic regions.

(1) The chaotic region is simply connected and inside located (almost simply
connected). Outside the area is a regular occurrence and inside is a chaos area
(Fig. 4).

(2) The chaotic region is simply connected and outside located. Outside is chaos
area and inside is a regular region (Fig. 5).

(3) The chaotic region is multiply connected and outside. Outside, it borders on the
regular case, and on the inside is both chaos and the regular case (Fig. 6).

Figures 4a), 4b), 4c) show the process of constructing chaotic and regular regions
using a computer program with different time intervals for case 1). The longer
the time interval, the more accurate the image areas will be. Figures 4d), 4e), 4f)
show the process of detecting chaotic regions. So the original image (Figure 4d) is
converted to shades of gray and filtered by a Gaussian filter. On the Figure 4e)—
the initial position of the contour is determined; on the Figure 4f)—shows the final
contour, which is boundary the chaotic region.

Figures 5a), 5b), 5c) show the process of constructing chaotic and regular regions
using a computer program with different time intervals for case 2). The chaotic



152 A. Ruchkin and C. Ruchkin

Fig. 4 The chaotic region is simply connected and inside located

region is simply connected and outside located. Outside is chaos area and inside is a
regular region (Figure 5). The longer the time interval—the more accurate the image
areas. For detection of chaotic regions from these images, Figure 5a) was selected.
Figures 5d), 5e), 5f) show the process of detecting chaotic regions. So the original
image (Figure 5e) is shown converted to shades of gray and processed by a Gaussian
filter. On the Figure 5e) the initial position of the contour is determined. On the
Figure 5f) the final contour is shown. It is bounder the chaotic region. Figures 5g),
5h), 5i) demonstrate the process of detecting next chaotic regions. This detection is
more accurate.

On the Figures 6a), 6b), 6c) are shown the process of constructing chaotic and
regular regions using a computer program with different time intervals for case
3). The chaotic region is multiply connected and outside. Outside, it borders on
the regular case, and on the inside is both chaos and the regular case. Detection
of chaotic regions for these case image was selected Figure 6b). Figures 6d), 6e),
6f) show the process of detecting chaotic regions. So the original image (Figure
6d) is shown converted to shades of gray and processed by a Gaussian filter. The
image (Figure 6e) shows the initial position of the contour. On the image (Figure
6f) shows the final contour, which is bounder the chaotic region. Figure 6b) was
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Fig. 5 The chaotic region is simply connected and outside located

selected Figures 6g), 6h), 6i) show the process of detecting two chaotic regions
more accurate.

5 Conclusions

In this article we had investigated the problem of automatic detecting the chaotic
behavior of the dynamical system. We had carried out a numerical study of the phase
space of a dynamical system with a special Hamiltonian structure, represented on
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Fig. 6 The chaotic region is multiply connected and outside located

Poincare’ sections of a point cloud in chaotic cases with help method active contour.
We investigated various forms of chaotic regions and developed an algorithm for
recognizing their in some special cases. We considered the practical application of
the active contour method for detecting chaotic regions in Poincare’ sections of the
mechanical system.
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Dynamics of Sensing Element of Micro-
and Nano-Electromechanical Sensors as
Anisotropic Size-Dependent Plate

Marina Barulina , Alexey Golikov , and Sofia Galkina

Abstract Micromechanical electronics sensors are widely used in various fields
of science and technology. The automotive industry, marine and space tech-
niques, navigation equipment, military vehicle, consumer electronics, robotics,
smart systems—this is not a complete list of areas, in which these sensors are
used. Nanoelectromechanical sensors (NEMS) are the next step of evolution of
micromechanical electronics sensors. Due to the nanosized of sensing elements
and other components of NEMS, they need non-classical approaches for the study
of their dynamics. One more problem of NEMSs is the dependence of their
characteristics on material anisotropy or orthotropy. In the article, equations of
motion of a sensing element of micro- and nanoelectromechanical sensors as an
anisotropic size-dependent plate were obtained based on the modified couple-stress
theory. The sensing element was considered as rectangular console plate under the
distributed force at the bottom of the sensing element. The dynamic version of the
principle of virtual displacements and the third-order theory of laminated composite
plates and shells were used for obtaining the differential equations of motion and
natural boundary conditions.

Keywords MEMS · NEMS · Size-dependent plate · Mathematical model ·
Modified couple-stress theory · Nanoelectromechanical sensors · Sensing element

1 Introduction

The development of microelectronics technology, methods of selective and ultra-
deep etching, three-dimensional shaping led to the creation of micromechanical
electronics systems (MEMS)—small-sized and cheap micromechanical devices,
which made by using microelectronics industry technologies [1–8].
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The modern world is already difficult to imagine without a wide variety of
inertial information sensors and devices based on them. The automotive industry,
marine and space techniques, navigation equipment, military vehicle, consumer
electronics, robotics, smart systems—this is not a complete list of areas, in which
inertial information sensors and devices are used.

MEMS sensors and devices are widely spread in consumer electronics—cell
phones, cars, quadcopters, radio-controlled toys—flipping cars, helicopters, and
even flying fairies.

Nowadays, the processes and performance characteristics of MEMS sensors,
and micro dimensional devices are relatively well understood in the frameworks
of classical mechanics of deformable bodies, and also in the frameworks of solid-
state physics, and using such methods like oscillation theory method, heat factors
methods, theory of elasticity and thermoelectricity methods, theory of deterministic
chaos and others [9–13].

However, the development of MEMS sensors still going. As follows from
literature analysis, the development of MEMS sensors goes in several directions:

1. Increasing the efficiency of the inertial information sensors, systems, and devices
based on them, improving the design of the sensor and the device [14, 15].

2. Increasing the efficiency by means of compensation of influence and mutual
influence various disturbing factors on device characteristics in the supporting
software [16–18].

3. In reducing of MEMS sizes and occurrence of a new devices type—
nanoelectromechanical sensors (NEMS) [19].

The first and second points can be achieved by using non-classical approaches to
the study of the dynamics of MEMS elements [20–22], or by a more in-depth study
of the influence of material options on sensor characteristics [23, 24].

At the same time, for NEMS, besides specific issues due to their extremely
small sizes, the same issues remain relevant, as for the MEMS-sensors, for example,
temperature, electric and mechanical noises influence, etc. But, in the case of small
sizes of NEMS, classical approaches to resolving these issues may not be suitable.

Thus, it was shown in [25–29] that the size effects play an important role in
microstructures (microbeams, crystals, plates). For example, in [30] it is experi-
mentally proved that the dimensionless natural frequencies increase to about 2.1
times with the beam thickness decreasing from 15 to 2.1 μm. There are many works
devoted to the study of the influence of size effects on the dynamics of sensitive
elements of nanosensors [30–34]. However, the results obtained in them relate either
to beams or to isotropic plates. A large contribution to the study of anisotropic plates
with size effects was made by Chen [35–40]. In [40] he proposed the new modified
couple stress theory for anisotropic elasticity which contains three material length
scale parameters. Based on this model, he developed composite laminated Kirchhoff
plate model. But, as the authors know, there are no publications, in which a detailed
variational formulation was provided for anisotropic nano-plates based on the new
modified couple stress theory and the third-order plate theory.
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2 Theoretical Formulations

Let’s consider a rectangular anisotropic nanoplate of uniform thickness h (see
Fig. 1) under the distributed force at the top (x3 = − h/2) of the plate. The origin
of the coordinate system is located at the midpoint of the left side of the nanoplate’s
midplane. Axis x1, x2 are taken along the length and width directions, respectively.
The positive direction of the axis x3 is downward from the midplane along the
thickness direction. So, the coordinate of a midplane’s point is (x1, x2, 0). The
density ρ0 of the nanoplate is uniform.

3 Displacement Field

According to the third-order plate theory [41], the displacement field (u1, u2, u3)
can be expressed as:

u1 (x1, x2, x3, t) = u0 (x1, x2, t) + x3φ1 (x1, x2, t)

− 4

3h2 x
3
3

(
φ1 (x1, x2, t) + ∂w0 (x1, x2, t)

∂x1

)

u2 (x1, x2, x3, t) = v0 (x1, x2, t) + x3φ2 (x1, x2, t)

− 4

3h2
x3

3

(
φ2 (x1, x2, t) + ∂w0 (x1, x2, t)

∂x2

)

u3 (x1, x2, x3, t) = w0 (x1, x2, t) (1)

Fig. 1 Configuration of a rectangular nanoplate
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where (u0, v0, w0) are the displacement components of a midplane’s point along
(x1, x2, x3) coordinate axis, φ1 and φ2 are the angles of rotation about the x2- and
x1-axes, respectively.

4 The constitutive Relations

The new modified couple stress theory for anisotropic elasticity was proposed by
Chen and Li in [40]. In this theory, three material length scale parameters are
involved.

The constitutive relations have the following form according to the new modified
couple stress theory [40]

σij = ∼
Cijklεkl (2a)

mij = l2i Giχij + l2jGjχji (2b)

εij = 1

2

(
ui,j + uj,

)
(2c)

χij = ωi,j (2d)

ωi = 1

2
eijkuk,j (2e)

where li—material length scale parameter and the subscript i means the direction
of the shapes and arrangements of the impurities or defects, li can be treated as

a measurement of sizes of the impurities or defects in microstructures;
∼
Cijkl , Gi—

elasticity constants; σ , ε—stress and strain tensors; χ—curvature (rotation gradient)
tensor; m—the couple stress moment tensor; u—displacements; e—the permutation
symbol (the Levi-Civita symbol).

Obviously, σ ij, εij, mij are symmetric. χ ij is nonsymmetric, and this is the
difference from the modified couple stress theory.

Let us consider components of the strain tensor as the vector:
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⎛
⎜⎜⎜⎜⎜⎝

ε1

ε2

γ12

γ23

γ13

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

ε11

ε22

2ε12

2ε23

2ε13

⎞
⎟⎟⎟⎟⎟⎠

(3)

where εij are defined by (2c).
The following relations are obtained by substituting (1) to (2c)–(3):

⎛
⎝ ε1

ε2

γ12

⎞
⎠ =

⎛
⎜⎝

ε0
1

ε0
2

γ 0
12

⎞
⎟⎠ + x3

⎛
⎜⎝

ε1
1

ε1
2

γ 1
12

⎞
⎟⎠ + x3

3

⎛
⎜⎝

ε3
1

ε3
2

γ 3
12

⎞
⎟⎠ ,

(
γ23

γ13

)
=
(
γ
(0)
23

γ
(0)
13

)
+ x2

3

(
γ
(2)
23

γ
(2)
13

)

(4a)

where
⎛
⎜⎜⎝
ε
(0)
1

ε
(0)
2

γ
(0)
12

⎞
⎟⎟⎠ =

⎛
⎜⎝

u0,1

v0,2

u0,2 + v0,1

⎞
⎟⎠ ,

⎛
⎜⎜⎝
ε
(1)
1

ε
(1)
2

γ
(1)
12

⎞
⎟⎟⎠ =

⎛
⎜⎝

φ1,1

φ2,2

φ1,2 + φ2,1

⎞
⎟⎠ (4b)

⎛
⎜⎜⎝
ε
(3)
1

ε
(3)
2

γ
(3)
12

⎞
⎟⎟⎠ = −c1

⎛
⎜⎝

φ1,1 + w0,11

φ2,2 + w0,22

φ1,2 + φ2,1 + 2w0,12

⎞
⎟⎠

(
γ
(0)
23

γ
(0)
13

)
=
(
w0,2 + φ2

w0,1 + φ1

)
,

(
γ
(2)
23

γ
(2)
13

)
= −c2

(
γ
(0)
23

γ
(0)
13

)
(4c)

c1 = 4

3h2 , c2 = 4

h2 = 3c1.

Acting similarly with the χ ij components and according to (1), (2d), (2e), we obtain:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

χ11

χ22

χ33

χ12

χ21

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

χ
(0)
11

χ
(0)
22

χ
(0)
33

χ
(0)
12

χ
(0)
21

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ 1

2
x2

3c2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

χ
(2)
11

χ
(2)
22

χ
(2)
33

χ
(2)
12

χ
(2)
21

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5a)
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(
χ13

χ23

)
= c2x3

(
χ
(1)
13

− χ
(1)
23

)
(5b)

(
χ31

χ32

)
= 1

2

(
χ
(0)
31

χ
(0)
32

)
+ 1

2
x3

(
χ
(1)
31

χ
(1)
32

)
+ 1

2
c1x

3
3

(
χ
(3)
31

χ
(3)
32

)
(5c)

where

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

χ
(0)
11

χ
(0)
22

χ
(0)
33

χ
(0)
12

χ
(0)
21

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w0,12 − φ2,1

− w0,12 + φ1,2

φ2,1 − φ1,2

w0,22 − φ2,2

− w0,11 + φ1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
χ
(1)
13

χ
(1)
23

)
=
(
w0,2 + φ2

w0,1 + φ1

)
(5d)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

χ
(2)
11

χ
(2)
22

χ
(2)
33

χ
(2)
12

χ
(2)
21

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

w0,12 + φ2,1

− w0,12 − φ1,2

− φ2,1 + φ1,2

w0,22 + φ2,2

− w0,11 − φ1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
χ
(0)
31

χ
(0)
32

)
=
(

v0,11 − u0,12

− u0,22 + v0,12

)
,

(
χ
(1)
31

χ
(1)
32

)
=
(
φ2,11 − φ1,12

φ2,12 − φ1,22

)
,

(
χ
(3)
31

χ
(3)
32

)
=
(

−χ
(1)
31

− χ
(1)
32

)

(5e)

5 Principle of Virtual Displacements

The strain energy U in the region V occupied by the elastically deformed material
is written as
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U = Uσ + U (6)

where Uσ—“classical” part of the strain energy, Uχ—size-dependent part of the
strain energy:

Uσ =
∫
V

σij εij dV,Uχ =
∫
V

mijχij dV

The work done by the external forces is

W =
∫
�

qdx1dx2 (7)

The kinematic energy K can be written as

K = 1

2

∫
V

ρ0

(
u̇2
i

)
d (8)

6 Governing Equations

The expression of the dynamic version of the principle of virtual displacements:

∫ t2

t1

δU − δK − δW =
∫ t2

t1

δUσ + δUχ − δK − δW = 0 (9a)

where δU, δK, δW are the variation of strain energy, kinetic energy, and work done
by external applied forces:

δUσ =
∫
�

∫ h
2

− h
2

(σ11δε11 + σ22δε22 + σ12δγ12 + σ13δγ13 + σ23δγ23) dx3dx1dx2,

(9b)

δUχ =
∫
�

∫ h
2

− h
2

(m11δχ11 + m22δχ22 + m33δχ33 + m12 (δχ12 + δχ21)

+m13 (δχ13 + δχ31) + m23 (δχ23 + δχ32)) dx3dx1dx2,

(9c)

δK =
∫
�

∫ h
2

− h
2

ρ0 (u̇iδu̇i) dx3dx1dx2, (9d)
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δW =
∫
�

qδwdx1dx2, (9e)

After substituting (4a) in (9b), (5a)–(5c) in (9c), (1) in (9d) we obtain:

δUσ =
∫
�

[
N11δε

(0)
1 + M11δε

(1)
1 + P11δε

(3)
1 + N22δε

(0)
2 + M22δε

(1)
2 + P22δε

(3)
2

+N12δγ
(0)
12 + M12δγ

(1)
12 + P12δγ

(3)
12 + N13δγ

(0)
13 − R13c2δγ

(0)
13 +

+N23δγ
(0)
23 − R23c2δγ

(0)
23

]
dx1dx2

(10)

δUχ =
∫
�

[
A11δχ

(0)
11 + c2C11δχ

(2)
11 + A22δχ

(0)
22 + c2C22δχ

(2)
22 + A33δχ

(0)
33 + c2C33δχ

(2)
33

+A12

(
δχ

(0)
12 + δχ

(0)
21

)
+ c2C12 + A13δχ

(0)
31 + B13δχ

(1)
31 + 2c2B13δχ

(1)
13

−c1D31δχ
(1)
31 + A23δχ

(0)
32 + B23δχ

(1)
32 − 2c2B23δχ

(1)
23 − c1D23δχ

(1)
32

]
dx1dx2

(11)

δK =
∫
Ω

[(
I0u̇0 + I1φ̇1 − c1I3ϕ̇1

)
δu̇0 + (

I1u̇0 + I2φ̇1 − c1I4ϕ̇1
)
δφ̇1

+c1
(−I3u̇0 − I4φ̇1 + c1I6ϕ̇1

)
δϕ̇1 + (

I0v̇0 + I1φ̇2 − c1I3ϕ̇2
)
δv̇0

+ (
I1v̇0 + I2φ̇2 − c1I4ϕ̇2

)
δφ̇2 + c1

(−I3v̇0 − I4φ̇2 + c1I6ϕ̇2
)
δϕ̇2

+ I0ẇ0δẇ0] dx1dx2

(12)

where

Nij =
∫ h

2

− h
2

σij dx3,Mij =
∫ h

2

− h
2

x3σij dx3, Rij =
∫ h

2

− h
2

x2
3σij dx3, Pij =

∫ h
2

− h
2

x3
3σij dx3,

Aij =
∫ h

2

− h
2

mijdx3,Bij =
∫ h

2

− h
2

x3mijdx3, Cij =
∫ h

2

− h
2

x2
3mijdx3,Dij =

∫ h
2

− h
2

x3
3mijdx3,

ϕ1 = φ1 + w0,1, ϕ2 = φ2 + w0,2, Ii =
∫ h

2

− h
2

ρ0x
i
3dx3.

After substituting (4b), (4c) in (10), (5d), (5e) in (11), and integration (9a) by parts
in respect (10)–(12), and collecting the coefficients for δu0, δv0, δw0, δφ1, δφ2, the
following system of equations of motion will be obtained:
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δu0 : N11,1 + N12,2 + 1

2
A23,22 + 1

2
A13,12 = I0ü0 + J1φ̈1 − c1I3ẅ0,1

δv0 : N22,2 + N12,1 − 1

2
A13,11 − 1

2
A23,12 = I0v̈0 + J1φ̈2 − c1I3ẅ0,2 (13)

δw0 : (N13 − c2R13),1 + (N23 − c2R23),2 + c1
(
P11,11 + 2P12,12 + P22,22

)
−1

2
K1,12 + 1

2
K2,11 − 1

2
K2,22 + c2B13,2 − c2B23,11 + q = I0ẅ0

+c1I3
(
ü0,1 + v̈0,2

) + c1J4
(
φ̈1,1 + φ̈2,2

) − c2
1I6

(
ẅ0,12 + ẅ0,22

)

δφ1 : (M11 − c1P11),1 + (M12 − c1P12),2 − (N13 − c2R13)

−1

2
K3,12 − 1

2
K4,22 + 1

2
K5,1 + 1

2
K6,2 + c2B23 = J1ü0 + κφ̈1 − c1J4ẅ0,1

δφ2 : (M22 − c1P22),2 + (M12 − c1P12),1 − (N23 − c2R23)

+1

2
K3,11 + 1

2
K4,12 + 1

2
K7,1 − 1

2
K5,2 − c2B13 = J1v̈0 + κφ̈2 − c1J4ẅ0,2

where
K1 = A11 − A22 + c2(C11 − C22), K2 = A12 + c2C12, K3 = − B13 + c1D13,

K4 = − B23 + c1D23, K5 = A12 − c2C12, K6 = A22 − A33 + c2(C33 − C22),
K7 = A33 − A11 + c2(C11 − C33), Ji = Ii − c1Ii + 2, κ = I2 − 2c1I4 + c2

1I6.
Natural boundary conditions can be obtained from the following relation:

∫

∂Ω

[
H1δu0 + H2δv0 + H3

∂δu0

∂x2
− H3

∂δv0

∂x1
+ H4δw0 + H5

∂δw0

∂x1
+ H6

∂δw0

∂x2

+H7δφ1 + H8δφ2 + H9
∂δφ1

∂x2
− H9

∂δφ2

∂x1

]
dσ = 0

where ∂�—the piecewise smooth boundary curve of �, (n1, n2)—coordinates of
the normal n to ∂�,

H1 = N11n1 + N12n2 + 1

2

(
A13,1n2 + A23,2n2

)

H2 = N12n1 + N22n2 + 1

2

(−A13,1n1 − A23,2n1
)

H3 = 1

2
(−A13n1 − A23n2)



166 M. Barulina et al.

H4 =
(
c1
(
P11,1 + P12,2

) + N13 − c2 (R13 + B23) − 1

4

(
K1,2 − 2K2,1

))
n1

+
(
c1
(
P22,2 + P12,1

) + N23 − c2 (R23 − B13) − 1

4

(
K1,1 + 2K2,2

))
n2

−
(
c1I3ü0 + c1J4φ̈1 − c2

1I6ẅ0,1

)
n1 −

(
c1I3v̈0 + c1J4φ̈2 − c2

1I6ẅ0,2

)
n2

H5 =
(

−
(

c1P11 + 1

2
K2

)
n1 −

(
c1P12 − 1

4
K1

)
n2

)

H6 =
(

−
(

c1P12 + 1

4
K1

)
n1 −

(
c1P22 − 1

2
K2

)
n2

)

H7= (M11−c1P11) n1+ (M12−c1P12) n2+1

2

(
K5n1+

(−K3,1−K4,2+K6
)
n2
)

H8= (M22−c1P22) n2+ (M12−c1P12) n1+1

2

((
K3,1+K4,2+K7

)
n1−K5n2

)

H9 = 1

2
(K3n1 + K4n2) .

7 Discussion

Let’s compare Eqs. (13) with the equations of motion of plates obtained by Reddy
according to the third-order theory [41]:

N11,1 + N12,2 + Xu = I0ü0 + J1φ̈1 − c1I3ẅ0,1

N22,2 + N12,1 + Xv = I0v̈0 + J1φ̈2 − c1I3ẅ0,2 (14)

(N13 − c2R13),1 + (N23 − c2R23),2 + c1
(
P11,11 + 2P12,12 + P22,22

) + q

+Xw = I0ẅ0 + c1I3
(
ü0,1 + v̈0,2

) + c1J4
(
φ̈1,1 + φ̈2,2

) − c2
1I6

(
ẅ0,12 + ẅ0,22

)
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(M11−c1P11),1+(M12−c1P12),2− (N13−c2R13)+Xφ1=J1ü0+κφ̈1 − +c1J4ẅ0,1

(M22−c1P22),2+(M12−c1P12),1− (N23−c2R23)+Xφ2=J1v̈0+κφ̈2 − +c1J4ẅ0,2

where Xu, Xv,Xw, Xφ1 , Xφ2—addendums that distinguish Reddy’s equations from
the equations obtained in this article. They are defined by the following expressions:

Xu = 1

2
A23,22 + 1

2
A13,12,Xv = −

(
1

2
A13,11 + 1

2
A23,12

)

Xw = 1

2

(−K1,12 + K2,11 − K2,22
) + c2

(
B13,2 − B23,1

)

Xφ1 = −1

2
K3,12 − 1

2
K4,22 + 1

2
K5,1 + 1

2
K6,2 + c2B23

Xφ2 = 1

2
K3,11 + 1

2
K4,12 + 1

2
K7,1 − 1

2
K5,2 − c2B13

Equations (14) show that the right part of the equations did not change after taking
into account size-dependent effects. Also, only the left part of equations has some
addendums due to using the new modified couple stress theory. Moreover, the
natural boundary conditions consist of nine equations whereas the “classical” third-
order theory leads to only six natural boundary conditions.

Thus, we can use for numerical simulation of dynamics of plates the same
functions, which are used for in the framework of the third-order theory. However,
if we have a deal, for example, with a laminated composite plate, the problem of
study of its dynamics looks more complicated.

8 Conclusions

The equations of motion of a NEMS sensing element as anisotropic rectangular size-
dependent nanoplate were obtained by using the dynamic version of the principle of
virtual displacements, the modified couple-stress theory and the third-order theory
of laminated composite plates and shells.

The obtained equations were compared with the equations of the plate’s motion
based on the third-order theory obtained by Reddy. This comparison showed that
taking into account the size-dependent effects according to the modified couple-
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stress theory leads to additional terms on the left side of the equations and does not
lead to a change in the right “dynamic” part.
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Dynamic Analysis and Damage
of Composite Layered Plates Reinforced
by Unidirectional Fibers Subjected Low
Velocity Impact

Josef Soukup , Milan Zmindak , Pavol Novak, Frantisek Klimenda ,
Michal Kaco, and Lenka Rychlikova

Abstract Currently, for dynamic modeling in composite structures at low and
high speeds are used mainly Finite Element Method (FEM). For these analyzes
commercial FEM software ABAQUS/explicit, LS-DYNA, AUTODYN and PAM
CRASH, etc., are used in practice. In the present study, low-velocity impact
response of composite laminates was studied using ABAQUS/Explicit code (FEM)
to investigate damage by employing various damage criteria. The basic material
properties in and transverse to the fiber directions, such as the elastic moduli,
strains at failure, and plastic moduli among others are determined by simple tests
in tension, compression, and shear. The material properties AS4/PEEK was used in
numerical simulations and have been taken from the literature. Layer is considered
as homogeneous transversely isotropic and layer stacking sequence is symmetrical
or unsymmetrical. The solution in the form of time integration can be, depending on
the problem, accomplished via implicit or explicit methods. For many of dynamic
problems explicit methods have shown more suitable, cause they do not require
stiffness, mass and damping matrix decomposition. In the plates examined, von
Mises’s stress and damage caused shear stress in the matrix and fiber were evaluated.
From the results obtained, it was found that the von Mises stress was approximately
the same for all types layer stacking sequence.
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1 Introduction

Fiber reinforced polymers (FRP) are most commonly used materials in various fields
of industry. In the recent years quickly developing industries such as aerospace,
ship and car industry almost completely rely on composite materials, especially
on layered polymers reinforced with glass, aramid or carbon fibers and sandwich
constructions consisting of FRP coatings with a foam core. Such constructions offer
high strength at low weight, which considerably improve their performance (higher
loading capacity, lower fuel consumption, etc.) especially in ship and aerospace
industry [1, 2]. These materials also have good antiballistic properties, for example
modern bulletproof vests are made from aramid fibers.

The most important characteristic of the composite materials is that they can be
layered, with the fibers in each layer running in a different direction. This allows
an engineer to design structures with unique properties, furthermore a structure can
be designed so that it will bend in one direction, but not another. Impact damage is
one of the main problems that composite structures face, there needs to be a way of
reducing that damage when it occurs, reducing it enough so that the integrity of the
structure is not comprised.

Today, typically, numerical models based on lamina-level failure criteria are used
to simulate the damage of the fiber-reinforced composite material, although with
well-accepted limitations. In this constitutive models, composite, are modelled as
orthotropic linear elastic materials within the failure surface. The failure surface
is defined by the failure criterion as maximum stress/strain criterion, Hashin’s
criterion, Christensen’s criterion, Chang-Chang’s criterion, Puck’s criterion, LARC,
etc. [3, 4].

They are many definition of low velocity or low energy impact due of the great
number of parameters that should be study such as the velocity, the shape and the
mass of the impactor [5]. The dynamical response of the structure depends therefore
on the duration of the contact between the structure and the impactor. Cantwell
and Morton [6] have proposed that every dynamic solicitation corresponding to an
impact speed below 10–20 m/s can be considered as a low velocity impact. On other
hand, Abrate [7] considers that the impact speed limit defining a low velocity impact
is five to ten time greater than the one proposed by Cantwell and Morton (100 m/s).
Liu et al. [8] uses a different approach based on the internal damage of the impacted
structure. They postulate that a high velocity impact leads to fibres rupture where as
low velocity impact leads to internal delamination and matrix cracking.

2 Theory Background and Solution Method

The contact between two components or bodies is a static phenomenon if the two
bodies are static equilibrium. Otherwise the contact is a dynamic phenomenon. A
dynamic contact is often much complicated than static one. The term ‘contact-
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impact’ is often used to stress the dynamic effects in contact phenomena [9,
10]. By nature, contact phenomena always involve friction phenomena. However,
friction effects may be neglected in situations where frictional forces are sufficiently
small. Therefore, we may have a frictionless contact, which is a special case of
general contact. Mechanical problems involving contact are inherently non-linear
and contact problems involve unknown boundary conditions.

2.1 Transient Stress Analysis

Figure 1 shows the transient analysis model of laminate and punch. At the t moment,
the equilibrium equation can be deduced as:

σ t
ij,j = ρt üi + μt u̇i (1)

where ρt and μt are the density and dynamic friction coefficient of laminate at t
moment, respectively.

σ t
ij nj − T

t

i = 0 (on Sσ ) (2)

where, Sσ represents the stress boundary.
The equivalent integration of the equilibrium equation and the load boundary

condition can be expressed, as follows:

∫

V

δui

(
σ t
ij,j − ρt üi − μt u̇i

)
dV −

∫

sσ

δui

(
σ t
ij nj − T

t

i

)
dS = 0 (3)

As there will be geometric nonlinearity during the deformation of composite under
the low-velocity impact load, strain tensor at the t moment can be expressed, as
follows [11, 12]:

Fig. 1 Transient analysis
model of laminate and punch
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εtij = 1

2

(
uti,j + utj,i + utk,i u

t
k,j

)
, (i, j, k = x, y, z) (4)

Decompose the above equation in to linear and nonlinear terms

ε = εL + εNL (5)

There is the following relationship of σ t
ij and εtkl at t moment

σ t
ij = Q

t−Δt

ijkl + εtkl (6)

where Q
t−Δt

ijkl represents material elasticity matrix at t − �t moment, and it can be
obtained by coordinate transformation [13]

Q
t−Δt

ijkl = [T ] Q t−Δt [T ]T (7)

Using Eqs. (3) and (6), the stress equilibrium equation at each moment can finally
be deduced as
∫ (

δεij Q
t−Δt

ijkl εkl+δui ρ
t üi+δui μ

t u̇i

)
dV+

∫

Vn−1

σn−1
ij δ

(
Δηij

)
dV=

∫

Sσ

T
n

i δui dS

(8)

where T
t

i and T
n

i are the surface force at t moment and nth step in numerical analysis
respectively; δεij represents the strain at t moment; and, �ηij is the nonlinear term
of strain increment.

2.2 Solution Methods

Recently the most successful method for modeling the dynamic response of a
structure is FEM [14]. The solution in the form of time integration can be, depending
on the problem, accomplished via implicit or explicit methods. Although implicit
methods are unconditionally stable (they are not dependent on the time step size),
for wave propagation problems explicit methods have shown more suitable, cause
they do not require stiffness, mass and damping matrix decomposition. The system
of equations has the form

Mü(t) + Cu̇(t) + Ku(t) = Fext
(t) (9)

The solution of this system is carried out for each time step via the explicit central
difference method. Here, the acceleration in time t has the form
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ü(t) = M−1
[
Fext
(t) − (

Cu̇(t) + Ku(t)
)] = M−1

[
Fext
(t) − Fint

(t)

]
(10)

where Fext
t is the vector of external forces and Fint

t is the vector of internal forces
gives as

Fint
t =

∑(∫
�

(
BT σndΩ + Fhg

))
+ Fcont (11)

Velocities and accelerations have the form

Δt2ü(t) = u(t−Δt) − 2u(t) + u(t+Δt) (12)

2Δt u̇(t) = u(t+Δt) − u(t−Δt) (13)

The starting procedure has the form

u(t−Δt) = u(0) − Δt u̇(0) + Δt2

2
ü(0) (14)

By applying zero initial conditions to the displacements and velocities, the starting
procedure has the form

ü(t−Δt) = M-1Fext
(0) (15)

The stability of the central difference method depends on the length of the time step,
which has to be divided into the shortest natural domains in the finite element mesh.
The critical time step is computed by following relation

Δtcrit = 2

ωmax
(16)

where ωmax is the maximum natural circular frequency. The calculation is based on
Courant-Friedrichs-Lewy condition (CFL condition) for solving partial differential
equations numerically by the method of finite differences

ωmax = 2
c

1
(17)

where c is the wave speed in the material and l is the characteristic length. By
substitution (Eq. 9) into (Eq. 7) we obtain relation for critical time step

Δt = l

c
(18)
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Fig. 2 Quadrilateral and triangular shell element

where �t is time required for wave propagation in rod with length l. During time
step calculation, ABAQUS/explicit program check size of all finite elements. For the
numerical stability of calculation was used coefficient 0.9 for time step reduction

Δt = 0.9
l

c
x (19)

Characteristic length of a shell element is given as

l = A

max (l1, l2, l3, l4)
(20)

where A is the element area, li are lengths sides of Fig. 2. For triangular shell element
the relation has the form

l = 2A

max (l1, l2, l3)
(21)

Wave propagation velocity in a shell element is given by relation

c =
√

E

ρ
(
1 − μ2

)x (22)

where E is the Young modulus, ρ is mass density and μ is the Poisson number.

3 Description of Problem and Modelling Approach

Today, typically, finite element numerical models based on lamina-level failure
criteria are used to simulate the damage of the fiber-reinforced composite material.
Damage modeling usually encompasses two phases: damage initiation and damage
evolution.
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3.1 Materials

In the present paper, Hashin’s criterion is implemented to identify fiber and matrix
failure initiation. This criterion involves four damage modes, namely, fiber tension,
fiber compression, matrix tension and matrix compression modes according to the
following equations:

1. Fiber tensile failure:
(
σ̂11 ≥ 0

)
:

(
σ̂11

XT

)2

+ σ̂ 2
12 + σ̂ 2

13

S2
12

=
{≥ 1 failure

< 1 no failure
(23)

2. Fiber compressive failure
(
σ̂11 < 0

)
:

(
σ11

XC

)2

=
{≥ 1 failure

< 1 no failure
(24)

3. Matrix tensile failure
(
σ̂22 ≥ 0

)
:

Fmt =
(
σ̂22

YT

)2

+
(
σ̂12

S12

)2

= 1 (25)

4. Matrix compressive failure
(
σ̂22 < 0

)
:

Fmc =
(

σ̂22

2S23

)2

+
[(

YC

2S23

)2

− 1

]
σ̂22

YC
+
(
σ̂12

S12

)2

= 1 (26)

where, σ ij
!
σ ij are effective stress, XT and XC are tensile and compressive

strength of composite laminate in fiber direction, YT and XC are tensile and
compressive strength in transverse direction, S12 and S23 are longitudinal and
transverse shear strength of the composite, respectively. The coefficient α is for
shear stress contribution on the fiber tensile failure.

The material of present composite is an AS4/PEEK quasi-isotropic laminate. For
the simulation of impact damage has been used four types of orientation layers
(layup):

[
0
0
0
0

]

S

,

[
0
0
90
90

]

S

,

[
45
45
45
45

]

S

(27)

Material parameters of the laminate plate are listed in Tables 1 and 2.
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Table 1 Material properties of AS4/PEEK

E11
(GPa)

E22
(GPa) ν12 (–)

G12
(GPa)

G13
(GPa)

G23
(GPa) ρ (kg/m3) XT (MPa) XC (MPa)

138 10.2 0.3 5.7 5.7 3.7 1570 2070 1360
YT
(MPa)

YC
(MPa)

SL
(MPa)

ST
(MPa)

86 230 186 86

Table 2 Fracture energy of
laminate (course of damage)
[15]

F t
f F c

f F t
m F tc

m

Fracture energy (N/mm) 12.5 12.5 1.0 1.0

Fig. 3 Geometry of composite plate and impactor (to the left), boundary conditions (to the right)

Fig. 4 Finite element mesh
of conventional shells

3.2 Finite Element Modeling

In the next simulations were considered composite plate with dimensions 120 ×
120 × 2 mm composed from eight layers. Due to the symmetry, only quarter of
the geometry was modelled to save the computational cost (Fig. 3). The composite
plate structure was created in ABAQUS/explicit using the composite module [16].
This module involves the formation of conventional and volumetric shells (Figs. 4
and 5). This module defines the individual layers of the composite structure, the
type of integration rule, symmetry, material properties, thickness, orientation and
the number of integration points of the layer.

The composite plate is composed from the eight-node brick hexahedral elements
with one integration point (C3D8R) and 50,000 elements were used in the simula-
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Fig. 5 Finite element mesh
of volumetric shells

tion. A refined, uniform mesh was used in the impact region. The ABAQUS/Explicit
simulations presented here examined the penetration of plate specimens.

The projectile has cylindrical shape with semi-spherical fillet with a radius R
= 5 mm. Since results from ballistic experiments showed negligible deformation,
plastic deformation of the projectile is not considered. The projectile impacts the
plate perpendicularly, right is center of the plate with a defined initial speed vi =
100 m/s and the plate was supported on all edges. FE mesh for the shell geometry
was created using 5450 linear triangular elements S3R and for solid geometry has
been used 39.520 linear SC6R brick elements (Fig. 5).

The composite structure consists of 8 layers, one layer having a thickness of
0.25 mm. The number of integration points has been set by default. The following
four types of layer orientation were used to simulate the impact damage (27).

4 Result

The ABAQUS/Explicit simulations presented here examined the penetration of
composite plate samples impacted with steel rod with a hemispherical. Figures 6
and 7 show the dependence of acceleration and velocity on time at the node where
is maximum displacement. The maximum value of acceleration is 5.2e+08 m/s2 and
maximum value of velocity is 139 m/s.

In the volumetric shell geometry, the maximum stress was von Mises 2090 MPa
and the shear damage occurred only in the area close to the impactor impact (Fig.
8). In conventional shell geometry, damage propagate from the impact point to the
edge of tested plate, and shear damage also occurred at the edges of the plate. The
maximum von Mises stress reached 2100 (Fig. 9).
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Fig. 6 Time history of acceleration at node with maximum displacement

Fig. 7 Time history of velocity at maximum displacement

5 Conclusion

In this paper for the analysis of laminate composite plates two models are used.
The first is the solid based model and other is shell based model. There were
also compared four different arrangement of the layers of the composite. As a
criterion damage the composite plate was used Hashin damage model. The results
obtained show that the von Mises stress have approximately the same value for
all types of arrangements of the layers. For solid model, and also for the shell
model was the largest von Mises stress in the arrangement of layers [0/0/90/90]s
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Fig. 8 Course of von Mises stress (to the left) and shear stress (to the right) for volumetric shell
geometry—[0/0/90/90]s

Fig. 9 Course of von Mises stress (to the left) and shear stress (to the right) for conventional shell
geometry—[0/0/90/90]s

the lowest von Mises stress was in the arrangement of the layers [90/0/0/0]s. For the
arrangement of layers [90/0/0/0]s, [45/45/45/45]s is the lowest von Mises stress for
shell based model. The largest shear stresses were in the arrangement of the layers
[45/45/45/45]s for solid as well as shell based model. The largest deformation was
at the area of impact, which gradually propagate to the depth of the material. From
the results we can see that the orientation of the layers in the composite structures
can have a significant effect on the behavior of the structure.
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Faculty of Mechanical Engineering (UJEP-IGS-2018-48-002-1 and UJEP-SGS-2018-48-002-2).



182 J. Soukup et al.

References

1. Barbero, E.J.: Introduction to Composite Materials Design. CRC Press, Boca Raton (2011)
2. Marulo, F., Guida, M., Maio, L., Ricci, F.: Numerical simulation and experimental experiences

of impact on composite structures. In: Dynamic Response and Failure of Composite Materials
and Structures. Woodhead Publishing, Duxford (2017)

3. Barbero, E.J.: Finite Element Analysis of Composite Materials Using ABAQUS. CRC Press,
Boca Raton (2013)

4. Zhang, H., Wang, M., Wen, W., Xu, Y., Cuiu, H., Chen, J.: A full-process numerical analyzing
method of low velocity impact damage and residual strength for stitched composites. Appl.
Sci. 8, 2698 (2018). https://doi.org/10.3390/app8122698

5. Dong, S., Sheldon, A., Carney, K.: Modeling of carbon-fiber-reinforced polymer (CFRP)
composites in LS-dyna with optimization of material and failure parameters in LS-OPT. In:
15th International LS-DYNA Users Conference, 10–12 June 2018, Detroit, MI, USA

6. Cantwell, W.J., Morton, J.: The impact resistance of composite materials—a review. Compos-
ites. 22, 347–362 (1991)

7. Abrate, S.: Impact Engineering of Composite Structures. Springer, Udine (2011)
8. Liu, D., Malvern, L.E.: Matrix cracking in impacted glass/epoxy plates. J. Compos. Mater. 21,

594–609 (1987)
9. Zhong, Z.-H.: Finite Element Procedures for Contact-Impact Problems. Oxford University

Press, Oxford (1993)
10. Wriggers, P.: Computational Contact Mechanics. Antony Rowe Ltd., Chippenham (2002)
11. Bathe, K.J.: Finite Element Procedures. Prentice-Hall Inc., Englewood Cliffs, NJ (1995)
12. Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures. Essentials, vol.

1. John Wiley & Sons Ltd., Chichester (2000)
13. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures.

John Wiley & Sons Ltd., Chichester (2000)
14. Ibrahimbegovic, A.: Nonlinear Solid Mechanics, Theoretical Formulations and Finite Element

Solution Methods. Springer, New York (2009)
15. Nanderi, M., Khonsari, M.M.: Ch. 4: Stochastic analysis of inter- and intra-laminar damage

in notched PEEK laminates. In: EBSCO HOST Connection. Online version, vol. 7, p. 383.
Louisiana State University (2013)

16. ABAQUS. Theory manual version 6.10. Documentation [online]. 2015. [cit. 10.03.2015].
Available from: <http://abaqusdoc.ucalgary.ca/books/stm/default.htm> (2010)

http://dx.doi.org/10.3390/app8122698
http://abaqusdoc.ucalgary.ca/books/stm/default.htm


Identification of Nonlinear Joint Interface
Parameters Using Instantaneous Power
Flow Balance Approach

R. Anish and K. Shankar

Abstract Joints in assembled structures can affect the dynamic behaviour of
mechanical structures under dynamic loading conditions. Mathematical modelling
of such structures, one need to consider the joint interface effects accurately. In this
paper a bolted lap joint is modelled with a nonlinear spring and a damper to simulate
the nonlinear effects like softening phenomena due to slip, associated with the joint
structures. The known parametric model of the assembled beam structure with joint
interface non-linearity was simulated ‘experimentally’ under a harmonic external
excitation to find the responses. The parameter identification was formulated as an
inverse problem using Particle Swarm Optimization algorithm. The error between
experimentally measured and numerically predicted response matching and a novel
Instantaneous Power Flow Balance criterion based objective functions are used for
the identification of nonlinear parameters. The identified nonlinear parameters show
the accuracy of the current method over other time domain methods.

Keywords Structural identification · Power flow · Substructure · Particle swarm
optimization

1 Introduction

Structural identification problems are inverse analysis problems, which concerned
with system modeling from input output information. Most commonly used param-
eter identification problems are vibration-based identification techniques. In recent
years researchers are biased towards the area of nonlinear structural parameter
identification with the objective to develop more accurate mathematical model.
Nonlinear parameter identification problems are more generic in nature and there
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exist no common analysis procedure that can be applied to all nonlinear problems
at all instances. Kerschen et al. [1], Noel and Kerschen [2] reviewed the state of
art nonlinear structural parameter identification techniques. Koh et al. [3, 4] used
the substructure technique to decomposes a large system to small manageable sub-
systems to improve the convergence of structural parameter identification. Varghese
and Shankar [5] introduced an inverse identification technique, which investigates
the application of substructural power flow to linear structural parameter estimation.
Kapania and Park [6] studied a two-step identification process using Time Finite
element Method (TFM) for the structural parameter identification. Kumar and
Shankar [7] worked on nonlinear parametric identification by formulating an inverse
problem using substructure acceleration matching objective function with Genetic
Algorithms.

Bowden and Dugundji [8] explain the global dynamics of jointed structures by
considering both the linear and nonlinear analysis separately. Li et al. [9] proposed a
general analytical method for predicting the vibrations and power flow between two
coupled beams. Ahmadian and Jalali [10] presented an accurate lumped parameter
model for bolted lap joints and the responses were found using the method of
multiple scales. Ahmadian and Jalali [11] developed a nonlinear generic joint
element for Finite Element modelling of bolted lap joints. Ma et al. [12] presented
a technique for constructing a non-parametric model for identifying the dynamic
effects of bolted joints using laser vibrometry analysis.

Several researchers revealed the superiority of the Particle Swarm Optimization
(PSO) algorithm (proposed by Eberhart and Kennedy [13]) over other non-classical
algorithms. In this work a multi objective optimization problem was formulated
using a novel concept of instantaneous power flow balance criteria based objective
function along with substructure acceleration matching criteria as a weighted
aggregation approach for the nonlinear structural parameter identification.

2 Joint Interface Model

Generally the nonlinearities associated with joints are functions of relative dis-
placements and the direct measurement of relative displacements between two
contacting surfaces is not possible to get in practice. In this paper the parameters
of a nonlinear joint are identified through an inverse problem approach using
acceleration response matching and instantaneous power flow balance objective
functions. A Finite Element based lumped joint interface model is used here
to simulate the experiment on assembled structure of steel beams. The lumped
model consists of a linear translational stiffness (KL) and torsional Stiffness (Kθ),
nonlinear translational spring (KNL) and a linear damper (C) and is shown in Fig. 1.
A parametric model with joint interface coefficients, KL = 8.089 × 108 N/m;
C = 0.281 Ns/m; Kθ = 3264 N/rad; KNL = 3.722 × 106 N/m3, was selected for the
analysis. A finite element modal analysis of the nonlinear joint system was carried
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Fig. 1 Lumped joint interface model

out in ANSYS
®

using BEAM188, MASS21, COMBIN14 and nonlinear spring
COMBIN39 elements and found the first three frequencies to be 9.8306, 69.07 and
226.92 Hz. Figure 2 shows the frequency response plots of the model using ANSYS
software. The dynamic responses of the model in terms of acceleration, velocity and
displacement are generated using a single frequency harmonic excitation applied
very close to fixed end of the assembled beam.

3 Substructure Formulation

Substructure without overlapping is studied here. The equations of motion for the
substructure considered may be extracted from the system of partitioned equations
following the method described in Koh et al. [3–5].

[
MrfMrrMrg

]
⎧⎨
⎩
üf

ür

üg

⎫⎬
⎭ + [

Crf CrrCrg

]
⎧⎨
⎩
u̇f

u̇r

u̇g

⎫⎬
⎭ + [

KrfKrrKrg

]
⎧⎨
⎩
uf

ur

ug

⎫⎬
⎭ = {Pr(t)}

(1)

where, the subscript ‘r’ denotes internal DOFs of the concerned substructure,
subscripts ‘f ’ and ‘g’ represents the interface DOFs. Let subscript ‘j’ denote all
interface DOFs (i.e. ‘f ’ and ‘g’ included) for concise presentation the above equation
can be written as
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Fig. 2 Frequency response plots of the model using ANSYS

[
MrjMrr

] { üj
ür

}
+ [

CrjCrr

] { u̇j
u̇r

}
+ [

KrjKrr

] {uj
ur

}
= {Pr(t)} (2)

This can be rearranged to bring the interior partitions to the left and interface effects
in the form of a force on to the right as,

Mrr ür (t) + Crr u̇r (t) + Krrur(t) = Pr(t) − Mrj üj (t) − Crj u̇j (t) − Krjuj (t)

(3)

Pr(t) is the excitation force applied on the interior node(s). In the absence of force
excitation within the substructure, then Pr(t) is taken zero that means the force
application is outside the substructure. The left side of Eq. (3) represents the output
from the substructure while right side is treated as input to the substructure.

4 Objective Functions

Two identification methods have been reported in this paper: one based on accel-
eration (response/modal data) matching objective function and the other based
on Instantaneous Power Flow Balance Objective function, both uses the inverse
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problem strategy for identification. A multi objective problem was formulated by
combining both the conventional acceleration matching and instantaneous power
flow balance approach. The substructure identification method used in this work,
allows the researchers to concentrate, the sensor measurements to a smaller zone of
interest and thereby reducing the computational time.

4.1 Substructure Acceleration Matching

The concept of sub structuring is the ‘divide and conquer’ rule, in which the global
structure is sub divided into substructures. The first fitness function is formulated by
comparing the error between measured and estimated acceleration as

f1 =
∑M

i=1

∑T

j=1

(ẍm − ẍe)
2

T ∗ M
(4)

where, the subscripts ‘m’ and ‘e’ represents the measured and estimated acceleration
response for fitness evaluation. ‘M’ is the number of measurement points or sensor
locations and ‘L’ is the number of time steps. Here the measured acceleration
response was simulated numerically and Fig. 3 represents the acceleration matching
between global and substructure accelerations of the joint assembly.

Fig. 3 Acceleration matching global structure and substructure accelerations
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4.2 Instantaneous Power Flow Balance

Power flow balance is another form of law of conservation of energy. The power
balance criteria states that within a substructure the net sum of power that is net sum
of input, damping and transferred power is zero. The main purpose of instantaneous
power study is to formulate an objective function in terms of instantaneous power
flow balance as

f2 = 1

T

T∑
i=1

(
IP b

e

)2
(5)

where, ‘T’ is the number of time steps and superscript ‘e’ denotes the estimated
instantaneous power balance for objective function evaluation.

4.3 Weighted Aggregation Approach

The two objective functions, Eqs. (4) and (5) are combined together to form a
multi objective optimization problem using weighted aggregation approach. The
combined objective function can be represented as

f = w1f1 + w2f2 (6)

where, w1 and w2 are non-negative weighting factors, which takes values between
0 and 1, such that

∑
wi = 1, where ‘i’ is the number of objective functions. In this

paper, weighting factors of {0.5, 0.5} was chosen as explained in [5]. Figure 4, shows

Fig. 4 Instantaneous power flow balance plot
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the Instantaneous Power Flow Balance (IPFB) plot corresponding to each time step
in the time span 0.8–1.4 s. From Fig. 4 it is found that, IPFB is of the order of 1e−4

which is close to zero. Now the combined objective function is passed to Particle
Swarm Optimization algorithm for minimization and thereby structural parameter
identification.

5 Identification of Joint Interface Parameters

The nonlinear joint interface parameter identification is explained through a numer-
ical model of two beam connected by a single bolted lap joint as in Ahmadian
and Jalali [10] was selected. The assembly consists of two identical steel beams
connected by a bolted lap joint of same material. Length of each beam is taken as
280 mm with and width 25 and 5 mm thickness. One end of the beam assembly
is fixed and the other end carries a steel block of 0.1739 kg as shown in Fig. 5.
Experiments show the nonlinearities associated with bolted assembly varies with
bolt tightness due to softening phenomena, which are modelled using a nonlinear
flexibility at the joint interface. In this particular simulation study, it is assumed that
the bolt is tightened with a constant torque (2 Nm), which remains constant during
the analysis. For the simulation study, a finite element model of the coupled beam
structure is developed by discretizing the assembly into 28-Euler Bernoulli beam
elements. The lap joint interface is modelled using a lumped joint model of linear
and nonlinear springs and a linear damper. The structure is excited with a harmonic
force of magnitude 0.5 N and a frequency 20 Hz, at a distance 40 mm, close to fixed
end of the beam assembly.

The substructure method without overlap is chosen for parameter identification
study. This will allow the researcher to concentrate on a small region of interest,
here the joint interface portion. In this case study, 60 mm to both sides of the
bolt axis was selected for the generation of substructure. The response for internal

Fig. 5 Geometrical diagram of simulated model
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Table 1 Actual values and identified results of lap joint interface parameters

Joint parameters Damping constants
Substructure
parameter

KL (N/m) Kθ (N/rad) KNL (N/m3) C (Ns/m) α β

Actual value 8.089 × 108 3264 3.722 × 106 0.281 3.244 1.209 × 10−4

Identified
value

7.948 × 108 3263 2.986 × 106 0.299 3.189 1.210 × 10−4

Mean
absolute %
error

1.740 0.002 19.778 6.646 1.690 0.004

DOF of the substructures is simulated using the time span of 0–2 s and sampling
time step of 0.0002 s using the Newmark beta numerical integration method. In
the substructure parameter identification procedure, the coefficients of linear (both
translational and rotary) springs, nonlinear spring and linear damper terms of the
lumped joint model are assumed as unknown parameters. The PSO with population
of 50, generation of 300, acceleration coefficients two and an inertia weight 0.9 has
been used for identification. The identification results are shown in Table 1. The
range of mean absolute error was found to be 0.002–19.778% the higher value in
the nonlinear parameter is due to the magnifying effect of the relative displacement
in the mathematical formulations.

6 Conclusions

A novel concept of nonlinear joint parameter identification using combined acceler-
ation matching and instantaneous power flow balance as objective functions in time
domain has been introduced. The proposed method was successfully implemented
on parameter estimation of a lap joints assembly as a nonlinear system. The error
in identification using the proposed method was found to be less than 6% for
the linear parameters and 19.778% for the non-linear parameters which are in
acceptable limits. The identified results show the feasibility of instantaneous power
flow balance objective function along with acceleration matching approach with the
aid of substructure concept, a valuable tool for the parameter estimation of nonlinear
lap joint assembly.
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Numerical Procedure for the Sensitivity
Analysis of Hybrid Systems

Radosław Pytlak, Damian Suski, and Tomasz Tarnawski

Abstract The paper presents the numerical procedure for the evaluation of adjoint
equations of hybrid systems for the purpose of gradients calculations of functions
dependent on states of hybrid systems. It is assumed that hybrid systems can have a
finite number of discrete states, in each discrete state the hybrid system is described
by a set of ordinary differential equations. In particular, the proposed procedure can
be used in optimization procedures for solving optimal control problems with hybrid
systems. For this reasons the presented procedure is based on the implementation
of a Runge–Kutta method which is advocated as the most suitable numerical
procedures for integration of differential equations with controls represented by
piecewise constant functions (Hager, Numer Math 87:247–282, 2000; Pytlak,
Numerical Methods for Optimal Control Problems with State Constraints. Lecture
Notes in Mathematics, vol. 1707. Springer, Berlin, 1999; Schwartz and Polak,
SIAM J Control Optim 34:1235–1269, 1996). Since we are dealing with hybrid
systems our numerical procedure is equipped with the procedure for locating
switching points which determine the change of a discrete state. The evaluation of
adjoint equations is consistent with the system equation discretization. We show the
effectiveness of our procedure on the example of planning a haemodialysis process.
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1 Introduction

Hybrid systems are systems with mixed discrete–continuous dynamics [11]. In this
work we use a definition of a hybrid which we used in our previous paper [7]. We
restrict our analysis to systems with autonomous transitions and without state jumps
during transitions

Definition 1 A hybrid system H is a tuple

H = (Q,U , I,F , T ,G) (1)

where

– Q is a finite set of discrete states. Its elements are denoted by q.
– U is a set of admissible controls. The elements of U are measurable functions

u : I → U , where I can be any closed interval of R and U is a fixed subset of
R
m.

– I is a function which assigns to every discrete state q a set

I(q) = {
x ∈ R

n : gq(x) ≤ 0
}
, gq : Rn → R

nIq (2)

such that as long as a hybrid systems is in a discrete state q the continuous state
trajectory x stays in I(q). We therefore say that I(q) is an invariant set for a
discrete state q.

– F is a function which assigns to every discrete state q a function f q : I(q) ×
U → R

n such that in a discrete state q the continuous state evolves according to
a differential equation

x′ = f q(x, u) (3)

– T is a subset of Q×Q, which collects all pairs of discrete states (q, q ′) such that
the transition from a state q to a state q ′ is possible.

– G assigns to each pair (q, q ′) ∈ T a subset of I(q) boundary such that when a
continuous state trajectory is about to leave I(q) through its boundary at a point
xt ∈ G(q, q ′) ⊂ ∂I(q) a discrete state changes from q to q ′. We call such an
event a transition and G plays a role of a transition guard.

Taking into account the considerations and the presented definition we now put
down the optimal control problem of interest, as follows:

minu∈U φ(x(t1)) (4)

x(t0) = x0 (5)

x′ =
{
f 1(x, u) ifg(x) < 0

f 2(x, u) ifg(x) > 0
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ψ1
i (x(t1)) = 0, for i ∈ E (6)

ψ2
j (x(t1)) ≤ 0, for j ∈ I. (7)

The admissible control is a function u : [t0, t1] → U . In the paper we do not
consider the system evolution in a sliding mode as we did in our paper [7] not
because the analysis prsented here is not applicable to that case but for the simplicity
of presentation. For the same reason we assume that the system evolve according
to ordinary differential equations, the presented results could be extended to a quite
broad class of differential–algebraic equations with index 3.

To calculate the optimal solution of the considered optimal control problem we
need gradients of all functionals defining the problem. They can be determined in
the similar way thus we only consider the gradient of the functional φ. Since x

depends uniquely on u the value φ(xtf ) depends on u.
We assume that at time tt state trajectory crosses the hyperplane g(x) = 0, and

up to time tt the system evolves according to the equation x′ = f 1(x, u) and
then according to the equation x′ = f 2(x, u). Under that assumption the adjoint
equations for the functional φ are (here t−t , t+t are latest and earliest times of system
being in states 1 and 2 respectively):

λ′ =
{

− (
f 1

)T
x
λ t ∈ (t+, tf )

− (
f 2

)T
x
λ t ∈ [0, t−)

with the endpoint condition

λ(tf ) = −φx(x(tf ))
T

and the jump condition

λ(t+t ) − λ(t−t ) = πtg
T
x (x(tt ))

f 1(x(t−t ), u(t−t ))T λ(t−t ) = f 2(x(t+t ), u(t+t ))T λ(t+t )

where νt is some number.
Having a solution to the adjoint equations we can provide the estimate of the

functional φ change due to the control variable variations d:

δφ(d) =
∫ tt

t0

−λT
(
f 1

)
u
(x, u)ddt −

∫ tf

tt

λT
(
f 2

)
u
(x, u)ddt. (8)

One issue which must be analysed is the extent of the jump in adjoint variables.
To this end we solve the jump conditions equations getting

πt = −λ(t+t )T
(
f 2(x(t+t ), u(t+t )) − f 1(x(t−t ), u(t−t ))

)
gx(x(tt ))f 1(x(t−t ), u(t−t ))
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λ(t−t ) = λ(t+t ) − λ(t+t )T
(
f 2(x(t+t ), u(t+t )) − f 1(x(t−t ), u(t−t ))

)
gx(x(tt ))f 1(x(t−t ), u(t−t ))

gTx (x(tt )).

However numerical integration of system and adjoint equations introduce errors.
One of the goals of the paper is to analyse how these errors influence accuracy of
the evaluated functionals gradients.

Between transitions, a system of differential equations is integrated with the help
of an appropriate numerical integration scheme. The numerical integration scheme
can be presented in a from of an equation

X(k + 1) = ϕ(X(k), u(k), h(k))) (9)

which describes the relation between the augmented state at the next step X(k + 1),
the augmented state at the present step X(k), the actual control u(k) and the actual
stepsize h(k) [5]. The discrete step k corresponds to a time instant t (k).

During the numerical integration a possible violation of invariant set conditions
has to be monitored. This task is realized by checking the sign changes of g(x(k)).
in subsequent steps, where x(k) = x(t (k)) at time t (k) corresponding to discrete
time k. When a sign change of g(x(k)) between discrete steps k and k+1 is detected,
the following problem is solved

find tt ∈ [t (k), t (k + 1)], s.t. g̃(tt ) = 0 (10)

where g̃(·) is a function, which approximates g(x(·)) on a time interval [t (k), t (k +
1)]. When a transition time tt is found, the actual iteration of numerical integration
is repeated but with a stepsize h(k) = tt − t (k) instead of h(k) = t (k + 1) − t (k).
We denote by kt the discrete time at which the transition takes place.

If we define adjoint variables as a solution of adjoint equations (for the simplicity
of presentation we denote, e.g., ϕ2

X(X(k), u(k), h(k)) by ϕ2
X(k), here φ̂ and ĝ are

functions which are based on φ and g but are built to take into account the extended
state X)

Λ(N) = −φ̂X(N)T (11a)

for k = N − 1, . . . , kt + 1

Λ(k) =
(
ϕ2
X(k)

)T
Λ(k + 1) (11b)

Λ+(kt ) =
(
ϕ2
X(kt )

)T
Λ(kt + 1) (11c)

Λ−(kt ) + π(kt )
(
ĝX(kt )

)T = Λ+(ki) (11d)
(
ϕ1
h(kt − 1)

)T
Λ−(kt ) =

(
ϕ2
h(kt )

)T
Λ(kt + 1) (11e)
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Λ(kt − 1) =
(
ϕ1
X(kt − 1)

)T
Λ−(kt ) (11f)

for k = kt − 2, . . . , 1

Λ(k) =
(
ϕ1
X(k)

)T
Λ(k + 1) (11g)

then the derivative of φ̂(u) = φ̃(Xu(N)) with respect to a control u(k) is equal to

φu(k)(u) = −Λ(k + 1)T ϕu(k). (12)

2 Numerical Procedure

The numerical procedure described in this section was introduced in [5] and later
extended in [6] by adding to it the procedure for consistent initialization of higher
index DAEs.

We start our considerations from a control system described by ODEs

x′(t) = f (x(t), u(t)), x(t0) = x0. (13)

The system equations (13) are numerically integrated over the time interval [t0, tf ]
using the Runge–Kutta scheme [2]

xi(k + 1) = x(k) + h(k)

s∑
j=1

aij f
(
xj (k + 1), u(t (k) + cih(k))

)
(14)

for i = 1, . . . , s and

x(k + 1) = x(k) + h(k)

s∑
i=1

bif (xi(k + 1), u(t (k) + cih(k))) . (15)

x(k) � x(t (k)) is the numerical approximation of the state at t (k). The constant
coefficients aij , bi , ci for i, j = 1, . . . , s define the Runge–Kutta scheme. At
each step of the Runge–Kutta scheme the nonlinear system (14) is first solved for
variables xi(k + 1), i = 1, . . . , s and then (15) is used to calculate x(k + 1). The
scheme is repeated for steps k = 0, . . . , K − 1, where x(0) = x0, t (0) = t0 and
t (K) = tf . In our code we assume the control variable is constant along the single
integration step, so we have

u(t (k) + cih(k)) = u(k). (16)

Let us rewrite the numerical integration scheme (14)–(15) in a vector form
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⎛
⎜⎜⎜⎜⎝

x1 − x − h
∑s

j=1 a1j f (xj , u)

...

xs − x − h
∑s

j=1 asjf (xj , u)

x+ − x − h
∑s

i=1 bif (xi, u)

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0
...

0
0

⎞
⎟⎟⎟⎠ . (17)

For the sake of a more compact notation we omitted the discrete step argument and
introduced the symbols xi = xi(k + 1), x = x(k), x+ = x(k + 1), h = h(k), u =
u(k). If we now define the augmented state vector X(k) as

X(k) =
(
x1(k)

T , . . . , xs(k)
T , x(k)T

)T
, (18)

then (17) can be presented in a form of the implicit discrete time state equation

F (X(k + 1),X(k), u(k)) = 0. (19)

System (14)–(15) is fully implicit discrete time and, under some nonsingularity
assumption, can be expressed as explicit. If the Jacobian of F̂ with respect to X(k+
1), denoted by FX+ , exists and is nonsingular for all k = 0, . . . , N − 1, then from
the Implicit Function Theorem there exists an unique function ϕ such that

X(k + 1) = ϕ(X(k), u(k), h(k)), k = 0, . . . , N − 1,

F (ϕ(X(k), u(k), k),X(k), u(k), h(k)) = 0, k = 0, . . . , N − 1. (20)

The adjoint equations (11b) for the discrete state equation (19) become

Λ(k) = −FT
X (k)

(
FT
X+(k)

)−1
Λ(k + 1), (21)

where Λ(k) is the discrete adjoint variable at a discrete step k,

FX+(k)= ∂F (X(k + 1),X(k), u(k))

∂X(k + 1)
, FX(k)= ∂F (X(k + 1),X(k), u(k))

∂X(k)
.

(22)

Λ(k) =
(
l1(k)

T , . . . , ls(k)
T , λ(k)T

)T
,

It can be shown that l1(k) = 0, . . . , ls(k) = 0 for steps k = 0, . . . , K − 1.
The Eqs. (11d)–(11e), can be transformed into equations

Λ−(kt ) + π(kt )ĝX(kt )
T = −F 2

X(kt )
T
[
F 2
X+(kt )

]−T

Λ(kt + 1)
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Λ−(kt )T
[
F 1
X+(kt − 1)

]−1
F 1
h (kt − 1) = Λ(kt + 1)T

[
F 2
X+(kt )

]−1
F 2
h (kt ).

and, by taking into account the partial derivatives matrices (we apply the notation
fxi = fx(xi, u))

FX+(k) =

⎛
⎜⎜⎜⎝

I − ha11fx1 . . . −ha1sfxs 0
...

...
...

−has1fx1 . . . I − hassfxs 0
−hb1fx1 . . . −hbsfxs I

⎞
⎟⎟⎟⎠ , FX(k) =

⎛
⎜⎜⎜⎝

0 . . . 0 −I
...

...
...

0 . . . 0 −I

0 . . . 0 −I

⎞
⎟⎟⎟⎠ ,

one can solve these equations to obtain

π(kt ) =
⎡
⎣λ(kt + 1)

⎛
⎝−h(kt )

s∑
i=1

bif
2
xi(kt )zi (kt ) +

s∑
i=1

bif
2(xi(kt + 1), u(kt ))

⎞
⎠−

λ+(kt )T
⎛
⎝−h(kt − 1)

s∑
i=1

bif
1
xi(kt − 1)zi (kt − 1) +

s∑
i=1

bif
1(xi(kt ), u(kt − 1))

⎞
⎠
⎤
⎦

/
gx(kt )

⎛
⎝h(kt − 1)

s∑
i=1

bif
1
xi(kt − 1)zi (kt − 1) −

s∑
i=1

bif
1(xi(kt ), u(kt − 1))

⎞
⎠ ,

where z is the solution to the equations

⎛
⎜⎜⎜⎝

I − ha11f
2
x1 . . . −ha1sf

2
xs 0

...
...

...

−has1f
2
x1 . . . I − ha2

ssfxs 0
−hb1f

2
x1 . . . −hbsf

2
xs I

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

z1
...

zs

z+

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

−∑s
j=1 a1j f

2(xj , u)

...

−∑s
j=1 asj f

2(xs, u)

−∑s
i=1 bif

2(xi, u)

⎞
⎟⎟⎟⎟⎠

We can show that z is bounded thus we will also have

π(tk) → πt (23)

provided that h(k) → 0 and the applied Runge–Kutta method has the property that∑s
i=1 bi = 1.
The relation (23) is not the only one we have to show in order to establish the

convergence of the numerical integration of adjoint equations of hybrid systems to
their continuous time counterparts. The second issue which has to be to investigated
is the influence of event time perturbation, due to the perturbation of the solution x,
on the order of convergence of the numerical procedure (for more details see [3, 9]).

Suppose that on an open interval (a, b), such that tt ∈ (a, b), the state trajectory
x(t) is pertubed by δx(t). To that state perturbation corresponds the perturbation of
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the switching time, tt + δtt . We will have

g(x(tt + δtt ) + δx(tt + δtt )) = 0. (24)

Evaluating g around x(tt + δtt ) + δx(tt + δtt ) will result in

0 = g(x(tt + δtt ) + δx(tt + δtt )) = gx(x(tt ))δx(tt ) +
gx(x(tt ))f

1(x(tt ), u(tt ))δtt + o(δtt , δx). (25)

Eventually, we have

δtt = − 1

gx(x(tt ))f 1(x(tt ), u(tt ))
gx(x(tt ))δx(tt ) + o(δtt , δx). (26)

This implies that as δx(tt ) → 0 (what is ensured by the numerical integration
scheme) also δtt → 0 and the numerically determined transition time converges to
the actual transition time. The convergence of the discrete adjoint equations can be
justified by showing the resemblance of continuous and discrete adjoint schemes, as
it was done in [1, 8].

3 Implementation Details

Building the numerical procedure for sensitivity analysis of hybrid systems requires
solving several nontrivial issues:

(1) the choice of numerical procedure for integrating system equations
(2) creating efficient numerical procedure for the switching points location
(3) the choice of a numerical scheme for evaluating sensitivity information.

As far as the first issue is concerned we have to take into account kind of parameters
with respect to which sensitivity analysis is going to be performed. If parameters in
question are coefficients of system equations one could consider multistep methods
such as Adams method or BDF—in that case functions f 1 and f 2 will be smooth
enough over the whole horizon so building polynomials of appropriate orders for
approximating solutions would be effective. On the other hand, if parameters in
question are coefficients of piecewise constant (linear) approximations of control
functions influencing solutions of system equations, then one–step methods such
as Runge–Kutta methods would be more appropriate. In that case at each point of
time where controls exhibit discontinuity an integration procedure must be restarted.
Since one–step methods are restarted at every integration step they are more
suitable for systems with discontinuous (or not differentiable) control functions.
Furthermore, if an integration method is going to be applied to systems described
by stiff differential equations then we are limited to implicit methods.
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Our aim is to develop numerical software for sensitivity analysis of hybrid
systems which we would like to control. Therefore, for the reasons outlined
above, the sensible choice for the numerical integration method is that based on
an implicit Runge–Kutta method. We decided to use the RADAU5 procedure in
its C++ implementation. At the current state of the development of our software
we rely on linear algebra numerical procedures for factorizing matrices and for
solving linear equations present in the original RADAU5 procedure (Fortran, or
C++ implementations), however we plan to replace these procedures by the BLAS
linear algebra subroutines and Harwell software for solving sparse sets of linear
equations.

The evaluation of switching points could be time consuming if it followed the
path of calculating a step in our integration procedure. Suppose that we have

g(x(k)) < 0, g(x(k + 1)) > 0, (27)

where x(k + 1) is determined according to (15). This implies that the switching
point tt lies in the subinterval (t (k), t (k + 1)), and a kind of the secant procedure
could be used to approximate tt . The procedure will need several evaluations
of x at intermediate points before reaching the approximation of x(tt ) at which
g(x(tt )) = 0. But that would require performing the same linear algebra calculations
as we have in the step size setting, i.e., solving linear equations (and possibly
costly matrices factorizations). Since we need to determine tt with high accuracy
the outlined secant procedure would significantly deteriorate the performance of the
integration procedure for hybrid systems.

Therefore, in order to determine tt , we use a polynomial approximation to
x. According to the applied Runge–Kutta method we have state values at the
intermediate points t (k), t (k) + cih(k), i = 1, . . . , s, which according to our
nomenclature, are xi(k), i = 1, . . . , s. Having ci and xi(k) we build the polynomial
approximation x̃ as follows

x̃(t) = x1(k) + τ (x2(k) + (τ − c1) (x2(k) + . . . + (τ − cs−1)xs(k)) · · · ) ,(28)

where τ = (t − t (k))/h(k). It can be shown that this approximation gives at points
t ∈ [t (k), t (k) + h(k)], k = 1, . . . , K the same accuracy of x approximation as in
times t (k), k = 1, . . . , K the Runge–Kutta scheme.

As far as gathering the sensitivity information is concerned we have two
approaches. We can either use sensitivity equations, or we can solve adjoint equa-
tions and then calculate gradients on the basis of adjoint variables. The first approach
is effective when we have few parameters with respect to which we perform
sensitivity analysis. Since our software is aimed at optimal control problems in
which control functions are approximated by piecewise constant functions (with
many parameters) that approach is ruled out.

When we have to solve adjoint equations we can either apply continuous model
of these equations, or we can refer to discrete time adjoint equations derived from
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a discrete time system equations being the result of the numerical integration of
system equations (how it can be achieved is sketched in the previous section).

Suppose that the sensitivity analysis of hybrid equations is based on continuous
time adjoint equations. We need to integrate them as accurately as system equations
and, if system equations are integrated by an implicit method, an implicit method
will have to be applied to adjoint equations. This means that step sizes will vary and
jacobians will have to be evaluated at points of time at which forward integration
procedure has not called for jacobians. Furthermore, these jacobians will have
to be factorized in order to solve corresponding linear equations. Eventually, the
integration of adjoint equations can be time consuming, and we have to bear in mind
that for each functional we have to solve adjoint equations with different boundary
conditions. We avoid these efficiency problems when we base our sensitivity
analysis procedure on discrete time adjoint equations.

4 Numerical Results

The primary goal of our work on sensitivity analysis of hybrid system is the potential
application of the developed numerical tools to solving optimal control problems
with hybrid systems.

In [7] we presented an example of optimal control problems solved with the help
of our software. Here, we discuss the application of our approach to the problem
of planning a haemodialysis process. The problem is fully described in [10], in this
paper we present some results obtained for a variant of the problem. We do that
in order to show that our application for sensitivit analysis can contribute to high
accuracy of obtained solutions of optimal control problems with hybrid systems.

The system equations that determine the concentrations of urea and phosphorus
concentrations in intracellural fluid— Curea

IC , CPO4
IC Curea

EC , urea and phosphorus

concentations in extracellural fluid—Curea
EC , C

PO4
EC and ultrafiltration volume—

UFR are as follows

dCurea
EC

dt
= Kurea

IE · (Curea
IC − Curea

EC ) − Curea
EC · (Kurea

D + Kurea
r + Kuf r)

0.34 · V (0) − UFR
(29)

dCurea
IC

dt
= Kurea

IE · (Curea
EC − Curea

IC ) + Gurea

0.66 · V (0)
(30)

dC
PO4
EC

dt
= K

PO4
IE · (CPO4

IC − C
PO4
EC ) − K

PO4
D · CPO4

EC

0.34 · V (0) − UFR
+ K

PO4
3 + K

PO4
4 (31)

dC
PO4
IC

dt
= K

PO4
IE · (CPO4

EC − C
PO4
IC )

0.66 · V (0)
(32)

dUFR

dt
= Uuf r (33)
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Fig. 1 State trajectories for the phosphorus C
PO4
IC and C

PO4
EC (rebound of CPO4

EC can be seen in
190 min of haemodialysis)

K
PO4
4 = α · max

(
C
PO4
min − C

PO4
IC , 0

)
(34)

K
PO4
3 = β · max

(
CPO4
max − C

PO4
IC , 0

)
(35)

The model coeeficients are explained in [10]. The algebraic equations are responsi-
ble for hybrid behaviour of the system equations.

Having combined kinetic models of urea and phosphorus we look for proper
concentrations of urea and phosphorus at the end of the haemodialysis process
by controlling the parameters QB , QD and Uuf r (see [10] for details). In other
words, by solving the optimal control problem we want to choose a proper dialysis
membrane in order to achieve final parameters of haemodialysis.

Some of the optimal trajectories are shown in Fig. 1. One can observe that from
the time t ≈ 190 the system is in the sliding mode. The optimization procedure
(essentially the procedure presented in [4]) equipped with our sensiivity evaluation
module needed 31 iteriations to find the solution with the accuracy 10−8. The system
equations have been integrated with absolute and relative accuracies equal to 10−9.



204 R. Pytlak et al.

5 Conclusions

The paper presents the computational approach to sensitivity analysis of hybrid
systems. The approach is based on the evaluation of adjoint equations which are
consistent with discrete time equations resulting from the numerical integration of
system equations by an implicit Runge–Kutta method. We outline that such an
approach could be used to solve optimal control problems with hybrid systems
defined in continuous time.
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Asymptotic Stability of Fractional
Variable-Order Discrete-Time Equations
with Terms of Convolution Operators

Dorota Mozyrska , Małgorzata Wyrwas , and Piotr Oziablo

Abstract The stability of linear systems with the Caputo fractional-, variable-order
difference operators of convolution type is investigated. We present the recurrence
formula for the solution to linear initial value problems with the operator that is
defined as the convex combination of two fractional-, variable-order difference
operators. The conditions for asymptotic stability of considered equations are
formulated and proven. Finally, some examples that illustrate our results are
presented.

Keywords Fractional order difference system · Fractional variable-order
operator · Stability

1 Introduction

Fractional calculus is a mathematical tool which has been recently employed to
model some real life processes and to achieve (in some of the cases) more precise
control procedures, see for instance [4, 10, 13]. It provides new possibilities in many
fields of science such as thermodynamics, chaotic systems or biophysics, see for
instance [8, 9]. Finding answers to some simple questions related to the fractional
calculus as for instance a half order derivative concept, a new window of opportunity
to mathematical and real world was opened. Additionally, many new questions and
(sometimes intriguing) results arisen. It is known that for instance regarding the
problems from biology and ecology that arise in population dynamical studies some
species should be modeled by use of difference equations, see for instance [5, 6].
Many interesting results on discrete fractional calculus have been already published,
see for instance [1–3, 12, 14].
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Since the behaviour of some models provides to nonzero equilibrium points
and systems with the Grünwald–Letnikov operator have only zero as stationary
point, in the paper the linear discrete-time systems with the Caputo operators are
considered in order to permit the existence of nonzero stationary points. The convex
combination of the Caputo-type fractional difference operators with two variable-
order functions is taken into account. If the variable-order functions coincide, then
one gets the Caputo-type difference system with one variable-order operator of
convolution type that was defined originally in [11]. It is worth to stress that in
fact instead of convex combination one can take the arbitrary linear combination of
fractional variable-order operators and the results will be similar, but we decided
to take into account the convex one in order to have the system with one fractional
variable-order operator in some cases.

The aim of this paper is to perform the stability analysis of equations and systems
with the described combination of the Caputo-type fractional variable-order opera-
tors. In the sequel the descriptions of the considered linear Caputo-type difference
fractional variable-order equations and their stability analysis are presented. Since
we consider the convolution type operators, there is possible to solve an initial value
problems for linear equations using Z-transform method. We analyse linear system
with constant coefficients and fractional variable-order differences with two variable
order functions ν and μ such that ν(k), μ(k) ∈ (0, 1]. The sufficient and necessary
condition for asymptotic stability of the considered linear equation is presented and
an example that illustrates the result is given. In the case of the linear system with
the considered convex combination of the Caputo-type fractional variable-order
operators we formulate and prove the condition that implies the instability of the
system. Finally, the regions of locations of eigenvalues of matrices associated to the
systems in order to guarantee the asymptotic stability are presented in examples.

2 Preliminaries

Definition 1 For k, l ∈ Z and a given order function ν(·) we define the oblivion
function, as a discrete function of two variables, by its values a[ν(l)](k) given as

a[ν(l)](k) =
⎧⎨
⎩

0 for k < 0
1 for k = 0

(−1)k ν(l)[ν(l)−1]···[ν(l)−k+1]
k! for k > 0

. (1)

Formula (1) in Definition 1 is equivalent to the following recurrence with respect
to k ∈ N:

a[ν(l)](0) = 1 ,

a[ν(l)](k) = a[ν(l)](k − 1)

[
1 − ν(l) + 1

k

]
for k ≥ 1 .

(2)
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Therein the paper we use in systems those order functions ν(·) with values only in
[0, 1]. But definitions of fractional-, variable-order summations and differences we
can state for any nonnegative functions ν(·) well-defined on Z.

For a function y : Z → R the forward difference operator is defined as
(Δy)(k) = y(k+1)−y(k) , see [7]. Let q ∈ N0 := {0, 1, 2, . . .} and Δq := Δ◦· · ·◦
Δ is q-fold application of operator Δ. Then, (Δqy)(k) = ∑q

i=0(−1)q−i
(
q
i

)
y(k+i) .

Definition 2 Let ν : Z → R+ ∪ {0}. For a function y : Z → R the fractional-,
variable-order sum of convolution type is given by

(
Δ−ν(·)y

)
(k) :=

(
a[−ν(·)] ∗ y

)
(k) =

k∑
i=0

a[−ν(i)](i)y(k − i) ,

where k ∈ N0 and “∗” denotes the convolution operator. Additionally, we define(
Δ0y

)
(k) := y(k) .

Observe that having convolution operator we can write that

Z
[
Δ−ν(·)y

]
(z) = Y (z)Z

[
a[−ν(·)]] (z) , (3)

where Y (z) := Z [y] (z) and Z
[
a[−ν(·)]] (z) = ∑∞

i=0(−1)i
(−ν(i)

i

)
z−i .

(a) For ν(k) ≡ α, (3) can be shortly written as Z
[
Δ−ν(·)y

]
(z) =

(
z

z−1

)α
Y (z) .

(b) Let ν1, ν2 : Z → R+ ∪ {0}. Then, the following equality holds
(c)

(
Δ−ν1(·)Δ−ν2(·)y

)
(k) = (

Δ−ν2(·)Δ−ν2(·)y
)
(k).

Here we define the Caputo fractional-, variable-order difference operator of
convolution type.

Definition 3 Let ν : Z → (q − 1, q], q ∈ N1. Then, the Caputo fractional-,
variable-order difference operator of convolution typeΔν(·) with order function ν(·)
for a function y : Z → R is defined by

(
Δν(·)y

)
(k) =

(
Δ−(q−ν(·))Δqy

)
(k) . (4)

It is easy to see that

(a) For q = 1:
(
Δν(·)y

)
(k) = (

Δ−(1−ν(·))Δy
)
(k).

(b) For ν(k) ≡ q ∈ N1, we have
(
Δν(·)y

)
(k) = (Δqy) (k).

(c) For q = 1: Z
[
Δν(·)y

]
(z) = ((z − 1)Y (z) − zy(0))Aν(z) , where Y (z) =

Z[y](z) and a complex function Aν is defined by

Aν(z) := Z
[
a[ν(·)−1]

]
(z) =

∞∑
i=0

(−1)i
(
ν(i) − 1

i

)
z−i . (5)
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Observe that the Caputo fractional-, variable-order difference operator of convolu-
tion type can be extended to vector functions in the componentwise manner, then
one can study the difference systems with fractional variable order equations and
Caputo operator.

3 Equations and Stability Issue

Let us consider two order functions ν : Z → (0, 1] and μ : Z → (0, 1]. In the
considered type of equations we use a convex combination of two operators to
receive new one in te following form: pΔν(·) + (1 −p)Δμ(·), where p ∈ [0, 1]. The
main goal of this paper is to investigate behaviour of solutions and state conditions
on their stability, of the following type of linear equations with constant coefficients

p
(
Δν(·)x

)
(k) + (1 − p)

(
Δμ(·)x

)
(k) + ωx(k) = u(k) , k ≥ 0, (6)

with initial value x(0) ∈ R, where ν, μ : Z → (0, 1] are variable-order functions,
p ∈ [0, 1], ω ∈ R, function u : N0 → R is an input function, y : N0 → R is a
response and ω > 0 is given real constant.

For constant order function it could be also considered, namely for ν ≡ α and
μ ≡ β we have: p (Δαx) (k) + (1 − p)

(
Δβx

)
(k) + ωy(k) = u(k). For α = β, we

get the equation with only one Caputo operator, i.e. (Δαx) (k) = −ωx(k) + u(k).
Let a(j, p, ν, μ) := pa[ν(j)−1](j) + (1 − p)a[μ(j)−1](j), j > 0. Equation (6)

can be rewritten in the following recurrence way:

x(1) = (1 − ω) x(0) + u(0) ,

x(k) = (1 − ω) x(k − 1) −
k−1∑
i=1

a(k − i, p, ν, μ) (x(i) − x(i − 1)) + u(k − 1) , k ≥ 2

(7)
and x(0) = x0 ∈ R is given.

Then,

Z
[(
pΔν(·) + (1 − p)Δμ(·)) x] (z) = ((z − 1)X(z) − zx(0))

(
pAν(z) + (1 − p)Aμ(z)

)
,

where X(z) = Z[x](z) and Aν is given by (5).
Taking Z-transform of Eq. (6) we get

X(z) = ((z − 1)A2(z) + ω)−1[zA2(z)x(0) + U(z)] , (8)

where U(z) = Z[u](z), A2(z) := pAν(z) + (1 − p)Aμ(z). In order to get the
solution of (6) one needs to take inverse Z-transform of (8) Now, we are ready to
state conditions for asymptotical stability and instability of system (6).



Asymptotic Stability of Fractional Variable-Order Discrete-Time Equations 209

Fig. 1 The response (stable) to unit input with ω = 1.465, p = 0.5, α = 0.1, β = 0.9

We can formulate condition on the asymptotic stability of Eq. (6).

Proposition 1 Equation (6) is asymptotically stable if and only if

0 < ω < 2
∞∑
i=0

(
p

(
ν(i) − 1

i

)
+ (1 − p)

(
μ(i) − 1

i

))
. (9)

Proof Observe that the set of roots of the equation (z− 1)A2(z)+ω = 0 is related
with the asymptotic stability of (6). Hence, we get ω = (1 − z)A2(z). For the
scalar equation (6) the points z = −1 and z = 1 correspond to the border of its
asymptotic stability. Then for z = 1 one gets ω = 0 and consequently, ω > 0 if

z < 1. Moreover, for z > −1 one gets ω < 2
∞∑
i=0

(
p
(
ν(i)−1

i

) + (1 − p)
(
μ(i)−1

i

))
.

Therefore, the thesis holds.

For constant orders we have the following result.

Corollary 1 Let α > β and p ∈ [0, 1]. Equation (6) for ν(k) ≡ α and μ(k) ≡ β is
asymptotically stable if and only if

0 < ω < p2α + (1 − p)2β . (10)

Example 1 Let us take ν(k) = α = 0.1, and μ(k) = β = 0.9 with different
coefficients p = 0.5. Then the limit for p2α + (1 − p)2β = 1.4691. We take
ω = 1.465. In Fig. 1 we illustrate the response for unit input through equation
0.5

(
Δ0.1x

)
(k) + 0.5

(
Δ0.9x

)
(k) + ωx(k) = u(k) .
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4 Systems

We now consider control systems with compound variable-orders of the following
form:

(
pΔν(·) + (1 − p)Δμ(·)) (x) (k) = Ax(k) + Bu(k) , k ≥ 1, (11)

with initial condition x(0) = x0 ∈ R
n, where ν, μ : Z → R+ ∪ {0} are order

functions, function u : N0 → R
m is an input function, x : N0 → R

m is a state
function and A ∈ R

n×n, B ∈ R
n×m.

System (11) can be solved by the following recursive

x(1) = (I + A) x(0) + Bu(0) ,

x(k) = (I + A) x(k − 1)

−
k−1∑
i=1

a(k − i, p, ν, μ) (x(i) − x(i − 1)) + Bu(k − 1) , k ≥ 2

(12)

and x(0) = x0 ∈ R
n is given and I denotes identity matrix.

Proposition 2 Let spec(A) = {λi : i = 1, . . . , k}, k ≤ n and

wi :=2
∣∣∣sin

ϕi

2

∣∣∣
⎛
⎝
( ∞∑
k=0

a(k, p, ν, μ) cos(kϕi)

)2

+
( ∞∑
k=0

a(k, p, ν, μ) sin(kϕi)

)2
⎞
⎠

0.5

,

(13)

where ϕi = arg(λi). If there is λi ∈ spec(A) such that

|λi | > wi , (14)

then system (11) is unstable.

Proof Observe that wi = |(ejϕ − 1)A2(e
jϕ)| , where ϕ ∈ R. Then by (14) we

get λi /∈ {(z − 1)A2(z) : |z| ≤ 1}. Hence the eigenvalue λi of the matrix A

lies outside of the image of unit circle in the mapping A2 : C → C given by
A2 := pAν + (1 − p)Aμ.

From Proposition 2, we get that if system (11) is stable then |λi | ≤ wi for all
λi ∈ spec(A).
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Fig. 2 Stability region for
operators pΔ0.2 + (1 − p)

Δ0.9, p ∈ {0, 0.5, 1} and
eigenvalues of A with
q = 0.25-crosses

Example 2 Now let us study the system with a variable–order of the form

(
pΔν(·) + (1 − p)Δμ(·)) (x) (k) = Ax(k − 1) , k ≥ 1,

with initial condition x(0) = x0 ∈ R
2 and matrix A = q

[
1 −1
1 1

]
. Because

spec(A) = {q − q · j, q + q · j}, so |λi | = |q|√2. Then

(a) for q > 0: ϕi ∈ {π4 , 7π
4 };

(b) for q < 0: ϕi ∈ { 3π
4 , 5π

4 }.
– Let us take ν(k) = 0.2, and μ(k) = 0.9 with different coefficients p ∈

{0, 0.5, 1}. In Fig. 2 we illustrate by crosses eigenvalues of A for q = 0.25
(positive real parts of eigenvalues of A) and stability region

Int
{
(z − 1)A2

(
eiϕ

)
, ϕ ∈ [0, 2π ]

}
.

We see that the eigenvalues of matrix A are outside the region of stability, for
p = 0 and p = 0.5, and inside region of the stability for p = 1 (for smaller
value of order function).

– Let us take ν(k) = 1 − 1
k+1 , and μ(k) = 1 with different coefficients p ∈

{0, 0.5, 1}. In Fig. 3 we illustrate by crosses eigenvalues of A for q = −0.25
(negative real parts of eigenvalues of A) and stability region

Int
{
(z − 1)A2

(
eiϕ

)
, ϕ ∈ [0, 2π ]

}
.



212 D. Mozyrska et al.

Fig. 3 Stability region for
operators

pΔ1− 1
k+1 + (1 − p)Δ1,

p ∈ {0, 0.5, 1} and
eigenvalues of A with
q = −0.25-crosses

We see that the eigenvalues of matrix A are inside three regions of stability,
for p ∈ {0, 0.5, 1}.

5 Conclusions

In the paper we studied the stability of the linear systems with the Caputo
fractional-, variable-order difference operators of convolution type. Using the Z-
transform we formulated and proven the conditions for the asymptotic stability
of the considered systems. In the example we determined the stability regions of
location of eigenvalues of matrices that are associated to the systems as the sets of
the images of some maps.
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Dynamics of Circular Plates Under
Temperature and Mechanical Loadings

Simona Doneva, Jerzy Warminski, and Emil Manoach

Abstract The purpose of this paper is to study nonlinear oscillations of a heated
plate subjected to dynamic loading. The response of moderately thick circular plate
at elevated temperatures subjected to harmonic loading is analysed. A mathematical
model of the plate is derived applying the geometrically nonlinear Reisner-Mindlin
plate theory. A reduced model of the plate motion is created and the harmonic
balance method is applied to the reduced model taking into account the first
vibration mode. The numerical simulations are performed for the plate subjected
to uniformly distributed harmonic loading and different temperatures. The model
represented by a set of partial differential equations is reduced to one degree of
freedom system by Galerkin orthogonalization method based on the first vibration
mode. The obtained reduced nonlinear one degree of freedom model with cubic
nonlinearity is studied by the harmonic balance method. The influence of the
amplitude of the loading and the elevated temperature on the frequency response
functions is studied.
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1 Introduction

The circular plates are frequently used in mechanical and civil engineering struc-
tures. This specific shape of the plates and the corresponding type of support are
imposed by the operation exploitation conditions. As structural components the
plates are often subjected to mechanical and thermal loadings which lead to large
amplitude vibrations. Mechanical and thermal loads usually occur simultaneously
and as a result, the displacement and the temperature fields are created in close
connection with each other. The two fields have to be defined simultaneously taking
into account the relationship between them. The dynamic thermoelasticity allows
the stresses generated by the temperature and mechanical fields, as well as the
temperature distribution and propagation arising due to time-dependent mechanical
and heat forces to be determined.

In 1956 Biot [1] developed the concept of coupled thermoelasticity in order to
solve the paradox inherent in the classical uncoupled theory that elastic changes
have no effect on the temperature. The equations of elasticity and heat conduction
are coupled in this theory. Finally, when the deformation of the body is accounted
for in the heat conduction equation, and the influence of changes in temperature
appear in the equations of motion, the problem becomes coupled thermoelasticity
one. In the pioneer books [2, 3], the basis of thermoelasticity and the influence of
temperature coupling on the strain field are presented.

The temperature can change the reaction of mechanical structure and disguise
a damage of the structure and thus provide incorrect data in a system dedicated
for damage detection. The authors of paper [4] studied the geometrically nonlinear
vibrations of Timoshenko beam at elevated temperature. The results show that short
heat pulses with high magnitudes can lead to vibrations with quite large amplitudes.

The thermomechanical, geometrically nonlinear vibrations of rectangular plate
model based on higher order shear deformation theory have been studied in [5]. The
authors demonstrated that close to critical points, even small temperature variation
can cause unexpected change in the reaction of the system. They noted highly
nonlinear dynamic behaviour of the system, including periodic, quasi-periodic and
chaotic oscillations.

Thermoelastic geometrically nonlinear vibrations of straight and curved beams
are analysed using p-version of final element method in [6]. In this paper the role
of temperature for periodic and non-periodic motions is illustrated. The effect of
parameters such as temperature variation, the thickness and the ratio of curvature on
the beam on the nonlinear dynamics is studied.

Many practical issues of current interest in the field of thermoelasticity are
faced with significant computational difficulties when treated by traditional ana-
lytical methods. This fact leads many scientists to propose numerical methods,
and several attempts are made to find finite-element solutions to various thermal
deformation problems. The finite element method (FEM)-based thermoelastic beam
models allow the study of deformation of beams, including shear and longitudinal
displacements and the inertia of the cross-section rotation. However, for steady
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states, transient dynamics, bifurcation or chaos analysis such models are not
effective. Thus, in [7–9] thermoelastic low order of beam models are introduced.
The suggested models of reduced nonlinear beams consider only the most important
mechanical and thermal effects. Based on one mode reduction the authors presented
a bifurcation scenario versus varied temperature or transition to chaotic oscillations
and then compared the results with selected cases of the full model. The results
for circular plate model for elevated temperature, based on extended Mindlin
plate theory, have been presented in [10, 11]. The complete model considered
transversal and longitudinal displacements due to nonlinear displacement field,
shear deformation, inertia terms due to rotation of the cross-section and thermal
and mechanical loads. After assumption of a constant elevated temperature and
neglecting longitudinal inertia terms, the exact thermomechanical model of the
circular plate defined by partial differential equations (PDEs) has been reduced to
one degree of freedom system. Based on this model, a temperature effect on the first
resonance zone as well on the bifurcation scenario, leading to buckling and chaotic
oscillations have been determined.

The complex research of local and global dynamics of the plate for different
thermal and mechanical loads has been carried out in [12, 13].

In the present work a thermoelastic model of a circular plate is analysed. This
paper aims to study nonlinear oscillations of a heated plate subjected to dynamic
loading. A reduced model of thermoelastic vibration is created and an analytical
solution of the response of the plate in the frequency domain is developed. The
influence of the temperature changes is studied.

2 Physical Model

We consider a circular plate with radius R and thickness h shown in Fig. 1. We
also suppose fully axisymmetric problem. The motion of the plate is considered
in a cylindrical coordinate system with axis r (0 ≤ r ≤ R), θ (0 ≤ θ ≤ 2π) and z
(−h/2 ≤ z≤ h/2). Displacements of the element are represented by u(r, t) coordinate
which is the in-plane displacement, w(r, t) the transverse displacement, ψ(r, t) the
cross-section rotation angle.

The considered in this paper thermoelastic model of a circular plate is based on
Mindlin plate theory. The model is extended taking into account the geometrically
nonlinear deformation of the plate (large displacements).

The strain and curvature-displacements relationships associated with the mid-
plane which consider large displacements and shear are represented as:

ε0
r = ∂ u

∂ r
+ 1

2

(
∂ w

∂ r

)2

, ε0
t = u

r
, Γ 0

rz = ψ + ∂ w

∂ r
, (1)

κ0
r = ∂ ψ

∂ r
, κ0

t = ψ

r
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Fig. 1 A model of a circular plate with indicated coordinates and dimensions

and the strain vector is the following:

ε =
{
ε0
r + zk0

r , ε
0
t + zk0

r , f (z)
1

2
Γ 0
rz

}T
, (2)

where εr, εt, εrz are strains in radial and tangent directions and in r-z plane, κ r,
κ t indicate curvatures of the mid-surface in radial and tangent directions, and f (z)
is a function of the distribution of the shear strain along the plate thickness. The
superscript 0 associated with the mid-surface is omitted.

Assuming that the material of the plate is linear elastic and isotropic the relations
between the component of the stress vector S = {σ r, σ t, σ rz} and the vector of strain
ε = {εr, εt, εrz} take the form:

σr = E
1−ν2 [εr+νεt ] − E

1−ν2 αT (T−T0)= E
1−ν2 [εr+νεt− (1+ν) αT (T−T0)]

σt = E
1−ν2 [εt+νεr ] − E

1−ν2 αT (T−T0)= E
1−ν2 [εt+νεr− (1+ν) αT (T−T0)]

(3)

τrz = kGΓrz

where E is the Young modulus, G is the shear modulus, ν is Poisson ratio, αT is the
coefficient of thermal expansion, and k is the shear correction factor. In Eq. (3) T(r,
z, t) is the current temperature and T0 is the initial temperature.

The bending moments Mr and Mt, the shear force Qr and the in-plane stress
resultant per unit length Nr and Nt, presented in Fig. 2, are expressed as follows:

Mr=D [κr+νκt ] −AαT κ
T ,Mt=D [κt+νκr ] −AαT κ

T

Nr=Ah
[
ε0
r+νε0

t

]−AαT γ
T ,Nt=Ah

[
ε0
t +νε0

r

]−AαT γ
T ,Qr=kGh

(
∂w
∂r

+ψ
)
(4)

The remaining coefficients and functions are described as:
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Fig. 2 In-plane and transversal stress resultants acting on an infinitesimal component of a plate

A = E
1−ν2 , D = Ah3/12

κT (r) =
h/2∫

−h/2
ΔT (r, z) zdz, γ T (r) =

h/2∫
−h/2

ΔT (r, z) dz

The equations representing the thermoelastic vibration of the plate subjected to
heating and mechanical load with intensity p(r, t) are:

∂Nr

∂ r
+ Nr − Nt

r
− ρh

∂2u

∂ t2 = 0 (5)

∂Mr

∂ r
+ Mr − Mt

r
− Qr − c2

∂ ψ

∂ t
− ρh3

12

∂2ψ

∂ t2 = 0

∂Qr

∂ r
+ Qr

r
+ Nr

(
∂2w

∂ r2 + 1

r

∂ w

∂ r

)
+ ∂Nr

∂ r

∂ w

∂ r
− c1

∂ w

∂ t
− ρh

∂2w

∂ t2 = −p (r, t)

where c1 and c2 indicate the damping coefficients and ρ is the material density.
In this work it is accepted that the plate gets an elevated temperature instantly

and the heat propagation problem is not considered. Assuming that temperature is
distributed uniformly along the whole plate κT and γ T from Eq. (4) become: κT =
0 and γ T = �T where �T is the difference between the initial temperature and the
current temperature.

Following these assumptions and accepting that the inertia term in mid-plane can
be neglected the equations of the plate vibration become:

Ah

[
∂2u

∂r2 + ∂w

∂r

∂2w

∂r2 + 1

r

∂u

∂r
− u

r2 + 1

2r
(1 − ν)

(
∂w

∂r

)2
]

= 0
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D

[
∂2ψ

∂r2
+ 1

r

∂ψ

∂r
− ψ

r2

]
− k2Gh

(
∂w

∂r
+ ψ

)
− c2

∂ψ

∂t
− ρh3

12

∂2ψ

∂t2
= 0 (6)

k2Gh

(
∂2w

∂r2 +1

r

∂w

∂r
+∂ψ

∂r
+ψ

r

)
+Ah

[
∂u

∂r
+1

2

(
∂w

∂r

)2

+ν

r
u−1+ν

h
αT ΔT

]

(
∂2w

∂r2
+1

r

∂w

∂r

)
+

Ah

[
∂2u

∂r2 + ν

r

∂u

∂r
− ν

r2 u + ∂w

∂r

∂2w

∂r2

]
.

(
∂w

∂r

)
+ c1

∂w

∂t
− ρh

∂2w

∂t2 = −p (r, t)

The boundary conditions for a clamped, in-plane fixed plate are:

u (0, t) = u (R, t) = w (R, t) = 0 ψ (R, t) = 0

3 Analytical Solutions by Harmonic Balance Method

The formulated thermoelastic problems are quite complicated from a computational
point of view, therefore, simplified techniques which allow reducing the governing
partial differential equations into a reduced number of modal coordinates are
applied. Such an approach is very effective for nonlinear models as it allows deep
bifurcation analysis.

The model of the plate represented by partial differential equations is reduced
to ordinary differential equations by the Galerkin method based on the modes
projection. In contrary to the paper [14] in this analysis we consider one mode
reduction assuming clamped boundary conditions of the plate and take into account
excitation distributed according to the first mode shape. According to Galerkin
method the solution is obtained by series:

w (r, t) =
N∑
n=1

wn(r)qn(t) ψ (r, t) =
N∑
n=1

ψn(r)qn(t) (7)

where wn(r) and ψn(r) are space functions representing vibration modes which
should satisfy the geometrical boundary conditions and qn(t) is the time function
generalized coordinate.

Substituting Eq. (7) into PDEs and multiplying by the selected mode function
and then integrating through the plate radius, we get ODE of motion. For the first
mode reduction (N = 1) we obtain just one nonlinear differential equation:
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q̈1 + 2ξ1ω1q̇1 + ω2
1q1 + FNL1q

3
1 + FNT 1ΔT q1 = FNP1 sinωt (8)

Equation (8) is written in dimensionless form with respect to the space coordinates
u = u/R, w = w/R but time is given in seconds. The ‘dot’ denotes time derivative
and q1 first dimensionless generalized coordinate. FNL1 is a coefficient occurring
due to nonlinear geometrical terms, FNT1 is a coefficient related to temperature
variation, FNP1 is a coefficient depending on the amplitude of mechanical loading
and the modal damping is introduced by coefficient ξ1.

The obtained reduced nonlinear one degree of freedom model with cubic
nonlinearity and temperature influence is studied analytically by the extended
harmonic balance method.

For a simplicity, the following substitutions are introduced:

γ = FNL1, P = FNP1, λ = FNT 1, q = x

and then we get the equation below:

ẍ + 2ξω1ẋ + ω2
1x + γ x3 + λΔT x = P sinωt (9)

The solution is sought as:

x = A1(t) sinωt + A2(t) cosωt (10)

where A1(t), A2(t) are unknown amplitudes assumed as slow functions of time (so
called slow flow).

The velocity and the acceleration of x take the form:

ẋ = Ȧ1 sinωt + ωA1 cosωt + Ȧ2 cosωt − ωA2 sinωt (11)

ẍ = 2ωȦ1 cosωt − 2ωȦ2 sinωt − A2ω
2 cosωt − A1ω

2 sinωt+ (12)

Ä1 sinωt + Ä2 cosωt

and the cubic term is expressed as:

γ x3 = γ (A1(t) sinωt + A2(t) cosωt) = 3
4γ sinωt

(
A3

1 + A1A
2
2

)
+ 3

4 γ cosωt
(
A3

2 + A2
1A2

)
+

1
4γ sin 3ωt

(
−A3

1 + 3A1A
2
2

)
+ 1

4γ cos 3ωt
(
A3

2 − 3A2
1A2

)
(13)
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Equations (10)–(13) are substituted into Eq. (9). Then the small terms Ä1, Ä2, the
amplitude derivatives in power higher than one and harmonics sin3ωt, cos3ωt are
omitted and we obtain the modulation equation for amplitude components A1 and
A2:

Ȧ1(t) = − 1
16
(
ξ2ω1

2+ω2
)

⎛
⎜⎜⎜⎝

−8Pξω1 + 8λΔT ξω1A1(t) + 8ξω3
1A1(t)+

8ξω1ω
2A1(t) + 6γ ξω1A

3
1(t) + 8λΔT ωA2(t)

+ 8ω2
1ωA2(t) − 16ξ2ω2

1ωA2(t) − 8ω3A2(t)

+ 6γωA2
1(t)A2(t) + 6γ ξω1A1(t)A

2
2(t) + 6γωA3

2(t)

⎞
⎟⎟⎟⎠

Ȧ2(t) = − 1
16
(
ξ2ω1

2+ω2
)

⎛
⎜⎜⎜⎝

8Pω − 8λΔT ωA1(t) − 8ω2
1ωA1(t) + 16ξ2ω2

1ωA1(t)+
8ω3A1(t) − 6γωA3

1(t) + 8λΔT ξω1A2(t) + 8ξω3
1A2(t)+

8ξω1ω
2A2(t) + 6γ ξω1A

2
1(t)A2(t)−

6γωA1(t)A
2
2(t) + 6γ ξω1A

3
2(t)

⎞
⎟⎟⎟⎠

(14)

For a steady state, the amplitudes are constant and therefore, their derivatives are
equal to zero thus, we get two nonlinear algebraic equations:

−ω2A1 + ω2
1A1 − 2ξω1ωA2 + 3

4γA
3
1 + 3

4γA1A
2
2 + λΔTA1 = P

− ω2A2 + ω2
1A2 + 2ξω1ωA1 + 3

4γA
3
2 + 3

4γA
2
1A2 + λΔTA2 = 0

(15)

From the above set of equations, after some algebraic manipulations, and introduc-

ing resultant amplitude A =
√
A2

1 + A2
2 we obtain a single algebraic equation for

the amplitude:

−16P 2 + 9A6γ 2 + A4
(

24γ λΔT + 24γω2
1 − 24γω2

)
+ (16)

A2
(

16λ2ΔT 2+32λΔT ω2
1+16ω2

1−32λΔT ω2−32ω2
1ω

2+64ξ2ω2
1ω

2+16ω4
)

=0

Then, substituting z = A2 a third order algebraic equation is obtained, which can be
solved analytically. Depending on the parameters value we can get one or three real
roots and then we find vibrations amplitude. For the sake of brevity, the formulas for
the roots are not presented in this paper. On the basis of Eq. (16) we determine the
resonance curve of the plates reduced model and also we may study an influence of
structural parameters on the system response.

4 Numerical Examples of Thermoelastic Vibrations

The response of the plate at elevated temperatures subjected to harmonic loading
can be analysed by FEM. Using this approach we can obtain time history diagrams
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and to study the influence of loading parameters and the temperature on response of
the plate in time. However, if we want to study the steady state nonlinear response
of the plate in the parameters domain, or create bifurcation diagrams and to analyse
other specific nonlinear features the application of FE model is not efficient due to
limitations of the software and time consuming simulations. Therefore, the reduced
low order model is applied.

In the present study we have used the harmonic balance method to obtain
the dependence between the amplitudes, the frequency of vibration and other
parameters. Harmonic balance method (HBM) was applied to the reduced model
taking into account the first vibration mode. The coefficients of Eq. (9) takes values:

ω1 = 3928.205
ξ = 0.01
γ = 0.37344x1012

P = 1.0754246x104

λ = −0.40946x106

Frequency of excitation ω is varied around the first natural frequency ω1, and in
some cases amplitude of excitation P can be changed as well. The influence of
elevated temperature is tested by varying �T parameter.

The frequency-response Eq. (16) allow us to obtain the resonance curves for
different values of loading amplitude and temperature.

The resonance curves at different temperatures and fixed amplitude of the loading
obtained analytically by HBM are shown in Fig. 3. The analytical solution has been
computed for three different values of the temperature—�T = −20, �T = 0 and
�T = 20. In order to verify the application of HBM the same value of parameters
have been applied to create the resonance curves by direct simulation of Eq. (9) by
the fourth order Runge-Kutta method and then applying the continuation technique.
The results are shown in Fig. 4. As can be seen the results obtained by the two
different methods are almost identical. This comparison proofs the correctness of
the analytical method developed in Sect. 3.

The geometrical nonlinearity leads to strong stiffening behaviour of the resonant
curves. The increasing of the frequencies of the excitation leads to increasing of
the amplitudes of vibration until its peak value. After that instability solutions can
appear and the amplitudes can jump to lower values. The variation of the temper-
ature leads to shift of the curves. The lower temperature (�T = −20) decreases
amplitudes and moves the resonance curve to higher frequencies (blue curve). The
high temperature—�T = 20, on the other hand, increases the amplitudes and
changes the resonance curve in the direction of lower frequencies (red curve). The
resonance curve for �T = 0 is shown in black colour.

The small peaks observed in Fig. 4 are not observed in the results obtained
by HBM. More small peaks are observed in the resonance curve of the same
problem studied by using three modes reduction model in [14]. Such peaks cannot
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Fig. 3 Resonance curves by HBM for �T = 20 (red), �T = 0 (black) and �T = −20 (blue)

Fig. 4 Resonance curves from direct numerical simulation for �T = 20 (red), �T = 0 (black)
and �T = −20 (blue)

be obtained when only one mode is used in the solution and the single frequency
response around resonance zone is sought. The general behaviour of the response of
the plate in the frequency domain, however, obtained by the one mode reduction is
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the same as the ones obtained by the three mode reduction model and corresponds
very well for FE analysis not presented in this paper.

5 Conclusions

The reduced one degree of freedom model of geometrically nonlinear thermoelastic
Mindlin circular plate is developed in this paper. The reduced nonlinear model
is studied by two different methods, by approximate analytical harmonic balance
method and by direct simulation of the original ODE. It is demonstrated that ana-
lytical approach gives very accurate solutions with great agreement with numerical
simulations.

Analysis shows that elevated temperature can change essentially the response
of the plate and could provoke the plate to complex response, to buckling and
bifurcation. These phenomena are more clearly seen when the excitation frequency
is close to the first natural frequency. Based on the reduced model a dependence of
amplitude and frequency of excitation is obtained by solving the nonlinear algebraic
equation which represent a steady state. This allows obtaining easily the resonance
curves and to study the influence of the loading parameters and elevated temperature
on the behaviour of the plate. By using this model the detail bifurcation analysis of
the thermo-elastic vibration of the plate will be performed in the future.
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A Rulkov Neuronal Model with Caputo
Fractional Variable-Order Differences of
Convolution Type

Oana Brandibur , Eva Kaslik , Dorota Mozyrska ,
and Małgorzata Wyrwas

Abstract In this paper, a theoretical and numerical investigation is undertaken for a
fractional-order version of the Rulkov neuronal model, involving Caputo fractional
variable-order differences of convolution type. As the first step, using linearization
techniques and the Z-transform method, sufficient conditions are explored which
guarantee the stability or instability of the unique equilibrium point of the system.
Numerical simulations are further carried out to illustrate the theoretical findings,
emphasizing the differences between the current model and simpler versions
involving fractional-order difference with constant fractional orders, as well as the
classical integer-order Rulkov model.

Keywords Fractional-order difference equation · Variable-order fractional
operator · Fractional-order Rulkov model · Neuronal model · Fractional-order
system · Instability · Bursting.

1 Introduction

In this work, we discuss stability and instability properties in the framework of a
generalized discrete-time Rulkov neuronal model [9, 10], achieved by introducing a
Caputo-type fractional variable-order difference operator to model the evolution of
the membrane potential. This generalized model is constructed based on experimen-
tal neuronal research [1, 4], which emphasizes that fractional-order operators can
be successfully used in the mathematical modelling of neuronal dynamics. In fact,
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fractional-order membrane potential dynamics are known to introduce capacitive
memory effects [11], proving their utility in reproducing more realistically the
electrical activity of neurons.

In the qualitative theory of fractional order systems, the investigation of stability
properties plays a leading role. When constant fractional orders are taken into
account, necessary and sufficient conditions have been recently obtained for the
stability of both linear continuous-time fractional systems [2, 3] and linear discrete-
time fractional systems [6, 7]. In the case of linear fractional-order systems with
variable fractional orders of subunitary values, stability properties have been
explored in [5, 8].

In this paper, we employ the Caputo-type fractional variable-order difference
operator of convolution type, originally defined in [8]. This choice is justified by
the fact that the Caputo-type operator permits the existence of nonzero equilibrium
points to the equations, while fractional-order equations with the Grünwald-
Letnikov operator can only have zero as stationary point.

2 Preliminaries

The first aim of this section is to define the variable-order fractional difference
operator of Caputo type in a constructive manner.

Definition 1 Considering the order function ν : Z → R+, the oblivion function is
defined as

a[ν(l)](k) =
⎧⎨
⎩

0 for k < 0
1 for k = 0

(−1)k ν(l)[ν(l)−1]···[ν(l)−k+1]
k! for k > 0

, ∀ k, l ∈ Z. (1)

It is easy to see that formula (1) in Definition 1 is equivalent to the following
recurrence relation with respect to k ∈ Z+:

a[ν(l)](0) = 1 ,

a[ν(l)](k) = a[ν(l)](k − 1)

[
1 − ν(l) + 1

k

]
for k ≥ 1 .

(2)

In what follows, we denote by Δ the forward difference operator defined as

(Δy)(k) := y(k + 1) − y(k) , ∀ y : Z → R, k ∈ Z

and by Δn := Δ ◦ · · · ◦ Δ its n-fold application, which can be expressed as
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(Δny)(k) :=
n∑

i=0

(−1)n−i

(
n

i

)
y(k + i) , ∀ y : Z → R, k ∈ Z.

Additionally, we define
(
Δ0y

)
(k) := y(k).

Definition 2 Considering the order function ν : Z → R+, the fractional variable-
order sum of convolution type is given by

(
Δ−ν(·)y

)
(k) :=

(
a[−ν(·)] ∗ y

)
(k) =

k∑
i=0

a[−ν(i)](i)y(k − i) , ∀ y : Z → R.

where k ∈ Z+ and “∗” denotes the convolution operator.

Definition 3 Considering the order function ν : Z → (n − 1, n], n ∈ Z
∗+, the

Caputo fractional variable-order difference operator of convolution type is defined
as

(
Δν(·)y

)
(k) =

(
Δ−(n−ν(·)) (Δny

))
(k) , ∀ y : Z → R, k ∈ Z. (3)

Remark 1 Some properties of the variable-order fractional difference operator of
Caputo type are listed below

a. If n = 1 then
(
Δν(·)y

)
(k) = (

Δ−(1−ν(·)) (Δy)
)
(k).

b. If ν(k) = n ∈ Z+, for any k ∈ Z, it follows that
(
Δν(·)y

)
(k) = (Δny) (k).

c. If n = 1, the Z-transform is given by

Z
[
Δν(·)y

]
(z) = ((z − 1)Y (z) − zy(0)) Aν(z), (4)

where Y (z) = Z[y](z) and Aν(z) = Z
[
a[ν(·)−1]

]
(z) =

∞∑
i=0

(−1)i
(
ν(i)−1

i

)
z−i .

3 Stability and Instability Results for Two-Dimensional
Systems of Variable-Order Fractional Difference
Equations

Let us consider the n-dimensional fractional-order system

(
Δν(·)x) (k) = f (k, x(k)) , ∀ k ≥ 1, (5)

where ν(·) = (ν1(·), ν2(·), . . . , νn(·)), νp : Z → (0, 1] are order functions and
f : Z+ ×R

n → R
n is continuous on the whole domain of definition and Lipschitz-

continuous with respect to the second variable, such that f (k, 0) = 0 for any
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k ∈ Z+. Let ϕ(k, x0) denote the unique solution of (5) which satisfies the initial
condition x(0) = x0.

Definition 4

a. The trivial solution of (5) is called stable if for any ε > 0 there exists δ = δ(ε) >

0 such that for every x0 ∈ R
n satisfying ‖x0‖ < δ we have ‖ϕ(k, x0)‖ ≤ ε for

any k ≥ 0.
b. The trivial solution of (5) is called asymptotically stable if it is stable and there

exists ρ > 0 such that lim
k→∞ϕ(k, x0) = 0 whenever ‖x0‖ < ρ.

c. Let q ∈ (0, 1]. The trivial solution of (5) is called O(k−q)-asymptotically stable
if it is stable and there exists ρ > 0 such that for any ‖x0‖ < ρ one has
‖ϕ(k, x0)‖ = O(k−q) as k → ∞.

In the following, we consider a two-dimensional linear fractional-order system
with variable-order Caputo difference operators:

{(
Δν1(·)x

)
(k) = a11x(k) + a12y(k)(

Δν2(·)y
)
(k) = a21x(k) + a22y(k)

(6)

where A = (aij ) is a real two-dimensional matrix and ν1, ν2 : Z → (0, 1] are the
order functions.

Using the Z-transform in system (6), based on (4) we deduce:

([
(z − 1)Aν1(z) 0

0 (z − 1)Aν2(z)

]
− A

)[
X(z)

Y (z)

]
=
[
x(0)zAν1(z)

y(0)zAν2(z)

]

where Z[x] = X and Z[y] = Y are the Z-transforms of x and y, respectively and

Aνp(z) = Z
[
a[νp(·)−1]

]
(z), p ∈ {1, 2}, are the Z-transforms corresponding to the

oblivion functions.
The following characteristic equation is obtained:

det
(
diag

(
(z − 1)Aν1(z), (z − 1)Aν2(z)

) − A
) = 0.

Hence, the characteristic function of the system (6) is:

Δ(z;A, ν1(·), ν2(·))=
[
(z − 1)Aν1(z) − a11

] [
(z − 1)Aν2(z) − a22

] − a12a21.

Using similar techniques as in [2, 3], the following result can be proved for the
characterization of the stability and instability properties of system (6):

Theorem 1

1. If all the roots of the characteristic function Δ(z;A, ν1(·), ν2(·)) are inside the
unit circle (i.e. |z| < 1), system (6) is O(n−q)-globally asymptotically stable,
where q = lim inf

k∈Z+
min{ν1(k), ν2(k)}.
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2. If det(A) �= 0 and Δ(z;A, ν1(·), ν2(·)) has a root outside the closed unit circle,
system (6) is unstable.

Using basic mathematical tools, the following sufficient conditions for the
instability of system (6) can be obtained, which do not depend on the variable
fractional orders ν1(·) and ν2(·). These order-independent instability results are
useful in applications where the exact order functions are not known precisely.

Theorem 2 (Fractional-Order Independent Instability Results) If one of the
following two conditions hold:

1. det(A) < 0;
2. a11 > 0 and a11a22 ≥ det(A) > 0.

then system (6) is unstable regardless of the variable orders ν1(·) and ν2(·).

4 A Variable-Order Fractional Rulkov-Type Neuronal
Model

As an application to the theoretical results presented above, we analyze the
following discrete-time fractional-order Rulkov-type model, describing the spiking
behaviour of a biological neuron:

⎧⎨
⎩
(
Δν1(·)x

)
(k) = α

1 + x(k)2
− x(k) + y(k)(

Δν2(·)y
)
(k) = −μ(x(k) − σ)

(7)

where x represents the membrane potential, y is a gating variable, with 0 < μ � 1,
σ acts as an external current applied to the neuron and α > 0 is a nonlinearity
parameter. We consider ν1 : Z → (0, 1] and for simplicity, we will further assume
that the order function ν2 is constant, i.e. ν2(k) = 1, for any k ∈ Z+. The reason for
this assumption is that in the equation of the gating variable the use of a fractional-
order difference cannot be justified biologically.

System (7) has a unique fixed point (x∗, y∗) =
(
σ, σ − α

1 + σ 2

)
. The Jacobian

matrix of system (7) at (x∗, y∗) is:

A =
⎛
⎝−1 − 2ασ

(1 + σ 2)2 1

−μ 0

⎞
⎠

Taking into considerations the notations from the previous section, we have:

a11 = a11(α, σ ) = −1 − 2ασ

(1 + σ 2)2 < 0, a22 = 0, 0 < det(A) = μ � 1.
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It is easy to notice that Theorem 2 cannot be applied in this case. With the aim of
determining the stability and instability region with respect to the parameters α and
σ , one has to investigate the roots of the characteristic equation

(z − 1)2Aν1(z) − a11(z − 1) + μ = 0. (8)

Looking for roots of the form z = eiω, ω ∈ (0, 2π) allows us to determine the
boundary of the stability and instability regions, respectively. Indeed, z = eiω is a
root of the characteristic equation (8) if and only if

a11 = (eiω − 1)Aν1(e
iω) + μ(eiω − 1)−1.

Taking the imaginary part in the previous equation, it follows that ω ∈ (0, 2π) is a
root of the equation

�
[
(eiω − 1)Aν1(e

iω) + μ(eiω − 1)−1
]

= 0 (9)

For a given order function ν1 and a fixed value of the parameter μ, Eq. (9) is solved
numerically. For every root ω∗ ∈ (0, 2π), the curve from the (α, σ )-plane defined
implicitly as

a11(α, σ ) = �
[
(eiω

∗ − 1)Aν1(e
iω∗

) + μ(eiω
∗ − 1)−1

]

is a part of the boundary of the stability and instability regions.
It is important to emphasize that since our aim is to observe neuronal bursting

behavior in the fractional variable-order Rulkov models, we search for values of the
parameters α and σ for which the unique equilibrium of system (7) is guaranteed to
be unstable.

For all numerical simulations, μ = 0.001 has been chosen, considering the
following order functions:

(a) ν1(k) = 1—integer order classical Rulkov model;
(b) ν1(k) = 0.8—constant fractional order;
(c) ν1(k) = 0.8 − 0.2

0.01k+1 —rational order function;
(d) ν1(k) = 0.8 − 0.2 exp(−0.1k)—exponential order function;
(e) ν1(k) = 0.8 + 0.1 cos(0.01kπ)—periodic order function involving a cosine;
(f) ν1(k) = 0.8 + 0.1 SquareWave(k/200)—square wave order function;

The graphs of the non-constant order functions are shown in Fig. 1. The integer
order case (a), as well as the constant order case (b) are considered for comparison
purposes. The rational and exponential order functions (c)–(d) converge to 0.8 as
k → ∞, with a faster convergence rate for the exponential function (d). The order
functions (e) and (f) are periodic, oscillating around the value 0.8.

Figure 2 shows the stability and instability regions in the (α, σ )-plane for system
(7) for the considered order functions ν1 given above.
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Fig. 1 Order functions (c)–(f) used in numerical simulations
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Fig. 2 Stability (white) and instability (blue) regions in the (α, σ )-plane for system (7) for order
functions (a)–(f)

It is interesting to notice that the largest instability regions are obtained for
the rational and exponential functions (c) and (d), respectively. Different types of
bursting behavior is observed in Fig. 3 for α = 4.5, σ = −1 belonging to the
instability regions plotted in Fig. 2, in each of the cases (a)–(f) for the choice of the
order function ν1.

Compared to the integer-order Rulkov model (a), the fractional-order model
with constant order ν1 = 0.8 (b) presents longer bursts followed by longer
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Fig. 3 Bursting behavior in the Rulkov model (7) with μ = 0.001, α = 4.5, σ = −1 and the
fractional order functions (a)–(f)

recovery periods. Burst length and recovery period length are further increased when
considering rational and exponential variable orders (c) and (d). Periodic variable
orders (e) and (f) produce shorter and more frequent bursts.
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5 Conclusions

Sufficient conditions are presented to characterise stability and instability properties
of two-dimensional systems of variable-order fractional difference equations, which
are further applied to a variable-order fractional Rulkov neuronal model. Numerical
simulations show that chaotic bursting can be modulated by the order function
associated to the Caputo variable-order fractional difference operator used to model
the evolution of membrane potential.
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Abstract Nowadays, industrial production microelectromechanical systems
(MEMS) is developing rapidly, so they are widely used in various spheres of
human activity: medicine, energy, various systems navigation in the automotive
and petroleum industries, etc. Regardless of the purpose of the MEMS, sensitive
elements commonly undergo an initial curvature imperfection, due to the microfabri
cation process. Initial curvature imperfection significantly affects the mechanical
behavior of microplates, beams, etc. For example, initially curved microbeams
loaded by concentrated forces may exhibit bistability (the existence of two different
stable equilibria under the same loading). The transition between two stable states in
these structures is commonly referred to as a snap-through buckling. In the present
article, the basic sensitive element of MEMS—an initially curved beam—was taken
into consideration. Equilibria forms branching for various initial curvature and
geometry parameters of sensitive element was investigated utilizing model order
reduction technique (MOR) and numerical continuation methods. Finite element
modeling of the above-mentioned problems of electroelasticity was carried out
in the ANSYS software system and conclusions were drawn on the degree of
applicability of FEM and ROM-FEM methods under various conditions.
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1 Introduction

The relevance of the paper is due to the intensive development of the industry
of nano- and microsystems in application to the problems of modern high-tech
instrumentation. The current level of development of nano- and microsystem
technologies creates opportunities for the production and implementation in various
fields of human activity of a wide range of nano- and microelectromechanical
systems (NEMS and MEMS), often based on physical principles, unrealizable at
the macro-scale level [1].

Microbeams are widely used in MEMS as a basic sensitive element in a
various sensors [2]. Over the past decade, electrostatically actuated initially straight
double-clamped micro beam became a kind of benchmark problem, which was
intensively used for the evaluation of various analytical, numerical and experimental
approaches. One of the distinguishing features of such a micro device is that it
is loaded by an electrostatic force, which is a nonlinear function of the beam’s
deflections [3].

In contrast to straight beams, initially curved electrostatically actuated double-
clamped beams combine both geometric mechanical nonlinearity and generic
electrostatic softening nonlinearity. The behavior of curved bistable beams is well
understood: in these structures, able to stay in two different configurations at the
same loading, the transition between the two states is through the snap-through
buckling mechanism [4]. If such a structure is loaded above some critical value,
it may buckle so that its deflection suddenly increases.

In [5] authors are considered the asymmetric buckling of a shallow initially
curved stress-free micro beam subjected to distributed nonlinear deflection-
dependent electrostatic force is studied. And in [14] authors are demonstrate
a flow velocity measurement technique based on snap-through detection of an
electrostatically actuated, bistable micromechanical beam.

The purpose of our study is investigating the equilibria forms branching for
various initial curvature and geometry parameters of sensitive element. We will look
for direct numerical solutions using model order reduction technique (MOR) and
numerical continuation method. After that we carry out finite element modeling
of the above-mentioned problems of electroelasticity and analyze the degree of
applicability of FEM and ROM-FEM methods under various conditions.

The rest of the paper is organized as follows. The nonlinear equation describing
the nonlinear beams model with midplane stretching is derived in Sect. 2. The direct
numerical solutions and their analysis are presented in Sect. 3. A discussion of the
various finite element methods, some of the results obtained with their help and
compare with analytics you can see in Sect. 4. Finally, the main conclusions are
summarized in Sect. 5.
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2 Problem Statement

We consider a flexible initially curved double clamped prismatic micro beam of
length L having a rectangular cross-section of width b and thickness d as shown
in Fig. 1. The beam is made of homogeneous isotropic linearly elastic material
with Young’s modulus E. The initial shape of the beam is described by the function
z0(x) = h • w0(x), where h is the initial elevation of the beam’s central point above
it’s ends, and w0(x) is a non-dimensional function such that max

x∈[0,L]
|w0(x)| = 1.

The beam is subjected to a distributed electrostatic force provided by an electrode
located at a distance g0 (the gap) from the beam and extended beyond its ends. Also,
the potentials difference is applied on the ends of the beam. We assume that d � L,
and that the deflections are moderately large compared to beam’s thickness, thus the
midplane stretching is induced. In this case, the beam tends to stretch and undergo
large deformation in response to large forcing. This induces tensile axial stress,
thereby changing the stiffness of the beam in a nonlinear way that resembles a cubic
effect. The induced axial stress couples the in-plane and out-of-plane motions of the
beam. Midplane stretching affects microstructures, beams, plates, and diaphragms
of clamped or near fixed edge conditions and it is by far the most significant source
of geometric nonlinearity in MEMS.

Thus, our system is governed by the following equilibrium equations [3, 6]:

EI
(
z′′′′ − z0

′′′′) =
(
N + EA

2L

∫ L

0

(
z′2 − z′

0
2
)
dx

)
z′′ + F, (1)

Fig. 1 Schematic of an electrostatically actuated microbeam with immovable edges and initial
curvature
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where I = bd3

12 —cross-section moment of inertia, z(x)—deflections function, N—
axial force, A = bd—cross-section area, F—electrostatic force.

Electrostatic force in most models is described by the following expression:

F = − λ

(g0 + z)2
, (2)

where λ = εb[VDC ]2

2 —dimensionless parameter of the electric field, ε—the relative
permittivity of the medium in the space between the electrode and the beam, b—
beam width, VDC—DC voltage.

But if we consider work [7], it becomes clear that such an expression for the force
is not quite accurate. Authors analyzed the approximations of the electrostatic field
in the modeling of electrostatically controlled micro-and nanoelectromechanical
systems. Using a uniformly suitable approximation [8] to estimate the strength of
the electric field, the authors concluded that there are terms that act everywhere,
not just at the boundary. Following this reasoning, the authors proposed a “corner-
corrected theory” which does not include corrections acting only in the boundary
layer, but includes those acting along the entire length of the sensing element:

F = −
λ
(

1 + δ2z′2
)

(g0 + z)2 (3)

where δ = g0
L

—dimensionless parameter of edge effect of electric field.
So in this work we will use this expression for the electrostatic force. Thus Eq.

(1) converted to:

EI
(
z′′′′ − z0

′′′′) =
(
N + EA

2L

∫ L

0

(
z′2 − z′

0
2
)
dx

)
z′′ −

εb[VDC]2
(

1 + δ2z′2
)

2(g0 + z)2
.

(4)

Axial force N is produced by Joule effect, which occurs from current through the
beam. The Fourier equation for temperature of the beam is as follows [9]:

− d

dx

(
k(T )

dT

dx

)
= J 2ρe(T ), (5)

where k(T)—is a coefficient of thermal conductivity of the beam material depends
nonlinearly on the temperature, J—the current density, ρe(T)—resistivity of the
beam material (linear dependence on temperature is assumed).
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The current density can be expressed in terms of the voltage applied to the ends
of the beam Vth:

J = Vth

ρe(T )L
. (6)

Then the Fourier law is rewritten in the following form:

− d

dx

(
k(T )

dT

dx

)
= Vth

2

ρe(T )L2
. (7)

From this equation, knowing Vth, the temperature at each point of the beam can
found.

The axial force depends on the temperature as follows:

N = −EA

l

∫ l

0
α(T ) (T [x] − T0) dx, (8)

where α(T)—a coefficient of thermal expansion, T0—initial (room) temperature of
the beam. The sign «−» is because axial force N is compressive, but in equation
term of axial force is included as stretchable (with sign «+»). It must be taking into
account when interpretating the results.

For electrostatic problems, it is convenient to normalize the deflection of the
beam with respect to g0. Hence, the following nondimensional variables (denoted
by hats) are introduced:

ẑ = z

g0
, x̂ = x

L
. (9)

Substituting nondimensional variables in equation of motion and dropping the hats
from the dimensionless variables for convenience, the following nondimensional
equation is derived:

∂4z

∂x4 − ∂4z0

∂x4 =
[
α1

∫ 1

0

(
z′2 − z′

0
2
)
dx + Nnon

]
∂2z

∂x2 −
α2

(
V 2
DC + δ2z′2

)

(1 + z)2

(10)

The parameters appearing in equation above are defined as:

α1 = 6
(g0

d

)2
, α2 = 6εL4

Eb3d3
, Nnon = 12NL2

Ebd3
(11)
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To derive a reduced-order model, we apply the Galerkin method, i.e. seek an
approximate solution of the above system in the form of

z(x) = φ0(x) +
n∑

i=1

Ciφi, (12)

where φ0(x) = 0, because the boundary conditions of the beam are homogenous.
We choose φi, i = 1, 2, . . . to be the beam’s linear orthonormal modeshapes by

equation:

φIV
i = ω2

non,iφi, (13)

where ω2
non,i is a natural frequency square.

Also, boundary conditions were considering:

∫ 1

0
φj

⎛
⎝1 −

n∑
l=1

Clφl

⎞
⎠

2 ⎛
⎝ n∑
i=1

Ciω
2
non,iφi

⎞
⎠ dx

−α1

∫ 1

0
φj

⎛
⎝1−

n∑
l=1

Clφl

⎞
⎠

2
⎧⎪⎨
⎪⎩

n∑
i=1

Ciφ
′′
i

∫ 1

0

⎛
⎝ n∑
k=1

Ckφ
′
k

⎞
⎠

2
⎫⎪⎬
⎪⎭ dx + α2V

2
DC

∫ 1

0
φj dx=0

where φi and Ci is a modeshapes and coefficients for them, respectively.
Thus, we have integral-differential equation with respect to the coefficients Ci,

where i is the number of modeshapes considered in the decomposition.

3 Direct Numerical Solutions

All the solutions given in this section were obtained with the help of the MATLAB
software package, namely in MatCont. MatCont is a MATLAB-based software
package developed under the supervision of W. Govaerts and Yu. A. Kuznetsov [10]
for interactive numerical study of dynamical systems. This package has a number
of capabilities (1) MatCont accesses MATLAB’s ODE integrators and helps us
integrate systems of ODEs without having to perform the actual MATLAB function
calls. (2) It allows us to compute equilibrium solutions or fixed points to the system
of ODEs and continue those equilibria with respect to a parameter of interest. And
(3) it is able to detect Hopf bifurcations, branch points, saddle-node bifurcations (or
fold bifurcations), etc. [11].
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3.1 Initially Straight Beam

To begin with, a bifurcation diagram was constructed for the initial straight beam,
i.e. h = 0. This was done for comparison with the known results, since this problem
is widely covered in the scientific literature.

Geometric parameters of the beam and a few parameter of the model are
presented in Table 1.

As you can see in Fig. 2, the character of bifurcation diagram is the same as in
other papers, for example in [12].

Table 1 Parameters of the
model

Beam’s length L 1000 μm
Beam’s width b 20 μm
Beam’s thickness d 2 μm
Gap g0 10 μm
Number of modeshapes Nstatic 2
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Fig. 2 Bifurcation diagram (h = 0, α1 = 150, Nnon = 0, δ = 0)
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3.2 Initially Curved Beam and Choice of Geometric
Parameters of the Beam

Next step in our work is analyzing dependence character of bifurcation diagram on
the height of the initial deflection.

The curves shown in Fig. 3 built with the parameter value α1 = 150. The graph
clearly shows that not all values of the amplitude the initial loss of the sensing
element will exhibit the property of bistability (existence of two stable equilibrium

positions at the same value of loading-parameter λ = εb[VDC ]2

2 ).
Then, at a fixed value of the amplitude of the initial loss, at which bistability is

manifested, the parameter α1 was varied.
The graph (Fig. 4) shows a significant dependence of the type of bifurcation

charts from this parameter. For values α1 < α1∗ and given the amplitude of the
initial deflection, the system does not show bistability.

Thus, to obtain a bistable system, it is necessary to carefully select the geometric
parameters.

Figure 5 below illustrates the dependence of the solution on the dimensionless
parameter of the edge effect of the electric field.

Fig. 3 Bifurcation diagram for different initial deflection (α1 = 150, Nnon, δ = 0)
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Fig. 4 Dependence on the parameter α1 at large amplitude of initial deflection

This figure demonstrates that the influence of edge effect of electric field on this
system is low, so further in this work it will be neglected.

The last step in this part is an investigation the behavior of system on dependence
of axial force. All previous graphs were described cases when axial force is equal to
zero. Now in Fig. 6 is shown the diagram of equilibria states in three-dimensional
space of parameters—λ, z, Nnon.

It may be noted that the impact of axial force on system’s behavior is significant.
With the increase of axial force, the critical value of electrostatic force’s parameter,
at which the stability of the system is lost, is increase too. And in states, which
are close to unstable branch, the behavior of the systems with increase axial force
is different unlike other stable states—they are turn to unstable equilibrium states.
With decrease of axial force, the behavior of system is similar.

The following graph in Fig. 7 shows the same curve only in 2D.
In this figure the dependence of the initial elevation amplitude on the axial

force parameter is clearly visible. With increase the axial force, the initial elevation
amplitude is increases too, since the beam is stretched.
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Fig. 5 Dependence on the parameter δ at big amplitude of initial deflection

Fig. 6 Bifurcation diagram in three-dimensional space of parameters λ,z,Nnon
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Fig. 7 Bifurcation diagram in two-dimensional space of parameters λ,z for different Nnon

4 Finite Element Methods

Finite element (FE) modeling was carried out in the system of finite element analysis
ANSYS. In this software package exists a few methods to solving coupled-field
problems:

– Direct Coupled-Field Analysis
– Load Transfer Methods

• Load Transfer Coupled Physics Analysis
• Unidirectional Load Transfer

And ANSYS also offers the following additional coupled-field methods:

– Coupled Physics Circuit Simulation
– Reduced Order Modeling

The direct method usually involves just one analysis that uses a coupled-field
element type containing all necessary degrees of freedom. Coupling is handled
by calculating element matrices or element load vectors that contain all necessary
terms.
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Fig. 8 Finite-element model

Fig. 9 Fundamental mode shape

The load transfer methods involve two or more analyses, each belonging to a
different field. You couple the two fields by applying results from one analysis as
loads in another analysis. There are different types of load transfer analyses.

Reduced Order Modeling describes a solution method for efficiently solving
coupled-field problems involving flexible structures. The reduced order modeling
(ROM) method is based on a modal representation of the structural response. The
deformed structural domain is described by a factored sum of the mode shapes
(eigenvectors). The resulting ROM is essentially an analytical expression for the
response of a system to any arbitrary excitation. This methodology has been
implemented for coupled electrostatic-structural analysis and is applicable to micro-
electromechanical systems (MEMS) [13].

In this work we presented Direct Coupled-Field Analysis and comparing with
results described in previous section. Figure 8 demonstrates the FE model of the
system.

Geometrical parameters are given in Sect. 3. For mechanical structure we used
SOLID185 element, for air gap—SOLID226,1001 element. Figure 9 demonstrates
fundamental mode shape of the beam.

To begin with, we compare «analytical» result with finite-element in the absence
of a prestressed state.

In this graph (Fig. 10), there is a fairly good coincidence of the results obtained
by two different methods, especially at small deflections.

In Fig. 11, the coincidence of the results is also small, from which we can
conclude that in general, the numerical scheme works correctly. At this stage, the
study of this problem is not fully performed. As a further research we plan to study
the ROM method in ANSYS, compare it with the ROM method in MATLAB for
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Fig. 10 Diagram without prestress (h = 0, α1 = 150, Pcoeff = 0, δ = 0)

both the initially straight beam and the initially imperfect one. It is also interesting
to see the same dependencies in the case of the initial imperfection assignment not
by the first proper form, but by the second.

5 Conclusions

In this work, buckling of an initially curved microbeam loaded by a nonlinear, con-
figuration dependent, electrostatic force was analyzed. Direct numerical solutions
were obtained by Galerkin decomposition with linear undamped eigenmodes of an
associated straight beam as base functions. Bifurcation deflection-voltage diagrams
were obtained for different values of the initial loss amplitude and geometric
parameters. The parameters of the system at which it exhibits the bistability property
were determined. In the ANSYS finite element analysis system, a Direct Coupled-
Field Analysis for solving coupled-field problems for an initially straight beam
was applied. The results are compared with those obtained by the ROM method in
MATLAB. It was concluded that this method can be used with satisfaction accuracy
only in the case of small deflection values.
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Numerical and Analytical Investigation of
Chatter Suppression by Parametric
Excitation

Fadi Dohnal, Wolfgang Alois Hörtnagel, and Mariusz Zamojski

Abstract A concept for increasing process stability during milling is presented
utilizing the time-periodic modulation of the tool support. A simple time-delayed
system describing the effect of regenerative chatter is enhanced by a time-periodic
variation of the support. Such a system leads to entirely new dynamics. Numerical
results of stability charts are discussed in terms of spindle speed and cut depth and
show classic chatter lobes that are modified by the parametric excitation. This kind
of parametric excitation is more general than the one occurring for varying spindle
speed because its frequency is independent of the cutting frequency of the tool and
therefore independent of the spindle speed and number of teeth. First analytical
approximations on the stability of the modified lobes are benchmarked against
numerical predictions. This study is a preparation for experimental tests.

Keywords Chatter · Stability · Time-periodic system

1 Introduction

Machine tool vibrations affect the wear, tool life and surface quality [9] leading
to an increase of production cost and time. A simple model for chatter is the
regenerative effect that is summarised in [6, 7]. Chatter occurs typically within
instability lobes in the spindle speed diagram. Tools and methods for influencing
(shift and distortion) these lobes are discussed in detail in the pioneering work [2].
Several countermeasures can be derived like tuning the support and tool stiffness,
the cutting feed, the spindle speed, the geometry of the cutter profile and the number
of teeth. The so-called process damping helps also and is always present in real
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machines. Another possibility is attaching a passive linear or nonlinear vibration
absorber to the cutting tool as introduced recently in [5]. A semi-active mean was
proposed in [1] in which the bearing stiffness of the spindle was modulated time-
periodically showing an increase in damping. Active means in this context employ
piezoelectric actuators mounted on the workpiece directly, see for example [3].

All these measures have benefits and drawbacks and a successful implementation
depends strongly on parameters like machine throughput and complexity of the cut
which directly translates into cost and time. The present contribution addresses the
regenerative effect in metal cutting as defined in [7] but extends the system with a
time-harmonic modulation of the support stiffness of the cutting tool. The reason
for this is motivated by the observation of parametric anti-resonances in [4].

2 Regenerative Effect

The simplest mechanical model for regenerative chatter is shown in Fig. 1. The
equations of motion of this single degree-of-freedom model of a cutting tool in
turning machinery is given by

mẍ + cẋ + kx = Fx (1)

where m is the mass, c the damping coefficient and k the stiffness coefficient of
the cutting tool. The workpiece is assumed to be rigid. Fx is the component of the
cutting force in the cutting direction. It can be expressed by the empirical power law
[2]

Fx(t) = Kx w hr(t) (2)

Fig. 1 Mechanical system
according to [6]
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where w is the chip depth, Kx is the cutting force coefficient, r the cutting force
exponent and h(t) the time-dependent chip thickness

h(t) = vf τ + x(t − τ) − x(t) (3)

where vf is the velocity of the feeding tool and τ is the period of rotation (2π/Ω).
Choosing r = 3/4 and expanding the cutting force Fx and the tool displacement x
into its Taylor series around h0 = vf τ yields the linearized, delayed equations of
motion in x with constant coefficients (see [5, 7] for more details)

mẍ + cẋ + kx = k1 (x(t − τ) − x(t)) (4)

or

ẍ + 2ζωnẋ + ω2
nx = k1

m
(x(t − τ) − x(t)) (5)

where ζ = c/(2
√
km), ωn = √

k/m and k1 = 3/4Kx w h
−1/4
0 . Analytical stability

conditions can be derived for predicting the onset of unstable vibrations (instability
lobes) as described in more detail in [7]. Inserting the ansatz x = A exp(λt) yields
a complex-valued characteristic equation. At the stability limit curves we have a
purely imaginary eigenvalue of the form λ = iω which gives

− ω2 + ω2
n + k1

m

(
1 − cos(ωτ)

) = 0, 2ζωnω + k1

m
sin(ωτ) = 0 (6)

These equations can be transformed to [5, 7]

k1,cr = m

2

(ω − ωn)
2 + (2ζωnω)

2

ω2 −ω2
n

, ncr = 30ω

jπ −arctan

(
ω2 −ω2

n

2ζωnω

) j = 1, 2, . . .

(7)
defining the values of the cutting force parameter k1,cr and the tool speed ncr at the
stability boundary.

System parameters for an example system are chosen from [7] and are listed in
Table 1. The direct numerical integration of the equations of motion in Eq. (4) in the
parameter space n-k1 is shown in Fig. 2. Green dots indicate a stable and red dots
an unstable system response. The analytically predicted stability limits in Eq. (7) fit
perfectly.

Table 1 System parameters
for example system taken
from [7]

Symbol Value
m 347 kg
k 97·106 N/m
c 9173 Ns/m
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Fig. 2 Stability chart for chatter tool with constant support characteristic: direct numerical
simulation in comparison with analytical prediction in Eq. (7)

3 Regenerative Effect at Time-Harmonic Modulation of the
Tool Stiffness

We add in the system in Eq. (4) a time-periodic modulation of the tool support
stiffness

mẍ(t) + cẋ(t) + k
(
1 + ε sin(ΩPEt)

)
x(t) = k1

(
x(t − τ) − x(t)

)
(8)

This is a generalisation of the commonly studied delayed differential equation with
parametric excitation because we assume that ΩPE �= 60/τ , i.e. the frequency of the
parametric excitation is not a multiple of the spindle speed. A parametric excitation
introduces in general a modulation of the system response that leads to side-bands in
the frequency spectra, see e.g. [4]. The focus of our investigation lies on the stability
boundary in the parameter space, more specifically the distortion of the stability
boundary in Fig. 2 by the newly introduced parameters ε and ΩPE in Eq. (8). The
stability boundaries at ε = 5% and ε = 10% at an arbitrarily chosen parametric
excitation frequency ΩPE = 40 rad/s are shown in Fig. 4. The stability boundaries
show a shift towards higher values of k1 (larger cutting depth) in the vicinity of
570 rpm. The chosen value of ΩPE is indicated by the vertical solid line nPE while
the beneficial region lies at nopt .
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Two exemplary time histories are shown in Fig. 3 together with the corresponding
frequency content in the steady-state region. This comparison confirms the fre-
quency modulation induced by parametric excitation at ω ∓ ΩPE . Increasing the
strength of the time-periodicity by increasing ε also leads to sidebands at ω∓jΩPE

for j = 1, 2, . . .. The analytical stability boundary is approximated by applying the
method of harmonic balance [8]. The observation above allows for the following
ansatz

x(t) = c0e
iωt+c1pe

i(ω+ΩPE)t+c1me
i(ω−ΩPE)t+complex conjugate+O(ε2) (9)

For achieving convergence we assume that c0 is of order 1 and c1p,1m of order ε.
Inserting Eq. (9) into Eq. (4) and collecting coefficients of the exponential functions
∓iωt , ∓i(ω ∓ ΩPE)t yields

Fig. 3 Time histories of
chatter tool at 600 rpm at
stability boundary: (left plots)
constant tool stiffness
(ε = 0%) at
k1 = 5.24 · 106 N/m, (right
plots) time-periodic tool
support (ε = 5%) at
k1 = 5.75 · 106 N/m and
ΩPE = 40 rad/s
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Fig. 4 Stability chart for chatter tool with support stiffness modulated at 40 rad/s: (top) ε = 5%,
(bottom) ε = 10%
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⎡
⎣g(ω) εk/2 εk/2
εk/2 g(ω + ΩPE) 0
εk/2 0 g(ω − ΩPE)

⎤
⎦
⎡
⎣ c0

c1p

c1m

⎤
⎦ = 0 (10)

with the abbreviation

g(ω) = k − mω2 + iωc + k1
(
1 − eiωτ

)
(11)

An equivalent set of equations is obtained for the complex conjugate coefficients ci
which is omitted here. The corresponding characteristic equation for a non-trivial
solution in Eq. (10) reads

4g(ω) g(ω+ΩPE) g(ω−ΩPE)−ε2k2
(
g(ω+ΩPE)+g(ω−ΩPE)

)
= 0 (12)

The numerical evaluation of this stability boundary matches well with the point-
wise numerical time integration of the system in Fig. 4. However, the expressions
are cumbersome and further simplifications are needed.

For the numerical values in Table 1 and Fig. 4, the parametric excitation
frequency is close to the natural frequency of the system which justifies a Taylor
expansion of the form

ḡ

(
1 ± ΩPE

ω

)
= ḡ(1) ±

(
− 2mω + i

(
c − k1e

iωτ
))
ΩPE + O

(
ΩPE

ω

)
(13)

which approximates Eq. (12) to

g(ω)2 −
(

− 2mω + i
(
c − k1e

iωτ
))2

Ω2
PE − ε2k2/2 ≈ 0 (14)

This equation can be rearranged to a quadratic polynomial in k1

a2(ωτ,Ω
2
PE) k

2
1 + a1(m, c, k, ω, τ,Ω2

PE) k1 + a0(m, c, k, ω,Ω2
PE) − ε2k2/2 ≈ 0

(15)
with coefficient functions ai(·). Evaluation of Eq. (15) for the system parameters
chosen in Table 1 and ΩPE = 40 rad/s and 570 rpm gives a lower limit of k1,cr ≈
9 ·106 N/m for both values of ε. This fits well to the stability boundary curves shown
in Fig. 4 close to the speed nopt . Finally, the approximate relation in Eq. (14) can be
evaluated for finding the necessary parametric excitation frequency ΩPE at given
system and operation parameters.
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4 Conclusions

The mitigation of regenerative chatter using a time-periodic support of the tool
was investigated. The model equations and analytical stability limit curves of the
classical regenerative chatter model are revisited and extended to a delayed and
parametrically excited equation of motion. The frequency of parametric excitation
in chatter vibrations is usually assumed to occur at a multiple of the spindle speed,
depending on the number of tool teeth. In the present work we deliberately introduce
a parametric excitation frequency ωPE which is independent of the tool speed.
This first study shows that such a time-modulation is capable of distorting the
stability limit curves and creating large regions of larger cutting depths for certain
speed intervals. Further investigations are needed for improving the quality of the
analytical prediction and for experimental validation of the benefit of the proposed
concept.
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Nonlinear Study of a Pneumatic Artificial
Muscle (PAM) Under Superharmonic
Resonance Condition Using Method
of Multiple Scales

Bhaben Kalita and Santosha K. Dwivedy

Abstract In this work, the nonlinear behaviour exhibit in the Pneumatic Artificial
Muscle (PAM) has been studied. For the analysis, a single degree of freedom system
is considered where the nonlinear Pneumatic Artificial Muscle (PAM) is attached
with an external spring to provide additional support the system. The nonlinear
equation of motion is solved with the help of the method of multiple scales to
find out the reduced equations for superharmonic resonance condition. The dynamic
stability and bifurcation of the system have been studied from the reduced equations.
The frequency responses have been plotted to understand the effect of the different
parameters on the system amplitude. Basin of attraction also have been plotted to
verify the frequency plots. Finally, with the help of this work, the designers and
researchers working in this field will get an idea to know about the safe range of
various system parameters to operate for different applications of PAMs.

Keywords Pneumatic artificial muscle · Method of multiple scales ·
Superharmonic resonance condition

1 Introduction

Pneumatic Artificial Muscle (PAM) is an actuator which converts the pneumatic
force obtains from the air pressure to a pulling force. The PAMs have significant
advantages over the traditional pneumatic actuator like lower weight, high force,
easy to install, absence of mechanical wear, soft and flexible in nature, low cost
and safe human interaction. Therefore, the artificial muscles are widely used in
the field of medical and robotics because of their ability to produce linear forces
and displacement with the help of a simple mechanism [1–3]. However, due
to the presence of compressibility of air and natural properties of viscoelastic
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material, a high nonlinear characteristic is found in the PAM which makes them
difficult to model and control. These qualities and drawbacks make the PAM as an
attractive topic for many researchers and industry to study the behavior in various
environments.

The PAM was first introduced by the physician, Joseph L. McKibben in 1950s
which was used in artificial hand for the polio patients [1]. This McKibben muscle
actuator was consists of a rubber tube (bladder) which was covered by a braided
mesh shell and two ends were closed. The one end of the muscle have been
connected to the air inlet and other connected with the load. Later, in 1980s,
a more powerful PAM was developed by the Bridgestone Company for various
medical applications as well as service and industrial robotics [4]. These type of
PAM caused the hysteresis behavior due to the friction produced by the braided
mesh shell for variation of air pressure. So to avoid this drawbacks, a number of
modified PAMs have been introduced for various applications in the different field of
advanced robotics and rehabilitation [3]. Nowadays, company like Bridgestone Co.
and Festo AG modified the traditional McKibben artificial muscle which is widely
used because of its structural advantages. These type of PAMs contain a flexible
hose with non-elastic fibers organized in rhomboidal structure which results in a 3D
grid pattern. The grid pattern will deformed when the air pressure is applied to the
PAM and results a pulling force in axial direction [4, 5].

Various models have been proposed in the literature to understand the nonlinear
behavior exhibits in the PAM. Chou and Hannaford [1] along with Tondu and Lopez
[6] described the models based on the virtual work principle of an infinitely thin
inner tube and continuously cylindrical shape. An experimental model is derived
by Li et al. [7] which establish a relation between the operating air pressures,
muscle force along with the contraction of the PAM. Furthermore, the other major
parameters of the PAM like putting force, material properties, length and diameter
are also added more nonlinearity on the dynamic behavior of the muscle. Along with
this, the inter relation between the parameters are vary from one PAM to another
PAM due to these nonlinear parameters. This is explained by Kalita and Dwivedy
[8] with numerical model of the muscle dynamics when the natural frequency of
the system is nearly equal to the external excitation frequency of the system. In
another work [9], they studied the dynamics of the PAM when the natural frequency
of the system is nearly twice the external excitation frequency of the system. The
authors studied the effect of various parameters by adding a cubic nonlinearity to the
muscle force. PAMs generally operated with help of the antagonistic arrangement
for various applications to obtain the required actuation [10–12]. The dynamic
model of the antagonistic arrangement of the PAMs has been explained by Tóthová
and Pitel [11] with the help of an advanced geometric muscle model. In another
work, Balara and Tóthová [12] described the static and dynamic properties of the
nonlinear characteristics of various parameters of the PAM.

The dynamic model of the PAM is very difficult for practical control and use,
because of the presence of high nonlinearity. In this study, the new type of PAM
developed by Kalita and Dwivedy [13] is used for the analysis purpose where the
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system is supposed to be a single degree of freedom system. An external spring
is attached to the system in an antagonistic arrangement to provide support to
the system with an external load is applied. A second order nonlinear governing
equation can be obtained which is solved by using the method of multiple scales.
The obtained reduced equations are used to find out the response and stability of
the system by plotting the time and frequency response curves. The safe range of
the various system parameters to operate can also found out with the help these
response plots which can be used by the researchers and designers to know about
the dynamics of the artificial muscles. The mathematical modeling along with
approximate analytical solutions have been discussed in the following section.

2 Mathematical Modeling

Figure 1a shows the experimental setup for the antagonistic arrangement of the PAM
and the spring to achieve the actuation of the muscle for lifting a load to a particular
position. The schematic diagram of such arrangement has been depict in Fig. 1b to
understand the actuation of the PAM.

In Fig. 2a, the system has been modeled as a single degree of freedom system
and external force F sin ωt is applied to the system. This type of system has been
used in many medical as well as in industrial robotic applications. Figure 2b shows

Fig. 1 (a) Experimental setup with PAM and spring in antagonistic connection. (b) Schematic
diagram of the setup
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Fig. 2 (a) Equivalent spring-mass-damper system, (b) Free-body diagram

the free body diagram to represent the various forces acting on the whole system
and the governing equation can be found out using Newton’s law as follows.

mÿ + cẏ + ky + Fmus = F sinωt (1)

where the dot indicates the differentiation with respect to time t and y is the
displacement to the static equilibrium position of the system. The stiffness of the
external spring is given by k and the coefficient of the viscous damping of the
damper is c. Here, Fmus is the force employed by the PAM which is supposed to
be similar to that mentioned by Li et al. [7]. Since, there is a presence of high
nonlinearity in the PAM because of the various nonlinear parameters, an extra cubic
nonlinear term is added to the muscle force equation as follows.

Fmus (y, P ) =
(
c1 + c2P + c3P

2
)( y

lmax

)
+ ηy3 (2)

where c1, c2, c3 and η are the experimental constants for a particular application
and lmax is the maximum possible length that can be attained by the muscle. P
is the operating pressure in the muscle to actuate. One may obtain the following
expression by substituting Eq. (2) in Eq. (1).

ÿ + c

m
ẏ +

[
k

m
+

(
c1 + c2P + c3P

2
)

mlmax

]
y + η

m
y3 = F

m
sinωt (3)

Now, a non-dimensional time τ = ω0t is considered for the system where ω0 is the
fundamental natural frequency which can be written as below.
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ω0 =
√

k

m
+

[
c1 + c2P + c3P 2

]
mlmax

(4)

A nondimentional displacement is considered y = ry where r is the scaling factor.
The different other non-dimensional parameters are considered as given below.

� = �

ω0
, μ = c

2εmω0
, α = r2η

εmω2
0

, f = F

mrω2
0

(5)

Now, Eq. (3) can be simplified to the temporal equation of motion as follows.

ÿ + 2εμẏ + y + εαy3 = f sin�τ (6)

The dot represents the differentiation with respect to nondimentional time τ . The
book keeping parameter ε is less than 1 and μ is the non-dimensional damping
parameter. It may be noted that the nondimentional parameter f is not dependent on
the operating pressure P. Hence, the amplitude of the external force is a constant
term which is not a function of air pressure supplied to the system. This is very
useful in the field of robotics and medical applications. The temporal equation
(6) contains various nonlinear terms and it is very difficult have a closed form
solution. Therefore, one can obtain the approximate analytical solution with the
help perturbation technique like the method of multiple scales [14, 15].

In the method of multiple scales, the displacement can be expressed in terms of
different time scales (T0,T1) with a book keeping parameter ε as follows.

y (τ ; ε) = y0 (T0, T1) + εy1 (T0, T1) + O
(
ε2
)

(7)

By following the similar procedure as mentioned by Nayfeh and Mook [15], one
may obtain the first order modulation and phase equations for superharmonic
resonance condition as follows.

a′ = ε
(
−μa − α#3 sin γ

)
(8)

aγ ′ = 3aεσ − ε

(
αΛ3 cos γ + 3

8
αa3 + 3αaΛ2

)
(9)

where, Λ = f

2(1−Ω2)
. After finding out the particular solution of y0 and y1, substi-

tuting them in Eq. (7) the total time response of the system y(τ ) for superharmonic
resonance condition is given below.
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y = a cos (3�T0 − γ ) + 2# cos (ΩT0) + 4εΩμ#

(1−Ω2)
sin (ΩT0)

− αε
[
− a3

32 cos (9ΩT0 − 3γ ) + 3a2Λ

(1−Ω2)
cos (ΩT0)

+ 3aΛ2(
1−(1−2Ω)2

) cos (ΩT0 − γ ) + 3aΛ2(
1−(1+2Ω)2

) cos (5ΩT0 − γ )

+ 3a2Λ

2
(
1−(2+Ω)2

) cos (7ΩT0 − 2γ ) + 3a2Λ

2
(
1−(2−Ω)2

) cos (5ΩT0 − 2γ )

+ 6Λ3

(1−Ω2)
cos (ΩT0)

]

(10)

Now, for steady state response (a0, γ 0), the frequency response equation of the
system can be written as follows.

α2Λ6 =
(
μ2 +

(
3σ − 3

8
αa2 − 3αΛ2

)2
)
a2 (11)

From Eq. (11), one may noticed that there is no trivial state response exist in the
case of superharmonic resonance condition. But the nontrivial state response for
the system can be achieved by solving Eqs. (8) and (9) simultaneously. Hence,
substituting a = a0 + a1 and γ = γ 0 + γ 1 where a0 and γ 0 are the equilibrium
points in Eqs. (8) and (9) the stability of the steady state response can be found by
determining the eigenvalues of the Jacobian matrix (J). The Jacobian matrix (J) is
as follows.

J = ε

(
−μ −3a0σ + 3

8αa
3
0 + 3αa0Λ

2

3σ
a0

− 9
8αa0 − 3αΛ2

a0
−μ

)
(12)

The system will be stable for the superharmonic resonance condition if all the real
parts of the eigenvalues of the Jacobian matrix (J) in (12) are negative.

3 Numerical Results and Discussion

For the numerical analysis, the various parameters present in the PAM is considered
to be as Table 1 which is similar to that mentioned in Li et al. [7] and Kalita and
Dwivedy [8, 9]. Due to the existence of various nonlinear terms in the temporal
equation (6), the system will depict a typical nonlinear behavior. Here, the external
excitation frequency of the system is considered to be equal to the one third of
the natural frequency of the system i.e., superharmonic resonance condition. The
influence of the different parameters like operating pressure P, damping μ, external
force F, stiffness of the spring k, nonlinearity α along with the muscle parameter
c3 have been studied with the help frequency plots. From these plots one can
understand the effect of different parameters on the dynamics behavior of the



Nonlinear Study of a Pneumatic Artificial Muscle (PAM) Under Superharmonic. . . 267

system. In all the frequency response plots, the blue solid line indicates the stable
solutions whereas the red solid line depicts the unstable solution.

Figure 3 shows the frequency response of the system by taking the system
parameters value as mentioned in Table 1. In this case, there is no trivial solution
of the system. So, the PAM will always depend for actuation with the amplitude
to the nontrivial response of the system as shown in Fig. 3. It may be noted from
the nontrivial response that upto point P the system has single stable state and after
point P it has bi-stable state. So, one may attain either of the stable state which
is depending on the initial conditions. One may notice that with decrease in the
frequency, the system will involve with a jump-up phenomenon after the excitation
go beyond the critical point P (σ = 4.118), which is a saddle-node bifurcation point.
Here, the unstable solution at point P will always have an affinity to jump up to the
point Q which have a stable solution as in Fig. 3. Hence, to achieve the required
displacement of the PAM, the system parameters should be chosen properly by

-5 0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

M N

Q

P

Fig. 3 Frequency response with system parameters value as mentioned in Table 1

Table 1 System parameters values for simulation

Parameter Numerical value Parameter Numerical value Parameter Numerical value

lmax 74 mm μ 0.01 F 8 kN
c1 −234.25 N P 500 kPa r 1
c2 1.96 N/kPa m 6 N α 1500
c3 0.3 N/kPa2 k 12 N/mm ε 0.1
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Fig. 4 Basin of attraction: (a) σ = 0.01 and (b) σ = 10 from Fig. 3
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Fig. 5 Variation of operating pressure (P) with (a) P = 1000 kPa and (b) P = 250 kPa

actively control the operating pressure P, external load F and detuning parameter
σ or passively the muscle parameters μ, c1, c2, c3 and α along with stiffness of the
spring k. The effect of muscle parameters c1 and c2 are very less, so these have not
been reported in this work.

The basin attraction have been plotted in a ∼ γ plane to verify the frequency
responses in Fig. 4. From Fig. 4a, the basin of attraction clearly depicts a stable
solution with amplitude a = 0.014 which verify the point M (σ = 0.01) marked in
Fig. 3. For another point N at σ = 10, the basin of attraction in Fig. 4b depicts that
the system exhibit two stable and one unstable solution in the nontrivial state.

Figure 5 depicts the frequency response plots with two unlike values of operating
pressure of the muscle (P). It can be observed in the system that the maximum
response amplitude decreases with increase in P (P = 1000 kPa) and Hopf
bifurcation can be observed at detuning parameter σ = 0.252 and σ = 0.261 in
Fig. 5a. But decrease in the value P i.e., P = 250 kPa (Fig. 5b), the maximum
response amplitude is increased and the range of detuning parameter σ becomes
very large as compared to Fig. 3. The time response and phase portraits have been
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Fig. 6 (a) Time response and (b) phase portrait corresponding to the point ‘A’ in Fig. 5a
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Fig. 7 Variation of damping (μ) with (a) μ = 0.1 and (b) μ = 0.001

plotted in Fig. 6 at point A (σ = 0.252) in Fig. 5a to understand the behavior of the
Hopf bifurcation points in Fig. 5a.

From Fig. 7a, with increase in the damping parameter (μ = 0.1), the maximum
response amplitude has been decreased in the system and the saddle node bifurcation
point can be observed at B where the maximum response amplitude of the system is
a = 0.123. Beyond this point B the system has only one stable nontrivial solution.
In Fig. 7b, with decrease in the damping parameter (μ = 0.001) the maximum
response amplitude slightly increases as compared to Fig. 3. The time response and
phase portraits have been plotted in Fig. 8 to observe the nature of the saddle node
bifurcation point B at Fig. 7a.

In Fig. 9a, with increase in the value of the external load (F = 16 kN) the response
amplitude will increase along with the range of the detuning parameter also large as
compared to Fig. 3. But with decrease in the value of the external load (F = 4 kN),
the maximum response of the amplitude a = 0.154 will occur at the saddle node
bifurcation point σ = 5.14.

The effect of stiffness of the external spring k is very less compared to the other
parameter of the system as shown in Fig. 10. With increase in the value of stiffness
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Fig. 8 (a) Time response and (b) phase portrait corresponding to the point ‘B’ in Fig. 7a
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Fig. 9 Variation of external load (F) with (a) F = 16 kN and (b) F = 4 kN
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Fig. 10 Variation of stiffness of the external spring (k) with (a) k = 24 N/mm2 and (b)
k = 6 N/mm2
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Fig. 11 Variation of nonlinearity (α) with (a) α = 4500 and (b) α = 500
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Fig. 12 Variation of muscle parameter (c3) with (a) c3 = 0.9 N/kPa2 and (b) c3 = 0.1 N/kPa2

(k= 24 N/mm2), the response amplitude increases in the system by around 0.4% and
decrease in the value of stiffness (k = 6 N/mm2) the response amplitude decreases
by around 0.2% as compared to Fig. 3.

From Figs. 3 and 11a, it can be noticed that with increase in the value nonlinearity
α the response amplitude is decreased. Similarly, with decrease in the value of α, the
response amplitude of the system increased as shown in Fig. 11b. Hence, conclusion
can be made by triple the nonlinear parameter α (α = 4500), around 62% decrease
in the response amplitude and by reducing the nonlinear parameter α to its one third
value i.e., α = 500, around 92% increase in the response amplitude.

In Fig. 12a, with the increase in the value of muscle parameter c3
(c3 = 0.9 N/kPa2) in the system the maximum response amplitude a = 0.047
will be at saddle node bifurcation point at σ = 0.742. But with decrease in the value
of c3 (c3 = 0.1 N/kPa2), the maximum response amplitude will be occur at high
value of detuning parameter σ as compared to Fig. 3.
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From these above frequency plots (Figs. 3, 5, 7, 9, 10, 11 and 12), one may get to
know about the stability of the system depending upon the various combination
of system parameters. The required amplitude for particular application may be
achieved by either actively by changing the parameters like P, F and σ or passively
by changing the parameters μ, k, α and c3.

4 Conclusion

The stability analysis of a nonlinear PAM with different system parameters has
been investigated in this work. The governing system equation has been derived
and solved to approximate analytical solution with the help the method of multiple
scales. The external excitation frequency in this case is considered to be equal
to the one third of the natural frequency of the system i.e., superharmonic reso-
nance condition. In this superharmonic resonance conditions the system exhibits a
complex nonlinear response. So, to achieve the required position by the system,
the system parameters should be chosen properly which can be realized by the
frequency response plots. With the help of these responses one may get to know
about the amplitude and frequency of different bifurcation points to save the system
for a wide range of system parameters from the catastrophic failure. Hence, to
move the artificial muscle to its required position for a particular application, these
parameters can be used effectively with soft computing techniques and inverse
methods. Basin of attraction will validate these frequency response plots to observe
the solutions from initial conditions. So, with the help of this work, the desired
system response can be achieved with the proper control of different passive or
active system parameters under the superharmonic resonance conditions.
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Two-Mode Long-Wave Low-Frequency
Approximations for Anti-Plane Shear
Deformation of a High-Contrast
Asymmetric Laminate

Mohammed Alkinidri, Julius Kaplunov, and Ludmila Prikazchikova

Abstract The anti-plane shear of a three-layered laminate of an asymmetric
structure is considered. The chosen geometry of the laminate assumes coupling
its symmetric and anti-symmetric modes, which is not a feature of a symmetric
structure. A high contrast in mechanical properties of the inner and outer layers is
assumed. A specific contrast setup supporting an asymptotically small lowest shear
cut-off frequency is studied. For a laminate with traction-free faces two-mode long-
wave low-frequency approximation of the full dispersion relations incorporating
both the fundamental mode and the first harmonic is derived. The accuracy of the
derived approximations is tested by numerical comparison with the exact solution.
The 1D partial differential equation corresponding to the aforementioned two-mode
shortened dispersion relation is also presented.

Keywords Asymptotic · Contrast · Laminate · Two-mode · Asymmetric ·
Wave

1 Introduction

Multi-layered sandwich type structures with high contrast properties have numerous
applications in various high-tech domains, including automotive and aerospace
industries, see e.g. [1, 2]. In particular, asymmetric three-layered structures are
used nowadays for manufacturing modern prototypes of photovoltaic modules
[3, 4]. Mechanical behaviour of such structures can not be always tackled within
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conventional engineering models even taking into account shear deformation and
rotation inertia [5, 6]. This motivates developing of more elaborated advanced
approaches. Among the latter, asymptotic analysis of dynamic phenomena, specific
for high-contrast layered plates, seems to be of particular theoretical and practical
interest and importance [7–13].

The recent multi-parametric analysis of a symmetric three-layered sandwich
plate subject to in-plane bending deformation [7] demonstrates that the value of the
lowest shear cut-off frequency tends to zero for several setups of high-contrasting
material and geometrical parameters. As a result, an extra shear mode may be
excited over the long-wave low-frequency range, along with the fundamental bend-
ing one. The related two-mode polynomial shortened forms of the full dispersion
relation are derived in the cited paper [7]. The scenario supporting uniformly valid
shortened dispersion equations are revealed.

Along with a vector problem in [7], a simpler scalar anti-plane shear problem
is considered for the same symmetric three-layered sandwich plate in [8]. In this
case, the same as above small cut-off frequency is characteristic of antisymmetric
motion. The asymptotic expansions for the associated vibration mode are derived
not only for the dispersion equations but also for the equations of motion. For the
latter the asymptotic approach originally developed for analysing high-frequency
near-cut-off behaviour, e.g. see [6, 14, 15] and references therein, is adapted for the
low-frequency band.

In this paper we insert asymmetry in the formulation of [8] leading to two low-
frequency cut-offs. One of them is a natural generalisation of the shear cut-off
considered in [8], whereas the second one, as might be expected, corresponds to
the fundamental mode and is equal to zero. In the degenerate case of a symmetric
plate the fundamental mode characteristic of symmetric motion is decoupled from
antisymmetric ones treated in [8].

In what follows, we deal with two-mode long-wave low-frequency approxi-
mations of the full dispersion relation, similarly to [7], but for a simpler scalar
problem. This looks promising for further insight in dynamics of high-contrast
layered structures, including asymptotic considerations of two-mode expansion of
the equations of motions. At the same time, the algebra in this paper is obviously
more involved than that in [8], since the plate motion now cannot be split into
symmetric and antisymmetric components.

The paper is organised as follows. First we formulate the anti-plane problem for
a three-layered asymmetric plate and derive the exact dispersion relation. Then, we
choose a high-contrast setup corresponding to a plate with stiff outer layeres and soft
inner layer, supporting a small shear cut-off. Next, we derive a two-mode uniform
asymptotic approximation of the dispersion relation and illustrate numerically a
good agreement between the exact and asymptotic results.
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2 Statement of the Problem

Consider a three-layered asymmetric laminate with the isotropic layers of thickness
h1, h2 and h3, see Fig. 1. The Cartesian coordinate system is chosen in such a way
that the axis x1 goes through the mid-plane of the core layer. In what follows two
outer layers have the same material parameters.

For the antiplane shear motion the only non-zero displacement is orthogonal to
the x1x2 plane. Hence, the equations of motion for each layer can be written as

∂σ l
13

∂x1
+ ∂σ l

23

∂x2
− ρl

∂2ul

∂t2
= 0, l = 1, 2, 3, (1)

with

σ l
i3 = μl

∂ul

∂xi
, i = 1, 2, (2)

where σ l
i3 are shear stresses, ul = ul(x1, x2) are out of plane displacements, t

is time, μl are Lamé parameters, and ρl are mass densities. As we have already
mentioned, μ1 = μ3 and ρ1 = ρ3.

The continuity and traction-free boundary conditions are given by

x1

x2

h1

h2

h3

0

Fig. 1 A three-layered asymmetric plate
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u1 = u2, σ 1
23 = σ 2

23 at x2 = h2

2
,

u2 = u3, σ 2
23 = σ 3

23 at x2 = −h2

2
,

(3)

and

σ 1
23 = 0 at x2 = h2

2
+ h1,

σ 3
23 = 0 at x2 = −h2

2
− h3,

(4)

respectively. We seek solution of the formulated problem (1)–(4) in the form of a
travelling wave ei(kx1−ωt), where k is the wave number and ω is frequency. The
related dispersion relation becomes

μα1α2
(

tanh(h12α1) + tanh(h32α1)
) + μ2α2

2 tanh(α2)+
+ α1

2 tanh(h12α1) tanh(h32α1) tanh(α2) = 0
(5)

where

α1 =
√
K2 − μ

ρ
Ω2, α2 =

√
K2 − Ω2 (6)

and

K = kh2, Ω = ωh2

c2
, μ = μ2

μ1
, ρ = ρ2

ρ1
,

h12 = h1

h2
, h32 = h3

h2
,

(7)

with c2 = √
μ2/ρ2.

Dispersion relation (5) can be reduced to a simpler one for a symmetric sandwich
plate setting h1 = h3 and h2 = 2h̃2. Substituting these into above and introducing
new notation h = h1/h̃2 we obtain a dispersion relation which can be factorised as

(
2μα2 + α1 tanh(α1h) tanh(α2)

)(
2μα2 tanh(α2) + α1 tanh(α1h)

) = 0. (8)

The first and second aggregates in the left-hand side of (8) correspond to the
dispersion relations for symmetric and antisymmetric waves, respectively.

We also present the formulae for displacements
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u1 = 2βμα2 cosh

(
α1

(
h12 + 1

2
− ξ

))
,

u2 = β
(
(μα2 + α1) cosh

(
α1h12 − α2ξ + α2

2

)

+(μα2 − α1) cosh
(
α1h12 + α2ξ − α2

2

))
,

u3 = β

2α1

(
−(μα2 − α1)

2 cosh

(
α1

(
h12 − 1

2
− ξ

)
− α2

)

+(μα2 + α1)
2 cosh

(
α1

(
h12 − 1

2
− ξ

)
+ α2

)

+(μ2α2
2 − α2

1) cosh

(
α1

(
h12 + 1

2
+ ξ

)
− α2

)

−(μ2α2
2 − α2

1) cosh

(
α1

(
h12 + 1

2
+ ξ

)
+ α2

))
,

(9)

where ξ = x2/h2 and

β = A
(
(μα2 − α1) sinh

(
α1h12 − α2

2

)
− (μα2 + α1) sinh

(
α1h12 + α2

2

))−1
,

with A being an arbitrary constant.

3 Asymptotic Analysis

First, setting K = 0 in dispersion relation (5), we have for the cut-off frequencies

√
μρ

(
tan

(
h12

√
μ

ρ
Ω

)
+ tan

(
h32

√
μ

ρ
Ω

))
+ μρ tan (Ω)

− tan

(
h12

√
μ

ρ
Ω

)
tan

(
h32

√
μ

ρ
Ω

)
tan (Ω) = 0.

(10)

Consider the contrast in the material parameters of the outer and core layers given
by

μ � 1, ρ ∼ μ, h12 ∼ 1, h32 ∼ 1. (11)

These formulae specify an asymmetric laminate with stiff outer layers and a soft
core. In this case, apart from usual zero cut-off (Ω = 0) we have an extra small one
approximated by
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Ω

K

(a) no contrast
Ω

K

(b) high contrast

Fig. 2 Dispersion curves (5) for h12 = 1.0, h32 = 1.5 and (a) μ = 1.0 and ρ = 2.0, (b) μ = 0.01
and ρ = 0.02

Ω ≈
√
(h12 + h32)ρ

h12h32
� 1. (12)

Hence, for the assumed contrast material properties we have two cut-offs over the
low frequency band. This is not the case for a non-contrast setup which allows only
a zero cut-off. This observation is illustrated numerically in Fig. 2, where dispersion
curves (5) are plotted for both non-contrast and contrast setups.

Next, expanding all trigonometric functions in (10) in asymptotic Taylor series at
Ω � 1 and K � 1 and assuming relations (11) to be valid, we derive a polynomial
dispersion relation, which can be written as

γ1K
2 + γ2Ω

2 + γ3K
4 + γ4K

2Ω2 + γ5Ω
4 + γ6K

6

+ γ7K
4Ω2 + γ8K

2Ω4 + γ9Ω
6 + · · · = 0,

(13)

where

γ1 = μ (h12 + h32 + μ) ,

γ2 = −μ2

ρ
(h12 + h32 + ρ) ,

γ3 = h12h32 − μ

3

(
h3

12 + h3
32 + μ

)
,

γ4 = 2μ

3ρ

(
h3

12μ + h3
32μ − 3h12h32 + μρ

)
,
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γ5 = − μ2

3ρ2

(
h3

12μ + h3
32μ − 3h12h32 + ρ2

)
,

γ6 = 2μ

15

(
h5

12 + h5
32 + μ

)
− h12h32

3

(
h2

12 + h2
32 + 1

)
,

γ7 = − 1

15ρ

(
6μ2

(
h5

12 + h5
32 + ρ

)
− 5h12h32

(
3h2

12μ + 3h2
32μ + 2μ + ρ

))
,

γ8 = μ

15ρ2

(
6μ

(
h5

12μ + h5
32μ + ρ2

)
− 5h12h32

(
3h2

12μ + 3h2
32μ + μ + 2ρ

))
,

γ9 = − μ2

15ρ3

(
2
(
h5

12μ
2 + h5

32μ
2 + ρ3

)
− 5h12h32

(
h2

12μ + h2
32μ + ρ

))
.

(14)

At leading order coefficients γi ≈ γ 0
i are given below

γ 0
1 = (h12 + h32) μ,

γ 0
2 = −h12 + h32

ρ0
μ,

γ 0
3 = h12h32,

γ 0
4 = −2h12h32

ρ0
,

γ 0
5 = h12h32

ρ2
0

,

γ 0
6 = −h12h32

3

(
h2

12 + h2
32 + 1

)
,

γ 0
7 = h12h32

3ρ0

(
3h2

12 + 3h2
32 + ρ0 + 2

)
,

γ 0
8 = −h12h32

3ρ2
0

(
3h2

12 + 3h2
32 + 2ρ0 + 1

)
,

γ 0
9 = h12h32

3ρ3
0

(
h2

12 + h2
32 + ρ0

)
,

(15)

where ρ0 = ρ/μ . From (15) we observe that γ1 ∼ γ2 ∼ μ, and γi ∼ 1,
i = 3, . . . , 9. As a result, the leading order shortened approximation, involving
the fundamental mode with a zero cut-off along with the lowest harmonic with the
cut-off of order O(

√
μ) given by (12),takes the form

γ 0
1 K

2 + γ 0
2 Ω

2 + γ 0
3 K

4 + γ 0
4 K

2Ω2 + γ 0
5 Ω

4 + · · · = 0.
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The above equation can be factorised

(
K2ρ0 − Ω2

) (
h12h32

(
K2ρ0 − Ω2

)
+ h12μρ0 + h32μρ0

)
= 0. (16)

Therefore, for the fundamental mode and first harmonic we have

Ω2 = ρ0K
2 (17)

and

Ω2 = ρ0

h12h32

(
h12μ + h32μ + h12h32K

2
)
, (18)

respectively. It is worth mentioning that approximation (17) for the fundamental
mode is valid over the whole low-frequency band K � 1, consequently, it does not
fail at the vicinity of the cut-off (12), leading to a uniform approximation, see also
[7] concerned with a similar analysis.

It might be also expected that the shortened dispersion relation (16) would
correspond to a 1D partial differential equation, which can be presented in the
original variables as

�2v − μ2(h1 + h3)

μ1h1h2h3
�v = 0, (19)

where v(x1, t) is a characteristic displacement and the d’Alembert operator � is
defined as

� = ∂2

∂x2
1

− 1

c2
1

∂2

∂t2

with c1 = √
μ1/ρ1.

A numerical comparison is shown for the exact dispersion curves (5) and
approximations (17) and (18) in Fig. 3.

As an example we also plot in Fig. 4 the variation of properly normalised plate
displacements ui/β (9) across the thickness calculated at cut-off frequency (12),
which takes the value Ω ≈ 0.18 for the same problems parameters as in Fig. 3. For
the fundamental mode in Fig. 4a we have from (5) K ≈ 0.13, where as for the first
harmonic K = 0.
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Ω

K

Fig. 3 Dispersion curves (5) (solid line) together with approximations (17) and (18) (dotted lines)
for h12 = 1.0, h32 = 1.5, μ = 0.01, and ρ = 0.02

ξ

u

(a)

ξ

u

(b)

Fig. 4 Displacement variations at the cut-off frequency Ω ≈ 0.18 for h12 = 1.0, h32 = 1.5,
μ = 0.01, and ρ = 0.02 (a) fundamental mode, (b) first harmonic
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4 Concluding Remarks

For the chosen high contrast scenario, in which the smallest shear cut-off frequency
for a three-layered asymmetric laminate tends to zero, two low-frequency vibration
modes, including the fundamental one and the first harmonic, are observed. These
modes are evaluated from a shortened polynomial dispersion equation established
in the paper. The latter appears to be uniformly valid over the range containing
the first cut-off. Numerical comparison with the solutions of the full dispersion
relation demonstrates a high accuracy of the developed two-mode asymptotic
formula. The obtained explicit results have a clear potential to be extended to
other types of contrast, as well as to plane vector problems. They also make an
important preliminary insight to the essence of dynamic behaviour of high-contrast
layered structures prior deriving long-wave partial differential models justifying and
generalising equation (19) which has been just sketched in the paper.
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A Study on the Coefficient of Restitution
Effect on Single-Sided Vibro-Impact
Nonlinear Energy Sink

Adnan S. Saeed and Mohammad A. Al-Shudeifat

Abstract Vibration mitigation is an essential factor in many engineering applica-
tions given the high risk of failure due to the frequent occurrence of earthquakes,
blasts, collisions and fluid-structure interaction. Linear and nonlinear vibration
absorbers have been continuously studied to be employed in such structures to
decrease the vibration levels and therefore protect them from destruction. Up to
date, the most effective and efficient passive vibration absorber is the single-sided
vibro-impact (SSVI) nonlinear energy sink (NES) which consists of a small mass
attached to the primary structure via linear stiffness and linear damping coupling
elements in addition to a rigid barrier that enables it to engage in non-smooth
inelastic impacts. It has been shown in the literature that an accurately optimized
SSVI NES is capable of transferring and dissipating high percentages of the initial
input energy into the primary structure. However, most of the investigations in the
literature implement a coefficient of restitution of 0.7 corresponding to steel-to-steel
impacts. Consequently, this paper investigates further improvements to the SSVI
NES by studying the effect of changing the coefficient of restitution to increase the
efficiency of targeted energy transfer (TET). It is found that lowering the coefficient
of restitution increases the efficiency of the SSVI NES to transfer and dissipate
energy from a large-scale nine-story structure.

Keywords Nonlinear energy sink · Vibro-impact · Shock mitigation

1 Introduction

Structures are subject to destructive vibration amplitudes from impacts, collisions,
earthquakes or wind. Hence, it is desirable to protect the structure by transferring
energy to a dynamic absorber in a process known as passive targeted energy
transfer (TET). It has recently gained increasing interest in many applications of
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structural dynamics where a small essentially nonlinear lightweight attachment
called nonlinear energy sink (NES) is usually added to the primary structure to
enable passive energy transfer for wide range of frequencies through single or
cascades of resonance captures. Recently, various NES designs have been numer-
ically, analytically and experimentally investigated to achieve high percentages
of energy transfer and dissipation. Depending on the way the nonlinearity is
added, these NESs can be categorized into several types such as stiffness-based
NESs, impact-based NESs, rotary NESs, and magnet-based NESs. The translational
stiffness-based NESs employ an essentially nonlinear (usually cubic) stiffness
coupling element to attach the NES mass to a floor in the primary structure [1].
Several enhancements have been proposed to this type where the addition of a
linear or nonlinear damping elements [2], additional nonlinearly coupled mass [2],
additional lateral stiffness elements [3] and negative, unsymmetrical or variable
nonlinear stiffness components [4, 5] are analyzed for increasing the efficiency of
the energy transfer and dissipation. Impact-based NESs employ a linearly coupled
NES mass in addition to rigid barriers in the motion domain of the NES to engage
in non-smooth impacts that integrate the essential non-linear property required for
cascades of resonance captures. There are two main types of impact-based NESs:
(1) double-sided vibro-impact (DSVI) NESs in which two rigid barriers are placed
symmetrically from the initial position of the NES mass [6–9] and (2) single-sided
vibro-impact (SSVI) NESs, which are the topic of this paper, realized by removing
one of the rigid barriers to allow the NES mass gain considerable momentum during
the non-impact phase [10–14]. Rotary NESs incorporate an inertially coupled NES
mass through a rigid arm rotating about a vertical axis perpendicular to the direction
of motion of the primary structure [15, 16]. Similarly, this type of NES has been
further enhanced by employing an elastic arm instead of the rigid arm [17] or
by adding a rigid barrier to incorporate non-smooth impacts with the associated
floor of the primary structure [18]. Finally, the magnet-based NES mass is coupled
to the associated floor of the primary structure through a nonlinear symmetric or
asymmetric coupling magnetic force [19, 20]. Out of all the NES types, the SSVI
NESs have been proven numerically and experimentally to be the most efficient
for energy dissipation and shock mitigation. Hence, the focus of this paper is to
investigate further enhancements to the SSVI NESs to improve its capability of
engaging in rapid passive and nearly irreversible TET.

During an impact in a structure with SSVI NESs, the coefficient of restitution,
a material property depending solely on the materials which get in contact, is
defined as the ratio of the magnitude of restitutive impulse to deformative impulse.
Most current works related to impact-based NESs consider steel-to-steel impacts
which correspond to a coefficient of restitution of 0.7. The aim of this article is to
investigate the effect of changing the coefficient of restitution on the performance
of SSVI NES when attached to the top floor of a physical nine-story linear
primary structure excited by an impulsive loading. The paper presents the system
description and governing equations, a discussion of the numerical optimization
process followed by results and concluded remarks.
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2 System Description and Governing Equations

The physical large-scale nine-story structure analyzed in [11, 12, 14, 17] is
considered here where a SSVI NES is attached to the top floor as shown in Fig. 1.
The mass, damping and stiffness matrices of the primary structure identified by the
modal analysis of the physical fixture for the system can be found in [11, 12, 14,
17]. Upon updating the mass M, damping C and stiffness K matrices of the whole
structure to include the addition of the NES, the governing equations of motion are
derived using Newtonian dynamics as

Mẍ + Cẋ + kx = 0 (1)

The equations are numerically integrated using Runge-Kutta formulations. How-
ever, the numerical integration is continued until the impact condition for the SSVI
NES given by

xnes − x1 ≥ zc (2)

is satisfied where xnes and x1 are the displacement of the NES and the top floor
respectively and zc is the clearance as shown in Fig. 1. After calculating the precise
time of the impact, the velocities of the top floor and the SSVI NES after the
impact are calculated based on the conservation of momentum and the coefficient
of restitution rc principles as

ẋ+
1 = mẋ−

nes + M1ẋ
−
1 − mrc

(
ẋ−

1 − ẋ−
nes

)
m + M1

(3)

ẋ+
nes = ẋ+

1 + rc
(
ẋ−

1 − ẋ−
nes

)
(4)

where M1 and m are the masses of the top floor and NES respectively and
the superscripts + and − indicate the velocities after and before the impacts
respectively. Accordingly, there are three sources of energy transfer and dissipation
in the coupled system. The first is due to the linear damping element, represented by
λnes in Fig. 1, coupling the NES mass to the top floor of the structure. The second
element is the kinetic energy lost during the inelastic impacts that occur when the
NES collides with the rigid barrier attached to the top floor. The third is due to the
non-smooth interference from the vibro-impacts which alters the global dynamic
response of the structure causing energy to be transferred within its structural modes.
Transferring energy from low-frequency high-energy destructive fundamental mode
to high-frequency low-energy mode is another element of TET.

One way to quantify the performance of the coupled system for achieving
efficient TET is by measuring the enhancement in the damping of the respective
effective modal oscillators. This is quantified by the time-independent averaged
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Fig. 1 Conceptual illustration of a SSVI NES coupled to the top floor of an n-story structure. (a)
Primary structure with no NES attached. (b) SSVI NES

effective modal damping measures λeff, i expressed as

λeff,i =
q̇i (T0)

2 − q̇i
(
Tf

)2 + ω2
i

(
q̇i (T0)

2 − q̇i
(
Tf

)2
)

2
∫ Tf
T0

q̇2
i dt

= E (T0) − E (Tf)∫ Tf
T0

q̇2
i dt

(5)

where q̇i is the modal velocity of the ith mode, T0 and Tf are the initial and
final simulation times, E is the instantaneous energy and ω2

i is the effective modal
stiffness. Because the modal response of a linear primary structure without the NES
leads to no energy transfer within its modes, the nominal modal damping λi of
the ith structural mode is obtained from Eq. (5). The nonlinear interaction of the
NES causes the energy dissipated by any mode plus its instantaneous energy to not
sum up to its initial induced energy due to energy exchange between the structural
modes and therefore the energy in each mode is not reserved. The ratio of the
time-independent averaged effective damping measures λeff, i to the nominal modal
damping λi of the NES-free system is defined as the normalized weighted-averaged
effective damping measures λ̂eff,i . If λ̂eff,i < 1, then energy is transferred into the
ith mode and it eventually dissipates more energy than its initial energy and vice
versa.

The SSVI NES parameters: knes and λnes are tuned in order to investigate the
effect of changing the coefficient of restitution on achieving efficient and rapid
transfer and dissipation of energy. The simulation time Tf is set to 5 s to ensure
efficient and rapid TET, the clearance zc is fixed to 0.015 m to ensure non-smooth
vibro-impacts will occur and the NES mass m is taken as 500 kg and is assumed to
be nonparasitic (i.e. do not add mass to the primary structure). We are interested
in finding the optimum parameters of the SSVI NES that maximize normalized
weighted-averaged effective damping measures of mode 1, λ̂eff,1, which indicates
the maximum transfer of energy from the lowest fundamental (highly-energetic)
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Fig. 2 Contour of λ̂eff,1 for varying knes and λnes using rc = 0.7, black cross indicates optimal
parameters used as initial guesses for the optimization algorithm

mode to higher frequency modes. Figure 2 shows λ̂eff,1for varying NES parameters
for an impulsive excitation induced by identical initial velocity of 0.25 m/s equally
to all floors of the primary structure using a coefficient of restitution of 0.7. It is
noticed that a relatively weak stiffness-coupling element is required for the SSVI
NES to transfer significant amount of energy from the first fundamental mode to
be dissipated by the NES damping, inelastic impacts or higher structural modes.
Further, the damping and stiffness coefficients, indicated by the black crosses in
Fig. 2, giving the maximum achievable effective damping measure for rc = 0.7 are
used as initial guesses for optimizing λ̂eff,1 with different values of the coefficient of
restitution using the optimization algorithm based on Nelder-Mead simplex method
[21] as shown in Fig. 3.

3 Results and Discussion

The results of the numerical optimization are summarized in Fig. 4 which shows
the maximum achievable normalized weighted-averaged effective mode 1 damping
measures λ̂eff,1 by an optimized system at each specific value of the coefficient
of restitution rc for a clearance of 0.015 m and an impulsive loading through an
identical initial velocity of 0.25 m/s induced equally to all floors of the primary
structure. First, it is noticed that the optimized coupled systems for all values of rc
result in normalized weighted-averaged effective mode 1 damping measures λ̂eff,1
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Fig. 3 Optimization algorithm implemented for investigating the effect of changing the coefficient
of restitution

that are greater than unity. This indicates that in all cases, energy is being transferred
from the high energy low frequency mode 1 to the NES itself or the other structural
modes having lower energy and higher frequency. Consequently, this indicates that
highly efficient TET has occurred by forcing energy to be transferred through single
or cascades of resonance captures in a rapid and nearly irreversible way. In addition,
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Fig. 4 Comparing λ̂eff,1 using optimized knes and λnes at each rc

the goal of this paper is to investigate if changing the coefficient of restitution
from its typical value of 0.7 which corresponds to steel-to-steel impacts will
enhance the energy transfer and dissipation by resulting in higher values of λ̂eff,1.
Figure 4 shows that the maximum normalized weighted-averaged effective mode 1
damping measure is 8.1 achievable with a coefficient of restitution of 0.45 where
the optimized SSVI NES parameters are knes = 29,482 N/m and dnes = 281.5 Ns/m
compared to 7.5 achievable with a coefficient of restitution of 0.7 where the
optimized SSVI NES parameters are knes = 29,701 N/m and dnes = 319.8 Ns/m.
Additionally, the performance of the optimized NESs at rc = 0.45 and rc = 0.70
are compared in Fig. 5a for varying initial impulsive energies induced equally to
all floors. The modified system with coefficient of restitution of 0.45 shows higher
normalized weighted-averaged effective mode 1 damping measures for a wide range
of initial impulsive energies indicating that better energy transfer and dissipation is
achievable at lower values of the coefficient of restitution as shown in Fig. 5b.

The response of the integrated structure is depicted in Fig. 6 for three cases:
SSVI NES with optimal parameters at a coefficient of restitution of 0.45 and 0.7
as well as with the NES locked, where it interacts only through its mass. Figure 6a
shows that the modal response of mode 1 of the structure with either of the attached
NESs significantly suppresses its amplitude after few oscillation cycles indicating
the efficiency of the nonlinear energy redistribution. Figure 6 also shows the time
histories of the total energy dissipated Ediss and its contributors: energy dissipated
by impacts Eimp (Fig. 6c), energy dissipated by damping Edamp (Fig. 6e) and
energy dissipated through the inherent structural damping of the higher modes Ehigh
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Fig. 5 (a) λ̂eff,1 and (b) Total energy dissipated Ediss of the structure-NES system for varying
initial impulsive energy E0 employed using identical initial velocity applied to all floors

Fig. 6 Response of the structure-NES system with the optimal parameters for a coefficient of
restitution of 0.45 and 0.7; for comparison the case of locked NES is also shown where appropriate
show. The modal response of the first mode is shown in (a) and the time history of the total energy
dissipated is shown in (b) with its breakdown showing energy dissipated by impacts in (c), damping
in (e) and higher modes in (f). The time history of the energy remaining in the primary structure is
shown in (d)

(Fig. 6f). Although a system with the modified NES gives less energy dissipation
by damping and through higher structural modes, it gives enhanced total energy
dissipation and quickly reduces the energy remaining in the primary structure (Fig.
6d) through the added dissipation from the impact signifying the importance of the
proposed enhancement.
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4 Conclusions

Many dynamical structures undergo continuous vibrations induced by shock or
seismic excitations resulting from impacts, collisions, wind, earthquake, or fluid-
structure interaction. Consequently, integrating dynamic vibration absorbers is
becoming a high priority and essential requirement in many engineering appli-
cations. Nonlinear energy sinks (NESs) are the most efficient and robust passive
attachments to act as rapid and passive device to transfer and dissipate energy from
the primary structure. Hence, this paper investigated further improvements to the
currently most efficient nonlinear energy sink (NES), the single-sided vibro-impact
(SSVI) NES, by studying the effect of the coefficient of restitution, which is a ratio
of restitutive to deformative impulses during impact, on its capability to irreversibly
transfer induced impulsive energy out of the fundamental highly energetic mode.
Currently, the coefficient of restitution used in most analytical, numerical and
experimental analysis of impact-based NESs is 0.7 which corresponds to the typical
steel-to-steel impacts. However, it is found in this paper that reducing the coefficient
of restitution to 0.45 enhances the normalized weighted-averaged effective damping
measure of the fundamental mode of a nine-story linear physical primary structure.
The results are obtained for a simulation time of 5 s and using an NES mass of
5% of the whole structure indicating that rapid targeted energy transfer (TET) can
occur with using a small mass of NES. The enhanced performance is obtained for
a wide range of initial impulsive energies indicating the robustness of the proposed
modification.
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