
Kristin Lauter
Wei Dai
Kim Laine Editors

Protecting
Privacy through
Homomorphic
Encryption

Protecting Privacy through Homomorphic
Encryption

Kristin Lauter • Wei Dai • Kim Laine
Editors

Protecting Privacy through
Homomorphic Encryption

Editors
Kristin Lauter
West Coast Research Science
Facebook AI Research
Seattle, WA, USA

Wei Dai
Cryptography and Privacy Research Group
Microsoft Research
Redmond, WA, USA

Kim Laine
Cryptography and Privacy Research Group
Microsoft Research
Redmond, WA, USA

ISBN 978-3-030-77286-4 ISBN 978-3-030-77287-1 (eBook)
https://doi.org/10.1007/978-3-030-77287-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021, corrected publication 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-77287-1

Preface

This book is concerned with explaining methods for protecting privacy using
Homomorphic Encryption. Privacy means different things to different people. In
this volume, we will use the term privacy to refer to the notion defined by some
social scientists as the guarantee that an individual or an organization should have
the right to control how their data is used or shared. Privacy is not possible without
tools from cryptography necessary to protect the security of data from unauthorized
access or use.

Encryption is a tool for protecting data by transforming it using mathematical
methods and the knowledge of a cryptographic key. Assuming a sound implemen-
tation of an encryption scheme and the hardness of the underlying mathematical
problems, encryption can be used to protect both the security and the privacy
of data. Traditional encryption schemes such as the US government standardized
AES block cipher can be used to protect data while in transit or in storage. But
to protect data while in use requires a new kind of encryption which allows for
meaningful computation on ciphertexts without decryption. Such encryption is
called Homomorphic Encryption (HE), because homomorphic is a common term
in mathematics meaning to preserve structure. It means that the encryption map
preserves the underlying algebraic structure of the data, resulting in the same output
if the order of encryption and computation are exchanged.

The existence of a solution for Homomorphic Encryption was an open problem
for more than three decades. A partially homomorphic encryption scheme was
known already in the mid-1970s: RSA encryption allows for one operation on
ciphertexts. But computation on today’s (classical) computers is implemented as
operations on bits described as circuits of AND and OR gates. So, two operations
on encrypted data are required to implement general circuits for computation. The
first blueprint for a solution was introduced by [1] in 2009, including the notion of
bootstrapping to allow for arbitrary computation. The lattice-based solutions used
in all the homomorphic encryption libraries today implement schemes based on
the Ring Learning with Errors (RLWE) problem, which will be further explained

v

vi Preface

in Part II. The first RLWE-based solution [2] was later extended to [3], and other
proposed schemes followed, which will all be explained in Parts I and II. The first
practical approach to computation on real data was introduced in [4], including
the encoding of integers and real data as ciphertexts, replacing bitwise encryption.
This led for example to techniques introduced in [5] for the first time to perform
machine learning tasks on encrypted data, such as training models and using them
for prediction, and eventually to the CryptoNets project [6] which demonstrated
neural net predictions on encrypted data.

Any new proposal for cryptosystems based on hard mathematical problems
must be thoroughly studied and reviewed by the scientific community before the
public can be expected to adopt and trust it to protect the privacy and security
of their data. New cryptographic proposals have typically seen at least a 10-year
lag before widespread adoption in the industry, as was the case for Elliptic Curve
Cryptography. Lattice-based cryptography was first introduced in the mid-1990s.
There are no known efficient quantum attacks on general lattice-based schemes, so
lattice-based key exchange and signature schemes are currently leading candidates
in the ongoing 5-year National Institute of Standards and Technology (NIST) Post-
Quantum Cryptography Standardization competition. But the parameters required
for Homomorphic Encryption applications are quite a bit larger than for key
exchange and signature schemes, and the protocols and applications are quite dif-
ferent. The idea of forming a community to standardize Homomorphic Encryption
came out of a meeting between Kristin Lauter, Shai Halevi, Kurt Rohloff, Yuriy
Polyakov, and Victor Shoup in New York City in April, 2015. Initial goals included
developing common APIs to ensure interoperability of different implementations.

In 2017, Microsoft Research (MSR) Outreach funded the first Homomorphic
Encryption Standardization Workshop, hosted at Microsoft in Redmond, WA, on
July 13–14, 2017. The workshop was co-organized by Kristin Lauter and Kim
Laine from MSR, Roy Zimmermann from MSR Outreach, Lily Chen (NIST), Jung
Hee Cheon (Seoul National University), Kurt Rohloff (NJIT/Duality), and Vinod
Vaikuntanathan (MIT), with input from Shai Halevi (IBM/Algorand). This group
now forms the Steering Committee for the Homomorphic Encryption.org open
community which grew out of this meeting. This first workshop was organized
as a collaboration meeting, with 36 invited participants divided into three working
groups of 12. The groups were led by the workshop organizers, to work on writing
three whitepapers on Security, API design, and Applications over the course of
2 days. The whitepapers were made available publicly several weeks after the
workshop, after some additional work and editing. The papers were posted on the
workshop webpage and on the Homomorphic Encryption.org website, which was
set up along with email lists and discussion groups to continue the conversation on
standardization of HE.

Preface vii

First Homomorphic Encryption Standardization Workshop July 13–14, 2017, Microsoft Research,
Redmond WA, USA

After the first workshop, it was decided that the Security whitepaper could
form the basis of the first Homomorphic Encryption Standard, to assure basic
agreement on secure parameter sets to be used for applications. Input from the wider
international research community was solicited, and the revised Security whitepaper
was circulated. After some updates, it was approved by the community at the Second
Homomorphic Encryption Standardization Workshop, on March 15–16, 2018, at
MIT, Cambridge MA, garnering more than 65 signatures from workshop attendees.
The first two workshops both featured presentations of homomorphic encryption
software by developers from all the leading HE libraries worldwide. The second
workshop also included some research talks and panel discussions on the path
forward for standardizing common APIs and Applications.

https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standardization-workshop/

viii Preface

Second Homomorphic Encryption Standardization Workshop March 15–16, 2018, MIT, Cam-
bridge MA, USA

Following further expert input from the community and the addition of some
co-authors, the final version of the first Homomorphic Encryption Standard [7] was
officially approved at the Third Homomorphic Encryption Standardization Work-
shop at the University of Toronto, October 20, 2018. The [7] Standard was posted
online on the HomomorphicEncryption.org website and on the IACR eprint archive
and appears here as Part II of this volume. The third workshop was co-located
with the 25th ACM Conference on Computer and Communications Security (CCS)
and the affiliated Workshop on Applied Homomorphic Cryptography (WAHC) and
featured a poster session for related results. Stated goals were to build upon the
API discussion from the second workshop and to present a draft API standard.
The third workshop also included presentations from American and Canadian
government agencies, including the Canadian Security Establishment (CSE), NIST,
and the National Science Foundation (NSF). The second and third workshops also
included reports on the Homomorphic Encryption track of the Annual iDASH
Secure Genome Analysis Competition, co-funded by the National Institutes of
Health (NIH).

https://projects.csail.mit.edu/HEWorkshop/index.html

Preface ix

Third Homomorphic Encryption Standardization Workshop October 20, 2018, Univ. of Toronto,
Toronto, Canada

What started as a largely academic community of experts has grown to include
many researchers and developers from industry. The Fourth Homomorphic Encryp-
tion Standardization Workshop was hosted by Intel in Santa Clara, CA, on August
17, 2019, co-located with the USENIX Security 2019 conference. In addition to
sponsorship from Microsoft, Intel, Duality, and Samsung, the workshops have
included participants, panelists, or organizers from IBM, Galois, SAP, Google,
Intuit, Inpher, CryptoExperts, and CryptoLabs. The fourth workshop focused on
introducing scheme-specific white papers and discussing protocol standardization
for applications.

Homomorphic Encryption Standardization Workshop, August 17, 2019, Santa Clara CA, USA

The next two Homomorphic Encryption Standardization Workshops had already
been planned: one for May 7—8, 2020, in Geneva, Switzerland, co-hosted by EPFL,
Inpher and ITU and co-located with the UN AI for Good conference at the Geneva
International Conference Centre; the second one was planned for December 2020

https://www.eecg.utoronto.ca/~fhe2018/home
http://homomorphicencryption.org/aug-17-2019-homomorphicencryption-org-standards-meeting/
https://homomorphicencryption.org/may-7-8-2020-homomorphicencryption-org-standards-meeting/
https://en.m.wikipedia.org/wiki/AI_for_Good

x Preface

in Seoul, co-hosted by Seoul National University and Samsung and co-located with
AsiaCrypt 2020. Both events had to be postponed due to the global pandemic.

In an effort to train more PhD students to work on and do research on HE,
Microsoft Research hosted a Private AI Bootcamp in December 2019. More
than 100 students and a few postdoctoral researchers applied, and more than
30 participants were supported to attend the workshop and work in 6 teams to
develop novel privacy-preserving applications of Homomorphic Encryption. The six
whitepapers written by the six teams are published here as Part IV of this volume.

Private AI Bootcamp – Microsoft Research, December 2–4, 2019

In February 2020, Microsoft Research again hosted a Strategic Planning meeting
in Redmond to accelerate progress towards documenting schemes and specifying
application protocols. Part I of this volume was written by the participants of
the Schemes track at the February 2020 workshop. It contains an introduction to
Homomorphic Encryption and descriptions of the main HE schemes in widespread
use today. Part III of this volume was written by participants in the Applications
track at the workshop and contains four whitepapers describing protocols for
applications of HE, including data sharing, network traffic monitoring, private set
intersection, and a trusted monitoring service. Parts III and IV should be of broad
interest across many industries, as they contain 10 chapters presenting novel ways
to protect privacy in applications using Homomorphic Encryption.

https://www.microsoft.com/en-us/research/event/private-ai-bootcamp/
https://www.microsoft.com/en-us/research/event/private-ai-bootcamp/

Preface xi

Homomorphic Encryption Strategic Planning Workshop February 6–7, 2020

The current volume is the result of these six workshops and the ongoing work
of the HomomorphicEncryption.org community. The editors would like to thank all
the organizers, participants, authors, and community members who have helped to
make this volume possible through their contributions. We hope that the volume will
serve as an accessible introduction to HE, providing guidance on how to use HE to
preserve privacy in numerous ways.

References

1. Craig Gentry. A fully homomorphic encryption scheme. Thesis, Stanford Uni-
versity, 2009.

2.. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In 2011 IEEE 52nd Annual Symposium on Founda-
tions of Computer Science, pages 97–106, Oct 2011.

3. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Proc. of ITCS, pages 309–
325. ACM, 2012.

4. Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Proceedings of the 3rd ACM Workshop on Cloud

https://nam06.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.microsoft.com%2Fen-us%2Fresearch%2Fevent%2Fhomomorphic-encryption-workshop-2020%2F%3Fsecret%3D1MqzQX&data=02%7C01%7Cklauter%40microsoft.com%7Cf673c71d5c8445c94da608d7ac245760%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C637167144471277411&sdata=%2BOzgGE8jYKZThZGqQ16tCN%2FGIE3ZTETmHyVHQcacowU%3D&reserved=0

xii Preface

Computing Security Workshop, CCSW ’11, pages 113–124, New York, NY,
USA, 2011. ACM.

5. Thore Graepel, Kristin Lauter, and Michael Naehrig. ML confidential: Machine
learning on encrypted data. In International Conference on Information Security
and Cryptology, pages 1–21. Springer, 2012.

6. Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning, pages 201–210, 2016.

7. Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter,
Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai,
Vinod Vaikuntanathan, Homomorphic Encryption Standard, November 21, 2018.
https://eprint.iacr.org/2019/939.pdf Published as Part 2 of this volume.

https://eprint.iacr.org/2019/939.pdf

Abstract

With the explosion of the Internet and AI technologies, privacy protection has
become a critical problem in society today. We need to inject our technologies
with responsible measures for protecting privacy to better serve individuals. New
legislation impedes collaboration between companies and governments even with
the best intentions. Homomorphic encryption is one of the leading candidates for
building privacy-preserving services. It allows processing protected data without
access to the raw data. For example, a patient’s health record or diagnostic images
can be analyzed in encrypted form without decryption, and the result is only
readable by the patient. To most people and policymakers, homomorphic encryption
still sounds magical and impractical.

This book summarizes recent inventions, provides guidelines and recommenda-
tions, and demonstrates many practical applications of homomorphic encryption.
This collection of papers represents the combined wisdom of the community of
leading experts on Homomorphic Encryption. In the past 3 years, a global com-
munity consisting of researchers in academia, industry, and government has been
working closely to standardize homomorphic encryption. This is the first publication
of whitepapers created by these experts that comprehensively describes the scientific
inventions, presents a concrete security analysis, and broadly discusses applicable
use scenarios and markets. This book also features a collection of privacy-preserving
machine learning applications powered by homomorphic encryption designed by
groups of top graduate students worldwide at the Private AI Bootcamp hosted by
Microsoft Research.

The book aims to connect non-expert readers with this important new crypto-
graphic technology in an accessible and actionable way. Readers who have heard
good things about homomorphic encryption but are not familiar with the details will
find this book full of inspiration. Readers who have preconceived biases based on
out-of-date knowledge will see the recent progress made by industrial and academic
pioneers on optimizing and standardizing this technology. A clear picture of how
homomorphic encryption works, how to use it to solve real-world problems, and
how to efficiently strengthen privacy protection will naturally become clear.

xiii

Contents

Part I Introduction to Homomorphic Encryption

Introduction to Homomorphic Encryption and Schemes 3
Jung Hee Cheon, Anamaria Costache, Radames Cruz Moreno,
Wei Dai, Nicolas Gama, Mariya Georgieva, Shai Halevi, Miran Kim,
Sunwoong Kim, Kim Laine, Yuriy Polyakov, and Yongsoo Song

Part II Homomorphic Encryption Security Standard

Homomorphic Encryption Standard . 31
Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine,
Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody,
Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan

Part III Applications of Homomorphic Encryption

Privacy-Preserving Data Sharing and Computation Across
Multiple Data Providers with Homomorphic Encryption 65
Juan Troncoso-Pastoriza, David Froelicher, Peizhao Hu, Asma Aloufi,
and Jean-Pierre Hubaux

Secure and Confidential Rule Matching for Network Traffic Analysis 81
Dimitar Jetchev and Alistair Muir

Trusted Monitoring Service (TMS) . 87
Xiaoqian Jiang, Miran Kim, Kristin Lauter, Tim Scott, and Shayan Shams

Private Set Intersection and Compute . 97
Flavio Bergamaschi, Tancrède Lepoint, Peter Leihn,
and Sreekanth Kannepalli

xv

xvi Contents

Part IV Applications of Homomorphic Encryption

Private Outsourced Translation for Medical Data . 107
Travis Morrison, Sarah Scheffler, Bijeeta Pal, and Alexander Viand

HappyKidz: Privacy Preserving Phone Usage Tracking. 117
Benjamin M. Case, Marcella Hastings, Siam Hussain,
and Monika Trimoska

i-SEAL2: Identifying Spam EmAiL with SEAL . 129
I. Demertzis, D. Froelicher, N. Luo, and M. Norberg Hovd

PRIORIS: Enabling Secure Detection of Suicidal Ideation from
Speech Using Homomorphic Encryption . 133
Deepika Natarajan, Anders Dalskov, Daniel Kales, and Shabnam Khanna

Gimme That Model!: A Trusted ML Model Trading Protocol. 147
Laia Amorós, Syed Mahbub Hafiz, Keewoo Lee, and M. Caner Tol

HEalth: Privately Computing on Shared Healthcare Data 157
Leo de Castro, Erin Hales, and Mimee Xu

Private Movie Recommendations for Children . 163
Anh Pham, Mohammad Samragh, Sameer Wagh, and Emily Wenger

Privacy-Preserving Prescription Drug Management Using Fully
Homomorphic Encryption . 169
Aria Shahverdi, Ni Trieu, Chenkai Weng, and William Youmans

Correction to: Introduction to Homomorphic Encryption and Schemes . . C1

Part I
Introduction to Homomorphic Encryption

Introduction to Homomorphic
Encryption and Schemes

Jung Hee Cheon, Anamaria Costache, Radames Cruz Moreno, Wei Dai,
Nicolas Gama, Mariya Georgieva, Shai Halevi, Miran Kim, Sunwoong Kim,
Kim Laine, Yuriy Polyakov, and Yongsoo Song

1 Introduction to Homomorphic Encryption

Homomorphic encryption (HE) enables processing encrypted data without decrypt-
ing it. This technology can be used, for example, to allow a public cloud to operate
on secret data without the cloud learning anything about the data. Simply encrypt
the secret data with homomorphic encryption before sending it to the cloud, have the

The original version of this chapter was revised: Revised Chapter 1 has been uploaded to
Springerlink. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-
77287-1_15

J. H. Cheon (�)
Seoul National University, Seoul, Republic of Korea
e-mail: jhcheon@snu.ac.kr

A. Costache
Norwegian University of Science and Technology, Trondheim, Norway; Intel AI Research, San
Diego, CA, USA

R. C. Moreno
Microsoft Research, Redmond, WA, USA
e-mail: radames.cruz@microsoft.com

W. Dai · K. Laine
Cryptography and Privacy Research Group, Microsoft Research, Redmond, WA, USA
e-mail: wei.dai@microsoft.com; kim.laine@microsoft.com

N. Gama · M. Georgieva
Inpher, Lausanne, Switzerland
e-mail: nicolas@inpher.io; mariya@inpher.io

S. Halevi
Algorand Foundation, Yorktown Heights, NY, USA
e-mail: shaih@alum.mit.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021,
corrected publication 2022
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-77287-1_15
https://doi.org/10.1007/978-3-030-77287-1_15
mailto:jhcheon@snu.ac.kr
mailto:radames.cruz@microsoft.com
mailto:wei.dai@microsoft.com
mailto:kim.laine@microsoft.com
mailto:nicolas@inpher.io
mailto:mariya@inpher.io
mailto:shaih@alum.mit.edu
https://doi.org/10.1007/978-3-030-77287-1_1

4 J. H. Cheon et al.

cloud process the encrypted data and return the encrypted result, and finally decrypt
the encrypted result. Here is a simplistic “hello world” example using homomorphic
encryption:

Every encryption needs a secret key. Let’s get one of those.
myEncryptionKey = generateEncryptionKey()

Now we can encrypt some very secret data.
encrypted5 = encrypt(myEncryptionKey, 5)
encrypted12 = encrypt(myEncryptionKey, 12)
excrypted2 = encrypt(myEncryptionKey, 2)
We have three ciphertexts now.

We want the sum of the first two.
Luckily we used homomorphic encryption, so we can actually
do this.
encrypted17 = addCiphertexts(encrypted5, encrypted12)

Maybe we want to multiply the result by the 3rd ciphertext.
encrypted34 = multiplyCiphertexts(encrypted17, encrypted2)

See that? We operated on ciphertexts without needing the key.

But no matter what we compute, the result is always encrypted.
To actually see the final result, we have to use the key.
decrypted34 = decrypt(myEncryptionKey, encrypted34)
print(decrypted34) # This should print ’34’

Homomorphic encryption today falls into the following common categories:
partially homomorphic (weakest notion), leveled fully homomorphic, and fully
homomorphic encryption (strongest notion). Partially homomorphic encryption
supports only one type of operation, e.g. addition or multiplication. Leveled fully
homomorphic encryption supports more than one operation but only computations
of a predetermined size (typically multiplicative depth). Fully homomorphic encryp-
tion (FHE) supports arbitrary computation on encrypted data and is the strongest
notion of homomorphic encryption.

M. Kim
Department of Computer Science and Engineering, Ulsan National Institute of Science and
Technology (UNIST), Ulsan, Republic of Korea
e-mail: mirankim@unist.ac.kr

S. Kim
University of Washington Bothell, Bothell, WA, USA
e-mail: sunwoong@uw.edu

Y. Polyakov
Duality Technologies, Newark, NJ, USA
e-mail: polyakov@njit.edu

Y. Song
Seoul National University, Seoul, Korea
e-mail: y.song@snu.ac.kr

mailto:mirankim@unist.ac.kr
mailto:sunwoong@uw.edu
mailto:polyakov@njit.edu
mailto:y.song@snu.ac.kr

Introduction to Homomorphic Encryption and Schemes 5

1.1 Plaintexts and Operations

Computation on encrypted data in homomorphic encryption preserves the same
computation on the underlying plaintext. In the example above, we encrypted
integers and then added and multiplied them. There are other types of data that
we may want to encrypt and other operations that we may want to perform. For
example:

• Encrypt bits and perform logical AND, OR, XOR operations on the ciphertexts.
0 AND 1 → 0, 0 OR 1 → 1, 1 XOR 1 → 0

• Encrypt small integers and perform addition and multiplication, as long as the
result does not exceed some fixed bound, for instance, if the bound is 10,000

123 + 456 → 579, 12 × 432 → 5184, 35 × 537 → overflow
• Encrypt 8-bit unsigned integers (between 0 and 255) and perform addition and

multiplication modulo 256
128 + 128 → 0, 2 × 129 → 2

• Encrypt fixed-point numbers and perform addition and multiplication with the
result rounded to a fixed precision, for instance, two digits after the decimal point

12 + 42 + 1.34 → 13.76, 2.23 × 5.19 → 11.57
Different homomorphic encryption schemes support different plaintext types and

different operations on them.

1.2 Vectors and Special-Purpose Plaintext Data Types

Some homomorphic encryption schemes, such as BGV, BFV, and CKKS, support
“packing” – or “batching” – many plaintexts into a single ciphertext. They encrypt
vectors of elements, perform element-wise operations, and move elements around
in the vector:

• Encrypt vectors of any of the above types and perform operations element-wise

(1, 0, 1, 0) AND (1, 0, 0, 1) → (1, 0, 0, 0)

(1, 2) × (3, 4) → (3, 8)

(1.1, 2.2) + (5.5, 6.6) → (6.6, 8.8)

• and rotation on element’s positions

rotLef t1 ((1, 2, 3, 4)) → (2, 3, 4, 1)

These element-wise and data-movement operations are often called SIMD
operations (single-instruction multiple-data).

6 J. H. Cheon et al.

Many homomorphic encryption schemes also support various special-purpose
plaintext data types. While not described in this document, we briefly list some of
them below.

• Multi-precisions integers modulo a very large integer of the form pn + 1;
• Vectors over finite fields (e.g. useful for evaluation of the AES cipher);
• Polynomials modulo Xn + 1(e.g. for convolution products).

Some of the most promising homomorphic encryption schemes today, such as
BFV, BGV, CKKS, DM, and CGGI, are implemented in open-source libraries. All
these schemes have unique advantages and drawbacks depending on the types of
computation one wants to perform.

1.3 Ciphertexts

One thing that all contemporary homomorphic encryption schemes have in common
is that in all of them each ciphertext is an array of integers of fairly high dimension
(at least a few hundred integers, and sometimes many thousands).

1.4 Symmetric vs. Public-Key Homomorphic Encryption

In the example code from above we used the same key for encryption and
decryption; this type of encryption is called symmetric encryption. In contrast,
public-key encryption (also called asymmetric encryption), uses two different keys:
a secret key for decryption and a public key associated to the secret key for
encryption.

Homomorphic encryption can be instantiated as either symmetric encryption
or public-key encryption, with encrypted computation capabilities. It provides the
following fundamental operations:

Operation Symmetric encryption Public-key encryption

Key generation secret key secret key → public keys
Encryption plaintext, secret key → ciphertext plaintext, public key → ciphertext
Decryption ciphertext, secret key → plaintext ciphertext, secret key → plaintext
Operations ciphertext (and plaintext) → ciphertext

1.5 Parameters and Security

Instantiating any encryption scheme – homomorphic or otherwise – requires setting
some parameters, for example, to determine the key size or the security level. For
homomorphic encryption, the parameters influence not just security but also the

Introduction to Homomorphic Encryption and Schemes 7

Fig. 1 Parameter selection

plaintext type and the computations that can be performed. The most prominent
parameters that must be set for contemporary HE schemes are the following:

• Ciphertext dimension n corresponds roughly to the number of integers in each
ciphertext;

• Ciphertext modulus q bounds the size of each integer in the ciphertext array.

In general, the security level increases as n grows and decreases as q grows. On
the other hand, the larger q is, the more complex computations can be performed
on ciphertexts of the encryption scheme: Ciphertexts in these encryption schemes
contain a noise component (which is important for security), and that noise grows
with each operation. The encrypted result can only be decrypted if the noise is
smaller than q, hence using larger values of q imply that we can do more operations.

An illustration of the parameters n and q and their influence on the level of
security is sketched in Fig. 1.

There are a few other parameters that influence security of lattice-based HE
schemes, such as the distribution from which the secret key is selected (and a few
others).

The security of lattice-based HE schemes is based on the hardness of a
mathematical problem called Learning with Errors (LWE) or a variant of it called
Ring Learning-with-Errors (RLWE). The (R)LWE problem is believed to be hard
for both classical and quantum computers under appropriate parameters. The HE
security document1 contains tables indicating the security levels for various choices
of n and q. Those tables are based on the best-known attacks against LWE.

The tables in the HE security document should be used as follows: Once the
size of q is known (as well as the secret-key distribution), one needs to consult the

1Published in 2017 on http://homomorphicencryption.org/white_papers/security_homomorphic_
encryption_white_paper.pdf. An updated version is included in Chapter “Homomorphic Encryp-
tion Standard”.

http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
http://dx.doi.org/10.1007/978-3-030-77287-1_2

8 J. H. Cheon et al.

table and find the smallest value of n that provides the desired security level for this
q-size. For example, suppose we use a ternary secret-key distribution and want to
achieve 128 bits of security with a 200-bit modulus q. The third part of Table 1 in
the security document says that a value of n = 8192 can support q moduli of size up
to 218 bits, but n = 4096 can only support q moduli of size up to 109 bits. Hence
the smallest n that we can use is n = 8192.

2 The BGV and BFV Encryption Schemes

This section includes a simplified introduction to the Brakerski-Gentry-
Vaikuntanathan (BGV) encryption scheme [34] and the encryption scheme due
to Brakerski and Fan-Vercauteren (BFV) [3, 6]. For a more technical description of
the schemes, we refer the reader to the Further Information subsection below.

BGV and BFV are homomorphic encryption schemes whose security is based on
the hardness of the Ring Learning with Errors (RLWE) problem. The plaintext type
in both schemes consists of vectors of integers, with modular SIMD operations as
described below.

The BGV and BFV schemes involve several parameters that determine the
security level, functionality, and the plaintext data type supported by the scheme.
These parameters are:

• Plaintext modulus p;
• Ciphertext modulus q;
• Ciphertext dimension n.

The plaintext modulus pdetermines an upper bound for the integer components of
the plaintext vectors that are encrypted in the BGV and BFV schemes. For example,
setting the plaintext modulus to p = 31 means that computing the product of an
encrypted 5 and an encrypted 7will overflow and produce the result 5 × 7 − 31 = 4.

The ciphertext modulus q is the main functional parameter that determines the
encrypted computation capabilities of the scheme. A ciphertext in the BGV or BFV
scheme consists of an array of 2n integers between 0 and q − 1. As explained in the
introduction, the larger the parameter q of an instance is, the more operations can be
performed on encrypted data in that instance.

For a given value of q, the ciphertext dimension n determines the security level of
the scheme, with larger n meaning higher security. At the same time, the ciphertext
dimension n also influences the size of the plaintext vector which is encrypted
into each ciphertext. Often – but not always – the size of the plaintext vector is
equal to n.

2.1 Homomorphic Operations

Operations over encrypted data preserve the same operations modulo p on vectors
of integers and always produce a ciphertext as output. The main operations are:

Introduction to Homomorphic Encryption and Schemes 9

Two-Argument Operations

• Ciphertext-Ciphertext addition;
• Ciphertext-Plaintext addition;
• Ciphertext-Ciphertext multiplication;
• Ciphertext-Plaintext multiplication;
• Ciphertext-Ciphertext subtraction;
• Ciphertext-Plaintext subtraction.

Unary Operations

• Negation;
• Vector rotation.2

2.2 Parameter Selection

Typically the first parameter to select is the plaintext modulus p, that determines the
width of the plaintext data type. In some applications the plaintext modulus needs to
be large enough to accommodate the desired computation without overflow, other
times an overflow is desired. Selecting appropriate plaintext modulus depends on
details of the application, and is beyond the scope for this document.

The next parameter to select is ciphertext modulus q, which is primarily
determined by the multiplicative depth of the desired encrypted computation; a
higher depth requires a larger ciphertext modulus, and is typically slower. Therefore,
the computation should be made as low depth as possible. For example, computing a
product of four encrypted numbers A, B, C, and D is better done as (A ∗ B) ∗ (C ∗ D)
rather than A ∗ (B ∗ (C ∗D)), as the former has lower multiplicative depth, and hence
requires a smaller ciphertext modulus.

Once q is determined, the ciphertext dimension n should be selected to achieve
the desired security level, using the tables in [9]. The application developer is
advised to use a library that implements the [9] standard. We note that choosing
the right table from the [9] document requires knowing certain details of the
implementation, such as the secret key distribution.

2.3 A BGV/BFV Hello World Example

We first must set the parameters p,q, and n
p = 31
q = 65537

2In some cases we have more involved data-movement operations than just rotations. See the
Further Information section for more details.

10 J. H. Cheon et al.

n = 16
Warning: this setting is completely insecure!!
To get any kind of security with q=65537 we need at least n=512

With these parameters, the size of the plaintext vectors is 8

Generate the keys for these parameters
myPublicKey, mySecretKey = generateBFVkey(n, p, q)

Encrypt data, each plaintext is a vector of 8 elements
encrypted_a = encrypt(myPublicKey, [5, 11, 2, 0, 20, 3, 8, 11])
encrypted_b = encrypt(myPublicKey, [12, 7, 14, 11, 1, 2, 3, 24])
excrypted_c = encrypt(myPublicKey, [2, 10, 15, 13, 6, 3, 2, 1])
We have three ciphertexts now.

Compute the sum of the first two.
encrypted_d = addCiphertexts(myPublicKey, encrypted_a,
encrypted_b)
Encryption of vector [17, 18, 16, 11, 21, 5, 11, 4]

Maybe we want to multiply the result by the 3rd ciphertext.
encrypted_e = multiplyCiphertexts(myPublicKey, encrypted_c,

encrypted_d)
Encryption of vector [3, 25, 23, 19, 2, 15, 22, 4]

Then rotate by 2 to the right
encrypted_f = rotateBy2(myPublicKey, encrypted_e)

To actually see the final result we have to use the key.
decrypted = decrypt(mySecretKey, encrypted_f)
print(decrypted)
This should print [22, 4, 3, 25, 23, 19, 2, 15]

2.4 Further Information

Maintenance Operations

The BGV and BFV schemes also include some operations that have no effect on
the underlying plaintext, but are nonetheless sometimes needed for implementation
reasons.

• Ciphertext-Ciphertext multiplications and cyclic vector rotations have a side-
effect of requiring a different secret key to decrypt the result than what was
needed before the operation. These operations are therefore followed by a key
switching operation to restore the secret key back to the original one.3 The

3In some applications, key switching operations are avoided or delayed for the sake of optimiza-
tion.

Introduction to Homomorphic Encryption and Schemes 11

key switching operation for Ciphertext-Ciphertext multiplication is also called
relinearization;

• Bootstrapping, which “refreshes” a ciphertext and reduces the level of noise in
it, to support more computations. This operation is very expensive, and hence it
is not often used (and sometimes it is not even implemented).

• Modulus switching, which sometimes follows the multiplication operation. This
is used more in BGV, where it is needed to control the level of noise in a
ciphertext. (It is rarely used in BFV, except for bootstrapping.)

Evaluation Keys

The key switching operations require the evaluator to have access to special public
evaluation keys. These evaluation keys are generated by the owner of the secret
key. In the context of Ciphertext-Ciphertext multiplication, these keys are often
called relinearization keys; and in the context of rotation, they are sometimes called
rotation or Galois keys.

Data Encoding

Prior to encrypting data with the BGV or BFV scheme, a separate encoding
operation is required, which transforms source data (e.g. vectors of integers) into a
native plaintext format for the scheme. After decryption, a corresponding decoding
operation is required.

Data Movement Operations

For some setting of the parameters p and n, the native data-movement operations
supported by the scheme may differ from just cyclic rotations. For example, in some
cases the plaintext elements are arranged in a matrix with 2 rows and n/2 columns,
with native operations of row-rotate and column-rotate.4 Even in these cases, it is
always possible to implement cyclic rotations using the native row- and column-
rotations, as described in [11].

References for the BFV Encryption Scheme

The BFV scheme is a ring variant of the scale-invariant LWE scheme proposed by
Brakerski [3]. The “textbook” (multi-precision integer arithmetic) variant of BFV
is described in [6, 13]. Note that [13] provides tighter noise constraints than the
original paper [6].

4For some parameters we get even higher-dimension hypercube formats.

12 J. H. Cheon et al.

The most efficient variants of BFV used in practice represent large integers in the
Residue Number System (RNS). The RNS representation has a number of practical
advantages over the conventional multi-precision positional number system (PNS)
representation:

1. RNS works with native (machine-word size) integers: faster (up to 5–10x) than
PNS.

2. Runtime in RNS scales (quasi-)linearly with integer size.
3. RNS dramatically improves memory locality.
4. Computations are easily parallelizable, and hence RNS supports efficient GPU/F-

PGA hardware implementations.

Two RNS variants of BFV are known in literature: [2] (based on integer
arithmetic) and [10] (based on both integer and floating-point arithmetic). A
comparison of the RNS variants is provided in [4].

The encoding of vectors of integers into a BFV plaintext is described in Appendix
A of [13]. This batching/packing encoding technique is discussed at a more
advanced level in [7].

The bootstrapping for BFV is described in [5]. Note that BFV bootstrapping
is rarely used in practice, and is not currently supported by any open-source
homomorphic encryption library.

The following libraries have open-source implementations of BFV (the variants
are indicated in parentheses):

• Microsoft SEAL [2]
• PALISADE [2, 6, 10]
• Lattigo [14]

References for the BGV Encryption Scheme

The BGV encryption scheme was first described in [34], improving on a previous
construction from [35]. Here too it is desirable to represent large integers in the
Residue Number System (RNS), for the same reason as for the BFV encryption
scheme. This implementation was described in [7]. The BGV encryption scheme
is implemented in the HElib and PALISADE libraries. Bootstrapping for BGV was
described in [1, 8, 12], and is implemented in HElib.

3 The CKKS Encryption Scheme

This section includes a simplified introduction to the Cheon, Kim, Kim, and Song
(CKKS) encryption scheme [15]. For a more technical description of the scheme,
we refer the reader to the Further Information section below.

Introduction to Homomorphic Encryption and Schemes 13

CKKS is a homomorphic encryption scheme whose security relies on the
hardness of the Ring Learning with Errors (RLWE) problem. The plaintexts are
vectors of real numbers, represented as a fixed-point type. The scheme natively
supports fixed-point arithmetic between these vectors in a SIMD manner.

The CKKS scheme involves several parameters that determine the security level,
functionality, and precision supported by the scheme. These parameters are:

• Number of fractional bits f, corresponding to the accuracy of the computation;
• (Maximal) Ciphertext modulus q;
• Ciphertext dimension n.

We assume that every plaintext value is represented as a binary fixed-point
number which has f fractional bits after the radix point. The value of f for a
ciphertext can be adjusted after performing computations using a so-called rescaling
procedure, which is a distinctive feature of CKKS.

The ciphertext modulus q is the main functional parameter that determines
the encrypted computation capabilities of the scheme. A ciphertext of the CKKS
scheme consists of an array of 2n integers modulo q. The larger the parameter q is,
the more operations can be performed on encrypted data and at a higher precision.
For a given value of q, the ciphertext dimension n determines the security level of the
scheme, with larger n meaning higher security. We refer the reader to the parameter
selection section for more details.

As noted above, CKKS allows us to encrypt multiple fixed-point numbers in
a single ciphertext. The ciphertext dimension n also determines the size of the
plaintext vectors, which is n/2.

3.1 Homomorphic Operations

All computations involving at least one encrypted input produce encrypted outputs.
The main operations are:

Two-Argument Operations

• Ciphertext-Ciphertext addition;
• Ciphertext-Plaintext addition;
• Ciphertext-Ciphertext multiplication;
• Ciphertext-Plaintext multiplication;
• Ciphertext-Ciphertext subtraction;
• Ciphertext-Plaintext subtraction.

Ciphertext-Ciphertext and Ciphertext-Plaintext multiplications return a cipher-
text whose scaling factor is explicitly the product of scaling factors of inputs.

14 J. H. Cheon et al.

Ciphertext-Ciphertext and Ciphertext-Plaintext additions require the scaling factors
of the inputs to match.

Unary Operations

• Negation;
• Cyclic vector rotation;
• Rescaling.

Rescaling, which almost always follows the multiplication operation, is a unary
operation that divides the scaling factor of input ciphertext by a specific factor. It
controls the magnitude of scaling factors during homomorphic computation. Cipher-
text modulus decreases after the rescaling operation, and further multiplication is not
allowed if a ciphertext modulus is too small.

3.2 Parameter Selection

The number of fractional bits and the supported depth of the encryption scheme
are main parameters to be considered. Encrypted evaluation of a circuit can be
performed if the circuit depth does not exceed the bound determined by the
parameters.

Precision loss and overflow are two major issues of fixed-point arithmetic.
Ciphertexts in CKKS have inherent error after encryption or computation, which
is controlled by the parameter f. A larger f means more accurate result, but the
computational cost grows as f increases. At the same time, the magnitude of
encrypted values must be kept sufficiently smaller than the ciphertext modulus q
to ensure that no overflow occurs during computation.

The maximal ciphertext modulus q is primarily determined by the multiplicative
depth of the desired circuit to be evaluated, and by the accuracy parameter f ; higher
depth and larger accuracy require a larger ciphertext modulus, and is typically
slower. Therefore, a common optimization technique is to represent a computational
task as a circuit with minimal depth. For example, computing a product of four
encrypted numbers A, B, C, and D is better done as (A ∗ B) ∗ (C ∗ D) rather than
A ∗ (B ∗ (C ∗ D)), as the former has lower multiplicative depth, and hence requires
a smaller ciphertext modulus.

Once q is determined, a lower bound on the ciphertext dimension n is now
determined to achieve a desired security level, using the tables in [9]. The appli-
cation developer is advised to use a library that implements the [9] standard and
automatically selects the correct table, as choosing the right table requires knowing
certain details of the implementation, such as the secret key distribution.

Introduction to Homomorphic Encryption and Schemes 15

3.3 A CKKS Hello World Example

We first must set the parameters f,q, and n
f = 2
q = 65537
n = 8
We use a decimal representation with f = 2 fractional digits

Warning: this setting is completely insecure!!
To get any kind of security with q=65537 we need at least n=512
With these parameters, the plaintext vectors have size 4

Generate the keys for these parameters
myPublicKey, mySecretKey = generateCKKSkey(n, q)

Encrypt data, each plaintext is a vector of 4 elements
encrypted_a = encrypt(myPublicKey, [1.53, -11.53, 0.02, -3.32])
encrypted_b = encrypt(myPublicKey, [12.29, 7.52, -14.47, 11.01])
excrypted_c = encrypt(myPublicKey, [2.64, 10.78, -15.30, 13.34])
We have three ciphertexts now.

We want the sum of the first two.
Luckily we used homomorphic encryption, so we can actually.
do this.

encrypted_d = addCiphertexts(myPublicKey,
encrypted_a, encrypted_b)

encrypting the vector [13.82, -4.01, -14.45, 7.69]

Maybe we want to multiply the result by the 3rd ciphertext.
encrypted_e = multiplyCiphertexts(myPublicKey, encrypted_c,

encrypted_d)
encrypting the vector [36.48, -43.23, 221.09, 102.58]

Then rotate by 2 to the right
encrypted_f = rotateBy2(myPublicKey, encrypted_e)

To actually see the final result, we have to use the key.
decrypted = decrypt(mySecretKey, encrypted_f)
print(decrypted)
This should print [221.09, 102.58, 36.48, -43.23]

3.4 Further Information

Data Encoding

Prior to encrypting data with the CKKS scheme, a separate encoding operation is
required. The CKKS encoding incurs some loss of precision, hence the plaintext
vector must first be multiplied by a scaling factor (which is determined by the
parameters of the scheme), to ensure that the encoded value retains enough

16 J. H. Cheon et al.

precision. Then, the scaled vector is converted into a native plaintext format for the
scheme. Ciphertexts implicitly store the scaling factor which may change during
homomorphic computation. After decryption, a corresponding decoding operation
is required.

The ciphertext modulus determines an upper bound for the components of the
underlying encoded plaintext to guarantee its correct decryption. For example,
setting the ciphertext modulus to q = 1024 means that an encryption of 12.34 with
scaling factor of 32 is correctly decryptable but encrypting the same value with
scaling factor 256 will result in overflow.

Maintenance Operations

The CKKS scheme also uses some operations that do not change the underlying
plaintext (beyond some possible precision loss) but are nonetheless needed for
implementation reasons.

• Ciphertext-Ciphertext multiplication and cyclic vector rotation have a side-effect
of requiring a different secret-key to decrypt the result than what was needed
before the operation. These operations are therefore followed by a key switching
operation to convert the secret key back to the original one. The key switching
operation for Ciphertext-Ciphertext multiplication is also called relinearization.

• Bootstrapping, which “refreshes” a ciphertext and raises the ciphertext modulus
in it, to support more computations. This operation is expensive, and hence it is
not often used (and sometimes it is not even implemented).

Evaluation Keys

The key switching operations require the evaluator to have access to special public
evaluation keys. The evaluation key generation must be done by the secret key
owner. In the context of Ciphertext-Ciphertext multiplication, these keys are often
called relinearization keys; and in the context of rotation, they are sometimes called
rotation or Galois keys. The bootstrapping procedure also requires such evaluation
keys.

References for the CKKS Scheme

The CKKS encryption scheme was first proposed in [15]. For the same reason as
for the BFV scheme, it is desirable to represent large integers in the RNS. Several
RNS variants of the CKKS scheme have been proposed and implemented, including
[17, 19, 20], and [21]. Modern HE libraries typically implement a combination of
these RNS variants and often add their own optimizations/usability improvements.
Bootstrapping for CKKS was described in [16, 18, 21].

Introduction to Homomorphic Encryption and Schemes 17

Reference Implementations

The following libraries have open-source implementations of CKKS (the variants
are indicated in parentheses):

• HEAAN/RNS-HEAAN
• HElib
• Lattigo
• Microsoft SEAL
• PALISADE

4 The DM (FHEW) and CGGI (TFHE) Schemes

4.1 Basic Concepts

This section includes a simplified introduction to the Ducas-Micciancio (DM)
and Chillotti-Gama-Georgieva-Izabachene CGGI schemes, based on [25–29, 31,
32]. The DM scheme is often referred to as the FHEW scheme in literature, and
the CGGI scheme is often referred to as the TFHE scheme. To distinguish the
underlying schemes from their implementations in the FHEW and TFHE libraries,
we adopt the naming convention based on authors’ initials. For a more technical
description of these schemes, we refer the reader to the Further Information
subsection below.

DM and CGGI are homomorphic encryption schemes based on the Learning with
Errors (LWE) problem and its ring variant, the Ring Learning with Errors (RLWE)
problem. Common use-cases for these schemes are the encrypted evaluation of
decision diagrams, comparisons, lookup tables and circuits.

The schemes can be used in two different modes: simple (automated) and
advanced (manual). The simple mode automatically performs bootstrapping after
each gate operation, providing the ability to evaluate arbitrary (typically Boolean)
circuits. The simple mode is easy to configure (requires only one parameter) but can
be less efficient than the advanced mode, especially when the circuit is known in
advance. In the advanced mode, the user decides when to perform bootstrapping or
other maintenance operation, and even has an option not to perform bootstrapping
at all.

The simple mode is easy to use, it suffices to generate or compile a small
Boolean circuit that corresponds to the application, and evaluate it gate by gate on
encrypted inputs. The homomorphic evaluation time is proportional to the plaintext
evaluation of the same circuit. If the application can be written in terms of binary
decision diagrams and lookup tables, the developer will often achieve much better
performance by using the advanced mode. Some speed-ups using advanced mode
are illustrated in [26] (lookup table and comparison circuit).

These schemes involve the following parameters:

18 J. H. Cheon et al.

• Bits of security λ (main parameter in all modes);
• Ciphertext-specific computation budget measure (only in advanced mode).

The bits of security parameter λ are related to the ciphertext modulus q and
ciphertext dimension n for other schemes. In the simple mode, all the parameters
can be derived from λ only.

In the advanced mode, the computation budget serves as a measure for the
number of homomorphic operations that can be run on a ciphertext before a boot-
strapping is required. Once all computations for a given ciphertext are performed,
the user has to manually call bootstrapping to reset the computation budget for
further computations on the ciphertext.

4.2 Homomorphic Operations

Computations over encrypted data always produce a ciphertext as output. The
simple mode supports operations on Boolean circuits. The advanced mode supports
operations on Boolean circuits, integers, and fixed-precision fractional numbers.

Simple Mode Plaintext Space and Operations

In the simple mode, the plaintext is just a Boolean value, and the main operations
for Boolean circuits are:

• Constants

– ZERO/ONE

• Unary gate

– NOT

• Binary gates

– AND/NAND
– OR/NOR
– XOR/XNOR
– ORNOT/ANDNOT

• Ternary gates

– MUX
– Majority/Minority

In all these gates, the inputs and outputs are ciphertexts only. There is no direct
support for mixed plaintext/ciphertext inputs because a Boolean gate that takes a
plaintext as an input can always be simplified: e.g. x AND 1 = x, x AND 0 = 0, x
XOR 1 = NOT x.

Introduction to Homomorphic Encryption and Schemes 19

A DM/CGGI Hello World Example (Using Simple Mode)

We first must set the bits of security
lambda = 128

Generate the keys for these parameters
myPublicKey, mySecretKey = generateKeys(lambda)

Encrypt data, each plaintext is a boolean value
encrypted_a = encrypt(myPublicKey, 1)
encrypted_b = encrypt(myPublicKey, 1)
excrypted_c = encrypt(myPublicKey, 0)
We have three ciphertexts now.

Compute the AND of the first two.
encrypted_AND = EvalGate(“AND”, myPublicKey, encrypted_a,

encrypted_b)
Encryption of 1 AND 1 = 1

Maybe we want to compute OR of this with the 3rd ciphertext.
encrypted_ANDOR = EvalGate(“OR”, myPublicKey, encrypted_AND,

encrypted_c)
Encryption of (1 AND 1) OR 0 = 1

To actually be able to see the final result we have to use
the key.

decrypted = decrypt(mySecretKey, encrypted_ANDOR)
print(decrypted)
This should print 1

Advanced Mode Plaintext Space and Operations

In the advanced mode, the scheme supports different plaintext types, as well as
elementary operations across these plaintext spaces, and each ciphertext carries
its own computation budget. The combination of plaintext types and computation
budgets determines whether an operation is allowed, and at which performance it
will be executed.

The main plaintext structure is a vector of n elements, which supports vector
additions and some other vector operations (see below), but vector multiplications
are not supported. In this section, we explain the plaintext arithmetic and give a few
examples.

The main plaintext structure is a vector of n fixed-point numbers between
−0.5 and 0.5 (i.e., modulo 1), given with a precision ±α (each ciphertext has
its own precision). This vector is encrypted in an RLWE5 ciphertext with noise
rate α. For instance, a ciphertext that encrypts a coefficient 0.0042 with precision

5Here RLWE is represented mod 1, with all coefficients divided by q used in BFV, BGV, CKKS
and DM.

20 J. H. Cheon et al.

α = 10−9 means that it can be decrypted as any number between 0.0042 − 10−9

and 0.0042 + 10−9. This inherent error is analogous to the error in floating-
point arithmetic (in the case of approximate arithmetic) or can be eliminated by
post-decryption rounding if the message space is discretized (in the case of exact
arithmetic).

If the coefficient 0.4942 was encrypted in a ciphertext with a much higher noise
rate α = 10−2, it could be decrypted as any value between 0.4842 and 0.5042, and
the second one would appear as −0.4958 modulo 1. This overflow is similar to
the BGV/BFV case (with mod p plaintext space), but with respect to real numbers
mod 1. If such overflow is not explicitly wanted by the application, it probably
means that the noise is too large, or that the inputs should be scaled down.

The supported homomorphic operations are:

• Element-wise addition and subtraction: x + y, x − y

– (0.0042, 0.0011, 0.0034) + (0.0074, 0.0089, 0.0011) → (0.0116, 0.0100,
0.0045)

The result is always reduced modulo 1 (it can either be viewed as an expected
behavior, or as an overflow condition which is mitigated by downscaling the
space until every coefficient is much smaller than 1 like in the above example).

• Multiplication by a small public integer constant: noted a * x

– 3 × (0.0042, 0.0011, 0, 0034) → (0.0126, 0.0033, 0.0102), for a = 3;
– 123 ∗ (0.0042, 0.0011, 0, 0034) ± (α = 10−5) → (0.517, 0.135, 0.418) ±

(α = 10−3), for a = 123.

Here, the factor 123 is rather large, if the input noise was ±10−5, only 3
decimal digits of precision remain after scaling, since the noise amplitude also
increases by a factor 123.

• (Anticyclic) shift by k positions: noted rotk(x), with k a public value

– rot0((0.0042, 0.0011, 0, 0034, 0, 0, 0)) → (0.0042, 0.0011, 0, 0034, 0, 0, 0) ,
for k = 0

– rot2((0.0042, 0.0011, 0, 0034, 0, 0, 0)) → (0, 0, 0.0042, 0.0011, 0, 0034, 0) ,
for k = 2

– rot3((0.0042, 0.0011, 0, 0034, 0, 0, 0)) → (0, 0, 0, 0.0042, 0.0011, 0, 0034) ,
for k = 3

Any coefficient that vanishes to the right of the vector appears back on the left
side with the opposite sign, so with the same example, if n = 6.

– rot4((0.0042, 0.0011, 0, 0034, 0, 0, 0)) → (−0.0034, 0, 0, 0, 0.0042, 0.0011) ,
for k = 4

– rot5((0.0042, 0.0011, 0, 0034, 0, 0, 0)) → (−0.0011, −0.0034, 0, 0, 0, 0.0042) ,
for k = 5

• There are also more involved operations, such as selecting only one particular
position, or all odd or even positions and canceling all other positions.

Introduction to Homomorphic Encryption and Schemes 21

Any combination of the above addition/scaling/rotations is possible: e.g.
x + 2 ∗ rot1(x) + 5 ∗ rot2(y) means x + twice x rotated by one position +5 times
y rotated by two positions. The same expression can equivalently be factorized as
(rot0 + 2rot1). (x) + (5rot2). (y), which isolates the linear transformations applied
on each ciphertext. Applying a linear transformation on a ciphertext increases its
noise (and hence the output error) by the norm of all rotation coefficients: the bigger
the coefficients, the larger is the resulting noise, and the application designer must
always ensure that the resulting noise remains small enough to decrypt the output.

Having all these definitions and constraints in mind, the user is free to use any
plaintext vector, encrypted as an RLWE ciphertext, which can represent a real or
fractional number (mod 1).6

If the application cannot be expressed in terms of element-wise addition,
public scaling or rotation with public index and we need non-linear operations,
we should use a different encryption scheme called RGSW (vector of RLWE
ciphertexts). It provides the possibility to evaluate any secret linear transformation
(homomorphically encrypted).

• Homomorphic action (external product): Given an RGSW ciphertext that
encrypts a linear transformation f, and an RLWE ciphertext that encrypts a
real vector x, obtain the encryption of f (x).

The most useful applications of this concept are essentially:

• BlindRotation: Given a RGSW ciphertext that encrypts rotk, and a RLWE
ciphertext that encrypts x, obtain a RLWE encryption of rotk(x), where k remains
secret.

• PrivateSelection (CMUX): Given a RGSW ciphertext that encrypts c = 1 or 0,7

and two RLWE ciphertexts that encrypt x and y, obtain an RLWE encryption of
the selection c?x:y (written like in C), which is equal to x when c = 1 and y when
c = 0.

The CMUX is a building block for the evaluation of any binary decision diagrams
or deterministic finite automata (DFA), like the lookup table or the automata in Figs.
2 and 3, where each selector is one CMUX gate.

These two operations above only add a constant amount of noise on top of
the input RLWE ciphertexts, allowing to chain a large amount of these operations
with negligible noise growth, and hence to build complex decision diagrams or
deterministic automata. Many arithmetic circuits correspond to simple decision
diagrams, the most famous of them is the decryption function, which is used to
bootstrap ciphertexts in the simple mode.

6Fractional number mod 1 corresponds to an integer mod p, as in BGV/BFV, divided by p
71 is the identity function

22 J. H. Cheon et al.

x0

σ00 0 0

1 0

1

0

1

0

1

0

1

0

1

0

1

x0

o

x1fxd --1 xd--1˙˙˙

˙˙˙
σ11 0˙˙˙
σ20 0˙˙˙
σ31 0˙˙˙

σ2d--40 1˙˙˙
σ2d--31 1˙˙˙
σ2d--20 1˙˙˙ σ2d--1 1 1˙˙˙

˙˙˙˙˙˙ ˙˙˙ ˙˙˙

˙˙˙

˙˙˙

Fig. 2 Evaluation of lookup table.V

Fig. 3 Evaluation of DFA

a

b

c

0

0
0

1

0

1

0

1

0

00

0

1

0

1

0

1

0.5
0

1

0

1

0

1

x2 x1 x0

11

1

Advanced-Mode CGGI Hello World Example (Corresponds to the DFA
in Fig. 1)

We first must set the bits of security and the noise-rate
lambda = 128
alpha = 2ˆ-15

Generate the keys for these parameters
myPublicKey,mySecretKey = generateKeys(lamda, alpha)

Introduction to Homomorphic Encryption and Schemes 23

encrypt each letter with RGSW
encrypted_x = [encryptRGSW(myPublicKey, 0),

encryptRGSW(myPublicKey, 1),
encryptRGSW(myPublicKey, 0)]

the initial state values are trivial RLWE ciphertexts
a = RLWE(0)
b = RLWE(0)
c = RLWE(0.5)

For i = 3 to 1
evaluate each transition
newA = CMux(encrypted_x[i],b,a)
newB = CMux(encrypted_x[i],a,c)
newC = CMux(encrypted_x[i],c,b)
(a,b,c) = (newA,newB,newC)

EndFor
To actually see the final result, we have to use the key.
decrypted = decrypt(mySecretKey, a)
Return decrypted

4.3 Further Information

Advanced Notes on Parameters

The computation budget can be equivalently expressed as the standard deviation
of the ciphertext noise (noise rate α) for implementations of CGGI in the TFHE
library, or to the modulus q for modular instantiations of DM and CGGI. The
correspondence between the modulus q described in the security tables and the
noise rate α is q = 3.2/

√
2π α. This means, the noise grows at each operation

until it reaches critical levels, or q can be rescaled down after each operation, until
it reaches its minimum.

In the advanced mode, there are many sets of parameters n and α (q), each
corresponding to a specific (sub-)circuit that gets bootstrapped. The details of setting
the computational budget are implementation-specific.

Some More Advanced Operations Are Supported

• Addition and composition of transformations: Given two RGSW ciphertexts
encoding f and g, we can homomorphically obtain single RGSW ciphertexts

24 J. H. Cheon et al.

that encrypt respectively f + g and f ◦ g. This is in line with the original ring
operations described in the GSW scheme [31], and it is used in DM bootstrapping
[29].

• Multiplication by the secret key s: This allows the evaluation of polynomials in
s, and by extension, unlocks a variant of BFV and CKKS schemes supporting
homomorphic element-wise addition/multiplication either modulo p or on fixed
point-numbers, and that can be combined with the above circuit operations (see
Fig. 3 at the end of the section). This is discussed at a more advanced level in the
Chimera extension of CGGI in [28].

Maintenance Operations (and More)

The DM/CGGI schemes also support some maintenance operations:

• (both DM/CGGI)

– Gate bootstrapping, which “refreshes” the noise of a binary gate ciphertext.
Unlike BFV, BGV and CKKS, the gate bootstrapping is fast, in the order of a
few milliseconds [25, 29], and is always applied after each boolean gate in the
simple mode.

– (Functional) Key switching allows to switch between scalar and polynomial
message spaces, and to apply any linear combination with small integer
coefficients.

• (CGGI-specific)

– Circuit bootstrapping, which “converts” a LWE ciphertext from the space
{0,1/2} into a RGSW ciphertext of 0 or 1. The circuit bootstrapping is applied
in the advanced mode to compose binary decision diagrams, and runs in 137
milliseconds [26].

– Functional bootstrapping, allows to approximate homomorphically a non-
linear real-valued function [23, 27].

• (DM-specific)

– Modulus Rescaling, which follows almost all multiplication operations on
representations modulo q. This operation simplifies the ciphertext to obtain
shorter equivalent representation, with a fixed noise amplitude. This operation
is implicit on representations modulo 1, where the precision of the ciphertext
representation is always of the order of α.

Advanced Functionality in the CGGI Encryption Scheme

The CGGI scheme in advanced mode proposes two methods to operate on batched
data to decrease the ciphertext expansion and to optimize the evaluation of look-up
tables and arbitrary functions. The batching techniques provide the possibility to

Introduction to Homomorphic Encryption and Schemes 25

use the computation slots at their maximal capacity, even if the function itself is not
SIMD, or has very few bits of output.

CGGI also extends the automata logic, to the leveled evaluation of deterministic
weighted finite automata (WFA). These improvements speed up the evaluation of
most arithmetic functions in a batched advanced mode, with a noise overhead that
remains additive (more information is described in [26]).

Difference Between DM and CGGI

The CGGI scheme supports the both simple and advanced modes (with a special
circuit bootstrapping proposed in [26]), DM currently supports just the simple mode,
but can be generalized.

The main difference between the CGGI and DM schemes in the simple mode is
in the bootstrapping procedure used for refreshing the ciphertexts [32]. CGGI uses
the Gama–Izabachene–Nguyen–Xie bootstrapping procedure [30] based on CMUX
gates while CGGI uses the Alperin-Sherif–Peikert bootstrapping procedure [22] via
the composition of GSW ciphertexts.

Variants of DM/CGGI

The original CGGI scheme was constructed using the Torus (Ring) Learning
With Errors (TLWE/TRLWE) problem, which is a generalization of LWE/RLWE
rescaled over the real Torus (a set of real numbers modulo 1) [25]. The original
DM scheme was constructed using LWE/RLWE [29]. The CGGI scheme was
subsequently instantiated using LWE/RLWE in a unified framework including both
DM and CGGI [32].

Scheme Switching Using CGGI

The Chimera framework described in [28] unifies CGGI (TFHE), BFV and CKKS
under the TLWE/TRLWE/TRGSW problems and allows using the three schemes in
the same computation. Figure 4 provides a schematic of scheme switching in the
Chimera framework.

Reference Implementations

The following libraries have open-source CPU implementations of DM and
CGGI:

• TFHE (CGGI scheme in simple and advanced modes using binary secret
distribution)

26 J. H. Cheon et al.

small integer linear combinations

cmux (selector)
blindrotate (× X secret n)
(automata)

TRLWE

TRGSW
External product

polynomials in s

Small Ball
(real ring)

Sublattice

slots mod pindividual bits
nand, and,
or, xor, ...
mux

slots add
slots mult
slots rotate

fixed point slots
slots add
slots mult
slots rotate

(modular ring)

(internal products)

x + y, x − y
a.x for public a ∈ N[X]

a ∈{0,1}

a.x for secret a

a = s

BFV APITFHE Gates API CKKS API

Fig. 4 The Chimera framework

• FHEW (DM scheme in the simple mode using binary distribution)
• PALISADE (DM and CGGI in simple mode using ternary secret distribution)

Please note that the parameters for binary secret distributions are not currently
included in the HE Security Standard [9] but are being considered for inclusion in
the standard.

The following libraries have GPU implementations of CGGI:

• cuFHE (GPU version of the CGGI scheme in the simple mode)
• nuFHE (GPU version of the CGGI scheme in the simple mode)

A proof of concept implementation of scheme switching between CGGI and
CKKS (using the HEAAN library) is publicly accessible [24].

References

1. J. Alperin-Sheriff, and C. Peikert. Faster Bootstrapping with Polynomial Error. In CRYPTO
2014. Pages 297–314.

2. J.C. Bajard, J. Eynard, M.A. Hasan, and V. Zucca, V. A Full RNS Variant of FV Like Somewhat
Homomorphic Encryption Schemes. In SAC 2016. Pages 423–442.

3. Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP. In CRYPTO 2012. Pages 868–886.

4. A. Al Badawi, Y. Polyakov, K.M.M. Aung, B. Veeravalli, and K. Rohloff. Implementation and
Performance Evaluation of RNS Variants of the BFV Homomorphic Encryption Scheme. IEEE
Transactions on Emerging Topics in Computing (2019). https://eprint.iacr.org/2018/589.

5. H. Chen and K. Han. Homomorphic Lower Digits Removal and Improved FHE Bootstrapping.
In EUROCRYPT 2018. Pages 315–337.

https://eprint.iacr.org/2018/589

Introduction to Homomorphic Encryption and Schemes 27

6. J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption. Cryptology
ePrint Archive. Report 2012/144, 2012. http://eprint.iacr.org/2012/144.

7. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic Evaluation of the AES Circuit. In
CRYPTO 2012. Pages 850–867.

8. C. Gentry, S. Halevi, and N. P. Smart. Better Bootstrapping in Fully Homomorphic Encryption.
In Public Key Cryptography 2012. Pages 1–16.

9. M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov, J. Hoffstein, K. Lauter,
S. Lokam, D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan. Security
of Homomorphic Encryption. http://homomorphicencryption.org/white_papers/
security_homomorphic_encryption_white_paper.pdf

10. S. Halevi, Y. Polyakov, and V. Shoup. An Improved RNS Variant of the BFV Homomorphic
Encryption Scheme. In CT-RSA 2019. Pages 83–105.

11. S. Halevi and V. Shoup. Algorithms in HElib. In CRYPTO 2014. Pages 554–571.
12. S. Halevi and V. Shoup. Bootstrapping for HElib. In EUROCRYPT 2015. Pages 641–670.
13. T. Lepoint and M. A. Naehrig. A Comparison of the Homomorphic Encryption Schemes FV

and YASHE. In AFRICACRYPT 2014. Pages 318–335.
14. C. Mouchet, J. Troncoso-Pastoriza and J.-P. Hubaux. Multiparty Homomorphic Encryp-

tion: From Theory to Practice. Cryptology ePrint Archive, Report 2020/304, 2020. http://
github.com/ldsec/lattigo

15. J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic Encryption for Arithmetic of Approxi-
mate Numbers. In ASIACRYPT 2017. Pages 409–437.

16. J. H. Cheon, K. Han, A. Kim, M. Kim, Y. Song, Bootstrapping for Approximate Homomorphic
Encryption. In EUROCRYPT 2018. Pages 360–384.

17. J. H. Cheon, K. Han, A. Kim, M. Kim, Y. Song, A Full RNS Variant of the Approximate
Homomorphic Encryption. In SAC 2018. Pages 347–368.

18. H. Chen, I. Chillotti, Y. Song, Improved Bootstrapping for Approximate Homomorphic
Encryption. In EUROCRYPT 2019. Pages 34–54.

19. M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff, V. Vaikuntanathan, Optimized Homomorphic
Encryption Solution for Secure Genome-Wide Association Studies, BMC Medical Genomics,
2020.

20. M. Kim, Y. Song, B. Li, D. Micciancio, Semi-Parallel Logistic Regression for GWAS on
Encrypted Data, BMC Medical Genomics, 2020.

21. K. Han, D. Ki, Better Bootstrapping for Approximate Homomorphic Encryption. In CT-RSA
2020. Pages 364–390.

22. J. Alperin-Sheriff and C. Peikert. Faster Bootstrapping with Polynomial Error. CRYPTO 2014.
23. F. Bourse, M. Minelli, M. Minihold, P. Paillier: Fast Homomorphic Evaluation of Deep

Discretized Neural Networks. CRYPTO (3) 2018: 483-512.
24. https://github.com/DPPH/chimera-iDash2018
25. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster Fully Homomorphic Encryp-

tion Bootstrapping in Less Than 0.1 Seconds. In Asiacrypt 2016 (Best Paper), pages 3–33.
26. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster Packed Homomorphic

Operations and Efficient Circuit Bootstrapping for TFHE. ASIACRYPT (1) 2017: 377–408.
27. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast Fully Homomorphic

Encryption over the Torus. Journal of Cryptology 2019.
28. C. Boura, N. Gama, M. Georgieva and D. Jetchev: CHIMERA: Combining Ring-LWE-based

Fully Homomorphic Encryption Schemes. IACR Cryptology ePrint Archive 2018: 758 (2018)
(NutMic, submitted to Journal of Mathematical Cryptology 2019).

29. L. Ducas and D. Micciancio. FHEW: Bootstrapping Homomorphic Encryption in Less Than a
Second. EUROCRYPT 2015.

30. N. Gama, M. Izabachene, P. Q. Nguyen, and X. Xie. Structural Lattice Reduction: Generalized
Worst-Case to Average-Case Reductions and Homomorphic Cryptosystems. EUROCRYPT
2016.

31. C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption From Learning With Errors:
Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. CRYPTO 2013.

http://eprint.iacr.org/2012/144
http://homomorphicencryption.org/white_papers/security_homomorphic_encryption_white_paper.pdf
http://github.com/ldsec/lattigo
https://github.com/DPPH/chimera-iDash2018

28 J. H. Cheon et al.

32. D. Micciancio and Y. Polyakov. Bootstrapping in FHEW-like Cryptosystems. Cryptology
ePrint Archive. Report 2020/086, 2020. http://eprint.iacr.org/2020/086.

33. https://tfhe.github.io/tfhe/
34. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Homomorphic Encryption

without Bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1-36, 2014.
35. Z. Brakerski and V. Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Standard)

LWE. SIAM Journal on Computing, 43(2):831-871, 2014.

http://eprint.iacr.org/2020/086
https://tfhe.github.io/tfhe/

Part II
Homomorphic Encryption Security

Standard

Homomorphic Encryption Standard

Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser,
Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter,
Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison,
Amit Sahai, and Vinod Vaikuntanathan

We met as a group during the Homomorphic Encryption Standardization Workshop
on July 13–14, 2017, hosted at Microsoft Research in Redmond, and again during
the second workshop on March 15–16, 2018 in MIT. Researchers from around the
world represented government, industry, and academia. There are several research

M. Albrecht
Royal Holloway University, London, UK
e-mail: Martin.Albrecht@rhul.ac.uk

M. Chase · K. Laine · S. Lokam
Cryptography and Privacy Research Group, Microsoft Research, Redmond, WA, USA
e-mail: melissac@microsoft.com; kim.laine@microsoft.com; Satya.Lokam@microsoft.com

H. Chen
Facebook, Menlo Park, CA, USA
e-mail: haoche@fb.com

J. Ding
University of Cincinnati, Cincinnati, OH, USA
e-mail: dingji@ucmail.uc.edu

S. Goldwasser
Simons Institute, Berkeley, CA, USA
e-mail: shafi@csail.mit.edu

S. Gorbunov
University of Waterloo, Waterloo, ON, Canada
e-mail: sgorbunov@uwaterloo.ca

S. Halevi
Algorand Foundation, Yorktown Heights, NY, USA
e-mail: shaih@alum.mit.edu

J. Hoffstein
Brown University, Providence, RI, USA
e-mail: jhoff@math.brown.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_2&domain=pdf
mailto:Martin.Albrecht@rhul.ac.uk
mailto:melissac@microsoft.com
mailto:kim.laine@microsoft.com
mailto:Satya.Lokam@microsoft.com
mailto:haoche@fb.com
mailto:dingji@ucmail.uc.edu
mailto:shafi@csail.mit.edu
mailto:sgorbunov@uwaterloo.ca
mailto:shaih@alum.mit.edu
mailto:jhoff@math.brown.edu
https://doi.org/10.1007/978-3-030-77287-1_2

32 M. Albrecht et al.

groups around the world who have made libraries for general-purpose homomorphic
encryption available for applications and general-purpose use. Some examples
include [40–46, 47]. Most general-purpose libraries for homomorphic encryption
implement schemes that are based on the ring learning-with-error (RLWE) problem,
and many of them displayed common choices for the underlying rings, error
distributions, and other parameters.

Homomorphic Encryption is a breakthrough new technology which can enable
private cloud storage and computation solutions, and many applications were
described in the literature in the last few years. But before Homomorphic Encryption
can be adopted in medical, health, and financial sectors to protect data and patient
and consumer privacy, it will have to be standardized, most likely by multiple stan-
dardization bodies and government agencies. An important part of standardization
is broad agreement on security levels for varying parameter sets. Although extensive
research and benchmarking has been done in the research community to establish
the foundations for this effort, it is hard to find all the information in one place,
along with concrete parameter recommendations for applications and deployment.

This document is an attempt to capture (at least part of) the collective knowledge
regarding the currently known state of security of these schemes, to specify
the schemes, and to recommend a wide selection of parameters to be used for
homomorphic encryption at various security levels. We describe known attacks and
their estimated running times in order to make these parameter recommendations.
We also describe additional features of these encryption schemes which make them
useful in different applications and scenarios.

K. Lauter
Facebook AI Research, Seattle, WA, USA
e-mail: klauter@fb.com

D. Micciancio
University of California San Diego, San Diego, CA, USA
e-mail: daniele@cs.ucsd.edu

D. Moody
Computer Security Division, National Institute of Standards and Technology, Gaithersburg,
MD, USA
e-mail: dustin.moody@nist.gov

T. Morrison
Mathematics, Virginia Tech University, Blacksburg, VA, USA
e-mail: tmo@vt.edu

A. Sahai
Computer Science, UCLA, Los Angeles, CA, USA
e-mail: sahai@cs.ucla.edu

V. Vaikuntanathan
Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, MA, USA
e-mail: vinodv@csail.mit.edu

mailto:klauter@fb.com
mailto:daniele@cs.ucsd.edu
mailto:dustin.moody@nist.gov
mailto:tmo@vt.edu
mailto:sahai@cs.ucla.edu
mailto:vinodv@csail.mit.edu

Homomorphic Encryption Standard 33

Outline

HES Section 1 standardizes the encryption schemes to be used.

Section 1.1: introduces notation and definitions.
Section 1.2: defines the security properties for homomorphic encryption.
Section 1.3: describes the BGV and B/FV schemes.
Section 1.4: describes the GSW scheme.
Section 1.5: mentions some alternative schemes: [39], [37]/[33], and [46].
Section 1.6: describes additional features of the schemes.

HES Section 2 recommends parameter choices to achieve security.

Section 2.1: describes the hard problems: the LWE and RLWE assumptions.
Section 2.2: describes known lattice attacks and their estimated running times.
Section 2.3: mentions the Arora-Ge attack on LWE.
Section 2.4: discusses algebraic attacks on RLWE.
Section 2.5: recommends concrete parameters to achieve various security levels.

1 Homomorphic Encryption Standard Section 1:
Recommended Encryption Schemes

1.1 Notation and Definitions

• ParamGen(λ, PT, K, B) → Params

The parameter generation algorithm is used to instantiate various parameters
used in the HE algorithms outlined below. As input, it takes:

• λ denotes the desired security level of the scheme. For instance, 128-bit security
(λ = 128) or 256-bit security.

• PT denotes the underlying plaintext space. Currently this standard specifies two
types of parametrized plaintext spaces: modular integers (MI), and extension
fields/rings (EX). We expect future versions of this document to introduce a third
type of approximate numbers (AN).

– (MI) Modular integers are parametrized by the modulus p of the plaintext
numbers to be encrypted, namely the plaintext space is Zp. For instance, the
parameter p=1024 means that the plaintext space is Z1024, i.e., each individual
element of the message space is an integer from the range (0, 1023) and all
operations on individual elements are performed modulo p.

– (EX) Extension rings/fields are parameterized by a modulus p as above,
and in addition by a polynomial f(x) over Zp, specifying the plaintext space
as Z[x]/(p,f(x)). Namely, each element of the message space is an integer

34 M. Albrecht et al.

polynomial of degree smaller than f(x) with coefficients from the range (0,
p-1), and all operations over individual elements are performed modulo f(x),
and modulo p.

• K denotes the dimension of the vectors to be encrypted. For instance, K = 100,
PT = (MI, 1024) means the messages to be encrypted are vectors (V1, . . . ,VK)
where each Vi is chosen from the range (0, 1023) and operations are performed

component-wise. That is, by definition, (V1, . . . , VK) + (
V ′

1, . . . , V
′
K

) =
(
V1 +

V ′
1, . . . , VK + V ′

K). The multiplication operation over two vectors is defined
similarly. The space of all possible vectors (V1, . . . ,VK) is referred to as the
message space (MS).

• B: denotes an auxiliary parameter that is used to control the complexity of the
programs/circuits that one can expect to run over the encrypted messages. Lower
parameters denote “smaller”, or less expressive, or less complex programs/cir-
cuits. Lower parameters generally mean smaller parameters of the entire scheme.
This, as a result, translates into smaller ciphertexts and more efficient evaluation
procedures. Higher parameters generally increase key sizes, ciphertext sizes,
and complexity of the evaluation procedures. Higher parameters are, of course,
necessary to evaluate more complex programs.

• PubKeygen(Params) → SK, PK, EK

The public key-generation algorithm is used to generate a pair of secret and
public keys. The public key can be shared and used by anyone to encrypt messages.
The secret key should be kept private by a user and can be used to decrypt
messages. The algorithm also generates an evaluation key that is needed to perform
homomorphic operations over the ciphertexts. It should be given to any entity that
will perform homomorphic operations over the ciphertexts. Any entity that has only
the public and the evaluation keys cannot learn anything about the messages from
the ciphertexts only.

• SecKeygen(Params) → SK, EK

The secret key-generation algorithm is used to generate a secret key. This secret
key is needed to both encrypt and decrypt messages by the scheme. It should be kept
private by the user. The algorithm also generates an evaluation key that is needed to
perform homomorphic operations over the ciphertexts. The evaluation key should be
given to any entity that will perform homomorphic operations over the ciphertexts.
Any entity that has only the evaluation key cannot learn anything about the messages
from the ciphertexts only.

• PubEncrypt(PK, M) → C

The public encryption algorithm takes as input the public key of the scheme and
any message M from the message space. The algorithm outputs a ciphertext C. This
algorithm generally needs to be randomized (that is, use random or pseudo-random
coins) to satisfy the security properties.

Homomorphic Encryption Standard 35

• SecEncrypt(SK, M) → C

The secret encryption algorithm takes as input the secret key of the scheme and
any message M from the message space. The algorithm outputs a ciphertext C. This
algorithm generally needs to be randomized (that is, use random or pseudo-random
coins) to satisfy the security properties.

• Decrypt(SK, C) → M

The decryption algorithm takes as input the secret key of the scheme, SK, and a
ciphertext C. It outputs a message M from the message space. The algorithm may
also output special symbol FAIL, if the decryption cannot successfully recover the
encrypted message M.

• EvalAdd(Params, EK, C1, C2) → C3.

EvalAdd is a randomized algorithm that takes as input the system parameters
Params, the evaluation key EK, two ciphertexts C1 and C2, and outputs a ciphertext
C3.

The correctness property of EvalAdd is that if C1 is an encryption of plaintext
element M1 and C2 is an encryption of plaintext element M2, then C3 should be an
encryption of M1+M2.

• EvalAddConst(Params, EK, C1, M2) → C3.

EvalAddConst is a randomized algorithm that takes as input the system parame-
ters Params, the evaluation key EK, a ciphertext C1, and a plaintext M2, and outputs
a ciphertext C3.

The correctness property of EvalAddConst is that if C1 is an encryption of
plaintext element M1, then C3 should be an encryption of M1+M2.

• EvalMult(Params, EK, C1, C2) → C3.

EvalMult is a randomized algorithm that takes as input the system parameters
Params, the evaluation key EK, two ciphertexts C1 and C2, and outputs a ciphertext
C3.

The correctness property of EvalMult is that if C1 is an encryption of plaintext
element M1 and C2 is an encryption of plaintext element M2, then C3 should be an
encryption of M1*M2.

• EvalMultConst(Params, EK, C1, M2) → C3.

EvalMultConst is a randomized algorithm that takes as input the system parame-
ters Params, the evaluation key EK, a ciphertexts C1, and a plaintext M2, and outputs
a ciphertext C3.

The correctness property of EvalMultConst is that if C1 is an encryption of
plaintext element M1, then C3 should be an encryption of M1*M2.

36 M. Albrecht et al.

• Refresh(Params, flag, EK, C1) → C2.

Refresh is a randomized algorithm that takes as input the system parameters
Params, a multi-valued flag (which can be either one of “Relinearize”, “ModSwitch”
or “Bootstrap”), the evaluation key EK, and a ciphertext C1, and outputs a ciphertext
C2.

The correctness property of Refresh is that if C1 is an encryption of plaintext
element M1, then C2 should be an encryption of M1 as well.

The desired property of the Refresh algorithm is that it turns a “complex”
ciphertext of a message into a “simple” one of the same message. Two embodiments
of the Refresh algorithm are (a) the bootstrapping procedure, which takes a
ciphertext with large noise and outputs a ciphertext of the same message with a
fixed amount of noise; and (b) the key-switching procedure, which takes a ciphertext
under one key and outputs a ciphertext of the same message under a different key.

• ValidityCheck(Params, EK, [C], COMP) → flag.

ValidityCheck is an algorithm that takes as input the system parameters Params,
the evaluation key EK, an array of ciphertexts [C], and a specification of the
homomorphic computation encoded as a straight-line program COMP, and outputs
a Boolean flag.

The correctness property of ValidityCheck is that if ValidityCheck outputs flag
= 1, then doing the homomorphic computation COMP on the vector of ciphertexts
[C] produces a ciphertext that decrypts to the correct answer.

1.2 Properties

Semantic Security or IND-CPA Security At a high level, a homomorphic
encryption scheme is said to be secure if no adversary has an advantage in
guessing (better than ½ chance) whether a given ciphertext is an encryption of two
different messages. This requires encryption to be randomized so that two different
encryptions of the same message do not look the same.

Suppose a user runs the parameter and the key-generation algorithms to provide
the key tuple. An adversary is assumed to have the parameters, the evaluation key
EK, a public key PK (only in the public-key scheme) and can obtain encryptions
of messages of its choice. The adversary is then given an encryption of one
of two messages of its choice, computed by the above encryption algorithm,
without knowing which message the encryption corresponds to. The security of
HE then guarantees that the adversary cannot guess which message the encryption
corresponds to with significant advantage better than a ½ chance. This captures the
fact that no information about the messages is revealed in the ciphertext.

Compactness The compactness property of a homomorphic encryption scheme
guarantees that homomorphic operations on the ciphertexts do not expand the length
of the ciphertexts. That is, any evaluator can perform an arbitrary supported list of

Homomorphic Encryption Standard 37

evaluation function calls and obtain a ciphertext in the ciphertext space (that does
not depend on the complexity of the evaluated functions).

Efficient Decryption Efficient decryption property says that the homomorphic
encryption scheme always guarantees that the decryption runtime does not depend
on the functions which was evaluated on the ciphertexts.

1.3 The BGV and B/FV Homomorphic Encryption Schemes

In this section, we describe the two primary schemes for implementation of
homomorphic encryption, [10] and [11]/[23], these two schemes are very similar.
In Section 1.4. below we describe the GSW scheme, which is somewhat different.
In Section 1.5, we also mention some alternative schemes [39], [37]/[33], and [46],
but they are not described in this standard.

(a) Brakerski-Gentry-Vaikuntanathan (BGV)

We focus here on describing the basic version of the BGV encryption scheme.
Optimizations to the basic scheme will be discussed at the end of this section.

• BGV.ParamGen(λ, PT, K, B) → Params.

Recall that λ is the security level parameter, for BGV the plaintext space PT is
either of type MI or EX with integer modulus p > 1, and K ≥ 1 is an integer vector
length.

In the basic BGV scheme, the auxiliary input B is an integer that determines
the maximum multiplicative depth of the homomorphic computation. This is
simply the maximum number of sequential multiplications required to perform
the computation. For example, the function g(x1, x2, x3, x4) = x1x2 + x3x4 has
multiplicative depth 1.

In the basic BGV scheme, the parameters param include the ciphertext modulus
parameter q and a ring R = Z[x]/f (x) and corresponding plaintext ring R/pR and
ciphertext ring R/qR. The parameters param also specify a “key distribution” D1 and
an “error distribution” D2 over R, the latter is based on a Gaussian distribution with
standard deviation σ set according to the security guidelines specified in Section
2.5.

• BGV.SecKeygen(params) → SK, EK

In the basic BGV scheme, the secret key SK is an element s in the ring R, chosen
from distribution D1.

In the basic BGV scheme, there is no evaluation key EK.

• BGV.PubKeygen(params) → SK, PK, EK.

In the basic BGV scheme, PubKeygen first runs SecKeygen and obtains (SK,EK)
where SK is an element s that belongs to the ring R.

38 M. Albrecht et al.

PubKeygen chooses a uniformly random element a from the ring R/qR and
outputs the public key PK which is a pair of ring elements (pk0, pk1) = (−a, as+ pe)
where e is chosen from the error distribution D2.

• BGV.SecEncrypt(SK, M) → C

In the basic BGV scheme, SecEncrypt first maps the message M which comes
from the plaintext space (either Zpr or (Zp[x]/f (x))r) into an element M̂ of the ring
R/pR.

SecEncrypt then samples a uniformly random element a from the ring R/qR

and outputs the pair of ring elements (c0, c1) =
(
−a, as + pe + M̂

)
where e is

chosen from the error distribution D2. (See Comments 1, 2 below for more general
methods of encoding the message during encryption. The same comments apply
also to public-key encryption with BGV.)

• BGV.PubEncrypt(PK, M) → C

In the basic BGV scheme, PubEncrypt first maps the message M which comes
from the plaintext space Zk

p into an element M̂ of the ring R/pR. Recall that the
public key PK is a pair of elements (pk0, pk1).

PubEncrypt then samples three elements u from distribution D1 and e1, e2
from the error distribution D2 and outputs the pair of ring elements (c0, c1) =(
pk0u + pe1, pk1u + pe2 + M̂

)
.

• BGV.Decrypt(SK, C) → M

In the basic BGV scheme, Decrypt takes as input the secret key which is an
element s of the ring R, and a ciphertext C = (c0, c1) which is a pair of elements
from the ring R/qR.

We remark that a ciphertext C produced as the output of the encryption algorithm
has two elements in R/qR, but upon homomorphic evaluation, ciphertexts can grow
to have more ring elements. The decryption algorithm can be modified appropriately
to handle such ciphertexts.

Decrypt first computes the ring element c0s + c1 over R/qR and interprets it as
an element c’ in the ring R. It then computes c’ (mod p), an element of R/pR, which
it outputs.

• BGV.EvalAdd(Params, EK, C1, C2) → C3.

In the basic BGV scheme, EvalAdd takes as input ciphertexts C1 = (c1, 0, c1, 1)
and C2 = (c2, 0, c2, 1) and outputs C3 = (c1, 0 + c2, 0, c1, 1 + c2, 1), where the
operations are done in R/qR.

• BGV.EvalMult(Params, EK, C1, C2) → C3.

In the basic BGV scheme, EvalMult takes as input ciphertexts C1 = (c1, 0, c1, 1)
and C2 = (c2, 0, c2, 1) and outputs C3 = (c1, 0c2, 0, c1, 0c2, 1 + c1, 1c2, 0, c1, 1c2, 1),
where the operations are done in R/qR.

Homomorphic Encryption Standard 39

Comment 1 The noise term pe+M̂ in the encryption procedure can be generalized
to an error term drawn from the coset M̂ + pR, according to an error-sampling
procedure. All the considerations discussed below for the error distribution D2,
apply equally to the error-sampling procedure in this more general implementation.

Comment 2 There is also an equivalent “MSB encoding” of the message for BGV
encryption, where the message is encoded as WM̂+e (with W = �q/p	, similarly
to the B/FV scheme below). There are lossless conversions between these two
encoding methods, as long as the plaintext modulus p is co-prime with the ciphertext
modulus q.

The Full BGV Scheme
In the basic BGV scheme, ciphertexts grow as a result of EvalMult. For example,
given two ciphertexts each composed of two ring elements, EvalMult as described
above results in three ring elements. This can be further repeated but has the
disadvantage that upon evaluating a degree-d polynomial on the plaintexts, the
resulting ciphertext has d + 1 ring elements.

This deficiency is mitigated in the full BGV scheme, with two additional
procedures. The first is called “Key Switching” or “Relinearization” which is
implemented by calling the Refresh subroutine with flag = “KeySwitch”, and the
second is “Modulus Switching” or “Modulus Reduction” which is implemented
by calling the Refresh subroutine with flag = “ModSwitch”. Support for key
switching and modulus switching also necessitates augmenting the key generation
algorithm.

For details on the implementation of the full BGV scheme, we refer the reader to
[10].

Properties Supported The BGV scheme supports many features described in Sec-
tion 6, including packed evaluations of circuits and can be extended into a threshold
homomorphic encryption scheme. In terms of security, the BGV homomorphic
evaluation algorithms can be augmented to provide evaluation privacy (with respect
to semi-honest adversaries).

(b) Brakerski/Fan-Vercauteren (B/FV)

We follow the same notations as the previous section.

• BFV.ParamGen(λ, PT, K, B) → Params.

We assume the parameters are instantiated following the recommendations
outlined in Section 5. Similarly to BGV, the parameters include:

• Key- and error-distributions D1, D2
• a ring R and its corresponding integer modulus q
• Integer modulus p for the plaintext

40 M. Albrecht et al.

In addition, the B/FV parameters also include:

• Integer T, and L = logTq. T is the bit-decomposition modulus.
• Integer W = �q/p	
• BFV.SecKeygen(Params) -> SK, EK

The secret key SK of the encryption scheme is a random elements from the
distribution D1 defined as per Section 5. The evaluation key consists of L LWE
samples encoding the secret s in a specific fashion.

In particular, for i = 1, . . . , L, sample a random ai from R/qR and error ei from
D2, compute

EKi =
(
− (ais + ei) + T is2, ai

)
,

and set EK = (EK1, . . . ,EKL).

• BFV.PubKeygen(params) -> SK, PK, EK.

The secret key SK of the encryption scheme is a random element s from the
distribution D1. The public key is a random LWE sample with the secret s. In
particular, it is computed by sampling a random element a from R/qR and an error e
from the distribution D2 and setting:

PK = (−(as + e), a), where all operations are performed over the ring R/qR.

The evaluation key is computed as in BFV.SecKeygen.

• BFV.PubEncrypt(PK, M) -> C

BFV.Pub.Encrypt first maps the message M which comes from the message space
into an element in the ring R/pR .

To encrypt a message M from R/pR, parse the public key as a pair (pk0, pk1).
Encryption consists of two LWE samples using a secret u where (pk0, pk1) is treated
as public randomness. The first LWE sample encodes the message M, whereas the
second sample is auxiliary.

In particular, C = (pk0u + e1 + WM, pk1u + e2) where u is a sampled from D1
and e1, e2 are sampled from D2.

• BFV.SecEncrypt(PK, M) -> C

• BFV.Decrypt(SK, C) -> M

The main invariant of the BFV scheme is that when we interpret the elements of
a ciphertext C as the coefficients of a polynomial then, C(s) = W M + e for some
“small” error e. The message M can be recovered by dividing the polynomial C(s)
by W, rounding each coefficient to the nearest integer, and reducing each coefficient
modulo p.

Homomorphic Encryption Standard 41

• BFV.EvalAdd(EK, C1, C2) -> C3

Parse the ciphertexts as Ci = (ci, 0, ci, 1). Then, addition corresponds to
component-wise addition of two ciphertext components. That is, C3 = (c1, 0 + c2, 0,
c1, 1 + c2, 1).

It is easy to verify that C3(s) = W (M1 + M2) + e, where M1, M2 are messages
encrypted in C1, C2 and e is the new error component.

• BFV.EvalMult(EK, C1, C2) -> C3

EvalMult takes as input ciphertexts C1= (c1, 0, c1, 1) and C2 = (c2, 0, c2, 1). First,
it computes

C3
′ = (c1, 0c2, 0, c1, 0c2, 1 + c1, 1c2, 0, c1, 1c2, 1) over the integers (instead of mod

q as in BGV scheme above). Then set C3 = round
((

p
q

)
C3′

)
mod q.

One can verify that C3(s) = W(M1 ∗ M2) + e, for some error term e.
Note that the ciphertext size increases in this operation. One may apply a

Relinearization algorithm as in the BGV scheme to obtain a new ciphertext of the
original size encrypting the same message M1 ∗ M2.

Properties Supported The complete BFV scheme supports many features
described in Section 6, including packed evaluations of circuits and can be
extended into a threshold homomorphic encryption scheme. In terms of security, the
BFV homomorphic evaluation algorithms can be augmented to provide evaluation
privacy.

For details on the implementation of the full BFV scheme, we refer the reader to
[11], [23].

(c) Comparison between BGV and BFV

When implementing HE schemes, there are many choices which can be made to
optimize performance for different architectures and different application scenarios.
This makes a direct comparison of these schemes quite challenging. A paper by
Costache and Smart [19] gives some initial comparisons between BGV, B/FV and
two of the schemes described below: [39] and [33]/[37]. A paper by Kim and Lauter
[27] compares the performance of the BGV and YASHE schemes in the context
of applications. Since there is further ongoing work in this area, we leave this
comparison as an open research question.

1.4 The GSW Scheme and Bootstrapping

Currently, the most practical homomorphic encryption schemes only allow to
perform bounded depth computations. These schemes can be transformed into fully
homomorphic ones (capable of arbitrary computations) using a “bootstrapping”
technique introduced by Gentry [G09], which essentially consists of a homomorphic

42 M. Albrecht et al.

evaluation of the decryption algorithm given the encryption of the secret key.
Bootstrapping is a very time-consuming operation and improving on its efficiency
is still a very active research area. So, it may still not be ready for standardization,
but it is the next natural step to be considered.

Bootstrapping using the BGV or BFV schemes requires assuming that lattice
problems are computationally hard to approximate within factors that grow super-
polynomially in the lattice dimension n. This is a stronger assumption than the inap-
proximability within polynomial factors required by standard (non-homomorphic)
lattice-based public key encryption.

In [GSW13], Gentry, Sahai and Waters proposed a new homomorphic encryption
scheme (still based on lattices) that offers a different set of trade-offs than BGV
and BFV. An important feature of this scheme is that it can be used to bootstrap
homomorphic encryption based on the assumption that lattice problems are hard
to approximate within polynomial factors. Here we briefly describe the GSW
encryption and show how both its security and applicability to bootstrapping are
closely related to LWE encryption, as used by the BGV and BFV schemes. So,
future standardization of bootstrapping (possibly based on the GSW scheme) could
build on the current standardization effort.

For simplicity, we focus on secret key encryption, as this is typically enough for
applications to bootstrapping. The GSW secret key encryption scheme (or, more
specifically, its secret key, ring-based variant presented in [6, 21]) can be described
as follows:

• GSW.Keygen(params):
This is essentially the same as the key generation procedure of the BGV

or BFV schemes, taking a similar set of security parameters, and producing a
random ring element S which serves as a secret key.

• GSW.SecEncrypt(S,M):
Choose an uniformly random vector A in R2 log (q), a small random vector E

(with entries chosen independently at random from the error distribution), and
output the ciphertext C = (A,A ∗ S + E) + M ∗ G where G = [I, 2 I, . . . , 2k − 1I]
is a gadget matrix consisting of k = log (q) copies of the 2×2 identity matrix
I (over the ring), scaled by powers of 2.

We note that there are other possibilities for choosing the gadget matrix G above
(for example the constants 2, 4, . . . , 2k − 1 can be replaced by others). Other choices
may be described in future documents.

We omit the description of the decryption procedure, as it is not needed for
bootstrapping. Notice that:

• The secret key generation process is the same as most other LWE-based
encryption schemes, including BGV and BFV.

• The encryption procedure essentially consists of 2 log (q) independent applica-
tion of the basic LWE/BGV/BFV encryption: choose random key elements a
and e, and outputs (a, as + e + m), but applied to scaled copies of the message

Homomorphic Encryption Standard 43

m = 2i M. (The even rows of the GSW ciphertext encrypt the message as
(a+m, as+ e), but this is just a minor variant on LWE encryption, and equivalent
to it from a security standpoint.)

• Security rests on the standard LWE assumption, as used also by BGV and BFV,
which says that the distribution (A,A ∗ S + E) is pseudorandom.

So, GSW can be based on LWE security estimates similar to those used to
instantiate the BGV or BFV cryptosystems.

In [GSW13] it is shown how (a public key version of) this cryptosystem supports
both addition and multiplication, without the need for an evaluation key, which
has applications to identity-based and attribute-based homomorphic encryption.
Later, in [BV14] it was observed how the GSW multiplication operation exhibits an
asymmetric noise growth that can be exploited to implement bootstrapping based
on the hardness of approximating lattice problems within polynomial factors. Many
subsequent papers (e.g., [6, 18, 21, 24]) improve on the efficiency of [BV14], but
they all share the following features with [BV14]:

• They all use variants of the GSW encryption to implement bootstrapping.
• Security only relies on the hardness of approximating lattice problems within

polynomial factors.
• They are capable of bootstrapping any LWE-based encryption scheme, i.e.,

any scheme which includes an LWE encryption of the message as part of the
ciphertext. LWE-based schemes include BGV, BFV and GSW.

In particular, GSW can be used to implement the bootstrapping procedure for
BGV and BFV and turn them into fully homomorphic encryption (FHE) schemes.

1.5 Other Schemes

Yet Another Somewhat Homomorphic Encryption ([39]) is similar to the BGV and
B/FV schemes and offers the same set of features.

The scheme NTRU/Lopez-Alt-Tromer-Vaikuntanathan ([37]/[33]) relies on the
NTRU assumption (also called the “small polynomial ratios assumption”). It offers
all the features of BGV and BFV, and in addition, also offers an extension that
supports multi-key homomorphism. However, it must be used with a much wider
error distribution than the other schemes that are described in this document (or else
it becomes insecure), and therefore it should only be used with a great deal of care.
This standard does not cover security for these schemes.

Another scheme, called HEAAN, with plaintext type approximate numbers, was
recently proposed by Cheon, Kim, Kim and Song [CKKS17]. This scheme is not
described here, but we expect future version of this standard to include it.

44 M. Albrecht et al.

1.6 Additional Features & Discussion

(a) Distributed HE

Homomorphic Encryption is especially suitable to use for multiple users who
may want to run computations on an aggregate of their sensitive data. For the
setting of multiple users, an additional property which we call threshold-HE is
desirable. In threshold-HE the key-generation algorithms, encryption and decryp-
tion algorithms are replaced by a distributed-key-generation (DKG) algorithm,
distributed-encryption (DE) and distributed-decryption (DD) algorithms. Both the
distributed-key-generation algorithm and the distributed-decryption algorithm are
executed via an interactive process among the participating users. The evaluation
algorithms EvalAdd, EvalMult, EvalMultConst, EvalAddConst, and Refresh remain
unchanged.

We will now describe the functionality of the new algorithms.
We begin with the distributed-key-generation (DKG) algorithm to be imple-

mented by an interactive protocol among t parties p1, . . . , pt. The DKG algorithm
is a randomized algorithm. The inputs to DKG are: security parameter, number of
parties t, and threshold parameter d. The output of DKG is a vector of secret keys
s = (s1, , st) of dimension t and a public evaluation key EK where party pi
receives (EK,si). We remark that party pi does not receive sj for i
= j and that party
i should maintain the secrecy of its secret key si.

Next, the distributed-encryption (DE) algorithm is described. The DE algorithm
is a randomized algorithm which can be run by any party pi. The inputs to DE run
by party pi are: the secret key si and the plaintext M. The output of DE is a ciphertext
C

Finally, we describe the distributed-decryption (DD) algorithm to be imple-
mented by an interactive protocol among a subset of the t parties p1, . . . , pt. The
DD algorithm is a randomized algorithm.

The inputs to DD are a subset of secret keys s = (s1, , st), the threshold
parameter d, and a ciphertext C. In particular, every participating party pi provides
the inputsi. The ciphertext C can be provided by any party. The output of DD is:
plaintext M.

The correctness requirement that the above algorithms should satisfy is as
follows.

If at least d of the parties correctly follow the prescribed interactive protocol
that implements the DD decryption algorithm, then the output of the decryption
algorithm will be correct.

The security requirement is for semantic security to hold as long as fewer than d
parties collude adversarially.

An example usage application for (DKG,DE,DD) is for two hospitals, t = 2 and
d = 2 with sensitive data sets M1 and M2(respectively) who want to compute some
analytics F on the joint data set without revealing anything about M1 and M2 except
for what is revealed by F(M1,M2).

Homomorphic Encryption Standard 45

In such a case the two hospitals execute the interactive protocol for DKG and
obtain their respective secret keys s1 and s2 and the evaluation key EK. They each
use DE on secret key si and data Mi to produce ciphertext Ci. The evaluation
algorithms on C1, C2 and the evaluation key EK allow the computation of a
ciphertext C which is an encryption of F(M1,M2). Now, the hospitals execute
the interactive protocol DD using their secret keys and ciphertext C to obtain
F(M1,M2).

(b) Active Attacks

One can consider stronger security requirements beyond semantic security. For
example, consider an attack on a client that holds data M and wishes to compute
F(M) for a specified algorithm F, and wants to outsource the computation of F(M)
to a cloud, while maintaining the privacy of M. The client encrypts M into ciphertext
C and hands C to the cloud server. The server is supposed to use the evaluation
algorithms to compute a ciphertext C’ which is an encryption of F(M) and return
this to the client for decryption.

Suppose that instead the cloud computes some other C” which is the encryption
of G(M) for some other function G. This may be problematic to the client as it
would introduce errors of potentially significant consequences. This is an example
of an active attack which is not ruled out by semantic security.

Another, possibly even more severe attack, is the situation where the adversary
somehow gains the ability to decrypt certain ciphertexts or glean some information
about their content (perhaps by watching the external behavior of the client after
decrypting them). This may make it possible to the attacker to mount (perhaps
limited) chosen-ciphertext attacks, which may make it possible to compromise
the security of encrypted data. Such attacks are not addressed by the semantic
security guarantee, countering them requires additional measures beyond the use
of homomorphic encryption.

(c) Evaluation Privacy

A desirable additional security property beyond semantic security would be that
the ciphertext C hides which computations were performed homomorphically to
obtain C. We call this security requirement Evaluation Privacy.

For example, suppose a cloud service offers a service in the form of computing a
proprietary machine learning algorithm F on the client’s sensitive data. As before,
the client encrypts its data M to obtain C and sends the cloud C and the evaluation
key EK. The cloud now computes C’ which is an encryption of F(M) to hand back to
the client. Evaluation privacy will guarantee that C’ does not reveal anything about
the algorithm F which is not derivable from the pair (M,F(M)). Here we can also
distinguish between semi-honest and malicious evaluation privacy depending on
whether the ciphertext C is generated correctly according to the Encrypt algorithm.

A weaker requirement would be to require evaluation privacy only with respect
to an adversary who does not know the secret decryption key. This may be relevant
for an adversary who intercepts encrypted network traffic.

46 M. Albrecht et al.

(d) Key Evolution

Say that a corpus of ciphertexts encrypted under a secret key SK is held by a
server, and the client who owns SK realizes that SK may have been compromised.

It is desirable for an encryption scheme to have the following key evolution
property. Allow the client to generate a new secret key SK’ which replaces SK, a new
evaluation key EK’, and a transformation key TK such that: the server, given only
TK and EK’, may convert all ciphertexts in the corpus to new ciphertexts which (1)
can be decrypted using SK’ and (2) satisfy semantic security even for an adversary
who holds SK.

Any sufficiently homomorphic encryption scheme satisfies the key evolution
property as follows. Let TK be the encryption of SK under SK’. Namely, TK is
a ciphertext which when decrypted using secret key SK’ yields SK. A server given
TK and EK’, can convert a ciphertext C in the corpus into C’ by homomorphically
evaluating the decryption process. Security follows from semantic security of the
original homomorphic encryption scheme.

(e) Side Channel Attacks

Side channel attacks consider adversaries who can obtain partial information
about the secret key of an encryption scheme, for example by running timing attacks
during the execution of the decryption algorithm. A desirable security requirement
from an encryption scheme is resiliency against such attacks, often referred to as
leakage resiliency. That is, it should be impossible to violate semantic security
even in presence of side channel attacks. Naturally, leakage resilience can hold only
against limited information leakage about the secret key.

An attractive feature of encryption schemes based on intractability of integer
lattice problems, and in particular known HE schemes based on intractability of
integer lattice problems, is that they satisfy leakage resilience to a great extent. This
is in contrast to public-key cryptosystems such as RSA.

(f) Identity Based Encryption

In an identity based encryption scheme it is possible to send encrypted messages
to users without knowing either a public key or a secret key, but only the identity of
the recipient where the identity can be a legal name or an email address.

This is possible as long as there exists a trusted party (TP) that publishes some
public parameters PP and holds a master secret key MSK. A user with identity X
upon authenticating herself to the TP (e.g. by showing a government issued ID),
will receive a secret key SKx that the user can use to decrypt any ciphertext that was
sent to the identity X. To encrypt message M to identity X, one needs only to know
the public parameters PP and X.

Identity based homomorphic encryption is a variant of public key homomorphic
encryption which may be desirable.

Remark: A modification of GSW supports identity based homomorphic encryp-
tion.

Homomorphic Encryption Standard 47

2 Homomorphic Encryption Standard Section 2:
Recommended Security Parameters

2.1 Hard Problems

This section describes the computational problems whose hardness form the basis
for the security of the homomorphic encryption schemes in this document. Known
security reductions to other problems are not included here. Section 2.2 below
describes the best currently known attacks on these problems and their concrete
running times. Section 2.5 below recommends concrete parameter choices to
achieve various security levels against currently known attacks.

(a) The Learning with Errors (LWE) Problem

The LWE problem is parametrized by four parameters (n,m, q, χ), where n is
a positive integer referred to as the “dimension parameter”, m is “the number of
samples”, q is a positive integer referred to as the “modulus parameter” and χ is a
probability distribution over rational integers referred to as the “error distribution”.

The LWE assumption requires that the following two probability distributions
are computationally indistinguishable:

Distribution 1. Choose a uniformly random matrix m × n matrix A, a uniformly
random vector s from the vector space Zn

q , and a vector e from Zm where each
coordinate is chosen from the error distribution χ . Compute c := As + e, where
all computations are carried out modulo q. Output (A, c).

Distribution 2. Choose a uniformly random m× n matrix A, and a uniformly random
vector c from Zm

q . Output (A, c).

The error distribution χ can be either a discrete Gaussian distribution over the
integers, a continuous Gaussian distribution rounded to the nearest integer, or other
distributions supported on small integers. We refer the reader to Section 2.5 for
more details on particular error distributions, algorithms for sampling from these
distributions, and the associated security implications. We also mention that the
secret vector s can be chosen from the error distribution.

(b) The Ring Learning with Errors (RLWE) Problem

The RLWE problem can be viewed as a specific case of LWE where the matrix A
is chosen to have special algebraic structure. RLWE is parametrized by parameters
(m, q, χ) where m is the number of samples, as in the LWE problem above, q is a
positive integer (the “modulus parameter”) and χ is a probability distribution over
the ring R = Z[X]/f (X) (the “error distribution”).

The RLWE assumption requires that the following two probability distributions
are computationally indistinguishable:

48 M. Albrecht et al.

Distribution 1. Choose m + 1 uniformly random elements s, a1, . . . , am from the
ring R/qR, and m more elements e1, . . . , em from the ring R chosen from the
error distribution χ . Compute bi := sai + ei, all computations carried out over
the ring R/qR. Output {(ai, bi) : i = 1, . . .m}.

Distribution 2. Choose 2m uniformly random elements a1, . . . , am, b1, . . . , bm from
the ring R/qR. Output {(ai, bi) : i = 1, . . .m}.
The error distribution χ must be supported on “small” elements in the ring R

(with geometry induced by the canonical embedding). For RLWE, it is important to
use an error distribution that matches the specific ring R. See Section 2.5 for more
details on the error distributions, algorithms for sampling from these distributions,
and the associated security implications. Here too, the secret element s can be be
chosen from the error distribution.

(c) The Module Learning with Errors (RLWE) Problem

We mention here that there is a general formulation of the learning with errors
problem that captures both LWE and RLWE, as well as many other settings.
In this formulation, rather than n-vectors over Z (as in LWE) or 1-vectors over
R = Z[x]/f (X) (as in RLWE), we work with vectors of dimension n1 over a ring
of dimension n2, where the security parameter is related to n1 · n2. This document
only deals with LWE and RLWE, but we expect future versions to be extended to
deal with more settings.

2.2 Attacks on LWE and Their Complexity

We review algorithms for solving the LWE problem and use them to suggest
concrete parameter choices. The schemes described above all have versions based
on the LWE and the RLWE assumptions. When the schemes based on RLWE are
instantiated with error distributions that match the cyclotomic rings (as described
later in this document), we do not currently have attacks on RLWE that are
meaningfully better than the attacks on LWE. The following estimates and attacks
refer to attacks on the LWE problem with the specified parameters.

Much of this section is based on the paper by Albrecht, Player, and Scott [4],
the online Estimator tool which accompanies that paper, and [1, 3]. Indeed, we
reuse text from those works here. Estimated security levels in all the tables in
this section were obtained by running the Estimator based on its state in March
2018. The tables in this section give the best attacks (in terms of running time
expressed in log2) among all known attacks as implemented by the Estimator tool.
As attacks or implementations of attacks change, or as new attacks are found, these
tables will need to be updated. First, we describe all the attacks which give the best
running times when working on parameter sizes in the range which are interesting
for Homomorphic Encryption.

Homomorphic Encryption Standard 49

The LWE problem asks to recover a secret vector s ∈ Zn
q , given a matrix A ∈

Zm×n
q and a vector c ∈ Zm

q such that As + e = c mod q for a short error vector
e ∈ Zm

q sampled coordinate-wise from an error distribution χ . The decision variant

of LWE asks to distinguish between an LWE instance (A, c) and uniformly random
(A, c) ∈ Zm×n

q × Zm
q . To assess the security provided by a given set of parameters

m, χ , q, two strategies are typically considered.
The primal strategy finds the closest vector to c in the integral span of columns

of A mod q, i.e. it solves the corresponding Bounded Distance Decoding problem
(BDD) directly, and is explained in [31] and [28].

(a) Primal (uSVP variant)

Assume that m > n, i.e. the number of samples available is greater than the
dimension of the lattice. Writing [In|A′

] for the reduced row echelon form of
AT ∈ Zn×m

q (with high probability and after appropriate permutation of columns),
this task can be reformulated as solving the unique Shortest Vector Problem (uSVP)
in the m + 1 dimensional q-ary lattice

� = Zm+1·
⎛

⎝
In A′ 0
0 qIm−n 0
cT t

⎞

⎠ .

by Kannan’s embedding, with embedding factor t.
The lattice Λ has volume t · qm − n and contains a vector of norm

√
‖ e‖2 + t2

which is unusually short, i.e. the gap between the first and second Minkowski
minimum λ2(Λ)/λ1(Λ) is large. If the secret vector s is also short, there is a second
established embedding reducing LWE to uSVP. By inspection, it can be seen that
the vector (νs| e| 1), for some ν
= 0, is contained in the lattice Λ of dimension
d = m + n + 1

� =
{

x ∈ (νZ)n × Zm+1| x·
(

1

ν
A |Im| − c

)

≡ 0 mod q

}

,

where ν allows to balance the size of the secret and the noise. An (n + m + 1) ×
(n + m + 1) basis M for Λ can be constructed as

M =
⎛

⎝
νIn −A
 0
0 qIm 0
0 c 1

⎞

⎠ .

To find short vectors, lattice reduction can be applied. Thus, to establish the cost
of solving an LWE instance, we may consider the cost of lattice reduction for solving
uSVP. In [5] it is predicted that e can be found if:

50 M. Albrecht et al.

√
β/d ‖ (e|1) ‖≈ √

βσ ≤ δ
2β−d
0 V ol(�)1/d ,

where δ0 denotes the root Hermite factor achievable by BKZ, which depends on β

which is the block size of the underlying blockwise lattice reduction algorithm. This
prediction was experimentally verified in [3].

(b) Primal by BDD Enumeration (decoding).

This attack is due to Lindner and Peikert [31]. It starts with a sufficiently reduced
basis, e.g., using BKZ in block size β, and then applies a modified version of the
recursive Nearest Plane algorithm due to Babai [8]. Given a basis B and a target
vector t, the Nearest Plane algorithm finds a vector such that the error vector lies in
the fundamental parallelepiped of the Gram-Schmidt orthogonalization (GSO) of B.

Lindner and Peikert note that for a BKZ-reduced basis B, the fundamental
parallelepiped is long and thin, by the Geometric Series Assumption (GSA) due
to Schnorr that the GSO of a BKZ-reduced basis decay geometrically and this
makes the probability that the Gaussian error vector e falls in the corresponding
fundamental parallelepiped very low. To improve this success probability, they
“fatten” the parallelepiped by essentially scaling its principal axes. They do this
by running the Nearest Plane algorithm on several distinct planes at each level of
recursion. For a Gaussian error vector, the probability that it falls in this fattened
parallelepiped is expressed in terms of the scaling factors and the lengths of the
GSO of B. This can be seen as a form of pruned CVP enumeration [32].

The run time of the Nearest Planes algorithm mainly depends on the number
of points enumerated, which is the product of the scaling factors. The run time of
the basis reduction step depends on the quality of the reduced basis, expressed, for
instance, by the root Hermite factor δ0. The scaling factors and the quality of the
basis together determine the success probability of the attack. Hence to maximize
the success probability, the scaling factors are determined based on the (predicted)
quality of the BKZ-reduced basis. There is no closed formula for the scaling factors.
The Estimator uses a simple greedy algorithm to find these parameters due to [31],
but this is known to not be optimal. The scaling factors and the quality of the basis
are chosen to achieve a target success probability and to minimize the running time
(by balancing the running time of BKZ reduction and the final enumeration step).

(c) Dual. The dual strategy finds short vectors in the lattice

q�∗ =
{
x ∈ Zm

q | x·A ≡ 0 mod q
}

,

i.e. it solves the Short Integer Solutions problem (SIS). Given such a short vector
v, we can decide if an instance is LWE by computing (v,c) = (v, e) which is short
whenever v and e are sufficiently short [36].

We must however ensure that (v, e) indeed is short enough, since if is too large,
the (Gaussian) distribution of will be too flat to distinguish from random. Following

Homomorphic Encryption Standard 51

([31]), for an LWE instance with parameters n, α, q and a vector v of length ‖v‖
such that v · A ≡ 0 mod q, the advantage of distinguishing (v, e) from random is
close to

exp
(
−π(‖ v ‖·α)2

)
.

To produce a short enough v, we may again call a lattice-reduction algorithm.
In particular, we may call the BKZ algorithm with block size β. After performing
BKZ-β reduction the first vector in the transformed lattice basis will have norm
δm

0 ·V ol(q�∗)1/m. In our case, the expression above simplifies to ‖ v ‖≈ δm
0 · qn/m

whp. The minimum of this expression is attained at m =
√

nlogq
logδ0

[36]. The attack
can be modified to take small or sparse secrets into account [1].

Lattice Reduction Algorithm: BKZ
BKZ is an iterative, block-wise algorithm for basis reduction. It requires solving
the SVP problem (using sieving or enumeration, say) in a smaller dimension β,
the block size. First, the input lattice Λ is LLL reduced, giving a basis b0, . . . ,
bn − 1. For 0 ≤ i < n, the vectors bi, . . . , bmin(i + β − 1, n − 1) are projected onto the
orthogonal complement of the span of b0, . . . bi − 1; this projection is called a local
block. In the local block, we find a shortest vector, view it as a vector b ∈ Λ of and
perform LLL on the list of vectors bi, . . . , bmin(i + β − 1, n − 1), b to remove linear
dependencies. We use the resulting vectors to update bi, . . . , bmin(i + β − 1, n − 1).
This process is repeated until a basis is not updated after a full pass.

There have been improvements to BKZ, which are collectively referred to BKZ
2.0 (see [17] for example). There are currently several different assumptions in the
literature about the cost of running BKZ, distinguished by how conservative they
are, the “sieve” and “ADPS16” cost models, as explained below. In our use of the
Estimator we rely on the cost model in the “sieve” implementation, as it seems the
most relevant to the parameter sizes which we use for Homomorphic Encryption.

(a) Block Size.

To establish the required block size β, we solve

logδ0 = log

(
β

2πe
(πβ)

1
β

)
· 1

2 (β − 1)

for β, see the PhD Thesis of Yuanmi Chen [14] for a justification of this.

(b) Cost of SVP.

Several algorithms can be used to realize the SVP oracle inside BKZ. Asymp-
totically, the fastest known algorithms are sieving algorithms. The fastest, known
classical algorithm runs in time

20.292β+o(β) [9] .

52 M. Albrecht et al.

The fastest, known quantum algorithm runs in time

20.265β+o(β) [29] .

The “sieve” estimate approximates o(β) by 16.4 based on some experimental
evidence in [9]. The “ADPS16” from [5] suppresses the o(β) term completely. All
times are expressed in elementary bit operations.

(c) Calls to SVP.

The BKZ algorithm proceeds by repeatedly calling an oracle for computing
a shortest vector on a smaller lattice of dimension β. In each “tour” on a d-
dimensional lattice, d such calls are made, and the algorithm is typically terminated
once it stops making sufficient progress in reducing the basis. Experimentally, it has
been established that only the first few tours make significant progress [14], so the
“sieve” cost model assumes that one BKZ call costs as much as 8d calls to the SVP
oracle. However, it seems plausible that the cost of these calls can be amortized
across different calls, which is why the “ADPS16” cost model from [5] assumes the
cost of BKZ to be the same as one SVP oracle call, which is a strict underestimate
of the attack cost.

(d) BKZ Cost. In summary:

sieve
a call to BKZ-β costs 8d · 20.292β + 16.4 operations classically and 8d · 20.265β + 16.4

operations quantumly.

ADPST16
a call to BKZ-β costs 20.292β operations classically and 20.265β operations quan-
tumly.

We stress that both cost models are very conservative, and that no known
implementation of lattice reduction achieves these running times. Furthermore,
these estimates completely ignore memory consumption, which, too, is 2Θ(β).

(e) Calls to BKZ.

To pick parameters, we normalize running times to a fixed success probability.
That is, all our expected costs are for an adversary winning with probability 51%.
However, as mentioned above, it is often more efficient to run some algorithm many
times with parameters that have a low probability of success instead of running the
same algorithm under parameter choices which ensure a high probability of success.

2.3 The Arora-Ge Attack

The effectiveness of the lattice attacks above depend on the size of the error
and the modulus q, in contrast Arora and Ge described in [7] an attack whose
complexity depends only on the size of the error and poly-logarithmically on the

Homomorphic Encryption Standard 53

modulus q. Very roughly, for dimension n and noise of magnitude bounded by some
positive integer d in each coordinate, the attack uses nO(d) samples and takes nO(d)

operations in the ring of integers modulo q. For the relevant range of parameters for
homomorphic encryption, this attack performs worse than the above lattice attacks
even when the error standard deviation is a small constant (e.g., σ = 2).

2.4 Algebraic Attacks on Instances of Ring-LWE

In practice the ring R is taken to be the ring of integers in a cyclotomic field,
R = Z[x]/
k(x), where
k is the cyclotomic polynomial for the cyclotomic index k,
and the degree of
k is equal to the dimension of the lattice, n = φ(k) where φ is
the Euler totient function.

As mentioned above, for ring-LWE the choice of the error distribution matters,
and there are known examples of natural high-entropy error distributions that are
insecure to use in certain rings. Such examples were first given in [22] and [15],
and were subsequently improved in [12], [13], and [16]. For example, in [15] it was
shown that for a prime cyclotomic index m, choosing the coefficients of the error
polynomial e ∈ Z[x]/
k(x) independently at random from a distribution of standard
deviation sufficiently smaller than

√
k, can sometimes make this instance of RLWE

easy to solve. It is therefore crucial to select an error distribution that “matches” the
ring at hand.

The form of the error distribution for general cyclotomic rings was investigated,
e.g., in [34, 35, 38, DD12]. We summarize these results in Section 2.5 below, but the
current document only specifies concrete parameters for power-of-two cyclotomic
fields, i.e. k = 2�. We expect future versions of this document to extend the treatment
also for generic cyclotomic rings. We stress that when the error is chosen from a
sufficiently wide and “well spread” distributions that match the ring at hand, we do
not have meaningful attacks on RLWE that are better than LWE attacks, regardless
of the ring. For power-of-two cyclotomics, it is sufficient to sample the noise in
the polynomial basis, namely choosing the coefficients of the error polynomial
e ∈ Z[x]/
k(x) independently at random from a very “narrow” distribution.

2.5 Secure Parameter Selection for Ring LWE

Specifying a Ring-LWE scheme for encryption requires specifying a ring, R, of a
given dimension, n, along with a ciphertext modulus q, and a choice for the error
distribution and a choice for a secret distribution.

Ring In practice, we take the ring R to be a cyclotomic ring R = Z[x]/
k(x), where
m is the cyclotomic index and n = φ(k) is the ring dimension. For example, a power
of 2 cyclotomic with index k = 2� is R = Z[x]/(xk/2 + 1), of degree n = k/2 = 2� − 1.

54 M. Albrecht et al.

Error Distribution, Power-of-Two Cyclotomics For the special case of power-
of-two cyclotomics, it is safe to sample the error in the polynomial basis, namely
choosing the coefficients of the error polynomial e(x) ∈ Z[x]/(xk/2 + 1) indepen-
dently at random from a very “narrow” distribution. Specifically, it is sufficient to
choose each coefficient from a Discrete Gaussian distribution (or even rounded
continuous Gaussian distribution) with a small constant standard deviation σ .
Selecting the error according to a Discrete Gaussian distribution is described more
often in the literature, but choosing from a rounded continuous Gaussian is easier to
implement (in particular when timing attacks need to be countered).

The LWE attacks mentioned above, however, do not take advantage of the
shape of the error distribution, only the standard deviation. Moreover, the security
reductions do not apply to the case where the error standard deviation is a small
constant and would instead require that the error standard deviation grows at least
as nε for some constant ε > 1/2 (or even ε > 3/4). The analysis of the security levels
given below relies on running time estimates which assume that the shape of the
error distribution is Gaussian.

The standard deviation that we use below is chosen as σ = 8/
√

2π ≈ 3.2, which
is a value that is used in many libraries in practice and for which no other attacks are
known. (Some proposals in the literature suggest even smaller values of σ .) Over
time, if our understanding of the error standard deviation improves, or new attacks
are found, the standard deviation of the error may have to change.

Error Distribution, General Cyclotomics For non-power-of-two cyclotomics,
choosing a spherical error in the polynomial basis (i.e., choosing the coefficients
independently) may be insecure. Instead, there are two main methods of choosing a
safe error polynomial for the general case:

• The method described in [DD12] begins by choosing an “extended” error
polynomial e

′ ∈ Q[X]/(�k(x)), where �k(x) = xk − 1 if k is odd, and xk/2 + 1 if k
is even. The rational coefficients of e

′
are chosen independently at random from

the continuous Gaussian of standard deviation σ
√

k (for the same σ as above),
and with sufficient precision, e.g., using double float numbers. Then, the error is
computed as

e = Round
(
e′ mod
k(x)

)

• The method described in [CP16] chooses an error of the form e = Round(e
′ · tk),

where tk ∈ R is a fixed ring element (see below), and e
′

is chosen from
a spherical continuous Gaussian distribution in the canonical embedding, of
standard deviation σ (for the same σ as above). One way of sampling such error
polynomial is to choose a spherical e

′
in the canonical embedding, then multiply

by tk and round, but there are much more efficient methods of sampling the error
(cf. [20]).

Homomorphic Encryption Standard 55

Note that the error so generated may not be very small, since tk is not tiny. It is
possible to show that e is somewhat small, but moreover it is shown in [20] that
homomorphic computations can be carried out to maintain the invariant that e/tk
is small (rather than the invariant that e itself is small).

The element tk is a generator of the “different ideal”, and it is only defined
up to multiplication by a unit, so implementations have some choice for which
specific element to use. One option is tk(x) =
′

k(x) (i.e., the formal derivative
of
k(x)), but other options may lead to more efficient implementations.

We stress that this document does not make recommendations on the specific
parameters to use for non-power-of-two cyclotomic rings, in particular Tables 1 and
2 below only apply to power-of-two cyclotomic rings.

Secret Key For most homomorphic encryption schemes, not only the error but also
the secret key must be small. The security reductions ensure that choosing the key
from the same distribution as the error does not weaken the scheme. However, for
many homomorphic encryption schemes (including BGV and B/FV), choosing an
even smaller secret key has a significant performance advantage. For example, one
may choose the secret key from the ternary distribution (i.e., each coefficient is
chosen uniformly from {−1, 0, 1}). In the recommended parameters given below, we
present tables for three choices of secret-distribution: uniform, the error distribution,
and ternary.

In some extreme cases, there is a reason to choose an even smaller secret key, e.g.,
one with sparse coefficient vector. However, we will not present tables for sparse
secrets because the security implications of using such sparse secrets is not well
understood yet. We expect to specify concrete parameters for sparse secret keys in
future versions of this standard.

Number of Samples For most of the attacks listed in the tables below, the
adversary needs a large number of LWE samples to apply the attack with maximum
efficiency. Collecting many samples may be feasible in realistic systems, since from
one ring-LWE sample one can extract many “LWE-like” samples. The evaluation
keys may also contain some samples.

Sampling Methods All the error distributions mentioned above require choosing
the coefficients of some initial vector independently at random from either the
discrete or the continuous Gaussian with some standard deviation σ > 0. Sampling
from a continuous Gaussian with small parameter is quite straightforward, but
sampling from a discrete Gaussian distribution is harder. There are several known
methods to sample from a discrete Gaussian, including rejection sampling, inversion
sampling, Discrete Zuggurat, Bernoulli-type, Knuth-Yao and Von Neumann-type.
For efficiency, we recommend the Von Neumann-type sampling method introduced
by Karney in [26].

56 M. Albrecht et al.

Constant-Time Sampling In some of the aforementioned sampling methods, the
time it takes to generate one sample could leak information about the actual sample.
In many applications, it is therefore important that the entire error-sampling process
is constant-time. This is easier to do when sampling from the continuous Gaussian
distribution, but harder for the discrete Gaussian. One possible method is to fix some
upper bound T > 0 such that sampling all the n coordinates ei sequentially without
interruption takes time less than T time with overwhelming probability. Then after
these samples are generated, using time t, we wait for (T − t) time units, so that the
entire error-generating time always takes time T. In this way, the total time does not
reveal information about the generated error polynomial.

Tables of Recommended Parameters
In practice, in order to implement homomorphic encryption for a particular appli-
cation or task, the application will have to select a dimension n, and a ciphertext
modulus q, (along with a plaintext modulus and a choice of encoding which are
not discussed here). For that reason, we give pairs of (n, q) which achieve different
security levels for each n. In other words, given n, the table below recommends a
value of q which will achieve a given level of security (e.g. 128 bits) for the given
error standard deviation σ ≈ 3.2.

We have the following tables for 3 different security levels, 128-bit, 192-bit, and
256-bit security, where the secret follows the uniform, error, and ternary distribu-
tions. For applications, we give values of n from n = 2k where k = 10, . . . , 15. We
note that we used commit (560525) of the LWE-estimator of [4], which the authors
continue to develop and improve. The tables give estimated running times (in bits)
for the three attacks described in Section 5.1: uSVP, dec (decoding attack), and dual.

Post-Quantum Security The BKZ.qsieve model assumes access to a quantum
computer and gives lower estimates than BKZ.sieve. In what follows, we give tables
of recommended (“Post-quantum”) parameters which achieve the desired levels of
security against a quantum computer. We also present tables computed using the
“quantum” mode of the BKZ.ADPS16 model, which contain more conservative
parameters.

Homomorphic Encryption Standard 57

Table 1 Cost model = BKZ.sieve

distribution n security level logq uSVP dec dual

uniform 1024 128 29 131.2 145.9 161.0
192 21 192.5 225.3 247.2
256 16 265.8 332.6 356.7

2048 128 56 129.8 137.9 148.2
192 39 197.6 217.5 233.7
256 31 258.6 294.3 314.5

4096 128 111 128.2 132.0 139.5
192 77 194.7 205.5 216.4
256 60 260.4 280.4 295.1

8192 128 220 128.5 130.1 136.3
192 154 192.2 197.5 205.3
256 120 256.5 267.3 277.5

16384 128 440 128.1 129.0 133.9
192 307 192.1 194.7 201.0
256 239 256.6 261.6 269.3

32768 128 880 128.8 129.1 133.6
192 612 193.0 193.9 198.2
256 478 256.4 258.8 265.1

error 1024 128 29 131.2 145.9 141.8
192 21 192.5 225.3 210.2
256 16 265.8 332.6 300.5

2048 128 s56 129.8 137.9 135.7
192 39 197.6 217.5 209.6
256 31 258.6 294.3 280.3

4096 128 111 128.2 132.0 131.4
192 77 194.7 205.5 201.5
256 60 260.4 280.4 270.1

8192 128 220 128.5 130.1 130.1
192 154 192.2 197.5 196.9
256 120 256.5 267.3 263.8

16384 128 440 128.1 129.3 130.2
192 307 192.1 194.7 196.2
256 239 256.6 261.6 264.5

32768 128 883 128.5 128.8 130.0
192 613 192.7 193.6 193.4
256 478 256.4 258.8 257.9

(continued)

58 M. Albrecht et al.

Table 1 (continued)

distribution n security level logq uSVP dec dual

(-1, 1) 1024 128 27 131.6 160.2 138.7
192 19 193.0 259.5 207.7
256 14 265.6 406.4 293.8

2048 128 54 129.7 144.4 134.2
192 37 197.5 233.0 207.8
256 29 259.1 321.7 273.5

4096 128 109 128.1 134.9 129.9
192 75 194.7 212.2 198.5
256 58 260.4 292.6 270.1

8192 128 218 128.5 131.5 129.2
192 152 192.2 200.4 194.6
256 118 256.7 273.0 260.6

16384 128 438 128.1 129.9 129.0
192 305 192.1 196.2 193.2
256 237 256.9 264.2 259.8

32768 128 881 128.5 129.1 128.5
192 611 192.7 194.2 193.7
256 476 256.4 260.2 258.2

Table 2 Cost model = BKZ.qsieve

distribution n security level logq uSVP dec dual

uniform 1024 128 27 132.2 149.3 164.5
192 19 199.3 241.6 261.6
256 15 262.9 341.1 360.8

2048 128 53 128.1 137.6 147.6
192 37 193.6 215.8 231.4
256 29 257.2 297.9 316.6

4096 128 103 129.1 134.2 141.7
192 72 193.8 206.2 217.2
256 56 259.2 281.9 296.5

8192 128 206 128.2 130.7 136.6
192 143 192.9 199.3 207.3
256 111 258.4 270.8 280.7

16384 128 413 128.2 129.0 132.7
192 286 192.1 195.3 201.4
256 222 257.2 263.1 270.6

32768 128 829 128.1 128.4 130.8
192 573 192.0 193.3 197.5
256 445 256.1 259.0 265.2

(continued)

Homomorphic Encryption Standard 59

Table 2 (continued)

distribution n security level logq uSVP dec dual

error 1024 128 27 132.2 149.3 144.5
192 19 199.3 241.6 224.0
256 15 262.9 341.1 302.3

2048 128 53 128.1 137.6 134.8
192 37 193.6 215.8 206.7
256 29 257.2 297.9 281.4

4096 128 103 129.1 134.2 133.1
192 72 193.8 206.2 201.8
256 56 259.2 281.9 270.4

8192 128 206 128.2 130.7 130.1
192 143 192.9 199.3 198.5
256 111 258.4 270.8 266.6

16384 128 413 128.2 129.0 130.1
192 286 192.1 195.3 196.6
256 222 257.2 263.1 265.8

32768 128 829 128.1 128.4 129.8
192 573 192.0 193.3 192.8
256 445 256.1 259.0 260.4

(−1, 1) 1024 128 25 132.6 165.5 142.3
192 17 199.9 284.1 222.2
256 13 262.6 423.1 296.6

2048 128 51 128.6 144.3 133.4
192 35 193.5 231.9 205.2
256 27 257.1 327.8 274.4

4096 128 101 129.6 137.4 131.5
192 70 193.7 213.6 198.8
256 54 259.7 295.2 270.6

8192 128 202 129.8 130.7 128.0
192 141 192.9 202.5 196.1
256 109 258.3 276.6 263.1

16384 128 411 128.2 129.5 129.0
192 284 192.0 196.8 193.7
256 220 257.2 265.8 260.7

32768 128 827 128.1 128.7 128.4
192 571 192.0 194.1 193.1
256 443 256.1 260.4 260.4

60 M. Albrecht et al.

Organizers

Kristin Lauter klauter@fb.com
Vinod Vaikuntanathan vinod.nathan@gmail.com

Contributors

Martin Albrecht martinralbrecht@googlemail.com
Melissa Chase melissac@microsoft.com
Hao Chen haoche@fb.com
Jintai Ding jintai.ding@gmail.com
Shafi Goldwasser shafi@theory.csail.mit.edu
Sergey Gorbunov sgorbunov100@gmail.com
Shai Halevi shaih@alum.mit.edu
Jeffrey Hoffstein hoffsteinjeffrey@gmail.com
Satya Lokam Satya.Lokam@microsoft.com
Kim Laine kim.laine@microsoft.com
Daniele Micciancio daniele@cs.ucsd.edu
Dustin Moody dustin.moody@nist.gov
Travis Morrison tmo@vt.edu
Amit Sahai amitsahai@gmail.com

References

1. Albrecht, M. R. (2017). On dual lattice attacks against small-secret LWE and parameter choices
in HElib and SEAL. In J. Coron & J. B. Nielsen (Eds.), EUROCRYPT 2017, part ii (Vol. 10211,
pp. 103–129). Springer, Heidelberg.

2. Martin R. Albrecht, Robert Fitzpatrick, and Florian Gopfert: On the Efficacy of Solving LWE by
Reduction to Unique-SVP. In Hyang-Sook Lee and Dong-Guk Han, editors, ICISC 13, volume
8565 of LNCS, pages 293–310. Springer, November 2014.

3. Albrecht, M. R., Göpfert, F., Virdia, F., & Wunderer, T. (2017). Revisiting the expected cost
of solving uSVP and applications to LWE. In T. Takagi & T. Peyrin (Eds.), ASIACRYPT 2017,
part i (Vol. 10624, pp. 297–322). Springer, Heidelberg.

4. Martin R. Albrecht, Rachel Player and Sam Scott. On the concrete hardness of Learning with
Errors. Journal of Mathematical Cryptology. Volume 9, Issue 3, Pages 169–203, ISSN (Online)
1862–2984, October 2015.

klauter@fb.com
vinod.nathan@gmail.com
martinralbrecht@googlemail.com
melissac@microsoft.com
haoche@fb.com
jintai.ding@gmail.com
shafi@theory.csail.mit.edu
sgorbunov100@gmail.com
shaih@alum.mit.edu
hoffsteinjeffrey@gmail.com
Satya.Lokam@microsoft.com
kim.laine@microsoft.com
daniele@cs.ucsd.edu
dustin.moody@nist.gov
tmo@vt.edu
amitsahai@gmail.com

Homomorphic Encryption Standard 61

5. Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. (2016). Post-quantum key exchange - A
new hope. In T. Holz & S. Savage (Eds.), 25th USENIX security symposium, USENIX security
16 (pp. 327–343). USENIX Association. Retrieved from https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/alkim

6. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.

7. Sanjeev Arora and Rong Ge. New algorithms for learning in the presence of errors. In ICALP,
volume 6755 of Lecture Notes in Computer Science, pages 403–415. Springer, 2011.

8. László Babai: On Lovász’ lattice reduction and the nearest lattice point problem, Combinator-
ica, 6(1):1–3, 1986.

9. Becker, A., Ducas, L., Gama, N., & Laarhoven, T. (2016). New directions in nearest neighbor
searching with applications to lattice sieving. In R. Krauthgamer (Ed.), 27th soda (pp. 10–24).
ACM-SIAM. https://doi.org/10.1137/1.9781611974331.ch2

10. Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan. (Leveled) fully homomorphic encryp-
tion without bootstrapping. In ITCS ’12 Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. Pages 309–325.

11. Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP, In CRYPTO 2012. Pages 868–886.

12. W. Castryck, I. Iliashenko, F. Vercauteren, Provably weak instances of ring-lwe revisited. In:
Eurocrypt 2016. vol. 9665, pp. 147–167. Springer (2016a)

13. W. Castryck, I. Iliashenko, F. Vercauteren, On error distributions in ring-based LWE. LMS
Journal of Computation and Mathematics 19(A), 130–145 (2016b) 7.

14. Chen, Y. (2013). Réduction de réseau et sécurité concrète du chiffrement complètement
homomorphe (PhD thesis). Paris 7.

15. Hao Chen, Kristin Lauter, Katherine E. Stange, Attacks on the Search RLWE Problem
with Small Errors, SIAM J. Appl. Algebra Geometry, Society for Industrial and Applied
Mathematics, Vol. 1, pp. 665–682. (2017) https://eprint.iacr.org/2015/971

16. Hao Chen, Kristin Lauter, Katherine E. Stange. Security Considerations for Galois Non-dual
RLWE Families, SAC 2016:Selected Areas in Cryptography – SAC 2016 Lecture Notes in
Computer Science, Vol. 10532. Springer pp 443–462.

17. Y. Chen, P.Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates. In: Lee D.H., Wang X. (eds)
Advances in Cryptology – ASIACRYPT 2011. ASIACRYPT 2011. Lecture Notes in Computer
Science, vol. 7073. Springer, Berlin, Heidelberg.

18. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption:
bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 3–33.

19. Ana Costache, Nigel P. Smart, Which Ring Based Somewhat Homomorphic Encryption Scheme
is Best? Topics in Cryptology - CT-RSA 2016, LNCS, volume 9610, Pages 325–340.

20. Eric Crockett and Chris Peikert. �◦λ: Functional Lattice Cryptography. In ACM-CCS 2016.
21. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a

second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 617–
640.

22. Yara Elias, Kristin Lauter, Ekin Ozman, Katherine E. Stange, Provably weak instances of Ring-
LWE, CRYPTO 2015

23. J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2012/144, 2012. http://eprint.iacr.org/2012/144.pdf

24. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: generalized
worst-case to average-case reductions. In: EUROCRYPT 2016, https://eprint.iacr.org/2014/
283.pdf

25. C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with Errors:
Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In CRYPTO 2013 (Springer).

26. C.F.F. Karney, Sampling Exactly from the Normal Distribution. ACM Transactions on Mathe-
matical Software, 42, Article No. 3.

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
http://dx.doi.org/10.1137/1.9781611974331.ch2
http://research.microsoft.com/en-us/um/newengland/events/ITCS2012/
https://eprint.iacr.org/2015/971
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-3-319-69453-5
http://eprint.iacr.org/2012/144.pdf
https://eprint.iacr.org/2014/283.pdf

62 M. Albrecht et al.

27. Miran Kim and Kristin Lauter, Private Genome Analysis through Homomorphic Encryption,
BioMedCentral Journal of Medical Informatics and Decision Making 2015 15 (Suppl 5): S3.

28. Kim Laine and Kristin Lauter, Key Recovery for LWE in Polynomial Time. https://
eprint.iacr.org/2015/176

29. Laarhoven, T. (2015). Search problems in cryptography: From fingerprinting to lattice sieving
(PhD thesis). Eindhoven University of Technology.

30. Laarhoven T., Mosca M., van de Pol J. (2013) Solving the Shortest Vector Problem in Lattices
Faster Using Quantum Search. In: Gaborit P. (eds) Post-Quantum Cryptography. PQCrypto
2013. Lecture Notes in Computer Science, vol 7932. Springer, Berlin, Heidelberg.

31. Richard Lindner and Chris Peikert: Better key sizes (and attacks) for LWE-based encryption.
In Topics in Cryptology – CT-RSA 2011 - The Cryptographers’ Track at the RSA Conference
2011, Aggelos Kiayias, Editor, volume 6558 of LNCS, pages 319–339.

32. Liu, M., & Nguyen, P. Q. (2013). Solving BDD by enumeration: An update. In E. Dawson
(Ed.), CT-rsa 2013 (Vol. 7779, pp. 293–309). Springer, Heidelberg. https://doi.org/10.1007/
978-3-642-36095-4_19

33. A. Lopez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In STOC, pages 1219–1234, 2012.

34. Vadim Lyubashevsky, Chris Peikert, and Oded Regev : On Ideal Lattices and Learning with
Errors over Rings. Journal of the ACM (JACM), Volume 60, Issue 6, November 2013a, Article
No. 43.

35. Vadim Lyubashevsky, Chris Peikert, and Oded Regev : A toolkit for ring-LWE cryptography.
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques. Springer, Berlin, Heidelberg, 2013b.

36. Micciancio, D., & Regev, O. (2009). Lattice-based cryptography. In D. J. Bernstein, J. Buch-
mann, & E. Dahmen (Eds.), Post-quantum cryptography (pp. 147–191). Berlin, Heidelberg,
New York: Springer, Heidelberg.

37. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
J. Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer Science, pages 267–288.
Springer, 1998.

38. C. Peikert, How Not to Instantiate Ring-LWE, in SCN’16, volume 9841 of LNCS, Springer,
2016.

39. Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security for a Ring-
Based Fully Homomorphic Encryption Scheme, in IMA CC 2013. http://eprint.iacr.org/2013/
075.pdf

Software References for 7 Homomorphic Encryption Libraries

40. https://github.com/Microsoft/SEAL
41. https://github.com/shaih/HElib
42. https://github.com/CryptoExperts/FV-NFLlib
43. https://git.njit.edu/groups/palisade
44. https://github.com/vernamlab/cuHE
45. https://github.com/vernamlab/cuFHE
46. https://github.com/kimandrik/HEAAN
47. https://tfhe.github.io/tfhe/

https://eprint.iacr.org/2015/176
http://dx.doi.org/10.1007/978-3-642-36095-4_19
http://eprint.iacr.org/2013/075.pdf
https://github.com/Microsoft/SEAL
https://github.com/shaih/HElib
https://github.com/CryptoExperts/FV-NFLlib
https://git.njit.edu/groups/palisade
https://github.com/vernamlab/cuHE
https://github.com/vernamlab/cuFHE
https://github.com/kimandrik/HEAAN
https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Ftfhe.github.io%2Ftfhe%2F&data=04%7C01%7Cklauter%40microsoft.com%7C3d67333e1fb849cf831808d589232bf8%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636565706514536661%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwifQ%3D%3D%7C-1&sdata=Cv3k4Mx5oU7ppdTlY2TxyVlQauF5OzCHiauk%2BriADdM%3D&reserved=0

Part III
Applications of Homomorphic Encryption

Privacy-Preserving Data Sharing
and Computation Across Multiple Data
Providers with Homomorphic Encryption

Juan Troncoso-Pastoriza, David Froelicher, Peizhao Hu, Asma Aloufi,
and Jean-Pierre Hubaux

1 Motivation

Many data processing scenarios have to deal with sensitive data split in multiple
silos. Supporting joint computation over distributed datasets can enable more
meaningful, representative, and statistically significant results that would otherwise
be hidden within the isolated datasets. For example, multiple hospitals, biobanks,
and university labs want to contribute their patient data for a joint study in which
computations are performed in distributed (Fig. 1) or centralized (Fig. 2) manner.
However, they want to preserve the confidentiality of their data and avoid any
leakage to the other parties or to external attackers.

This is especially relevant in health and financial environments, where the access
and availability of extremely sensitive data for training more accurate prediction
and analysis models is limited. In this whitepaper, we exemplify our solutions by
focusing on the health scenario.

2 System Models and Use Cases

Homomorphic encryption enables computations to be performed directly on
encrypted data without decrypting it first. This capability enables joint computations
to be performed without accessing the sensitive data in clear-text from the
participating data providers.

J. Troncoso-Pastoriza (�) · D. Froelicher · J.-P. Hubaux
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
e-mail: juan.troncoso-pastoriza@epfl.ch; david.froelicher@epfl.ch; jean-pierre.hubaux@epfl.ch

P. Hu · A. Aloufi
Rochester Institute of Technology, Rochester, NY, USA
e-mail: Peizhao.Hu@rit.edu; ama9000@rit.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_3

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_3&domain=pdf
mailto:juan.troncoso-pastoriza@epfl.ch
mailto:david.froelicher@epfl.ch
mailto:jean-pierre.hubaux@epfl.ch
mailto:Peizhao.Hu@rit.edu
mailto:ama9000@rit.edu
https://doi.org/10.1007/978-3-030-77287-1_3

66 J. Troncoso-Pastoriza et al.

Fig. 1 Distributed homomorphic computing

Fig. 2 Centralized homomorphic computing

Privacy-Preserving Data Sharing and Computation Across Multiple Data. . . 67

As illustrated in Figs. 1 and 2, the data providers encrypt their data before making
it available to the computing infrastructure (be it distributed or centralized) for the
desired homomorphic computation.

We consider two computation models:

• Distributed scenario, depicted in Fig. 1, where the computation is “sent to
the data”, and each of the data providers makes their respective computing
infrastructure available for performing the joint computation on-site.

• Centralized scenario, depicted in Fig. 2, where the encrypted data and com-
putations are delegated to a private or public cloud computing infrastructure.
This computation model leverages the economic efficiency and ubiquitous
accessibility of the cloud infrastructures to support joint computations.

Both models support encrypted queries sent by a client (the data consumer),
who wants to extract insights from the datasets contributed by the participating data
providers.

Let us consider a use case in collaborative medical research. Medical data
is susceptible to being used for research purposes and, eventually, for precision
medicine [1–4]. This sensitive data is usually siloed in independent clinical sites due
to the inherent sensitivity of the data itself, the data sharing and transfer restrictions
imposed by regulations (e.g., GDPR [5] in Europe, HIPAA [6] in US), and/or
policies at the clinical sites.

Managing this data in a privacy-conscious way would accelerate and automate
IRB (Institutional Review Board) review processes for sharing sensitive (and
personally identifiable) medical data with external researchers. Review processes
can take several weeks, if not months, to permit researchers to access the data,
and these processes are often denied because the necessary privacy and security
guarantees cannot be provided. Furthermore, the ability to collectively analyze
the shared data across a multitude of institutions can improve the results of the
analysis, producing more accurate and precise results. This can help advance the
understanding of rare diseases and the personalized effect of determined drugs and
treatments on diverse patient populations. Hence, secure medical-data sharing holds
an immense potential to increase the effectiveness and reduce the costs of healthcare.

According to forecasts by the Organisation for Economic Co-operation and
Development (OECD), the Health expenditure will outpace GDP growth over the
next 15 years in almost every OECD country [7]. Health spending per capita will
grow at an average annual rate of 2.7% across the OECD and will reach 10.2%
of GDP by 2030, up from 8.8% in 2018 [7]. Additionally, the R&D expenditure
on health and medical sciences in OECD countries ranges from an average of
4% of the GDP in Western Pacific countries to a 17.4% in Eastern Mediterranean
countries [8]. With this data, there is no question that the health sector is one of the
biggest drivers of the world economy, and any improvements in cost-effectiveness of
treatments and diagnoses can yield a significant impact in economical and societal
terms. In a recent white paper [9], the World Economic Forum (WEF) analyzes
the trade-offs between data protection and innovation in health research. The report
acknowledges the benefits of federated data systems in dealing with health-related

68 J. Troncoso-Pastoriza et al.

data, and their potential as a solution for the current “search of new models of
data access that enable them to capture the value of such data and provide better
patient care and drive innovation”. Among the benefits, it is worth highlighting the
access to richer insights, the reduction of operational and financial costs, and the
facilitation of cross-border data sharing. The report calls for the development of
open technical standards that can help build and deploy federated data systems.
The Value in Healthcare project launched by the WEF has also identified [10] the
need to “move from fragmented healthcare systems to unprecedented cooperation
among all stakeholders”, calling for new standards to address the “protection of data
security and patient privacy”. Homomorphic encryption (HE), and in particular, the
Multiparty Homomorphic Encryption (MHE) variant [11], is one of the key enablers
for data sharing and federated data analytics, and as such, it can respond to the
aforementioned challenges in the health sector. In the centralized model, HE has the
potential to give data subjects and data controllers confidence in data privacy when
they delegate data and computations to the cloud. The distributed model provides
high confidence in data ownership because computations take place in-situ, whereas
the centralized model is more suitable for secure data computations at-rest after data
being offloaded and stored on the cloud.

Within this landscape, this document describes protocols that provide the ability
for (i) clinicians to find patients with similar (possibly identifying) characteristics to
those of the patient under examination in order to take more informed decisions in
terms of diagnosis and treatment, (ii) researchers to securely query massive amounts
of distributed clinical and genetic data to obtain descriptive statistics indispensable
for generating new hypotheses in clinical research studies, and (iii) researchers to
efficiently and privately train and execute machine learning models on encrypted
data partitioned across a network of clinical sites, therefore guaranteeing privacy
and regulatory compliance [12].

3 Stakeholders and Functionalities

There are four different roles of each participating entity in the described scenario:

• Data providers (data controllers): They hold personal data from individuals
(patients, research subjects), that they want to contribute to a joint computation
together with data from other providers. In the medical scenario, data providers
are represented by clinics, hospitals, sequencing facilities, research labs, cancer
registries, etc.

• Data processors: Data processors (or Storage and Processing Units, SPU)
provide computing resources and infrastructure to process the input data. They
can be either in-house facilities under the control of one of the data providers,
or pay-per-use services. In the medical scenario, processors can be the data
providers (e.g., hospitals) themselves, private/public clouds, or HPC (High-
Performance Computing) infrastructures.

Privacy-Preserving Data Sharing and Computation Across Multiple Data. . . 69

• Data consumers (queriers/clients): They are the authorized entities that want
to query the system to obtain some insights or results on a predefined analysis,
performed on the totality of the database or in a subset thereof. In the medical
scenario, consumers are researchers, data analysts, insurance companies, and
pharma companies, among others.

• External attackers: They are unauthorized entities that are interested in learning
information about the private data records. In the medical scenario, external
attackers are represented by eavesdroppers and hackers.

4 Functionality Goals

The purpose of the system is to enable data consumers to securely explore and
process the input data hosted by the various data providers in the network, with the
following functionalities:

• Exploration and selection [13]: An authorized researcher should be able to obtain
the number of records (and/or their pseudonyms) across data providers who
satisfy a set of inclusion/exclusion criteria, optionally grouped by parameters
such as age, gender and ethnicity. More formally, the system must support SQL-
like queries such as

SELECT COUNT(records) / SELECT records
FROM distributed_dataset
WHERE criteria_i AND/OR criteria_j
AND/OR ...
GROUP BY criteria_k;

• Distributed [14–16] or Centralized [17] analysis: An authorized client should
be able to get the result of a function (e.g., aggregation, statistics, training of
a statistical or machine learning model) on a set of data (cohort), previously
identified by the Exploration and selection process, and that can be either
centralized or horizontally or vertically partitioned across the different providers.

Potential functions comprise, but are not limited to: sum, count, frequency
count, average, variance, standard deviation, cosine similarity, min/max, and/or,
set intersection/union, training and evaluation of generalized linear models (e.g.,
linear, logistic, multinomial logistic regressions [15], feed-forward and convo-
lutional neural networks [16]), and classification with other machine learning
models (e.g., random forests [17], deep neural networks [18, 19]).

5 Threat Models and Security Requirements

Data providers and data processors are assumed to be semi-honest. They will
follow the protocol specification, but might try to infer data from their view of the

70 J. Troncoso-Pastoriza et al.

encrypted inputs/outputs and system execution, such as launching possible side-
channel attacks. Data consumers and external attackers might be malicious. In
particular, the data consumers might try to infer further data from the evaluated
results or to send multiple queries to probe the structure of the input data or
computation model. The external attackers might try to eavesdrop on the secure
communication channel.

We also assume that collusion is possible between all players, as long as there is
at least one non-colluding data processor and one non-colluding data provider. All
parties are computationally-bounded adversaries, but can have quantum-computing
capabilities (i.e., the solution must be quantum-safe).

The system must always provide the following security and privacy require-
ments:

• Trust Decentralization: There should be no single point of failure in the system.
• End-to-end Data Protection: The confidentiality of the input data must be

protected at rest, in transit and during computation. The data must be encrypted
by the data provider before being sent to a data processor, and the result of the
computed operation can be decrypted only by the data consumer issuing the
query.

Depending on the access privileges of the querier, the system should be able to
also provide the following optional features (either or both of them):

• Unlinkability: The client must not be able to trace a query response back to its
original data provider.

• Result Obfuscation: The query result must be obfuscated in order to achieve for-
mal privacy guarantees (e.g., differential privacy) and prevent re-identification.

6 High-Level Workflow

The core query processing protocol comprises the steps sketched below:

1. Setup: Selection of cryptographic parameters.
2. Key management: Individual and collective key generation and distribution,

definition of usage and revocation policies.
3. Data preparation:

– We assume that data is structured and interoperable (coded under the same
structure, format and ontology).

– ETL (Extract, Transform, Load) process: The data providers extract the
data from their respective databases, pre-process and encrypt them with the
collective key.

– The data providers load the encrypted data in the corresponding data processor
(centralized or distributed).

Privacy-Preserving Data Sharing and Computation Across Multiple Data. . . 71

4. Query generation: An authorized client generates the query that contains
the task description, i.e., either the filtering criteria for exploration or the
computation definition and the involved attributes for analysis.

5. Joint computation: This is the main step where the data processor(s) compute
the results of the query (the matching records for cohort exploration, and the
features/predictions of the trained/evaluated model, for data analysis).

6. Results preparation:

– Result obfuscation: If required by the access level of the researcher, the data
processors homomorphically obfuscate the results (both for cohort exploration
and data analysis).

– Distributed results shuffling: If required by the access level of the researcher,
the data processors execute an interactive protocol to randomly shuffle the
obtained encrypted results.

– Distributed results re-encryption: The data processors collectively re-encrypt
the obtained results from the collective key to the key of the authorized
researcher, and send the resulting encryptions to the latter.

7. Results decryption: The authorized client obtains the encrypted results under
his/her individual key and decrypts them.

7 Example Protocol Instantiations

We introduce now three protocol instantiations, that serve as representative exam-
ples of how the high-level workflow can be implemented in a variety of scenarios.
Namely, we present:

• Distributed Data Discovery (MedCo). See [13] for further details
• Centralized Data Analysis. See [17] for details.
• Distributed Data Analysis. See [14–16] for details.

For a comprehensive review of HE schemes and techniques that support homo-
morphic evaluation on ciphertext encrypted under multiple keys, readers can refer
to the survey paper [20]. The distributed protocols in this whitepaper are based on
the paradigm of multiparty homomorphic encryption, introduced by Mouchet et al.
[11].

7.1 Distributed Data Discovery (MedCo)

The protocol used in MedCo for distributed data discovery is sketched in Fig. 3.
Each step of the protocol is described in detail below.

72 J. Troncoso-Pastoriza et al.

Fig. 3 Medco system model and query workflow

Setup

The data providers and data processors agree on a set of cryptographic parameters
that guarantee the desired level of security (HomomorphicEncryption.org [21]
security standard in this volume Part 2) for further details on recommended
parameter sets for homomorphic cryptosystems.

Initialization

During the initialization of MedCo, each data processor (SPUi) generates a pair
of cryptographic keys (ki, Ki) of a distributed homomorphic cryptosystem (at least
additively homomorphic), along with a secret si. Then, all SPUs additively combine
their public keys in order to generate a single collective public key K that will be
used by the different clinical sites to encrypt the data to be outsourced.

ETL Process

During the data-ingestion phase, i.e., extraction transformation and loading (ETL)
phase, each clinical site extracts patient-level data from its private EHR system or
clinical research data warehouse, and transforms the data in order to fit the data

http://homomorphicencryption.org

Privacy-Preserving Data Sharing and Computation Across Multiple Data. . . 73

model used in MedCo. This star-schema data model is based on the Entity-Attribute-
Value (EAV) concept also used by widespread clinical research systems such as
i2b2 [22, 23], where clinical and genetic observations (or “facts”) about patients
(e.g., diagnosis, medications, procedures, laboratory values and genetic variants) are
stored in a narrow table called “fact” table. Observations are encoded by ontology
concepts from an extensible set of medical terminologies, e.g., the International
Classification of Disease (ICD) or the US National Drug Code (NDC). In this
data model, four other “dimension” tables further describe the patients’ data and
meta-data. For example, the “patient dimension” table contains pseudonymized
demographic information of the patients, and the “visit dimension” table stores
information about the visit, such as its date and time and the type of provider.

In such a data model, the information that clinical sites want to protect from
potential semi-honest adversaries at the storage and processing units is represented
by the mapping between the patients in the database and the set of their clinical and
genomic observations stored in the “fact” table that are considered to be sensitive
or identifying. In order to protect such mapping, each site separately performs the
following three steps:

1. Generation of Dummy Patients: Each site generates a set of dummy patients
with plausible clinical observations specifically chosen so that the distribution
of observations across patients in the “fact” table is as close as possible to
the uniform distribution. This is required to avoid frequency attacks on the
deterministically encrypted data used when matching query terms. To distinguish
the real patients from the dummies, each site also generates a binary flag to be
appended to the demographic information in the “patient dimension” table. This
flag is set to 1 for real patients and to 0 for dummy patients.

2. Data Encryption: In order to break the link between the patients and their
sensitive observations in the “fact” table, each site encrypts with the collective
public key K the set of ontology concepts that encode these observations along
with the patients’ binary flags. As the used homomorphic cryptosystem is a
probabilistic encryption scheme, each clinical site obtains a set of probabilistic
ciphertexts that are totally indistinguishable from each other.

3. Data Loading and Re-Encryption: After encryption, each site uploads the
encrypted data to the selected storage and processing unit that immediately starts
a Distributed Deterministic Re-Encryption (DDR) protocol (explained below) in
which the encrypted concepts are sent across the network of SPUs so that their
encryption is switched from probabilistic to deterministic. This re-encryption is
necessary for enabling the secure processing of equality-matching queries (as
those defined in the Security and Privacy Goals section) that otherwise would
be extremely inefficient with probabilistic ciphertexts. Due to the presence of
dummy patients, even if the deterministic nature of the ciphertexts leaks the
equality of the underlying plaintexts, a semi-honest adversary is not able to
perform a frequency attack to distinguish ontology concepts based on their
frequency distribution. Dummy patients are computationally indistinguishable

74 J. Troncoso-Pastoriza et al.

from real patients, as long as the patients’ binary flags are probabilistically
encrypted.

Query Generation

The secure query protocol starts with an authenticated and authorized researcher
who wants to obtain either the number of patients or the pseudonyms of the
patients who match a set of inclusion/exclusion clinical and genetic criteria across
the different clinical sites. In clinical research, this procedure is called “cohort
selection.” For this purpose, the researcher builds a query by logically combining
(i.e., through AND and OR operators) a set of “sensitive” and “non-sensitive”
concepts from a common (i.e., shared across the different sites) ontology. The
“sensitive” concepts in the query are encrypted with the collective public key K
and the query is sent along with the researcher’s public key Kr to one of the storage
and processing units.

Query Re-encryption

The SPU that receives the query starts a Distributed Deterministic Re-Encryption
(DDR) protocol in order to switch the encryption of the sensitive concepts in the
query from probabilistic to deterministic. We refer the reader to [13, 24] for the
detailed explanations of the distributed protocols. Once the DDR protocol is over,
the initial SPU broadcasts the deterministic version of the query to the other SPUs
in the network.

Local Query Processing

Each SPU locally processes the query by filtering the patients (both dummy and
real) in the “patient dimension” table whose observations in the “fact” table (both
the unencrypted and the deterministically encrypted ones) match the concepts in the
query. If the query requests the list of matching patients’ pseudonyms, each SPU
returns the list of matching patients’ pseudonyms along with the probabilistically
encrypted binary flags. If the query requests the number of matching patients,
each SPU homomorphically adds the matching-patients’ dummy flags and returns
the encrypted result EK(Ri) = EK(

∑
j ∈ φ fij) = ∑

j ∈ φEK(fij), where EK(fij) is the
encrypted flag of the j-th patient in site Si and φ is the set of patients matching the
query. In the homomorphic summation, the binary flags of the dummy patients have
a null contribution (i.e., EK(0)), hence the encrypted final result corresponds to the
actual number of real matching patients.

Privacy-Preserving Data Sharing and Computation Across Multiple Data. . . 75

Result Obfuscation

This step is optional and depends on (i) the type of query and (ii) the researcher’s
privileges. In order to guarantee differential privacy (we refer the reader to [25] for
details about the appropriateness of this technology for dynamic query systems),
each SPU can obfuscate the encrypted patient counts computed during the previous
step by homomorphically adding noise sampled from a Laplacian distribution. More
specifically, let εq be the privacy budget allocated for a given query q and μ be
the noise value drawn from a Laplacian distribution with mean 0 and scale Δf /εq,
where the sensitivity Δf is equal to 1, due to the query being a count. Then,
the encrypted obfuscated query result is obtained as EK

(
R̂i

) = EK (Ri + μ) =
EK (Ri) + EK (μ). We note that the query result is released to the researcher only
if the researcher’s differential privacy budget is enough for such a query, i.e., if
εr − εq > 0.

Result Shuffling

This step is also optional and depends, as the previous step, on (i) the type of
query and (ii) the researcher’s privileges. In order to break the link between the
encrypted (potentially obfuscated) query results generated at the different SPUs and
the corresponding clinical sites, the SPUs jointly run a Distributed Shuffling (DS)
protocol [13, 24, 26] on the set of encrypted patient counts. As a result, each SPU
receives encrypted counts that might have been generated by another SPU.

Proxy Re-encryption of the Result

The query results securely computed by each SPU are encrypted with the collective
key K; to be decrypted by the researcher, each SPU runs a Distributed Key Switching
(DKS) protocol [13, 24] that involves the other SPUs and switches the encryption
of the query results from an encryption with K to an encryption with Kr, the
researcher’s public key. After this, the newly encrypted query results are sent back
to the SPU that initiated the protocol and then on to the researcher.

Decryption

As the query results are encrypted with Kr, the researcher can use the corresponding
secret key kr to decrypt them and obtain the corresponding plaintext values. If the
query results are the list of patients’ pseudonyms along with the patients’ binary
flag, the researcher can simply rule out the dummy patients by discarding those who
have the flag set to zero.

76 J. Troncoso-Pastoriza et al.

7.2 Centralized Data Analysis (Private Evaluation of Random
Forests)

Decision tree is one of the most widely used nonparametric machine learning
techniques for classification and regression. The evaluation process is a series of
comparisons at each decision node of the tree, which compares the input from
a client with the threshold of the node as specified in the model. The Boolean
results decide which descendant node to traverse and eventually leads to a leaf
node representing a result. Similar to some other machine learning frameworks,
relying on a single such tree may incur the model-overfitting problem. A random
forest which aggregates the results from individual decision trees can provide more
accurate results. The final result is either a list of classification labels together with
counts associated with each label, or a classification label that most of the trees
agreed on.

Let us assume data providers possess private data on which they train decision
tree models for secure classification. In order to obtain results from these privately
held models, the client has to send separate requests to each model owner and
aggregate the results from these models. Leaving aside the communication overhead
caused by the exchange of intermediate results, this naive method reveals the
individual decision made by each model owner to the client.

Alternatively, model owners can outsource their models (decision trees) to a
third-party evaluator (a public or private cloud infrastructure), as illustrated in Fig. 4.
In this case, the client sends the encrypted query to the evaluator who will perform
the joint computation.

Fig. 4 Collaborative
evaluation of random forests

Privacy-Preserving Data Sharing and Computation Across Multiple Data. . . 77

Fig. 5 Phases in the protocol execution

Figure 5 illustrates the four phases of interactions between different parties. In
the first phase, each model owner encrypts a set of decision trees, including all
the threshold values in their binary format. Delegating the encrypted models to the
evaluator can be performed as a one-time setup before servicing the clients.

In the second phase, upon receiving a feature vector encrypted under the key of
the client, the evaluator evaluates every decision tree in the entire random forest.
Once it is done, each decision tree outputs a class label. The evaluator will perform
a secure counting protocol to obliviously aggregate the number of occurrences
for each unique class label. The evaluator then sends the class labels with their
associated counts to the client.

In the final phase, each model owner will participate in the partial decryption,
which sends a decryption component to the evaluator to convert the encrypted result
to a ciphertext which is decryptable by the secret key of the client. More details on
these steps are described in [17].

7.3 Distributed Data Analysis (Statistical Computation
and Training of Machine Learning Models)

The distributed data analysis workflow is similar to the distributed data discovery
one and also follows the high-level workflow presented before. We highlight here
the main differences with respect to the distributed data discovery and we refer the
reader to [14–16] for the in-depth description of the protocols, including the training
and evaluation of generalized linear models [15] and feed-forward neural networks
[16].

78 J. Troncoso-Pastoriza et al.

For analysis, in the query generation, the querier specifies the attributes involved
and the intended computation as a target function which can be represented as an
encodable operation [14]:

f (r) ≡ π
(
{ρ (ri)}Ni=1

)
,

where r is the set of all distributed dataset records, ri is a set of records belonging
to the i-th data provider, and π is a polynomial combination (aggregation) of
the outputs of the encoding ρ(.). The encodings are defined as locally computed
functions on the partitions (ri) of every clinical site. It is also possible to express an
encodable operation as a recursive function:

fk(r) ≡ π
(
{ρ (ri, fk−1(r))}Ni=1

)
.

During the Joint computation, all the data providers locally compute on their
data and their corresponding results are then collectively aggregated. In the case
of a recursive or iterative computation, this process is repeated for a pre-defined
number of times. Afterwards, the Results Preparation and Results Decryption are
performed similarly as in the data discovery workflow.

8 Concluding Remarks

We refer the reader to the publications below for the detailed protocol definitions and
for complete performance evaluations of the proposed solutions. For completeness,
we summarize some of these results here:

• Distributed Data Discovery: In the MedCo system [13], the query response time
grows linearly with the number of elements that are retrieved and the number of
filtering criteria included in the query, whereas the overhead introduced by the
encryption with respect to the a cleartext solution is negligible (a few seconds).
MedCo can scale up to billions of data points, hundreds of data providers and
queries with hundreds of terms. Even large queries that consist of hundreds of
filtering criteria are executed in just a few minutes with an average overhead of
only 1% to 3%, compared to an unprotected solution operating on plaintext data.

• Centralized Data Analysis with Random Forests [17]: When data providers
outsource the evaluation of a random forest to the cloud, the private evaluation
has to be performed non-interactively. Because of this requirement, we design
a non-interactive secure comparison protocol which outputs a single encrypted
bit to support consecutive homomorphic operations. The performance of this
secure comparison protocol grows linearly with the bit-length of inputs, number
of decision nodes, and maximum depth of trees. The running time grows linearly
with the bit-length because more homomorphic multiplications are required. The

Privacy-Preserving Data Sharing and Computation Across Multiple Data. . . 79

increase in tree depth increases the number of decision nodes, which dictates
the number of invocations of the secure comparison protocol. Our solution
includes parallel algorithms to lower multiplicative depth and achieve significant
performance gain by a factor of x7 compared to sequential evaluation.

• Distributed Data Analysis: For the statistical computations, the proposed sys-
tem’s execution time [14–16] scales linearly with the number of data providers
and the number of attributes involved in the computation. Its execution time is
almost independent of the data providers’ local datasets sizes. For the training
and execution of machine learning models [15, 16], the proposed solution relies
on the workload distribution among multiple data providers to efficiently cope
with a large number of them, and its execution time is practically independent of
this number. Moreover, it accommodates models with a large number of features,
as it scales better than linearly with this number.

All the proposed solutions enable, streamline, and facilitate data discovery and
analysis in environments in which the data is particularly sensitive and aim at
breaking the existing barriers that slow down collaborative medical research and
data sharing in general, bringing significant benefits for data sharing, new business
opportunities, and the possibility of achieving the promise of personalized and
precision medicine.

References

1. J. V. Selby, A. C. Beal, and L. Frank. “The patient-centered outcomes research institute
(PCORI) national priorities for research and initial research agenda,” JAMA, vol. 307, no.
15, pp. 1583–1584, 2012.

2. Swiss Academies of Arts and Sciences. “Swiss Personalized Health Network,” http://
www.samw.ch/en/Projects/SPHN.html, last Accessed: July 23, 2019.

3. The Global Alliance for Genomics and Health. “A federated ecosystem for sharing genomic,
clinical data,” Science, vol. 352, no. 6291, pp. 1278–1280, 2016.

4. “All of us research program,” https://allofus.nih.gov/, last accessed: July 23, 2019.
5. EU Parliament. “The EU General Data Protection Regulation (GDPR),” http://

www.eugdpr.org/, last Accessed: July 23, 2019.
6. U.S. Department of Health & Human Services. “The health insurance portability and account-

ability act (HIPAA),” https://www.hhs.gov/hipaa/index.html, last Accessed: July 23, 2019.
7. OECD (2019), Health at a Glance 2019: OECD Indicators, OECD Publishing, Paris, https://

doi.org/10.1787/4dd50c09-en
8. Gross domestic R&D expenditure on health (health GERD) as a % of gross domestic product

(GDP). World Health Organization. Global Observatory on Health R&D. January 2020.
Available online: https://www.who.int/research-observatory/indicators/gerd_gdp/

9. Federated Data Systems: Balancing Innovation and Trust in the Use of Sensitive Data,
World Economic Forum, July 2019. Available online: https://www.weforum.org/whitepapers/
federated-data-systems-balancing-innovation-and-trust-in-the-use-of-sensitive-data/

10. Value in Healthcare: Mobilizing cooperation for health system transformation, World Eco-
nomic Forum, February 2018. Available online: https://www.weforum.org/reports/value-in-
healthcare-mobilizing-cooperation-for-health-system-transformation/

http://www.samw.ch/en/Projects/SPHN.html
https://allofus.nih.gov/
http://www.eugdpr.org/
https://www.hhs.gov/hipaa/index.html
http://dx.doi.org/10.1787/4dd50c09-en
https://www.who.int/research-observatory/indicators/gerd_gdp/
https://www.weforum.org/whitepapers/federated-data-systems-balancing-innovation-and-trust-in-the-use-of-sensitive-data/
https://www.weforum.org/reports/value-in-healthcare-mobilizing-cooperation-for-health-system-transformation/

80 J. Troncoso-Pastoriza et al.

11. Christian Mouchet, Juan Troncoso-Pastoriza, Jean-Philippe Bossuat, Jean-Pierre Hubaux.
“Multiparty Homomorhic Encryption from Ring-Learning-with-Errors,” in Proceedings on
Privacy Enhancing Technologies, vol. 4, pp. 291–311, 2021.

12. James Scheibner, Jean Louis Raisaro, Juan Ramón Troncoso-Pastoriza, Marcello Ienca,
Jacques Fellay, Effy Vayena, Jean-Pierre Hubaux. “Revolutionizing Medical Data Sharing
Using Advanced Privacy Enhancing Technologies: Technical, Legal and Ethical Synthesis”.
Journal of Medical Internet Research, vol. 23, No. 2. February 2021, https://doi.org/10.2196/
25120

13. J. L. Raisaro, J. R. Troncoso-Pastoriza, M. Misbach, J. S. Sousa, S. Pradervand, Edoardo
Missiaglia, Olivier Michielin, Bryan Ford and Jean-Pierre Hubaux, “MedCo: Enabling Secure
and Privacy-Preserving Exploration of Distributed Clinical and Genomic Data,” IEEE/ACM
Transactions on computational biology and bioinformatics. vol. 16, no. 4, pp. 1328–1341, 1
July-Aug. 2019. https://doi.org/10.1109/TCBB.2018.2854776

14. D. Froelicher, J.R. Troncoso-Pastoriza, J.S. Sousa, and J.P. Hubaux. “Drynx: Decentralized,
Secure, Verifiable System for Statistical Queries and Machine Learning on Distributed
Datasets,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3035–3050,
2020. https://doi.org/10.1109/TIFS.2020.2976612.

15. David Froelicher, Juan Troncoso-Pastoriza, Apostolos Pyrgelis, Sinem Sav, Joao Sa Sousa,
Jean-Philippe Bossuat, Jean-Pierre Hubaux. “Scalable Privacy-Preserving Distributed Learn-
ing,” in Proceedings on Privacy Enhancing Technologies, vol. 2, pp. 323–347, 2021.

16. Sav, Sinem, Apostolos Pyrgelis, Juan R. Troncoso-Pastoriza, David Froelicher, Jean-Philippe
Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. “POSEIDON: Privacy-Preserving Federated
Neural Network Learning.” NDSS 2021.

17. Asma Aloufi, Peizhao Hu, Harry W.H. Wong, and Sherman S.M. Chow. “Blindfolded Evalua-
tion of Random Forests with Multi-Key Homomorphic Encryption,” in IEEE Transactions on
Dependable and Secure Computing (TDSC). Sept 2019.

18. Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. “Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy,” in International Conference on Machine Learning, pp. 201–210. 2016.

19. Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. “CryptoDL: Towards Deep Learning
over Encrypted Data.” In Annual Computer Security Applications Conference (ACSAC 2016),
Los Angeles, California, USA, vol. 11. 2016.

20. Asma Aloufi, Peizhao Hu, Yongsoo Song, and Kristin Lauter. “Computing Blindfolded on Data
Homomorphically Encrypted under Multiple Keys: An Extended Survey.” https://arxiv.org/abs/
2007.09270

21. Homomorphic Encryption Standardization Group. https://homomorphicEncryption.org
22. S.N. Murphy, G. Weber, M. Mendis, V. Gainer, H.C. Chueh, S. Churchill, and I. Kohane.

“Serving the enterprise and beyond with informatics for integrating biology and the bedside
(i2b2),” Journal of the American Medical Informatics Association, vol.17, no.2, pp.124–130,
2010

23. B. D. Athey, M. Braxenthaler, M. Haas, and Y. Guo. “tranSMART: an open source
and community-driven informatics and data sharing platform for clinical and translational
research,” AMIA Summits on Translational Science Proceedings, vol. 2013, p. 6, 2013.

24. D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Z. Huang, C. Mouchet, B. Ford, and J.-P.
Hubaux. “UnLynx: A decentralized system for privacy-conscious data sharing,” in Proceedings
on Privacy Enhancing Technologies, vol. 4, pp. 152–170, 2017.

25. MedCo – Legal perspective. Available online at https://medco.epfl.ch
26. C. A. Neff. “Verifiable mixing (shuffling) of ElGamal pairs.” VHTi Technical Document,

VoteHere, Inc, 2003.

https://doi.org/10.2196/25120
http://dx.doi.org/10.1109/TCBB.2018.2854776
http://dx.doi.org/10.1109/TIFS.2020.2976612
https://arxiv.org/abs/2007.09270
https://homomorphicencryption.org
https://medco.epfl.ch

Secure and Confidential Rule Matching
for Network Traffic Analysis

Dimitar Jetchev and Alistair Muir

1 Introduction

The homomorphic encryption standardization group HomomorphicEncryption.org
[1] is an open consortium of industry participants and academics working together
to standardize an encryption technology called homomorphic encryption.

Homomorphic encryption is a form of encryption that allows computation on
ciphertexts, generating an encrypted result which, when decrypted, matches the
result of the operations as if they had been performed on the plaintext. This
essentially means that analysis on encrypted data can be performed as if that data
was in plaintext.

Homomorphic encryption holds tremendous promise in a number of applications
in government, health, intelligence and in private sector contexts.

The purpose of this document is to illustrate a specific problem that is applicable
in the private sector and intelligence communities alike and how this problem can
be addressed through the application of Homomorphic encryption.

1.1 Motivation and Business Problem

It is increasingly important for governments, private sector organizations and the
intelligence community to detect potential cyber threats on their networks. One of

D. Jetchev (�)
Inpher Inc., Lausanne, Switzerland
e-mail: dimitar@inpher.io

A. Muir
Vanteum, Sydney, NSW, Australia
e-mail: alistair@vanteum.io

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_4&domain=pdf
mailto:dimitar@inpher.io
mailto:alistair@vanteum.io
https://doi.org/10.1007/978-3-030-77287-1_4

82 D. Jetchev and A. Muir

the key growth areas in this market is the area of Advanced Network Traffic Analysis
(NTA) which is where patterns of behavior, methods and techniques used by cyber
bad actors are learned over time and applied to network traffic to detect and identify
these potential threats.

The global market for advanced NTA is expected to reach $3.7 billion by 2025,
rising at a market growth of 18.3% CAGR between now and then. One of the
challenges that faces this market is that cyber security specialists and intelligence
agencies have built proprietary and, in some cases, classified sets of rules to detect
the signature of cyber threat activity. In a cybersecurity context, this proprietary or
classified information could describe the behaviors, methods and techniques used
by actors whose identity is sensitive.

It is possible for this information, or a part of this is information to be encoded
with enough precision to detect and monitor threat actors’ presence in network
traffic and system telemetry, and thereby identify them via their cyber patterns.

The goal of this application of homomorphic encryption is to evaluate those rules
in untrusted environments without revealing either the signatures themselves or the
network traffic matching those signatures.

Such a system would allow the provisioning of classified and/or proprietary
cyber-security signatures in appliances that could be deployed in insecure and
unclassified networks such as in private sector organizations, government or in
critical infrastructure networks.

2 Threat Model

A threat model is essentially a structured representation of all the information that
affects the security of an application. In essence, it is a view of the application and
its environment through security glasses. Threat modeling is a process for capturing,
organizing, and analyzing all of this information.

We assume, similarly to the case of standard intrusion-detection algorithms on
plaintext, that the computing environment in which the traffic analysis is to be run
(client side C) is honest-but-curious in the following sense:

• Even if the network is compromised, it does not prevent the accurate execution
of the intrusion-detection analytics.

• It will run the exact algorithms that the solution provider (P) requires without
malicious tampering of the computations.

• It will run the analysis on an untampered version of the client’s network packet
data.

• Any entity on the network (including adversaries) can store and analyze all input
and output of the analysis along with any intermediate data generated during the
computation.

Secure and Confidential Rule Matching for Network Traffic Analysis 83

3 Protocol

The protocol evaluates rules against network traffic to detect and monitor threat
actors in a secure and confidential manner such that neither the rules nor the traffic
that matches them is revealed to a non-authorized party.

This protocol will use homomorphic encryption to accomplish the goal within
the above honest-but-curious threat model. Depending on the sensitivity of the rule
set and the trust model of the provider it may also be possible to utilize a trusted
environment for testing the rule set and standard encryption to secure the results.

3.1 Client

The client C has its network traffic analyzed via a rule-based checker developed by
the provider P. The C will receive feedback and recommendations from P based on
the results of the rule application to its network traffic.

3.2 Solution Provider

The solution provider P is the party that develops the set of rules to be applied to the
network traffic (packets) on the side of the client C. It owns the set of rules (updates
the occasionally), analyzes the results of the rules applied to client’s network packets
data, and provides (non-real time) feedback to the client based on the analysis.

3.3 Rule Sets

The basis of the threat detection and analysis being provided to C is P’s rule set. For
general network traffic analysis, a rule typically consists of the following:

• Action: determines the outcome when a packet matches a rule.
• Header: rule information pertaining to the packet header (i.e., the protocol, IP

addresses, ports, and direction of communication for the rule).
• Rule options: defines the specifics of the rule.

In order to keep P’s proprietary rule set confidential, for this protocol the action
of the rules is restricted to being an alert (P will provide feedback to C following
an analysis of rule matches). For the purposes of this paper, we have selected an
example rule set from SURICATA which is a widely used Open source network
threat detection engine [2] (see [3] for details of the rule syntax).

84 D. Jetchev and A. Muir

Examples of Rules

The SURICATA rule format consists of an action, protocol, source IP, source port,
direction, destination IP, rule options. An example of a rule is the following [3]:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (
msg: ”ET TROJAN Likely Bot Nick in IRC (USA +..)”;
flow: established, to_server;
flowbits: isset, is_proto_irc;
content: ”NICK“;
pcre: ”/NICK.*USA.*[0-9]{3,}/i”;
reference: url,doc.emergingthreats.net/2008124;
classtype: trojan-activity;
sid: 2008124;
rev: 2;

)

For details of the full syntax of Suricata rules see [3]. A simple example of a rule
for intrusion-detection system would be:

alert tcp 1.2.3.4 [80:184,!89] -> any [80,100] (
content: “Trojan”

)

This rule will cause an alert on TCP traffic packets with source IP of 1.2.3.4, a
source port in the range 80 to 184 except for 89, any destination IP, a destination
port in the range 80 to 100, and contains “Trojan” in its payload.

3.4 Prerequisites of the Protocol

1. A client has network traffic that they want analyzed for cyber threats.
2. The provider has a proprietary set of rules that can be applied to the client’s

network packet traffic to detect and monitor threat actors.

3.5 Protocol Steps

1. The provider generates a cryptographic key and corresponding public parame-
ters.

2. The provider uses their key to create a homomorphically encrypted version of
their rule set.

3. The provider packages the encrypted version of their rule set along with the
public parameters into a secure rule checker. This can take the form of a hardware
device that will be hosted by the client or software that will be run in the client’s
environment.

4. The client agrees to host the provider’s secure rule checker and to allow the
secure rule checker to access the client’s network packet traffic.

Secure and Confidential Rule Matching for Network Traffic Analysis 85

5. Upon receipt of network packets from the client, the secure rule checker
will homomorphically evaluate the encrypted rule set against the unencrypted
network traffic to generate an encryption of the results of the rules checked
against the network traffic.

6. The client sends the encrypted results of the secure rule checker to the provider.
7. The provider uses their secret key to decrypt and analyzes the results.
8. The provider gives feedback and advice (at an agreed upon level of detail) to the

client.
9. The client acts on the feedback and advice that it receives from the provider.

The following diagram demonstrates the flow:

Note that the rule matching and analysis of the results do not need to be done
in real time (although the rule matching will need to be able to keep up with the
network traffic volume).

Additionally, the client and threat actors can attempt to learn information about
the provider’s rule set from the feedback that is provided to the client. This can
be mitigated by the format of the feedback and recommendations (“Install the
following software updates/patches”, not “block network traffic with the following
rule”) as well as providing periodic feedback instead of real time feedback. It will
be the responsibility of the provider to balance the detail of their feedback with their
requirement to keep their rule set private.

86 D. Jetchev and A. Muir

4 Performance, Usability, and Scalability

The performance of the protocol will depend on the volume of C’s network traffic,
the number of rules in P’s rule set, the level of complication in the rule set, the
hardware hosting the secure rule checker, and the security level on the encryption.
In order to obtain a desired network packet throughput, P may need to limit the level
of complexity in the rule set and/or the number of rules. Limiting the rule set in this
way may have an effect on the ability of P to detect and identify threat actors.

It will be the responsibility of P to produce a rule set that can perform the desired
task within the performance envelope. If required, increased performance may be
possible by using an HE scheme, like that of Genise et al. [1], designed more
specifically to the types of operations required in rule checking. Standardized FHE
schemes [4] enable some efficient operations (such as the comparisons of encrypted
integers) but may be less efficient than other HE schemes on other operations (such
as substring matchings).

4.1 Security Agencies

This is a common issue for intelligence agencies around the world. One such exam-
ple is the Canadian Communications Security Establishment which has explicitly
asked for solutions to the problem [5].

4.2 Fraud Detection

Applying the same model of secure and confidential rule matching as in the above
example, it could be possible to detect patterns of fraudulent behavior in banking
transactions within a bank environment without disclosing those rules.

References

1. N. Genise et al., Homomorphic Encryption for Finite Automata, (2019)
2. Suricata, https://suricata-ids.orgSuricata
3. Suricata User’s Guide, Available at https://readthedocs.org/projects/suricata/downloads/pdf/

latest/
4. Homomorphic Encryption Standard – https://homomorphicencryption.org/standard/
5. CSE Innovation challenge: https://www.ic.gc.ca/eic/site/101.nsf/eng/00082.html

https://suricata-ids.org
https://suricata-ids.org/
https://readthedocs.org/projects/suricata/downloads/pdf/latest/
https://homomorphicencryption.org/standard/
https://www.ic.gc.ca/eic/site/101.nsf/eng/00082.html

Trusted Monitoring Service (TMS)

Xiaoqian Jiang, Miran Kim, Kristin Lauter, Tim Scott, and Shayan Shams

1 Privacy-Preserving Health Monitoring1

In healthcare, timely monitoring of patients is a big problem, especially those
who live alone in their own home or nursing home. There are many situations
where people fall but no help is available, which leads to severe conditions and
even mortality. Falls are the second leading cause of accidental or unintentional
injury deaths worldwide, each year an estimated 646,000 individuals die from falls
globally of which over 80%, are in low- and middle- income countries [1]. In the
US, the age-adjusted rate of fall deaths is 62 deaths per 100,000 older adults and this
rate is increasing [2]. Fall death rates among adults aged 65 and older have increased
more than 30% from 2007 to 2016 [3]. Among older people in the U.S. (age 65+)

1https://www.youtube.com/watch?v=myfGdhZtKa4

X. Jiang · S. Shams
School of Biomedical Informatics, University of Texas Health Science Center at Houston,
Houston, TX, USA
e-mail: xiaoqian.jiang@uth.tmc.edu; shayan.shams@uth.tmc.edu

M. Kim
Department of Computer Science and Engineering, Ulsan National Institute of Science and
Technology (UNIST), Ulsan, Republic of Korea
e-mail: mirankim@unist.ac.kr

K. Lauter
Facebook AI Research, Seattle, WA, USA
e-mail: klauter@fb.com

T. Scott (�)
Deloitte, Sydney, NSW, Australia
e-mail: timscott@deloitte.com.au

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_5&domain=pdf
https://www.youtube.com/watch?v=myfGdhZtKa4
mailto:xiaoqian.jiang@uth.tmc.edu
mailto:shayan.shams@uth.tmc.edu
mailto:mirankim@unist.ac.kr
mailto:klauter@fb.com
mailto:timscott@deloitte.com.au
https://doi.org/10.1007/978-3-030-77287-1_5

88 X. Jiang et al.

there are approximately 750,000 falls per year requiring hospitalization due to either
bone fracturing (approx. 480,000 cases) or hip fracturing (approx. 270,000 cases)
[4].

The disconnect between healthcare providers and the elderly population is a
concerning problem. A simple camera and monitoring system do not resolve
the problem, as healthcare providers cannot reliably monitor dozens of screens
(e.g., fatigue, failure to recognize, etc.). Advanced artificial intelligence technology
can detect or predict high risk patterns (e.g., falling or seizure), which can help
to address this important challenge. This approach has already had success in
healthcare applications (i.e., hip fracture prediction [5], skin cancer classification
[6], lymph node metastases [7], etc.). Uploading real-time video/vital signals to a
cloud service provider (e.g., Microsoft Azure) for real-time motion/gait recognition
could be a promising way to close the technology gap.

However, the non-trivial risk of invasion of privacy must be addressed to ensure
the viability of providing virtual care to patients [8]. Many people would find
it uncomfortable to deploy surveillance cameras in bathrooms, even though the
benefits are clear since a large proportion of falls happen in the bathroom. Based
on a survey of senior residents’ perceived need of and preferences for “smart home”
sensor technologies, 10 out of 14 participants stated that they would not want to
have a video sensor installed in their residence [9]. It is emotionally unacceptable
for many patients to have video streams of their personal life constantly uploaded
to a virtual machine at a commercial cloud service provider. The high-profile
information breaches reported in the news in recent years [10] heightens public
concern that inappropriate handling of their personal data by an untrusted 3rd party
will put their personal privacy at risk.

To solve this problem, we need a cloud service which can securely process video
streams using Artificial Intelligence (AI) solutions to detect falls, without sharing
the video stream of the patient with the cloud in the clear. Homomorphic Encryption
provides a solution to this problem: we can build a service which uploads only
homomorphically encrypted data to the cloud, and the cloud can then process the
AI algorithms on the encrypted video stream and provide encrypted alerts which
detect falls to the Nursing station of the Trusted Monitoring Service.

This is an example of secure outsourcing of computation to monitor patient
motion features, where the patient’s interaction with their provider is enabled by
AI models hosted by an untrusted 3rd party. We believe homomorphic encryption
(HE) is the right tool to reconcile this dilemma by delivering utility while protecting
privacy. Using carefully designed HE protocols, we can send the minimum neces-
sary information for motion recognition (encrypted) to the cloud service provider,
where advanced machine learning algorithms (i.e., from different developers) are
deployed. When serious events are detected, an immediate alert will be sent to the
care provider and helpers can be dispatched to save lives. Such a cloud service
could help to reconcile the goals of privacy and utility, providing timely support to
the elderly population.

Trusted Monitoring Service (TMS) 89

2 Business Motivation

Based on information provided by the CDC, each year about $50 billion is spent
on non-fatal fall injuries and $754 million is spent on fatal falls [11]. For non-fatal
falls:

• $ 29 billion is paid by Medicare,
• $ 12 billion is paid by Private or Out of Pocket payers,
• $ 9 billion is paid by Medicaid.

As the number of Americans, age 65 and older, grows we can expect the number
of fall injuries and the cost to treat these injuries to soar. The global fall detection
systems market was valued at USD 365 million in 2018 and is expected to reach a
market valuation of approximately USD 544 billion by 2026 growing at a CAGR
of 4.2% during the forecast period [12]. Note that these figures only account
for detection; fall prediction potentially has a much higher value, currently not
quantified by the market.

There is a significant cost associated with injuries incurred during a fall for
the elderly. By 2020, the cost to the US Healthcare system is expected to be
$ 54.9 billion [13]. This can come in the form of emergency services, hospital
admission, medical intervention, recovery, and ongoing medical and family support.
We are constantly bombarded with news stories of loved ones who have fallen and
become injured, and through either inappropriate or untimely intervention, the fall
has resulted in death or serious long-term injuries (Fig. 1).

Existing capabilities only provide support after the fact, such as an emergency
call button [14] which is worn and pressed once the fall has occurred. If for any
reason the device is not with the person, or during the incident the device cannot
be operated, the service is ineffective. Wearables like the Apple iWatch with its fall
detection feature have tried to address this, but once again only address the fall itself.
Our proposed solution will monitor, notify of fall events, and look at predictive
factors that can prevent a fall. This monitoring addresses other critical health and
environmental factors. The use of AI to support predictive monitoring will allow
patients with pre-existing medical conditions to structure support mechanisms with
their caregivers to prevent events through the monitoring of known triggers.

For elderly care providers, having proactive monitoring in high risk/personally
sensitive areas such as bathrooms offers a significant advantage in providing the
appropriate care in a less labor-intensive way. Timely intervention can significantly
impact the outcome from a fall, reducing the ongoing cost of care and facility
reputation. It also provides the residents with a greater level of autonomy and
independence which can greatly affect mindset.

Medical professionals such as geriatricians and GP’s with access to a proactive
monitoring capability can better provide specific medical care in the most appro-
priate environment (home, hospital, or care facility). Monitoring of major events
(such as a fall) can help them better inform hospitals and emergency services of any

90 X. Jiang et al.

Fig. 1 Cost of CDC older adult fall statistics [12]

preexisting medical complications that may impact the intervention provided by the
front-line medical staff.

For emergency services, accurate, qualified, and timely notification of an event
means the appropriate response personnel can be dispatched. This has a follow-on
effect for governments that can reduce the number of presentations to emergency
departments, reducing the burden on the healthcare system. Early intervention my
also reduce the severity of injuries presented, leading to better outcomes.

The key stakeholders are family members that support their loved ones. The
opportunity for their loved ones to maintain a high level of independence and

Trusted Monitoring Service (TMS) 91

autonomy while still providing an appropriate level of care is a critical factor. The
cost to this group must be counted in both dollars saved and the emotional support.

3 Protocol (Workflow)

The following solution for analyzing an encrypted video feed is described in a
recent technical paper, HEAR: Human Action Recognition via Neural Networks
on Homomorphically Encrypted Data [15].

There are four parties in the protocol that interact with one another, see Fig. 2 for
a high-level diagram of the architecture.

• Parties/devices (4):

1. Streaming video recording device
2. Processor (may include GPU accelerator)
3. Cloud provider
4. Nurse station or Trusted Monitoring Service (TMS) provider

• Set-up:

– Step 1: Processor, Cloud, and TMS agree on the required functionality and the
parameters for the HE-based system.

– Step 2: All parties are provisioned with software to perform HE operations.
The Cloud is provisioned with (could be encrypted or unencrypted) custom
CNN prediction model to use as a classifier. Processor encodes and encrypts
streaming skeletal data (frequency and frame rate to be determined). Cloud
processes predictions given CNN model. Nurse decrypts alerts or classifica-
tions.

– Step 3: Key provisioning. A public/secret key pair is generated by the patient.
The public key is transmitted securely to the Processor and the secret key is
transmitted securely to the Nursing station.

• Work/data flow:

– Step 1. Video recording by (stationary video camera) of patient is transferred
to the processor (physical cord)

– Step 2. Processor creates skeletal video
– Step 3. Processor encrypts skeletal video stream (frame rate to be determined)

using public key
– Step 4. Processor upload encrypted feed to the cloud
– Step 5. Cloud service processes predictions/classifications on encrypted data

(every second, 5–10 frames)
– Step 6. Cloud sends encrypted classifications to the Nurse Station (TMS) (alert

flag or ~ 20-fold classification)
– Step 7. Nurse decrypts classification results and responds to any alerts.

92 X. Jiang et al.

Fig. 2 Architecture for a privacy-preserving healthcare monitoring protocol

• Assumptions (Threat model)

1. Honest-but-curious security model: all parties follow the protocol & execute
all steps correctly.

2. Secure authenticated channels

– Physical cords connect the video recorder (1) to the processor (2)
– TCP-IP/TLS channels between processor (2) and cloud (3) and between

cloud (3) and nurse station (4)
– Secure authenticated channels are required to ensure safety and integrity:

to prevent an attacker from faking the video stream or impersonating the
Trusted provider or the semi-honest cloud.

3. Non-collusion assumption: cloud (3) and nurse station (4) do not collude. The
cloud stores the encrypted skeleton stream but does not have the decryption
key. The nurse station has the decryption scheme but only receives encrypted
alerts or classifications. If they share data, then both parties can access the
decrypted skeletal video stream. This skeletal stream may uniquely identify
the individual if used in other databases of skeletal video streams.

4. Streaming device & processor do not retain video stream: enforced deletion
after encryption.

Trusted Monitoring Service (TMS) 93

5. Our solution does not prevent:

– Denial of Service attacks (DOS),
– Network availability failure or physical disconnection of the video record-

ing device,
– Negligence in the TMS (nurse is absent or does not respond to alert).

4 Performance, Usability, Scalability

A privacy preserving healthcare monitoring system is very time sensitive. For
example, most seizures stop spontaneously within 2 min and patients usually receive
treatments 30 min after seizures begin [16]. The system must ensure both accuracy
and efficiency to be useful. The state-of-the-art Radar system [17] can detect a
fall per 0.25 s at 100% accuracy but the cost is prohibitive. We aim to achieve
similar performance while supporting privacy-preserving monitoring (which the
Radar system does not). But there is a tradeoff between these metrics. Deep learning
models usually perform better by using a larger time window of video frames, but
this introduces more complexity to model evaluation on encrypted data, delaying
critical event detection. Outsourcing computation on encrypted data to the cloud
would alleviate the problem by using virtual machines of different capacities to
support different needs (e.g., lifestyle monitoring, fall detection, etc.). This may
allow to strike the right balance between cost and usability and provide virtual care
to a large population. Because the sketching phase costs are constant, performance
is essentially determined by the cloud service provider, which makes the system
highly scalable. It is important to develop machine learning models with a good
understanding of the fundamentals of HE [18]. There are several choices for HE
schemes which have different advantages in terms of operations (i.e., logical or
arithmetic) but none of them are well-suited to the evaluation of deep circuits
(HE is not efficient for high degree polynomials). Designing customized low-depth
learning models is thus an area ripe for innovation.

5 Applications of Trusted Monitoring Systems

We have described a Trusted Monitoring System for fall detection for privacy-
preserving healthcare monitoring. Our framework design can be used in many other
scenarios, as the need for privacy-preserving monitoring is quite ubiquitous. Here,
we describe some additional examples where our framework would apply.

94 X. Jiang et al.

Examples Features

In-home and nursing
home fall detection

Monitoring of sensitive areas within the home/nursing home to
detect when a fall occurs and trigger a notification to nursing or
emergency services. Notifications can also be sent to families and
care providers.

Hospital wards Monitoring of patients in a hospital ward for falls or adverse events
with a timely notification issued to the closest nursing station.

Psych-wards Use of AI predictive models for the detection of potential fights or
adverse events with a timely notification issued to the closest
nursing station. With the predictive capability nursing intervention
can be converted from reactive to proactive.

Child protective
services

In-home monitoring of at-risk children and families who are
currently under investigation and require constant monitoring.

Schools Monitoring of high-risk areas for the detection of bullying, fighting,
or other antisocial activities which then notify school authorities.

Telemedicine Tracking and monitoring of patients in rural or remote areas where
health services are not available. Predictive modeling could support
front-line medical staff that might not typically be exposed to
specific cases.

24-hour, unsupervised
gyms

Monitoring of people at gyms during unsupervised times for the
detection of falls and the notification to emergency services.

Medically at-risk
individuals living or
recovering at home

Monitoring individuals who suffer from lifelong medical conditions
affecting their movement or stability. Providing better quality of life
and greater independence.

Possible extensions of the service model

Extension Descriptions

Marketplace for
predictive models

A marketplace could be developed for uploading specific predictive
models based on known triggers for conditions such as epilepsy.

Richer data collection Motion and vitals could be collected via additional devices such as
wearables and video technology to provide a holistic image of the
patient’s medical condition. Data to be provided to medical care
providers (doctors) to track a patient’s health over time.

Data marketplace Collected data could be accessed for research and AI/ML model
training.

References

1. Falls. https://www.who.int/news-room/fact-sheets/detail/falls (accessed 6 Feb 2020).
2. Deaths from Falls | Home and Recreational Safety | CDC Injury Center. 2019. https://

www.cdc.gov/homeandrecreationalsafety/falls/fallcost/deaths-from-falls.html (accessed 6 Feb
2020).

3. E. Burns, R. Kakara, Deaths from Falls Among Persons Aged ≥ 65 Years-United States, 2007-
2016. MMWR Morb Mortal Wkly Rep 2018; 67:509–14.

https://www.who.int/news-room/fact-sheets/detail/falls
https://www.cdc.gov/homeandrecreationalsafety/falls/fallcost/deaths-from-falls.html

Trusted Monitoring Service (TMS) 95

4. TJ Petelenz, SC Peterson, SC Jacobsen, Elderly fall monitoring method and device,
US Patent, 2002. https://patentimages.storage.googleapis.com/c5/7a/c0/8431d535a77e29/
US6433690.pdf (accessed 7 Feb 2020).

5. MA Badgeley, JR Zech, L Oakden-Rayner, et al. Deep learning predicts hip fracture using
confounding patient and healthcare variables. NPJ Digit Med 2019; 2:31.

6. A. Esteva, Skin cancer classification with deep learning. https://cs.stanford.edu/people/esteva/
nature/ (accessed 6 Feb 2020).

7. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic Assessment of Deep
Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.
JAMA 2017; 318:2199–210.

8. SR Steinhubl, K-I Kim, T Ajayi, et al. Virtual care for improved global health. Lancet. 2018;
391:419.

9. G Demiris, BK Hensel, M Skubic, et al. Senior residents’ perceived need of and preferences
for ‘smart home’ sensor technologies. 2008; 24:120–4.

10. C Bradford, 7 Most Infamous Cloud Security Breaches – StorageCraft. StorageCraft Tech-
nology Corporation 2017. https://blog.storagecraft.com/7-infamous-cloud-security-breaches/
(accessed 7 Feb 2020).

11. Falls Data | Home and Recreational Safety | CDC Injury Center. 2019. https://www.cdc.gov/
HomeandRecreationalSafety/Falls/fallcost.html (accessed 7 Feb 2020).

12. Fall Detection Systems Market Analysis – Global Industry Size, Share, Growth Opportunity,
Trends and Forecast 2026. MarketWatch. https://www.marketwatch.com/press-release/fall-
detection-systems-market-analysis-global-industry-size-share-growth-opportunity-trends-
and-forecast-2026-2019-04-05 (accessed 7 Feb 2020).

13. A Lee, K-W Lee, P Khang, Preventing falls in the geriatric population. Perm J 2013; 17:37–9.
14. C Roberts, How to choose a medical alert system. https://www.consumerreports.org/medical-

alert-systems/how-to-choose-a-medical-alert-system/ Published Online First: 2018.
15. M Kim, X Jiang, K Lauter, S Shams, HEAR: Human Action Recognition via Neural Networks

on Homomorphically Encrypted Data, in submission, 2020.
16. DH Lowenstein, T Bleck, RL Macdonald, It’s time to revise the definition of status epilepticus.

Epilepsia 1999; 40:120–2.
17. BY Su, KC Ho, M Rantz, et al. Radar placement for fall detection: Signature and performance.

AIS 2018; 10:21–34.
18. Homomorphic Encryption Standard, https://homomorphicencryption.org/standard/Homomor-

phicEncryption.org, 2017, in this volume, Part 2.

https://patentimages.storage.googleapis.com/c5/7a/c0/8431d535a77e29/US6433690.pdf
https://cs.stanford.edu/people/esteva/nature/
https://blog.storagecraft.com/7-infamous-cloud-security-breaches/
https://www.cdc.gov/HomeandRecreationalSafety/Falls/fallcost.html
https://www.marketwatch.com/press-release/fall-detection-systems-market-analysis-global-industry-size-share-growth-opportunity-trends-and-forecast-2026-2019-04-05
https://www.consumerreports.org/medical-alert-systems/how-to-choose-a-medical-alert-system/
https://homomorphicencryption.org/standard/
http://paperpile.com/b/qSdQuT/stBF

Private Set Intersection and Compute

Flavio Bergamaschi, Tancrède Lepoint, Peter Leihn,
and Sreekanth Kannepalli

1 Motivation

We consider the scenario where two or more data owners would like to join their
data and compute some functions over the intersection of their data in a privacy-
preserving way and without disclosing their dataset to each other nor the intersection
of their datasets. This scenario is primarily motivated by the following aspects:

• Enabling compliance with emerging privacy regulation in multiple jurisdictions.
Privacy regulations such as Europe’s General Data Protection Regulations
(GDPR) and California’s Consumer Privacy Act (CCPA) significantly restrict
an organization’s ability to share consumer data without the explicit permission
of the individual consumer.

• Unlocking valuable insights from external datasets which would otherwise be
inaccessible due to the sensitivity or commercial value of that data.

1.1 Privacy Compliance

Privacy compliance risks are real. Gartner estimates that by 2022, the personal
information of half of the planet’s population will be covered by local privacy
regulations in line with GDPR, up from one-tenth in 2019 (Gartner, 2019) [1]. The

F. Bergamaschi · T. Lepoint · P. Leihn
SRI International, Menlo Park, CA, USA
e-mail: crypto@tancre.de; peter.leihn@ixup.com

S. Kannepalli (�)
Microsoft, Redmond, WA, USA
e-mail: vkanne@microsoft.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_6

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_6&domain=pdf
mailto:crypto@tancre.de
mailto:peter.leihn@ixup.com
mailto:vkanne@microsoft.com
https://doi.org/10.1007/978-3-030-77287-1_6

98 F. Bergamaschi et al.

International Association of Privacy Professionals and EY (2017) estimated that
Fortune’s Global 500 companies will spend roughly $7.8 billion to ensure GDPR
compliance [1]. Similarly, the State of California has estimated CCPA compliance
could cost companies a total of $55 billion (Attorney General’s Office California
Department of Justice, 2019) [2].

Fully homomorphic encryption (FHE) is one of the most promising technologies
that allows each party to provide their data in encrypted form, so that the data can be
analyzed while it remains encrypted throughout the computation. That is, data is not
actually shared among the parties, instead it is only made available for analytics in
encrypted form. So, it can be processed without disclosing the underlying personally
identifiable information (PII) and other sensitive fields, which is the primary concern
for privacy regulators. Importantly, data custodians remain in control of how their
consumers data is used.

1.2 Co-marketing as a Use Case

Today the consequences of privacy breaches are more serious than ever, not only
in terms of penalties, but impact on reputation and customer loyalty. Marketers
are now concerned with ensuring the security and privacy of their customer’s data
but continue to desire to gain valuable new insights to tailor new offers and drive
revenue growth.

For example, an airline, a hotel chain, and a rental car company may wish to
identify customers that they have in common with an average consolidated spend
on all their products above a certain threshold, for the purpose of preparing a joint
promotion to those customers. Similarly, a train company and point of sale providers
may run a Private Set Intersection and Compute protocol to identify how many train
riders went to these points of sale providers, and how much money they spent in
total,1 to make business decisions on the joint data.

The privacy challenge is that no party wants to (nor can) share their customer
data with any of the others. The following is an approach to achieving this using
proven private set intersection and homomorphic computation techniques.

2 Application Functionality

2.1 Database Statistics on PSI Selected Entries

We consider a setting where two or more parties (data owners) possess databases
of identifiers and associated data. Together they would like to compute functions

1https://www.youtube.com/watch?v=mPMLY6UzvsI

https://www.youtube.com/watch?v=mPMLY6UzvsI

Private Set Intersection and Compute 99

on the associated data of the identifiers that they have in common to draw useful
information from the aggregates, without sharing the data. A main security goal
is that the data remains fully encrypted once it leaves the client’s nodes. These
parties will use client nodes to encrypt and/or prepare their data and will compute
the intersection and compute over the joint data either among themselves (in a
privacy-preserving way) or with the help of a third party (for which the data remains
unreadable throughout the process).

We consider the following parties:

• Data owners that hold locally a database of keys and associated values.
• Client nodes that are responsible for preparing and encrypting the database prior

to uploading the encrypted database to each other or to a third-party server and
optionally perform the intersection and computation over the joint data.

• Central server that performs the intersection and computation over the joint data.

We consider the following security/threat models:

• honest clients that do not corrupt or falsify input data;
• semi-honest client compute nodes, and semi-honest central compute node.

3 Protocol

In the Private Set Intersection and Compute framework, four main steps will be
performed on the encrypted data.

1. The preparation step enables the parties to agree on the computation they
would like to perform, to preprocess their data, and to exchange key material
information that will be needed in the following steps.

2. The intersection step enables the parties to privately find the intersection of their
data keys, without learning which keys they have in common.

3. The compute step enables the parties to privately compute the agreed-upon
function on the keys and values associated with the keys in the intersection,
without learning anything about the intermediate values in the computation.

4. The reveal step enables the parties to reveal to one or more parties of their
choosing the result of the computation.

Each of these steps may or may not include a third party. In the rest of this section,
we will describe the input/output and functionality of each of these steps, and in the
rest of the section we will describe in detail the first of three instantiations of the
protocol:

1. A protocol with a central compute node for N ≥ 2 parties, in which the central
node will learn the size of the intersection and will perform both the intersection
and computation.

2. A protocol without a central compute node for N = 2 parties, in which one party
will learn the size of the intersection and perform the computation step.

100 F. Bergamaschi et al.

3. A protocol with a central compute node for N ≥ 2 parties, in which the central
node will perform both the intersection and computation and learn no information
whatsoever about the intersection. This protocol will perform all operations with
homomorphic encryption. This scheme can adapt to either scenarios the space of
keys is bounded (e.g., an integer between 1 and 20,000) or not.

3.1 Workflow

This section describes the general workflow of the protocol. We consider N users
U1, U2, . . . , UN and potentially a central node C. For all i, user Ui possesses a
database with m records (ki, 1, vi, 1), (ki, 2, vi, 2), . . . , (ki, m, vi, m).

• During this preparation step, all users agree (with or without the help of a
central compute node) and over regular authenticated and secure communication
channels on the following elements:

– the input/output of the protocol – what is the key space and who should recover
the output,

– the precise computation to be performed on the joint data (such as sums,
differentially private aggregations, linear regression, filtering, etc.),

– who participates in the computation and in particular whether an untrusted
central server can help with the computation.

• During the intersection step, all users will jointly compute a database that
corresponds to the temporary intersection of all the databases:

(
Enc

(
sk, kj

)
,HE

(
sk′, v1,j

)
, . . . , HE

(
sk′, vN,j

))

so that, for every user Ui, the element (kj, vi, j) is present in her database. In this
step, we consider two types of encryption schemes:

– Enc(sk, . . .) is a deterministic encryption scheme and enables the party
performing the intersection to intersect over the values of the encryptions of
keys.

– HE(sk
′
, . . .) is an homomorphic encryption scheme that supports the function

agreed-upon during the preparation step to be computed.

During the compute step, one party will compute homomorphically the func-
tion agreed-upon. More precisely, from the temporary database, the party will
compute the agreed-upon function on all the (HE(sk

′
, v1, j), . . . ,HE(sk

′
, vN, j))

values using the homomorphic encryption scheme.
• During the reveal step, the party who computed the result using homomorphic

encryption sends the result to the party (or parties) that is supposed to receive it
and know the decryption key of the homomorphic encryption scheme.

Private Set Intersection and Compute 101

3.2 First Protocol: N Parties with One Central Compute Node

This protocol considers N > = 2 data owners that collaborate with a central compute
node to perform the private set intersection and computation. This protocol is
particularly adapted to the co-marketing use case where the central compute node is
a cloud provider independent of the clients.

• Setup: key value databases DB := (DBkey,DBvalue)
• Steps:

– Preparation: Data owners use their client nodes to generate and exchange
encryption keys: symmetric keys (e.g., AES) for encrypting DBkey ‘s and HE
keys for encrypting DBvalue ‘s.

– Intersection: After encrypting, clients upload Enc(DB) := (Enc(DBkey),
HE(DBvalue)) to central node. Central node performs set intersection across
Enc(DBkey) ‘s, producing the intersection of HE(DBvalue) ‘s. The count of
intersections and their indexes in DB are leaked to central node.

– Computing: Central node performs data aggregation/computation across each
intersection and get encrypted results the results HE(result).

– Revealing: Central node return results to each entitled client node. Client node
decrypts HE(result) for consumption.

4 Examples

The protocols described in this document gave rise to many prototypes by academia
and industry, and even deployments in products (IXUP, Google, etc.). We mention
below two examples that correspond to the first two protocols described.

4.1 IXUP

IXUP2 is a commercially available platform for parties to undertake privacy
preserving analytics. The platform never sees or stores encrypted data and provides
a modelling environment for data custodians to agree on exactly what insights
will be extracted in a data collaboration. While the platform knows the number
of matches, the platform’s governance prohibits this being disclosed to any party
without the permission of all data contributors. The platform sees no values used
in the homomorphic computation which is conducted using Microsoft’s SEAL HE
library.

2https://ixup.com/Platform/

https://ixup.com/Platform/

102 F. Bergamaschi et al.

More precisely, IXUP uses the first protocol described in the previous section,
which includes a central compute node and N ≥ 2 parties.

• During the preparation phase, the data custodians assemble and use the platform
to decide on the intersection parameters and function to be computed. Once all
parties agree, a shared key for a deterministic encryption scheme is generated
and shared by all the data custodians but remains unknown to the compute node.

• During the intersection phase, all data custodians encrypt their data: they encrypt
the keys on which the intersection is made using the shared key, and encrypt the
values associated with this key with the homomorphic encryption scheme key.
They then upload the encrypted data to the central compute node. The central
compute node then performs the intersection over the deterministic encryption of
the keys. In that setting, the central node learns the size of the intersection, but
not the values of the keys or associated data.

• During the compute phase, the central compute node uses the homomorphic
encryption scheme to compute homomorphically over the data.

• During the reveal phase, the central compute node will send the result of the
computation to the party (parties) that are supposed to receive the result and need
to know the decryption key of the homomorphic encryption scheme.

4.2 Private Join and Compute

In a blog post [3] published in June 2019, Google described a solution called Private
Join and Compute in which N = 2 parties can encrypt their identifiers and associated
data, join them, and perform computations on the overlapping set of data. Contrary
to the IXUP solution, there is no need for a central server in the Private Join
and Compute solution. Google’s solution uses a deterministic double encryption
scheme. In that scheme, a value encrypted with key k1 and then with key k2 is equal
to a value encrypted with key k2 and then with key k1.

More precisely, Private Join and Compute can expand to the first protocol
described in the previous section, which includes a central compute node and N ≥ 2
parties. In Private Join and Compute, only the second party has data associated with
each key.

• During the preparation phase, the data custodians agree on the computation to be
performed.

• During the intersection phase, the first party samples a secret key k1 and encrypts
its own data identifiers with that key. It then sends its encrypted data to the second
party. The second party samples a secret key k2, a homomorphic encryption key
K, encrypts its own data identifiers with k2 and the associated values with K, and
then doubly encrypt with k2 and shuffle the encrypted data received from the first
party. Then it sends all the encrypted values from previously to the first party. The
first party can doubly encrypt with k1 the encrypted identifiers received from the
other party and compare the doubly encrypted values to identify the intersection,

Private Set Intersection and Compute 103

without knowing the values of the identifiers in this intersection. Note that in that
setting, the first party will learn the number of elements in the intersection.

• During the computation phase, the first party uses the homomorphic encryption
scheme to compute homomorphically over the encrypted associated data.

• During the reveal phase, the value computed by the first party is sent to the second
party for decryption with the key K.

5 Performance, Usability, and Scalability

A paper by Google [4] reported on the deployment of a Private Set Intersection
and Sum application, under the Private Join and Compute framework. A detailed
comparison of Private Intersection-Sum protocol and variants is demonstrated in
Table 4 of the paper.

We report compute timings (in seconds) by IXUP for computations that are
similar – from a comparative standpoint not the same. The protocol timings listed
have a different set of parameters and behavior, including (but not limited to):

• IXUP is loading all the data into a database and moving it in and out to the
serverless functions, whereas the paper appears to be using in memory datasets
as they are quite small giving a significant performance boost.

• The protocols tested in the paper use a combined PSI and homomorphic sum
assuming distributed data sets. IXUP uses ASE and Hashing for PSI and then
sums the results using SEAL in a non-distributed manner.

• The Azure VM IXUP used for encryption was similar in spec to the machine
quoted in the paper.

• The IXUP approach involves an encryption step on the client side as it never
allows unencrypted data on the platform. Timings for this step are also included.

Taking the IXUP testing results for total compute, excluding the encryption
step and file transfer time, the approach taken by IXUP using the first protocol is
returning significantly faster results as the size of the calculation increases.

The IXUP testing results were measured in the following settings:

• All files are encrypted locally on the client’s computer.
• After encryption, the files are uploaded into the IXUP environment for process-

ing.
• The private intersection and homomorphic actions are done as separate processes,

with seal homomorphic encryption only used in the homomorphic computation
phase.

• All times have been recorded in seconds.
• The 100,000 (Groups) has calculated 263 homomorphic sums. The file was

grouped by country, and a sum for each of 263 groups was calculated.

104 F. Bergamaschi et al.

Encryption P
Private
intersection

Seal homo-
morphic
sum T

otal compute
(Excl encrypt
and file import)

Total encrypt and
compute (excl
file import)

1000 11.99 3.143 3.563 6.706 18.696
2000 12.58 3.35 3.064 6.414 18.994
3000 15.5 3.853 3.317 7.17 22.67
4000 11.94 4.03 3.327 7.357 19.297
5000 18.18 3.846 4.283 8.129 26.309
10,000 13.27 5.087 3.48 8.567 21.837
20,000 14.28 6.143 4.347 10.49 24.77
30,000 13.8 6.32 5.227 11.547 25.347
40,000 12.95 6.123 5.117 11.24 24.19
50,000 8.77 1.786 6.29 8.076 16.846
100,000 17.71 6.374 14.286 20.66 38.37
100,000
(Groups)

15.76 11.047 43.323 54.37 70.13

100000
(Fuzzy)

50.8 140.474 16.78 157.254 208.054

References

1. Global 500 companies to spend $7.8B on GDPR compliance. https://iapp.org/news/a/survey-
fortune-500-companies-to-spend-7-8b-on-gdpr-compliance/.

2. Roland-Holst, David, Samuel Evans, Drew Behnke, Samuel Neal, Liam Frölund, and
Yao Xiao. Standardized Regulatory Impact Assessment: California Consumer Privacy
Act of 2018 Regulations. http://www.dof.ca.gov/Forecasting/Economics/Major_Regulations/
Major_Regulations_Table/documents/CCPA_Regulations-SRIA-DOF.pdf.

3. Walker, Amanda, Sarvar Patel, and Moti Yung. Helping organizations do more without
collecting more data. https://security.googleblog.com/2019/06/helping-organizations-do-more-
without-collecting-more-data.html.

4. Ion, Mihaela, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
Mariana Raykova, David Shanahan, and Moti Yung. “On Deploying Secure Computing:
Private Intersection-Sum-with-Cardinality.” In 2020 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 370–389. IEEE, 2020.

https://iapp.org/news/a/survey-fortune-500-companies-to-spend-7-8b-on-gdpr-compliance/
http://www.dof.ca.gov/Forecasting/Economics/Major_Regulations/Major_Regulations_Table/documents/CCPA_Regulations-SRIA-DOF.pdf
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html

Part IV
Applications of Homomorphic Encryption

Private Outsourced Translation for
Medical Data

Travis Morrison, Sarah Scheffler, Bijeeta Pal, and Alexander Viand

1 Introduction

Overcoming language barriers remains a key challenge for aid organisations
working globally. In the case of medical aid, effective communication is required not
just for efficient logistics and administration, but is of vital importance to the main
mission. Doctors volunteering abroad need to understand patients’ records in order
to make correct diagnoses and select appropriate treatments. After many in-clinic
treatments, patients must follow specific drug or care regimens. These instructions
must be communicated effectively to ensure a positive outcome.

Overcoming these language barriers can place considerable strain on the
resources of these organisations. While bilingual doctors can facilitate the
translation of medical records, prescriptions, and instructions with high accuracy,
not all doctors volunteering abroad are proficient in their patients’ languages.
Meanwhile, professional translators are a costly resource and volunteer clinics
are often under-staffed and under-funded to begin with. Therefore, efficient and

T. Morrison
Mathematics, Virginia Tech University, Blacksburg, VA, USA
e-mail: tmo@vt.edu

S. Scheffler
Department of Computer Science, Boston University, Boston, MA, USA
e-mail: sscheff@bu.edu

B. Pal
Department of Computer Science, Cornell University, Ithaca, NY, USA
e-mail: bp397@cornell.edu

A. Viand (�)
Department of Computer Science, ETH Zurich, Zurich, Switzerland
e-mail: alexander.viand@inf.ethz.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_7

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_7&domain=pdf
mailto:tmo@vt.edu
mailto:sscheff@bu.edu
mailto:bp397@cornell.edu
mailto:alexander.viand@inf.ethz.ch
https://doi.org/10.1007/978-3-030-77287-1_7

108 T. Morrison et al.

effective automated solutions for medical translation are needed to lighten the
translation workload.

Automated translation has become increasingly accurate due to the development
of neural-network-based machine learning approaches. Cloud-based services like
Google Translate offer fast and accurate translations of documents and speech.
However, uploading medical data to the cloud can violate patient privacy. Mean-
while, offline translation systems are often less accurate than state-of-the-art cloud
based solutions. In the case of medical translation services, there could also be
concerns about releasing models trained on private medical data.

Homomorphic encryption (HE) could allow users to outsource translation to a
server without revealing the underlying information. A service provider would train
and maintains a machine-learning model, likely derived from private medical data,
and make the translation service based on it available to the clients. The client then
sends an encrypted query to the server, which homomorphically evaluates the model
on the query and returns the encrypted result.

A Machine-Learning-as-a-Service (MLaaS) provider might donate the required
server resources to charities, or public institutions like hospitals or universities could
run such a platform, which would be many orders of magnitude cheaper than human
translators. We imagine that in this setting, client devices belong to the doctors,
pharmacist, or clinics rather than individual patients. Since patients already trust
their doctors with their private data, this offers significant deployment benefits with
little practical impact on the privacy guarantees.

While much prior work considers homomorphically encrypted machine learning
(e.g., [8, 11]), natural language processing tasks like translation generally make use
of Recurrent Neural Networks (RNNs) which offer unique challenges. Due to their
recurrent nature, they inherently have a high depth of computation. Convolutional
Neural Networks (CNNs), in contrast, are generally ‘wide’ rather than deep. The
high-cost of evaluating deep circuits in levelled FHE is usually compensated by fully
utilizing batching to amortize costs across many parallel computations. However,
the ‘narrow-but-deep’ layout of an RNN computation makes it challenging to fully
exploit this common technique. In addition, RNNs rely heavily on complex non-
linear activation functions. While all neural network architectures tend to feature
non-linear-activation functions, it has been shown [8] that low-degree polynomial
functions can achieve the desired effects in lower-depth CNNs. RNNs, however,
require activation functions that ‘clamp’ values to a fixed interval in order to avoid
numerical issues. Such functions are inherently nearly impossible to emulate with
low-degree polynomials.

Therefore, implementing RNN-based machine translation using homomorphic
encryption is a highly non-trivial task. In order to set a feasible goal, we consider
prescriptions, specifically the directions on when and how to take the drug, as a first
step. These texts are suitable for an initial design since they are generally a single
short phrase (e.g., “one capsule every eight hours”), frequently contain vocabulary
that is otherwise rarely used (e.g., “Apply one inhalation. . . ”) yet feature a small
overall vocabulary. In addition, relaying the information in these texts is both vitally

Private Outsourced Translation for Medical Data 109

important and surprisingly challenging. A large number of studies have shown how
complex language or unclear instructions lead to patient misunderstandings [15].

The need for clear effective translations of prescription instructions is also
evidenced by the development of standardised translation tables [1] that provide
a mapping from common phrases (e.g., “Take one pill at bedtime”) into several lan-
guages. While these represent an important first step, they cover only a very limited
number of prescription instructions, cannot accommodate additional explanations
and only work uni-directionally.

We therefore propose a solution for private outsourced translation for medical
texts, specifically prescription instructions, using homomorphic encryption. We
focus on the concise texts found in prescription instructions, allowing us to show-
case a feasible proof-of-concept implementation using existing tools. We evaluate
our prototype and explore how the remaining challenges might be overcome. Finally
we propose avenues for future work in this area.

2 Machine Translation

Modern approaches to machine translation are frequently based on neural networks,
specifically Recurrent Neural Networks (RNNs). In contrast to feed-forward net-
works, RNNs can process sequences of inputs, incorporating information from
previous parts of the input in the decision process. This makes them especially suited
to natural language processing tasks.

For text-based tasks like translation, words are represented by their index in a
fixed-size dictionary, i.e. a list of the k most relevant words for the task, with typical
sizes for k starting around 5000 words. Chunks of the one-hot encoded phrase
are then converted into embeddings in, e.g., Rw using a simple, non-task-specific,
model. These chunks, rather than the individual words, make up the input sequence
for the RNN.

Generating a translation with an RNN consists of two stages. First the input
sequence of chunks is run through an encoding phase, which generates a fixed-
length hidden representation of the sequence. This allows easy training of the model
with sentences of varying lengths. Second, this representation is used as the input
for the decoding phase, which generates the translation output.

The encoding and decoding phase each consist of a single unit, that could
be either a simple “fully connected” layer or a more complex architecture such
as GRUs [7] or LSTMs [10]. Each unit features at least one source of non-
linearity. This is most commonly the tanh activation function which has bounded
outputs, preventing numerical issues that arise due to the recurrent nature of
RNNs. In each phase, the current input from the sequence and the output from
the previous step are fed into the unit, as shown in Fig. 1. This allows the model to
incorporate information from previous parts of the sequence, but also leads to a very
deep computation graph, which makes a homomorphic encryption implementation
challenging.

110 T. Morrison et al.

RNN

0 … 0 1 0 … 0

“Take”

RNN

0 … 0 1 0 … 0

“twice”

RNN

0 … 0 1 0 0

“daily”

(a)

RNN

0.8 6.1 1.2 0.3 1.3 0.2

<start>

argmax

0 1 0 0 0 0

“zweimal”

RNN

0.5 0.9 1.2 3.5 2.1 7.2

argmax

0 0 0 0 0 1

“täglich”

RNN

4.2 4.1 1.2 0.3 1.3 0.2

argmax

1 0 0 0 0 0

“einnehmen”

(b)

Fig. 1 Encoding and decoding stages of the model. (a) Encoding. (b) Decoding

120

100

M
od

el
 L

os
s 80

60

40

20

0
0 50 100 200 300 400 450250 350150

Number of parameters

Model Loss vs Number of Parameters

Fig. 2 ML model parameters to determine acceptable value of w

While plaintext-based solutions often err on the side of larger hidden representa-
tions, we experimented with a simple RNN model in the clear to determine what an
acceptable value of w would be; the results are shown in Fig. 2.

3 Design

We assume that the client, i.e. the doctor or clinic, posses a symmetric secret key
for the CKKS scheme [4]. The server, meanwhile, has access to the corresponding
public relinearization and rotation keys required to evaluate the computation. For
convenience of deployment, these might be set-up before a doctor departs his home
country or at a major city in the destination country, where high-speed internet is
available.

Private Outsourced Translation for Medical Data 111

Given a phrase to translate, the client software first tokenizes the phrase,
representing each word as a one-hot encoding vector referring to a fixed-length
dictionary. Should a word not be present in the dictionary, it is usually assigned
a special “unknown” token when evaluating translation models. However, in a
practical deployment setup it might be more suitable to notify the user and give
them a chance to provide an alternative word. In our design, we choose a dictionary
size of 5000 words, which is on the smaller side for general language tasks but still
common. Since the language of prescription instructions is fairly standardized, we
would expect unknown words to occur with very small frequency.

Chunks of the phrase are then embedded into the hidden space, in our case R256

as this provides a good balance between accuracy and model size (See Fig. 2). This
embedding is performed on-device, using a simple pre-trained lookup table. The list
of embedded chunks, x0, x1, . . . , xn ∈ R256 is the input to the FHE computation.
The client encrypts the chunks using the symmetric secret key, batching them into a
single ciphertext which is then sent to the server.

The server then evaluates the RNN on the input. For simplicity, we consider a
fully recurrent neural network, i.e. for each element xi in the input sequence, we
have

hi = g(Wxxi + Whhi−1 + b)

where Wx,Wh ∈ R256×256 are weight matrices, b is a bias vector, and g : R256 →
R

256 is a non-linear activation function. In the decoding phase, the weight matrices
are of size R512×256 and the resulting vector is split into ht and yt . To derive the
actual output from yt ∈ R256, we find the dictionary entry that has the embedding
vector that is closest to yt (argmax). This model architecture can be seen in Fig. 1.

In an ideal setting, the server would evaluate the whole model under FHE and
return the encrypted result to the client, once again batched into a single ciphertext
for communication efficiency. However, there are several challenges that make a
straightforward evaluation of the network infeasible.

3.1 Challenges

One challenge of a homomorphic encryption implementation of an RNN is the
sequential nature of the architecture. A long input sentence will result in a high
multiplicative depth of the computation, requiring larger parameters and therefore
slower computations. Another challenge are the required non-polynomial functions.
These include the non-linear activation functions, which are also present in tra-
ditional feed-forward networks. However, in RNNs they are considerably more
important since the deep nature of the computation can quickly lead to numerical
issues if unsuitable activation functions are chosen. More importantly, however,
the decoder requires the repeated evaluation of the argmax function. While many
neural networks use functions to like max, softmax or even argmax, these are

112 T. Morrison et al.

generally applied at the very end of the computation and can therefore be left to the
client to perform after decryption. In the RNN decoder architecture, however, the
output of the argmax needs to be fed into the next stage of the computation.

We explored a variety of possible solutions to these issues during the course of
this project:

1. Polynomial Approximation: In previous work on neural networks in FHE, non-
linear activation functions like RELu have been approximated with varying low-
degree polynomials [8]. In more general purpose computations, using Chebyshev
polynomials to approximate continuous functions on an interval is a standard
techniques in HE. However, due to the deep nature of RNNs, using standard
approximations can lead to significant accuracy issues.

More importantly, existing techniques do not admit a straightforward method
for approximating argmax which is a multivariate function. Using the method
of [5] for computing a maximum, it might be possible to compute the argmax
by performing a linear number of max operations over the output vector. While
this max operation is computationally costly, all the costs would be incurred at
the server, not the computationally limited client device.

2. Binary Representation: Changing to a binary representation would allow us to
compute the non-linear functions directly. Here, it would be best to use a scheme
and implementation optimized for this setting (e.g. TFHE [6]). The activation
functions can be implemented via lookup tables at the desired accuracy, while
the argmax could be implemented directly. However, in this setting matrix-
vector multiplications become prohibitively expensive. In fact, the only existing
FHE implementation of a RNN that we are aware of [14] actually uses the
binary setting, but uses an extremely quantized network with 4 bit weights
to avoid this multiplication overhead. At such high quantization levels, more
complex machine learning tasks like machine translation are likely to lose too
much accuracy to be of practical use. In essence, we would only be trading
the challenge of polynomial approximation with the challenge of extreme
quantization.

3. Scheme Switching: Some other frameworks have proposed switching between
different representations or schemes in order to improve performance. Glyph [13]
and Chimera [2] both switch to Fully Homomorphic Encryption on the Torus
(TFHE) [6] for non-linear computations such as softmax. While Chimera
seems to have been implemented for the i-DASH 2019 competition, the imple-
mentation is not yet publicly available.

On a conceptual level, it seems straight-forward to switch from CKKS to
TFHE to e.g. evaluate a non-linearity activation function after using CKKS
for matrix-vector multiplications. However, while Chimera also introduces
transitions from TFHE to CKKS, these transitions produce very specific CKKS
ciphertexts that contain not the original message but an exponentiated form. It is
not obvious to us at this point whether or not it would be possible to “complete the
circle” and convert a TFHE ciphertext back into a CKKS ciphertext that would be
suitable for continuing the evaluation of the network. Even if it is not possible to

Private Outsourced Translation for Medical Data 113

switch back-and-forth in a straight-forward way, it might be possible to rephrase
the entire computation from scratch in a way that can take advantage of the power
of both schemes.

4. Client Interaction: Finally, the most simple solution is to send each individual
unit’s output back to the client, who will decrypt it, compute the required
non-linear functions including activation functions and argmax, and send it
back to the server. While this option introduces several additional rounds of
communication and significantly increases the communication overhead, it is
simple to implement and makes each individual unit a very low-depth and
efficient circuit.

For the encoding phase, we use low-degree polynomial approximations. For the
input sizes common for prescription instructions, the circuit depth—while high—is
not entirely prohibitive. While this requires more complex training procedures, it
has been shown that e.g. replacing tanh with ReLU in RNNs leads to only slightly
lower performance [12]. Hopefully, with significant adjustments to the training,
polynomial activation functions could be shown to have acceptable performance,
too. For the decoding phase, where argmax is required, we consider client
interaction to be most feasible for an initial design. However, the authors want to
continue exploring the feasibility of scheme switching for a fully-outsourced RNN
implementation.

4 Implementation and Evaluation

We developed a proof-of-concept implementation1 using the Microsoft SEAL
library [16], showing the feasibility of evaluating a sequence of RNN units. The
core of the computation is made up of matrix-vector products between the plaintext
weight matrices of the model and the (encrypted) input or hidden-representation
vectors. We approximate the non-linear activation functions during the encoding
phase with g(x) = x2.

4.1 Encoding

Choosing the right batching layout is essential for an efficient implementation.
CKKS ciphertexts of lattice dimension n can hold up to n/2 independent values in
(virtua) slots. Arithmetic operations apply component-wise, i.e. in a SIMD fashion.
Special automorphisms can be used to rotate the elements between slots cyclically.

1Available at https://github.com/PrivateAI-Group1/SEAL.

https://github.com/PrivateAI-Group1/SEAL

114 T. Morrison et al.

In order to optimize the matrix-vector products, we use the “diagonal
method” [9], where we encode the matrices not row- or column-wise but instead
encode the diagonals. This allows us to compute the matrix-vector-product between
a matrix of dimension k × k and a vector of length k with only k − 1 rotations, k

component-wise multiplications and k − 1 component wise additions.
However, since rotations on the slots are cyclical, naively encoding the values

produces correct results only if k = n/2. In addition, we want to encode all inputs xi

(of length k = 256) into a single ciphertext (with n ≥ 16,348) in order to minimize
the communication overhead. Since the diagonal method only requires rotations in
a single direction, and by at most k − 1, we choose to simply encode each vector
twice. While this does require more slots, we already need to choose n very large
to accommodate the depth of the computation, therefore we can still easily fit many
duplicated input vectors into the same vector.

4.2 Optimizations

While the diagonal method already requires a relatively small number of rotations,
this can be improved further by using a baby-step–giant-step approach [3]. This
relies upon the fact that we can split each rotation into two separate rotations and
only perform the second rotation after aggregating vectors that require the same
rotation. For a rotation of l steps, we can decompose l into k ∗n1 +j for n = n1 ∗n2
and 0 ≤ k ≤ n1, 0 ≤ j ≤ n2. We first store copies of the vector rotated by each
possible j . For each k, we compute the component-wise multiplication between
each of the pre-rotated vectors and the corresponding matrix diagonal. Then, we add
all n2 of these products together and rotate the resulting vector by k ∗n1 steps. Note
that this requires pre-rotating each matrix diagonal k ∗ n2 + j steps in the opposite
direction prior to multiplication, to account for the second rotation. However, since
the matrices are available as plaintext, this cost is negligible.

The client must provide the server with the necessary Galois keys to perform
the ciphertext rotations. Even though this is a one-time setup, we nevertheless want
to minimize the size of these keys. During the computation, we need to rotate the
vector by up to k − 1 steps, however choosing all k − 1 keys would be very space-
inefficient. By default, SEAL already picks rotation keys corresponding to steps
by 2i and −2i for 0 ≤ i ≤ log n/2, and rotations are assembled from the Non-
Adjacent-Form decomposition of the number of steps required, which minimizes
the number of rotations required. However, since we never need to rotate all the
way to n/2 − 1, we choose only the powers required to reach k. Considering the
decomposition of the rotations in the baby-step–giant-step approach might allow us
to select even fewer rotation keys, but even with the current approach we can already
reduce the key size from 247 MB to 152 MB for n = 16,348.

Private Outsourced Translation for Medical Data 115

4.3 Results

We evaluated the performance of our implementation on a standard desktop
computer with an Intel i7-8700 CPU (6 cores, up to 4.60 GHz) and 32 GB of RAM.
Using CKKS as implemented in Microsoft Seal v 3.4.5, we set n = 32,768, a
coefficient modulus with 880 bits and a scale of 240. We evaluated the encoding
phase of the network, using x2 as the activation function. While this naturally led to
a significant blow-up in values (even when rescaling appropriately), we considered
this a good test case to demonstrate that even reasonably deep circuits can be
practical. The ciphertext transmitted to the server was 3.8 MB in size, and for
five RNN units, the computation took a total of 90 s. In the context of a clinic
appointment, latencies in the order of minutes seem more than acceptable, making
this initial result a promising start.

5 Discussion

We have introduced our design and prototype for privacy-preserving outsourced
translation of medical data. By focusing on short, formulaic prescription instructions
we have picked an application area where FHE could feasibly be deployed in
the near future. At the same time, existing makeshift solutions show the need
for translation in this domain and medical surveys confirm the importance of
understandable prescription instructions for positive treatment outcomes. Our initial
implementation shows the feasibility of such a system and features a variety of
optimizations to implement the underlying computations efficiently. The major
challenge going forward is the inability to efficiently evaluate more complex
activation functions and the argmax function in CKKS using standard FHE
techniques. We consider future work in this area, especially investigating how to
apply scheme switching techniques, to be of independent interest and will continue
to explore in this direction.

References

1. Agency for Healthcare Research and Quality. Explicit and standardized prescription medicine
instructions, December 2014.

2. Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. Chimera: Combining
ring-LWE-based fully homomorphic encryption schemes. Cryptology ePrint Archive, Report
2018/758, 2018. https://eprint.iacr.org/2018/758.

3. Hao Chen. Techniques in privacy-preserving machine learning. https://github.com/
WeiDaiWD/Private-AI-Bootcamp-Materials/blob/master/4_Hao_Techniques_in_PPML.pdf,
2019.

https://eprint.iacr.org/2018/758
https://github.com/WeiDaiWD/Private-AI-Bootcamp-Materials/blob/master/4_Hao_Techniques_in_PPML.pdf
https://github.com/WeiDaiWD/Private-AI-Bootcamp-Materials/blob/master/4_Hao_Techniques_in_PPML.pdf

116 T. Morrison et al.

4. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 409–437. Springer, 2017.

5. Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomorphic comparison
methods with optimal complexity. Cryptology ePrint Archive, Report 2019/1234, 2019. https://
eprint.iacr.org/2019/1234.

6. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 3–33. Springer,
2016.

7. Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2014, October 25–29, 2014,
Doha, Qatar, pages 1724–1734, 2014.

8. Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. CryptoNets: Applying neural networks to encrypted data with high throughput and
accuracy. In Maria Florina Balcan and Kilian Q Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 201–210, New York, New York, USA, 2016. PMLR.

9. Shai Halevi and Victor Shoup. Algorithms in HElib. In Advances in Cryptology – CRYPTO
2014, pages 554–571. Springer Berlin Heidelberg, 2014.

10. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

11. Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. GAZELLE: A low
latency framework for secure neural network inference. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1651–1669, 2018.

12. Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent
networks of rectified linear units. Apr 2015.

13. Qian Lou, Bo Feng, Geoffrey C Fox, and Lei Jiang. Glyph: Fast and accurately training deep
neural networks on encrypted data. arXiv preprint arXiv:1911.07101, 2019.

14. Qian Lou and Lei Jiang. SHE: A fast and accurate deep neural network for encrypted
data. In H. Wallach, H. Larochelle, A. Beygelzimer, F. Alche-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 10035–10043. Curran
Associates, Inc., 2019.

15. NR Samaranayake, Wasana Bandara, and Chinthana Manchanayake. A narrative review on
do’s and don’ts in prescription label writing – lessons for pharmacists. Integrated Pharmacy
Research and Practice, Volume 7:53–66, June 2018.

16. Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, October 2019. Microsoft
Research, Redmond, WA.

https://eprint.iacr.org/2019/1234
https://eprint.iacr.org/2019/1234
https://github.com/Microsoft/SEAL

HappyKidz: Privacy Preserving Phone
Usage Tracking

Benjamin M. Case, Marcella Hastings, Siam Hussain, and Monika Trimoska

1 Introduction

Smartphones are indispensable parts of our daily lives. Along with adults, children
are also using them for both education and entertainment. However, the adverse
effects of excessive phone usage have created concerns among parents and social
scientists. While these effects are observed in children and adults alike, children are
considered to be more susceptible [2, 6, 9, 17, 19, 20].

To tackle this issue, several apps are designed to allow parents to oversee the
phone usage of their children. A study on popular parenting apps in the Google
Play Store identified two key features of these apps—remote monitoring and remote
locking [12]. Another study on the acceptance of these apps among children has
reported that the ratings given by the children to these apps are significantly lower
than those given by the parents [8]. According to this study, children felt that the
apps were overly restrictive and invasive of their privacy, which negatively impacts
their relationship with parents.

B. M. Case
Facebook Inc. (work done while at Clemson University), Menlo Park, CA, USA
e-mail: bmcase@g.clemson.edu

M. Hastings (�)
University of Pennsylvania, Philadelphia, PA, USA
e-mail: mhast@seas.upenn.edu

S. Hussain
University of California San Diego, San Diego, CA, USA
e-mail: s2hussai@eng.ucsd.edu

M. Trimoska
University of Picardie Jules Verne, Amiens, France
e-mail: monika.trimoska@u-picardie.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_8

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_8&domain=pdf
mailto:bmcase@g.clemson.edu
mailto:mhast@seas.upenn.edu
mailto:s2hussai@eng.ucsd.edu
mailto:monika.trimoska@u-picardie.fr
https://doi.org/10.1007/978-3-030-77287-1_8

118 B. M. Case et al.

The existing apps have two limitations. First, it annoys the children, especially
teenagers, who want more control over their lives, thus leading to more complex
problems and worsening the situation in many cases. “Hover parenting”, has been
associated with increased levels of child anxiety and depression [8, 13, 16]. Second,
it is often difficult to determine when a phone usage pattern becomes unhealthy.
Most mental health apps approved by the Anxiety and Depression Association of
America [1] are targeted toward individual, self-guided management of existing
disorders or are designed to be used in tandem with a licensed therapist. Moreover,
the signs of depression in the children often go unnoticed by the parents. A poll by
the University of Michigan [3] suggests that two-thirds of parents face barriers in
recognizing depression in their own children.

In this work, we aim to help the parents effectively monitor the well-being of
their children in a non-invasive way. We propose an app, called HappyKidz, that
automatically collects usage data from a child’s phone and sends it to a server.
The server holds a Machine Learning (ML) model that is trained collaboratively
by a large number of parents as well as child psychologists and social scientists to
calculate a well-being score of the child. The parents receive a periodic update of
the score on their phones. In this way, instead of constantly monitoring the child’s
usage, parents only need to intervene if there is a drop in the well-being score.

While this approach solves the above-mentioned limitations of the existing apps,
it brings a more crucial issue—protecting the privacy of the child’s data. Allowing
the server to view the raw data creates the possibility of corporate misuse, e.g., using
knowledge of depressive behaviors to tailor predatory advertisements or selling
health data to insurance companies or other partners. In the proposed app, to ensure
the privacy of the child the collected data is encrypted locally with Homomorphic
Encryption (HE) at the child’s phone before being sent to the server. The server
computes the well-being score by performing ML on the encrypted data and sends
the encrypted score to the parents’ phone that can decrypt it locally. This allows the
parents to benefit from a well-trained ML model that is enriched by the knowledge
of other parents and experts without compromising the privacy of their children.

We present a proof-of-concept implementation of the app in this paper. The
proposed ML model takes as input the app usage data with the granularity of
different app categories and hours of usage. It also takes the sleep pattern of the child
since this is considered a strong indicator of the mental health condition [19]. This
data is encrypted with HE using the Microsoft SEAL library [14]. While designing
the ML model, we take into account both the precise calculation of the well-being
score as well as its efficient execution through the SEAL library. In our evaluation,
one inference requires ∼100 ms and deviates by ∼0.0002 from the inference result
without encryption. In the current implementation, the training is performed on
unencrypted data. Efficient training of any generic ML model on encrypted data
is still an open problem. However, we outline a concrete methodology to train on
encrypted data.

HappyKidz: Privacy Preserving Phone Usage Tracking 119

Server

Parents Child

Secret key
Phone

usage data

Secret key

Score

ML model

Fig. 1 Privacy model

1.1 Privacy Model

The privacy model of HappyKidz is illustrated in Fig. 1. It involves three parties: the
parent, the child, and the server. The parent generates the secret key and evaluation
key for HE and sends the secret key to the child and the evaluation key to the server.
The phone usage data is collected at the child’s phone, encrypted with HE using
the parent’s secret key and sent to the server. This guarantees that the server cannot
access the child’s data. The server who holds the ML model uses the evaluation key
to compute the well-being score. The result generated by the server is an encryption
of the well-being score under the parent’s secret key. This result is sent to the parent
who uses the secret key to decrypt it and learn the well-being score of the child. We
assume that the server does not collude with parents to release additional data about
the child.

2 Proof of Concept Implementation

We implemented a proof-of-concept version of this app during the 2019 Microsoft
Private AI Bootcamp.1 This section describes the details of the implementation.

2.1 Data Selection and Features

Overall, the HappyKidz app aims to evaluate well-being by measuring quantitative
behavioral indicators associated with mental health issues. The proof of concept

1https://www.microsoft.com/en-us/research/event/private-ai-bootcamp/.

https://www.microsoft.com/en-us/research/event/private-ai-bootcamp/

120 B. M. Case et al.

uses two commonly cited indicators: total time spent on phone apps and sleep pat-
terns. Data from these behaviors are collected on the child’s phone and consolidated
into features that are used in the machine learning model.

Various studies have found a correlation between overall social media use and
depressive symptoms [10, 18]. We define three categories of phone apps (social
media, education, and games) and divide each day into three time-blocks (school
hours, evening hours, and sleep hours). We aggregate the total time a child spends
using apps in each category. This breakdown provides insight into appropriate phone
usage. For example, a child is welcome to use social media during their evening free
time, but excessive use while at school or during sleeping hours is less appropriate.

Sleep also plays a role in adolescent well-being. A variety of studies indicate
links between sleep deprivation and behavioral problems in youth. Clarke and
Harvey [4] suggest that improved sleep quality in adolescents with insomnia
correlates with improved moods. We record the time that the child falls asleep and
the total duration of sleep each night. This pair is stored locally for 3 days. Each
day, we send the past three nights of sleep data to the model. This accommodates
natural fluctuations in bedtimes (e.g. a child may stay up late one night to finish their
homework) while still identifying longer-term patterns (e.g. a child goes to bed late
every night).

These data provide 15 features each day: 9 from app usage and 6 from sleep data.
The data are encrypted and uploaded to the cloud. For discussion of other potential
data sources, see Sect. 3.1.

2.2 Learning Model

The app implements a model consisting of two fully connected (FC) layers. The
output of the model is a wellness score between 0 and 1, where a higher score
indicates positive behavioral indicators and thus good mental health.2 In the proof of
concept, we trained the model on a simulated feature vector (described in Sect. 2.1)
with hand-labeled wellness scores.

Formally, our model is described as the following function, which takes the input
feature vector x of length n:

f (x) = b2 + W2(s(b1 + W1x)). (1)

In this function, b1 ∈ R
n, b2 ∈ R are bias vectors, W1 ∈ R

n×n and W2 ∈ R
1×n

are weight matrices, and s : Rn → R
n is the activation function (which operates

element-wise on a vector). The bias vectors and weight matrices are generated
during training.

2In the parent’s app, we will color-code the wellness score for easy interpretation. High scores will
be green, low scores will be red.

HappyKidz: Privacy Preserving Phone Usage Tracking 121

Fig. 2 Schema of the inference SEAL implementation

We define the activation function s as the square function. It provides high
inference accuracy for low-depth ML models [7] and is efficient to calculate under
homomorphic encryption. Given our two-layer model, this is the most suitable
option.

2.3 Microsoft SEAL Implementation

We implemented the neural net described in Sect. 2.2 using the Microsoft SEAL [14]
homomorphic encryption library. The library supports several protocols and data
representations; we used the CKKS scheme [5] with a multiplicative depth of three.

As described in Eq. 1 and Fig. 2, the three main operations are a matrix-
vector multiplication (W1x), a square activation function (s), and an inner product
(W2s(·)). The matrix-vector multiplication uses the diagonal method introduced
by Halevi and Shoup [11]. The square activation function can be computed using
a square-in-place homomorphic multiplication. The inner product operation is
optimized to use only O(log N) rotations.

Our model is stored in plaintext as a weight matrix W1 and a weight vector
W2. When the server receives a batched encoding CKKS ciphertext x, it computes
the matrix-vector product W1 · x. To make this more efficient, two preprocessing
steps are done. One, on the server-side the diagonals of W1 are encoded as plaintext
vectors. Second, on the child’s device, the ciphertext x has the features repeated to
fill all the slots. The diagonal method for the matrix-vector multiplication requires
us to be able to rotate the slots of a ciphertext. In our implementation, we introduce
some temporary ciphertext so that we can get to all the necessary rotations by only
rotating one position each time. We can then request just this rotation in the Galois
key.

// perform the multiplication
Ciphertext temp, temp2;
Ciphertext enc_result;
temp2 = ct; // ct = x

for (int i =0; i < dimension ; i++){
temp = temp2;

122 B. M. Case et al.

// multiply
evaluator.multiply_plain_inplace(temp, ptxt_diag[i]);
if (i == 0){

enc_result = temp;
} else{

evaluator.add_inplace(enc_result, temp);
}
evaluator.rotate_vector(temp2, 1, galk, temp2);

}
evaluator.rescale_to_next_inplace(enc_result);
enc_result.scale() = pow(2.0, my_scale);

Next, we add the bias vector b1. The activation function s(x) = x2 can be applied
by squaring the ciphertext in place followed by relinearization and rescaling.

//add bias vector b1
encoder.encode(b1, enc_result.parms_id(),scale, b1_plaintext);
evaluator.add_plain_inplace(enc_result,b1_plaintext);

//square in place
evaluator.square(enc_result, enc_result);
evaluator.relinearize_inplace(enc_result, relin_keys);
evaluator.rescale_to_next_inplace(enc_result);
enc_result.scale() = pow(2.0, my_scale);

Next, the inner product with the weight vector W2 can be done by first performing
a component wise multiplication and then summing the slots. To do this we need to
rotate the ciphertext by powers of 2 rotations; we request these specific Galois keys
be created. We follow this up with adding in the final bias correction value b2.

//multiply in place
evaluator.multiply_plain_inplace(enc_result, W2);

// Sum the slots
Ciphertext temp_ct;
for (size_t i = 1; i <= encoder.slot_count() / 2; i <<= 1) {

evaluator.rotate_vector(enc_result, i, galk, temp_ct);
evaluator.add_inplace(enc_result, temp_ct);

}

// add bias value b2
encoder.encode(b2,enc_result.parms_id(), enc_result.scale(),

b2_plaintext);
evaluator.add_plain_inplace(enc_result,b2_plaintext);

In the interest of performance, we tried to minimize the size of the CKKS
parameters. We chose a polynomial of degree 8192 and a ciphertext modulus with
prime factors of sizes {60, 30, 30, 60}. The communication sizes of the ciphertexts
are in Table 1. There are two ways to encrypt the data on the child’s device, either
using a secret key that is shared with the parent’s device or with a public key that

HappyKidz: Privacy Preserving Phone Usage Tracking 123

Table 1 Ciphertext sizes

Client to server (encrypting with secret key) (feature vector) 144 KB

Client to server (encrypting with public key) (feature vector) 288 KB

Server to client (wellness score) 130 KB

corresponds to the secret key on the parent’s device. Encrypting with the secret key
saves about a factor of 2 in ciphertext size.

Since the server needs to compute rotations, it will need a set of Galois keys.
We generated the smallest set of Galois keys necessary, which includes rotations
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}. The total size of these keys is
7.5 MB. Since the server will also be performing relinearization as part of the
homomorphic computation, it will need relinearization keys, which have size 627
KB. The evaluation key is the name given to all the key material (relinearization keys
and Galois keys) that is needed for the server to run the homomorphic computation.
In total the evaluation key has size 8.1 MB but is only generated by the parent’s
device and sent to the server in the initial setup.

The total execution time of the homomorphic circuit is around 100 ms. With these
parameters, the floating-point approximation of CKKS gives us about 4 decimal
digits of precision. The full code for our implementation can be found at https://
github.com/bmcase/bootcamp.

3 Soundness and Future Work

In this section, we address the feasibility of the application design, the threat model
and failure cases of the app, and its practical usability.

Why Use HE?
When designing a HE application, one must compare against performing this com-
putation locally without homomorphic encryption. We think there are a couple of
reasons why using homomorphic encryption is the better option for our application.
First, all the data storage can happen on the server and we can periodically send
the parent long term statistical summaries of the data and also train other models to
look for unhealthy trends in the long term data. Second, it may be the case that the
app wants to keep the model from being easily taken by a competitor and charge
a monthly subscription for the app. If this is the desire, then it is better to have the
model computation done on the server. Keeping the model on the server also gives
the app designers more flexibility in updating the model periodically.

How Can We Prevent Malicious Parties from Corrupting the ML?
One issue any ML application faces is collecting and maintaining accurate training
data. There may be adversarial parties who wish to influence the outcome of the
model: for example, a game developer may try to reclassify its products as education

https://github.com/bmcase/bootcamp
https://github.com/bmcase/bootcamp

124 B. M. Case et al.

apps or train the model to associate higher wellness to children with increased game
times.

In other use cases for machine learning with homomorphic encryption such as
phishing or spam detection, the adversary has control over the target that the model
is trying to identify (e.g. the phishing and spam emails), and in such a setting, it is
necessary to continually retrain the model to stay up-to-date against modern threats.
In our use case, healthy usage of social media, games, and educational apps does
not change significantly on a short-term basis. We can train a single model via a
large-scale study and use it for an extended time period without compromising
its accuracy. Such a study should be done in collaboration with psychologists
in settings where children already have devices (some schools have programs to
provide students with devices).

The app also depends on secondary data sources, such as app classifications.
This data is not used in the machine learning model but is necessary to featurize
data or interpret the results. Since this is stored in the clear, we can issue updates
to the child and parent apps (e.g. with new classification lists) to combat malicious
behavior from app developers.

How Can We Detect If the App Is Not Functioning Correctly?
Another concern is how to incentivize correct usage by children. This app fails to
be useful if, for example, the child has a secondary phone that they use for certain
types of behavior. One mitigating factor is to provide high-level data for the parent,
such as total time spent in each of three app categories (these statistics could also be
computed using homomorphic encryption). If the parent is roughly aware of their
child’s typical phone usage, they should be able to identify cases where the app data
doesn’t correlate with the child’s behavior patterns.

How Can We Customize the App to Irregular Schedules?
This app is designed to be useful for the average child, but many families have
schedules that fall outside the norm. For example, home-schooled children may
not have typical 9–3 school hours and varsity athletes may wake up early for
team practice. One potential mitigating approach is to allow parents to define
custom schedules. They can locally set expected hours for sleep, school, and
evening/playtime. These are sent to the child’s device and used to define the app
usage features.

What Is a Good Well-Being Score?
Since the perception of a good well-being score may vary among parents, we do not
define a concrete threshold between good and bad. Instead, we divide the scores into
four ranges and color code the ranges as red, orange, yellow, and green where red
indicates the worst and green indicate the best. Along with the absolute value, the
changes in the well-being score is also an important indicator of the mental health
of the child.

HappyKidz: Privacy Preserving Phone Usage Tracking 125

3.1 Future Work

The proof-of-concept app described in this paper is fairly limited. Future work
includes producing higher-quality training data and expanding the machine learning
models to provide more useful data.

Training Data and Features
We need to collect and accurately label real-world, representative data. In a
commercial setting, we would collect data via a larger scientific study. Some
telecom companies, including Sprint and TracFone, have partnered with public
schools to provide free cell phones to students. We could work with such programs
to install a preliminary app on the free phones that would collect training data. This
study would have to partner with child and education psychologists or other trained
professionals who could evaluate the students individually to assess their mental
health and assign labels to the data. This type of study would also provide intuition
to whether our two-layer model is appropriate for this setting.

Another option for collecting labeled training data is to work in partnership
with parents and continually retrain the model. In this setting, we could have
parents answer questions on the app regarding their child’s well-being. The answers
would provide new labels for their child’s collected data. This approach has several
issues.

• Training a model on encrypted data is prohibitively inefficient, so it would have
to be done in the clear on the client-side. This might require the parent to use a
more powerful device (e.g. a desktop computer) to answer questions and update
the model.

• The server may be able to infer information about the client’s data by comparing
the model before and after an update. A typical mitigation is to send the model
along a chain of parents (each of whom provides an update) before returning it to
the server. However, this requires extensive communication and synchronization
between individual users of the app.

• There are a variety of approaches for training a model in parallel, but these are not
compatible with the privacy requirements of our application. The server would
only be able to request updates from one parent (or chain of parents) at a time.

• This provides an avenue for parents to provide arbitrary or incorrect answers. We
would have to compute server-side cross-validation after each retraining session
to protect the model.

In the future, we may also wish to add more features to the app. For example, the
SleepCycle [15] app computes a “quality” score that correlates with the measured
amount of deep or REM sleep. We also wish to incorporate more granular app
categories or time blocks, or data beyond sleep and phone usage. The maximum
ciphertext size in the CKKS implementation is much larger than our current input
vector, so it is technically simple to add more features.

126 B. M. Case et al.

Expanded Models
In the future, we would like to make longer-term evaluations about overall mental
health. There are two potential approaches: We can store daily scores on the parent’s
phone and report monthly averages and trends. Alternately, we can store encrypted
features on the cloud and train new models on the aggregates to produce long-range
wellness scores. These would likely be more informative and less reactive than day-
to-day snapshots.

The current app architecture provides flexibility to evaluate more complex
models on the cloud. The simple two-layer network may not be appropriate for
use on real data, but we can train and evaluate larger and more useful models that
incorporate more data and advanced ML techniques.

4 Conclusion

We have presented the HappyKidz app that allows parents to monitor the well-being
of their children through phone usage and sleep patterns. Contrary to the existing
parental apps, which researchers have found to be unpopular among children, this
app does not control or report phone usage of the children directly to the parents.
Instead, it calculates a well-being score of the child using an ML model that is
trained collaboratively by a large group of parents and experts and is deployed on a
server. The app protects the privacy of the child’s data by encrypting it with HE. Our
proof-of-concept implementation shows that computation of the well-being score on
encrypted data is practical in terms of computation time and memory usage.

References

1. ADAA reviewed mental health apps. https://adaa.org/finding-help/mobile-apps. Accessed: 3
December 2019.

2. Adriana Bianchi and James G Phillips. Psychological predictors of problem mobile phone use.
CyberPsychology & Behavior, 8(1):39–51, 2005.

3. Sarah J. Clark, Gary L. Freed, Sekhar Deepa, Dianne C. Singer, Acham Gebremariam, and
Sara L. Schultz. Recognizing youth depression at home and school. Mott Poll Report, 35(2),
November 2019.

4. Greg Clarke and Allison G Harvey. The complex role of sleep in adolescent depression. Child
and Adolescent Psychiatric Clinics, 21(2):385–400, 2012.

5. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 409–437. Springer, 2017.

6. Yolanda Linda Reid Chassiakos, Jenny Radesky, Dimitri Christakis, Megan A Moreno, Corinn
Cross, et al. Children and adolescents and digital media. Pediatrics, 138(5):e20162593, 2016.

7. Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. Technical Report MSR-TR-2016-3, February 2016.

https://adaa.org/finding-help/mobile-apps

HappyKidz: Privacy Preserving Phone Usage Tracking 127

8. Arup Kumar Ghosh, Karla Badillo-Urquiola, Shion Guha, Joseph J LaViola Jr, and Pamela J
Wisniewski. Safety vs. surveillance: what children have to say about mobile apps for parental
control. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems,
pages 1–14, 2018.

9. Elizabeth Hoge, David Bickham, and Joanne Cantor. Digital media, anxiety, and depression in
children. Pediatrics, 140(Supplement 2):S76–S80, 2017.

10. Taylor Heffer, Marie Good, Owen Daly, Elliott MacDonell, and Teena Willoughby. The lon-
gitudinal association between social-media use and depressive symptoms among adolescents
and young adults: An empirical reply to Twenge et al.(2018). Clinical Psychological Science,
7(3):462–470, 2019.

11. Shai Halevi and Victor Shoup. Algorithms in HElib. In Annual Cryptology Conference, pages
554–571. Springer, 2014.

12. Minsam Ko, Seungwoo Choi, Subin Yang, Joonwon Lee, and Uichin Lee. Familync:
facilitating participatory parental mediation of adolescents’ smartphone use. In Proceedings of
the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages
867–878, 2015.

13. Eun Jee Lee and Yolanda Ogbolu. Does parental control work with smartphone addiction?: A
cross-sectional study of children in South Korea. Journal of addictions nursing, 29(2):128–
138, 2018.

14. Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, October 2019. Microsoft
Research, Redmond, WA.

15. Sleep Cycle AB. Sleep cycle: Sleep analysis & smart alarm clock. https://www.sleepcycle.
com/, 2020.

16. Holly H Schiffrin, Miriam Liss, Haley Miles-McLean, Katherine A Geary, Mindy J Erchull,
and Taryn Tashner. Helping or hovering? the effects of helicopter parenting on college students’
well-being. Journal of Child and Family Studies, 23(3):548–557, 2014.

17. Mercedes Sánchez-Martínez and Angel Otero. Factors associated with cell phone use in
adolescents in the community of Madrid (Spain). CyberPsychology & Behavior, 12(2):131–
137, 2009.

18. Jean M Twenge, Thomas E Joiner, Megan L Rogers, and Gabrielle N Martin. Increases in
depressive symptoms, suicide-related outcomes, and suicide rates among us adolescents after
2010 and links to increased new media screen time. Clinical Psychological Science, 6(1):3–17,
2018.

19. Fangbiao Tao, Liwei Zou, Xiaoyan Wu, Shuman Tao, Honglv Xu, Yang Xie, and Yajuan Yang.
Mediating effect of sleep quality on the relationship between problematic mobile phone use
and depressive symptoms in college students. Frontiers in Psychiatry, 10:822, 2019.

20. Kimberly S Young and Robert C Rogers. The relationship between depression and internet
addiction. Cyberpsychology & behavior, 1(1):25–28, 1998.

https://github.com/Microsoft/SEAL
https://www.sleepcycle.com/
https://www.sleepcycle.com/

i-SEAL2: Identifying Spam EmAiL
with SEAL

I. Demertzis, D. Froelicher, N. Luo, and M. Norberg Hovd

1 Introduction

End-to-end encrypted emails are desirable with regards to privacy, as it prevents
your email provider from storing and reading your emails in plaintext. However,
with the perk of privacy from the end-to-end encryption, you lose the spam filter,
as the filtering process requires an analysis on the email’s content, or its metadata.
The classification of whether an email is spam typically relies on machine learning
algorithms that have been trained on large amounts of emails. A naive approach to
combine end-to-end encryption of emails and a spam filter would be for every user
to simply build their own model using only their own emails to train the machine
learning model. However, one user typically only has a limited number of emails
and this local approach is going to result in a model which is less accurate than the
one provided by an email provider, simply due to the size of the dataset used to train
the machine learning model. In order to obtain an accurate model, large amounts of
diverse data are required.

I. Demertzis
CSE, University of California, Santa Cruz, CA, USA
e-mail: idemertz@ucsc.edu

D. Froelicher (�)
Laboratory for Data Security, EPFL, Lausanne, Switzerland
e-mail: david.froelicher@epfl.ch

N. Luo
Computer Science, Yale University, New Haven, CT, USA
e-mail: ning.luo@yale.edu

M. N. Hovd
Institute of Informatics, University of Bergen, Bergen, Norway
e-mail: martha.hovd@uib.no

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_9

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_9&domain=pdf
mailto:idemertz@ucsc.edu
mailto:david.froelicher@epfl.ch
mailto:ning.luo@yale.edu
mailto:martha.hovd@uib.no
https://doi.org/10.1007/978-3-030-77287-1_9

130 I. Demertzis et al.

Another approach would consist in sharing only spam emails, which usually do
not contain sensitive or private information, with the email provider. This approach
solves the previous problem of having a too small training set. However, it would
result in a one-class classification scenario, as the machine learning model would be
trained on distinguishing spam and ham emails by being trained on a set containing
mostly spam emails. This will result in a less accurate model than one trained on a
dataset with an even (or less biased) distribution of both types of emails.

In this short paper, we suggest to rely on homomorphic encryption to circumvent
this problem, and propose a solution that enables privacy-preserving classification of
emails as spam or ham. We also describe a solution for an oblivious training of spam
detection machine learning model that enables the training of accurate detection
model without hindering the privacy of the users.

2 Private Classification

In Fig. 1, email users want to obtain a classification of their emails as spam or ham.
Email providers, e.g., Google or Microsoft, already have (cleartext) classification
models, which are trained on millions of users’ emails and can be used to perform
this classification. However, in today’s solution, this requires them to access the
private content of the emails.

In order to avoid this, we propose a solution in which the user sends encrypted
information, generated from the received emails, i.e., a vector of encrypted features,
to the service provider and receives in return a (encrypted) classification of the

Fig. 1 Private classification

i-SEAL2: Identifying Spam EmAiL with SEAL 131

email. This is executed without revealing the content of the emails to the service
provider.

When receiving an encrypted email, the user decrypts it and (automatically)
generates a vector of features capturing its content. This features’ vector is then
encrypted under the client’s public key and sent to the email provider, who classifies
the email as spam or ham by using its cleartext model on the received encrypted
feature vector. The provider then sends the encrypted classification back to the
client, who decrypts it using its secret key and obtains an automatic and privacy-
preserving classification of his emails.

3 Private Training

While private classification enables users to benefit from the automatic spam
detection without hindering their privacy, it also results in service providers not
obtaining more data in order to train and update their detection model. To counter
this issue, we propose a solution that enables the service providers to train their
model on encrypted data.

As presented in Fig. 2, email users send a feature vector of their email encrypted
under the collective public key of the service providers. This key is a combination
of the providers’ public keys and ensures that the decryption of a ciphertext under
the collective public key is only possible when all the service providers collaborate
in the decryption, by using their own secret key. The encrypted material will only
be decrypted once all the service providers have “partially” decrypted by using their
respective secret keys.

The service provider trains and periodically updates an encrypted model for spam
detection by using the encrypted vectors collected from the email users.

The private classification can then be performed as presented before, using the
updated model. We observe here that this model can be periodically decrypted such

Fig. 2 Private training

132 I. Demertzis et al.

that the service provider can use the cleartext model to perform the classification on
encrypted data. Alternatively, at the end of every period, the updated (and decrypted)
model is sent to the users, which can perform the email classification locally.

We also note that users may choose to disclose emails in plaintext to the provider
for training purposes. This simplifies the continuous model training, as it is partially
executed on cleartext data, thus reducing the computation complexity. With this
alternative, one may train the model on plaintext spam and non-sensitive ham
emails, and use homomorphic encryption for training the model only on sensitive
emails, where the users themselves choose which emails are too sensitive to share
in plaintext.

4 Conclusion

We propose a system that enables both the privacy-preserving classification of
emails as spam or ham and the secure training of the classification model, thus
providing a solution that responds to the growing usage of end-to-end encrypted
emails and the increasing demand for privacy-preserving solutions.

The main remaining technical challenge lies in choosing the machine learning
model and combining it with a cryptographic protocol. It is not enough for such
a model to be efficient in classifying whether or not an email is spam, it should
also be crypto-amenable, i.e., it should be executable through a homomorphic
encryption protocol. As an example, it requires that the model’s computations can
be approximated with polynomial functions with a low multiplicative depth.

The primary challenge for adopting this solution in practice is probably creating
a compelling (financial) incentive for email providers to offer this service. The
data gathered from the analysis that service providers currently are able to run on
plaintext emails have an enormous business value, as the gathered data is integral to
the highly profitable targeted advertisements. Moreover, having important service
providers such as Microsoft and Google to collaborate in order to distribute the
trust is particularly difficult and a promising alternative would be to rely directly
on the users for this task. This poses other challenges, though, most notably the
management of keys and the availability of end-users. These and other challenges
are interesting future works.

PRIORIS: Enabling Secure Detection of
Suicidal Ideation from Speech Using
Homomorphic Encryption

Deepika Natarajan, Anders Dalskov, Daniel Kales, and Shabnam Khanna

1 Introduction

Suicidal ideation, or the state of thinking about or planning a suicide, is a major
public health concern in the United States. In 2015 alone, an estimated 9.8 million
adults in the US reported having serious suicidal thoughts [1]. Moreover, according
to the United States Center for Disease Control, the national suicide rate increased
by 33% between 1999 and 2017 [8]. Early detection of suicidal ideation is critical to
prevent suicide attempts and provide treatment for individuals. Yet, in spite of major
advances in the fields of medical and psychological science, our ability to predict
suicide has remained roughly constant for at least several decades [9].

Clinical practitioners typically rely on self-report of suicidal thoughts in order
to diagnose suicidal patients. However, this method of diagnosis is problematic,
since a majority of individuals who die from suicide deny suicide ideation in their
last communication about the subject before death [3, 16]. Additionally, the current
system relies on clinical assessment as a primary means of identifying suicidal
ideation. This means that individuals who do not make a habit of regular clinical
assessments, for instance, due to concerns about cost of treatment, time constraints,

D. Natarajan (�)
University of Michigan, Ann Arbor, MI, USA
e-mail: dnataraj@umich.edu

A. Dalskov
Aarhus University, Aarhus, Denmark

D. Kales
Graz University of Technology, Graz, Austria
e-mail: daniel.kales@iaik.tugraz.at

S. Khanna
Centre for Secure Information Technologies (CSIT), Queen’s University Belfast, Belfast, UK
e-mail: skhanna01@qub.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_10

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_10&domain=pdf
mailto:dnataraj@umich.edu
mailto:daniel.kales@iaik.tugraz.at
mailto:skhanna01@qub.ac.uk
https://doi.org/10.1007/978-3-030-77287-1_10

134 D. Natarajan et al.

lack of access, feelings of depression/lack of motivation, or social stigma, do not
receive adequate diagnosis and treatment [7, 22].

In order to address some of these inefficiencies, Gideon et al. [13] proposed
a machine learning-based system for detecting suicidal ideation. By determining
the emotions present in a subject’s natural phone conversations, and noting that
individuals with suicidal ideation displayed lower emotional variability than healthy
controls, the authors were able to create a machine learning model that could predict
the likelihood of suicidal ideation in an individual.

From a security perspective, both the phone call data and the prediction output
are extremely sensitive in nature and require complete confidentiality. Any leak of
medical data could dramatically affect the patient’s well-being, whether through
resulting social stigma, discrimination by employment or financial institutions, or
other types of abuse. The approach taken by Gideon et al. to safeguard user data
involves sending encrypted data from the user’s phone to a server compliant with
U.S. patient privacy laws, which is then able to decrypt and process the user data
in the clear. Though this approach may be sufficient for a limited number of users,
assuming a heavily safeguarded, small number of private servers used to process the
user data, it does not scale well as the number of users increases.

For many applications, a larger user base may signal the need to move from a
small private infrastructure to a larger cloud-like environment, where equipment
and maintenance costs can be outsourced and/or shared amongst multiple cloud
customers. However, many works have shown how seemingly secure cloud-based
systems are often easily exploitable by attackers, for example, due to the difficulty
of detecting bugs in large cloud operating-systems, or via the use of side-channel
attacks [15, 27]. Thus, though it solves the problem of scalability, this approach has
the potential to violate user security and privacy.

Recently, researchers at Microsoft have demonstrated the feasibility of using
Homomorphic Encryption to securely outsource Neural Networks predictions for
MNIST and CIFAR datasets [2, 5, 10]. In this work, we investigate the feasibility
of securely detecting suicidal intent from speech data using privacy-preserving
homomorphic encryption techniques.

Overview We begin by describing an end-to-end flow for suicidal ideation detec-
tion, first shown to be effective in [13]. We then describe a privacy-preserving
cyclical system of evaluations to further improve suicidal ideation detection and
treatment. We discuss at a high level the trade-offs that would need to be considered
for this implementation and give a first-order approximation of the performance
of our proposed approach, using [2] as a reference for homomorphic operation
performance. Finally, we discuss extensions of this work and identify several
interesting areas for future analysis.

PRIORIS: Enabling Secure Detection of Suicidal Ideation from Speech Using. . . 135

2 Suicide Ideation Detection

Researchers at the University of Michigan have demonstrated the feasibility of
detecting suicide ideation from natural phone call speech data using their PRIORI
smartphone application [13]. In their analysis, the researchers make use of two main
neural networks: a convolutional neural network (CNN), consisting of a feature
encoder and an emotion classifier, and a dense neural network (DNN). The CNN
and DNN are shown in Figs. 1 and 2, respectively. We use their process as a basis
for our proposed application, and describe key components of their approach below.

2.1 Dataset

The Ecological Measurement of Affect, Speech, and Suicide (EMASS) dataset is
a collection of natural phone conversations and regular reports of emotion, mood,
and suicidal thoughts. Specifically, it consists of over 400 h of phone conversations
recorded from 43 different participants, including healthy control samples and
patients who experience suicidal ideation. The calls were recorded by the PRIORI
phone application over the course of 8 weeks. The authors of [13] use the EMASS
dataset to train and test their models. The collection of this dataset is still ongoing;
however, the authors plan to publish the extracted EMASS dataset features upon
completion of the study.

Conv +
ReLU

40 128 Dilated
(x2) Conv
+ ReLU

Global
Max

128

128

FC +
ReLU

T TT

128

128

FC +
ReLU 3

FC +
Softmax

15
5

Feature Encoder Emotion Classifier

Input
MFBs

Output
(Low,
Medium,
High)

Fig. 1 MADDoG Convolutional Neural Network, which consists of a Feature Encoder (left) and
an Emotion Classifier (right). Figure adapted from [12]

186

1024

512

256

256 3

FC +
RReLU

FC +
Sigmoid

FC +
RReLU

FC +
RReLU

FC +
RReLU

Fig. 2 Dense Neural Network used for Emotion Identification, as described in [13]

136 D. Natarajan et al.

2.2 Application

The PRIORI application, as described in [13], utilizes neural networks to perform
various operations. For convenience, we give the steps of the application flow below
(for inference only):

1. Use the PRIORI phone application to save user-side call audio.
2. Use an algorithm for speech activity detection (such as the COMBO-SAD

algorithm [23]) to extract short segments of uninterrupted speech from a call.
3. Divide each segment into overlapping frames and extract a 40-dimensional log

Mel-filter bank (MFB) spectrum. This will result in a matrix of 40-by-ti , where
ti is the number of frames in segment i.

4. Pad the above matrix with enough zero vectors to get a 40-by-T matrix, where
T is the maximum number of frames in a segment for all segments in the
training set.

5. Feed the 40-by-T matrix into two separate MADDoG Feature Encoders to get
“segment-level” representations of the data.

6. Feed the outputs from the MADDoG Feature Encoder into two separate
MADDoG Emotion Classifiers (one for valence and one for activation). Each
classifier output will be a 3-element vector denoting “low”, “medium”, or
“high” for valence or activation, resulting in a 6-element result. See Fig. 1 for
more details.

7. Repeat the above two steps for all segments in a call. This will result in a 6 × N
matrix, where N is the number of segments in a call.

8. Take 31 statistics (including mean, standard deviation, skewness, kurtosis, min,
max, range, and statistics from performing a linear regression) across each row
in the matrix from the previous step. This will result in a final feature vector of
6×31 = 186 elements per call.

9. Feed the 186-dimensional vector into five separate DNNs, where each DNN is
trained to classify one of the following emotions: Guilt, Hopelessness, Anger at
Others, Anger at Self, and Irritability. Each DNN consists of four hidden layers
with widths of 1024, 512, 256, and 256, respectively. The activation function of
the hidden layers is a RReLu (Randomized Leaky ReLu), which corresponds to
a LReLu (Leaky ReLu) during model evaluation. The final layer uses a sigmoid
activation function and outputs a 3-element vector, denoting a rating of 0, 0.5,
or 1. These ratings correspond to ratings on a Likert scale of 1–5 for emotion
intensity.

10. Repeat the above steps for a set of calls. For each of the five emotions,
calculate the (within-subject) standard deviation. This is representative of
emotion variability across a set of calls.

11. Take the average of the five standard deviation values found in the previous
step. Use the result as a measure of the average emotion variability over a set
of calls for a particular individual.

12. Use either a threshold or a linear classifier to determine whether the output from
the previous step indicates suicidal ideation.

PRIORIS: Enabling Secure Detection of Suicidal Ideation from Speech Using. . . 137

3 Use Cases

As mentioned previously, the PRIORI application-based system described in [13]
sends raw speech audio to a remote server to be processed in the clear. This speech
data and the resulting network prediction constitute highly sensitive information,
especially since the PRIORI application records all (user-side) natural phone call
conversations during day-to-day life.

We propose modifications to the PRIORI application flow that would allow for
a more secure approach to suicide ideation detection. Namely, our approach would
protect all user-created data as well as the result of the suicide ideation prediction
from cloud adversaries. We call this approach “PRIORIS” to refer to a secure
version of the PRIORI approach. In this approach, the ideation detection flow would
be segmented as follows:

1. Audio recording, speech activity detection, and MFB extraction
2. Evaluation of MADDoG Feature Encoders and Emotion Classifiers
3. Calculation of statistics across result
4. Evaluation of Emotion DNNs
5. Calculation of standard deviation, average, and threshold/linear classifier

We envision that steps 1, 3, and 5 would be computed in-the-clear on the local
smartphone device, while steps 2 and 4 (i.e. the neural networks) would be calcu-
lated homomorphically in the cloud. This would add an additional homomorphic
encryption step and data communication step between steps (1,2) and (3,4), as
well as an additional homomorphic decryption step and data communication step
between steps (2,3) and (4,5).

Preserving the privacy of this speech data could persuade more people to use
emotion detection recognition technology outside the context of clinical studies.
Consequently, the security guarantees afforded to the application flow by our
proposed modifications could render a variety of new opportunities for secure
deployment. We identify three such use cases and describe them below:

3.1 Use-Case 1: Secure Detection and Response

In this scenario, the goal of the application would be to understand and respond
to the mental health status of an individual. For example, when the application
predicts that a user is experiencing suicidal inclinations, it could alert the user and
recommend a clinical visit, potentially even displaying locations, hours of operation,
and/or open appointment slots for nearby clinics. In more extreme cases (e.g. when
the prediction of suicidal ideation is strong), the application could display the phone
numbers of suicide prevention hotlines or even immediately connect an individual
to a hotline volunteer or trained professional.

138 D. Natarajan et al.

3.2 Use-Case 2: Secure Clinical Assessment Assistance

The concept of using speech patterns to identify mood disorders is not new;
clinicians typically consider speech factors such intonation, conversation domi-
nance, and voice level (e.g. quiet, loud) when diagnosing patients with mood
disorders [14, 26]. Figure 3 (Block 2) shows how the application could be used
to augment the capabilities of clinicians to understand the mental health of their
patients from speech-level information.

Importantly, this application would allow professionals to take into account
predictions made over a larger group of people. In the case that the application
prediction matches that of the clinician, this could help a clinician be more
confident in their diagnosis. In the case where the prediction differs, the clinician
could recommend a follow-up screening. In the controlled setting of an in-person
appointment, special recording equipment can be used instead of the patient’s phone
application.

We note that there may be differences between the ability of the network to
predict suicidal ideation from structured speech (i.e. question-response, clinical
assessment) versus natural speech (i.e. phone calls to friends and family). In this
case, the model used for clinical assessment would have to be trained differently
from the model used in use-cases 1 and 3. This will need to be investigated in future
work.

Fig. 3 Use-cases for proposed secure suicide ideation detection application. Each block number
corresponds to the use-case of the same number: (1) Suicide hotline connection upon detection of
suicidal ideation, (2) Validation of clinical assessment, (3) Monitoring of treatment effectiveness
over time. Use cases may be related to each other as depicted by (light blue) arrows between blocks.
Arrows between blocks and cloud denote HE-based data encryption and model evaluation, using
Microsoft SEAL library as an example HE infrastructure

PRIORIS: Enabling Secure Detection of Suicidal Ideation from Speech Using. . . 139

3.3 Use-Case 3: Secure Treatment Evaluation

In many cases, suicidal ideation can be linked to a mental health disorder which
can be treated [6]. As is the case with many mental health disorders, the treatment
procedure is usually a very iterative process [17]. For example, this may take the
form of trying a certain dose of a medication for a month, re-evaluating symptoms
at another clinical visit, adjusting the medication dose, re-evaluating symptoms at
a clinic again, one month later, etc. Additionally, psychotherapy may be used to a
varying degree before the best therapy schedule is determined.

As mentioned earlier, relying on patients to self-report suicidal ideation is
problematic, as a majority of people who die from suicide deny suicide ideation
in their last communication before death [4]. In addition to outright denial, patients
may simply be unable to detect suicidal behavior in themselves, simply because
they have not been trained to do so. Moreover, a patient may rely on memory
alone to describe how their mental health has been affected as a result of the
particular treatment iteration. This reliance on patient memory is problematic, as it
is unrealistic to expect an individual to remember every detail of their mood changes
across extended periods of time.

To help solve the above problems, the application could be used to track
effectiveness of treatment over time, for example, by recording the suicidal ideation
prediction values over the course of a month and plotting the change in values
on a graph, as shown in Fig. 3 (Block 3). Downward trends could be interpreted
as relative ineffectiveness of a treatment iteration, while upward trends could be
interpreted as relative effectiveness of the iteration. The clinician could evaluate
effectiveness of treatment without having to rely solely on patient recollection at the
time of visit. As in use-case 1, the application may also respond with helplines or
clinic availability for particularly strong predictions of suicidal inclinations.

We note that the above use cases could be proposed without any notion of
security. However, we argue that the data input and application output constitute
extremely sensitive information, and users would not use the application without
robust security guarantees. Thus, the use cases we discuss are only possible at scale
with the type of protection offered by the secure network evaluation we propose.

We also note that the above use cases are related. An individual may initially
use the application for a preliminary diagnosis to decide whether they should
seek further evaluation from a clinician (use-case 1). During the clinical visit, the
clinician may use the application to confirm their diagnosis, utilizing the results
from case 1 where helpful (use-case 2). If diagnosed with a mental illness associated
with suicide ideation, the individual would use the application to monitor the
effectiveness of the initial treatment plan (use-case 3). The next clinical appointment
would involve use-case 2 followed by use-case 3 once again. In this way, the
application could be used in a cyclical manner to enable a more accurate, effective,
and efficient treatment process.

140 D. Natarajan et al.

4 Network Training

This work mainly focuses on homomorphic evaluation of the described networks.
Accordingly, we assume that the models referenced are trained beforehand. Never-
theless, we wish to devote some discussion as to how such models could be obtained
in practice.

The authors of [13] have already demonstrated how useful models can be
generated using the EMASS dataset, which we summarized in Sect. 2. The models
they were able to train using the EMASS dataset have proven successful at
using natural phone conversations to distinguish healthy controls from suicidal
individuals, achieving an AUC (Area Under the Curve) of 0.79. Datasets such as
EMASS could therefore be used to build initial networks.

For optimal performance, it is likely that much more data would need to be
collected in order to further train the initial models. We imagine that successful
deployment of this application would encourage enough users to volunteer their
data for network training. However, the inputs and outputs of the networks described
above contain highly sensitive data; thus, it may not be plausible that enough users
would be willing to volunteer this information. Moreover, it is possible that selecting
volunteers in this manner would significantly skew the set of training data such that
it no longer resembles testing data (for example, users may only allow evaluation of
more “benign” calls, such as those made to customer service lines, rather than calls
they make to family and friends).

Ideally, we would like to collect enough useful data from users while protecting
user privacy. In order to ensure patient privacy during the training process, a variety
of approaches could be taken. Federated learning, for example, which has been
popularized in recent years by Google, could allow models to be trained locally
and combined later in a privacy-preserving manner [24]. Homomorphic training
could also be used to preserve patient privacy. We note, however, that while some
works show homomorphic training as possible, other works report the technique
as practically infeasible [21]. Future work would therefore require a much deeper
analysis of this component.

5 Homomorphic Network Evaluation

The PRIORI application flow involves the use of two types of neural networks: a
CNN (which consists of a Feature Encoder and an Emotion Classifier) and a DNN
(used to identify emotions). We now wish to analyze the amenability of each of
these networks to homomorphic evaluation.

We follow the approach of CryptoNets [10], which first described how to
homomorphically process each layer of a CNN used to classify MNIST images.
Specifically, we approximate the ReLU activation functions with square activation
functions (i.e. a low-degree polynomial), replace “pool” layers with “scaled pool”

PRIORIS: Enabling Secure Detection of Suicidal Ideation from Speech Using. . . 141

layers, and do not homomorphically evaluate any final sigmoid activation layers.
We also make two further modifications: (1) we do not homomorphically evaluate
any final softmax layers, since, like the sigmoid layers, these are necessary for
training but not required for evaluation, and (2) we replace RReLU activations
with ReLU activations (which we approximate with square activations), since these
operations are similar given limited RReLU leakage [25]. We also model the dilated
convolution layer the same way as a convolution layer, since both are implemented
as a weighted sum. A more detailed description of the RReLU approximation is
given in the next section.

Tables 1 and 2 give the modified layers for the described CNN and DNN,
respectively, as well as their per-layer homomorphic evaluation runtimes. We obtain
these estimates through simple scaling of the execution times of similar layers used
in CryptoNets 3.2 [2], which uses the BFV encryption scheme. The CryptoNets
3.2 numbers were obtained from running the CrytoNets application on a single Intel
Xeon E5-1620 CPU at 3.5GHz, with 16GB of RAM and Windows operating system.
Note that these times assume that model weights and bias values are unencrypted.
We set the CNN Feature Encoder dimension T to 600, which corresponds to a 6 s
average segment length and 10 ms frame shift length for MFB extraction.

Using the first order approximation, we obtain full network evaluation time
estimates of 16,777.178 and 194.656 s for the CNNs and DNNs, respectively. The
authors of [19] use a dataset similar to the EMASS dataset for monitoring mood
from speech data and report that the phone calls made consists of 24.3 ± 46.6
segments on average. Assuming a similar 24 segments per call, sequential appli-
cation of the CNN should take approximately 402,652.272 s (111.848 h) per call.
Sequential application of the DNN should take approximately 194.656 s (3.244 min)
per call. We stress that these estimates do not include any batching, pipelining,
or parallelization techniques, each of which are expected to provide significant
performance benefits (up to multiple orders of magnitude). Simply processing each
of the 24 segments in parallel, for example, would result in only 4.66 h per call for
application of the CNN.

Table 1 Layers proposed for
homomorphic evaluation of
MADDoG Feature Encoder
and Emotion Classifier CNN
and corresponding first order
approximations of evaluation
times. Results were obtained
through simple scaling of
execution times for similar
layers used by the CryptoNets
v3.2 MNIST CNN [2], and
assume T = 600

HE layer Time estimate (s)

Conv. 11,247.291

Square activation 886.156

Dilated conv. 3749.097

Square activation 886.156

Scaled max pool 8.478

FC 3.072

Square activation 1.477

FC 3.072

Square activation 1.477

FC 0.072

Total 6476.331

142 D. Natarajan et al.

Table 2 Layers proposed for
homomorphic evaluation of
Emotion Detection DNN and
corresponding first order
approximations of evaluation
times. Results were obtained
through simple scaling of
execution times for similar
layers used by the CryptoNets
v3.2 MNIST CNN [2]

HE layer Time estimate (s)

FC 35.712

Square activation 11.815

FC 98.305

Square activation 5.908

FC 24.576

Square activation 2.954

FC 12.288

Square activation 2.954

FC 0.144

Total 194.656

Activation Functions As stated above, we follow the approach of CryptoNets
and replace ReLU with square activation functions. Although such low-order
polynomials can be used to approximate ReLU activations, there are places in
which the functions differ significantly. It is therefore vital to empirically evaluate
whether a such an approximation still achieves accurate results. The CryptoNets
work achieved an accuracy of 99% using this square activation approximation of
ReLU (for an MNIST classification network). Therefore, it is plausible that this
approximation could be used successfully in the networks we describe as well.

The case of RReLU, however, is more complicated. As noted above, we chose
to replace RReLU with regular ReLU activations (which we then approximate
with square). When the choice of leakage is small, the two functions are similar
(i.e. RReLUα(x) = max(αx, x) ≈ max(0, x) = ReLU(x) for small α.) The
authors of [13] do not specify the particular α they use, though they do refer to
[25] (which explores small α values, between 0.01 and 0.2) as motivation for the
choice of activation function. Nonetheless, the authors of [13] do not compare the
accuracy they achieved with RReLU to accuracy possible with ReLU. This should
be explored in future work.

Finally, we note that while the proposed approximation could still yield accurate
results, it may render training the network more difficult. As noted in [10], in
particular, the derivative of x2 is not bounded. Although this may result in strange
behavior during gradient descent, the authors of [10] have successfully combated
this issue by adding extra convolution layers without activation layers to prevent
overfitting. The effect of this approximation on network training should be assessed
in future work.

6 Extensions and Future Work

In the previous sections, we described PRIORIS application for secure suicide
ideation detection in the context of three main use-cases. In this section, we describe
some additional extensions to the application and opportunities for future work.

PRIORIS: Enabling Secure Detection of Suicidal Ideation from Speech Using. . . 143

Adaptation of Application to Other Types of Mood Disorder Detection Suicide
ideation is highly related to mood disorders, which in turn often result in altered
speech patterns. This suggests that speech data may be used to identify other types
of mood disorders. In fact, this type of analysis has already been shown useful
for detecting disorders such as bipolar disorder, depression, and post-traumatic
stress disorder [18, 20]. Future work could analyze other types of mood disorder
detection for their amenability to FHE-based private-preserving machine learning.
Generalizing further, it may even be useful to construct a general mood detection
and tracking application in combination with therapeutic smartphone applications
such as those commonly used for mindfulness and relaxation.

Determining Optimal Intervention To improve the usefulness of the proposed
system, it would be beneficial to identify exact moments when medical intervention
is required. The authors of [11] have already explored this question in the context
of bipolar disorder. Their method involves using an initial data collection period
to establish a baseline emotion level. The authors then use anomaly detection
techniques to compare subsequent user behavior relative to this baseline in order to
determine optimal medical intervention points. This type of investigation and fine-
tuning could be extended to the context of suicide ideation detection and treatment.
This is particularly significant for uses cases involving smartphone monitoring of
medical symptoms, as these devices have the potential to provide intervention close
to the time of need (see: for example, suicide prevention hotline connection in use-
case 1 above).

Choice of FHE Scheme We perform analysis of the layer execution times with
respect to the BGV homomorphic encryption scheme, since this is the scheme
used by the CryptoNets 3.2 MNIST network. Microsoft SEAL also implements
the CKKS scheme, which differs from BGV in its ability to efficiently compute
approximate computations on real-valued data. CKKS is thus particularly amenable
to machine learning use cases, as neural networks typically make use of approximate
values. Future work should investigate the performance of the using the BGV
scheme relative to using the CKKS scheme for the proposed application.

Analysis of Detection Segmentation Flow In Sect. 2.1, we proposed an initial
segmentation of the application flow with respect to computation execution location.
However, this initial segmentation is based on intuition. Future work should analyze
the trade-off between executing each step of the full procedure either locally in the
clear or homomorphically on the server, including the resulting impact on overall
performance, energy, and storage requirements of the application.

The modifications we propose as a result of this analysis, as well as the choice
of FHE scheme, will likely result in variable model accuracy. However, any loss in
accuracy could potentially be offset by increasing the amount of available training
data. Our proposed application places a strong emphasis on user privacy guarantees,
and would thus encourage more widespread adoption of the PRIORIS application.
This, in turn, could increase the amount of training data available (e.g. by informing
more users about the study, some of whom may volunteer to have their data added

144 D. Natarajan et al.

to the training set, or via the secure training techniques mentioned in Sect. 4)
and render the system robust enough to be integrated into everyday mood health
monitoring and clinical assessment.

7 Conclusion

In this work, we propose a privacy-preserving based suicidal ideation detection flow.
We describe how homomorphic encryption could be used for secure inference of
networks previously shown useful for detecting suicidal ideation from phone speech
data. We also describe multiple use-cases that are enabled as a result of the proposed
security mechanisms. Finally, we give first-order approximations of homomorphic
evaluation runtimes for the models used in our application, and describe several
directions for future research.

Acknowledgments This work was created in collaboration with researchers at Microsoft. The
authors would like to thank the organizers of Microsoft’s Private AI Bootcamp for their helpful
feedback and reviews. The authors would also like to thank researchers in the Computational
Human Artificial Intelligence (CHAI) Lab at the University of Michigan for their helpful
discussions. (Note: Authors of this work are listed in contributing order.)

References

1. Substance Abuse, Mental Health Services Administration, and Center for Behavioral
Health Statistics. Suicidal thoughts and behavior among adults:results from the 2015 national
survey on drug use and health.

2. Alon Brutzkus, Oren Elisha, and Ran Gilad-Bachrach. Low latency privacy preserving
inference. In International Conference on Machine Learning, 2019.

3. Katie A Busch and Jan Fawcett. A fine-grained study of inpatients who commit suicide.
Psychiatric Annals, 34(5):357–364, 2004.

4. Katie A Busch, Jan Fawcett, and Douglas G Jacobs. Clinical correlates of inpatient suicide.
The Journal of clinical psychiatry, 2003.

5. Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic
evaluation of deep discretized neural networks. In CRYPTO (3), volume 10993 of Lecture
Notes in Computer Science, pages 483–512. Springer, 2018.

6. Louise Brådvik. Suicide risk and mental disorders, 2018.
7. Ewa K Czyz, Adam G Horwitz, Daniel Eisenberg, Anne Kramer, and Cheryl A King. Self-

reported barriers to professional help seeking among college students at elevated risk for
suicide, 2013.

8. Centers for Disease Control and Prevention. Webbased injury statistics query and reporting
system (WISQARS). Online, accessed 2020-01-21. Available at URL: https://www.cdc.gov/
injury/wisqars/index.html.

https://www.cdc.gov/injury/wisqars/index.html
https://www.cdc.gov/injury/wisqars/index.html

PRIORIS: Enabling Secure Detection of Suicidal Ideation from Speech Using. . . 145

9. Joseph C Franklin, Jessica D Ribeiro, Kathryn R Fox, Kate H Bentley, Evan M Kleiman,
Xieyining Huang, Katherine M Musacchio, Adam C Jaroszewski, Bernard P Chang, and
Matthew K Nock. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50
years of research. Psychological bulletin, 143(2):187, 2017.

10. Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. CryptoNets: Applying neural networks to encrypted data with high throughput and
accuracy. In ICML, volume 48 of JMLR Workshop and Conference Proceedings, pages 201–
210. JMLR.org, 2016.

11. John Gideon, Katie Matton, Steve Anderau, Melvin G McInnis, and Emily Mower Provost.
When to intervene: Detecting abnormal mood using everyday smartphone conversations, 2019.

12. J. Gideon, M. McInnis, and E. Mower Provost. Improving cross-corpus speech emotion recog-
nition with adversarial discriminative domain generalization (ADDoG). IEEE Transactions on
Affective Computing, 2019.

13. John Gideon, Heather T Schatten, Melvin G McInnis, and Emily Mower Provost. Emotion
recognition from natural phone conversations in individuals with and without recent suicidal
ideation. In The 20th Annual Conference of the International Speech Communication Associa-
tion INTERSPEECH 2019, 2019.

14. William Guy. ECDEU assessment manual for psychopharmacology. US Department of Health,
Education, and Welfare, Public Health Service . . . , 1976.

15. Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
Cache attacks enable bulk key recovery on the cloud. In International Conference on
Cryptographic Hardware and Embedded Systems, pages 368–388. Springer, 2016.

16. Erkki T Isometsä, Martti E Heikkinen, Mauri J Marttunen, Markus M Henriksson, Hillevi M
Aro, and Jouko K Lönnqvist. The last appointment before suicide: is suicide intent communi-
cated? The American journal of psychiatry, 1995.

17. Douglas G Jacobs, Ross J Baldessarini, Yeates Conwell, Jan A Fawcett, Leslie Horton, Herbert
Meltzer, Cynthia R Pfeffer, and Robert I Simon. Assessment and treatment of patients with
suicidal behaviors. 2010.

18. Z. N. Karam, E. M. Provost, S. Singh, J. Montgomery, C. Archer, G. Harrington, and M. G.
Mcinnis. Ecologically valid long-term mood monitoring of individuals with bipolar disorder
using speech. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4858–4862, May 2014.

19. Zahi N Karam, Emily Mower Provost, Satinder Singh, Jennifer Montgomery, Christopher
Archer, Gloria Harrington, and Melvin G Mcinnis. Ecologically valid long-term mood
monitoring of individuals with bipolar disorder using speech. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4858–4862. IEEE,
2014.

20. Charles R. Marmar, Adam D. Brown, Meng Qian, Eugene Laska, Carole Siegel, Meng
Li, Duna Abu-Amara, Andreas Tsiartas, Colleen Richey, Jennifer Smith, Bruce Knoth, and
Dimitra Vergyri. Speech-based markers for posttraumatic stress disorder in us veterans.
Depression and Anxiety, 36(7):607–616, 2019.

21. Karthik Nandakumar, Nalini K. Ratha, Sharath Pankanti, and Shai Halevi. Towards deep
neural network training on encrypted data. In CVPR Workshops, page 0. Computer Vision
Foundation/IEEE, 2019.

22. Thomas Niederkrotenthaler, Daniel J Reidenberg, Benedikt Till, and Madelyn S Gould.
Increasing help-seeking and referrals for individuals at risk for suicide by decreasing stigma:
The role of mass media. American journal of preventive medicine, 47(3):S235–S243, 2014.

23. S. O. Sadjadi and J. H. L. Hansen. Unsupervised speech activity detection using voicing
measures and perceptual spectral flux. IEEE Signal Processing Letters, 20(3):197–200, March
2013.

24. Aaron Segal, Antonio Marcedone, Benjamin Kreuter, Daniel Ramage, H. Brendan McMahan,
Karn Seth, Keith Bonawitz, Sarvar Patel, and Vladimir Ivanov. Practical secure aggregation
for privacy-preserving machine learning. In CCS, 2017.

146 D. Natarajan et al.

25. Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations
in convolutional network. CoRR, abs/1505.00853, 2015.

26. Robert C Young, Jeffery T Biggs, Veronika E Ziegler, and Dolores A Meyer. A rating scale for
mania: reliability, validity and sensitivity. The British journal of psychiatry, 133(5):429–435,
1978.

27. Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-vm side channels
and their use to extract private keys. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 305–316, 2012.

Gimme That Model!: A Trusted ML
Model Trading Protocol

Laia Amorós, Syed Mahbub Hafiz, Keewoo Lee, and M. Caner Tol

1 Introduction

Machine learning (ML) has achieved a tremendous success in making break-
throughs in various real-life problems from areas such as medicine, finances or
social sciences, to mention a few. It has created a lucrative business model called
Machine-Learning-as-a-Service (MLaaS), where big technological companies pro-
vide artificial intelligence (AI) services to customers. One of the functions of the
MLaaS platform allows customers to purchase an ML model on demand. In the
foreseeable future, we think that the market of trading ML models is going to grow
significantly, and the security and privacy of the trade and the ML models will be
crucial [7].

Let us illustrate this with an example. Suppose a car company B is interested in
adding autonomous driving technology to its self-driving cars. B would like to buy a
computer vision model, a pre-trained ML model, from an AI technological company
A. For instance, Mobileye, an advanced driver-assistance system (ADAS) provider,
sells computer vision models installed on chips to automobile companies such as

L. Amorós
Aalto University, Espoo, Finland
e-mail: laia.amoros@aalto.fi

S. M. Hafiz
Indiana University-Bloomington, Bloomington, IN, USA
e-mail: shafiz@iu.edu

K. Lee (�)
Seoul National University, Seoul, Republic of Korea
e-mail: activecondor@snu.ac.kr

M. C. Tol
Worcester Polytechnic Institute, Worcester, MA, USA
e-mail: mtol@wpi.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_11

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_11&domain=pdf
mailto:laia.amoros@aalto.fi
mailto:shafiz@iu.edu
mailto:activecondor@snu.ac.kr
mailto:mtol@wpi.edu
https://doi.org/10.1007/978-3-030-77287-1_11

148 L. Amorós et al.

Hyundai or Nissan. In this scenario, B must have the ML model available without
the need to go online: the system might lose the internet connection by accident or
have no connection at all.

In another similar situation, imagine that a pharmaceutical company A has an ML
model trained on the medical profiles of its patients. An IoT company B builds med-
ical devices for its end-users. At some point, the end-users want to know whether
they are prone to a specific disease through the medical device. B has neither the
model nor the training data to provide such a service to its end-users, and it probably
cannot share their private data due to privacy issues. B cannot use homomorphic
encryption (HE) or secure multi-party computation (MPC) as privacy-preserving
ML solutions offered previously because of computational resource requirements
of the ML task. Therefore, B might be interested in purchasing the ML model from
A and install it on the medical devices, so that the end-users can check their medical
status.

During the trade of ML models, some particular interactions between two parties,
e.g., a seller company A and a buyer company B, need to be done before the final
transaction. For instance, A wants to ensure that once the model is given to B, B will
buy it. In addition, B needs to confirm that the model is valid and accurate for its
purposes before purchasing it. We propose an HE-based protocol, which will secure
the transaction for both parties, allowing A to sell its ML algorithm to B keeping
the model secret, and at the same time protecting B from a possible bad ML model
before buying it.

There are two benchmarks of ML models to be tested before a transaction:
accuracy and efficiency. Whereas the timing result is independent of the input
data (characteristic that ML models share with traditional software services), the
accuracy of ML models depends excessively on training and test datasets. In this
work we will focus on guaranteeing the accuracy of the ML models and leaving the
efficiency issue on the background.

This report is organized as follows. In Sect. 2, we present the situation described
above and propose some possible non-cryptographic solutions that turn out to be
problematic. In Sect. 3, we recommend our HE-based solution and describe possible
improvements to the protocol to make the overall transaction more efficient and
secure. In Sect. 4, we start by discussing the feasibility of our HE-based solution,
we then compare it to other potential existing cryptographic solutions, and we finish
by considering a dual scenario: trading datasets instead of the ML models.

2 Non-cryptographic Approaches and Their Drawbacks

In this section, we describe some non-cryptographic approaches (and their asso-
ciated problems) to enable a company A to sell a pre-trained machine learning
model to a customer B. The situation is as follows: A is a company that owns a
pre-trained ML model that a costumer B would like to purchase. In this simple

Gimme That Model!: A Trusted ML Model Trading Protocol 149

situation, one can think of (at least) three different approaches that do not make use
of any cryptographic measures, and the consequent problems that might arise.

Approach I: The first approach is simple, but naive: B makes the payment before
getting any service from A. After the payment, A sends the pre-trained model to
B. The potential problem in this situation is that B has no idea about the model
quality before the payment, as training and test accuracies or generalization
ability cannot be tested beforehand. The model may not be powerful enough
to deploy on the client’s side due to poor hyperparameters or model selection. A

may not even send a trained model at all.
Approach II: In the second approach, when a client B wants to try the model, A

sends the pre-trained model to B. If the model fits well on B’s test dataset, B can
make the payment for the model. The problem arising here is that B can deploy
the model without making any payment, claiming that the model does not fit its
needs, but keeping the model.

Approach III: The third approach provides a test session before the contract to
try to avoid the previous situations. Before any compromise between A and B,
B sends a test dataset to A. A evaluates the trained model using B’s dataset and
sends the results back. If the results are satisfying enough for B, the payment
is made to A. The problem here is that B cannot know whether the predicted
results are obtained from a well-trained ML model or, for instance, by hand. For
example, a computer vision task may be manually achieved by crowdsourcing.

3 Our HE-Based Cryptographic Solution

In this section, we propose a potential solution for trading ML models that
overcomes all the problems stated before. This solution is based on HE. After
presenting the protocol, we continue by describing possible improvements to make
the protocol more efficient. We then demonstrate some possible attacks to our
protocol and suggest possible defenses. Finally, we summarize which ML model
would be compatible with the proposed protocol while satisfying suitable efficiency
and security.

3.1 The Protocol

The steps of the proposed protocol in Fig. 1 are as follows.

1. First A runs Setup to obtain the public HE parameters (base cyclotomic ring,
modulus, number of levels, etc.). Note that B cannot run Setup if we use SHE

150 L. Amorós et al.

Fig. 1 Our HE-based solution

since B does not know the model and the required depth accordingly. If we use
FHE, B can run Setup.1

2. A sends the HE parameters to B. A also sends a data encoding method to
B. Agreement on the encoding method is essential since the encoding method
considerably affects the performance, and A cannot manipulate the received
ciphertexts easily.

3. B runs KeyGen after checking that the security level of the received HE
parameters is sufficient.

4. B sends the test data m in encrypted form, i.e., Enc(m), with evaluation keys
evk.

5. A performs homomorphic inference on Enc(m) using the evaluation keys, i.e.,
computes Enc(f (m)), and sends it back to B.

6. B decrypts the received ciphertext and gets f (m), and checks if the algorithm
works as expected.

7. If B decides to buy the model f (·), B proceeds to do the payment to A.
8. A sends the model f ′(·) to B.
9. B checks if f (m) is equal to f ′(m). If not, B now has the evidence that A did

not send the proper model.

Our HE-based protocol shows substantial advantages over the other non-
cryptographic approaches presented in Sect. 2. As the protocol is built on
homomorphic encryption, B can have a test session without even knowing A’s
model before the contract. The security of the HE scheme ensures that A cannot
cheat during the test session as in the non-cryptographic Approach III, because
A does not see the test data m. The received message f (m) in step 6 ensures the
commitment by allowing B to notice in step 9 if A cheats by not sending a proper
model in step 8.

1SHE stands for somewhat homomorphic encryption. FHE stands for fully homomorphic encryp-
tion.

Gimme That Model!: A Trusted ML Model Trading Protocol 151

3.2 Efficiency of the Protocol

In general, the main drawback of HE in practical usage is its slow speed. One
attractive feature of our solution as an application of HE is that, in our setting,
latency issues are more acceptable, since no real-time computation is necessary.
Depending on the importance of the ML model transaction, a seller and a buyer
may take their time for securing the trade. However, requiring an excessive amount
of inference time would cause inconvenience. In this section, we discuss possible
optimizations for our solution.

Optimization methods for general HE applications are also applicable to our
solution. For example, a buyer can batch several test data into a ciphertext, and
then the seller can evaluate the ML model only once for multiple test data. One
would probably want to use the CKKS scheme for approximate homomorphic
computations, and approximate the ML model into an HE-friendly version, i.e.,
into multivariate polynomials. Since these may cause other errors to the output,
one should carefully consider this trade-off between accuracy and efficiency. In this
case, the buyer should keep in mind that a new glitch has occurred, and the original
model will be slightly more precise than the homomorphically evaluated results.
However, since many ML algorithms are robust to errors in general, this might not
cause a big problem.

Another possible optimization is to use HE parameters with a reduced security
level, rather than HE parameters with conventional security level (e.g., 128-bit
security). Since we need the security of ciphertexts only until the agreement of the
contract is made, we can use more efficient parameters.

3.3 Towards the Perfect Model Protection

Even though HE provides strong security in our scenario, there are still some
remaining issues that need to be considered due to the nature of the ML model
trading situation and the lack of circuit privacy in concurrent HE schemes. In this
section, we consider possible attacks and suggest defenses for these attacks.

To begin with, a malicious buyer may perform numerous test queries to obtain
nontrivial information about the ML model (e.g., a model extraction attack [8]). To
prevent a model extraction attack, the seller must limit the number of trials that a
buyer can query. This can be done both explicitly and implicitly. Explicitly, a seller
can regulate the amount of queries. Implicitly, a seller can require costs to a buyer
for each query. This cost works as a client puzzle: for a small number of queries,
the prices are negligible; but for a large number of queries to perform the model
extraction attack, the costs are infeasible to pay.

Another natural concern on the ML model trading scenario is malicious redis-
tribution. That is, once an ML model is sold, the buyer can illegally resell

152 L. Amorós et al.

or redistribute it. In this respect, a possible solution is to use neural network
watermarking [1, 4].

A third concern is the circuit privacy of HE schemes: since concurrent HE
schemes do not provide circuit privacy, there exists a possibility of information
leakage of ML models from the output of homomorphic computations. However,
there are well-known countermeasures such as noise-flooding or bootstrapping [2].

3.4 Compatible ML Models

In terms of security and efficiency, the following properties of an ML model need
to be taken into account in order to work with the proposed protocol.

Criteria 1: The ML model needs to be complex enough so that it can resist a
model extraction attack.

Criteria 2: The homomorphically encrypted ML model should have plausible
inference time to evaluate the test dataset.

For binary and multi-class logistic regression models, the size of the feature
vector should be much greater than k + 1 and c (k + 1) respectively, where k is
the number of allowed queries and c is the number of classes. Neural networks like
DNN, CNN, RNN, etc., should have network parameters much larger than k (e.g.,
more than 100 k regarding the experimental results of [8]).

4 Discussions

In this section, we first discuss the plausibility of our trading ML models scenario.
We then consider possible alternative cryptographic solutions to the problem like
secure multiparty computation or zero-knowledge arguments. We end the section
by considering a dual situation: trading datasets instead of ML models.

4.1 Plausibility of Trading ML Models

Machine learning-based solutions have become a rather conventional way of tack-
ling many problems. However, training ML models requires a substantial amount
of computational power and a vast amount of training data. Therefore, selling such
trained ML models can be seen as a rosy business model, since MLaaS market is
growing fast. Many companies in this area propose to train and tune the models of
a customer at a reasonable price (compared to the cost of computing resources and
massive datasets required if the customer were to train the model by itself).

Gimme That Model!: A Trusted ML Model Trading Protocol 153

One may ask why the company should sell the model itself instead of providing
online access and sell subscriptions. We are going to answer this question from
various perspectives. First of all, there are several ML applications where the service
needs to work also when the system goes offline (e.g., driverless car). Another
disadvantage is the privacy issue. A customer has to send always its private data
to the service provider if this only offers a subscription. Of course, we can use HE
or MPC to solve this privacy issue via PPML. However, this PPML approach suffers
from slow speed and there are some ML applications where such latency cannot be
tolerated (e.g., driverless car).

Another point is that a customer might want to train the model further to improve
its performance for new data points using online learning, or the model can be
used in multitask learning [3]. Without trading the model itself, this would not be
possible for a customer. We also note that trading ML models is a one-time sale, but
the company can retrain the model with up-to-date datasets after a while and sell
updates.

4.2 Alternative Cryptographic Solutions

Secure multiparty computations (MPC) can be used as an alternative solution to
our HE-based approach for the safe ML model trading scenario. When using MPC,
one can hide the model weights, but it is a non-trivial task to protect the whole
ML model, including its hyperparameters. That is, a seller and a buyer would
share the ML model structure and perform secure multiparty computations on it,
without revealing the model weights and the test data to each other. This leads to the
solution being more susceptible to model extraction attacks. Moreover, the selection
of suitable neural network architectures for a given problem and dataset is often
difficult and resource-consuming [5], meaning that sharing the structure of the ML
model might already be a substantial loss of intellectual property for the seller.

Another issue for an MPC-based solution is communication overhead. The
communication cost between the buyer and the seller becomes more significant as
the ML model becomes more complex, and the two parties should remain online
during the computation. This might be a minor problem if two large companies do
the transaction, but might be an essential issue if a customer is an individual with
low computing power.

One might also consider zero-knowledge arguments (e.g., zk-SNARK) for
another possible solution to the model trading scenario. In particular, when test data
is given, the seller can use zk-SNARK to prove that it has the ML model, which
outputs one specific result without revealing the parameters (zero-knowledge).
However, in this case, the buyer has to disclose its test data to the seller, leading
to the same problems as the non-cryptographic Approach III described in Sect. 2.

154 L. Amorós et al.

Fig. 2 Our HE-based solution for the dual scenario

4.3 Dual Scenario: Trading Datasets

One interesting point of view about our solution is that one can also consider its
dual scenario. In the original situation, the seller has a function (e.g., a ML model),
and the buyer wants to check the output of the function on particular data before
the transaction. On the other hand, in the dual scenario, the seller has a dataset, and
the buyer wants to check the output of a particular function on the dataset before
the transaction. Thus, the roles of functions and data are switched. We can directly
apply our protocol, which is designed for the original scenario, to the dual situation
by just interchanging the roles of function and data. Our HE-based solution for the
dual scenario is summarized in Fig. 2.

However, in this case, our solution seems to have a less significant advantage over
an existing MPC-based solution [6]. This is because, unlike the original solution, an
ML model is being sent over a homomorphically encrypted channel. In this scenario,
we probably want to encrypt only the model weights and biases and send the model
hyperparameters unencrypted. This invalidates the first advantage of the HE-based
solution over the MPC-based solution, which is described above. If not, we can
homomorphically encrypt the whole circuit description. However, this approach
does not look practically sound again.

References

1. Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In Proceedings
of the 27th USENIX Conference on Security Symposium, SEC’18, pages 1615–1631, USA, 2018.
USENIX Association.

2. Florian Bourse, Rafaël Pino, Michele Minelli, and Hoeteck Wee. FHE circuit privacy almost
for free. In Proceedings, Part II, of the 36th Annual International Cryptology Conference on
Advances in Cryptology — CRYPTO 2016 - Volume 9815, pages 62–89, Berlin, Heidelberg,
2016. Springer-Verlag.

3. Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, Jul 1997.

Gimme That Model!: A Trusted ML Model Trading Protocol 155

4. Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end
watermarking framework for ownership protection of deep neural networks. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’19, pages 485–497, New York, NY, USA, 2019.
Association for Computing Machinery.

5. Debadeepta Dey. Microsoft research blog: Project petridish: Efficient forward neural architec-
ture search, 2019.

6. Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Peter Rindal, and Mike Rosulek. Secure data
exchange: A marketplace in the cloud. In Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, CCSW’19, pages 117–128, New York, NY, USA, 2019.
Association for Computing Machinery.

7. Technavio. Global machine learning-as-a-service (MLAAS) market 2019–2023, 2019.
8. Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Stealing

machine learning models via prediction APIS. In Proceedings of the 25th USENIX Conference
on Security Symposium, SEC’16, pages 601–618, USA, 2016. USENIX Association.

HEalth: Privately Computing on Shared
Healthcare Data

Leo de Castro, Erin Hales, and Mimee Xu

1 Introduction and Motivation

Healthcare in the US is notoriously expensive. Compared to other Organisation
for Economic Co-operation and Development (OECD) countries, US healthcare
costs are one-third higher or more relative to GDP [6]. According to the Centre
for Disease Control and Prevention [5], the average per capita cost of healthcare
was $10,739 for the year 2017. Several Machine Learning (ML) startups aim to
improve healthcare by bringing automated expertise to hospitals, in areas such as
brain imaging and cancer detection. Additionally, hospitals in the US cannot easily
share data. The existing ML solutions often focus on training a model using data
which has been obtained through an existing collaboration, which has been pre-
processed to the required format. These solutions work around the data-sharing
challenge for training rather than tackling it and The result is a static inference
model which does not continuously adapt to changes.

It is important to maintain ethical standards for healthcare professionals. This is
one of the goals of regulatory agencies working to protect patients. Such agencies
can often have problems accessing appropriate data to compare between hospitals
and doctors, as well as to assess data across many hospitals. This can lead to
difficulties in fulfilling a mandate to audit doctors and hospitals. There are other

L. de Castro
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, USA
e-mail: ldecastr@mit.edu

E. Hales (�)
Information Security Group, Royal Holloway, University of London, Egham, Surrey, UK
e-mail: peai011@live.rhul.ac.uk

M. Xu
Courant Institute of Mathematics, New York University, New York, NY, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_12

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_12&domain=pdf
mailto:ldecastr@mit.edu
mailto:peai011@live.rhul.ac.uk
https://doi.org/10.1007/978-3-030-77287-1_12

158 L. de Castro et al.

Table 1 Summary data for all US hospital admissions in the year 2018, from [2]

Number of hospitals Staffed beds Total Admissions Total expenses

6146 924,107 36,353,946 $1,112,207,387,000

healthcare use cases for which assessing data across many hospitals is useful. Data
sharing can be beneficial for managing epidemics and treating rare diseases.

Since the data gathered by healthcare providers is often sensitive, it is essential to
protect it while in use by a ML algorithm. Homomorphic encryption can be brought
to bear on these situations by allowing meaningful computation on encrypted data.
This enables secure data sharing and computation, as well as private training.

The initial goal of our work, in the context of healthcare data, is to allow
anomaly detection and discovery in a shared private data-set. To do this we
propose calculating aggregate statistics across data shared between many hospitals
to consider ‘fairness’ of hospital admissions.

First, let us consider hospital admissions across the US. Some summary data is
provided in Table 1. With such a large number of admissions across the year, there is
a lot of data generated. If this data could be shared securely across several hospitals,
or even all hospitals, it would enable secure computation on a scale not seen before.

We present a scenario where hospitals share records to compute anomalies and
audit fairness. We make three contributions. Firstly, the possibility of auditing
fairness at scale. Secondly, enabling continuous sharing of data without the need to
refresh keys, removing the requirement for pairwise contracts. Finally, we discuss
how anomaly detection might be applied to finding causes and correlations in
medical research. This has many applications, for example rare diseases, epidemic
management and chronic illness research.

We use ‘fairness’ as an initial calculation goal which would demonstrate the
effectiveness of simple statistics. It would then be possible to extend the techniques
to other calculations, achieving different goals.

2 Our Scenario

Suppose we have a group of hospitals who wish to combine their data to calculate
aggregate statistics. Each hospital has an interest in keeping their data private
from the other hospitals, so we introduce a method whereby the hospitals can
work together to create a shared secret key to encrypt the shared data on which
computation takes place. Once private computation has taken place, the hospitals
are able to collectively decrypt the results using their shares of the decryption key.

The initial goal of calculating these aggregate statistics is to compute anomalies
and audit fairness in admissions statistics. This example illustrates a situation which
could bring a benefit to patients. The same techniques could be applied to other

HEalth: Privately Computing on Shared Healthcare Data 159

scenarios where data is shared between several parties and private computation takes
place on the data.

We now consider the motivation of hospitals to take part in this process. Firstly,
this data sharing process will allow hospitals to have access to statistics calculated
using far more data than they would have access to if working independently.
Additionally, hospitals will be able to compare themselves to others, obtaining more
data for research and improvement.

A potential deployment issue is that different hospitals may store their data
differently. So there may be some requirement for participating hospitals to share
their data in a particular format. For example, we may need to format the data
gathered in the format of Fig. 1 as a matrix or a table. It is possible for this data pre-
processing to be automated from the existing form. Efficiency could be improved by
gathering data in a uniform way across participating hospitals to remove the need
for pre-processing.

3 A Discussion of the Underlying Cryptography

We propose to use the method of multiparty communication for threshold FHE, as
introduced in [1]. Asharov et al.’s work is an extension of existing FHE schemes
[4, 7]. In the multiparty communication setting, Key Generation and Decryption
become N-party protocols. Since we have a threshold encryption scheme, we require
N out of the M parties to cooperate in order to encrypt and decrypt.

Each of the M participating hospitals would be a party of the threshold scheme,
and we would require N hospitals to cooperate in order to decrypt the results of the
computations.

We must consider the case where a hospital no longer wishes to participate. In
this case, the hospital can destroy their share of the key, and other parties will still
be able to decrypt the results. The data of the non-participating hospital will remain
in the dataset until that round of computations on the data is complete. It will then
be possible to remove the data of one of the hospitals and begin computations again
with fresh keys on a new set of data.

4 The Initial Goal: Fairness

Our initial goal is to compute statistics based on fairness. Here it is possible to
compute relatively simple statistics on encrypted data which will have a large impact
on patients and their care.

We will measure fairness within the context of protected characteristics, since
these are recorded by hospitals already. Using these characteristics as indicators
will allow complex statistical information to be summarised and made accessible to
a non-technical audience [11].

160 L. de Castro et al.

We have many competing frameworks available, coming from the different
protected characteristics and policy domains, it is challenging to conceptualise
fairness. For example, what weight do we give to different ‘strands’ of protected
characteristics when we evaluate fairness? We aim to consider equality as “an
outcome of equal treatment” [11]. In the context of medical data, the concept of
‘treatment’ takes on additional significance.

We conclude that while fairness may vary between different frameworks, if an
admission decision lies too far from the norm then it is more likely to be due to unfair
practices rather than noise. The volume of data that our method allows anomalies to
be identified more easily.

We will require data submitted by hospitals to be in the same form, for example
in Fig. 1. We must consider that the features we choose to record should encapsulate
what the doctor is seeing and the information they use to make their decisions,
as well as being similar to what a doctor would previously have recorded. We can
ensure the data submitted by hospitals takes the same format without pre-processing
by adapting the interface the data is entered into.

We wish to calculate density-based statistics, and to begin with we calculate
simple statistics such as averages and histograms. In our work so far using
histograms we have only calculated one dimensional metrics, but these simple
implementations highlight the potential for managing higher dimensional data in
a usable manner. In addition, when compared to regression based methods our
density-based statistics have a much weaker selection bias since averaging controls
for bias.

Fig. 1 Example admissions
data

HEalth: Privately Computing on Shared Healthcare Data 161

5 Discussion

This application of threshold HE allows us to calculate healthcare statistics at a scale
not seen before. The results of our calculations aim to be readily interpretable, with
adaptive decision making rather than a blind prediction or classification. This is a
novel use case for the existing research taking place in Threshold FHE [1, 3, 9, 10].
Our application will hopefully be able to leverage developments and optimisations
in the field of threshold encryption.

In terms of encrypting and sharing the data, the key benefit of our approach is
that it allows hospitals to share data securely. Participating hospitals are provided an
assurance that the data cannot be decrypted without hospitals cooperating.

Hospitals have a strong privacy incentive to engage with the calculations, since
uploaded data is encrypted and cannot be decrypted by one of the hospitals. This
is because we require participation of many parties to decrypt, since each hospital
only has access to their own share of the decryption key.

Another particular benefit of our approach is that as long as the hospitals
retain their keys, additional algorithms could be developed to compute collective
statistics, including implementing additional algorithms [8] on historical data
without revealing secrets.

As it stands, our scheme does not consider malicious users. Future work would
analyse how the system would behave if users were malicious or honest but
curious, and how such malicious users could work together to compromise security.
Additionally, future work could explore what would happen if hospitals were to
submit some false or corrupted data, or an entirely false dataset. It would be useful
to see how much false or corrupted data the system could tolerate.

Future work could also extend the existing ‘fairness’ use case to other desirable
statistics on medical data.

References

1. Asharov G, Jain A, López-Alt A, Tromer E, Vaikuntanathan V, Wichs D (2012) Multiparty
computation with low communication, computation and interaction via threshold FHE. In:
Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Springer, pp 483–501

2. Association AH ((accessed January 14, 2020)) Fast Facts on U.S. Hospitals, 2020. https://www.
aha.org/statistics/fast-facts-us-hospitals

3. Boneh D, Gennaro R, Goldfeder S, Jain A, Kim S, Rasmussen PM, Sahai A (2018) Threshold
cryptosystems from threshold fully homomorphic encryption. In: Annual International Cryp-
tology Conference, Springer, pp 565–596

4. Brakerski Z, Gentry C, Vaikuntanathan V (2014) (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT) 6(3):13

5. for Disease Control C, Prevention (2017 (accessed January 14, 2020)) Health Expenditures.
https://www.cdc.gov/nchs/fastats/health-expenditures.htm

6. for Economic Co-operation O, Development (2020 (accessed January 14, 2020)) Health
expenditure and financing. https://stats.oecd.org/Index.aspx?DataSetCode=SHA

https://www.aha.org/statistics/fast-facts-us-hospitals
https://www.aha.org/statistics/fast-facts-us-hospitals
https://www.cdc.gov/nchs/fastats/health-expenditures.htm
https://stats.oecd.org/Index.aspx?DataSetCode=SHA

162 L. de Castro et al.

7. Fan J, Vercauteren F (2012) Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012:144

8. Graham S, Estrin D, Horvitz E, Kohane I, Mynatt E, Sim I (2011) Information technology
research challenges for healthcare: From discovery to delivery. ACM SIGHIT Record 1(1):4–9

9. Jain A, Rasmussen PM, Sahai A (2017) Threshold fully homomorphic encryption. IACR
Cryptology ePrint Archive 2017:257

10. Schoenmakers B (2011) Threshold Homomorphic Cryptosystems, Springer US, Boston, MA,
pp 1293–1294. https://doi.org/10.1007/978-1-4419-5906-5_13

11. Walby S, Armstrong J (2011) Developing key indicators of ‘fairness’: Competing frameworks,
multiple strands and ten domains – an array of statistics. Social Policy and Society 10(2):205–
218, https://doi.org/10.1017/S1474746410000552

https://doi.org/10.1007/978-1-4419-5906-5_13
https://doi.org/10.1017/S1474746410000552

Private Movie Recommendations
for Children

Anh Pham, Mohammad Samragh, Sameer Wagh, and Emily Wenger

1 Introduction

Data-driven business models such as recommender systems (Netflix, Pandora) and
targeted advertising (Facebook, Google) rely on consumer data and the information
they contain on individuals’ behavioral patterns and preferences. This reliance
effectively opens door to the longstanding conflict of privacy versus convenience: as
customers expect the rendered goods to be content-relevant to their specific needs,
a certain degree of user data exploitation by service providers is mandatory. At the
same time, the mounting number of data collection and data breaches has prompted
the public to grow hostile towards the tech sector; a recent case is the $170 million
fine imposed in September 2019 on Google and YouTube Kids for violating federal
requirements for child privacy protection [1]. Homomorphic encryption offers a
solution to this pressing problem: a fully homomorphic encryption (FHE) scheme
can be used to construct a private recommender system with which user data is
not exposed to service providers in the raw form, and only data “masked” by
encryption is sent to providers for recommendation. In this project, we construct

A. Pham
Department of Biomedical Informatics, UC San Diego, La Jolla, CA, USA
e-mail: anp055@eng.ucsd.edu

M. Samragh
Electrical and Computer Engineering, UC San Diego, La Jolla, CA, USA
e-mail: msamragh@ucsd.edu

S. Wagh (�)
RISE Lab, UC Berkeley, Berkeley, CA, USA
e-mail: swagh@alumni.princeton.edu

E. Wenger
Computer Science, University of Chicago, Chicago, IL, USA
e-mail: ewenger@uchicago.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_13

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_13&domain=pdf
mailto:anp055@eng.ucsd.edu
mailto:msamragh@ucsd.edu
mailto:swagh@alumni.princeton.edu
mailto:ewenger@uchicago.edu
https://doi.org/10.1007/978-3-030-77287-1_13

164 A. Pham et al.

a general framework for an FHE-backed recommender that can be extended to
different applications, with the particular use case of YouTube Kids as a proof-of-
concept.

To this end, we propose a private video recommendation system, appropriate
for a platform like YouTube Kids. This system, built on fully homomorphic
encryption, would allow the platform to make tailored recommendations to children
without exposing their private information. In this writeup, we briefly describe the
motivation and construction of our system. We then discuss the novelty, soundness,
feasibility, and impact of such a system.

1.1 Background

The Child Online Protection Privacy Act (COPPA) was passed in the US in 1999
and significantly revised in 2011 [2]. It provides legal protection for children’s
activity and data shared online. Among its many requirements, it mandates that
online providers “. . . establish and maintain reasonable procedures to protect the
confidentiality, security, and integrity of the personal information collected from
children under age 13”. The recent legal action against Google is a sober reminder
that such privacy-protection procedures are often not in place. Nonetheless, the fact
remains that a recommender system requires collecting of personal data.

FHE implementation within the recommender pipeline can resolve the tension
between privacy preservation and pattern mining over personal data. FHE allows
the ability to compute on encrypted data and yields results that, when decrypted,
would match the computation as if it has been done on plaintexts. This capacity
enables recommenders to execute their algorithms while respecting the privacy of
users. Prior work on private recommendation algorithms informs our prototype of a
private video recommendation system for children [3].

2 Proposed Implementation

The abstract design of our recommender system is shown in Fig. 1. In this setting,
the server wishes to utilize the client’s confidential feature vector x ∈ Rn and
provide a proper recommendation. The protocol involves the following steps:

1. The client encrypts its private message x→Encpk(x).
2. The server receives the encrypted message and computes f (Encpk(x)) homo-

morphically. During this process, no information about input x or the analysis
result is revealed to the server since only the client has the decryption keys.

3. The client decrypts f (Encpk(x))→f (x) using her secret key and retrieves the
recommendation.

Private Movie Recommendations for Children 165

Fig. 1 Our proposed design for a private recommender system based on homomorphic encryption

In our prototype, the training of the recommender model is done on public
ratings from n clients, i.e., x1, . . . , xn. The data matrix X = [x1|x2 . . . |xn] is
formed by stacking the data from the users. The element located at the i-th row
and j -th column, Xi,j , is the rating that the j -th user provides for the i-th movie.
For recommendation, we utilize Content Based Filtering (CBF) and Collaborative
Filtering (CF) which are widely adopted in recommendation systems. The key steps
are as follows:

Offline/Training Phase The server computes a similarity matrix S ∈ Rm×m which
will later be used for making recommendation. Formally, the similarity matrix is
computed as

S = X · XT

W · WT
(1)

where X ∈ Rm×n is the data matrix and W ∈ Rm is the norm of ratings computed
by the following equation:

W =
√√√√

n∑

i=1

(x2
i) (2)

For this phase of the prototype, we perform the computation of S in plain text.
However, this step can be done homomorphically to enhance privacy.

Online/Inference Phase Depending on the underlying data, the server either uses
CBF or CF for recommendation making. For a feature vector x, the server computes
f (x) as follows:

f (x) =
{

S·x
Y

CBF

A − S·A
Y

+ S·x
Y

CF
(3)

166 A. Pham et al.

Fig. 2 Our proposed design for a private recommender system based on homomorphic encryption.
The underlying algorithm is described in Sect. 2.1. We use boosting to increase the weight of the
“high” recommendations and reduce that of “low” there should be a period after recommendations

where Y ∈ Rm is achieved by summing the columns of S and A ∈ Rm is the
average rating for each movie. Note that the term A − S·A

Y
in the CF method is

a constant and can be computed offline. In both CF and CBF methods, the core
computation involving users’ data is S·x

Y
. To ensure user privacy, this step should be

done homomorphically. Figure 2 summarizes the required HE-based operations. In
the next section, we elaborate on the design of the homomorphic encryption portion
of our application.

2.1 HE Technical Details

We choose the non-interactive model to be fairly optimal in terms of communica-
tion. The total communication is the size of two ciphertexts which is 2 · log q · N ≈
364 KB each direction, where q is the ciphertext modulus and N is the degree of
the cyclotomic polynomial. In terms of computation, the server performs matrix-
vector multiplication with the vector encrypted and the matrix in plaintext. This
requires Galois keys from the user and consumes one depth of computation. Further,
to compress all the products into one ciphertext, we use a sequential masking (all
slots encode the dot product so no further rotation required) and then add these up
into one ciphertext. This consumes one depth of computation.

The boosting is a simple observation that for a given vector {a1, a2, . . . , an},
computing the vectors {ak

1, . . . ak
n} for a given k will increase the separation between

the top values of ai from the rest. In our work, we set k = 2 and hence
require 2 depths of HE computations. The performance bottleneck is the matrix-
vector multiplication which we parallelize using eight cores. Overall, we require
parameters to be set that support at least depth 4 computation. This puts a lower
bound on the degree of the cyclotomic polynomial N . We need to use at least
N = 8192. This gives us about 218-bits of space for the ciphertext modulus. For
performance reasons, we use these values and enable computations over a movie
corpus of up to 2048 movies. The keys are stored locally on the end devices and the
Galois keys are communicated in an offline/set-up phase.

Private Movie Recommendations for Children 167

3 Discussion

In this section, we evaluate our solution under the proposed comparison metrics.

Novelty While previous work has designed a private recommendation system
(see [3]), current recommender systems do not incorporate privacy-preserving
computations on user data. Our work designs and tests a practical and low-overhead
implementation of such a system. Furthermore, the implementation we propose can
extend to domains beyond video recommendation. This opens the door to a wide
variety of new applications at the nexus of homomorphic encryption and machine
learning.

Soundness The security of our system is inherent due to the underlying homo-
morphic encryption scheme. The polynomial degree and ciphertext modulus are
set to prevent information leakage, as discussed in Sect. 2.1. In this short article
we only discuss non-interactive HE-based scenarios where the functionality of the
recommender system is solely rendered by linear operations. Designing interactive
protocols that support more nonlinear operations is a promising future direction. In
fact, it may be reasonable to assume an interactive user for video recommendation
systems since the user is present during the process. Such interactive protocols will
allow for private evaluation of more complex machine learning models, e.g., deep
neural networks, which can provide a higher quality of service.

Feasibility Section 2.1 describes the technical details of our implementation. The
size of the recommendation matrix scales linearly with the number of users. The
size of the matrix may become unwieldy with very large numbers of users, so we
recommend optimization of this matrix computation as future work.

Impact Our work creates alternative ways for companies like YouTube to rec-
ommend content to users without violating their privacy. As data-sharing scandals
continue to surface, privacy-centric systems become increasingly important.

References

1. “Google and YouTube Will Pay Record $170 Million for Alleged Violations of Children’s
Privacy Law”, FTC, 2019. https://www.ftc.gov/news-events/press-releases/2019/09/google-
youtube-will-pay-record-170-million-alleged-violations

2. “Children’s Online Privacy Protection Act”, 2019. https://en.wikipedia.org/wiki/Children’s_
Online_Privacy_Protection_Act

3. “A practical privacy-preserving recommender system”, Shahriar Badsha and Xun Yi and
Ibrahim Khalil, 2016. Data Science and Engineering. Springer, Volume 1, number 3, pp 161–
177.

https://www.ftc.gov/news-events/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations
https://www.ftc.gov/news-events/press-releases/2019/09/google-youtube-will-pay-record-170-million-alleged-violations
https://en.wikipedia.org/wiki/Children's_Online_Privacy_Protection_Act
https://en.wikipedia.org/wiki/Children's_Online_Privacy_Protection_Act

Privacy-Preserving Prescription Drug
Management Using Fully Homomorphic
Encryption

Aria Shahverdi, Ni Trieu, Chenkai Weng, and William Youmans

1 Introduction

According to the CDC [8], 46 people die every day from overdoses involving
prescription opioids. In an attempt to reduce abuse of controlled medications like
opioids many states implement a Prescription Drug Management Program (PDMP).
The program is realized as a central database accessible to healthcare providers who
can query for a record of a patient’s most recently dispensed controlled medications.
This allows providers to make more intelligent decisions about when to prescribe or
dispense these medications. It also helps prevent doctor shopping, where a patient
sees multiple doctors for the same condition to obtain more controlled medications,
either with the intention of abusing or redistributing the medication.

Currently, patient data in this system can be accessed by pharmacists, physicians,
insurance companies, law enforcement agencies, and others. After registering with
the program users are given access to all patient records. Granting access to such
sensitive records to so many parties is an obvious security concern, and it comes
as no surprise that a breach has already occurred. In Florida in 2013 [10], over

A. Shahverdi
University of Maryland, College Park, MD, USA
e-mail: ariash@umd.edu

N. Trieu
Arizona State University, Tempe, AZ, USA
e-mail: nitrieu@asu.edu

C. Weng
Northwestern University, Evanston, IL, USA
e-mail: ckweng@u.northwestern.edu

W. Youmans (�)
University of South Florida, Tampa, FL, USA
e-mail: wyoumans@usf.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_14

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_14&domain=pdf
mailto:ariash@umd.edu
mailto:nitrieu@asu.edu
mailto:ckweng@u.northwestern.edu
mailto:wyoumans@usf.edu
https://doi.org/10.1007/978-3-030-77287-1_14

170 A. Shahverdi et al.

3000 patient records were shared with county prosecutors as part of a criminal
investigation, when many were irrelevant to the case. An attorney involved in the
investigation discovered a friend on the list and gave them the data so they could
pursue legal action.

We propose a solution utilizing Privacy-Preserving Machine Learning (PPML)
and Fully Homomorphic Encryption (FHE) to preserve the benefits of the PDMP
database while eliminating the risk of leaking sensitive patient information. We
accomplish this by transferring control of the data back to the patient. Patient
records will be stored in a central server and encrypted using the patient’s key.
Prescribers or pharmacists can submit a patient’s encrypted prescription requests
to this central server. Here, thanks to advances in FHE, we can perform PPML
on the patient’s encrypted data to produce an encrypted certificate authorizing or
denying the prescribing or dispensing of the medication based on their history.
Once decrypted, this certificate can be authenticated by the healthcare provider
to prevent potential tampering or counterfeiting. Finally, the server can update the
patient’s encrypted record without the need for decryption by using the properties of
FHE. This protocol will prevent the use of the database for any other purpose than
determining if a patient is eligible for a controlled medication.

2 Our Model

For simplicity, we will describe a scheme which only considers three parties: the
patient, pharmacist, and server. We assume the server holds a database of patient
records—each encrypted under a separate key—as well as a machine learning model
trained to detect potential abuse of medication. In practice, other parties might want
to be involved, such as prescribers that want to ensure a patient is not potentially
abusing their medication. The scheme described below can easily be extended to
account for this scenario.

Since we desire that each patient encrypts their data with their own key, we need
a method of ensuring that encrypted responses from the server decrypted by the
patient and delivered to the pharmacy have not been tampered with. We propose that
the server and pharmacy create a shared secret key for some symmetric scheme that
can be efficiently evaluated homomorphically for our choice of FHE scheme. The
details of the FHE scheme, PPML model, and symmetric scheme for authentication
will be discussed later.

The overview of our scheme is presented in Fig. 1. It consists of two phases:
(1) submitting a prescription request, where a PPML model determines if the
medication is safe to dispense, and (2) authentication of the result in the pharmacy.
The first phase can be done entirely between the patient and the server, see Fig. 2.
Consider an example where a patient has a prescription for a controlled medication.
They send to the server the hash of their identity H(x) as well as the encryption
Encpk(P) of their prescription details (either scanned or manually entered, for
example). The server evaluates the PPML model on the patient’s existing encrypted

Privacy-Preserving Prescription Drug Management Using FHE 171

Patient Pharmacy Server

(), Enc ()

Enc ((res)), Enc (())

Phase 1Phase 1 Patient to Server

(res), ()

Dispense

Phase 2Phase 2 Patient to Pharmacy

Fig. 1 The overview of our scheme

Hashed patient identifier (), encrypted patient prescription Enc ().

• Locate the patient’s encrypted record Enc () using their identifier ().
• Obtain the output Enc (res) of the PPML model with input Enc () and Enc ().
• Homomorphically compute Enc ((res)), Enc (()) for a symmetric scheme .

Send to the patient Enc ((res)), Enc (()).

Fig. 2 Patient-server interaction in phase 1

record Encpk(R) and new encrypted prescription to produce an encrypted result
Encpk(res) authorizing or denying the new prescription based on the patient’s
history. We will refer to this result of the model as the “label”.

In the second phase, the patient decrypts the server response to obtain π(res)
and π(P) which they provide to the pharmacist. Optionally, the server can return
Encpk(res) as well, if it’s desired that the patient sees the label at this step. The
pharmacist decrypts π(res) and π(P) with the shared secret key to learn the result
of the model as well as verify that the prescription data P sent to the server matches
the prescription brought to them by the patient. We discuss how to prevent tampering
or a dishonest patient from providing an incorrect or previously used label in Sect. 5.

Lastly, the server updates the patient’s encrypted record with the new encrypted
prescription data. We can assume the new prescription data is stored from the initial

172 A. Shahverdi et al.

round of communication or sent again by the pharmacy. In either case, the technique
for merging encrypted records is covered in Sect. 3.

3 Fully Homomorphic Encryption

There are three major aspects of our design which influence our choice of FHE
scheme:

1. The server must be able to make predictions on a patient’s encrypted data.
2. Healthcare providers will need a method of authenticating the server response to

prevent tampering by the patient.
3. Upon dispensing a medication the patient’s record will need to be updated.

3.1 Our Choice of FHE Scheme

In order to accommodate all of these needs we chose to use the Brakerski-Gentry-
Vaikuntanathan (BGV) FHE scheme as described in [2]. While other schemes can
handle requirements 1 and 3, the authentication step mentioned in requirement 2
means we will need an FHE-friendly symmetric encryption scheme. LowMC [1] is a
block cipher with comparatively low multiplicative depth designed for use with FHE
and multi-party computation. Lattice-based symmetric encryption schemes based
on Learning With Errors (LWE), Learning Parity with Noise (LPN), and Learning
With Rounding (LWR) were described in [5] and provide another option. All of
these schemes were demonstrated to be efficient to evaluate homomorphically using
BGV as implemented in HElib [7]. The details of this will be discussed in Sect. 5.

The next most important requirement is that we can homomorphically evaluate
the machine learning model. For the most accurate models, this means approximat-
ing non-linear functions in a manner suitable to homomorphic operation. We give a
more detailed survey of the potential solutions in Sect. 4.

3.2 Updating the Encrypted Records

The last usage of our FHE scheme is updating patient records. For this, we propose
taking advantage of the ciphertext packing techniques of Smart and Vercauteren [9]
which allow for single instruction multiple data (SIMD) operations. With this we
can perform operations on a single ciphertext which translates to performing parallel
operations coefficient-wise on a vector of plaintext slots. We also use homomorphic
rotations of ciphertexts which corresponds to rotating the underlying plaintext slots.
Both techniques are available in the current implementation of BGV in HElib.

Privacy-Preserving Prescription Drug Management Using FHE 173

Consider a simplified example where a patient prescription contains only the
drug name, quantity, and date. We represent FDA approved drugs by their NDC
or National Drug Code. We will write a patient’s plaintext prescription as a vector
P = 〈n, q, d, 0, . . . , 0〉 of length m determined by the number of plaintext slots
available with the given BGV parameters. Let n, q, and d represent the NDC,
quantity, and date respectively. We will represent a patient record containing the
NDC, quantity, and date of the last m prescriptions as a triple (R1, R2, R3) where
R1 = 〈n1, . . . , nm〉, R2 = 〈q1, . . . , qm〉, and R3 = 〈d1, . . . , dm〉. We will assume
the records are in order from newest to oldest. A prescription encrypted under a
patient’s public key pk takes the form Encpk(P) = Encpk(n, q, d, 0, . . . , 0), and
an encrypted patient record Encpk(R) = (Encpk(R1),Encpk(R2),Encpk(R3)).
Lastly write 0i for the plaintext vector which is 0 everywhere and 1 in the i-th
slot, and 1i for the plaintext vector which is 1 everywhere and 0 in the i-th slot.
In Algorithm 1 we demonstrate a possible approach to updating encrypted patient
records by rotating the ciphertexts and overwriting the m-th prescriptions data.

Algorithm 1 Update database
Input: encrypted patient prescription Encpk(P), encrypted patient record Encpk(R).
Output: updated encrypted patient record Encpk(R

′).
1: for i ∈ {1, 2, 3} do
2: A ← Encpk(P ∗ 0i) = Encpk(P) ∗ Encpk(0i) � Erase all but the i-th slot of P .
3: A ← rot(A,m − i + 1) � Rotate slot i to slot 1.
4: B ← Encpk(Ri ∗ 1m) = Encpk(Ri) ∗ Encpk(1m) � Erase slot m of Ri .
5: B ← rot(B, 1) � Rotate slot m to slot 1.
6: xi ← Encpk(R

′
i) = A + B � Insert the prescription data.

7: end for
8: return (x1, x2, x3)

3.3 Parameters

Choosing parameters for use with any FHE scheme is a delicate task involving many
factors, often reducing to experimentation for fine tuning. Since we currently lack
an implementation determining the parameters is even more challenging. However,
we note that BGV supports switching back and forth between plaintext moduli of
the form 2k via a re-encryption process.

We outline a general approach inspired by Crawford et al. [4]. By storing our
data (prescriptions and prescription records) in packed ciphertexts with plaintext
modulus 2k for some large enough k, we can extract the k encrypted bits as necessary
at the cost of some predictable amount of homomorphic capacity depending on
the starting parameters. This technique allowed the authors of [4] to implement
more efficient approximation of non-linear functions using homomorphic look-up
tables. This also simplifies the homomorphic evaluation of the decryption circuit

174 A. Shahverdi et al.

of a symmetric scheme that works bit-wise. In [4] BGV was used with plaintext
space the m-th cyclotomic integer ring for m = 215 − 1 and plaintext modulus
211. This corresponds to lattices of dimension φ(m) = 27,000 and a recryption
step costing 20 levels. This is the cost of extracting the 11 encrypted bits from each
slot. They chose to use 29 levels in the BGV moduli-chain resulting in a ciphertext
modulus q of roughly 1030 bits and overall security of more than 80 bits. These
parameters result in 1800 plaintext slots per ciphertext, each able to contain 11 bit
integers. We expect this should also be sufficient for our case, and the ability to
extract encrypted bits will allow us to directly use the existing implementation of the
LowMC block cipher demonstrated in [1] to homomorphically operate on encrypted
bits using BGV.

4 The Machine Learning Model

The machine learning model should take as input the patient’s encrypted record
and new encrypted prescription. Then it runs a classification algorithm resulting
in a decision which tells the pharmacy whether or not they should dispense the
medication. The traditional models used for prediction in the healthcare industry
involve logistic regression, support vector machines (SVM), and random forests.
Homomorphic encryption is not well suited to the branching computations involved
in random forests. SVM requires keeping all of the training data to make predic-
tions [3], which may or may not be suitable depending on how we choose to train
the model. Logistic regression is a feasible option that is well studied in the context
of BGV [4]. Neural networks are also a candidate, assuming we can approximate
the non-linear functions involved in a way suitable for homomorphic operations. In
any case, it will be necessary to either extract feature vectors from the encrypted
patient records using the techniques of Algorithm 1 or to store patient records as
feature vectors directly.

4.1 Training the Model

Our options for training the model are severely restricted by our requirement that
each patient’s data be encrypted under a distinct key. Training on encrypted data
in this setting is not straightforward. Instead, we propose to generate anonymous
patient records and prescriptions and ask health professionals to assign a label
depending on if the prescription should be approved or not. This way the model
can be trained on clear data and only predictions involve computation on encrypted
data.

Privacy-Preserving Prescription Drug Management Using FHE 175

4.2 A Remark on Using ML

There are some concerns that should be taken into consideration when using
machine learning in this context. Since the training data must be labeled by health
professionals it will, unfortunately, capture any biases in their decisions. Ideally,
our system would not just improve privacy but also the accuracy and fairness in
the decision to prescribe a patient controlled medications. To this end, it may
be more efficient to encode a set of rules for approving or denying controlled
prescriptions and bypass machine learning altogether. This will need to be taken
into consideration in any practical application.

5 Authentication

Assume that a patient has submitted an encrypted prescription Encpk(P) to the
server. The server feeds the prescription and encrypted patient record Encpk(R) to
the model, which produces a encrypted label Encpk(res). Now the server is tasked
with sending this data to the patient, to be decrypted with the patient’s secret key,
and presented at the pharmacy. It is possible that the patient may try to modify
the result of the model, make up a fake result altogether, or mix and match labels
and prescriptions to their advantage. In order to prevent patient tampering during
this transaction, we introduce an authentication step under the assumption that the
server and pharmacy have previously agreed on a shared secret key.

5.1 The Shared Secret Key

One may consider letting the server sign a digital signature over the ciphertext.
However, this is not enough for the pharmacy to verify the authenticity of the
plaintext result. One solution is homomorphic evaluation of the decryption circuit
of a symmetric-key encryption scheme. Implementations of AES [6] as well
as LowMC [1]—a block cipher with low AND depth and low multiplicative
complexity specially developed for use with FHE—have been developed using
HElib. Lattice based schemes have also been studied in this context and show
promise [5]. For this work, we will use LowMC.

Assume that each pharmacy shares a secret key ss with the server, which is also
the encryption key of the algorithm LowMC, π(). In phase 1 of our scheme, the
server will return to the patient the output of the model as well as the encryption
under the shared secret key: Encpk(res), Encpk(πss(res)), and Encpk(πss(P)).
The patient then decrypts the response using the FHE secret key sk and obtains
res, πss(res), and π(P). The patient can see the output of the model themselves,
and sends πss(res) and πss(P) to the pharmacy. The pharmacy decrypts to recover

176 A. Shahverdi et al.

the result of the model, and checks that the prescription P matches that presented
by the patient.

5.2 Prevent Patient Tampering

Lastly, we need to ensure the patient can not mix and match the results of the
model with different prescriptions. One possible solution is to preserve a plaintext
slot for a serial number or timestamp, i. Then before encryption with π(), the
server inserts i into the plaintext slot using the same strategy used previously to
update a patient record. The patient receives Encpk(res, i), Encpk(πss(res, i)), and
Encpk(πss(P, i)). On final decryption, the pharmacy can verify that the slots match.
Using timestamps has the added advantage of allowing a potential expiration for the
authentication. If the check passes, the pharmacy can fill the prescription or not
based on the decision made by the machine learning model.

References

1. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael
Zohner. Ciphers for MPC and FHE. In Advances in cryptology—EUROCRYPT 2015. Part
I, volume 9056 of Lecture Notes in Comput. Sci., pages 430–454. Springer, Heidelberg, 2015.

2. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully Homomorphic Encryption
without Bootstrapping. Cryptology ePrint Archive, Report 2011/277, 2011. https://eprint.iacr.
org/2011/277.

3. Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. In Machine Learning, pages
273–297, 1995.

4. Jack L.H. Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor Shoup. Doing
Real Work with FHE: The Case of Logistic Regression. Cryptology ePrint Archive, Report
2018/202, 2018. https://eprint.iacr.org/2018/202.

5. Pierre-Alain Fouque, Benjamin Hadjibeyli, and Paul Kirchner. Homomorphic Evaluation
of Lattice-Based Symmetric Encryption Schemes. In Thang N. Dinh and My T. Thai,
editors, Computing and Combinatorics, pages 269–280, Cham, 2016. Springer International
Publishing.

6. Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic Evaluation of the AES Circuit.
Cryptology ePrint Archive, Report 2012/099, 2012. https://eprint.iacr.org/2012/099.

7. S. Halevi and V. Shoup. HElib - an implementation of homomorphic encryption, September
2014.

8. H. Hedegaard, B.A. Bastian, J.P. Trinidad, M. Spencer, and M. Warner. Drugs most frequently
involved in drug overdose deaths: United States, 2011–2016. National Vital Statistics Reports,
67, 2018.

9. N.P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. Cryptology ePrint
Archive, Report 2011/133, 2011. https://eprint.iacr.org/2011/133.

10. Times Staff Writer. Tampa Bay Times, 2013. https://www.tampabay.com/news/politics/did-
floridas-prescription-pill-database-really-spring-a-leak/2130108/.

https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2018/202
https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2011/133
https://www.tampabay.com/news/politics/did-floridas-prescription-pill-database-really-spring-a-leak/2130108/
https://www.tampabay.com/news/politics/did-floridas-prescription-pill-database-really-spring-a-leak/2130108/

Correction to: Introduction to
Homomorphic Encryption and Schemes

Jung Hee Cheon, Anamaria Costache, Radames Cruz Moreno, Wei Dai,
Nicolas Gama, Mariya Georgieva, Shai Halevi, Miran Kim, Sunwoong Kim,
Kim Laine, Yuriy Polyakov, and Yongsoo Song

Correction to:
Chapter 1 in: K. Lauter et al. (eds.),
Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_1

The original version of this book has been revised because it was inadvertently
published with the following errors which have now been updated.

Chapter 1
Page 7: In Fig. 1, the term “selction” has been updated to “selection”
Page 7: “(R) LWE” has been updated to “(R)LWE”
Page 8: The symbol “n” has been set as italics
Page 9: In footnote, “rotations, see the” has been updated to “rotations. See the”
Page 10: “secret-key” has been updated to “secret key”
Page 20: “a • x” has been updated to “a * x”
Page 21: “Such operations are described in library-specific whitepapers” has been
removed
Page 24: “(this operation is implicit on representations modulo 1, where the
precision of the ciphertext representation is always of the order of α)” has been
updated to “This operation is implicit on representations modulo 1, where the
precision of the ciphertext representation is always of the order of α”

The updated online versions of this chapter can be found at
https://doi.org/10.1007/978-3-030-77287-1_1

© Springer Nature Switzerland AG 2022
K. Lauter et al. (eds.), Protecting Privacy through Homomorphic Encryption,
https://doi.org/10.1007/978-3-030-77287-1_15

C1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77287-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-77287-1_1
https://doi.org/10.1007/978-3-030-77287-1_1
https://doi.org/10.1007/978-3-030-77287-1_15

	Preface
	References

	Contents
	Part I Introduction to Homomorphic Encryption
	Introduction to Homomorphic Encryption and Schemes
	1 Introduction to Homomorphic Encryption
	1.1 Plaintexts and Operations
	1.2 Vectors and Special-Purpose Plaintext Data Types
	1.3 Ciphertexts
	1.4 Symmetric vs. Public-Key Homomorphic Encryption
	1.5 Parameters and Security

	2 The BGV and BFV Encryption Schemes
	2.1 Homomorphic Operations
	Two-Argument Operations
	Unary Operations

	2.2 Parameter Selection
	2.3 A BGV/BFV Hello World Example
	2.4 Further Information
	Maintenance Operations
	Evaluation Keys
	Data Encoding
	Data Movement Operations
	References for the BFV Encryption Scheme
	References for the BGV Encryption Scheme

	3 The CKKS Encryption Scheme
	3.1 Homomorphic Operations
	Two-Argument Operations
	Unary Operations

	3.2 Parameter Selection
	3.3 A CKKS Hello World Example
	3.4 Further Information
	Data Encoding
	Maintenance Operations
	Evaluation Keys
	References for the CKKS Scheme
	Reference Implementations

	4 The DM (FHEW) and CGGI (TFHE) Schemes
	4.1 Basic Concepts
	4.2 Homomorphic Operations
	Simple Mode Plaintext Space and Operations
	A DM/CGGI Hello World Example (Using Simple Mode)
	Advanced Mode Plaintext Space and Operations
	Advanced-Mode CGGI Hello World Example (Corresponds to the DFA in Fig. 1)

	4.3 Further Information
	Advanced Notes on Parameters
	Some More Advanced Operations Are Supported
	Maintenance Operations (and More)
	Advanced Functionality in the CGGI Encryption Scheme
	Difference Between DM and CGGI
	Variants of DM/CGGI
	Scheme Switching Using CGGI
	Reference Implementations

	References

	Part II Homomorphic Encryption Security Standard
	Homomorphic Encryption Standard
	1 Homomorphic Encryption Standard Section 1: Recommended Encryption Schemes
	1.1 Notation and Definitions
	1.2 Properties
	1.3 The BGV and B/FV Homomorphic Encryption Schemes
	1.4 The GSW Scheme and Bootstrapping
	1.5 Other Schemes
	1.6 Additional Features & Discussion

	2 Homomorphic Encryption Standard Section 2: Recommended Security Parameters
	2.1 Hard Problems
	2.2 Attacks on LWE and Their Complexity
	2.3 The Arora-Ge Attack
	2.4 Algebraic Attacks on Instances of Ring-LWE
	2.5 Secure Parameter Selection for Ring LWE
	Organizers
	Contributors

	References
	 Software References for 7 Homomorphic Encryption Libraries

	Part III Applications of Homomorphic Encryption
	Privacy-Preserving Data Sharing and Computation Across Multiple Data Providers with Homomorphic Encryption
	1 Motivation
	2 System Models and Use Cases
	3 Stakeholders and Functionalities
	4 Functionality Goals
	5 Threat Models and Security Requirements
	6 High-Level Workflow
	7 Example Protocol Instantiations
	7.1 Distributed Data Discovery (MedCo)
	Setup
	Initialization
	ETL Process
	Query Generation
	Query Re-encryption
	Local Query Processing
	Result Obfuscation
	Result Shuffling
	Proxy Re-encryption of the Result
	Decryption

	7.2 Centralized Data Analysis (Private Evaluation of Random Forests)
	7.3 Distributed Data Analysis (Statistical Computation and Training of Machine Learning Models)

	8 Concluding Remarks
	References

	Secure and Confidential Rule Matching for Network Traffic Analysis
	1 Introduction
	1.1 Motivation and Business Problem

	2 Threat Model
	3 Protocol
	3.1 Client
	3.2 Solution Provider
	3.3 Rule Sets
	Examples of Rules

	3.4 Prerequisites of the Protocol
	3.5 Protocol Steps

	4 Performance, Usability, and Scalability
	4.1 Security Agencies
	4.2 Fraud Detection

	References

	Trusted Monitoring Service (TMS)
	1 Privacy-Preserving Health Monitoring
	2 Business Motivation
	3 Protocol (Workflow)
	4 Performance, Usability, Scalability
	5 Applications of Trusted Monitoring Systems
	References

	Private Set Intersection and Compute
	1 Motivation
	1.1 Privacy Compliance
	1.2 Co-marketing as a Use Case

	2 Application Functionality
	2.1 Database Statistics on PSI Selected Entries

	3 Protocol
	3.1 Workflow
	3.2 First Protocol: N Parties with One Central Compute Node

	4 Examples
	4.1 IXUP
	4.2 Private Join and Compute

	5 Performance, Usability, and Scalability
	References

	Part IV Applications of Homomorphic Encryption
	Private Outsourced Translation for Medical Data
	1 Introduction
	2 Machine Translation
	3 Design
	3.1 Challenges

	4 Implementation and Evaluation
	4.1 Encoding
	4.2 Optimizations
	4.3 Results

	5 Discussion
	References

	HappyKidz: Privacy Preserving Phone Usage Tracking
	1 Introduction
	1.1 Privacy Model

	2 Proof of Concept Implementation
	2.1 Data Selection and Features
	2.2 Learning Model
	2.3 Microsoft SEAL Implementation

	3 Soundness and Future Work
	3.1 Future Work

	4 Conclusion
	References

	i-SEAL2: Identifying Spam EmAiL with SEAL
	1 Introduction
	2 Private Classification
	3 Private Training
	4 Conclusion

	PRIORIS: Enabling Secure Detection of Suicidal Ideation from Speech Using Homomorphic Encryption
	1 Introduction
	2 Suicide Ideation Detection
	2.1 Dataset
	2.2 Application

	3 Use Cases
	3.1 Use-Case 1: Secure Detection and Response
	3.2 Use-Case 2: Secure Clinical Assessment Assistance
	3.3 Use-Case 3: Secure Treatment Evaluation

	4 Network Training
	5 Homomorphic Network Evaluation
	6 Extensions and Future Work
	7 Conclusion
	References

	Gimme That Model!: A Trusted ML Model Trading Protocol
	1 Introduction
	2 Non-cryptographic Approaches and Their Drawbacks
	3 Our HE-Based Cryptographic Solution
	3.1 The Protocol
	3.2 Efficiency of the Protocol
	3.3 Towards the Perfect Model Protection
	3.4 Compatible ML Models

	4 Discussions
	4.1 Plausibility of Trading ML Models
	4.2 Alternative Cryptographic Solutions
	4.3 Dual Scenario: Trading Datasets

	References

	HEalth: Privately Computing on Shared Healthcare Data
	1 Introduction and Motivation
	2 Our Scenario
	3 A Discussion of the Underlying Cryptography
	4 The Initial Goal: Fairness
	5 Discussion
	References

	Private Movie Recommendations for Children
	1 Introduction
	1.1 Background

	2 Proposed Implementation
	2.1 HE Technical Details

	3 Discussion
	References

	Privacy-Preserving Prescription Drug Management Using Fully Homomorphic Encryption
	1 Introduction
	2 Our Model
	3 Fully Homomorphic Encryption
	3.1 Our Choice of FHE Scheme
	3.2 Updating the Encrypted Records
	3.3 Parameters

	4 The Machine Learning Model
	4.1 Training the Model
	4.2 A Remark on Using ML

	5 Authentication
	5.1 The Shared Secret Key
	5.2 Prevent Patient Tampering

	References

	Correction to: Introduction to Homomorphic Encryption and Schemes

