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Abstract The algorithm for generating the dynamics equations of the two-dof
spatial linkage is considered in the paper. The presented linkage is composed of
the five rigid or flexible links which form a serial closed-loop kinematic chain.
It is assumed that revolute joints can be imperfect. The joint coordinates together
with homogeneous transformation matrices are applied to generate the equations
of motion. The dynamics equations are derived using the Lagrange equations of
the second kind. The presented algorithm gives the opportunity to generalize it
for any linkages with a tree closed-loop kinematic structure. The flexible links
are modelled by means of the Rigid Finite Element Method in the sense of the
modified approach. The author’s spatial model of the revolute joint with radial and
axial clearance is applied to take into account clearance effects. In this model, a
revolute joint is discretized by means of contact elements located on the cylindrical
and frontal surfaces of the journal and bearing. Such an approach allows us to detect
automatically collisions in many points of the contacting surfaces. The normal
contact force is calculated using the Nikravesh-Lankarani formula which is an
extension of the classic Hertz model because it additionally takes into account
dissipation of the energy. The LuGre friction model is applied to model friction
phenomenon in joints. In numerical simulations, an interaction between the links’
flexibility and clearance in the joint during the motion of the linkage is analyzed.
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1 Introduction

The clearance in joints can be the result of structural assumptions or the effect of
wearing parts. Simulation models of dynamics of linkages with clearance effects
allow to better understand their behavior, as well as to estimate the values of
impulse forces which increase the dynamic forces acting on the system. In addition,
thanks to these models it is possible to determine the limit value of the clearance
at which further operation can lead to damage of the system. Paper [1] shows that
the flexibility of links has a significant impact on the behavior of linkages with the
clearance in joints. The results presented there show that the flexibility can lead to a
significant reduction of the impulse forces caused by the impact of the journal and
bearing.

In the paper, it is assumed that the clearance can exist only in the revolute joints.
There are many papers devoted to the clearance model of the revolute joints [1–7].
These models can be divided into two main groups: planar [2, 3] and spatial [1, 4–7],
related to how the motion of the journal and bearing is described. Additionally, they
can analyze only the radial clearance [2, 3] or they can take into account interaction
between the radial and axial clearance [1, 4–7].

The dynamics model of the two-dof RPSUP linkage is presented in the paper.
This model takes into account the flexibility of the link and the clearance in the
revolute cut-joint. The kinematics of the linkage is described using the formalism of
the joint coordinates and homogeneous transformation matrices. The Rigid Finite
Element Method [8] is used to discretize the flexible coupler. The author’s spatial
model of the revolute joint with the radial and axial clearance is proposed. In these
model contacting surfaces are discretized by means of the contact elements for
which the normal and tangent contact forces are calculated. The impulse force in the
clearance joint is modeled using the Nikravesh-Lankarani formula [9] and friction
is modeled by means of the LuGre friction model [10]. In numerical simulations,
the influence of the crank velocity and the clearance in the revolute cut-joint on the
slider acceleration is analyzed.

2 Dynamics Model of the Two-dof RPSUP Spatial Linkage

The RPSUP linkage containing five links is shown in Fig. 1. The linkage is divided
at cut-joint R and as a result, the two open-loop kinematic chains are obtained

(c ∈ {1, 2}). The first chain contains three links
(
n

(1)
l = 3

)
whilst the second chain

forms two links
(
n

(2)
l = 2

)
. In the proposed model, it is assumed that the clearance

is considered only in the cut-joint R.
It is also assumed that coupler (1, 3) can be flexible and the Rigid Finite Element

Method is used to discretize its. As result, the coupler is replaced by the set of



The Dynamics Analysis of a Spatial Linkage with Flexible Links and Imperfect. . . 147

l (1,1)

cut-joint R

chain 1

chain 2

l (1,2)

l (1,3)

link (1,1) – m(1,1)

link (1,2) – m(1,2)

link(2,1) –  m(2,1)

link (2,2) – m(2,2)

link (1,3)
(flexible - RFEM)

link (1,3) – m(1,3)

(replacement model)

lumped mass – mS

lumped mass – mR

(1,1)tdr

(1,2)fdr
C (1,1)

C (1,2)

C (1,3)

C (2,1)

C (2,2)

(1,3)
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Fig. 1 Model of the RPSUP linkage

rigid finite elements (rfe) interconnected by means of the set of dimensionless and
massless spring-damping elements (sde) (Fig. 2).

2.1 The Formalism of Generalised Coordinates
and Homogeneous Transformation Matrices

The kinematics of the linkage considered is defined by means of the joint coordi-
nates and homogeneous transformation matrices (Fig. 2).

The generalised coordinates vectors defined for each open-loop kinematic chain
have the following form:

q(1) =
(
q

(1)
i

)
i=1,...,n(1)

dof

=
[
ψ(1,1) z(1,2) ψ(1,3,0) θ (1,3,0) ϕ(1,3,0) q̃(1,3)

f

]T

,

(1.1)
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Fig. 2 Generalised coordinates

q(2) =
(
q

(2)
i

)
i=1,...,n(2)

dof

= [
z(2,1) ψ(2,2)

]T
, (1.2)

where: q̃(1,3)
f =

⎧
⎨
⎩

∅ if coupler rigid,[
q̃(1,3,1)T · · · q̃(1,3,r)T · · · q̃

(
1,3,n(1,3)

rf e −1
)T

]T

if coupler flexible,

q̃(1,3,r) = [
ψ(1,3,r) θ (1,3,r) ϕ(1,3,r)

]T
.

The transformation matrices from the local reference frames defined for each link
to the global reference frame are defined by:

T(c,b)
∣∣∣
c = 1, 2
b = 1, . . . , n(c)

l

=
b∏

j=1

Ã(c,j)T̃(c,j), (2)

where Ã(c,j) = const is the transformation matrix describing the initial position
and orientation of link (c, j) with respect to the preceding link, T̃(c,j) is the
transformation matrix defining the actual position and orientation of link (c, j) with
respect to the initial configuration.
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2.2 Dynamics Equations of Motion

The dynamics equations for each open-loop kinematic chain are derived using the
Lagrange equations of the second kind [8]:

d

dt

∂E
(c)
k

∂q̇(c)
− ∂E

(c)
k

∂q(c)
+ ∂E

(c)
p

∂q(c)
+ ∂R(c)

∂q̇(c)
= Q(c)

∣∣∣
c=1,2

, (3)

where E
(c)
k is the kinetic energy of chain c, E(c)

p = E
(c)
p,g + E

(c)
p,fl

is the sum of the
potential energy of gravity forces and spring deformation energy of the flexible link,
R(c) is the Rayleigh function defined for the flexible link and Q(c) is the vector of
non-potential generalised forces resulting from e.g. the contact forces acting in the
clearance joint. The following sections present detailed formulas for determining
components of the Eq. (3).

Kinetic Energy and Potential Energy of Gravity Forces

The kinetic energy of the particular subchains can be determined using the concept
of the trace of the matrix:

E
(1)
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

n
(1)
l∑

l=1
tr

(
Ṫ(1,l)H(1,l)Ṫ(1,l)T

)

if coupler rigid,

1
2

n
(1)
l −1∑
l=1

tr
(
Ṫ(1,l)H(1,l)Ṫ(1,l)T

)

+ 1
2

n
(1,3)
rf e −1∑
r=1

tr
(
Ṫ(1,3,r)H(1,3,r)Ṫ(1,3,r)T

)
if coupler flexible,

(4.1)

E
(2)
k = 1

2

n
(2)
l∑

l=1

tr
(
Ṫ(2,l)H(2,l)Ṫ(2,l)T

)
, (4.2)

where H(•) is the pseudo-inertia matrix of link or rfe.
After necessary transformations the Lagrange operator can be written in the

matrix form as follows:

d

dt

∂E
(c)
k

∂q̇(c)
− ∂E

(c)
k

∂q(c)
= M(c)q̈(c) + h(c), (5)
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where: M(c) =
(
M(c)

i,j

)
i,j=1,...,n(c)

l

, M(c)
i,j =

n
(c)
l∑

l=max{i,j}
M(c,l)

i,j , M(c,l)
i,j

∣∣∣
i,j=1,...,l

=
(

m
(c,l)

n
(c,i−1)
dof +v,n

(c,j−1)
dof +w

)
v = 1, . . . , ñ(c,i)

dof

w = 1, . . . , ñ(c,j)
dof

, m
(c,l)
i,j = tr

{
T(c,l)

i H(c,l)T(c,l)T

j

}
h(c) =

(
h(c)

i

)
i=1,...n(c)

l

, h(c)
i =

n
(c)
l∑

l=i

h(c,l)
i ,h(c,l)

i

∣∣∣
i=1,...,l

=
(

h
(c,l)

n
(c,i−1)
dof +v

)

v=1,...,ñ(c,l)
dof

,h(c,l)
i =

n
(c,l)
dof∑

m=1

n
(c,l)
dof∑

n=m

tr
{
T(c,l)

i H(c,l)T(c,l)T

m,n

}
q̇

(c,l)
m q̇

(c,l)
n .

The potential energy of the gravity forces for each subchain can be expressed in
a similar way:

E(1)
p,g =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n
(1)
l∑

l=1
m(1,l)j2T(1,l)r(1,l)

C if coupler rigid,

n
(1)
l −1∑
l=1

m(1,l)j2T(1,l)r(1,l)
C +

n
(1,3)
rf e∑
l=1

m(1,l,r)j2T(1,l,r)r(1,l,r)
C if coupler flexible,

,

(6.1)

E(2)
p,g =

n
(2)
l∑

l=1

m(2,l)j2T(2,l)r(2,l)
C , (6.2)

where m(•) is the mass of link or rfe, r(•)
C is the vector of the centre of mass of link

or rfe, j2 = [
0 1 0 0

]
.

The generalized forces due to the gravity forces can be calculated as follows:

∂E
(c)
p,g

∂q(c)
= g(c), (7)

where: g(c) =
(
g(c)
i

)
i=1,...n(c)

l

, g(c)
i =

n
(c)
l∑

l=i

g(c,l)
i ,g(c,l)

i

∣∣∣
i=1,...,l

=
(

g
(c,l)

n
(c,i−1)
dof +v

)

v=1,...,ñ(c,l)
dof

,

g(c,l)
i

∣∣∣
i=1,...,l

=
(

g
(c,l)

n
(c,i−1)
dof +v

)

v=1,...,ñ(c,i)
dof

, g(p)
i = m(c,l)gj2T

(c,l)
i r(c,l)

C .
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Modelling of the Flexibility of Coupler

The Rigid Finite Element Method [8] is used to discretize the coupler. The spring
deformation energy and the Rayleigh function of the flexible link takes a form:

E
(1)
p,fl

= E
(1,3)
p,fl

= 1

2

n
(1,3)
sde∑
s=1

(
d(1,3,s)

)T

S(1,3,s)d(1,3,s), (8.1)

R
(1)
fl

= R
(1,3)
fl

= 1

2

n
(1,3)
sde∑
s=1

(
ḋ(1,3,s)

)T

D(1,3,s)ḋ(1,3,s), (8.2)

where d(1, 3, s) = q(1, 3, r), S(1, 3, s), D(1, 3, s) are stiffness and damping matrices of
sde(1,3,s).

These components are introduced to the dynamics equations as the generalized
forces which can be calculated as follows:

∂E
(1)
p,fl

∂q
+ ∂R

(1)
fl

∂q̇
= s(1)fl

, (9)

where: s(1)
fl ,i

=

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n
(1,3)
sde∑
j=1

(
∂q̃(1,3,j)

∂qi

)T

S(1,3,j)q̃(1,3,j)

+
(

∂ ˙̃q(1,3,j)

∂q̇i

)T

D(1,3,j) ˙̃q(1,3,j)
if qi ∈ q(1,3)

f ,

0 otherwise.

Modelling of Contact Forces in Clearance Joint

In the presented approach, it is assumed that the clearance occurs only in the cut-
joint R (Fig. 1). The spatial model of the revolute joint with clearance is proposed
(Fig. 3). This model allows considering the radial and axial clearances. In order to
take into account the radial clearance, the lateral surface of the journal is discretized
into n

(r)
ce radial contact elements (cer) located around the perimeter on nr levels.

In the case of the axial clearance, the frontal surface of the journal is discretized
into n

(a)
ce axial contact elements (cea) located around the perimeter on na levels.

The contact force of ceα(i, k) acting on the bearing and journal are determined as
follows:

f(b,i,k)
c,α

∣∣∣
α∈{r,a} = f (i,k)

n,α n(i,k)
α + f

(i,k)
t,α t(i,k)

α , (10.1)
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Fig. 3 Model of revolute joint with radial and axial clearance
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f(j,i,k)
c,α

∣∣∣
α∈{r,a} = −j

bRf
(b,i,k)
c,α , (10.2)

where f
(i,k)
n,α , f

(i,k)
n,α are the normal and tangent forces, n(i,k)

α , t(i,k)
α are the normal

and tangent unit vectors to the contact surfaces, j
bR is the rotation matrix from

bearing frame {b} to journal frame{j}. Normal force f
(i,k)
n,α and tangent forcef (i,k)

t,α

are calculated using the Lankarani-Nikravesh [9] and LuGre [10] formulas:

f (i,k)
n,α

∣∣∣
α∈{r,a} = s(ce,i,k)

α Δ(i,k)
α + d(ce,i,k)

α Δ̇(i,k)
α , (11.1)

f
(i,k)
t,α

∣∣∣
α∈{r,a} =

(
σ0z

(i,k)
α + σ1z

(i,k)
α + σ2υ

(i,k)
t,α

)
f (i,k)

n,α , (11.2)

where s
(ce,i,k)
α , d

(ce,i,k)
α are stiffness and damping coefficients of the contact element

[1, 9],Δ(i,k)
α is deformation of the contact element, σ 0, σ 1, σ 2 are stiffness, damping

and viscous friction coefficients of the bristles, z
(i,k)
α is deformation of the bristle,

υ
(i,k)
t,α is a tangent velocity at the contact point.
The forces expressed by Eq. (10) are introduced to the dynamics equations in the

form of the generalised forces as follows:

c(1) =
nr∑

i=1

n
(r)
ce∑

k=1

(
f(b,i,k)
c,r

∂r
K

(b,i,k)
r

∂q(1)
+ f(j,i,k)

c,r

∂r
K

(j,i,k)
r

∂q(1)

)

+
na∑
i=1

n
(a)
ce∑

k=1

(
f(b,i,k)
c,a

∂r
K

(b,i,k)
a

∂q(1)
+ f(j,i,k)

c,a

∂r
K

(j,i,k)
a

∂q(1)

)
,

(12.1)

c(2) =
nr∑
i=1

n
(r)
ce∑

k=1

(
f(j,i,k)
c,r

∂r
K

(j,i,k)
r

∂q(2)

)
+

na∑
i=1

n
(a)
ce∑

k=1

(
f(j,i,k)
c,a

∂r
K

(j,i,k)
a

∂q(2)

)
. (12.2)

2.3 Final Dynamics Equations

The dynamics equations of motion together with the state equations formulated for
the LuGre friction model take the form:

ż = LuGre (t, v, z) , (13.1)

[
M(1) 0
0 M(2)

] [
q̈(1)

q̈(2)

]
=

[
−h(1) − g(1) − s(1)fl

+ c(1)

− h(2) − g(2) + c(2)

]
, (13.2)



154 K. Augustynek and A. Urbaś

where:M(c),h(c)|c ∈ {1, 2} are defined by Eq. (5), forces, g(c)|c ∈ {1, 2} are described by
Eq. (7), s(1)fl

is defined Eq. (9), c(c)|c ∈ {1, 2} are defined by Eq. (12).

3 Case Study

The presented model of the RPSUP spatial linkage is applied to analyze the
influence of the crank’s velocity on the dynamic response of the linkage. The
geometrical and mass properties of the links are gathered in Table 1. It is assumed
that the motion of crank and slider (1,2) have to change according to the assumed
functions shown in Fig. 4.

It can be noted that after time 2 s the angular velocity of crank (1,1) is equal to
ϕ̇

(1,1)
0 ∈ {

5, 10, 12 rad s−1
}
. The motion of slider (1,2) is intermittent and after each

complete cycle, there is a pause in movement, which duration time is equal to 0.5 s.
It is assumed:

Table 1 Parameters of RPSUP linkage

Parameters link (1, 1) link (1, 2) link (1, 3) link (2, 1) link (2, 2)

m(c, j), kg 0.471 0.490 0.306 0.780 0.107
l(c, j), m 0.2 0.2 0.5 0.1 0.1

I
(c,j)
x , kgm2 6.964 × 10−5 2.451 × 10−5 3.829 × 10−6 8.126 × 10−4 9.354 × 10−5

I
(c,j)
y , kgm2 6.309 × 10−3 6.548 × 10−3 2.553 × 10−2 1.885 × 10−4 8.377 × 10−6

I
(c,j)
z , kgm2 6.309 × 10−3 6.548 × 10−3 2.553 × 10−2 1.885 × 10−4 8.377 × 10−6

I
(c,j)
yz , kgm2 −1.080 × 10−5 2.410 × 10−5 0 0 0

I
(c,j)
xy , I

(c,j)
xz , kgm2 0 0 0 0 0

Fig. 4 The assumed time courses of the kinematic inputs: (a) crank (1,1), (b) slider (1,2)
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Fig. 5 Time courses of the acceleration of slider (2,1) calculated for cr = 0 mm: (a) rigid coupler,
(b) flexible coupler

Fig. 6 Time courses of the acceleration of slider (2,1) calculated for: cr = 0.25 mm (a) rigid
coupler, (b) flexible coupler

– flexible link parameters: Young modulusE = 2.1 × 1011 Pa, Kirchhoff modu-
lusG = 0.8 × 1011 Pa, number of rfes n

(1,3)
rf e = 4,

– clearance joint parameters: μs = 0.1, μk = 0.2, σ 0 = 100m−1, σ 1 = 5 sm−1,
σ 2 = 0 sm−1, vs = 1 × 10−3m s−1, restitution coefficient kr = 0.9, radius of the
bearing r(b) = 5 × 10−3 m.

In simulations, it is assumed that axial clearance is equal to 0. The dynamics
equations are integrated using the 4th order Runge-Kutte scheme. The Baumgarte
stabilization method is applied to eliminate kinematic input constraints violations
at position and velocity levels. Figure 5 shows acceleration courses of slider
(2,1) obtained for the model without clearance effect. Analyzing the plots, it
can be observed that the coupler’s flexibility doesn’t have a great impact on
the motion of the linkage. As the crank velocity increases, the amplitude of the
slider’s acceleration becomes significantly larger. Further, the radial clearance of
the revolute joint connecting coupler with link (2,1) is taken into account. Figures 6
and 7 show slider acceleration time courses obtained for the radial clearance equal
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Fig. 7 Time courses of the acceleration of slider (2,1) calculated for cr = 0.50 mm: (a) rigid
coupler, (b) flexible coupler

Fig. 8 The trajectory of the journal inside the bearing calculated for cr = 0.25 mm: (a) rigid
coupler, (b) flexible coupler

to cr = 0.25mm and cr = 0.5mm, respectively. The trajectories of the journal
inside the bearing are presented in Figs. 8 and 9. Analyzing the results obtained
for cr = 0.25mm it can be observed that as velocity ϕ̇

(1,1)
0 increase from 10 to 15

rad s−1, the maximum acceleration increases 8.5 times if the coupler is rigid and 4
times if the coupler is treated as a flexible.

In the case of cr = 0.5mm acceleration increases 3.5 times when the coupler is
rigid and 1.25 times if the coupler is treated as a flexible. Additionally, values of
acceleration peaks due to the collision between contacting bodies are smaller when
the radial clearance equals to 0.5 mm. The presented simulation results confirm that
the flexibility compensates for negative effects due to impulse forces existing in the
revolute joint.
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Fig. 9 The trajectory of the journal inside the bearing calculated for cr = 0.50 mm: (a) rigid
coupler, (b) flexible coupler

4 Concluding Remarks

The paper presents the mathematical model of the two-dof RPSUP linkage with
the flexible coupler and clearance in the revolute joint. An essential feature of the
presented approach is that it can be easily generalized to model dynamics of linkages
with a serial open-loop kinematic structure composed of flexible links and revolute
frictional joints with clearance, not only at cut-joints. The main advantage of the
proposed model of the revolute joint with the clearance is that it allows us to analyze
different combinations of contact between the journal and bearing. The simulation
results show that the coupler’s flexibility has a great impact on the motion of the
linkage with the clearance joint. When the flexibility of the coupler is taken into
account the acceleration of the slider is significantly smaller because some part of
the energy resulting from the impulse force is transformed into the link’s spring
deformation.
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