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Shifting Paradigms in Verification and
Validation of AI-Enabled Systems: A
Systems-Theoretic Perspective
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Abstract There is a fundamental misalignment between current approaches to
designing and executing verification and validation (V&V) strategies and the nature
of AI-enabled systems. Current V&V approaches rely on the assumption that sys-
tem behavior is preserved during a system’s lifetime. However, AI-enabled systems
are developed so that they evolve their own behavior during their lifetime; this is
the consequence of learning by the AI-enabled system. This misalignment makes
existing approaches to designing and executing V&V strategies ineffective. In this
chapter, we will provide a systems-theoretic explanation for (1) why learning capa-
bilities originate a unique and unprecedented family of systems, and (2) why current
V&V methods and processes are not fit for purpose. AI-enabled systems necessitate
a paradigm shift in V&V activities. To enable this shift, we will delineate a set of
theoretical advances and process transformations that could support such shift.

Keywords Verification and validation · Systems theory · Cyber-physical
systems · AI-enabled systems · Systems engineering

N. Shadab · A. U. Kulkarni
Grado Department of Industrial And Systems Engineering, Virginia Tech., Blacksburg, VA 24061,
USA
e-mail: nshadab@vt.edu
URL: https://www.vt.edu

A. U. Kulkarni
e-mail: aditya88@vt.edu

A. Salado (B)
Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ
85721, USA
e-mail: alejandrosalado@arizona.edu

© Springer Nature Switzerland AG 2021
W. F. Lawless et al. (eds.), Systems Engineering and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-77283-3_18

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77283-3_18&domain=pdf
mailto:nshadab@vt.edu
https://www.vt.edu
mailto:aditya88@vt.edu
mailto:alejandrosalado@arizona.edu
https://doi.org/10.1007/978-3-030-77283-3_18


364 N. Shadab et al.

18.1 Introduction

Systems Engineering experts have developed methodologies and processes to suc-
cessfully verify and validate complex systems. V&V activities play a crucial role
to form experts’ beliefs about system performance, functions, and structure (Engel
2010; Hoppe et al. 2007; Salado and Kannan 2019). These V&Vmethodologies and
processes were originally designed to support the development of traditional sys-
tems, which we describe as behavior-preserving, such that, when subjected to the
same inputs, the system is expected to produce the same outputs throughout the sys-
tem’s operational life (Salado and Kannan 2019). Furthermore, traditional systems
are deployed in environments where there is little or no learning to be performed by
the system itself; instead, learning is an attribute of the human operators that are part
of the system’s operational environment. Thus, in the design of behavior-preserving
systems, V&V activities are employed to predict, confirm, or gain confidence about
the future behavior of a system in its operational environment.

In contrast to traditional systems is Artificial Intelligence-enabled systems (AI-
enabled systems), which we define as cyber-physical systems that exhibit artificial
intelligence (AI) capabilities. The AI capability can utilize history to alter the oper-
ational parameters of the system. That is, in general, AI-enabled systems are not
behavior-preserving systems. The possibility of AI-enabled systems to dynamically
adjust operational parameters in the field gives rise to an unprecedented challenge
in systems engineering: how can we verify and validate AI-enabled systems whose
behavior can dynamically change when deployed? (Felder 2018)

In this chapter, we will discuss the challenges that the systems engineering com-
munitymay face in designing V&V strategies for AI-enabled systems, and how these
challenges might be potentially overcome. Overall, we suggest that a paradigm shift
is necessary, even though obstacles will be faced, and we focus on the following
aspects. First, we elaborate on how performing V&V in a test environment might
not be suitable for predicting the system’s behavior in its operating environment.
Second, we examine the endogenous evolution of intelligent systems that sheds light
on the misalignment of using the homomorphism concept in V&V for such systems.
Third, we discuss theV&V challenges of themeta-capabilities of intelligent systems.
Fourth, we address the scalability of intelligent systems and the implications to V&V
at different scales. Fifth, we expand on the nature of dynamic changes of the set of
state descriptions of an intelligent system and the related misalignment with current
V&V methodologies and processes.

We address these challenges around a systems theoretic definition of intelligence,
which we provide later in the chapter.
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18.2 A Need for a Paradigm Shift in V&V

There is an increasing number of currently operating systems that are being outfit-
ted with advanced intelligent abilities such as learning, knowledge representation,
and perception. Therefore, it is evident that the existing V&V processes need to be
realigned due to this transition. For instance, autonomous vehicles are now being
seriously considered as viable alternatives to traditional modes of transport. Propo-
nents of the technology argue that it is only a matter of time before civilian laws
are suitably altered and there is widespread usage of autonomous vehicles on public
roads. In this regard, a key challenge is characterizing the capabilities of autonomous
vehicles so that suitable laws can be passed to govern the use of autonomous vehicles.

Characterizing the capabilities of autonomous vehicles will require a new
paradigm for V&V activities during the development process. For example, one
key technology that is currently under development in autonomous vehicles is the
onboard AI that learns the driving style of the car’s owner (Kuderer et al. 2015). By
statistically analyzing the owner’s driving style, which is defined as a multi-attribute
variable that includes acceleration, deceleration, and route preferences, the onboard
AI is able to learn and replicate the driving style of the user. Similarly, another
key technology in autonomous vehicles is intelligent navigation (Isele et al. 2018),
where onboard AI continuously improves its navigation capabilities during the car’s
operation.

Existing approaches to designing and executingV&Vstrategiesmay not be fit-for-
purpose in the design and development of AI-enabled systems. For the technologies
presented above, for example, the vehicle’s behavior is subject to change based on the
data received by a vehicle during its operation (Felder 2018). Conducting V&V in the
lab will most likely be of little relevance since it will be cost-prohibitive to create an
input dataset that can capture all, or almost all, of the possible scenarios in which the
user will operate the autonomous vehicle. Furthermore, even if V&V is conducted in
the lab, there is no guarantee that the behavior of the autonomous vehicle predicted
by the V&V activities will be realized during the vehicle’s operational life. Indeed,
the behavior observed in the lab may be entirely alien to that observed in the field.

The challenge here is to change how we think about V&V activities. In AI-
enabled systems, the consequences of learning by the AI algorithms manifest as a
system-level behavior. However, the actual operational parameters chosen by the
AI algorithms may not be observed until the system is deployed in the field. Thus,
traditional approaches to V&Vmay end up giving false confidence to both designers
and stakeholders in the possible behavior of the AI-enabled system.

The two technologies mentioned above for autonomous vehicles are not iso-
lated achievements of the engineering community. Indeed, an increasing number of
complex systems currently operating are being outfitted with advanced intelligent
abilities such as learning, knowledge representation, and perception. For example,
in continued deployment approaches, such as DevOps (a collaborative merger of
development and operations), V&V activities are heavily reused as new systems are
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deployed within the operational infrastructure. With fixed V&V approaches, the risk
of learning how to pass the test increases with each new deployment.

The risk of “learning how to pass the test” is also a cybersecurity-related problem
for AI-enabled systems. Persevering with traditional, or known, V&V methods to
verify AI-enabled systems enables malicious attackers to compromise the process.
This, in turn, gives the designers and users false confidence on the performance of
the AI-enabled system. A prime example of this scenario is adversarial attacks on
deep neural networks (DNNs) deployed to classify images (Sengupta et al. 2019).
DNNs are often used to classify images for various purposes. These include iden-
tifying cancer cells for medical treatment, identifying obstacles for navigation of
autonomous vehicles, and identifying individuals for public security. Often, DNNs
are first trained on known datasets, which are often publicly available. After training
a DNN, its performance in classifying images correctly is verified and validated.
The DNN is deployed only if there is sufficient confidence in the accuracy of its
performance.

Since DNNs are trained on known, or publicly available, datasets, to compromise
the development process of a DNN, one only needs to corrupt the dataset. Indeed,
adversarial attacks on DNN is an active research area (Wang et al. 2019). Here,
attackers introduce small perturbations in certain samples of the dataset. By doing so,
the attackers ensure thatwhen theDNN is trained, the perturbations in chosen samples
ensure the DNN learns to misclassify these samples. Since DNNs are expected to
classify several objects, attackers can ensure the DNNs learn to misclassify certain
key objects that are of high value to the attackers. In this way, the DNN gives its
designers, and users, false confidence about the accuracy of this performance.

Moreover, the nature of V&V for learning capabilities itself is challenging in
system-level verification of AI-enabled systems (Xiang et al. 2018). As AI-enabled
systems might have learning capabilities at different scales, their solution space and
design space may not be static; in fact, they can keep changing over the system’s
lifetime. As a result, it makes it difficult for V&V strategies to predict the possible
future behaviors of the system over its lifetime.

The examples discussed above show that we cannot utilize traditional V&V strate-
gies to verify and validate AI-enabled systems. As the examples discussed above
show, in addition to the inability of accurately predicting all possible future inputs
to the AI-enabled system, securing the design process should also be a concern of
V&V strategies. Thus, there is a need for a new paradigm in V&V for cyber-physical
systems.

18.3 A Systems-Theoretic Interpretation of Intelligence

We first characterize intelligence, with respect to AI-enabled systems, to have a
meaningful conversation about V&V in AI-enabled systems. There are multiple
formal definitions of intelligence in the literature (Chollet 2019; Legg et al. 2007).
In this section, we re-scope previous definitions of intelligence using elements of
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systems theory. By doing so, we lay a foundation for the discussion on adapting
V&V techniques to AI-enabled systems.

We adopt von Bertalanffy’s definition of a system and declare that a system is a set
of inter-related elements (Bertalanffy 1969),where the type of relation is unrestricted.
Since the null relation is a type of relationship between elements (Wymore 2018),
it suffices to define a boundary around a set of elements to call such a set a system.
We distinguish then between open and closed systems, where open systems are
those that transfer information, energy, or matter through their boundaries (in and
out) and closed systems are those that do not transfer any information, energy, or
matter through their boundaries. Furthermore, we restrict our attention to engineered
systems, which we define as those made by humans (or machines) using engineering.
Within a systems engineering framework, we distinguish between the Intervention
System and Context System; the first is the system of interest that is realized to
satisfy a need or pursue an opportunity and the second is the system formed by the
Intervention System and all systems that directly interact with it. In the latter system,
the satisfaction of the need or realization of the opportunity takes place (Salado
2021). We define an AI-enabled system and call it an intelligent system instinctively
in this chapter; it is an engineered system that exhibits one or more of the following
capabilities:

1. Learning to perform a function better, which can include more efficiently or
more effectively;

2. Learning to handle a larger set of inputs for an existing function;
3. Learning a new function;
4. Learning to achieve an existing outcome in a new context;
5. Learning to achieve an outcome better, which it can perform more efficiently or

more effectively; and,
6. Learning to achieve a new outcome
7. Deciding to pursue a different outcome.

Of the seven capabilities of an intelligent system, the first three capabilities are
related to a system’s ability to effect a change in its behavior (that is, functions the
system executes). Whereas the latter four capabilities are related to the “curiosity”
exhibited by an intelligent system in seeking new ways to achieve its purpose, a
system’s purpose is defined by one or more long-term objectives. In this regard, we
say a system’s long-term objective is an outcome, and distinguish it from a goal,
which we define as any task and/or challenge that needs to be achieved to fulfill the
desired outcome of the system; for example, the time required for an autonomous
car to detect a moving object.

We can broadly define the behavior of systems using functions, which we refer
to as behavior functions. The domain of a system’s behavior function can be any
subset of the space of all possible inputs to the system. Similarly, the range of a
system’s behavior function is a subset of the space of all possible outputs. Traditional
systems are behavior-preserving, and hence their behavior functions are set for their
operational life. That is, for behavior-preserving systems, the mapping between the



368 N. Shadab et al.

domain and range of the system’s behavior functions does not change throughout
the system’s operational life. In contrast, AI-enabled systems can determine if their
behavior functions are suboptimal in operation. Furthermore, AI-enabled systems
can change the set of outputs for a given set of inputs so that the system’s behavior is
optimally aligned regardless of changes in the space of inputs and the desired outputs
for those inputs (by, for example, changing requirements).

By changing the range of a behavior function, AI-enabled systems, in effect,
exhibit the first capability of an intelligent system: improving the execution of one of
its functions. For example, an intelligent detection systemcan improve its observation
accuracy as it learns from past observations.

The second capability is its ability to operate with a different domain of its behav-
ior functions. In this regard, AI-enabled systems can potentially accept (and use) an
increased, or varied, set of inputs to a behavior function. For example, a detection
system that was trained to observe targets with certain signature profiles may learn
to perform the same observation function for other signature profiles.

With the third intelligence capability, a system can generate a new mapping of its
domain to its range, effectively learning a new function. For example, an intelligent
detection system that is trained to observe a particular type of target learns to also
classify the target according to certain characteristics.

Since open systems execute functions, and outcomes are exhibited in closed sys-
tems (Salado 2021) by the actions of open systems that form it, an intelligent system
can leverage its own behavior to yield desired outcome-related learning in the closed
systems they belong to. In this sense, the fourth capability describes the adaptability
of an intelligent system to changing contexts. For example, a detection system orig-
inally trained to detect security threats inside of buildings is trained to detect threats
in open areas.

With the fifth capability, the system can also learn from its experience in detecting
threats to become better at it, either because it can do itmore efficiently (e.g., faster) or
more effectively (e.g., reduction of false positives). The key difference between this
capability and the first capability, is that the former improves the outcome achieved
by the system, and the latter the system’s function. This difference is akin to a human
improving its kicking ability (function; precision of jointmovement,muscle strength,
etc.) and its goal scoring ability (outcome; use of functions in the context of a ball,
a goal, and a goalkeeper trying to stop the goal) through repeated practice.

Using the sixth capability, an intelligent system can be trained to incorporate new
long-term objectives that maximize the net utility of the system’s operation over its
lifetime. For example, a system that is originally trained to detect threats is trained
at a later stage (without any other functional or form changes) to mitigate the threat.

Finally, the seventh capability alludes to the possibility of an intelligent system
possessing some semblance of choice. Since an intelligent system is designed, the
initial set of outcomes the system is meant to achieve could prove to be short sighted
in the long run. In this regard, it is necessary for the intelligent system to adapt it
and decide on a new outcome. For example, continuing with the detection system,
instead of being trained to mitigate the threat, with this capability the intelligent
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system identifies that mitigating the threat is a better outcome than simply detecting
it and, as a result, it decides to learn, and implement it.

If not otherwise specified in the rest of the chapter, our discussion addresses an
intelligent system that may implement one or more of these learning capabilities.

18.4 Challenges to the V&V of AI-Enabled Systems

18.4.1 Differential Learning in V&V Versus Operational
Environment

How it is done today. Consider a formal definition of a system as a transformation P
of an input vector Ī into an output vector Ō (ref. Fig. 18.1a). A verification activity
consists of injecting aV&V input vector ĪT , which the engineer considers sufficiently
representative of the actual input vector that the systemwill receive in operation, that
is, ĪT ≈ Ī, and observing a V&V output vector ŌT , which the engineer considers
sufficiently representative of the desired output vector the systemwill provide during
operation, that is, ŌT ≈ Ō. If transformation P is demonstrated for the V&V vectors
ĪT and ŌT , then it is inferred that the system will also execute transformation P
when seeing the actual input vector Ī. And, hence, the system would be considered
properly verified.

This approach to verification is sound for non-learning systems that preserve their
behavior. In such systems, since the transformation the system executes is invariant
to its inputs, the results of the V&V activity can be a good predictor of the behavior
of the system in its operational environment. This transformation can be modeled
as a Bayesian network (Salado and Kannan 2019), as shown in Fig. 18.1b, where
θ denotes the actual performance of the system and V denotes the results of the
verification activity employed to predict it.

Limits of the current approach. Recent works demonstrated that intelligent sys-
tems can behave differently to synthetically generated inputs that are perceptually
indistinguishable from data in their natural form (Nguyen et al. 2015; Szegedy et al.
2013). Hence, we suggest that AI-enabled systems may be able to discern the V&V
input vector ĪT from the actual input vector to be received during operation Ī, and
evolve as a result different behaviors for each type of input vector. In this way, as
shown in Fig. 18.2a, the AI-enabled system may create a specific transformation PT

Fig. 18.1 Current approach
to V&V design
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Fig. 18.2 Limits of current
V&V design for AI-enabled
systems

to construct expected V&V outputs ŌT for given V&V inputs ĪT , without provid-
ing any information about the transformation P it will execute when the operational
input vector Ī is inputted. In terms of V&V, the system has constructed a specific type
of performance, which we call V&V performance, denoted by θT , that disconnects
the V&V activity from the original performance θ that it was trying to infer (ref.
Fig. 18.2b).

This idea is inspired by critical issues in the field of education, where accurately
assessing student learning is difficult. In a formal learning setting, a student learns
by preparing for an upcoming exam and, in doing so, masters the exam. However,
research shows that mastery of an exam is not necessarily correlated with mastery of
the material (Suto 2012). Thus, exams may be poor predictors of student learning.
This analogy can be used forAI-enabled systems. To better understand it, consider for
example, continued deployment approaches, such as DevOps, where V&V activities
are heavily reused as new systems are deployed within the operational infrastructure.
With fixed V&V approaches, the risk of “learning how to pass the test” increases
with each new deployment.

A similar situation exists with systems that are maintained frequently in the field.
Furthermore, there are security risks in which a system may be hacked so that it can
actively detect V&V vectors and learn how to deceive them, leaving system owners
ignorant and naíve about the behavior the system will exhibit in operation. Current
approaches to designing V&V strategies are unable to detect such a vulnerability.

These potential issues justify a transformation in how we approach the V&V of
cognitive agents.

18.4.2 Endogenous Evolution of Systems

Behavior-preserving systems evolve due to exogenous factors, both during develop-
ment and operation. Examples of exogenous changes include active design changes
exercised by engineers, configuration changes that are externally activated or pro-
grammed, technology refresh programs activated by operators, or external mainte-
nance.Absent these factors, traditional systems remain unchanged and, their behavior
is not expected to evolve with time, with the exception of degradation due to wear.
As a result, V&V strategies rely on V&Vmodels that represent aspects of the system
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(i.e., homomorphisms of the system).Mathematically, the set of potential verification
strategies for a system can be described as (Salado and Kannan 2018):

γ (Z0, R) =
n⋃

i=0

⎛

⎝F(Zi )

Hi⋃

j=0

F(Zi j )

⎞

⎠ × R (18.1)

where:

– Z0 is the system of interest and Z1, . . . , Zn are the systems that decompose Z0

in all of its constituent elements on which formal verification occurs. They are
traditionally referred to as subsystems, components, or parts among others.

– Hi = {Zi , Zi1, Zi2, , , , . . . , Zim} is the set of systems that are homomorphic
images of system Zi . This set represents all models of system Zi that are used for
verification. In practical terms, they can take the form of a mathematical model, a
prototype, or the final product, for example.

– F(Z) = {P1, P2, . . . , Pk} is a parameterization of system Z . This parameterization
is finite and represents the set of parameters of system Z that need to be formally
verified.

– A verification activity V is a tuple (p, r), where r denotes a verification procedure.
A verification activity is understood as the application of a verification procedure
r to the discovery of knowledge about a system parameter p.

– R = {r1, r2, . . . , ri } is the set of verification procedures that could be executed by
a given organization.

Two aspects are central to this model: homomorphisms and parameterizations
(Salado and Kannan 2018). First, the model that is used in a verification activity
influences the confidence gained through such an activity. A verification activitymust
always refer to (or be characterized by) the model (homomorphism) in which it is
executed. Second, the confidence on the systemof interest exhibiting certain behavior
or characteristic may not be obtained by measuring or observing a characteristic
directly for the system of interest. Instead, it may be inferred from measuring or
observing an equivalent or indirect characteristic of one of its homomorphic images,
other than the system itself. Therefore, a verification activity must always refer to
(or be characterized by) the parameter that it verifies.

In behavior-preserving systems, because system evolution is always initiated
exogenously, verification models (that is, homomorphisms and parameterizations)
remain relevant during the system development and can be adapted anticipatorily to
those system’s changes. However, AI-enabled systems can initiate internal change
endogenously. As previously indicated, such is the purpose of learning: AI-enabled
systems will be able to exhibit new behaviors by learning from their interaction with
the environment without any specific external action. In other words, the behavior of
the system is not necessarily preserved, may not be able to be anticipated, and can
occur at the discretion of the system of interest itself. In turn, this implies that at least
the space of homomorphisms for an AI-enabled system is discovered dynamically
during the operational life of the system.
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The lack of knowledge of the complete space of system homomorphisms for
AI-enabled systems poses a significant challenge in V&V for AI-enabled systems.
Once an AI-enabled system changes its behavior, V&Vmodels that were previously
homomorphic images of the original systemmay no longer fulfill homomorphic con-
ditions with respect to the evolved system. This implies that the confidence gained
through V&V activities, on models of the system that were previously homomor-
phic to the system itself, is now nullified. Furthermore, the dynamic discovery of
homomorphisms of the system during the system’s operation also implies that V&V
models are not guaranteed to produce relevant evidence about system’s behavior.
Hence, V&V models employed in traditional V&V are likely to become obsolete
(potentially not observable) during the development and operation of AI-enabled
systems.

One could argue that the obsolescence of one or more homomorphisms of an
AI-enabled system, due to an endogenously generated change in the AI-enabled
system’s behavior during operation, can be overcome by equipping known homo-
morphisms of the AI-enabled systems with the capability to approximately represent
the AI-enabled system’s behavior. However, even if we ensure that the homomor-
phic images of an AI-enabled system can be equipped with capabilities to adapt and
dynamically change according to an AI-enabled system’s evolution, verification of
the dynamic structure and behavior of these homomorphic images will also be an
important part of the verification process for the system of interest itself. This process
could become recursive, possibly leading to major challenges. Indeed, the compu-
tational complexity required to aggregate all verification ramifications to deduce a
meaningful inference makes finding a solution nearly infeasible with current tech-
nological capabilities and the required timeframes to complete V&V beneficially.
Furthermore, developing a multi-agent verification platform in a multidisciplinary
environment could result in out-of-order events and increased computational com-
plexity of the verifications executed, which might introduce unintended behaviors
that contribute to inaccurate emergent behaviors in the verification platform (Yilmaz
2006, 2015; Arifin and Madey 2015). The learning and evolutionary nature of AI-
enabled systems demand a different response from engineers to ensure V&Vmodels
and activities remain effective.

Since AI-enabled systems change their behavior dynamically, rendering one or
more homomorphisms obsolete, we advocate for the use of belief distributions to
dynamically update the beliefs of designers and stakeholders when the AI-enabled
system changes. In this regard, we now sketch the outline for a potential belief model
for V&V activities in AI-enabled systems.

We assume that there are M homomorphic images of the system Z, and let m ∈
1, . . . , M . We define a conditional probability for each verification activity given the
probability distribution of the previous verification level. Let us start with the joint
belief distribution on the system performance, b(Z), after applying all verification
activities at system level

b(Z) = f (VZ1) × · · · × f (VZM ) (18.2)
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In this equation, b(Z) is the belief distribution for the performance of Z after con-
ducting a set of verification activities over homomorphic images of the system Z.
Each VZm is the verification process performed on the mth homomorphic image of
the system Z. The belief derived from the verification of a homomorphic image
is denoted by f (VZm ). Note that if the homomorphic image Zm is not utilized for
verification and validation, then we assume f (VZm ) = 1, else f (VZm ) ∈ [0, 1].

Given that the homomorphic images of a learning system might also need to
exhibit learning capabilities, the accuracy of assumptions of homomorphism for
these homomorphic images require to be verified as well. If we assume that the
homomorphism property for each of these homomorphic models should be verified
by just another verification process, it will be evident that the possibility of errors in
verification models will be multiplied just by adding this one more layer of uncer-
tainty to the verification process of the learning system. In this regard, if we simplify
the second layer of uncertainty (the verification process for homomorphic images)
as the distribution of the standard deviations (σ ) over each f (VZm ), we can see that
the new f (VZm ) will be the multiplication of the errors (variations) of standard dis-
tribution over homomorphic model Zm of the system Z after conducting the second
layer of verification activities and the observed verification belief distribution.

Variation over the standard deviation here canbe a representative of the uncertainty
over the confidence of the belief formation after the verification activities are done.
As mentioned earlier, just adding one more layer of the uncertainty can result in
the possibility of more significant errors in verification activities. Consequently,
even if we consider the best case scenario where we assume that all the verification
activities are independent of each other (which is not the casemost of the time as each
verification activity can impact on the result of one or more verification activities),
the final equation of the belief deviation with one added layer of uncertainty over the
system of interest can be the result of the multiplication of the first-order error of the
standard deviation of each homomorphic model of the system.

It is evident that even if we consider this variation as some small constant that
can be added to the σ of f (VZm ), the uncertainty over the joint distribution of the
homomorphicmodelsmight become significant, especially if the size and complexity
of the system increases (i.e., larger set of homomorphic models). We can see that
by simply creating agent-based homomorphic models that can capture dynamic and
emergent behavior of an AI-enabled system, we might not be able to successfully
verify the system with high confidence.

18.4.3 Verification of Learning to Learn

Current AI-enabled systems learn a complex skill by investing a large amount of
time in trial-and-error experiences or by acquiring enough data to accumulate skills
over time (Finn et al. 2017). If rapid learning in different contexts is needed, it is not
possible though to invest such an amount of time or even generate such a number
of experiences (Finn et al. 2017). To overcome this challenge, meta-learning and



374 N. Shadab et al.

abstract-concept learning may be ways to improve the learning process of intelli-
gent systems. Here, meta-learning refers to the ability of the intelligent system to
continuously adapt learning strategies in the presence of new tasks (Thrun and Pratt
1998; Rendell et al. 1987). By abstract-concept learning, we refer to the ability of
the learning system to adapt not just to an example for a level of experience, but to a
different level of abstraction of that example (Vilalta and Drissi 2002). For example,
a robot that can jump from a bar learns to jump from any type of obstacle. This type of
inductive learning allows an intelligent system to update its meta-learning capability
as it accumulates more meta-knowledge from its experiences on various complex
tasks. The challenge to achieve a life-long meta-learning capability for AI-enabled
systems signifies the fact that training a system, or an algorithm to have educated
guesses alone, might not be sufficient for future systems (Hunt 1962).

It is common practice in systems engineering to develop and build a system
based on a set of concrete requirements (e.g., functional, performance, resource, and
environment requirements (Salado and Nilchiani 2014), which serve as the bases
to verify the correct operation of the system (INCOSE 2015). Since fulfilling these
requirements is bounded to a structured space of capability, Sstructured , we could
argue that it is possible to exert control on the portion of the entire space in Sstructured
that will be covered by verification scenarios. AI-enabled systems that can be trained
to learn a general concept instead of being induced to learn a set of predefined
capabilities have the ability to adapt their learning strategy to a new problem space
Snew by creating meta-knowledge (a hypothesis) from its previous experiences. The
traditional approach to develop a set of concrete requirements and achieve a plausible
design space for theAI-enabled systemmay therefore be ineffective formeta-learning
capabilities, since the intelligent system can potentially access the many solution
spaces during its lifetime which cannot be controlled during the design. Due to the
strong interrelation between requirements and verification activities, this implies that
using a set of concrete verification scenarios that cover part of the solution space will
likely be ineffective to assess the meta-learning capabilities of a system.

We seek inspiration to overcome this challenge in how human meta-learning
occurs and is assessed. Some theorists have argued that the mental representation of
a concrete concept is necessary to fully induce the corresponding abstract concept
(Lakoff and Johnson 2008; Johnson 2013;Murphy 1996). It is also believed bymental
modelers that mental meta-representations are enabled by reasoning capabilities in
human cognition that are triggered by a reasoning module (Mercier and Sperber
2017). Using this analogy, we could argue that the meta-learning capability of an
intelligent system (specifically its ability to understand an abstract concept) could be
verified by either testing several concrete concept learning processes, or by testing
the accuracy of its reasoning functionality.

From a system’s theoretic point of view, we can identify two steps to formulate
such capability. The first one consists of defining meta-learning capability as a need
instead of as a requirement (Salado 2021). In this case, we can either define scenar-
ios in advance (when the outcomes of the system which are derived by the needs
are explicit and known), or define scenarios abstractly (for example, we can require
the system to learn whatever it needs to learn in its lifetime). This still leaves an
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open question as to how to define abstract learning as a need and more precisely,
how to define the learning of unknown skills as a defined outcome. This approach,
nevertheless, implies using direct validation techniques because the concept of ver-
ification (related to meta-learning) becomes inapplicable. The second step consists
of identifying the functions that enable the meta-learning capability to happen. In
other words, to derive the functions that enable meta-learning, we must first identify
the mechanics by which learning occurs and, more precisely, the internal processes
the intelligent systems go through while learning is achieved. These functions can
then be subjected to verification.

Nevertheless, one fundamental question remains for which we do not have an
answer yet: which type of V&V activities and how many of them will be necessary
to gain confidence about such an elusive capability as meta-learning? Formalizing
the definition of reasoning capability in this context can be challenging given the
fact that the causes and uses of reasoning capability in intelligent systems with meta-
learning capability that have been around for a long time, for whichwe have abundant
data, and for whichwe can describe the results from numerous experiments (i.e., with
human cognition) that are still debatable among logicians andmental model theorists
(Mercier and Sperber 2017; Schroyens et al. 2001).

18.4.4 Encapsulation of Intelligent Properties

In behavior-preserving systems, functionality can be encapsulated in modules that
may be aggregated hierarchically. This allows for decomposing and composing sys-
tems during the design, manufacturing, and integration of a system, such that a more
sophisticated functionality can be provided by composing lower-level functions.
Verification-wise, this functional encapsulation allows for partitioning and sequenc-
ing verification activities; which there may be beneficial to grow confidence with
small steps to avoid large rework efforts and/or because of limitations to observe cer-
tain system attributes at some integration levels. Regardless, because the system (and
all of its building components) are behavior-preserving, the number and sequence
of verification activities that are executed on the system (and all of its building com-
ponents) do not affect the final system-level behavior (with the exception of some
physical parameters that may result in significant wear, such as shock testing).

However, an intelligent system, and by extension any intelligent component that
forms it,may always be in a state of learning.Consequently, every verification activity
that an intelligent system goes through becomes, effectively, a learning opportunity
that the systemmay use.We call this aspect the becoming property of the system. The
changes that the intelligent system experiences from these learning scenarios cannot
be reset and may not even be totally reversible without clearing all of the knowledge
the system had acquired up until such an event. This poses a major challenge to
designing verification strategies since verification activities do not only serve the
purpose of checking the correct operation of a system but they necessarily act as
learning events as a consequence. Since the results of the verification activity cannot
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be guaranteed because there may be errors in both the system under verification, the
verification activity itself, and its execution, it is likely impossible to control what
the system will learn during a verification campaign. Since, as discussed, unlearning
is far from a trivial or deterministic activity for intelligent systems (as opposed to
most rework or repair activities in behavior-preserving systems), verification poses an
unprecedented risk to the systemdevelopment process, aswell to the correct operation
of the system. In fact, because verification inherently modifies an intelligent system
as it is verified, an intelligent system will always transition to an unknown state
after a verification activity is executed. Furthermore, trying to avoid this situation by
increasing verification in the hope of using behavioral trends suffers from the risk
of the system over-emphasizing the learning occurring during verification, which
may degrade its desired performance in an operational environment. This raises the
question of whether a verification activity exists that can provide high confidence in
the state of an intelligent system.

This problem is further amplified in intelligent systems that are subjected to hier-
archical verification; i.e., the system becomes exposed to a higher number of uncon-
trolled learning events, and the uncertainty associatedwith the real state of the system
couples with those of the other systems it integrates with.

We conjecture that, for this type of system, the notions of design and verification
might need to be totally blended. Furthermore, success criteria may need to become
fluid, as it may have to be adapted to the evolution of a verification campaign given
that the intermediate results are uncertain.

18.5 Conclusion

We have shown through four specific challenges that there is a fundamental mis-
alignment between current approaches to designing and executing verification and
validation (V&V) strategies and the nature of AI-enabled systems. The main cause
for such misalignment is the behavior-preserving condition, which is present in tra-
ditional systems but not in AI-enabled systems. The nature of learning requires
intelligent systems to evolve their behavior.

The four challenges have been derived from conceptualizing intelligent systems
within the framework of systems theory. The first challenge addressed situations of
differential learning, where the intelligent system learns to respond to operational
scenarios differently than to verification scenarios, with these differences remain-
ing unnoticed. The second challenge resulted from the endogenous evolution of an
intelligent system, which may strongly reduce the fidelity of verification and vali-
dation models. The third challenge addressed the difficulty to verify learning as a
capability when an uncontrolled solution space is generated. Finally, the fourth chal-
lenge pointed to the effects of decomposing verification strategies, as verification
scenarios become learning experiences for the system through a hierarchical chain
of integration.
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The four challenges have been accompanied by discussions on the practical dif-
ficulties that verification engineers will face when designing verification strategies
for intelligent systems. We conclude that, as systems embed more intelligence, a
paradigm shift in V&V activities will be necessary and suggest that advances in
systems theory are necessary to underpin such a shift.
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