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Preface

15th International Conference “Dynamical Systems – Theory and Applications”
(DSTA 2019) took place in Lodz, Poland from the 2nd to 5th December of 2019.
It was the 15th edition in the series of conferences organized every 2 years in Lodz
by the Department of Automation, Biomechanics and Mechatronics of the Lodz
University of Technology.

For this edition, the scientific committee composed of 64 scientists had to review
over 360 submitted topics to choose 200 that were to be presented during the DSTA
2019 by participants representing 40 countries from all over the world.

It resulted in the program of conference that covered both theoretical and
experimental approaches to widely understood dynamical systems, including topics
devoted to bifurcations and chaos, control in dynamical systems, asymptotic
methods in nonlinear dynamics, stability of dynamical systems, lumped mass and
continuous systems vibrations, original numerical methods of vibration analysis,
nonsmooth systems, dynamics in life sciences and bioengineering, as well as to the
engineering systems and differential equations.

All papers included in the following book were submitted and presented during
DSTA 2019. They contribute partially to the diverse approaches and topics covered
by wide scope of dynamical systems.

In what follows a brief description of the book content is provided.
In Chap. 1, authors utilized Lagrange’s principles and multiple scale technique

to obtain governing equations of the vibrating motion of a cylinder over circular
surface under the influence of an exciting force and its asymptotic solutions using
Routh-Hurwitz criterion for systems stability determination.

Mykulyak and Skurativskyi (Chap. 2) considered problem of the system dynam-
ics, when the friction is incorporated and the harmonic force is applied to the most
upper level of the system. The bifurcations with respect to the structural parameter
were investigated for the periodic, quasiperiodic and chaotic attractors regimes
revealed by application of the numerical and qualitative analysis methods.

Awrejcewicz et al. (Chap. 3) constructed the mathematical model of the nonlinear
dynamics of flexible mesh cylindrical panels in the field of additive white noise
taking into account a Cosserat medium. Model obtained applying Pshenichniy

v
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continuum model and Kirchhoff-Love hypotheses was used to prove that the noise
with intensity commensurate with the intensity of the normal load does not change
oscillations character of the system.

A method for measuring the motion trajectory of a vehicle as well as results of
computer simulation tests of the control system, which involves individual braking
of one, two or three wheels of the vehicle in order to improve its directional stability
are presented in Chap. 4.

Kim et al. (Chap. 5) studied nonlinear phenomenon through the experiments and
the frequency response curves. Their research proved possibility of the occurrence
of the super-harmonic resonance when the excitation frequency is three times of the
natural one by performing experimental investigations.

Methodology for the development of a dynamic test bench is presented by
Siqueira et al. (Chap. 6). For this purpose the commonly applied for high speed
kinematic systems delta-robot configuration was adapted in a way to allow applica-
tion of high transverse loads in three axis while keeping a considerably large range
of movement.

Finite difference model of a robust universal heat exchanger applicable for
prediction of the heat exchanger dynamics for condenser at normal operation level
was developed by Zamojski et al. (Chap. 7). The carried out analysis included
simulation and control design of multiphase fluid dynamics of an existing heat
pump.

Mathematical approach to assess a human gait is proposed in Chap. 8. Modelling
of a normal gait in sagittal and frontal anatomical planes of the body using Newton-
Euler formulation yielded three multibody biomechanical models that can be used
to model a single support phase and double support phase of the gait.

Carvalho and Pinto (Chap. 9) proposed a non-integer order model to describe the
role of the immune system in cancer cells’ growth in a HIV-infected individual. By
considedratuon of the various orders for the fractional derivative the model for dif-
ferent values of biologically relevant parameters is simulated yielding biologically
relevant results.

Using the vibrissae of rats as the model of mechanoreceptors Scharff (Chap.
10) investigated how an artificial vibrissa-like tactile sensor interacts with an
object contour that is superimposed with macroscopic features. Simulation for
a straight horizontal contour with superimposed sinus undulation was validated
experimentally using a wavy contour with superimposed macroscopic features.

Grzelczyk et al. (Chap. 11) proposed and experimentally validated a design of
lower limb exoskeleton driven by linear electric actuators. A new gait generator,
which can be used to produce rhythmic movements in hip and knee joints of both
limbs, was developed and tested using the time histories of human joint angles in
normal gait as an articulation variables of individual joints of the investigated device.

Recorded dynamic variables of hexapod walker robots gait scenarios were used
by Kecskés et al. (Chap. 12) for analyses of the model uncertainties. Five different
methods were applied for both quantification and evaluation of the experimentally
obtained results yielding important information for the robust control design
research.
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Augustynek and Urbaś (Chap. 13) proposed model of the revolute joint with the
clearance for analysis of the linkage composed of the five rigid or flexible links
which form a serial closed-loop kinematic chain. Applied numerical simulations
allowed to investigate an interaction between the links’ flexibility and clearance in
the joint during the motion of the linkage.

In Chap. 14, Harlecki et al. present developed mathematical model for analysis
of the truck with a trailer combination of vehicles. Model constituting it as a multi-
body system, for using formalism of Lagrange’s equations, based on the joint
coordinates and homogeneous transformations taken from robotics, can be treated
as a virtual prototype of the system in question with application in truck trailers
design.

Martowicz et al. (Chap. 15) applied artificial neural networks to simulate and
experimentally identify complex behavior of the shape memory alloys type of smart
materials. The constitutive models allowed to reliably model the hysteretic character
of the stress-strain relationship observed for the experimentally tested material.

Chapter 16 is devoted to the synthesis of a mathematical model of the electro-
hydraulic servo-drive taking into account such nonlinearities as friction model,
characteristics of the modulus of the elasticity, dependence of flow intensity on
pressure drop at control edges of the valve slide, dependence of hydrodynamic force,
and characteristics of the volumetric loss factor in the pump. Proposed model was
experimentally through comparison with results obtained for real electrohydraulic
servo-drive and can be used in fast prototyping of the nonlinear state-space control
systems.

In Chap. 17, comparison of the performance of payload weighing systems
involving neural networks is proposed. Kosiara et al. discussed also possibility of
replacing the conventional models implemented in the most up to date payload
weighing systems with the ones based on the neural networks and influence of
training dataset size on the accuracy of the systems.

Stańczyk et al. (Chap. 18) studied degrees of freedom (DOFs), kinematics and
drive systems of available constructions of lower limb exoskeletons. Results of
those comparative analyses were used to design and construct a lower limb and
spine exoskeleton that can be applied in gait rehabilitation of patients suffering from
different mobility impairments.

Chapter 19 deals with the theory of solution of transverse shock wave propa-
gation in thin plane elastic isotropic plate. Presented are both analytical solutions
of transverse displacement, velocity and stress for various material and geometric
models of the plate, as well as results of their experimental validation.

Cherkasov and Makieva in Chap. 20 proposed application of the Pontryagin
maximum principle as a method of reduction of the optimal control problem to a
boundary value problem for the initial variables in the classical differential game
theory. Analyzed was the two-dimensional pursuit-evasion problem for the case of
proportional navigation of the unmanned aerial vehicle.

Method of optimization of the geometry of aeroelastic energy harvester using a
genetic algorithm that processes data from computational fluid dynamics calcula-
tions is proposed in Chap. 21. Results generated by applied algorithm to maximize
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the efficiency of the device were experimentally validated, and their efficiency was
then compared with that of commonly used resonator implemented in the aeroelastic
energy harvester.

Hedrih (Chap. 22) studied rolling homogeneous heavy ball over the surface
with arbitrary shape, in the real Rn3 space. Proposed new methodology allowed
to determine the current angular velocity of rolling the ball over the surface in the
function of generalized coordinates and their direction using the velocity vector of
the center of the ball.

In Chap. 23, results of applying the methodology of hyperbolic-elliptic models
for surface wave field to the case of a half-space coated by a vertically inhomoge-
neous layer are presented. The study was focused on surface waves propagating in
an isotropic elastic half-space coated with a thin, vertically inhomogeneous layer,
subject to action of a prescribed normal surface stress.

Behn et al. (Chap. 24) analyzed eigenvalues in the first octant of the complex
plane for two models of boundary damping for vibrissa-like sensors and focusing
on bending beam vibrations. During their studies, authors found two systems with
complementary spectra of eigenvalues that have alternative instead of common
eigenvalues.

DSTA Conferences are aimed to provide a common platform for exchange of
new ideas and results of recent research in the field of scientific and technological
advances in modern dynamical systems. Over the last 25 years both approaches and
understanding of sciences significantly evolved to include new ideas and trends, but
the traditional views are still present and provide the basic understanding. Therefore,
both as Head of Organizing and Scientific Committees of DSTA 2019 and as the
Editor of volume of Springer Proceedings, I hope that this book will provide the
readers with both answers to their problems and ideas for their novel approaches to
study nonlinear dynamical systems.

I greatly appreciate the help of Springer Editor Dahlia Fisch, Springer Project
Coordinators Murugesan Tamilsevan and Saveetha Balasundaram as well as T.
Metilda Nancy Marie Rayan, the project manager at Straive – in publishing this
volume in the Springer Proceedings in Mathematics and Statistics series. I would
like also to express my gratitude to Scientific Committee of DSTA 2019 and all
reviewers for their help and professional support during the book preparation.

Łódź, Poland Jan Awrejcewicz
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On the Vibrational Analysis for
the Motion of a Rotating Cylinder

M. A. Bek, Tarek Amer, and Mohamed Abohamer

Abstract The main purpose of this work is to study the motion of 2-DOF of an
auto-parametric dynamical system attached with a damped system. The governing
equations of motion are gained utilizing Lagrange’s equations in terms of the
generalized coordinates. The method of multiple scales (MS) is used to obtain the
solutions of the governing equations up to the third order of approximation. The
primary external resonance simultaneously with the internal one are investigated
to establish the solvability conditions and the modulation equations. The graphical
representations of the time histories together with the amplitude and phases of the
dynamical system are represented in some plots to describe the motion of the system
at any instance. The stability of the solution has been made with use of Mathematica.

Keywords Vibration · Nonlinear dynamics · Stability

1 Introduction

Rotating cylinder over circular surface is widely appeared in many engineering
applications. For example, electric motors, vibrating buildings, aviation, missiles,
and locomotive engines are increasingly used as an example of it. As a rule,
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2 M. A. Bek et al.

a rotating cylinder might be one of the main vibration’s sources. Hence, it is
very important to fully understand the vibration motion in order to offer better
engineering solutions to reduce the vibration using a good design. Thus, various
type of frequencies and mode shapes of such vibrating structures are significant
in the design stage. Hence, it is very important to carefully understand where the
resonance occurs to avoid structural familiar. For instant the proposed model is a
good example of such systems. Discussion of such models may be found in [1–3].
The auto parametric resonance phenomena is observed as a cause of the coupling
occurring in the equations of motion. Dynamical analysis of nonlinear vibrations of
a mass of a cylinder shape which is rotated over circular body of radius R was
presented in the paper. With the use of the multiple scale method the solution
up to the third order is achieved [4, 5]. The system stability is investigated using
Routh-Hurwitz criterion. Mathematica was the selected software to solve the algebra
system and to obtain the results and graphically present it [6].

2 Dynamical Modeling

Let us consider the planar motion of a cylinder where its mass is m1 and its radius
is r over a circular surface of radius R and mass M. The system of the two masses is
attached with the ground with an elastic spring of k spring stiffness, a damper of c
damping coefficient, g earth’s acceleration, and θ generalized co-ordinates admitted
according to Fig. 1. The motion is considered under the influence of an external
force F(t) in the vertical direction.

Lagrange’s equations were used to obtain the governing equation of motion for
the corresponding system, the following

d
dt

(
∂L
∂u̇

)− (
∂L
∂u

) = Qu,
d
dt

(
∂L

∂θ̇

)
− (

∂L
∂θ

) = Qθ
(1)

Fig. 1 The dynamical model
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Where Qθ and Qu represent the general forces, which have the forms

Qu = f (t), Qθ = 0

The equations of motion can be written as

ü + ω2
1u + m

(
θ̈ sin θ + θ̇2 cos θ

)+ 2cu u̇ = f (t)

θ̈ + (
ω2

2 + 2ü
)

sin θ = 0,
(2)

where

u = y−yc

R−r
, m = m1

(m1+M)
, ω2

1 = k
(m1+M)

, ω2
2 = 2g

3(R−r)
, f (t) = F(t)

[(R−r)(m1+M)]

(3)

The external force has the form F(t) = F cos (�1 t).
The higher order of the trigonometric of functions cos θ = 1 − θ2

2 and sin θ =
θ − θ3

6 are admitted.

3 The Proposed Method

The amplitudes of all oscillations are theoretic to be of the order of a small parameter
ε. This can be expressed as

θ(t) = ε φ (t; ε) , u(t) = ε x (t; ε) , (4)

where 0 ≺ ε ≺ ≺ 1. We seek the asymptotic solutions φ and x in the form of
power series of ε as

φ = ∑3
k=1ε

kφk (τ0, τ1, τ2) + O
(
ε4
)
,

x = ∑3
k=1ε

kxk (τ0, τ1, τ2) + O
(
ε4
)
,

(5)

where τ n = εnt; (n = 0, 1, 2) are different time scales.
The derivatives in terms of the new time scales will be written in the following

form

d
dτ

= ∂
∂τ0

+ ε ∂
∂τ1

+ ε2 ∂
∂τ2

,

d2

dτ 2 = ∂2

∂τ 2
0

+ 2ε ∂2

∂τ0∂τ1
+ ε2

(
∂2

∂τ 2
1

+ 2 ∂2

∂τ0∂τ2

)
+ O

(
ε3
)
.

(6)
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Terms of O(ε3) and higher order in Eq. (6) are neglected. Presumptuous that the
amplitudes of generalized forces, the damping coefficients and the eccentricity to be
small and have the form

f = ε3 f̃ . (7)

Substituting expressions (4), (5), (6), and (7) into Eq. (2) and equating coef-
ficients of like powers of ε in both sides, one obtains three groups of partial
differential equations according to the asymptotic solutions (5). Therefore, one
obtains the following system that consists six partial linear differential equations
as follows.

Order (ε)

∂2x1

∂τ 2
0

+ ω2
1x1 = 0. (8)

∂2φ1

∂τ 2
0

+ ω2
2φ1 = 0, (9)

Order of (ε2)

∂2x2

∂τ 2
0

+ ω2
1x2 = −m

(
∂φ1

∂τ0

)2

− 2
∂2x1

∂τ0∂τ1
− m φ1

∂2φ1

∂τ 2
0

, (10)

∂2φ2

∂τ 2
0

+ ω2
2φ2 = −2

∂2φ1

∂τ0τ1
− 2

3
φ1

∂2x1

∂τ 2
0

, (11)

Order of (ε3)

∂2x3
∂τ 2

0
+ ω2

1x3 = F̃1 cos Ω1 τ0 − ∂2x1
∂τ 2

1
− 2C̃ ∂x1

∂τ0
− 2

(
∂2x1

∂τ0∂τ2
+ ∂2x2

∂τ0∂τ1

)

− 2 m
[

∂φ1
∂τ0

∂φ1
∂τ1

+ ∂φ1
∂τ0

∂φ2
∂τ0

+ φ1
∂2φ1

∂τ0∂τ1
+ φ2

∂2φ1
∂τ0

2 + φ1
∂2φ2
∂τ0

2

]
,

(12)

∂2φ3

∂τ 2
0

+ ω2
2φ3 = 1

6ω2
2 φ3

1 − ∂2φ1

∂τ 2
1

− 2
(

∂2φ1
∂τ0∂τ2

+ ∂2φ2
∂τ0∂τ1

)

− 4
3 φ1

∂2x1
∂τ0∂τ1

− 2
3

(
φ1

∂2x2
∂τ 2

0
+ φ2

∂2x1
∂τ 2

0

)
,

(13)

the previous partial differential equations system can be solved successively. In
order to achieve this purpose, we start with the general solutions of Eqs. (8) and
(9) in the form

x1 = A1e
iω1τ0 + A1e

−iω1τ0 , (14)
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φ1 = A2e
iω2τ0 + A2e

−iω2τ0 , (15)

where (Ai; i = 1, 2, 3) represent unknown complex functions of τ 1 and τ 2 while
Ai denotes to its complex conjugate.

Substitution of the solutions (14) and (15) into the equations of higher order (10)
and (11) produce secular terms. In order to eliminate these terms, substituting (14)
and (15) into (10) and (11) to obtain the required conditions for this purpose in the
form

∂A1

∂τ1
= 0,

∂A2

∂τ2
= 0. (16)

Consequently, the second order solutions become

x2 = 2 mω2
2A2A2

ω2
1

+ e2iω2τ0 (ω2 − 2 i)m ω2 A2
2

(
ω2

1 − 4 ω2
2

) + CC, (17)

φ2 = 2 ei(ω1+ω2)τ0ω1A1A2

3 (ω1 + 2ω2)
+ 2 ei(ω1−ω2)τ0ω1A1A2

3 (ω1 − 2ω2)
+ CC, (18)

where CC refers to the complex conjugates of the preceding terms.
Referring to the above procedure, the elimination of the secular terms required

that the functions (Ai; i = 1, 2) depend upon the time scale τ 2 only.
The solutions for Eqs. (12) and (13) of the third order approximations can be

obtained as previously in a similar way. The elimination of the secular terms in (12)
and (13) demands the following conditions

−2 i C̃ ω1 A1 − 2iω1
∂A1

∂τ2
− 4 mω4

1A1A2A2

3
(
ω2

1 − 4 ω2
2

) = 0. (19)

−2iω2
∂A2

∂τ2
−4 ω3

1 A1A2A1

9 (ω1 + 2ω2)

− ω2
2

(
3 ω2

1 + 4 ω2 (−8 i m + (−3 + 4m) ω2)
)

A2
2A2

6
(
ω2

1 − 4 ω2
2

) = 0.

(20)

The solutions for Eqs. (12) and (13), after eliminating secular terms, take the
form

x3 = F̃1e
iΩ1τ0

2
(
ω2

1−Ω2
1

) − 2 m ω1(ω1+2ω2)A1A2
2e

iτ0(ω1+2ω2)

3
[
ω2

1−(ω1+2ω2)
2]

+ 2 mω1(ω1−2ω2)A1A
2
2e

iτ0(ω1−2ω2)

3
[
ω2

1−(ω1−2ω2)
2] + CC

(21)
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φ3 = − e3 i ω2τ0
(
ω2

1+4 ω2(−8 i m+(−1+4 m)ω2)
)
A3

2
48
(
ω2

1−4 ω2
2

)

− 4 ei(2ω1+ω2)τ0ω3
1A2

1A2

9(ω1+2 ω2)
[
ω2

2−(2ω1+ω2)
2] − 4 ei(2ω1−ω2)τ0ω3

1A2
1A2

9(ω1−2 ω2)
[
ω2

2−(2ω1−ω2)
2] + CC, (22)

The unknown functions (Ai; i = 1, 2) can be estimated from the system with
the aid of the following initial conditions φ(0) = z01, φ̇(0) = z02, u(0) =
z03, u̇(0) = z04, .

4 Vibrations and Resonance Conditions

Referring to the above procedure of the analytical solutions, the values of resonance
parameters can be determined. The resonance cases can be attained if any of the
polynomials in the denominators tends to zero and can be classified as

Primary external resonance, at �1 = ω1
Internal resonance occurred, if ω1 = ω2 are satisfied.

If any resonance case is satisfied, in particular the case of incidence internal
resonance, we can predict that the dynamical behaviour of the system will be very
complicated, the previous approximated solutions considered in the above section
are valid if oscillations run away from resonances. If any one of the above listed
conditions are satisfying; which indicates the need to adjust the used method.

5 External Resonances

5.1 Solvability Conditions

Here, we discuss the simultaneously occurring three primary external resonances
case. Therefore, we consider that the combinations �1 ≈ ω1 is satisfied which
qualitatively describes the nearness of �1 to ω1. If we introduce the detuning
parameters (σ i; i = 1, 2) as in the form

�1 = ω1 + σ1,

2ω1 = 2ω2 + εσ2 .
(23)

Then the effectiveness of resonance is reflected in the secular terms. The detuning
parameters are considered a measure of distance of the vibrations from the strict
resonance. Therefore, we express them in terms of the small parameter ε as
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σi = εσ̃i; i = 1, 2. (24)

Substituting about the detuning parameters from (23) and (24) into Eq. (2) and
focusing attention on the secular terms, then the solvability conditions are obtained
as a result of the elimination of secular terms, in which that can be written as for the
2nd order approximation

∂A1

∂τ1
= 0,

∂A2

∂τ1
= 0, (25)

-For the 3rd approximation

1
2 F̃1 eiτ1σ̃1 − 2 i C̃ ω1 A1 − 2iω1

∂A1
∂τ2

− 4 mω4
1A1A2A2

3
(
ω2

1−4 ω2
2

) = 0,

− 4 ω3
1 A2

1A2 eiτ1 σ̃2

9(ω1−2 ω2)
− 2iω2

∂A2
∂τ2

− 4 ω3
1 A1A2A1

9(ω1+2ω2)

− ω2
2

(
3 ω2

1+4 ω2(−8 i m+(−3+4m)ω2)
)
A2

2A2

6
(
ω2

1−4 ω2
2

) = 0.

(26)

6 Problem’s Modulation Close to Resonances

Based on the above section, we can see that the solvability conditions of the
considered model constitute a system consists of four nonlinear partial deferential
equations in terms of unknown function Ai. It is worthwhile to notice from Eq. (25)
that, the functions Ai depend upon the slow time scale τ 2 only. Therefore, we can
express these functions in the polar notation as

Ai = ãi (τ2)

2
eiψ̃i τ2 , ai = εãi; i = 1, 2. (27)

Since Ai are independent functions of variable τ 0 andτ 1, then the first order
derivative operator can be simplified to the form

∂Ai

∂τ
= ε2 ∂Ai

∂τ2
; (i = 1, 2) . (28)

Bearing in mind the above formula (28), Eq. (26) turn into ordinary differential
equations. In order to transform them into an autonomous ones, the modified phases
can be introduced in the form

θ1 (τ1, τ2) = τ1 σ̃1 − ψ1 (τ2) ,

θ2 (τ1, τ2) = τ1 σ̃2 + 2 [ψ1 (τ2) − ψ2 (τ2)] .
(29)
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Substituting (27), (28), and (29) into (26), separating the real and imaginary parts,
one obtains directly the following system that consists of four ordinary differential
equations from first order in terms of θ1, θ2, a1, and a2

a1
dθ1
dτ

= F1
2ω1

cos θ1 + a1σ1 − m a1a
2
2 ω3

1
6
(
ω2

1−4 ω2
2

) ,

da1
dτ

= F1
2 sin θ1 − ω1μ a1,

a2
dθ2
dτ

= a2 (σ2 + 2σ1) − 2a2
dθ1
dτ

− ω3
1a3

1a2
9ω2(ω1+2ω2)

+ a3
2

(
3 ω2

1ω2+4(−3+4m)ω3
2

)

24
(
ω2

1−4 ω2
2

) − ω3
1a2

1a2 cos θ2
9ω2(ω1−2ω2)

,

da2
dτ

= − 2 m ω2
2 a3

2
3
(
ω2

1−4 ω2
2

) − ω3
1a2

1 sin θ2
18ω2(ω1−2ω2)

.

(30)

With a view to solve this system, we can transform the previous initial conditions
according to the new variables as

ai(0) = 0.004, θi(0) = 0, where i = 1, 2.

Equations (30) have the solutions a1 and θ1 that govern both of amplitudes and
phases modulation in terms of the slow time scale when two investigated resonances
occur with each other. Therefore, the solutions of these equations can be plotted as in
Figs. 2, 3, 4, and 5 after taking into consideration the following values of parameters
where M = 25 kg, k = 50, c = 0.01, σ1 = 0.001, σ2 = 0.003. We calculated the
time histories curves in Figs. 6 and 7 of the desired solutions ϕ and u up to the third
approximations.

200 300 400100

−0.001

0.001

0.002

0.003

0.004
a2

τ

Fig. 2 Presentation of the variation of a2
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200 300 400100

−0.001

−0.005

0.005

0.010

a1

τ

Fig. 3 Presentation of the variation of a1

100

1

2

3

4

τ
200 300 400

θ1

Fig. 4 Description of the variation of θ1
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400300200100
τ

θ2

−2

−4

−6

−8

Fig. 5 Description of the variation of θ2

0.002
u

0.001

100 200 300 400

−0.001

−0.002

τ

Fig. 6 Representation of the variation of u

7 Steady-State Solutions

The main objective of this section is to study the steady-state vibrations of the
considered model. It is known that the steady state vibration arises if the behaviour
of the transient processes disappears owing to the damping of the system. The
amplitudes and modified phases of steady-state can be obtained from the Eq. (30), in

order to explore such a case, let us assume that
(

dθi

dt
= dai

dt
= 0; i = 1, 2, 3

)
equal
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0.002
φ

0.001

100 200 300 400

−0.001

−0.002

τ

Fig. 7 Representation of the variation of ϕ

zero. Therefore, we have a system of algebraic equations in terms of the unknowns
hi and θ i; i = 1, 2.

F1
2ω1

cos θ1 + a1σ1 − m a1a
2
2 ω3

1
6
(
ω2

1−4 ω2
2

) = 0,

F1
2 sin θ1 − ω1μ a1 = 0,

a2 (σ2 + 2σ1) − ω3
1a2

1a2
9ω2(ω1+2ω2)

+ a3
2

(
3 ω2

1ω2+4(−3+4m)ω3
2

)

24
(
ω2

1−4 ω2
2

) − ω3
1a2

1a2 cos θ2
9ω2(ω1−2ω2)

= 0,

− 2 m ω2
2 a3

2
3
(
ω2

1−4 ω2
2

) − ω3
1a2

1 sin θ2
18ω2(ω1−2ω2)

= 0.

(31)

Elimination of the modified phases θ1 and θ2 from Eq. (31), produces the
relationships between both of the amplitudes and the frequency clarified by the
detuning parameters

F 2
1 =

[
− m a1a

2
2 ω4

1
3
(
ω2

1−4 ω2
2

) − 2a1ω1σ1

]2

+ ω2
1μ

2 a2
1,

ω6
1 a4

1
81 ω2

2(ω1−2ω2)
2 =

[
(σ2 + 2σ1) − ω3

1a2
1

9ω2(ω1+2ω2)
+ a3

2

(
3 ω2

1ω2+4(−3+4m)ω3
2

)

24
(
ω2

1−4 ω2
2

)

]2

+
[

4 m ω2
2 a3

2
3
(
ω2

1−4 ω2
2

)

]2

.

(32)

It is worthwhile to notice that Eq. (32) is considered as implicit nonlinear
algebraic equation with respect to the variables a1 and a2.
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8 Steady State Analysis

One of the important factors for the mentioned problem of the steady-state
oscillations is to investigate their stability. For this task, we analyse the manner of
the system in a region that is very close to the fixed points. To discuss the stability for
the particular solution of the steady state, we introduce the substitutions into (30).

a1 = a10 + a11,

a2 = a20 + a21,

θ1 = θ10 + θ11,

θ2 = θ20 + θ21.

(33)

Here a10, θ10, a20 and θ20 represent the solutions of (34) and a11, θ11, a21 and
θ21 denote perturbations which are assumed to be very small, compared to the
predecessors. Then the linearized equations take the form

a10
dθ11
dτ

= − F1
2ω1

θ11 sin θ10 + a11

[
σ1 − m ω3

1a2
10

6
(
ω2

1−4 ω2
2

)

]
− m ω3

1a10a20a21

3
(
ω2

1−4 ω2
2

) ,

da11
dτ

= F
2 θ11 cos θ10 − ω1μ a11,

a20
dθ21
dτ

= a21

[
σ2 + 2σ1 − ω3

1a2
10

9ω2(ω1+2ω2)
+ a3

2

(
3 ω2

1ω2+4(−3+4m)ω3
2

)

24
(
ω2

1−4 ω2
2

)

]

− 2a20
dθ11
dτ

− 2ω3
1a20a10a11

9ω2(ω1+2ω2)
,

da21
dτ

= − 2m ω2
2 a2

20 a21(
ω2

1−4 ω2
2

) − ω3
1 a20 θ21 cos θ20
18ω2(ω1−2 ω2)

.

(34)

Take into consideration that the small perturbations a11, θ11, a21 and θ21 are
unknown functions. Every solution is a linear combination of ki eλτ , where ki i = 1,
2, 3, 4 are constants and λ is the eigenvalue corresponding to the unknown
perturbation, counted from the real parts of the roots. In this analysis, if the steady-
state solutions (fixed points) a10, θ10, a20 and θ20 are asymptotically stable, the real
parts of the roots of the following characteristic equation

λ4 + 1λ
3 + 2λ

2 + 3λ + 4 = 0 . (35)
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of the set of (34), must be negative. Here 1, 2, 3 and 4 take the form

1 = F sin θ10
2a10ω1

+ μ ω3
1+2

(
m a2

20−2μ ω1
)

ω2
2

ω2
1−4 ω2

2
,

2 = 1
1296 a10a20 ω1ω

2
2(ω1−2ω2)(ω1+2ω2)

[
108 a20 (ω1 − 2ω2) ω2

2

(
24mμ a10a

2
20ω

2
1ω

2
2

+ 6 F sin θ10
(
μω3

1 + 2
(
ma2

20 − 2μω1
)
ω2

2

)

− F ω1 cos θ10
(
ma2

20ω
3
1 − 6 σ1

(
ω2

1 − 4 ω2
2

)) )

+ a2
10 ω4

1 cos θ10
(−8a2

10 ω3
1 (ω1 − 2ω2) + 3ω2

)

×
(

48σ1
(
ω2

1 − 4 ω2
2

)+ 24σ1
(
ω2

1 − 4 ω2
2

)

+ a2
20

(−16mω3
1 + 9ω2

1ω2 + 12 (−3 + 4m)ω3
2

)
))
]
,

3 = 1

2592 a10a20ω
2
2

(
ω2

1−4 ω2
2

)2
[
a10ω

2
1 cos θ20 (ω1 + 2ω2)

(− 8a2
10ω

4
1

(
F sin θ10

+ 2μa10ω
2
1

)+8ω2
1

(
F sin θ10

(
18σ1 + 9σ2 + 2a2

10 ω1
)+ 2μa10ω

2
1(

18σ1 + 9σ2 + 2
(
a2

10 − 3ma2
20

)
ω1
))

ω2 + 27a2
20ω

2
1

(
F sin θ10 + 2μa10ω

2
1

)
ω2

2

− 288 (2σ1 + σ2)
(
F sin θ10 + 2μa10ω

2
1

)
ω3

2
+ 36 (−3 + 4m) a2

20

(
F sin θ10 + 2μa10ω

2
1

)
ω4

2
− 432 F ma2

20 ω4
2

(−6μ sin θ10
(
ω2

1 − 4 ω2
2

)

+ cos θ10
(
ma2

20 ω3
1 − 6σ1

(
ω2

1 − 4 ω2
2

))) ]
,

4 = F cos θ20 ω3
1

5184 a20ω
2
2(ω1−2ω2)

3(ω1+2ω2)
3 [−3ω2( 8 (2σ1 + σ2) ω2

1 + 3a2
20ω

2
1ω2

− 32 (2σ1 + σ2) ω2
2 + 4 (−3 + 4m) a2

20ω
3
2 )( − 6μ sin θ10

(
ω2

1 − 4 ω2
2

)

+ cos θ10
(
ma2

10ω
3
1 − 6σ1

(
ω2

1 − 4 ω2
2

)))

− 8a2
10ω

3
1 (ω1 − 2ω2)

(
2μ sin θ10

(
ω2

1 − 4 ω2
2

)

+ cos θ10
(
ma2

10ω
3
1 − 6σ1

(
ω2

1 − 4 ω2
2

))
)] .

(36)

However, according to the Routh-Hurwitz criterion, the fundamental conditions
of the stability for the particular steady-state solutions will be

1 > 0,

3 (12 − 3) − 4
2
1 > 0,

12 − 3 > 0,

4 > 0.

(37)

The stability of the system amplitudes are varying with different spring stiffness
value. As presented in Figs. 8 and 9 the dashed line (on the lift side) represent the
unstable region. Where, the solid line represents the stable region. The solid red line
represents the stable region of a1 and the blue color represents the stable region of
a2.
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Fig. 8 stability for a1 and a2 with σ 1 at k = 2000
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Fig. 9 stability for a1 and a2 with σ 1 at k = 1500

9 Conclusions

This work outlines the vibrating motion of a cylinder over circular under the influ-
ence of an exciting force. Lagrange’s principles were utilized obtain the governing
equation of the system’s motion taking into account the presence of external forces
acting on the vertical direction. The multiple Scale technique is used to obtain the
asymptotic solutions up to third order and to gain the modulation equations in frame
work of the solvability conditions. The various resonance cases, primary external
resonance and internal one, are studied. The system stability is checked according
to Routh-Hurwitz criterion condition. The graphical representations of time history
of motion, resonance cases are presented through some plots to highlight the
effectiveness of different physical parameters on the motion. The importance of this
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work is due to its direct applications in the fields of engineering machines which
needs insight investigation in order to reduce the system vibrations.
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Nonlinear Dynamics of the Hierarchic
System of Oscillators

Sergiy Mykulyak and Sergii Skurativskyi

Abstract A significant part of materials under appropriate conditions manifests
their internal structure. In particular, this concerns the geomedia which are endowed
with discrete and hierarchic structure. To examine the dynamics of such systems,
we develop the mathematical model on the basis of Hamiltonian formalism. This
model describes the motion of the hierarchically connected oscillators interacting
with each other via the power law. For certain simplifying constraints, we reduce
the model to the three level strongly nonlinear system of ODE. The problem
considered is the analysis of the system dynamics, when the friction is incorporated
and the harmonic force is applied to the most upper level of the system. Using the
numerical and qualitative analysis methods, the existence of periodic, quasiperiodic
and chaotic attractors are revealed. The bifurcations of these regimes with respect
to the structural parameter are studied in more detail. The statistical properties of
chaotic attractors are considered as well.

Keywords Hierarchic structures · Coupled oscillators · Quasiperiodicity ·
Dynamic chaos · Tsallis index

1 Introduction

The rocks forming the lithosphere are significantly heterogeneous. The heterogene-
ity is related to both the heterogeneity of rock compositions and the existence
of crack and fault networks. Such defect networks cause the selection of rock
fragments that can be considered as separate discrete elements. Discreteness is
observed in a wide range of levels: from rock pieces that can be observed in
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quarries or mountains with centimeters or meters in size to tectonic blocks and
plates having the dimensions from kilometers to thousands kilometers. Sadovskiy
et al. [1] performed a statistical analysis of discrete rock fragments and concluded
that their distribution over a wide range of scales has a modal nature: there
are allocated sizes of fragments and the relationships between adjacent sizes
(hierarchical levels) are in a narrow interval Li+1/Li = K , where K ∈ [2; 5] [1].
The process of energy redistribution between hierarchical levels plays an important
role in the dynamics of discrete hierarchical media, in particular in the processes
of earthquake preparation, seismic energy release during earthquakes themselves,
and seismic wave propagation. To study the energy redistribution processes in
hierarchical discrete media, the model of embedded oscillators has been proposed
[2, 3]. The oscillators forming the hierarchic layers interact via the power law
with the oscillators placing on the higher layers. The equations of motion for this
model derived within the framework of Hamiltonian formalism possess complicated
solutions including periodic, quasiperiodic, and chaotic ones.

There is also an important problem concerning the behavior of hierarchic media
under the external excitation applied to the upper level of hierarchic system. In
the case of weak dissipative processes and small harmonic loading, the resonant
phenomena in the three-layer hierarchic system have been considered in detail [3, 4].

Now the question arises how the hierarchical system behaves when the small
quantities are not expected? To elucidate this problem, the three-layer model
incorporating the linear viscous friction and harmonic loading is studied by the
qualitative analysis methods accompanied by the Fourier spectra analysis, Lyapunov
and Tsallis index derivations.

2 Construction of the Mathematical Model for a Hierarchic
System

The general approach to hierarchic system description has been developed in [2–4].
Now we are going to deal with the simplified model when the number of structural
parameters is reduced as much as possible.

We thus consider the model schematically depicted in Fig. 1 and consisted of
n = 3 layers. Each oscillator is characterized by the coordinate xjk , where j is
the layer number, k is the oscillator’s position in this layer. All oscillators of the
j th layer have identical masses mj , j = 1, 2, 3. Pair of oscillators belonging to
the adjacent layers interacts with the force having the power potential. The bond
stiffness does not depend on the oscillator position in the layer, i.e. Cjk = Cj .
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Fig. 1 The schematic
representation of the model
for hierarchical medium
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Thus, the corresponding Hamiltonian is as follows

H = p2
11

2m1
+ C1

β + 1
|x11 − x0|β+1 +

3∑

k=1

p2
2k

2m2
+ C2

β + 1
|x2k − x11|β+1 +

3∑

k=1

p2
3k

2m3
+ C3

β + 1
|x3k − x21|β+1 +

6∑

k=4

p2
3k

2m3
+ C3

β + 1
|x3k − x22|β+1 +

9∑

k=7

p2
3k

2m3
+ C3

β + 1
|x3k − x23|β+1 ,

where pjk is the momentum of kth oscillator placed on the j th level, x0 = const.
Corresponding equations of motion

ẋnk = ∂H

∂pnk

, ṗnk = − ∂H

∂xnk

lead us to the system of 13 ordinary differential equations. For instance, the
equations with respect to x11, x21, and x31 can be written in the following form

ẍ11 = −ω2
1 |x11 − x0|β χ11,0+

ω2
2

m2
m1

(|x21 − x11|β χ21,11 + |x22 − x11|β χ22,11 + |x23 − x11|β χ23,11
)
,

ẍ21 = −ω2
2 |x21 − x11|β χ21,11+

ω2
3

m3
m2

(|x31 − x21|β χ31,21 + |x32 − x21|β χ32,21 + |x33 − x21|β χ33,21
)
,

ẍ31 = −ω2
3 |x31 − x21|β χ31,21,

(1)

where ω2
i = Ci/mi , χa,b = sgn(xa − xb).

Let us assume that system (1) admits the solution when oscillators in the specified
layer move synchronously. Then the components of solution are identical, i.e. x3j =
x3, x2j = x2, x11 = x1. The proof of such a regime existence in the general model
is not a trivial problem, but in the simplified model such regime can occur due to the
coincidence of the corresponding equations of the system and specifying the proper
initial conditions for these equations.
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Thus, the movement of partially synchronized oscillators is described by the
system

ẍ1 = −ω2
1 |x1 − x0|β χ1,0 + ω2

2ϕ1 |x2 − x1|β χ2,1,

ẍ2 = −ω2
2 |x2 − x1|β χ2,1 + ω2

3ϕ2 |x3 − x2|β χ3,2,

ẍ3 = −ω2
3 |x3 − x2|β χ3,2,

(2)

where ϕ1 = 3m2
m1

, ϕ2 = 3m3
m2

.

Suppose that the set mi is the geometric sequence, i.e. mi = m0h
i−1, h < 1.

Then ϕi = sh = ϕ = const. Using the new variables qn = xn − xn−1—
displacements from the steady state, let us write model (2) in the form

q̈1 = −F1 + ϕF2, q̈2 = F1 − F2(1 + ϕ) + ϕF3, q̈3 = F2 − F3(1 + ϕ),

(3)

where Fi = ω2
i |qi |β sgn(qi).

Note that doing in a similar manner we can construct the hierarchic model with
n layers obeying the system [2]

q̈1 = −F1 + ϕ1F2, q̈n = Fn−1 − Fn(1 + ϕn−1) + ϕnFn+1,

q̈N = FN−1 − FN(1 + ϕN−1),
(4)

where ϕi = smi+1/mi . From the analysis of the last system it follows that at ϕn = 1
it reduces to the equations of motions for the chain of masses with pair interactions.
Such a case can be realized when s = 1 and all masses are identical in particular,
i.e. the chain without hierarchic structure. If s �= 1, the system is hierarchic.

Even in the simple case of system (3) the strong nonlinearity of the system does
not allow one to carry out the complete its investigation. But using the Poincaré
section technique some typical model’s solutions were revealed [2]. In particular,
the quasiperiodic (Fig. 2a), periodic (Fig. 2b, the inset contains the phase portrait
of complex periodic trajectory), and chaotic (Fig. 2c) regimes were distinguished.
Note that to prove the chaoticity of trajectory presented in Fig. 2c the Lyapunov
spectrum is suitable. It should be mentioned that for Hamiltonian systems the sum of
Lyapunov exponents is equal to zero. Therefore, the periodic orbits are characterized
by zero exponents, whereas among the Lyapunov spectrum of chaotic trajectory
there is a pair of exponents with opposite signs. Using the classical numerical
method [5], the Lyapunov spectrum λ = {0.0013, −0.0015, 0.00068, −0.00061,
0.00079, −0.00063} was evaluated. Due to numerical errors, we should introduce
some threshold [6] to distinguish zero exponents. We thus assume that λ1,2 �= 0
while others are zero. Since the spectrum contains the positive index, the observed
regime should be classified as a chaotic.
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Fig. 2 The poincaré sections of system (3) for the quasiperiodic regime at β = 1.05 (a), periodic
orbit at β = 1.5 (b), and chaotic trajectory at β = 1.15 (c)

3 Dynamics of Three-layer Dissipative Hierarchic System
Under the Harmonic Loading

Incorporating the dissipative processes description and harmonic force γ sin αt

applied to the uppermost layer of three-layer dissipative hierarchic system (3), we
lead to the problem of forced oscillations of hierarchic medium. In this case, after
the substitution t → αt , system (3) can be written in the following form

α2q̈1 = −F1 + ϕF2 − αμ1q̇1 + γ sin t,

α2q̈2 = F1 − F2(1 + ϕ) + ϕF3 − αμ2q̇2 + αμ1q̇1,

α2q̈3 = F2 − F3(1 + ϕ) − αμ3q̇3 + αμ2q̇2.

(5)

Now the period of external loading is 2π . When the model is close to the linear one
and force amplitude is small enough, to consider the resonant oscillating regimes,
the small parameter method can be applied to the model [3]. Now parameters’
smallness is not assumed and dynamical system (5) is studied by the qualitative
analysis methods and numerically.

To do this, we fix the parameters ω = {1, 1.1, 1.21}, the friction coefficients
μ = {0.01, 0.03, 0.05}, the Hertz law index β = 3/2, the amplitude of loading
γ = 0.18 and its frequency α = 1.4. It turned out that at these parameters the system
possesses an especially rich set of solutions which we are going to discuss further.
Namely, we will describe the regimes and their bifurcations when the parameter ϕ

is varied.
The periodic trajectory can be derived numerically starting from the initial data

{q1,2,3, q
′
1,2,3} = {−0.0009, 0.0015,−0.0006,−0.1087, 0.0183,−0.0014} at ϕ =

0.5. The profile of q2 component solution in Fig. 3a allows one to suppose that
its period is 2π . To proof this, the Fourier spectrum (Fig.3b) of this trajectory is
derived. Since it contains only one essential maximum at ω = 1, the observed
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Fig. 3 The profile of q2(t) and its Fourier spectrum at ϕ = 0.5
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Fig. 4 The Poincaré sections (a) at ϕ = 0.6 (separate black points) and ϕ = 0.61 (blue points
forming closed curves). Panel (b) shows the Fourier spectrum of the regime depicted by closed
curves in the left panel

regime corresponds to the oscillations with frequency 1 and presents the movement
with the external frequency.

In addition to this mode, we reveal more complex periodic orbit at ϕ = 0.6
and initial conditions {q1,2,3, q

′
1,2,3} = {−0.5536,−0.4969,−0.3425,−0.0612,

−0.0821, 0.2492}. To study this solution and others, the Poincaré section technique
is used. Since we deal with the nonautonomous system, the Poincaré section consists
of the trajectory points extracted at tn = 2πn, n = 1, 2, . . .. The resulting Poincaré
section depicted in Fig. 4a contains three points that testifies about the existence of
solution with period 6π . The Fourier spectrum of this solution contains two maxima
at ω = 1/3 and ω = 1 (Fig.4b). Since these frequencies are commensurate, we can
state that the observed mode presents the resonant torus in the system’s phase space.
The stability of trajectory and its type can be examined with the help of Lyapunov
spectrum. Integrating system (5) together with its linearization during 3000 time
units (and for all calculations below), the spectrum for the periodic trajectory
λ = {−0.0035,−0.0036,−0.0051,−0.0046,−0.0236,−0.0239} is evaluated.
Accounting for the Fourier spectrum analysis and assuming that λ1,2 correspond to
zero Lyapunov exponents, we can conclude that the observed trajectory is the two-



Nonlinear Dynamics 23

dimensional torus [6]. Note that such a regime is also recognized at lower values of
ϕ till 0.465.

When the parameter ϕ = 0.61, the periodic trajectory loses its stability.
Then the toroidal surface causing the creation of closed curves in the
Poincaré section (Fig. 4a) appears. This torus corresponds to a quasiperiodic
solution with incommensurate frequencies as it can be seen in the Fourier
spectrum (Fig. 4b). Note that two auxiliary maxima 1 ± 0.175 appear in a
vicinity of unit frequency. Deriving the Lyapunov spectrum, we obtain λ =
{−0.0002,−0.0032,−0.0034,−0.0117,−0.0211,−0.0248}. Let us take into
account that λ1,2,3 are regarded as zero. Then from this it follows that the trajectory
relates to the 3D torus.

Another quasiperiodic solution is observed at ϕ = 0.48 and initial data
{0.0069, 0.0252, 0.0202,−0.1036, 0.0114, 0.0083} the phase portrait of which
is depicted in Fig. 5. It is worth noting that the amplitude of this regime
is essentially smaller than in the solutions mentioned above. The Fourier
spectrum possesses two main frequencies Ω1 = 0.215, Ω2 = 0.570,
and the combinational frequency 3Ω1. The Lyapunov spectrum is λ =
{−0.0077,−0.0077,−0.0116,−0.0116,−0.0133,−0.0123} and contains two
zero exponents providing the 2D torus existence proof.

When we fix ϕ = 0.50 and initial data {0.0311, 0.0502, 0.01707,−0.0889,

0.0286,−0.0320}, the solution’s Poincaré section (Fig. 5) is qualitatively similar
to existing at ϕ = 0.48 but it is symmetrically mapped with respect to the origin.
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Fig. 5 The Poincaré sections and Fourier spectra at ϕ = 0.48 (top) and ϕ = 0.50 (bottom)



24 S. Mykulyak and S. Skurativskyi

−0.05 0.00 0.05 0.10

−0.10

−0.05

0.00

0.05

0.10

(a) (b)

q1

q2

0.24 0.52 1
0.00

0.02

0.04

0.06

0.08

0.10

ω

S

Fig. 6 The Poincaré sections at ϕ = 0.561 (a) and its Fourier spectrum (b)

Moreover, the spectrum of the signal contains two main frequencies Ω1 = 0.249
and Ω2 = 0.508, in addition, the combinational frequency 2Ω2 − Ω1 = 0.767 is
distinguished as well. The evaluation of the Lyapunov spectrum gives us the follow-
ing exponents λ = {−0.0005,−0.0004,−0.0132,−0.0148,−0.0171,−0.0182}
among which two first quantities are assumed to be zero. This convinces in the
2D torus existence.

Choosing ϕ = 0.561 and initial data {−0.0965,−0.0275, 0.0027,−0.1227,

0.0536,−0.0178}, the Poincaré section of resulting attractor is of irregular structure
(Fig. 6a). The corresponding Fourier spectrum contains a large number of exited
frequencies that tells us about the possibility to observe a chaotic regime. According
to the Lyapunov spectrum λ = {0.0025,−0.0009,−0.0051,−0.0174,−0.0202,

−0.0231} the top Lyapunov exponent is positive (λ2 vanishes). From this it follows
the attractor chaoticity.

The aforementioned results, in particular, show that in the phase space of system
(2) can coexist at least three attractors with separated basins of attraction. Let us
examine some statistical properties of these attractors.

4 Statistical Properties of System’s Attractors

The statistical properties of the observed attractors, especially chaotic, can be
examined by using the generalized entropy conception, introduced by Tsallis [7]
and dealing with the nonergodic systems. Instead of classical entropy, the quantity
ST is defined

ST = 1 −∑Q
i=1 p

q
i

q − 1
, q ∈ R,

where q is the Tsallis (or entropy) index,
∑Q

i=1 pi = 1. Note that the limit

q → 1 corresponds to the Boltzmann-Gibbs entropy ST → −∑Q
i=1 pi ln pi and

the deviation of q from 1 points to the appearance of long-range correlations. It has
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been shown that at q < 1 the physical system behavior depends on rare events,
whereas at q > 1 the frequent events have more weight [8].

To estimate the index q, the approach proposed in [9] is used. According to this
method, the maximum entropy principal on the base of ST is applied. The auxiliary
function known as redundancy RT is defined

RT (q) = 1 − ST

ST max
,

where ST max = 1−Q1−q

q−1 is the maximum of the function ST which is reached on the
equiprobable microstates pi = 1/Q. It is evident that for the nonrandom quantities,
when p1 = 1 and p2 = 0, RT = 1. For the equiprobable distribution when p1 =
p2 = 1/2, we have RT = 0.

Thus, to construct the functions ST and RT we need some discrete distribution.
To construct it, let us consider the solution of system (5) at ϕ = 0.561 during total
time 4 · 103 · 2π . Next, we extract from the q1-component of solution the sequence
of intervals Ri = (τi; τi+1) (Fig. 7a) between its zeros τi such that q ′

1(τi) > 0
[10]. This sequence of intervals Ri allows one to compose the sequence of their
length �i = τi+1 − τi . Then the required sampling distribution of this sequence
�i (Fig. 7b) can be constructed. The numerical estimation of extremum coordinates
gives q = 0.643 < 1. This means that the process described by this distribution
possesses long-range correlations and the system dynamics is defined by the mutual
influence of a large number of rare events.

Using the procedure outlined above we evaluate the Tsallis index q for other
attractors. In particular, for the quasiperiodic regime depicted in Fig. 5 at ϕ = 0.48
the parameter q = 0.756 and for the similar regime shown in Fig. 4 at ϕ = 0.61 the
parameter q = 0.825. The Tsallis index can provide the identification of attractors
and their bifurcations, thus, the variation of q with respect to ϕ requires additional
studies.
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Fig. 7 Construction of the sequence of intervals (a) and the corresponding distribution of relative
frequencies (b) at ϕ = 0.561
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5 Concluding Remark

Thus, we have developed the three-layered hierarchic system in the form of
embedded oscillators with strongly nonlinear bonds. Among possible dynamic
regimes of the system, we focused on the mode when all oscillators in the same layer
move synchronously. Although this allows one to reduce the number of equations
of motion, the resulting equations are still strongly nonlinear. Therefore, the
qualitative and numerical analysis methods were applied. According to the studies,
the variation of structural parameter ϕ stimulates developing a wide variety of
nonlinear phenomena in the considered system. Notably, the periodic, quasiperiodic,
and chaotic attractors were discovered. Moreover, the coexistence of periodic and
quasiperiodic modes with different partial frequencies was revealed.

The types of attractors and their bifurcations were studied via the Lyapunov
exponent spectra, Poincaré sections, and Fourier spectra. In particular, we have
shown that the two-frequency, three-frequency tori, and their bifurcations occur in
the phase space of the system.

The findings mentioned above can be useful for understanding the processes
of energy redistribution in the natural structured geomedia and other hierarchical
discrete systems.
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Nonlinear Dynamics of Flexible Meshed
Cylindrical Panels in the White Noise’s
Field
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Abstract The mathematical model of the nonlinear dynamics of flexible mesh
cylindrical panels in the field of additive white noise is constructed in this paper.
To account for size-dependent behavior, a nonclassical continual model based on
a Cosserat medium is considered. Thus, along with the classical stress field, the
moment voltages are also taken into account. It is also assumed that the fields of
displacements and rotations are not independent. The equilibrium equations for the
plate element and the boundary conditions are obtained from the Ostrogradskiy-
Gamilton variation principle on the basis of Kirchhoff-Love kinematic hypotheses
and Karman’s geometric nonlinearity. In accordance with a continual model, a mesh
panel consisting of a regular system of often located same material’s ribs is replaced
by an equivalent continuous layer having some averaged stiffness depending on the
layout of the ribs and their stiffness. The system of differential equations in partial
derivatives is reduced to a system of ODE using the finite difference method of the
second order of accuracy. The resulting system is solved by the fourth-order Runge-
Kutta methods.
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1 Formulation of the Problem

Micro- and nano-sized plates and shells are widely used in electromechanical
systems. High growth rates of microsystem technologies cause the interest of
scientists not only to the dynamics of full-size mechanical systems in the form of
plates and shells [1–3], but also the need to create mathematical models that take
into account the scale effects at the micro and nano level [4–6]. In most works on
this subject linear models are used for numerical analysis [7–11]. However, there
are experimental data confirming the need to take into account the nonlinearity in
modeling the behavior of the objects under consideration [12].

Subsequent paragraphs, however, are indented. Mesh panels and shells due to
their lightness and increased strength are used in many important industries, such as
the military and space industries, robotics and medicine. Despite the large number
of works devoted to the size-dependent behavior of mechanical objects in the form
of plates, panels and shells [13–16], studies of the behavior of mesh plates and shells
based on theories that take into account the effects of scale is very small [17,18].

In this work the mathematical model of the geometrically nonlinear micropolar
mesh cylindrical panel behavior is constructed. The panel is exposed to the
distributed normal load in the normal white noise field. The panel material is the
Cosserat pseudo-continuum with constrained particle rotation. The mesh structure
is taken into account according to the G.I. Pshenichnov theory [19]. In this work,
the vibrations of mesh panels as a system with many freedom’s degrees are studied
with the addition of an external chaotic component in the form of white noise.
White noise is the generalized stationary random process X(t) with constant spectral
density. The term “white” was assigned by analogy with white light, which in
the visible part of the spectrum has the entire set of frequencies. The correlation
(generalized) function of the white noise process has the form: B(t) = σ 2δ(t), where
σ 2 is some positive constant, and δ(t) is the delta function. Gaussian white noise as
a model is well suited for the mathematical description of many natural processes,
in particular sound pressure.

The investigation object is a rectangular plate occupying in space R
3 a region

Ω = {
0 ≤ x ≤ c; 0 ≤ y ≤ b;−h

2 ≤ z ≤ h
2

}
The non-zero components of the strain

tensor in the case of the Kirchhoff–Love hypotheses and the Karman theory can be
written as:

exx = ∂u
∂x

+ 1
2

(
∂w
∂x

)2 − z ∂2w
∂x2 ;

eyy = ∂v
∂y

+ 1
2

(
∂w
∂y

)2 − kyw − z ∂2w
∂y2 ;

exy = 1
2

(
∂u
∂y

+ ∂v
∂x

)
− z ∂2w

∂x∂y
,

(1)

Here w, u, v – are the axial displacements of the plate middle surface in the directions
z, x, y, respectively, ky – is the geometric parameter of panel’s curvature.

The panel material is considered as a Cosserat pseudo-continuum with con-
strained particle rotation where, along with the usual stress field, moment stresses
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are also taken into account. It is assumed here that the displacement and rotation
fields are not independent.

The components of the symmetric bending-torsion tensor taking into account the
accepted hypotheses and assumptions will take the form:

χxx = ∂2w
∂x∂y

; χyy = − ∂2w
∂y∂x

; χxy = 1
2

(
∂2w
∂y2 − ∂2w

∂x2

)
;

χxz = 1
4

(
∂2v
∂x2 − ∂2u

∂x∂y

)
; χyz = 1

4

(
∂2v
∂y∂x

− ∂2u
∂y2

)
.

(2)

For the plate material the defining relations are taken in the form:

σxx = E
1−ν2

[
exx + νeyy

]
, x � y, σxy = E

(1+ν)
exy,

(
mxx,mxy,mzx

) = El2

1+ν

(
χxx, χxy, χzx

)
,

(3)

Here σ ij – are the components of the stress tensor, mij – are the components of the
moment tensor of higher order, E – is the Young’s modulus, ν – is the Poisson’s
ratio, l – is the additional independent material length parameter.

The equations of motion of an element of a smooth plate equivalent to a mesh,
the boundary and initial conditions were obtained from the Hamilton-Ostrogradskiy
energy principle.

The subject of study is a mesh plate under the action of a normal distributed
load. The panel consists n families of densely spaced edges of the same material.
The regular system of edges can be replaced by a continuous layer according to
the continuum model of G. I. Pshenichnov [19]. In this case, the stresses arising in
the equivalent smooth plate, associated with the stresses in the ribs making up the
angles ϕj with the x-axis, will have the form:

σxx =
n∑

j=1

σ
j
x δj Cos2ϕj
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j
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,
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xδj Cosϕj Sinϕj
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,

mxz =
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j=1

m
j
zxδj Cosϕj

aj
, myz =

n∑

j=1

m
j
zxδj Sinϕj

aj
,

(4)

where aj – is the distance between edges of j-th set, δj – is the edge thickness of
the j-th set, ϕj − is the angle between the x-axis and the edge axis of the j-th set,
stresses with index j refer to rods. The physical relationships for the mesh plate are
determined based on the Lagrange multipliers method:

σ
j
x = σxxCos2ϕj + σyySin2ϕj + σxyCosϕj Sinϕj ; τ j = σxzCosϕj + σyzSinϕj ;

m
j
x = mxxCos2ϕj + myySin2ϕj + mxyCosϕj Sinϕj ; m

j
z = mxzCosϕj + myzSinϕj .

(5)
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The obtained physical relations (5) and expressions connecting the stresses
arising in the equivalent smooth plate with the stresses in the edges (4) will make
it possible to write the relations for the forces and moments of the smooth plate to
the equivalent mesh plate. Substituting the latter into the equations of motion of a
smooth plate, we obtain the equations of motion of a micropolar plate of a mesh
structure in mixed form.

In what follows, we will consider a panel with two families of edges (Fig. 1)
ϕ1 = 45o, ϕ2 = 135o, , a1 = a2 = a.

Additive noise added to the system in the form of a random term with constant
intensity: qnois = qn0(2.0 ∗ rand ()/(RAND _ MAX + 1.0) − 1.0), here qn0 – is the
noise intensity. The (2.0 ∗ rand ()/(RAND _ MAX + 1.0) − 1.0) expression takes
arbitrary fractional values in the range (−1; 1).

We introduce the following dimensionless parameters: x = cx, y = by, w =
hw, u = h2

c
u, v = h2

b
v, δ = hδ, a = ha, l = hl, ky = 1

b
ky, t = cb

h

√
ρ
E

t, ε =
h
cb

√
E
ρ
ε, q = Eh4

c2b2 q, qnois = Eh4

c2b2 qnois , here q= q0Sin(ωpt) – is the external normal

load, q0 – its intensity, ωp – its frequency, c, b – are the plate’s linear dimensions in
x and y direction, ρ – is the panels material density, ε – is the dissipation coefficient.

The equilibrium equations of the element of the considered micropolar mesh
cylindrical panel in displacements take the form. The line over dimensionless
variables is omitted.
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To the equations we add the initial zero conditions and the boundary conditions
of the rigidly clamped edge:

x = ±1, y = ±1 : u = v = w = 0, ∂u
∂x

= 0, ∂u
∂y

= 0, ∂v
∂x

= 0, ∂v
∂y

= 0, ∂w
∂x

=
0, ∂w

∂y
= 0.
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Fig. 1 Plate grid geometry

2 Numerical Results

The system of differential equations in partial derivatives is reduced to the ODE
system using the finite difference method with second-order approximation. The
Cauchy problem is solved by the Runge–Kutta method of the fourth order of
accuracy.

Experiment Parameters: ν = 0.3, δ = h = a = 0.002, ωp = 5, q0 ∈ [0; 20].
The Ruelle-Tackens–Newhouse scenario was obtained in the experiment. The

oscillation transition was carried out through two linearly independent frequencies
and their linear combinations. Table 1 shows the Fourier spectra and phase portraits
for some values of the external normal load amplitude. The phase portrait is a torus,
which corresponds to the classic Ruelle-Tackens-Newhouse scenario.

The following frequency dependencies are available: ωp and ω1 – are the
independent frequencies, ω2 = 3ω1, ω3 = 6ω1, ω4 = ωp − ω1, ω5 = ωp − 4ω1,
ω6 = ωp − 8ω1, ω7 = 2ωp − 18ω1.

The effects of external additive white noise qno ∈ [0.1; 9] on the behavior of a
shallow cylindrical mesh micropolar panel are investigated. A numerical experiment
showed that the noise of intensity commensurate with the intensity of the external
normal load does not significantly affect the nature of its oscillations and does not
change the scenario of the transition of system vibrations into chaos.

Table 2 shows the Fourier spectra for the intensity of the external load q0 = 2
and the noise intensity qnois = 0.1 and qnois = 9. An increase in the noise intensity
to qnois = 9 accelerated the transition of system oscillations to chaotic ones.
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Table 1 Transition scenario

Table 2 The effect of white noise intensity on the panel vibrations character (q0 = 2)
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3 Conclusions

On the basis of Pshenichniy continuum model and Kirchhoff-Love hypotheses, the
mathematical model of vibrations of flexible micropolar cylindrical mesh panels
in the additive white noise field is constructed. The panel consists of two families
of mutually orthogonal edges. Ruele–Takens–Newhouse scenario of transitions
vibration from harmonic to chaotic for the meshed panels was obtained and studied.
It was shown that the noise with intensity commensurate with the intensity of the
normal load does not change oscillations character of the system.
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A System for Improving Directional
Stability Involving Individual Braking
of 1, 2, or 3 Wheels of Articulated Rigid
Body Vehicles

Aleksander Skurjat and Andrzej Kosiara

Abstract Road-safety of wheeled vehicles depends on the systems used to assist
the driver while operating the vehicle. For commercial vehicles, i.e. cars and
trucks, numerous systems supporting the driver and influencing the trajectory of
vehicle motion are developed. Stiffness of the articulated vehicles’ steering systems
is relatively low. Consequently, in order to meet normative requirements for the
steering system the maximum velocity of vehicles of this type is very limited.
The article presents the results of computer simulation tests of the control system,
which involves individual braking of one, two or three wheels of the vehicle in
order to improve its directional stability. The principles of operation of various
motion stabilization systems were also compared. Furthermore, the article presents
a method for measuring the motion trajectory of a vehicle.

Keywords Snaking · Articulated vehicle · Braking system · Control system

1 Introduction

The rapid development of the automotive industry has contributed to an increase
in the number of vehicles travelling on public roads at ever higher speeds. For
this reason, safety during driving has become an extremely important factor in
the development of new machines on the road. The largest number of safety
systems can be seen in the design of passenger cars. The development of electronics
and microprocessor systems has led to the emergence of quick driving assistance
systems. These include active braking systems, slip control during acceleration,
power steering, traction control during steering and many others. It should be noted
that such systems are not used in a earth-working machines and the location of the
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tool, e.g. excavator bucket or loader, can be extremely dangerous in the event of a
collision with a pedestrian.

One of the phenomena that prevent these machines from moving at speeds
exceeding 50 km/h is snaking phenomenon considered as spontaneous change of
a vehicle path. The systems supporting the braking process in heavy commercial
vehicles are used more and more often. In this group of vehicles, the tractor/trailer
combination is often a rotary pair with no additional components. Vehicles with
articulated steering system (e.g. earth working machines), apart from connecting
both frames by a rotary pair, contain a power element in the form of e.g. a
hydraulic cylinder. Due to the different design of these vehicles, it is not possible
to reproduce the already proven and improved systems for the enhancement of
trajectory and shortening braking distances, already known in automotive vehicles
or heavy commercial vehicles.

In the paper [1] authors tests the possibility of usage vehicle brakes as a method
for diminishing snaking behavior. In proposed method control algorithm allows only
to brake by a repeatable short pulse of one front wheel. A method for braking torque
calculation was proposed and method for comparing results was discussed. The
algorithm uses articulated angle as a signal for controlling brakes. In the paper [2]
authors propose a control algorithm which allows for braking only one front wheel,
but in this method as a control signal vehicle trajectory were used. The author finds
it imprecise. A braking torque was chosen to get the best results without proposing
a method for calculation and brakes was used until the threshold was achieved.
In the paper [3] authors discussed factors affecting steering stiffness. Their work
is focused on the geometry of a steering system and its structural stiffness. In the
paper [4] a method for driver-assist is proposed to achieve inline motion. In the
paper [5] a mathematical model of a hydraulic system is proposed. The dynamic
characteristic of the steering system is analyzed. Obtained results are verified on
a real machine with good compliance. In this study [6] a model coupled with the
kinematic and dynamic properties of the steering struts is formulated to identify
objective measures of the AFSV under steering inputs. The results suggest that the
vehicle yaw oscillation/stability, steering power efficiency and maneuverability can
be objectively measured in terms of the strut length, yaw oscillation frequency and
damping ratio, steering gain, and steering response rate and overshoot. In the paper
[7, 8] author proposes a control system for optimum distribution of longitudinal and
lateral forces of the four tires of a towing vehicle. The system is designed to stabilize
the motion of vehicle utilizing the tires entire ability in both longitudinal and lateral
directions as well as to make the handling characteristics of an articulated vehicle
similar to those of a single one. In this study [9] a control system was applied for an
articulated vehicle to turn in a smaller radius.

An active brake control system was developed to generate additional yaw-
moment and was controlled by the articulation angle determined by the driver. The
paper [10] relates to the diminishing snaking behavior by braking caravan wheels.
Obtained results are very promising in many road situations. Snaking vibrations are
most effectively suppressed by trailer braking forces in phase with the trailer roll
displacement, with the consequence that the braking is required when the tire load
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is greatest. In this study [11] a controller was proposed to modify the slip control
braking strategy. The controller compares observed vehicle states to a linear yaw-
plane reference model, then attenuates the demanded wheel slips as necessary at
each axle to restore directional control to the driver during emergency braking.

2 Basic Vehicle Parameters and Braking Control System
Principles

The model of a wheel articulated loader was used for simulated testing. The testing
is conducted simultaneously in the integrated MSC Adams and Matlab/Simulink
environments. MBS tests provide information on the loads that occur in kinematic
pairs of cooperation, wheel – surface contact, steering angle in the articulation,
while Matlab/Simulink complements the model with the driving torque necessary
to accelerate the vehicle and maintain the set speed, and also introduces the braking
torque values into the MBS model, which are calculated from the Matlab package
control system. The vehicle model basic parameters gathered from CAD software
are shown in Table 1. Depending on the design the control algorithm enables the
braking of one, two or three vehicle wheels, and allows the change of the motion
trajectory and affects steering joint oscillation time. The proposed system delivers
the same braking torque to wheels. Braking torque individual wheel command
depends on an angle measured between front and rear frame. A different three
braking criterion is tested and principles of working are presented on Fig. 1. In order
to prevent continuous and alternate braking of the wheels, a sensitivity threshold γth

Table 1 Basic parameters of masses, moments of inertia and gravity centers for the vehicle
frames

Tires radial stiffness = 50 [N/mm]
Tires radial damping = 2 [Ns/m]
Tires diameter = 0.55 [m]
Tires aspect ratio = 0.7

Steering system stiffness = 1600 [Nm/deg]
Steering system damping = 1 [Nms/deg]
Front frame mass = 445 [kg]
Rear frame mass = 1170 [kg]
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Fig. 1 Working principles of proposed braking control systems, (a) system off – a basic
parameters are shown, (b) only front individual wheel braking, (c) diagonal wheel braking, (d)
individual one front and two rears wheel braking

has been introduced. In the case of γ ≤ γth or γ≥γth a command is sent to brake one
or more wheels. The braking system sends braking torque pulses with a cycle length
of t = 0.4 seconds and 80% filling.

The braking process is completed when the steering angle is reduced below the
value specified by the sensitivity threshold. The braking torque value is constant for
each front and rear wheel. Rear wheels brake with 50% efficiency of front ones.
Time parameters, values of braking torque and the threshold γth when the system
is switched on and off are identical for all tested solutions. Operation of the control
system shall be enforced by introducing a constant torque pulse between the front
and rear of the vehicle for all tested solutions.

The system shown in Fig. 1b allows only the front wheel brakes to operate. Its
operation is based on the braking of this wheel, which has a higher rotational speed
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than the opposite wheel. It is obvious that if a vehicle turns to the right, for example,
its left wheel has a higher speed, for this reason it has been decided to use the angle
between the frames of the vehicle as a control signal. The function of the system is
to introduce MwFL or MwFR moment which will allow the front part of the vehicle
to be rotated to turn vehicle back to straight path running.

Figure 1c shows the system in which the diagonal, front and rear wheels are
braked. The function of the system is to introduce the moment of MwFL lub MwFR
and MwRR or MwRL which will allow the front and rear part of the vehicle to be
rotated. The purpose of the test is to determine whether the extra torque at the rear
part of the vehicle will permit greater damping in the steering system and its effect
on the trajectory of motion of the whole vehicle.

Figure 1d shows a system in which three wheels are used to minimize the snaking
phenomenon. In this solution, one of the front wheels is braked – as in the case of
the system shown in Fig. 1b – and the rear wheels are braked simultaneously. This
always results in a situation in which one of the front wheels and both rear wheels
brake. In this situation, it is not possible to achieve the torque to rotate rear part
of the vehicle because equal braking forces of the wheels and the same length of
the arms of their action in relation to the symmetry of the rear part of the vehicle
reduce the resulting moment. What remains, however, is a rear-wheel braking force
which is directed in the opposite direction of motion and which tightens the vehicle
in the steering joint. This results in an additional damping effect. In this analysis, the
rear wheel braking torque is half of that of the front wheels. This is due to the fact
that the rear axle is relieved as a result of the whole vehicle’s deceleration. These
tests are intended to determine which of the above methods will help to eliminate
oscillations in the articulated joint more quickly and will have a positive effect on
straightness of movement.

In the proposed system the brakes are enabled when threshold γ th has been
exceeded and the system sends braking pulses. Soon an author tests a control
system with variable braking torque, continuous tires braking and different braking
command. Simulation testing using the MBS environment do not show compu-
tational equations and the user only receives the mathematical solution of the
problem. Authors could propose equations for describing vehicle motion but further
solution needs for oversimplifying. For this reason, to check the effectiveness of the
stabilizing system, WSD performance index has been developed. The dimensionless
WSD index combines both the behavior of the steering system, i.e. the amplitudes
and duration of the oscillation and the vehicle resulting motion trajectory with side
slip on wheels. The value WSD is determined by the formula:

WSD =
∫ t1

t0
tan

∣∣∣∣
x

y

∣∣∣∣ dt

∫ t1

t0
tan |γ| dt (1)

where:

x – lateral displacement [m]
y – displacement of the vehicle in the direction of travel [m]
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Fig. 2 Principle of working of a control system using front individual wheel braking (Fig. 1b)

γ – angle of turn of elements [rad].

The first part of Eq. 1 increases value in the case of snaking. The second
part describes articulated joint oscillations. Articulated angle oscillations always
influence vehicle trajectory, so both of equation parts increase. To compare the
results it is important to limit covered by vehicle distance by adding a time limit.

3 Simulation Testing of the Anti-Oscillation System
in Steering System

Comparative tests are aimed at determining which of the tested solutions: (a) will
allow to obtain the settling time (Ts) of oscillations in a steering system (the quickest
damping of oscillation) (b) to obtain a in-line direction of motion (c) will have the
lowest WSD index. The studies were conducted for three velocities: V = 75, V = 50
and V = 25 km/h. The action of the system braking the front wheels (Fig. 1b) is
shown in Fig. 2. Figure 3 shows the action of the system using diagonally one front
and one rear wheel with the same value of braking torques. In Fig. 4, the control
algorithm allows one front and two rear wheels to be braked.

During simulation tests, the following results were obtained for the brake control
system at the velocity of v = 75 km/h – Figs. 5. and 6.
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Fig. 3 Principle of working of a control system using diagonal wheels braking (Fig. 1c)

Fig. 4 Principle of working of a control system using one front and both rears wheels braking
(Fig. 1d)



44 A. Skurjat and A. Kosiara

Fig. 5 Steering angle for different braking control system. Velocity V = 75 km/h

Fig. 6 WSD indicator value and vehicle trajectory for different braking control system. Velocity
V = 75 km/h

The influence of the solution on the values of the obtained steering angle is
presented in Fig. 5. The test has shown that the vehicle stimulated in the steering
system with the steering system switched off is characterized by the highest values
of oscillations in the steering system and their duration. For the system braking
only the front wheels (Fig. 1b), a continuous decrease in vibration amplitude was
obtained with the next oscillation cycle. For the diagonal braking system (Fig. 1c),
initially (for about four cycles), a constant and lower amplitude value was obtained
than for the system from Fig. 1b, and then the value began to decrease until the
complete extinction of the oscillation. The system having the ability to brake the
front wheel and the rear wheel (Fig. 1d) is definitely characterized by the highest
damping coefficient.
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Fig. 7 Steering angle for different braking control system. Velocity V = 50 km/h

Tests of the WSD indicator showed that the vehicle with the brake assist system
switched off achieves the highest values. The algorithms of the systems presented in
Fig. 1b, c can be compared with each other due to small differences between them.
The best solution was the three-wheel braking system (Fig. 1d).

When examining the trajectory of motion – Fig. 6b, it can be observed that a
vehicle with the braking system switched off travels a distance which is closest to
a straight line due to the lowest lateral displacement Y values achieved. Next is
the diagonal braking system, followed by the one with the braking force of both
rear wheels. Only the front wheel braking system achieves the worst result. The
result is explained by the tires slip angle. When the system is switched off, all
wheels rotate freely, so that the values are low. In the diagonal brake system, the
slip angle is partially compensated for by braking the left and right wheels (on
different axles). For the braking system of both rear wheels, one of the rear wheels
partially compensates for the slip angle of one of the front wheels. It is not possible
to generate compensation for the braking control of the front wheels alone on other
wheels because they rotate freely and result in a significant displacement in the
transverse direction to the direction of travel.

The following results were obtained during simulation tests for V = 50 km/h in
Figs. 7 and 8.

The influence of the solution on the values of the obtained steering angle is shown
in Fig. 7. In this case, similar results were obtained with respect to the velocity
V = 75 km/h both for the testing of steering angle oscillations, the WSD indicator –



46 A. Skurjat and A. Kosiara

Fig. 8 WSD indicator value and vehicle trajectory for different braking control system. Velocity
V = 50 km/h

Fig. 9 Steering angle for different braking control system. Velocity V = 25 km/h

Fig. 8a and for the obtained motion trajectory – Fig. 8b. For lower speed of motion,
the braking system diagonally decreased its efficiency.

During simulation tests for velocity V = 25 km/h the results presented in Figs.
9 and 10 were obtained. It can be observed that the effectiveness of reducing the
oscillation amplitude for each of the proposed control algorithms is similar to that
presented in Fig. 9. Similar values are also achieved for WSD of each solution – Fig.
10a and for trajectory of motion – Fig. 10b.

In control theory the settling time of a dynamical system such as an amplifier or
other output device is the time elapsed from the application of an ideal instantaneous
step input to the time at which the amplifier output has entered and remained
within a specified error band. The settling time is shown on Figs. 5, 7 and 9. To
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Fig. 10 WSD indicator value and vehicle trajectory for different braking control system. Velocity
V = 25 km/h

Table 2 Comparing results by calculating reducing time oscillation ratio

Braking mode: V = 75 km/h V = 50 km/h V = 25 km/h

System off 0.0% 0.0% 0.0%
Front wheels 71.2% 66.3% 40.2%
Diagonal wheels 62.0% 50.0% 46.0%
Front and rear wheels 82.0% 76.1% 60.9%

compare obtained results an reducing time oscillation ratio (RTOR) is introduced
and calculated for error band of ±0.4 [deg]. RTOR compares an efficiency of
control system different modes with system switched off. T mode

s is a time needed for
reaching lower error band than 0.4 [deg] from disturbing input function when the
system is switched off or system uses brakes. Obtained results are shown in Table 2.

Again, a control system efficiency reaches very high values. The best results
could be observed for the highest vehicle velocity and for braking one front and
both rear wheels. Braking only front wheels offer good efficiency. Diagonal wheels
braking results the worst shortening of oscillation time but it reaches, still, very
promising value. Method for diminishing snaking by using vehicle brakes brings
great benefits with low cost of a new system.

RT OR0,4 =
(
T

off
s − T mode

s

)

T
off
s

· 100% (2)

4 Conclusions

Research shows that the use of the proposed algorithms for braking articulated
rigid frame vehicle brings different results. The speed of the vehicle is extremely
important. For velocities below V = 25 km/h the application of any algorithm
has a similar effect. With the increase in speed, the benefits of the use of systems
supporting the operator while driving are increasing. The best results in eliminating
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oscillations in the steering system and the lowest (most beneficial) WSD indications
have been obtained for the control system which has the ability to brake one front
and both rear wheels. The comparison of the settling time allows for indicating
efficiency of the control system. The oscillation time could be reduced up to 82%
by using one front and rear wheels and 40% using only front wheels. It should be
noted that it is extremely important to select the right braking forces and the length
of a single braking cycle, which is the subject of further research. Too high value
of torque or time causes an increase in fuel consumption and the wear of friction
elements of brakes. In a critical situation it is possible to induce oscillations instead
of suppressing them.
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An Experimental Observation
of the Spatial Motions of Strings
in Resonance Points Under the Planar
Excitation

Sungyeup Kim, Hiroshi Yabuno, and Kohei Mitaka

Abstract In general, strings are resonated when the excitation frequency is in the
neighborhood of natural frequency by planar excitation. It is a primary resonant
phenomenon. And they are also resonated by three times frequency of the natural
one under the external excitation. This phenomenon is called super-harmonic
resonance. In this study, we consider the case when the lower end of a string
is excited periodically by shaker in a direction which is perpendicular to the
longitudinal one and the other upper end is fixed. Then, we show experimentally
nonlinear phenomena in strings by frequency response curves. As a result, we found
out that spatial motion can occur by super-harmonic resonance. Finally, we observe
the occurrence of the out of plane or spatial motions through the experiments. These
phenomena are caused by the coupling effect of the stiffness due to the characteristic
of the geometrical cubic nonlinear restoring force in strings.

Keywords String · Out-of-plane motion · Nonlinear stiffness

1 Introduction

There are many particular oscillations such as nonlinear vibrations which include
nonplanar motion and super-harmonic resonance, in recent. Most of the mechanical
systems we use for construction field are able to regard as continuous systems.
Among them, strings are very interested in the engineering fields and the most
fundamental isotropic elements of the continuous systems, as well. It is well-known
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that the nonplanar motion in strings is produced in previous studies [1–3]. This
nonlinear phenomenon is caused by the coupling effect of the stiffness due to the
characteristic of the geometrical cubic nonlinear restoring force in strings. The
stability of the motion with respect to the nonlinear phenomenon in the strings was
investigated [4]. Analizing the nonlinear dynamical characteristics of the continuous
systems including strings, beams and plates is very important problem to design the
mechanical systems and control the motion with respect to the infinite degrees of
freedom. In this study, we consider the nonplanar motion caused by nonlinearity
of the strings and also super-harmonic resonance [5] by showing the frequency
response curves through the experiments.

2 Analytical Model and Equations of Motion

2.1 Analytical Model for the Nonplanar Motion

We introduce the analytical model for the nonplanar motion in the string as shown
in Fig. 1.

where ρ is the density of the string, A is a area of cross-section of the string, l

is a natural total length of the string, and N0 is an initial tension of the string. We
introduce the x − y − z coordinate system with respect to the time for this study.

Fig. 1 Analytical model of
the string related to the
equations of motion for the
nonplanar motion
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Fixed upper end O is the origin of this coordinate system. And the other lower fixed
end is excited periodically and harmonically. The stiffness of the string is followed
the Hook’s law. We consider the characteristic of the geometrical cubic nonlinear
restoring force under the harmonic external excitation of the string.

2.2 Nonlinear Equations of Motion for the Nonplanar Motion

The nonlinear equations of motion for the nonplanar motion was analized in a
preceding study [6] as follows:

∂2ξ

∂t2 + 2μ
∂ξ

∂t
− c2 ∂2ξ

∂z2 = 0, (1)

∂2η

∂t2
+ 2μ

∂η

∂t
− c2 ∂2η

∂z2
= 0, (2)

where μ is a damping ratio of the system, ξ is a displacement of the excitation
direction in the string, η is a displacement of orthogonal direction in the string. c2 is
a nonlinear coefficient and expressed as follows:

c2 = 1 + β

2

∫ 1

0

{(∂ξ

∂z

)2

+
(

∂η

∂z

)2}
dz, (3)

where β is a constant and expressed as follows:

β = EA/N0, (4)

where E is a Young’s modulus of the material property. A and N0 are area of cross-
section and density of the string. The boundary conditions of the system are as
follows:

{
ξ(0, t) = 0, ξ(1, t) = δx cos νt,

η(0, t) = 0, η(1, t) = 0,
(5)

where δx and ν are the excitation amplitude and frequency, respectively. In this
study, we consider the case when the lower end of the string is periodically excited
by external shaker in a direction which is perpendicular to the longitudinal one and
the other upper end is fixed. It is well-known that the nonplanar motion occurs
around the natural frequency of the string due to the nonlinearity of the equations
including the coupling effect terms.
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3 Experiments

3.1 Experimental Apparatus

We carried out the experiments with a simple apparatus as shown in Fig. 2. The
diameter of the string is 0.54 × 10−3 m and the total length of the string is 1.45 m.
The string is made by stainless steel wire. We use two laser displacement sensors for
excitation and orthogonal directions to measure the displacement each direction of
the string as shown in Fig. 3, and the load cell for the tension variation of the string.
The initial tension of the string is 12.5 N. Parameters of the experimental apparatus
are shown in Table 1. The natural frequency of the string we use in this study was
obtained by free vibration.

Fig. 2 String externally
excited at the lower fixed end
by shaker
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Fig. 3 Enlarged view of the
measuring point in the string
by laser displacement sensors

Table 1 Parameters of the
experimental apparatus

Parameter Value

First natural frequency of string, ω/2π 39.4 Hz

Amplitude of excitation, δx 0.05 × 10−3 m

Length of string, l 1.45 m

Initial tension of string, N0 12.5 N

Nonlinear coefficient, β 3.61 × 103

Area of cross-section of string, A 2.29 × 10−7 m2

Young’s modulus of string, E 1.97 × 1011 N/m2

Density of string, ρ 5.24 × 103 kg/m3

3.2 Experimental Results

We conducted the three types of experiments with respect to the nonlinear phe-
nomena in the string. We invesitigated the characteristic of the frequency response
curves by using a F.F.T. analizer. At first, we carried out the experiments when the
excitation frequency is twice of the natural frequency. The result of the experiment
is shown as in Fig. 4. In this figure, the horizontal axis and vertical axis denote
the detuned excitation frequency and response amplitude, respectively. And the
circle plot and rectangular one mean the vibration of the excitation direction and
orthogonal one, respectively. Detuned excitation frequency 0 express the natural
frequency of the first mode in the string. We observed the vibration with respect to
the out-of-plane motion in the neighborhood of the natural frequency. And we also
observed the jumping phenomenon. Figure 5 is the result of the experiment when
the excitation frequency is three times of the natural frequency. These phenomena
are caused by nonlinear coupling effect of the equations of motion in the string. We
can also observed the out-of-plane motion which occur near the twice of the natural
frequency through the experiment. Finally, we carried out the experiments when the
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Fig. 4 Experimental frequency response curves when the excitation frequency is twice of the
natural frequency: circle plot and rectangular one mean in-plane motion and out-of-plane one,
respectively. And horizontal axis and vertical axis denote the detuned excitation frequency and
response amplitude, respectively
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Fig. 5 Experimental frequency response curves when the excitation frequency is three times of
the natural frequency: circle plot and rectangular one mean in-plane motion and out-of-plane one,
respectively. And horizontal axis and vertical axis denote the detuned excitation frequency and
response amplitude, respectively

excitation frequency is one third of the natural frequency. In this case, the frequency
response curve is as shown in Fig. 6. The response amplitude which is the vertical
axis express the amplitude subjected to natural frequency of the first mode. As a
results, we can observed the nonplanar motion in three cases.
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Fig. 6 Experimental frequency response curves when the excitation frequency is one third of the
natural frequency: circle plot and rectangular one mean in-plane motion and out-of-plane one,
respectively. And horizontal axis and vertical axis denote the detuned excitation frequency and
response amplitude, respectively

4 Conclusions

In this study, we showed the nonlinear phenomenon through the experiments and
the frequency response curves by using a F.F.T. analyzer. We observed the nonplanar
motion around the primary resonant region experimentally. And we also observed
the occurrence of the super-harmonic resonance when the excitation frequency is
three times of the natural one by doing experiments.
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A Hydraulic Delta-Robot-Based Test
Bench for Validation of Smart Products

Renan Siqueira, Osman Altun, Paul Gembarski, and Roland Lachmayer

Abstract With the development of new technologies, such as smart components,
additive manufacturing or multi-materials, product performance tests play a decisive
role on supporting effective design and product reliability. However, test machines
are mostly designed to attend norms and perform standard tests, which requires
a need for development of new machines when dealing with new cutting-edge
technologies or reliability of a specific product. Therefore, these test benches must
be designed to be flexible and robust, in order to attend the highest number of
possibilities for a certain kind of test and a range of different components. With this
intent, an innovative test bench for high loads was designed and constructed based
on a delta-robot configuration. This configuration, which is commonly applied for
high speed kinematic systems, was adapted to apply high transverse loads in three
axis while keeping a considerably large range of movement. Thereunto, dynamic
simulations were conducted considering a hydraulic actuation and the robust control
approach of Sliding Mode Control (SMC), which delivered satisfactory results.
Finally, after mechanical design, construction and calibration, first tests were
performed for a self-sensing suspension arm, where the load prediction ability of
the component can be analyzed and the ability of the developed system to test
complicated components under multi-axial load was evaluated.

Keywords Delta-robot · Test-bench · Sliding mode control

1 Introduction

New technologies, such as smart components, additive manufacturing or multi-
materials, require product performance tests in its development phase, being a
crucial step to guarantee product reliability. When dealing with new cutting-edge
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technologies, specific performance tests must be executed in structural components,
such as dynamic loads, random loads, or even different load cases. Standard test
machines are mostly designed to attend norms and perform standard tests, which are
not suitable for those cases. Therefore, a test bench must be always newly designed
to attend these needs. Ideally, the test bench should be flexible and robust, being
able to execute the highest number of possibilities and configurations for a certain
kind of test and for a range of different components.

This document presents the design process for the construction of a dynamic
hydraulic test bench. The motivation for constructing this equipment is originally
in the context of a collaborative research center (SFB 1153) [10], where Tailored
Forming multi-material demonstrator components must be tested, as foreseen in the
method presented in [9]. However, to allow possibilities of future research, the idea
of this test bench was amplified, so that it can test a bigger variety of mechanical
components, such as additive manufacturing parts and smart components to be
implemented in vehicles [5].

For this reason, a more robust and generic test bench for dynamic loads must
be developed, to allow testing under different circumstances. With that in mind, a
multi-axial and hydraulic equipment was proposed. This document will describe the
whole design process, witch was based on the methodology present in the VDI 2221
[12]. Therefore, it includes: understanding the requirements and concept creation;
dynamics analysis of the multi-physics system through simulations; dimensioning
and construction of the parts; implementation and testing.

2 Concept

For the concept design creation of this test bench, few alternatives were discussed,
with the objective of selecting the best system. The challenge of this project was
the generalization of the test bench, since it should not be constructed for a specific
use case. With that in mind, the equipment should in future be able to test the large
amount of different components, as well as the use of different configurations. That
resulted in a very reduced requirements list.

Some of the defined requirements were: ability of applying static and dynamic
loads; perform multi-axial force application; capability of testing components as
big as vehicle parts; execution of long duration fatigue tests, with the possibility of
low frequency vibration tests. These requirements were listed and quantified, and it
was pre-determined that a hydraulic system should be implemented to achieve high
forces.

There is a great variety of ways that the force of hydraulic cylinders can be
arranged in order to obtain different degrees of freedom. However, after evaluating
different configurations, a proposal was made based on the delta-robot concept. This
is a parallel robot with a three translational degree of freedom system, projected for
high speed robots, mostly used in low load applications [7] (Fig. 1a). Due to the use
of parallel arms, the complexity of the system’s control is decreased. The advantage
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Fig. 1 (a) Delta-robot [13]; (b) Sketch of the final concept for the test bench

of this concept is also that the safety of the cylinders would be guaranteed, with no
transverse force reaching the hub. However, it does not give much space for different
configurations and it involves a high number of different components.

As seen in Fig. 1b, a concept that joins both of the proposed ideas was developed,
in a way that the cylinders remain safe, a customizable arrangement is possible
and a more simplistic construction can be performed. The final sketch shows the
system composed of three independent sub-systems, called here Towers. Same as
the delta-robot, the arms are connected in the centre, by an actuator, allowing three
translational degrees-of-freedom.

3 System Simulations and Analysis

The second phase in the design of the test bench is the simulation of the dynamical
behaviour for the proposed concept. The following steps will be described in
this section: parametrization of the system, kinematics and inverse kinematics,
hydraulics, rigid body dynamics and control. During the whole process, it was used
computer supporting softwares. For the functions creation and modelling it was
used Mathworks Matlab [4], including Simulink and one of it’s toolboxes called
Simscape. For the CAD drawing, it was used Autodesk Inventor [3].

3.1 Parametrization

In this section, all the important parameters are listed, where some of them were
fixed by requirements, some were predicted, and some were found as function of
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Fig. 2 (a) Upper view of the test bench; (b) Squematics for one of the three T owers

Table 1 Parameters specification

Par. Value Decision method

x 0 (initial) Free controllable variable

a 150 mm Chosen to provide space for the cylinder to move

b 395 mm Set an angle of 90◦ between Cylinder and Rocker

c 150 mm Chosen according to range/force requirements

d 145 mm The smallest possible that can provide enough space

e 410 mm Calculated to equalize force at different directions

L 1000 mm Chosen to provide enough space for the components

α 116◦ Calculated to have 90◦ between the Arm and Rocker

the others. Figure 2 shows the first sketch with the main paramentes, joints and
components.

The points 1, 2, 3, 4 are coincident with the revolute joints. The point M is the
center of the Actuator , where the resultant force is performed over the sample
and where all other T owers are equally connected. The configuration of the three
towers is made on an equilateral triangle, with L being the distance between the joint
2 of each T ower . Naturally, the parameters were chosen in an iterative process and
Table 1 shows their final values and on what the decision was based.

3.2 Kinematics and Inverse Dynamics

Although the delta-robot configuration is a closed chain mechanism, its kinematics
can be found through the intersection of the domain of each of the three Arms.
Therefore, it was used here Generalized Coordinates instead of cartesian coordi-
nates [1]. Thus, we choose the variables that we will control as our Generalized
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Coordinates, that in our case is the vector x containing the displacement of each of
the three cylinders. Based on that, the result will be the position of the Actuator ,
described with Cartesian coordinates.

The first step to be executed is a translation of the whole systems towards its
center in a distance equivalent to d. The objective of this is to eliminate the space
occupied by the actuator and place the origin O in the center, at joint 4 and in
the same plane of the joint 2. This step eases the calculation of the kinematics, as
described in detail in [6]. With the angle γ formed by the joints O − 2 − 3 written
as a function of x, we can write the position of point 3 as:

p3(x) = p2 + [0 c cos(γ (x)) c sin(γ (x))]T (1)

Now, it is needed to write the same position of the point 3 for the other T owers.
For that purpose, a rotation transform Ω around z-axis in the angles 0◦, 120◦ and
240◦ must be respectively applied Eq. (2).

p31 = Ω(0◦)·p3(x1), p32 = Ω(120◦)·p3(x2), p33 = Ω(240◦)·p3(x3) (2)

After this description, the position of the point M in the center of the actuator can
be found by the intersection of three spheres that have their centers in each point 3 of
the T owers and a radius equivalent to the length e of the Arm. For that, the values
must be substituted in the equation of a sphere:

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = e2 (3)

Where x, y and z are the coordinates of the Actuator; r is the radius that will
be equal to e; and x0, y0 and z0 represent the coordinates of the center of the
spheres, which will be replaced by each vector p3 at a time, forming a system of
3 equations. The intersection will happen at two different points, one upper and
another lower, which gives a kinematic redundancy where the upper solution must
be eliminated. With this function constructed, the positioning space of the test bench
is fully defined.

For the use in a force control, where the force applied can be fully controlled,
an inverse dynamic model must be also created. Differently from last section, here
we want to know how much force the cylinders must make to achieve a certain
resultant at the Actuator . Thereunto, a quasi-static model was constructed and
simulated. The forces depend on the sample being tested and, for the simulations,
the stiffness of this sample was approximated by a spring. Since the direction of
the force actuation of each T ower will be the same of the Arm, the following
normalized vector pFi that describes the direction of the Arm can be written to
represent the direction of the forces:
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pFi =
[ (pM − p3i)

‖pM − p3i‖
]
; i = 1..3 (4)

A subspace Δ can be written with these three normalized vectors as its columns:

Δ = [pF1, pF2, pF3] (5)

Than, a vector that describes the forces transmitted by the Rocker FT as a
function of the intensity of the force of the cylinder FC is written. This force will be
always perpendicular to the Rocker and can be written as:

FTi = Ω(εi) · a cos(θi)

c

⎡

⎣
0

cos(90◦ − γi)

sin(90◦ − γi)

⎤

⎦FCi; i = 1..3 (6)

Where θ is the very small angle of inclination between cylinder and Rocker

(<1.5◦) and can be here neglected. Next, the force transmitted by the Rocker to
the Arm, entitled FArm, is written. This vector contains the intensity of the force
of the three Arms, and can be calculated as the projection of the force FT over the
directional vector pF , as shown in Eq. (7).

FArm = [< FT 1, pF1 >, < FT 2, pF2 >, < FT 3, pF3 >]T (7)

Finally, the resultant force FR can be calculated by a liner system, in relation to
the forces applied by the Arms, if the position is known:

FR = Δ · FArm (8)

With these equations, it is possible to find the required forces at the cylinders to
apply a resultant force in any direction at the actuator.

3.3 Hydraulics

For the modelling of the hydraulic system, the software Simulink with the toolbox
Simscape Hydraulics was used, as seen in Fig. 3.

The blocks give the possibility to implemented the exact real valve signal-
flow behavior, as well as fluid and cylinder characteristics. The block entitled
Proportional and Servo-Valve Actuator was equally calibrated, so that the same
frequency response of the valve was achieved.
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Fig. 3 Simscape hydraulics model

Fig. 4 Export-import process from Inventor to Simscape

3.4 Rigid-body Dynamics

The mechanical dynamics model was also constructed using the Simscape module,
with the multi-body blocks. The advantages of this method is the very quick
modeling, with a very clear visualization of the whole system. Despite that, it can
also have interface with the other versions of Symscape, as well as the hydraulics
one introduced before.

The objective now is to describe the test bench behavior, where the dynamics
and kinematics of the cylinders are given as input and it is obtained the resultant
dynamics and kinematics as the output. For the construction of the model, however,
a method for the construction of the block diagram was performed using a module
called Simscape Multibody Link. These module can be installed in some CAD
platforms (such as Autodesk Inventor) and perform a data transfer between them
through Matlab (Fig. 4).



64 R. Siqueira et al.

Fig. 5 Sub-system that composes the Arm block model in Simscape

The XML file exported from an Inventor’s assembly is transcribed to a m-file
containing all the design parameters, such as: geometry, mass, joints and coordinate
systems relationships. For a successful export, the relationships created at the
assembly in Inventor must be compatible with Simscape. Then, in the second stage,
Matlab imports these files and create a Simscape block automatically. With this
procedure, the whole model description that must be implemented in Simscape is
performed in few clicks.

Thus, a CAD parametric model was constructed in Inventor using the core
parameters of Sect. 3.1. At this moment, the other dimensions of the structure
are estimated, since the mass and inertia of the system will have influence in the
dynamic model. After the construction of the basic CAD model, the data transfer
process is executed and a Simscape model was successfully generated by the
toolbox. Figure 5 shows one of the subsystems created, for the Arms and its joints.

The resultant force of the hydraulic model presented in Fig. 3 is than connected
to a prismatic joint in order to generate the forces of the cylinders. As a final result,
a system with the following ports is created:

– Input: Signal for the valves in the hydraulic system.
– Output: Position and forces at the Actuator .

It is important to mention, that here, despite the assumption that the whole model
is rigid, all the joints are set as ideal.

3.5 Sliding Mode Control

For this test bench, two types of control can be implemented: force or position
control. In the first one, a chosen resultant force is desired at the Actuator and a
certain differential pressure needed at each cylinder must be achieved. In the second,
a path must be followed, where the displacement of the cylinders must be controlled.
Since the main purpose of this test bench is for load application, only a force control
will be developed, where a force sensor is positioned between the actuator and the
component to be tested.
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For that, Sliding Mode Control (SMC) was used, which is a control method with
robust performance. By robust it is understood that this control is more independent
from system’s parameters and can provide good results even when uncertainties in
modelling are present [11]. This theory was originally designed as a variation of
the binary on/off type of control. In an on/off control, the signal assumes only two
values, according to the signal of the error. In the standard SMC, the derivative of
the error is also taken into account, as shown below:

s(t) = Ks · sign(σ )σ = λe + ė (9)

where Ks and λ are parameters of control. The equation σ creates a straight line at
the state space, where the signal assumes a positive or a negative value at each side
of this line. Thus, the state of the system tends to approximate to this line and slide
over it, which is the behavior that gave origin to the name of this method. This forces
the non-linear dynamics of the system to behave in a simpler way. The stability and
robustness of the control can be proved when λ > 0 [11].

However, with the presence of a proportional valve, an on/off control cannot
work fast enough. Furthermore, the constant switch creates a undesirable vibration
in the system. For that reason, it is introduced an improvement of SMC with
a continuous function used instead of the signal one, which smooths the signal
response when it gets close to zero. This can be implemented by the use of a
hyperbolic tangent, as shown below [8]:

s(t) = Ks · tanh(ktσ ) (10)

This model introduces a new control parameter kt , which is related to how
smooth the function is. High values of kt is equivalent to a signal function. The
calibration of the parameters is made using a step function. First it is attributed a
very high value for kt and λ, to approximate it to a simple on/off controller. The
value of Ks is set to be the maximal value desired for the valve overture. This value
may be calibrated according to the pressure used and here was set as 5% of the
maximum command signal, where the command-pressure behaviour of the valve is
still linear. Next, the parameter λ is decreased until a critical damping is achieved
and kt is decreased until the chattering behavior of the signal diminishes.

After the calibration of the parameters, the response for a desired force function
was simulated. The force at the sample is FR = [300 sin(πt), 400 cos(πt), 0]T ,
describing a circle in the xy plane with 0.5 Hz frequency. The difference between
the desired force and the real force measured is converted to cylinder forces, as seen
in Sect. 3.2, where the force is really controlled. The results are presented in Fig. 6.

As a last step, the Linear Analysis Tool provided by Matlab was executed, to
check the frequency response of the whole system (Fig. 7). Although this tool is just
for an approximation and the values presented might not be accurate, it can serve
as future reference. In a real application, this response will be dependent on the
component to be tested.
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4 Construction and Implementation

The construction of the test bench was made in the Institute for Product Devel-
opment of the Leibniz University Hannover. For that, a series of structural finite
element simulations were also executed in order to guarantee the stiffness of the
system. For some components of the structure, design alternatives were searched
through template-based modeling [2]. After the conclusion of the design and
construction, the signal acquisition, processing, control and user-interface were
implemented through the software Labview. Figure 8 shows the constructed test
bench, named SAMBA, with a suspension arm as component to be tested, as well as
the real actuation forces being controlled.

In this test it is evaluated the capability of using strain gauges in the suspension
arm in order to predict the forces being applied, which will characterize it as a
smart component. For the first tests, forces in different directions were applied and
controlled, while the signal of the strain gauges were recorded.
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Fig. 8 (a) The constructed SAMBA test bench with a suspention arm as specimen; (b) Measured
controlled force applied with 0.1 Hz

5 Conclusions

In this work a methodology for the development of a dynamic test bench was
presented. The use of a delta-robot configuration for this kind of test bench
was firstly introduced, which is a system not commonly seen. Through detailed
parameter analysis, kinematic simulations and system modeling, the design of the
machine was successfully performed. The computer-aided system showed to be a
powerful tool to model the real system behavior in this process, generating detailed
analysis in a relatively short time. Furthermore, the SMC was also suitable for use,
since some parameters of the hydraulic system could not be well predicted in the
computational model and some robustness in the control was needed.

The construction of the test bench SAMBA was also successfully executed.
The control through Labview, however, is not fast enough in cases where a high
frequency force must be implemented. This is due to the fact that no real-time
controller was used and, although the mechanical system is much slower than
the electrical one, the computational loop passing though the computer is not fast
enough. Therefore, future implementation will require a real-time control system
for high frequencies analysis. However, a great potential is seen for future tests with
SAMBA for a variety of smart and multi-material components.
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Towards Online Transient Simulation
of a Real Heat Pump

Mariusz Zamojski, Paul Sumerauer, Christoph Bacher, and Fadi Dohnal

Abstract Efficiency and flexibility are key aspects of modern heat pumps for
the household. A nonlinear model of the refrigeration cycle is developed in the
framework of Matlab/Simulink. This allows for simulation and control design of
multiphase fluid dynamics of an existing heat pump. The complexity of the model
is balanced against the calculation speed since the ultimate aim is to embed the
model-predictive capability in existing products. A finite difference model of the
evaporator and the condenser is tuned and benchmarked against real measurements
at stationary operation. This capability is the basis for transient startup and shutdown
dynamics which enables robust model-predictive control design.

Keywords Refrigeration cycle · FCV · Heat pump

1 Introduction

The future of our society is strongly related to energy consumption and climate
protection is playing an increasingly important role in our lives. The reduction
of energy consumption, the development of renewable energy and the better use
of existing ones are constantly being driven forward. A significant part of the
energy consumption can be assigned to the heating of buildings, especially private
households in which increasingly a heat pump is used. Due to climate change
towards warmer temperatures and the fact that a modern heat pump can also be
used for cooling in summer, the purchasing tendency of a heat pump is steadily
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increasing. According to the Austrian study [1] there were about 20,000 installed
devices in 2004. In 2015 there were already 240,000 pumps. The forecast for 2030
is up to 600,000–900,000 units. Thus, the total energy consumption by heat pumps
will increase significantly (relocation and new consumption). In order to maximize
the efficiency of consumption, around 2.5 million EUR are already being invested
by public authorities in research in Austria every year.

A heat pump is a thermal machine that exploits the Carnot cycle. As a working
medium, refrigerants with special thermodynamic and chemical properties are used.
The cycle can be divided into four sections, which are processed cyclically (see
Figure 1) and Figure 2 shows the circular process in LogPH diagram:

– Evaporation:
At a constant, low temperature and pressure level, heat is added to the refrigerant
from the heat source and the refrigerant evaporates.

Fig. 1 Schematic representation of the heat pump. The refrigerant inside the heat pump exchanges
heat between the heat source and the heat sink

Enthalphy
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Evaporation
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Fig. 2 Pressure and Enthalpy diagram of the heat pump
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– Compression:
By supplying energy from the outside, the refrigerant is compressed to a
higher pressure level. Due to the Joule-Thomson effect, the temperature of the
refrigerant gas rises.

– Condensation:
At a high temperature and pressure level, the refrigerant transfers the heat to the
heat sink, cools down and condenses into a liquid.

– Relaxation:
The refrigerant is expanded in a valve to outlet pressure and evaporated. Now
the Joule-Thomson effect leads to drop in the temperature of the gas back to the
initial level.

For compression heat pumps, care must be taken to compress only superheated
gaseous refrigerant to ensure permanent lubrication of the bearings and sliding
surfaces of the compressor. Overheating is controlled by the electronic expansion
valve, a stepper motor controlled injection valve located in front of the evaporator,
and determines the amount of refrigerant to be evaporated. In addition, the heating or
cooling capacity of the heat pump must be adapted to the prevailing environmental
conditions and the changing needs of the user. This is done in modern heat pumps
via a variable speed compressor.

The focus of the present contribution lies on the modelling of the components
involved in the heat exchange of a heat pump.

2 Heat Exchanger Modeling

To meet the ever-increasing demand for modeling accuracy and product efficiency,
the models of large-scale nonlinear system are of computational complexity, high-
order, and complex nonlinearities. The modelling complexity is a challenging task
in which the balance between complexity and accuracy must be considered. Two
heat exchanger modeling approaches are commonly used: finite-volume distributed-
parameter and moving-boundary lumped parameter methods [2]. In this contribution
we present the development, simulation, and first experimental validation of a first
principles modelling framework that captures the dynamics of the heat exchange
components of an industrial heat pump based on [3]. Because of high nonlinear
nature of refrigerant the simulation of heat exchanges is time consuming. The
following assumptions are made for a compromise between accuracy and simpli-
fication:

1. The refrigerant flows through a long, thin, circular, and uniform horizontal tube.
2. The refrigerant flows only in the longitudinal direction.
3. Axial heat conduction in the refrigerant is negligible.
4. Momentum change and viscous friction in the refrigerant are negligible.
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Table 1 Notation for governing partial differential equations

Variable Description

ρ Refrigerant density

Acs Tube inner cross-sectional area

ṁ Refrigerant mass flow rate

h Refrigerant enthalpy

P Refrigerant pressure

αi Heat transfer coefficient between refrigerant and tube wall

αo Heat transfer coefficient between tube wall and secondary fluid

pi Inner surface area per unit length

po Outer surface area per unit length

Tr Refrigerant temperature

Tw Tube wall temperature

Ta Secondary fluid temperature

(CpρA)w Tube wall thermal capacitance per unit length

Applying the above assumptions to laws of fluid dynamics and thermodynamics,
mass and energy conservation equations for the refrigerant Eqs. (1a)–(1d) and tube
wall energy conservation Eq. (1e) can be written as:

∂ρ

∂t
+ ∇ · (ρ �u) = 0 (1a)

∂(ρAcs)

∂t
+ ∂(ṁ)

∂z
= 0 (1b)

∂(ρ �u)

∂t
+ ∇ · (ρ �u�u) = ρ �f + ∇ · σ (1c)

∂(ρAcsh − Acsh)

∂t
+ ∂(ṁh)

∂z
= piαi(Tw − Tr) (1d)

(CpρA)w
∂(Tw)

∂t
= piαi(Tr − Tw) + poαo(Ta − Tw) (1e)

The notation herein is listed in Table 1.
The model is written in the framework of Matlab/Simulink� and requires

ordinary differential equations (ODE) containing the time derivatives of the states.
Using the previously mentioned assumptions, as well as Leibniz integral rule Eq. (2)
according to [4]
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z2(t)∫

z1(t)

∂f (z, t)

∂t
dz = d

dz

⎡

⎢
⎣

z2(t)∫

z1(t)

f (z, t)dz

⎤

⎥
⎦−f (z2(t), t)

d(z2(t))

dt
+f (z1(t), t)

d(z1(t))

dt

(2)

for removing the derivative with respect to length, it is possible to transform the
partial differential equations (PDE) Eqs. (1b), (1d), and (1e)) into more efficiently
solvable ordinary differential equations (ODE). In this article we will only show the
derivation for refrigerant mass conservation. The full derivation for all conservation
equations can be found in [3].

2.1 Example Derivation for one Control Volume

To derive ODEs for refrigerant mass conservation, we have to integrate the Eq. (1b)
with integration limits from z = 0 to z = Lcv for every term. Assuming the cross-
sectional area of the tube as constant yields the Eq. (3a). By applying the Leibniz
rule, we can write the result in Eq. (3b). Assuming the density in CV as an average
and performing the integration results in Eq. (3c). Taking the time derivative results
in Eq. (3d). Density derivative depends on Pressure and Enthalpy, by taking this into
account gives Eq. (3e). Integrating the second term of the conservation PDE yields
Eq. (3f). Combining both terms integration and reorganizing results in Eq. (4).

Lcv∫

0

∂(ρAcs)

∂t
dz = Acs,i

⎡

⎣
Lcv∫

0

∂(ρi)

∂t
dz

⎤

⎦ (3a)

Lcv∫

0

∂(ρAcs)

∂t
dz = Acs,i

⎡

⎣ d

dt

Lcv∫

0

ρidz

⎤

⎦ (3b)

Lcv∫

0

∂(ρAcs)

∂t
dz = Acs,i

[
d

dt
(ρiLcv)

]
(3c)

Lcv∫

0

∂(ρAcs)

∂t
dz = Acs,iLcv [ρ̇i] (3d)

Lcv∫

0

∂(ρAcs)

∂t
dz = Acs,iLcv

[(
∂ρ

∂P

∣
∣∣∣
h

)

i

ḣi +
(

∂ρ

∂h

∣
∣∣∣
P

)

i

Ṗ

]
(3e)
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Lcv∫

0

∂(ṁ)

∂z
dz = ṁout − ṁin (3f)

[(
∂ρ

∂P

∣∣
∣∣
h

)

i

Acs,iLcv

]
ḣi +

[(
∂ρ

∂h

∣∣
∣∣
P

)

i

Acs,iLcv

]
Ṗ + ṁout − ṁin = 0 (4)

Integrated equations for refrigerant energy conservation and Wall energy conser-
vation can be written as in Eqs. (5) and (6)

[(
∂ρhx

∂Phx

∣∣∣∣
hhx

)

hhx − 1

]

Acs,iLcvṖhx +
[(

∂ρ

∂h

∣∣∣∣
P

)
hi + ρi

]
Acs,iLcvḣi

+ ṁout ḣout − ṁinḣin = αiAi(Tw − Tr)

(5)

(CpρVcv)w
∂(Tw)

∂t
= αiAi(Tr − Tw) + αoAo(Ta − Tw) (6)

The ODEs can be combined in matrix form as follows

⎛

⎜⎜⎜
⎝

(
∂ρ
∂P

∣∣∣
h

)

i
Acs,iLcv

(
∂ρ
∂h

∣∣∣
P

)

i
Acs,iLcv 0

[(
∂ρhx

∂Phx

∣∣∣
hhx

)
hhx − 1

]
Acs,iLcv

[(
∂ρ
∂h

∣∣∣
P

)
hi + ρi

]
Acs,iLcv 0

0 0 (CpρV )w,i

⎞

⎟⎟⎟
⎠

⎛

⎜
⎝

Ṗ

ḣi

Tw,i

⎞

⎟
⎠

=
⎛

⎜
⎝

ṁin − ṁout

ṁinḣin − ṁout ḣout + αiAi(Tw,i − Tr,i)

αiAi(Tr − Tw) + αoAo(Ta − Tw)

⎞

⎟
⎠

(7)

2.2 Derivation for Three CV

The formulation for one CV, as shown in Fig. 3, can be extended easily to an
arbitrary number of connected volumes [5]. To make it the intermediate mass
flow rates between volumes have to be made a part of the state vector. Equations
for refrigerant mass (4) and energy (5) conservation need to be solved together.
Equation for wall tube energy (6) can be solved independent. Denoting AcsLcv as
Vcv , combined conservation equation of refrigerant mass and energy in matrix form
for three control volumes can be expressed as
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Fig. 3 Heat exchanger discretized with three control volumes

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

(
∂ρ
∂P

∣∣
∣
h

)

1
Vcv 1 0

(
∂ρ
∂P

∣∣∣
h

)

2
Vcv I3x3 ×

(
∂ρ
∂h

∣∣∣
P

)

i
Vcv −1 1

(
∂ρ
∂P

∣∣∣
h

)

3
Vcv 0 −1

[(
∂ρ
∂P

∣∣∣
h

)

1
h1 − 1

]
Vcv h1,2 0

[(
∂ρ
∂P

∣∣∣
h

)

2
h2 − 1

]
Vcv I3x3 ×

[(
∂ρ
∂h

∣∣∣
P

)
hi + ρi

]

i
Vcv −h1,2 h2,3

[(
∂ρ
∂P

∣∣∣
h

)

3
h3 − 1

]
Vcv 0 −h2,3

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

Ṗ

ḣ1

ḣ2

ḣ3

ṁ1,2

ṁ2,3

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

ṁin

0
−ṁout

ṁinḣin + α1Acv(Tw,1 − Tr,1)

α2Acv(Tw,2 − Tr,2)

−ṁout ḣout + α3Acv(Tw,3 − Tr,3)

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

(8)
Conservation equation of tube wall energy in matrix form for three CV

(CpρV )w,cv

⎛

⎝
Ṫw,1

Ṫw,2

Ṫw,3

⎞

⎠ =
⎛

⎝
αr,1Acv,r (Tr,1 − Tw,1) + αa,1Acv,a(Ta,1 − Tw,1)

αr,2Acv,r (Tr,2 − Tw,2) + αa,2Acv,a(Ta,2 − Tw,2)

αr,3Acv,r (Tr,3 − Tw,3) + αa,3Acv,a(Ta,3 − Tw,3)

⎞

⎠

(9)

For above equations an unique solution exists if appropriate initial conditions and
boundary conditions are Specified. Unknown are the independent state variables Ṗ ,

ḣ, ṁ and Ṫw. Another set of unknown variables are Tr , ∂ρ
∂P

∣
∣∣
h

and ∂ρ
∂h

∣
∣∣
P

. Those can
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be determined based on refrigerant thermodynamic properties. All other variables
have been acquired from the real heat pump.

3 Simulation Results for Condenser

The simulation results have been compared with measurement of an real heat
pump, model iPump-A, from IDM Energiesysteme GmbH showed on Fig. 4. It is
an domestic heat pump with 3–11 kW heat capacity. In this article we validate the
stationary operation conditions of the condenser that is installed in series product.
The condenser is an standard plate heat exchanger. We have measured and calculated
refrigerant output temperature and water output temperature for five working points
with different mass flow and condensing temperature.

The benchmark between simulation and experiment is shown in Figs. 5 and 6.
As can be seen the measured and calculated temperatures match very well. The
measured water output temperatures are marginally above the calculated for all
five working points. The refrigerant output temperatures are marginally below the
calculated once. The outlier at working point 3 corresponds to extreme working
operation of the heat pump with very low mass flow. Similar results are expected for
the evaporator. This validation process is currently ongoing.

4 Conclusions

We developed a robust universal heat exchanger model capable in simulation and
control design of multi phase fluid dynamics of an existing heat pump. A finite

Fig. 4 Heat pump model
iPump-A (3-11), inner and
outer unit
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Fig. 5 Water output Temperature
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Fig. 6 Refrigerant output Temperature

difference model of the the condenser is tuned and bench marked against real
measurements at stationary operation. The results demonstrate that the model is
capable of predicting heat exchanger dynamics for condenser at normal operation
level. Future work is needed to tune and benchmark the model to simulate the
evaporator behavior. Also the capability to simulate the heat exchanger under
extreme conditions need to be investigated.
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Mathematical Approach to Assess
a Human Gait

Wiktoria Wojnicz , Bartłomiej Zagrodny , Michał Ludwicki ,
and Jan Awrejcewicz

Abstract A purpose of the paper was to create a mathematical approach to assess
a human gait. The scope of the study was to model a normal gait in the sagittal
plane and frontal plane of the body. Applying the Newton-Euler formulation, three
multibody biomechanical models were derived to describe single support phase and
double support phase of the gait. To model a gait in the sagittal plane the open-
close sagittal 6DOF model and the open-close sagittal 7DOF model can be used. To
model a gait in the frontal plane the open-close frontal 7DOF model can be applied.
Presented multibody models can be used to solve a forward dynamic task or an
inverse dynamic task.

Keywords Gait · Modelling · Multibody model

1 Introduction

From the mechanical point of view a human gait is considered as repeated transition
of the body weight from the stable state (double support phase) to the unstable state
(single support phase) [12, 14]. This transition occurs due to the functioning of
posture-stabilizing mechanisms controlled by the human nervous system. During
gait the segments of the body moves in all anatomical planes. Qualifying the
movements in each anatomical plane during a gait, some symmetries with respect to
the anatomical axis can be considered [7]. Based on these observations, the gait is
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divided into two types: normal gait and pathological gait. Time dependent motions
of body segments of normal gait have some symmetry with respect to the opposite
sites of the body. On the other hand, during a pathological gait the movements of
body segments are asymmetrical. From the point of view of mechanics these two
types of gait can be analyzed by formulating different mathematical models. To
assess a normal gait one has to derive planar dynamic models to predict motions in
a sagittal and frontal plane of the body. To qualify a pathological gait one should
formulate spatial dynamic models that can describe asymmetrical movements in
space.

To formulate mathematical models to assess the gait a musculoskeletal system of
the human body is treated as a multibody system with defined numbers of freedom
(DOFs). Due to the fact that in practice during a gait examination one can measure
kinematics of the body segments and the values of external loads (support reactions),
an inverse dynamics approach is used to calculate joint moments (net join moments),
joint intersegmental forces (net joint intersegmental forces) and joint powers (net
joint powers) [14, 15]. This approach also demands to input biomechanical data
of tested subjects: masses of the segments, lengths of the segments, segment radii
of gyration and segment moments of inertia. Moreover, to estimate activity of the
muscles during a gait testing one must to measure EMG signals.

Deriving a model to assess a human gait, one should take in mind that during each
stable state (i.e. double support phase) a multibody system of the body becomes
a closed system and problem of indeterminacy is occurred (i.e. distribution of
supporting loads under each foot).

The aim of this work was to propose a mathematical approach that can be
used to assess a human normal gait by calculating joint moments in the joints
of the lower limbs during a single and double support phase. The scope of this
work involved deriving three planar multibody dynamic models (open-close sagittal
6DOF model, open-close sagittal 7DOF model, open-close frontal 7DOF model)
and their validations.

2 Materials and Methods

To derive planar multibody models a body was treated as a system composed of
six segments (sagittal 6DOF model, see Fig. 1) and seven segments (sagittal 7DOF
model and frontal 7DOF model, see Fig. 2) [9]. In the sagittal 6DOF model and
the sagittal 7DOF model the following segments of the body were considered as a
serially linked ones in the sagittal plane of the body: (1) right foot (from the right
metatarsophalangeal joint to the right ankle joint); (2) right shin shank (from the
right ankle to the right knee joint); (3) right thigh (from the right knee joint to the
hip joint); (4) left thigh (from the hip joint to the left knee joint); (5) left shank
(from the left knee joint to the left ankle joint); (6) left foot (from the left ankle joint
to the left metatarsophalangeal joint). In the sagittal 7DOF model the influence of
the upper part of the body was modelled as a seventh segment connected to the hip
joints. In the sagittal 6DOF model an influence of the upper part of the body (the
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Fig. 1 The sagittal 6DOF model (O – the point between the support foot and the ground (the
metatarsophalangeal joint); A1 – the ankle joint of stance leg; A2 – the knee joint of stance leg;
A3 – the hip joint; A4 – the knee joint of swing leg; A5 – the ankle joint of swing leg; αi – the
angle of the i-th segment (each angle is measured as an absolute coordinate); Gi – the gravity force
of the i-th segment that acts at its center of gravity Ci; Mexti – the external moment loading the
i-th segment; Ry1 – the y-th component of stance leg reaction force (anterior-posterior component);
Rz1 – the z-th component of the stance leg reaction force (vertical component); Fy and Fz – the
y-th and z-th component of reaction force of the swing leg during double supporting phase; y – the
sagittal axis; z – the vertical axis) [11]

pelvis, torso, head, neck and upper limbs) was considered as one concentrated force
applied at the centre of gravity of the upper part of the body and a moment of this
force that both were applied to the hip joint of the stance leg.

In the frontal 7DOF model (Fig. 3) the seventh serially linked segments
were considered in the frontal plane of the body: (1) right foot (from the right
metatarsophalangeal joint to the right ankle joint); (2) right shank (from the right
ankle to the right knee joint); (3) right thigh (from the right knee joint to the right
hip joint); (4) pelvis (from the right hip joint to the left hip joint); (5) left thigh (from
the left hip joint to the left knee joint); (6) left shank (from the left knee joint to the
left ankle joint); (7) left foot (from the left ankle joint to the left metatarsophalangeal
joint). An influence of the upper part of the body was modelled as one concentrated
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Fig. 2 The sagittal 7DOF
model (symbols are described
in the Fig. 2) [11]

force applied at the centre of gravity of this part and a moment of this force that both
were applied to the segment of the pelvis.

Three planar multibody dynamic models (open-close sagittal 6DOF model, open-
close sagittal 7DOF model, open-close frontal 7DOF model) were formulated by
using Newton-Euler formulation [1]. Each model can be used to solve an inverse
dynamics task or forward dynamics task. It must be emphasized that proposed
multibody models are more complex in comparison with ones presented in [5, 6,
8, 12].

Solving an inverse dynamics task one, an influence of passive soft tissues
(tendons, ligaments, bursa) and active soft tissues (muscles) can be defined by
assuming some optimization criterion to solve a redundancy problem.

Biomechanical parameters (parameters of the segments of the body) had been
assessed on the base of method of Zatsiorsky and deLeva [2, 3]. Creating the author
coding, numerical models of the proposed multibody models were implemented in
MATLAB.

Considering any dissipation phenomena under the foot of the supporting leg [4],
the metatarsophalangeal joint of the feet is treated as an attachment with the ground.
This attachment is modelled as a pin joint (a joint O in Figs. 1, 2, and 3).
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Fig. 3 The frontal 7DOF
model: (OF – the point
between the support foot and
the ground; AF

1 – the ankle
joint of stance leg; AF

2 – the
knee joint of stance leg;
AF

3 – the stance leg hip joint;
AF

4 – the swing leg hip joint;
AF

5 – the knee joint of swing
leg; AF

6 – the ankle joint of
swing leg; β i – the angle of
the i-th segment in the frontal
plane (each angle is measured
as an absolute coordinate);
G – gravity force of the upper
part of the body; MF

exti – the
external moment influenced
the i-th segment in the frontal
space; RF

x1 – the x-th
component of stance leg
reaction force (medio-lateral
component); RF

z1 – the z-th
component of the stance leg
reaction force (vertical
component); RF

x2 – the x-th
component of reaction force
during double support phase;
RF

z2 – the z-th component of
reaction force during double
support phase; x – the
transverse axis; y – the
sagittal axis; z – the vertical
axis) [9]

2.1 Sagittal 6DOF Model

The body is treated as a system composed of six segments serially linked in a sagittal
plane of the body (Fig. 1). To model a single support phase the open sagittal 6DOF
model has to be used (both y-th and z-th components of reaction force of the swing
leg (Fy, Fz) are equal to zero). To model a double support phase the close sagittal
6DOF model has to be used (both y-th and z-th components of reaction force of
the swing leg (Fy, Fz) are not zero). Mathematical models of these both models are
published in [8–10].

An influence of the upper part of the body is considered as a load composed of
one concentrate force G7 (gravity force of this part) and a moment of this force MG7.



84 W. Wojnicz et al.

2.2 Sagittal 7DOF Model

The body is treated as a dendritic structure, in which the hip joint spans three
branches: three serially linked segments of the stance leg, three serially linked
segments of the swing leg and one segment describing the influence of the upper
part of the human body (Fig. 2). To describe a single support phase the open sagittal
7DOF model has to be used (both y-th and z-th components of reaction force of the
swing leg (Fy, Fz) are equal to zero). To describe a double support phase the close
sagittal 7DOF model has to be used (both y-th and z-th components of reaction force
of the swing leg (Fy, Fz) are not zero). Detailed mathematical models of both sagittal
7DOF models are given in [8–10].

An influence of the upper part of the body is modeled as the seventh segment,
which gravity force acts at the center of mass placed at the point C7.

2.3 Frontal 7DOF Model

Considering a frontal plane and treating a body as a structure composed of seven
segments serially linked through the hinge joints, there were created (Fig. 3): (1) the
open frontal 7DOF model, which can be applied to model a single support phase (in
this case both the x-th component of reaction force (RF

x2) and the z-th component of
reaction force (RF

z2) are equal to zero); (2) the closed frontal 7DOF model, which
can be used to describe a double support phase. Both models can be applied to
analyse kinematics and dynamics of normal gait in a frontal plane during specific
phases. An influence of the upper part of the body was modelled as one concentrate
force G7 (it is a gravity force of upper part of the body) and its moment M(b).

A general mathematical description of the open frontal 7DOF model is a non-
linear system of seven differential equations:

[B] ·
{

d2βi

dt2

}
= {Mi} , i = 1, . . . 7 (1)

where:

[B] =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

B11 B12 (β1, β2) B13 (β1, β3) B14 (β1, β4) B15 (β1, β5) B16 (β1, β6) B17 (β1, β7)

B21 (β1, β2) B22 B23 (β2, β3) B24 (β2, β4) B25 (β2, β5) B26 (β2, β6) B27 (β2, β7)

B31 (β1, β3) B32 (β2, β3) B33 B34 (β3, β4) B35 (β3, β5) B36 (β3, β6) B37 (β3, β7)

B41 (β1, β4) B42 (β2, β4) B43 (β3, β4) B44 B45 (β4, β5) B46 (β4, β6) B47 (β4, β7)

B51 (β1, β5) B52 (β2, β5) B53 (β3, β5) B54 (β4, β5) B55 B56 (β5, β6) B57 (β5, β7)

B61 (β1, β6) B62 (β2, β6) B63 (β3, β6) B64 (β4, β6) B65 (β5, β6) B66 B67 (β6, β7)

B71 (β1, β7) B72 (β2, β7) B72 (β2, β7) B74 (β4, β7) B75 (β5, β7) B76 (β6, β7) B77

⎤

⎥
⎥
⎥
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⎥
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⎥
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⎥
⎥
⎦



Mathematical Approach to Assess a Human Gait 85

{
d2βi

dt2

}
= d2

dt2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1

β2

β3

β4

β5

β6

β7

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

{Mi} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1F

M2F

M3F

M4F

M5F

M6F

M7F

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

β i – the i-th angular displacement of the i-th segment (the i-th joint angle) in the

frontal plane; d2βi

dt2 – the i-th angular acceleration of the i-th segment in the frontal
plane, Bij(β i, β j) – the ij-th coefficient depending on the mechanical characteristics;
Mi – the i-th moment acting on the i-th segment depending on its weight and load
caused by an acceleration of the neighbouring segments.

A general mathematical description of the closed sagittal 7DOF model has the
same left part given in the Eq. (1) but the right part (the vector of moments acting
on the segments) has the following form:

{Mi} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1F − L1 · sin (β1) · RF
x2 + L1 · cos (β1) · RF

z2

M2F − L2 · sin (β2) · RF
x2 + L2 · cos (β2) · RF

z2

M3F − L3 · sin (β3) · RF
x2 + L3 · cos (β3) · RF

z2

M4F − L4 · sin (β4) · RF
x2 + L4 · cos (β4) · RF

z2

M5F − L5 · sin (β5) · RF
x2 + L5 · cos (β5) · RF

z2

M6F − L6 · sin (β6) · RF
x2 + L6 · cos (β6) · RF

z2

M7F − M
(
RF

x2
)+ M

(
RF

z2
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2)

where M(RF
x2) and M(RF

z2) – moments originating from supporting reactions
applied to the seventh segment AF

6AF
7 (Fig. 3); Li– length of the i-th segment that

is inclined at the angle β i to the horizontal plane.
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2.4 Approach to Model an Interaction

Solving an inverse dynamics task for the double support phase, ground interaction
components (the y-th component (Fy) and z-th component (Fz) in the close 6DOF
sagittal model or the close 7DOF sagittal model; the x-th component (RF

x2) and
z-th component (RF

z2) in the close 7DOF frontal model) have to be inputted. Their
values can be assessed by using a second force plate (the first force plate is used
to determine ground reaction components at the joint O (Figs. 1 and 2) or joint OF

(Fig. 3)).
In the case of lack of possibility to use the second force plate in practice one could

assume an additional model of foot-ground interaction. In the paper [9] this model
was derived by assuming that the reaction components have to have the values that
allow a strike foot (of swing leg) to stay in the given narrow range of the ground
level (vertical displacement).

3 Results

To validate proposed multibody models an inverse dynamics tasks were solved
without using any optimization methods. To obtain kinematic data and load
interaction data the group of health males were tested. None of the volunteer
declared any kind of cardiovascular, neurological or pulmonary problems, none of
them took cardiovascular medication and none had problems with motor system or
postural stability. All volunteers provided written informed consent in accordance
with procedures approved by the Committee of Research Ethics with Human
participation at Gdansk University of Technology.

During study a marker setting protocol given on Fig. 4 was used. Kinematic
data were defined by using the OPTITRACK motion capture system (six cameras
working with 120 Hz frequency and MOTIVE software). Load interaction data
(supporting reactions) were assess by using the Steinbichler force plate. During
testing, the volunteer was given an oral instruction to perform a natural gait (each
trial contained three full steps) by walking barefoot with open eyes. Single and
double support phases were identified by using the motion capture system. In this
study we present data of validations for one of the chosen volunteers (69.75 kg and
1.765 cm) that successfully performed trials.

Biomechanical parameters of segments and their centers of gravity (right and
left foot, right and left calf, right and left thigh, upper body part) were assessed
in each frame of the trial recorded by using method of Zatsiorsky and de Leva.
Angular displacements of the tested segments were defined in: 1) a sagittal plane
and the data are presented as relative angular displacements (Hip = α3 − α7, Knee
= α3 − α2 and Ankle = α1 − α2 − π /2) in Fig. 5 [8]; b) a frontal plane (Fig. 6).
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Fig. 4 Marker setting
protocol

Data describing the segment angular velocities and segment angular acceleration
were defined by applying postprocessing that included: (1) filtering (the 4th order
Butterworth filter with 5 Hz cut-off frequency); (2) cubic spline interpolation; (3)
smoothing implemented as three-point difference method.
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Fig. 5 Kinematic data (sagittal plane)

Fig. 6 Kinematic data (frontal plane)

To validate proposed multibody models we compared vertical support force and
horizontal support force recorded by the force plate with the ones calculated by
applying: (1) a sagittal 6DOF model (Figs. 7 and 10); (2) sagittal 7DOF model
(Figs. 8 and Fig. 11); (3) frontal 7DOF model (Figs. 9 and 12). We limited our
validation to the single support phase because only one force plate was available
during experimental testing.
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Fig. 7 Vertical support force:
measured force and
calculated one by using a
sagittal 6DOF model

Fig. 8 Vertical support force:
measured force and
calculated one by using a
sagittal 7DOF model

Fig. 9 Vertical support force:
measured force and
calculated one by using a
frontal 7DOF model
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Fig. 10 Horizontal support
force: measured force
(towards sagittal axis of the
body) and calculated one by
using a sagittal 6DOF model

Fig. 11 Horizontal support
force: measured force
(towards sagittal axis of the
body) and calculated one by
using a sagittal 7DOF model

Fig. 12 Horizontal support
force: measured force
(towards transverse axis of
the body) and calculated one
by using a frontal 7DOF
model
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4 Discussion

Comparing experimental vertical results of with calculated ones, it was concluded
that all three vertical forces calculated by using the sagittal 6DOF model (Fig.
7), the sagittal 7DOF model (Fig. 8) and the frontal 7DOF model (Fig. 9) have
very similar shapes and their values are close to the measured one. Estimating an
absolute maximum relative error of calculated vertical component with respect to
the measured one, we obtain: 30% (sagittal 6DOF model (Fig. 7)), 28% (sagittal
7DOF model (Fig. 8)) and 34% (frontal 7DOF model (Figs. 9) and (Fig. 10).

On the other hand, comparing measured horizontal force with calculated one by
using the sagittal 6DOF model (Fig. 11) and the sagittal 7DOF model (Fig. 11), we
can notice that their values are very close at the beginning range and final range of
the stride. However, calculated forces and measured one are a bit divergent in the
middle range of the stride. Although, the value of this numerical divergence does
not exceed 30 N.

Comparing measured horizontal force and calculated one by using the frontal
7DOF model (Fig. 12), we can notice that this calculated force looks like a mirror
of the measured one in the middle range and final range of the stride. Although the
value of numerical divergence in the beginning range does not exceed 25 N.

Analysing experimental results with calculated ones, one should take in mind
that solutions of the inverse dynamics task were obtained by inputting only
biomechanical parameters of the body and the kinematic data describing time
motion characteristics of considered segments. An influence of upper part of the
body was considered in the different way in all the presented multibody planar
models. Calculated reaction forces occurred at the point of interaction during the
single support phase were compared with the measured forces. Moreover, in the
present approach any optimization method did not used to fit the calculated forces
with the experimental ones.

5 Conclusions

A purpose of the paper was to create a mathematical approach to assess a human
gait. The scope of the study covered modelling a normal gait in two anatomical
planes of the body: sagittal and frontal. Using the Newton-Euler formulation, three
multibody biomechanical models were derived that can be used to model a single
support phase and double support phase of the gait. To model a gait in the sagittal
plane the open-close sagittal 6DOF model or open-close sagittal 7DOF model can
be used. To model a gait in the frontal plane the open-close frontal 7DOF model can
be applied. Presented multibody models can be used to solve a forward dynamic
task or an inverse dynamic task.

Using a sagittal 7DOF model, one can take into consideration an influence of the
moment of inertia of the upper part of the body. On the other hand, according to the
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principles of the sagittal 6DOF model and the frontal 7DOF model, the influence of
the upper part of the body is considered as a load, i.e. one force applied at the centre
of gravity of the upper part of the body and one moment of this force.

It is worth paying attention that proposed biomechanical models describe motion
in the sagittal or frontal anatomical plane of the human body. That is why they have
to be used with caution to model an asymmetrical gait caused by the pelvis rotations
with respect to the vertical axis and sagittal axis of the body.

Proposed multibody models can be used to design a control system of the
exoskeleton that is used in gait rehabilitation. These models can be easily imple-
mented in the software of the control system to work in the real-time to achieve the
goals of rehabilitation. In this case one should consider that motions are performed
in some range of variability [13, 15].

To improve the accuracy of the proposed multibody models the following crucial
factors have to be considered. First, a method of segmentation has to be updated by
considering the non-linear distribution of the segment masses and segment moments
of inertia. Second, kinematic data should be properly postprocessed by reducing all
non-physiological jerks. Third, an influence of the upper part of the body has to be
considered by using proper biomechanical parameters.
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Role of the Immune System
in AIDS-defining Malignancies
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Abstract The Center for Disease Control and Prevention considers AIDS-defining
illnesses Kaposi’s sarcoma, non-Hodgkin’s lymphoma and cervical cancer. These
cancers have higher incidence in HIV-infected individuals than in the general
population. Additionally, cancers’ clinical courses in HIV-positive individuals are
increasingly aggressive when compared to those in HIV-negative patients. It is
thus compelling to further understand the dynamics of AIDS-related cancer growth.
We propose a non-integer order model to describe the role of the immune system
in cancer cells’ growth in a HIV-infected individual. The model incorporates
anti-retroviral therapy and chemotherapy. We simulate the model for different pro-
liferation functions of the cytotoxic T lymphocytes (CTLs), and other parameters,
namely the HIV-infection rate, the elimination rate of infected T cells by CTLs, and
the elimination rate of cancer cells by the immune system and discuss the results
from a physiological perspective. The order of the fractional derivative completes
the discussion of the results.
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1 Introduction

The human immunodeficiency virus (HIV) is a retrovirus that attacks the T-helper
lymphocytes (CD4+ T cells) and is responsible for the development of the acquired
immune deficiency syndrome (AIDS). CD4+ T cells are key in protecting our
immune system. The role is to signal CD8+ T cells to destroy bacteria and viruses,
such as HIV [1]. Unprotected sexual intercourse with potentially infected partners,
sharing of contaminated syringes, mother-to-child transmission, and also blood
transfusions are some of the ways to contract HIV. Currently there is no cure for
AIDS [2].

According to the latest data available 36.9 million people globally were living
with HIV in 2017. Thirty five point one million are adults and 1.8 million are
children.

People infected with HIV/AIDS are more likely to develop some types of cancer,
such as Kaposi’s sarcoma, non-Hodgkin’s lymphoma and cervical cancer. Kaposi’s
sarcoma is caused by Kaposi sarcoma-associated herpesvirus (KSHV), also known
as human herpesvirus 8 (HHV-8). Non-Hodgkin’s lymphoma is caused by Epstein-
Barr virus (EBV) and cervical cancer is caused by human papillomaviruses (HPV).
These cancers develop largely as a result of HIV-related immunosuppression,
which impairs the control of oncogenic viral infections [3, 4]. In 1996, with
the introduction of antiretroviral therapy (ART), the risk of AIDS and AIDS-
related death declined considerably in patients with HIV. Nevertheless, although
the incidence of Kaposi’s sarcoma and non-Hodgkin’s lymphomas also decreased,
they remained higher in HIV patients than in the general population [5]. There are
several types of cancer treatment, namely chemotherapy, some types of surgeries,
blood transfusions and bone marrow transplant, among others [3].

Mathematical models of infectious diseases are extremely useful to predict future
behaviour, assessing, and controlling potential outbreaks. Within-host models can
be used for example to measure the impact of different therapies on infected patients
[3, 6, 7]. Chávez et al. [3] studied the effect of chemo in a mathematical model
for HIV/AIDS-cancer dynamics. They discovered the existence of a bifurcation of
limit-cycles that has influence on HIV control. The numerical simulations showed
that for values of the drug application period below a bifurcation point the presence
of HIV in the body is kept to a minimum. For values of the drug application period
above a bifurcation point the viral load significantly increases, which can become
dangerous to patient’s health. Carvalho et al. [8] proposed a model for the dynamics
of HIV/AIDS-related cancer cells with the aim of studying the effects of delay and
treatment on their growth. The results showed that the chemotherapy efficacy is
highly reliable in the values of drug growth rates and lower decay rates promote a
greater elimination of cancer cells.

Fractional calculus (FC) is applied in various areas of science, biology, engi-
neering, epidemiology, among others [9]. With the help of FC we can get a deeper
insight into some biological interactions, since FC uses information from past events
to better predict future ones. With this, we can help health professionals adapt and
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administer certain health care, according to the needs of each patient [10, 11]. In
2015, Pinto et al. [12] study a non-integer order model for the three-stages of HIV
infection, where drug-resistance is considered. The model provides a wide range of
dynamics for three states, the disease-free equilibrium, the rapid progressors and the
long-term non-progressors. This variety may be useful to devise treatment protocols,
according to HIV-infected individuals’ specificities, reducing treatment burden (i.e.,
toxicity), for example. In 2018, Pinto et al. [13] proposed a fractional model for
T cells and HIV interactions. The model encompasses medication administered
periodically. For example, in the case of sinusoidal drug efficacies, a bifurcation
from disease-free to periodic endemic balance can be observed. They concluded
that this bifurcation occurs for any value of the order of the fractional derivative α.

Inspired by the work described above, we propose a mathematical model of FO
for the dynamics of cancer cells’ growth in HIV-infected patients. The goal is to
analyze how immune functions, as well as the rates of elimination of cancer cells
by healthy T cells, HIV infection and the order of the fractional derivative, can
influence the response of our immune system. In Sect. 2 we introduce the model and
prove the positiveness of solutions. In Sect. 3 we present and comment the numerical
results of the system. We finalize our work in Sect. 4.

2 The Model

Five cell and virus populations and chemo dose are considered in the model: cancer
cells, C(t); healthy CD4+ T cells, T (t); infected CD4+ T cells, I (t); HIV, V (t);
cytotoxic T lymphocytes (CTLs), E(t); and chemotherapeutic dynamic, D(t). The

number of cancer cells increases with the term r1
α

[
1 −

(
C
C0

)1−γ
]

Cγ , where r1
α is

the growth rate and C0 is the maximum size of the cancer cells. Louzoun et al. [14]
showed that the growth of the cancerous tissue can be described mathematically by a
function with an exponent γ that varies between 2/3 and 1. This variation depends on
the growth conditions and on the neoplastic vascular system’s topology. We assume
γ = 3/4. Cancer cells are eliminated by healthy CD4+ T cells at a rate k1

α . The
healthy CD4+ T cells population grow at a rate λα . These cells die by apoptosis at
a rate μT

α , and by the cancer cells’ action at a rate p. They can also be infected by
HIV at a rate k2

α . RTI-based treatment efficacy is included in healthy and infected
CD4+ T cells equations using the parameter 0 ≤ εRT ≤ 1, where 1 represents
an efficacy of 100%. The infected cells die at a rate μI

α and are killed by CTLs
at a rate k0

α . HIV is produced by the infected CD4+ T cells, with bursting size N .
Parameter 0 ≤ εP ≤ 1 is the drug efficacy of the protease inhibitors (PIs). A value of
1 means 100% drug efficacy. HIV is removed at a rate μV

α . CTLs are produced by
the fi(I, E) functions and die at a μE

α rate. The immune functions are f1(I, E) =
qαIE and f2(I, E) = qαIE

εE+1 . The proliferation rate of these cells is given by q. For
f1 the CTLs production depends on the number of cytotoxic T cells and infected
T cells. The function f2 includes the saturation level of the CTLs expansion, ε. We
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also consider the effect of chemotherapy on the variation of cancer cells. This is done
by inserting the term (1 − e−D), representing the fraction of dead cells per chemo
dose, since the drugs are effective only at certain stages of the cell cycle and their
effectiveness is limited. The terms for cellular dose response are introduced into
the equations of cancer cells, healthy and infected T cells, in particular the terms
PC

α(1 − e−D) and PT
α(1 − e−D). u(t) describes the amount of drug administered

(assumed to be intravenous) and the injection time. It is assumed an instantaneous
drug distribution in all body parts. Constant dD

α represents the drug elimination
rate. The description of the model variables and all parameter values are given in
Tables 1 and 2, respectively.

Table 1 Description of the
variables of model (1)

Variable Symbol

Cancer cells C(t)

Healthy CD4+ T cells T (t)

Infected CD4+ T cells I (t)

Virus (HIV) V (t)

Cytotoxic T cells E(t)

Chemotherapeutic dose D(t)

Table 2 Parameter values used in numerical simulations

Parameter Symbol Value Unit

Proliferation rate of cancer cells r1 0.18 (cells/mL)1/4 day−α

Maximum density of cancer cells C0 1.00 × 106 cells/mL

Elimination rate of T cells by CTLs k0 4.50 × 10−7 mL day−α

Elimination rate of cancer cells by T cells k1 1.00 × 10−8 mL−1 day−α

HIV infection rate k2 1.00 × 10−5 mL day−α

Death rate of cancer cells by drug PC 0.90 day−α

Death rate of T cells by drug PT 0.60 day−α

Proliferation rate of T cells λ 1.00 × 104 cells/mL dayα

Death rate of T cells μT 0.02 day−α

Death rate of infected T cells μI 0.30 day−α

Death rate of virus μV 23 day−α

Death rate of CTL μE 4.12 × 10−2 day−α

Drug elimination rate dD 0.90 day−α

Proportion of immune cells loss due to
killing of cancer cells

p 0.10 –

RTI-based treatment efficacy εRT 0.75 –

PI-based treatment efficacy εP 0.70 –

Bursting size for virus growth N 1.00 × 103 mL−1

Proliferation rate of CTL q 3.30 × 10−6 mL day−α

CTL’s half-saturation constant ε 1.00 × 10−3 –
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The nonlinear system of FO equations is given by

dαC

dtα
= r1

α

[

1 −
(

C

C0

) 1
4
]

C
3
4 − PC

α
(
1 − e−D

)
C − k1

αT C,

dαT

dtα
= λα + T

[−pk1
αC − k2

α(1 − εRT )V − PT
α
(
1 − e−D

)− μT
α
]
,

dαI

dtα
= k2

α(1 − εRT )V T − PT
α
(
1 − e−D

)
I − μI

αI − k0
αIE,

dαV

dtα
= NμI

α(1 − εP )I − μV
αV,

dαE

dtα
= fi(I, E) − μE

αE,

dαD

dtα
= u(t) − dD

αD,

(1)

where i ∈ {1, 2} and u(t) = 2.3869 for t = 21n (n ∈ N) and u(t) = 0 otherwise.
The order of the fractional derivative is given by α, where α ∈ (0, 1]. We consider
the definition of a FO derivative proposed by Caputo:

dαy(t)

dtα
= Ip−αy(p)(t), t > 0, (2)

in which p = [α] is the integer part of α, y(p) is the p-th derivative of y(r), and Ip1

is the Riemann–Liouville fractional integral

Ip1z(t) = 1

Γ (p1)

∫ t

0
(t − t ′)p1−1z(t ′)dt ′. (3)

2.1 Model Properties

All solutions of the system (1) with non-negative initial conditions will remain
non-negative for all t > 0. Let R6+ = {x ∈ R6 | x ≥ 0} and x(t) =
(C(t), T (t), I (t), V (t), E(t),D(t))T . We begin by quoting the following Gener-
alized Mean Value Theorem [15] and corollary.
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Lemma 1 ([15]) Suppose that f (x) ∈ C[a, b] and Dα
a f (x) ∈ C(a, b], for 0 <

α ≤ 1, then we have

f (x) = f (a) + 1

Γ (α)
(Dα

a f )(ξ) · (x − a)α (4)

with a ≤ ξ ≤ x,∀x ∈ (a, b] and Γ (·) is the gamma function.

Corollary 1 Suppose that f (x) ∈ C[a, b] and Dα
a f (x) ∈ C(a, b], for 0 < α ≤

1.

1. If Dα
a f (x) ≥ 0, ∀x ∈ (a, b), then f (x) is non-decreasing for each x ∈ [a, b];

2. If Dα
a f (x) ≤ 0, ∀x ∈ (a, b), then f (x) is non-increasing for each x ∈ [a, b].

This proves the main theorem.

Theorem 1 There is a unique solution x(t) = (C(t), T (t), I (t), V (t), E(t),D(t))T

of the system (1) throughout the domain (t ≥ 0) and it remains in R6+.

Proof As we can see from Theorem 3.1 and Remark 3.2 of [16], the solution for t ≥
0 of the initial value problem exists and is unique. For this, it is enough to prove that
the non-negative orthant R6+ is positively invariant. To show that this happens we
have to demonstrate that the vector field points to R6+ in each hyperplane, limiting
the non-negative orthant. So, for system (1), we get:

DαC |C=0 = 0 ≥ 0

DαT |T =0 = λα ≥ 0

DαI |I=0 = k2
α(1 − εRT )V T ≥ 0

DαV |V =0 = NμI
α(1 − εP )I ≥ 0

DαE |E=0 = fi(I, E) ≥ 0

DαD |D=0 = u(t) ≥ 0.

(5)

By Corollary 1 we conclude that the solution will remain in R6+.

3 Numerical Simulations and Discussion

In this section we simulate the model (1) for different values of the (i) elimination
rate of cancer cells by T cells, k1, (ii) HIV infection rate, k2. Moreover, we also
consider two distinct values of the order of the fractional derivative, α, and the two
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immune functions, f1 and f2. The numerical solutions of the model were obtained
by a subroutine provided by Diethelm and Freed [17].

In Fig. 1 we can verify that the number of cancer cells is lower when the
proliferation rate of CTLs only depends on the number of infected T cells and the
population of CTLs (f1). The same is true for HIV. This happens regardless of the
value of α. We also conclude that the lower the value of the order of the fractional
derivative, the lower the number of cancer cells and the viral load, despite of the
rate of proliferation of CTLs. In Fig. 2 we vary the elimination rate of cancer cells
by healthy T cells, k1, for α = 1 and α = 0.8. It is observable that when the rate
of elimination of cancer cells by healthy T cells is higher, more cancer cells are
removed and consequently less will be the number of these cells in the body, for
both values of the order of the fractional derivative. We can also see that a lower
order of the fractional derivative suggests a lower number of infected T cells in the
body and a decrease in the immune response, number of CTLs, regardless of the
rate of elimination of cancer cells by T cells. In Fig. 3 we simulated the variation
of the HIV infection rate, k2, also for α = 1 and α = 0.8. We can see that an
HIV infection rate of k2 = 4.5 × 10−7, and for α = 1, suggests that the model
approaches the HIV-free equilibrium. For the other values of k2 the viral load tends
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Fig. 1 Variation of cancer cells number and HIV for immune functions f1 = qαIE and
f2(I, E) = qαIE

εE+1 , and for α = {1, 0.9, 0.8}. All parameter values are given in Table 2. Initial

conditions: C(0) = 4.0 × 104, T (0) = 1.0 × 104, I (0) = 1.7 × 105, V (0) = 5.0 × 106,
E(0) = 333 × 103 and D(0) = 3.9 × 10−2
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Fig. 2 Dynamics of model cancer cells, T cells, infected T cells e CTLs for α = {1, 0.8} and
k1 = {1.0×10−8, 5.5×10−8, 1.6×10−7}. We use the immune function f1 = qαIE. We consider
the parameter values given in Table 2. Initial conditions: C(0) = 4.0 × 104, T (0) = 1.0 × 104,
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asymptotically to 5×104. We also found that there is a stronger immune response for
higher values of the HIV infection rate, k2, which is in accordance with biological
scenarios. In the presence of virus, the body reacts, producing more CTLs to fight
HIV. On the other side, the number of CD4+ T cells decreases, since HIV attacks
preferentially these cells.

4 Conclusions

In this paper, we proposed a FO model for the dynamics of cancer cells growth in
HIV-infected patients. The model includes treatment for HIV and chemotherapy. We
simulated the model for different values of biologically relevant parameters, namely
the elimination rate of cancer cells by CD4+ T cells, the HIV infection rate, and for
two different CTL proliferation functions. Additionally, we have also considered
various orders for the fractional derivative. The results are biologically relevant.
Increased values of cancer cells’ elimination rate are associated with decreased
values of these cells in the body. Moreover, smaller values of HIV infection rates
are associated with weaker immune responses. Furthermore, with respect to the two
CTL proliferation rates, the multiple of the infected T cells and the CTLs provides
lower values of cancerous cells. All of these results are observed for all values of
the order of the fractional derivative. Furthermore, are observed lower asymptotic
values for smaller values of α. Basically, the order of fractional derivatives allows
us to have one more degree of freedom and thus have a better perspective on
the behavior of the system dynamics. This allows us to deepen our research and
consequently broaden our horizons with regard to public health. As was said in the
introduction to this work, each patient is a patient and as such FC is an extremely
advantageous instrument in what are the particularities of individuals. This work is
a starting point and we hope to deepen it in the future.
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Bio-Inspired Tactile Sensing: Distinction
of the Overall Object Contour
and Macroscopic Surface Features

Moritz Scharff

Abstract Vibrissae of rats are part of the somatosensory system. A tactile stimulus
along the hair shaft is transmitted to the Follicle-Sinus complex and transduced
into an action potential by mechanoreceptors. The signal contains information
about the texture of the contacted object including the overall contour, macroscopic
features, and microscopic features. Here, the overall contour and the macroscopic
features of an object are analyzed using an artificial vibrissa-like sensor which is
dynamically swept along the object. The natural vibrissa is replaced by a cylindrical
steel wire and the Follicle-Sinus complex by a force/torque sensor, respectively. In
Experiment, the overall object contour is designed as a sine wave (long wavelength)
and is superimposed by a second sine wave with a shorter wavelength in order to
represent the macroscopic features. A procedure to distinguish both components is
developed and successfully applied. The combination of the sensor shape and the
scanning conditions—for example, the large, nonlinear deformation of the sensor
shaft—operate like a morphological filter and consequently influences the detected
profile features.

Keywords Vibrissa · Tactile sensing · Surface texture · Object contour

1 Introduction

The hairs located on the sides of a muzzle of e.g. a rat are named vibrissae, see Fig. 1.
Those are powerful tactile sensors. A vibrissa can be divided into two different parts.
First, there is the hair shaft that transmits a mechanical stimulus caused by e.g.
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Fig. 1 Rat in interaction with the surrounding environment

contact with an object to the hair follicle, Follicle-Sinus complex respectively. The
hair shaft is a slender, tapered (decreasing diameter from base to tip) and inherent
curved structure that is very flexible. The Follicle-Sinus complex supports this hair
shaft and includes mechanoreceptors to transduce the mechanical stimulus into an
action potential [2]. There are two groups of mechanoreceptors, slow and rapid
adapting ones.

Slow adapting mechanoreceptors correspond to signals with low frequencies
and rapid ones to signals with high frequencies [4]. The mechanoreceptors are
activated by the forces and moments at the base of the hair shaft in consequence
of a mechanical stimulus [3]. Using this arrangement consisting of transmitter and
sensors, animals can recognize the contour of an object and identify properties of
the surface texture as well [1].

Since the term surface texture is not standardized, it can be interpreted in different
ways. In the present work, the term surface texture is defined to include two types
of features: macroscopic and microscopic ones. The macroscopic ones are related
to surface features that are larger than the actual hair shaft diameter. In contrast,
microscopic ones are of less size than the hair shaft diameter and can be summarized
in the frictional contact properties. All three types of information principle object
contour, macroscopic and microscopic features are combined in the signals at the
base of the hair shaft recorded by the mechanoreceptors. The relations between
signal components and the form of signal decomposition to extract the desired signal
component only are still not exactly understood. But it is demonstrated that animals
can extract and divided between these three types of information. Furthermore,
artificial sensors inspired by natural vibrissae demonstrated those functionalities
too with the restriction that normally only one of the three types of information
is in focus [7, 9, 11, 12].

In this work the interactions of principle object contour and superimposed macro-
scopic features are analyzed. In a first step, microscopic features are neglected.
The goal is to identify how principle object contour and macroscopic features can
be extracted out of the signals measured at the base of an artificial vibrissa-like
sensor. Therefore, a theoretical model and an experiment are designed, see Sect. 2.
The results are presented and discussed in Sect. 3. Finally, four hypotheses are
formulated and summarized in Sect. 4.
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2 Material and Methods

The present problem is analyzed for two different objects in multiple configura-
tions, e.g. spatial position. First, the relation between object distance/contour and
macroscopic features is evaluated by simulation, analyzing a straight contour with
superimposed sinus undulation, see Fig. 2b. The corresponding shape function is
given by (1).

gs(x, η) = η + 0.001 m + 0.001 m sin

(
2 π

0.004 m
x

)
(1)

Based on this preliminary analysis, a more general shape function (2) is investigated
in experiments, see Figs. 2c and 3.

gw(x, η) = η + 0.001 m + 0.001 m sin

(
2 π

0.004 m
x

)
+ 0.008 m sin

(
2 π

0.1 m
x

)

(2)

The natural vibrissa is replaced by a slender steel filament characterized by
the following properties: length 0.1 m, diameter 0.5e−3 m, density 7850 kg m−3,
Young’s modulus 2.06e11 N m−2, Poisson’s ratio 0.3, Rayleigh damping α = 0 s,
β = 0.75 s−1. Further information about the sensor shaft in simulation and
experiment are given in Sects. 2.1 and 2.2. In all scenarios, the sensor shaft gets

Fx

Fy

Mz

(a)

x
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z
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η

v

gs(x)
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η

v

gw(x)
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Fig. 2 (a) Initial state with support reactions �Fx , �Fy and �Mz. (b) The undulated straight object is
described by the contour function (1), and (c) the undulated wavy object by the contour function
(2) whereby η corresponds to the distance between clamping and the first local minima of the
undulation
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Fig. 3 Scanning of the undulated wavy object in experiment: Contacting the (a) convex and
(b) concave part of the overall shape while displacing the sensor along a straight trajectory.
Components: 1—sensor shaft; 2—jaw chuck; 3—object; 4—force sensor; 5—torque sensor; 6—
linear guide; 7—hexapod robot

sweep across the object by displacing its clamping along the straight trajectory x0
with a constant velocity v = 1e−3 m s−1. In accordance with the natural example,
the recorded support reactions are decomposed in a low frequent and high frequent
part by a low pass filter. The reconstructions of the object contours using the
simulated or experimental recorded support reactions only is done by applying the
algorithm presented in [10]. This algorithm is based on the Euler-Bernoulli beam
theory considering large deflections but limited to quasi-static displacement, single
point contacts between sensor, and object and excluded friction. These restrictions
are partly broken by the simulation as well as the experiment. The quantities
of peaks/macroscopic features are determined using the peak count algorithm
findpeaks( ) included in MATLAB2015b.

2.1 Finite Element Analysis

The problem is modeled using Finite Element Analysis incorporated into the
software ANSYS Mechanical v.19.1. The simulation is limited to 2D- space (x−y−
plane). The vibrissa/sensor shaft is modeled as straight and cylindrical using beam
elements of type beam188. It is discretized by 200 nodes and consists of a
homogenous, isotropic, linear elastic material. A clamping replaces the FSC and
the corresponding support reactions �Fx , �Fy , �Mz are interpreted as signal recorded
by the mechanoreceptors, see Fig. 2. The object is assumed to be rigid and its surface
is represented by a series of 1500 nodes whereby the positions of the nodes follow
(1). As contact pair, contact elements of type conta175 and target elements of
type targe169 are used in order to represent a force based line to line contact.
The contact elements correspond to the beam and the target ones to the object.
A pure Lagrange multiplier contact algorithm describes the relation of the contact
pair. Friction between beam and object is neglected but global Rayleigh Damping
is considered. The clamping is dynamically displaced along a straight trajectory in
order to sweep the beam across the object shape. A minimal timestep of 1e−3 s is
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used to satisfy Nyquist–Shannon sampling theorem with respect to the first natural
frequency of the beam ≈ 32 Hz, smaller timesteps are possible since an adaptive
timestep control is activated. The support reactions �Fx , �Fy , �Mz are recorded for
every timestep.

2.2 Experiment

In experiment, the straight sensor shaft and the connected sensors are displaced
horizontal (x− direction) with a linear guide of type AMTEC Power Cube PLB
090 (position repeatability ±0.005 mm). The sensor shaft consists of spring steel
according to DIN EN 10270-1:2017-09 and is clamped by a miniature jaw chuck,
see Fig. 3. It is cut from a larger piece and the tip/cutting edge is ground by
sandpaper. The miniature jaw chuck is attached to a 3D force sensor of type K3D40
(ME-Meßsysteme), accuracy class 0.5, nominal load ±2 N and a 1D torque sensor
of type TD70 (ME-Meßsysteme), accuracy class 0.1, nominal load ±50 mNm. The
torque sensor measures signals with respect to the z− direction. All signals are
recorded using a GSV-1A4 M12/2 (ME-Meßsysteme) amplifier, a NI PXI 6221
M-Series multifunction data acquisition device, and the software LabVIEW 2017
with a sampling rate of 1000 Hz. Additionally, to the linear guides, a hexapod
of type PI M-850.50 is used to position and align the object to the scanning
trajectory. The object was 3D-printed using an Ultimaker S5 3D-printer and ABS
filament. The length in x- direction is 0.1 m. The object was scanned five times for
η ∈ {0.05 m; 0.07 m} and the support reactions recorded. The mean and the standard
deviation were calculated and used to reconstruct the object contour.

3 Results and Discussion

The simulations are analyzed for η = 0.03 m (0.01 m) 0.09 m with exception of
η = 0.06 m, see Fig. 2b. The support reactions for chosen η are illustrated in Fig. 4.

Remark 1 Using the parameters mentioned in Sect. 2, it was not possible to simulate
the scanning process for η = 0.06 m as consequence of conditionally convergent
solution.

The force component Fx oscillates for all η around zero. For large η, e.g. 0.09 m,
there are distinct, separated peaks in a regular low frequency with large amplitude
while for smaller η the signals shows smaller amplitudes and higher frequency, see
Fig. 4a. An alike behavior is indicated by the signals for Fy and Mz in Fig. 4b,c. But,
in contrast to Fx , Fy , and Mz increase with decreasing η. The simulated support
reactions are used to reconstruct the scanned object contour (see (1)) by applying
the algorithm presented in [10], see Fig. 5. The reconstructed contours for large η

are inaccurate but e.g. in the case of η = 0.07 m there a notable peaks. On the
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Fig. 4 Scanning the object corresponding to (1) in simulation. Support reactions for: η = 0.03 m
(blue); η = 0.05 m (yellow); η = 0.07 m (magenta); η = 0.09 m (cyan). (a) Fx [N]vs.t[s] (b)
Fy [N]vs.t[s] (c) Mz[Nm]vs.t[s]
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Fig. 5 Object contour reconstruction for: η = 0.03 m (blue); η = 0.04 m (red); η = 0.05 m
(yellow); η = 0.07 m (magenta); η = 0.08 m (green); η = 0.09 m (cyan) and given object contour
by (1) (black)

contrary, the results for small η show almost a straight line without any peaks. In
all cases, the principal object distance is determined correctly. Figure 6 summarizes
the results of the simulations. Alike to the observations in Fig. 4, the mean of the
norm F of the signals Fx and Fy reduces for an increasing η as well as the mean of
the bending moment Mz does, see Fig. 6a,b. The quantity macroscopic features are
evaluated by determining the number of peaks included in the input signal. As input
signals the signal of Fy and the reconstructed object contours are used, see Fig. 6c.
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Fig. 6 In (a) the mean of the norm F of the signals Fx and Fy and in (b) the mean of the bending
moment Mz are evaluated for different η. (c) The quantities of detected peaks for different η are
shown for the case of Fy (blue) and reconstructed object shape (red) as input signal. In (a), (b) and
(c) the vertical black dashed line marks the transition from a contact occurring at the sensor tip to
a contact occurring along the shaft in the case of a flat, straight object contour according to [10].
In (c) the horizontal black dashed line corresponds to the true quantity of existing macroscopic
features/local maxima of (1) respectively for a scanned section of 0.08 m (a) F [N]vs.η[m] (b)
Mz[N]vs.η[m] (c)
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Fig. 7 Scanning the object corresponding to (2) in experiment. Support reactions for: η = 0.05 m
(blue); η = 0.07 m (red). The grey shade corresponds to the three times the standard deviation. (a)
Fx [N]vs.t[s] (b) Fy [N]vs.t[s] (c) Mz[Nm]vs.t[s]

Scanning the object contour (1) for 80 s there are 20 detectable features. Analyzing
Fy , the quantity of detected peaks reduces with decreasing η. First, the quantity of
peaks exceeds the true quantity but for larger η it is determined correctly. In the case
of the object contour as input signal, for large η the quantity of peaks is determined
correctly too, but there are nearly no detected features for small η.

In Experiment the object contour (2) is analyzed for η ∈ {0.05 m; 0.07 m}. The
recorded support reactions are shown in Fig. 7. In every case, there is a major trend
superimposed by peaks. The peaks appear for larger t . At the end of the scanning
process, there is always a large peak that corresponds to the release of the sensor
shaft from the object.

The reconstructed object contours match the principle given contours according
to (2), see Fig. 8a. In the beginning, the convex part of the contour is scanned.
Therefore, for both distances, the reconstructed contours are almost smooth and do
not show any macroscopic features/peaks. Scanning the concave part of the contour,
the reconstructed contours get wavy and show macroscopic features corresponding
to the macroscopic features of the given object contour. The quantity of detected
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Fig. 8 (a) The reconstructed object contour is plotted in red and the reference one in black
according to (2) for η = 0.05 m and η = 0.07 m. (b) Quantity of detected peaks with respect to the
reconstructed object shape (blue) as input signal and Fy (red) as input signal. In (b) the horizontal
black dashed line corresponds to the true quantity of existing macroscopic features/local maxima
of (2) respectively

macroscopic features depends on η, see Fig. 8b. For small clamping to object
distances fewer features are detected than for large distances. Furthermore, the
quantities of detected peaks using the object contour as input signal are less than
the quantities corresponding to Fy . For η = 0.07 m and Fy as input the quantity of
detected peaks matches almost the true quantity of 24.

The results indicate that the principle clamping to object distance corresponds to
the major trend of the recorded support reactions, see Fig. 6a,b. This is confirmed
by the findings of [5]. Consequently, the object contours can be calculated using
the low frequency part of the support reactions. Since a low pass filter is used to
decompose the original signal in a low and a high frequent part, the chosen cut-off
frequency determines the relation between major object contour and superimposed
macroscopic feature. If the cut-off frequency is low only the principle object
contour will be reconstructed or if it is large enough macroscopic features will
be reconstructed as well. In nature, this decomposition of the signals is may be
implemented by slow and rapid adapting mechanoreceptors included in the FSC, see
Sect. 1. But, Figs. 5 and 8 indicates that there is a morphological filtering as well.
For small distances between clamping and object the contact point occurs along the
sensor shaft and not at the tip, compare Fig. 2b,c. If the contact occurs far from the
tip the macroscopic features will be not completely contacted by the sensor shaft
consequently, they will be not reconstructed. Here, the sensor shaft sweeps over the
tops of the macroscopic features and by doing so the deflection induced curvature of
the sensor shaft suppresses the macroscopic features. So, there is a relation between
the spatial distribution of macroscopic features and the position of the contact point
along the sensor shaft. Obviously, the diameter of the sensor shaft is a morphological
filter as well. If the difference in size between the macroscopic features is less
than the sensor shaft diameter it cannot be recognized. Taking Figs. 6c and 8b
into account, the hypothesis of a deflection induced morphological filter is forced
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because the accuracy of the number of peaks reduces with decreasing clamping
to object distance. But it shows also that counting the peaks included in the support
reactions can give information about the present macroscopic features. Here, a small
clamping to object distance increases the number of detected peaks in order of an
increasing number of contact points. Both types of signals are strongly dependent
on the clamping to object distance whereby for analyzing the surface macroscopic
features there is an important difference. The support reactions, as well as the
reconstructed object contour, contain information about the number of macroscopic
features. But the reconstructed object contour contains information about the size
and shape of the macroscopic features, too. If the size of a macroscopic feature
corresponds to the amplitude of the peak in the signal of the support reactions is very
questionable since there are dynamical impacts between the sensor shaft and object.
Furthermore, a peak in the signals of the support reactions does not correspond
necessarily to a macroscopic feature. Peaks in the signals of the support reactions
can be caused by e.g. Stick-Slip events or other effects. An advantage of using Fy

as input signal is that there is no loss of information by any transformation of the
signal like in the case of using the reconstructed object contour as input signal.
Here, the algorithm of [10] causes a loss of information due to the restrictions of the
underlying theoretical model.

Considering the fact that the magnitudes of the support reactions increase with
decreasing clamping to object distance in combination with the hypothesis about
the morphological filter functionality, it can be summarized that by reducing the
clamping to object distance the signal components of the principle object contour
get pronounced/amplified and for an increasing distance increases the ability to
recognize macroscopic features. This hypothesis is supported by the findings in [8]
which report that rats try to limit the amount of bending of their vibrissae while
contacting an object. Furthermore, for rats it is known that there is a connection
between sensor and motor control in the cerebrum [6]. In context to the present
findings, it can be supposed that active controlling of the distance between clamping
and object by observing the low frequent part of the support reactions can be used to
optimize the detection of macroscopic features. In the case of animals, the relation
between increasing signal strength and decreasing ability of detecting macroscopic
features is further promoted by Weber’ Law which indicates that the measurable
change of a neuronal signal is proportional to the initial magnitude of the signal.
Adapted to the present problem this means that a close clamping to object distance
yields a large initial signal and small changes due to macroscopic features are
difficult to detect.

4 Conclusions

The present work describes how an artificial vibrissa-like tactile sensor interacts
with an object contour that is superimposed with macroscopic features. First,
the scenario was analyzed in simulation for a straight horizontal contour with
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superimposed sinus undulation, macroscopic features respectively. The results were
confirmed by the second step. Here, a wavy contour with superimposed macroscopic
features was analyzed in experiment. All findings can be summarized by the
following hypotheses:

– The deformation of the sensor shaft caused by contact with an object represents
a morphological filter for surface features.

– A closer clamping to object distance pronounces/amplifies the signal components
related to the principal object contour.

– A larger clamping to object distance improves the ability to detect macroscopic
features.

– The process of detecting macroscopic features can be enhanced by controlling
the distance between clamping and object in a way that there is tip contact only.

In future investigations, the analyses must be extended to surface micro features,
too. Here, the investigation of a frictional contact and its effect on the signals of
the support reactions will be in focus. Another interesting point will be to include
more properties of the natural paragon. For example, the natural vibrissa shaft is
inherently curved and has a conical body. Both properties will affect the described
morphological filter properties. Considering these properties, the sensor shaft maybe
builds up an inherent, adaptive, morphological filter bank consisting of: the sensor
tip (tapered body!); the inherent curvature; the bending induced curvature (adaptive
due to controlling the clamping object distance), and finally the slow and rapid
adapting mechanoreceptors. This idea can be even more advanced by including
more details of the natural example like properties of the Follicle-Sinus complex.

Acknowledgments Thanks to Philipp Schorr from Technische Universität Ilmenau for valuable
discussion and support.
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Modelling and Control of a Lower Limb
Exoskeleton Driven by Linear Actuators

Dariusz Grzelczyk , Olga Jarzyna , and Jan Awrejcewicz

Abstract In this paper, a design of lower limb exoskeleton driven by linear electric
actuators was proposed and investigated. A general, three-dimensional simulation
model of a lower limb exoskeleton was developed to study crucial kinematic
parameters of the proposed device. Also, biocompatibility aspects of the simulated
walking machine were considered both in the presented design and the simulation
model. Time histories of human joint angles in normal gait, captured with the use
of a motion capture system in our previous study, were employed as articulation
variables of individual joints of the investigated device. Moreover, a new gait gen-
erator, which can be used to produce rhythmic movements in hip and knee joints of
both limbs, was developed and tested. Finally, the possibility of using the proposed
control method was verified by using the constructed prototype of a single limb of
an exoskeleton controlled by a popular Arduino Uno microcontroller. Experimental
tests gave a promising outcome regarding the applied control approach. As a result,
a relatively simple, inexpensive and efficient mechanical design and control system
are expected, which can provide better access to lower limb exoskeletons for the
public and reduce the workload of physiotherapists.

Keywords Exoskeleton · Lower limb · Linear actuators

1 Introduction

In highly developed societies, the impairment of human locomotion is a phe-
nomenon commonly observed among both young people and the elderly. Regardless
of the reasons (such as, for instance, sports injuries and traffic accidents among
young people, and osteoarthritis or osteoporosis in elderly people), such dysfunc-
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tions of the locomotor system have a negative influence on medical and social
spheres. Different reports show that hundreds of million people in the world live
with some difficulties in locomotion, and, unfortunately, this number is constantly
growing [1]. One of the most popular and often used methods restoring human
mobility is physiotherapy [2]. However, in general, it requires a large number of
physiotherapists and their hard work, which often leads to occupational conditions
such as lower-back problems [3, 4]. Fortunately, it has been shown that lower limb
rehabilitation can be improved by external stimulation of muscular and nervous
systems realized by so-called Lower Limb Exoskeletons (LLEs), see papers [5–
10]. Recent developments and challenges in LLEs can be found in one of the
review papers [2]. LLEs should meet numerous requirements regarding mechanical
strength, stability, kinematic and dynamic biocompatibility with the human lower
limb, and control possibility [11–14]. The abovementioned aspects are still subjects
of the study of many academic and commercial research centers, although several
decades have passed since the first lower limb exoskeleton was made. Unfortunately,
detailed information about advanced commercial solutions is not available to the
public. Therefore, our study was inspired by similar devices found in academic
literature. As a result, relatively simple, efficient and inexpensive device to assist
restoration of motor functions of the disabled has been proposed. The developed
LLE can increase power in hip, knee and ankle joints of a human, causing an
increase in the efficiency of movement of the operator. The literature overview
indicates that DC motors with reduction gears are one of the most popular actuators
used to drive active joints of LLEs, for instance, see papers [15–19]. That is why
this type of electric actuators has been used in our design as well. In this paper,
we proposed CAD model of lower limb exoskeleton made of easily accessible
aluminum profiles and actuated by electric linear actuators (DC motors equipped
with reduction gears and screw-nut systems). To perform some virtual experiments
of the locomotion process, we developed a general full parametric 3D simulation
model in Mathematica software. The model is useful for obtaining crucial kinematic
parameters of the proposed device. Experimental data obtained in our previous
study by capturing the motion of real human gait were applied as kinematic
excitations (i.e. articulated variables in the LLE joints corresponding to human
hip, knee and ankle joints) [20]. Besides, smooth analytical approximations of
experimental articulated variables, in both hip and knee joints, were proposed.
Although the actuation of rotation in the ankle has a positive influence on the
movement of the exoskeleton, it is usually overlooked to reduce the total mass
and power consumption of the device. As a result, only two degrees of freedom
per each limb (i.e. hip and knee joints) are actuated in many devices found in
the literature, for instance, see papers [16, 18]. A similar approach was used in
the present study as well. To verify the proposed control method, experimental
investigations were carried out by using a constructed prototype of a single lower
limb of the exoskeleton. To control motion in hip and knee joints, a popular and
inexpensive microcontroller Arduino Uno with a digital PID controller was used.
The outcomes of the study can be used as guidelines for further improvement of the
proposed method and its practical applications in real LLE control systems.
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2 CAD Model of the Lower Limb Exoskeleton

The efficiency of machine operation can be improved with the use of computer
modelling through studying simulation results obtained for different modifications
of mechanical construction. Engineers can investigate numerous virtual models of
different machines before creating the final construction. Currently, there are a
lot of computer programs supporting researches in virtual prototyping of different
constructions, including lower limb exoskeletons. In this study, Inventor Profes-
sional 2019 was used for this purpose. CAD model of the proposed human lower
limb exoskeleton is presented in Fig. 1. Mechanical design of the presented model
consists of the main static frame which corresponds to the human pelvis, back
support for improving patient’s posture, two lower limbs and three linear actuators
per each robot’s limb. When modelling lower limbs of the exoskeleton, we were
inspired by the morphology of human lower limbs and similar solutions met in
the literature. As a result, the limb is reduced to three main segments actuated by
three joints, which correspond to human hip, knee and ankle joints. By changing
the lengths of particular segments of limbs, the presented model can be adapted
to people of different heights. Moreover, the application of linear actuators with

Fig. 1 CAD model of the
designed lower limb
exoskeleton driven by linear
actuators equipped with DC
motor, gear ratio and
screw-nut system
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limited strokes guarantees mechanical limitation of motion in the patient’s joints,
which increases safety during operation.

As an actuation element in each active joint, a linear actuator with DC motor,
gear ratio and screw-nut system was used. It should be noted that DC motors were
often used in numerous previous LLEs because of their low cost and easy control,
for instance, see papers [21–25].

3 Simulation Model

To investigate the proposed CAD model of lower limb exoskeleton, a 3D parametric
simulation model of the LLE was developed (see Fig. 2). The model has all parts
of the exoskeleton discussed above and presented in Fig. 1. It is fully parametric,
therefore arbitrary values of all parameters determining the kinematic model of the
exoskeleton can be used. The created simulation model can be used to visualize the
investigated mechanical design and control the correctness of the simulated results.
Especially, it allows one to control spatial positions of individual elements of the
device as well as configurations of its limbs. As a result, it can help understand
crucial kinematic and dynamic parameters of the investigated device in the further,
more advanced analysis and virtual experiments.

The presented simulation model is embedded in a global coordinate system Oxyz
that is fixed to the ground. Moreover, a local coordinate system O′x’y’z’ is fixed to

Fig. 2 A general,
three-dimensional full
parametric simulation model
of a lower limb exoskeleton,
created in Mathematica
software
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the pelvic part of the exoskeleton. When a patient wearing the LLE is walking, the
distance between the centres of these coordinate systems changes, and is equal

Δr(t) = [x(t), y(t), z(t)]T (1)

where x(t), y(t), and z(t) denote the distances between the coordinate systems in the
forward, lateral and vertical directions, respectively. To ensure biocompatibility, it
is possible to rotate the pelvic frame of the exoskeleton around all three main axes
of the coordinate system. Moreover, back support is connected to the pelvic part via
two passive revolute joints (marked by two green cylinders). Rotation in the frontal
plane y’z’ (around x’-axis) in described by the angle α(t). Rotation in the sagittal
plane x’z’ (around rotated axis y’) in described by the angle β(t). In turn, rotation
in the transverse plane x’y’ (around rotated axis z’) is given by the angle γ (t). As a
result, vectors r(t) of positions of points of the pelvic part in the coordinate system
Oxyz are given as follows

r(t) = R (α(t), β(t), γ (t)) · r′ + Δr (t) (2)

where r’ are vectors describing positions of points of the pelvis in the O′x’y’z’
system,

R (α(t), β(t), γ (t)) = Rz (γ (t)) · Ry (β(t)) · Rx (α(t)) (3)

is the rotation matrix between two abovementioned coordinate systems, whereas

Rx (α(t)) =
⎡

⎣
1 0 0
0 cos α(t) − sin α (t)

0 sin α (t) cos α(t)

⎤

⎦ (4)

Ry (β(t)) =
⎡

⎣
cos β(t) 0 sin β (t)

0 1 0
− sin α (t) 0 cos β(t)

⎤

⎦ (5)

Rx (γ (t)) =
⎡

⎣
cos γ (t) − sin γ (t) 0
sin γ (t) cos γ (t) 0

0 0 1

⎤

⎦ (6)

are rotation matrices for x-, y- and z-axes, respectively. The abovementioned
rotations are visualized in Fig. 3.

As one can see in Fig. 2, each lower limb is attached to the main pelvic part of
the exoskeleton via revolute hip joints (two passive joints marked by green cylinders
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(a) front view (b) side view (c) top view

rotation of the pelvic in the 
frontal plane (α(t) is the angle 

around x’ axis)

rotation of the pelvic in 
the sagittal plane (β(t) is 

the angle around y’ axis)

rotation of the pelvic in the trans-
verse plane (γ(t) is the angle around 

z’ axis)

Fig. 3 Rotations of the exoskeleton pelvic frame: (a) in the frontal plane (angle α(t)); (b) in the
sagittal plane (angle β(t)); (c) in the transverse plane (the angle γ (t))

and one active hip joint marked by a red cylinder). Three main segments of each
limb are connected by active knee and ankle joints, also marked by red cylinders.
As a result, regardless of the rotation of the pelvic part, each limb can perform its
movement in two dimensions, i.e. in the sagittal plane. The exact positions of all
characteristic points of both lower extremities of the exoskeleton can be determined
with the use of relatively simple mathematical relations. In this paper, we do not
focus on the formulation of a detailed mathematical model of a single limb since a
similar model can be found in one of our previous studies [20] as well as in other
papers found in the literature. Here, we presented only examples of some numerical
simulations and focused on the experimental results obtained with the help of the
constructed experimental stand.

4 Numerical Results

In our previous study [20], we conducted a kinematic analysis of the normal human
gait. To obtain articulated variables corresponding to particular human joints we
used an Optitrack motion capture system, which has been also successfully used
to similar biomechanical problems [26–29]. Mean angular positions of individual
lower limb joints in a single gait cycle are shown in Fig. 4. According to the
literature, we assumed that the gait cycle begins when the heel of one lower limb
(in our study – the left limb) touches the ground. A literature review indicates that
the presented results are usually similar regardless of time T of a single gait cycle.
Snapshots of simulations of the exoskeleton in different gait phases (captured at
regular time intervals) are shown in Fig. 5. Articulated variables in particular joints
were taken from Fig. 4, whereas time histories of the rotation angles α(t), β(t) and
γ (t) were estimated based on our previous study.



Modelling and Control of a Lower Limb Exoskeleton Driven by Linear Actuators 125

Fig. 4 Mean angles in human hip, knee and ankle joints of both legs (left L and right R) in a single
gait cycle

Fig. 5 Snapshots of simulations of the exoskeleton in different phases (in %) of a single gait cycle,
captured at regular time intervals
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As has already been mentioned, in numerous LLE found in the literature, rotation
in the ankle joint is often overlooked to reduce the total mass as well as energy
consumption of a device. In such cases, only two degrees of freedom per each limb
(i.e. hip and knee joints) are actuated. In this paper, we also proposed analytical
smooth functions which approximate time histories of the articulated variables in
hip and knee joints for both the left and the right limb. The obtained model can
be treated as a model of Gait Generator (GG) or Central Pattern Generator (CPG).
After analysing the experimental results presented in Fig. 4, including locations of
local minima and maxima in different moments of a single gait cycle, we proposed
a CPG model in the form of periodic functions, namely

ϕL hip (t) = ϕ1 (t) (7)

ϕR hip (t) = ϕ1 (t − 0.5T ) (8)

ϕL knee (t) = ϕ2 (t) (9)

ϕR knee (t) = ϕ2 (t − 0.5T ) (10)

where

ϕ1 (t) = φ1 (mod [t − T1, T ]) (11)

ϕ2 (t) = φ2 (mod [t − T2, T ]) (12)

mod states for the modulo operation that returns the remainder of a division of t -
T1 and t - T2 by T, respectively, and

φ1(t) =

⎧
⎪⎨

⎪⎩

φ11 min + (φ11 max − φ11 min) · sin2
(

π

2t11
t

)
if t ∈< 0, t11

)
,

φ11 max − (φ11 max − φ11 min) · sin2
(

π
2(T −t11)

(
t − t11

)
if t ∈< t11, T

)
,

⎫
⎪⎬

⎪⎭

(13)

φ2(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ21 min + (φ21 max − φ21 min) · sin2
(

π

2t21
t

)
if t ∈< 0, t21

)
,

φ21 max − (φ21 max − φ21 min) · sin2
(

π
2(t22−t21)

(t − t21)
)

if t ∈< t21, t22

)
,

φ22 min + (φ22 max − φ22 min) · sin2
(

π
2(t23−t22)

(t − t22)
)

if t ∈< t22, t23

)
,

φ22 max − (φ22 max − φ21 min) · sin2
(

π
2(T −t23)

(t − t23)
)

if t ∈< t23, T
)
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(14)

The best fit of the proposed approximations to the experimental results was
obtained for the following values of the parameters: T1 = 0.545 T, T2 = 0.435 T,
t11 = 0.33 T, t21 = 0.30 T, t22 = 0.55 T, t23 = 0.70 T, φ11min = −16.9 deg.,
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Fig. 6 Comparison of the proposed gait generator with experimental data obtained for the left
limb

Fig. 7 Angles ϕL_hip, ϕR_hip, ϕL_knee and ϕR_knee produced by the proposed gait generator for 3
full gait cycles

φ11max = 20.5 deg., φ21min = 9.4 deg., φ21max = 57.6 deg., φ22min = 1.7 deg.,
φ22max = 18.2 deg. A comparison of the obtained time histories of articulated
variables ϕL_hip and ϕL_knee with experimental results for left limb is presented in
Fig. 6. Based on the proposed gait model (formulas (7)–(14)), periodic time histories
of both hip and knee angles can be generated for any number of full walking cycles,
both for the left and right limb of the exoskeleton (for instance, see Fig. 7). It should
be noted that, depending on the values of the parameters T, T1, T2, t11, t21, t22,
t23, φ11min, φ11max, φ21min, φ21max, φ22min, φ22max, the proposed gait generator can
produce different gait types.
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5 Experimental Results

To verify the proposed LLE control approach, a single exoskeleton limb was
constructed – see Fig. 8. It is made of aluminum profiles connected by rotary
aluminum joints. Each of the two segments of the prototype is driven independently
by two linear actuators with a reduction gear and a screw-nut system. Also, each of
the two joints is equipped with a potentiometer that gives a signal in the feedback
loop. As a control unit, a popular and inexpensive microcontroller Arduino Uno
was used. Thanks to a 2-channel motor driver L298N dedicated for DC motors,
it was possible to control the speed of linear actuators by pulse-width-modulation
(PWM) technique. Analog voltage signals were transmitted from potentiometers to
the microcontroller by using analog inputs. In turn, PWM signals were transmitted
to the motor driver by using digital outputs. Finally, fill factors of the PWM
signals were calculated by two PID controllers implemented in the memory of the
microcontroller.

Figure 9 shows the results of control of the constructed exoskeleton leg. Figure
9a was obtained for experimental hip and knee angles (see Fig. 4) used as desired
trajectories. In turn, in the case of Fig. 9b, articulated variables calculated from
Eqs. (7)–(14) were used as desired trajectories. Two independent trajectory tracking
controllers were used to track the desired trajectories using feedback digital PID
controllers. PID controllers produce control signals by comparing the desired input
angles with actual output angles from potentiometers installed in the joints of the
prototype. One can see that in all presented cases, actual trajectories (solid lines)

Fig. 8 The prototype of a
single limb of the exoskeleton
made of aluminum profiles,
actuated by linear actuators
and controlled by Arduino
Uno microcontroller
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Fig. 9 Experimental results of control of the prototype of a single exoskeleton limb: (a)
experimental articulated variables as the desired trajectories; (b) articulated variables produced
by the proposed CPG model as the desired trajectories

of the hip and the knee follow the ideal trajectories (dashed lines) quite well, and
control errors are acceptable. The digital PID controllers implemented in Arduino
Uno gave promising results indicating that this approach can be successfully applied
in real devices.

6 Conclusions

In this paper, we proposed a design of a lower limb exoskeleton made of aluminum
profiles driven by linear electric actuators. To better investigate kinematic parame-
ters of the designed device as well as human gait with the exoskeleton, a general
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three-dimensional and fully parametric simulation model of the exoskeleton was
developed in Mathematica software. In the proposed design, and especially in the
developed simulation model, biocompatibility aspects of the simulated device were
considered. In a further study, the developed simulation model will be used for
more accurate virtual studies of a walking process and determination of the most
important gait parameters. In the present paper, time histories of human joint angles
during normal walking (obtained experimentally in the authors’ previous research)
were used as the articulated variables in individual joints of the exoskeleton. In
addition, a new gait generator was developed. It produces rhythmic movements of
both limbs, in two joints that are most important during gait, i.e. hip and knee joints.
To verify the proposed control method, a prototype of a single exoskeleton limb was
constructed. The carried out experimental studies gave promising results regarding
control of the device. To conclude, it is possible to develop a relatively inexpensive
and efficient design of an LLE as well as a relatively simple and inexpensive control
system for such devices. Also, it is possible to provide better access to LLE and
reduce the workload of physiotherapists in the future.
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Uncertainties in the Movement
and Measurement of a Hexapod Robot

István Kecskés , Ákos Odry , and Péter Odry

Abstract Model uncertainties can be defined using the simulation model and
real measurements, thereby the model accuracy is practically represented. The
differences between the simulation and reality create both inaccuracy and uncer-
tainty in control system development. Our previous researches presented these
inaccuracies numerically and pointed out some structure imperfections of the
Szabad(ka)-II hexapod robot. The performed sequential and parallel measurements
on the Szabad(ka)-II robot highlighted notable uncertainties at (i) the left and
right mechanical sides, (ii) in front and rear legs, (iii) current and voltage sensors
and (iv) in case of repetitive walking scenarios. The presented analysis takes into
account the 6-axis accelerometer measurements as well. The measurement errors
and uncertainties should be estimated before the optimization of robot control or
robot structure. It is also necessary to define the expected quality optimum and
correctly interpret the simulation results and imperfections.

Keywords Hexapod robot · Uncertainty analysis · Simulation model

1 Introduction

The robustness is a key property in robot control, and thus, the robust optimization
is an important step in control system design of complex mechanical systems. The
sensitivity and uncertainty analysis are the two main tools in the robust control
design, since the robust solution shows less model uncertainties compared to other
solutions [1]. The minimization of the uncertainty is a general optimization goal in
robot navigation problems [2] and in robot motion planning [3].

The construction of the dynamic simulation model is indispensable for the
optimization of robot control, because such a model can estimate adequately
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the robot’s behavior. The Szabad(ka)-II hexapod robot with 18 DOF embedded
mechatronic device system is suitable for complex drive control research [4],
moreover, it requires a robust control solution [5]. Its kinematical and dynamical
simulation model was built in Simulink environment, and published in detail in
[6]. In the case of Szabad(ka)-II, the focus was on the dynamic modeling in order
to be able to optimize both the motor controllers and walking algorithms, and
the robot structure as well [6]. In real systems, like this robot, a single definitive
optimal solution has been sought (not like a pareto set), and generally a robust
solution is required, because there are many uncertainties, i.e., deviations between
the simulation and measurements results, moreover, the real device is equipped with
non-perfect measuring instruments and there are time-varying parameters [7].

The uncertain parameters can be divided into three groups in an optimization
problem: physical, design, and scenario uncertainties [8]. The physical uncertainties
occur in the parts of the model where estimated model or approximate solutions
are used. The scenario uncertainties are related to the scenario parameters in a
multi-scenario approach, whereas the optimized (design) variables carry the design
uncertainties. These uncertainties belong to the simulation model, which was
analyzed previously – we denoted as model uncertainty.

The uncertainties are analyzed in two approaches in case of Szabad(ka)-II
robot:

• Model uncertainty obtainment, i.e., the deviation analysis between the real robot
and simulation model by taking into account the measurement errors. This task
was performed in our earlier work [6].

• Robot uncertainty obtainment, i.e., the deviation and repeatability analysis
between two real situations or two parts of the robot. This task is elaborated
in this paper.

Figure 1 illustrates both the aforementioned approaches and their role in the
robust control design endeavors.

1.1 Accuracy, Repeatability and Uncertainty

Accuracy and repeatability are two important properties of the robot motion, more-
over, these properties complement each other [9] in robot applications. Repeatability
is a measure of the ability of the robot to consistently reach a specified point, while
accuracy is a measure of the distance error associated with the desired point and
achieved point [10].

In industrial robots the gear backlash is the most influencing factor in repeatabil-
ity [11], which has been confirmed by our previous research from model accuracy
point of view [6].

In case of model uncertainty issues, the model accuracy estimation is the key
problem, however in case of robot uncertainty the repeatability analysis is required.
Therefore, the uncertainty estimation is practically a repeatability analysis in this
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Fig. 1 Two kinds of uncertainty analysis in the robust control research of a hexapod robot

paper. The simple standard deviation and relative standard deviation are used as in
most of such studies [4, 10]. Details are discussed in chapter “Nonlinear Dynamics
of the Hierarchic System of Oscillators”.

1.2 Model Uncertainty

There are many robot simulators available, each emphasizes different aspects of
robot behavior simulation [12]. Simulation models have been published for several
hexapod robots, but the quantification of the model validation mostly does not
exist, i.e., the comparison between the simulation results and reality is rather
descriptive [6].

Similarly to the results of model validation of Szabad(ka)-II robot, the model
uncertainties were numerically expressed and classified by taking into account both
the expectations and measurements errors. The measurements errors are defined
by statistical evaluation of repeated measurements on the real robot, which are
described and detailed in this paper.

http://dx.doi.org/10.1007/978-3-030-77306-9_2
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Fig. 2 The model uncertainty of motor current (IM) was evaluated in sense of robot uncertainty.
Horizontal bars represent the six legs of the robot. Originally published in [6]

Figure 2 shows the simulation error of motor current (IM) expressed with
Difference of Absolute Mean (fDAM) and Mean Absolute Error (fMAE) functions.
The green (real) color represents the measurement errors gained by repeatability
and referred as robot uncertainty in this paper. The red (sim trial) and blue (sim
optim) results represent the simulation error calculated between real and simulation
variables; these are considered as model uncertainties in the paper. The robot
uncertainty is considered as both reference error and theoretical minimum of model
error. In this example, the model error has approximately 5 times higher error
compared to this reference error.

All the measurements errors and uncertainties are independent from any simula-
tion model, therefore we distinguished and called them as robot uncertainties.

1.3 Robot Uncertainty

The Szabad(ka)-II robot is able to move based on a predefined trajectory curve,
which allows it to walk on flat terrain with different gait. This version of Szabad(ka)
robot series was not equipped with ground contact sensors, but it was sufficient to
develop DC motor controller and simulation model. We have chosen to perform
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dedicated scenarios according to the aforementioned possibilities and limitations
[5]. The analysis includes different robot walks on even terrain with variable load
and direction. All the measurements used in this research are derived from these
walking scenarios.

2 Analysis Method

2.1 Measurement Variables

The measurement unit utilized on the Szabad(ka)-II robot provides various electrical
and navigation variables. Most of these variables are sampled with 500 Hz, however
some variables are sampled only on 100 Hz or 200 Hz. Table IV in article [6]
has already described these quantities, but Table 1 below provides the important
information for this research.

Theoretically desired angles (Drad) are the same quantities between walk cycles
or between legs, but due to the measurement system timing error this can also

Table 1 Measurement variables of Szabad(ka)-II robot

Name Description Symbol Meas. unit Dimensions

Desired angles
of links

Calculated by the inverse kinematics Drad [rad] time × 3
link × 6legs

Angles of
links

The angles of robot leg links, derived
from the encoders signal

Arad [rad] time × 3
link × 6legs

Control
voltage of
PWM
amplifier

Calculated by the control algorithm Uvlt [V] time × 3
link × 6legs

Motor currents The absolute value of motor current
measured by 10bit ADC

Im [A] time × 3
link × 6legs

Power voltage The power voltage measured at each
leg (nominal value is 12 V)

Upow [V] time × 6legs

Robot body
3D angular
velocity

Measured by gyroscope mounted to
the center of the robot body

Gyro [dps] time × 3
axis
(X,Y,Z)

Robot body
3D
acceleration

Measured by accelerometer mounted
to the center of the robot body

Accel [mg] time × 3
axis
(X,Y,Z)

Cumulative
motor currents

Calculated from the motor currents
and summarized all the 18 links.
Isum =∑

Im

Isum [A] time × 1

Cumulative
system
resistance

Calculated from average power
voltage and cumulative motor
currents. The Ohm’s law is used
Rcalc = Upow/Isum

Rcalc [ohm] time × 1
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show smaller deviations. The angle (Arad), current (Im) and control voltage (Uvlt)
depend on the torque load on robot links, therefore these show higher deviations.
The cumulative motor current (Isum) represents the average consumption of all
the six legs and it is insensitive for the load imbalance between the legs. The 3D
gyroscope (Gyro) and accelerometer (Accel) capture the 3D motion of robot body;
however, their noise is relatively high.

2.2 Repeatability Analyses

The following repeatability analyses have been performed:

(a) Scenario-repetition analysis, which compares the measurement variables
between the same scenarios repeated after each other.

(b) Walk-cycle repeatability analysis, which compares the measurement variables
between consecutive walk cycles within one measurement. The cycle-deviations
of several scenarios are averaged on and this average was analyzed.

(c) Different leg comparison analysis, which compares measurement variables
between both left and right legs (c1) and front and rear legs (c2) on various
scenarios.

(d) Scenario variability analysis, which compares measurement variables between
various scenarios. This analysis is used as a reference value for the other
analyses.

(e) Power variable analysis, which calculates the internal cumulate resistance
from power voltage and summary current, moreover, scenario repeatability is
analyzed for these three variables.

2.3 Statistics

In the statistical analysis at least two or more time-series variables X ∈ R
M are

compared, where M denotes the number of digital samples (typically for one walk
cycle M = 620) and N is the number of variables (N ≥ 2). First, the synchronicity
is ensured between these variables and the resampling to Fs = 500Hz is performed
(if it is required), using some special cycle cut and signal preparation algorithms.

The absolute mean value (AM), standard deviation (SD) and relative standard
deviation (RSD) are calculated to express the variability between time-series
variables, see Eqs. 1, 2 and 3. These equations are averaged on M samples to get an
overall score value.
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The RSD can be expressed in percentage. This normalized score is the best
appropriate marker to both compare and evaluate the aforementioned repeatability
analysis.

3 Experimental Results

Altogether 16 measurements have been used from walking scenarios where the
length of walk cycle is 1.26 sec. Moreover, 10 different walking speeds or
forward/backward motion scenarios were used for the scenario variability analysis.

Table 2 lists the statistical results from a), b), c) and d) analyses. Figures 2, 3, 4
and 5 illustrate one of the variables as examples belong to a), b), c) and e) analyses.
Figure 7 summarizes and illustrates the statistical results.

Figure 3 shows the first robot leg angles for link variables related to one walk
cycle. The curves highlight the mean value (MEAN), the minimum value (MIN), the
maximum value (MAX), and the standard deviation (SD) calculated for each time
points. The deviation is relatively small (less than 2%); this was expected based on
the model uncertainty analysis made previously in [6].

Figure 4 shows the 3D acceleration of robot body in the b) analysis, the same
way as Fig. 3. The deviation is significantly higher than the angles (50–250%). The
uncertainty in direction Y and Z are notably higher, because the robot moves in X
direction, and its movement in Y and Z axis is small, i.e., the effect of vibration is
shown on these axes. It can be assumed that the magnitude of the acceleration sensor
noise is close to these vibration magnitudes, and together the movement variability
and noise produce such high uncertainty. The angular velocity of the robot body
measured by gyroscope shows similar uncertainty rate as the acceleration.

Figure 5 shows the motor current in c2) analysis, where the front and real legs are
compared. The plot shows the two motor current curves, and the standard deviation
calculated between these samples. There are specific sections where the difference
is small, and there are other parts where it is high in Link1 and Link2. This behavior
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Table 2 Measurement variables of Szabad(ka)-II robot

Analysis a) b) c1) c2) d)
Variable Channel SD RSD SD RSD SD RSD SD RSD SD RSD

Drad Link1 0.001 0.010 0.009 0.069 0.001 0.011 0.000 0.004 0.157 4.281
Drad Link2 0.001 0.011 0.008 0.064 0.001 0.011 0.001 0.005 0.144 1.075
Drad Link3 0.001 0.001 0.007 0.004 0.001 0.001 0.001 0.000 0.125 0.074
Arad Link1 0.002 0.019 0.009 0.065 0.003 0.021 0.002 0.018 0.150 4.161
Arad Link2 0.002 0.016 0.007 0.056 0.002 0.014 0.005 0.041 0.129 0.952
Arad Link3 0.002 0.001 0.007 0.004 0.003 0.002 0.002 0.001 0.115 0.068
Uvlt Link1 0.203 0.057 0.369 0.104 0.222 0.063 0.162 0.046 2.834 5.727
Uvlt Link2 0.194 0.032 0.512 0.092 0.158 0.028 0.484 0.084 5.561 2.424
Uvlt Link3 0.159 0.062 0.423 0.163 0.237 0.090 0.126 0.049 2.736 2.477
Im Link1 0.012 0.107 0.015 0.129 0.015 0.125 0.013 0.111 0.036 0.462
Im Link2 0.020 0.088 0.028 0.172 0.018 0.114 0.058 0.293 0.116 0.606
Im Link3 0.009 0.108 0.016 0.160 0.016 0.162 0.013 0.145 0.054 0.791
Isum 0.121 0.045 0.308 0.116 0.668 0.315
Upow 0.163 0.015 0.053 0.005 0.145 0.014
Gyro X 2.372 2.975 2.007 1.227 1.733 1.972
Gyro Y 3.380 0.640 4.268 0.781 2.430 1.593
Gyro Z 4.294 3.728 2.413 0.905 2.333 1.867
Accel X 26.258 0.259 47.352 0.481 44.048 1.584
Accel Y 24.846 1.627 21.133 1.132 19.764 2.298

0.2

0.1

0[r
ad

]
[r

ad
]

[r
ad

]

−0.1

−0.2

0.1

0

−0.3

−0.2

−0.1

−0.4

0

−1.5

−1

−0.5

−2

0 0.2 0.4

Arad (Link1): RSD = 1.853% SD=0.0024351 [rad]

Arad (Link2): RSD = 1.6489% SD=0.0021127 [rad]

Arad (Link3): RSD = 0.098643% SD=0.0016539 [rad]

0.6 0.8 1 1.2 1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

MEAN
MIN
MAX
STD

MEAN
MIN
MAX
STD

MEAN
MIN
MAX
STD

Fig. 3 Angle of links in a) Scenario Repeatability Analysis



Uncertainties in the Movement and Measurement of a Hexapod Robot 141

400

200

0

[m
g]

[m
g]

[m
g]

−200

−400

200

100

0

−100

−200

500

0

−500

16 16.5

Accel (X) RSD = 48.0659% SD=47.3518[mg]

Accel (Y) RSD = 113.249% SD=21.133[mg]

Accel (Z) RSD = 1254.0527% SD=86.529[mg]

17 17.5 18 18.5 19

16 16.5 17 17.5 18 18.5 19

16 16.5 17 17.5 18 18.5 19

MEAN
MIN
MAX
STD

MEAN
MIN
MAX
STD

MEAN
MIN
MAX
STD

Fig. 4 3D Acceleration variable in b) Walk cycle Repeatability Analysis

0.3

[A
]

[A
]

[A
]

0.2

0.1

0
0

0.8

0.6

0.4

0.2

0

0.4

0.3

0.2

0.1

0

0.5 1

Im (Link1): RSD = 11.0606% SD=0.012868[A]

Im (Link2): RSD = 29.3401% SD=0.57551[A]

Im (Link3): RSD = 14.5313% SD=0.013083[A]

1.5 2 32.5 3.5 4

0 0.5 1 1.5 2 32.5 3.5 4

0 0.5 1 1.5 2 32.5 3.5 4

Leg1
Leg5
sd

Leg1
Leg5
sd

Leg1
Leg5
sd

Fig. 5 Motor current variable in c) Different Leg Comparison Analysis (c2 between front and
rear)



142 I. Kecskés et al.

10

8

6[V
]

[A
]

[o
hm

]

4

2

0
0

5

4

3

2

1

0

10

8

6

4

2

0

0.2 0.4

Upow: RSD = 1.0646% SD=0.11713[V]

Isum: RSD = 6.0091% SD=0.16139[A]

Rcalc: RSD = 6.4736% SD=0.27791[ohm]

0.6 0.8 1 1.2 1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

MEAN
MIN
MAX
STD

MEAN
MIN
MAX
STD

MEAN
MIN
MAX
STD

Fig. 6 All three power variables in e) Power Variable Analysis

is caused by the robot’s “rearing horse”1 effect, proved by the simulation model as
well, and discussed previously in [4].

Figure 6 highlights the summarized power variables. Its deviation is smaller, but
the highest uncertainty is in the moment of step, i.e., when the robot leg touches
the ground (about 0 sec and 0.68 sec). The calculated system resistance both
inherits and aggregates the uncertainties from the voltage and current and its relative
standard deviation Rcalc:RSD = 6.5% value becomes higher (Upow:RSD = 1%,
Isum:RSD = 6%).

Figure 7 graphically shows all the uncertainty results documented in Table 1. The
right-bottom graph shows the ration of a) repeatability and e) variability RSD values,
which represent whether the same scenario (measured with “a)”) produces smaller
uncertainties than different scenarios (measured with “e)”). The power voltage is
approximately to 100%, which means similar uncertainty between scenarios and
repeated scenario. This was expected since the power voltage mostly does not
depend on the scenario. The gyroscope and acceleration variables result in high
ration. This means that those variables have significant uncertainty or measurement
noise, except those channels where the robot produces some activity (direction X,
and angle Y). Additional conclusions are written in the next chapter.

1Rearing occurs when a horse “stands up” on its hind legs with the forelegs off the ground
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Fig. 7 Uncertainty analyses summary

4 Conclusion

The uncertainties of a hexapod walker robot are both quantified and evaluated
through five different analyses in this research. The dynamic variables of robot
walking were analyzed which were recorded previously for different walking
scenarios. The evaluated variables can be grouped into three categories: (a) the
angles of links, and control and power voltages having minor uncertainties (1–3%),
(b) the motor currents having moderate uncertainties (10–20%) and (c) the 3D body
movements – measured by accelerometer and gyroscope sensors – having major
uncertainties (25–300%).

The derivation transformation on motion variables (both linear or angular)
highlights the high frequency components, i.e., the jerk fluctuations and noises, thus
velocity and acceleration variables show higher uncertainties compared to the base
movements.

The robot uncertainty analysis provides important information for the robust
control design research. The principal aim of the robust control is to minimize
the variability of motion quality for both the robot motion and measurement
variabilities.

The utilized navigation sensor cannot be used in a robot control loop without any
preprocessing due to its high uncertainty. The acceleration and velocity should be
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transformed to movement/angle quantities (e.g., using Kalman filter) to be able to
obtain robust 3D motion data. However, the integration transformation decreases the
fast reaction ability of a control mechanism. For example, when a robot leg collides
with a solid object during the walking, the acceleration sensor (mounted on the leg
or body) immediately captures the particular moment, but the integrated movement
or angle is less sensitive to this kind of registration processes.
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The Dynamics Analysis of a Spatial
Linkage with Flexible Links
and Imperfect Revolute Joints

Krzysztof Augustynek and Andrzej Urbaś

Abstract The algorithm for generating the dynamics equations of the two-dof
spatial linkage is considered in the paper. The presented linkage is composed of
the five rigid or flexible links which form a serial closed-loop kinematic chain.
It is assumed that revolute joints can be imperfect. The joint coordinates together
with homogeneous transformation matrices are applied to generate the equations
of motion. The dynamics equations are derived using the Lagrange equations of
the second kind. The presented algorithm gives the opportunity to generalize it
for any linkages with a tree closed-loop kinematic structure. The flexible links
are modelled by means of the Rigid Finite Element Method in the sense of the
modified approach. The author’s spatial model of the revolute joint with radial and
axial clearance is applied to take into account clearance effects. In this model, a
revolute joint is discretized by means of contact elements located on the cylindrical
and frontal surfaces of the journal and bearing. Such an approach allows us to detect
automatically collisions in many points of the contacting surfaces. The normal
contact force is calculated using the Nikravesh-Lankarani formula which is an
extension of the classic Hertz model because it additionally takes into account
dissipation of the energy. The LuGre friction model is applied to model friction
phenomenon in joints. In numerical simulations, an interaction between the links’
flexibility and clearance in the joint during the motion of the linkage is analyzed.
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1 Introduction

The clearance in joints can be the result of structural assumptions or the effect of
wearing parts. Simulation models of dynamics of linkages with clearance effects
allow to better understand their behavior, as well as to estimate the values of
impulse forces which increase the dynamic forces acting on the system. In addition,
thanks to these models it is possible to determine the limit value of the clearance
at which further operation can lead to damage of the system. Paper [1] shows that
the flexibility of links has a significant impact on the behavior of linkages with the
clearance in joints. The results presented there show that the flexibility can lead to a
significant reduction of the impulse forces caused by the impact of the journal and
bearing.

In the paper, it is assumed that the clearance can exist only in the revolute joints.
There are many papers devoted to the clearance model of the revolute joints [1–7].
These models can be divided into two main groups: planar [2, 3] and spatial [1, 4–7],
related to how the motion of the journal and bearing is described. Additionally, they
can analyze only the radial clearance [2, 3] or they can take into account interaction
between the radial and axial clearance [1, 4–7].

The dynamics model of the two-dof RPSUP linkage is presented in the paper.
This model takes into account the flexibility of the link and the clearance in the
revolute cut-joint. The kinematics of the linkage is described using the formalism of
the joint coordinates and homogeneous transformation matrices. The Rigid Finite
Element Method [8] is used to discretize the flexible coupler. The author’s spatial
model of the revolute joint with the radial and axial clearance is proposed. In these
model contacting surfaces are discretized by means of the contact elements for
which the normal and tangent contact forces are calculated. The impulse force in the
clearance joint is modeled using the Nikravesh-Lankarani formula [9] and friction
is modeled by means of the LuGre friction model [10]. In numerical simulations,
the influence of the crank velocity and the clearance in the revolute cut-joint on the
slider acceleration is analyzed.

2 Dynamics Model of the Two-dof RPSUP Spatial Linkage

The RPSUP linkage containing five links is shown in Fig. 1. The linkage is divided
at cut-joint R and as a result, the two open-loop kinematic chains are obtained

(c ∈ {1, 2}). The first chain contains three links
(
n

(1)
l = 3

)
whilst the second chain

forms two links
(
n

(2)
l = 2

)
. In the proposed model, it is assumed that the clearance

is considered only in the cut-joint R.
It is also assumed that coupler (1, 3) can be flexible and the Rigid Finite Element

Method is used to discretize its. As result, the coupler is replaced by the set of
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cut-joint R

chain 1

chain 2

l (1,2)

l (1,3)

link (1,1) – m(1,1)

link (1,2) – m(1,2)

link(2,1) –  m(2,1)

link (2,2) – m(2,2)

link (1,3)

(flexible - RFEM)

link (1,3) – m(1,3)

(replacement model)

lumped mass – mS

lumped mass – mR

(1,1)tdr

(1,2)fdr

C (1,1)

C (1,2)

C (1,3)

C (2,1)

C (2,2)

(1,3)

(1,3)

Fig. 1 Model of the RPSUP linkage

rigid finite elements (rfe) interconnected by means of the set of dimensionless and
massless spring-damping elements (sde) (Fig. 2).

2.1 The Formalism of Generalised Coordinates
and Homogeneous Transformation Matrices

The kinematics of the linkage considered is defined by means of the joint coordi-
nates and homogeneous transformation matrices (Fig. 2).

The generalised coordinates vectors defined for each open-loop kinematic chain
have the following form:

q(1) =
(
q

(1)
i

)

i=1,...,n
(1)
dof

=
[
ψ(1,1) z(1,2) ψ(1,3,0) θ (1,3,0) ϕ(1,3,0) q̃(1,3)

f

]T
,

(1.1)
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y(1,1)

z(1,1)

x(1,1)

x(0)

y(0)

z(0)

(1,2)x

z(1,2)

y(1,2)

x(2,1)

y(2,1)

z(2,1)

z(2,2)

x(2,2)y(2,2)

ψ(1,1)

x(1,2)

z(2,1)

ψ(2,2)

O

O(1,1)

O(1,2)

O(2,1)

chain 1

chain 2

(1,3,0)O y(1,3,0)

x(1,3,0)

z(1,3,0)

ψ(1,3,0)

φ(1,3,0)

θ (1,3,0)

R
O(2,2)

x′(2,1)

z′(2,1)y′(2,1)

z′(2,2)

x′(2,2)

y′(2,2)

z′(1,1)

x′(1,1)

y′(1,1)

x′(1,2)y′(1,2)

z′(1,2)

y′(1,3,0)

x′(1,3,0)

z′(1,3,0)

θ θs(1,3,s), d (1,3,s)

φ φs(1,3,s), d (1,3,s)
ψ ψs(1,3,s), d (1,3,s)

x(1,3,r–1)

z(1,3,r)

l (1,3,r–1)

sde(1,3,s–1)

sde(1,3,s)
sde(1,3,s+1)

rfe(1,3,r–1)

x(1,3,r)

z(1,3,r–1)

y(1,3,r)

y(1,3,r–1)

l (1,3,r)

ψ(1,3,r)

φ(1,3,r)

θ(1,3,r)

rfe(1,3,r)

O(1,3,r–1)

O(1,3,r)

O(1,3,r)

Fig. 2 Generalised coordinates

q(2) =
(
q

(2)
i

)

i=1,...,n
(2)
dof

= [
z(2,1) ψ(2,2)

]T
, (1.2)

where: q̃(1,3)
f =

⎧
⎨

⎩

∅ if coupler rigid,
[

q̃(1,3,1)T · · · q̃(1,3,r)T · · · q̃

(
1,3,n

(1,3)
rf e −1

)T
]T

if coupler flexible,

q̃(1,3,r) = [
ψ(1,3,r) θ (1,3,r) ϕ(1,3,r)

]T
.

The transformation matrices from the local reference frames defined for each link
to the global reference frame are defined by:

T(c,b)
∣∣∣
c = 1, 2
b = 1, . . . , n

(c)
l

=
b∏

j=1

Ã(c,j)T̃(c,j), (2)

where Ã(c,j) = const is the transformation matrix describing the initial position
and orientation of link (c, j) with respect to the preceding link, T̃(c,j) is the
transformation matrix defining the actual position and orientation of link (c, j) with
respect to the initial configuration.
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2.2 Dynamics Equations of Motion

The dynamics equations for each open-loop kinematic chain are derived using the
Lagrange equations of the second kind [8]:

d

dt

∂E
(c)
k

∂q̇(c)
− ∂E

(c)
k

∂q(c)
+ ∂E

(c)
p

∂q(c)
+ ∂R(c)

∂q̇(c)
= Q(c)

∣∣
∣
c=1,2

, (3)

where E
(c)
k is the kinetic energy of chain c, E

(c)
p = E

(c)
p,g + E

(c)
p,fl

is the sum of the
potential energy of gravity forces and spring deformation energy of the flexible link,
R(c) is the Rayleigh function defined for the flexible link and Q(c) is the vector of
non-potential generalised forces resulting from e.g. the contact forces acting in the
clearance joint. The following sections present detailed formulas for determining
components of the Eq. (3).

Kinetic Energy and Potential Energy of Gravity Forces

The kinetic energy of the particular subchains can be determined using the concept
of the trace of the matrix:

E
(1)
k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

n
(1)
l∑

l=1
tr
(

Ṫ(1,l)H(1,l)Ṫ(1,l)T
)

if coupler rigid,

1
2

n
(1)
l −1∑

l=1
tr
(

Ṫ(1,l)H(1,l)Ṫ(1,l)T
)

+ 1
2

n
(1,3)
rf e −1∑

r=1
tr
(

Ṫ(1,3,r)H(1,3,r)Ṫ(1,3,r)T
)

if coupler flexible,

(4.1)

E
(2)
k = 1

2

n
(2)
l∑

l=1

tr
(

Ṫ(2,l)H(2,l)Ṫ(2,l)T
)

, (4.2)

where H(•) is the pseudo-inertia matrix of link or rfe.
After necessary transformations the Lagrange operator can be written in the

matrix form as follows:

d

dt

∂E
(c)
k

∂q̇(c)
− ∂E

(c)
k

∂q(c)
= M(c)q̈(c) + h(c), (5)
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where: M(c) =
(

M(c)
i,j

)

i,j=1,...,n
(c)
l

, M(c)
i,j =

n
(c)
l∑

l=max{i,j}
M(c,l)

i,j , M(c,l)
i,j

∣
∣∣
i,j=1,...,l

=
(

m
(c,l)

n
(c,i−1)
dof +v,n

(c,j−1)
dof +w

)

v = 1, . . . , ñ
(c,i)
dof

w = 1, . . . , ñ
(c,j)
dof

, m
(c,l)
i,j = tr

{
T(c,l)

i H(c,l)T(c,l)T

j

}
h(c) =

(
h(c)

i

)

i=1,...n
(c)
l

, h(c)
i =

n
(c)
l∑

l=i

h(c,l)
i ,h(c,l)

i

∣∣
∣
i=1,...,l

=
(

h
(c,l)

n
(c,i−1)
dof +v

)

v=1,...,ñ
(c,l)
dof

,h(c,l)
i =

n
(c,l)
dof∑

m=1

n
(c,l)
dof∑

n=m

tr
{

T(c,l)
i H(c,l)T(c,l)T

m,n

}
q̇

(c,l)
m q̇

(c,l)
n .

The potential energy of the gravity forces for each subchain can be expressed in
a similar way:

E(1)
p,g =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n
(1)
l∑

l=1
m(1,l)j2T(1,l)r(1,l)

C if coupler rigid,

n
(1)
l −1∑

l=1
m(1,l)j2T(1,l)r(1,l)

C +
n

(1,3)
rf e∑

l=1
m(1,l,r)j2T(1,l,r)r(1,l,r)

C if coupler flexible,

,

(6.1)

E(2)
p,g =

n
(2)
l∑

l=1

m(2,l)j2T(2,l)r(2,l)
C , (6.2)

where m(•) is the mass of link or rfe, r(•)
C is the vector of the centre of mass of link

or rfe, j2 = [
0 1 0 0

]
.

The generalized forces due to the gravity forces can be calculated as follows:

∂E
(c)
p,g

∂q(c)
= g(c), (7)

where: g(c) =
(

g(c)
i

)

i=1,...n
(c)
l

, g(c)
i =

n
(c)
l∑

l=i

g(c,l)
i ,g(c,l)

i

∣∣∣
i=1,...,l

=
(

g
(c,l)

n
(c,i−1)
dof +v

)

v=1,...,ñ
(c,l)
dof

,

g(c,l)
i

∣∣∣
i=1,...,l

=
(

g
(c,l)

n
(c,i−1)
dof +v

)

v=1,...,ñ
(c,i)
dof

, g
(p)
i = m(c,l)gj2T(c,l)

i r(c,l)
C .
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Modelling of the Flexibility of Coupler

The Rigid Finite Element Method [8] is used to discretize the coupler. The spring
deformation energy and the Rayleigh function of the flexible link takes a form:

E
(1)
p,fl

= E
(1,3)
p,fl

= 1

2

n
(1,3)
sde∑

s=1

(
d(1,3,s)

)T

S(1,3,s)d(1,3,s), (8.1)

R
(1)
fl

= R
(1,3)
fl

= 1

2

n
(1,3)
sde∑

s=1

(
ḋ(1,3,s)

)T

D(1,3,s)ḋ(1,3,s), (8.2)

where d(1, 3, s) = q(1, 3, r), S(1, 3, s), D(1, 3, s) are stiffness and damping matrices of
sde(1,3,s).

These components are introduced to the dynamics equations as the generalized
forces which can be calculated as follows:

∂E
(1)
p,fl

∂q
+ ∂R

(1)
fl

∂q̇
= s(1)

fl
, (9)

where: s
(1)
fl ,i

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n
(1,3)
sde∑

j=1

(
∂q̃(1,3,j)

∂qi

)T

S(1,3,j)q̃(1,3,j)

+
(

∂ ˙̃q(1,3,j)

∂q̇i

)T

D(1,3,j) ˙̃q(1,3,j)
if qi ∈ q(1,3)

f ,

0 otherwise.

Modelling of Contact Forces in Clearance Joint

In the presented approach, it is assumed that the clearance occurs only in the cut-
joint R (Fig. 1). The spatial model of the revolute joint with clearance is proposed
(Fig. 3). This model allows considering the radial and axial clearances. In order to
take into account the radial clearance, the lateral surface of the journal is discretized
into n

(r)
ce radial contact elements (cer) located around the perimeter on nr levels.

In the case of the axial clearance, the frontal surface of the journal is discretized
into n

(a)
ce axial contact elements (cea) located around the perimeter on na levels.

The contact force of ceα(i, k) acting on the bearing and journal are determined as
follows:

f(b,i,k)
c,α

∣∣∣
α∈{r,a} = f (i,k)

n,α n(i,k)
α + f

(i,k)
t,α t(i,k)

α , (10.1)
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Fig. 3 Model of revolute joint with radial and axial clearance



The Dynamics Analysis of a Spatial Linkage with Flexible Links and Imperfect. . . 153

f(j,i,k)
c,α

∣∣∣
α∈{r,a} = −j

bRf(b,i,k)
c,α , (10.2)

where f
(i,k)
n,α , f

(i,k)
n,α are the normal and tangent forces, n(i,k)

α , t(i,k)
α are the normal

and tangent unit vectors to the contact surfaces, j
bR is the rotation matrix from

bearing frame {b} to journal frame{j}. Normal force f
(i,k)
n,α and tangent forcef (i,k)

t,α

are calculated using the Lankarani-Nikravesh [9] and LuGre [10] formulas:

f (i,k)
n,α

∣∣
∣
α∈{r,a} = s(ce,i,k)

α Δ(i,k)
α + d(ce,i,k)

α Δ̇(i,k)
α , (11.1)

f
(i,k)
t,α

∣∣∣
α∈{r,a} =

(
σ0z

(i,k)
α + σ1z

(i,k)
α + σ2υ

(i,k)
t,α

)
f (i,k)

n,α , (11.2)

where s
(ce,i,k)
α , d

(ce,i,k)
α are stiffness and damping coefficients of the contact element

[1, 9], Δ(i,k)
α is deformation of the contact element, σ 0, σ 1, σ 2 are stiffness, damping

and viscous friction coefficients of the bristles, z
(i,k)
α is deformation of the bristle,

υ
(i,k)
t,α is a tangent velocity at the contact point.

The forces expressed by Eq. (10) are introduced to the dynamics equations in the
form of the generalised forces as follows:

c(1) =
nr∑

i=1

n
(r)
ce∑

k=1

(

f(b,i,k)
c,r

∂r
K

(b,i,k)
r

∂q(1)
+ f(j,i,k)

c,r

∂r
K

(j,i,k)
r

∂q(1)

)

+
na∑

i=1

n
(a)
ce∑

k=1

(

f(b,i,k)
c,a

∂r
K

(b,i,k)
a

∂q(1)
+ f(j,i,k)

c,a

∂r
K

(j,i,k)
a

∂q(1)

)

,

(12.1)

c(2) =
nr∑

i=1

n
(r)
ce∑

k=1

(

f(j,i,k)
c,r

∂r
K

(j,i,k)
r

∂q(2)

)

+
na∑

i=1

n
(a)
ce∑

k=1

(

f(j,i,k)
c,a

∂r
K

(j,i,k)
a

∂q(2)

)

. (12.2)

2.3 Final Dynamics Equations

The dynamics equations of motion together with the state equations formulated for
the LuGre friction model take the form:

ż = LuGre (t, v, z) , (13.1)

[
M(1) 0

0 M(2)

] [
q̈(1)

q̈(2)

]
=
[

−h(1) − g(1) − s(1)
fl

+ c(1)

− h(2) − g(2) + c(2)

]

, (13.2)
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where: M(c), h(c)|c ∈ {1, 2} are defined by Eq. (5), forces, g(c)|c ∈ {1, 2} are described by

Eq. (7), s(1)
fl

is defined Eq. (9), c(c)|c ∈ {1, 2} are defined by Eq. (12).

3 Case Study

The presented model of the RPSUP spatial linkage is applied to analyze the
influence of the crank’s velocity on the dynamic response of the linkage. The
geometrical and mass properties of the links are gathered in Table 1. It is assumed
that the motion of crank and slider (1,2) have to change according to the assumed
functions shown in Fig. 4.

It can be noted that after time 2 s the angular velocity of crank (1,1) is equal to
ϕ̇

(1,1)
0 ∈ {5, 10, 12 rad s−1

}
. The motion of slider (1,2) is intermittent and after each

complete cycle, there is a pause in movement, which duration time is equal to 0.5 s.
It is assumed:

Table 1 Parameters of RPSUP linkage

Parameters link (1, 1) link (1, 2) link (1, 3) link (2, 1) link (2, 2)

m(c, j), kg 0.471 0.490 0.306 0.780 0.107
l(c, j), m 0.2 0.2 0.5 0.1 0.1

I
(c,j)
x , kgm2 6.964 × 10−5 2.451 × 10−5 3.829 × 10−6 8.126 × 10−4 9.354 × 10−5

I
(c,j)
y , kgm2 6.309 × 10−3 6.548 × 10−3 2.553 × 10−2 1.885 × 10−4 8.377 × 10−6

I
(c,j)
z , kgm2 6.309 × 10−3 6.548 × 10−3 2.553 × 10−2 1.885 × 10−4 8.377 × 10−6

I
(c,j)
yz , kgm2 −1.080 × 10−5 2.410 × 10−5 0 0 0

I
(c,j)
xy , I

(c,j)
xz , kgm2 0 0 0 0 0

Fig. 4 The assumed time courses of the kinematic inputs: (a) crank (1,1), (b) slider (1,2)
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Fig. 5 Time courses of the acceleration of slider (2,1) calculated for cr = 0 mm: (a) rigid coupler,
(b) flexible coupler

Fig. 6 Time courses of the acceleration of slider (2,1) calculated for: cr = 0.25 mm (a) rigid
coupler, (b) flexible coupler

– flexible link parameters: Young modulusE = 2.1 × 1011 Pa, Kirchhoff modu-
lusG = 0.8 × 1011 Pa, number of rfes n

(1,3)
rf e = 4,

– clearance joint parameters: μs = 0.1, μk = 0.2, σ 0 = 100 m−1, σ 1 = 5 s m−1,
σ 2 = 0 s m−1, vs = 1 × 10−3m s−1, restitution coefficient kr = 0.9, radius of the
bearing r(b) = 5 × 10−3 m.

In simulations, it is assumed that axial clearance is equal to 0. The dynamics
equations are integrated using the 4th order Runge-Kutte scheme. The Baumgarte
stabilization method is applied to eliminate kinematic input constraints violations
at position and velocity levels. Figure 5 shows acceleration courses of slider
(2,1) obtained for the model without clearance effect. Analyzing the plots, it
can be observed that the coupler’s flexibility doesn’t have a great impact on
the motion of the linkage. As the crank velocity increases, the amplitude of the
slider’s acceleration becomes significantly larger. Further, the radial clearance of
the revolute joint connecting coupler with link (2,1) is taken into account. Figures 6
and 7 show slider acceleration time courses obtained for the radial clearance equal
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Fig. 7 Time courses of the acceleration of slider (2,1) calculated for cr = 0.50 mm: (a) rigid
coupler, (b) flexible coupler

Fig. 8 The trajectory of the journal inside the bearing calculated for cr = 0.25 mm: (a) rigid
coupler, (b) flexible coupler

to cr = 0.25 mm and cr = 0.5 mm, respectively. The trajectories of the journal
inside the bearing are presented in Figs. 8 and 9. Analyzing the results obtained
for cr = 0.25 mm it can be observed that as velocity ϕ̇

(1,1)
0 increase from 10 to 15

rad s−1, the maximum acceleration increases 8.5 times if the coupler is rigid and 4
times if the coupler is treated as a flexible.

In the case of cr = 0.5 mm acceleration increases 3.5 times when the coupler is
rigid and 1.25 times if the coupler is treated as a flexible. Additionally, values of
acceleration peaks due to the collision between contacting bodies are smaller when
the radial clearance equals to 0.5 mm. The presented simulation results confirm that
the flexibility compensates for negative effects due to impulse forces existing in the
revolute joint.
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Fig. 9 The trajectory of the journal inside the bearing calculated for cr = 0.50 mm: (a) rigid
coupler, (b) flexible coupler

4 Concluding Remarks

The paper presents the mathematical model of the two-dof RPSUP linkage with
the flexible coupler and clearance in the revolute joint. An essential feature of the
presented approach is that it can be easily generalized to model dynamics of linkages
with a serial open-loop kinematic structure composed of flexible links and revolute
frictional joints with clearance, not only at cut-joints. The main advantage of the
proposed model of the revolute joint with the clearance is that it allows us to analyze
different combinations of contact between the journal and bearing. The simulation
results show that the coupler’s flexibility has a great impact on the motion of the
linkage with the clearance joint. When the flexibility of the coupler is taken into
account the acceleration of the slider is significantly smaller because some part of
the energy resulting from the impulse force is transformed into the link’s spring
deformation.
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Application of Homogenous
Transformations in the Dynamic Analysis
of Truck Trailers

Andrzej Harlecki, Adam Przemyk, and Szymon Tengler

Abstract Results of an analysis of dynamics of a truck with a trailer are presented
in the paper. A mathematical model of this combination of vehicles, constituting a
multi-body system, was developed by using formalism of Lagrange’s equations,
based on the joint coordinates and homogeneous transformations taken from
robotics. Within the computer simulations performed behaviour of the modelled
system was studied in the road traffic conditions while performing typical road
manoeuvres, and changing design parameters and load of the trailer. The developed
mathematical model can be treated as a virtual prototype of the system in question.
According to the authors, the proposed method can have practical significance and it
can be used in designing the truck trailers. Many design proposals can be formulated
on the basis of the results of the performed simulations, and they can become the
basis for making real trailer prototypes.

Keywords Truck trailer · Dynamics · Lagrange’s equations · Joint coordinates

1 Introduction

The subject matter of the considerations presented in this paper is a truck trailer
with the central axle. This axle is placed in half the length of the trailer (see Fig. 1),
what provides that at uniform distribution of loads on its surface only a small part
of this load is transferred through its drawbar to the towing truck. For these reasons
the vehicles with trailers having the central axle are characterized by a great ease of
manoeuvring. The trailers with the central axle are used, first of all, for transporting
light goods. In practice, this type of the trailer is often equipped with not one, but
two or more axles.
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Fig. 1 The analysed combination of vehicles

Fig. 2 A position of the coordinate systems in question

2 Mathematical Model of Combination of Vehicles

Mathematical formalism used in the analysis of dynamic systems in a form of
open kinematic chains (mainly for modelling robot manipulators) is applied in the
adopted procedure. It is based on use of joint (relative) coordinates – as generalised
coordinates and homogenous transformations [1, 5].

In the case of two adjacent Cartesian coordinate systems x̂k ŷk ẑk and x̂l ŷl ẑl (see
Fig. 2), made by versors, the matrix of the transformation from system x̂l ŷl ẑl to
system x̂k ŷk ẑk has a form:

k
l T =

[
l
kR krl

0 0 0 1

]
. (1)

The position vector krl determines the position of origin of coordinate system x̂l ŷl ẑl

in system x̂k ŷk ẑk .
Elements of the rotation matrix from coordinate system x̂l ŷl ẑl to system x̂k ŷk ẑk

of a general form:

k
l R =

⎡

⎣
x̂l x̂k ŷl x̂k ẑl x̂k

x̂l ŷk ŷl ŷk ẑl ŷk

x̂l ẑk ŷl ẑk ẑl ẑk

⎤

⎦ (2)
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Fig. 3 The multi-body system as the open kinematic chain

constitute direction cosines expressed in a form of scalar products of appropriate
versors.

Orientation of the versors of system x̂l ŷl ẑl in relation to the versors of system
x̂k ŷk ẑk can be determined by Euler’s angles ψ , θ , ϕ of type ẑ ŷ x̂ [1].

In the case of the multi-body systems considered in the form of open kinematic
chains (see Fig. 3) the vector of generalised coordinates of body (p) can be presented
in the following form:

q(p) =
[

q(p−1)

∼
q

(p)

]

, (3)

where:

q(p − 1) – the vector of global generalised coordinates describing the motion of body
(p-1) preceding body (p),

∼
q

(p) =
[
q

(p)

1 , . . . , q
(p)

ñp

]T
– the vector of ñp local generalised coordinates defining

the relative motion of body (p) in relation to body (p-1).
The multi-body system modelling the combination of vehicles consists main

sub-assemblies of the truck (see Fig. 4) and the trailer (see Fig. 5), which were
considered as rigid bodies. The rear wheels of the truck modelled in a form of
bodies (12L) and (12P) are driven by torques τ(12L) and τ(12P). The system includes
selected spring and damping elements (not shown in the figures) occurring in the
vehicles modelled.

The multi-body system in question is an open kinematic chain of a branched
structure (a tree-structure) – see Fig. 6. The model of the truck is assumed as the
root of this chain. The end parts of the chain in a form of models of vehicle wheels
are loaded by road reactions (not shown in the figures).

As stated in the paper [6], in the case of the multi-body system considered in
a form of the tree-structure open kinematic chain (see Fig. 7) motion of body (p)
depends on the global generalised coordinates of its predecessor in the chain, called
base body (up), and its local coordinates in relation to this body.

Vector of N(p) generalised coordinates of body (p) can be written as follows:
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Fig. 4 The truck model

q(p) =
[

q(up)T,
∼
q
(p,up)T

]T

=
(
q

(p)
i

)
, for i = 1, . . . , N(p), (4)

where:

q(up) =
(
q
(up)
i

)
,for i = 1, . . . , N(up) – vector of N(up) global generalised

coordinates of base body (up),
∼
q
(p,up) =

(
q̃
(p,up)
i

)
, for i = 1, . . . ,

∼
N

(p,up)
– vector of

∼
N

(p,up)
local generalised

coordiantes of body (p) determining its motion in relation to base body (up).

The following relationship is true:
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Fig. 5 The trailer model

N(p) = N(up) + ∼
N

(p,up)
. (5)

Following further the guidelines provided in the work quoted, for each body of the
tree-structure chain in question an ordered set containing numbers of the bodies
preceding it including its own number (p) is defined:

M(p) =
{
m

(p)

1 , . . . , m
(p)
i , . . . , m

(p)

s(p)

}
, (6)

where:

s(p) – a number of bodies preceding body (p) including it.
Vector q(p) can be presented now in the following form:
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Fig. 6 The tree-structure of the multi-body system considered

Fig. 7 The multi-body system as the tree-structure open kinematic chain

q(p) =
[

∼
q

(
m

(p)
1

)T

, · · · ,
∼
q

(
m

(p)
i

)T

, · · · ,
∼
q

(
m

(p)

s(p)

)T]T

. (7)

The model of the truck, i.e. body (1), has six degrees of freedom (three
displacements and three rotations), which can be presented by a vector of

generalised coordinates:
∼
q

(1) =
[

∼
x

(1)
,
∼
y

(1)
,
∼
z

(1)
,

∼
ψ

(1)

,
∼
θ

(1)

,
∼
ϕ

(1)
]T

. The next sub-

assemblies connected with the model of the truck are three axles modeled as
bodies (11), (12), (13) of two degrees of freedom, thus their vectors of generalised
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coordinates have a form of:
∼
q

(k) =
[

∼
z

(k)
,

∼
ϕ

(k)
]T

, where k = 11, 12, 13. Each axle

is equipped with two wheels as bodies (11 L), (11P), (12 L), (12P), (13 L), (13P) of

which the vectors of generalised coordinates have a form of:
∼
q

(k) =
[∼
ψ

(k)

,
∼
θ

(k)
]T

,

where k = 11L, 11P (for the front steering wheels) and
∼
q

(k) =
[∼
θ

(k)
]T

, where

k = 12L, 12P, 13L, 14P (for the wheels of the other axles). The drawbar of
the model of the trailer, being its integral part, is joined with the model of the
truck by a spherical joint. Therefore, the model of the trailer, i.e. body (2), has
three degrees of freedom (rotations) in relation to the model of the truck, thus

its vector of generalised coordinates has a form of:
∼
q

(2) =
[∼
ψ

(2)

,
∼
θ

(2)

,
∼
ϕ

(2)
]T

.

Two axles modelled as bodies (21), (22) are joined with the model of the trailer

and their vectors of generalised coordinates have a form of:
∼
q

(k) =
[

∼
z

(k)
,

∼
ϕ

(k)
]T

,

where k = 21, 22. Two wheels as bodies (21 L), (21P), (22 L), (22P) of which

the vectors of generalised coordinates have form of:
∼
q

(k) =
[∼
θ

(k)
]T

, where

k = 21L, 21P, 22L, 22P, are attached to each axle. The vector of generalised
coordinates of the entire multi-body system considered has a form of: q =[

∼
q

(1)T
,
∼
q

(11)T
,
∼
q

(12)T
,
∼
q

(13)T
,
∼
q

(11L)T
,
∼
q

(11P)T
,
∼
q

(12L)T
,
∼
q

(12P)T
,
∼
q

(13L)T
,
∼
q

(13P)T
,

∼
q

(2)T
,
∼
q

(21)T
,
∼
q

(22)T
,
∼
q

(21L)T
,
∼
q

(21P)T
,
∼
q

(22L)T
,
∼
q

(22P)T
]

. This vector has 31

elements what is the number of degrees of freedom of the system in question.
Based on Lagrange’s equations and using the algorithms presented in the

monograph [4], equations of motion of the multi-body system in question can be
formulated as:

Aq̈ = f, (8)

where:

A – mass matrix,
f – vector of external (generalised), Coriolis and centrifugal forces.

In the adopted method a Dugoff-Uffelmann tire model [2] was used to present an
interaction of the road on wheels of the vehicles. Detailed algorithms of this model
are also presented in the monograph [3]. Values of forces acting on the wheels and
lying in the road plane and value of the aligning torque were determined by using
these algorithms. These values were dependent on the values of deformations of the
tires in the normal direction to the road. The reaction values determined in such a
way were included in the equations of motion of the vehicle combination model in
a form of generalised forces, using the algorithms given in the monograph [3].
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It is assumed that generalised coordinates referring to steering angles
∼
ψ

(11L)

and
∼
ψ

(11P)

of the truck front wheels, modelled in a form of bodies (11 L) and (11P),
are the given time function. Therefore, the equations corresponding to them should
be removed from the system of the equations of motion. This system should be
completed with two equations of constraints which are twice differentiated with
respect to time. Consequently, the dynamic equations of motion of the multi-body
system considered can be written in the matrix form as:

{
Aq̈ − �r = f

�Tq̈ = w
, (9)

where:

� – constraint matrix,
r – vector of unknown constraint reactions corresponding to torques acting on front

wheels of truck,
w – vector of right sides of constraint equations.

3 Computer Simulations and Results

The selected results of the numerical calculations were verified experimentally.
For this purpose the real vehicle combination was equipped with motion sensors
which allowed determining time courses of its selected kinematic parameters while
performing typical road manoeuvres. The experimental courses were compared with
the computing courses, obtaining their good qualitative and quantitative compliance.
While performing numerical simulations the values of the main geometrical and
physical parameters of the trailer were changed, and their influence on stability
of motion of the vehicle combination was analysed. The position of its centre of
gravity was changed as a result of including a variable load distribution in the trailer.
Figure 8 presents one of the cases investigated, namely driving of the towed trailer
over a speed bump. The motion sensors were attached to the trailer in points A and
B (see Fig. 9).

In the following figures some examples of numerical calculations compared with
the experimental results are presented. They relate to the time courses of vertical
accelerations of the trailer frame points in which the sensors were mounted – A (see
Fig. 10a) and B (see Fig. 10b). The first observed increase of the acceleration value
(point A) occurred when the rear wheels of the truck were driving over the speed
bump, and the second one (point B) when the wheels of the trailer were driving over
the obstacle. Sufficient compliance of the computing results and measurements can
be observed.
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Fig. 8 Driving over a speed bump

Fig. 9 Placement of the sensors
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Fig. 10 Vertical
accelerations of points A and
B – the comparison of
simulation and experimental
results: (a) the course for
point A, (b) the course for
point B

4 Conclusions

The conclusions obtained as a result of a quick numerical analysis of the relatively
simple considered multi-body systems can be used as initial guidelines in the
analysis of the advanced model of this combinations of vehicles, made by authors
of this paper by use of commercial MSC ADAMS program. In this case the frame
of the trailer of complicated geometry was modelled as a deformable body by using
the finite element method. The developed advanced model of the trailer could be
treated as its virtual prototype which can be used effectively in the process of its
design. It became basis to build a real prototype of the trailer of the structure near
to its final version to be implemented into the production. The procedure presented
enabled to shorten significantly design time.
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Abstract The paper addresses an issue of improving capabilities of the constitutive
models elaborated for shape memory alloys (SMA) to solve dynamic problems.
Artificial neural networks (ANN) are utilized to simulate the experimentally
identified complex behavior of the mentioned type of smart materials. Although
SMA are known and widely used in various engineering applications for many
decades, both understanding and, therefore, modeling of their physical behavior
suffer continuous limitations regarding accuracy and performance. The present work
reports the results of the properties assessment carried out for the proposed ANN
based constitutive model for SMA. As presented, the application of ANN allows to
reliably model the hysteretic character of the stress-strain relationship observed by
the authors for the experimentally tested SMA material — a wire made of Nitinol.
The work is complemented with the results of a study on the influence of an ANN
structure and training method on the quality of numerical results. The combined
ANN-finite element method code is used to provide solutions for the given dynamic
problems. Finally, improvement perspectives regarding SMA constitutive modeling
are discussed making a reference to the identified capabilities of the ANN based
material model.
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Superelasticity · Artificial neural network · Numerical simulation · Model
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1 Introduction

Modern engineering requires applications of the materials which provide advan-
tageous capabilities. Applied materials should exhibit demanded constructional
features, by assuring necessary load strength, and, possibly, functional properties,
which stand for additional extraordinary characteristics as in the case of smart
materials [1–4]. Simultaneously, a continuous demand for new, more efficient and
accurate computational tools that, first, may aid the designing process for the above
mentioned types of materials, and second, help to successfully bring new products
into the market, is observed as well [5–8]. New numerical approaches are made
available to better the description of the material behavior. Consequently, even the
already known types of materials may still extend their application areas and, based
on the innovation provided, new technical solutions are continuously presented.
The newly launched products can be more reliable, lighter and compacted due to
effective use of the properties of the structural parts.

Smart materials are of a particular interest due to their capabilities of acting
as both actuators and sensors in various engineering applications [2]. They allow
for the measurements of many physical quantities and can efficiently modify the
structural properties of the designed constructions. Hence, the simulation methods
as well as the respective computational tools dedicated for smart materials are
especially required. New applications of smart materials considerably depend on
the quality of the nowadays provided design methodologies and computational
approaches.

In the present work the authors focus on the development of a new numerical
tool used for modeling the behavior of shape memory alloys (SMA) [1]. These
unique smart materials exhibit interesting properties of memorizing the geometric
shapes and withstand high strains when comparing with other metallic materials.
Extraordinary characteristics of SMA are allowed due to the changes of their crystal
structure occurred after mechanical and thermal loads are provided [9]. Specifically,
the reversible martensitic transition enables large macroscale deformations. Solid
phase transitions, i.e., the two-way transitions carried out between austenite and
martensite phases, respectively result in the one-way and two-way memory effects
and the phenomenon of superelasticity.

Advantageous properties of SMA motivate many practical applications of this
type of smart materials, even though the manufacturing processes are costly and
teaching of geometric shapes is quite complicated. SMA are used as constructional
parts, to significantly modify the structural properties, and sensors and actuator
in the field of automation and robotics. The main application areas of SMA
are: medical staples, stents, clamps and other chirurgical tools, orthodontic wires,
actuators and various control components, e.g., used in aircrafts to change the
geometry of wings for better air flow. SMA are also used in valves and gears as
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the components that control oil lubrication process. Temperature activation of SMA
leads to their considerable change of the geometric shape, therefore providing the
source of mechanical force. SMA can considerably reduce mechanical vibrations
due to the hysteretic character of their behavior. It should be mentioned that this
capability is of the authors’ interest considering the application of SMA to control
the operational parameters of gas foil bearings [10]. Moreover, the hysteresis
observed for the constitutive relationship allows for construction of the SMA
actuators or springs, which are capable of generation almost constant mechanical
load, irrespectively form the strain level. Finally, a lack of movable parts in the SMA
based actuators means that they can be exploited in very demanding conditions and
in risky environments, e.g., in the objects localized in the space to control the motion
of their structural parts.

Considering the wide application area of SMA, the authors of the present work,
being motivated by the existing deficiency regarding the properties of the available
modeling tools, decided to present preliminary numerical results for the application
of artificial neural networks (ANN) to model constitutive relation of SMA and
discuss the quality of the investigated approach. The phenomenon of superelasticity
is of the authors’ particular concern.

The work consists of the following parts. After present introductory Sect. 1,
where the authors’ overall motivation is formulated, Section 2 provides a more
detailed description of the studied phenomenon of superelasticity, followed by the
results of the experimental tests gathered in Sect. 3. The investigated numerical
approach for modeling SMA via ANN is described in Sect. 4. The results of
numerical simulations and experimental validation are reported in Sect. 5. The work
is summarized in Sect. 6, where the final conclusions and the directions for the future
works are also presented.

2 Superelasticity in SMA

Superelasticity is one of the advantageous effects observed in SMA. It stands for
large reversible elastic deformations, characterized by the strains up to 8%. As
visualized in Fig. 1, the macroscale deformation reflects the nanoscale changes of
solid phases (austenite and martensite) occurred when a mechanical load is applied.
The respective hysteretic constitutive characteristics is presented in Fig. 2.

As shown in Fig. 1, the stresses at which the phase transistors are observed
change with the temperature. Complementarily, it may be stated that the charac-
teristic temperatures at which the phases swap, i.e., As, Af, Ms, and Mf depend on
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Fig. 1 Effect of
superelasticity in SMA –
characteristic temperatures
for phase transitions [11]

Fig. 2 Effect of
superelasticity in SMA –
hysteretic constitutive
relationship [11]

the stress (the subscripts
′
s

′
and

′
t
′

respectively denote start and finish of the phase
change). An exemplary simulated force-displacement relationship obtained by the
authors using the software MSC.Software/Marc is presented in Fig. 3.

As already mentioned, the effect of superelasticity is entirely reversible unless
the maximal allowed stresses are exceeded. The area covered be the hysteresis loop
corresponds to the amount of energy which is dissipated in an SMA component
when being mechanically loaded and unloaded.

Modeling the superelasticity is a challenging task due to complicated character
of the involved physical phenomena [12–15]. Basically, the observations carried
out at macroscale deal with the resultant SMA behavior being a projection of the
changes that occur in the crystal structure. A very popular and efficient approach to
handle the behavior of SMA is the use of phenomenological models, which stand
for an acceptable compromise between the complexity of the formulas used and
the accuracy of the results [1, 8]. The approach, which is presented in Sect. 4, also
provides a convenient method of modeling the behavior of SMA.
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Fig. 3 Effect of superelasticity observed in an SMA finite element (FE) model. Consecutive points
of the characteristics are numbered

3 Experimental Tests

Experimental tests have been carried out by the authors to provide exemplary results
required for validation of the developed ANN-FE model. Fatigue testing machine
Instron 8872 has been used to extract the elastic properties for an SMA specimen.
Figure 4 shows the experimental test stand.

A dedicated clamps have been used during experiments to prevent from addi-
tional stress concentrations in SMA, which would lead to the undesired effects in
the tested wire, i.e., initiation of the phase transitions untimely. In the used test
stand, the SMA wire compasses the purposely mounted discs instead of being
caught by typical jaws. The stretching speed for the wire has been assumed
according to the guides presented in the work [1] and based on the authors’ previous
research [11]. Specifically, slow stretching and relaxation at the elongation rate of
0.005 mm/s have been carried out to assure near-isothermal character of the phase
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Fig. 4 Experimental test stand used to investigate the constitutive relation of an SMA sample

transition processes. Hence, the influence of the temperature field fluctuations on
the experimental results could be neglected. It should be mentioned, that, otherwise,
kinetics of phase transitions (i.e., the course of the wire deformation) would be
significantly governed by the accompanying thermal issues. Sufficiently long time
period of the experimental tests assures that isothermal (or, precisely stated, near-
isothermal) conditions are satisfied. The experimental results have been obtained for
various variants of the stress-strain hysteresis, i.e., for the total elongations: 2.5 mm,
5 mm, 26 mm, 36 mm and 43 mm. These results are visualized in Fig. 5.

The performed tests allow to deliver the data for experimental model validation,
as reported in Sect. 5, including the learning process of ANN.

4 Application of ANN to Constitutive Modeling of SMA

Below, the concept of an application of ANN to model the constitutive relation
of SMA is discussed. Principally, the ANN is used to provide the properties of the
modeled material for the FE code while its execution for static and dynamic analyses
for the modeled mechanical structure.

Before its usage, ANN is subject to the learning process based on the data
collected in experiments [16]. The ANN learns the specificity of the constitutive
relations based on the list of the input parameters. While learning, ANN cyclically
makes use of the previous data generated by the FE code to determine the elastic
moduli of the SMA material. Iteratively, within the consecutive simulations steps,
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Fig. 5 Experimentally identified stress-strain relationships for the tested SMA wire. Various
variants of the hysteretic constitutive relation have been obtained when changing the maximum
value of the total elongation

Fig. 6 Computational workflow for experimental validation of the ANN-FE model

the ANN updates its parameters. When the acceptable results’ convergence is
obtained, the complete ANN-FE model undergoes final experimental validation,
during which the simulated and experimentally found stress-strain curves are
compared.

Figure 6 presents the scheme of the computational framework used for model
validation. During simulations, which are performed after validation, the ANN-FE
model provides the output data (material response) mapping the previously loaded
experimental results. Consequently, the constitutive relation may be recreated via
numerical simulations, for given arbitrarily set mechanical excitations [17, 18]. The
respective ANN-FE computational framework, which is applied after learning and
validation processes are completed, is shown in Fig. 7, in turn.

ANN based mathematical model of an SMA material contains all the data
required for FE simulations, and may be considered as an alternative way of the
description of material properties. Additionally, it should be noted that in case of
quasi-static studies farther simplifications regarding the behavior of SMA may be
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Fig. 7 Computational workflow for the ANN-FE model after validation. ANN provides data
regarding elastic moduli for the FE model of an SMA component

introduced via reduction of the number of material parameters. Specifically, setting
the Young’s moduli for both solid phases as well as defying the stresses at which
phase transitions occur is sufficient for reliable simulations.

5 Numerical Simulation and Experimental Validation

FE model of an SMA wire, which has been used during numerical simulations
consists of approximately 100,000 FEs (type Quad4 in MSC.Software/Marc).
Figure 8 shows a cross-sectional view for the SMA wire and an exemplary simulated
constitutive relationship. The identified values of the Young’s moduli are 76PGa
and 35GPa, respectively for austenite and martensite. The Poisson’s ratio equals
0.3. ANN considers 21 independent input variables, including the series of 20
subsequent values of the stress and a single output value of the ANN determined
during the previous time step.

ANN uses sigmoidal functions in all layers except the last one, which features
a linear one. ANN is parameterized using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) method, which is a type of the quasi-Newton methods. Figure 9 visualizes
exemplary results of the ANN-FE model gained for the first part of the hysteretic
stress-strain relationship.

The provided numerical results should be considered as the preliminary ones,
successfully obtained by the authors for the elaborated model of SMA. As confirmed
during testing the properties of the investigated model, it should be highlighted
that creation of a reliable SMA model is not a trivial task. It requires many trials
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Fig. 8 FE model and simulations: cross-sectional view for the modelled SMA wire (on left),
exemplary course of the force-displacement (stress-strain) relationship (on right)

Fig. 9 Comparison between the experimental and simulation results – preliminary results obtained
using the ANN-FE model for the first part of the hysteretic stress-strain relationship

before its acceptable behavior is observed. The presented results confirm that the
combination of ANN and a FE code allows for mapping nonlinear elastic properties
of the modeled materials, including recreation of the parts of the hysteretic
constitutive relationships. The above stated capability is maintained even though an
approximate description of the material is introduced (as mentioned in Sect. 4). The
model correctly memorizes the stress at which the martensitic transition should start.
Similarly, a part of the plateau region (i.e., the region of the stress-strain relationship
where excessive strain changes occur) is also represented in the model response.
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6 Summary, Final Conclusions and Future Directions

The reported ANN-FE approach has confirmed its usability for modeling strongly
nonlinear constitutive relationships, as for the case of metallic materials, which
exhibit mechanically and thermally induced solid phase transitions. As shown
with the preliminary results, the elaborated model, being developed with the
application of the BFGS method, correctly recreates parts of the hysteretic stress-
strain relationship. The time series of the previous stresses is sufficient for the
model to generate correct material response for an arbitrarily set mechanical load.
Reduction of the domain of the required model parameters aids the process of ANN
learning performed based on the experimental data.

The presented study is considered as the initial step for farther investigations
regarding hybrid ANN-FE models. It is scheduled by the authors to add new
functionalities for the elaborated model, taking into account more comprehensive
analysis of the experimental data used to learn ANN and widening the scope of the
handled types of material properties, including variable temperatures of the phase
transitions. Finally, the quality of the experimental test stand will be increased by
introduction of the newly designed 3D printed specialized clamps to assure better
fixation of the SMA wires.
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Modeling of Electro-Hydraulic
Servo-Drive for Advanced Control
System Design

Jakub Możaryn, Arkadiusz Winnicki, and Damian Suski

Abstract The paper describes the synthesis of a mathematical model of the
electro-hydraulic servo-drive. Because of the complexity of the electro-hydraulic
servo-drive system and the difficulty in determining all system’s coefficients, the
simplification of the mathematical model is proposed. The model includes different
non-linearities such as the friction or the pressure-dependent oil bulk module. The
simulation results are presented, and the comparison with the data collected from the
real servo drive is discussed. With the proposed method it was possible to choose
the values of physical parameters such that the real electro-hydraulic servo-drive
is modeled with the accuracy suitable for the fast prototyping and design of the
advanced control system.

Keywords Hydraulics · Servo-drive · Nonlinear dynamics

1 Introduction

Hydraulic drives are fluid drives in which the oil medium acts as the energy carrier
between the generator and the receiver. These drives are devices used to generate
forces, torques, and perform displacements. Depending on the actuation element
used, the hydraulic actuators may provide linear or rotary movement. The electro-
hydraulic system is a combination of the hydraulic system for energy transfer and
electric power equipment for transmitting control signals. In this way, a synergy
effect is obtained, which results in better static and dynamic properties of the
electro-hydraulic system compared to pure hydraulic systems.

Nowadays electro-hydraulic servo-drive systems play an important role in
industrial plants because of their high power to weight ratio, stiffness, and pay-
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load capability. However, the control of these systems is a difficult task since
their dynamics are highly nonlinear. Therefore, producers of electro-hydraulic
components provide proprietary, specialized software for preliminary simulations
e.g. HYVOS (Bosh-Rexroth), or FluidSIM (Festo). The efficient modeling and
simulation of electro-hydraulic servo-drive is still being studied [1–3].

The investigation of the accurate, and computationally efficient models of the
electro-hydraulic actuators is an interesting task from both academic and industrial
perspectives, because preliminary analysis and fast prototyping techniques based
on simulations can improve the design of the advanced state-space control system.
In [4] authors present the Embedded Model Control (EMC) when a hierarchical
control architecture, that takes into account multi-domain description of the actuator,
is implemented on an electro-hydraulic proportional valve. In [5] there is described
the experimental evaluation of the Linear-Quadratic-Gaussian (LQG) controller of
electro-hydraulic servo-drive with the model-based analysis of the problem.

The article is organized as follows. In Sect. 2, the laboratory test stand used
to gather experimental data is described. In Sect. 3, mathematical models of
electro-hydraulic servo-system components are given, taking into account their
nonlinearities and proposed simplifications. In Sect. 4, model parameters are given,
and results of the experimental evaluation of the model are described. Finally,
concluding remarks are given.

2 Laboratory Test Stand

The laboratory test stand (Fig. 1) comprises the following elements: hydraulic
pump, pressure relief valve, servo-valve, cylinder, linear position encoder and PC
computer with MATLAB/Simulink software and the control-card dSpace DS1104.

Fig. 1 (a) Electro-hydraulic scheme of the laboratory test stand. a-1—double-acting hydraulic
actuator, a-2—electro-hydraulic servo-valve, a-3—power station, a-4—hydraulic pump, a-5—
electric motor, a-6—overflow valve, a-7—high pressure filter, a-8—manometer, a-9, a-10—
pressure transmitters, a-11—magnetostrictive position transmitter, a-12—measurement and con-
trol card DS1104, 13—PC computer; (b) picture of the laboratory test stand: b-1—servo-valve,
b-2—cylinder, b-3—position encoder, b-4—load platform, b-5—mass, b-6—support
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The system contains the double-acting actuator). In order to stabilize the movement
of the piston rod, the platform is positioned on slideways. The position of the
piston rod is changed by the servo-valve, controlled by the voltage signal in the
range [-10; 10] [V]. The position of the actuator piston rod is measured with the
magnetostrictive transducer. The data transfer between the position transmitter, the
controller, and the servo-valve is performed via the 1104 dSPACE controller-card.
The controller algorithm and the data acquisition are realized with a PC computer
and Matlab/Simulink software.

3 Mathematical Modeling of the Electro-Hydraulic
Servo-Drive

The electro-hydraulic servo-drive can be presented in a form of a block diagram
with a set of interconnected components between which there is a flow of electrical,
mechanical and hydraulic signals. Such a representation of the system allows for a
detailed analysis of its structure and parameters influence on the entire system.

The set of differential and algebraic equations stating the model of the electro-
hydraulic servo-drive has been implemented as a block diagram in the Simulink
environment with partial models of system components.

3.1 Modeling of Double-Acting Hydraulic Actuator

The mathematical description of the piston motion in the double-acting hydraulic
actuators is based on the analysis of the Newton’s second law of motion and the
equations of the oil flow balance. The following assumptions were made: servo
valve is installed close to the actuator, such that the losses of pressure between
valve and actuator can be omitted, pipes and all system elements are non-deformable
against the pressure, there are no internal leakages in the system, and density of the
working fluid is constant.

The differential equation of the piston displacement x [m], resulting from the
Newton’s second law, is

m
d2x

dt2
+ Ft(v) + Fo = AApA − ABpB (1)

where: m = mt + mo [kg]—a total mass (including: mt—the mass of the piston
and the piston rod and mo—the mass of the platform and the load); Ft(v) [N]—
the Stribeck’s friction force acting on the piston, the piston rod and the platform,
expressed as a function of the piston velocity v [m/s]; Fo(v)]—the external force
acting on the platform (in our case we take Fo=0 [N]); AA,AB [m2]—the piston
active areas in the actuator A and B chambers, for double-sided piston rod from
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Fig. 2 (a) Double-acting hydraulic actuator, (b) Servo-valve arrangement

Fig. 3 (a) Stribeck’s friction force, (b) oil bulk modulus in pressure function [6]

stand AA = AB = A; pA,pB [Pa]—the absolute pressures in the actuator A and B
chambers (see Fig. 2).

While modeling the friction force, in the simulation the Stribeck’s formula was
used (Fig. 3a) described as

Ft(v) =

⎧
⎪⎨

⎪⎩

±Fs, for, v = 0

Ft2 =
(

Fc + (Fs − Fc) · e
−
(

v
vst

)2

+ kμ|v|
)

sgn(v), for, v �= 0

(2)
where: Ft [N]—the modeled friction force; Fs [N]—the static friction force; Fc

[N]—the Coulomb friction force; vst [m/s]—the Stribeck’s velocity; kμ [Ns/m]—
the viscous friction coefficient.

The friction between the following elements must be considered: piston and
cylinder, piston rod and cylinder heads, platform and slide-ways.

To model the hydraulic actuator, the oil flow balance equation can be used, that
describes the volume flow into or out of the cylinder chamber as the sum of the flow
caused by the piston motion and the flow covering the oil compressibility. The flow
balance equations for both chambers (A and B) are

QA = Adx
dt

+ VAp+Ax(t)

E0

dpA

dt

QB = −Adx
dt

+ VBp+A(xmax−x(t))

E0

dpB

dt

(3)
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where: VAp,VBp [m3]—the inactive volumes in chambers A and B; xmax [m]—the
maximum piston displacement; E0 [MPa]—the oil bulk modulus.1

3.2 A Servo-Valve Model

In the partial model of the operation of the servo valve, by changing the position of
the spool y [m], the oil flow direction and intensity can be changed. The one-way
flow of an oil in a valve can be described as [7, 8]

Q = yKQ

√
Δp (4)

where: Q[m3/s]—the oil flow; KQ[(m5/kg)1/2]—the flow gain coefficient; Δp

[Pa]—the difference of pressures at the valve way’s endings.
Depending on the spool position, the chambers A and B of the cylinder are

connected through the servo valve to supply with pressure ps [Pa] and outlet with
pressure po [Pa]. The equations describing the fluid flow through the servo valve to
cylinder chambers are

for y ≥ 0

{
QA = yKQ

√
ps − pA

QB = −yKQ
√

pB − po
(5)

for y < 0

{
QA = yKQ

√
pA − po

QB = −yKQ
√

ps − pB
(6)

The position of the valve spool is controlled by the torque motor connected with
flapper-nozzle arrangement (see Fig. 2b).

To derive a mathematical model, it is necessary to consider the equations
describing the magnetic circuit and the dynamics equations of the diaphragm and
the slider of the hydraulic amplifier.

The equation of the spool movement can be written as

(kms · i − kmh · y) kmp · AS = ms

d2y

dt2
+ Fts (vs) + Fh (7)

where: kms [Nm/rad]—torque coefficient of the drive (represented as hysteresis
of magnetic circuit); kmh [N/rad]—coefficient of the mechanical feedback, kmp

coefficient of the flapper-nozzle arrangement; As[m2]—the spool face area; ms

[kg]—the mass of the spool; Fts(vs)[N]—the friction force acting on the spool;
Fh[N]—the hydrodynamic force.

1The oil bulk modulus (Fig. 3b) depends nonlinearly on the oil pressure and the oil aeration level.
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Transfer function describing the current of the coils i [A] as a function of the
control voltage u [V] is given as follows

i(s) =
1
R

L
R

s + 1
· u(s) (8)

where: R [Ω]—resistance of coils; L [H]—inductance of coils.
The hydrodynamic force works in the direction opposite to the direction of the

spool movement, and its value can be determined from the equation

Fh = 0, 36Q
√

2ρΔp = khQ
√

Δp (9)

where: kh = 0, 36
√

2ρ[(kg/m3)1/2]—coefficient of the hydrodynamic forces; Δp

[Pa]—pressure drop in the gap.

3.3 A Constant Displacement Pump Model

Using the balance of flow rates and assuming that the lines connecting the pump
with the drive system do not deform under the influence of pressure, the relation
binding the pump’s flow Qp with the supply pressure ps delivered to the system
can be written as [9]

Qp = Vps

E0

dps

dt
+ Kvps (10)

where: Vps[m3]—volume of the oil between the pump and the servo-valve; Kv =
πdh3

12μl
[m5/Ns]—volumetric loss factor.

4 Experimental Verification of the Electro-Hydraulic
Servo-Drive Model

The complete model of the electro-hydraulic servo drive, containing the elements
and blocks described in the previous sections, is presented in Fig. 4. The model
contains 34 parameters gathered in Table 1, estimated using catalog data, literature
studies or laboratory tests, and approximate estimates.

During verification there were compared the piston positions calculated with
the mathematical model and the positions measured at the test stand as a result
of the same extortion. The verification experiments made it possible to check the
correctness of the initially estimated values of the model parameters and confirmed
the correctness of the analytical solutions. For the simplified servo valve model, not
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Fig. 4 The schematic block diagram of the electro-hydraulic servo-drive implemented in Simulink
software

Table 1 The parameters of the model

Parameter Value Parameter Value Parameter Value

Oil

ρ 865 kg/m3

Hydraulic cylinder

mt 4 kg μs2 0.16 vst 0.3 m/s

mo 6 kg μc1 0.009 VmA 10−6 m3

AA,AB 0.001 m2 μc2 0.1 VmB 10−6 m3

μs1 0.1 kμ 0.5 Ns/m xmax 1.378 m

Servo-valve

α 0.7 ymax 0.001 m kμs 0.5

d 0.005 m yd 0.015 · 10−3 m kh 14.974 (kg/m3)1/2

KQ 5.29 · 10−4 (m5/kg)1/2 As 1.963 · 10−5 kms 0.0009 Nm/rad

Lc 1 H μcs 0.009 kmh 22 N/rad

Rc 330 Ω μss 0.1 kmp 2.7· 109 Pa/m

ms 0.10 kg

Constant displacement pump

p0 81 · 105 Pa Vps 0.001 m3 Kv 4.6· 10−12 m5/Ns

ps 10−5 Pa Qp 1.33 · 10−12 m3/s

taking into account all non-linear phenomena occurring in the actual system, newly
selected parameter values guarantee satisfactory results only in a small range of
amplitude values of step excitations.

The test stand with a position control algorithm (PID controller tuned using
Ziegler-Nichols method) implemented has been tested in position tracking tasks
(see Fig. 5). The comparison of the actual system and the model gives the maximum
relative error less than 6.8% and the mean relative error less than 1.5%. These results
show that the nonlinear model is valid and the coefficients of the model has been
identified with a satisfying accuracy.
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Fig. 5 Results for position tracking experiments: (a) before parameters fitting; (b) after parameters
fitting

5 Conclusions

The verification of the developed mathematical model with the real electro-
hydraulic servo-drive show that the model with high accuracy reflects the operation
of the object near the operating point. The model includes such nonlinearities
as friction model, characteristics of the modulus of the elasticity, dependence of
flow intensity on pressure drop at control edges of the valve slide, dependence of
hydrodynamic force, and characteristics of the volumetric loss factor in the pump.

The system parameters have been initially estimated on the basis of professional
literature and components data-sheets. The work presents the set of the model
parameters used for experimental evaluation, where the step excitations of large
amplitudes were performed, at which the operation of the object satisfactorily maps
the operation of the actual object. The selected parameter values allowed to get a
maximum relative error of less than 6.8%, for different amplitudes of excitation.

Proposed simplified models can be used in fast prototyping of the nonlinear state-
space control systems for the electro-hydraulic servo-drive e.g. [7]. The presented
modelling approach was successfully used in [5, 10]. Currently authors of the paper
work on the systematic methods of the parameters identification, to improve the
accuracy of the model.
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Assessment of Implementation of Neural
Networks in On-Board Dynamic Payload
Weighing Systems

Andrzej Kosiara , Aleksander Skurjat , and Jakub Chołodowski

Abstract While loading loose materials onto dump trucks, freight wagons or
any other vehicles, a crucial issue is not to exceed their maximum permissible
load. The on-board payload weighing systems, installed in modern earthmoving
machinery such as single bucket excavators or loaders, are very efficient tools for
monitoring the overall weight of the material loaded onto the vehicles mentioned
above. Conventional systems of this type are typically based on the mathematical
models deriving from the equations describing dynamic equilibrium of the machines
and their manipulators. Unfortunately, estimating the parameters of those models
sometimes brings some difficulties. This paper presents a discussion on replacing
the conventional models implemented in the most up to date payload weighing
systems with the ones based on the neural networks. A number of payload weighing
systems involving neural networks varying in terms of structure and neuron types
were designed by the authors and tested using a sample excavator. The article
presents a comparison of the performance of those systems, including a discussion
on the influence of training dataset size on the accuracy of the system.

Keywords Payload weighing system · Neural network · Earthmoving machine

1 Introduction

Single bucket excavators are often utilized to load different types of loose materials
onto dump trucks. If the weight of the material loaded onto a truck is monitored, the
overall weight of the laden truck can be set very close to the maximum permissible
load with no risk of overload. Consequently, the amount of the material transported
by the truck is maximized with no violation of the regulations pertaining to the
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maximum permissible axle loads. For this reason, the on-line weighing of the
material loaded onto dump trucks is an issue of a great importance nowadays.

In practice, the weight of a dump truck payload might be controlled by two
methods. Firstly, an on-board payload weighing system might be integrated with the
machine loading the material onto the truck. Secondly, the weighbridges, i.e., the
stationary, stand-alone weighing devices, might be installed on construction sites.
The weighbridges are less efficient than the on-board weighing systems because
they are usually situated remotely from the places where the excavators operate.
For this reason, the on-board payload weighing systems have recently become very
desirable.

The on-board payload weighing systems estimate the mass of every portion of
the goods loaded with the excavator’s bucket onto the truck’s bed. The overall
load of the truck is calculated as a sum of the masses estimated during every work
cycle of the machine. The modern on-board weighing systems can be classified
into two basic groups, i.e., the static and the dynamic systems. The main difference
between them is as follows. While using the static system, the excavator needs
to be brought to a standstill for a short period of time during every work cycle
in order to determine the bucket payload with acceptable precision. On the other
hand, the dynamic systems, do not require any machine holdups, which improves
the productivity and makes the operator’s work easier.

1.1 Dynamic Payload Weighing Systems for Single Bucket
Excavators – The Overview

Numerous dynamic on-board payload weighing systems for single bucket excava-
tors are available nowadays. Some of them have been discussed in [1]. The X2350
by Trimble Loadrite Auckland Ltd. and The Loadex 100 by RDS Technology Ltd.
are the great examples of the systems of this type.

The dynamic payload weighing systems typically include sensors that measure
the angular position of the excavator’s boom and arm, and the oil pressure supplied
to the hydraulic cylinders supporting the boom (see Fig. 1.). Inclination sensors
are also attached to the excavator’s house to eliminate the payload estimation error
arising from the ground inclination. In order to improve the accuracy of the systems,
the excavators are sometimes fitted with some optional sensors for determining the
angular position of the work tool.

The majority of the dynamic weighing system manufacturers estimate the
accuracy of their products at approx. +/− 3%, however, this might be achieved if
the excavator moves smoothly, the bucket is located in the so-called weighing zone
(see Fig. 2) and the system calibration procedure is periodically repeated during
machine operation.
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Fig. 1 Components of the Load Rite X2350 payload monitoring system by Trimble [3]: 1, 2 –
inclination sensors for determining the angular position of the bucket and boom, 3 – control
panel, 4 – ground inclination sensors, 5 – wireless data transmission device (wi-fi, GPRS, radio
communication), 6 – printer, 7 – oil pressure sensors

Fig. 2 Weighing zone of the Trimble Load Rite X2350 payload monitoring system [3]
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In order to calibrate the system, i.e., to determine how the oil pressure supplied
to the boom cylinders is affected by the mass of excavator’s bodies and the internal
friction of the cylinders arising from the friction in the interface between the barrels,
pistons, rods and seals, the operator has to perform a sequence of movements with
the excavator’s bodies defined by the system’s manufacturer. Although no standard
calibration sequence has been formulated yet, all of them include the motions of
the excavator’s boom, arm and bucket. Some of the systems require that the bucked
has to be filled with payload on some stage of the calibration procedure. Since the
operation algorithms of commercially available weighing systems are a now-how of
their manufacturers, no detailed description of any of them is likely to be published.
Only a few papers pertaining to the algorithms of this type exist [2].

2 A Concept of the New Generation Dynamic On-Board
Payload Monitoring System

The commercially available on-board payload monitoring systems do not fulfill
the requirements of their users. There is a strong need to increase their accuracy,
whereas the prices should preferably stay level. The most severe drawback of the
present payload monitoring systems is that the calibration procedure needs to be
repeated several times during every shift of machine operation in order to maintain
satisfactory accuracy. Consequently, research and development on the payload
monitoring systems is carried out by multiple research units all around the world.

The authors of this article have already developed a system where the bucket
payload is estimated multiple times during every cycle of excavator operation and
the ultimate bucket payload for a given work cycle is computed by averaging
the values determined over the cycle time. In order to enhance the accuracy of
the system, the ultimate bucket payload is estimated involving only the samples
determined in strictly defined dynamic conditions of the excavator [4]. It has
been revealed that the performance of this system is good enough to compete
with its commercially available counterparts. Unfortunately, the payload estimation
algorithm implemented in the system is quite complex and the calibration procedure
needs to be periodically repeated over system operation time to compensate the
fluctuations in the bucket payload estimation error. Consequently, a decision to
redevelop the system has been made.

In the very beginning, the causes of the drift in the accuracy of the payload
monitoring systems have been surveyed. The systems of this type typically estimate
the bucket payload on the basis of the forces delivered by the excavator’s boom
cylinders. Those forces are determined by measuring the oil pressure supplied to the
boom cylinders. Unfortunately, the oil pressure is affected by the internal friction of
the cylinders, which, in practice, might be estimated at approx. 10% of the overall
force developed by the cylinder. Furthermore, the exact amount of the cylinder
internal friction depends on the oil temperature. The oil temperature gradually
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increases over the excavator operation time and is influenced by the ambient
temperature. Apparently, in order to avoid quick deterioration in the accuracy of the
system developed by the authors in [4], the computational algorithm implemented
in the system should have been upgraded with a model for estimating the internal
friction of the boom cylinders.

According to the literature, the internal friction of hydraulic cylinders might be
basically described with the LuGre model. Unfortunately, upgrading the payload
monitoring systems with the classical LuGre model does not significantly improve
their accuracy. The internal friction of hydraulic cylinders is strongly affected by the
thickness of the lubrication film in the interface between the cylinder tube and the
piston seals, whereas the thickness of the film changes over the operation time of
the cylinder. According to [5], in order to describe this phenomenon, the classical
LuGre model needs to be replaced with the extended one that includes at least 12
parameters. In practice, it would be extremely difficult to estimate those parameters
because they might vary depending on whether the cylinder is being extended or
retracted. Furthermore, neither the classical nor the extended LuGre model describes
the internal friction of hydraulic cylinders as a function of the force delivered by the
cylinders and the oil temperature [6].

In the face of those difficulties, a conclusion was made that the internal friction
of boom cylinders of excavators cannot be described by a reasonably simple, con-
ventional model. Consequently, a completely new approach was adopted. Namely, a
neural network based computational model was implemented in the new generation
payload monitoring system presented herein, so that the parameters of the model
could have been easily determined by means of standard algorithms for neural
networks training implemented, for example, in the MATLAB environment. In order
to estimate the model parameters, the kinematic structure of the sample excavator
investigated in the article does not need to be known, which is another advantage of
this approach. The only problem was to find out what type of neural network would
provide low payload estimation error for a relatively long period of time.

It should be noted, that some neural network based algorithms for the payload
monitoring systems have been already created [7], however, the vast majority of the
systems identified by the authors during the literature review were developed for
single bucket loaders.

3 Acquisition of the Neural Network Training Dataset

The data for training the neural networks implemented in the operation algorithm
of the bucket payload monitoring system developed herein were obtained by the
experiments involving the test stand presented in Fig. 3. In general, the stand was
developed to carry out the research on various types of operator assistance systems
for single bucket excavators, including bucket payload monitoring systems.
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Fig. 3 The test stand involved in obtaining the data for training the neural networks investigated
in the following article; 1 – six component force-torque sensor, 2 – single-axis inclinometers, 3 –
magnetostrictive transducers of hydraulic cylinders displacement, 4 – temperature compensated
pressure sensors, 5 – single-axis force sensor, 6 – stereometric camera, 7 – optical angular position
sensors, 8 – single-axis load cells embedded in bolts, 9 – single-axis gyroscopes, 10 – controller
of the tip over stability monitoring system integrated with HMI, 11 – joysticks, 12 – two-axis
inclinometer, 13 – valve manual control, 14 – real-time CPU with data acquisition cards, 15 –
PLUS+1 SC050–020 controller, 16 – temperature transducers, 17 – proportional hydraulic valves

During the tests, the bucket was moved along the trajectories representing
typical work cycles of excavators. Namely, it was lifted from the lower area of
the manipulator working zone, where it is typically located right after the digging
process is accomplished, to the upper area, where the operator is usually about to
empty the bucket. 105 experiments were carried out over 2 days. 49 lifting cycles
were performed on the first day and 56 tests were carried out on the second one.
Since the manipulator was manually controlled, every trajectory performed with the
bucket was unique.

In the opposite to the situation presented in Fig. 3., the bucket was not filled with
loose material dug from the ground while conducting the experiments. Weights of a
priori known mass were collected in the bucket instead of the material. The overall
weight of the weights placed inside the bucket in the consecutive trials was changed
according to the following pattern: 0 kg – 1 kg – 2 kg – 3 kg – 4 kg – 5 kg – 10 kg –



Assessment of Implementation of Neural Networks in On-Board Dynamic. . . 199

Fig. 4 The results of the measurements carried out during a work cycle where the bucket with
10 kg payload was lifted

11 kg – 12 kg – 13 kg – 15 kg – 20 kg – 0 kg – 1 kg – . . . . Furthermore, the
temperature of the oil supplied to the boom cylinders gradually increased during the
experiments, as depicted in Fig. 5.

The article presents only a preliminary research that was carried out in order
to assess in general terms the applicability of the algorithms based on the neural
networks to the payload monitoring systems for single bucket excavators. For
this reason, the influence of the excavator upper structure swing motion on the
performance of the system presented herein was out of the scope of this study. The
tests were conducted at fixed angular position of the excavator’s upper structure
with respect to the undercarriage. The following quantities were measured during
the experiments: the length of the hydraulic cylinders driving the boom, the arm,
and the attachment (Lboom, Larm and Ltool, respectively, see Fig. 4.), the oil pressure
inside the cap-end and the rod-end chamber of the boom cylinder (p1, p2) and the
temperature of the oil supplied to the boom cylinder (Toil). Moreover, numerical
differentiation of the signals representing the length of the cylinders was carried out
in order to estimate the linear velocity and acceleration of the cylinders. Figure 4
presents the results recorded during a sample lifting cycle performed during the
tests.
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Fig. 5 The temperature of the oil delivered to the boom cylinder of the excavator depicted in Fig.
3. as a function of time – the data collected on the first day of the experimental tests, over 49 bucket
lifting cycles

4 Test Results and Conclusions

In the article the applicability of the unidirectional neural networks to the bucket
payload monitoring systems for single bucket excavators was assessed. The net-
works consisting of 2, 3, 4 and 5 hidden layers were investigated. The influence
of the number of the neurons in the consecutive layers on the learning and the
generalization capabilities of the networks was investigated.

The script for training the neural networks investigated in the article was imple-
mented using the MATLAB environment. 99 experimental datasets were uploaded
to the MATLAB’s workspace and automatically divided into the three subsets. 70%
of the data were used to carry out the neural network learning procedure, another
15% of the data were involved in the validation and the remaining 15% were used to
carry out the ultimate testing. 6 of the datasets collected in the experiments were not
uploaded to the program at all so that the network could have been independently
evaluated in terms of generalization capabilities (Fig. 5).

The neural networks considered herein were learned using three different algo-
rithms: the Levenberg – Marquardt, the Scaled Conjugate Gradient and the Bayesian
Regularization. The best results were obtained with the Bayesian Regularization,
whereas the worst with the Levenberg – Marquardt algorithm. In the majority
of cases, the networks trained with the Bayesian Regularization predicted bucket
payload with the best accuracy, regardless of whether the input data were involved
in the network learning process or not (Fig. 6).

The networks consisting of 4 hidden layers and at least 25 neurons in the most
sophisticated layer basically suffered from noticeable overfitting, i.e. the predictions
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Fig. 6 Bucket payload estimated by the 20-10-5 neural network on the basis of the data involved
in training and validation of the network
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Fig. 7 Bucket payload estimated by the 35-25-11-7 neural network on the basis of the data
involved in training and validation of the network

made by those networks were exceptionally good only if the input data were
previously included in the training dataset (see Fig. 7.). Unfortunately, if the input
data were not involved in the training process, estimation error was high. The
opposite behavior was observed for the more simple networks investigated in this
research (see Fig. 6.).
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A good compromise was achieved by the so-called 20-10-5 neural network. This
network consisted of 3 hidden layers. The first and the second one included 20
and 10 neurons with the tangentoid activation function, respectively. The last layer
included 5 neurons with the linear activation function. The 20-10-5 network was
trained multiple times. Bucket payload estimation error of every resultant network
was similar when they were provided with the input data included in the 1 of the 99
training datasets. On the other hand, the generalization ability of every investigated
network turned out to be different. Some of the 20-10-5 networks predicted the
bucket payload with good accuracy regardless of the input dataset. On the other
hand, some of them exhibited serious problems in estimating the bucket payload
when provided with datasets that had never been involved in the training process.

To sum up, the research presented in the article does not bring a clear conclusion
on whether the neural networks can be successfully applied to the bucket payload
monitoring systems for single bucket excavators or not.

Neglecting the instantaneous distortions caused by sudden dynamic loads acting
on the investigated excavator, which could have been easily eliminated by filtering,
bucket payload estimation error exhibited by some of the neural networks developed
in this research did not exceed +/− 1 kg. Since the lifting capacity of the excavator
involved in this research is 30 kg, the relative estimation error of those networks
might be estimated at only 3.3%, which makes them very competitive to their
commercially available counterparts. A great advantage of the systems developed
in this article is that they do not need to be periodically calibrated while the system
is running. Unfortunately, the initial training procedure is very time-consuming
because a large dataset needs to be collected to carry it out. Furthermore, it is hard
to predict the accuracy of the system for all possible kinematic configurations of the
excavator’s manipulator and dynamic states of the machine. Thus, there is a risk that
the payload estimation error would be excessively high in some conditions.

The results obtained in this research suggest that the subset of the 99 datasets
involved in the learning procedure of the neural networks implemented in the bucket
payload monitoring system developed herein was too small. Hence, in the future,
the subset of the training data will be extended by the results of the forthcoming
experimental tests. The authors expect that increasing the amount of training data
would decrease the bucket payload estimation error exhibited by the presented
system and positively affect the generalization capabilities of the neural network
implemented in the system. The neural network based algorithm presented herein
will be also modified so that the bucket payload could be successfully predicted by
the system in dynamic conditions, namely, while performing swing motions with
the upper structure of the excavator.
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Lower Limb Rehabilitation Exoskeleton
with a Back Support – Mechanical Design

Bartosz Stańczyk , Olga Jarzyna , Wojciech Kunikowski,
Dariusz Grzelczyk , Jerzy Mrozowski , and Jan Awrejcewicz

Abstract Mobility impairment is a serious medical and social problem with an
increasing prevalence. Therefore, it is important to develop devices that would
help both the patients and the therapists. In this paper, a literature overview of
available constructions of lower limb exoskeletons was presented. Degrees of
freedom (DOFs), kinematics and drive systems of regarded devices were studied.
The outcomes of the investigation of the literature regarding active and passive
DOFs and torque requirements were used as guidelines for the development of
the conceptual design and a prototype of the exoskeleton. The proposed device is
intended to be used for gait rehabilitation for patients suffering from different types
of gait abnormality. It has 11 DOFs that can be actuated, or not, depending on the
needs of the wearer. These DOFs are accompanied by two complex movements,
which are flexion/extension of the patient’s upper body as well as flexion/extension
of toes.

Keywords Human gait · Exoskeleton · Lower limb · Gait · Rehabilitation ·
Powered orthosis · Paraplegia

1 Introduction

According to the World Report on Disability, published by the World Health
Organization (WHO), more than 1 billion people (which is about 15% of the world
population at the time of publication of the Report) live with some form of disability,
with about 200 million having considerable difficulties in functioning (see [1]).
The same report says that not only health outcomes of the disabled but also their
educational achievements and financial status are lower than of people without
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disabilities. According to the National Center for Health Statistics (see [2]), 7.1% of
the U.S. adults cannot of find it very difficult to walk a quarter of a mile. In Poland,
15% of population declare some sort of disability, 59% of which is motor disability
[3]. Also 13% of Polish population declare that walking a distance of 500 m without
assistance (walkers, canes) is very difficult or impossible.

The number of people suffering from different forms of disability, including
mobility impairments resulting from past injuries and various diseases, is constantly
growing mainly due to the increase in the average life expectancy followed by age-
related diseases, which are accompanied by the increase in the number of traffic
accidents or sports injuries [4, 5]. Other reasons of motor disability are various
diseases such as stroke, cerebral palsy, multiple sclerosis, partial or complete spinal
cord injury, to mention a few [6–9].

In spite of the causes, dysfunctions of the locomotor and neural system yield
negative consequences, both medical and social, by limiting the mobility and
social activity of the disabled. Mobility impairment is a serious health, social,
psychological, and economic problem, which can be improved by removing the
barriers in accessing various aspects of life, for instance by gait rehabilitation.

Nowadays, the most frequently used and effective form of rehabilitation of
patients with the mobility impairment is physiotherapy [10]. Handling of patients,
however, is labour-intensive and often requires sustained demanding postures or
lifting and transferring patients, which results in occupational conditions such as
lower back problems [11–13]. Therefore, it is of great significance to use scientific
and technological advances to develop devices that can be used to restore motor and
cognitive functions of the disabled patients, increase capabilities of physiotherapists
and other specialists, and improve the available therapeutic methods and techniques
[14].

According to numerous studies, motor functions of patients can be successfully
facilitated by external stimulation with the use of lower limb exoskeletons (LLEs)
[15–20]. Hence, these robotic devices have become the subject of numerous studies
in the last decades.

The term “exoskeleton” or “active orthosis” is usually used to describe a device
intended to increase the mobility of a person suffering from lower limb dysfunction.
Namely, an exoskeleton is a machine that increases power in one or more joints,
which results in an increase in the operator’s efficiency. In contrast to passive
orthoses, active exoskeletons can not only provide simple mechanical reinforcement
but also actively control movement in the joints of the device. Despite many active
orthoses, including LLEs, have been developed, this area still has great potential for
research [21–25].

In this paper, the state-of-the-art of the strategies used in rehabilitation LLEs
is presented, after which the conceptual design of the developed exoskeleton
(further referred to as a “K11 exoskeleton”) is given. The name “K11” originates
from authors’ affiliation – it is the symbol of the Department of Automation,
Biomechanics and Mechatronics at the Lodz University of Technology. The main
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focus has been put on the mechanical design of the exoskeleton, including feet
elements and a novel element for back support, which is aimed at improving
patient’s posture.

2 Available Solutions (State-of-the-Art)

We focus on a review of available exoskeleton kinematic solutions. The information
was sought on the number of DOFs, the number of driven DOFs, and the types of
actuators used. Although many commercial devices have become available recently,
this overview focuses mainly on academic studies. Detailed information about
commercial products are usually regarded as trade secrets and are not available to
the public. A summary of the information collected is provided in Table 1 at the end
of the section.

The first of the considered constructions was the Vanderbilt exoskeleton [9, 26].
It was created in order to facilitate the movement of people suffering from paraplegia
and also as a support for the rehabilitation therapy. The Vanderbilt exoskeleton
allows for the movement in an upright position with the support of a pair of crutches
and performing sit-down and sit-up manoeuvres. This LLE provides support in the
sagittal plane in both the hip and knee joints. Lithium-polymer battery is used for

Table 1 Summary of the reviewed exoskeletons

Exoskeleton Total number of DOFs Number of actuated DOFs Actuators

Vanderbilt [9, 26] 4 4 BLDC motors
with reduction
gears

BLEEX [27, 28] 14 6 Hydraulic
servomechanisms
and actuators

HAL3 [29, 30] 6 4 DC
servomechanisms
with wave gears

LOPES [31] 10 8 AC servomotors
with reduction
gears; linear
servomechanisms

HEXAR [32] 15 4 BLDC
servomotors with
wave gears

MINDWALKER
[33, 34]

12 6 BLDC motors
with screw nut
gear

IHMC [35] 10 6 BLDC
servomotors with
wave gears
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powering DC motors that drive the joints through reduction gears. Each actuator is
able to produce a continuous torque of 20 N·m and a maximum torque of 80 N·m.
Knee joints are additionally equipped with normally clamped brakes in order to
avoid knee hyperextension in the event of a power failure.

The Berkeley Lower Extremity Exoskeleton (commonly known as BLEEX) is a
much more advanced construction. It is a system created to provide the user with the
ability to carry considerable loads on the back with minimal effort relative to any
type of terrain [27, 28]. BLEEX has seven independent DOFs per leg: 3 DOFs in the
hip, 1 DOF in the knee (pure rotation in the sagittal plane), and 3 DOFs in the ankle.
The construction of the exoskeleton allows the user to freely modify the length of
individual modules. For safety reasons, mobility in all joints has been reduced to the
normal human range. The actuated degrees of freedom are: ankle, knee, and hip, all
in the sagittal plane. Hydraulic servomechanisms were used to drive the device. On
the basis of the BLEEX exoskeleton, many similar constructions were created in the
Berkeley Robotics & Human Engineering Laboratory: The Human Universal Load
Carrier (HULC), ExoHiker, ExoClimber, eLEGS.

The best known medical exoskeleton is the HAL-3 system [29, 30]. The first
prototype was completed in 1997, and since 2008, the manufacturer, Cyberdyne,
started to rent it on the territory of Japan. The exoskeleton supports walking in
an upright position, climbing stairs, and the movement of getting up and sitting
down. HAL-3 has three degrees of freedom for each leg, suitable for hips, knees,
and ankles. All these joints work in the sagittal plane. To protect the user in the
event of power failure, the mobility in each joint was mechanically limited. To drive
hip and knee joints, DC servomechanisms with wave gears were used.

A different approach is presented in LOPES [31]. LOPES consists of two main
parts: the exoskeleton itself and a static frame connected to the pelvic segment of
the exoskeleton. The system uses a treadmill for gait recreation. This solution allows
to apply supporting forces to the pelvic segment, thus relieving the leg segment.
The exoskeleton itself has two actuated DOFs in the pelvis (frontal and sagittal
rotation) and one actuated DOF in the knee (knee rotation in the sagittal plane). The
ankle element consists of a frame that allows one to mount an external ankle foot
orthosis. The place of connection of the pelvis to the frame has two driven DOFs
(linear actuators) in the transverse plane and one non-actuated DOF in the frontal
plane. The engines are mounted outside the exoskeleton, and the drive is transmitted
through a set of flexible bowden cables.

Another example of the human strength augmenting construction is the Hanyang
Exoskeleton Assistive Robot (HEXAR) [32]. In principle, the exoskeleton was
supposed to be able to carry, in addition to its (21 kg) and user’s mass, an additional
mass of 35 kg. HEXAR has 15 DOFs: three DOFs in the hip segment, rotation in the
knee, and three DOFs in the ankle. An additional DOF is the rotation in the frontal
plane at the level of the spine in the lower back section. Turning back is possible
because the hip segment frame is not a rigid structure but a serial connection of four
torsion elements. Such a chain combines a joint that allows for rotation in the lower
back with a joint that realizes the hip abduction and adduction. In the foot segment,
the structure allows one to perform movements in three DOFs: flexion/extension,
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internal/external rotation as well as inversion and eversion. Actuators that drive
flexion in the hip and knee are brushless DC motors with 100:1 reduction gearboxes.

One of the most kinematically advanced rehabilitation constructions is the
MINDWALKER exoskeleton [33, 34]. The equipment was created for patients
after severe spinal injuries in order to allow moving in an upright position and the
sitting down and up manoeuvres. The exoskeleton has ten DOFs, six of which are
driven. DOFs with own actuators are: knee flexion, hip flexion and hip abduction
and adduction. The remaining non-driven DOFs (hip rotation, ankle flexion) are
equipped with spring elements whose deformation is zero in the neutral position.
The exception is the inversion and eversion of the foot, the mobility of which results
from the elastic construction of the exoskeleton. The actuators that drive each of the
aforementioned DOFs consist of: BLDC (brushless direct-current motor), screw-
nut system, torsion spring with high rigidity, and encoder. The motor drives the
linear movement of the screw which deflects the torsion spring. Thanks to the
measurements from the encoder, it is possible to calculate the torque generated in a
given joint. Thus, the actuator becomes a controllable source of torque.

A similar construction to the MINDWALKER is the IHMC exoskeleton [35].
The total number of DOFs and the number of those that are driven is almost the
same as in the MINDWALKER (the IHMC design does not allow for the inversion
and eversion of the foot). Like the MINDWALKER, IHMC uses actuators equipped
with spring elements and encoders to measure torques in the joints. The difference
is in the construction of elastic elements. The IHMC drives the joint directly via the
BLDC motor with the wave gear and a steel rope wrapped around the driven axis,
the ends of which are attached symmetrically to two linear springs. Based on the
data from the encoder and the spring stiffness constants, the torque is determined.

In recent years, commercial exoskeletons have become increasingly popular
rehabilitation equipment. Their great advantage is the possibility of extending the
time of the patient’s rehabilitation session and relieving the physiotherapist carrying
out the procedure.

The LLE HANK, produced by the Spanish GOGOA Mobility Robots, is used
to rehabilitate people with gait disorders and in cases of complete paralysis. It has
six driven DOFs, responsible for the rotation in the hip, knee, and ankle, all in the
sagittal plane [36].

Another popular example is the ReWalk Rehabilitation System produced by
ReWalk Robotics [37]. It has four driven DOF – rotation of the hip and the knee
in the sagittal plane. The gait is initiated by tilting the trunk forward. Then, ReWalk
generates a series of movements that reproduce the movement during a normal walk.

One of the most advanced rehabilitation exoskeletons is HAL MEDICAL,
produced by Cyberdyne [38]. It is an exoskeleton with actuated DOFs in the sagittal
plane of the knees and hips. An advanced control system detects the intentions of the
user and allows for free gait as well as the sit-to-stand and stand-to-sit movements.
The device is the next generation of exoskeletons HAL-3 and HAL-5.

Another commercialized university construction is the INDEGO exoskeleton,
previously developed under the name Vanderbilt [39]. This version does not signif-
icantly differ from the previously mentioned exoskeleton in terms of construction.



210 B. Stańczyk et al.

EksoGT is a rehabilitation equipment supporting the movement of the lower limb
in the sagittal plane [40]. Similarly to the previous example, the only actuated DOFs
are flexion/extension in the hip and knee. The exoskeleton supports the walking
motion, but the patient is forced to use a pair of crutches or a walking frame. Some
parameters of motion generated by the machine can be adjusted in real time during
a rehabilitation session.

Based on the literature review above, one can observe that the essential joints for
enabling walking in the upright position, which require driving, are the hip and the
knee. Driving the rotation in the ankle can be omitted in order to reduce the mass
and demand for power (as can be seen in commercial devices). It was observed that
the BLDC motors equipped with wave or reduction gears are the most common
types of actuators due to their power to weight ratio.

The outcomes of the above overview were used as guidelines for construction of
the K11 exoskeleton, described in the next section of the paper.

3 Conceptual Design of the Developed LLE

In what follows, we describe the design and construction of the developed exoskele-
ton. Wherever it is possible, we include a justification for the choice of particular
solutions. We give additional arguments concerning price, ability to block certain
DOFs (depending on the therapy), or modularity. The exoskeleton is intended to
be used for gait rehabilitation of patients suffering from paraplegia resulting, for
instance, from a spinal cord injury. To fulfil its purpose, it is planned to be mounted
to a mobile frame so as to assure the safety of the patient.

One of the most important features of an exoskeleton is the number of DOFs
and the number of those DOFs that can be powered. It determines to what extent
the natural pattern of the human gait can be recreated. The prototype of the K11
LLE has a total number of 11 DOFs accompanied by the capability of performing
the motion in other segments, i.e. the back and feet. The exoskeleton allows for
fundamental movements of the lower limb such as foot dorsi- and plantarflexion,
foot inversion/eversion, knee flexion/extension, hip extension/flexion, abduction
and adduction (which make a total of 6 DOFs per side). These movements have
been supplemented by the capability of rotating the upper body and performing
flexion/extension of the upper body as well as performing flexion/extension of toes.
Hence, gait rehabilitation is possible. Actuation of particular movements (DOFs)
can be modified, i.e. abled/disabled (allowed/blocked), based on the decision of the
physiotherapist, depending on the specific treatment strategy for the patient.

By design, mobility in particular joints has been mechanically limited to the
range presented in Table 2 so as to allow for normal changes in angles expected
during gait as well as the sit-to-stand (and stand-to-sit) movement. The main purpose
of limitation of the range of motion is to avoid knee hyperextension in the event of
a power failure. The maximum angles have been retrieved from the source literature
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Table 2 Range of motion of the most important movements of the developed exoskeleton

Segment/Motion Flexion – extension Abduction – adduction

Hip 90◦ – 20◦ 10◦ – 10◦
Knee 90◦ – 0◦ –
Ankle 15◦ (DF) – 25◦ (PF) 5◦ (INV) – 5◦ (EV)
Back (upper body) 45◦ – 0◦ –

DF dorsiflexion, PF plantarflexion, INV inversion, EV eversion

Fig. 1 3D model of the
developed exoskeleton – rear
view

[41–43]. However, as many patients may have the range of motion reduced, the
mobility of the K11 exoskeleton can be also modified by the control system.

Rapid prototyping was used for the development of the model. For this purpose,
Autodesk Inventor software was used for 3D computer-aided design, and then the
parts were fabricated by 3D printing by the Zortrax M300 device. The CAD model
of the exoskeleton in presented in Figs. 1 and 2. The lengths of the modules (hip
width, thighs, shanks, feet) can be easily adjusted by virtue of the employment of
telescopic elements.

The main purpose of facilitation of extension of the upper body is to increase the
stability of the patient during the rehabilitation process by means of correcting the
inclination of the pelvis. Facilitation of upright posture is also beneficial for the hip
extension range and loading [43]. In the literature, one can find a few studies aimed
at assisting spine flexion/extension [44, 45]. However, the motivation of the authors
of the present study was to implement a simple and inexpensive solution. Thus, the
back support element (see Fig. 3) was inspired by a back protector for snowboarders.



212 B. Stańczyk et al.

Fig. 2 3D model of the developed exoskeleton (left) and DOFs (right)

Fig. 3 3D model (left) and a real-photo (right) of the back support segment
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Fig. 4 3D model of the knee
segment

It is supplemented by rollers attached to each segment of the element and connected
via a cable to an additional electric motor, the role of which is to manage tension so
as to keep the patient’s upper body properly extended. The extension of the upper
body changes the position of the centre of mass (centre of gravity) of the human
body and shifts it towards the spine, which results in the improvement in balance.
As the developed exoskeleton is intended to be used only for rehabilitation, and
not for force augmentation purposes, such a simple construction is believed to be
satisfactory.

To assist motion in the hip joints, four electric motors (two per side) are used.
Two motors at the back are used for hip adduction and abduction while flexion and
extension are driven by two motors placed on the sides of the pelvis (in parallel to
hip joints).

Flexion and extension of the knee joint consist of sliding and rolling, which
results in the fact that the axis of rotation is variable. Thus, we assumed that the
structure of the exoskeleton should not be a simple kinematic node. In the developed
device, the axis of the knee rotation can change by means of air dampers (telescopic
elements), see Fig. 4. Namely, the lengths of shanks and thighs change so as to make
the axis of rotation of the knee joint of the exoskeleton follow the natural axis of the
knee rotation.

As far as the design of a foot segment is concerned, in the distal part, the foot
plate has been supplemented by modules enabling the patient to extend and flex their
toes during walking (see Fig. 5). The modules are passive and their main purpose is
to increase the comfort of the patient and allow for movement as close as possible
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Fig. 5 3D model of the foot
segment

Table 3 Literature overview of normalized joint torques during human gait

Flexion
[N·m/kg]

Zelik and
Kuo [50] Kirtley [49] Winter [48] Linskell [49]

Sloot and van
der Krogt
[51]

Hip 0.4 0.8 0.55 0.8 0.7
Knee 0.3 0.8 0.65 0.4 0.5
Ankle 1.3 1.45 1.6 1.45 1.4

to the natural one. To adjust the length of the foot segment, some of the above-
mentioned modules can be removed. The foot segment is mounted to the patient’s
shoe by means of Velcro fasteners.

In order to select the appropriate drive for the exoskeleton, the dynamic gait
parameters [46, 47] were investigated and compared with the known normal gait
patterns given by Winter [48], Kirtley and Linskell [49], and others [50, 51].
As a preliminary condition, it was assumed that the exoskeleton should generate
sufficient driving torques to propel the movement of a man weighing at least 85 kg.
The reconstruction of correct angular velocities of motion was considered less
important in purely rehabilitation applications. Table 3 presents a list of peak values
of normalized driving torques for the most loaded joints (rotation in the sagittal
plane of the hips, knees, and ankles).

Assuming the maximum values from the sources presented above, it follows that
the motors used should generate the minimum holding moments for: hip – 65 N·m;
knee – 65 N·m; ankle – 130 N·m.

In order to meet the assumptions mentioned above, it is suggested to use SM
57/76-3008B stepper motors with a holding moment of 1.9 N·m, together with 40:1
planetary gears. The advantage of this solution is the moderate weight of the drive
system, and simple control of stepper motors. Bevel gears have been introduced to
increase ergonomics of use by means of placing the motors along the main profiles
of the device. The main profiles of the K11 exoskeleton are intended to be eventually
made of carbon fibre round tubes. Such a solution will ensure more than satisfactory
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Fig. 6 Passive prototype of the developed exoskeleton. Front view (on the left), side view (centre),
rear view (right)

mechanical properties due to high resistance to compression that is likely to occur in
the device. In the prototype, PVC (polyvinyl chloride) tubes have been successfully
used. The mechanical design of the lower limb exoskeleton developed in the present
study is shown in Fig. 6.

4 Discussion

In the present paper, a literature overview concerning active lower limb orthoses
(exoskeletons) has been presented. Many academic and commercial constructions
have been studied and described with the emphasis put on the number of passive
and active DOFs, kinematics, and drive. Also an analysis of torque requirements for
selected joints has been conducted. Based on the findings, some guidelines regarding
the construction of a lower limb exoskeletons have been presented. They have been
used to design a lower limb and spine exoskeleton. The developed exoskeleton
has been made for gait rehabilitation of patients suffering from different mobility
impairments (paraplegia). The device can be scaled for a specific patient and
actuation of particular movements can be adjusted (allowed/blocked), depending
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on the therapy needed. These features make the use of the exoskeleton possible and
affordable for many patients as the personalization is easy and one device can be
used for more than one person. The only segment, the length of which cannot be
adjusted, is the back module, and thus the future work will cover redesign of this
element so as to solve this problem.

Concurrently, the control system is being developed [52], based on the previous
studies of the authors [53, 54]. However, further tests and research have to be
performed in order to test the operation of the whole exoskeleton and analyse real
effects of the introduced concepts. Recently, experimental studies on the influence
of the exoskeleton, both passive and active, on the gait of a healthy individual have
been conducted with the use of a force plate, electromyography and a motion capture
system which has also been used in other studies of authors’ department [55, 56].
Furthermore, stability, kinematic and dynamic biocompatibility with a natural limb,
as well as material strength should be investigated.

Funding This research was funded by the National Science Centre of Poland, grant OPUS 9 no.
2015/17/B/ST8/01700 for years 2016–2019.
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Impact Wave Propagation in a Thin
Elastic Isotropic Plate

Frantisek Klimenda , Josef Soukup , and Lenka Rychlikova

Abstract The paper deals with the theory of solution of transverse shock wave
propagation in thin plane elastic isotropic plate (Al 99,9). The solution is made for
various material and geometric models of the plate. The calculation is performed
analytically for Kirchhoff and Rayleigh geometric models and Hook ‘s material
model. The plate is fixed around its perimeter. The plate is loaded continuously or
by the solitary force acting on the upper facial surface in the perpendicular direction
to the midline surface of the unloaded plate. The paper presents the relations
and results for transverse displacement, velocity and stress. In the conclusion, the
analytical results are compared with the experiment.

Keywords Kirchhoff · Wave propagation · Thin plates

1 Introduction

The problem of plate vibration is an issue more than 200 years old. The first one is
devoted to mathematical problem solving was Euler, who in 1776 analysed the free
vibration of the plates. German physicist Chladni with his experiment with vibration
of fixed horizontal plates proved the existence of various types of free vibration.
Chladini applied a thin layer of powder to the plate, which created regular patterns
after vibrations were induced. These results of experiments attempted to justify
theoretically James II Bernoulli. Its solution was based on Euler ‘s previous work
and resulted in Euler-Bernoulli ‘s beam bending theory. It represents a Bernoulli
plate as a system of belts, wherein each belt is considered beam. In 1850, Kirchhoff
published important work on the theory of thin plates, which contributed to the
clarification of the theory of plate bending and is widely used in practice. Thin plate
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theory was further elaborated, for example Rayleigh, Flügge, Timoshenko-Mindlin
and others contributed significantly to the solution.

2 Current State

The problem of stress wave propagation in plates has not yet been satisfactorily
resolved. At present, research in the world is focused primarily on the solution of
shells. This is a complex problem in terms of the interaction of the pressure and
tensile phases of the wave generated at the interface of material in homogeneities.
The smaller the particles, the greater the number of material interfaces that interact
with the traveling wave and the greater the attenuation and dispersion. The material
model used has a significant influence on the solution, because materials of
diametrically different rheological properties are used, which give the structure
a higher strength. Material properties must be described for different velocity of
the moving body. These are the modulus of elasticity, Poisson number, thermal
expansion of the material, etc. [1].

The solution of deformation and state of the plate under impulse load is realized
on the basis of simplifying assumptions, in particular [2].

• plate geometry
• the size and nature of its deformation, bearing and excitation load
• the rheological properties of the plate material
• simplifying assumptions within the applied solution method – assumption of

small deformations, linearity of determining relations, superposition principle,
neglecting the influence of shear, etc.

Important is the definition of geometric assumptions (see Fig. 1), which are based
in particular

1. the plate is a body whose one dimension in the vertical z-direction – the thickness
h is less than the other two dimensions in the x and y directions – a, b. The median
plane of the unloaded plate is parallel to the faces, halved by the plate thickness,
which for a prismatic plate is h = const.

2. the origin of the coordinate system is selected in the median plane, the vertical
z-axis is perpendicular to it, for rectangular plates the axes x and y are either
identical with the axes of symmetry or with the axes of the side walls of the plate

3. perpendicular cuts to the median plane of the undeformed plate remain perpen-
dicular to the curved medial surface of the deformed plate, they do not deform –
Kirchhoff hypothesis of preservation of normal

4. the elements of the centring surface do not change their length dimensions, i.e.
the deformed plate has no normal stress in the centring surface σ x = 0, σ y = 0,

5. stress in the direction of normal to the median surface of the deformed plate is
negligible in relation to the other two components of the bending stress τ z = 0,
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Fig. 1 Plate model [1]
Legend: a, b, h – plate dimensions, c – punch radius, F(t) – loading force, xF , yF – coordinates of
the applied force, u, v, w – displacements in axis direction, σ x, σ y – bending stresses, τ yx, τ xy –
torsional stress, τ xz, τ yz – shear forces

6. the plate is loaded by a continuous load p(x, y, t) in the upper face or in its part,
event. by a single force, always in a direction perpendicular to the median plane
of the unformed plate.

2.1 Material and Geometric Models of Plates

Material models gradually improved as materials knowledge and behaviour evolved.
Models have been created for elastic and viscoelastic material, e.g.: Hook, Voigt-
Kelvin, Maxwell and Zener standard body models [3–7].

When solving plates, we start from geometric models, to which we assign mate-
rial models. The basic simplified geometric model is the Kirchhoff model, which
is based on the basic Kirchhoff theory, where only vertical plate displacements
and their corresponding inertial effects are considered. Rayleigh ‘s model extends
the basic Kirchhoff theory by the influence of the cross-section rotation and the
corresponding inertia effects of the plate. The Flügge model considers the effect
of shear on the resulting vertical displacement, the Timoshenko-Mindlin model
considers both influences, i.e. the effect of the cross-section rotation (Rayleigh) and
the effect of the shear (Flügge). This model is closest to reality.
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3 Analytical Solution of Thin Plates

The analytical solution of the plates considers both the rheological and geometric
properties of the plates. The physical equations that determine the relationship
between stress components and deformations can be defined in the simplified
notation of truncated indices of the generalized Hook ‘s law in the form [1].

σi = cij εj , i, j = 1, 2, . . . , 6 (1)

where σi – vector containing stress tensor components, cij – elastic coefficient
matrix, εj – vector containing strain tensor components.

If the coordinate axes coincide with the material axes (material symmetry axes),
the relationship between the stress components and the strain components can be
presented in matrix form

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

σx

σy

σz

τyz

τxz

τxy

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

·

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

εx

εy

εz

γyz

γxz

γxy

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

(2)

Relations between stress and strain components given by Eqs. (1), resp. (2) can
be expressed in inverse form

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

εx

εy

εz

γyz

γxz

γxy

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1
Ex

−μyz

Ey
−μzx

Ez
0 0 0

− μxy

Ex

1
Ey

−μzy

Ez
0 0 0

− μzx

Ex
−μyz

Ey

1
Ez

0 0 0

0 0 0 1
Gyz

0 0

0 0 0 0 1
Gxz

0

0 0 0 0 0 1
Gxy

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

·

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

σx

σy

σz

τyz

τxz

τxy

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

(3)

Assuming small deformations, i.e. according to geometric linear theory, the
deformation tensor components are functions of the displacement vector which can
be written in the form of a Cartesian coordinate system

εx = ∂u

∂x
, εy = ∂v

∂y
, εz = ∂w

∂z
, (4a)

γxy = ∂u

∂y
+ ∂v

∂x
, γxz = ∂u

∂z
+ ∂w

∂x
, γyz = ∂v

∂z
+ ∂w

∂y
(4b)



Impact Wave Propagation in a Thin Elastic Isotropic Plate 223

The vertical displacement w of the general point of the center plane is not a
function of z

w = w (x, y, t) (5)

Horizontal displacements in the x and y directions are a function of z

u = u (x, y, z, t) = −z
∂w

∂x
, v = v (x, y, z, t) = −z

∂w

∂y
(6)

In the theory of thin plates, the equations of motion are usually formulated in
an integral form for the element dx × dy × h, i.e. by means of specific forces
(displaceable) and specific moments – bending and torsion, always per unit of
length – Fig. 2.

For further solution it is necessary to formulate three equations of motion for
forces and moments acting on the slab element dx × dy × h, which can be expressed
in an integral form after adjustment in the form

∂qxz

∂x
+ ∂qyz

∂y
+ p (x, y, t) = ρh

∂2w

∂t2 (7a)

qxy = −∂mx

∂x
− ∂mxy

∂y
= ρ

h3

12

∂2ϕx

∂t2
(7b)

qyz = −∂my

∂y
− ∂myx

∂x
= ρ

h3

12

∂2ϕy

∂t2
(7c)

Fig. 2 Shear forces and bending moments acting on a plate element [7]
Legend: q – specific shear forces, m – specific bending moments
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After adjusting the equations of motion (7), we obtain the resulting relations for
the Kirchhoff and Rayleig model of a thin isotropic plate.

(a) Displacement in the z direction

Kirchhoff

w = 16F0

abcρh

∞∑

m=1

∞∑

n=1

J1 (γmnc)

γmn

sin (αnxF ) cos (βmyF )

ω2
mn

sin (αnx) sin (βmy) sin2 ωmn

2
t

(8a)

ωmn =
(
α2

n + β2
m

)
√

D

ρh
=
(
α2

n + β2
m

) ch√
12

(8b)

Rayleigh

w = 16F0

abcρh

∞∑

m=1

∞∑

n=1

J1 (γmnc)

γmn

sin (αnxF ) cos (βmyF )
[

h2

12

(
α2

n + β2
m

)+ 1
]
ω2

mn

× sin (αnx) sin (βmy) sin2 ωmn

2
t

(9a)

ωmn =
(
α2

n + β2
m

)

√
h2

12

(
α2

n + β2
m

)+ 1

√
D

ρh
= α2

n + β2
m√

h2

12

(
α2

n + β2
m

)+ 1

ch√
12

(9b)

D = Eh3

12
(
1 − μ2

) γmn =
√

α2
n + β2

m αn = n
π

a
βm = m

π

b
(10)

(b) Velocity of displacement in the z direction

Kirchhoff

ẇ = − 8zF0

abcρh

∞∑

m=1

∞∑

n=1

J1 (γmnc)

γmn

sin (αnxF ) cos (βmyF )

ωmn

sin (αnx) sin (βmy) ·
(11a)

· sin (ωmn) t (11b)
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Rayleigh

ẇ = − 8zF0

abcρh

∞∑

m=1

∞∑

n=1

J1 (γmnc)

γmn

sin (αnxF ) cos (βmyF )
[

h2

12

(
α2

n + β2
m

)+ 1
]
ωmn

sin (αnx) sin (βmy) ·

(12a)

· sin (ωmn) t (12b)

(c) Bending stresses in x-direction (σ x) and y-direction (σ y)

Kirchhoff

σx = Ez16F0(
1 − μ2

)
abcρh

∞∑

m=1

∞∑

n=1

J1 (γmnc)

γmn

α2 + μβ2

ω2
mn

× sin (αnxF ) sin (βmyF ) sin (αnx) ·
(13a)

· sin (βmy) sin2
(ωmn

2

)
t (13b)

σy = Ez16F0(
1 − μ2

)
abcρh

∞∑

m=1

∞∑

n=1

J1 (γmnc)

γmn

β2 + μα2

ω2
mn

× sin (αnxF ) sin (βmyF ) sin (αnx) ·
(13c)

· sin (βmy) sin2
(ωmn

2

)
t (13d)

Rayleigh

σx = Ez16F0(
1 − μ2

)
abcρh

∞∑

m=1

∞∑

n=1

J1 (γmnc)

γmn

α2 + μβ2
[

h2

12

(
α2

n + β2
m

)+ 1
]
ω2

mn

× sin (αnxF ) sin (βmyF ) ·
(14a)

· sin (αnx) sin (βmy) sin2
(ωmn

2

)
t (14b)

σy = Ez16F0(
1 − μ2

)
abcρh

∞∑

m=1

∞∑

n=1

J1 (γmnc)

γmn

β2 + μα2
[

h2

12

(
α2

n + β2
m

)+ 1
]
ω2

mn

× sin (αnxF ) sin (βmyF ) ·
(14c)

· sin (αnx) sin (βmy) sin2
(ωmn

2

)
t (14d)
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Fig. 3 Control points and center of impact CRLegend: CR – center of impact, T1,2 – control points

Table 1 Material properties
of Al plate [4]

Name Mark Unit Value

Tensile modulus E Pa 7.1 × 1010

Poisson number μ – 0.34
Density ρ Kg·m–3 2699

where a, b, h – plate dimensions, c – radius of load circle, ρ – density of plate
material, F0 – loading force, J1 (γmnc) – Bessel function of first kind, first order
for argument γmnc, α, β – constants, m, n – matrix elements, xF , yF – circular load
coordinates, ωmn – natural frequency, t – time, D – stiffness modulus, E – tensile
modulus, G – shear modulus, μ – material viscosity coefficient.

The analytical solution is performed in the MATLAB program for isotropic
aluminum plate Al 99.9. The plate has dimensioned a × b × h, where a = 200 mm,
b = 100 mm and h = 2 mm. The plate is fixed around its perimeter, its geometrical
dimensions, the place of loading and the location of control points are shown in
Fig. 3.

The rheological properties of the plate are given in Table 1.
To assess the wave propagation of the first wave sled before the chalk reflection

from the point of attachment is displayed (or the edges of the boards with loosely
signed).

The waveform of the spreading shock wave was determined according to formu-
las (8a) and (14c) for both models at points T1 and T2. The vertical displacements
and velocities at the individual points in the z-axis direction and the normal stresses
in the x-y-axis direction were determined.

To determine the time at which the waveform reaches the local extreme, times t1,
t2 and t3 were determined.
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Fig. 4 Measuring chain

4 Experimental Solutions

The velocity of the spreading transverse wave was experimentally measured using
a piezoelectric accelerometer. The measurement was performed at two measuring
points (T1 and T2) perpendicular to each other at a distance of 20 mm from the
center of impact CR in the x and y axes (Fig. 3). The impact force of 1 N was caused
by the impact of a cylindrical impact of Ø 5 mm with a spherical end to the center
of the impact CR, which is in the center of the plate. The measuring chain is shown
on Fig. 4.

5 Solution of Results

On Figs. 5, 6, 7 and 8 shows a comparison of individual theories. The displacements,
velocities, and bending stresses at the control point T1 (x = 20 mm, y = 0 mm from
the center of impact CR) are compared. The local extremes at time t1, t2 and t3 are
determined for the individual functions (see Tables 2, 3, 4, and 5). Experimentally
measured was only velocity w (z direction).

At first glance they look during movement of both models in Fig. 5 almost
identically. The greatest local extreme difference at time t1 is approximately 58%.
This is due to the fact that the Rayleig model is enhanced by the effect of the cross-
section rotation and its corresponding inertial effects. Shockwaves therefore arrive
at the point T1 later than wave at Kirchhoff model and thus gives rise to a large
deviation.

On Fig. 6 is a comparison of velocity graphs w at point T1. The Kirchhoff and
Reyleigho model is compared with the experiment. At first glance, it is evident that
both models differ only minimally in local extremes t2 and t3. The course of the
experiment differs with both models. This is because the experiment includes all
corrections of the basic Kirchhoff model, so it is a Timoshenko-Mindlin model.
Normal stresses are almost identical in both directions; the greatest deviation is



228 F. Klimenda et al.

Fig. 5 Wave displacement
after shock (w) at point T1

Fig. 6 Wave velocity after
shock (w) at point T1
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Fig. 7 Normal stress in the
x-axis (σ x) at pint T1

Fig. 8 Normal stress in the
x-axis (σ y) at pint T1
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Table 2 Wave displacement in the z-direction (w) at point T1

Displacement w Comparison
Mark Time Kirchhoff Rayleigh col. 4 – col. 3 (col. 5/coll. 3) × 100
1 2 3 4 5 6

× 10–6 [s] × 10–10 [m] × 10−10 [m] × 10−10 [m] [%]
t1 4.000 0.128 0.053 −0.075 58.6
t2 6.500 −0.686 −0.613 0.073 10.6
t3 1.680 6.966 6.825 −0.141 2.0

again at extremes at time t1 – max. 43%, this is given by the already mentioned
correction of Kirchhoff model.

6 Conclusion

The thesis deals with shock wave propagation in thin isotropic plate. In the introduc-
tory part is described the theory of thin plates, particular concrete assumptions for
solving plates and derived analytical solution of thin plates. In the next part of the
thesis, the basic equations of motion are derived, from which the basic relations
(displacements, velocities and normal stresses) for Kirchhoff ‘s and Rayleig ‘s
plate geometries are derived. Analytical and experimental solution is performed
for isotropic thin plate of given dimensions and material properties. The individual
values are solved at the control points T1 (x = 200 mm, y = 0 mm from the shock
center) and T2 (x = 0 mm, y = 200 mm from the shock center). The center of
impact is located in the geometric center of the plate. The shockwave is caused by
the impact of a ball-end impact with an impact force of 1 N from a certain height.
At the conclusion of the thesis the course of individual variables in the control point
T1 is compared.
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Table 4 Normal stress in the x-axis (σ x) at pint T1

Normal stress Comparison
Mark Time Kirchhoff Reyleigh col. 4 – col. 3 (col. 5/col. 3) × 100
1 2 3 4 5 6

× 10-6 [s] × 104 [Pa] × 104 [Pa] × 104 [Pa] [%]
t1 2.900 0.643 0.365 −0.278 43.2
t2 4.100 −1.745 −1.680 0.065 3.7
t3 6.900 4.071 4.101 0.030 0.7

Table 5 Normal stress in the x-axis (σ y) at pint T1

Normal stress Comparison
Mark Time Kirchhoff Reyleigh col. 4 – col. 3 (col. 5/col. 3) × 100
1 2 3 4 5 6

× 10−6 [s] × 104 [Pa] × 104 [Pa] × 104 [Pa] [%]
t1 2.900 0.203 0.134 −0.069 34.0
t2 4.100 −0.558 −0.506 0.052 9.3
t3 6.500 1.245 1.268 0.023 1.8
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5. Kolsky, H.: The propagation of stress waves in viscoelastic solids. Appl. Mech. Rev. 11(9),
465–468 (1958)

6. Leitmann, M.J.: The Linear Theory of Viscoelasticity. Encyklopedia of Physics, Berlin (1973)
7. Soukup, J., Volek, J.: A thin rectangular viscoelastic orthotropic plate under transverse impuls

loading. In: 9th Conference on Dynamical Systems Theory and Applications, Poland (2007)



Optimal Rendezvous with Proportional
Navigation Unmanned Aerial Vehicle

Oleg Cherkasov and Elina Makieva

Abstract Two-dimensional optimal rendezvous problem with proportional naviga-
tion unmanned aerial vehicle is analyzed using a non-linear model. The velocities
of both players have a constant modulus, but vary in direction. The problem is to
minimize the final distance between the pursuer and the drone in the transition from
the given initial conditions. The angle between line-of-sight and pursuer velocity
vector is considered as a control variable. The process time is given beforehand and
is fixed. Application may be interesting for the rendezvous problem tanker-drone.
The Maximum Principle procedure allows to reduce optimal control problem to the
boundary-value problem for two nonlinear differential equations. The qualitative
analysis of the equations of the boundary-value problem allows to determine the
characteristic features of the extremal trajectories. These analysis is based on the
consideration of the phase portrait. Simulation results are presented to illustrate the
analytical conclusions. A numerical comparison of extreme solutions is made with
the case when the pursuer applies the pure pursuit method.

Keywords Optimal rendezvous · Proportional navigation · Phase portrait

1 Introduction

Pursuit-evasion problems have been traditionally classified among the classical
examples of differential game theory. An overview of the key works of this kind
is given in the article [1]. In the last decades another approach has been applied
to these problems, namely, to fix the pursuer’s strategy and to form a one-sided
optimal control problem for the evader. This approach, being conceptually simpler
than the former, enables more realistic models to be applied for the dynamics of
the opponents. In general, the fixed pursuer’s strategy has been taken as constant
gain proportional navigation which, under some formulations, is an optimal strategy
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for the pursuer [2]. In most works on optimal pursuit-evasion, where the results
could be obtained in a closed form, it was assumed that the relative trajectory
can be linearized in the neighborhood of the initial line of sight (LOS). This
assumption is acceptable when the final stage of the rendezvous is analyzed. In
this case, it is reasonable to take into account the time delay in the navigation
system of the pursuer. If the time of the process is long enough, and LOS can be
rotated at large angles, non-linear kinematics should be applied. In this case, the
delay in the pursuer guidance system can be neglected. In the paper [3] using the
exact nonlinear equations of motion optimal guidance law for a vehicle pursuing
maneuvering target was derived. Complete knowledge of the evader’s motion was
assumed available to the pursuer. The same approach to the planar interception
was considered in the paper [4]. The problem of the optimal evasion from a
pursuer employing proportional navigation guidance is considered in paper [5]. The
problem of maximizing the time-to-capture was considered under assumption that
the problem parameters, namely, the speed ratio and the proportional navigation
constant, are such that capturability of the evader is guaranteed. Qualitative analysis
of the optimal planar evasion against proportional navigation pursuer is presented
in the paper [6].

This work is devoted to the problem of minimizing the final distance between the
players for a fixed time. Instead of evasion problem against proportional navigation
pursuer we consider the optimal rendezvous with proportional navigation unmanned
aerial vehicle. Such a problem may be relevant when planning the approach
trajectories of a tanker aircraft with an unmanned aerial vehicle and also in case
of interception of the attacking unmanned aerial vehicle by the simulator of the
target launched from the real target. The research method is based on the techniques
proposed in [6].

2 Problem Formulation

The equations of relative motion of the players are:

ṙ = cosα − bcosβ, (1)

β̇ = a (sinα − bsinβ) /r, (2)

where r – dimensionless distance between the players, β – the angle between the
velocity vector of the Player 2 (P2) and the LOS, α – the angle between the velocity
vector of the Player 1 (P1) and the LOS, considered as a control variable, a is a
constant reflecting the fixed strategy of the P2, a is linked with the proportional
navigation gain k by the formula a = k − 1, a > 0, b is a positive constant
representing the ratio of the P2 velocity magnitude to the P1 velocity magnitude
(see Fig. 1). The final time of the process is fixed.

The initial conditions for the Eqs. (1 and 2) have the form:
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Fig. 1 The geometry of rendezvous

r(0) = r0, β(0) = β0, (3)

The final conditions are free. The purpose of control is to minimize the
functional:

J = r(T ). (4)

3 Problem Analysis

Pontryagin’s function [7] for the problem (1)–(4) is:

H = ψr (cosα − bcosβ) + ψβ (a (sinα − bsinβ) /r) = �, (5)

where C is a constant.
The equations for the conjugate variables are:

ψ̇r = −∂H/∂r = ψβ · a (sinα − bsinβ) /r2, (6)
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ψ̇β = −∂H/∂β = −bsinβψr + abcosβψβ/r (7)

From the transversality conditions we obtain the following relations:

ψrT = −1,ψβT
= 0 (8)

The maximum conditions of ° function of the variable α are as follows:

∂H/∂α = −ψr sinα + ψβ · acosα/r = 0, (9)

∂2H/∂α2 ≤ 0 ⇒ −ψrcosα − ψβ · asinα/r ≤ 0,ψr/cosa ≥ 0. (10)

From relations (9, 10) one can get:

ψβ = ψr rtgα/a, (11)

and

tgα(T ) = 0, ψr cos α > 0. (12)

Therefore,

α(T ) = π. (13)

By differentiating relation (11) with respect to t according to (1, 2, 6, 7), the
equation for the control variable could be obtained:

α̇ = b (a + 1) cosα· sin (α − β) /r − (sinα − bsinβ) /r. (14)

Thus, the optimal control problem (1)–(4) is reduced to the following boundary
value problem for a system of three differential equations:

ṙ = cosα − bcosβ, r(0) = r0 (15a)

β̇ = a (sinα − bsinβ) /r, β(0) = β0, (15b)

α̇ = b (a + 1) cosα· sin (α − β) /r − (sinα − bsinβ) /r, α(T ) = π. (15c)

For the analysis of the boundary value problem (15) let us consider a section of
the phase space of a dynamical system by plane r = const. Further confine ourselves
to the analysis of the system (2, 14), taking into account, that the phase portrait of
this system, types and location of equilibrium points do not depend on r, its value
determines only the speed of movement along phase trajectories.
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Fig. 2 The phase portrait of
the system (2), (14) for a = 1,
b = 2

Fig. 3 The phase portrait of
the system (2), (14) for a = 1,
b = 1/2

The system (2), (14) considered on the torus has eight equilibrium points.
Expanding the torus on a plane, we obtain in the square [−π ; π ] × [−π ; π ] thirteen
equilibrium points:

(a) (0; 0), (π ; π ), (−π ; π ), (π ; −π ), (−π ; −π ), (0; π ), (π ; 0), (−π ; 0), (0; −π ),
(b) (± arcsin 1/b; ± π /2),
(c) (±(π − arcsin 1/b; ± π /2).

Analysis of the equations, linearized in the neighborhood of the equilibrium
points, allows to determine the type of the stationary solutions. If b > 1, solutions
(a) are the saddle type points; solutions (b) are the stable node type; solutions (c) are
the unstable node type. The phase portrait of the system (2, 14) is shown in Fig. 2.
The analysis of phase portrait allows to determine qualitative properties of extreme
trajectories.

The phase portrait of the system (2), (14) for 0 < b < 1 is shown in Fig. 3.
From the analysis of the phase portrait it follows that in the case when β0 > 0,

α0 > π and when β0 < 0, α0 < π . Also, according to the phase portrait, α0 and β0
lie in different half-planes. If the time of the process is sufficient large, the main
contribution to the functional is made by the motion in the neighborhood of the
saddle type point. It is easy to observe the monotone behavior of the α(t).
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the law (14), (b) P1 applies the pure pursuit method

4 Numerical Solution

The numerical solution of the boundary value problem (15) was carried out for the
values a = 1, b = 2, the calculation results are shown in Figs. 4, 5, 6 and 7.

The boundary value problem for system (2, 14) was solved by the shooting and
dichotomy method; the corresponding Cauchy problems were solved in Matlab
ODE 45 (fourth-order Runge-Kutta method with automatic selection of the inte-
gration step).

The simulation results illustrate the conclusions made based on the analysis of
the phase portrait. Nevertheless, the direction of the Player’s velocity vectors at the
initial moment of time on either side of the LOS seems unexpected. For this reason,
it was decided to carry out the simulation for an alternative strategy for P1. As an
alternative strategy, the pure pursuit method when the velocity vector of P1 is aimed
exactly at P2 at each the moment of time was chosen (the final condition on the
position of the velocity vector of P1 is also satisfied).
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The corresponding comparison paths are shown in Figs. 4b, 5b, 6b, and 7b. It can
be seen from the figures that the distance between the players at the final moment
of time, if P1 uses the pursuit method, is greater. Corresponding final distance is
indicated in Figs. 4, 5, 6 and 7.

5 Conclusions

The rendezvous problem of moving objects with a fixed guidance strategy of one
player and the optimal one of the other is investigated. Application of the Pontryagin
maximum principle allows us to reduce the optimal control problem to a boundary
value problem for the initial variables. A qualitative analysis of this system is carried
out, characteristic properties are illustrated by computer modeling.
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Optimization of the Geometry
of Aeroelastic Energy Harvester

Filip Sarbinowski and Roman Starosta

Abstract Geometry optimization was performed using a genetic algorithm (GA)
that processes data from computational fluid dynamics (CFD) calculations. This
algorithm generated a random population of twenty-arm geometrical figures. Each
geometry was subjected to a numerical experiment during which the resultant force
acting on the body was calculated. The calculations were repeated for angular
orientation of the object varying from 0 to 180 degrees, at 5 degrees step, to
obtain a complete characteristic of aerodynamical forces acting on the body related
to its angular orientation. For each of the obtained functions, the satisfaction of
Den Hartog’s criterion is examined, which is the basis for geometry evaluation.
To accelerate the calculations, classical GA has been modified by implementing a
chaotic crossover process based on a logistic map. The numerical calculations were
performed using the Method of Fundamental Solutions.

Keywords Energy harvesting · Optimization · Galloping

1 Introduction

The aeroelastic energy harvester is a device that allows energy recovery from
vibrations induced by the flow. Man has used the flow energy since the dawn of
time, but only the recent development of electronics and autonomous devices has
contributed to the need for small-scale systems that are capable of continuous low
power generation. Devices of this type use the phenomenon of galloping caused
by negative aerodynamic damping, which – assuming the quasi-stationarity of the
phenomenon – was first described by Den Hartog [1] and extended in [2].

In these works, a body with one degree of freedom (translation parallel to axis
Z), mounted on a damped spring system, subjected to flow in a direction parallel to
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Fig. 1 Physical model of the aeroelastic energy harvester. FL – lift force, FD – drag force

the X-axis was analyzed (see Fig. 1). The dynamics of the system is described by
the equation:

m z̈(t) + c ż(t) + k z(t) = Fz (α) = 1

2
b ρ U2 Cz (α) , (1)

where: m – the mass of the body, c –damping coefficient, k –stiffness coefficient,
z(t) – displacement in the Z direction, (̇) and (̈) – first and second differential with
respect to time, Cz(α) – coefficient of aerodynamic force acting in the Z direction at
α angular orientation of the body, FZ – aerodynamic force component acting in the
Z direction, b – characteristic length of the body, ρ – fluid density, U – flow velocity.

Galloping occurs for (c − Cz(α0)) < 0.
In Fig. 1 it can be seen that for small enough α it is true that:

Fz (α) = −FD sin (α) − FL cos (α) ≈ −FL − FD α, (2)

and after expanding in Taylor’s series:

−FL − FD α ≈ −FL −
(

dFL

dα
+ FD

)
α − 1

2

(
d2FL

dα2 + dFD

dα

)
α2

−1

6

(
d3FL

dα3 + d2FD

dα2

)
α3 − . . . (3)
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Since the constant force component FL does not affect the dynamics of the
system, it will be neglected in further considerations. The only factors affecting the
aerodynamic force depending on the α angle are aerodynamics coefficients, hence:

Cz (α) ≈
(

dCL

dα
+ CD

)
α + 1

2

(
d2CL

dα2
+ dCD

dα

)
α2 + 1

6

(
d3CL

dα3
+ d2CD

dα2

)
α3

+ . . . ,

(4)

As reported in [3, 4] the approximation of the Cz(α) function with a third-order
polynomial is sufficient for energy harvesting purposes:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cz (α) ≈ a1 α + a2 α2 + a3 α3

a1 =
(

dCL

dα
+ CD

)

a2 = 1
2

(
d2CL

dα2 + dCD

dα

)

a3 = 1
6

(
d3CL

dα3 + d2CD

dα2

)
(5)

The mathematical model of the phenomenon thus takes the form:

mz̈ (t) + cż (t) + kz (t) = −1

2
ρUb

(

a1
ż(t)

U
+ a2

(
ż(t)

U

)2

+ a3

(
ż(t)

U

)3
)

(6)

Conversion of mechanical energy into electricity can be realized by utilizing
a variety of transducers, however, the most commonly used are electrostatic,
electromagnetic and piezoelectric. Electrostatic may be the cheapest solution for
large scale production [5, 6]. Electromagnetic [7, 8], due to their complicated
construction turn out to be the most expensive but at the same time characterized
by high efficiency.

The multitude of possible transducer designs of this type increases their versatil-
ity, allowing their use in both small devices [9] and massive hydro or wind power
plants. Prototypes, however, most often are consist of piezoelectric transducers [10–
12], which is justified by great simplicity in their implementation while maintaining
high efficiency. It will also be used in this work. The piezoelectric vibration energy
harvester (PVEH) mathematical model takes the form [13]:

⎧
⎪⎪⎨

⎪⎪⎩

m z̈(t) + c ż(t) + k z(t) + θ v(t) =
= − 1

2ρUb

(
a1

ż(t)
U

+ a2

(
ż(t)
U

)2 + a3

(
ż(t)
U

)3
)

Cp v̇(t) + v(t)
R

− θ ż(t) = 0,

(7)

where: v(t) – generated voltage, θ – electromechanical coupling, R – circuit
resistance, Cp – circuit equivalent capacity.
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Mathematical model Eq. (7) can be rewritten in nondimensional form by
introducing nondimensional parameters:

{
η̈ (τ ) + cη̇ (τ ) +η (τ)+κ ν (τ) = a1 aD U η̇ (τ ) + a2 aD η̇(τ )2 + a3 aD

η̇(τ)3

U
ν̇ (τ ) + ν (τ) r−1 − η̇ (τ ) = 0,

(8)

where: η (τ) = z(t)
h

, ν (τ) = v(t)
θ Cp

b, = c
m ωn

, κ = θ2

Cp m ωn2 , aD = h2 b ρ
2m

,

r = Cp ωn R, U = U
h ωn

, � = ω
ωn

, τ = ωn t.
The efficiency of PVEH is significantly affected by its mechanical structure. The

typical one degree of freedom beam devices [14–16] seem to give way in this respect
to more complex systems with many degrees of freedom [17, 18]. It is worth noting
that devices showing also torsional vibrations should not be modeled using the Den
Hartog’s hypothesis – for torsional vibrations the quasi-stationarity condition is
never satisfied. The non-stationary flow model was used, among others in works
[19, 20]. Researchers also signal the possibility of achieving higher efficiency by
constructing devices with non-linear dynamic properties whose motion is regular
[21] or chaotic [22].

From the point of view of device efficiency, of course, the geometry of the
flowing body is of key importance. In [23], elliptical cross-sections with different
ratios between the length of the semi-minor axis and the semi-major axis were
examined. A substantial set of aerodynamic coefficients of various typical sections
is included in [24]. The maximum efficiency of PVEH depending on the shape of
the flowing body was analyzed in [25]. The work [26] is devoted to the analysis
of the impact of trapezoid arm inclination on its aerodynamic coefficients. To the
knowledge of the authors, so far no research would include analysis of any, unusual
and irregular geometry. The purpose of this work is to fill this gap.

2 Impact of Structure Parameters on Device Performance

The optimization goal function was the maximization of the electrical power
generated by the system. The analytical form of the expression for the device’s
power as a function of the coefficients a1, a2 and a3 can be obtained by assuming
that both the vibration amplitude and the voltage have harmonic solutions:

η (τ) = ηA Cos (� τ) , (9)

ν (τ) = νA Cos (� τ + ϕ) , (10)

where: ηA and νA – dimensionless amplitudes of vibrations and voltage respectively,
Ω – dimensionless natural frequency, ϕ – phase shift.
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The phase shift ϕ functions was determined by solving the second equation of
the model Eq. (10) into which the solutions of the assumed form Eqs. (9 and 10)
were substituted and adopting τ = 0:

sin (ϕ) = 1
√

(r �)2 + 1
, (11)

cos (ϕ) = r �
√

(r �)2 + 1
. (12)

The relation between dimensionless voltage and dimensionless displacement
amplitudes was determined by integrating the second equation Eq. (8) in terms of
dimensionless time in half-period boundary and substituting Eqs. (9 and 10):

νA = r ηA �√
1 + r2 �2

. (13)

Then, the energy balance was performed based on a system of equations Eq.
(8), which by taking into account equations Eqs. (10, 11, 12, 13 and 14) led to an
expression for dimensionless vibration amplitude:

ηA=
U
(

−32 a2 aD �+
√

1024 a22 aD2 �2+36 a3 aD π �2
(
−12 a1 aD π U+12 π + 12 π r

1+r2�2

)
U−1

)

18 a3 aD π �2

(14)

By substituting Eqs. (10, 11, 12, 13, 14 and 15) to the first equation of model
Eq. (9) and examining it for τ = 0 one can get an explicit expression for the
dimensionless frequency:

� = 1√
2

√√√√
1 − 1

r2 + κ +
√

4 r2 + (
1 − r2 − r2 κ

)2

r2 (15)

The dimensionless power of the system is therefore given by the formula:

P= κ νA2

r =
rU2κ

(
−32 a2 aD �+

√
1024 a2

2 aD2 �2+36 a3 aD π �2
(
−12 a1 aD π U+12π + 12πr

1+r2�2

)
U−1

)2

324 a3
2 aD2 π2 �2

(
1+r2�2

)

(16)
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3 Optimization

As can be seen in chapter “On the Vibrational Analysis for the Motion of a
Rotating Cylinder”, to determine the body’s galloping potential, it is necessary
to have data on CL(α0) and CD(α0) functions determined by the geometry of the
resonator. Thus, they will store information about the extent that the geometry
affects the power generated by the device. It is therefore reasonable to develop –
through optimization – a geometry that allows the most efficient energy generation.
The optimization process was performed using a genetic algorithm, while the
aerodynamic characteristics were obtained by simulating flow using the Method
of Fundamental Solutions.

3.1 Genetic Algorithm

This chapter is written with the assumption that the reader has elementary knowl-
edge of the essence of genetic algorithms (GA), which, if necessary, can be taken
from one of the numerous monographs, e.g [27, 28].

At the first stage of the GA, 200 random, having a horizontal axis of symmetry
geometries were generated. They were defined as a closed broken line described
on points, each of which lay on one (and only one) of 20 uniformly distributed
radial axes (see Fig. 2). Then each of them was evaluated according to the procedure
described in Sect. 2. To improve calculations, the classic crossover process has been
replaced here by the chaotic process proposed in [29], based on the logistic map,
given by the formula:

zn+1 = λ zn (1 − zn) (17)

Fig. 2 Examples of body geometries

http://dx.doi.org/10.1007/978-3-030-77306-9_1
http://dx.doi.org/10.1007/978-3-030-77306-9_3
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Fig. 3 Logistic map

Function Eq. (17) describes the iterative process of generating the value of zn + 1
based on any of the values chosen from the range < 0; 1>. Then the generated
value is adopted as the new value of zn and the process is repeated. Depending
on the arbitrarily chosen parameter λ, the process can be convergent for λ ∈ (1;
3>, periodic for λ ∈ (3; 3.57), or chaotic for λ >3.57 (includes stable manifolds)
(Fig. 3).

The implementation of the chaotic crossover model consists of extending the
standard genome containing only the solution by two additional sections: informa-
tion about the randomly assigned value of the parameter λ and the random crossover
mask (which should be encoded in the Gray code). The crossover mask stores the
information about which bits the offspring will inherit from which parent – if the
value 1 appears in the first place of the mask, the offspring inherits the gene first
from the first parent, if 0 appears in the second place of the mask, the offspring
inherits the second gene the second parent, etc.

The mask of each parent is used to generate one child. The value of λ is inherited
without any change and is used to generate the offspring mask. This process starts
from decoding the parent mask, normalizing its value to the range <0; 1>, and then
processing this value by a logistic map with the assigned parameter λ. Processed
and re-encoded in Gray code value is assigned as the offspring mask. The example
of the chaotic crossover procedure is presented in Table 1.

As reported in [29], λ values that appear in the initial population have a signifi-
cant impact on the algorithm performance. Individuals having this parameter within
the convergent and chaotic range are desirable, and parameters causing periodic
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Table 1 Chaotic crossover algorithm

Parent 1 Parent 2
solution λ mask solution λ mask
0110 11.111 1011 1001 10.100 0101
Offspring 1 Offspring 2
solution λ mask solution λ mask
0010 11.111 1000 10.100

Binary representation 11.111 1101 10.100 0110
Decimal representation 3.88 13 2.5 6
Normalized value (zn) 0.87 0.40
zn + 1 0.45 0.60
Expanded value 6.72 9.00
Binary representation 0111 1001
Gray code representation 0101 1101

solutions should be avoided. The distribution of parameters in the population does
not seem to matter.

The crossover process was performed with the strategy of elitism, assuming the
probability of its occurrence at the level of 0.8. Besides, the solution may have been
subjected to a flip bit mutation with a probability of 0.05. The condition for the
algorithm to stop was the invariability of the best solution within a 100 interactions.

3.2 Determination of Aerodynamic Characteristics

The aerodynamic coefficients CL and CD necessary to determine the parameters
a1, a2 and a3 of the body were obtained by numerical simulation of the vibration
of the body in a channel filled with flowing fluid (air). The physical model was
prepared according to the benchmark [30], with the difference that the cylinder
was replaced by the tested geometry. The simulation was repeated for angular
orientations of the object from 0 to 180 degrees at 5 degrees step to obtain full
characteristics describing the aerodynamics of the body CL(α0) and CD(α0). For
each simulation constant Reynolds number Re = 105 was maintained. Based on
the received characteristics and according to Eq. (6), the functions a1(α0), a2(α0),
a3(α0) were calculated, these in turn, after substituting them into Eq. (17), were
used to characterize the power P (α0) generated by the device equipped with the
resonator of the studied geometry. The maximum value of P (α0) was the basis for
the evaluation of geometry by the genetic algorithm.
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4 Results and Discussion

Figure 4 shows the optimized geometry, while Fig. 5 shows its aerodynamic
characteristics. Individual axes lengths are shown in Table 2. The blunt side
orientation in the normal direction to the wind flow corresponds to the 90-degree
orientation and for this orientation, the body will show the greatest aerodynamic
instability.

Table 3 lists the coefficients a1, a2 and a3 calculated for optimized geometry and
for standard geometries that are commonly studied. Based on these coefficients and
using the formula Eq. (17), the potential power P generated by a device equipped

Fig. 4 Optimized geometry
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Fig. 5 Aerodynamic characteristic of the geometry
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Table 2 Length of individual arms of optimized geometry [mm]

1 2 3 4 5 6 7 8 9 10 11

30.20 35.50 24.40 20.95 21.55 25.40 34.00 48.70 85.10 75.60 71.00

Table 3 Summary of obtained results

Optimized geometry D-section Equilateral triangle Square

a1 3.56 0.097 1.87 2.69
a2 0.28 4.25 5.11 0
a3 −9.74 −28.83 −1418 −0.0068
P/Popt 1 0.77 0.87 0.59

with a resonator of a given geometry was calculated and related to the power
generated by a device with optimal geometry Popt .

As can be seen from the table above, the efficiency provided by the optimal
resonator with geometry is closest to the efficiency of the system with a triangular
body (13% difference). Both figures are geometrically similar, however, the shape
of the optimized one seems to facilitate the detachment of the fluid stream from
the surface. More complex geometry promotes performance, although, can be
problematic from a technological point of view, which in turn can be a barrier when
using it in prototype devices.

5 Conclusions

The geometry of the resonator implemented in the aeroelastic energy harvester was
optimized. The optimization goal function was to maximize the efficiency of the
device, thus the body with a given geometry had to show maximum aerodynamic
instability. To analytically formulate a goal function, a mathematical model of the
device was derived and then through its solution, an analytical expression for the
system efficiency was obtained. The optimization process was performed using a
chaotic genetic algorithm, while the necessary flow calculations were realized using
the Method of Fundamental Solutions. The efficiency of the generated geometry
was compared with other typical, commonly used ones and it was shown to be
significantly more effective.

Acknowledgments The work is financially supported by grant 02/21/DS-MK/3529/2018 from
the Ministry of Science and Higher Education in Poland.
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Rolling Heavy Ball Over the Surface
with Arbitrary Shape in Real Rn3 Space

Katica R. (Stevanović) Hedrih

Abstract The research results of the rolling, without slipping, of a homogeneous
heavy ball over the surface with arbitrary shape, in the real Rn 3 space, are presented.
The system is holonomic stationary, since the ball is subjected to geometric
constraints, and has three degrees of freedom of movement. Two orthogonal unit
vectors, in the tangent plane in their contact point, to the surface of ball and surface,
along which ball rolls, are determined. The unit vector of the normal to the surface
of the ball and the surface along which ball rolls without slipping, through the
current contact point of ball and surface, and passes through the center of the ball,
is determined. At each moment, for the current position of the point of the contact
between the ball and the surface, the position vector of the center of the ball is
determined. Also, the corresponding vector of velocity of the center of the ball is
determined. Using the velocity vector of the center of the ball, the current angular
velocity of rolling the ball over the surface in the function of generalized coordinates
is determined, as well as their direction. The direction of the elementary arch of the
curvilinear trace through current contact point, of rolling the ball over the surface,
as well as the direction of the momentary axis around which the ball is rolling
without slipping, are determined. All presented ideas and results are new original
generalized approach.
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1 Introduction

In the last series of the author’s papers [1–13], nonlinear dynamics of different
generalized rolling pendulums along different curvilinear lines is investigated and
presented as mechanical systems with one degree of freedom and with holonomic,
pure geometrical scleronomic system dynamics. In the last author’s paper [12]
rolling of a heavy ball over the sphere surface is described in curvilinear sphere
coordinates using meridian and circular angle coordinates. Rolling of a ball is
decomposed into two components of the rolling, one along meridians and second
along comparators of the spherical curvilinear coordinate lines. Investigation shown
that constraints are pure geometrical and stationary, and that system is holonomic
and scleronomic. In the congress presentation, on the basis of previous results, a
natural approach for investigation rolling of a heavy ball over the curved coordinate
surfaces and corresponding parallel surfaces in different orthogonal curvilinear
coordinate system is presented. Rolling ball motion is decomposed, into two
components of rolling along orthogonal coordinate lines of the curved coordinate
surface.

2 Description of the Model of a Rolling Heavy Ball Over
the Arbitrary Surface

We study the rolling of a heavy rigid homogeneous ball having mass M, radius
r, and axial moments J(y,z)

P = J(y,z)
C + Mr2 and J(x,z)

P = J(x,z)
C + Mr2 of mass

inertia for the corresponding instantaneous rolling axes of the ball, orthogonal to
the coordinate plane (x, z) and (y, z) plane. Instantaneous axes of the rolling of
the heavy ball are orthogonal to the instantaneous component rolling velocities
of the ball’s mass center and also orthogonal to the curve lines in the plane of
rolling, which is defined in the three-dimensional coordinate system (x, y, z) by the
following equation z = f (x, y). Let’s assume that the ball began to roll from the
position P0 (x0, y0, z0 = f (x0, y0)) in which the point of the contact of the ball and
the surface of the rolling and ball was in, and that the center of the ball was at the
point C0 (xC0, yC0, zC0 = fC(xC0, yC0)).

The ball as a heavy rigid (brittle) homogeneous body in the general case, when
it is not supported by the constraints, has six degrees of freedom of movement, and
when rolling without slipping, it is subjected by the constraints, which are three,
and has three degrees of freedom of movement. The constraints to which the ball is
subjected to rolling without slipping over the defined surface are as follows:

1* The center of the mass (weight) C(x, y, z = fC(x, y)) of the rolling ball is always
at a orthogonal distance r measured from the point P(x, y, z = f (x, y)) of the
count between rolling ball and surface of the rolling, which gives one geometric
connection, which is both mutually retaining.
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2* The condition that rolling the ball around the surface is without slipping, gives
another geometric relation to the equality of the rolling arc - a set of points of
contact of ball in rolling and surfaces that are described on the ball and rolling
trace over the surface are of the same length. The trace in considered surface of
rolling ball is two dimensional line, then follows that two additional constraints
appear.

Trace of the rolling ball in surface is defined by the direction on the ball
surface and on the surface of the rolling, this gives another two geometric
constraints, and which are both sides mutually retaining.

3* When ball is rolling, the ball cannot be translate moved in the direction of the
trace, because it rolls without slipping, and this is, also, explication of the third
geometric constraints.

This means that the rolling of the heavy rigid ball on the surface of an
arbitrary shape has three degrees of freedom, two component rolling by orthogonal
elementary arches and one rotation around its own axis of self-rotation, which is in
the orthogonal direction to the surface upon which it rolls, and at the point of the
momentary contact of the ball and surface of rolling.

As we have shown by the analysis that there are three geometric, stationary
constraints, it follows that the rolling of the ball, without slipping, on the arbitrary
surface is a mechanical system with three degrees of freedom of movement, in
rolling without slipping, and that it represents the holonomic stationary system,
because all the constraints that act on the system, are holonomic, geometric and
stationary. For the generalized coordinates, we will adopt the coordinates x and y of
the point P(x, y, z = f (x, y)) of the contact of the ball and Ps(x, y, z = f (x, y)) of the
surface on which it is rolling, without slipping (see Fig. 2).

These points P(x, y, z = f (x, y)) and Ps(x, y, z = f (x, y)) of the contact are two
sets, one on the ball surface and other in the form of trace of ball’s rolling, without
slipping in a considered surface over which ball is in the rolling motion.

The third independent generalized coordinate is the angular coordinate - of its
own self-rotatiots around an axis orthogonal to the surface of rolling at the point
P(x, y, z = f (x, y)) = Ps(x, y, z = f (x, y)) of contact of the ball and surface it,
which passed through the center of the ball’s mass C(xC, yC, zC = fC(x, y)) at each
momentary position, and the point of the contact P(x, y, z = f (x, y)). Current angular
velocity of rolling of the heavy rigid ball over the arbitrary surface without slipping
is:

ωP (x, ẋ, y, ẏ) = 1

r
vC (x, ẋ, y, ẏ) , (1)

along the curvilinear path (trace) in that surface, and can be explained in each
time of the moment by two components – the angular velocity of the rotation by
two orthogonal elementary components of the rolling of the ball in two orthogonal
directions along two orthogonal elementary arch of traces in considered surface of
the rolling, as it is shown in Fig. 1.a * and 1.b *, and also in Fig. 2. With this in mind,
we can display the rolling of the ball on a curved surface without slipping with the
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Fig. 2 Model of a rolling heavy homogeneous ball over the arbitrary surface in three dimensional
Rn3 real space with notation of corresponding geometrical and kinetic parameters

system of elementary components of the rolling of the ball by the elementary arcs
of the coordinate lines in the curved surface, which are defined by the cross-sections
of the parallel coordinate plane, and the resulting rolling as the momentary sum of
two elementary rolling by the orthogonal coordinate lines of the surface.Based on
this, it follows:
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In Fig. 1.a *, with the angle α of inclination of the tangent to the curvilinear
elementary component trace in surface z = f (x, y) at the level of the parallel plane
(x, z) for the fixed coordinate plane (O, x, z), and at the point P(x, y, z = f (x, y)) of
contact of the ball in rolling, without slipping, and the tangent of the component
trace in considered surface and plane for the fixed y, it is indicated that:

tg α (x, y) = ∂z
∂x

= ∂f (x,y)
∂x

, sin α (x, y) = ∂z
∂x√

1+
[

∂z
∂x

]2
, cos α (x, y) = 1√

1+
[

∂z
∂x

]2

(2)

In Fig. 1.b *, the angle β of inclination of the tangent to the curvilinear
elementary component trace is fixed at the level of the parallel plane (y, z) for the
fixed x, and at the point of contact P(x, y, z = f (x, y)) of the ball in rolling, without
slipping, and the fixing x in P(x, y, z = f (x, y)), it follows that:

tg β (x · y) = ∂z
∂y

= ∂f (x,y)
∂y

, sin β (x, y) =
∂z
∂y√

1+
[

∂z
∂y

]2
, cos β (x, y) = 1√

1+
[

∂z
∂y

]2

(3)

Now, at the point P(x, y, z = f (x, y)) of the contact in the surface, and between
the ball and curved surface, by which the ball is rolling, we can set up two single

orthogonal unit vectors,
−→
T xz and

−→
T yz, which touch the surface of the ball and the

surface of the rolling, at the point P(x, y, z = f (x, y)) of their contact:

−→
T xz = −→

i cos α (x, y) + −→
k sin α (x, y) = −→

i
1

√
1 + [

∂z
∂x

]2
+ −→

k

∂z
∂x√

1 + [
∂z
∂x

]2
,

(4)

−→
T yz = −→

j cos β (x, y) + −→
k sin β (x, y) = −→

j
1

√

1 +
[

∂z
∂y

]2
+ −→

k

∂z
∂y√

1 +
[

∂z
∂y

]2

(5)

The unit vector
−→
N (x, y, z = f (x, y)) is normal on the surface of the ball rolling

and on the surface of the corresponding surface of the ball’s rolling at the point.
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P(x, y, z = f (x, y)) of their contact

−→
N (x, y, z = f (x, )) = 1

√

1 + [
∂z
∂x

]2 +
[

∂z
∂y

]2

〈
−−→

i
∂z

∂x
− −→

j
∂z

∂y
+ −→

k

〉
(6)

This unit vector
−→
N (x, y, z = f (x, y)) of the normal at contact point, is in the

direction of the gradient on the surface of the ball rolling:

−→
N (x, y, z = f (x, )) = gradz(x,y)

|gradz(x,y)| = ∇z(x,y)
|∇z(x,y)| = 1√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2

〈
−−→

i ∂z
∂x

− −→
j ∂z

∂y
+ −→

k
〉

(7)

The center C(xC, yC, zC = fC(xC, yC)) of the heavy rigid ball’s mass, in rolling,
without slipping, along the curved surface of the equation z = f (x, y), when the
constraint is both sides keeping, it is always is in the orthogonal direction of which

is determined by the unit vector
−→
N (x, y, z = f (x, )), on the surface of the ball and

the surface of the ball’s rolling, and at a normal distance r from the contact point
P(x, y, z = f (x, y)). Based on this, we can write:

−→ρ C (x, y, z = f (x, )) = −→ρ (x, y, z = f (x, )) + r
−→
N (x, y, z = f (x, )) ,

−→ρ C (x, y, z = f (x, )) = xC
−→
i + yC

−→
j + zC

−→
k = x

−→
i + y

−→
j + z

−→
k + r

〈
−−→

i ∂z
∂x

−−→
j ∂z

∂y
+−→

k
〉

√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2

(8)

In the scalar form, we can write the coordinates xC(x, y, z = f (x, y)),
yC(x, y, z = f (x, y)) and zC(x, y, z = f (x, y)) of the center C(xC, yC, zC = fC(xC, yC))
of the rolling ball mass, in the following form:

xC (x, y, z = f (x, y)) = x − r

∂z
∂x√

1 + [
∂z
∂x

]2 +
[

∂z
∂y

]2
, (9)

yC (x, y, z = f (x, y)) = y − r

∂z
∂y√

1 + [
∂z
∂x

]2 +
[

∂z
∂y

]2
, (10)

zC (x, y, z = f (x, y)) = z + r
1

√

1 + [
∂z
∂x

]2 +
[

∂z
∂y

]2
. (11)
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3 Velocity of the Centre of a Rolling Heavy Rigid Ball

The components ẋC (x, y, z = f (x, y) , ẋ, ẏ), ẏC (x, y, z = f (x, y) , ẋ, ẏ) and
żC (x, y, z = f (x, y) , ẋ, ẏ) of the velocity −→v C (ẋC, ẏC · żC) = −→v CC (x, y, ẋ, ẏ)

of the center C(xC, yC, zC = fC(xC, yC)) of the mass of the heavy rigid ball are
determined by differentiating the coordinates xC(x, y, z= f (x, y)), yC(x, y, z= f (x, y))
and zC(x, y, z = f (x, y)) of the centre by the time:

ẋC (x, y, z = f (x, y) , ẋ, ẏ) = ẋ − rẋ

∂2z

∂x2

(
1+
[

∂z
∂x

]2+
[

∂z
∂y

]2+ ∂z
∂x

(
∂z
∂x

∂2z

∂x2 + ∂z
∂y

∂2z
∂x∂y

))

(
1+
[

∂z
∂x

]2+
[

∂z
∂y

]2
)√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2
−

− rẏ

∂2z
∂x∂y

(
1+
[

∂z
∂x

]2+
[

∂z
∂y

]2− ∂z
∂x

(
∂z
∂x

∂2z
∂x∂y

+ ∂z
∂y

∂2z

∂y2

))

(
1+
[

∂z
∂x

]2+
[

∂z
∂y

]2
)√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2

(12)

ẏC (x, y, z = f (x, y) , ẋ, ẏ) = ẏ − rẋ

∂2z
∂y∂x

(
1+
[

∂z
∂x

]2+
[

∂z
∂y

]2− ∂z
∂y

(
∂z
∂x

∂2z

∂x2 + ∂z
∂y

∂2z
∂x∂y

))

(
1+
[

∂z
∂x

]2+
[

∂z
∂y

]2
)√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2
−

− rẏ

∂2z

∂y2

(
1+
[

∂z
∂x

]2+
[

∂z
∂y

]2− ∂z
∂y

(
∂2z
∂x∂y

∂z
∂x

+ ∂z
∂y

∂2z

∂y2

))

(
1+
[

∂z
∂x

]2+
[

∂z
∂y

]2
)√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2

(13)

żC (x, y, z = f (x, y) , ẋ, ẏ) = ż − rẋ
∂z
∂x

∂2z

∂x2 + ∂z
∂y

∂2z
∂x∂y√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2
− rẏ

∂z
∂x

∂2z
∂x∂y

+ ∂z
∂y

∂2z

∂y2
√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2

(14)

The velocity −→v P (x, y, ẋ, ẏ) of displacement of the point P(x, y, z = f (x, y)) of
contact of the ball in the rolling, without slipping, over the surface of the arbitrary
shape z = f (x, y) given in the analytical form is in the following form:

−→v P (x, y, ẋ, ẏ) = ẋ
−→
i + ẏ

−→
j +

(
ẋ

∂z

∂x
+ ẏ

∂z

∂x

)−→
k . (15)

The intensity of this velocity −→v P (x, y, ẋ, ẏ) of displacement of the point
P(x, y, z = f (x, y)) of the instantaneous contact of the ball in the rolling, without
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slipping, over the surface, is in the following form:

∣∣−→v P (x, y, ẋ, ẏ)
∣∣ =

√√√√ẋ2

(

1 +
(

∂z

∂x

)2
)

+ ẏ

(

1 +
(

∂z

∂y

)2
)

+ 2ẋẏ
∂z

∂x

∂z

∂y
.

(16)

We introduce the following notations:

F
(
x, y, f ′

x, f ′
y

)
=
(

1 +
[

∂z

∂x

]2

+
[

∂z

∂y

]2
)

. (17)

We introduce, also, new notations F11(x, y), F12(x, y)., F21(x, y)., F21(x, y).,
F31(x, y). and F32(x, y). for short writing of the expressions and terms in following
denotations:

F11 (x, y) =
∂2z
∂x2 F

(
x, y, f ′

x, f
′
y

)
− ∂z

∂x

(
∂z
∂x

∂2z
∂x2 + ∂z

∂y
∂2z

∂x∂y

)

F
(
x, y, f ′

x, f
′
y

)√
F
(
x, y, f ′

x, f
′
y

) , (18)

F12 (x, y) =
∂2z

∂x∂y
F
(
x, y, f ′

x, f ′
y

)
− ∂z

∂x

(
∂z
∂x

∂2z
∂x∂y

+ ∂z
∂y

∂2z
∂y2

)

F
(
x, y, f ′

x, f
′
y

)√
F
(
x, y, f ′

x, f
′
y

) , (19)

F21 (x, y) =
∂2z

∂y∂x
F
(
x, y, f ′

x, f ′
y

)
− ∂z

∂y

(
∂z
∂x

∂2z
∂x2 + ∂z

∂y
∂2z

∂x∂y

)

F
(
x, y, f ′

x, f
′
y

)√
F
(
x, y, f ′

x, f
′
y

) , (20)

F22 (x, y) =
∂2z
∂y2 F

(
x, y, f ′

x, f
′
y

)
− ∂z

∂y

(
∂2z

∂x∂y
∂z
∂x

+ ∂z
∂y

∂2z
∂y2

)

F
(
x, y, f ′

x, f
′
y

)√
F
(
x, y, f ′

x, f
′
y

) , (21)

F31 (x, y) =
(

∂z
∂x

∂2z
∂x2 + ∂z

∂y
∂2z

∂x∂y

)

√
F
(
x, y, f ′

x, f ′
y

) , F32 (x, y) =
(

∂z
∂x

∂2z
∂x∂y

+ ∂z
∂y

∂2z
∂y2

)

√
F
(
x, y, f ′

x, f ′
y

) (22)

components ẋC (x, y, z = f (x, y) , ẋ, ẏ), ẏC (x, y, z = f (x, y) , ẋ, ẏ) and
żC (x, y, z = f (x, y) , ẋ, ẏ) of the vector −→v C (ẋC, ẏC · żC) = −→v C (x, y, ẋ, ẏ)

of the velocity of the center C(xC, yC, zC = fC(xC, yC)) of mass of rolling ball over
the considered surface, are now:
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ẋC (x, y, z = f (x, y) , ẋ, ẏ) = ẋ − rẋF11 (x, y) − rẏF12 (x, y) , (23)

ẏC (x, y, z = f (x, y) , ẋ, ẏ) = ẏ − rẋF21 (x, y) − rẏF22 (x, y) , (24)

żC (x, y, z = f (x, y) , ẋ, ẏ) = ẋfx
′ (x, y) + ẏfy

′ (x, y) − rẋF31 (x, y) − rẏF32 (x, y)

(25)

and square of the intensity of the vector −→v C (ẋC, ẏC · żC) = −→v C (x, y, ẋ, ẏ) of the
velocity is:

[vC (x, y, ẋ, ẏ)]2 = [ẋ − rẋF11 (x, y) − rẏF12 (x, y)]2 + [
ẏ − rẋF212 (x, y) − rẏF22 (x, y)

]2+
+ [

ẋfx
′ (x, y) + ẏfy

′ (x, y) − rẋF31 (x, y) − rẏF32 (x, y)
]2

(26)

The direction of the velocity −→v C (ẋC, ẏC · żC) = −→v C (x, y, ẋ, ẏ) of the center
C(xC, yC, zC = fC(xC, yC)) of mass movement determines the current direction of the
rolling heavy rigid ball along the surface and the current axis of rolling the ball over
the surface, which is the direction directed by orthogonal direction to the velocity−→v C (ẋC, ẏC · żC) = −→v C (x, y, ẋ, ẏ) of the center C(xC, yC, zC = fC(xC, yC))
of mass movement of the ball. Also, with this velocity −→v C (ẋC, ẏC · żC) =−→v C (x, y, ẋ, ẏ), we can easily determine the current angular velocity of the ball’s
rolling over the determined surface.

4 Kinetic and Potential Energies of a Heavy Rolling Ball
Over the Arbitrary Surface and Two Nonlinear
Differential Equations

It is, now easy, to determine expressions of the kinetic and potential energies of
the rolling ball, without slipping, and write a system of two nonlinear differential
equations by use Lagrange equations of the second kind by the chosen independent
generalized coordinates x and y.

Bearing in mind that the heavy rigid homogeneous ball is centrally symmetrical
in relation to the center of the mass, and that the axial moment of inertia of its mass
for any of the rolling axles, because it is tangent to the surface of the ball, it is the
same and does not change and it is:

Then, we introduce the following denotations of the parameters (see Reference
[12]):



262 K. R. (Stevanović) Hedrih

JPv

Mr2 = i2Pv

r2

2
5 Mr2 + Mr2

Mr2 = 7

5
and

JPc

Mr2 = i2Pc

r2 =
2
5 Mr2 + Mr2

Mr2 = 7

5
;
(27)

* and reduced length of the generalized rolling pendulum of a rigid ball

λ = i2PC

r2 (R ± r) =
(

i2C
r2 + 1

)

(R ± r) = λ = κ (R ± r) = 7

5
(R ± r) ; (28)

* coefficient of rolling of a rigid ball in rolling

κ =
(

i2C
r2 + 1

)

=
2
5 Mr2 + Mr2

Mr2 = 7

5
, (29)

where JPv

M = i2Pv is the square of radius of axial mass inertia moment for momentary
axis of ball rolling along coordinate line of a arbitrary surface. Also, i2Pv is square of
radius of axial mass inertia moment for momentary axis of the rolling tangent to the
coordinate line of a arbitrary surface JPv

M = i2Pv , and i2PC is square of radius of axial
mass inertia moment for momentary axis of rolling tangent to the corresponding
coordinate line of a arbitrary surface JPv

M = i2Pc, and for rolling homogeneous heavy
rigid ball is: i2Pv = i2Pc.

The kinetic energy Ek of the ball in rolling by the given surface is now:

Ek = 1

2
JP ω2

P = 1

2
JCω2

C + 1

2
Mv2

C = 1

2

(
JC + Mr2

)
ω2

P ; (30)

where vC = (rωC); ωC = ωP and JP = JC + Mr2.
If the ball, also, gets its own self rotation, determined by angle coordinate

γ with angular velocity γ̇ , around its own axis in the direction of the

normal
−→
N (x, y, z = f (x, )) to the surface at the point P(x, y, z = f (x, y))

of the contact between ball and surface, passing through center of mass
C(xC, yC, zC = fC(xC, yC)), then for expression of the kinetic energy Ek we can
write the following”

Ek = 1

2
JCγ̇ 2 + 1

2
JP ω2

P . (31)
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If we assume that there is no own self rotation of the ball in rolling, but only
rolling, then kinetic energy is determined by following expression:

Ek = 1

2
JP ω2

P + 1

2r2 JP [vC (x, y, ẋ, ẏ)]2, . (32)

Ek = 1
2r2 JP [ẋ − rẋF11 (x, y) − rẏF12 (x, y)]2 + 1

2r2 JP

[
ẏ − rẋF212 (x, y) − rẏF22 (x, y)

]2+
+ 1

2r2 JP

[
ẋf ′

x (x, y) + ẏf ′
y (x, y) − rẋF31 (x, y) − ryF 32 (x, y)

]2

(33)

Ball is heavy, and force of Earth attraction of the ball through mass center is−→
G = −Mg

−→
k . The expression for potential energy Ep of the ball in rolling is in the

form:

Ep = Mg (zC − zC0) = Mg (fC (x, y) − fC (x0, y0)) ,

Ep = Mg

〈

(f (x, y) − f (x0, y0)) + r

⎛

⎝ 1√

1+
[

∂z
∂x

]2+
[

∂z
∂y

]2
− 1√

1+
[

∂z
∂x

]2

0
+
[

∂z
∂y

]2

0

⎞

⎠

〉

,

(34)

Since, we adopted the generalized coordinates x and y, by which we have
expressed kinetic and potential energies, we, now, write by the Lagrange differential
equations of the second kind for independent general coordinates x and y, in the
following forms:

d

dt

∂Ek

∂ẋ
− ∂Ek

∂x
+ ∂Ep

∂x
= 0 and

d

dt

∂Ek

∂ẏ
− ∂Ek

∂y
+ ∂Ep

∂y
= 0, (35)

follows a system of two non-linear differential equation of rolling the ball along
surface is now in the following form:

d
dt

〈
1
r2 JP [ẋ − rẋF11 (x, y) − rẏF12 (x, y)] (1 − rF 11 (x, y)) − 1

r2 JP

× [
ẏ − rẋF212 (x, y) − rẏF22 (x, y)

]
rF 212 (x, y)

〉
+

+ d
dt

〈
1
r2 JP

[
ẋf ′

x (x, y) + ẏf ′
y (x, y) − rẋF31 (x, y) − ryF 32 (x, y)

]

× 〈
f ′

x (x, y) − rF 31 (x, y)
〉 〉− ∂

∂x

〈
1

2r2 JP [ẋ − rẋF11 (x, y) − rẏF12 (x, y)]2

+ 1
2r2 JP

[
ẏ − rẋF212 (x, y) − rẏF22 (x, y)

]2 −
〉

− ∂
∂x

〈
1

2r2 JP

[
ẋf ′

x (x, y) + ẏf ′
y (x, y) − rẋF31 (x, y) − rẏF32 (x, y)

]2
〉

+ ∂
∂x

〈Mg (fC (x, y) − fC (x0, y0))〉 = 0
(36)
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d
dt

〈
1
r2 JP [ẋ − rẋF11 (x, y) − rẏF12 (x, y)] rF 12 (x, y) − 1

r2 JP

× [
ẏ − rẋF212 (x, y) − rẏF22 (x, y)

] 〈
1 − rF 22 (x, y)

〉〉
+

+ d
dt

〈
1
r2 JP

[
ẋf ′

x (x, y) + ẏf ′
y (x, y) − rẋF31 (x, y) − ryF 32 (x, y)

]

×
〈
f ′

y (x, y) − rF 32 (x, y)
〉 〉

− ∂
∂y

〈
1

2r2 JP [ẋ − rẋF11 (x, y) − rẏF12 (x, y)]2

+ 1
2r2 JP

[
ẏ − rẋF212 (x, y) − rẏF22 (x, y)

]2〉−
− ∂

∂y

〈
1

2r2 JP

[
ẋf ′

x (x, y) + ẏf ′
y (x, y) − rẋF31 (x, y) − rẏF32 (x, y)

]2
〉

+ ∂
∂y

〈Mg (fC (x, y) − fC (x0, y0))〉 = 0

(37)

Where we introduced the coefficient κ of rolling of a ball over the arbitrary
surface in three dimensional space and if we make new labels, G11 (x, y, ẋ, ẏ, ẍ, ÿ),
G12 (x, y, ẋ, ẏ), G22 (x, y, ẋ, ẏ, ẍ, ÿ) and G21 (x, y, ẋ, ẏ) the previous system of
two nonlinear differential equations can be written in the following simpler form,
from which we can more clearly see the structure if two differential equations:

G11 (x, y, ẋ, ẏ, ẍ, ÿ) = d
dt

〈
[ẋ − rẋF11 (x, y) − rẏF12 (x, y)] (1 − rF 11 (x, y))

− [ẏ − rẋF212 (x, y) − rẏF22 (x, y)
]
rF 212 (x, y)

〉
+

+ d
dt

〈[
ẋf ′

x (x, y) + ẏf ′
y (x, y) − rẋF31 (x, y) − rẏF32 (x, y)

] 〈
f ′
x (x, y) − rF 31 (x, y)

〉〉
,

G12 (x, y, ẋ, ẏ) = 〈
[ẋ − rẋF11 (x, y) − rẏF12 (x, y)]

[−rẋF ′
11x

(x, y) − rẏF ′
12x

(x, y)
]〉

+ 〈[ẏ − rẋF212 (x, y) − rẏF22 (x, y)
] [−rẋF ′

21x
(x, y) − rẏF ′

22x
(x, y)

]〉+
+
〈[

ẋf ′
x (x, y) + ẏf ′

y (x, y) − rẋF31 (x, y) − rẏF32 (x, y)
]〉

×
[
ẋf ′′

x (x, y) + ẏf ′′
xy (x, y) − rẋF ′

3x1 (x, y) − rẏF ′
32x

(x, y)
]
,

G22 (x, y, ẋ, ẏ, ẍ, ÿ) = d
dt

〈
[ẋ − rẋF11 (x, y) − rẏF12 (x, y)] rF 12 (x, y)

− [ẏ − rẋF212 (x, y) − rẏF22 (x, y)
] 〈1 − rF 22 (x, y)〉

〉
+

+ d
dt

〈[
ẋf ′

x (x, y) + ẏf ′
y (x, y) − rẋF31 (x, y) − rẏF32 (x, y)

] 〈
f ′
y (x, y) − rF 32 (x, y)

〉〉
,

G21 (x, y, ẋ, ẏ) =
〈
[ẋ − rẋF11 (x, y) − rẏF12 (x, y)]

[
−rẋF ′

11y
(x, y) − rẏF ′

12y
(x, y)

]〉

+
〈[

ẏ − rẋF212 (x, y) − rẏF22 (x, y)
] [−rẋF ′

21y
(x, y) − rẏF ′

22y
(x, y)

]〉
+

+
〈 [

ẋf ′
x (x, y) + ẏf ′

y (x, y) − rẋF31 (x, y) − rẏF32 (x, y)
]

×
[
ẋf ′′

xy (x, y) + ẏf ′′
y (x, y) − rẋF ′

31y
(x, y) − rẏF ′

32y
(x, y)

] 〉

(38)

This system of the non-linear differential equations of the nonlinear dynamics
describing the rolling ball are, in general, not solvable, so that the system of
nonlinear differential equations must be solved for specific cases by the given
analytical expression of the surface and the properties of the rolling dynamics of the
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ball by the same from the examination of the nonlinear phenomena in singularity
environments.

G11 (x, y, ẋ, ẏ, ẍ, ÿ) − G12 (x, y, ẋ, ẏ) + g

κ
f ′

Cx (x, y) = 0, (39)

G22 (x, y, ẋ, ẏ, ẍ, ÿ) − G21 (x, y, ẋ, ẏ) + g

κ
f ′

Cy (x, y) = 0. (40)

5 Concluding Remarks

The system of two ordinary nonlinear differential equations of dynamics of a rolling
heavy rigid ball, expressed by independent generalized coordinates, is derived, and
is new research generalized result. Main problem for slowing series of numerous
particular tasks is in slowing these coupled two nonlinear differential equations.
In the case that is possible to solve these two nonlinear differential equations and
find solutions of the two generalized coordinates in the functions of time, then it is
easier to determine momentary angular velocity of the ball rolling, and translator
velocity of the ball centre of mass. Also, at each moment, is easier to determine
corresponding instantaneous axis of ball rolling and corresponding momentary
direction of rolling as well as trace of rolling. In numerous special cases is possible
to obtain first integrals along generalized coordinates and determine previous listed
kinetic parameters.. Special case of the considered dynamics is rolling heavy ball
over the sphere surface, considered in sphere curilinear coordinates, and published
previously in reference [12]. Then, presented results are generalization of author
previously published results.
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Explicit Model for Surface Waves on an
Elastic Half-Space Coated by a Thin
Vertically Inhomogeneous Layer

Ali Mubaraki, Danila Prikazchikov, and Askar Kudaibergenov

Abstract The study is focussed on surface waves propagating in an isotropic elastic
half-space coated with a thin, vertically inhomogeneous layer, subject to action of
a prescribed normal surface stress. The effective boundary conditions modelling an
inhomogeneous coating are derived in the long-wave limit, generalising the those for
a thin homogeneous isotropic layer. A singularly perturbed hyperbolic equation on
the interface is then deduced, governing surface wave propagation. The effect of the
perturbative pseudo-differential operator including the structure of the quasi-front
emerging for a point impulse loading, is analysed.

Keywords Surface waves · Thin coating · Inhomogeneous

1 Introduction

Thin films and coatings have numerous applications in engineering and biological
sciences, see e.g. [1–6], to name a few. In addition, a number of technological
developments are associated with related multi-layered structures, see e.g. [7] and
references therein.

Often the effect of a thin coating on the half-space is modelled by means of the
so-called effective boundary conditions, starting from the original work [8], and still
popular, see e.g. [9, 10] and references therein.

A. Mubaraki
Keele University, Keele, UK

D. Prikazchikov (�)
Keele University, Keele, UK

Institute for Problems in Mechanical Engineering, St. Petersburg, Russia
e-mail: d.prikazchikov@keele.ac.uk

A. Kudaibergenov
Al-Farabi Kazakh National University, Almaty, Kazakhstan

© Springer Nature Switzerland AG 2022
J. Awrejcewicz (ed.), Perspectives in Dynamical Systems I: Mechatronics
and Life Sciences, Springer Proceedings in Mathematics & Statistics 362,
https://doi.org/10.1007/978-3-030-77306-9_23

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77306-9_23&domain=pdf
mailto:d.prikazchikov@keele.ac.uk
https://doi.org/10.1007/978-3-030-77306-9_23


268 A. Mubaraki et al.

The method of effective boundary conditions was also implemented for analysis
of surface wave field in a coated half-space, within the framework of hyperbolic-
elliptic models for the Rayleigh wave induced by a prescribed surface load, see
[11, 12] for more detail. As a result, the contribution of surface wave to the overall
dynamic response in the long wave limit is described by elliptic equations over the
interior associated with decay away from the surface, and a singularly perturbed
wave equation on the boundary governing surface wave propagation.

In this paper, we extend these results for a thin vertically inhomogeneous
coating layer, with density and material parameters being depth-dependent. First,
we derive the effective boundary conditions by employing a standard long wave
asymptotic procedure, well established for thin structures, see e.g. [13, 14]. Then, we
follow a slow-time perturbation scheme proposed in [11], with the small parameter
corresponding to the proximity of the wave phase velocity to that of the Rayleigh
wave. As a result, we obtain a wave equation for the longitudinal elastic potential,
which is singularly perturbed by a pseudo-differential operator. The amplitude of
the perturbation depends on the combination of the material parameters of both
coating and the substrate. As observed earlier in [11] for the case of a homogeneous
coating layer, the sign of this coefficient plays a crucial role, distinguishing between
the case of a local maximum/minimum of the phase speed at the Rayleigh wave
speed in the long wave limit. Finally, we illustrate the developments by considering
a model example of a concentrated vertical impulse loading applied on the surface
of a two-layered coating.

2 Basic Equations

Consider an elastic layer of thickness h, occupying the domain 0 ≤ x3 ≤ h, coating
a homogeneous half-space x3 ≥ h, see Fig. 1.

The layer is assumed to be vertically inhomogeneous, with the constitutive
relations given by

σij = λc

(
u1,1 + u2,2 + u3,3

)
δij + μc

(
ui,j + uj,i

)
, (1)

where σij , i, j = 1, 2, 3, are the Cauchy stress tensor components, ui are displace-
ment components, λc = λ (x3) and μc = μ (x3) are the Lamé elastic moduli, and

Fig. 1 An inhomogeneous
layer by a coated half-space
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δij is the Kronecker delta. Here and below a comma denotes differentiation with
respect to the corresponding variable. The governing equations of motion in the 3D
elasticity are taken as (see e.g. [15])

σi1,1 + σi2,2 + σi3,3 = ρc ui,tt , (2)

where ρc = ρ (x3) is volume mass density. The longitudinal and transverse wave
speeds are introduced as

c1 (x3) =
√

λc + 2μc

ρc

, and c2 (x3) =
√

μc

ρc

, (3)

respectively. The boundary conditions at the surface x3 = 0 are taken in the form

σ3m = 0, and σ33 = −P, m = 1, 2, (4)

where P = P(x1, x2, t) is a prescribed vertical load, with the continuity conditions
at the interface assumed as

ui = vi at x3 = h, (5)

where vi = vi(x1, x2, t), i = 1, 2, 3 are displacements on the surface of the
substrate.

3 Effective Boundary Conditions

First, we derive the effective boundary conditions, accounting for the effect of the
thin coating layer. Below we implement the direct asymptotic integration of the
equations in elasticity, see e.g. [11]. A small parameter ε, associated with the long-
wave limit, is specified as

ε = h

L
� 1, (6)

where L is the typical wave length. We introduce the scaling

ξm = xm

L
, η = x3

h
, τ = t ch

L
, (7)

with

u∗
i = ui

L
, v∗

i = vi

L
, σ ∗

mn = σmn

μh

, σ ∗
3i = σ3i

ε μh

, p∗ = P

ε μh

, (8)
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where ch = c2 (h), μh = μc (h), ρh = ρc (h), m, n = 1, 2 and all quantities with
the asterisk are assumed to be of the same asymptotic order. Then the equation of
motion (2) and the constitutive relations (1) can be written explicitly as

σ ∗
mm,ξm

+ σ ∗
mn,ξn

+ σ ∗
m3,η = ρ∗ u∗

m,ττ ,

σ ∗
33,η + ε

(
σ ∗

3m,ξm
+ σ ∗

3n,ξn

)
= ρ∗ u∗

3,ττ ,
(9)

and

σ ∗
mn = κ2

2

(
u∗

m,ξn
+ u∗

n,ξm

)
,

ε σ ∗
mm = (

κ2
1 − 2κ2

2

)
u∗

3,η + ε
(
κ2

1 u∗
m,ξm

+ (
κ2

1 − 2κ2
2

)
u∗

n,ξn

)
,

ε2 σ ∗
m3 = κ2

2

(
u∗

m,η + ε u∗
3,ξm

)
,

ε2 σ ∗
33 = κ2

1 u∗
3,η + ε (κ2

1 − 2κ2
2 )
(
u∗

m,ξm
+ u∗

n,ξn

)
,

(10)

where ρ∗(η) = ρc/ρh, κ2
1 = (λc + 2μc) /μh, κ2

2 = μc/μh and κ2
c = κ2

1/κ
2
2,

with 1 ≤ m �= n ≤ 2. On substituting u∗
3,η from (10)4 into (10)2, we get

σ ∗
mm = 4κ2

2

(
1 − κ−2

c

)
u∗

m,ξm
+
(

1 − 2κ−2
c

) (
2κ2

2 u∗
n,ξn

+ ε σ ∗
33

)
. (11)

The conditions (4) and (5) become

σ ∗
3m = 0 , σ ∗

33 = −p∗ at η = 0,

and u∗
i = v∗

i , at η = 1.
(12)

Next, expand the displacements and stresses as asymptotic series

⎛

⎜⎜⎜⎜
⎝

u∗
i

σ ∗
mm

σ ∗
mn

σ ∗
3i

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

u
(0)
i

σ
(0)
mm

σ
(0)
mn

σ
(0)
3i

⎞

⎟⎟⎟⎟
⎠

+ ε

⎛

⎜⎜⎜⎜
⎝

u
(1)
i

σ
(1)
mm

σ
(1)
mn

σ
(1)
3i

⎞

⎟⎟⎟⎟
⎠

+ . . . . (13)

Then, at leading order, we have

σ
(0)
mm,ξm

+ σ
(0)
mn,ξn

+ σ
(0)
m3,η = ρ∗ u

(0)
m,ττ ,

σ
(0)
33,η = ρ∗ u

(0)
3,ττ ,

σ
(0)
mn = κ2

2

(
u

(0)
m,ξn

+ u
(0)
n,ξm

)
,

σ
(0)
mm = 4κ2

2

(
1 − κ−2

c

)
u

(0)
m,ξm

+ 2κ2
2

(
1 − 2κ−2

c

)
u

(0)
n,ξn

,

u
(0)
i,η = 0,

(14)
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subject to

σ
(0)
3m = 0 , σ

(0)
33 = −p∗ at η = 0,

and u
(0)
i = v∗

i , at η = 1.
(15)

Equations (14)5 with boundary conditions (15)2 imply

u
(0)
i = v∗

i , i = 1, 2, 3. (16)

Therefore, from (14)2 and (15)1 we have

σ
(0)
33 = v∗

3,ττ

∫ η

0
ρ∗ (z) dz − p∗. (17)

Hence, (14)1, (14)4, (16) and (15)1 yield

σ
(0)
3m = v∗

m,ττ

(∫ η

0
ρ∗ (z) dz

)
− 4v∗

m,ξmξm

(∫ η

0
κ2

2 (z)
(

1 − κ−2
c (z)

)
dz

)

− v∗
m,ξnξn

(∫ η

0
κ2

2 (z) dz

)
− v∗

n,ξmξn

(∫ η

0
κ2

2 (z)
(

3 − 4κ−2
c (z)

)
dz

)
.

(18)

Finally, the effective boundary conditions on the interface x3 = h may be
expressed in terms of the original variables as

σ3m = h
(
ρ̃ um,tt − γ̃ um,mm − μ̃ um,nn − (γ̃ − μ̃) un,mn

)
,

σ33 = hρ̃ u3,t t − P,
(19)

where γ (x3) = 4μc (x3)
(
1 − κ−2

c (x3)
)

and a tilde over a quantity denotes its mean
value over the thickness of the layer

f̃ = 1

h

∫ h

0
f (x3)dx3.

Note that in case of a homogeneous isotropic layer the derived effective boundary
conditions (19) reduce to the well-known ones first obtained in [8], see also [11], cf.
(3.17).

4 Asymptotic Model for Surface Wave

With the effective boundary conditions (19) derived, an asymptotic model for
surface wave may now be constructed, generalising the previous results in [11]
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to a coating with vertically inhomogeneous material properties. We arrive at
the following boundary value problem for a homogeneous isotropic substrate,
containing the conventional Navier equations of motion

(λ + μ)grad div u + μΔu = ρu,t t , (20)

subject to (x3 = h)

μ
(
u1,3 + u3,1

) = h
(
ρ̃ u1,t t − γ̃ u1,11 − μ̃ u1,22 − (γ̃ − μ̃) u2,12

)
,

μ
(
u2,3 + u3,2

) = h
(
ρ̃ u2,t t − γ̃ u2,22 − μ̃ u2,11 − (γ̃ − μ̃) u1,12

)
,

λ(u1,1 + u2,2) + (λ + 2μ)u3,3 = hρ̃ u3,t t − P.

(21)

In above u = (u1, u2, u3) is the displacement vector, Δ is a 3D Laplace operator in
spatial coordinates, λ and μ are the constant Lamé parameters of the substrate, and
ρ is its volume mass density.

Following the procedure in [11], the Radon integral transform is applied to
(20) and (21), resulting in a reduction to a 2D formulation. Then, a slow-time
perturbation scheme may be established, revealing the free Rayleigh wave at leading
order, with the perturbed wave equation following from the analysis of correction
terms. The resulting explicit formulation for surface wave field is expressed in
terms of for the longitudinal Lamé potential φ, and two non-zero components of
the vector shear potential, ψ1 and ψ2, with the displacement field expressed using
the Helmholtz theorem

u = grad φ + curl ψ, (22)

with ψ = (−ψ2, ψ1, 0), for more details see [12]. The behaviour over the interior
of the half-space is governed by pseudo-static elliptic equations

φ,33 + α2
R Δ2φ = 0, ψm,33 + β2

R Δ2ψm = 0, m = 1, 2, (23)

where Δ2 = ∂11 + ∂22 is the 2D Laplacian in x1 and x2 and

αR =
√

1 − c2
R

c2
1

, βR =
√

1 − c2
R

c2
2

, c2
1 = λ + 2μ

ρ
, c2

2 = μ

ρ
,

with c1, c2, and cR conventionally denoting the longitudinal, transverse, and
Rayleigh wave speeds. The boundary condition for (23)1 is given by a singularly
perturbed wave equation

Δ2φ − 1

c2
R

φ,tt − bh
√−Δ2 (Δ2θ) = −1 + β2

R

2μB
P, (24)
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with

B = 1 − α2
R

αR

βR + 1 − β2
R

βR

αR − 1 + β4
R,

and the constant b inheriting properties of both coating and substrate

b = 1 − β2
R

2μB

(
ρ̃c2

R (αR + βR) − γ̃ βR

)
. (25)

It can be easily verified that in case of a homogeneous isotropic coating layer the
latter reduces to earlier results (cf. (4.23) in [11]). The differential relations between
the potentials on the boundary x3 = h are

φ,3 = −1 + β2
R

2

(
ψ1,1 + ψ2,2

)
, φ,m = 2

1 + β2
R

ψm,3, m = 1, 2. (26)

5 Illustrative Example

In order to illustrate the derived formulation, let us restrict ourselves to a the plane-
strain problem for a concentrated impact force P(x1, t) = P0δ(x1)δ(t), acting on
the surface of a two-layered coating, with the material and geometrical parameters of
the layers denoted with subscripts 1 and 2. The wave equation (24) may be rewritten
in the form

θ,ss − 1

c2
R

θ,τRτR
− hL sgn b

√−∂ss

(
θ,ss

) = −δ(s)δ(τR), (27)

where s = x1/L, τR = tcR/L are the dimensionless coordinates, and

θ = − 4μB

(1 + β2
R)cRP0

φ
∣∣
x2=h1+h2

, hL = (h1 + h2)|b|
L

� 1, (28)

with the constant b defined according to (25) with

ρ̃ = ρ1h1 + ρ2h2

h1 + h2
, γ̃ = 4μ1h1(1 − κ−2

c1 ) + 4μ2h2(1 − κ−2
c2 )

h1 + h2
. (29)

Equation (27) may be solved by asymptotic matching, see [11], resulting in

θ = 1

2

[
1 − sgn (b)

(
1

2
+ sgn (χ)

(
C(χ) + S(χ)

)− C2(χ) − S2(χ)

)]
, (30)
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Fig. 2 Quasi-front type behaviour for a two-layered coating: (a) rubber-nylon coating on
polysterene substrate; (b) nylon-polysterene coating on a rubber substrate

where χ = (s−τR)sgn b/
√

2hLτR and C(x) and S(x) denote the Fresnel integrals.
Illustrations of the solution (30) is presented below in Fig. 2, showing dependence
of θ on s, with tR = 1, h1 = 0.1, h2 = 0.2. The material properties are taken
as follows: for rubber the Young’s modulus E = 0.1 GPa, volume mass density
ρ = 930 kg/m3, Poisson ratio ν = 0.49, for nylon E = 2.95 GPa, ρ = 1130 kg/m3,
ν = 0.39, for polystyrene E = 3.1 GPa, ρ = 1040 kg/m3, ν = 0.35. As may
be seen from the graphs, there are possibilities of receding and advancing quasi-
fronts, as noticed previously in [11], associated with the local min/max of the
phase velocity at the Rayleigh wave speed in the long-wave limit. Moreover, the
velocity of oscillations could also differ on the material parameters. In case of the
coating involving soft rubber layer (with contrast in stiffness between rubber and
polystyrene exceeding 30), the oscillations of the quasi-front are rapid, whereas in
case of a soft rubber substrate, the oscillations are relatively slow.

6 Concluding Remarks

The methodology of hyperbolic-elliptic models for surface wave field has been
extended to the case of a half-space coated by a vertically inhomogeneous layer.
Further developments may include analysis of other types of boundary conditions
[16], near-resonant regimes of moving loads [17], anisotropy [18], as well as a more
general treatment of a vertically inhomogeneous half-space, see [19].
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Bending Vibration Systems which are
Complementary with Respect to
Eigenvalues

Carsten Behn, Christoph Will, Lukas Merker, and Joachim Steigenberger

Abstract In developing prototypes, one fundamental activity is to model appro-
priate systems which mimic fundamental features of (biological) paradigms. In this
way, we set up different models for the investigation of natural frequencies. The aim
is to detect object contacts of technical sensors in observing their vibration behavior.
For this, we compare the range and the shift of natural frequencies determined
from the analysis of the arising two-point boundary-value problems. In particular,
we found two systems with complementary spectra of eigenvalues. Considering
boundary damping we analyzed these eigenvalues in the first octant of the complex
plane. The fundamental result is that these two systems offer no common eigenvalue,
they are alternative. This is an interesting and unique observation.

Keywords Bending beam vibrations · Natural frequency · Tactile sensor ·
Complementary eigenvalues · Animal vibrissa

1 Introduction

In recent years, there is a great interest in tactile sensors, since they can complement
other senses and have several advantages: they are superior to optical sensors as in
noisy environments (e.g., in the dark), and may also be cheaper in manufacture and
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use. A tactile sensor from biology is the so-called animal vibrissa found on, e.g.,
rats and mice. This paragon gets attracted attention in the last decades. They serve
for the exploration of the environment, the animals use them, e.g., to detect outer
objects, to distinguish between different surfaces, or to recognize surface textures.

The paragon offers an interesting arrangement:

– An animal vibrissa serves for the force transmission/mechanical stimuli in
principal. Because it is just a transmitter, a vibrissa itself is made of dead material
and, in contrast to ordinary hairs, they are stiffer, have a inherent curvature and
a conical shape. Moreover, they are assumed to be hollow due to a multi-layer
structure, [1].

– Further on, each vibrissa is embedded in its own follicle-sinus complex (FSC).
This FSC serves as a viscoelastic support and exhibits an exceptional arrange-
ment of blood vessels, receptors (e.g., mechanoreceptors) and neural connections
[2].

– The FSCs are embedded in the surrounding tissue: intrinsic and extrinsic
musculature and the so-called fibrous band [3].

– The hair shaft/vibrissa has also an additional support by the skin.

For the functional understanding and analytical investigations, there are already
various mechanical models under investigations in literature for several targeting
objectives. With respect to, e.g., object distance determination in measuring and
observing the shift of the natural frequencies due to object contacts (changing
boundary conditions of the system), we focus on bending beam vibrations in the
following. For this, we set up two models of vibrissa-like sensors in the following
section.

2 Modeling

The first model serves as a first approach: the support is simply modeled as a
clamping. But in contrast to other models from literature, we incorporate the
elasticity of the touched skin: a discrete spring-damper combination, see Fig. 1. The
second model is completely different from the first one. We neglect the foundation
of the FSC and the elasticity of the skin, because the length of the hair under the

Fig. 1 Model I: one-sided
clamped beam with discrete
visco-elastic end support
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z x

L

c
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Fig. 2 Model II: beam with a
bearing and discrete torsional
spring-damper element

y

z x
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E, Iz, A, �

v(x,t)

ct, dt

skin is much shorter than the free end. Hence, we shrink the support to a rotational
viscoelasticity: a bearing and discrete torsional spring-damper element, see Fig. 2.

3 Analyses of the Models

Bending beam vibrations of small amplitude are described by the partial differential
equation (PDE), [4],

∂4

∂x4 v(x, t) + ∂2

∂t2 v(x, t) = 0 , ∀ (x, t) ∈ (0, 1) × R+ (1)

under particular boundary conditions (BCs). Solutions of this boundary-value
problem (BVP) are investigated using separation of variables, see [5].

Remark 1 Referring to [6], we prefer a dimensionless notation throughout by using
the following units of measurement matching data of the real background system
(L, ρ, A, E, Iz beam parameters; dimensionless variables only here with a tilde
which is dropped afterwards):

x := x̃ · L , t := t̃ · L2

√
ρ A

E Iz

, ω := ω̃ · 1

L2

√
E Iz

ρ A
,

c := c̃ · E Iz

L3 , d := d̃ · 1

L

√
ρ AE Iz ,

ct := c̃t · E Iz

L
, dt := d̃t · L ·√ρ AE Iz .

The boundary conditions (BCs) of Model I are:

v(0, t) = 0 ,

∂
∂x

v(0, t) = 0 ,

∂2

∂x2 v(1, t) = 0 ,

∂3

∂x3 v(1, t) = c · v(1, t) + d · ∂
∂t

v(1, t) .

(2)
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The BCs of Model II are:

v(0, t) = 0 ,

∂2

∂x2 v(0, t) = ct · v(0, t) + dt · ∂2

∂x ∂t
v(0, t) ,

∂2

∂x2 v(1, t) = 0 ,

∂3

∂x3 v(1, t) = 0 .

(3)

Separation of variables,

v(x, t) = X(x) · T (t) ⇒ X(4)

X
(x) = − T̈

T
(t) =: λ4 , λ ∈ C , (4)

yields the following characteristic equations for λ of both models:

Model I :λ3 ·[1+cosh(λ)·cos(λ)]+(c ±i ·d ·λ2)·[cosh(λ)·sin(λ)−sinh(λ)·cos(λ)] = 0 ,

(5)
and

Model II :(ct ±i·dt ·λ2)·[1+cosh(λ)·cos(λ)]+λ·[sinh(λ)·cos(λ)−cosh(λ)·sin(λ)] = 0 .

(6)

Both equations are, because of the ±-sign, in fact two equations, i.e., four. Let
their left-hand sides (lhs, and rhs, respectively) be symbolized as eq(λ; c, d;+) and
eq(λ; c, d;−), respectively. It is easy matter to verify the following Proposition 1
in observing Eqs. (5) and (6) and using relations from [7].

Proposition 1 If eq(λ; c, d;+) = 0 then eq(λ; c, d;−) = 0, where λ is the
complex conjugate of λ. This means that the eigenvalues of a BVP appear as
a sequence of conjugate pairs. Moreover, eq(iλ; c, d;+) = −i · eq(λ; c, d;−)

and eq(−λ; c, d;±) = −eq(λ; c, d;±) implies that each eigenvalue λ entails the
8 − tuple (±λ,±λ,±iλ,±iλ) of eigenvalues.

In the following section, we present numerical investigations of the solutions
of the corresponding characteristic equations, using them to determine the natural
frequencies ω(c, d) = Re(λ(c, d)2), [8].

4 Simulations

At first, we focus on the natural frequencies of both systems, we present the behavior
in Figs. 3, 4, and 5.

Both diagrams of Fig. 3 show an interesting feature: if c, ct are below a certain
value c∗, c∗

t , then the natural frequency tends to zero for d, dt → +∞, else it
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Fig. 3 First natural frequency vs. damping parameter—family parameter c—for Model I (left) and
Model II (right)
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Fig. 4 Second natural frequency vs. damping parameter—family parameter c—for Model I (left)
and Model II (right)
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tends to the first natural frequency for the classical beam of type “clamped/pivoted”,
“clamped/free”.

The same effect shows up in Figs. 4 and 5, just with higher “classical” natural
frequencies.

Let us now focus on the eigenvalues of the systems, which determine the natural
frequencies. Again, we present the results side by side in Figs. 6, 7, and 8. We note,
that we, at first, present the eigenvalues in the first octant, see Proposition 1.

All these various behaviors described above are mirrored through the correspond-
ing diagrams of the eigenvalues λ(c, d), λ(ct , dt ) in the complex plane (first octant),
see Figs. 6, 7, and 8. As before, c, ct serve as family parameters while each single
curve in parameterized by d, dt , respectively.

Each curve starting from the real axis and tending to the diagonal marks the
natural frequency as tending to zero. Each curve ending at the real axis marks
the natural frequency as tending to a natural frequency of a classical undamped
vibrating beam type “clamped/pivoted”, “clamped/free”. Compare in particular the
right parts of Figs. 3 and 6.

Fig. 6 First eigenvalue for Model I (left) and Model II (right)

Fig. 7 Second eigenvalue for Model I (left) and Model II (right)
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Fig. 8 Third eigenvalue for Model I (left) and Model II (right)
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Fig. 9 First three eigenvalues of Model I (left) and Model II (right)

The patterns in complex plane continue unboundedly to the right, see Figs. 9
and 11. Finally, Fig. 12 shows the events of Fig. 11 without confinement to the first
octant.

Tacitly, we passed the main point of the headline: “complementarity” becomes
obvious in Figs. 9 and 11. Every white place in the left-hand sides of the diagrams
fills up with one curve family from the right-hand side diagrams and vice versa—
there are no common eigenvalues (besides maybe those on the common boundaries).

Equally, this fact is transferable to the behavior of the eigenfrequencies in
inspecting Fig. 10 and, more precisely, in Fig. 13, where the complete vertical axis
(ordinate ω) is filled.
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Fig. 11 Superposition of the first three eigenvalues of both systems—Model I (black) and Model II
(blue)—in the first octant

5 Conclusions

Until now, the observed complementary is still a remarkable feature. Next work
should be concentrate on experimental proof. Possibly, it could be utilized in control
problems if both viscoelastic supports are in action.
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Fig. 12 Superposition of the first three eigenvalues of both systems—Model I (black) and Model II
(blue)—in the complex plane

Fig. 13 Superposition of the first three natural frequencies vs. damping parameter—family
parameter c—for Model I (black) and Model II (blue)
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