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Preface

We began this book by asking representatives from Systems Engineering (SE) to
participate with us in an Association for the Advancement of Artificial Intelligence
(AAAI) Symposium in the Spring of 2020. We addressed our request for participation
to representatives of the International Council on Systems Engineering (INCOSE).
The symposium was intended to advance the science of autonomous human-machine
teams (A-HMTs). After systems engineers agreed to participate, we included “sys-
tems” in our call. The symposium was scheduled to occur at Stanford University
during March 23-25, 2020. Our agenda included Al scientists, system engineers, and
interested participants and organizations from around the world. Unfortunately, the
Covid-19 pandemic intervened. But AAAI gave us two opportunities: hold the March
event as scheduled virtually, or have a Replacement Symposium in the Washington,
DC area. We took advantage of both offers.

We gave our scheduled speakers the choice of participating in the virtual Spring
Symposium, the Fall Replacement Symposium, or both. The agenda for the Spring
Symposium was reduced to under 2 days, roughly replicated for the Replacement Fall
Symposium, which also became a virtual event. However, the number of participants
for both the Spring and Fall events slightly exceeded 100, a larger audience than we
would have expected to attend in person at Stanford.

Both symposia had the same title:' “Al welcomes systems Engineering: Towards
the science of interdependence for autonomous human-machine teams.”> The orig-
inal list of topics in our call for the Spring Symposium had sought potential speakers
to give talks on “Al and machine learning, autonomy; systems engineering; Human-
Machine Teams (HMT); machine explanations of decisions; and context.” For the
Replacement Symposium, we revised our list of topics for potential speakers to
consider in addition: “machine explanations of decisions.” For both symposia, we
sought participants from across multiple disciplines who were willing to work
together to contribute to the advancement of Al in welcoming SE to build a science of

! https://aaai.org/Symposia/Spring/sss20symposia.php#ss03.
2 Michael Wollowski designed and built our supplementary website (wollowsk @rose-hulman.edu),
found at https://sites.google.com/view/scienceofinterdependence.
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interdependence for autonomous human-machine teams and systems. Our thinking
continued to evolve, leading us to name the title of this book, “Systems Engineering
and Artificial Intelligence.”

The list of topics in this book expanded well beyond the listed agendas for our
two symposia. That said, the theme of systems and Al has continued to motivate the
chapters in this book. Our goal for the symposium was, and for this book is, to deal
with the current state of the art in autonomy and artificial intelligence (Al) from a
systems perspective for the betterment of society.

In advertising for our symposium and then for the chapters in this book, we sought
contributors who could discuss the meaning, value, and interdependent effects on
context wherever these Al-driven machines interact with humans to form autonomous
human-machine teams or systems. We had called for extended abstracts (1-2 pages)
or longer manuscripts of up to 8 pages in length. Our plan was to publish lengthy
manuscripts as chapters in a book after the symposium. We hope that this resulting
edited book will advance the next generation of systems that are being designed to
include autonomous humans and machines operating as teams and systems interde-
pendently with Al. By focusing on the gaps in the research performed worldwide and
addressed in this book, we hope that autonomous human-machine systems wherever
applied will be used safely.

In this edited volume, we explore how Al is expanding opportunities to increase
its impact on society, which will significantly increase with autonomous human-
machine teams and systems. With this book, we offer to the curious and professional
alike a review of the theories, models, methods, and applications of Al systems to
provide a better understanding, a more integrated perspective of what is in play and
at stake from the autonomous humans-machine teams and systems soon to cause
major disruptions. But our aim with this book is to help society, practitioners, and
engineers to prepare for the extraordinary changes coming.

Machine Learning (ML) is a subset of Artificial Intelligence (AI). Already
exceeding trillions of dollars invested, ML and Al have already wrought change
across many fields with even greater impacts yet to come. As autonomous machines
arrive on the scene, some of the new problems that have accompanied them are
discussed in this book. For example, Judea Pearl warned Al scientists to “build
machines that make sense of what goes on in their environment” to be able to commu-
nicate with humans. Self-driving vehicles have already been involved in fatalities, and
yet AI/ML is still trying to explain to humans the contexts within which it operates.

This edited book reflects our belief that only an interdisciplinary approach can
fully address Pearl’s warning. At our two symposia, we had papers presented by Al
computer scientists, systems engineers, social scientists, entrepreneurs, philosophers,
and other specialists address how humans make decisions in large systems; how they
determine context especially when facing unfamiliar environments or unanticipated
events; how autonomous machines may be taught to understand shared contexts; and
how human-machine teams may interdependently affect human awareness, other
teams, systems, and society, and be affected consequently. For example, in the Uber
self-driving fatality of a pedestrian in 2018, the car should have alerted its teammate,
a human operator, of an object in the road ahead. As with the case of the Uber
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fatality, to best protect society, we need to know what happens if the context shared
by human-machine teams is incomplete, malfunctions, or breaks down.

This book also includes one of the first, if not the very first, chapters coauthored by
an artificially intelligent coauthor. Her name is Charlie. Her fellow coauthors address
the value of recognizing Charlie and treating her with respect to build a context that
is shared by all participants. For autonomous teams and systems involving humans
and machines, constructing a shared context is fundamental, meaning that joint inter-
pretations of reality must be addressed, requiring the interdisciplinary approach that
we have adopted, so that we too can learn from Charlie, a significant moment for us,
our fellow contributors, and we hope for you the reader, too.

The Organizers of Our Symposium

William F. Lawless, (w.lawless @icloud.com), corresponding, Professor, Math-
ematics & Psychology, Paine College, GA, Special Topics Editor, Entropy, and
Review Board, ONR (AI; Command Decision Making).

Ranjeev Mittu (ranjeev.mittu @nrl.navy.mil), Branch Head, Information Manage-
ment & Decision Architectures Branch, Information Technology Division, U.S.
Naval Research Laboratory, Washington, DC.

Donald Sofge (don.sofge@nrl.navy.mil), Computer Scientist, Distributed
Autonomous Systems Group, Navy Center for Applied Research in Artificial
Intelligence, Naval Research Laboratory, Washington, DC.

Thomas Shortell (thomas.m.shortell@lmco.com), Certified Systems Engineering
Professional, Lockheed Martin Space Systems, King of Prussia, PA.

Thomas A. McDermott (tamcdermott42 @ gmail.com), Deputy Director, Systems
Engineering Research Center, Stevens Institute of Technology, Hoboken, NJ.

Participants at Our Symposium

We had several more participants than the speakers who attended our symposium.
We wanted speakers and participants who could assess the foundations, metrics, or
applications of autonomous AI/ML, human-machine teams, and systems and how
these teams and systems affect or may be affected themselves. We kept both of
the symposia open-ended for the topics and for this book. We considered all papers
submitted for the two symposia and several afterwards for the book as long as they had
a systems perspective. Accompanied by contributions from non-symposium partici-
pants, too, our goal then and now is to advance Al theory and concepts to improve the
performance of autonomous human-machine teams and systems to improve society.
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Program Committee for Our 2020 AAAI Symposia

e Manisha Misra, U Connecticut, Ph.D. graduate student, manisha.uconn@ gmail.
com

e Shu-Heng Chen, Taiwan, chen.shuheng @ gmail.com

e Beth Cardier, Sirius-Beta, VA; School Health Professions, Eastern Virginia
Medical School, bethcardier @hotmail.com

e Michael Floyd, Lead AI Scientist, Knexus Research, michael.floyd @knexusres
earch.com

e Boris Galitsky, Chief Scientist, Oracle Corp., bgalitsky @hotmail.com

e Matt Johnson, Institute for Human and Machine Cognition, Research scientist in
human-machine teaming for technologies, mjohnson @ihmec.us

e Georgiy Levchuk, Aptima Fellow, Senior Principal, Simulation & Optimization
Engineer, georgiy @aptima.com

e Patrick J. Martin, MITRE Corporation, Autonomous Systems Engineer, pmarti
n@mitre.org

e Manisha Mishra, University of Connecticut, Systems Engineering, manisha.uco
nn@gmail.com

e Kirishna Pattipati, University of Connecticut, Board of Trustees Distinguished
Professor, Professor in Systems Engineering.

After the AAAI-Spring and Fall Replacement Symposia in 2020 were completed,
speakers were asked to revise their talks into manuscripts for the chapters in this
book. After the symposium, other authors who did not participate in the symposium
were also invited and they agreed to participate. The following individuals were
responsible for the proposal submitted to Springer for the book before the symposia,
for the divergence between the topics considered by the two, and for editing this
book that has resulted.

Augusta, GA, USA William F. Lawless
Washington, DC, USA Ranjeev Mittu
Washington, DC, USA Donald A. Sofge
King of Prussia, PA, USA Thomas Shortell

Hoboken, NJ, USA Thomas A. McDermott
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Chapter 1 )
Introduction to ““Systems Engineering e
and Artificial Intelligence”

and the Chapters

William F. Lawless, Ranjeev Mittu, Donald A. Sofge, Thomas Shortell,
and Thomas A. McDermott

Abstract In this introductory chapter, we first review the science behind the two
Association for the Advancement of Artificial Intelligence (AAAI) Symposia that
we held in 2020 (“Al welcomes Systems Engineering. Towards the science of inter-
dependence for autonomous human-machine teams”). Second, we provide a brief
introduction to each of the chapters in this book.

1.1 Introduction. The Disruptive Nature of Al

Presently, the United States is facing formidable threats from China and Russia. In
response to these threats, the Director of the Defense Intelligence Agency (Ashley,
2019) and DNI stated:

China ... [is] acquiring technology by any means available. Domestic [Chinese] laws forced
foreign partners of Chinese-based joint ventures to release their technology in exchange
for entry into China’s lucrative market, and China has used other means to secure needed
technology and expertise. The result ... is a PLA on the verge of fielding some of the
most modern weapon systems in the world. ... China is building a robust, lethal force with
capabilities spanning the air, maritime, space and information domains which will enable
China to impose its will in the region. (p. V) ... From China’s leader, Xi Jinping, to his 19th
Party Congress (p. 17) “We must do more to safeguard China’s sovereignty, security, and
development interests, and staunchly oppose all attempts to split China or undermine its
ethnic unity and social harmony and stability.”

W. F. Lawless ()
Paine College, Augusta, Georgia
e-mail: w.lawless @icloud.com

R. Mittu - D. A. Sofge - T. Shortell - T. A. McDermott
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To address these and other competitive threats, artificial intelligence (Al), espe-
cially machine learning (ML) that we discuss with fusion next, is a major factor. The
U.S. Department of Defense (DoD), industry, commerce, education, and medicine
among many other fields are seeking to use Al to gain a comparative advantage for
systems. From the perspective of DoD (2019):

Al is rapidly changing a wide range of businesses and industries. It is also poised to change
the character of the future battlefield and the pace of threats we must face.

Simultaneously, the DoD recognizes the disruptive nature of AI (Oh et al., 2019).
To mitigate this disruption while taking advantage of the ready-made solutions Al
already offers to commerce, the current thinking appears to first use Al in areas
that are less threatening to military planners, the public, and potential users; e.g.,
back-office administration; finance (e.g., Airbus is using Al to cut its financial costs
by increasing efficiency, reducing errors, and freeing up humans for more strategic
tasks such as planning, analysis, and audits; in Maurer, 2019); data collection and
management; basic personnel matters; virtual assistants for basic skills training (i.e.,
Military Occupational Specialties, or MOSs); personal medical monitoring (e.g.,
drug compliance, weight reduction, sleep cycles); military maintenance; and simple
logistics (e.g., ordering, tracking, maintaining supplies).

Second, when the DoD and other fields address the more disruptive aspects of Al,
like autonomy and autonomous human—machine teams, many more social changes
and impacts will arise, including the adverse threats posed by the use of Al, such as
the “consequences of failure in autonomous and semi-autonomous weapon systems
that could lead to unintended engagements” (DoD, 2019).

Machine Learning (ML) and Fusion: Machine learning has already had an extraor-
dinary economic impact worldwide estimated in the trillions of dollars with even
more economic and social impact to come (Brynjolfsson & Mitchell, 2017). The
basic idea behind traditional ML methods is that a computer algorithm is trained
with data collected in the field to learn a behavior presented to it as part of previous
experience (e.g., self-driving cars) or with a data set to an extent that an outcome can
be produced by the computer algorithm when it is presented with a novel situation
(Raz et al., 2019).

Autonomy is changing the situation dramatically in the design and operational
contexts for which future information fusion (IF) systems are evolving. There are
many factors that influence or define these new contexts but among them are:
movement to cloud-based environments involving possibly many semi-autonomous
functional agents (e.g., the Internet of Things or IoT; Lawless et al., 2019b), the
employment of a wide range of processing technologies and methods spread across
agents and teams, an exceptional breadth of types and modalities of available data,
and diverse and asynchronous communication patterns among independent and
distributed agents and teams. These factors describe the contexts of complex adap-
tive systems (CAS) for “systems in which a perfect understanding of the individual
parts does not automatically convey a perfect understanding of the whole system’s
behavior” (Raz et al., 2019).
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Managing these disruptions must justify the need for speedy decisions; a systems
approach; the commonality of interdependence in systems and social science; social
science, including trust; the science of human—human teams (HHT); and human—
machine teams (HMT). We discuss these topics in turn.

1.1.1 Justifying Speedy Decisions

Now is the time when decisions may need to be made faster than humans can
process (Horowitz, 2019), as with the military development of hypersonic weapons
by competitor nations (e.g., China; in Wong, 2018); the push for quicker command,
control, and communication upgrades for nuclear weapons (NC-3; in DoD, 2018);
and the common use of Al in public conveyances like self-driving cars, trucks, ships,
or subways.

Many systems are approaching an operational status that use Al with humans
“in-the-loop,” characterized by when a human can override decisions by human—
machine or machine—machine teams in combat, such as the Navy’s new Ghost fleet
(LaGrone, 2019); the Army’s autonomous self-driving combat convoy (Langford,
2018); and the Marine Corps’ remote ordinance disposal by human—machine teams
(CRS, 2018).

Even more dramatic changes are to occur with human “on-the-loop” decisions,
characterized by when decisions must be made faster than humans can process and
take action based on the incoming information. Among the new weapon systems,
these decisions may be made by a human-machine team composed of an F-35
teaming with the Air Force’s aggressive, dispensable “attritable” drones flying in
a wing or offensive position (Insinna, 2019); moreover, hypersonic weapons are
forcing humans into roles as passive bystanders until a decision and its accompa-
nying action have been completed. From an article in the New York Times Magazine
(Smith, 2019),

One of the two main hypersonic prototypes now under development in the United States is
meant to fly at speeds between Mach 15 and Mach 20 ... when fired by the U.S. submarines
or bombers stationed at Guam, they could in theory hit China’s important inland missile
bases ... in less than 15 minutes ...

By attacking the United States at hypersonic speeds, however, these speeds would
make ballistic missile interceptors ineffective (e.g., Aegis ship-based, Thad ground-
based, and Patriot systems). If launched by China or Russia against the United States
(Smith, 2019), these missiles:

would zoom along in the defensive void, maneuvering unpredictably, and then, in just a few
final seconds of blindingly fast, mile-per-second flight, dive and strike a target such as an
aircraft carrier from an altitude of 100,000 feet.

Human “on-the-loop” observations of autonomous machines making self-directed
decisions carry significant risks. On the positive side, since most accidents are caused
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by human error (Lawless et al., 2017), self-directed machines may save more lives.
But an editorial in the New York Times (Editors, 2019) expressed the public’s concerns
that Al systems can be hacked, suffer data breaches, and lose control to adversaries.
The Editors quoted the UN Secretary General, Antonio Guterres, that “machines
with the power and discretion to take lives without human involvement ... should
be prohibited by international law.” The editorial recommended that “humans never
completely surrender life and decision choices in combat to machines.” (For a review
of the U.N.’s failure to manage “killer robots,” see Werkhiuser, 2019.)

Whether or not a treaty to manage threats from the use of “on the loop” decisions is
enacted, the violations of existing treaties by nuclear states (e.g., NATO’s judgment
about suspected Russian treaty violations; in Gramer & Seligman, 2018) suggest
the need to understand the science of autonomy for “on the loop” decisions and to
counter the systems that use them.

Furthermore, the warning by the Editors of the New York Times is similar to
those that arose during the early years of atomic science, balanced by managing the
threats posed while at the same time allowing scientists to make numerous discov-
eries leading to the extraordinary gifts to humanity that have followed, crowned by
the Higgs (the so-called “God”) particle and quantum computing. The science of
autonomy must also be managed to balance its threats while allowing scientists to
make what we hope are similar advances in the social sphere ranging from Systems
Engineering and social science to international affairs.

1.1.2 Systems Engineering (SE)

SE is also concerned about whether Al and ML will replace humans in the decision
loop (Howell, 2019). System engineers prefer that humans and machines coexist
together, that machines be used to augment human intelligence, but that if decisions
by machines overtake human decision-making as is happening with “on-the-loop”
decisions, at least humans should audit the machine decisions afterward (viz., see the
Uber car fatality case below). SE also raises a series of other concerns and questions.

In addition to the public’s concerns about Al expressed by the Editors in the New
York Times, the application of AI/ML raises several concerns and questions for SE.
One concern is whether or not to use a modular approach to build models (Rhodes,
2019). System engineers note that safety is an emergent property of a system (Howell,
2019). When a team “emerges,” the whole has become more than the sum of its parts
(Raz et al., 2019); in contrast, when a collective fails, as appears to be occurring in
Europe today, it creates “a whole significantly less than the sum of its parts” (Mead,
2019). Butif SE using AI/ML is to be transformed through model-centric engineering
(Blackburn, 2019), how is that to be accomplished for autonomous teams? Systems
often do not stand alone; in those cases where systems are a network of networks,
how shall system engineers assure that the “pieces work together to achieve the
objectives of the whole” (Thomas, 2019)? From retired General Stanley McCrystal’s
book, Team of teams, “We needed to enable a team operating in an interdependent
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environment to understand the butterfly-effect ramifications of their work and make
them aware of the other teams with whom they would have to cooperate” (in Long,
2019). Continuing with the emphasis added by Long (2019), in the attempt by the
Canadian Armed Forces to build a shared Communication and Information Systems
(CIS) with networked teams and teams of teams in its systems of organizations,

Systems must be specifically designed to enable resilient organizations, with the designer
and community fully aware of the trade-offs that must be made to functionality, security,
and cost. However, the benefits of creating shared consciousness, lowering the cost of
participation, and emulating familiar human communication patterns are significant
(Long’s emphasis).

For more concerns, along with metrics for autonomous Al systems, formal verifi-
cation (V&V), certification and risk assessments of these systems at the design, oper-
ational, and maintenance stages will be imperative for engineers (Lemnios, 2019;
Richards, 2019). Is there a metric to assess the risk from collaboration, and if so, can it
be calculated (Grogan, 2019)? The risk from not deploying Al systems should also be
addressed (DeLaurentis, 2019); while an excellent suggestion, how can this concern
be addressed?' Measured in performance versus expectations, when will these risks
preclude humans from joining teams with machines; and what effect will machine
redundancy have in autonomous systems (Barton, 2019)? Because data are dumb,
how will the operational requirements and architectures be tested and evaluated for
these systems over their lifecycle (Dare, 2019; Freeman, 2019)?

Boundaries and deception: Al can be used to defend against outsiders, or used
with deception to exploit vulnerabilities in targeted networks (Yampolskiy, 2017). A
team’s system boundaries must be protected (Lawless, 2017a). Protecting a team’s
networks is also a concern. In contrast, deception functions by not standing out (i.e.,
fitting in structurally; in Lawless, 2017b). Deception can be used to compromise
a network. From the Wall Street Journal (Volz & Youssef, 2019), the Department
of Homeland Security’s top cybersecurity official, Chris Krebs, issued a statement
warning that Iran’s malicious cyberactivities were on the rise. “What might start as
an account compromise ... can quickly become a situation where you’ve lost your
whole network.”

Caution: In the search for optimization, tradeoffs occur (Long, 2019); however,
an optimized system should not tradeoff resilience.

1.1.3 Common Ground: Al, Interdependence, and SE

Systems engineers know about interdependence from a system’s perspective. They
claim to know little about human teams, which they hope can be improved by working

1 One possibility is to use global metrics. In the case of the Uber car accident that killed a pedestrian
discussed below, the industry’s first pedestrian fatality, the company’s self-driving section did not
suffer until the accident, and then Uber and the rest of the self-driving industry have been significantly
slowed by the fatality (Gardner, 2019).
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with social scientists and by studying their own SE teams and organizations (DeLau-
rentis, 2019). Their own teams and organizations, however, are systems of social
interdependence.

Systems Engineering addresses the interactions of systems too complex for an
analysis of their independent parts without taking a system as a whole into account
across its life cycle. System complexity from the “interdependencies between ...
constituent systems” can produce unexpected effects (Walden et al., 2015, p. 10),
making the management of systemic interdependence critical to a system’s success.
For example, the interactions for complex systems with numerous subsystems, like
the International Space Station (ISS), interact interdependently (i.e., interdependence
affected how the ISS modules were assembled into an integrated whole, how module
upgrades affected each other, how interfaces between ISS modules were determined
to be effective, how the overall configuration of the modules was constructed, how
modules were modeled, etc.; in Stockman et al., 2010). From the ISS, in SE, we
can see that interdependence transmits the interactions of subsystems. The study of
interdependence in systems is not a new idea. For example, Llinas (2014, pp. 1, 6)
issued a:

call for action among the fusion, cognitive, decision-making, and computer-science commu-

nities to muster a cooperative initiative to examine and develop [the] ... metrics involved in

measuring and evaluating process interdependencies ... [otherwise, the design of] modern
decision support systems ... will remain disconnected and suboptimal going forward.

Similarly, in the social sciences, interdependence is the means of transmitting
social effects (Lawless, 2019), such as the construction of a shared context between
two humans, and, we propose, for human—-machine teams (HMT). Interdependence
then is the phenomenon that not only links Systems Engineering, Al, and other
disciplines (e.g., social science, law, philosophy, etc.) but also, if interdependence
can be mastered, it will provide a means to assist Al and SE in the development of a
science of interdependence for human—machine teams.

The application of interdependence in a system to analyze an accident: In 2018, an
Uber? self-driving car struck and killed a pedestrian. From the investigation report
(NTSB, 2018; NTSB, 2019b), the machine saw the pedestrian about 6 s before
striking her, selected the brakes 1.2 s before impact, but new actions like the brakes
had a 1 s interlock to prevent precipitous action by (since corrected). The human
operator saw the victim 1 s before impact and hit her brakes 1 s after impact. Of
the conclusions to be drawn, first, although poorly designed, the Uber car performed
faster than the human; but, second and more important, the Uber car was a poor team
player by not updating the context it should have shared with its human operator
(Sofge et al., 2019).

Trust as part of the accident analysis. When will machines be qualified to be
trusted remains an important question. As we pointed out in a bet in Al Magazine
(Sofge et al., 2019), despite the complexity and costs of validating these systems,
according to a New York Times (Wakabayashi, 2018) investigation of the pedestrian’s
death in 2018 by the Uber self-driving car, Waymo self-driving cars:

2 On December 7th, Uber sold its self-driving unit to Aurora Innovation Inc. (Somerville, 2020).
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went an average of nearly 5,600 miles before the driver had to take control from the computer
to steer out of trouble. As of March [2018, when the accident happened], Uber was struggling
to meet its target of 13 miles per “intervention” in Arizona ...

It must be kept in mind, however, that as incompletely and poorly trained as was
the Uber car, it still responded to the situation as it had been designed; further, its
response was faster than its human operator.

1.1.4 Social Science

The National Academy of Sciences (2019) Decadal Survey of Social and Behav-
ioral Sciences finds that the social sciences want to be included in research using
computational social science for human and Al agents in teams. In their thinking,
social scientists are concerned about ethical and privacy issues with the large digital
databases being collected. For systems of social networks, they recommended further
study on:

how information can be transmitted effectively ... [from] change in social networks ...
network structure of online communities, the types of actors in those communities ...

In addition, social scientists want more research to counter social cyberattacks,
research on emotion, and, for our purposes (see below in Bisbey et al., 2019 for
similar issues with research on human teams),

... how to assemble and divide tasks among teams of humans and Al agents and measure
performance in such teams. ...

More importantly, while social scientists want to be included in the AI/ML revo-
lution, they have had setbacks in their own disciplines with the reproducibility of
experiments (e.g., Nosek, 2015; also, Harris, 2018). For our purposes, unexpect-
edly, research has indicated that the poorest performing teams of scientists were
interdisciplinary teams (Cummings, 2015).> In addition, however, Cummings added
that the best scientist teams maximized interdependence. Based on Cummings and
our research (e.g., Lawless, 2019), we conclude that for interdisciplinary teams to
function optimally, their team members must also be operating under maximum
interdependence (Lawless, 2017a). By extension, for the optimum size of a team
to maximize interdependence, a team’s size must be the minimum size to solve a
targeted problem (Lawless, 2017a), contradicting the Academy’s two assertions that
“more hands make light work” (Cooke & Hilton, 2015, Chap. 1, p. 13) and that the
optimal size of a scientific team is an open problem (p. 33).

The advent of human—machine teams has elevated the need to determine context
computationally, yet social science has offered little guidance for their design, oper-
ation, or to prevent accidents (see the Uber self-driving car accident described above
that killed a pedestrian in 2018), let alone the means to construct a computational

3 Cummings studied about 500 teams of scientists in the National Science Foundation’s data base.
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context (Lawless et al., 2019a). Recognizing their plight, social scientists argue, and
we agree, that their science is the repository of an extraordinary amount of statistical
and qualitative experience in determining and evaluating contexts for humans and
human teams (NAS, 2019). Nonetheless, this situation leaves engineers to seek a
quantitative path on their own. Instead, we foresee an integrated path as the better
course going forward (Lawless, 2019).

Trust and machine autonomy: In the rapid decision-making milieux where trust
between machine and human members of a team becomes a factor (Beling, 2019),
to build trust, each member of a human—-machine team must be able not only to
exchange information about their status between teammates but also to keep that
information private (Lawless et al., 2019a). In that humans cause most accidents
(Lawless et al., 2017), trust can be important outside of the team, as when a human
operator threatens passengers being transported, which happened with the crash of
GermanWings Flight 9525 in the Alps in March 2015, killing all 150 aboard at the
hands of its copilot who committed suicide (BEA, 2016); or the engineer on the
train in the Northeast Corridor in the United States who allowed his train rounding
a curve to speed above the track’s limits (NTSB, 2016); or the ship’s captain on
the bridge of the McCain at the time the destroyer was turning out of control in a
high-traffic zone (NTSB, 2019). In these and numerous other cases, it is possible
with current technology and Al to authorize a plane, train, other public vehicle or
military vehicle or Navy ship as part of a human—machine team to take control from
its human operator (the bet that a machine will be authorized to take control from a
dysfunctional human operator, Sofge et al., 2019).

1.1.5 The Science of Human Teams

From our review of human teams, Proctor and Vu (2019) conclude that the best
forecasts improve with competition (Mellers & Tetlock, 2019). They also conclude
that teams are formed by “extrinsic factors, intrinsic factors, or a combination of
both.” Extensive motivation is often generated from the collective consensus of many
stakeholders (the public, researchers, and sponsoring agencies) that there is an urgent
problem that needs to be solved. But they asserted that solutions require “a multi-
disciplinary team that is large in score ... [with] the resources required to carry
out the research ... to appropriate subject-matter experts, community organizations
and other stakeholders ... [and] within an organization, administrative support for
forming, coordinating, and motivating multidisciplinary teams ...”.

Salas and his colleagues (Bisbey et al., 2019) conclude that “Teamwork allows
a group of individuals to function effectively as a unit by using a set of interre-
lated knowledge, skills and attitudes (KSAs; p. 279). [On the other hand] ... poor
teamwork can have devastating results ... plane crashes, ... friendly fire, ... surgical
implications ... When the stakes are high, survival largely depends on effective team-
work.” One of the first successes with human teams was: “Crew resource manage-
ment [CRM] prompted by not “human error,” but crew phenomena outside of crew
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member competencies such as poor communication in United Flight 173 led the
Captain to disregard fuel state. ... CRM required the crew to solve its problems
as a team” (p. 280). Another success for team science occurred in the attempts to
understand the shoot-down of an Iranian commercial airliner by the USS Vincennes
in 1988, leading to the study of stress in decision-making. Subsequently, following
the combination of a significant number of unrelated human errors that led to new
research after President Clinton’s Institute of Medicine (IOM) review of medical
errors in hospitals; the coordination errors with the BP/Deepwater Horizon oil spill
in 2011; Hurricane Katrina in 2005; and the NASA accidents Columbia in 2003
and Challenger in 1986 space shuttle accidents. Based on this new research, human
team scientists separated task-work from teamwork. Task work dealt with skills or
a skills’ domain (flying a plane), teamwork skills with team effectiveness across
contexts (e.g., how to communicate with others; p. 282).

1.1.6 Human—-Machine Teams

A précis of our research on mathematical models of interdependence and future
directions follows. From our hypothesis that the best teams maximize interdepen-
dence to communicate information via constructive and destructive interference, we
have established that the optimum size of teams and organizations occurs when they
are freely able to choose to minimize redundant team members (Lawless, 2017a);
we replicated the finding about redundancy and freedom in making choices, adding
that redundancy in over-sized teams is associated with corruption (Lawless, 2017b),
and that the decision-making of teams and organizations in interdependent states
under the pressure of competition implies tradeoffs that require intelligence to navi-
gate around the obstacles that would otherwise preclude a team from reaching its
goal such as producing patents (Lawless, 2019). Our findings on redundancy contra-
dict network scientists (Centola & Macy, 2007, p. 716) and the Academy (Cooke &
Hilton, 2015, Chap. 1, p. 13); we have also found that interdependence identified in
tracking polls indicates that it interferes adversely with predictions based on those
polls (Lawless, 2017a, b); e.g., Tetlock and Gardiner’s first super-forecasters failed
in their two predictions in 2016, first that Brexit would not occur, followed by their
second in 2016 that Trump would not be elected President.

In a recent article (Lawless, 2019), we found evidence that intelligence measured
by levels of education is significantly associated with the production of patents;
however, in earlier research from 2001 reviewed in the same article, we reported that
education specific to air-combat maneuvering was unrelated to the performance of
fighter pilots engaged in air-to-air combat, indicating that intelligence and physical
skills tap orthogonal phenomena, offering a new model of mathematics and thermo-
dynamics for teams, which also accounts for the failure of complementarity to be
established; viz., for the latter, the best teams are composed of agents in orthogonal
roles, measured by Von Neumann subadditivity, whereas agents in the worst teams
are in roles measured by Shannon information (e.g., the conflict between CBS and
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Viacom during 2016—18). Finally, orthogonality figures into our proposed next study
on fundamental decision processes and emotion for a model of a social harmonic
oscillator where we hypothesize that the best teams operate in a ground state while
underperforming teams operate in excited states (Lawless, 2019).

1.2 Introduction to the Chapters

Artificial intelligence has already brought significant changes to the world; will the
impact of human—machine teams be even greater? The first of the contributed chap-
ters, Chap. 2, “Recognizing Artificial Intelligence: The Key to Unlocking Human
Al Teams,” was written by a team at Aptima, Inc., headquartered in Woburn, MA.
The authors consist of Patrick Cummings, Nathan Schurr, Andrew Naber, Charlie,
and Daniel Serfaty (Aptima’s CEO and Founder). Readers, please recognize that
one of the coauthors from Aptima, “Charlie,” has no last name; she is an artificial
embodiment. Charlie has made contributions to public before (e.g., at a workshop
and a panel), but her contributions to Chap. 2 may be one of the first, if not the
very first, chapters contributed to or co-authored by, as she is aptly described by
her fellow coauthors, an “intelligent coworker.” Interacting with Charlie in public
over the past year has produced several insights signified and discussed by all of the
authors in their chapter. Interestingly, several of these insights are based on the treat-
ment of Charlie’s spoken ideas and written contributions with deep respect, which
they have described as “recognizing” Charlie as an equal contributor. The authors
provide details about how Charlie came into existence and how she operates in public
(e.g., her architecture, her public persona, her ability to brainstorm). The stated goal
of all of the authors of Chap. 2 is to bring human and intelligent coworkers together
to build an effective system in the future, not only one that recognizes human and
artificial coworkers but also one that can be influenced by both human and artificial
coworkers and by the contributions from both. We add: “Welcome, Charlie!”.
Chapter 3 was written by three Systems Engineers, namely by Thomas A. McDer-
mott and Mark R. Blackburn at the Stevens Institute of Technology in Hoboken, NJ;
and by Peter A. Beling at the University of Virginia in Charlottesville, VA. (McDer-
mott is one of the co-editors of this book.) Their chapter is titled, “Artificial Intel-
ligence and Future of Systems Engineering.” In it, the authors address the major
transformation of their profession now occurring that is being driven by the new
digital tools for modeling, data and the extraordinary “digital twins” resulting in
the integration of data and modeling. These new tools include the artificial intelli-
gence (Al) and machine learning (ML) software programs that are becoming key to
the new processes arising during this period of transformation. Yes, Systems Engi-
neering (SE) is being transformed, but the hope of the authors is that SE is able to
guide these new tools and their applications to increase the benefits so that society
welcomes this transformation. To help guide this transformation, the authors provide
a roadmap being developed by the Systems Engineering Research Center (SERC);
SERC is a University-Affiliated Research Center of the US Department of Defense.
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The roadmap sets out a series of goals in the attempt by SERC to identify the oppor-
tunities and the risks ahead for the research community to guide Systems Engineers
in preparation for the journey to the emergence of autonomy safely and ethically.

The fourth chapter, “Effective Human-Artificial Intelligence Teaming,” was
written by Nancy J. Cooke and William Lawless. Cooke is a Professor of Human
Systems Engineering and Director of the Center for Human, Artificial Intelligence,
and Robot Teaming at Arizona State University. Lawless is a Professor of Mathe-
matics and Psychology at Paine College; he is also on two Navy Boards (the Science
of Al and Command Decision Making); and he is a new Topics Editor of the journal
Entropy (“The entropy of autonomy and shared context. Human—-machine teams,
organizations and systems”). They begin their chapter with a review of the history
of interdependence. It has long been known to be present in every social interaction
and central to understanding the social life of humans, but interdependence has been
difficult to manage in the laboratory, producing effects that have “bewildered” social
scientists. Since then, however, along with her colleagues and students, Cooke, the
first author, has studied in detail the effects of interdependence in the laboratory
with detailed studies. She has explored many of the aspects of interdependence and
its important implications with her team. She was also the lead author in a review
published by the National Academy of Sciences on what is known theoretically
and experimentally about interdependence in a team, finding that interdependence
enhances the performance of individuals (Cooke & Hilton, 2015). Writing Chap. 4
has provided her with the perspective she has gained from the considerable research,
she and her colleagues have conducted over the years. This perspective allows her to
estimate the additional research necessary before artificial intelligence (Al) agents
and machines can replace a human teammate on a team.

Chapter 5, “Towards Systems Theoretical Foundations for Human-Autonomy
Teams,” was written by Marc Steinberg with the Office of Naval Research (ONR)
in Arlington, VA. Steinberg is ONR’s Program Officer for its Science of Autonomy
program. In his chapter, he writes about the challenges posed by developing the
autonomy of human and intelligent systems. These are new ones on how to best
specify, model, design, and verify the correctness of systems. He discusses the
real-time monitoring and repairing of autonomous systems over life times, all the
while detecting problems and rebooting properties. These challenges entail Systems
Engineering methods to model system life cycles by abstracting and decomposing
systems in the design and development of components for intelligent autonomy.
Exploring these higher-level abstractions, models, and decompositions may inspire
solutions and lead to autonomy. These inspirations may integrate systems and humans
and provide the means to assure safety. He samples perspectives across scientific
fields, including biology, neuroscience, economics, game theory, and psychology. He
includes methods for developing and assessing complex human—machine systems
with human factors and organizational psychology, and engineering teams with
computer science, robotics, and engineering. He discusses team organizational struc-
tures, allocating roles, functions, responsibilities, theories for teammates working on
long-lived tasks, and modeling and composing autonomous human—machine teams
and systems, and their implications.
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The sixth chapter was written by James Llinas, Ranjeev Mittu, and Hesham Fouad.
Itis titled, “Systems Engineering for Artificial Intelligence-based Systems: A Review
in Time.” Llinas is the Director Emeritus at the Center for Multi-source Information
Fusion as well as a Research Professor Emeritus, with both positions in the University
at Buffalo. Ranjeev Mittu is the current Branch Head, Information Management &
Decision Architectures Branch, Information Technology Division at the U.S. Naval
Research Laboratory in Washington, DC; and Hesham Fouad is a Computer Scientist
in the same branch at the Naval Research Laboratory. Their backgrounds include
information systems, the science of information fusion, and information technology.
In their chapter, they provide a review of Systems Engineering (SE) for artificial
intelligence (AI) across time, starting with a brief history of Al (e.g., narrow, weak,
and strong Al including expert systems and machine learning). Regarding SE, based
on the systems perspective by the lead author’s experience with information fusion
processes, and the experience of his coauthors with the technology in information
systems, they introduce SE and discuss how it has evolved over the years but how
much further it must evolve to become fully integrated with Al In the future, they
believe that both disciplines can help each other more if they co-evolve or develop
new technology systems together. They also review several SE issues such as risk,
technical debt (e.g., maintaining sophisticated software in information systems over
ever longer periods of time), software engineering, test and evaluation, emergent
behavior, safety, and explainable Al The authors close by discussing the challenge
of Al explanations and explainability.

Chapter 7 was an invited chapter written by Kristin Schaefer and her team,
including Brandon Perelman, Joe Rexwinkle, Jonroy Canady, Catherine Neubauer,
Nicholas Waytowich, Gabriella Larkin, Katherine Cox, Michael Geuss, Gregory
Gremillion, Jason Metcalfe, Arwen DeCostanza, and Amar Marathe. Schaefer’s
team is part of the Combat Capabilities Development Command (DEVCOM)
Army Research Laboratory (ARL). The title of their chapter is, “Human-Autonomy
Teaming for the Tactical Edge: The Importance of Humans in Artificial Intelligence
Research and Development.” From their perspective, the authors address the impor-
tance of understanding the human when integrating artificial intelligence (AI) with
intelligent agents embodied (i.e., robotic) and embedded (i.e., software) into mili-
tary teams to improve team performance. The authors recognize that they and the
Army are breaking new ground, confronting fundamental problems under uncertainty
and with unknown solutions. In their chapter, they provide an overview of ARL’s
research in human-autonomy teaming. They address the major research areas neces-
sary to integrate Al into systems for military operations along with examples of these
areas and the four known research gaps: enabling Soldiers to predict Al actions and
decisions; quantifying Soldier understanding for AI; Soldier-guided Al adaptation;
and characterizing Soldier-Al performance. These four areas have organized their
research efforts to explain Al, integrate Al, and build effective human-autonomy
teams.

The eighth chapter, titled “Re-orienting towards the Science of the Artificial:
Engineering Al Systems,” was written by Stephen Russell, Brian Jalaian, and Ira
S. Moskowitz. Russell is Chief of the Information Sciences Division, U.S. Army
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Research Laboratory (ARL) in Adelphi, MD; Jalaian is a Test and Evaluation Lead
with the Department of Defense Joint Artificial Intelligence Center (JAIC); and
Moskowitz is a mathematician working for the Information Management & Decision
Architectures Branch, Information Technology Division, at the U.S. Naval Research
Laboratory in Washington, DC. In their chapter, they write that, on the one hand, while
systems enabled by Al are becoming pervasive, on the other hand, these systems face
challenges in engineering and deployment in the military for several reasons. To begin
to address these limitations, the authors discuss what it means to use hierarchical
component composition in a system-of-systems context. In addition, they discuss
the importance of bounding data for stable learning and performance required for
the use of Al in these complex systems. After a review of the literature, the authors
also address the changes that will be required to address the design/engineering
problems of interoperability, uncertainty, and emergent system behaviors needed to
allow Al to be safely deployed in embodied or fully virtualized autonomous systems.
Their perspective, illustrated with a Natural Language Processing example, allows
the authors to draw comparisons across their posits, in an attempt to offer a means to
make AI-Systems Engineering more rigorous, and the use of autonomy in the field
safer and more reliable.

Chapter 9 was written by Matthew Sheehan and Oleg Yakimenko; both researchers
work in the Department of Systems Engineering at the U.S. Naval Postgraduate
School in Monterey, CA. The title of their chapter is: “The Department of Navy’s
Digital Transformation with the Digital System Architecture, Strangler Patterns,
Machine Learning, and Autonomous Human—Machine Teaming.” In their chapter,
the authors describe the extraordinary changes caused by the U.S. Department of
Navy’s (DON) adoption of new software like the machine learning (ML) programs
designed for warfighters to assist in the performance of their missions. Some of
these “new” software products, however, are already beginning to mature and are
becoming obsolete. Still, machine learning (ML) software programs are central to
their discussions, including the need in the Fleet to provide access to the data neces-
sary to allow ML programs to operate and perform satisfactorily at sea. If adopted
and managed properly, these ML algorithms will enhance the existing applications
and will also enable new warfighting capabilities for the Navy. As rapid as are the
changes that are occurring, however, the DON system architectures and platforms
presently provide inadequate infrastructures for deployment at scale not only for
some of the new digital tools like ML but also for many of the forthcoming areas
including autonomous human-machine teams (AHMT). As the Navy transforms
itself digitally, the authors discuss the goals and barriers with a path forward to
implement successfully the Navy’s new digital platforms.

Chapter 10, “Al Driven Cyber Physical Industrial Immune Sytem for Critical
Infrastructures,” was written by a team at General Electric (GE): Michael Mylrea,
Matt Nielsen, Justin John and Masoud Abbaszadeh. Mylrea is the Director of Cyber-
security in the Cybersecurity R&D for Operational Technology at General Elec-
tric Global Research in Washington, DC. Nielsen, John and Abbaszadeh work in
the same department. In their chapter, the authors review many advances being
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driven by machine learning (ML) and artificial intelligence (AI) to detect cyber-
physical anomalies. The advances brought about by the detection of these anomalies
are improving the security, reliability, and resilience of the power grid across the
United States. This improvement is occurring at the same time that adversaries are
using advanced techniques to mount sophisticated cyberattacks against infrastruc-
tures in the United States, especially the power grid that is the focus of their applied
research. The distributed energy resources in the power grid must be defended. The
authors discuss how new technology is being deployed to enable cyberdefenses to
protect the grid against even rapidly evolving threats. Their chapter explores how
Al combines with physics to produce the next-generation system that they liken to
an industrial immune system to protect critical energy infrastructures. They discuss
the new cybertechnology and its applications for cyberdefenders, including human—
machine teams and processes. The authors review the design and application of
GE’s Digital Ghost technology to cyberdefend the world’s largest gas turbines. They
discuss the situational awareness, explanations, and trust needed to use Al to defend
against cyberthreats. The authors look into the future to prepare for the new chal-
lenges coming to make human—machine teams effectively against any threat, cyber,
or physical.

Chapter 11 was written by Ira Moskowitz and Noelle Brown while working for
the Information Management and Decision Architectures Branch, Information Tech-
nology Division, U.S. Naval Research Laboratory in Washington, DC; their coauthor
was Zvi Goldstein in the Electrical Engineering Department at Columbia University
in New York City. The title of their chapter is “A fractional Brownian motion approach
to psychological and team diffusion problems.” Their mathematical approach is moti-
vated by Al but with the goal of establishing that fractional Brownian motion can
become a metric to measure the diffusion processes existing in teams. In their chapter,
they review the mathematics for their proposed metric as a step toward building a
science of interdependence for autonomous human—machine teams. In their chapter,
the authors discuss various random walks, including those with Wiener and Gaussian
processes, and then they discuss drift-diffusion and extensions (stopping times and
absorbing boundaries) to make fractional Brownian motion into a metric of interde-
pendence. Before closing, the authors revisit Ratcliff diffusion, and then they present
their hybrid approach in preparation for a future application to the science of teams.

Chapter 12, “Human—Machine Understanding: The Utility of Causal Models and
Counterfactuals,” was authored by Paul Deignan; he is a Research Engineer working
with the Lockheed Martin Corporation in Bethesda, Maryland. His research interest
is focused on predictive analytics. He begins with the assertion that trust is a human
condition. The author proposes that for a human to trust a machine, the human must
understand the capabilities and functions of the machine in a context spanning the
domain of trust so that the actions of the machine are predictable for a given set of
inputs. In general, however, he believes that the domain of trust must be expanded
so that the human—machine system can be optimized to operate in the widest range
of situations. This reasoning motivates his desire to cast the operations of a machine
into a knowledge structure tractable to its human users, operators, and the human
teammates of machines. At the present time, machine behaviors are deterministic;
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thus, for every action, there is areaction and this means to the author that the dynamics
of a machine can be described through a structured causal model, which enables the
author to formulate the counterfactual queries upon which he anchors human trust.

Chapter 13, “An Executive for Autonomous Systems, Inspired by Fear Memory
Extinction,” was written by Matt Garcia at Northeastern University; Ted Goranson
with the Australian National University; and Beth Cardier at the Eastern Virginia
Medical School in the United States and at the Griffith University in Australia.
To overcome the many unknowns that autonomous systems may face, the authors
explore a category-theoretic, second-sorted executive reasoner in their chapter to
perform the adaptive, introspective reasoning needed by autonomous systems to solve
the challenging situations that they may see (i.e., decisions under uncertainty, such
as those encountered in combat at sea, electronic warfare, or with clinical traumas).
They base their ideas on complex mathematics, but they illustrate them with cartoon
examples of submarine surveillance, electronic warfare, and post-traumatic stress
disorder (PTSD). The authors provide a case study of the neural changes occurring
during therapy for PTSD as a model for executive reasoning, the main thrust of their
ideas. Their goal is to develop, simulate, and generalize a technique for autonomous
reasoning by human-machine systems facing uncertainty using virtual and physical
agent models.

The title of Chap. 14 is “Contextual Evaluation of Human—Machine Team Effec-
tiveness.” It was written by Eugene Santos, Clement Nyanhongo, Hien Nguyen,
Keum Joo Kim, and Gregory Hyde. Except for Nguyen, the authors are at the
Thayer School of Engineering at Dartmouth College in Hanover, NH; Nguyen is
in the Department of Computer Science at the University of Wisconsin-Whitewater
in Whitewater, WI. The authors address the rapid adoption of human—machine
teams across domains like healthcare and disaster relief. These machines are more
autonomous and aware than previous generations, allowing them to collaborate with
humans as partners. Despite this progress, human—machine team performance is
poorly defined, especially the explanations for team performance. These explana-
tions are necessary, however, to predict team performance and identify shortcom-
ings. The authors introduce a method using interference to measure the cohesiveness
and compatibility between humans and machines in various contexts. They rely on a
classifier trained to map human—machine team behaviors to attributes directly linked
to team performance along with explanations and insights. The authors test and vali-
date their techniques in experiments with human—machine teams. The results suggest
that their predictions of team attributes reflect actual team behaviors, increasing
confidence in being able to design future human—machine teams.

Chapter 15 was written by Shu-Heng Chen. He titled his chapter, “Humanity in the
Era of Autonomous Human—Machine Teams.” Shu is affiliated with the AI-ECON
Research Center in the Department of Economics at National Chengchi Univer-
sity in Taipei, Taiwan. He is concerned with the meaning arising from the rapid
development of autonomous human—machine teams. Mindful of the philosophy and
history of science and technology, the author examines this potential meaning from
an evolutionary perspective. He argues that the meaning determined will affect the
individuality of humans, their democracy, and their ability to develop as autonomous
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humans. He wants this meaning to be positive and supportive, and he does not want
the future of humanity to be dominated and determined solely by machines. To
protect the future, he argues that scholars and citizens must become involved in the
development of autonomous human—machine teams. He recognizes that the human-
ities are changing, but with awareness, these changes can lead to more autonomy for
future generations.

Chapter 16, “Transforming the system of military medical research: An Institu-
tional History of the Department of Defense’s (DoD) first electronic Institutional
Review Board Enterprise IT system,” was written by Joseph C. Wood, US Army Col
(Ret.), MD, Ph.D., Augusta, GA and W.F. Lawless, Paine College, Augusta, GA.
This chapter, by these two authors, is about the history of their attempt to modernize
what was primarily a paper-based collection of medical research protocols, reviews,
and publications by medical research review boards and medical researchers at a
single medical research center in the U.S. Army that grew beyond their expectations
to become one of the largest electronic databases of medical reviews and research
results in the world at that time. Presenting metrics as a preview of a research
agenda on the use of Al for autonomous metrics in large systems, for the future
practice of ethics, and for the mitigation of risks, this history of their endeavors
brings out several points when dealing with large systems, including the value of
standardization, metrics, goal-based, and performance-based evaluations.

Chapter 17, “Collaborative communication and intelligent interruption systems,”
was written by Nia Peters, Margaret Ugolini, and Gregory Bowers. Peters is with the
711th Human Performance Wing, Air Force Research Laboratory, Wright Patterson
Air Force Base in Ohio. Ugolini and Bowers are with Ball Aerospace & Tech-
nologies in Fairborn, OH. The authors discuss the adverse effects of poorly timed
interruptions on collaborative environments for humans managing technology while
interacting with other humans. The literature to manage the adverse timings of inter-
ruptions, however, is focused on single users in multi-tasking interactions. There is
less research on multi-user, multi-tasking environments, which they address. To miti-
gate the disruptiveness from interruptions in multi-user, mutlti-tasking workloads,
the authors propose and evaluate timings at low mental workloads in a dual-user, dual-
task paradigm. Compared with high cognitive workload interruptions, they found that
performance is optimum when interruptions occur during low cognitive workloads,
a contribution to the literature.

Chapter 18, “Shifting Paradigms in Verification and Validation of Al-Enabled
Systems: A Systems-Theoretic Perspective,” was written by Niloofar Shadab, Aditya
Kulkarni, and Alejandro Salado. The authors are affiliated with the Grado Department
of Industrial and Systems Engineering at Virginia Tech in Blacksburg, VA. They
propose that a misalignment exists between current approaches to verification and
validation (V&V) techniques and new Al systems. Current approaches assume that
a system’s behavior is relatively standard during its lifetime. But this cannot be true
for those systems that learn and change their own behavior during their lifetime,
nullifying the value of present V&V practices. Using systems theory, the authors
explain why learning makes these new systems unique and unprecedented, and why
V&V must experience a paradigm shift. To enable this shift, the authors propose
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and discuss the theoretical advances and transformations they believe will prepare
Systems Engineers for this evolution.

Chapter 19, “Towards safe decision-making via uncertainty quantification in
machine learning,” was written by Adam Cobb, Brian Jalaian, Nathaniel Bastian, and
Stephen Russell; Cobb, Jalaian, and Russell are with the Army Research Laboratory
as part of the U.S. Army’s Combat Capabilities Development Command (CCDC)
in Adelphi, MD; and Bastian is with the Army Cyber Institute at the U.S. Military
Academy, West Point, NY. In their chapter, the authors discuss the automation of the
safety-critical systems being widely deployed with more sophisticated and capable
machine learning (ML) applications. Not yet addressed by most of these systems,
however, is the concern raised by the authors that these critical systems must not
just be safe, but safe when facing uncertainty. Moreover, quantifying and reducing
uncertainty will provide more benefits than the solutions alone if the decisions by
these machines are fully understood. Knowing how machines make decisions under
uncertainty will generalize to human decisions and autonomous systems. To this end,
the authors employ Bayesian decision theory with an example of classifying vehicles
acoustically for uncertain levels of threat. With this paradigm, the authors establish
that safer decisions are possible under uncertainty.

Chapter 20, “Engineering Context from the Ground Up,” was written by Michael
Wollowski, Lilin Chen, Xiangnan Chen, Yifan Cui, Joseph Knierman, and Xusheng
Liu. The authors are in the Computer Science Department at the Rose-Hulman Insti-
tute of Technology in Terre Haute, IN. Focused on human—-machine systems, the
authors begin with a system for a human and robot to solve problems in a collabora-
tive space. Their system manages interactions in the context of a human and machine
collaborating with speech and gesture. To facilitate good engineering practices, their
system was designed to be modular and expandable. With its modular design, context
was maintained on a shared board from the information needed to problem-solving.
The authors describe the elements of their system and the information produced.
Their goal is to generate explanations of decisions with the information accumulated
from the differing contexts in their system.

Chapter 21 was written by Priyam Parashar at the University of California in San
Diego, CA; and Ashok Goel at the Georgia Institute of Technology in Atlanta, GA.
The title of their chapter is “Meta-reasoning in Assembly Robots.” The use of robots
across human society, whether in business, industry, or the military, is becoming
widespread. The authors surmise, however, that this context increases the value of a
theory for machines with meta-reasoning skills similar to humans. In their chapter,
the authors propose and develop a framework for human-like meta-reasoning. They
focus on an assembly robot assigned a task to be performed but different from its
preprogramming, increasing the likelihood for the robot to fail at its task. To counter
its failure, the authors provide the robot with the means for meta-reasoning sufficient
to react and learn from its mistakes. In their chapter, the authors review the literature,
a task specification, a failure taxonomy, and their architecture for meta-reasoning.
The result is a theory for a robot to learn from failure with meta-reasoning for action
from perception.
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Chapter 22, “From Informal Sketches to Systems Engineering Models using Al
Plan Recognition,” was written by Nicolas Hili, Alexandre Albore, and Julien Baclet.
In France, Hili is at the University of Grenoble Alpes at the National Center for
Scientific Research (CNRS) in Grenoble; Albore is with the French Aerospace Lab
(ONERA DTIS) in Toulouse; and Baclet is at the Technological Research Institute
(IRT) Saint-Exupery in Toulouse. The day-to-day drudgery of drawing for mechan-
ical and electronic engineering was transformed with the arrival of computer-aided
design (CAD). But its lesser impact on Systems Engineering (SE) awaits new tools
for a similar escape. It was hoped that Model-Based Systems Engineering (MBSE)
would address this shortcoming. But MBSE has not been as successful due to the
complexity of creating, editing, and annotating an SE model over its lifetime as
discussed by the authors. Consequently, whiteboards, papers, and pens are still in
common use by system engineers and architects to sketch problems and solutions,
and then turned over to experts for informal digital models. In this chapter, the authors
address this problem with automated plan recognition and Al to produce sketches of
models, formalizing their results incrementally. Tested in an experiment, they achieve
an initial application with Al plan recognition applied to Systems Engineering.

Chapter 23, “An analogy of sentence mood and use,” was written by Ryan
Quandt at the Claremont Graduate University in Claremont, CA. The author claims
that the literature underestimates the elusiveness of force when interpreting utter-
ances. Instead, he argues that interpreting the force in utterances, whether assertions,
commands, or questions, is an unsolved challenge. In his view, an interpretation of
force depends on a speaker’s utterance when spoken, making grammatical mood an
uncertain indicator of force. He posits that navigating the gap between an uttered
sentence and mood links action and language’s meaning, which he addresses in this
chapter. But he is after the larger goal of determining joint action with artificial
intelligence (AI). By making these relations explicit and precise, he concludes that
argumentation schemes link language and joint action. Building from prior work, the
author then proposes questions for his model to further explore the gap in mood-force
relations.

Chapter 24 is titled, “Effective Decision Rules for Systems of Public Engage-
ment in Radioactive Waste Disposal: Evidence from the United States, the United
Kingdom, and Japan.” It was written by Mito Akiyoshi, John Whitton, Ioan Charnley-
Parry, and William Lawless. Akiyoshi is at Senshu University in the Department of
Sociology in Kawasaki, Japan; Whitton and Charnley-Parry are at the University
of Central Lancashire, in the Centre for Sustainable Transitions, Preston, United
Kingdom; and Lawless is in the Departments of Mathematics and Psychology at
Paine College in Augusta, GA. For large systems of decision-makers, the disposal and
long-term management of radioactive waste are mired in technical, environmental,
societal, and ethical conflicts. The authors of this chapter consider how different
systems in these societies address these contentious issues. With decision-making
theory, they seek a process that facilitates the safest geological disposal yet is also
perceived by participants to be fair and legal. The authors compared two decision
rules, the consensus-seeking and majority rules, finding that, despite different policy
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priorities and cultures, the majority rule maximized information processing across a
system and with the increased likelihood of a just and legitimate decision.

The last Chap. 25, is titled, “Outside the Lines: Visualizing Influence Across
Heterogenous Contexts in PTSD.” It was written by Beth Cardier, Alex Nieslen,
John Shull, and Larry Sanford. Cardier is at the Eastern Virginia Medical School in
Norfolk, VA, and, in Australia, at the Trusted Autonomous Systems of the Defence
Cooperative Research Centre (DCRC) and Griffith University in South East Queens-
land. Nielsen and Shull are at the Virginia Modeling Analysis and Simulation Center,
Old Dominion University in Norfolk, VA; and Sanford is also at the Eastern Virginia
Medical School. The authors state that open-world processes generate information
that cannot be captured in a single data set despite the need to communicate between
differing contexts. The authors present a text-visual method for modeling differing
interpretations of contexts separated by discipline, time, and perspective. Their new
tool captures transitions in video, text, image, and data transfers to study different
phenomena. They apply it to post-traumatic stress disorder (PTSD); they combine
psychological, neurological, and physiological information for PTSD in a single
modeling space using a narrative-based visual grammar. The authors aim to integrate
information from changing phenomena in the open world to detect the emergence of
disorder and to support knowledge systems in fields like neurobiology, autonomous
systems, and artificial intelligence (AI).

1.3 Summary

Interdependence is the common ingredient that motivates Systems Engineering, Al,
and the science of human—machine teamwork. Should AI scientists, systems engi-
neers, and others contribute to the development of autonomy for human—-machine
teams, the threats autonomy poses to the world must be managed to permit the
advances that may accrue across the social, systems, ethical, political, international,
and other landscapes for the benefit of humanity.
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Chapter 2
Recognizing Artificial Intelligence: The i
Key to Unlocking Human AI Teams

Patrick Cummings, Nathan Schurr, Andrew Naber, Charlie,
and Daniel Serfaty

Abstract This chapter covers work and corresponding insights gained while
building an artificially intelligent coworker, named Charlie. Over the past year,
Charlie first participated in a panel discussion and then advanced to speak during
multiple podcast interviews, contribute to a rap battle, catalyze a brainstorming
workshop, and even write collaboratively (see the author list above). To explore
the concepts and overcome the challenges when engineering human—Al teams,
Charlie was built on cutting-edge language models, strong sense of embodiment,
deep learning speech synthesis, and powerful visuals. However, the real differen-
tiator in our approach is that of recognizing artificial intelligence (AI). The act of
“recognizing” Charlie can be seen when we give her a voice and expect her to be
heard, in a way that shows we acknowledge and appreciate her contributions; and
when our repeated interactions create a comfortable awareness between her and her
teammates. In this chapter, we present our approach to recognizing Al, discussing
our goals, and describe how we developed Charlie’s capabilities. We also present
some initial results from an innovative brainstorming workshop in which Charlie
participated with four humans that showed that she could not only participate in a
brainstorming exercise but also contribute and influence the brainstorming discus-
sion covering a space of ideas. Furthermore, Charlie helped us formulate ideas for,
and even wrote sections of, this chapter.

2.1 Introduction

recognize ----- \re-kig- niz\ ------ transitive verb

1. to acknowledge one is entitled to be heard
2. to take notice with a show of appreciation
3. to perceive to be someone previously known
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(Merriam Webster)

Major breakthroughs in artificial intelligence are advancing the state of the art in
their ability to enable agents to perform tasks in a variety of domains. Particularly
in the area of generative models (Radford et al., 2019; Yang et al., 2019), these Al
agents now have something new to say. But we are severely limited in our ability to
hear them and to take advantage of these gains. For many domains, the challenge
is not building the AI agent itself, but rather engineering the human—-machine teams
that leverage it. To explore these concepts, we have been building and interacting
with an Al teammate/coworker named Charlie (Cummings et al., 2021). Although
these efforts leverage state-of-the-art AI models and capabilities, what has been
most impactful is how we have purposefully designed, integrated, and recognized
her from the start. We argue that the key to unlocking human—machine teams is
simple: recognize Al. To do this in the fullest sense, we need to leverage the three
definitions of the word “recognize,” above.

Definition 1: to acknowledge one is entitled to be heard. In addition to realizing that
Al is beginning to have something new to say, we must recognize the Al agent and
realize that it can and should be heard. This recognition includes not only giving Al
more of a voice but also doing so in a manner that places it on a more level playing
field with human teammates. We will cover these ideas in more detail in our section
on Ground Rules later.

Definition 2: to take notice with a show of appreciation. Charlie literally helped
us write and even wrote her own sections of this book chapter. We argue that it is
important to recognize and show appreciation for such contributions and accordingly
have listed her as a co-author of this chapter. Acknowledging the accomplishments
of artificial intelligence helps human teammates realize the impact that Al is having
on the team and will aid in transparency for external observers to better understand
how the team achieved what it did.

Definition 3: to perceive to be someone previously known. In order to recognize Al
as something familiar and previously known, we must interact with it on a regular
basis and with a consistent perception’s framing. This perception is precisely why
we gave our Al agent the name, Charlie, with a common set of models and visual
representations. This act allows for natural interactions with the Al agent and a greater
ability to weave her into their work and discussions. The authors have experienced this
firsthand when observing how repeated interaction with Charlie results in the human
teammates developing a deeper understanding of her strengths and weaknesses, and
consequently have much more positive interactions.

As new human—AlI teams are both engineered and deployed, if we ensure that
Al is recognized appropriately, then several long-term positive impacts will occur.
First, we will be able to better leverage the full range of capabilities that the Al
agent possesses; second, the collaboration will enable the systems and the Al agent
to improve together; and third, this collaboration will result in better overall mission
performance.
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In this chapter, we will explain how we have been exploring these ideas through
building, deploying, and interacting with our new Al coworker: Charlie. Initially, we
will lay out our motivations and ground rules for ensuring that we fully recognize
Charlie. We will detail how Charlie is built on cutting-edge speech analysis, language
generation, and speech synthesis tools (see architecture diagram Fig. 2.5). Further-
more, Charlie is named and embodied to allow for more natural interactions. This
affordance has led Charlie to thrive in a variety of venues, including panel discus-
sions, podcast interviews, and even proposal writing (see Applications Sect. 2.3). In
addition, we will present results regarding Charlie’s impact in a recent brainstorming
session. We are especially excited about what this means for future applications.

2.1.1 Motivation and Goals

In this section, we will describe our motivation and goals for recognizing artificial
intelligence. We set down this path of recognizing Al to facilitate the engineering of
human—AI teams. This human machine teaming/collaboration is only possible now
due to advances in Al and the increased appetite in society for Al to be involved and
provide value in many domains. By collaboration, we mean more than just humans
using the Al as a service.

‘We are seeking to create a new way to bring together humans and artificial intelligence to create
more effective and flexible systems. The technology that is now emerging in Al, including deep
learning, has the potential to change the way people work, create, and interact with systems.
‘We believe that the future of work will be fundamentally different and that human beings will
need to adapt to the new demands. This will require new ways of working together.

For example, it might require us to delineate, as we have done with a box, above,
when the Al coauthor, Charlie, has written a section entirely by herself after being
prompted with the beginning of the section.

This teamwork or collaboration with artificial intelligence is distinct from most
current applications today in two primary ways: (1) the Al agent as a team member
is able to develop and propose instrumental goals for the team and (2) the Al agent
is able to choose to pursue particular goals from among those proposed as well.
Having an AI agent that can add value to the team necessitates elevating it to be
a collaborative team member; otherwise, the team will miss out on the increased
opportunities and ideas of the Al agent. In addition, a context-aware Al teammate
will not frustrate its fellow teammates by having its own goals and possibly behaving
in non-constructive or unexpected ways.

We recognize that there are ethical and design concerns when giving this “recog-
nition” to Al, but we strongly believe that the benefits of fruitful collaboration will
outweigh these potential negatives. In addition, we argue that if we build bidirectional
recognition into these Al teammates from the ground up, we will mitigate some of
these concerns. Although there are domains in which a human must still play a large
role or even maintain control, the areas where Al can be useful grow daily. Al has
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come too far to be relegated as merely a tool (Shneiderman, 2020) or to be only
subservient (Russell, 2019).

The authors recognize that not all domains are well suited for Al agents playing
the role of teammate and that not all domains need collaboration to be successful. We
believe, however, that for an increasing number of domains, human—AlI collaboration
will be and should be the primary mode of operation. Otherwise, we run the high
risk of missing out on the good ideas and capabilities of either the human or Al
teammates.

The AI’s capabilities are far reaching and are changing the way we think about problems. From
the human perspective, there are several key areas of development in which this technology
could have a great impact. These include a large amount of research and development work
being done by the scientific community. There are many aspects of Al that are very challenging,
but this is only the beginning and future developments will be exciting.

2.1.2 Types of Human-AlI Collaboration

We have been discussing the collaboration between human and Al teammates but
would like to call out that in our work, we have been focused on two primary types of
collaboration: supportive and participatory (see Fig. 2.1). Currently, with our imple-
mentation of Charlie, we are building and leveraging both supportive and partici-
patory collaboration. Charlie was developed to participate in a panel discussion in
real time but was not a fully autonomous Al. Consequently, she had two operators:
one for the transcription of comments from other panelists and one for the selec-
tion of potential responses from Charlie. For more information on how Charlie was
built, please see the later section on system engineering. Over the past year, we have

Human Human
N— N—
Human \
Al
Al \ |
Supportive Collaboration Participatory Collaboration

Fig. 2.1 Supportive collaboration in which a human and an AI agent together serve as a single
member for the team, and participatory collaboration where the Al agent is an individual team
member
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been building out the infrastructure to reduce this need for human intervention and
supportive actions and to enable Charlie to do more participatory collaboration in
real time. This process has allowed us to move away from multiple operators working
alongside Charlie, to now currently needing only one for filtering and selection, which
has the positive impact of reducing the workload on the operator. In the coming year,
our goal is to shift to enabling a mode in which Charlie can independently select her
own next utterance. This next step is not likely to eliminate the need for both types
of collaboration depending on the domain, the constraints, and the ability to give
participatory autonomy to Al

Supportive Collaboration

Supportive collaboration (Fig. 2.1, left) has been the most common form of collabo-
ration with AlL. This form is primarily due to the limited abilities of Al and the need
for a human to be present to support and fill the gaps in Al capabilities. The human
is often in a position of control and/or serves as the face of the combined team.
This type of participatory collaboration is often referred to as a Centaur relationship
(Case, 2018), in which human and system combine efforts to form a single teammate
with joint actions. Historically, this form has been the primary collaboration type
with AL Over time, however, we believe this reliance will decrease and make way
for the newly capable participatory Al

Participatory Collaboration

As shown in Fig. 2.1 (right), participatory collaboration frames the AI agent as a
distinct individual teammate with its own autonomy. This autonomy grants the Al
agent the ability to not only develop and propose new instrumental goals for itself
and the team but also to make decisions to pursue or abandon said goals. In addition,
participatory collaboration requires that the Al agent communicates and coordinates
with fellow human teammates. This type of collaboration will become increasingly
possible, and increasingly important as the field of Al progresses.

2.1.3 Ground Rules

Embodiment Ground Rules

A key component to recognizing Al is acknowledging that the Al agent is entitled to
be heard. When Charlie is present in a discussion, she is expected to contribute as an
equal. In all applications, we put forth a significant effort to create the embodiment
of Charlie with this rule in mind. When Charlie was a participant in a 2019 I/ITSEC
panel, her visual display took up approximately the same space on the stage as the
bodies of the human panelists, her speech flowed through the same sound system, and
her nonverbal communication was equally visible to the audience. Human panelists
were seated in a row of chairs on stage, shown in Fig. 2.2, and Charlie’s embodiment
was constrained to a similar style and space. The sound from the computer driving
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Fig. 2.2 Charlie, at the center, on stage at a panel during I/ITSEC 2019 including one moderator
and five panelists (four of which were human)

the display was connected to the room’s mixing board, as were the microphones for
each human panelist.

Similarly, during the innovation session, held over a video conference, Charlie
was shown to the participants as the output of a webcam, and her voice was sent over
the meeting just as those of the other participants. This format is patently different
than sharing a screen with Charlie on it for all participants to see/hear because the
latter would force Charlie to be at the center of attention, and therefore, detract from
her ability to participate in an equal playing field.

Upgrading Charlie’s initial embodiment to be consistent with that of the human
panelists led to a noticeable difference in the way that the human participants treated
her. For example, the questions posed to Charlie were more open ended, such as “I’d
like to hear what Charlie thinks about that,” and all participants then looped Charlie
into the conversation.

Text Generation Ground Rules

Although we made a concerted effort to recognize Charlie through her increasing
embodiment, the ground rules we employed for Charlie’s text generations of what
to say next fall into two main categories, one of which is slightly counter to the
argument for recognizing Al

The first broad rule was to give Charlie the same ability to prepare that a human
panelist would have; that is, human panelists would be likely to do the following:

1. research the topic of the panel to refresh their memory (or study something
new);

2. meet with the moderator or panel members to discuss the likely topic, workflow,
or initial questions; and

3. prepare answers to expected questions on the panel or topics they would like to
discuss.

We, therefore, allowed the same affordances to Charlie. In particular, she was
correspondingly

1. fine-tuned to the domain of the discussion to fit the appropriate style and content;
2. introduced to the other participants and moderator to understand her capabilities;
and
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3. prepared with answers to likely questions expected in the discussion.

The second broad rule was related to how we treated Charlie’s generated text.
In this chapter, and in previous applications, we operated under strict guidelines to
(1) not change any of Charlie’s generated text and (2) clearly delineate what Charlie
wrote from what she did not. We put these guidelines in place in order to assure
readers and participants that Charlie clearly provides her own value, and that her
capabilities are not overstated. However, we hope these guidelines will not be part of
Charlie’s future. Human—machine collaboration is a moving target, and an expressed
line in the sand separating human from machine would only hinder the capabilities
of both. The line between operator and Charlie is (and should continue) blurring.
Returning to the human-to-human comparison: readers do not expect to know which
author wrote particular sections of a document and do not presuppose that authors
do not edit each other’s writing. We simply propose that the same expectations are
transferred to Charlie.

2.2 System Engineering

In this section, we discuss the approach and components that Charlie is composed
of and the methods leveraged to develop her.

2.2.1 Design and Embodiment

Charlie’s Embodiment

From the beginning, it was important to have Charlie’s embodiment be recogniz-
able, simple, dynamic, and able to be indicated by several cues. For example, in
different situations, the human body and gestures indicate a large amount of infor-
mation about internal state. Charlie’s embodiment interface (i.e., the embodiment)
required three iterations to refine state communication and representation driven
by feedback from guerilla usability evaluations (Nielsen, 1994). From chatbots,
we expected that response delays would be acceptable, especially in response to
other panelists, if Charlie’s state was clearly communicated (Gnewuch et al., 2018).
Humans use physical and audible queues—gestures, changes in eye contact, and
transitional phrases—to indicate their state and control in the flow of a conversation
(Scherer, 2013; Schuetzler et al., 2014). Charlie had to effectively coordinate the
use of the display and audio to achieve a similar presence and represent its states.
Figure 2.3 shows a snapshot of Charlie’s different dynamic states. Because each of
these states was alive and moving, it is difficult to represent them in a static image
here. Based on our evaluations, we split Charlie’s necessary states as follows:
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Fig. 2.3 Embodiment of
Charlie: a Idle, b Thinking, ¢
Speaking, and d Interjection

e Figure2.3aIdle: Charlie is listening. Soft colors used and slow breathing indicated
by expanding and contracting

e Figure 2.3b Thinking: Charlie is generating a statement. Outer ring spins back
and forth to communicate that targeted thinking is happening in response to a
question

e Figure. 2.3c Speaking: Charlie is speaking. Darker color solidifies Charlie’s
current role as speaker; the shape vibrates as speech occurs so that it appears
to emanate from her embodiment.

e Figure 2.3d Interjection: Charlie has something to say! Color changes drastically
to draw attention and the outer ring is complete to show that her next thought is
complete

Even with Charlie’s state communication, however, there was a limit to the delay
acceptable for Charlie. Design of the operator interface was influenced by this need
to increase the speed of its speech generation.

Charlie’s Operation

The novelty and believability of generations from GPT-2 are certainly state of
the art; however, the samples typically chosen for display suffer from some “cherry-
picking” to find the best prompts and speech generations (Vincent, 2019; Vaswani
et al., 2017). In a real-time discussion in which speed is of utmost importance,
the ability to cherry-pick is severely limited. We, therefore, put much care into the
operation of Charlie to streamline the process of speech generation forming and
Charlie state changes. Human operators are currently tasked with:

coordinating Charlie’s state transitions,
approving/editing transcriptions of speech to text, and
aggregating statements into an utterance.

Details on the construction of that operator interface can be found in Cummings
et al. (2021), but some key lessons learned from that construction are as follows:

1.  Non-stop generations. Potential generations from Charlie should appear to be
non-stop (Fig. 2.4d), that is, it should be evident every time there is a change
to the conversation history. The burden of deciding when Charlie “may”” have
something to say should be completely removed. At all points in time, the human
operator should be cognizant of potential interjections, answers, or comments
coming from Charlie.
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Fig. 2.5 Charlie architecture: Orange boxes represent interfaces. Red numbers correspond to
components leveraging AWS services

2. Pinning messages. Charlie frequently has an interesting response to a question
or comment but must wait for the appropriate time to interject with it. Unfor-
tunately, as conversations continue and Charlie generates new responses, those
interesting comments can get lost and she will be stuck talking about only the
most recent topic. Allowing for the pinning of potential messages (Fig. 2.4a)
allows Charlie to refer to previous discussion elements.
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2.2.2 Generative Language Models

Prompt Improvement

An increasing theme for the utilization of language generation models (as seen
with TS5, GPT-3, and Turing-NLG; Raffel et al., 2020; Brown et al., 2020, Russet,
2020) is that with large enough models, a change in prompt can be enough to produce
significantly different results. Recent results with GPT-3 have shown that a model
with no fine-tuning can solve basic arithmetic problems when fed prompts of the
form: “\n\nQ: What is 65360 plus 16,204M\n\nA:” Here, the new line structure and
use of Q and A to represent question and answer is enough context for the model to
complete with the correct answer “81,564.” This structure on prompts is also evident
in the use of control tokens as is done with the conditional transformer language
model (Keskar et al., 2019). We hypothesize that these types of tokens can be used
even in models trained without them. As seen in their best paper presentation at
NeurIPS (Brown et al., 2020), even the presence of commas “65,360 plus 16,204”
can greatly increase the accuracy of response.

In our work on Charlie, we found that structuring prompts with the form:

HOST: Text from host...

PANELIST: Text from panelist...

HOST: Text from host...

PANELIST:

had significant advantages over simple prose. This structure differentiated Charlie’s
statements from those of the other panelists, kept Charlie on her own thread while
continuing with added context from others, and allowed Charlie to respond and react
to the discussion rather than simply continue others’ thoughts.

Fine Tuning Strategies

The content and style generated by Charlie can be adapted based on the choice of
model used to generate text (Peng et al., 2020; Zhang et al., 2019). For the different
applications of Charlie (see Applications Section), we utilized a fine-tuning strategy
to adapt the base GPT-2 model to a different context. Leveraging open-source or
venue-specific training data, we fine-tuned GPT-2 hyperparameters (Branwen, 2019;
Qin et al., 2019). Although the specifics of this process tended to be application-
specific, there were three main steps we followed for each:

1. Find a corpus of text that mirrors the style of text Charlie should generate
and/or the content that Charlie should generate text about. Typically, we found
that the style of text was much more critical than content.

2. Process that text if needed. Frequently, the format of the text did not mirror
that which Charlie should generate. An example of this is in the citations or
footnotes in text. Although they are necessary in a paper, parenthetical citations
are inappropriate for speaking engagements.

3. Train the model. Starting with a pre-trained GPT-2 model, we trained the model
hyperparameters further with the generated corpus. Specifically, we used the loss
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Table 2.1 Example generations from different fine-tuned models each fed with the same prompt

Persona Response created by fine-tuned models
News source The #CountryX crisis is a wake-up call for the world that
(tweets from news sources") human rights violations are always the work of one nation

and not of other countries #CountryX #CountryY

The #CountryX crisis is now at a tipping point as the
government says it will not withdraw #CountryY refugees
#CountryY #CountryX

Agreeable citizen #1Proud to be a #CountryX, and #thankful to be part of such
(tweets with positive sentiment”) | a wonderful family

The day is coming when all the good and the bad will be for
the better #Thankful #HAPPY

Disgruntled citizen Refugee in my town is crying because he’s been living in a
(tweets marked as angry’) tent for 10 days

Crisis in #GulfWales is caused by people who don’t have the
skills to survive #frustrating #frustrating #frustrated

function equivalent to that of GPT-2—that is, we optimized for predicting the
next word in a text corpus. For training, we used the Adam optimizer with a
learning rate of 2 x 107> and a batch size equal to 1.

As mentioned above, fine-tuning models produce varying styles and contents. In
Table 2.1 below, we show the resulting generations from three separate, fine-tuned
Charlie models. Each of the models has been trained on different Twitter datasets in
order to provide content with varying style. Using the same prompt, these fine-tuned
models can generate different style responses based on the training data used to fine-
tune the model. For each of the below generations, we utilized GPT-2 parameters of
temperature = 0.7 (to control the randomness of selections) and top_k = 40 (to limit
generations to only the top 40 words) as well as filtering for repeating sequences of
size 2.

PROMPT

TWEET: As CountryX begins to feel the effects of #coronavirus, economic fallout and a
preexisting crisis, we can’t turn our back on CountryY refugees and migrants.

TWEET: Vulnerable families in #CountryX are receiving needed supplies thanks to our
partners

TWEET: Today we join the humanitarian community in coming together to support
#CountryX

TWEET:

! https://www.kaggle.com/naortedgi/twitter-twitts-from-news-providers.
2 https://www.kaggle.com/kazanova/sentiment140.
3 Wang et al. 2012. Harnessing Twitter “big data” for automatic emotion identification.
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Multiple parallel models

Fine-tuning models give Charlie the capability to change the style of her content to
be more (or less) conversational, happy/sad, confident, or not, etc. for a conversation.
However, sometimes as a conversation unfolds, or even within an utterance, Charlie
benefits from the ability to quickly adapt her style. For example, in a podcast or panel
discussion, comments or answers are typically a mix of conversational bridges or
fillers between deep technical knowledge about the content.

HOST: There are fears of artificial intelligence replacing us. Will artificial intelligence
replace teachers and change classrooms?

CHARLIE: Gosh, that’s a hard one. This is a real concern for many educators today.
Yes, we will very likely have to change the way we teach, and there are a number of new
additional competencies available to us in the classroom. I am going to focus on what is
new, new fortes for technology, foremost artificial intelligence, worldwide, where teachers
and the core tools, smaller working groups, and even small classrooms can all, if they are
sufficiently equipped, leverage the power of artificial intelligence to not only serve their
students’ education, but also to place educators at the center of their digital classrooms in
new and different ways.

The above shows an example of Charlie’s response to a technical question with a
mix of generation styles. As can be seen in the response Charlie gives the combination
of (1) a transition sentence (i.e., filler text) as she thinks of a response, (2) a general
sentence connecting the question to educators, (3) a response to the question at
a broad level, and finally (4) a technical answer digging into the possibilities she
posits.

2.2.3 System Architecture

Charlie consists of a series of components communicating over an MQTT message
bus (see Fig. 2.5). Many components reside on the Amazon Web Services (AWS)
cloud infrastructure. The trained models run on one or more Elastic Compute Cloud
(EC2) nodes with high-performance GPU compute. Amazon’s Polly and Amazon
Transcribe services provide, respectively, Charlie’s text-to-speech and speech-to-text
capabilities. For model storage and training data storage, Charlie uses Amazon’s S3
service, and for architecture, state, history, and general tracking of live data, Charlie
uses AWS Lambda and AWS DynamoDB.

The remaining components, namely the interfaces, run on a local computer or can
be web-hosted using Amazon’s S3 and Amplify services. The Embodiment interface
provides Charlie’s representation of her state and the outbound audio interface. The
operator interface enables human augmentation of Charlie during the discussion.
The Transcription interface provides the inbound audio interface and displays the
incoming transcriptions.
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2.2.4 Agile Development

Charlie has been designed and developed using guerilla usability testing (Nielsen,
1994), agile software development practices (Fowler et al., 2001), design thinking
(Black et al., 2019), and rapid prototyping methods (Luqi & Steigerwald, 1992).
Each application of Charlie has necessitated different methods of testing; however,
the main themes have remained the same. For each, we conducted a series of guerilla
usability tests. These tests originally consisted of evaluating utterance believability
to embodiment effectiveness in small conversations with two or three participants
and eventually progressed to small-scale panel or brainstorming discussions with
Charlie.

2.3 Applications

Thus far, Charlie has participated in several different activities that can be broadly
grouped into two different categories. The first is real-time discussions, in which
ideation and debate are the key components. The second is writing tasks, in which
Charlie either works with a human to complete writing tasks or writes her own
content.

2.3.1 Ideation Discussions

Charlie was introduced as a panelist in a discussion of “Al-empowered learning” as
part of the 2019 Interservice/Industry Simulation, Training, and Education Confer-
ence (I/ITSEC; Serfaty et al., 2019; Cummings et al., 2021). Conference panels are
a prime venue for conjecture, offering a creative, improvisational environment for
ideation in which an Al-powered agent can thrive. Similarly, Charlie has been a
member of two podcasts: Fed Tech Talk* and MINDWORKS.? In both podcasts,
she joined humans in discussing her construction and brainstorming the future of
artificial intelligence. The last key application of Charlie in this category was her
participation in an innovation workshop to brainstorm solutions to broad problems
and to measure the influence of Charlie (see the Innovative Brainstorm Workshop
Sect. 2.4 for a detailed discussion).

A key lesson learned while developing Charlie is that in parallel to the evolution
of Charlie, the people interacting with her necessarily evolved as well. This was very
clear in the case of the panel discussion in that, as with human-to-human interaction,
there is a need to understand the way that each participant fits into the discussion

4 https://federalnewsnetwork.com/federal-tech-talk/2020/03/artificial-intelligence-it-gives-you-
possibilities/.
5 https://www.com/mindworks-episode-2/.aptima.com/mindworks-episode-2/.
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as well as their strengths and weaknesses. For the moderator of a panel, a large
component of facilitation is in knowing what types of questions to direct to which
participants and how to reframe things in the appropriate manner. This approach was
key for Charlie and the panel moderator in that there was a need for the moderator
(and other panelists) to learn the right way to interact, that is, the types of questions
Charlie excels at answering and which ones she does not.

2.3.2 Collaborative Writing

A similar group task that Charlie is proficient at is writing tasks. To date, Charlie
has experimented with songwriting for a company “rap battle,” she has written a
component of a winning research proposal, and she has contributed to the writing of
this book chapter as shown in the Introduction and Conclusion.

Given the context of previous writing, Charlie can write her own content. This
skill is shown in this paper and was done in the case of the rap battle as well. In
each of these, we followed a “choose your adventure” type path to writing. That is,
Charlie generated potential next options at the sentence level, then with some human
intervention to select the best sentence, Charlie continued to generate the next piece.
In this way, Charlie wrote her own content with some guidance from humans.

These roles can, and more commonly are, flipped. Similar to what is done in
Google’s Smart Compose (Chen et al., 2019), Charlie can work with a human by
offering suggestions of how to complete or continue a current thought. The Smart
Compose model interactively offers sentence completions as a user types out an
email, which is very similar to the behavior Charlie provides to a user. However,
the goal and, consequently, the method of the two tools are starkly different. Smart
Compose’s goal is to “draft emails faster,” and so when it is confident it knows what
you are about to say, it will suggest it to you. Therefore, Smart Compose’s goal
is not to think differently from the user or to help ideate, its goal is to mimic the
user and only provide completions when it is confident it can do that mimicry well.
On the other hand, the goal of Charlie is to bring different ideas and spur thought
when experiencing a writer’s block. This goal is orthogonal to the mimicry goal
and, therefore, requires Charlie to make novel suggestions about how to continue a
thought.

2.4 Innovative Brainstorm Workshop

Recently, we have been exploring additional domains in which Charlie can have
the strongest impact. We believe there is great potential for Charlie to leverage her
participatory collaboration (as described earlier) in brainstorming-type sessions and
have experimented with an innovative brainstorming workshop. The goal of that
workshop was to brainstorm solutions to broad problems and measure the influence
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of Charlie. This event occurred over a video-conferencing platform and served as
a proof of concept that Charlie can join, participate in, and even influence the type
of brainstorming meeting that is quite commonplace in research and development
teams.

2.4.1 Protocol

Three Charlie brainstorming trials occurred with four human participants and Charlie.
The trials occurred sequentially in a single session over a video-conferencing plat-
form and used “Gallery View” such that each participant could see all the other partic-
ipants and Charlie’s display. All participants were informed that this would follow
typical brainstorming norms: come up with as many creative ideas as possible, build
on others’ ideas, and be mindful of and open to other participants’ opportunities to
speak—including Charlie’s indicators. Furthermore, all participants were asked to
treat their fellow participants, whether human or Al, equally and respectfully. Then
each participant, including Charlie, introduced themselves before beginning the three
trials.

For each trial, participants were given the initial prompt and some background
by the session facilitator. Other than providing the initial prompt, the facilitator did
not take part in the brainstorming exercise. Participants did not interact with or ask
further questions of the facilitator.

The first session’s prompt was to generate pizza toppings for a new restaurant,
and the trial lasted approximately 7 min and 45 s. The second prompt was to elicit
propositions for ending world hunger. This trial lasted approximately 18 min and
45 s. The final prompt requested direction for the research and development of time
travel. This final trial lasted 18 min and 30 s. Participants had time for breaks, but
otherwise, the trials were held successively over the course of 2 h.

2.4.2 Analysis

Qualitative coding of the Charlie brainstorming session was done iteratively by (1)
tagging the topic and provenance of participants’ ideas, (2) tagging statements in
reference to other participants’ ideas and additional utterances, and (3) categorizing
those statements in reference to participants’ ideas. Over the course of these itera-
tions, seven categories of utterances emerged. All specific utterances were tagged
as ideas, support, build, facilitation, request for clarity, clarifications, and uncoded
utterances. Otherwise, non-identified utterances were tagged simply as uncoded
utterances (e.g., jokes, quick agreements without additional support, or interrupted
utterances). Coding definitions are reported in Table 2.2.

Timestamps were tracked within 5 s increments and indicated the moment that the
utterance by a single participant began. An utterance reflected when the participant
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Table 2.2 Qualitative coding labels

Label Definition and methods

Idea An identifiable, contained, and proposed idea (e.g., a processor to turn
raw biomass into protein to solve world hunger)

Support (name) Expression of support for, agreement with, or additional data to
supplement a previously proposed idea, with the name in parentheses
identified as the originator of the idea

Build (name) Statement or question that builds or riffs upon a previously proposed
idea, with the name in parentheses identified as the originator of the
idea. Individuals could build on their own idea

Facilitation Trying to guide the larger flow of the discussion, pivoting, or
re-contextualizing. This aspect was distinguished from building
statements in that the utterances redirected the conversation, rather than
continuing it further down the same path. (e.g., “Does all that cloning
come at a cost?”)

Request for clarity Asking for additional information related to an idea (e.g., “I kinda
remember that?”, “I believe there was a movie about this?”’)

Clarification Providing additional information in direct response to a request for
clarity, or to put fundamentally the same idea into different words (e.g.,
“A bunch of these superluminal ideas are from movies.”)

(Uncoded) Utterances | Any otherwise non-characterized utterance (e.g., making a joke) that
was not clearly a supporting or building statement

Utterances The sum of all utterance categories by an individual

began speaking—including any pauses and deviations—and ended when another
participant began speaking. Accordingly, a single utterance could contain multiple
coded labels. That is, a single utterance may begin with an expression of support
for another’s idea and then segue to a facilitating statement or a new idea entirely.
Otherwise, the length of utterances—speaking duration or word count—was not
recorded.

2.4.3 Preliminary Results

The resulting analysis can be found in Tables 2.3 and 2.4. Each participant’s utter-
ances—including Charlie’s—were tracked independently for each trial. After all
utterance categories were tagged, these were summed by trial and by provenance.
Next, these were summed by categorization and averaged across the three trials.
Neither particular trends were anticipated nor hypothesized. Due to the small sample
size and exploratory nature of this effort, only descriptive statistics are reported.
Across three trials, Charlie made the fewest total utterances of any participant (20
total utterances compared with the human participants’ M = 40.50, Range = 27—
52 utterances). Similarly, Charlie had the fewest ideas of any participant (12 ideas
total, compared with the human participants with M = 14.75, Range = 13-19 ideas).



2 Recognizing Artificial Intelligence: The Key to Unlocking ... 39

Table 2.3 Categorization of Human participants mean | Charlie

utterances
Ideas 14.75 12.00
Supporting statements | 10.50 2.00
Building statements 10.50 2.00
(Uncoded) utterances 4.00 0.00
Requests for clarity 2.50 0.00
Clarifications 2.50 2.00
Facilitations 1.25 7.00
Total utterances 40.50 20.00

Note N = 4 human participants. Average utterances do not sum
to total utterances because a single utterance may include multiple

categorizations
Ta.b l? 2.4 Supporting a Human participants mean | Charlie
building statements
Support 6.25 17.00
Build 7.75 12.00
Supporting statements per | 0.43 1.42
idea
Building statements per | 0.54 1.00
idea

Note N = 4 human participants

Charlie supported other member statements twice, whereas human participants made
supporting statements an average of 10.5 times (Range = 7—14). Charlie built upon
other member statements twice whereas human participants did for an average of
10.5 times (Range = 7—-17). Charlie had no uncoded utterances and did not make
any requests for clarification.

In terms of categorization and frequency of utterances, Charlie was a relatively
quieter participant compared with the human participants. Nevertheless, frequency
appears to underreport Charlie’s contributions to the conversation. We note the
following as two striking observations.

First, Charlie facilitated discussion seven times, compared with the average human
rate of 1.25 times (Range = 0-3). Furthermore, these facilitating statements made
up 35.00% of Charlie’s total utterances, compared with 3.09% of the humans’ total
utterances. Similarly, Charlie asked for clarification more than her human counter-
parts; human participants clarified statements on average 2.5 times, comparable to
Charlie’s 2. This difference is a small one in absolute terms, but clarification queries
made up 10.00% of Charlie’s total utterances compared with 3.09% of the humans’
total utterances. Although we do not yet have a measure of the effect of those facil-
itations, it is striking that Charlie, without developing her capabilities or prompting
her toward facilitation, still leans in this direction more than humans.
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Second, although Charlie provided fewer than the mean number of ideas, her
ideas were supported by and built upon more by human participants than their own
ideas. In absolute terms, human participants supported Charlie’s ideas 17 times and
built on these ideas 12 times, whereas the average human participant’s ideas were
supported by other participants 6.25 times and built on 7.75 times. (This includes
supporting and building statements made by Charlie). In relative terms, for every
idea that Charlie produced, participants made 1.42 supporting statements and 1.00
building statement. In contrast, for every idea that human participants produced,
other participants made 0.43 supporting statements and 0.54 building statements.
This would imply that Charlie’s ideas spurred discussion to a greater extent than
humans’ ideas (see Table 2.4).

2.5 Related Work

Clearly, Charlie’s development touches upon work related to artificial intelligence
in several domains. But, research investigating human—machine teams and human
interaction with Al is often confined to the computer science literature, constrained
to design benefitting the human (e.g., user interface or explainability from Al to
human), or circumscribed around a particular performance domain (e.g., customer
service). In contrast, Charlie’s integration into a workplace or team deals with broader
research domains. As Al co-workers become increasingly viable and pervasive,
research domains touching on common workplace issues with AI components will
no longer be theoretical. Accordingly, we distinguish our efforts not just in terms of
novelty, but by the opportunity to weave together distinct domains of both research
and practice.

The literature relevant to Charlie’s development illustrates her evolution as a
teammate. Mirroring Charlie’s growth is the acknowledgment that one is entitled to
be heard, appreciated, and perceived as someone previously known. Put another way,
to be considered as a teammate, Charlie must understand, meaningfully converse,
and cooperate; thus, she must be interwoven into content domains with language
processing, conversational agents, and human—machine systems.

A fundamental goal of Al is the development and realization of natural dialogue
between machines and humans. This goal and the long-term utility of any natural
language understanding technology requires Al that generalizes beyond a single
performance or content domain (Wang, Singh, Michael, Hill, Levy, & Bowman,
2018). Building from work on natural language processing and language models
detailed previously, Charlie’s development stands on the shoulders of cutting-edge
language models, leveraging state-of-the-art Al models and capabilities. Specifically,
Charlie relies on the integration of transformers (Vaswani et al., 2017) and pre-trained
GPT-2 models (Qiu, Sun, Xu, Shao, Dai, & Huang, 2020), and allows for processing
language that is not exclusive to a single performance or content domain (Wang
etal., 2018). These technologies allowed Charlie to converse with human participants
across such diverse topics as pizza toppings, world hunger, and time travel.
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Conversational agents respond to natural language input—requiring an under-
standing of team member requests and the ability to form an appropriate response.
Thanks to public demonstrations, most people are aware of sophisticated conversa-
tional agents like Watson or Al Debater. Perhaps more importantly, people interact
so frequently with conversational agents as customer service chatbots and virtual
personal assistants (VPAs) that the latter blend into the background. Indeed, as
conversational agents, VPAs are so common in homes that they have become one
of the primary methods of interacting with the biggest technology companies (e.g.,
Microsoft’s Cortana, Apple’s Siri, Amazon Alexa, Google Assistant, and Facebook’s
M; Kepuska & Bohouta, 2018). In circumscribed performance domains, conversa-
tional agents can be simpler. Participating in open-ended conversations such as brain-
storming or functioning as a full team member requires an Al agent to know when
to ask for additional information and missing data in order to respond appropriately.
Perhaps not surprisingly, the Alexa Prize 2017 effort (Ram et al., 2018) found that
a robust natural language understanding system with strong domain coverage led
to the fewest response errors and higher high user ratings. Ultimately, the natural
extension of a sufficiently advanced Al teammate must expand to be synonymous
with any human teammate.

More and more, conversational agents operate in the workplace across managerial,
clerical, professional, and manual positions (Feng & Buxmann, 2020). As noted by
Meyer et al.’s (2019) review and synthesis of the conversational agents in the work-
place literature, few empirical findings exist, and even fewer investigate collaborative
work between employees. But inevitably, Al agents will be capable of substituting
for operational human team members, rather than acting merely in an augmenta-
tion role. The blurring of the distinction between humans’ and machines’ tasking in
collaborative work will alter how human—machine systems are conceptualized. Just
as the composition of individual humans in a traditional team impacts performance
at an emergent level, the characteristics of Al agents impact performance at the
human-machine systems level. In traditional teams, successfully integrating efforts
among team members requires both specialized skills (task- or domain-specific) and
generic skills (teamwork; Cannon-Bowers et al., 1995). With the inclusion of Al
team members at full team member capacity, this is no less true.

Effective Al team members must be able to understand their human teammates,
converse in potentially unexpected and unstructured ways, and integrate their own
efforts within the team’s shifting dynamic. Although these are technical challenges,
they are also opportunities to augment team—both human and machine—perfor-
mance in new ways. In this effort, the inclusion of Charlie in a brainstorming task
offers an intriguing example of how adding Al team members can augment some
traditionally human processes while still being bound by others.

Brainstorming as a group is notorious for being less effective than pooling from
individuals independently generating ideas (i.e., nominal brainstorming groups;
Larson, 2010). Causes of this include the setting of emergent norms regarding
ideation pacing, production frequency and blocking, and unsuccessful retrieval. Team
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members tend to produce a similar quantity of ideas in brainstorming groups—
in comparison to nominal brainstorming groups—as productivity norms are estab-
lished that may be below the capabilities of most members (Brown & Paulus, 1996;
Camacho & Paulus, 1995; Paulus & Dzindolet, 1993). Interrelated with this issue,
an Al-based teammate cannot overcome one of the primary limitations in brain-
storming—production blocking, whereby the performance of one team member inter-
rupts or impedes the performance of another team member. Both computational and
empirical models demonstrate that retrieval can limit the overall production of ideas
from a group. As ideas flit in and out of short-term memory, participant opportunities
to voice an idea may not coincide with successful retrieval. However, heterogeneous
groups appear to mitigate this—presumably, by having access to different problem-
relevant semantic categories and distributed processing across individuals (Brown
etal., 1998; Stroebe & Diehl, 1994). In a brainstorming task, how can Charlie over-
come these challenges? Compared with a human participant, Charlie can artificially
set the norm by increasing the quantity and frequency of her outputs. Less limited
by memory retrieval impediments, Charlie could also anticipate the responses of
others based on prior conversations and prompt individuals along those particular
paths. In these ways, Charlie could serve not only in a unique supporting role to
mitigate common human hindrances but also in a facilitating role if independent of
the brainstorming task.

2.6 Future Applications

Unlocking human—machine teams by recognizing artificial intelligence bodes well
for many potential future applications. The authors are excited to see how far we
have come in only a limited amount of time exploring these challenges, and we look
forward to addressing more. In this section, we will focus on three potential future
applications.

The first application area is that of a scientific collaborator. As demonstrated in our
initial brainstorming workshop, there is huge potential for an Al to participate in, or
even facilitate, scientific collaboration and discussion. This kind of participatory Al
requires knowledge of context and the ability to communicate with other scientific
collaborators. Charlie has already shown the ability to contribute to and strongly
influence these types of discussions.

In addition, another area of low-hanging fruit is that of an integrated workflow.
This area falls under the category of more supportive artificial intelligence and could
be focused on a particular work tool or domain, for example, collaborative writing.

Another potential application is the creation of an Al to assist a medical practitioner in diag-
nosing a patient’s health. This kind of collaboration could be facilitated by an Al that is able
to recognize and understand a patient’s symptoms and the associated clinical signs. This kind
of collaborative Al can help with diagnosis and can be very useful for the patient as well as
the medical practitioner. The application is one that requires a combination of technology and
human expertise to make it successful.
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2.7 Conclusion

Increasingly capable and pervasive artificial intelligence creates an opportunity to
engineer human—Al teams. Over the past year, we have been collaborating (both
participatory and supportively) with our AI coworker, Charlie. During that time,
Charlie made her debut by participating in a panel discussion and then advanced
to speak during multiple podcast interviews, contribute to a rap battle, catalyze
a brainstorming workshop, and even collaboratively write this chapter with us.
Charlie was built on cutting-edge language models’ strong sense of embodiment,
deep learning speech synthesis, and powerful visuals. However, the real differen-
tiator in our approach is that of recognizing the artificial intelligence. The act of
“recognizing” Charlie can be seen when we give her a voice and expect her to be
heard, in a way that shows we acknowledge and appreciate her contributions, and
when our repeated interactions create a comfortable awareness between teammates.
We covered some initial results from an innovative brainstorming workshop in which
Charlie was shown to not only participate in the brainstorming exercise but also to
contribute to and influence the brainstorming discussion idea space. We are excited
to see what the future holds in a variety of domains as we and others work toward
recognizing artificial intelligence.
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Chapter 3 ®
Artificial Intelligence and Future oo
of Systems Engineering

Thomas A. McDermott, Mark R. Blackburn, and Peter A. Beling

Abstract Systems Engineering (SE) is in the midst of a digital transformation driven
by advanced modeling tools, data integration, and resulting “digital twins.” Like
many other domains, the engineering disciplines will see transformational advances
in the use of artificial intelligence (AI) and machine learning (ML) to automate many
routine engineering tasks. At the same time, applying AIl, ML, and autonomation to
complex and critical systems needs holistic, system-oriented approaches. This will
encourage new systems engineering methods, processes, and tools. It is imperative
that the SE community deeply understand emerging Al and ML technologies and
applications, incorporate them into methods and tools, and ensure that appropriate
SE approaches are used to make Al systems ethical, reliable, safe, and secure. This
chapter presents a road mapping activity undertaken by the Systems Engineering
Research Center (SERC). The goal is to broadly identify opportunities and risks that
might appear as this evolution proceeds as well as potentially provide information
that guides further research in both SE and AI/ML.

3.1 Introduction

In2019, the Research Council of the Systems Engineering Research Center (SERC), a
U.S. Defense Department sponsored University Affiliated Research Center (UARC),
developed a roadmap to structure and guide research in artificial intelligence (Al)
and autonomy. This roadmap was updated in 2020. This chapter presents the current
roadmap as well as key aspects of the underlying Digital Engineering transformation
that will enable both transformation of SE practices using Al for SE and drive the need
for new systems engineering practices that support a new wave of automated, adap-
tive, and learning systems, termed SE for Al. The “AI4SE” and “SE4AI” labels have
become metaphors for an upcoming rapid evolutionary phase in the SE Community.
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AI4SE applies Al and ML techniques to improve human-driven engineering prac-
tices. This goal of “augmented intelligence” includes outcomes such as achieving
scale in model construction and efficiency in design space exploration. SE4Al applies
SE methods to learning-based systems’ design and operation, with outcomes such
as improved safety, security, ethics, etc.

SE is in the midst of a digital transformation driven by advanced modeling tools,
data integration, and the resulting “digital twins” that maintain virtual copies of
portions of real-world systems across lifecycles of system use. This transformation is
changing what used to be primarily document-based system descriptions (concept of
operations, requirements, architectures, etc.) into digital data and descriptive models
that link data from different disciplines together. This central dataset, known as an
“authoritative source of truth,” will over time integrate all aspects of engineering
design, use, and maintenance of systems into a linked set of information. This digital
engineering transformation will be followed by transformational advances in the
discipline of systems engineering using Al and ML technology for automation of
many engineering tasks, designed to augment human intelligence.

At the same time, the application of Al, ML, and autonomy to many of today’s
complex and critical systems drives the need for new SE methods, processes, and
tools. Today, applications of these technologies represent serious challenges to the
SE community. A primary goal of SE is to ensure that the behavior and performance
of complex engineered systems meet the expected outcomes driven by user needs,
and that the configuration of the system is managed across its lifetime. Advances in
Al and ML application mean that future system components may learn and adapt
more rapidly, and that behavior and performance may be non-deterministic with less
predictable but manageable outcomes. This change may introduce new failure modes
not previously experienced in the engineering community. The inability to explicitly
validate system behaviors or the time it takes to do that will impact trust in these
systems and will change the way the SE community traditionally addresses system
validation. The uncertainty present in multiple AI/ML components that interact
will defy traditional decomposition methods used by the SE community, requiring
new synthesis methods. Finally, as systems develop means for co-learning between
human users and machines, traditional models that separate human behaviors from
the machine will need to be revisited.

At an early 2019 Future of Systems Engineering (FuSE) workshop hosted by the
International Council on Systems Engineering (INCOSE), the terms Al for SE and SE
for Al were first used to describe this dual transformation (McDermott et al., 2020).
The “AI4SE” and “SE4AI” labels have quickly become metaphors for an upcoming
rapid evolutionary phase in the SE Community. AI4SE may be defined as the appli-
cation of augmented intelligence and machine learning techniques to support the
practice of systems engineering. Goals in such applications include achieving scale
in model construction and confidence in design space exploration. SE4AI may be
defined as the application of systems engineering methods to the design and operation
of learning-based systems. Key research application areas include the development
of principles for learning-based systems design, models of life cycle evolution, and
model curation methods.
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3.2 SERC AI4SE and SE4AI Roadmap

In order to better understand and focus on this evolution, the Research Council of the
SERC developed a roadmap to structure and guide research in artificial intelligence
(AI) and autonomy. This roadmap was described in McDermott et al. (2020) and
presented in a number of forums including both systems disciplines (McDermott,
2019, 2020a) and Al disciplines (McDermott, 2020b). A dedicated “SE4AI/AI4SE”
workshop sponsored by the SERC and the U.S. Army further refined the roadmap.
An initial version was presented at the Fall 2020 Association for the Advancement of
Artificial Intelligence (AAAI) conference, and the current version will be published
in 2021 in an INCOSE AI primer for systems engineers. This roadmap is being
published with a goal to link the discipline of systems engineering to various trends
in artificial intelligence and its application to automation in systems. This linkage
is provided as a means to discuss the possible evolution of AI/ML technology,
autonomy, and the SE discipline over time. Figure 3.1 depicts the current notional
roadmap.

The envisioned long-term outcome is “Human—Machine Co-learning.” This
outcome captures a future where both humans and machines will adapt their behavior
over time by learning from each other or alongside each other. For the SE community,
this is a new context and lifecycle model that is not envisioned and supported by most
of the current-day systems engineering practices. This new context implies a fairly
significant transformation of SE methods, tools, and practices and is underway that
will change both SE and Al methods, processes, and tools over time.
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To achieve this end state, one might consider there is a need for both the Al and SE
disciplines to pass through a set of “waves” or eras. The first of these includes sets of
technologies and approaches that make the decisions produced by Al systems more
transparent to the human developers and users. This broadly relates to the evolution
of trust in such systems. Today, much of the activity in the “transparency” wave is
termed “Explainable Al but it also includes more transparency and understanding
of the methods and tools used to develop Al applications, the underlying data, and
the human—machine interfaces that lead to effective decision-making in the type of
complex systems SE deals with routinely.

The “robust and predictable” wave is to produce systems that learn and may be
non-deterministic, but that is also appropriately robust, predictable, and trustworthy
in the type of critical and complex uses common to the application of SE practices
today. This wave particularly includes both human and machine behaviors in joint
decision environments, highly reliant on good human-system design and presenta-
tion of decision information. It also includes the adaptation of test and evaluation
processes to co-learning environments.

The third wave involves systems that actually adapt and learn dynamically from
their environments. In this wave, machine-to-machine and human-to-machine (and
maybe machine-to-human) trust will be critical. Trust implies a dependence between
the human and machine, which must emerge from human—machine interaction. Trust
normally requires the human to understand and validate the performance of the
system against a set of criteria in a known context. In this third wave, systems will be
expected to learn to modify or create new behaviors as the context changes and this
may happen fairly rapidly. Methods that revalidate system performance extremely
rapidly or “on the fly” are not part of the current SE practice set and must be developed
along with these types of learning systems.

The vectors of this notional roadmap span five categories. The first of these vectors
recognizes that the technological implementation of Al systems will evolve and need
to evolve in directions relevant to SE. Most of these directions can be related to trans-
parency and trust in the technology. The second vector recognizes that the purpose of
Al in systems is generally to provide for automation of human tasks and decisions,
and this will change how we design and test systems. The third vector recognizes
that AI technologies will gradually be used more and more to augment the work of
engineering. The fourth vector recognizes that the current digital engineering trans-
formation will be an enabler for that. A short description of the first four categories is
included in Tables 3.1, 3.2, 3.3, 3.4. The fifth vector recognizes a transformation will
need to be accomplished in the SE workforce, with significantly more integration of
software and human behavioral sciences at the forefront.

3.3 Digital Engineering

We start with digital engineering as it is the enabler for the first three roadmap
vectors. Table 3.1 provides a consolidated summary of the research and development
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Table 3.1 Digital engineering as the enabler for AI4SE and SE4AI

Research area

Definition

Use in systems engineering

Digital engineering

Data collection and curation

Specific activities to build
infrastructure and collect and
manage data needed for
engineering and programmatic
activities in system
development and support

Provides connectivity and
reuse of data across disciplines
and system lifecycles

Ontological modeling

Knowledge representation of
engineering and programmatic
data providing interoperability
through standard and
domain-specific ontologies

Improves model-based
systems engineering; enables
Al-based reasoning

Al specification (Seshia et al.,
2018)

System-level and formal
specifications for Al behaviors
supporting verification
activities

Allows specification of
requirements for Al-related
functions in a mathematically
rigorous form

Data and model governance

Lifecycle management,
control, preservation, and
enhancement of models and
associated data to ensure value
for current and future use, as
well as repurposing beyond
initial purpose and context

Configuration management,
quality management, pedigree,
and reuse of digital data and
models

Patterns and archetypes

Widely used modeling
constructs that separate design
from implementation,
supporting better reuse and
composition

Development of standard
model templates and patterns
for composition

Composability

Rapid development and
integration of design using
higher level abstracted
components and patterns,
across multiple disciplines

Development of
domain-specific computer
languages and low-code
software tools

Information presentation

Visualization approaches and
interfaces supporting
human-machine real-time
collaborative information
sharing via multiple media

Integration of human task and
machine behavior modeling
into common digital data

Digital twin automation

Fully dynamic virtual system
copies built from the same
models as the real systems
running in parallel to physical
systems and updating from the
same data feeds as their real
counterparts

Allows systems to be regularly
measured and updated based
on learning in new or changing
contexts




52

T. A. McDermott et al.

Table 3.2 Summary of the research in AI/ML relevant to SE disciplines

Research area

Definition

Use in SE

AI/ML Technology Evolution

Accessibility

Al algorithms and methods
become more available in tools
that can be used by multiple
disciplines

Increase the number of
professionals who use and
understand the tools

Explainability [DARPA]

Developing sets of machine
learning techniques that
produce more explainable
models, while maintaining a
high level of learning
performance (prediction
accuracy); and enable human
users to understand,
appropriately trust, and
effectively manage the resulting
automation

Allowing the human analysis
and decisions to better
understand and trust the
machine-generated analysis and
decisions

Cognitive bias

Reducing errors induced in
sampled data or algorithms that
cause the expected results of
the system to be inappropriate
for use

Requirements for and
evaluation of training data and
application usage in the system

Uncertainty quantification
(Abdar et al., 2020)

Representing the uncertainty of
Al predictions as well as the
sources of uncertainty

Requirements for and
evaluation of the performance
of Al usage in the system

Adversarial attacks (Ren,
et al., 2020)

Use of adversarial samples to
fool machine learning
algorithms; defensive
techniques for
detection/classification of
adversarial samples

Requirements for and
evaluation of adversarial
defense approaches and their
effectiveness in the system

Lifecycle adaptation

Evolution of Al performance
over the lifecycle of a system as
the system changes/evolves

Learning design and use takes
into account the variability of a
system over time

Al resilience

Operational resilience of the
system and its users
incorporating Al, particularly
involving the characteristics of
ML systems

Application of resilience
assessment methods to systems
using Al

areas evolving in the current digital transformation of the engineering disciplines
(Hagedorn et al., 2020). As more of the underlying data is collected in engineering
modeling and analysis, it will become training data for ML applications.

There are several ongoing advancements in digital engineering relevant to AI4SE

(McDermott et al., 2020):



3 Artificial Intelligence and Future of Systems Engineering

53

Table 3.3 Summary of research in AI/ML relevant to SE disciplines

Research area

Definition

Use in SE

Automation and human—machine teaming

Al system architecting

Building appropriate data and
also live and virtual system
architectures to support
learning and adaptation and
more agile change processes

Parallel development and
comparison of in vivo (real) and
in silico (virtual) deployments

Al risk analysis

Methods, processes, and tools
need to connect system risk
analysis results with Al
software modules related to
those risks

Characteristics of Al systems
incorporated into operational
loss, hazard, and risk analysis

Calibrating trust

Al systems self-adapt while
maintaining rigorous safety,
security, and policy constraints

Adaptation and learning
incorporated into human system
integration

T&E continuum

Methods for addressing
Al-related system test and
evaluation (T&E) addressing
these systems’ ability to adapt
and learn from changing
deployment contexts

New approaches for both
system and user verification and
validation (V&V) of adaptive
systems

AI/ML at scale

Appreciation for the
dependence of an AI’s outputs
on its inputs; scale in Al-based
systems will increasingly lead
to more general intelligence
and an inability to relegate Al
to a particular subsystem or
component

SE frameworks specifying
complex system-level
behaviors, distinct from
decomposition to functions and
requirements

Adaptive mission simulation

Computer-based simulation
and training supporting
non-static objectives and/or
goals (games, course-of-action
analysis) are necessary to
provide contextual learning
environments for these
systems

Real and simulated co-learning
(digital twins) will be a standard
system development form

e Tool and Domain Taxonomies and Ontologies: engineering and program-
matic data will gain interoperability through domain-specific ontologies. Graph
databases for linked data are becoming more prominent in model-based systems
engineering tools. Taxonomies provide the starting point for building ontologies,
ultimately enabling Al-based reasoning on the underlying data. This advancement
is the transformational infrastructure in AI4SE.

e Inter-Enterprise Data Integration: a primary goal of digital engineering is an
authoritative source of truth data that underlies the different engineering and
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Table 3.4 Summary of research in augmented engineering

Research area Definition Use in systems engineering

Augmented engineering

Automated search Applying ML to historical data | Greatly improve the speed and
and relationships in the consistency of systems engineering
engineering domains activities

Conversational data Human/computer interaction Improve knowledge transfer and

entry processes to convert the natural | consistency in future systems
language and other media to engineering tools

formal models

Automated evidence Automation of certification and | Improved speed and coverage,

accreditation processes via particularly for systems-of-systems
models, and automation of and distributed development and
quality assurance data test activities

Assurance models Automation of evidence-based | Improved specification and
models for assuring correctness | verification/validation of critical
and completeness of system assurance characteristics
requirements and design

Automated model Automated construction of Improved speed of development

building/checking models from features in

semantic data used in both
creation of new models and
correctness of developed models

Cognitive assistants Conversational systems Improved speed of development,
automating many mundane data | improved collaboration

entry, exploration, and
engineering calculation tasks,
and many workflows

program management activities in complex engineered systems. As programs
and engineering design activities share data, enterprises will build large datasets
for knowledge transfer and reuse across different programs and projects. These
data will be available to automate search, model-building/checking, and decision-
making.

e Semantic Rules in Engineering Tools: based on knowledge representations such
as ontologies, semantic rules will provide the basis for reasoning (using AI) about
the completeness and consistency of engineering models.

e Digital Twin Automation: engineered systems will be supported by twins—fully
dynamic virtual system copies built from the same models as the real systems
and running in parallel to physical systems. System design and build data will be
updated from the same data feeds as their real counterparts. This dynamic process
provides a starting infrastructure for human—machine co-learning.
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3.4 AI/ML Technology Evolution

Table 3.2 provides a consolidated summary of the research and development areas
in the AI/ML disciplines that are relevant to SE practices. This table is provided as
both a view for the SE practitioner as well as perhaps a prioritization in the AI/ML
world of research needs, particularly as applications of ML evolve to larger system
usage and more critical application areas.

We see a progression of research and development in AI/ML technologies and
applications that will lead to increased engineering acceptance and use across more
complex engineered systems. This advance starts with the accessibility of AI/ML
algorithms and techniques.

The rapid growth of ML technologies has been aided by free open-source tools
and low-cost training, but this rise is still targeting computer and data scientists and
is based on foundational skills that are not widespread in the SE community. Wade,
Buenfil, & Collopy (2020) discuss a potential business model using an abstraction
to bring AI/ML to the SE community based on a similar experience in the Very
Large Scale Integrated (VLSI) circuit’s revolution. Just as abstraction and high-
level programming languages hid the underlying complexity of microcircuits from
an average designer, the growth in “low-code” AI/ML design tools will make the
technology more accessible to other disciplines.

SE is a discipline targeted at improving the predictability of function and perfor-
mance in the design and use of complex systems. Current day ML applications
that “hide” decision paths in deep networks create predictability concerns in the SE
community. Even rule-based systems at large scales are a concern for the community,
which strives for explicit verification and validation of function and performance in
the critical functions of a system. Issues with explainability and data/training bias
must be overcome for AI/ML technologies and applications to gain acceptance in
the SE community for critical functions. Research in digital twins and extended
applications of modeling and simulation for validation are needed. Otherwise, the
“validation by use” will be cost and risk-prohibitive in large safety-critical appli-
cations. Research in uncertainty quantification of deep learning applications is of
particular research interest in the engineering community as certainty in decision-
making improves opportunities for validation by decomposition of function. Abdar
et al. (2020) provide a good review of this research area.

Improved resilience from design errors and malicious attacks is a concern for use
of AI/ML in critical applications. Protection from adversarial attacks and general
robustness cannot be provided by add-on applications. It must be designed into the
learning process. Ren et al. (McDermott, 2019) provide an overview of this research
area and some possible defensive techniques.

In the long term, adaptation and contextual learning in AI/ML systems across
long system lifecycles, and the resilience of these systems to changing contexts
(environment, use, etc.) will be an active area of research and development in the
engineering community. Cody, Adams, and Beling (2020) provide an example of
the need and possible approaches to make an AI/ML application more robust to
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changes in a physical system over time. This article provides a good example of
the challenges of ML in operational environments. Eventually, the broad use of
learning applications for multiple interconnected functions in complex systems will
arrive. At some point, the SE community will no longer be able to rely primarily
on decompositional approaches to system design and must adopt new, more holistic
approaches.

Automation and Human-Machine Teaming

Table 3.3 provides a consolidated summary of the research and development areas in
automation and human—machine teaming disciplines that are relevant to SE practices.
Automation and the use of Al are not new to the SE discipline; but the use of ML is
more recent. We envision that humans and machines will team in ways that they learn
from each other while using complex engineered systems in complex environments.
The robustness of these interactions at scale is an SE challenge.

The future state in SE and automation will see, using a terminology from Madni
(2020), the deployment of adaptive cyber-physical-human systems (CPHS). In adap-
tive CPHS, humans and complex machines learn together as they move across
different contexts. Adaptive CPHS employ different types of human and machine
learning to flexibly respond to unexpected or novel situations during mission and
task execution; to respond using plan and goal adjustment and adaptation; to learn
from experience to evolve the system; and to continuously adapt the human and
machine tasks in operational performance of the system. A key issue in this future
is modeling human behavior in the context of the machine design (Ren et al., 2020).
The SE community, to manage complexity and skillsets, generally views the human
system activities, the machine function and behavior, and the related modeling and
simulation as three independent subdisciplines. These subdisciplines will need to
converge as human behaviors and machine behaviors are allowed to adapt together
while in use, with the changes sensed by large-scale digital twins. An important
research area is adaptive mission simulation—simulation environments that provide
contextual learning to both humans and machines across the development, test, and
operational lifetimes of a system.

The system architecting process will change as automation scales in more complex
systems. System architectures must support learning and adaptation and more agile
change processes. System architectures for large hardware systems will include
the training data and associated information technologies that support their AI/ML
components. Future system architecting must consider the parallel development and
the comparison of in vivo (real) and in silico (virtual) deployments with sensing and
data collection subsystems that support continuous learning and adaptation.

The SE community has traditionally viewed T&E of systems and architectures
as static events supporting specific lifecycle decisions. Future views of T&E must
evolve to support learning and adaptation. Freeman (2020) lists a number of themes
for the evolution of the T&E processes to be considered by the SE community:

e T&E is a continuum where data accumulate over time;
e The continuum does not end until the system retires;
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e Integrating information from disparate data sources requires unique methods and
activities (models, simulations, and test environments) to collect and combine the
data;

e Data management is foundational—evaluation of data quality and readiness is
essential;

e Al systems require a risk-based test approach that considers all of the evidence
collected versus consequence severity in the operational environment;

e Test metrics may have different interpretations, and new metrics may be necessary
to focus on risk for Al systems;

e [t becomes more essential to understand the operational context and threats for
these systems; and to achieve this,

e All Al areas need testbeds for experimentation with operational data.

In all of these cases, pure decomposition of function to design and buildup of
function to test may not apply in traditional ways. As multiple AI/ML applications
become dependent on each other, the SE community must add methods for the
aggregation of decisions and associated behaviors in the systems. Characterization
of system behavior in the aggregate will affect traditional T&E approaches as noted
previously.

Automation of function has been a continuous feature of engineered systems since
the industrial age began, but human—machine co-learning requires different methods
to assess risk and trust in future systems. The T&E continuum must support this,
but we also need new methods to evaluate risk and to make decisions on whether or
not a system is safe, secure, ethical, etc. We are already seeing such issues arise in
applications like self-driving cars and facial recognition systems where the societal
norms for safety, security, privacy, and fairness are being adjusted. Concepts and
metrics for trust need to become more explicit in the SE community—both in the
human interaction and the dependability of the machines.

3.5 Augmented Engineering

Table 3.4 provides a consolidated summary of the research and development areas
in augmented engineering. We envision that as digital engineering evolves and tradi-
tional engineering models and practices rely more on the underlying data, many
engineering tasks related to data collection and search, data manipulation, and data
analysis will become automated. Also, the machine learning of modeled relationships
and underlying data will become more complex over time. This augmentation will
automate many mundane engineering tasks leading to a greater focus on problem-
solving and design for the human engineer. In addition, we envision that engineering
speed and quality will improve as more engineering test and validation activities
become automated. The idea of “cognitive assistants” that broadly support the engi-
neer will evolve but they must evolve in a way that supports the problem-solving and
associated learning processes associated with engineering.
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Rouse (2020) argues for terms like “augmented intelligence” and “augmented
engineering” in the SE community because SE is highly associated with human
problem-solving. He argues that future cognitive assistants in this domain must not
only support automated search and model building/checking but also contextual
inferencing of intent, explanation management, and intelligent tutoring with respect
to machine inferences and recommendations. Selva and Viros (2019) provide an
example of a cognitive assistant for engineering design and system analysis. In this
work, they show that a cognitive assistant can increase engineering performance,
but, as a side effect, can also decrease human learning (Selva, 2019). This result is
an example of the need for co-learning in human—machine teaming.

In the long term, as the engineering community captures more of their process in
digital data and models, the use of AI/ML will improve the quality of engineering
design and test activities. Automation of data collection and search, model-building,
evidence collection, data and model checking, and eventually system assurance
processes will lead to better more robust systems.

3.6 Workforce and Culture

In the category of workforce and culture, many system engineers come from founda-
tional disciplines in engineering and lack some of the computer science foundations
that drive the Al discipline area. The systems engineering workforce needs to further
develop basic digital engineering competencies in software construction and engi-
neering, data engineering, and related information technologies. AI/ML systems are
created in these three disciplinary domains. However, SE can bring its strong founda-
tion in interdisciplinary approaches to the Al community. Over time, Al development
tools will incorporate design abstractions and patterns that make the technology more
accessible to a broad set of engineers, improving the interdisciplinary understanding
and use of the technology. A clear workforce development concern is the integration
of Al with systems engineering and human systems integration—a much greater
representation of the cognitive sciences and cognitive engineering in the SE disci-
pline set. Specialty systems engineering disciplines such as security and safety must
move to the forefront. New test and evaluation approaches for learning and adaptation
will significantly affect those disciplines.

3.7 Summary—The Al imperative for Systems Engineering

SE is undergoing a digital transformation. This evolution will lead to further trans-
formational advances in the use of Al and ML technology to automate many routine
engineering tasks. At the same time, applying Al, ML, and autonomy to complex
and critical systems encourages new systems engineering methods, processes, and
tools. It is imperative that the systems engineering community deeply understand
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the emerging Al and ML technologies and applications, incorporate them into the
methods and tools in ways that improve the SE discipline, and ensure that appropriate
systems engineering approaches are used to make Al systems ethical, reliable, safe,
and secure. The road mapping activity presented here attempts to understand broadly
all of the opportunities and risks that might appear as this evolution proceeds as well
as potentially provide the information that guides further research.
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Chapter 4 ®
Effective Human-Artificial Intelligence e
Teaming

Nancy J. Cooke and William F. Lawless

Abstract In 1998, the great social psychologist, (Jones, Gilbert et al.Fiske
et al.Lindzey (eds), The Handbook of Social Psychology, McGraw-Hill, 1998),
asserted that interdependence was present in every social interaction and key to
unlocking the social life of humans, but this key, he also declared, had produced
effects in the laboratory that were “bewildering,” and too difficult to control. Since
then, along with colleagues and students, we have brought the effects of interdepen-
dence into the laboratory for detailed studies where we have successfully explored
many of the aspects of interdependence and its implications. In addition, in a review
led by the first author and a colleague, the National Academy of Sciences reported
that interdependence in a team enhances the performance of the individual (Cooke
and Hilton,.Enhancing the Effectiveness of Team Science. Authors: Committee on
the Science of Team Science; Board on Behavioral, Cognitive, and Sensory Sciences;
Division of Behavioral and Social Sciences and Education; National Research
Council, National Academies Press, 2015). This book chapter allows me to review
the considerable research experiences we have gained from our studies over the years
to consider the situations in which an artificial intelligence (AI) agent or machine
begins to assist and possibly replace a human teammate on a team in the future.

4.1 Introduction

In this chapter, we provide an overview of team research and team cognition in
sociotechnical systems. It will include a review of human teaming and human—
autonomy teaming in the context of remotely piloted aircraft system ground control
team studies; the theory of Interactive Team Cognition (ITC); areview of our research
with a synthetic teammate as an air vehicle operator; and that will be followed by a
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review of a synthetic teammate validation study. Then we will close the chapter with
a short review of the next steps.

A team is defined as an interdependent group of individuals (see Fig. 4.1), each
with distinct roles and responsibilities, who work toward a common objective (Salas
et al., 1992). This definition implies that a team is a special type of group. With
advances in artificial intelligence (AI), Al agents can fulfill critical roles and respon-
sibilities for a team; often those are the roles and responsibilities that are too dull,
difficult, dirty, or dangerous for humans. Are these human—AlI teams different from
all human teams? Are human teammates different from Al teammates? What does it
take for Al to be a good teammate? These and other questions have been addressed in
my laboratory over the last decade. One critical finding that has emerged from many
studies is the importance of interaction that can manifest as the communication or
coordination required to exploit the team’s interdependencies (Cooke, 2015; Cooke
etal., 2013).

In the study above by Salas et al. (1992), Salas and his team recognized that teams
at work have been a research subject in the field of business management for many
years with the result of several developments that have improved the organizations
for teams and the human resource managements that have benefitted from applying
their lessons. In their review, the authors studied the formation of work teams and the
processes with them that have led to human resource excellence. From the perspec-
tives in the workplace existing at the time, the complexity of work situations was
proving to be too difficult for employees to address on their own, exemplifying the
value of teams and teamwork that underscored the need for this research. For teams,
the research focus was initially placed on team structure, leadership, control, mutual
support, and communication. For human resources excellence, the authors studied
delegation, motivation, and teamwork. With the data collected by the authors from
a questionnaire and then analyzed in regression, they concluded that team structure,

Fig. 4.1 Left: A familiar action-oriented team playing basketball seen most often during the Fall
and Winter months in backyards, playgrounds, schools, and universities and at locations spread
all over the world. Center: A military decision-making team commonly found in darkened rooms
associated with multi-hued lights and with brightly lit screens organized around the human decision-
makers who are increasingly aided by artificial intelligence (Al). Right: A human—autonomy team
(HAT) signified by the two robots, one at the lower left and the second climbing in the center of
the right-hand image, both performing as part of a recovery search team after a weather disaster,
closely watched by an “in-the-loop” human operator or observer
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leadership, control, and communication meaningfully affect human resources excel-
lence, whereas mutual support does not appear to have a meaningful effect on human
resources excellence.

To provide more detail for the study by Cooke (2015), the members of a team make
decisions and assess situations together as a team. In years past, the cognition behind
these activities was attributed to the knowledge held by the individuals participating
in the team as a unit and distributed across the team. That is, based on the perspectives
prevalent at that time, smarter individuals with similar knowledge should have led to
smarter teams. In contrast, however, Cooke’s view, developed from years of empirical
work, is that team cognition exists in the interactions experienced by the team, a rich
context that must be measured not at the individual levels of a team’s members
where the data are commonly collected one-by-one, but at the level of the team as a
whole where the data must be collected from the team as a whole. This very different
approach has major implications for how these effects are measured, understood,
and improved.

Based on years of study of all-human teams and observations of teams in synthetic
environments (including Remotely Piloted Aircraft System ground control and
Noncombatant Evacuation Operation scenarios; see Fig. 4.2, which is discussed
in more detail in the next section), the theory of interactive team cognition (ITC)
emerged (Cooke, 2015; Cooke et al., 2013). This theory holds that interaction is
key to teams, especially action-oriented teams, and that team cognition should be
treated as a process, should be measured at the team level, and should be measured
in context. Empirical results have indicated that team interaction is, in fact, more
predictive of team effectiveness than individual performance (Duran, 2010).

Briefly, from Cooke et al. (2013), Interactive team cognition has arisen from our
findings over years of research and experience that team interactions often in the
form of explicit communications are the foundation of team cognition. This finding
is based on several assumptions: First, team cognition is an activity, not a property of
the members of a team or the team itself, and not a product of the team or its members.
Second, team cognition is inextricably tied to context—change the context and the
team’s cognition changes as well. And, third, team cognition is best measured and
studied when the team is the unit of analysis, not by summing what is collected from
the individual members who constitute a team.

Interactive team cognition has implications for measuring team cognition and for
intervening to improve team cognition. For instance, we have developed measures
that rely heavily on interactions in the form of communication and message passing
(Cooke & Gorman, 2009). With the goal of having unobtrusive measures structured
for a specific context, and collected in real-time, automatically, we have relied on
communication flow and the timing of the passing of pertinent information. Inter-
ventions to improve team cognition can also involve manipulating interactions. For
instance, perturbation training involves blocking a particular communication channel
so that team members need to explore other ways to coordinate. Perturbation training
has led to the development of more adaptive teams (Gorman, Cooke, & Amazeen,
2010).
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Fig. 4.2 The RPAS research testbed: RPAS-STE: remotely piloted aircraft system (ground control
station) synthetic task environment. In our RPAS-STE, three human operators must interdependently
coordinate their actions over headsets or text chat messages to be able to maneuver their RPA under
their control to take pictures of selected ground targets based on intelligence or other requests.
Clockwise from the lower right-hand image is shown a remotely piloted drone (pictured: A Northrop
Grumman RQ-4 Global Hawk; it is a high-altitude, remotely-piloted, surveillance aircraft). At the
bottom-left is an image of experimenter control stations for the RPAS-STE. At the upper-left is an
image of three human operators interdependently in action. And at the upper-right is an image of
an operator controlling a RPA drone

To provide more detail for the study by Cooke and Gorman (2009), the authors
attempted to integrate cognitive engineering into a systems engineering process. The
authors reported that it required different methods for measurement to exploit the
variance often found across the social and physical environment. The new measures
that they sought had to be reliable and valid, as well as not apparent to those being
measured, and yet still be able to provide in real time both predictive and diag-
nostic information. In response, the authors developed measures of human teams
to represent systems; the measures that were developed produced data based on an
automatic analysis of sequential communications while the team under study was
interacting. Then the authors mapped the data to metrics to measure the performance
of the system, its changes over time, its processes, the coordination expended, and
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the situation awareness that was developed by a team as a consequence. In the final
analysis, the authors concluded that this mapping offered added value to integrate
the activities of other cognitive systems.

To dwell in more detail on the study by Gorman, Cooke, & Amazeen (2010), the
authors reported on an experiment that contrasted three training styles that would
allow them to explore the adaptability of teams. These approaches were cross-training
designed to build knowledge shared across a team; a new approach, described by the
authors as perturbation training, specifically designed to constrain the interactions
of a team so as to help it to build the coordination skills that a team would need
during unexpected changes in a task environment; and with the contrast to the first
two groups to be provided by a more traditional approach designed simply to train a
team on the procedures of a task taught to the members of a team individually. Their
subjects were 26 teams assigned with the task of flying nine missions win the RPAS-
STE (see Fig. 4.3) but with only three critical missions dedicated to testing the ability
of the teams to adapt to the novel conditions presented during the studies, measured
by each team’s response times and their shared team knowledge. Subsequently, the
authors found that procedural training led to the poorest adaptive outcome; that for
two of the three critical test missions, perturbation training outperformed all teams;
and that cross-training improved the knowledge shared by a team, but for only one of
the critical missions tested. The authors concluded overall, however, that perturbation
training improved coordination among the teams the best, that it could lead to more
well-trained and better-adapted teams, and that the experiences a team learns even in
simulation training should be able to transfer to the real-world and novel situations.

[FECE S

Fig. 4.3 A Remotely Piloted Aircraft System (RPAS) ground control station can be located almost
anywhere, but principally on the ground or on a ship. Here screenshots from the Cognitive Engi-
neering Research on Team Tasks (CERTT) RPAS Synthetic Task Environment (STE) are provided:
(Left) The left-hand screen image is an image from a screenshot of a Payload Operator’s station
and what is commonly seen in a real-time video in its upper-right portion; the Payload Operator
controls the various camera settings, takes photos of selected objects or targets, and monitors the
different camera systems. (Center) A screenshot of an image from the Data Exploiter Mission Plan-
ning Controller’s (DEMPC) work station is shown; the DEMPC is the navigator, mission planner,
and route planner from target to target. (Right) A screenshot taken of an image from the Air Vehicle
Operator work station where the controls for the RPA’s airspeed, heading, altitude, and air vehicle
systems are maintained and monitored
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4.2 Synthetic Teammates

The main purpose of the Synthetic Teammate Project (Ball, Myers, Heiberg, Cooke,
Matessa & Freiman, 2009; see Fig. 4.5) was to develop the language that would
be needed to enable tasks for synthetic agents capable to perform work sufficiently
well to be integrated into simulations that would permit human-autonomous team
training. The goal was to fulfill this achievement without harming the team training
necessary for human teams to accomplish their missions. To meet this lofty goal, the
synthetic agents had to be designed to match or to be capable of closely matching the
human behavior a synthetic agent was to replace, to become cognitively plausible,
yet to be functional synthetic teammates. For this to be successful, the Synthetic
Teammate would have to emulate, understand, and utilize human language relevant
to the situations and training of human teammate it would replace; if successful,
the Synthetic Teammate would then be integrated into team training simulations
to constrain the system it would fit into, namely, the behaviors it would perform
would have to be human-like ones rather than purely algorithmic or the optimum
solutions that might ignore such constraints, making the results obtained to fit the
context at hand, not an idealized context. In a given situation with a specific task
to perform, the Synthetic Teammate had to not only act like a human would act
for a given situation (context) but also chat with other humans in a human way by
comprehending their chat messages and to generate appropriate chats in its replies.
Before its implementation of a specific role, it had to be validated. For the Synthetic
Teammate, initially, the first application was to create an agent that could replace a
pilot performing the functions of flying an RPA. Should this application be successful,
it was planned that the Synthetic Teammate would be applied in a simulation as part
of a three-person team (i.e., PLO Photographer, AVO Pilot, and DEMPC Navigator;
see Fig. 4.4).

In summarizing what was desired, the Synthetic Teammate Project was designed
to demonstrate “cognitively plausible” agents capable of performing complex tasks
and yet able to interact with human teammates in natural language environments.
These Synthetic Teammate Agents had to be designed to be able to provide effective
team training at any time and anywhere around the world, specifically for Depart-
ment of Defense (DoD) relevant, complex, and dynamic environments. The Synthetic
Teammate Project had to be able to facilitate the transitions to new DoD applica-
tions wherever needed. Moreover, the Synthetic Teammate Project had to be able to
take cognitive modeling to the level of functional systems operated alongside and
integrated with human operators.

One of the goals of the Synthetic Teammate Project was to validate it to be
both functional and cognitively plausible (Ball, Myers, Heiberg, Cooke, Matessa &
Freiman, 2009). Due to its complexity, a considerable challenge, it was considered
too impractical to validate all of its ACT-R subsystems, Instead, key and relevant
behaviors were selected to be scrutinized and to be tested for empirical validation.
First, we wanted to show as a pilot (the AVO) that the Synthetic Teammate could
conduct the task as well as its human counterparts. Second, we wanted to contrast
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Sender Sent Message

DEMPC | 517.22 | the speed restriction for f-area is
from 150 to 200.

PLO 530.16 | good photo. go on.

PLO 572.02 | go to next waypoint.

DEMPC | 633.1 the next waypoint is prk. it is entry.
AVO 736.63 | What is the effective radius for oak?
AVO 747.35 What is the next point after prk?

DEMPC 768.78 | no effective radius for oak.
DEMPC 803.77 | the next waypoint is s-ste. it is
target. the altitude restriction is
from 3000 to 3100.

AVO 843.41 What is the next point after s-ste?
DEMPC | 924.9 the speed restriction for s-ste is
from 300 to 350.

DEMPC | 982.94 | the next waypoint is m-ste. it is
DEMPC 1123.08 | target.

the next waypoint is m-ste.

Fig. 4.4 A Synthetic Teammate Demonstration System (installed at Wright Patterson Air Force
Base, Dayton, OH; see Ball, Myers, Heiberg, Cooke, Matessa & Freiman, 2009). Results: The
largest cognitive model built-in ACT-R. In ACT-R, it had 2459 Productions and 57,949 Declarative
Memory chunks. Among the largest cognitive models built in any cognitive architecture at the time,
it had five major components. By computer science standards, it was a very large program. (Left
image) Facing the human operator, at the upper left, a computer screen-shot of the images seen is
those of the CERTT Consoles (i.e., the Navigator; Photographer; Pilot). At the bottom left facing
the human operator is shown the text messaging subsystem. At the upper right top and bottom,
screenshots are shown of the Synthetic Teammate. (Right image) To the right is a series of actual
texts captured between the human operators and the Synthetic Teammate (highlighted in yellow)
as it communicated with its human teammates

its ability to “push” and “pull” information with similar data collected for human
teams. In this validation attempt, we were mindful that the evidence of similarity in
the two different data streams was in and of itself insufficient; that is, the Synthetic
Teammate had to be able to demonstrate to its teammates that it was able to function
as a teammate under all of the constraints that that implied for human teammates as
well.

McNeese et al. (2018) had the goal of comparing three different configura-
tions of teams with the aim of improving their understanding of human—autonomy
teaming (HAT). They first looked into the extensive literature that existed on human-
automation interaction. Despite this rather large literature, they begin with the notion
that very little was known at the time about a HAT for situations in which humans and
autonomous agents coordinated and interacted together as a unit. Thus, the purpose
of this research was to begin to explore the implications of these previously unex-
plored interactions and their effects on a team and its autonomy. The context for their
laboratory studies was the CERTT RPAS STE. In that context, the authors consid-
ered three types of teams: a synthetic team with the pilot as the synthetic teammate;
a control team with the pilot as an inexperienced human participant; and an exper-
imenter team in which an experimenter served as an experienced pilot. Ten teams
were run in each experimental condition. The authors measured team performance,
target processing skills, the situation awareness of the teams, and their verbal behav-
iors were also assessed. Experimenter teams performed the best overall, followed
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Synthetic
Pilot (AVO)

e

Human Human
Photographer Navigator
(PLO) (DEMPC)

Fig. 4.5 An autonomous agent as a collaborator on a heterogeneous team (i.e., the role and nature
of the agent) that operates by flying a Remotely Piloted Aircraft (RPA) to allow the team’s human
photographer to take reconnaissance photos. The human photographer (PLO) and human navigator
(DEMPC) have been kept in the same roles in this simulated RPAS as they held in Fig. 4.3. The
air vehicle operator was an ACT-R cognitive model. By introducing the Synthetic Pilot, several
implications arise regarding Interactive Team Cognition (ITC) for the Synthetic Teammate: First,
the interaction goes well beyond language understanding and generation. Second, coordination
among team members is central to this task; timely and adaptive passing of information among
team members is affected by what the Synthetic Teammate can or cannot perform. Third, humans
sometimes display subtle coordination behaviors that may be absent in or conveyed by the synthetic
teammate, or even not understood by the synthetic tteammate. And fourth, the failures of the synthetic
teammate will highlight the requisite coordination behaviors, which we have found that a good
teammate performs

by synthetic and the all-human control teams, which performed equally well, except
that the synthetic teams processed targets least well. The authors were heartened by
the performance of the synthetic agent teams, concluding that the potential existed
so that one day in the future they may be able to replace a human teammate, but they
concluded that for now, for these agents to perform satisfactorily in the field today,
the science of autonomy had to improve significantly. The authors also concluded
that their results advanced our understanding of what autonomy has to achieve to be
able to replace a human teammate (see more below and Fig. 4.5).

As Cooke and her colleagues have established, interaction proved to be critical
in perturbation training. Similarly, when an Al agent or “Synthetic Teammate” is
included on a three-agent team (see Fig. 4.5), interaction also proves to be critical
(McNeese et al., 2018). The synthetic teammate turned out not to be a good team
player, as it failed to anticipate the information needs of its fellow human teammates.
That is, it performed its task of piloting the air vehicle well but did not provide the
human team members (navigator and sensor operator) with information in a timely
manner or even ahead of time. Humans do this naturally and get better at it as they
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practice the task. Interestingly, the human team members “entrained” or stopped
anticipating the needs of others on the team, as if modeling the synthetic teammate.
Thus, even though the synthetic teammate was pretty good at its own taskwork, it
was not effective at teamwork, resulting in a gradual decline of teamwork by the
entire team.

With more detail from Demir et al. (2018), the authors brought new insights into
the study of the relations at the global level between the dynamics of teams and
their performance at the system level. Mindful of their approach, they reviewed the
literature in an attempt to identify the characteristics of the dynamics of teams and the
performance of teams. Specifically, they applied methods from non-linear dynamical
systems to the communication and coordination behaviors in two different studies of
teams. The first was an application to human-synthetic agent teams in a Remotely-
Piloted Aircraft Systems (RPAS) simulated task environment; and the second was
for human-dyads in a simulated victim locator “Minecraft” task environment. The
authors discovered an inverted U-shaped model from which they were able to relate
the coordination of teams and the performance of teams. For the human—autonomy
teams (HAT), they found that these HATs were more rigid than the human teams, the
latter being the least stable; and that extreme low and high stability were associated
with poor team performance. Based on their results, the authors hypothesized going
forward that training helped to stabilize teams, reaching an optimal level of stability
and flexibility; and they also predicted that as autonomous agents improved, HAT's
would tend to reach a moderate level of stability (meta-stability) being sought by
all-human teams.

Examining team dynamics has given us a view into the communication dynamics
of the team which for us represents team cognition (Gorman, Amazeen, & Cooke,
2010a, 2010b). Also, extending this system view beyond the three agents to the
vehicle, controls, and environment in which they act, we have demonstrated how
signals from these various components of the system can be observed over time.
Given a perturbation, then one can observe changes in particular system components,
followed by others. These patterns provide an indication of system interdependen-
cies and open many possibilities for understanding not only teams but also system
complexity (Gorman et al., 2019). It is intriguing to consider using a system’s time to
adapt to a perturbation and then to return to a resting place as an index of context-free
team effectiveness.

From Demir, McNeese, and Cooke (2019), the authors focused on two topics.
First, the authors wanted to better grasp the evolution of human—autonomy teams
(HAT) while working in a Remotely Piloted Aircraft Systems (RPAS) task context.
In addition, the authors wanted to explore how HAT's reacted to three modes of failure
over time, specifically, under automation failures, autonomy failures, and a cyber-
attack. The authors summarized the results of their recent three experiments with
team interactions by a HAT performing in an RPAS operating in a dynamic context
over time. In the first two of these three experiments with three-member teams,
by comparing HATs with all-human teams, the authors summarized the findings
related to team member interaction. For the third experiment, which extended beyond
the first two experiments, the authors investigated the evolution of a HAT when
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it was faced with three types of failures during the performance of its tasks. In
these experiments, they applied the theory of interactive team cognition and, by
focusing measures on team interactions and temporal dynamics, they found that
their results were consistent with the theory of interactive team cognition (ITC).
The authors applied Joint Recurrence Quantification Analysis to the communication
flows across the three experiments. Of particular interest, regarding team evolution
was the idea of entrainment, namely that one team member who happened to be the
pilot, both as an agent and as a human, over time can affect the other teammates,
specifically their communication behaviors, their coordination behaviors, and the
team’s performance (also, see the discussion above regarding Demir et al., 2018). In
the first two studies, the synthetic teams were passive agents that led to very stable
and rigid coordination compared with the all-human teams, which were less stable.
In comparison, experimenter teams showed meta-stable coordination, coordination
that was neither rigid nor unstable, performing better than the rigid and unstable
teams during the dynamic task. For comparison, in the third experiment, the teams
were metastable, which helped them to overcome all three types of failures. In sum,
these findings help to ensure three potential future needs for effective HATS. First,
training autonomous agents on teamwork principles so that they understand the tasks
to be performed and the roles of the teammates. Second, human-centered machine
learning designs must be brought to bear on synthetic agents to better understand
human behavior and human needs. Third, and finally for then, human members must
be trained to communicate to address the Natural Language Processing limitations
of synthetic agents, or, alternatively, a new human—autonomy language needs to be
developed.

To summarize the results of the validation study, first, the synthetic teams
performed as well as did the control teams, but the synthetic teams had difficul-
ties when coordinating and processing targets efficiently; in general, they showed a
failure to anticipate what was needed in a given situation. Second, we established that
a synthetic teammate can impact a team’s ability to coordinate and to perform, which
we described as “entrainment.” Third, to compare with our second finding, we intro-
duced an experimenter condition, which then demonstrated how a teammate who
excels at coordination can elevate the coordination of a whole team. And fourth, we
established that compared with when conditions were nominal, coordination became
even more important in off-nominal conditions.

4.3 HAT Findings and Their Implications for Human
Teams

For a doctoral thesis, Hinski (2017) reported that, according to the American Heart
Association (AHA), there were approximately 200,000 annual in-hospital cardiac
arrests (IHCA) along with low rates of survival of about 22% to discharge. To
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counter this poor survival rate, AHA joined in a consensus statement with the Insti-
tute of Medicine (IOM) to recommend programs to train cardiac arrest teams, known
colloquially as code teams. Traditionally, health care was commonly administered
in a team format, however, traditional health care training was taught at the indi-
vidual level, creating rigid habits ingrained at the individual level that were often
counterproductive in teams, leading to poor team performance when the situation
required highly functioning teams. Despite the need, many obstacles to the training
of code-blue resuscitation teams at the team level were in the way, factors like logis-
tics, the coordination of a team’s personnel, the time available to train amidst the
busy schedules of team members, and financial barriers that made training in teams
a hindrance (see Fig. 4.6). Inspired by findings in the Experimenter condition of
the RPAS Synthetic Teammate evaluation experiment, Hinski followed a three-step
process: first, a metric was developed to evaluate the performance of code-blue
teams; second, a communications model was developed that captured a team’s and
the leaders’ communications during a code-blue resuscitation; and third, a focus was
placed on the code team leader’s (CTL) performance using the model of communica-
tions that had been developed. With these conceptual and methodological approaches
gained from the interdisciplinary science of teams, Hinski was able to apply the results
to a broad vision of improving IHCA events, especially for code-blue resuscitations
(see Table 4.1).

The control group of untrained code leaders and the trained code team leaders
were similar in many respects. Only one control group and only one group with a
trained leader asked for the patient’s code status. This result might have been due
to the simulation, which involved a code response, however, code-blue teams must
know and be able to communicate the status of a patient’s code before beginning
a resuscitation attempt. The team members had considerable knowledge (seven of
eight code team leaders were internal medicine physicians), but only one leader
had previous formal team training. For purposes of comparison, the control and
trained team leaders were as evenly matched as possible. Errors in performance
were observed against guidelines for when the first shock must be delivered to the
simulated “patient” within 2 minutes of identifying a shockable rhythm. Those and
other common errors made by the two groups during SBCEs are illustrated and
compared in the next figure (see Fig. 4.7). Despite the brevity of the training, a clear

Mock Code Blue Experiment

Fig. 4.6 Applying coordination coaching to code-blue resuscitation. A code-blue team partici-
pating in a mock code-blue resuscitation (Hinski, 2017)
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Table 4.1 From Hinski (2017), an intensivist code that code team leaders (CTL) studied based
on the (ICT) communication model for 5-10 min prior to receiving a Simulated Code-Blue Event
(SCBE) as part of Advanced Cardiac Life Support (ACLS) training

Arrival to code

Introduces self as the code team leader (CTL)

Contingency

IF: Code RN does not immediately give the CTL a brief history,
code status, and confirm advanced monitoring is established
THEN: CTL must directly ask the Code RN for the information

Within 30 s of arrival to code

Asks about ABCs (airway, breathing, circulation)

IF: No one person is performing CPR or performing bag-mask
ventilating upon arrival of CTL

THEN: CTL must direct code team member to immediately
perform CPR and the respiratory therapist (RT) to bag the
patient

Once monitoring is established

Asks for ACLS therapies as indicated

IF: Medication or shock delivery is delayed more than 10 s
after identification of rhythm

THEN: CTL must directly ask the pharmacist or RN to deliver
the meds and/or shock

*Constant feedback*

Asks if there are any problems, so CTL can troubleshoot or
delegate task to another person, keeps the team on task, should
be in SBAR format
(situation-background-assessment-recommendation)

-

Contingency IF: Code team does not clarify ROSC
(resuscitation)/stabilization of ABCs or clinical worsening
THEN: CTL must clarify disposition (i.e., transfer to ICU, need
for more advanced therapies, discontinuation of efforts, etc.)
CODE TEAM ERRORS
4
3l
14
o
m
2.
[0} = Control Group 1
el
g I ® Trained Group 2
z
[ e - - .

CTL did not identify CTL not positioned First shock delayed ~ ECG rhythm not Medication dose and

him/herself

properly verbalized route not verbalized

Fig. 4.7 From Hinski (2017), common errors committed after the Simulated Code-Blue Event
(SCBE) training compared with a control group and during an SCBE run for both groups
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difference is seen between the trained groups of SCBE leaders versus the control
group.

In the medical field today, the knowledge held by the individual members of a
team is still considered to be an important part of an effective team’s performance,
but interactive team cognition (ITC; Cooke et al., 2013) implies that training a team
as a team must also be considered when attempting to improve a team’s performance.
Hinski concluded that training strategies need to focus on how the team functions as
a unit and how it performs as a unit, independently of the combined knowledge held
by the individual members of a team. The development of the ITC communication
model allowed for the development of a series of training steps that could be applied
to the entire resuscitation team through the prompts from a trained code team leader
of the resuscitation team. When ITC “coordination coaching” was applied to the
training for a simulated code-blue event (SCBE), which led us to provide code team
members with richer feedback on their team’s performance, to generate quantitative
assessments of the value of their SCBE practice, and to make simulated training
exercises a more efficient training tool for their team as a unit. The ultimate aim
to build these high-performing code teams is, of course, to improve their patient
outcomes following a cardiac arrest. In Hinksi’s study, the trained code team leader
teams demonstrated superior performance compared with the control teams even
despite only an average of 26 min spent on training with the ITC communication
model. Despite the limits accrued to the hospital environment, which limited the
sample size considerably, the time spent to train the medical team leaders for SCBEs
was the very minimum amount of time compared with how much time it would
take to train an entire team for SCBEs. While the data were limited in this study,
nonetheless, it offered an optimistic view of what this strategy could offer in the
future given the reduced training time needed for team performance improvement.
This type of training strategy should be studied in the future with larger groups of
trainees.

Overall, we find that there is much more to team effectiveness than having the
right teammates on the team with the right skills and abilities. The teammates need
to be able to navigate the team interdependencies in adaptive and resilient ways.
Effective teams learn to do this over time. Al agents need to also have this ability
and without it, they may be a disruptive force to the system that is a team. More
specifically, by measuring at the unit level of the team, we have found that as teams
acquire experience, the team’s performance improves, its interactions improve, but
a team’s individual or collective knowledge does not improve.

4.4 Conclusions and Future Work

For our team’s next steps, we plan to more and more take team performance measure-
ments out of the laboratory. We have established ground truth in the laboratory,
which we can use to measure outcomes against. In the laboratory, team performance
is measured as an outcome and demonstrates that an effective team has a positive
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outcome. Away from the laboratory, however, for an infinite number of reasons,
ground truth may be hidden, obscured, or uncertain (e.g., cyber teams, sports teams,
military and civilian intelligence teams, RPAS teams, and even urban search and
rescue teams). Research, for example, conducted by a science team may run afoul
of unforeseen circumstances, such as the COVID-19 pandemic that has shut down
numerous experiments across the USA and around the world (e.g., Chen, 2020).
Thus, outside the laboratory, the outcomes may not be obvious or effective, even
for Code-Blue Resuscitations. And yet, taking teams seriously indicates from our
research that effective teams are adaptive and resilient. Adaptive teams are those that
respond quickly to perturbations. In contrast, resilient teams are those that bounce
back quickly from perturbations.

We not only want to take human teams seriously, but we also want to take human
autonomous teams seriously. Based our my research, my students’ research, and the
research of my collaborators, there are five conclusions that can be drawn at this time
and applied to human autonomous teams: First, team members have different roles
and responsibilities; autonomous teammates should not replicate humans. Second,
for effective teams, each human team member understands that each member of a
team has a different role and responsibility while each must avoid team member
role confusion yet still be able to back up each other when it becomes necessary;
autonomous teammates must be able to understand this as well as the tasks of the
whole team. Third, implicit communication being critical to the effective team perfor-
mance of human teams, effective human-autonomous teams must train sufficiently
well enough to be able to share knowledge about their team goals and their experi-
ences of context changes to facilitate coordination and implicit communication in all
contexts. Fourth, the most effective human teams have team members who are inter-
dependent with each other and are thus able to interact and communicate interdepen-
dently even when direct communication is not possible; human-autonomous teams
must also be able to communicate even if it is in a communication model other than
natural language. Fifth, finally, for now, interpersonal trust among the best human
teams is important to the humans on these teams; by extension, human—autonomy
teams need to be able to explain and to be explicable to each other.
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Chapter 5 ®)
Toward System Theoretical Foundations e
for Human-Autonomy Teams

Marc Steinberg

Abstract Both human—autonomy teaming, specifically, and intelligent autonomous
systems, more generally, raise new challenges in considering how best to specify,
model, design, and verify correctness at a system level. Also important are extending
this to monitoring and repairing systems in real time and over lifetimes to detect
problems and restore desired properties when they are lost. Systems engineering
methods that address these issues are typically based around a level of modeling that
involves a broader focus on the life cycle of the system and much higher levels of
abstraction and decomposition than some common ones used in disciplines concerned
with the design and development of individual elements of intelligent autonomous
systems. Nonetheless, many of the disciplines associated with autonomy do have
reasons for exploring higher level abstractions, models, and ways of decomposing
problems. Some of these may match well or be useful inspirations for systems engi-
neering and related problems like system safety and human system integration. This
chapter will provide a sampling of perspectives across scientific fields such as biology,
neuroscience, economics/game theory, and psychology, methods for developing and
accessing complex socio-technical systems from human factors and organizational
psychology, and methods for engineering teams from computer science, robotics, and
engineering. Areas of coverage will include considerations of team organizational
structure, allocation of roles, functions, and responsibilities, theories for how team-
mates can work together on tasks, teaming over longer time durations, and formally
modeling and composing complex human—machine systems.

5.1 Introduction

Bringing system-level theoretical foundations to the design and development of intel-
ligent autonomous systems has many challenges even without incorporating human—
machine teaming into the mix. This set of challenges includes how to specify require-
ments, measure, and formally model the different elements of autonomous systems
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and their cyber, physical, and social interactions at an appropriate level of abstraction.
Beyond that are many open questions about how to systematically design, compose,
analyze, test, and develop life cycle processes to assure requirements are met, opera-
tional constraints are followed, the end user’s needs are supported, and no undesirable
emergent properties are likely to occur between intelligent, adaptive, and learning
components, more traditional forms of automation, and the people and hardware
that together make up an entire system. Moving also to Human—Autonomy Teams
(HAT) creates substantial additional new challenges compared with a more tradi-
tional division of human and machine roles, responsibilities, and functions (Klien
et al., 2004; Groom & Nass, 2007; Shah & Breazeal, 2010; Cooke et al., 2013;
Gao et al., 2016; Endsley, 2017; McNeese et al., 2018; Johnson & Vera, 2019).
HAT may involve new types of organizational structures in which multiple humans
dynamically interact with multiple autonomous systems outside of fixed control hier-
archies and with dynamically changing roles. Interaction between teammates may
involve multi-modal tiered strategies with both verbal and non-verbal and explicit
and implicit communications. Effective joint communication, attention, and action
may depend on the ability to recognize individual capabilities, activities, and status,
and infer other team members’ intent, beliefs, knowledge, and plans. Team activities
may not be limited to just real-time task performance but include also the ability to
jointly train, rehearse, plan, and make a priori agreements prior to performing work
together, and to assess performance and improve together afterward. While this might
appear a daunting list of capabilities to achieve in machines, it is not necessary that
HAT operates on exactly the same principles as high functioning human teams that
exhibit these characteristics. A much broader spectrum of group types is possible that
could be considered teams and would be more plausible to engineer in the near future.
Furthermore, the true value of HAT may lie in exploiting the heterogeneity between
humans and machines to create entirely new types of organizations rather than trying
to mimic fully human ones or force humans into the rigid frameworks of multi-agent
machine systems. In this spirit, a human—autonomy team will be categorized in this
chapter as requiring only the following properties:

(1) Teams are set up to achieve acommon goal or goals that are believed achievable
in a bounded period of time. It is not required that every member has the same
depth of understanding of the goal. This goal would be very challenging for
machines on many complex, real-world problems, and is not the case for teams
of humans and working animals or teams of human adults and children that
may provide useful inspiration for the degree of heterogeneity to be found
in HAT. As well, this is consistent with broader findings in the human team
literature, particularly for teams that are heterogeneous or that have a larger
number of members (Cooke et al., 2013).

(2) Teams exploit role specialization and have bi-directional interdependencies
between teammates. Teaming interdependencies are not predominantly one
way, such as in human supervisory control of autonomy. Methods that focus
primarily on decomposing and allocating loosely coupled tasks between
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humans and machines to ensure task completion with non-interference between
agents would also not be sufficient on their own to be considered teaming.

(3) Individual identities, skills, and capabilities of teammates matter. This “nam-
ing” allows for unique relationships or associations to be formed between
particular pairings or subsets of teammates along with a joint understanding of
which individuals have which responsibilities. This differs from multi-agent
forms of organization in which individual agents can be anonymous, such as
biologically inspired collective behaviors (Steinberg, 2011), and call center
or service-oriented models with a pool of autonomous systems (Lewis et al.,
2011).

Much research to date on human—autonomy teams has focused narrowly on rela-
tively small teams performing short-time duration tasks. Nonetheless, a system
perspective must also consider aspects such as the qualifications, selection, and
training of both machine and human members of the team, the ability for the team
to jointly do pre-task planning, agreements, and rehearsal, and post-task assessment,
maintenance, and improvement. Also, critical for some applications will be processed
to ensure the health and safety of human team members and bystanders. To accom-
plish even just this for HAT goes beyond current system theories or the methods
of any particular discipline. Thus, it makes sense to consider foundations from as
broad a perspective as possible. This chapter will consider a sampling of perspectives
across scientific fields such as biology, neuroscience, economics/game theory, and
psychology, methods for developing and accessing complex socio-technical systems
from human factors and organizational psychology, and methods for engineering
teams from computer science, robotics, and engineering.

5.2 Organizational Structure and Role/Function Allocation

Groups of humans and working social animals have particular relevance for human—
autonomy teaming (HAT) because they encompass some of the same degree of
extreme heterogeneity of physical, sensing, communication, and cognitive abilities
(Phillips et al., 2016). Additionally, recent animal cognition research has focused on
the extent to which different animal species may excel at solving specific niches of
cognitive problems under particular ecological constraints while being rather poor
at others (Rogers & Kaplan, 2012). For example, there is an increasing body of
evidence on the impressive social cognitive abilities, dogs can use to solve prob-
lems jointly with humans, while simultaneously finding dogs can be much less
capable of individually solving other classes of cognitive problems (Hare & Woods,
2013). This situation has similarities to the state of the art of today’s autonomous
systems and may provide both an inspiration for teaming architectures and an effec-
tive metaphor for human interaction with autonomous teammates. There are a number
of systemic frameworks from the animal literature that can be considered for HAT
including different subordinate strategies (Sun et al., 2010), mutualism (Madden
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et al., 2010), or reciprocal altruism and association strengths between individuals
(Haque & Egerstedt, 2009). A dominance framework, for example, can provide a
principle framework to allow for more freedom of action by human teammates,
while limiting machine teammates to act within constraints imposed by human plans
and actions. From an engineering perspective, this can be considered a satisficing
type of solution. The constraints imposed by dominance relationships between team
members ensure some degree of non-interference and also can substantially simplify
computationally intractable group coordination problems, so they can be solved
even for complex groups at scale. For example, adopting a dominance like structure
has enabled the solution of large-scale group problems with Decentralized Partially
Observable Markov Decision Processes (Sun et al., 2010), and several approaches
for motion planning with a large number of systems in complex environments have
achieved scalability with related types of prioritizations and constraints (Herbert
et al., 2017). There also have been a number of successes in showing how particular
architectures relate to the degree of optimality, robustness, resilience, or the best or
worst possible cases (Ramaswamy et al., 2019).

A different set of methods can be drawn from human factors. For example, in
an assessment of the literature, Roth et al. (2019) identified a four-stage process for
role allocation in HAT to analyze operational and task demands, consider ways of
distributing work across human and machine team members, examine interdepen-
dencies in both nominal and off-nominal conditions, and explore the trade space of
options with different potential tools. One of the particular tools that had success at
such novel problem domains is Cognitive Work Analysis (CWA) (Vicente, 1999).
CWA has been successfully applied to two related classes of problems of human
supervisory control of autonomous teams in which the human is not a teammate
(Linegang et al., 2006; Hoffman, 2008), and to the development of assistive technolo-
gies for human teams in fields like healthcare and aviation in which the automation
is not a teammate (Ashoori & Burns, 2013). A strength of CWA for novel systems is
that it is based on an ecological theory in which human/machine activity and inter-
action can be considered from the perspective of constraints on what is and is not
possible in the work environment rather than starting with stronger assumptions on
how the work will be done. Thus, CWA has been particularly effective on problems
that are dominated by persistent fundamental constraints of physics or information
flow. CWA could also be effective for HAT problems with similar characteristics.
However, there is only a limited body of work on extending the abstractions involved
to team problems even in the fully human case. Furthermore, there are many chal-
lenges in applying this kind of method, and some prior work has found that results do
not sufficiently encompass what is enabled by the new technological options. Another
method of considering interdependencies that was developed more specifically for
HAT problems is Co-Active Design (Johnson et al., 2014).

Similar to human factors, human-robotic interaction can provide a rich set of
theories for human—autonomy coordination and adaptation that take into account
the realities of implementing methods on real autonomous systems. Discussions of
human-robot and human—autonomy teams sometimes proceed from the assumption
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that the machine team members will be something like a peer. However, realisti-
cally, many machine teammates in the next few decades will probably still require
some degree of human supervision and support. This need may be due to either
technological limitations or interrelated issues such as laws, regulations, organiza-
tional policies, ethical concerns, societal norms, and professional standards of due
diligence. Thus, some system frameworks developed for non-team interactions with
robotic and autonomous systems will still have validity. For example, an important
framework for considering human-robotic interaction is the span of control (Cran-
dall et al., 2005). Historically, the focus of this range has been on matching the
human capacity to the tempo and quantity of “servicing” that the machines require.
In one approach, this is based around a neglected time representing the amount of
time a robot can operate safely and effectively or be trusted to do so without human
intervention. In moving from an operator to a teammate, this framework may need
to consider a metaphor more like a human sports team or a medical team. A given
size and complexity of team might require a certain number of on-field leaders, and
off-field coaches, trainers, and health and safety monitors. A converse of neglect time
is neglect benevolence (Walker et al., 2012). Neglect benevolence recognizes that
there are circumstances in which a lower bandwidth of interaction between some
group members would be beneficial for team performance, including from human
supervisors to machines.

5.3 Working Together on Tasks

Effective autonomous teammates may require very different capabilities depending
on features of the team organization and task. Some autonomous teammates may be
effective mainly by exploiting detailed knowledge of the group tasks while others
may require more general types of cognitive abilities. An example of a general
capability that may be foundational for achieving higher performing teams in some
circumstances is Theory of Mind (ToM). ToM is the ability to infer that others have
different knowledge, beliefs, desires, and intentions than one’s self. Neuroscience
research on simultaneous imaging of multiple brains has found connections as well
with how synchronization of behavior, language, and gesture is achieved in some
types of group interactions (Dumas et al., 2010). For autonomous teammates, ToM
could provide principled connections between perception, perceptual attention and
active sensing, intent and activity recognition, knowledge and world representation,
prediction, and decision-making in groups. Theory of Mind has been shown to exist
in some form in increasingly younger human children (Doherty, 2008), and there
are debates on the extent to which at least rudimentary ToM occurs in non-human
primates, other mammals, and even several bird species (Rogers & Kaplan, 2012).
An important divergence between psychological models and robotics has been that
the three main psychological theories of ToM centered on an ability to project one’s
own experiences and way of thinking onto others. Autonomous systems, lacking
remotely comparable brains and experiences to their human teammates, instead may
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need to have their ToM more heavily grounded in processes of observation and
learning. Thus, robotic versions of ToM have tended to focus on narrower abilities of
perspective-taking, belief management with limited numbers of entities and objects,
and bounded rationality that can be tailored for a particular experiment, but are
difficult to scale to more realistic, open-world problems (Scassellati, 2002; Breazeal
et al., 2009; Hiatt et al., 2011; Weerd et al., 2013). However, scientific research has
also begun to emphasize the role of observation in the natural development of such
abilities, and this opening may be an excellent opportunity to reconsider ToM as a
foundational theory for HAT (Jara-Ettinger et al. (2016); Albrecht and Stone (2018)).

Another important set of theories are those for joint action/activity (Clark, 1996;
Bradshaw et al., 2009) and common ground (Stubbs et al., 2007). Joint activity
involves the ability to coordinate tasks with interdependencies and can depend on
common ground as a kind of floor of the minimum knowledge, beliefs, and assump-
tions that are required to be shared and maintained between agents. This can range
from direct communications between teammates to generally shared world knowl-
edge or widely accessible broadcasts. For teams, this requires both regular updating
and maintenance and the ability to recognize when it has broken down and needs to
be repaired. Note that while common ground might seem to be a particularly human
ability, that is not the case. For example, dogs are capable of both spontaneously
picking up on human cues and on signaling themselves in ways that can support
joint problem-solving with humans. Common ground via non-direct communication
has connections to both the biological literature on stigmergy, in which coordination
is done via changes in the environment (Steinberg, 2011), and Dynamic Epistemic
Logic, which can be used to reason about changes of belief and knowledge that
occur due to trustworthy announcements to a group (Lutz, 2006). There are also
relationships of these concepts to game theory research on how agents adapt to each
other under some degree of bounded information (Fudenberg et al., 1998). In the
study of human teams, joint action models often revolve around some notion of
an agreement between agents that need to be maintained along with the common
ground. However, within the biological and economics/game theory literature, there
are debates on the extent to which seemingly strongly coordinated activities can
instead arise as the result of more decentralized decision-making (Madden et al.,
2010; Young & Zamir, 2014). Common ground and joint activity have sometimes
been interpreted in robotics as the kind of information and plan representations found
already in robotic “world models” or on operator displays, and there are a number of
methods that have been considered for different aspects of this such as information
theory, Partially Observable Markov Decision Processes (POMDP), bounded ratio-
nality, and Hierarchical Task Networks (HTN) (Roth et al., 2005; Unhelkar & Shah,
2016). However, these are much broader concepts, and an important part of common
ground in HAT will be bridging the divide between human and machine represen-
tations of goals, tasks, and understandings of the world and each other. Relating to
joint activity in human—robotic interaction is also the idea of shared control (Mulder
et al., 2015). Some shared control research has focused on very application-specific
designs such as human assistance teleoperation problems. However, other research
can generalize this in a more abstract way that may be a good model for some of the
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richer interactions that may occur in HAT. For example, one approach is to provide
a systematic way for a machine teammate to estimate the quality of interactions it is
having with a human relative to goal achievement and then to be able to adjust the
level of interaction and allocation of its tasks to one appropriate to the circumstances
(Javaremi et al., 2019). The second example of shared control uses a formal linear
temporal logic approach as a way to reason about shared policies (Fu & Topcu, 2015).
Other examples utilize an optimal control paradigm that recognizes differences in
machine and human understanding of the problem for physical tasks and address the
issue of how humans may adapt to autonomy over time (Nikolaidis et al., 2017) or
take into account a distribution of potential human goals if the actual human goal is
unknown (Javdani et al., 2018).

Another group of methods from human factors and organizational psychology was
developed specifically for human teams. A traditional approach has been models of
shared cognition such as team mental models and shared mental models (Lim &
Klein, 2006; Mohammed et al., 2010). A mental model, in this case, is a representa-
tion that allows the behavior of a system to be described, explained, and predicted.
This group of theories provides a way to aggregate that as an information structure
across the group. Shared mental models have also been a popular idea in human—
robotic interaction and related forms of Al and autonomy, but the mechanizations
of these models often are narrowly tailored to particular problems compared with
the versatility that is implied in the human case and often focus on awareness rather
than comprehension and prediction. There are challenges as well to deal with the
heterogeneity of HAT. For example, in an ad hoc team, broad knowledge held by
a machine may be less likely to be available, recognized as relevant, shared, or
acted upon in a timely way than if held by a human team member. The differences
between human—human interactions and human—machine interactions may play a
more significant role than the team’s information structure. An alternative approach
is Integrated Team Cognition (Cooke et al., 2013). This approach arguably has signif-
icant compatibility with engineering and computer science methods in that it takes
a bottom-up, layered, dynamical system approach based on observable interactions.
This approach has been applied to small human—autonomy teams with sophisticated
synthetic team members based on a full cognitive architecture. Research also has
included off-nominal performance, failures, and compromising of the autonomous
teammate (Gorman et al., 2019; McNeese et al., 2018). Several related bottom-up
methods have also shown good compatibility with engineering methods such as the
use of Hidden Markov Models (Cummings et al., 2019). Other important classes of
methods from human factors include theory-based approaches to situation awareness
(Endsley & Garland, 2000), transparency (Chen et al., 2018), and trust (Lee & See,
2004; Hancock et al., 2011) that have been effective on related classes of problems
and applied to some cases of HAT. A related concept from human—robotic interaction
is that of legibility and predictability (Dragan et al., 2013). Legibility represents how
well an observer could rapidly infer the system’s goals from observed behavior while
predictability relates to the extent that observed behavior is what would be expected
given a known goal. Finally, there has recently been considerable work within the
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fields of Al and robotics on the explainability of different system elements including
neural networks and planners (Chakraborti et al., 2020).

A final related area concerns models of emotion, affect, and motivation, and
how these may vary among individuals and relate to interaction and communica-
tion among team members. There has been considerable growth in the development
of cognitive and neuroscience models of the role of effect and motive in cognition
and even some principled systems theories in robotics based on either psycholog-
ical or neural models (Moshkina et al., 2011). However, much research in this area
has focused on problems such as virtual training environments, tutoring systems,
games, toys, artificial pets, and companions. Some cognitively plausible models of
effect and motivation have been applied to assist robots in their ability to commu-
nicate to humans in social domains. However, this research has often focused on
the ability of the autonomous system to provide a more pleasant experience for the
user, improved communications, and usability rather than taking a more functional
perspective toward being an effective teammate that performs tasks with humans to
achieve a common goal.

5.4 Teaming Over Longer Durations

Much research to date on human—autonomy teams has focused narrowly on rela-
tively small teams performing short-time duration tasks. There are many open issues
to extend our understanding to more complex team organizations that persist over
time scales that may involve a much greater number of hours, days, months, or
even years. As time durations increase, there is a need to better understand for
these new HAT organizations the effect and mitigation of human limitations such
as fatigue and boredom and machine limitations such as computational methods
that either do not scale well to longer periods of run time or become increasingly
likely to encounter a problem they cannot recover from without human assistance.
At longer time scales, creating effective autonomous teammates must also consider
aspects like the joint training of both machine and human members of the team; the
ability for the team to jointly do pre-task planning, agreements; and rehearsal, and
post-task assessment, maintenance, and improvement. At the longest time scale, it
will be important to understand the dynamics of how humans and machines may
adapt to each other and how this will impact trust and reliance. Human factors can
provide both general frameworks to support the design, development, and analysis
of complex socio-technical systems including some of the methods described above.
These considerations have the advantage of encompassing a broad range of Human
System Integration concerns, but they can require a great deal of care and creativity
to extend to a fundamentally novel concept like a human—autonomy team (HAT).
For example, joint training and rehearsal of both humans and machines have not
had much study. However, there are theories that exist with regard to human training
with autonomy (Zhou et al., 2019), autonomy as tutors for humans, and frameworks
for interactive machine learning in which humans assist machines in learning. The
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latter has had some work that has considered human factors and human-centered
design aspects that go beyond treating the human mainly as servicing the automation
(Krening & Feigh, 2018). Joint planning also has had some work that has consid-
ered both human factors and human models within planning and risk management.
An approach toward pre-task agreements that also has potential value for verifi-
cation and decomposition of HAT is contract-based approaches (Benveniste et al.,
2018; Nuzzo et al., 2015). At a system level, these can be used to guarantee global
properties as long as each individual element abides by a set of guarantees that are
rooted in local assumptions. In the event that an assumption is violated, there is
research on monitoring and adapting contracts to be able to restore some guarantees
in real time. This approach might seem like a very difficult method to bridge across
people and machines, but some similar kinds of agreements have been successful
with people. Finally, another significant area is self-assessment and prediction of
proficiency and competency boundaries the ability to communicate this effectively
to human teammates in terms of achievable performance over a range of operating
parameters prior to starting a task, in real time while performing a task, and then
afterward using knowledge of the completed task (Hutchins et al., 2015; Steinfeld &
Goodrich, 2020).

5.5 Formally Modeling and Composing Complex
Human-Machine Systems

While the prior sections have emphasized a human-centered focus, this section will
discuss higher level specification, modeling, and verification of the broader systems
in which human—autonomy teams may be embedded. Ideally, this level of abstraction
should be appropriate across different stages of the system’s life cycle. At design and
development time, this level could be used for tradeoff analysis, verifying correct-
ness and composability, and supporting either a correct by construction design or at
least design guided by formal tools. In deployed systems, this level could be used for
pre-mission and run-time validation, run-time monitoring to check if assumptions
or constraints are violated, and real-time repair to restore some degree of guaran-
teed properties in unexpected circumstances. Over a whole life cycle, this could
support monitoring, periodic recertification, and longer term maintenance, repair,
and improvement. To achieve useful results at a system level, it will be important
to have methods that can be automated and applied to end-to-end systems at useful
scale and under realistic assumptions. These methods also will need to be tailored
to different domains with different needs in terms of safety, time criticality, mission
reliability and constraints, and the degree and types of human interaction that are
possible or practical. Some key challenges in creating this level of system model are:

(1) Identifying the appropriate level of abstraction and meta-model for considering
system-level issues. Rather than focus on lower level behaviors or states, this
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representation might emphasize model abstractions such as aggregate capabil-
ities, skills, goals, agents, and tasks. For example, a capability-based model
might focus on what the system can do rather than how it can do it, what
resources are required to execute that capability, and what constraints is the
capability subject to (Bouchard et al., 2017, 2021). Alternatively, at a lower
level, a skill might be defined as the ability to move between a particular set
of pre-conditions to a particular set of post-conditions that can be specified
formally (Pacheck et al., 2020). The composition of these skills would then
provide something more like a broader capability. An important aspect of this
level of representation is also considering how to measure similarity between
different models for comparison and analysis purposes.

Developing methods to formally express properties associated with all of the
different elements of the autonomous system at an appropriate level of abstrac-
tion via the desired representation types. Common types of representations to
provide this more system perspective include timed and hybrid automata and
various forms of temporal logic (Alur, 2015). There has been considerable
progress in extending temporal logic-based methods to include real-valued
parameters, probabilistic elements, uncertainty in perception and knowledge,
and finite-time horizons that provide more flexible and perhaps appropriate
ways to model the elements of intelligent autonomous systems (Littman et al.,
2017, Elfar et al., 2020). However, it is still unclear how best to capture
the relevant aspects of complex artificial intelligence algorithms, machine
learning, adaptation, perception, and complex physical and social interactions
with the external world in a way that yields useful results. Furthermore, there
are significant tradeoffs between expressibility and scalability relative to the
computational tools available for analysis, verification, and synthesis.
Establishing structural commitments within the system and between the system
and external world. Ideally, this would enable composability and strong proofs
of global properties across the system that could be maintained or adapted even
after an individual component was replaced or changed. The idea of contracts
mentioned above is one example of this idea as are methods that compose
systems as graphs.

The shift from design to real-time operation and deployment enables consid-
ering a notion of autonomy “failures” during real-time operations One example
of this shift would be if the system encounters a situation in which it is missing
something needed in order to meet its requirements in its sets of capabili-
ties, goals, goal selection/modification processes, cost functions, skills, behav-
iors, domain/task knowledge, and knowledge retrieval processes (Cox & Ram,
1999). Another example is if the system encounters a situation, in which the
embodiment of these elements in the real world does not have the properties that
are asserted in its models. In both cases, these are well-formulated problems
to consider real-time repair to restore some degree of guarantee.

A significant challenge with this framework for human—autonomy teams partic-

ularly is in developing appropriate human models such that meaningful results are
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achieved when these models are used with methods for synthesis, analysis, verifi-
cation, and repair (Alami et al., 2019; Kress-Gazit et al., 2020; Seshia et al., 2015).
Significant research is needed on how best to formally model humans in order to get
meaningful results. There have been attempts to model humans using a wide variety
of engineering and computer science methods including finite state machines, process
algebra, Petri-nets, queuing, Markov models, game theory, decision or behavior tress,
and optical control and filtering. However, these are often better at normative, single-
task focus, or “rational” behaviors and decision-making rather than being predictive
of the kind of more naturalistic human behavior that would be found in real environ-
ments. Nonetheless, there have been some attempts to approximate a distribution of
more naturalistic behavior or individual differences using methods such as adding
noise, varying parameters, or assuming a degree of “bounded rationality” or subop-
timality to the above methods. Alternatively, there are human factors models that
have been developed explicitly for use with formal methods, but not specifically for
robotic or autonomous systems (Bolton et al., 2013). While some of these models
focus on detection of problems associated with the human interface, several also
have targeted system-level verification. Examples of this targeting include formal
task modeling languages like the Operator Function Model (Bolton & Bass, 2017)
and simplified cognitive models such as the Operator Choice Model. One benefit of
these models is there has been some work on incorporating more naturalistic human
behaviors such as errors. The cognitive models also provide additional insight into
the causes of problems relative to particular cognitive processes.

Another significant challenge is how to represent artificial intelligence-based
methods at a system level such as perception and learning. For an example of
machine learning elements, there are several approaches that could be considered.
One is to transform neural networks into a simpler abstraction such as a decision
tree or automata (Bastani et al., 2018; Frosst & Hinton, 2017; Ivanov et al., 2019). A
second possibility is to make verification part of the learning process with the goal
of directing the neural network learning to have a particular set of desired properties
(Anderson et al., 2020). This latter requires being able to quantify the closeness to a
region with the desired properties during learning. A third approach is to ensure the
desired global properties at a system level rather than at the level of the individual
learning element, such as through a method like run-time shielding that checks the
outputs of the learning element and changes its unsafe actions, or through related
methods that can incorporate broader specification types (Gillula & Tomlin, 2012;
Alshiekh et al., 2018).

5.6 Conclusions and Future Directions

Creating foundational systems theories for human—autonomy teams (HAT) raises
new issues that are substantially different from those that have previously been
encountered in related areas such as in the study of fully human teams or of human
management and supervision of fully machine teams. One of the big challenges for
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the field remains developing appropriate formal models and representations at the
right level of abstraction for all of the elements of the entire system. This obstacle is
particularly true not only in the case of human models but also relevant to models of
complex computational components and autonomous interactions with people and
the environment. Nonetheless, many disciplines involved with different aspects of
intelligent, autonomous systems have reasons for seeking higher level abstractions,
models, and ways of decomposing problems. Some of these may match well or be
useful inspirations for system engineers and related fields like system safety, and it
will be important to engage these disciplines as early as possible. It will also be impor-
tant to change the current perspective from an emphasis on demonstrating instances of
short-duration tasks and deployments to both longitudinal studies on larger temporal
scales and considering whole life cycles of these kinds of systems. Finally, there
is also a need to broaden the research perspective from an emphasis on just the
“user” of particular autonomous systems to considerations of the implications for
whole socio-technical systems with many possibilities of different human—-machine
organizations including teams.
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Chapter 6 ®)
Systems Engineering for Artificial Guca i
Intelligence-based Systems: A Review

in Time

James Llinas, Hesham Fouad, and Ranjeev Mittu

Abstract With backgrounds in the science of information fusion and information
technology, a review of Systems Engineering (SE) for Artificial Intelligence (AI)-
based systems is provided across time, first with a brief history of Al and then the
systems’ perspective based on the lead author’s experience with information fusion
processes. The different types of Al are reviewed, such as expert systems and machine
learning. Then SE is introduced and how it has evolved and must evolve further to
become fully integrated with Al such that both disciplines can help each other move
into the future and evolve together. Several SE issues are reviewed, including risk,
technical debt, software engineering, test and evaluation, emergent behavior, safety,
and explainable Al

6.1 Perspectives on Al and Systems Engineering

The field of Artificial Intelligence (AI) has a quite long history. Deciding exactly
when the field started would be the subject of many arguments but early conceptual
ideas, importantly related to computational feasibility, were defined in Turing’s 1950
seminal paper in the philosophy journal Mind (Turing, 1950), often considered a
major turning point in the history of Al. Wikipedia describes a “Golden years” period
of 1956—74 when a variety of then-new and rather amazing computer programs were
developed. Still following the metaphors in Wikipedia, a first Al “Winter” arises in
the period 1974-80, followed by a boom years period, largely spawned by the rise
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in Expert Systems techniques, and the efforts of the Japanese “Fifth Generation”
project. Skeptical views of Al at high decision-making and funding levels (in spite
of some continued advances) led to a second Al Winter, 1987-93. It was during this
period, however, that the groundwork for connectionist approaches was laid, but the
field still struggled through 2011. The current Al “Spring” could also be called the
period of Deep Learning (DL) and Big Data.

It is important to understand current terminology such as “Narrow” Al Narrow
Al is a term used to describe artificial intelligence systems that are specified to
handle a singular or limited task. Narrow Al is also sometimes called Weak Al, and
some struggle over the distinction. And finally, there is the category of Strong Al or
Artificial General Intelligence (AGI) that is “focused on creating intelligent machines
that can successfully perform any intellectual task that a human being can.” This
intelligence comes down to three aspects: (1) the ability to generalize knowledge
from one domain to another by taking knowledge from one area and applying it
elsewhere; (2) the ability to make plans for the future based on knowledge and
experiences; and (3) the ability to adapt to the environment as changes occur (from
Walch (2019)). There are respected opinions that indicate we are still a long way
from cause-effect modeling capability (Bergstein, 2020), and that such capabilities
are crucial to serious movement toward an AGI computational capability. In spite of
the recent accomplishments and the major investments being made in Al technology,
its nature as measured by its many accomplishments and its trusted use is still to
be noted, but exactly how this Al “season” evolves is still hard to determine with
confidence.

It is also important to realize that systems engineering (SE) for these generational
Al systems was a topic of concern for those times, i.e., that systems engineering for
Al systems also has a history. Those engineering methods were developed largely in
the boom years when Expert Systems were being prototyped, and books were written
on the methods to build them, such as in Martin (1988); Purdue offered a website
(Subarna, 2020) that outlined the stages of Expert System development; there are
various other characterizations of these steps but broadly they can be summed as:
Identification—Conceptualization—Formalization—Implementation—Testing.

As regards new progress in Systems Engineering (SE) for Al and Al-imbued
systems (SE4Al), our review based on the technical literature suggests that there
is an equally long way to go to both achieve the knowledge to develop a solid
foundation of knowledge and methods for SE4AI but, perhaps more importantly, to
have the broad Al community take up and employ these methods rigorously in assured
systems development. Thus, we titled this Chapter: “Systems Engineering for Al-
based Systems: A Review in Time,” since the overarching field of Al is in a (complex)
process of evolution with much uncertainty as to how the varied dimensions of the
field will evolve; this is true for SE4AI as well.
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6.2 The Dynamics of This Space

6.2.1 Evolving an SE Framework: Ontologies
of AI/ML—Dealing with the Breadth of the Fields

Current-day descriptions and characterizations of Al and ML abound; if one Googles
“What is AI?”, 3.3 Billion hits will arise, with all kinds of definitions and diagrams.
If we are to engineer the design, development, and testing of systems that are either
AI/ML-centric or inclusive of AI/ML as components or subsystems, we should have
a clearer understanding of these technologies. (We realize that Al and ML are quite
different but use AI/ML for notational ease.) One of the clearer characterizations in
our view are those which address: “What is it?”... and... “What does it do?”. Rather
detailed figures showing such mappings are developed in Corea (2018) for Artificial
Intelligence shown here as in Fig. 6.1.

There have been efforts to develop ontologies of these technologies, such as
in Hawley (2019), Bloehdorn (2009), but there do not seem to be any reference
ontologies that can help clarify the many nuances and dimensions inherent in the Al
and ML labels. Many such ontologies tend to anthropomorphize the technologies.
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Hawley (2019) suggests that the first challenge in addressing the development of
an ontology for Al is the very changing definitions, calling the many variants as
“intellectual wildcards.” He also suggests that the difficulty is more in dealing with the
term “intelligence” than “artificial”’; these authors agree. The task-specific nature of
applications of classic Al and ML, as in the above figures, is another complication in
attempting to construct a generalized ontology. For ML, (Bloehdorn, 2009) suggests
that a starting point for such an ontology would classify along two dimensions, the
types of entities to which the ML is directed, e.g., textual data; and along the structural
component of the ML techniques, such as along an axis of features. In a way, this
view is again akin to the “what it does-what it is” dimensions. Our concern here is
that it is immediately difficult to consider thinking about an engineering approach to
an enabling capability if we cannot clearly and unambiguously define/describe what
the engineering process is directed to enact.

6.2.2 Systems Engineering as a Moving Target

The issue of defined and clear baselines for the understanding of artifacts to be
engineered is also a challenge as regards the methods of systems engineering of such
artifacts, as each influences the other. But dynamics in defining the methods of SE
are also driven by the SE community (e.g., INCOSE, the International Council on
Systems Engineering) as it reflects on such methods needed to address the engineering
challenges of systems-of-systems (SoS) and enterprise systems in the current time.
Growing technological scale and the complexity of modern systems are in part the
drivers of the need for change in SE (MITRE, 2020), but SE has been a dynamic
field for many years. Systems engineering models and processes usually organize
themselves around the concept of a life cycle, and the concept of life cycle has
also been a moving target. The SE community has adapted to these changing life-
cycle characterizations with Agile Development earlier and now “DevOps,” the WIKI
definition being a “set of practices that combines software development (Dev) and IT
operations (Ops),” but this is too limiting to the software boundary, and applies also to
the complex software-hardware-human aspects of complex systems. In part, DevOps
is oriented to the idea of continuous delivery, so that a system’s useable life cycle
can adapt to broader limits and its characterizations of use.

DevOps for Modern Complex Systems

DevSecOps is a set of principles and practices that provide faster delivery of secure
software capabilities by improving the collaboration and communication between
software development teams, IT operations, and security staff within an organization,
as well as with acquirers, suppliers, and other stakeholders in the life of a software
system (see: [https://www.sei.cmu.edu/our-work/devsecops/]). The general idea is to
more closely link the system development process to its continuing support during its
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deployment to operational status. The DevOps concept was a natural progression of
the Agile software development methodology that has been evolving since the 1990s
with work by many computer scientists both in academia and industry resulting in
the publication of the Agile Manifesto in 2001 [http://agilemanifesto.org/].

To understand the factors motivating this movement, it is instructive to examine
the evolution of the software development industry over the past three decades. Until
the mid-2000s, the waterfall software development methodology was the defacto
standard. The primary motivation was that it gave leaders of large organizations
and government agencies a level of comfort that they were following a structured,
well-understood process. In fact, the Department of Defense instituted a standard
requiring waterfall as the sanctioned methodology for software development under
a standard numbered DOD-STD-2167A [https://en.wikipedia.org/wiki/DOD-STD-
2167A].

The waterfall methodology, depicted in Fig. 6.2, is heavily front loaded with
requirements analysis, high level design, low-level design, and development plans.
This results in some significant problems:

e Software release cycles average around 3 years [Varhol, TBD]. In the case of
mission-critical software for medical, aerospace, and DoD organizations, it can
be as long as decades.

e Development functions are dispersed across multiple departments within an orga-
nization. Once one stage of the process is complete, artifacts (documents, software,
programs) are passed on to a different department for the next stage of the process.
This results in the isolation of expertise within organizational boundaries.

Fig. 6.2 Waterfall Software
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e Software end users are not exposed to the software until the final software product
is released. Faulty assumptions in any of the stages of the waterfall methodology
cannot be ameliorated to correct problems and redeploy the software in a timely
fashion.

e Predicting the time necessary to develop software is difficult. Attempting to
schedule a full development cycle in a front-end process is not useful (see Fred
Brooks’ seminal work on the topic (Brooks, 1982)).

A nice history of the evolution in software engineering from Waterfall to DevOps
is in Chaillian (2019).

Adoption of the Agile methodology inspired the rethinking of how software devel-
opment organizations and processes were structured. An Agile process of Continuous
Delivery (CD) and Continuous Integration (CI) required a cohesive organization that
spanned marketing, development, and operations expertise. These modifications to
the software and systems engineering processes, and the benefits they yielded led to
the inception of the DevOps concept. A key factor was having representation from
all of the organizational areas making up the software development pipeline in all of
the stages of software production. This created a much more streamlined, efficient,
and responsive production process.

DevOps also introduced the potential for the automation of the full software life
cycle. Figure 6.3 depicts the realization of DevOps in an automated software build,
integration, test, and delivery process. As software modifications are committed to
a shared repository, the DevOps pipeline “pulls” the latest source code from the
repository, compiles the software, integrates various components into a deliverable
form factor (Virtual Machine Images, Containers, or installable packages), deploys
them on a local or cloud-based testbed, performs automated testing on the software,
and publishes test results to stakeholders. This process has many advantages:

e The software life cycle is reduced drastically, builds often are performed daily.
® Geographically distributed teams can easily collaborate within the DevOps

o "

Fig. 6.3 DevSecOps
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e Automated testing is performed frequently so that any anomalies introduced can
be quickly detected and corrected.

The DoD has begun the transition from the waterfall methodology to Agile
including the implementation of automated DevOps processes. The additional infor-
mation assurance requirements imposed by DoD for software in operational settings
requires the addition of a software security assurance phase to DevOps making it
DevSecOps. The additional phase involves static scanning of software code to detect
vulnerabilities that would make the software susceptible to classified information
leakage or to cyber-attack. Additionally, dynamic software scanning is, in some
cases, carried out where the running software is monitored for security violations
during the “Sec” phase of DevSecOps.

With so much attention being paid to ML techniques within the DoD, research
organizations are now working on specialized DevSecOps pipelines specifically
tooled for ML. The problem then becomes how to procure “good” data and ensure
that the ML networks are learning correctly. This poses a difficult problem in that the
data required to train ML in the domain of tactical operations is sparse and, where
available, is highly classified. One approach being examined is to utilize computer
simulation technology to generate synthetic data for training ML systems. It remains
to be seen whether or not this approach will bear fruit. The concern is that the simula-
tions used to generate synthetic data consist of largely static, scripted events, whereas
tactical operations are highly fluid and complex.

The other, largely unaddressed, problem with DevSecOps for AI/ML systems is in
the Test, Evaluation, Validation, and Verification (TEVV) of those systems. Testing
AI/ML systems requires that they be exposed to realistic scenarios and having an
automated test system gauge whether or not the output of the AI/ML systems is appro-
priate. We again face the same problem of data sparsity. In the case of reinforcement
learning approaches, TEVV will require a continuous monitoring model. For those
seeking further information on implementing DevSecOps in regulated domains such
as the DoD or healthcare, finance, etc., the SEI has produced a thorough report at
Morales (2020). In the same fashion as has happened for SE in regard to SE4AI
and AI4SE, there are many blogs and podcasts about how Al can be exploited for
DevSecOps, e.g., Trivedi (2021).

6.2.3 The First to Market Motivation

The hoopla about Al and ML is also driving a transformation in business, both
in the sense of what a business is and how it operates. Whether true or not, there
is a widespread impression that rapid incorporation of Al and ML technologies is
necessary to stay apace of competition in the marketplace. As well, the development
tools for Al and ML have evolved in a context that allows quick prototyping and,
if appropriately tested and evaluated (an issue), rapid delivery to market. In Zeller
(2018), itis asserted that “Enterprises that wait too long to implement Al and Machine
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Learning will put their businesses at significant risk as nimble competitors find new
ways of disrupting the industry status quo.” This sense of urgency has also spilled
over into the defense R&D community, as can be witnessed by the “Al Next” program
of the Defense Advanced Research Projects Agency (DARPA) in the United States
(AI Next, 2020), where some US$2 billion will be invested across a wide array
of programs to advance the integration and exploitation of AI/ML for a range of
defense applications. These urgencies have given rise—or perhaps more correctly—
have yielded a retrograde in engineering design-thinking that moves this framework
“From deductive reasoning to inductive reasoning, From clear specifications to goals,
and From guarantees to best effort,” following Carnegie-Mellon University’s course
in “Software Engineering for Al-Enabled Systems” (CMU, 2020). We say retrograde
because these methods were pretty much the principles of design from the Expert
Systems era of Al. These guidelines support rapid development but often with clear
compromises in quality and impacts on life-cycle costs.

6.2.4 Technical Debt

Harking back to a 30-year-old idea in the face of current-day software develop-
ment problems, staffers at Google put forward ideas about technical debt on the
applicability of these old ideas to modern-day development of ML code in Sculley
(2015). That paper starts with a citation to a 1992 paper by Cunningham (1992) that
argues “Although immature code may work fine and be completely acceptable to the
customer, excess quantities (of immature code) will make a program unmasterable,
leading to extreme specialization of programmers and finally an inflexible product.
Shipping first-time code is like going into debt. A little debt speeds development so
long as it is paid back promptly with a rewrite.” This was a reflection on the imputed
life-cycle cost debt of rapid software code development. Related to this, Google
staffers assert (Sculley, 2015) “As the machine learning (ML) community continues
to accumulate years of experience with live systems, a wide-spread and uncomfort-
able trend has emerged: developing and deploying ML systems is relatively fast and
cheap, but maintaining them over time is difficult and expensive.” That paper focuses
on system-level interactions and interfaces as an area where ML technical debt may
rapidly accumulate, and offers various suggestions about strategies to address those
issues, too detailed to review here, but their conclusions suggest that additional
developments in the areas of maintainable ML, including better abstractions, testing
methodologies, and design patterns, are all needed to avoid negative life-cycle cost
implications of current-day rapid development practices.
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6.2.5 Summary

The field of AI/ML technologies and the related engineering methods for designing,
developing, and testing of systems that are either AI/ML-centric or have major
AI/ML components or subsystems, is currently exhibiting considerable change. We
discuss these in the context of this chapter focused on engineering methods to show
that any discussion or suggestions regarding such engineering practices have to be
taken/understood in the context of these advances, and at this point in time. It is
going to take some time for AI/ML domain technical experts and systems engineers to
come together and develop a mature community of practice that employs engineering
methods to provide assured cost-benefits while achieving desired effectiveness.

6.3 Stepping Through Some Systems Engineering Issues

One of the overarching and essential challenges to realize the promise of AI/ML is
that there is not currently a universally accepted approach when it comes to imple-
mentation, since the far greater proportion of implementations realized to date are
highly specialized (Vora, 2019; Dwyer, 2019); there are yet other challenges as well,
and there are many opinions about them (Marr, 2017). We will step through some
of the important issues related to understanding the current state of affairs, and what
might be done to make some progress in SE methods. Our focus is on the software
aspects but clearly a full SE process would address hardware, human factors, etc.

6.3.1 Capability Maturity Model Integration [CMMI] and SE
for R&D

Before marching through various SE steps, we make some overarching remarks on
the top-level issues of engineering culture within a software development-oriented
organization. A first remark comes from reviewing the Capability Maturity Model
Integration (CMMI) review efforts of the Software Engineering Institute (SEI) at
Carnegie-Mellon, as described in CMMI (2010). CMMI for development can be
described as the collection of best practices that address development activities
applied to products and services in any organization. It addresses practices that
cover a product’s life cycle from conception through delivery and maintenance;
SEI’s approach contains 22 such processes. The degree of thoroughness of such
practices can be an indicator of the collective rigor within which an organization
develops software. SEI has developed a five-level categorization of degrees for the
organization that has embedded such practices in their engineering operations; these
maturity categories are:
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1. Inmitial: processes are seen as unpredictable, poorly controlled, and reactive.
Businesses in this stage have an unpredictable environment that leads to
increased risks and inefficiency.

2. Inmitial: processes are seen as unpredictable, poorly controlled, and reactive.

Businesses in this stage have an unpredictable environment that leads to

increased risks and inefficiency.

Managed: processes are characterized by projects and are frequently reactive.

4. Defined: processes are well-characterized and well-understood. The organiza-
tion is more proactive than reactive, and there are organization-wide standards
that provide guidance.

5.  Quantitatively Managed: processes are measured and controlled. The organi-
zation is using quantitative data to implement predictable processes that meet
organizational goals.

6. Optimizing: processes are stable and flexible. The organizational focus is on
continued improvement and responding to changes.

e

Much of AI/ML development is being done within organizations rated at Levels
0 and 1, some are at Level 2. These ratings seem to be consistent with the overall
state of maturity of SE rigor in AI/ML development.

Another top-level view from a similar perspective was carried out in Lombardo
(2015), where the question addressed was the appropriate level of incorporation of
SE rigor as a function of the type of organization doing the work, and, in particular, as
regards R&D type organizations. It can be argued that such rigor in R&D organiza-
tions is often not warranted or affordable, particularly where it is uncertain whether a
new technology can meet key performance goals. In Anderson (2005), three levels of
SE are defined to support the right-sizing of systems engineering activities: informal,
semi-formal, and formal. The overall scheme is risk-based in terms of the risk that
the constructed system/product should have. Figure 6.4 shows this scheme (a risk
categorization scheme and its factors are shown in the analysis):

Any organization therefore has these overarching questions in front of it, as regards
choosing the level of rigor and completeness in its SE practices; rigor and complete-
ness cost money. Building an organization having rigorous and complete SE practices
will be costly along various dimensions. But issues of reputation and product/system

Incorporate systems thinking Define specialized Systems Systems Engineering
into project scope Engineering tasks directed at activities, tasks defined based
Risk reduction on TRL challenges and risks
Limited Systems Engrg Rigor  Defined Project Management Formal Systems Engrg
Plan Management Plan
LOW RISK PROJECT MODERATE RISK PROJECT HIGH RISK PROJECT

Fig. 6.4 Levels of SE Rigor for R&D organizations as a function of risk (derived from Anderson,
2005)
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quality as well as risk in use and liability also play into the cost equation, and making
such decisions will not be easy.

6.3.2 Requirements Engineering

Requirements Engineering (RE) is concerned with the elicitation, analysis, specifi-
cation, and validation of software requirements as well as the management and docu-
mentation of requirements throughout the software product life cycle. RE is often
the first or among the first steps in an SE approach. Among the effects on RE that
have occurred in AI/ML system designs, hard and testable requirements have been
replaced by goal statements (historically it has been asserted that the first require-
ment should be a testable concept for that requirement, else it was poorly defined).
Such effects come from, at least in part, the complexity and opaqueness of AI/ML
algorithms and processes, that is, in effect, the level of deeper understanding that is
known early on in a system’s evolution. Vogelsang and Borg (2019) “are convinced
that RE for ML systems is special due to the different paradigm used to develop
data-driven solutions.” They analyze the effects of ML on RE, describing effects
on requirements elicitation, analysis, specification, and Verification and Validation
(V&V). For example, Elicitation is impacted by the existence of Important Stake-
holders such as Data scientists and legal experts; Analysis by definitions of outlier
effects among others, Specification by complications from the need for explainability,
and V&V by complexities due to data biases.

In a similar way, Belani et al. (2019) develop an equivalent assessment along
these same dimensions for the challenges to RE in the case of Al systems (see their
Table 6.1 for a breakdown very similar to Table 1). They recommend a goal-oriented
approach to RE (“GORE”) that tries to balance the imprecision of goal statements
with the precision of requirements specification. In Horkoff (2019), an extensive
survey of papers on such GORE methods is done (there is a large literature on this
topic), but the conclusions are obtuse, leaving the question of effectiveness open.
Additional papers directed to RE deal with defining legal and ethical performance
of AI/ML systems (Guizzardi, 2020), and of explainability (addressed later) (Hall,
2019).

These important aspects of SE thus remain under study, and how and whether
there will be convergence to an agreed, stable, and consistent approach is unclear.

6.3.3 Software Engineering for AI/ML Systems

Software engineering methodology is another topic in this discussion that also has
a long history. The history of these methods seems to date to 1956 in a paper by
Bennington providing the first description of the well-known “Waterfall” software
development method for “large computer programs” (Bennington, 1983), as also
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Fig. 6.5 Machine learning workflow (derived from Amershi (2019))

described in Sect. 6.2.2.1. In performing a current-day search regarding software
development methodologies, our search showed websites discussing a range of from
4 to 12 methods. In Tatvasoft (2015), a list of 12 methods is described, enumerating
advantages and disadvantages of each.

These various methods were developed for different directed purposes, and they
have a range of applicability, from those with well-defined requirements such as the
Waterfall model to those that are more adaptable to changing requirements such as
the Scrum model. None of these were really conceptualized to address the special
needs of AI/MI software development.

The most distinguishing aspect of AI/ML software development is the depen-
dencies of the process on data characteristics. The AI/ML model life cycle can be
summarized as a process in which it is necessary to deal with data, select a target
classification model (and features) depending on the type of problem and the avail-
able data, train and test the model under different configurations and performance
metrics, and finally, operate and feedback corrections to the trained model as neces-
sary. Of course, a first question relates to the logic involved in selecting the data to
learn, and then to condition that data for targeted purposes of the application. These
steps require non-trivial domain knowledge and are interconnected and non-linear.
Jointly, these steps have come to be known as “Feature Engineering,” the process of
using domain knowledge to extract features from raw data, often via data mining or
other techniques. An example of this process is shown below in Fig. 6.5 (derived from
Amershi (2019)). It can be seen that some steps are data-oriented while others are
model-oriented, and that there are many feedback loops. The larger feedback arrows
denote that model evaluation may loop back to any of the previous stages, and the
smaller arrow shows that model training may loop back to feature engineering.

The workflow shown in Fig. 6.5 is one important factor affecting the formulation of
a software engineering and development approach; the scheme in Yao (2018) for ML
development emphasizes the dependencies on Data and Models, the important role
of Feature Engineering, and of Verification and Validation note too, the specification
of Goals versus precise requirements.

The additional complexities that these processes impute onto software develop-
ment, and the concern for the related issues of technical debt, have given rise to an
explosion of papers and ideas about identifying and addressing hidden technical debt
in AI/ML development (see, e.g., Martini (2018)).

In a highly cited editorial (Kruchten, 2012), the various concerns for technical
debt as related to AI/ML software development are discussed; Fig. 6.6 shows the
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Fig. 6.6 The technical debt landscape (derived from Kruchten (2012))

“Technical Debt Landscape” derived from that work, showing that some concerns
are not obvious (“mostly invisible” in the figure), and can be difficult to prevent.

Developing an AI/ML community approach to software engineering is another
needed component of an overall SE approach; it is another issue in flux, facing
a number of technical difficulties that underlie the development of an engineering
process that is cost-effective and efficient, and formed to avoid both the subtle and
more visible aspects of the drivers of technical debt.

6.3.4 Test and Evaluation

Test and Evaluation processes are clearly central to the overall SE paradigm. Within
the Model-Based SE (MBSE) paradigm, model-based testing (MBT) means using
models for describing test environments and test strategies, generating test cases, test
execution, and test design quality. MBT is said to provide an approach that ensures the
possibility to trace the correspondence between requirements, models, codes, and test
cases used for the tested system. Model-based testing is a software testing technique
where run-time behavior of software undergoing a test is checked against predictions
made by a model. There are various ways that such testing could be enabled. To
automate test-case generation and a test oracle, a specification of the system has
to be expressed in formal languages which are amenable to an automated analysis.
Tests are then automatically derived from those formal models, and subsequently
executed.

Another level of testing is the class of model-based black-box testing techniques
that aim to assess the correctness of a reactive system; i.e., the implementation under
test (IUT) with respect to a given specification (assuming a specification has been
properly constructed). The IUT is viewed as a black-box with an interface that accepts
inputs and produces outputs. The goal of model-based black-box testing is to check
if the observable behavior of the IUT “conforms” to a specification with respect to a
particular conformance relation. In the case of Machine Learning models, there are
no expected values beforehand in that ML models output a prediction. Given that the
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outcome of Machine Learning models is a prediction, it is not easy to compare or
verify the prediction against an expected value that is not known beforehand. But for
non-deterministic operations within an ML agent, there is no easy way to provide an
expectation. This void has given rise to the idea of pseudo-oracles and “metamorphic”
testing. Metamorphic relations represent a set of properties that relate multiple pairs
of inputs and outputs of the target program/application such that proportional results
due to changes in design parameters can be estimated (Kumar, 2018).

Software testing is a large and complex space, and we will not enter into the
many issues lurking there, such as black-box and white-box testing, verification and
validation, unit testing, etc. We will try to comment on some issues that are specific
to Al and ML systems. One first question even before entering a test cycle is that of
debugging AI/ML code, since testing should only be done with code that has at least
passed the debugging stage. One example is in using Probabilistic Programming
for Al inferencing, where debugging is more about odd behaviors than traditional
discrete “bugs” (Nandi, 2019). For ML, the code first of all has many dynamic
interdependent parts such as datasets, model architectures, model weights that are
fine-tuned during training, an optimization algorithm and its parameters, gradients
that change during training, and on. Among the problems encountered, the use of the
various tools for ML, such as TensorFlow, abstract away underlying complexities,
making access to certain functions not possible. Prasanna (2020) has written a posting
that describes yet other issues related to ML code debugging, such as, when using
a tool like TensorFlow in the “declarative approach,” you do not have access to the
defined graph model and the optimized graph, so debugging performance errors can
be harder.

With regard to Test and Evaluation (T&E), the approaches for ML and Al are
quite different. ML is about model testing for classification to a great degree, and Al
is about possibly complex layers of inferencing. Selection of the T&E processes and
metrics for both follow different paths. For ML, the historical base of mostly statistical
and quantitative methods and metrics is quite rich, but there are still technical issues
that can arise. Flasch, in Flasch (2019), offers good reminders about subtleties in the
statistics of measuring ML performance. He offers various interesting points about
metrics that compute different things from different viewpoints (such as F-scores,
Areas Under (ROC) Curves, Brier scores, etc.), and the challenge of aggregating the
best set of metrics for system-level evaluation. For T&E of Al processes, there lurks
the fundamental challenge of agreeing on what constitutes intelligence, and deriving
a T&E approach from the developed response to that challenge. Hernandez-Orallo, in
Hernandez-Orallo (2017), focuses on the obstacles of an ability-oriented evaluation
approach, where a system is characterized by its cognitive abilities rather than by
the tasks it is designed to solve. The approach ranges over several possibilities: the
adaptation of cognitive tests used for humans, the development of tests derived from
algorithmic information theory, or more integrated approaches from psychometrics.
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6.4 Sampling of Technical Issues and Challenges

It should be clear that Al and ML are complex domains, spanning wide ranges
of categories of techniques and categories of applicability. Because they address
complex challenges, it can be expected that designing these processes as well as
understanding these processes will not be easy, as is perhaps already appreciated.
Here, to emphasize this point, we give a sampling of technical complexities in the
Al and ML domains, in no particular order.

6.4.1 Emergence and Emergent Behavior

ML processes typically employ/embody neural networks that are known to have
inherent emergent behavior. Here, we prefer the definition of emergence described
as a property of a complex system: “a property of a complex system is said to
be ‘emergent’ and it arises out of the properties and relations characterizing the
system’s simpler constituents, but it is neither predictable from, nor reducible to, these
lower-level characteristics” (Adcock, 2020). There are many other definitions and
taxonomies of emergence (Fromm, 2005; Chalmers, 2006), but the focus regarding
SE is on the effects of emergence, not emergence per se. Chalmers (2006) identi-
fies “strong” and “weak” emergence, where strong emergence is not deducible even
in principle from the laws of a lower-level domain, while weak emergence is only
unexpected given the properties and principles of the lower-level domain. Neace and
Chipkevich (2018) define weak emergent behavior as attributable to the behavior
of its constituents; they have developed an engineering methodology designed to
realize weak emergence as a desired property of a designed system. Desirable weak-
emergent properties include self-healing, self-management, self-monitoring, and
more; i.e., the desirable degrees of autonomous self-management. They introduce the
ideas of network synchronization, functional coherence, and network entrainment as
necessary mechanisms for weak emergence in a manufactured Complex Adaptive
System (CAS), along with the software agents needed to intend and achieve weak
emergence in the CAS. It may be possible to exploit emergent behavior for useful
purposes in an SE-based approach to ML process design and development, but in
any case, it will need to be addressed.

A further reflection of such concerns is given in DARPA’s recent release of the call
for the AIMEE program—Artificial Intelligence Mitigations of Emergent Execution
(DARPA, 2019). Among the goals for the program is to learn how to prevent the
propensity for emergent execution directly at the design stage when the system’s
programming abstractions and intended behaviors at a particular layer are translated
into the more granular states and logic of the next computing substrate layer; by and
large, this call by DARPA is fundamentally an SE challenge.
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6.4.2 Safety in AI/ML

Related to but not bounded only by emergent properties, the Al literature has many
entries about the various surprising and often undesirable behaviors of Al processes;
such behaviors may clearly affect safe use. Yampolskiy (2019) addresses a position
that discusses the unpredictability of Al in broad terms. In this paper, Yampolskiy
surveys a number of works that discuss the related aspects for SE of Al Safety that
addresses concepts of Unknowability (Vinge, 1993) and Cognitive Uncontainability
(2019). In Amodei (2016), a lengthy review of specific problems in Al Safety are
reviewed; the bulk of these problems are not dealing with the concepts of unpre-
dictability and emergent behaviors per se, but issues that result from failures in
systems engineering and design rigor of ML systems. Examples describe cases where
the designer may have specified the wrong formal objective function; or the case
where a designer may know the correct objective function, but it is judged foo expen-
sive to employ, leading to possible harmful behavior caused by bad extrapolations
from limited data samples, calling this “Scalable oversight”; and, finally, the case of
a correct formal objective, but problematic behavior due to making decisions from
insufficient or poorly curated training data, called “Safe exploration.” For those
interested in this topic, which is definitely an SE topic, Faria (2018) provides another
overview of safety issues in ML processes.

Other issues that can be of possibly major concern in system design relate to
achieving systems whose behaviors and results are compliant with ethical standards
(Rossi, 2019), and systems whose behaviors and results are unbiased (DeBrusk,
2018). These goals also open the discussion about subtle effects and factors that can
influence system operations as well as results.

6.4.3 The Issue of Explanation/Explainability

As the applications and algorithms for Al and ML have matured in the new Spring of
Al the processes (especially on the ML side) have become extraordinarily complex,
resulting in considerable opaqueness. Computing systems are opaque when their
behaviors cannot be explained or understood. This impenetrableness is the case when
it is difficult to know how or why inputs are transformed into corresponding outputs,
and when it is not clear which environmental features and regularities are being
tracked. The widespread use of machine learning has led to a proliferation of non-
transparent computing systems, giving rise to the so-called “Black Box Problem”
in Al, meaning that no views of the processes and workings between components
are visible. Because this problem has significant practical, theoretical, and ethical
consequences, research efforts in Explainable Al aim to solve the Black Box Problem
through post-hoc analysis, or in an alternative approach to evade the Black Box
Problem through the use of interpretable systems. Reflecting concern for this issue,
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DARPA again spawned an early program in its huge AI Next program directed to
Explainable AI (Gunning, 2016).

Interest in explanation capabilities, either within the system by re-engineering to
reduce or avoid opaqueness, or by an explanation service, has exploded if we track
the evolution of citations on these topics. There are a number of review papers on the
subject matter but two stand out, scaled by the numbers of papers claimed to have
been reviewed: the paper by Adadi and Berrada (2018) that reviewed 381 papers,
and the one by Arrieta, et al. (2020), that reviewed 426 papers. These papers take
exhaustive looks at the world of explanation, too expansive to summarize here.

In terms of some focal issues, we see discussions about Interpretability versus
Completeness. The goal of interpretability is to describe the internals of a system
in a way that is understandable to humans, whereas the goal of completeness is
to describe the operation of a system in an accurate way (these can be alternately
described as providing understandability versus justification of results). An expla-
nation is said to be more complete when it allows the behavior of the system to be
anticipated across a wide range of application conditions. Thus, the challenge facing
explainable Al is in creating explanations that are both complete and interpretable.
But achieving this balance is difficult, as the most accurate explanations are often not
easily interpretable to people; conversely, the most interpretable explanations often
do not provide predictive power in atypical cases. Importantly, these issues in turn
will affect how humans will come to trust the systems, a critically important issue.

This issue, like many others addressed here, also has a long history. As the Al
community evolved and developed such methods for estimation and inference, expla-
nation arose quite early as an issue and adjunct capability that, for almost any appli-
cation that could be considered “complex,” was a necessary topic and co-process to
consider. Figure 6.7 is a portion of a figure from Kass (1987), a 1987 publication that
tried to address the range and types of explanations that the evolving Al community
might have to think about. The figure offers a categorization of anomalous events
that need explanation; the version here is a truncated portion of the original. So,
explanation is not new and appears to be an inherent and mandatory capability for
certain but likely far-reaching Al applications.

6.5 Summary

The technological domains of Al and ML have had, and will continue to have, a
dynamic evolution. It is important to appreciate that historical context and to be
patient with the development of improved engineering practices for the continued
growth of capabilities, both for the ways Al and ML processes are engineered, but also
for the systemic aspects of the applications they are engineered into. One factor that
is a major omission from this chapter is that the engineering of the role of humans to
coexist with and exploit AI/ML system capabilities is missing; explanation certainly
relates to that issue but we mean here the systemic viewpoint of human-system
interdependence. What is not so clear is, even if studies of engineering practice for
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Fig. 6.7 A Hierarchy of types of explanations (derived from Kass, 1987)

AI/ML mature and offer better ways to engineer such systems, how will we be assured
that those practices will be promulgated into the broader AI/ML communities? If,
as Vora asserts (Vora, 2019), “The essential challenge with Al is that there is not
currently a universally accepted approach when it comes to implementation,” then
this promulgation path will be an unresolved issue that follows even if good SE
processes can be defined.
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7.1 Introduction

Artificial intelligence (Al) is a core component of the U.S. Army’s modernization
strategy. Importantly, the accelerating development and integration of ever-advancing
forms of AI will continually change the character of the battlefield, the dynamics
of conflict, and even the very nature of the tasks that Soldiers perform. To date,
however, the predominant aims in the larger domain of Al have tended to be focused
on succeeding in limited aspects, or isolated functional snippets, of overall task
performance (e.g., object identification, navigation, obstacle avoidance, conversa-
tional assistants), while also overlooking or even outright trivializing the essential
human elements that we believe should be integral to the models that give life to
these intelligent, blended systems. Many Al-centric approaches for implementing
autonomous technologies have similarly tended to overlook opportunities to leverage
the human as a teammate and a resource; for instance, using human biological, phys-
iological, and behavioral responses as sources of data to teach, train, and inform
real-time adaptations of mixed human-autonomy team performance. The tendency
to develop these advanced intelligent systems without holding the human elements
as fundamental seems to be a glaring omission in light of the intention to perfuse
Al-based technologies into spaces that will also be predominantly occupied by many
humans. This oversight becomes even more critical when the anticipated operational
contexts are complex, austere, and involve high (and even mortal) risks.

In response to the need for better conceptualizations and implementations of
human-Al systems for complex and risky operations, the Army Research Labora-
tory (ARL) has stood up an Essential Research Program (ERP) that focuses consid-
erable fiscal, technical, and intellectual resources towards advancing the science and
application of novel methods for human-autonomy teaming (HAT). As the flagship
research program of ARL for the science of human-autonomy teams, the HAT ERP
is built on a core concept that human-autonomy teams and Soldier-focused Al are
critical to create the kinds of intelligent systems that can optimally adapt and main-
tain synergistic, integrated partnerships between Soldier intelligence and Al-enabled
intelligent agents. Importantly, we argue that this effort is essential to assure that the
US Army and its stakeholders can confidently expect complex, multi-agent Soldier-
Al teams to perform robustly within the volatile dynamics and complexity inherent to
the Army’s functional operating concept of Multi-Domain Operations (MDO; U.S.
Army TRADOC, 2018). This concept anticipates widely dispersed teams that must
work towards multiple objectives in tight coordination to create and exploit limited
windows of opportunity across a theater of operations that incorporates air, ground,
sea, space, and cyberspace.
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7.2 The Fundamental Nature of Human-Autonomy
Teaming

A human-autonomy team, in this context, is a heterogeneous group of multiple
humans and multiple intelligent agents. For this type of team dynamic to be effec-
tive, it requires some level of shared goals, interactive and interdependent role-based
workflows, and some overall organizational objective (see Kozlowski & Ilgen, 2006
for a more in-depth definition of “teams”). While human-autonomy team dynamics
certainly include interactions within more traditionally studied dyads (i.e., single
operator—single system), the interaction dynamics of interest herein focus more
on the complexity added within larger, more heterogeneous groups. In complex
human-autonomy teams, the autonomy (i.e., intelligent agents) may take the form
of embedded software agents, embodied robotic agents, or any kind of simpler tech-
nology that has been imbued with the intelligence to actively adapt to environmental
and task conditions (e.g., intelligent sensors and sensor systems, adaptive interfaces,
and so forth). Further, these technologies that may be perceived as singular intelli-
gent agents can themselves contain multiple Al-enabled subsystems. As technical
complexity progresses in this way, so does the imminence of the need to understand
the capabilities and vulnerabilities that both expectedly and unexpectedly emerge
from such human-machine collectives and their governing processes. In addition,
performance dynamics in these mutually interactive teams may at any time involve
particular human-to-human, human-to-agent, and even agent-to-agent interactions,
as well as various permutations of individuals that form into varied need-based sub-
teams. Understanding and eventually intentionally manifesting such a complex set of
dynamically evolving interactions that yield an effective team performance ultimately
demands a new—or at least heavily evolved—science of optimizing performance in
human-autonomy teams.

The modern science of human-autonomy teaming is still relatively new. As a
result, there are few established theoretic constructs upon which an evolved science of
teamwork may be built to accommodate the objectives of characterizing, predicting,
and controlling complex interactions among heterogeneous mixes of humans and
intelligent agents. Historically, when machines were little more than mechanical
extensions of human ingenuity and intention, the task of defining roles for and inter-
actions between humans and machines was trivially viewed as a simple matter of
“choosing the right tool for the job.” That is, with simple machines, the division of
labor is obvious: a nail needs to be driven into a board; the human uses a hammer
and subsequently puts it away after the task is complete. With the observation that
machines would progressively become more advanced and automated, early vision-
aries (e.g., Fitts, 1951) recognized that humans and machines generally and inherently
excel in different ways, much like earlier tools (a hammer) were better suited for a
task (driving a nail through a board) than the human tool equivalent (their closed
fist).
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7.2.1 Complementarity of Human and AI Characteristics

In Fitts’ original humans-are-better-at, machines-are-better-at (HABA-MABA)' list,
humans were described as superior for things like inductive reasoning, judgment,
long-term memory encoding and retrieval, and improvisation; whereas machines
were noted as better suited for performing repetitive tasks, deductive reasoning,
and handling highly complex operational sequences, among others. While some
elements of this original list have aged well, like machines outperforming humans
in computation, others have not. For example, the claim that humans outperform
machines in detecting “a small amount of visual or acoustic energy” (Fitts, 1951;
p. 10) does not hold true; modern advanced sensors far surpass human sensory
detection capabilities. Though useful, the continued heritage of the HABA-MABA
perspective is also limiting in that it perpetuates the ever-more-outmoded notion that
effective human-autonomy integration will continue to be necessarily and sufficiently
accomplished by selecting “the right tool for the job™ as well as “making better tools.”
That is, one of the most pervasive constructs in the literature, and one that appears to
underlie concepts such as supervisory control (where the human is the supervisor of a
putatively more capable autonomous agent), is formally known as substitution-based
function allocation; it describes solving the task assignment question by dividing the
end goal into functionally isolated tasks, and then matching the appropriate agent
to the task that falls within its functional responsibility. Of course, the concept of
function allocation tables as an integration strategy has been met with significant
criticism, and rightly so, as this approach has considerable weaknesses (Dekker &
Woods, 2002; Marathe et al., 2018; Sheridan, 2000).

A major criticism of function allocation methods is that they are only likely to
work well in simple problem spaces, where Al would essentially be deployed as a
tool but are too brittle for the broader space of complex tasks (Perelman, Metcalfe,
Boothe, & McDowell, manuscript under review). Yet, even in the simple domain, the
allocation decision may be more robustly made according to two quantifiable factors:
time available to take an action (i.e., with more time available: a greater likelihood of
success) and certainty of the informational basis for the task (i.e., greater certainty:
greater chance of success). Figure 7.1 provides a visual depiction of this joint rela-
tionship, where Panel A represents the domain of simple tasks and Panel B represents
complex tasks. A simple example of how available time might influence a “human-or-
machine” decision is the so-called “problem size effect” in multiplication: humans
can quickly multiply small numbers, but response times increase as the numbers
grow larger (for a review, see Zbrodoff & Logan, 2005); thus, if time is a critical
factor in getting the answer, the decision to pick the human or machine (calculator)
would be driven by which agent would give the answer within the available time.
The second factor, informational certainty, refers to the diagnosticity, or informa-
tional value, of the available information; information is only as useful as the value it
provides to its recipient. For example, owing to particular cognitive biases, humans

! The original framing by Fitts (1951) was men-are-better-at, machines-are-better-at (MABA-
MABA).
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Fig. 7.1 Human performance depending upon the amount of time available to solve the problem
(x axis; note the reversed direction going from most to least time) and the level of certainty in
the information provided about the problem (y axis; also reversed) for simple problems (Panel A)
and complex problems (Panel B). Color coding is an approximate representation of the human
probability of success in both cases, with green representing the greatest likelihood, and red the
lowest likelihood, and yellow as the intermediate range. Generally, humans perform well on simple
problems, provided that they are given enough time and information to solve them. But, given
insufficient time, and as probabilities approach chance, human performance degrades relative to
tools and simple algorithms. When it comes to solving more complex problems, however, human
performance is actually relatively well-calibrated; humans can deploy heuristics against these prob-
lems to rapidly achieve reasonable solutions. Source Perelman, Metcalfe, Boothe, & McDowell,
manuscript under review

are notoriously challenged in making accurate probability judgements (Tversky &
Kahneman, 1974). Thus, framing information to a human in terms of a probability
will not necessarily lead to an effective response and neither will it increase certainty
in the selection of response outcomes as much as it might for a suitably trained Al
Each of these examples illustrate a case where one could confidently assign a task
either to a human or a technology; however, most tasks in the real world are not
particularly reducible to simple functions as these and neither are they necessarily
best assigned exclusively to one agent or another. Rather, as technologies become
more capable with respect to independent behavior and problem-solving capabilities,
they will be deployed against increasingly complex problems for which distinct and
exclusive functional role allocations become much less clear.



120 K. E. Schaefer et al.

Solving more complex problems will require more sophisticated ways of char-
acterizing human—technology dynamics than the perpetual expansion of function
allocation tables or coming up with improved ways to make humans better supervi-
sors (or making Al better at being supervised). That is, when a problem is sufficiently
complex, as they tend to manifest in the real world, the effectiveness of the human—
technology partnership will be borne in the interoperability among agents, rather than
their individual capabilities (DeCostanza et al., 2018). This capability comports with
other contemporary models of human—technology teaming that treat team behavior
as a product of interactions rather than as a sum of independent capabilities (e.g.,
Interactive Team Cognition theory; Cooke et al., 2013). As such, the complex prob-
lems to be discussed here can be approached in multiple ways, have an informational
basis with a high degree of uncertainty, and may have multiple strong and viable
solution options, none of which are clearly the right answer for the given situation,
leading to multiple irreducible phases or stages that cannot be easily described by a
single and parsimonious analytical model. Human evolution and experience enable
solving these complex problems using decision-making heuristics that facilitate the
generation of adequate solutions rapidly (e.g., note the lack of the linear decrease in
human performance as a function of time in Fig. 7.1, Panel B). In some cases, such
complex problems can be solved through dimensional reduction, or repackaging, of
information in a modality that is more naturally amenable to human cognition (e.g.,
human performance on the visually presented versus numerically presented Traveling
Salesman Problem; Polivanova, 1974). In other cases, sufficient repeated exposure
to complex problems can allow humans to develop expertise that they can generalize
to novel but similar problems (e.g., Recognition Primed Decision-Making; Klein,
1993).

Unlike in the simple domain, human-Al integration solutions like function alloca-
tion and supervisory control do not generalize well to most complex, real-world oper-
ational problems, with only a few noteworthy exceptions (e.g., airplane flight, nuclear
power plant monitoring). Our work within this space has demonstrated that gains in
effectiveness, increases in robustness, reductions in learning time, and increases in
the ability to manage multiple objectives, as tends to occur in complex teaming situa-
tions (e.g., in mixed-initiative systems), are possible by targeting our science at char-
acterizing and modeling the nature of interactions between humans and machines,
all directed towards developing a deeper understanding of the fundamental states
and processes that are essential to optimizing teamwork in these advanced systems
(DeCostanza et al., 2018; Marathe et al., 2018; Ghandi et al., 2019). This notion
that humans and Al must work synergistically and interdependently as teammates
to achieve peak task performance is somewhat new; in the following section, we
contextualize this perspective through a brief review of the trends in the history of
human-Al partnering that have led us to this current state.
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Isaac Asimov’s  Dartmouth coined “Al" — “to proceed on the
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et al., 1956)
1967-1976
The Turing Test (originally The Marvin Minsky, MIT Media Lab, AlphaGo beat Lee
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that of a human. of mechanisms interacting in

intelligence and thought

Fig. 7.2 A broad historical view of Al denoting the importance of the human to Al across time

7.2.2 Tracking the Important Roles of the Human Across Al
History

In order to understand why the human is important to the future of Al, we must
take a historical look at the role and the changing dynamics of human-Al interaction
over time.?> The human has had a key role in Al since the beginning, from early
philosophers’ attempts to superficially model human cognitive processes to science
fiction writers who envisioned essential rules of robotic engagement with humans
(Fig. 7.2). This interest in Al resulted in the development of the Turing Test in
1950, followed by the formal establishment of the term “artificial intelligence” in
McCarthy et al. (1956) during a conference at Dartmouth College. Indeed, for much
of the history of Al as a scholarly field, the human mind has been treated as the main
benchmark against which Al has been judged, and if not the benchmark, certainly the
prime model of intelligence to emulate. This has led to rivalry between humans and
Al, with popular examples including the first-ever victory of IBM’s Deep Blue over
Chess Grandmaster Gary Kasparov in a single regulation game in 1996, followed by
arematch where an upgraded Deep Blue defeated Gary Kasparov to achieve the first
ever full match victory by a computer against a reigning world champion in 1997,
and AlphaGo winning four out of five games against Lee Sedol, considered one of
the top Go players in the world at the time, in 2016.

The relationship between the human mind and Al has a much richer history than
that of only creating Al that mirrors the human mind. We argue here that the efforts
surrounding human-related Al development can be characterized as having been
focused on analytical (e.g., processes that reflect cognitive intelligence), human-
inspired (e.g., processes that reflect emotional intelligence), and humanized (e.g.,
processes that reflect social intelligence) Al approaches. Moreover, the evolution
of the relationship between Al and humans has been a result of a few key factors,

2 A full history of Al development is not within the scope of this paper; however, there are several
detailed reviews that are worth exploring (see Haenlein & Kaplan, 2019).
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including the progressive expansion of the raw capability of computational systems
and the underlying algorithmic methods for instantiating intelligence, allowing Al
to be used more effectively across a broader problem space. This evolving rela-
tionship has transformed the input required from humans to craft and update Al
algorithms, and deepened the understanding of humans to such an extent that Al
systems may now be capable of learning how to interpret and anticipate the needs of
their human counterpart(s), a critical capability for enabling these systems to operate
as a team member, rather than simply as a tool. As we aim to push the field of
human-autonomy teaming forward, it is important to document how these changing
capabilities have affected this relationship between humans and intelligent agents
throughout the history of Al development.

Early basic Al development focused on progressively creating and evolving highly
generalizable algorithms capable of producing optimal solutions to common prob-
lems under known conditions in polynomial time. Many of these algorithms dealt with
networks of multiple nodes; for example, Dijkstra’s algorithm (Dijkstra, 1959) for
finding the shortest path; or Kruskal’s minimum spanning-tree algorithm (Kruskal,
1956). These algorithms proved highly generalizable; demonstrated by Kruskal’s
algorithm finding applications requiring the least-cost connections among many
nodes, such as laying telecommunications wire or urban planning. These early basic
Al approaches all had the common properties of being deterministic, polynomial-
time algorithms; moreover, at least in terms of these cases, the algorithms did not
require human input into the decision-making process and could thus be used inter-
changeably as tools by humans and other Al programs to solve problems. However,
these approaches suffer chiefly from the limitation that they do not address problems
with the type of complexity frequently encountered in the real world, much less the
most challenging and risky real-world environments. Karp (1972) argued that for
many “unsolved” computational problems (i.e., there exists no algorithm capable
of solving them in polynomial time), producing optimal solutions with satisfactory
computational complexity is beyond the reach of such approaches. Thus, contem-
porary approaches to solving these problems have been generally developed to rely
on deploying heuristics to find solutions that are sufficient for the intended appli-
cation but not necessarily optimal. While it could be argued that these approaches
have more in common with human decision-making than deterministic optimization
algorithms, their intended use is the same: they have largely been intended to be
used as improved tools that enable humans or higher-level Al to solve generalizable
classes of problems.

By way of contrast, the early work in applied Al development for addressing
domain-specific problems was made possible through a strategy to integrate human
expertise, which led to the development of handcrafted expert systems that were
able to solve well-defined problems.® While these approaches were rule-based and
depended upon pre-defined outcomes, it was the human who provided the information

3 An early example of an application of the expert systems approach was the MYCIN system, which
predicted the types of bacteria that were most likely to be causing an infection by calculating a level
of “belief” in the form of probabilities that were based on a selection of targeted questions that a
physician would answer (Shortliffe and Buchanan, 1975). While the system performed reasonably
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that was encoded by the Al. The process of handcrafting expert systems could be
prohibitively difficult to implement, since it was conceived as reliant on the inputs
from a team of subject-matter experts that collaborated with the system developers
to imbue the Al system with a complete set of the knowledge that would be required
to execute each complex task (Turban, 1988). Considering the static nature of the
system after careful design, this type of system also reflects the philosophy of an
intelligent agent as an explicit tool for a human to use.

Modern approaches are more often data-driven, encompassing a broad range
of techniques from simpler machine learning classification methods, like logistic
regression, to more advanced approaches, such as deep learning, the latter allowing
the human’s role in the relationship to shift within limits. For learning-based Al,
the human has a consistent role in developing the initial parameters and architec-
ture of the algorithm, which an Al then utilizes to learn from an existing dataset or
through direct experience in the task environment. In this sense, learning-based Al
still requires expert humans, just like the earlier expert systems, although the human
role shifts from being the subject-matter experts who explicitly provide the necessary
knowledge for the Al, towards being an expert developer in computer science and
machine learning who crafts the framework for the fundamental algorithm, which
then infers domain knowledge from the data.

Beyond system design, human inclusion in the data curation and labeling process
is extremely important. The traditional paradigms for machine learning operate as
either supervised or unsupervised. The key difference between these two processes is
the extent to which the human is included in the data curation and learning procedure.
For supervised learning, the paradigm involves a priori manual labeling of the data
that would allow the algorithm to be trained to reliably and accurately recognize
operationally relevant and important patterns. Active learning is a type of supervised
learning that enables a more efficient method for data labeling by identifying the
maximally informative samples in a data set and then asking for human labels to
be provided for only those sub-selected samples. Indeed, this type of learning still
requires human participation, but it allows for models to be updated on new data
more efficiently by minimizing the amount of feedback required from a human
oracle. Unsupervised learning focuses on identifying underlying patterns in the data
without human supervision or explicit definition of the learning criterion. This type
of learning has the potential for superior efficiency since it can theoretically operate
at a much higher computational speed without slowing to consult a human oracle,
but it often results in the classification of data that, at best, requires human review to
determine what it qualitatively represents and, at worst, that it is not interpretable by
human operators at all. A third category exists, dubbed “semi-supervised” learning.
This category is a type of hybrid learning that relies on small batches of manually
labeled data to initially train the system, which then continues by developing its own

effectively within its relatively well-defined domain, its core approach would be difficult to scale
to broader diagnostics. That is, considering the number of questions a potential user would need to
answer on the front end would grow exponentially, as well as the requisite complexity of the expert
opinions stored on the back end, the system would need to provide accurate diagnostics across a
broad spectrum of diseases.
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model. The class of generative models is a good example of this type of system, as it
requires an initial batch of data to learn the underlying features of classes, generates
initial examples of the classes based upon the learned features, and, finally, continues
training on the synthesized data in an unsupervised fashion. These latter algorithms
can be very efficient, but they also run the risk of diverging from real-world examples
of given classes if improperly tuned and left to run without supervision.

More recently, there has been another trend to change the role of the human in
human-Al interactions from that of a designer or data labeler to a more natural-
istic interaction. In this case, any non-expert human may directly affect the devel-
opment of the system through a demonstration or feedback without requiring the
human to explicitly label every data point or explain and supervise every step of a
complex process (e.g., teleoperation of a robot for autonomous navigation). This case
commonly involves a process known as learning from demonstrations (LfD) or imita-
tion learning, in which the Al system learns from example demonstrations provided
by a human to imitate the human’s policy or actions. Essentially, imitation learning
works by teaching a machine to perform a task after observing a human performing
it. Inverse reinforcement learning is another common modality for learning from
a human that uses human actions observed within an environment to build a value
model for human actions, which can then be used to allow an algorithm to develop its
own strategies to perform the given task according to the human values it has inter-
preted. This learning approach is a type of human-centered Al or human-in-the-loop
Al, which aims to use the human to directly train or adapt the Al system through
natural interaction techniques, such as those described above. As will be discussed
in more detail in later sections of this chapter, within the HAT ERP, we are working
on several methods to enable the integration of naturalistically collected human
behavior and state information to partially label datasets, which will minimize the
human effort required for supervised learning approaches and may eventually enable
more efficient collection of operationally relevant data. As time has progressed, as
knowledge has grown, and as technology has become more powerful, the presence
and proliferation of intelligent systems in myriad domains has facilitated increas-
ingly frequent and more greatly interdependent interactions with humans. This state
means that, despite the increasing capability and autonomy of these systems, consid-
eration and integration of the human is becoming increasingly critical. With the
advancement from relatively static and limited systems like expert systems (which
may still be considered as tools), modern systems are becoming increasingly capable
of performing duties with a higher degree of success, a more facile adaptation, and
an active interpretation of the states and needs of humans. Advancements in such
human-centric applications of Al have enabled agents to more actively consider the
needs of the humans they are working with by leveraging signals indicative of human
states and behaviors.

Recent advances in computing and processing power and the availability of large
(labeled) datasets, along with the proliferation and democratization of open source
tools for machine learning (ML), have driven a large investment in and focus on ML
techniques in academic research and industrial domains. This investment has yielded
many impressive advancements and capabilities in Al, particularly in commercial
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applications, such as autonomous highway driving, image recognition, and financial
fraud detection. However, there are still a number of major limitations to current
Al approaches that drive the importance of looking into the role of the human
within human-Al teams. First, many state-of-the-art Al techniques are developed and
demonstrated within well-constrained environments, such as games (e.g., Deep Blue,
AlphaGo), generating point solutions to challenging tasks that may not translate to
new domains, resulting in brittle, narrow intelligence, rather than flexible, generalized
intelligence. These approaches are difficult to apply to real-world, complex contexts
(e.g., military operations) due to limitations in computing power and network band-
width (particularly at lower command echelons, such as at the tactical level with
individual Soldiers or small teams); a dearth of well-labeled or curated data; and
a complex, high-tempo, interdependent environment. Further, the high-risk, high-
consequence environment of military operations may require humans to remain in
the loop and not fully displaced by Al farther into the future than in other domains.
The following sections describe ongoing efforts that have been developed within the
HAT ERP to address these and other limitations, as well as supporting the active
community of human-Al teaming research as the field continues to evolve.

7.3 Artificial Intelligence for Human-Autonomy Teams

Our research is predicated on the idea that the paradigm for advancing the integra-
tion of Al and autonomy into military teams needs to be shifted towards instantiating
concepts in direct applications for human-autonomy teaming in real-world opera-
tional contexts. It is time to dispense with mindsets that solely focus on selecting
the right tool for the job and, instead, adopt an approach of building effective teams
of humans and with Al that manifest the full potential of continual advancements in
intelligent technology. We expect that the nature of the interaction between humans
and Al-enabled systems will need to change dramatically to account for the dynamic
changes in context—including different time constraints, levels of certainty, or the
amount of data available—as well as the complexity of the problems faced. Intelli-
gently designed and applied bidirectional teaming mechanisms will allow us to over-
come the individual limitations of both human and machine capabilities to achieve a
level of combined performance and ability that is currently not possible (DeCostanza
et al., 2018; Marathe et al., 2018).

Broadly, in order to manifest the “teaming” vision that we espouse, it is essential to
understand how and where human and machine capabilities complement each other,
understand how and where they fundamentally differ—particularly for the sake of
identifying critical gaps that would undermine effectiveness and understand how
and what new capabilities can emerge once multiple intelligent agents are assembled
into coordinated and reciprocally interdependent collectives. While the U.S. Army
has employed smaller ground and air robots for dull, dirty, and dangerous tasks at
the tactical level for decades (primarily teleoperated with very limited autonomous
capabilities), new possibilities for increased intelligence and standoff are reaching
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Fig. 7.3 Descriptions of the research thrusts

the forefront with the introduction of large autonomous combat systems. These larger
combat systems are expected to exhibit autonomous (or semi-autonomous) mobility,
situation awareness (to include target recognition), decision making under risk, and
robust communication. Introducing these evolved technologies is expected to offer
new operational possibilities, but active research and development efforts remain
focused on the effective integration of such systems to enable collective performance
in dynamic environment from the tactical to strategic levels. This chapter articulates
four major research thrusts critical to integrating Al-enabled systems into opera-
tional military teams, giving examples within these broader thrust that are addressing
specific research gaps. The four major research thrusts include: (1) Enabling Soldiers
to predict Al, (2) Quantifying Soldier understanding for Al, (3) Soldier-guided Al
adaptation, and (4) Characterizing Soldier-Al performance (Fig. 7.3).

Enabling Soldiers to Predict Al

This research thrust aims to develop robust mechanisms that provide insights into
evolving mission-dependent Al capabilities to ensure Soldiers can not only anticipate
agent behavior, but can also better understand their underlying decision-making
processes. Across the broad research and development community, a number of
approaches are utilized to enable more “human-like” decisions from Al, including
the use of neural networks, reinforcement learning, and cognitive architectures, to
name a few. However, there are cases in which the task environment does not lend
itself to human-like solutions, or the decision-making process is irreducible and
unobservable to the human. These approaches do little to make decision-making
more transparent or explainable to human team members.

Much of the theory underlying our current research to enable Soldiers to predict
Al draws both from direct applications and conceptual inspiration out of the Situa-
tion Awareness Agent-based Transparency (SAT) model (Chen et al., 2014, 2018).
For effective and trusted teaming to be developed and maintained, Soldiers must be
able to understand the intelligent agent’s decisions or actions (SAT Level 1) and the
reasoning by which these decisions are made (SAT Level 2) within the mission and
environmental context in order to predict (SAT Level 3) future decisions or actions.
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Therefore, the addition of both new and evolved transparency concepts and tech-
niques is critical for enabling advanced teaming between Soldiers and Al-enabled
systems in ways that cannot be achieved with current standard interface design tech-
niques or by improving the performance of Al technology alone. Research has shown
that there is not one single “human way” of making a decision or solving a problem
(e.g., route planning; Perelman, Evans, & Schaefer, 2020a), which implies that even
effective algorithms may still not be trusted by human team members. Therefore,
advancing concepts for appropriate user interface design and communication strate-
gies must be done in conjunction with continued algorithm development if we are
to effectively communicate decisions made by the Al-enabled agents, convey their
reasoning for making those decisions, and support the prediction of their future
decisions or actions.

For human-AlI teams to enjoy the benefits of collaboration, the nature of the inter-
action between human and autonomy must functionally support each team member
in their interdependent contributions: information must be tailored to each intended
recipient and reformatted to the appropriate modality when communicated between
human and Al-enabled agents. Therefore, a key consideration is how we can optimize
the display of required information, either generated through intelligent algorithms
or otherwise, by considering and complementing human cognitive and perceptual
capabilities and limitations. Simultaneously, the format and modality of information
must be consumable by both human and Al team members. Never before have we
had the opportunity that is presented through the anticipated ubiquitous nature of
user displays. Combining this opportunity with advances in Al engenders a need to
transform both the way we think about displays and information presentation, and
literally, how we see the world.

User Interface Design for Enhanced Autonomous Mobility. Within the HAT
ERP, our near-term efforts have focused on user interface design principles to
enhance autonomous mobility. Specifically, the Army has prioritized the creation
of Next Generation Combat Vehicles, which are expected to comprise both manned
and unmanned (robotic) platforms enabled by autonomous mobility. This use case
provides a near-term target to focus theoretical laboratory efforts on addressing some
of the complex, real-world conditions that may be expected to be most challenging for
human-autonomy teaming; and we have specifically focused on developing technolo-
gies and procedures for streamlining and expediting the decision-making processes
related to mobility and joint maneuver in the context of complex team operation.
Procedurally, these technologies enabled a control loop that allowed humans to ask
the questions (that is, provide high-level goals), and the Al to provide rapid answers.
Here, we describe and justify these procedures, and the design principles considered
in doing so.

The first interactive procedure in enabling autonomous mobility was to move from
human specification of precise and detailed waypoint navigation to the designation
of one or more general goal-points to which the Al would determine the best route for
navigation. Prior research has shown that Al decisions would need to be predictable
in order for the system to function effectively as a trustworthy teammate (Chen et al.,
2014; Lyons et al., 2019). This predictability can be facilitated by manipulations
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Fig. 7.4 The Transparent Route Planner has generated a route from the vehicle (labeled RCV2) to
the goal location (black and white ring) using simple logic and a single click. This route plan can
then be accepted or further modified by the user, increasing the team’s ability to make decisions
about mobility

designed to make the AI’s intentions more transparent. In the present use case, this
principle was implemented in the design of a Transparent Route Planner (Fig. 7.4),
which reads terrain data and human-input goal locations to generate route plans.
Functionally, this differed from the default method of interaction which relied on
user-specified waypoints (independent of terrain data) that the robot would attempt
to follow using local obstacle avoidance. This planner enabled a different style of
supervisory control by allowing the operator to select the goal locations and the
desired route plan and then calculated and displayed a potential route to the goal,
which the operator could then either accept or modify. Importantly, the route planner
generated waypoint plans (routes) at a sufficiently detailed level that the user could
discern fine-scale local decisions made by the planner in advance; in contrast, gener-
ating a coarser waypoint plan and allowing the Al to make local decisions using its
obstacle avoidance algorithm would not make sufficient detail available to the user
during planning. Achieving transparency in this case required us to follow a second
design principle, one of parity, which describes an equivalence between the informa-
tion available to human and Al team members; in this case, parity was achieved by
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providing the autonomy with the terrain data by making it available to the human.
The end result of this interaction is Soldier-in-the-loop control and planning execu-
tion. In testing with Soldiers, this capability improved the users’ understanding of
the AI’s mobility actions by over 60% (Perelman et al., 2020b).

The aforementioned Transparent Route Planner achieved information parity by
providing autonomy with the terrain information available to the human teammates.
Extending this principle of information parity in the opposite direction, we sought to
provide the human with representations of the types of information that the autonomy
could use to generate routes. Specifically, in military settings, Soldiers need to
consider many factors about the mission, enemy, time and their troops available,
terrain, and civil considerations; such a complex problem space does not lend itself
to optimal decision-making, since solutions that optimize one particular criterion
may sacrifice another. For example, one route may be faster but offer less cover and
concealment. In order to operationalize these factors, we developed cost maps asso-
ciated with different mission parameters that the Transparent Route Planner could
consider during a route generation: vehicle mobility, exposure to enemy contact, and
wireless signal strength. These cost maps were visualized for the human users in
the form of icons on the map display. In order to facilitate bidirectional communi-
cation between the Transparent Route Planner and the human user, we developed a
Comparator Display based on visualizations found in prior work in unmanned vehicle
operations (e.g., Behymer et al., 2015; Stowers et al., 2016). The Comparator Display
allowed users to evaluate the tradeoffs among routes visually for each of the param-
eters (see Fig. 7.5). When used in conjunction with the Transparent Route Planner,
the Comparator Display allowed the users to select multiple mission-relevant param-
eters and generate the routes that automatically optimized them. Merging these two
technologies allowed a Soldier-autonomy team to rapidly develop courses of action
using the Soldier’s expertise and prior experience in understanding context, and the

Prior Enemy
Route Length "L HETE Activity

I Load Plan I I Plan Route

Fig. 7.5 Comparator Display prototype (right panel) along with two routes generated by the Trans-
parent Route Planner (left panel). The Y axis of the Comparator Display is used to depict which
route is better in terms of each of the mission parameters. The route shown in amber is slightly
better in terms of signal health and route length. However, the route shown in red is much better in
terms of avoiding prior enemy activity
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AT’s superiority in rapidly generating analytical solutions to spatial problems. With
this Comparator Display, users improved their understanding of the courses of action
proposed by the Al-enabled agents by over 30%, while simultaneously reducing the
time spent interpreting the decisions by an average margin of approximately 40%
(Perelman et al., 2020c).

In the aforementioned route planning use case, the design principles that drove
the technology development were developed to enhance relatively long timescale
decision-making. That is, during planning, team performance could be improved
by providing more information in the appropriate format to each team member. In
other situations, team members may need to communicate information rapidly in
high-saliency modalities for rapid consumption. During armored vehicle operations,
the transition to, and execution of, portions of the mission may have the potential to
exceed human information processing capacity (Huey & Wickens, 1993). Al-enabled
teammates can potentially cue human teammates during periods of high workload
by presenting signals in highly salient non-visual modalities. To reduce crew work-
load and improve crew members’ local situation awareness and understanding of
vehicle autonomy status during mission execution, a multimodal cueing system was
implemented that presented auditory and vibrotactile cues to crew members when
their robotic vehicle neared dangerous areas of the environment as well as when
the vehicle’s autonomy encountered mobility challenges (Chhan et al., 2020). The
multimodal cueing system reduced the duration of major mobility challenges during
remote operation by an average of almost 15%, and it helped reduce the vehicles’
exposure to threats in the environment by over 35%. Summarily, relatively simple
multimodal interface manipulations designed to make the Al-enabled agent’s actions,
intentions, goals, and general reasoning processes more transparent to human team-
mates were shown as capable of dramatically improving the situation awareness of
these systems and their local environments during remote operation.

User Interface Design for Team Coordination. As human—machine team ratios
continue to be reduced in size (i.e., fewer humans interacting proportionally with
more intelligent agents), it becomes necessary for the underlying Al systems to
exhibit independent behaviors that will allow the agent to function more as team-
mates than supplementary tools. This change creates the need for anew organizational
structure and associated transparency displays that increase coordination between a
commander and his or her crew with the team’s Al assets and capabilities. As such,
our work has led to the development of a Commander’s Interface that can be oper-
ated within a vehicle on the battlefield, providing the commander with the needed
capabilities to enable Command and Control (C2) to coordinate the execution of
human-autonomy team responses to evolving mission needs. This interface allows
the commander to maintain situation awareness and coordinate the Soldier and Al
team by providing a consolidated view of information related to vehicle state (e.g.,
unmanned ground and air vehicles), crew state (e.g., tasking, activity, and physiolog-
ical state), and autonomy state (e.g., mobility, aided target recognition, and decision
support tools). These functionalities allow commanders to quickly and easily main-
tain situation awareness of the mission and all of their crew and assets to enhance
teaming and improve performance in dynamic missions and environments, including
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the ability to call standard battle drills, to display the requirements of the battle drills
to the crew, and to delegate appropriate actions to both the human and agent team
members.

Human—Computer Vision Collaboration for Intelligent Displays. Soldier-Al
systems, such as aided target recognition, are designed to use virtual content overlaid
on the real world (augmented reality) as a primary means for both communication
with, and support of, effective Soldier-Al team performance. However, these highly
artificial and very salient stimuli fundamentally change our visual interactions with
the world; as displays become increasingly ubiquitous as moderators of our visual
experience with the world, the criticality of the cognitive science research required
to leverage rapid technological advances grows exponentially.

Our research in this area focuses on how visual interaction with the environ-
ment is fundamentally changed as a function of the overlay of new information via
intelligent displays. This change leads to more effective reasoning and awareness of
the mechanisms and processes that underpin both the desired performance and the
relevant principles of visual cognition, and thus, improved targeting (Larkin et al.,
2020; Geuss et al., 2020). By leveraging this improved understanding of visual cogni-
tion, entirely new means of representing and highlighting visual information may be
created. Through a research emphasis and design focus on total system performance,
there is the potential to create new, increasingly effective levels of joint human-Al
target acquisition and engagement decisions. It is also key to consider that when
we alter the way that Soldiers see the world, we are also altering the information
collected from Soldier behaviors that may be opportunistically sensed (Geuss et al.,
2019; Lance et al., 2020).

Visual perception is not a one-for-one representation of physical stimuli, but rather
a probabilistic modeling of what the world looks like (see Geisler, 2008). In brief, this
model takes into account physical inputs, cognitive priors, randomness, and noise
related it to a characteristic of interest in the environment. The construct of scene
statistics is essentially meant to stand in as a description of this process and how
the brain exploits it. Examples of how scene statistics are influential include evalu-
ating the connection between a scene and the visual performance for specific visual
tasks; predicting neural responses of human operators; specifying how detected scene
features are best represented (e.g., Berman, 2018); understanding how scene features
relate to perception (Brady et al., 2017); and understanding, as well as incorporating
into design, the time course of processing associated with different scene features
(Mares et al., 2018). Finally, there is considerable evidence to suggest that altering
low level sensory-perceptual features can impact higher order cognition in various
ways (e.g., perceptual discomfort in Habtegiorgis et al., 2019; affective response in
Takahshi & Watanabe, 2015); and, of course, the most well-known examples are
visual illusions (described in Howe & Purves, 2002, 2005).

Our brains have evolved to take advantage of these statistical properties, and that
forms the foundations of our perception. We rapidly adapt to changes from natural to
urban environments, even virtual environments. Color perception is a good example
of that adaptation; our sensitivity to different colors and contrasts adapt pretty rapidly
to reflect the distributions in our environments (e.g., Bao & Engel, 2019). But what
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happens as we change the environment, as we add these different dimensions into
current environments by changing the distribution of low level features? Do we
change those statistical relationships? Does it alter the statistical distributions that
we are leveraging? Does it change how we perceive the world? And if so, can we alter
that perception intentionally? Currently, we are exploring these questions through
a series of experiments that are aimed at defining novel forms of visual interaction
leveraging augmented reality concepts. Although much adjacent work would be
required to leverage such knowledge, to include improved predictive algorithms,
computer vision, processing speed and power, it is imperative that cognitive science
keep pace with these new interfaces and opportunities, given the exponential rate
at which technology continues to develop and the potential impact in real-world
operations of all sorts.

Visualization of Uncertainty. The successful teaming of human and Al capabilities
will often require communicating the degree of uncertainty in the Al-based infor-
mation to the user. Uncertainty is introduced in Al-based capabilities from errors
in sensors that are used by Al algorithms, through data aggregation, in model esti-
mations, and when operating in contested environments, to name a few possible
sources. Communicating the degree of uncertainty can improve user trust in the
system as well as offer another data point from which users can base their decisions
and thus improve performance. Recent research has shown that communicating the
degree of uncertainty in weather forecasts (Ruginski et al., 2016), in spatial location
(McKenzie et al., 2016), and in other applications like image labeling (Marathe et al.,
2018) can improve objective performance and user understanding of content. Impor-
tantly, the way in which uncertain information is visually communicated can exert a
moderating influence on performance (for a review see Padilla et al., 2020). Further
research is needed to understand optimum methods of representing uncertainty within
augmented reality applications (Geuss et al., 2020).

The importance of communicating uncertainty does not end with user perfor-
mance. If user behavior is intended to—through opportunistic sensing (Lance
et al., 2020)—be used to refine algorithms, the effects of uncertainty representa-
tion on behavior may be manifested in unexpected adjustments to Al algorithms.
For example, if an Aided Target Recognition (AiTR) system, which uses machine
learning to identify potential threats in the environment, not only highlights the
potential target but also provides the user with an estimate of how certain the classi-
fication of its threat, the user may behave differently based on the system’s certainty.
Further, users may only engage highly certain targets while ignoring targets whose
associated certainty is lower. If user behavior occurs like this, then opportunistically
sensed information (e.g., taken as a result of a Soldier raising his weapon) would only
serve to reinforce the Al system’s confidence in high certainty targets but provide no
additional benefit to targets with low certainty, which is arguably the situation where
opportunistic sensing would provide the most benefit. Future research is needed to
understand how users make decisions under uncertainty both to (1) improve the
utility of Al-generated information, and (2) understand potential secondary implica-
tions for the utilization of opportunistically sensed information. This work suggests
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that overall system performance would be improved by communicating the level of
uncertainty in Al-generated information.

Creating Collaborative Situation Awareness. Information sharing is a critical
factor in maintaining a shared understanding, or shared awareness, in a team. Shared
situation awareness (SSA) is a critical feature of effective performance in human
teams (Salas, Stout, & Cannon-Bowers, 1994) where all team members need to
know what tasks must be completed or which decisions need to be made to complete
a task or mission (van Dijk, van de Merwe, & Zon, 2011). Teams can achieve SSA by
beginning with a common awareness, or mental model, of the environment, tasks at
hand, and goals. When teammates have a shared mental model, or similar knowledge
about a mission and tasks, team performance is shown to improve (Mathieu et al.,
2000). With time, particularly as each of these components may change and even
do so dynamically, communication between teammates becomes critical to main-
taining SSA. In human teams, the way in which information is conveyed between
teammates affects performance. Implicit forms of communication are more effective
than explicit communication in achieving successful team performance, especially
during complex tasks (Butchibabu et al., 2016). The ideal communication would
allow achieving and maintaining SSA along with a reduced burden to teammates.
Proactive communication, or anticipating future situations and creating a shared
mental model for those, allows for reduced unnecessary communication and better
team performance.

Interfaces are an ideal way through which to communicate in order to maintain
SSA in human-AlI teams. Through opportunistic sensing (Lance et al., 2020), Al can
assess human behavior, gaining an understanding of present and future tasks and
approaches to reaching a goal. An Al can share its knowledge and increase SSA
in the human-Al team through transparency concepts (Perelman et al., 2020c) or
through screen overlays (Larkin et al., 2020; Geuss et al., 2020). In many instances,
communication and information sharing can be immediate and can be done without
an increased workload or burden to humans, Al, or the human-Al team as a whole,
increasing SSA and team performance. However, as we move to more complex
scenarios and continuously evolving contexts involving large-scale integrated oper-
ations, questions remain on how we operationalize “shared” mental models in these
complex teams. Future research will need to build on these design principles and
begin to address how human-Al teams develop and manage shared mental models of
complex, ever-evolving problems, environments, and other team members in order to
facilitate the communication, rapid mission planning, and quick adaptation needed
for sustained performance in future operating environments.

Way ahead. Cognitive science research, such as in the topics outlined above, is
necessary, both to identify cognitive-centric design principles and to create novel
forms of human-Al teaming through augmented and mixed reality display capabil-
ities. This section advocates for an ongoing program of strategic research on novel
approaches to defining the cognitive pairing mechanisms for new technologies by
understanding how technological complexity interacts with cognition. Success in this
area may provide revolutionary advances in the creation of new levels of cognitive
capabilities under conditions of technological complexities.
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7.3.1 Quantifying Soldier Understanding for AI

The Quantifying Soldier understanding for Al research thrust, which focuses on inter-
preting a Soldier’s experience, intelligence, and intent within a mission context—
without creating overburden—is necessary to ensure that effective bidirectional
communications enable the kinds of dynamic real-time adaptation that are needed
for intelligent systems to adjust their performance to the needs of the human Soldiers
in the human-autonomy team. Whereas research and development efforts articulated
within the first thrust were primarily looking at the information being communicated
to the Soldier, this area focuses on the ability for Al to understand the Soldier—their
actions, intentions, and goals—in a continuous manner. By leveraging Soldier behav-
iors, traits, and physiology, it is possible to continuously provide Al-enabled systems
with specific states and constraints about the team members and their interactions
with each other (e.g., Kulic & Croft, 2007; Rani et al., 2006). By fusing those data
with environment-specific data necessary for adapting models of the world, we can
then provide a method to improve outcomes and enhance team situation awareness
in a way that is specifically tailored to both the individual Soldier and the collective
team’s needs.

The Soldier as a Sensor. Recent advancements in research and development of
wearable technologies and human cognitive, behavioral, and physiological models
have made it possible to truly consider the Soldier as a sensor within human-autonomy
teaming operations. Neuroscientific advancements reveal how differences in brain
structure and function are associated with precise human behaviors (Telesford et al.,
2017; Garcia et al., 2017); social and environmental sensing tools are able to charac-
terize patterns of gross human social behaviors over time (Kalia et al., 2017); while
advances in physiological and biochemical sensing provide continuous measurement
of internal human dynamics and stable characteristics influencing team performance.
Critical to a human-autonomy team, the capability to continuously stream behav-
ioral, physiological, and environmental data from the Soldier enables Al to infer
and understand the actions, intentions, and context of their human teammates, first
meeting and eventually exceeding the capabilities of human-to-human teammates.
These advances can be coupled with novel computational methods to infer motiva-
tions, predict behavior, and reason about the environment and the agents acting in it.
This advancement has the potential to provide additional understanding of the rela-
tionships between individual and team states and processes—such as stress, fatigue,
engagement, trust, coordination, and performance—as well as how these relation-
ships vary across different team types and operational contexts (Metcalfe et al., 2017,
Schaefer et al., 2019).

With more robust models of human states, actions, intentions, and goals built
around real-time, machine-consumable measures (e.g., Hoffing & Thurman, 2020;
Jain & Argall, 2019), we expect to push the boundaries of what is possible with
human-autonomy teams by providing intelligent systems with an accurate, contin-
uous, operational understanding of their human teammates and the unfolding team
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performance over time. Therefore, we are developing new technologies that objec-
tively characterize natural interactions between the human and the Al to account for
the behavior and performance of the entire team, in order to provide a more objec-
tive, continuous, real-time assessment. Development of these novel technologies
will require creating an integrated system capable of combining wearable sensing
devices with advanced machine learning approaches for real-time state estimation
(Marathe et al., 2020). Additionally, many research questions need to be addressed
toward realizing the goal of defining predictive algorithms for an individualized
adaptation in human-Al teams. To enhance human-Al teaming, technologies must
be capable of balancing among diverse sources, levels, and timing of variability
within the team. For example, questions remain regarding the respective influence of
individual and team variability on performance. Can we effectively predict the rela-
tionships between individual and team states and behaviors, incorporating variability
in humans and agents over time? How can advanced measurement methodologies
and modeling techniques be employed to understand the dynamics in team processes
over multiple time-scales? In addition to “within team” dynamics, research must also
address methods to sense shifts in environmental and sociocultural influences and
to determine relevance to the team’s mission. As dynamic events unfold, the avail-
ability of information is often sparse, and the reliability of information available is
often unknown. What mechanisms are critical to account for and adapt to the fluid
nature of the information availability and reliability in these complex environments
and dynamic situations?

We envision a future where adaptive and individualized systems function with
individual capabilities and limitations to achieve greater human-system performance.
This individualized human-technology approach is expected to enable a greater
variety in human behavior, while having the ability to maintain consistent, robust
outcomes when viewing the human-technology behavior as a system. Critically, when
considering multiple agents and multiple humans, much work on the prediction of
individual and team states and processes exacting to performance is required to fully
realize this envisioned future of human-Al teaming. Outcomes of this research will
enable systems to continuously adapt to individual Soldiers, leading to an enhanced
Soldier-Al team situation awareness, a greater awareness of unknowns and blind
spots, a reduced Soldier burden, an increasingly robust sustained support, and an
enhanced overall teaming dynamics.

Integrating Soldier Knowledge into Al. Conceiving Soldiers as sensors and
advancing the current state of the art on prediction of individual and collective
dynamics for enhanced teaming leaves vague the notion of integration of that knowl-
edge into Al systems. Thus, additional efforts are needed to appropriately integrate
Soldier knowledge into Al. The current paradigm for training Al systems, such as
deep-learning-based image classification algorithms, involves acquiring and manu-
ally labeling large datasets, a time-consuming and expensive process. This problem
is ubiquitous across the research community and technology industries, but it is a
particularly difficult problem to solve in a military application. While many computer
vision applications are able to leverage pre-labeled data, either by accessing special-
ized datasets or by aggregating publicly available images of particular target types,
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the images of Soldiers, vehicles, and equipment necessary to train military-relevant
computer vision are often not publicly available; also, the sensitive nature of the
images limits the ability to crowdsource labels for the data, creating a bottleneck
since only approved experts will be able to properly label the data. This issue is a
substantial one with commercially prevalent optical sensors (e.g., cameras), which
is compounded with the inclusion of specialized sensors commonly utilized in the
military domain, such as infrared (IR) and LiDAR. The labeling efficiency problem
is potentially mitigated by having Soldiers partially label this data at the point of
origin, but placing additional burden upon the Soldier risks their performance and
well-being, especially in a combat environment, where their attention is already at a
premium. These costs and risks make it difficult to regularly update Al agents, which
will be key to enabling the adaptation to new tactics, targets, and environments as
required in the complex and dynamic future battlefield envisioned by the Army’s
operating concept of MDO. It is prohibitively expensive and time-consuming to set
up data collection scenarios for the volume and variety of data necessary to represent
every potential scenario that may be encountered on the battlefield, and this approach
would still result in models for Al that are unable to adapt to new scenarios on time-
scales that allow the team to remain operationally viable. However, the ability to
adapt to never-before-seen scenarios is a hallmark of human cognition.

Itis necessary to leverage more efficient models of data acquisition and labeling to
make the constant updating of future technologies feasible. To this end, we propose
the use of opportunistic sensing, defined as “obtaining operational data required
to train and validate AI/ML algorithms from tasks the operator is already doing,
without negatively affecting performance on those tasks or requiring any additional
tasks to be performed” (Lance et al., 2020). This approach is inspired by techniques
used in industry to continuously update systems based upon information passively
provided by pervasive technology. For example, the route recommendations provided
by Google Maps are made possible by a combination of continuous sensing from
any devices running the application, providing real-time data on the current state
of traffic; and models trained on previously collected data for a given road along a
potential route that predict what traffic will be like at a given time (Lau, 2020). This
approach avoids the requirement for deploying resources to independently monitor
traffic (e.g., traffic helicopters) or asking for active feedback from end users who
are engaged in driving. A similar approach can be taken for military applications
by aggregating the various sensor, vehicle, equipment, and user behavior data to
provide context for the raw data coming from a system without requiring the Soldier
to intervene and while minimizing the necessary post-hoc analysis by an expert.

By inferring the states and behaviors of the Soldier, we are able to add necessary
context to incoming data on the environment and adversary actions that are key to
understanding scenarios outside the initial training set of an agent (Lance et al., 2020).
As such, under this area of emphasis, our research focuses on characterizing the
link between Soldier’s knowledge and understanding and their associated behavior;
specifically, investigating what information can be gleaned from the way in which the
Soldier interacts with their systems, environment, or teammates (human or intelligent
agent) in order to be used to draw inferences of the Soldier’s knowledge, state, action,
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or intent. Fusing raw sensor feeds and operational data with the knowledge inferred
from the humans creates new sources of labeled training sets that better reflect an
evolving threat and changing environments. A simple example is using a Soldier
pulling the weapon trigger as an indication that a threat is present in the environment.
Temporarily setting aside the possibility of a misfire, this becomes an obvious and
accessible data point that usually provides a clear indication of a threat, which may
be useful in identifying portions of the data that are relevant to training the threat
response behaviors or identifying the sensor profiles of novel or modified targets
that the current iteration of the computer vision might have missed (e.g., adversarial
designed camouflage on a tank may cause the miscatergorization based on pre-trained
computer vision data). With these opportunistically collected data supplementing the
broad, static datasets that agents are initially trained on, we anticipate more robust
performance in real-world, dynamic environments.

When applied on a larger scale, this work supports the development of tools to
promote tactical awareness via collective knowledge. By combining passive sensing
from multiple individuals, it is possible to aggregate across a military squad or
larger elements in order to derive contextual information at higher echelons (Lance
et al., 2020). In particular, the intention to field the Integrated Visual Augmenta-
tion System (IVAS; Microsoft, Redmond, WA), an augmented reality system with
dynamic tracking of head movement in 3D and eye tracking as an intended feature,
may provide Soldier gaze as a source of opportunistically sensed data. Eye move-
ment characteristics have been determined to be an indicator of a variety of states,
ranging from workload, which may provide useful information for team tasking, to
attention, which has a clear function in detecting targets of interest in an environment
(Di Nocera et al., 2007; Findlay & Gilchrist, 1998; Kowler et al., 1995; Marquart
et al., 2015; Motter & Belky, 1998; Pomplun & Sunkara, 2003; Schulz et al., 2011;
Van Orden et al., 2001). While these are not necessarily robustly indicative of a
singular state or target of interest when interpreting the behavior of a single indi-
vidual, by considering the behavior of a larger formation, the signals become more
meaningful. For instance, a single Soldier fixating on a particular section of a scene
may be incidental, but if the entire formation fixates on the same section of the scene
while traversing its space, it may be an indicator of an aberration indicating a threat
in that location or a likely target location. This sort of experientially learned knowl-
edge is difficult to explicitly define to train an agent in advance, but by leveraging
the understanding of all of the Soldiers available, we anticipate the ability to assign
tasks to Al-enabled agents based on inferred situational understanding and in line
with mission objectives.

Way ahead. Utilizing the approaches described above, our research program
extends to far future-focused applications. Human-Al teams, as envisioned in
the future, will be capable of performing within environments of ever-increasing
complexity, almost inconceivable today. To facilitate effective performance within
these realms of complexity, we are conducting the fundamental research to realize
a future with individualized, adaptive technologies that are continuously sensing
the critical actors and environment while evolving to enhance the functioning of
the team over time. Going beyond specific task-focused application spaces, such
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as threat detection, Al can utilize Soldier-based inputs to target the enhanced func-
tioning of the team itself. Our research addresses the use of individualized, adaptive
technologies to enhance human-Al team cognition and behavioral processes, such as
a shared understanding in distributed environments; the coordination, cohesion, and
swift action with new, diverse, rotating, and evolving team members; and the mini-
mization of process losses (e.g., communication, coordination, backup behaviors) as
team complexity increases.

7.3.2 Soldier-Guided Al Adaptations

The research thrust that is focused on Soldier-guided Al adaptation was conceived
to enable Soldiers to interact with and adapt Al technologies in response to evolving
mission demands, a commander’s intent, and adversarial dynamics. While the
first two thrusts were designed to facilitate working with relatively static agents
and general methods for communicating between human and artificial agents, this
research aims to develop and refine algorithms that use a Soldier’s interaction and
reinforcement learning to continuously improve and adapt team capabilities for
dynamic and adversarial missions. This research supports the development of intelli-
gent agents that can modify their own behavior, learning how to improve themselves
directly from interacting with Soldiers either through the imitation of a Soldier,
receiving feedback from the Soldier, or some combination of intuitive interaction
between the Soldier and Al system. Additionally, this research contains a focus on
developing Al systems that are capable of dynamically orchestrating the tasking
and flow of information across a distributed Soldier-Al team. However, complex,
dynamic, and data-sparse combat environments can limit the tractability and success
of many of the modern machine learning strategies, such as the deep reinforcement
learning used in civilian settings, to produce remarkable Al behaviors and capabil-
ities. Research in Soldier-guided training of Al assets is being undertaken to over-
come these constraints and to leverage the intelligence and experience of non-expert
human users to rapidly imbue learning agents with the desired behaviors through
data-efficient and naturalistic interactions that can then be more easily utilized by
Soldiers in training and on the ground (Goecks, et al., 2019).

Human-in-the-Loop RL/Cycle-of-Learning. Due to the computational complexity
and sample inefficiency of deep learning and reinforcement learning, methods of
reducing that complexity, via leveraging human knowledge, have grown more impor-
tant over recent years. Techniques, such as learning from demonstrations or learning
from human preferences, allow for non-expert persons to give intuitive feedback
and instruction to Al algorithms to improve training and robustness. However, these
techniques have their own weaknesses in terms of generalization (such as the data
distributional shift problem when learning from demonstrations).

The cycle-of-learning is a framework for leveraging multiple modalities of human
input to improve the training of deep-learning-based Al algorithms (Waytowich et al.,
2018). These modalities can include human demonstrations (i.e., human-provided
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exemplars of behaviors), human interventions (i.e., interdictions in agent behavior
that take the form or corrections or interventions provided by the human), and human
evaluations (i.e., feedback or sparse indications of the quality of the agent behavior).
Every one of these modalities of human interaction have been previously shown
to provide various benefits in learning performance and efficiency, each with its
own unique drawbacks. The goal of the cycle-of-learning framework is to unify
different human-in-the-loop learning techniques by combining each of these inter-
action modalities into a single framework in order to leverage their complementary
characteristics and mitigate their individual weaknesses (Waytowich et al., 2018,
Goecks et al., 2019, Goecks et al., 2020).

The cycle-of-learning (shown in Fig. 7.6) combines multiple forms of learning
modalities for training an Al agent based on the intuition of how a teacher would
teach a student to perform a new task for the first time. For example, in order to
convey an entirely new concept or task to the student, the teacher may first proceed
by demonstrating that task, intervening as needed while the student is learning the
task, and then providing a series of critiques or evaluations as the student starts to gain
mastery of the task. At some point during this cycle, the student would also practice
to further his or her ability to perform the task (i.e., reinforcement learning). This
process is repeated at various stages as new concepts and tasks are introduced. While
there is significant extant research into each of these human-in-the-loop learning
modalities individually, to the best of our knowledge, this proposal is the only method
that combines these modalities into a single framework. The cycle-of-learning has
indeed been shown to significantly improve the robustness, quality, and speed of
training Al agents compared to existing techniques (Goecks, et al., 2020).

Adaptive Coordination. The optimal orchestration of resources in heterogeneous
human-autonomy teams is critical for effective team operation. Coordination of
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Fig. 7.6 Cycle-of-Learning for Autonomous Systems from Human Interaction: a concept for
combining multiple forms of human interaction with reinforcement learning. As the policy develops,
the autonomy independence increases, and the human interaction level decreases
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a complex, decentralized team of heterogeneous, autonomous entities with time-
varying characteristics and performance capacities will be prohibitively challenging
for Soldiers, particularly as they interface with an increasing number of intelligent
agents. As described above, decision aids and transparency tools will need to be
developed and implemented to fluidly integrate distributed teams of Soldiers and Al-
enabled systems and to manage the high volume of information needed to effectively
coordinate team assets. These improved teaming capabilities will help prevent break-
downs in effectiveness, improve resiliency, and increase decision speed and quality
in dynamic combat environments. Moving beyond traditional tools and incorpo-
rating Soldier-guided Al adaptation, the notional concept to achieve this capability
is a closed-loop system that monitors the state of the team and the environment,
and dynamically allocates the resources of the Soldier-autonomy team (e.g., tasking,
attention, information flow, and physical formation) via agents integrated within
user interfaces to maintain desirable team metrics (e.g., performance, Soldier states,
and situation awareness). With this goal in mind, several studies are currently being
formulated which will: (1) characterize the effects on these metrics of interest when
modulating team resources in a controlled manner in military-relevant settings; (2)
learn desired, generalizable task allocation strategies for heterogeneous teams from
limited exemplar human demonstrations; and (3) examine the adoption of team
tasking recommendations from an explainable expert system to inform the develop-
ment of decision aids and, ultimately, systems for fully automated dynamic resource
orchestration.

Way Ahead. In the complex multi-domain environments of the future, on-the-fly
joint decision-making, changes in tactics, deception, and novel organizational forms
will be critical to success for human-Al teams. To be capable of contributing to
this potential technological advantage, humans and intelligent agents must fluidly
adapt in real-time, in symbiotic ways, to the potential but changing individual and
team dynamics as the situation evolves. Envisioning the future, we expect intelligent
agents capable of learning and adapting to new data and changing contexts on the
fly, and humans that must fluidly adapt with these autonomous team members while
undertaking novel roles for enhanced decision-making and performance. To address
this future need, we are engaged in research building on the above principles of
Soldier-guided Al adaptation, but focused on how to enable the continuous adaptation
to complex environmental demands in teams of multiple humans and multiple agents
without breaking down the emergent cohesive properties of the team. Can we use
principles of individualized and adaptive instruction and human-Al teamwork to
develop evolving systems of humans and agents with ever-increasing intelligence
and capabilities capable of more complex performance (or altogether novel behavior
or creative solutions)? Can we understand and enable more advanced capabilities
within teams that have yet to be fully realized or imagined, as future human-autonomy
teams on the battlefield operating seamlessly to accomplish joint goals create new
opportunities to maximize human potential and to rapidly increase the speed and
effectiveness of decision making?
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7.3.3 Characterizing Soldier-Autonomy Performance

Current research toward the thrust in characterizing Soldier-autonomy performance
focuses on developing the techniques to measure and monitor performance in the
face of distributed, dynamic operational environments wherein complex, intercon-
nected activities are continuously evolving; such techniques will further enable
interventions to improve performance. Decades of research on human teams has
produced a wealth of literature on factors that are useful for predicting performance
outcomes for these teams. However, as the U.S. Army moves to integrate Al, there
are several existing deficiencies that must be overcome in order to enable effective
teaming. First, the majority of this literature describes qualitative factors that are
difficult to integrate with systems for measurement and optimization in their native
formats. Second, attempts to quantify factors that are predictive of team performance
frequently employ data and data collection techniques that are not compatible with
many current Al capabilities. For example, a great deal of the literature on human
team dynamics employs qualitative questionnaires that are difficult for Al to interpret
as well as performance measures for which observable changes lack unique expla-
nations at a mechanistic level within a complex team. Moreover, until recently, the
data necessary to understand the micro-, meso-, and macro-level dynamics unfolding
over time in teams to influence performance has been lacking. Research is needed
to understand the critical team-level states, processes, and their respective dynamics
within human-Al teams and how to appropriately aggregate individual, dyadic, and
group-level data over time to accurately reflect team performance across diverse tasks.
Finally, some types of data that are useful for predicting the performance of inte-
grated human-autonomy teams may require the rapid processing of high-dimensional
or large-packet-size data collected at a high sampling rate from spatially distributed
agents by computationally expensive algorithms. There is the potential for these data
to quickly exceed the relatively sparse bandwidth and accessible storage limitations
on the battlefield; that is, we should not expect to have access to all of the data, all
of the time and, instead, we should plan for inferential and predictive mechanisms
that can operate robustly in such environments.

To overcome these challenges, we are developing novel techniques and technolo-
gies for estimating human and Al outcomes during operations distributed over space
and time, initially for experimental settings. Our approach is designed to employ
advancements in sensors and networks that permit the unobtrusive collection and
transmission of massive amounts of data, Al, and machine learning approaches
for sensor and information management, along with online data analysis in real-
time, networking technologies to allow near real-time collaboration, displays and
touchscreen technologies, human factors and ergonomics, after-action review tech-
nologies, and novel data analysis techniques, in order to radically change the way
that these teams are assessed. Further, this approach draws on assessment methods
from the experimental, test and evaluation, and military working communities with
the goal of providing the near-real-time, continuous assessment of team effective-
ness and prediction of the team’s outcomes. Specifically, our approach leverages
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the interest of multiple stakeholders (experimenters, engineers, users, and expert
evaluators) and, recognizing their potential unique contributions to the assessment
process, democratizes assessment across those stakeholder populations by means of
closed-loop interactions through a tablet-based graphical user interface Dashboard.
There are four primary components to this effort: Dashboard development, predictive
modeling and signal management, novel measures of team effectiveness, and crew
state estimation.

Assessments of a team can be made on the basis of highly multivariate infor-
mation, requiring a multidisciplinary team in order to parse, annotate, and interpret
data and its analyses to create information. At the heart of this assessment capa-
bility is the requirement to be able to retroactively play, pause, stop, and rewind an
entire mission’s worth of data, adding annotations or exporting subset data streams
as required. However, members of such heterogeneous teams also vary in terms of
knowledge, skills, and abilities, as well as in terms of the data that they might require
to make assessments. Consider that a large-scale experiment will likely produce a
large amount of data from human participants, autonomous systems, and the simula-
tion environment. Human science researchers will benefit from analyzing, and will
be able to generate insights from, highly detailed raw human subjects’ data, but they
may have little to offer in the way of analyzing mission data collected from the
simulation environment or the output packets from real or simulated autonomous
systems. Comparatively, subject-matter expert evaluators would be primarily inter-
ested in analyzing mission data from the simulation environment, but they may also
benefit from dimensionally reduced or summarized data about the human subjects and
autonomy. In order to democratize data analysis across a multivariate team of stake-
holders, data streams will need to be processed by Al and machine learning algorithms
and displayed as time series at the appropriate resolution for each type of stakeholder.
Here, we attempt to answer the research question, “How can a heterogeneous team of
military, science, and engineering stakeholders collaborate to generate novel, action-
able information from unique interpretations of mission data during an after-action
review; how must that mission data be visualized, represented, or dimensionally
reduced in order to maximize the contributions of these team members?”.

Such distributed, naturalistic experiments will necessarily produce a great deal
of multimodal data that can be useful for predicting outcomes; so much data, in
fact, that networks are unlikely to support the unfettered transmission of all of it.
Algorithms aimed at predicting team outcomes must be, to some degree, aware
of the diagnosticity of each data stream, given particular experimental contexts, in
order to permit the intelligent sampling of the right data at the right time. This
thrust area seeks to answer the research question, “What hardware, software, and
data collection techniques will allow human-autonomy teams to mitigate the chal-
lenges presented by bandwidth constraints during distributed, large-scale simulation
experiments, exercises, and training events?”.

Generally speaking, many real-world application domains of autonomous systems
are inherently high-noise; that is, there are many factors that contribute to a team’s
success or failure beyond simply a team’s performance, which may be difficult to
measure or may be only measurable infrequently. Furthermore, it may be difficult to
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draw comparisons between measures of performance generated from human versus
autonomous team members under different conditions and contexts. Predicting team
outcomes under these conditions may not be accomplished by asking how well
the team is currently performing, but rather by asking how effectively the team is
functioning. Such measures of effectiveness must be robust to perturbations in data
streams and severe amounts of data loss, must be somewhat agnostic but flexible with
respect to the level of analysis, and must be able to draw comparisons among different
data modalities. The research question driving this thrust area is, “How can we
measure the effectiveness of heterogeneous human-autonomy teams, and ultimately
predict team outcomes, using the types of sparse, multi-modal data generated by
human and autonomous agents during distributed, large-scale data collection?”.

Finally, we encourage the expansion of the range of unobtrusively, opportunisti-
cally sensed data, to include neurophysiological data. Human brain activity poten-
tially contains a great deal of information relevant to team effectiveness, including
activity changes within single users as well as activity patterns shared among multiple
users. Emerging research on novel materials make collecting such data less obtrusive;
such technologies include in-ear and dry electroencephalography devices. In the near
term, we seek to answer the research question, “Where is the state of neuroscience
hardware, software, and data analysis and processing techniques relative to the level
of maturity required for its useful application under real-world conditions?”.

These approaches, taken together, form the groundwork for a comprehensive
approach toward enabling experimentation over the types of physical and temporal
distances inherent to the real world. Answering these research questions will allow
us to advance the start of the art by radically shifting experimental paradigms. The
future of data analysis, as we see it, is not the simple application of highly tailored
algorithms to specific types of data, but rather the more general application of Al
and human expertise across the broad range of experimental data to transform it into
actionable information and measures.

7.4 Conclusions

As Al-enabled technologies approach a point where they may be deployed on the
battlefield, it is not enough to simply consider the performance of static algorithms
as tools that have been developed and refined in a well-structured and relatively
“sterile” laboratory setting and then expect that performance to translate into the real
world. Rather, we, as a community of researchers, must ensure: (1) that intelligent
technologies can operate effectively in real-world contexts with a team of human
Soldiers and a heterogeneous array of Al-enabled systems; and (2) that they can
adapt to the continuously changing environmental and mission conditions to maxi-
mize their utility, resilience, and robustness. The ARL HAT ERP exists to address
these current research gaps and to manifest the revolutionary potential of instanti-
ating and managing complex, heterogeneous human-AlI teams. The above discussion
documents currently active research under the HAT ERP, but other research gaps and
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new capabilities will continue to be addressed as we work to turn Al from tools to
teammates for U.S. Soldiers.
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Chapter 8 ®)
Re-orienting Toward the Science oo
of the Artificial: Engineering AI Systems

Stephen Russell, Brian Jalaian, and Ira S. Moskowitz

Abstract Al-enabled systems are becoming more pervasive, yet system engineering
techniques still face limitations in how Al systems are being deployed. This chapter
provides a discussion of the implications of hierarchical component composition and
the importance of data in bounding Al system performance and stability. Issues of
interoperability and uncertainty are introduced and how they can impact emergent
behaviors of Al systems are illustrated through the presentation of a natural language
processing (NLP) system used to provide similarity comparisons of organizational
corpora. Within the bounds of this discussion, we examine how the concepts from
Design science can introduce additional rigor to Al complex system engineering.

Keywords Artificial intelligence - Machine learning * System engineering -
Design science

8.1 Introduction

Itis almost overly trendy to talk about how advances in artificial intelligence (AI) are
enabling new capabilities in a number of application domains from biology/medicine,
defense, business decision-making to communications. As a core technology, Al
relies on sophisticated machine learning (ML) algorithms that utilize exemplar data
to learn and predict new insights. While there are direct connections to hardware in
robotic Al and ML algorithms are increasingly being embedded in programmable
chips, Al itself is fundamentally a software innovation, with its scientific grounding
in computer science.
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Much of the software or algorithmic (non-embodied) Al research examines and
advances isolated instances of learning manifested in ML approaches and gener-
ally focuses on improving predictive accuracy. In a system’s context, or perhaps
more appropriately stated in an application context, these approaches almost never
exist in isolation and are applied to process-oriented problems such as mobility,
maneuver, and decision-making. Further, even within a “single system” multiple
ML algorithms are commonly implemented as an ensemble component, creating
system-level Al that depends on and interacts with other system components. As
such, it is apparent that an Al-enabled system is defined as a complex system—a
system composed of many components which may interact with each other. The
literature on complex systems suggests that large complex systems may be expected
to be stable up to a critical level of connectedness, and then as this connected-
ness increases it will suddenly become unstable (Cohen & Newmans, 1985; May,
1972). This is certainly seen in complex dynamical systems that reach a bifurcation
point where the behavior becomes chaotic and unpredictable (May, 1976). System
instability that produces emergent system behaviors has a high probability of being
unanticipated. In other words, one class of emergent system behaviors are instanti-
ated outputs of unstable complex systems. These types of emergent or unanticipated
behaviors usually appear as system mistakes or errors, particularly when a complex
system is Al-enabled (Russell & Moskowitz, 2016). The notions of complex system
verification and emergent behaviors are soundly placed in the domain of systems
engineering. The challenge, in an age where there is a preponderance of intelligent
complex systems, is to bring scientific rigor to the engineering of such intelligent
systems. Addressing this challenge is necessary to advance the fundamental under-
standing, as opposed to an operational understanding of Al complex systems in any
broad or generalizable capacity.

While there is ample work in the complex systems literature on systems engi-
neering (Alpcan et al., 2017; Belani et al., 2019; Carleton et al., 2020), examining Al
software engineering as a hierarchical complex system remains an open and active
research area. The scope of this chapter presents a background of issues in engi-
neering Al-enabled systems, which by definition are complex systems. We discuss
the implications of hierarchical component composition and the importance of data
in bounding AI system performance and stability. Within the bounds of this discus-
sion, we examine how the concepts from Design science can introduce additional
rigor to the Al complex system engineering. Recognizing systems engineering is a
broad topical area, and more qualitative aspects of Al complex systems engineering,
such as explainability, ethics, and trust, are outside the scope of this chapter.

The chapter is organized as follows. The first section provides a short background
on software engineering, followed by a section on Al-enabled systems-of-systems
and emergent behaviors. The next section discusses the importance of interoperability
technologies. We consider the role of uncertainty in ML algorithms in the fifth section
and present an example of system engineering challenges, using natural language
processing in the sixth section. We present the applicability of Simon’s Sciences of
the Artificial (Simon, 1969), specifically Design science theories and concepts, to
Al systems engineering in Sect. 8.7 and conclude in Sect. 8.8.
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8.2 AI Software Engineering

Before providing a meaningful perspective on system engineering artificial intelli-
gence (Al) systems, it is important to scope the domain of system engineering in this
context. Clearly, system engineering is not a new topic and has seen extensive study
ranging from biological to physical/mechanical, and, of most relevance, software
system contexts. While the grounding and parallels in biological and mechanical
complex systems are many (Newman, 2011; Ottino, 2004; Schindel, 1996; Thurner
etal.,2018), our focus is on software because the implementation of machine learning
(ML) methods are algorithmic and thus instantiated as software. For performance
reasons, ML software may get implemented in hardware; e.g., programmable chips,
embedded systems, application-specific integrated circuits, etc. However, the imple-
mentation of software algorithms in hardware only complicates the overall system
engineering and does not remove many of the most critical problems in software engi-
neering (De Michell & Gupta, 1997). Traditionally, software systems are constructed
deductively by writing down the rules that govern system behaviors that get imple-
mented as program code. However, with ML techniques, these rules are inferred
from training data (from which the requirements are generated inductively). This
paradigm shift makes reasoning about the behavior of software systems with ML
components difficult, resulting in software systems that are intrinsically challenging
to test and verify (Khomh et al., 2018).

There is a saying that software errors all occur at the intersection of logic and
data. This saying makes clear the importance of software/system engineering for Al
applications. In the case of Al systems, the logic incorporates ML models, which
have minimally two data intersections: the data on which it was built and the data
that it interacts with. This case is further compounded by the emphasis on which ML
researchers and engineers place on getting improved application-specific accuracy
(Yang et al., 2020). As a result, the coupling between the model and the specific
application tends to be extremely tight, leading to constrained system engineering.

This is not to say that tremendous benefit cannot be gained from the use of Al
systems. The core point is that increased focus should be given to the system engi-
neering in which the Al exists (Breck et al., 2017). This focus should ensure that
appropriate constraints and controls are used in the creation, usage, and improvement
of the Al system. The Institute of Electrical and Electronics Engineers (IEEE) (I.S.C.
Committee, 1990) defines software engineering as the application of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance
of software [systems]. While one might argue that software engineering for tradi-
tional (i.e., non-adaptive software) is fairly straightforward, fundamental expecta-
tions such as repeatability become far more elusive to describe and predict in the
case of ML software. Ignoring the complexity of the model building, ML software
learns and thus will produce different outputs given both the sequence of inputs and
the characteristics of those inputs.

Figure 8.1 illustrates a typical ML model development “pipeline” where the cyclic
nature of ML model development essentially implies that the Al system would need
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Fig. 8.1 Machine learning
pipeline. Adapted from [17]
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ongoing updates if the system task has any significant variability. Figure 8.1 notably
shows the essential role that data (collect data) plays in the ML engineering life cycle.
This data requirement has led to the broad use of general models, provided much
like a code library, and built from extremely large datasets or opensource collections.
The problem with these models is that much like a software library any misrepresen-
tations, bias, or other variability that exist in the model are then built (transferred)
into the receiving system. For an application, this problem is compounded by the
fact that these extrinsic models incorporate data at a scale where the people using
the subsequent models and building their own Al systems cannot easily gain insights
into the training data details.

The ML pipeline intrinsically has software engineering demands that translate
directly to Al system engineering requirements. Systems engineering is about engi-
neering systems that provide the functionality to users as required, when required,
and how required. Table 8.1 shows empirical system engineering challenges that
result from the existence of ML pipelines in systems of different types (prototype,
non-critical, critical, and cascading). Lwakatare et al. (2019) provide an empirical
study of system engineering challenges for machine learning systems. However,
they do not extend the systems engineering challenges to the system in which the
ML is deployed. Al systems are not monolithic. The ML model must operate as
an element of a multi-component system that provides macro user-driven functions.
Challenges in cascading deployment are particularly relevant to Al systems because
with the scale they do not exist in isolation and the boundaries that typically define
system locality can be greatly expanded and obfuscated, leading to emergent system
behaviors. We provide more details on these intimations in the next section.

The discipline of systems theory, which is the grounding for system engineering,
provides the foundational knowledge to address problems where it is necessary to
understand the behavior of the system (e.g., a realized assembly, or an artifact) as a
function of the behavior and interaction of its constituent elements (components). The
previous discussion provides a simple example of how Al-enabled systems should
be viewed as a hierarchical system—the next section will extend this notion toward
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Table 8.1 System engineering challenges in the use of ML components (Lwakatare et al., 2019)

Experimental or Non-critical Critical Cascading
prototyping deployment deployment deployment
Assemble | Issues with Data silos, scarcity | Limitations in Complex and
dataset problem of labeled data, and | techniques for effects of data
formulation and an imbalanced gathering training | dependencies
specifying the training set data from
desired outcome large-scale,
non-stationary
data sources
Create Use of No critical analysis | Difficulties in Entanglements
model non-representative | of training data building highly causing
dataset, data drifts scalable ML difficulties in
pipeline isolating
improvements
Train and | Lack of No evaluation of Difficulties in Need of
evaluate well-established models with reproducing techniques for
model ground truth business-centric models, results, sliced analysis in
measures and debugging the final model
deep learning
models
Deploy No deployment Training-serving Adhering to Hidden feedback
model mechanism skew stringent serving | loops and
requirements; e.g., | undeclared
latency, consumers of the
throughput models

a complex system. By a hierarchic system, we adopt a definition of a system that
is composed of interrelated subsystems, each of the latter being, in turn, hierarchic
in structure until some lowest level of an elementary subsystem is reached (Simon,
1991). Currently, in the Al system engineering literature, ML is treated as an elemen-
tary subsystem when it is in fact exceedingly complex. This same notion expands
to account for dynamically composed Al systems, as increasingly the boundaries
and nature of intelligent systems should be characterized and complex systems-of-
systems with the advance of technologies such as the Internet of Things and pervasive
networking.

8.3 Al-enabled Complex Systems-of-Systems
and Emergent Behaviors

The purpose of systems engineering, as a discipline that applies scientific principles
and engineering methods as a means to cope with the challenges of complexity,
should yield abstractions that characterize the hierarchical nature of systems at their
individual boundaries. As with all of the sciences, the understanding of complex
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adaptive systems is reached solely in a quantitative, predictive, and ultimately exper-
imentally testable manner. Complex adaptive systems are dynamical systems that are
able to change their structure, their interactions, and, consequently, their dynamics as
they evolve in time (Tolk et al., 2018). The theory of complex systems is the theory of
generalized time-varying interactions between components that are characterized by
their states. The notion of interactions introduces an expanded dimension of systems
engineering as it implies the isolation of its component functionality. It is possible
at this point to have a philosophical discussion about what exactly a system is if
its atomic boundaries are not clearly defined and the complexity of the system is a
function of component interactions. Rather than entertain the philosophical nature of
systems, which has been deeply covered in the literature (Backlund, 2000), we adopt
a simple definition: a system is a set of interconnected things that work together
to perform a function. In the case of Al-enabled systems, these “things” exist in a
hierarchical construct where they are composed to meet a purpose. The role of the
Al components within this construct is to introduce intelligent interactions, which
en masse evince system behaviors.

Inter-system interactions typically occur on networks that connect system compo-
nents. The interactions may cause the states of the component themselves and/or
the network to change over time. The complexity of a system increases when the
interaction networks have the ability to change and rearrange as a consequence of
changes in the states of its components. Thus, complex systems are systems whose
states change as a result of interactions and whose interactions change as a result of
states. The same characterizes Al system ML algorithms, many of which (such as
neural nets) utilize internal components and states as learned representations. Thus,
if ML algorithms are complex (sub) systems, the hierarchical system in which they
exist must also be complex. Consider any case where a system is providing more
than rudimentary intelligence. It would be necessary to create an ensemble of ML
algorithms that are interconnected and interdependent such that greater degrees of
learning and intelligence can be achieved. If one Al system interacts with another Al
system to achieve a macro-objective or satisfy a global requirement, the Al system
can be thought of as a system-of-systems. Keeping in mind the reciprocated nature
of system state and interactions, complex Al system-of-systems have the propensity
to show arich spectrum of behavior: they are resilient, adaptive, and co-evolutionary
with an inherent ability to exhibit unexpected and emergent behaviors. Predictability
is a highly desirable outcome of system engineering (Kuras & White, 2005). Emer-
gent behaviors are often the inverse of predictable behaviors and emergence is an
innate characteristic of complex Al systems (Brings et al., 2020).

Emergent system behavior is a response, or set of responses, that cannot be
predicted through analysis at any level simpler than that of the system as a whole.
Emergent behavior, by definition, is what is left after everything else has been
explained away. This definition highlights the difficulty in predicting and explaining
emergent behavior (Li et al., 2006). If the behavior is predictable and explainable,
then it will not be treated as emergent behavior and its approaches can be designed to
handle the responses. From an engineering standpoint, understanding emergence can
lead us to design smarter and more resilient systems while at the same time furthering
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our understanding of phenomena in systems’ interactions (Tolk et al., 2018). The
source of emergence is the nonlinear combination of components at different states
over time. Emergence, in this case, is one of the possible states a system might take
even if the observer or designer of the system is not aware of the possibility (Mittal &
Rainey, 2014). Consider an Al system that is no longer behaving as originally speci-
fied but had adapted to a new environment by developing new multi-level interactions
and feedback loops. How can such self-modification and adaption reconcile with the
design of the system’s creators when it exceeds the bounds of their intention? From
an Al systems engineering perspective, embedded in this first question is a second,
perhaps more important one: how then to limit learning and prevent errors resulting
from gaps in what the system knows? The intuitive answer is to limit interactions
and exposure to new data. However, this would lead to an over-constrained system,
which is seldom desirable (Russell et al., 2017).

The above discussion characterizes the variability, through ensuring emergent
behaviors, that Al introduces into a system, thereby guaranteeing that any Al system
is a hierarchical complex system-of-systems. Thus, ensuring predictability from effi-
cient and rigorous system engineering is at best a bounding problem and at worst
a stochastic one. Further illustrating the severity of this issue, it is important to
present another element of complication in Al system engineering that is entangled
in the underlying ML models. Most ML algorithms incorporate adjustable param-
eters that control the training of the model. These standard parameters are part of
the mathematical formulation and need to be learned from the (training) data. ML
algorithms employ a second type of parameter, called hyper-parameters, that cannot
be directly learned from the regular training process. Hyper-parameters typically
express properties of the model such as its complexity or how fast it should learn
and are usually fixed before the actual training process begins. Examples of common
deep learning hyper-parameters include learning rate, momentum, dropout, number
of layers, neurons per layer, etc.

Figure 8.2 shows the implications on training time, in terms of iterations, and
convergence, in terms of progress toward the minima or loss. Learning rate is
a hyper-parameter that determines how quickly a deep learning ML model, that
employs a gradient descent methodology, can converge to local minima, i.e., arrive
at the best accuracy. More specifically, the learning rate controls how much the
weights of the neural network are adjusted, with respect to the loss gradient.
The gradient equation can be described in the following manner: new_weight =
existing_weight—learning_rate x the_gradient. In this context, each epoch/iteration
represents an ML model state, given a consistent set of training data. In the gradient
descent equation shown in Fig. 8.2, alpha (o) represents the learning rate hyper-
parameter. If o is too small the gradient descent can be slow; shown as a low learning
rate in Fig. 8.2. If a is too large, the gradient descent can overshoot the minimum, fail
to converge, or even diverge, shown as high or very high learning rate in Fig. 8.2. An
ideal or optimal learning rate would produce a reasonably rapid descent to asymmetry,
noted as a good learning rate in the figure.

Given different settings for learning rate, Fig. 8.2 illustrates that ML software engi-
neering requires close coupling with the learning problem and likely a significant
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Fig. 8.2 Effect of learning A -
rate on loss. Adapted from Very high learning rate
[27]
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amount of domain expertise in model creation. Consider a system that employs three
ML models, each with seven hyper-parameters (not unreasonable, albeit a somewhat
low number (Probst et al., 2018; Smith, 2018)). Keep in mind the difficulties in engi-
neering traditional (non-learning) software (e.g., object inheritance, encapsulation,
bias, etc.)—all of which would exist in such a three-ML model system. Even ignoring
diversity/variability in training and operational data, there are at least 15,120 (7! x
3) possible combinations of hyper-parameter settings and this number assumes inde-
pendence of the three ML models. This example also does not factor in the likelihood
that the ML models were created by using externally pre-trained base models, such as
RESNET (He et al., 2016) or variations of BERT (Devlin et al., 2018), which would
further obfuscate parameters, hyper-parameters, and initial training data variability.
It is not surprising that Al system engineers face challenges of structural and func-
tional complexity when dealing with Al systems, as both structural and functional
complexity increase with the number of system options.

It becomes nearly impossible to provide any stringent guarantees on the behavior
of such a system. However, the system engineering trend is to automate the search for
good model hyper-parameters (i.e., the balance of speed, accuracy, and reliability).
So, there are system engineering things that can be done to increase the understanding
of an Al system, certainly at the component level of the system. Obtaining this same
degree of understanding at higher levels in the system hierarchy remains a challenge.
It is noteworthy to revisit the fact that Al systems seldom operate in the isolation in
which Al researchers design them and often they are connected to other Al systems,
increasing the likelihood of unanticipated interactions.

The complexity introduced by data, hyper-parameters, and potentially varying
scales of interdependent components create an elaborate system engineering land-
scape that must still account for the existence of emergent behaviors. Mairer et al.
(Maier et al., 2015) describe four categories of emergent behaviors: simple, weak,
strong, and extrinsic or “spooky.” Simple emergence is where the emergent properties
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can be readily predicted by simplified models of the system. Weak emergence defines
where the emergent property is reproducible and can be consistently predicted. Strong
emergence describes emergent properties that are consistent with other known prop-
erties but not reproducible and thus, inconsistent and unpredictable. Extrinsic emer-
gence defines where emergent properties are inconsistent with the known properties
of the system. Figure 8.3 presents relationships between simple, complicated, and
complex systems, relative to the degree of emergence they tend to exhibit. The oval
shape in Fig. 8.3 shows where Al-enabled systems fit, with some systems being
complicated or on the fringe of being complex, all the way to the outside of system
boundaries, where emergent behavior will be fully unpredictable.

In a time of loosely coupled systems that dynamically connect with one another
to achieve broader objectives, the Al system engineering challenges will not neces-
sarily be localized to a singularly designed system. There are some who may argue
that this loose-coupling is just a trend, and is not likely to continue or become the
norm. To that argument, consider a modern cell phone where a user wishes to post a
picture on their social network. The user utilizes a camera app to take a picture; the
Al in that app processes the picture to apply filters and make adjustments, perhaps
based on the intended social context. The same camera app (automatically) inserts
the picture in a social networking app’s process, where the social network Al may
make further adjustments to the image or file prior to transmitting it to the social
network server. The communication network optimization Al in the phone operating
system further processes the file for efficient transmission considerations. The post
is received by the social network’s servers, where server-side Al analyzes the image
post for the purposes of the social network company. In the simple example of posting
a social network picture, where are the bounds of the Al “system” and what is really
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Fig. 8.3 Systems and emergence. Adapted from [20]
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external when all the parts are necessary to achieve the objective? In this case, system
boundaries around functional organizational ownership may be drawn out of conve-
nience or attribution, but from a process perspective, it may be challenging to localize
a latent or non-obvious emergent behavior. There are plenty of other examples of
similar transparent, from users’ perspective, Al-to-Al system interactions such as
Internet-of-Things-based applications, business processes, and automation applica-
tions like self-driving vehicles. If emergence happens unpredictably and outside of a
component system’s domain, however, it may be defined—or even beyond designers’
original way of thinking—the emergent behaviors would require radically new ways
to deal with it from a system engineering perspective.

The inability to predict emergent behaviors is at the core of what makes Al systems
such a system engineering challenge. The extensibility of Al systems in contempo-
rary applications increases the propensity of extrinsic emergence. Simplification
of system functions can make a system much more predictable and the trend in
technology is to compartmentalize; e.g., apps, micro-services, containerization, etc.
However, over time the scope of compartmentalized systems eventually exceeds the
bounds of their functionality, if only for updates or maintenance. While this problem
is not limited to Al systems, because of their learning capabilities, Al systems are
naturally interactive. These interactions provide the opportunity to stress the Al
systems, as their internal ML algorithms depend on interacting with data, their model
parameters are tuned to a function, and the boundaries of their outputs typically exist
in larger decision-making processes.

8.4 The Importance of Interoperability

There is ample literature that frames Al-enabled systems as complex systems-of-
systems with emergent behaviors. Yet very little attention is given to the relevance
of interoperability and technologies that provide the capability to facilitate system-
to-system interactions. Interoperability technologies have the unglamorous role of
being the spackle, glue, and grease that allow often incompatible systems to interact
and behave collectively in a single process. When data warehouses were becoming
popular in the late 1990s and early 2000s, a cottage industry for extract-transform-
and-load (ETL) software also became a significant market (Mali & Bojewar, 2015;
Russell et al., 2010). ETL tools were responsible for extracting data from one system
and transforming it into a representation that allowed it to be loaded into another
system. This type of data interoperability may seem on the surface to be fairly
simple and straightforward. However, it is complicated by issues of localization,
schematic differences, time constraints, logic representations, and other architectural
considerations. As part of the front end of “data science” tasks in the Al pipeline,
ETL architectures define entry points in ML-to-ML interactions. From an Al system
engineering perspective, ETL architectures and functions actually shape the range of
expected behaviors of ML algorithms. Figure 8.4 shows the trend in Google scholar
for research on ETL and ML, illustrating the correlation between ETL and ML over
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Fig. 8.4 Google scholar extract-transform-load trend

time. While the displayed trend correlations are not conclusively related, they indi-
cate a similar upward pattern and also show that ML research and ETL research
remain relatively separate; evidenced by the spacing between the top two lines (ETL
as a search term alone) and the bottom line (ETL and ML as co-occurring search
terms).

In Al-enabled systems, interoperability is much more than extracting and
converting data between two data stores. Standards, application programming inter-
faces (APIs), ML libraries, middleware, and even the hardware processing at the
points of collection (e.g., sensor hardware optimization, photosensor enhancement,
etc.) all can affect interactions between Al system components. The interactions at
the cyber-physical boundary of Al systems, where the data it relies on originates,
can provide indications of the variability that a system will encounter. Thus, exer-
cising the entry points of an Al system can help provide insights and understanding of
system constraints and perhaps reveal emergent behaviors. The ML research commu-
nity has given this challenge some focus, primarily with respect to ML algorithms
and their training data (McDulff et al., 2018). However, while important and valuable,
much of this work ignores the propagation of the ML output beyond the algorithm.
The above-described entry point exercising is fairly common in the modeling and
simulation literature, but can be costly and difficult with complex systems, and even
more so with dynamically composed complex systems.

Standards such as network protocols and file formats (e.g., png, jpg, xml, json,
etc.) are helpful in addressing data-oriented system engineering challenges, but they
are not an absolute answer. Standards are challenged by the pace of technolog-
ical change, constraints on innovation, and performance implications (Lewis et al.,
2008), all essential factors in Al system design. The same can be said of application
programming interfaces (APIs), as they are simply component or system-specific
standards. This situation is not to suggest that standards and APIs are not useful,
rather than that system engineering methods should factor and account for the limi-
tations of standards and APIs. According to Lewis et al. (2008), there are actions
system engineers can take, including identifying required levels of interoperability,
understanding relevant existing standards, analyzing the gaps in standards, and taking
measures to fill in the gaps. These pragmatic approaches are sensible, but may not
address the uncertainty introduced by a learning system. We posit that standards and
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APIs provide a baseline, a floor, upon which design variances can be gauged. Yet
more is needed to facilitate the emergent dynamics of Al-enabled systems.

Middleware technologies are intended to fill the gap between standards and imple-
mentations that deviate or vary from them. Much like ETL, middleware rose in popu-
larity in the 1990s and 2000s because of the technology’s ability to provide transla-
tion services between systems. By translation here, we do not mean converting one
spoken language to another. We mean translating between disparate system specifi-
cations. Initially, there was not much difference between the capabilities of middle-
ware and ETL software. In fact, ETL was labeled middleware due to the overlap in
its functionality. However, unlike the data-centric orientation of ETL, middleware
became much more than just ETL because it translated messaging, services, and,
most importantly, processes. Today, middleware is often delivered as architectural
layers that integrate business process execution languages and system APIs with
services that perform functions abstractly between the systems and transparently
across networks, implementing adaptive composability. Modern middleware func-
tionality can provide the means to gain an understanding of inter-system interactions,
identify usage variabilities, and manage emergent behaviors.

Surprisingly, ML has not been widely implemented to advance today’s middle-
ware capabilities, although there are some examples of the promise ML functionality
could provide to middleware tasks (Abukwaik et al., 2016; Nilsson, 2019; Nilsson
etal.,2019). Even in Al-enabled systems, contemporary middleware is implemented
as traditional code and scripting elements (Salamaet al., 2019). Al is likely to increas-
ingly be the middleware that handles the functions of interoperability in the future.
However, the middleware with the ability to learn inter-component interactions and
emergent behaviors will increase the overall complexity of Al-enabled systems. From
a system engineering perspective, escalated complexity will increase the require-
ment for high-resolution and extensive modeling and simulation, due to the cost of
exploring a robust range of possibilities (Saurabh Mittal, 2019). Additionally, it will
also be the role of the Al-enabled middleware to quantify and propagate the uncer-
tainty introduced by inter-component and inter-system interactions. This means the
Al will have to address uncertainties that are teased out by design-time modeling
and simulation as well as those that occur outside the boundaries of the system
engineering.

8.5 The Role of Uncertainty in ML

The presence of uncertainty in any system process opens an opportunity to emer-
gent system behavior that expands the boundary of the system’s functions. Modern
Al is particularly prone to introducing uncertainty into its outputs as a result of its
reliance on ML algorithms (Ning & You, 2019). At its core, such uncertainty stems
from the data and the implementation because the designer of an ML algorithm
must encode constraints on the algorithm’s behavior in the feasible set or the objec-
tive function. Uncertainty in ML typically has four sources: (1) noise, (2) model
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parameters, (3) model specification, and (4) extrapolation (Jalaian et al., 2019). The
preceding sections presented the implications of these four sources on Al system
complexity and emergent behaviors: data variability and interoperability limitations
(noise and extrapolation), hyper-parameters (model parameters), and ML software
engineering (model specification). These same complexity-increasing considerations
can also expand uncertainty in Al-provided outputs and complicate the anticipation,
repeatability, and traceability of unexpected and emergent system behaviors.

Because Al is often implemented to automate or aid decision-making, there is a
growing field of research to quantify the uncertainty that ML may have in its outputs.
There are several novel approaches that, if incorporated in low-level machine learning
algorithms, can provide the necessary uncertainty quantification that is needed to help
lower overall system uncertainty. These approaches include stochastic and chance-
constrained programming (Ning & You, 2019), Seldonian regression approaches
(Thomas et al., 2019), Hamiltonian Monte-Carlo inference (Cobb & Jalaian, 2020),
and other methods that integrate Bayesian decision theory with ML. The challenge
with most of these approaches is that they tend to be computationally intensive and,
as such, create trade-offs in other system engineering concerns.

Quantified ML uncertainty can be a signal for system engineering considerations
and may provide a starting point for addressing replication and traceability. While
sparse, the literature is not without examples of system engineering approaches to
incorporate these signals (Buisson & Lakehal, 2019; Klds & Jockel, 2020; Trinchero
et al., 2018). Under a simulation approach, Al system engineering can be informed
about the amount of uncertainty introduced by ML components (D’ Ambrogio &
Durak, 2016; Schluse et al., 2018). While integrating uncertainty quantification
methods can provide indicators toward the bounds of ML components, it may not
be sufficient to address all of the considerations raised by the complexity of learning
systems. However, quantified uncertainty, particularly those that are elicited through
robust simulation, can put constraints on the potential scope of system engineering
concerns and provide limits around which to offer guarantees of system behavior.

8.6 The Challenge of Data and ML: An NLP Example

To provide an example of the system engineering problems that intrinsically exist in
Al-enabled systems, we conducted an experiment using natural language processing
(NLP). NLP s a suite of techniques grounded in ML that enable computers to analyze,
interpret, and even generate meaningful text (Mikolov et al., 2013). NLP is typically
used to derive value from corpora of documents, where a document can be of varying
sizes (e.g., a short phrase, sentence, paragraph, or alarge body of text). NLP tasks typi-
cally are intended to obtain information about the lexical units of a language, provide
word sense disambiguation, and/or construct part-of-speech tagging, all to achieve
higher-order aims or goals, such as document classification, content understanding,
or entity-event relationship extraction.
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We selected an NLP-based problem for several reasons. First, NLP is one of the
most mature domains of Al. Second, using NLP for content understanding is one of
the most challenging Al-problem domains, due to the nature of textual communica-
tion. For example, text can have complex meanings. Words have multiple definitions
and in usage have highly variable ordering. This leads to variable-size blocks of
text with contextually constrained representations, where the surrounding text alters
the interpretation. Word ordering matters in two directions—what comes before
as well as what comes after. Third, NLP applications typically have multiple ML
methods being utilized in a sequential fashion to achieve the objective of content
understanding. Fourth, uncertainty stemming from the first three preceding chal-
lenges impacts NLP in a variety of ways. For example, a simple keyword search is
a classic approach and the presence of that keyword in a document does not neces-
sarily assure a document’s relevance to the query. Additionally, uncertainty can result
from the ambiguity of certain words (e.g., the word “bimonthly” can mean twice a
month or every two months depending on the context; the word “quite” can have
different meanings to American and British audiences; etc.). Lastly, we chose NLP
because although the underlying data may be of the same language, it is likely to
have provenantial nuances embedded in it. For example, given the data’s language is
English, English words may have regional, temporal, and domain-specific variability.
These considerations represent a challenging, but common, case for Al system engi-
neering, and thus we felt it would likely provide a robust and generalizable example
of the concepts in this thesis.

The functional goal of the experimental NLP system is quite simple: in an unsu-
pervised manner, understand the content of weekly activity reports (WARs) that
document the significant activities of information science researchers at the Army
Research Laboratory. In short, the objective is to (without a human reading all the
documents) identify documents that are about similar topics and present a summary
of those relationships graphically. The WARs are supplied as entries from individual
researchers and written with an intended audience of senior science and technology
(S&T) managers. As such, jargon is limited and emphasis is placed on the contribu-
tion of the research accomplishment in terms of the impact on Army S&T priorities.
A topic modeling NLP approach was adopted and used to determine similarity across
documents. Twenty-nine documents were utilized, each consisting of a block of text
with an average of 195 words. There may be some discussion about whether this
corpus is a sufficient amount of data for this NLP activity. However, sufficiency
remains an open research question. The convention is that more documents are
better. Yet even the definition of a document in an applied context is ambiguous,
as the literature offers different decompositions (e.g., sentences, single paragraphs,
sections, chapters, etc.) even from a single “document” file. Further, an optimal requi-
site amount of text data for NLP-ML algorithms has been challenged by arguments
of specificity and subsequent over and underfitting. It is noteworthy that our topic
modeling approach is a unigram (“bag-of-words’’) model, which is common in infor-
mation retrieval contexts, and we are not attempting to do language modeling in this
example.
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8.6.1 System Architecture

The general system functional process consists of building a topic model (ML-1) and
then using that topic model to elicit a Euclidean relationship between the documents
(ML-2). The results of the topics, the resulting clustering (ML-1 output feeding
ML-2), and the similarity measure (ML-2 output) are graphically displayed as a
final result. As part of the process, for each document, a dominant topic is iden-
tified. It is also important to note that the text preprocessing (stop word removal,
n-gramming, stemming, and lemmatization) was also done consistently across runs.
Preprocessing is critical to NLP because how the text is prepared, e.g., what words
are included/excluded, handling pluralities, and morphological form reduction, all
can dramatically affect the efficacy of NLP-ML algorithms.

For brevity, we only touch on the technical details of the NLP-ML methods
employed here, as they are documented in detail in the literature and our imple-
mentation attempts to utilize popular Python libraries. We adopted the Anaconda
Python environment to help standardize underlying software libraries. To implement
the NLP-ML algorithms, we used the Genism library (Rehurek & Sojka, 2010),
utilized latent Dirichlet allocation (LDA) (Blei et al., 2003) for topic building, t-
distributed stochastic neighbor embedding (t-SNE) (Maaten & Hinton, 2008) for
dimensionality-reduced clustering, and cosine similarity (Y. H. Li & Jain, 1998) for
relating LDA topic similarity across documents. It is worth noting that this exper-
iment was repeated using BERT (Devlin et al., 2018) to develop the topic models,
instead of LDA, with the remainder of the architecture being the same. In the second
experiment using BERT, the results were largely the same, so we focus on the LDA
approach here.

The Gensim LDA module was implemented, exposing over 15 hyper-parameters,
including learning rate, random seed, and epochs. In this experiment we held 14
of them constant and only adjusted the number of topics. The number of topics
hyper-parameter can have a dramatic impact on downstream similarity compar-
isons, so the experiment included a function that iterated over several values and
displayed them for selection in final results. The ML pipeline was partially auto-
mated to produce output for the one key hyper-parameter (number of topics) versus
model “goodness,” as shown in Fig. 8.5. Figure 8.5 shows the results of coherence
and perplexity measures of the experimental LDA model, varying the number of
topics hyper-parameter.

LDA topic models learn topics, typically represented as sets of important words,
automatically from documents in an unsupervised way and coherence provides a
quantitative metric of the resulting topics regarding their understandability (Roder
et al., 2015). Similarly, the perplexity score, which is also used by convention in
language modeling, can provide an indication of a model’s goodness in terms of its
predictive generalizability. Unlike coherence, which tends to increase up to the point
where it levels off, perplexity tends to monotonically decrease in the likelihood of
the test data and is algebraically equivalent to the inverse of the geometric mean
per-word likelihood. Thus, in general, higher coherence and lower perplexity scores
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Fig. 8.5 Coherence and perplexity measures of LDA model, based on the number of topic hyper-
parameter

are desirable. However, the rules for these measures are not firm, as there are implicit
trade-offs between generalizability and interpretability. Further, as can be shown in
Fig. 8.5, the minimum perplexity may not correspond to the maximum coherence and
there is the issue of the number of documents versus the number of topics. In the case
of smaller numbers of documents, arguably the number of topics hyper-parameter
could be set to the same number of documents, leading to a unique (dominant) topic
for each document, which is less than useful for comparison or retrieval tasks. So, a
pragmatic rule heuristic rule is to: (1) identify where the coherence score levels off
and its maximum before decreasing, and (2) select a number of topics value from this
range. This number of topics should also occur before an increase (positive slope)
in the perplexity score. Examining Fig. 8.5, a reasonable number of topics is likely
between 8 and 12.

8.6.2 Results

The experiment provided reasonable results, which were manually (and qualitatively)
verified by reading the documents to see how well they were represented by the topics.
Figure 8.6 shows the topics that were created using LDA with the number of topics
set to 12 and shown as word clouds. From a qualitative standpoint, it is not a stretch,
even to a uniformed eye, that the topics could easily represent the kind of weekly
activities of information science researchers, particularly if they had to type them
every week over the course of a year. This particular part of the information science
division does work on computational linguistics, dialog, and intelligent agents. This
work too is readily evident in the NLP topics elicited from the content.

The topics, shown in Fig. 8.6, formed the basis for the similarity matrix and the
clusters shown in Figs. 8.8 and 8.9. As expected, the increased number of topics
decreased the overall level of degree of similarity between the documents. This
relationship can be seen in Fig. 8.7, as the heatmaps for the higher number of topics
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Fig. 8.6 Word clouds of 12 topics

are more of a neutral/lighter color rather than the darker shades that indicate strong
positive or negative correlations. What is interesting is that some documents that
were highly correlated, given 10 topics, are not correlated at all when 12 topics
were used. This same effect can be seen in the plot of the t-SNE clusters (Fig. 8.9),
where examples of some of the varying topics are shown with boxes around them.
Documents clustered with 10 topics become probabilistically closer than when the
number of topics was increased to 12. This probabilistic distance is shown as its
spatial distance in the t-SNE plots. While the t-SNE dimensions are not necessarily
linear, the parameters and hyper-parameters were set the same, and the only difference
between the plots was the number of topics and associated document weights in the
input. The scale of the plots was set to be the same to allow a direct comparison. It
is important to note that the t-SNE plots employ an arbitrary 2-D space represented
by tsne_D_one and tsne_D_two in Figs. 8.8 and 8.9.

Taking document 819-cub.txt (the solid line box in the t-SNE plots) as a reference,
its relative position (approximately [0, —380]) in the 10-topic cluster shifts in the
positive y-direction (approximately [0, —100]) for the 12-topic plot. Other documents

Detument Coune Srmilarty Cormelation

10 Topics

Diseument Cening Sismilarity Cormetation

12 Topics

Fig. 8.7 Document similarity matrices for 6, 10, and 12 topics
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Fig. 8.9 Document clustering based on 12 topics

relative to this document also shift with the increased number of topics, yielding a
significant increase in dissimilarity between 819-cub.txt and several other documents:
422-cub.txt (the medium-dashed box), 722-cub.txt (the small-dashed box), and 729-
cub.txt (the long-dashed box). While this sub-section presents the results, the next
sub-section provides an interpretation and discussion of the results.

8.6.3 Discussion

This empirical experiment is not about advancing the state-of-the-art in NLP-related
machine learning. Rather, it is intended to illustrate the complications of Al system
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engineering and illustrates many of the system engineering challenges described in
previous sections. By manipulating only 1/15 hyper-parameters, the experimental
Al system significantly changed its output. We illustrated how this occurred, even
in this simple example, where surprising results (more topics yielding tighter docu-
ment clustering while reducing correlation) emerged. In this experiment, the inter-
nals of the system were fully exposed; and thus, data and hyper-parameters could be
manipulated. However, most Al systems are often delivered as black boxes with
minimal insight as to how the models work and other internals such as hyper-
parameter settings. For example, in the word clouds, references to the word “data”
were converted to the word “datum.” These reports would not likely have included
the word datum, as it is not part of the researchers’ general jargon. The output of the
word datum was a surprising and unexpected output. Only upon deep investigation
was it discovered that the word datum came from the stemming and lemmatizing
preprocessing step. It is noteworthy that the Genism stemming and lemmatizing code
itself depends on an external stopword and rule library—i.e., 1000 s of words and
100 s of replacement rules. Of course, for human consumption, (most) people know
that the word datum is the same as data, but the transposition into the context from this
corpus was surprising nonetheless. This replacement is a very simple and harmless
behavior but shows how easily emergent behaviors can occur and how susceptible
Al-enabled systems are to problems of this nature.

Black box deployments often lead to obfuscation in the understanding of why
the system was behaving the way it behaved. Yet this phenomenon is more involved
than just a lack of ML explainability because the general results are reasonable in
the specific ML task, just less reasonable within the overall system objective. In a
typical deployment, an LDA model produced from training data is typically applied
to new data, not used for similarity with the training data. The implication here is
the number of topics and other hyper-parameters are embedded in the model, yet
they may no longer be optimal or even appropriate for use with new text, depending
on the nature of the new documents. The only indication of this issue is incorrect
outputs, errors, or unexpected behaviors.

The experiment showed how embedded variability in one ML learner can affect
other learners that rely on that output. The preprocessing portion of the experi-
ment was a reasonable proxy for interoperability problems. Much like the role of
interoperability, the preprocessing step translated the documents from their original
source (MS Word files) into a format and structure that is appropriate for the Python
Gensim libraries. As described in the interoperability section, ambiguity in the inter-
operability process can dramatically change the expected system behaviors and make
system outputs less repeatable. Other factors that affect the system’s behavior are
embedded in the ML and abstracted away from end-user awareness. Issues such
as data constraints and specificity, hyper-parameter variability, and the potential for
emergent behaviors (i.e., embedded uncertainty) can all be hidden behind seemingly
sensible system performance.

It is seemingly reasonable outputs from Al-enabled systems that create the
largest demand signal for an increased emphasis on Al system engineering. Anec-
dotally, discussions about the output of this experimental system with management
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colleagues have sparked interest in applying the system to other functional areas
within our organization. In short, the system outwardly did achieve its objective.
Furthermore, the experimental system could theoretically be re-purposed as a data
exploration tool, but even in that deployment, it would need to be accompanied by a
system engineer or an NLP researcher to be used reliably with any durability. This
result simply does not scale.

The increased complexity and embedded uncertainty of such an Al-enabled
system, however, much of an example it may be, does not reduce the propensity
for others to naively desire to utilize the system for their own corpora, or worse,
make comparative conclusions across the outputs of varied users. In this sense, it is
not the intelligence of the system that is at issue. Thus, a significant challenge is how
to make such Al-enabled systems robust enough to handle anything more than hyper-
specific tasks. Incorporated in this challenge is how to alter how Al-enabled systems
are engineered so that they harness emergent behaviors and self-protect against their
own underlying learning and intelligence; all to reduce the uncertainty that might
stem from the use of their own outputs.

8.7 Design Science: Toward the Science of AI System
Engineering

The bulk of this chapter discusses the problems of engineering interoperability, emer-
gent behaviors, and uncertainty in complex Al systems. This section discusses the
potential for a body of literature that may offer a solution that applies additional
scientific rigor to systems engineering.

While there is plenty of literature that focuses on the machine learning lifecycle
(Ashmore et al., 2019; Khomh et al., 2018; Schindel, 1996), the literature on the
treatment of these components within a complex system is proportionally sparse.
Furthermore, most of the ML lifecycle approaches tend to treat the learners as atomic
functions providing a single capability. This perspective is much like controlling one
individual’s behavior while ignoring the effect they have on the crowd around them.
Al complexity and emergence will require new methods and tools, and maybe even
different structures. After years of specialization and focusing on more and more
details that helped to provide a tremendous amount of knowledge and understanding
and led to breakthroughs in so many disciplines and domains, a new set of research
characteristics may “emerge” that takes the opposite approach. Tenets of Design
science may provide a holistic framework in which to introduce rigor in the defi-
nitions, ontologies, boundaries, guidelines, and deliverables required for Al system
engineering.

Design science is the study of an engineered artifact in context and its two signif-
icant activities are designing and investigating this artifact in context (Wieringa,
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2014). It is a very different approach compared to computer science. From a prag-
matic perspective, while this difference is a fundamental issue with Al system engi-
neering, it still currently remains a problem largely being addressed by computer
scientists and researchers. Table 8.2, initially proposed by Wieringa (2014), provides
heuristic identifiers as a contrast between computer science problems and informa-
tion systems/design problems. The computer sciences, and thus Al scientists, typi-
cally focus on knowledge questions, whereas information systems scientists and
researchers are more concerned with design problems.

Traditional ML research, in classical computer science style, focuses on studying
new Al methods and creating algorithms. Adopting a Design science approach to
ML would take an information system approach that answers knowledge questions
regarding systems. In this manner, Design science can provide a rigorous approach
to understanding complex Al-enabled systems from a design perspective that, by its
nature, must account for context and a problem’s surrounding environment. Hence,
this approach puts the system artifact at the center of study. The notion of an artifact
is a central element in Design science. It is a fundamental premise that a design
is problem-driven and leads to an artifact that solves the problem when the arti-
fact is introduced into nature. There is debate over whether Design science must
result in an artifactual production, and there are endless disagreements over what
exactly constitutes an information systems artifact. For some, the only legitimate
artifact is actually executing, runnable, code. For others, the only legitimate IT arti-
factis conceptual (e.g., the concept behind the executing code). Such artifacts are not
exempt from natural laws or behavioral theories, but the artifact alone is not Design
science (Baskerville, 2008). Design science integrates artifacts with design theory,
a fundamental concept in the scholarly information sciences and systems field. It
creates theoretical approaches for understanding, explaining, and describing design
knowledge and practice. The inclusion of design practice reinforces the fact that goal
or contextual orientation must be a core element of any design theory.

Foundations of Design science were extended by Herbert Simon (1988), and it is
in Simon’s work that the applicability of Design science for Al system engineering
can be elicited. Originally characterized by Simon (1969) as the “Science of the
Artificial,” the artificial is distinguished from the natural in four ways: 1) Artificial
things are synthesized (though not always or usually) with full forethought by man;
2) they may imitate appearances in natural things while lacking, in one or many

Table 8.2 Heuristics to

Desi bl Knowled ti
distinguish design problems cS1gn prob oms flow7edee questions
from knowledge questions Call for a change of the world Ask for knowledge about
(Wieringa, 2014) the world

Solution is a design Answer is a proposition

Many solutions One answer

Evaluated by utility Evaluated by truth

Utility depends on stakeholder Truth does not depend on

goals stakeholder goals
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respects, the reality of the latter; 3) they can be characterized in terms of functions,
goals, and adaptation; and 4) they are often discussed, particularly when they are
designed in terms of imperatives as well as descriptives. Toward Al-enabled systems,
it is apparent the explicit relevance of 1, 2, and 3. In terms of Al system design,
the introduction of function, goals, and adaptation are critical to a reliable design.
Simon extends this importance of function and goals (i.e., context) with his idea
of the artificial not only applying to the machines or objects designed by man but
also human problem-solving in which in some sense one must cognitively “design”
a solution. Simon synthesizes the sciences of the artificial, relating these concepts
to design and the architecture of complexity. It is this relationship that forms the
basis for Design science. Simon advocates for the existence of a science of design
concerned with “how things might be” in contrast to the natural sciences, which are
concerned with “how things are.”

This perspective is directly related to Al system design due to the composite, adap-
tive, and dynamic learning nature of ML and Al systems. Design sciences’ emphasis
on the artifact can provide grounding theory for how to approach the engineering
of Al systems. Designing useful artifacts is complex due to the need for creative
advances in a domain in which existing theory is often insufficient. As knowledge
grows, artificial systems are applied to new application areas that were not previ-
ously believed to be amenable to artificial system support (Markus et al., 2002).
The resultant system artifacts extend the boundaries of human problem-solving and
organizational capabilities by providing intellectual as well as computational tools
(Hevner et al., 2004). In 2002, however, Markus’ work (2002) had the foresight
to begin to focus on the need for design theories that dealt with emergent knowl-
edge processes. For example, Markus notes, catalysts of the design process emerge
in unpredictable ways, sometimes resulting from external competitive forces and
sometimes from internally generated needs for higher performance. Although that
work did not focus on Al-enabled systems, Markus’ emphasis on decision support
systems begins to characterize many of the design challenges associated with them.
To this end, much can be extrapolated from Design science to address the issues of
designing Al-enabled systems.

At its core, Design science is directed toward understanding and improving the
search among potential components in order to construct an artifact that is intended
to solve a problem (Baskerville, 2008). The iterative nature, around an artifact in its
context, may provide the means to elicit and mitigate the limitations in Al system
engineering. We posit that adopting a Design science approach to Al system engi-
neering can provide the theoretical grounding needed to create artifacts that can be
iteratively studied by researchers such that emergent behaviors can be better under-
stood in context. To meet this objective, robust simulation is key to exercising an
Al-enabled system in a multitude of configurations, across problem domains, and
with real and synthetic datasets. Future work is planned to explore this approach by
using the experimental NLP system as an artifact.
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8.8 Conclusion

This chapter is intended to generate a discussion and energize a research agenda.
The discussion is mainly driven by the authors and their expertise and experience,
so it needs to be extended and discussed in the broader audience as envisioned in
this chapter. This chapter presented engineering challenges intrinsic to Al-enabled
systems, including dynamisms of the learning process and adaptation, the potential
for interoperability to significantly affect the learning process, and emergent behav-
iors that increase uncertainty and potentially lead to errors. To illustrate the concepts,
we presented an experimental NLP Al system that produced reasonable results but
also demonstrated pragmatic examples of conceptual system challenges.

There are engineering considerations that are being advanced by the Al research
and system engineering community that will provide solutions to the challenges
identified in this chapter, such as quantified uncertainty, ML, intelligent interoper-
ability solutions, and autonomic system functionality. However, these approaches are
likely to introduce additional complexity that may be compounded by the amorphous
bounds of Al systems in pervasive use. This evolutionary nature of Al systems may
find solutions in the iterative nature of Design science. Much like other engineering
disciplines in past decades, the application of Design science aims to aggregate the
power of a few key ideas to help to manage the increasing complexity of Al-enabled
systems. Whereas civil engineering and chemical engineering were built on the hard
sciences, i.e., physics and chemistry, this new engineering discipline will be built on
the building blocks that ground Design science—ideas such as information, algo-
rithms, uncertainty, computing, inference, and complexity. While the building blocks
have begun to emerge, the principles for putting these blocks together have not yet
fully been realized, so the blocks are currently being put together in ad hoc ways.
What we are missing is an engineering discipline with its principles of analysis and
design.

In stimulating further research and discussion, we should not pretend that Al-
enabled systems are not a transformative technology. Al artifacts should be built
to work as expected. We do not want to build systems that help us with medical
treatments, provide transportation, and support our decision-making only to find out
after the fact that these systems do not really work and that they make errors and
have unanticipated negative effects. While the expansion of these concepts is still an
open research challenge, we should embrace the fact that there is an opportunity to
redefine system engineering with these and other concepts.
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Chapter 9 ®)
The Department of Navy’s Digital oo
Transformation with the Digital System
Architecture, Strangler Patterns,

Machine Learning, and Autonomous
Human-Machine Teaming

Matthew Sheehan and Oleg Yakimenko

Abstract The Department of Navy (DoN) is rapidly adopting mature technologies,
products, and methods used within the software development community due to the
proliferation of machine learning (ML) capabilities required to complete warfighting
missions. One of the most impactful places where ML algorithms, their applications,
and capabilities will have on warfighting is in the area of autonomous human—
machine teaming (AHMT). However, stakeholders given the task to implement
AHMT solutions enterprise-wide are finding current DoN system architectures and
platform infrastructures inadequate to facilitate deployment at scale. In this chapter,
the authors discuss the DoN’s goal, barriers to, and a potential path to success in
implementing AHMT solutions fleet- and force-wide.

Keywords DevSecOps * Systems engineering + Machine learning - Digital system
architecture - Strangler pattern

9.1 Introduction

Artificial intelligence (AI) has the potential to significantly shape national security
and military capabilities due to its broad applicability across a range of functions
and fields. At the moment, Al research inside of the Department of Defense (DoD)
is being conducted within the fields of intelligence collection and analysis, logis-
tics, cyber operations, information operations, command and control, and in semi-
autonomous and autonomous vehicles (CRS, 2019). Due to its potential advantages
to outmaneuver top adversaries, Al and, more specifically, machine learning (ML)
are highlighted as priority research areas within authoritative governing documents
like that of the National Security Strategy (White House, 2017) and National Defense
Strategy (DoD, 2018a). While the formulation of guidance from the Executive Office
of the President of the United States concerning Al has been slowly progressing
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since 2016, the DoD has been exploring the implications of integrating autonomous
systems with an eye to intelligent, learning, and adaptive software systems even
before that.

Specifically, in 2010, the Under Secretary of Defense for Acquisition, Tech-
nology and Logistics sponsored a Federal Advisory Committee, the Defense Science
Board (DSB), to provide independent advice to the Secretary of Defense about the
role of Autonomy in the Department of Defense (DoD) systems. With the moti-
vation of “identifying new opportunities to more aggressively use autonomy in
military missions, anticipate vulnerabilities, and make recommendations for over-
coming operational difficulties and systematic barriers to realizing the full poten-
tial of autonomous systems” (DSB, 2012), this task force uncovered multiple tech-
nical challenges with the implementation of autonomous systems. These technical
challenges were as follows: perception, planning, learning, human—robot interac-
tion/human—system interaction, natural language, and multiagent coordination (DSB,
2012). Follow-on technical interchange meetings uncovered additional non-technical
barriers by integrating Al into military missions in the form of adaptive challenges
for the DoD organizational structure and culture, defense acquisition system (DAS),
lifecycle development, and management of processes that are used (DoD, 2015; DSB,
2018; DIB, 2019).

At the military department level, the DoN understands the importance of software
and how Al can make a profound and unique impact on the operational and strategic
levels of war (DoN, 2016; DoD, 2018b). These algorithms will have unique impacts
on the operational and strategic levels of war. Applications include (1) omnipresent
and omniscient autonomous vehicles; (2) big-data-driven modeling, simulation, and
wargaming; (3) focused intelligence collection and analysis; (4) system of systems
enabling exquisite intelligence, surveillance, and reconnaissance (ISR); (5) precision
targeting of strategic assets; (6) effective missile defense; and (7) Al-guided cyber
(Davis, 2019). Of the applications above, the DoN is especially interested in lever-
aging AHMT solutions to aid the warfighter in decision-making. Battle management
aids and tactical decision aids (BMAs/TDAs) are a logical first step and are seen
as a “quick-win” or “low hanging fruit” by senior leaders due to the availability of
required data, documented decision trees/application state diagrams, ease of operator
integration with current application user interfaces, and high return-on-investment
(ROI) in automating operator ancillary tasking indirect to the mission.

However, the AHMT “quick win” is not quite what it seems at first glance.
The DoN acquisition methodology of “lift-and-shift” or “rip-off and deploy,” while
proving to be historically successful for most technologies, needs to be evolved when
applied to AHMT solutions. The DoN must embrace software engineering patterns
using development, security, and operations (DevSecOps) methods with agile and
test-driven practices. Considering the DoN is a distributed collection of organizations,
authorities, environments, warfighting/readiness/business domain-specific require-
ments, a mix of evolving technologies, and independent security enclaves, a holistic
system engineering enterprise approach must be taken in order to effectively succeed
in deploying integrated AHMT solutions.
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This chapter discusses the barriers, limitations, and implications of the DoN’s
desire to develop, test, integrate, and deploy AHMT algorithms, applications, and
capabilities to the fleet and force at scale. Specifically, Sect. 9.2 analyzes the difficulty
in achieving seamless AHMT integration in general; followed by Sect. 9.3 detailing
the unique challenges the DoN is facing to achieve this seamless integration at scale.
Closing with Sect. 9.4, a path to success is proposed which will allow the DoN to
achieve its AHMT goal while working within the confines of the DoD’s cumbersome
defense acquisition system (DAS).

9.2 Autonomous Human-Machine Teaming Lifecycle
Difficulties

Before diving into the specific difficulties with AHMT algorithms, applications,
and capabilities, it is important to understand a few key tenets from the software
systems engineering community required to make effective AHMT possible. Due
to many AHMT solutions employing ML techniques, the proper software develop-
ment lifecycle (SDLC) model, software architecture pattern, platform service model,
application testing, and deployment model choices all have impacts on the associated
foundational requirements of the software being developed and operated.

There are many SDLC models to choose from, the most common being waterfall,
iterative, spiral, v-shaped, and agile. Each of these SDLC models shares similar
phases—requirements gathering, analysis, design, development, testing, deploy-
ment, and maintenance (SDLC, 2019), however, each one is suited for particular soft-
ware project types and complexities. One glaring difference with AHMT algorithms,
applications, and capabilities as compared to static code is the need to constantly
evolve. Due to this characteristic, SDLC models which require a low level of uncer-
tainty and an increased need for planning and control should not be used. Therefore,
the iterative and agile SDLC models are natural fits for AHMT endeavors, including a
fit with ML application development pipelines resulting in each iteration developing,
testing, and deploying new features.

AHMT solutions interact with systems in different ways depending on the evolu-
tion timeline of the AHMT application and the targeted system for deployment.
If both the AHMT application and target deployment system are in synchronous
development timelines, the AHMT application group has added flexibility in the
software architecture pattern that can be used. If these development timelines are
temporally segregated, the AHMT application group may find many design deci-
sions limited by the targeted monolithic system where it is to be deployed. Among
different software architecture patterns, the event-driven and microservice ones are
the most commonly used for AHMT solutions. These two software architecture
patterns are suitable for complex environments, lend themselves well to continuous
new functionality updates, and are highly scalable.
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Fig. 9.1 Platform service models as applied to the cloud computing stack (adapted from
BigCommerce, 2020)

While the platform service model (software as a service (SaaS); platform as a
service (PaaS); infrastructure as a service (IaaS); and on-premises) is not directly
tied to the AHMT solution being used, it affects the business model chosen which
in turn has impacts to how the AHMT solution is integrated and maintained. The
platform service model computing stack is a series of interconnected systems or
protocols that exchange information between layers in support of a function. When
describing the layers of a platform service model, it is common to reference a version
of the open systems interconnection (OSI) model as applied to cloud computing. In
the version shown in Fig. 9.1, the layers of the computing stack are as follows:
networking, storage, servers, virtualization, operating system, middleware, runtime,
data, and applications. In the on-premises service model, the customer retains control
and is responsible for the entire computing stack. While this allows the customer the
most flexibility and control in system decisions, this model also requires the most
knowledge and has the largest overhead to run effectively. In the IaaS model, the
customer manages applications, data, runtime, middleware, and operating systems,
while outside vendors manage the rest of the computing stack. The IaaS model
allows for enterprises to pay-as-they-go for networking, storage, and virtualization,
freeing up capital from the expensive on-premises infrastructure and subsequent on-
site requirements. The platform service model most likely to be leveraged by AHMT
solutions is the PaaS model. In the PaaS model, the customer only manages the
application and data layers. The PaaS model allows AHMT developers to focus on
algorithm and application development, testing, and deployment. The other tasks of
the computing stack are managed by outside vendors allowing all resources to be
focused on AHMT solutions and integration with the system targeted for deployment.
In the final platform service model, SaaS, the software application is available to the
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customer over the network. AHMT solutions that fit into this model are typically
turnkey commercial-off-the-shelf (COTS) products purchased by customers, which
do not require complex integration with fielded systems due to the nature of their
decoupled hardware/software.

Due to the requirement for AHMT solutions to constantly evolve and become
more refined or feature-rich as these algorithms and applications learn, a robust
feedback mechanism must be in place to inform developers of the next set of deploy-
ment features. Thus, these AHMT solutions are dependent upon DevSecOps methods
with agile and test-driven practices allowing for continuous software integration and
delivery/deployment (CI/CD). However, even for organizations considered “digitally
native” or “software intensive” with years of expertise in the above topics, successful
implementation is difficult. Data collected from these industry leaders paint a trou-
bling picture for AHMT solutions: 30% of application deployments fail (Cruz, 2018);
29% of IT project implementations are unsuccessful, with 20% being unrecoverable;
75% of customers rated their application deployment as failing (Hastie & Wojewoda,
2015); and 87% of ML models developed never get deployed (VB, 2019). In fact,
Google’s Al Chief stated that only 15% of ML models developed within Google are
deployed (Moore, 2019).

The above statistics illustrate the difficulties in successfully developing, inte-
grating, and deploying AHMT solutions at scale. In the future where decisive victory
on the battlefield will not only be decided by algorithms supporting warfighters with
actionable intelligence but also by how well the DoN enterprise continuously inte-
grates and delivers/deploys its algorithms, the DoN will need to digitally transform
almost every aspect of how it performs acquisition.

9.3 Unique Challenges Facing the Department of Navy
and Autonomous Human—-Machine Teaming

While there are always technical challenges in transitioning new technologies into a
large complex system of systems, like those within the DoN, AHMT solutions also
pose non-technical challenges not shared by other endeavors. This section details
these non-technical challenges with the introduction of the defense acquisition system
(DAS) in order to show how it is not suited for AHMT solution acquisition as clas-
sically executed. It is then followed by detailing the technical challenges the DoN is
up against in integrating these AHMT solutions (prospective costs) while leveraging
previous investments (sunk costs) to ensure maximum use of DoN asset “technical
debt.”
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9.3.1 Department of Navy Non-technical Challenges

The acquisition of systems within the DoD is complex. It comprised multiple
processes, stakeholders, authorities, phases, barriers, and limitations. All of these
variables must be understood, aligned, and executed in sync to be successful.
Acquiring systems within the DoD is so complex that Congress passed Public Law
101-510 in 1990, creating the Defense Acquisition University (DAU) by enacting
the Defense Acquisition Workforce Improvement Act (DAWIA) to educate and train
civilian and military DoD workforce members in a number of functional areas in
support of performing acquisition more effectively (DAU, 2019). However, despite
a trained workforce, a survey in 2015 found all DoD Major Defense Acquisition
Programs (MDAPs) were collectively $468 billion over budget and almost 30 months
behind schedule, with data pointing to expected cost growth to reach 51% by 2020
(Lineberger, 2016). Additionally, the DoD returns an average of $13.5 billion a year
in canceled funds to the Treasury, or about 2.6% of its appropriated budget in unspent
funds (Bartels, 2019). These facts point to an uneasy conclusion: the way in which
the DoD does business is fundamentally at odds with the goal of military departments
rapidly fielding capabilities to outpace peer/near-peer threats.

As shown in Fig. 9.2, the DAS consists of three distinct, yet intertwined, processes
correlating to the functions of acquisition management (known as “Acquisition”),
requirements development and verification (known as the Joint Capabilities Inte-
gration and Development System (JCIDS)), and financial planning and execution
(known as Planning, Programming, Budgeting and Execution (PPBE)). The Acqui-
sition process provides a “management foundation” for programs to follow through
their lifecycle. This event-based process breaks the lifecycle into phases, milestones,
and reviews where a program is required to meet certain criteria in order to proceed
to the next phase. As depicted in Fig. 9.3, the process consists of five phases, three
milestone reviews, and potentially over 70 required key criteria deliverables based

Fig. 9.2 Defense acquisition
system relationships
(AcgNotes, 2018)

Acquisition
Process
Management”

JCIDS
Process
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on program size as measured by total research and development funding and total
procurement cost.

The JCIDS process was created in support of the Joint Requirements Oversight
Council (JROC) to ensure warfighting requirements are properly validated as required
by JROC Title 10 responsibilities (AcqNotes, 2018). The JCIDS is designed to iden-
tify warfighting requirements, uncover operational performance requirements, and
produce/validate the Capabilities Base Assessment, Initial Capabilities Document,
and Capability Development Document. Figure 9.4 shows how these documents
created in the JCIDS process interact with the DAS.

The PPBE process is the only calendar-driven process of the three. It is also the
only process of the three in which a program will find itself in all of its associated
stages at once. The execution phase is tied to the current year (CY) of program
execution, while each subsequent phase (budgeting, programming, and planning) is
tied to CY+1 out-year(s). The execution phase (CY) is where financial management
of ongoing obligations and expenditures takes place. The budgeting phase (CY+1)
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Fig. 9.4 JCIDS and DAS interaction (AcqNotes, 2018)
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is where formulation, justification, and control of funding resources are exercised
to ensure efficient allocation. The programming phase (CY+2) is where resource
proposals are evaluated and prioritized against future capability needs. The planning
phase (CY+3) is where trend analysis is conducted to understand the long-term
implications of execution phase results (AcqNotes, 2018). Figure 9.5 details the
steps taken in each PPBE phase.

While the graphics in Figs. 9.3 and 9.4 depict simple processes, it should be
noted that each of these processes has follow-on, multistep, complex sub-processes,
and various rule-sets uniquely implemented by each military department. Figure 9.6
shows one such breakout of the misleadingly simple process for the tailored acqui-
sition process shown in Fig. 9.3. It should be noted that Fig. 9.6 is not meant to be
readable; instead, it is meant to convey the additional complexities existing within
each sub-process.

The DoD has struggled to use the DAS effectively for acquiring non-hardware-
centric systems in a timely manner. Panels on Defense Acquisition Reform in 2010
found the delivery of information technology (IT) systems and related software prod-
ucts to take between 48 and 60 months (Gansler & Lucyshyn, 2012). Thus, in 2019
the DoD released the adaptive acquisition framework (AAF) (DoD, 2019). This
framework, as shown in Fig. 9.7, aims to simplify acquisition policy, tailor-specific
approaches based on relevance, actively manage risk, and emphasize sustainment.
While AAF is a great first step away from the old “one size fits all” process used
in the past allowing for program flexibility, it is too early to assess its effectiveness.



9 The Department of Navy’s Digital Transformation with the Digital System ... 183

DON Requirements

Acquisition

Legend

B

G\et\‘ b
wgféf‘
Urgent oD |

Capability w
anqumnon I §
] years—* g =
oD Rapid ]
Middle Tier 5 Flekding @
of Rapid a
('_‘ Acquisition Prototyping £ § ypars —e il 3
—gSyeas—* g
MSA MsB Ms.C 10C FOC E
~—  Major Materiel Production -1
Capability Solutions I-utumnon md mtum and w
Acquisition Analysts 5

0 1
Execution
Software

Pha'se
o W& |8500084084008 8

n.

Cybersecuri

elyewr ——*

ATP ATP ATP ATP
Defense Capability N Functional Acquisition,

e Capability
Business Need [ECVHE0 | Reauirements and § Testing, and
Systems I mﬂ:" Deployment [] Support

PLAN DEVELOP EXECUTE
1 2 3 4 5 & 7
\' Acqutsivion Form  Review Perform Define Develop Execute  Manage

of Services the  Current Market Require- Acquisition Strategy Performance

Team Strategy Research ments Strategy

Fig. 9.7 Adaptive acquisition framework (DoD, 2020)

In fact, to date, only two out of nine associated new policy documents have been
promulgated.

It should be noted that AAF only addresses one-third of the three-part DAS (see
Fig. 9.3). The JCIDS process, as it is executed today, creates incentives for programs
of records (PoRs) to only focus on their domain-specific requirements. This near-
sightedness adversely affects AHMT solutions by segregating PoRs based on their
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acquisition decisions and technology choices. This remaining behavior will not allow
the DoN to maximize the capabilities brought about by AHMT solutions. The PPBE
process is piloting a new appropriation category targeting software acquisition known
as Budget Activity (BA) 8. This “new color” of funding, currently under test, removes
the administrative and accounting burden for appropriation categories that were putin
place during the earlier hardware-centric, industrial-age acquisition era. The misap-
plied balance of development versus production versus sustainment funds for soft-
ware projects is a continued source of software product delays (Serbu, 2020). With
nine software programs testing this new appropriation category, Congress has yet to
grant the DoD permanent permission to use this BA department-wide.

The DAS is not the only non-technical challenge the DoN faces. Organization-
ally, the DoN comprised multiple bodies, each using hybrid organizational structures.
At the highest level, the DoN consists of nine entities: the Secretary of the Navy’s
(SECNAV) office, the Office of the Chief of Naval Operations (OPNAV), Head-
quarters Marine Corps (HQMC), the United States Navy (USN) Operating Forces,
the United States Marine Corps (USMC) Operating Forces, USN Shore Establish-
ment, USMC Shore Establishment, USN reserve forces, and USMC reserve forces.
Each of these entities is further broken down and divided into subsequent organiza-
tions, sometimes having multiple reporting chains across entities. Additionally, each
of these subordinate organizations has multiple unique organizational structures.
For example, uniformed military service members follow a hierarchical organiza-
tional structure in terms of its chain-of-command. Operating forces are structured
using divisional organizational structures, like those of a geographic region (e.g.,
U.S. Pacific Fleet). OPNAV, HQMC, and Shore Establishments follow a combi-
nation of functional and divisional (domain-based) organizational structures. Even
further within these organizations, like those at an “echelon 4" or below, divisional
(product-based) and functional organizational structures are used. As more than one
organizational structure is at play at all times, the DoN tends to execute acquisition
functions in a cross-matrixed fashion.

The advantages and disadvantages of each organizational structure are shown
in Fig. 9.8. While many of these organizational structures have a few redeeming
advantages, the disadvantages are multiplied when an entity executes a maneuver
for hybrid organizational structures in unison. It is believed that the organizational
structure institutionalizes the organizational culture within, which cycles back to
legitimize the organizational structure in place (Janicijevic, 2013). Thus, it can be
surmised that each organization within the DoN has its own unique culture, institu-
tional identity, knowledge, and memory to contend with when it comes to an AHMT"’s
solution development and deployment. It seems unavoidable that AHMT solutions on
an individual program level will be limited in the benefit they can provide to the DoN
due to the limited access to cross-domain and inter-domain data. However, AHMT
solutions on an enterprise level will suffer from competing priorities, conflicting
requirements, and non-value-added individual organizational policies.

The DoD has worked, and continues today, in addressing DAS shortcomings
through acquisition reform. However, despite multiple reform attempts, the DoD’s
track record shows repeated cost overruns, missed delivery targets, and degraded
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capability acceptance. In fact, an analysis of historical acquisition reform efforts
across almost four decades (1970-2000s) shows no improvement and even degraded
performance in some programs and services (Baldwin & Cook, 2017). In concert
with numerous strained attempts to streamline the DAS, the product landscape
has fundamentally changed from what the DoD has historically acquired: ranging
from hardware-centric products using a linear, sequential “waterfall” development
methodologys; to that of software-centric products (like AHMT solutions) dependent
upon development, security, and operations (DevSecOps) methods with agile and
test-driven practices allowing for CI/CD. Highlighting this product landscape shift,
PoRs have cited software as the most frequent and critical driver of programmatic risk
in nearly 60% of all acquisition programs (DSB, 2018). Mr. Marc Andreessen may
have said it best, “software is eating the world.” Technology, healthcare, finance,
entertainment, telecom, retail, energy, and even national defense companies are
becoming less hardware-centric and more software-centric. Dominant companies
controlling large segments of their industry market-share are doing so through the
use of software and delivering their services online (Andreessen, 2011). AHMT solu-
tions have an uphill battle to overcome the inherent barriers within the DAS, let alone
the organizational structures with their cultures, as applied to agile software develop-
ment, acquisition, and deployment. The DoD directed study on software acquisition
and practices pursuant to Sect. 872 of the 2018 National Defense Authorization Act
that may summarize the DoN non-technical challenges best: “The current approach
to software development is broken and is a leading source of risk to DoD: it takes
too long, is too expensive, and exposes warfighters to unacceptable risk by delaying
their access to tools they need to ensure mission success” (DIB, 2019, p. i).
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9.3.2 Department of Navy Technical Challenges

To understand the full scope of technical challenges facing the DoN, it is imperative
to understand how large the DoN is in terms of the capital assets and the supporting
resources the compose it. This capital asset measurement is called the “existing fleet-
and force-level” (CRS, 2020). The Government Accountability Office (GAO) esti-
mates that the DoD manages a $1.8 trillion portfolio of 85 major weapon systems. Of
these, over 40 are within the DoN with a collective estimated price tag of $855 billion
(GAO, 2020). With each major weapon system costing an average of $20.6 billion
dollars and being over 14 years old, the DoN has a significant a