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1 Introduction to Homomorphic Encryption

Homomorphic encryption (HE) enables processing encrypted data without decrypt-
ing it. This technology can be used, for example, to allow a public cloud to operate
on secret data without the cloud learning anything about the data. Simply encrypt
the secret data with homomorphic encryption before sending it to the cloud, have the
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cloud process the encrypted data and return the encrypted result, and finally decrypt
the encrypted result. Here is a simplistic “hello world” example using homomorphic
encryption:

# Every encryption needs a secret key. Let’s get one of those.
myEncryptionKey = generateEncryptionKey ()

# Now we can encrypt some very secret data.

encrypted5 = encrypt (myEncryptionKey, 5)
encryptedl2 = encrypt (myEncryptionKey, 12)
excrypted2 = encrypt (myEncryptionKey, 2)

# We have three ciphertexts now.

# We want the sum of the first two.

# Luckily we used homomorphic encryption, so we can actually
do this.

encryptedl7 = addCiphertexts (encrypted5, encryptedl2)

# Maybe we want to multiply the result by the 3rd ciphertext.
encrypted34 = multiplyCiphertexts (encryptedl7, encrypted2)

# See that? We operated on ciphertexts without needing the key.

# But no matter what we compute, the result is always encrypted.
# To actually see the final result, we have to use the key.
decrypted34 = decrypt (myEncryptionKey, encrypted34)

print (decrypted34) # This should print ‘34’

Homomorphic encryption today falls into the following common categories:
partially homomorphic (weakest notion), leveled fully homomorphic, and fully
homomorphic encryption (strongest notion). Partially homomorphic encryption
supports only one type of operation, e.g. addition or multiplication. Leveled fully
homomorphic encryption supports more than one operation but only computations
of a predetermined size (typically multiplicative depth). Fully homomorphic encryp-
tion (FHE) supports arbitrary computation on encrypted data and is the strongest
notion of homomorphic encryption.
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Introduction to Homomorphic Encryption and Schemes 5
1.1 Plaintexts and Operations

Computation on encrypted data in homomorphic encryption preserves the same
computation on the underlying plaintext. In the example above, we encrypted
integers and then added and multiplied them. There are other types of data that
we may want to encrypt and other operations that we may want to perform. For
example:

* Encrypt bits and perform logical AND, OR, XOR operations on the ciphertexts.
0AND1—0,00R1—1,1X0OR1—0
* Encrypt small integers and perform addition and multiplication, as long as the
result does not exceed some fixed bound, for instance, if the bound is 10,000
123 4+ 456 — 579, 12 x 432 — 5184, 35 x 537 — overflow
* Encrypt 8-bit unsigned integers (between 0 and 255) and perform addition and
multiplication modulo 256
128 +128 - 0,2 x 129 - 2
* Encrypt fixed-point numbers and perform addition and multiplication with the
result rounded to a fixed precision, for instance, two digits after the decimal point
12 +42 + 1.34 — 13.76,2.23 x 5.19 — 11.57
Different homomorphic encryption schemes support different plaintext types and
different operations on them.

1.2 Vectors and Special-Purpose Plaintext Data Types

Some homomorphic encryption schemes, such as BGV, BFV, and CKKS, support
“packing” — or “batching” — many plaintexts into a single ciphertext. They encrypt
vectors of elements, perform element-wise operations, and move elements around
in the vector:

* Encrypt vectors of any of the above types and perform operations element-wise
(1,0,1,0) AND (1,0,0,1) — (1,0,0,0)
(1,2) x (3,4) — (3,98
(1.1,2.2) + (5.5,6.6) — (6.6, 8.8)
* and rotation on element’s positions
rotLeft1((1,2,3,4)) - (2,3,4,1)

These element-wise and data-movement operations are often called SIMD
operations (single-instruction multiple-data).
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Many homomorphic encryption schemes also support various special-purpose
plaintext data types. While not described in this document, we briefly list some of
them below.

* Multi-precisions integers modulo a very large integer of the form p" + 1;
* Vectors over finite fields (e.g. useful for evaluation of the AES cipher);
¢ Polynomials modulo X" + 1(e.g. for convolution products).

Some of the most promising homomorphic encryption schemes today, such as
BFV, BGV, CKKS, DM, and CGGI, are implemented in open-source libraries. All
these schemes have unique advantages and drawbacks depending on the types of
computation one wants to perform.

1.3 Ciphertexts

One thing that all contemporary homomorphic encryption schemes have in common
is that in all of them each ciphertext is an array of integers of fairly high dimension
(at least a few hundred integers, and sometimes many thousands).

1.4 Symmetric vs. Public-Key Homomorphic Encryption

In the example code from above we used the same key for encryption and
decryption; this type of encryption is called symmetric encryption. In contrast,
public-key encryption (also called asymmetric encryption), uses two different keys:
a secret key for decryption and a public key associated to the secret key for
encryption.

Homomorphic encryption can be instantiated as either symmetric encryption
or public-key encryption, with encrypted computation capabilities. It provides the
following fundamental operations:

Operation Symmetric encryption Public-key encryption

Key generation | secret key secret key — public keys
Encryption plaintext, secret key — ciphertext | plaintext, public key — ciphertext
Decryption ciphertext, secret key — plaintext | ciphertext, secret key — plaintext
Operations ciphertext (and plaintext) — ciphertext

1.5 Parameters and Security

Instantiating any encryption scheme — homomorphic or otherwise — requires setting
some parameters, for example, to determine the key size or the security level. For
homomorphic encryption, the parameters influence not just security but also the
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plaintext type and the computations that can be performed. The most prominent
parameters that must be set for contemporary HE schemes are the following:

* Ciphertext dimension n corresponds roughly to the number of integers in each
ciphertext;
* Ciphertext modulus g bounds the size of each integer in the ciphertext array.

In general, the security level increases as n grows and decreases as g grows. On
the other hand, the larger g is, the more complex computations can be performed
on ciphertexts of the encryption scheme: Ciphertexts in these encryption schemes
contain a noise component (which is important for security), and that noise grows
with each operation. The encrypted result can only be decrypted if the noise is
smaller than ¢, hence using larger values of g imply that we can do more operations.

An illustration of the parameters n and ¢ and their influence on the level of
security is sketched in Fig. 1.

There are a few other parameters that influence security of lattice-based HE
schemes, such as the distribution from which the secret key is selected (and a few
others).

The security of lattice-based HE schemes is based on the hardness of a
mathematical problem called Learning with Errors (LWE) or a variant of it called
Ring Learning-with-Errors (RLWE). The (R)LWE problem is believed to be hard
for both classical and quantum computers under appropriate parameters. The HE
security document! contains tables indicating the security levels for various choices
of n and ¢q. Those tables are based on the best-known attacks against LWE.

The tables in the HE security document should be used as follows: Once the
size of g is known (as well as the secret-key distribution), one needs to consult the

!Published in 2017 on http://homomorphicencryption.org/white_papers/security_homomorphic_
encryption_white_paper.pdf. An updated version is included in Chapter “Homomorphic Encryp-
tion Standard”.


http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
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table and find the smallest value of n that provides the desired security level for this
g-size. For example, suppose we use a ternary secret-key distribution and want to
achieve 128 bits of security with a 200-bit modulus g. The third part of Table 1 in
the security document says that a value of n = 8192 can support ¢ moduli of size up
to 218 bits, but n = 4096 can only support g moduli of size up to 109 bits. Hence
the smallest n that we can use is n = 8192.

2 The BGV and BFV Encryption Schemes

This section includes a simplified introduction to the Brakerski-Gentry-
Vaikuntanathan (BGV) encryption scheme [34] and the encryption scheme due
to Brakerski and Fan-Vercauteren (BFV) [3, 6]. For a more technical description of
the schemes, we refer the reader to the Further Information subsection below.

BGYV and BFV are homomorphic encryption schemes whose security is based on
the hardness of the Ring Learning with Errors (RLWE) problem. The plaintext type
in both schemes consists of vectors of integers, with modular SIMD operations as
described below.

The BGV and BFV schemes involve several parameters that determine the
security level, functionality, and the plaintext data type supported by the scheme.
These parameters are:

* Plaintext modulus p;
* Ciphertext modulus g;
* Ciphertext dimension 7.

The plaintext modulus pdetermines an upper bound for the integer components of
the plaintext vectors that are encrypted in the BGV and BFV schemes. For example,
setting the plaintext modulus to p = 31 means that computing the product of an
encrypted 5 and an encrypted 7will overflow and produce the result 5 x 7 — 31 = 4.

The ciphertext modulus ¢ is the main functional parameter that determines the
encrypted computation capabilities of the scheme. A ciphertext in the BGV or BFV
scheme consists of an array of 2n integers between 0 and ¢ — 1. As explained in the
introduction, the larger the parameter ¢ of an instance is, the more operations can be
performed on encrypted data in that instance.

For a given value of ¢, the ciphertext dimension n determines the security level of
the scheme, with larger n meaning higher security. At the same time, the ciphertext
dimension n also influences the size of the plaintext vector which is encrypted
into each ciphertext. Often — but not always — the size of the plaintext vector is
equal to n.

2.1 Homomorphic Operations

Operations over encrypted data preserve the same operations modulo p on vectors
of integers and always produce a ciphertext as output. The main operations are:
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Two-Argument Operations

¢ Ciphertext-Ciphertext addition;

* Ciphertext-Plaintext addition;

* Ciphertext-Ciphertext multiplication;
* Ciphertext-Plaintext multiplication;

* Ciphertext-Ciphertext subtraction;

* Ciphertext-Plaintext subtraction.

Unary Operations

¢ Negation;
* Vector rotation.?

2.2 Parameter Selection

Typically the first parameter to select is the plaintext modulus p, that determines the
width of the plaintext data type. In some applications the plaintext modulus needs to
be large enough to accommodate the desired computation without overflow, other
times an overflow is desired. Selecting appropriate plaintext modulus depends on
details of the application, and is beyond the scope for this document.

The next parameter to select is ciphertext modulus g, which is primarily
determined by the multiplicative depth of the desired encrypted computation; a
higher depth requires a larger ciphertext modulus, and is typically slower. Therefore,
the computation should be made as low depth as possible. For example, computing a
product of four encrypted numbers A, B, C, and D is better done as (A *x B) x (C * D)
rather than A x (B * (C *x D)), as the former has lower multiplicative depth, and hence
requires a smaller ciphertext modulus.

Once ¢ is determined, the ciphertext dimension » should be selected to achieve
the desired security level, using the tables in [9]. The application developer is
advised to use a library that implements the [9] standard. We note that choosing
the right table from the [9] document requires knowing certain details of the
implementation, such as the secret key distribution.

2.3 A BGV/BFYV Hello World Example

# We first must set the parameters p,q, and n
p = 31
g = 65537

2In some cases we have more involved data-movement operations than just rotations. See the
Further Information section for more details.
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n = 16
# Warning: this setting is completely insecure!!
# To get any kind of security with g=65537 we need at least n=512

# With these parameters, the size of the plaintext vectors is 8

# Generate the keys for these parameters
myPublicKey, mySecretKey = generateBFVkey(n, p, q)

# Encrypt data, each plaintext is a vector of 8 elements

encrypted a = encrypt (myPublicKey, [5, 11, 2, 0, 20, 3, 8, 111])
encrypted b = encrypt (myPublicKey, [12, 7, 14, 11, 1, 2, 3, 24])
excrypted ¢ = encrypt (myPublicKey, [2, 10, 15, 13, 6, 3, 2, 1])

# We have three ciphertexts now.

# Compute the sum of the first two.

encrypted _d = addCiphertexts (myPublicKey, encrypted_a,
encrypted_b)

# Encryption of vector [17, 18, 16, 11, 21, 5, 11, 4]

# Maybe we want to multiply the result by the 3rd ciphertext.

encrypted e = multiplyCiphertexts (myPublicKey, encrypted c,
encrypted_d)

# Encryption of vector [3, 25, 23, 19, 2, 15, 22, 4]

# Then rotate by 2 to the right
encrypted f = rotateBy2 (myPublicKey, encrypted e)

# To actually see the final result we have to use the key.
decrypted = decrypt (mySecretKey, encrypted f)

print (decrypted)

# This should print [22, 4, 3, 25, 23, 19, 2, 15]

2.4 Further Information
Maintenance Operations

The BGV and BFV schemes also include some operations that have no effect on
the underlying plaintext, but are nonetheless sometimes needed for implementation
reasons.

* Ciphertext-Ciphertext multiplications and cyclic vector rotations have a side-
effect of requiring a different secret key to decrypt the result than what was
needed before the operation. These operations are therefore followed by a key
switching operation to restore the secret key back to the original one.> The

3In some applications, key switching operations are avoided or delayed for the sake of optimiza-
tion.
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key switching operation for Ciphertext-Ciphertext multiplication is also called
relinearization,

* Bootstrapping, which “refreshes” a ciphertext and reduces the level of noise in
it, to support more computations. This operation is very expensive, and hence it
is not often used (and sometimes it is not even implemented).

* Modulus switching, which sometimes follows the multiplication operation. This
is used more in BGV, where it is needed to control the level of noise in a
ciphertext. (It is rarely used in BFV, except for bootstrapping.)

Evaluation Keys

The key switching operations require the evaluator to have access to special public
evaluation keys. These evaluation keys are generated by the owner of the secret
key. In the context of Ciphertext-Ciphertext multiplication, these keys are often
called relinearization keys; and in the context of rotation, they are sometimes called
rotation or Galois keys.

Data Encoding

Prior to encrypting data with the BGV or BFV scheme, a separate encoding
operation is required, which transforms source data (e.g. vectors of integers) into a
native plaintext format for the scheme. After decryption, a corresponding decoding
operation is required.

Data Movement Operations

For some setting of the parameters p and n, the native data-movement operations
supported by the scheme may differ from just cyclic rotations. For example, in some
cases the plaintext elements are arranged in a matrix with 2 rows and n/2 columns,
with native operations of row-rotate and column-rotate.* Even in these cases, it is
always possible to implement cyclic rotations using the native row- and column-
rotations, as described in [11].

References for the BFV Encryption Scheme

The BFV scheme is a ring variant of the scale-invariant LWE scheme proposed by
Brakerski [3]. The “textbook” (multi-precision integer arithmetic) variant of BFV
is described in [6, 13]. Note that [13] provides tighter noise constraints than the
original paper [6].

“4For some parameters we get even higher-dimension hypercube formats.
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The most efficient variants of BFV used in practice represent large integers in the
Residue Number System (RNS). The RNS representation has a number of practical
advantages over the conventional multi-precision positional number system (PNS)
representation:

1. RNS works with native (machine-word size) integers: faster (up to 5-10x) than
PNS.

2. Runtime in RNS scales (quasi-)linearly with integer size.

3. RNS dramatically improves memory locality.

4. Computations are easily parallelizable, and hence RNS supports efficient GPU/F-
PGA hardware implementations.

Two RNS variants of BFV are known in literature: [2] (based on integer
arithmetic) and [10] (based on both integer and floating-point arithmetic). A
comparison of the RNS variants is provided in [4].

The encoding of vectors of integers into a BFV plaintext is described in Appendix
A of [13]. This batching/packing encoding technique is discussed at a more
advanced level in [7].

The bootstrapping for BFV is described in [5]. Note that BFV bootstrapping
is rarely used in practice, and is not currently supported by any open-source
homomorphic encryption library.

The following libraries have open-source implementations of BFV (the variants
are indicated in parentheses):

e Microsoft SEAL [2]
e PALISADE [2, 6, 10]
e Lattigo [14]

References for the BGV Encryption Scheme

The BGV encryption scheme was first described in [34], improving on a previous
construction from [35]. Here too it is desirable to represent large integers in the
Residue Number System (RNS), for the same reason as for the BFV encryption
scheme. This implementation was described in [7]. The BGV encryption scheme
is implemented in the HElib and PALISADE libraries. Bootstrapping for BGV was
described in [1, 8, 12], and is implemented in HEIib.

3 The CKKS Encryption Scheme

This section includes a simplified introduction to the Cheon, Kim, Kim, and Song
(CKKS) encryption scheme [15]. For a more technical description of the scheme,
we refer the reader to the Further Information section below.
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CKKS is a homomorphic encryption scheme whose security relies on the
hardness of the Ring Learning with Errors (RLWE) problem. The plaintexts are
vectors of real numbers, represented as a fixed-point type. The scheme natively
supports fixed-point arithmetic between these vectors in a SIMD manner.

The CKKS scheme involves several parameters that determine the security level,
functionality, and precision supported by the scheme. These parameters are:

* Number of fractional bits f, corresponding to the accuracy of the computation;
¢ (Maximal) Ciphertext modulus g;
* Ciphertext dimension n.

We assume that every plaintext value is represented as a binary fixed-point
number which has f fractional bits after the radix point. The value of f for a
ciphertext can be adjusted after performing computations using a so-called rescaling
procedure, which is a distinctive feature of CKKS.

The ciphertext modulus ¢ is the main functional parameter that determines
the encrypted computation capabilities of the scheme. A ciphertext of the CKKS
scheme consists of an array of 2n integers modulo g. The larger the parameter q is,
the more operations can be performed on encrypted data and at a higher precision.
For a given value of g, the ciphertext dimension n determines the security level of the
scheme, with larger n meaning higher security. We refer the reader to the parameter
selection section for more details.

As noted above, CKKS allows us to encrypt multiple fixed-point numbers in
a single ciphertext. The ciphertext dimension n also determines the size of the
plaintext vectors, which is n/2.

3.1 Homomorphic Operations

All computations involving at least one encrypted input produce encrypted outputs.
The main operations are:

Two-Argument Operations

* Ciphertext-Ciphertext addition;

* Ciphertext-Plaintext addition;

* Ciphertext-Ciphertext multiplication;
* Ciphertext-Plaintext multiplication;

* Ciphertext-Ciphertext subtraction;

* Ciphertext-Plaintext subtraction.

Ciphertext-Ciphertext and Ciphertext-Plaintext multiplications return a cipher-
text whose scaling factor is explicitly the product of scaling factors of inputs.
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Ciphertext-Ciphertext and Ciphertext-Plaintext additions require the scaling factors
of the inputs to match.

Unary Operations

* Negation;
* Cyclic vector rotation;
* Rescaling.

Rescaling, which almost always follows the multiplication operation, is a unary
operation that divides the scaling factor of input ciphertext by a specific factor. It
controls the magnitude of scaling factors during homomorphic computation. Cipher-
text modulus decreases after the rescaling operation, and further multiplication is not
allowed if a ciphertext modulus is too small.

3.2 Parameter Selection

The number of fractional bits and the supported depth of the encryption scheme
are main parameters to be considered. Encrypted evaluation of a circuit can be
performed if the circuit depth does not exceed the bound determined by the
parameters.

Precision loss and overflow are two major issues of fixed-point arithmetic.
Ciphertexts in CKKS have inherent error after encryption or computation, which
is controlled by the parameter f. A larger f means more accurate result, but the
computational cost grows as f increases. At the same time, the magnitude of
encrypted values must be kept sufficiently smaller than the ciphertext modulus g
to ensure that no overflow occurs during computation.

The maximal ciphertext modulus ¢ is primarily determined by the multiplicative
depth of the desired circuit to be evaluated, and by the accuracy parameter f; higher
depth and larger accuracy require a larger ciphertext modulus, and is typically
slower. Therefore, a common optimization technique is to represent a computational
task as a circuit with minimal depth. For example, computing a product of four
encrypted numbers A, B, C, and D is better done as (A * B) x (C x D) rather than
A x (B * (C % D)), as the former has lower multiplicative depth, and hence requires
a smaller ciphertext modulus.

Once ¢ is determined, a lower bound on the ciphertext dimension #n is now
determined to achieve a desired security level, using the tables in [9]. The appli-
cation developer is advised to use a library that implements the [9] standard and
automatically selects the correct table, as choosing the right table requires knowing
certain details of the implementation, such as the secret key distribution.
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3.3 A CKKS Hello World Example

We first must set the parameters f,q, and n

= 2

= 65537

= 8

We use a decimal representation with f = 2 fractional digits

5. M 3

Warning: this setting is completely insecure!!
To get any kind of security with g=65537 we need at least n=512
With these parameters, the plaintext vectors have size 4

H+ H H*

# Generate the keys for these parameters
myPublicKey, mySecretKey = generateCKKSkey(n, q)

# Encrypt data, each plaintext is a vector of 4 elements

encrypted _a = encrypt (myPublicKey, [1.53, -11.53, 0.02, -3.32])
encrypted b = encrypt (myPublicKey, [12.29, 7.52, -14.47, 11.01])
excrypted ¢ = encrypt (myPublicKey, [2.64, 10.78, -15.30, 13.34])

# We have three ciphertexts now.

# We want the sum of the first two.
# Luckily we used homomorphic encryption, so we can actually.
do this.
encrypted d = addCiphertexts (myPublicKey,
encrypted a, encrypted b)
# encrypting the vector [13.82, -4.01, -14.45, 7.69]

# Maybe we want to multiply the result by the 3rd ciphertext.

encrypted e = multiplyCiphertexts (myPublicKey, encrypted c,
encrypted_d)

# encrypting the vector [36.48, -43.23, 221.09, 102.58]

# Then rotate by 2 to the right
encrypted f = rotateBy2 (myPublicKey, encrypted e)

# To actually see the final result, we have to use the key.
decrypted = decrypt (mySecretKey, encrypted f)

print (decrypted)

# This should print [221.09, 102.58, 36.48, -43.23]

3.4 Further Information
Data Encoding

Prior to encrypting data with the CKKS scheme, a separate encoding operation is
required. The CKKS encoding incurs some loss of precision, hence the plaintext
vector must first be multiplied by a scaling factor (which is determined by the
parameters of the scheme), to ensure that the encoded value retains enough
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precision. Then, the scaled vector is converted into a native plaintext format for the
scheme. Ciphertexts implicitly store the scaling factor which may change during
homomorphic computation. After decryption, a corresponding decoding operation
is required.

The ciphertext modulus determines an upper bound for the components of the
underlying encoded plaintext to guarantee its correct decryption. For example,
setting the ciphertext modulus to g = 1024 means that an encryption of 12.34 with
scaling factor of 32 is correctly decryptable but encrypting the same value with
scaling factor 256 will result in overflow.

Maintenance Operations

The CKKS scheme also uses some operations that do not change the underlying
plaintext (beyond some possible precision loss) but are nonetheless needed for
implementation reasons.

¢ Ciphertext-Ciphertext multiplication and cyclic vector rotation have a side-effect
of requiring a different secret-key to decrypt the result than what was needed
before the operation. These operations are therefore followed by a key switching
operation to convert the secret key back to the original one. The key switching
operation for Ciphertext-Ciphertext multiplication is also called relinearization.

e Bootstrapping, which “refreshes” a ciphertext and raises the ciphertext modulus
in it, to support more computations. This operation is expensive, and hence it is
not often used (and sometimes it is not even implemented).

Evaluation Keys

The key switching operations require the evaluator to have access to special public
evaluation keys. The evaluation key generation must be done by the secret key
owner. In the context of Ciphertext-Ciphertext multiplication, these keys are often
called relinearization keys; and in the context of rotation, they are sometimes called
rotation or Galois keys. The bootstrapping procedure also requires such evaluation
keys.

References for the CKKS Scheme

The CKKS encryption scheme was first proposed in [15]. For the same reason as
for the BFV scheme, it is desirable to represent large integers in the RNS. Several
RNS variants of the CKKS scheme have been proposed and implemented, including
[17, 19, 20], and [21]. Modern HE libraries typically implement a combination of
these RNS variants and often add their own optimizations/usability improvements.
Bootstrapping for CKKS was described in [16, 18, 21].
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Reference Implementations

The following libraries have open-source implementations of CKKS (the variants
are indicated in parentheses):

¢ HEAAN/RNS-HEAAN
* HEIlib

e Lattigo

¢ Microsoft SEAL

¢« PALISADE

4 The DM (FHEW) and CGGI (TFHE) Schemes

4.1 Basic Concepts

This section includes a simplified introduction to the Ducas-Micciancio (DM)
and Chillotti-Gama-Georgieva-Izabachene CGGI schemes, based on [25-29, 31,
32]. The DM scheme is often referred to as the FHEW scheme in literature, and
the CGGI scheme is often referred to as the TFHE scheme. To distinguish the
underlying schemes from their implementations in the FHEW and TFHE libraries,
we adopt the naming convention based on authors’ initials. For a more technical
description of these schemes, we refer the reader to the Further Information
subsection below.

DM and CGGI are homomorphic encryption schemes based on the Learning with
Errors (LWE) problem and its ring variant, the Ring Learning with Errors (RLWE)
problem. Common use-cases for these schemes are the encrypted evaluation of
decision diagrams, comparisons, lookup tables and circuits.

The schemes can be used in two different modes: simple (automated) and
advanced (manual). The simple mode automatically performs bootstrapping after
each gate operation, providing the ability to evaluate arbitrary (typically Boolean)
circuits. The simple mode is easy to configure (requires only one parameter) but can
be less efficient than the advanced mode, especially when the circuit is known in
advance. In the advanced mode, the user decides when to perform bootstrapping or
other maintenance operation, and even has an option not to perform bootstrapping
at all.

The simple mode is easy to use, it suffices to generate or compile a small
Boolean circuit that corresponds to the application, and evaluate it gate by gate on
encrypted inputs. The homomorphic evaluation time is proportional to the plaintext
evaluation of the same circuit. If the application can be written in terms of binary
decision diagrams and lookup tables, the developer will often achieve much better
performance by using the advanced mode. Some speed-ups using advanced mode
are illustrated in [26] (lookup table and comparison circuit).

These schemes involve the following parameters:
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* Bits of security A (main parameter in all modes);
* Ciphertext-specific computation budget measure (only in advanced mode).

The bits of security parameter A are related to the ciphertext modulus g and
ciphertext dimension n for other schemes. In the simple mode, all the parameters
can be derived from '\ only.

In the advanced mode, the computation budget serves as a measure for the
number of homomorphic operations that can be run on a ciphertext before a boot-
strapping is required. Once all computations for a given ciphertext are performed,
the user has to manually call bootstrapping to reset the computation budget for
further computations on the ciphertext.

4.2 Homomorphic Operations

Computations over encrypted data always produce a ciphertext as output. The
simple mode supports operations on Boolean circuits. The advanced mode supports
operations on Boolean circuits, integers, and fixed-precision fractional numbers.

Simple Mode Plaintext Space and Operations
In the simple mode, the plaintext is just a Boolean value, and the main operations
for Boolean circuits are:
* Constants
— ZERO/ONE
e Unary gate
- NOT
* Binary gates

AND/NAND
OR/NOR

— XOR/XNOR
ORNOT/ANDNOT

e Ternary gates

- MUX
— Majority/Minority

In all these gates, the inputs and outputs are ciphertexts only. There is no direct
support for mixed plaintext/ciphertext inputs because a Boolean gate that takes a
plaintext as an input can always be simplified: e.g. x AND 1 =x, x AND 0 =0, x
XOR 1 =NOT x.
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A DM/CGGI Hello World Example (Using Simple Mode)

# We first must set the bits of security
lambda = 128

# Generate the keys for these parameters
myPublicKey, mySecretKey = generateKeys (lambda)

# Encrypt data, each plaintext is a boolean value
encrypted a = encrypt (myPublicKey, 1)

encrypted b = encrypt (myPublicKey, 1)

excrypted ¢ = encrypt (myPublicKey, 0)

# We have three ciphertexts now.

# Compute the AND of the first two.

encrypted AND = EvalGate (“AND”, myPublicKey, encrypted a,
encrypted_b)

# Encryption of 1 AND 1 =1

# Maybe we want to compute OR of this with the 3rd ciphertext.

encrypted ANDOR = EvalGate (“OR”, myPublicKey, encrypted AND,
encrypted c)

# Encryption of (1 AND 1) OR 0 = 1

# To actually be able to see the final result we have to use
the key.

decrypted = decrypt (mySecretKey, encrypted ANDOR)

print (decrypted)

# This should print 1

Advanced Mode Plaintext Space and Operations

In the advanced mode, the scheme supports different plaintext types, as well as
elementary operations across these plaintext spaces, and each ciphertext carries
its own computation budget. The combination of plaintext types and computation
budgets determines whether an operation is allowed, and at which performance it
will be executed.

The main plaintext structure is a vector of n elements, which supports vector
additions and some other vector operations (see below), but vector multiplications
are not supported. In this section, we explain the plaintext arithmetic and give a few
examples.

The main plaintext structure is a vector of n fixed-point numbers between
—0.5 and 0.5 (i.e., modulo 1), given with a precision « (each ciphertext has
its own precision). This vector is encrypted in an RLWE® ciphertext with noise
rate «. For instance, a ciphertext that encrypts a coefficient 0.0042 with precision

SHere RLWE is represented mod 1, with all coefficients divided by q used in BFV, BGV, CKKS
and DM.
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o = 1072 means that it can be decrypted as any number between 0.0042 — 10~
and 0.0042 + 10~°. This inherent error is analogous to the error in floating-
point arithmetic (in the case of approximate arithmetic) or can be eliminated by
post-decryption rounding if the message space is discretized (in the case of exact
arithmetic).

If the coefficient 0.4942 was encrypted in a ciphertext with a much higher noise
rate @ = 1072, it could be decrypted as any value between 0.4842 and 0.5042, and
the second one would appear as —0.4958 modulo 1. This overflow is similar to
the BGV/BFV case (with mod p plaintext space), but with respect to real numbers
mod 1. If such overflow is not explicitly wanted by the application, it probably
means that the noise is too large, or that the inputs should be scaled down.

The supported homomorphic operations are:

¢ Element-wise addition and subtraction: x + y,x — y

— (0.0042, 0.0011, 0.0034) + (0.0074, 0.0089, 0.0011) — (0.0116, 0.0100,
0.0045)

The result is always reduced modulo 1 (it can either be viewed as an expected
behavior, or as an overflow condition which is mitigated by downscaling the
space until every coefficient is much smaller than 1 like in the above example).

e Multiplication by a small public integer constant: noted a * x

— 3 x (0.0042,0.0011,0,0034) — (0.0126,0.0033,0.0102), for a = 3;
— 123 % (0.0042,0.0011,0,0034) + (¢ = 1073) — (0.517,0.135,0.418) +
(o = 1073), for a = 123.

Here, the factor 123 is rather large, if the input noise was +1073, only 3
decimal digits of precision remain after scaling, since the noise amplitude also
increases by a factor 123.

* (Anticyclic) shift by k positions: noted rofi(x), with k a public value

— rotp( (0.0042,0.0011,0,0034,0,0,0) ) — (0.0042,0.0011,0,0034,0,0,0) ,
fork=0

— rotr( (0.0042,0.0011,0,0034,0,0,0) ) — (0,0,0.0042,0.0011,0,0034,0) ,
fork=2

— rot3( (0.0042,0.0011,0,0034,0,0,0) ) — (0,0,0,0.0042,0.0011,0,0034) ,
fork=23

Any coefficient that vanishes to the right of the vector appears back on the left
side with the opposite sign, so with the same example, if n = 6.

— rot4((0.0042,0.0011,0,0034,0,0,0) ) — (—=0.0034,0,0,0,0.0042,0.0011) ,

fork=4
— rot5((0.0042,0.0011, 0,0034,0,0,0)) — (—0.0011, —0.0034, 0, 0,0,0.0042) ,
fork=>5

* There are also more involved operations, such as selecting only one particular
position, or all odd or even positions and canceling all other positions.
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Any combination of the above addition/scaling/rotations is possible: e.g.
X + 2 % rot1(x) + 5 * rot2(y) means x + twice x rotated by one position +5 times
y rotated by two positions. The same expression can equivalently be factorized as
(rotg + 2roty). (x) + (Sroty). (y), which isolates the linear transformations applied
on each ciphertext. Applying a linear transformation on a ciphertext increases its
noise (and hence the output error) by the norm of all rotation coefficients: the bigger
the coefficients, the larger is the resulting noise, and the application designer must
always ensure that the resulting noise remains small enough to decrypt the output.

Having all these definitions and constraints in mind, the user is free to use any
plaintext vector, encrypted as an RLWE ciphertext, which can represent a real or
fractional number (mod 1).6

If the application cannot be expressed in terms of element-wise addition,
public scaling or rotation with public index and we need non-linear operations,
we should use a different encryption scheme called RGSW (vector of RLWE
ciphertexts). It provides the possibility to evaluate any secret linear transformation
(homomorphically encrypted).

e Homomorphic action (external product): Given an RGSW ciphertext that
encrypts a linear transformation f, and an RLWE ciphertext that encrypts a
real vector x, obtain the encryption of f(x).

The most useful applications of this concept are essentially:

* BlindRotation: Given a RGSW ciphertext that encrypts roty, and a RLWE
ciphertext that encrypts x, obtain a RLWE encryption of rotx(x), where k remains
secret.

e PrivateSelection (CMUX): Given a RGSW ciphertext that encrypts ¢ = 1 or 0,
and two RLWE ciphertexts that encrypt x and y, obtain an RLWE encryption of
the selection c?x:y (written like in C), which is equal to x when ¢ = 1 and y when
c=0.

The CMUX is a building block for the evaluation of any binary decision diagrams
or deterministic finite automata (DFA), like the lookup table or the automata in Figs.
2 and 3, where each selector is one CMUX gate.

These two operations above only add a constant amount of noise on top of
the input RLWE ciphertexts, allowing to chain a large amount of these operations
with negligible noise growth, and hence to build complex decision diagrams or
deterministic automata. Many arithmetic circuits correspond to simple decision
diagrams, the most famous of them is the decryption function, which is used to
bootstrap ciphertexts in the simple mode.

SFractional number mod 1 corresponds to an integer mod p, as in BGV/BFV, divided by p
71 is the identity function
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Advanced-Mode CGGI Hello World Example (Corresponds to the DFA
in Fig. 1)

# We first must set the bits of security and the noise-rate
lambda = 128
alpha = 27-15

# Generate the keys for these parameters
myPublicKey,mySecretKey = generateKeys (lamda, alpha)



Introduction to Homomorphic Encryption and Schemes 23

# encrypt each letter with RGSW

encrypted x = [ encryptRGSW(myPublicKey, 0),
encryptRGSW (myPublicKey, 1),
encryptRGSW (myPublicKey, 0) ]

the initial state values are trivial RLWE ciphertexts
= RLWE (0)

= RLWE (0)

= RLWE(0.5)

Qoo FF

For 1 = 3 to 1
# evaluate each transition

newA = CMux (encrypted x[i],b,a)

newB = CMux (encrypted x[i],a,c)

newC = CMux (encrypted x[i],c,b)

(a,b,c) = (newA,newB,newC)
EndFor

# To actually see the final result, we have to use the key.
decrypted = decrypt (mySecretKey, a)
Return decrypted

4.3 Further Information
Advanced Notes on Parameters

The computation budget can be equivalently expressed as the standard deviation
of the ciphertext noise (noise rate o) for implementations of CGGI in the TFHE
library, or to the modulus g for modular instantiations of DM and CGGI. The
correspondence between the modulus g described in the security tables and the
noise rate o is ¢ = 3.2/+/27 «. This means, the noise grows at each operation
until it reaches critical levels, or g can be rescaled down after each operation, until
it reaches its minimum.

In the advanced mode, there are many sets of parameters n and o (g), each
corresponding to a specific (sub-)circuit that gets bootstrapped. The details of setting
the computational budget are implementation-specific.

Some More Advanced Operations Are Supported

* Addition and composition of transformations: Given two RGSW ciphertexts
encoding f and g, we can homomorphically obtain single RGSW ciphertexts
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that encrypt respectively f + g and f o g. This is in line with the original ring
operations described in the GSW scheme [31], and it is used in DM bootstrapping
[29].

*  Multiplication by the secret key s: This allows the evaluation of polynomials in
s, and by extension, unlocks a variant of BFV and CKKS schemes supporting
homomorphic element-wise addition/multiplication either modulo p or on fixed
point-numbers, and that can be combined with the above circuit operations (see
Fig. 3 at the end of the section). This is discussed at a more advanced level in the
Chimera extension of CGGI in [28].

Maintenance Operations (and More)

The DM/CGGI schemes also support some maintenance operations:
* (both DM/CGGI)

— Gate bootstrapping, which “refreshes” the noise of a binary gate ciphertext.
Unlike BFV, BGV and CKKS, the gate bootstrapping is fast, in the order of a
few milliseconds [25, 29], and is always applied after each boolean gate in the
simple mode.

— (Functional) Key switching allows to switch between scalar and polynomial
message spaces, and to apply any linear combination with small integer
coefficients.

¢ (CGGlI-specific)

— Circuit bootstrapping, which “converts” a LWE ciphertext from the space
{0,1/2} into a RGSW ciphertext of O or 1. The circuit bootstrapping is applied
in the advanced mode to compose binary decision diagrams, and runs in 137
milliseconds [26].

— Functional bootstrapping, allows to approximate homomorphically a non-
linear real-valued function [23, 27].

* (DM-specific)

— Modulus Rescaling, which follows almost all multiplication operations on
representations modulo g. This operation simplifies the ciphertext to obtain
shorter equivalent representation, with a fixed noise amplitude. This operation
is implicit on representations modulo 1, where the precision of the ciphertext
representation is always of the order of a.

Advanced Functionality in the CGGI Encryption Scheme
The CGGI scheme in advanced mode proposes two methods to operate on batched

data to decrease the ciphertext expansion and to optimize the evaluation of look-up
tables and arbitrary functions. The batching techniques provide the possibility to
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use the computation slots at their maximal capacity, even if the function itself is not
SIMD, or has very few bits of output.

CGGI also extends the automata logic, to the leveled evaluation of deterministic
weighted finite automata (WFA). These improvements speed up the evaluation of
most arithmetic functions in a batched advanced mode, with a noise overhead that
remains additive (more information is described in [26]).

Difference Between DM and CGGI

The CGGI scheme supports the both simple and advanced modes (with a special
circuit bootstrapping proposed in [26]), DM currently supports just the simple mode,
but can be generalized.

The main difference between the CGGI and DM schemes in the simple mode is
in the bootstrapping procedure used for refreshing the ciphertexts [32]. CGGI uses
the Gama-Izabachene-Nguyen—Xie bootstrapping procedure [30] based on CMUX
gates while CGGI uses the Alperin-Sherif—Peikert bootstrapping procedure [22] via
the composition of GSW ciphertexts.

Variants of DM/CGGI

The original CGGI scheme was constructed using the Torus (Ring) Learning
With Errors (TLWE/TRLWE) problem, which is a generalization of LWE/RLWE
rescaled over the real Torus (a set of real numbers modulo 1) [25]. The original
DM scheme was constructed using LWE/RLWE [29]. The CGGI scheme was
subsequently instantiated using LWE/RLWE in a unified framework including both
DM and CGGI [32].

Scheme Switching Using CGGI

The Chimera framework described in [28] unifies CGGI (TFHE), BFV and CKKS
under the TLWE/TRLWE/TRGSW problems and allows using the three schemes in
the same computation. Figure 4 provides a schematic of scheme switching in the
Chimera framework.

Reference Implementations

The following libraries have open-source CPU implementations of DM and
CGGL:

e TFHE (CGGI scheme in simple and advanced modes using binary secret
distribution)
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Fig. 4 The Chimera framework

* FHEW (DM scheme in the simple mode using binary distribution)
* PALISADE (DM and CGGI in simple mode using ternary secret distribution)

Please note that the parameters for binary secret distributions are not currently
included in the HE Security Standard [9] but are being considered for inclusion in
the standard.

The following libraries have GPU implementations of CGGI:

e cuFHE (GPU version of the CGGI scheme in the simple mode)
e nuFHE (GPU version of the CGGI scheme in the simple mode)

A proof of concept implementation of scheme switching between CGGI and
CKKS (using the HEAAN library) is publicly accessible [24].
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