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Abstract Innovative advances in machine learning (ML) and artificial intelligence
(AI)-driven cyber-physical anomaly detection will help to improve the security, reli-
ability and resilience of the United States’ power grid. These advances are timely as
sophisticated cyber adversaries are increasingly deploying innovative tactics, tech-
niques and technology to attack critical energy infrastructures. Defenders of these
modern infrastructures need to better understand how to combine innovative tech-
nology in a way that enables their teams to detect, protect, respond and endure
attacks from complex, nonlinear and rapidly evolving cyber threats. This chapter
(i) explores how AI is being combined with advances in physics to develop a next-
generation industrial immune system to defend against sophisticated cyber-physical
attacks to critical infrastructure; (ii) provides an overview of the technology and
explores its applicability to address the needs of cyber defenders to critical energy
infrastructures; applicability is explored through opportunities and challenges related
to human–machine teams as well as the process and technology; (iii) includes vali-
dation and verification of findings when the technology was tested defending against
stealthy attacks on the world’s largest gas turbines; (iv) explores how the AI algo-
rithms are being developed to provide cyber defenders with improved cyber situation
awareness to rapidly detect, locate and neutralize the threat; and (v) concludes with
future research to overcome human–machine challenges with neutralizing threats
from all hazards.
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10.1 Introduction

A digital transformation of critical energy infrastructures is underway that is rapidly
digitizing, networking and automating the energy value chain. Today’s smart energy
systems unlock new value in modernizing the grid that is increasingly interoperable,
two-way, agile and flexible in incorporating distributed energy resources. While grid
modernization helped transition energy usage and consumption to lower carbon,
sustainable, renewable energy, new cyber-physical security challenges in securing
critical energy delivery systems and associated operational technology (OT) have
accompanied this digital transformation. The rapid digital transformation of our
critical systems has significantly increased its attack surfaces by combining cyber-
physical systems, software and hardware, information technology (IT) and opera-
tional technology (OT). This has created new challenges to identify, monitor and
protect these critical systems. Improvements are needed for real-time cyber-physical
situational awareness and monitoring the cyber threat-attack surface in terms of
control systems, automation and other operational technology.

10.1.1 Overview

While cybersecurity technology continues to improve, the attack surfaces of the
power grid have expanded significantly, leaving a number of major cyber gaps
remaining. For one, most cyber defenses and monitoring solutions are ineffective
in detecting sophisticated attacks targeting operational technology, such as energy
delivery and industrial control sytems. Zero-day exploits, insider and supply chain
attacks continue to evade and defeat cyber defenses and intrusion detection systems.
These systems originated from securing information technology across a business
enterprise and defending against knownmalware,malicious packets and other attacks
that are easy to catalogue in a library as signature herusitics. However, OT found
in various energy delivery systems, such as electricity infrastructures presents new
challenges as the protocol, malware signatures, and tactics, techniques and proce-
dures used by adversaries also differ significantly. Moreover, a number of more than
3,000 energy utilities in the U.S. lack basic cybersecurity defenses to identify and
monitor their critical cyber OT assets. Thus, the detection of sophisticated adver-
saries is limited—usually too late or reactive, only after the damage has been done—
enabling them to perist their malicious activities in critical systems and networks
and often without being detected.

To overcome these limitations, solutions must advance from security to resilience
and provide more holistic cover for critical OT in electricity infrastructures. To
realize these goals, GE research has been working closely with the U.S. Department
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of Energy, DARPA and our energy utlitiy partners to leverage advances in artifi-
cial intelligence (AI) and machine learning (ML) to develop an industrial immune
system for critical operational technology, from wind turbines to combined-cycle
power plants, and from hydropower to oil and gas pipelines. In one of the world’s
first demonstrations of AI/ML self-healing neutralization at scale and with accu-
racy (99%), GE Research demonstrated the ability to neutralize sophisticated cyber-
attacks on the world’s largest gas turbines. While this scientific accomplishment
highlighted advances in AI/ML cyber-physical anomaly detection, a number of
challenges remain. Overcoming these challenges requires scientific advances and
research that combine complex problem sets at the nexus of people to accomplish
these goals, process and technology to secure high assurance systems that are increas-
ingly autonomous. Some of these areas explored in this chapter include explain-
able AI (XAI), invariant learning and humble AI. These advances are critical to
improve the data fusion, trustworthiness and accuracy of AI-driven technology and
its application in empowering human–machine teams.

Additional advances are needed not only to detect and challenge decision support
for complex autonomous systems but also to the system designers and operators
who do not understand and/or trust the decisions that the algorithms are making.
This lack of explanation, context and trustworthiness in the algorithms slows adop-
tion and impedes innovation. End users are hesitant to trust the algorithms because
they cannot correlate AI-driven machine decisions with the physics and their own
domain of experience. In a safety critical system, not understanding the physics and
how algorithms are reaching their decisions curtails innovation in next-generation
system design and deployment. Overcoming these barriers would help owners, oper-
ators and other complex systems stakeholders better understand how algorithms are
learning andmakingdecisions, allowing the translation of big data sets into actionable
intelligence. Advancements in explainable AI (XAI) would remove these barriers to
innovation and provide significant value in advancing the science of sense-making,
context and trustworthiness of AI systems.

10.1.2 Cybersecurity Technology Gaps for Advanced
Detection, Protection and Monitoring Solutions

Grid modernization has spurred the integration of distributed energy resources
(DER’s) and the electricity infrastructure that is increasingly digitized, networked,
automated and complex in its communications using multiple languages and proto-
cols between an increasing number of parties (Qi et al., 2016). Securing these critical
communications in transit, at rest and at the device level without sacrificing improve-
ment in forecasting, control and optimization of these assets is essential. Indeed, any
effective cybersecurity solution should not curtail advances in control and optimiza-
tion. Fig. 10.1 highlights how grid cyber defenders have responded to the cyber
threats posed to (DERs) with various cybersecurity solutions that try to segment and



200 M. Mylrea et al.

Fig. 10.1 Cyber-physical threat to distributed energy resources (DERs)

to provide “air gaps” for critical systems. However, these cybersecurity solutions
do not provide cyber resilience against sophisticated threat actors nor hybrid cyber-
physical events (e.g., extreme weather, insider threats, human error, supply chain
attacks on software, hardware, etc.) (Fig. 10.1).1

As a result, there are numerous cybersecurity gaps for the advanced detection,
protection and monitoring of energy delivery systems, networks and interconnected
energy delivery systems. These gaps could potentially be exploited to cause the
degradation of service and potential cascading failures to the power grid. However,
due to themany gaps existing in detection andmonitoring, it is difficult to quantify the
threat and risk. Increased monitoring and detection of electricity infrastructure may
give the perception that attacks to the grid are increasing when in fact this increase is
a measure of an improved cyber situation awareness. When an industry article and/or
publication suggests there is an increase in cyber-attacks on the grid, is that because
monitoring and detection technology have improved, or because threat groups are
increasingly targeting the grid? Currently, there is a major gap in the research and
data available to quantify these risks. This gap makes it difficult for energy utilities to
make strategic investments to buy down the risks to them that are greatest based on
the threat. Another major cybersecurity gap for advanced detection, protection and
monitoring is found with the increasing penetration of distributed energy resources
(DERs, Greenberg et al., 2018; also, see Utility Dive).2,3 Increased connectivity and

1 Qi et al. (2016).
2 https://www.utilitydive.com/news/security-and-distributed-resources-an-attacker-will-eventu
ally-get-in-s/565966/.
3 Greenberg et al. (2018).

https://www.utilitydive.com/news/security-and-distributed-resources-an-attacker-will-eventually-get-in-s/565966/
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the two-way communications of DERs with infrastructure associated with the bulk
power grid will require advanced threat monitoring and detection to address existing
and potential future cybersecurity gaps (Lee, 2013).4 Any holistic solution requires a
comprehensive approach of human and machine, or people, process and technology.
But many other gaps remain.

Policy Gaps—Currently the North American Electric Reliability Corporation
Critical Infrastructure Protection (NERC CIP) cybersecurity requirements have
increased defenses for critical systems found in the bulk grid. However, distribution
and grid-edge devices that are increasingly connected to bulk grid infrastructures are
vulnerable to sophisticated cyber-attacks.

Technology Gaps—The data and connectivity requirements needed to improve
grid edge and DER management—increased awareness, controls direct-level elec-
trical loads, manage capacity constraints and reverse power flows—has significantly
expanded the attack surfaces of our nation’s grid. For example, solar energy systems
grid-support functions can be manipulated to diminish reliability and damage elec-
tricity infrastructure. Securing photovoltaic (PV) system critical communications at
rest as well as in transit to aggregators (residential, utility, commercial), utilities and
other grid operators is increasingly challenging due to increased internet connectivity
and digitization (Johnson, 2017)5 as well as communication protocols that prioritize
interoperability but lack basic encryption and authentication mechanism (Onunkwo
et al., 2018).6

Together, current policies, processes and technologies prioritize interoperability
and connectivity but they do not provide the high fidelity cyber situational aware-
ness needed to detect cyber-physical anomalies to DERs. Even when monitoring is
available, determining the cause of the anomaly and localizing and neutralizing the
threat is a major gap in this space. Sophisticated adversaries can perturb systems to
instigate abnormal power flows; supply chain attacks can push updates to be behind
the metered systems to add or drop load in a way that could potentially cause a grid
level event; insider attacks can cause instabilities like sub-synchronous resonances,
and man in the middle attacks can amplify weak grid conditions, just to name a few.

10.1.3 Digital Ghost: A Next-Generation Response to Close
Critical Energy Infrastructure Gaps

In response, researchers at GE Global Research, in partnership with the U.S.
energy industry and the U.S. Department of Energy, have developed innova-
tive solutions to identify, mitigate and autonomously respond to evolving cyber
threats. This next-generation, cyber-physical anomaly detection solution combines
advances in machine learning (AI) to rapidly identify, protect, detect, respond and

4 Lee (2013).
5 Johnson (2017).
6 Onunkwo et al. (2018).
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recover from cyber-physical threats and vulnerabilities targeting operational tech-
nology (OT). If an adversary attacks, manipulates or compromises a critical energy
delivery system, GE’s Digital Ghost helps to detect anomalous behavior, locate
and neutralize the attack while maintaining the availability and integrity of crit-
ical operations. To realize this goal, Digital Ghost leverages machine learning of
digital twins (high-resolution models of OT/IT systems and networks) in order to:
Identify, detect and map critical systems, anomalies and associated vulnerabilities
and to quantify them; Localize, Isolate and Protect critical control systems and OT
(sensors/actuators/drives/controllers); andNeutralize to autonomouslyRespond and
Recover, mitigating advanced threats. The ability to review the control logic and to
autonomously maintain operations without losing the availability of critical systems
is a potential game changer to provide cyber-physical resilience, but many challenges
remain.

Cyber defense of critical infrastructure continues to evolve, but cyber adversaries
often have the upper hand as their offensive tools improve and the attack surface
available to them expands. Cyber challenges remain for policies, technology and
people (workforce and expertise). To change this equation, newparadigms and formal
methods as well as advances in threat mitigation technology need to be developed.
Even as cyber defense technology improves, workforce development, especially in
the area of OT cybersecurity, remains a major gap. The confidentiality, integrity and
availability triad that has defined cybersecurity in the last 20 years continues to be
pressured by the digital transformation underway that prioritizes interoperability,
connectivity and the move toward automation. As we digitize, automate and connect
systems in critical infrastructure to the internet, this also expands the cyber-physical
attack surface.

To improve the current state-of-the-art in grid cyber-defense requires moving
beyond the cybersecurity triad paradigm to cyber resilience, which assumes that we
can identify, detect, respond and recover to cyber threats and vulnerabilities in sub-
second times. Cyber resilience includes not only a hardened perimeter, but it also
neutralizes sophisticated attacks once they have been found.

Advances of innovative threat mitigation solutions help to move the industry
toward cyber resilience. However, the design and implementation of these advances,
such as machine learning algorithms, requires the distillation of large data sets to
be intelligently fused with operations. The form of the cyber-defense technology
needs to be complemented by a process function in a way that turns data into intel-
ligence. Through this information fusion, human–machine teams can increase both
their autonomy and effectiveness to evolve their defenses to be cyber resilience in
response to sophisticated evolving threats. The following provides an overview of the
design and deployment of the next-generationAI cyber-defense technology to detect,
localize and neutralize threats in amore effective and autonomousway. To realize this
goal requires the leveraging of the science of interdependence for autonomous
human–machine teams in a synergistic way to identify and overcome existing
gaps with people, process and technology explored further in Fig. 10.2.
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Fig. 10.2 Digital Ghost functionality diagram. The example is of a power generation plant. The
top portion in the figures depicts a complex system with sensors, controls and actuators. The
bottom left pane shows how the Digital Ghost is trained from off-line operational data and physics-
based models. The bottom right pane outlines the real-time algorithms providing detection and
neutralization functions

10.2 People, Process and Technology Applicability Gap
Analysis

This section examines the applicability of the existing cybersecurity technology
to address cyber defender needs for modern critical energy infrastructures, which
is going through its own digital transformation. Applicability and gap analysis is
explored through the opportunities and challenges related to human–machine team
or people as well as the process and technology.

10.2.1 Attack Detection

Attack Detection—Advanced threat detection starts with a comprehensive design.
Digital Ghost’s design phase started with scoping the target system and defining the
sub-systems that are of primary interest. Instead of a purely unsupervised approach
to develop the machine learning algorithms, we leveraged our deep domain knowl-
edge of the physics for the systems to establish a matrix of credible cyber-attacks,
naturally occurring faults and vulnerabilities in the system. The highest impact abnor-
malities (i.e., attacks/faults) are chosen for computer model simulations. The high-
fidelity Digital Twin models are exercised to define the system’s operating bound-
aries. Normal operating space is mapped out as well as attack/abnormal operating
spaces. The machine learning algorithm developed from these defined scenarios is
intended to differentiate between a naturally occurring system fault or a degradation
mode and a likely malicious cyber-attack scenario. Historical data obtained from
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the asset or plant is reviewed to establish the key system monitoring nodes. The
next step is to establish the decision boundary, called a decision manifold, between
the normal and attack/fault (abnormal) operating regions. Performance predictions
are then generated based on this optimal decision boundary. The optimal decision
boundary is also updated over time in the future as the system evolves via real-time
learning and adaptation algorithms. The next step is deploying the detection algo-
rithms on a computer platform connected to the targeted system. Once deployed, the
detection algorithm performance is reviewed and continuously monitored.

Technology Gaps—The following four are the areas in technology gaps that
need to be closed: (i) Unlike IT solutions which are easy to enumerate and inven-
tory by scanning, operational technology includes a diverse attack surface that is
often connected through both internet protocol (IP), serial and other connections. (ii)
Proprietary protocols are often vulnerable by design as vendors prioritize function-
ality, ease of use and cost over security. (iii) Firewalls, network and host intrusion
detection systems are limited to defending against malicious signatures, but they
are not in their libraries of attack signatures. Thus, a brute force, polymorphic, AI-
generated or insider attack will be very difficult to detect. Zero-day exploits targeting
operational technology are very difficult to block with most existing attack detection
solutions that are designed for IT. (iv) And resource-intensive tuning can be required
for AI defense critical solutions to be integrated into existing technology stacks for
security information and event management (SIEM).

Process and Policy Gaps: As AI solutions improve attack detections it will
increase the speed, size and fidelity of logging critical machine state integrity as well
as other network and system outputs. Thus, monitoring policies and process updates
need to intelligently distill and fuse these findings for this data to create actionable
cyber intelligence. Often, grid cyber defenders have policies and processes in place to
monitor and log their critical cyber assets as defined by the NERCCIP requirements;
however, they often times do not read these logs. Moreover, additional networks or
systems that are connected to these critical cyber assets can provide an attack pathway
if they are not secured.

People Gaps: Machine learning algorithms that have high-false positive rates
create prohibitive operations and maintenance requirements for security teams.
Cybersecurity teams have been traditionally IT-focused; however, the convergence
of IT/OT in critical infrastructures has increased the responsibilities and created
newworkforce development challenges for them. Some innovative new tools require
training, but adding another tool creates information fusion challenges. Finally, AI
solutions that are tuned and learn what is normal on networks and systems that
are already infected may be providing a false sense of security to their operators.
Advances in invariant learning and humble AI explored in this chapter highlight how
researchers are overcoming these gaps.
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10.2.2 Attack Localization

This phase develops a software algorithm that localizes the attack to a specific system
function. Attack dependency tests are conducted to further separate the attacks into
independent or dependent attacks. Local decision manifold boundaries are created
for each monitoring node using data sets by running various attack scenarios with the
high-fidelity Digital Twin models mentioned previously. The system post-processes
the localized attack and determines whether the detected attack is an independent
attack or an artifact of a previous attack through propagation of the effects in the
closed-loop feedback control system. This feedback provides additional information
and insight and is useful when multiple attacks are detected. The same approach is
practiced for localization when naturally occurring faults are detected.

Technology Gaps: For critical OT assets and systems, the sub-second time
requirements for effective detection and localization are a major gap for most cyber-
defense solutions. Moreover, there is a lack of real-time detection and localization
solutions to respond to cyber-attacks. Visibility of the data and the probable fault
or attack is limited across the energy value chain. Advances in supervisory control
and data acquisition as well as energy management and distribution management
systems have increased fidelity and control of the data. Similarly, advances in active
scanning and interrogating/communicating with an OT in its native protocol has
increased visibility. However, many gaps remain and have created prohibitive local-
ization response times. The speed of response for malware and infiltration mitigation
to an attack is a critical gap that needs to be met to maintain reliable, safe and secure
plant operations. Finally, critical OT is difficult to monitor, especially in converged
IT/OT environments that combine various cyber and physical legacy and modern
system protocols.

Process and Policy Gaps: Current processes focus on localizing faults, safety
and reliability issues. Cybersecurity is often an afterthought. Systems engineering
approaches in practice are often reduced to adages, such as “if it’s not broken, don’t fix
it.”Or even the colloquialKISSexpression—“keep it stupid simple.”As a result,most
policies focus on how to localize and respond to sensor or actuator faults; component
level faults; system level faults that could cause a loss of power or degradation in
output; but not how to localize a cyber-attack. There is a real risk that adversaries
could imbed themselves onto a critical system, establish a stealth command and
control channel, and potentially carry out an attack undetected at a later date.

Human Resource Gaps: Locating a fault in a complex system like a power plant
is no trivial task. In addition, the resource gaps noted for detection and localization
have similar and related issues related to localizing an actual system that faulted; this
problem is especially true during a transient event or when there is a highly variable
stochastic load, events that create a lot of noise and that challenge human operators’
ability to localize the problem. Moreover, sensor or actuator faults, component level
faults, system level faults, and cyber-attacks may all produce similar effects in a
system (i.e., the loss of power or degradation in output).
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10.2.3 Attack Neutralization

Advancing from cybersecurity to cyber resilience requires improvements in neutral-
ization and the ability to recover and endure all hazards, ranging from sophisticated
cyber-attacks to naturally occurring events. Neutralization also requires the ability
to remove the effects of attacks on the monitoring nodes so that the system can
continue to function even in the presence of attacks. It uses the observability provided
by the deemed trusted nodes (non-attacked nodes) in its calculations. It will enable
true operational signals to be provided to the control system on a continuous basis
while informing the operator when attacks are detected.7 If an attacked node lacks
observability, then the error in its replacement estimate may be unacceptably large,
preventing continued operation.

Further research into how to autonomously identify critical nodes with poor
observability is required to advance secure communication application methods for
critical OT. Since neutralization cyber solutions will interact directly with the critical
control loops of an operating asset, additional research focused on control stability
is needed. Operators must be able to trust that the combined system (Digital Ghost,
controller and asset) will behave with stable operations. Operating regions may exist
where stability cannot be guaranteed, e.g., outside of the boundaries used for training.
The asset’s allowable operations must be limited, and research into autonomously
identifying these restricted regions is required.

Technology Gaps: For critical OT assets and systems, there are sub-second
time requirements for effective communications. Sub-second time requirements are
demanded by the dynamics of the system. For many of the critical assets we want
to be monitored with Digital Ghost, we need to be able to attack the nodes esti-
mated via the neutralization module at the timescales required by the dynamics of
the system. Cyber resilience requires the ability to both detect and localize rapidly
to effectively and accurately neutralize an attack or anomaly. Sophisticated cyber-
attacks, zero-day exploits, hybrid cyber-physical attacks, insider threats to name a
few, create challenges in neutralization. Control systems are designed with function-
ality, ease of use, safety, cost and connectivity in mind, but not security. This gap
creates additional challenges related to neutralization. The TRISIS cyber exploit was
exemplary of these design vulnerabilities where a safety instrumented control system
was exploited in a sophisticated attack on operational technology.

Process and Policy Gaps: Three areas are noted: (i) Today, cyber-security poli-
cies for critical energy infrastructures often prioritize the availability and integrity
of critical systems; however, most current solutions only identify threats and
vulnerabilities, relying on manual response; (ii) Manual responses create resources
and response-time challenges that are prohibitive; and (iii) Existing tools lack
prioritization and create prohibitive resource requirements with false positives.

People Gaps: (i) Lastly, trust between Digital Ghost’s neutralization algorithm
and the operator must be established. During a cyber-attack, the operator must be
presented with clear, concise and understandable information to quickly ascertain

7 John et al. (2020).
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the context and impact to the operations of the machine protected by Digital Ghost.
Neutralization leverages concepts from AI/ML, while operators and control engi-
neers often prefer “deterministic” algorithms governing control logic. Research
into the more effective autonomous system–human operations is required for
neutralization to be an accepted mitigation approach.

10.2.4 Man Versus Machine Anomaly Forecasting
and Detection

Anomaly forecasts enable the early detection of stealthy attacks which could other-
wise remain in an asset for days or months without being caught. It also enables
the early engagement of the system’s operator or the automatic accommodation in a
cyber incident. Furthermore, the anomaly forecast system can predict future system
failures/malfunctions and can be used as a tool for predictive health monitoring and
prognostics. Once the security of a system is compromised, the adversarial impact
will propagate through the system until it gets detected by the attack detection mech-
anisms. However, by the time that those mechanisms have detected an attack, the
damage may have already been done, with an impact too large to be accommodated.
These advances provide an early warning capability to attack detection so that a secu-
rity breach is detected and alarmed at an early stage both for an operator’s response
and for an attack accommodation by the system.

The outputs of prediction models in different timescales (also known as the future
values of the features) are compared with the corresponding decision boundaries for
anomaly forecasting. While comparing the feature vectors to the decision boundary,
the estimated time to cross the decision boundary will provide information for a
future anomaly. If a future anomaly is detected, an early warning is generated in
the operator’s display with the anticipated time to reach an anomalous state, and
a message is sent to the automatic accommodation system for its potential early
engagement.

10.3 Digital Ghost Research Findings and Future Research

10.3.1 Invariant Learning

Measuring both anomalies and invariances in deep networks for a complex system-
of-systems like the power grid is not an easy task. For one, the increased penetration
of stochastic and intermittent distributed energy resources further complicates the
essential pattern recognition tasks to be able to flag anomalies and variances. Recent
research shows advances in training deep architectures in a supervised manner to
be invariant to the multiple confounding properties and input transformations found
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in electricity infrastructures (Goodfellow et al., 2009).8 Future research examining
how to enhance invariant machine learning to improve the cyber-attack detection
and accommodation (ADA) accuracy of the Digital Twin models that identify and
protect against cyber-physical attacks on critical energy systems and infrastructures
is essential.

Modeling a complex system-of-systems for an electricity infrastructure is chal-
lenging due to the number of issues from bias offsets between the actual values of the
key nodes beingmonitored and those found in simulations to be “noise” in the system.
What appears as an anomaly could be caused by human error, computational error,
a naturally occurring weather and ambient event, an increase in supply and demand,
a cyber-attack, or a hybrid cyber-physical event. Moreover, adversaries could poten-
tially exploit continuous machine learning biases with the next-generation machine
learning attacks that slowly bias key nodes such that the continuous system “learns”
this incorrect behavior and treats it as normal. To overcome these challenges, the
next-generation, cyber-resilient, invariant-learning algorithms need to be improved
to advance physical detection and mitigate risk from sophisticated AI attacks. More-
over, for these innovative technology solutions to be successfully transitioned to
the energy sector will require alerts of cyber events that are clearly displayed to the
cyber defenders of a grid especially when they are already distractedwithmany tools,
screens and the day-to-day challenges of keeping the grid reliable and balanced.

These findings point toward the need to employ continuous learning to modify
the algorithms and/or decision manifolds based upon actual field data. Allowing
flexibility for the algorithms to be modified or adjusted based upon actual field data
could help to alleviate model mismatches. However, continuous learning could also
create a potential new cyber-attack surface where an attacker slowly biases key nodes
so that the continuous system again “learns” this incorrect behavior and treats it as
normal. Advances in invariant learning are needed to mitigate this manipulation of
continuous learning algorithms.

10.3.2 Autonomous Defense: Critical Sensors Identification
and Trust

Self-healing complex system-of-systems are the holy grail of cybersecurity research
and development. Conference organizers highlight the many challenges that affect
“the design, performance, networks operating autonomous human–machine teams”
(Lawless et al., 2020).9 Research findings from testing Digital Ghost’s neutraliza-
tion algorithms suggest that these challenges increase when human teams lack the
observability and context for a complex transient system such as a gas turbine. This

8 Goodfellow et al. (2009).
9 Lawless et al. (2020).
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gap suggests that advances in autonomous cyber defenses must prioritize the observ-
ability of remaining non-attacked sensors to calculate an estimate that would work
in closed-loop control.

Future research on the science of interdependence for autonomous human–
machine teams combined with advances in control theory methods may help to
improve the ability of machine learning algorithms to decide which sensors have
poor observability before moving to deployment. In a complex, transient system-
of-systems, there is a need to improve the observability and trustworthiness of crit-
ical energy delivery sensors to autonomously protect, detect, recover and neutralize
cyber-physical threats. In absence of these capabilities, that near-terms opportu-
nities to improve the state-of-the-art for neutralization, including determining the
sensors that lack observability for neutralization, are needed to create an alert for
human operators; this alert would signal the inability for neutralization to provide
corrective action if one of these nodes were attacked. Applying advanced encryption
and authentication mechanisms for these sensors via trusted platform modules and
other solutions is also ripe for future research and exploration. This achievement
would help the information security community to better understand how to improve
control theory methods that combine with human–machine teams so that machine
learning algorithms can empower cyber defenders to better determine the integrity
and trustworthiness of critical sensors.

10.3.3 Humble AI

Humble AI is making valuable advances in marrying man and machine, answering
such questions as: How can the algorithms alert the operator of a potential decrease
in accuracy or confidence in its threat classification results? How can the ML/AI
methods recognize they are being asked to extrapolate into previously unseen oper-
ating regions?What is the proper response if this extrapolation happens? If so, should
DigitalGhost or other advancedAI cyber-defense halt operations?Or does the system
continue but express reduced confidence in its results? The next-generationAI-cyber-
physical anomaly detection and neutralization requires the continuous improvement
of ML/AI methods that are agile, adaptable and evolve for complex, nonlinear and
changing threats. R&D findings from the Digital Ghost algorithms that are trained
off-line to create the various decision manifolds for both local and global detec-
tion need to be able to adapt to the field operating conditions of all hazards—cyber,
physical, naturally occurring—as critical energy delivery systems move away from
training and into regions not simulated previously. In the field, if operating condi-
tions move away from training and extend into regions not previously simulated, it is
essential that the algorithms recognize this fact and alert the operator of a potential
decrease in accuracy or confidence in the classification results.
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10.3.4 Explainable AI (XAI)

Explainable AI or XAI is the ability of AI-based machines to explain the reasoning
underlying their decisions in a way that is understandable to humans. Many chal-
lenging questions and/or gaps remain, such as: how do we develop intuitive, trust-
worthy explanations of how and why our AI algorithms arrive at decisions? How
do we do this in a way that is easy to interpret, visualize and use to empower
human–machine teams?

How do we trust the black-box nature of deep neural networks? That is, numerous
parameters in deep neural networks (DNNs) add complexity that is hard to interpret
and explain. As a result, algorithms and models can learn and misinterpret represen-
tations from the data differently than humans. This creates issues with trust, ethics
and biases.

Answering these questions will help to improve the state-of-the-art of (AI/ML)
algorithms with a focus on advancing XAI physics-based anomaly detection in
complex systems.

If successful, human–machine teams will be able to both trust and understand
how the ML/AI algorithms arrive at their solutions. This collaboration can be done
through advanced human–machine interfaces containing easy-to-understand visu-
alization techniques. This result is essential for machines to be trusted in making
autonomous/semi-autonomous decisions, especially for kinetic platforms that are
increasingly autonomous as well as for safety and other mission-critical applications
that determine diagnostics and cyber-physical security.

Advances in AI require both human operators and machines to understand and
trust how theML/AI algorithms are arriving, or are unable to arrive, at their solutions
via human–machine interfaces and intuitive visualizations.

Machine-learning-based approaches of anomaly detection often result in a clas-
sification decision along with an anomaly score. However, the contribution, ranking
and significance of each of the input variables/features, the causality directions, the
effect of the size of the training data set and the reasoning path in the algorithm
leading to a particular decision are often obscure. An example of this is shown in
Fig. 10.3, where several signal traces are presented as well as features used as inputs
for an AI/ML-based, anomaly-classification system, i.e., Digital Ghost. These traces

Fig. 10.3 Sensor signal
traces and features captured
during GE’s recent
cybersecurity demonstration
using an operating
heavy-duty gas turbine. The
red line indicates the time at
which synthetic cyber-attack
was injected
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were captured on GE Power’s test facility during a demonstration wherein sophisti-
cated synthetic cyberattacks were injected into a critical network of an operating gas
turbine, and Digital Ghost correctly detected and identified the impacted gas-turbine
sensors. While novel in improving the applied science of AI cyber-physical anomaly
detection, it has proved difficult to explain to human operators how the complex
algorithms arrived at the correct inferences (attack and attacked node) in a manner
that an operator can understand, trust and then act upon.

Future research on explainable XAI will advance AI/ML capabilities without
reducing the fidelity and accuracy of the detection, localization and neutraliza-
tion capabilities. It is essential that Digital Ghost’s next-generation cyber-physical,
anomaly-detection and neutralization algorithms reduce their technical complexity
and that they are intuitive to grid operators and cyber defenders. This explanation
creates a number of human and cyber-physical integration challenges that could be
exploredwith future research on howbest to integrate humans andmachines. Lessons
learned from (DG) research have helped to develop complex algorithms, some of
which are constructed using machine learning and AI techniques. Future operators,
however, may still be skeptical because of the complexity and non-intuitiveness
contained within the highly nonlinear algorithms of Digital Ghost.

10.4 Conclusion

Grid modernization has been accompanied by a digital transformation that has
increasingly digitized, networked and automated the energy value chain. Today’s
smart grid is increasingly two-way, agile and flexible in incorporating distributed
energy resources that have helped transition to a lower-carbon economy. Research
in this chapter highlighted how this digital transformation must marry man and
machine. Similarly, research findings also suggest that human–machine teams can
be empowered but also blindsided by AI by being given a false sense of security.
The “smart” grid has increased connectivity and created new cyber-physical security
challenges in securing an array of vulnerable energy delivery systems and associ-
ated operational technology. As a manufacturer of a large percentage of the world’s
power systems, GE has been integral to grid modernization and has unique insight
as well as a responsibility to ensure more holistic cyber resilient policies, processes
and technology.

Realizing this goal is imperative as the U.S. electricity infrastructure will require
a holistic approach of people, policies and technology. Research findings suggest
the successful adoption of next-generation technology, such as the AI algorithms
found in Digital Ghost. Findings also suggest that innovation should not happen
with humans out-of-the-loop. The form of the technology R&D must compliment
the function and independencies of the team in order to empower the cyber defenders
of our nation’s power grid. This result is especially true as sophisticated cyber adver-
saries are increasingly deploying technology such as AI combined with stealthy
tactics and techniques to attack critical energy infrastructures. Defenders of these
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modern infrastructures need to better understand how to combine innovative tech-
nology in a way that empowers their teams to respond to a complex, nonlinear
and rapidly evolving cyber threat. Novel technology advances combining domain
expertise in physics and next-generation AI solutions will only be successful if
humans are empowered in the loop, not disintermediated from the loop. This is
especially true when defending against the diverse, complex, nonlinear and rapidly
evolving threats of human adversaries executing sophisticated cyber-physical attacks
on critical infrastructures.

If the first cybersecurity paradigm was focused on keeping adversaries out,
building firewalls and digital moats, the next evolution must move us toward
resiliencewith amore holistic approachwheremachine learning and other innovative
technology empowers teams and where policies protect humans from themselves.
Ironically, in this paradigm, humans are empowered and no longer the weakest link
in the chain, but the supervisory layer that provides integrity.
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