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Preface

We began this book by asking representatives from Systems Engineering (SE) to
participate with us in an Association for the Advancement of Artificial Intelligence
(AAAI) Symposium in the Spring of 2020.We addressed our request for participation
to representatives of the International Council on Systems Engineering (INCOSE).
The symposiumwas intended to advance the science of autonomous human-machine
teams (A-HMTs). After systems engineers agreed to participate, we included “sys-
tems” in our call. The symposium was scheduled to occur at Stanford University
duringMarch 23–25, 2020. Our agenda included AI scientists, system engineers, and
interested participants and organizations from around the world. Unfortunately, the
Covid-19 pandemic intervened. But AAAI gave us two opportunities: hold theMarch
event as scheduled virtually, or have a Replacement Symposium in the Washington,
DC area. We took advantage of both offers.

We gave our scheduled speakers the choice of participating in the virtual Spring
Symposium, the Fall Replacement Symposium, or both. The agenda for the Spring
Symposiumwas reduced to under 2 days, roughly replicated for theReplacement Fall
Symposium, which also became a virtual event. However, the number of participants
for both the Spring and Fall events slightly exceeded 100, a larger audience than we
would have expected to attend in person at Stanford.

Both symposia had the same title:1 “AI welcomes systems Engineering: Towards
the science of interdependence for autonomous human-machine teams.”2 The orig-
inal list of topics in our call for the Spring Symposium had sought potential speakers
to give talks on “AI and machine learning, autonomy; systems engineering; Human-
Machine Teams (HMT); machine explanations of decisions; and context.” For the
Replacement Symposium, we revised our list of topics for potential speakers to
consider in addition: “machine explanations of decisions.” For both symposia, we
sought participants from across multiple disciplines who were willing to work
together to contribute to the advancement of AI in welcoming SE to build a science of

1 https://aaai.org/Symposia/Spring/sss20symposia.php#ss03.
2 MichaelWollowski designed and built our supplementary website (wollowsk@rose-hulman.edu),
found at https://sites.google.com/view/scienceofinterdependence.
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vi Preface

interdependence for autonomous human-machine teams and systems. Our thinking
continued to evolve, leading us to name the title of this book, “Systems Engineering
and Artificial Intelligence.”

The list of topics in this book expanded well beyond the listed agendas for our
two symposia. That said, the theme of systems and AI has continued to motivate the
chapters in this book. Our goal for the symposium was, and for this book is, to deal
with the current state of the art in autonomy and artificial intelligence (AI) from a
systems perspective for the betterment of society.

In advertising for our symposium and then for the chapters in this book, we sought
contributors who could discuss the meaning, value, and interdependent effects on
contextwherever theseAI-drivenmachines interactwith humans to formautonomous
human-machine teams or systems. We had called for extended abstracts (1–2 pages)
or longer manuscripts of up to 8 pages in length. Our plan was to publish lengthy
manuscripts as chapters in a book after the symposium. We hope that this resulting
edited book will advance the next generation of systems that are being designed to
include autonomous humans and machines operating as teams and systems interde-
pendently with AI. By focusing on the gaps in the research performed worldwide and
addressed in this book, we hope that autonomous human-machine systems wherever
applied will be used safely.

In this edited volume, we explore how AI is expanding opportunities to increase
its impact on society, which will significantly increase with autonomous human-
machine teams and systems. With this book, we offer to the curious and professional
alike a review of the theories, models, methods, and applications of AI systems to
provide a better understanding, a more integrated perspective of what is in play and
at stake from the autonomous humans-machine teams and systems soon to cause
major disruptions. But our aim with this book is to help society, practitioners, and
engineers to prepare for the extraordinary changes coming.

Machine Learning (ML) is a subset of Artificial Intelligence (AI). Already
exceeding trillions of dollars invested, ML and AI have already wrought change
across many fields with even greater impacts yet to come. As autonomous machines
arrive on the scene, some of the new problems that have accompanied them are
discussed in this book. For example, Judea Pearl warned AI scientists to “build
machines thatmake sense ofwhat goes on in their environment” to be able to commu-
nicatewith humans. Self-driving vehicles have already been involved in fatalities, and
yet AI/ML is still trying to explain to humans the contexts within which it operates.

This edited book reflects our belief that only an interdisciplinary approach can
fully address Pearl’s warning. At our two symposia, we had papers presented by AI
computer scientists, systems engineers, social scientists, entrepreneurs, philosophers,
and other specialists address how humans make decisions in large systems; how they
determine context especially when facing unfamiliar environments or unanticipated
events; how autonomous machines may be taught to understand shared contexts; and
how human-machine teams may interdependently affect human awareness, other
teams, systems, and society, and be affected consequently. For example, in the Uber
self-driving fatality of a pedestrian in 2018, the car should have alerted its teammate,
a human operator, of an object in the road ahead. As with the case of the Uber
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fatality, to best protect society, we need to know what happens if the context shared
by human-machine teams is incomplete, malfunctions, or breaks down.

This book also includes one of the first, if not the very first, chapters coauthored by
an artificially intelligent coauthor. Her name is Charlie. Her fellow coauthors address
the value of recognizing Charlie and treating her with respect to build a context that
is shared by all participants. For autonomous teams and systems involving humans
andmachines, constructing a shared context is fundamental, meaning that joint inter-
pretations of reality must be addressed, requiring the interdisciplinary approach that
we have adopted, so that we too can learn from Charlie, a significant moment for us,
our fellow contributors, and we hope for you the reader, too.

The Organizers of Our Symposium

William F. Lawless, (w.lawless@icloud.com), corresponding, Professor, Math-
ematics & Psychology, Paine College, GA, Special Topics Editor, Entropy, and
Review Board, ONR (AI; Command Decision Making).
RanjeevMittu (ranjeev.mittu@nrl.navy.mil), Branch Head, InformationManage-
ment & Decision Architectures Branch, Information Technology Division, U.S.
Naval Research Laboratory, Washington, DC.
Donald Sofge (don.sofge@nrl.navy.mil), Computer Scientist, Distributed
Autonomous Systems Group, Navy Center for Applied Research in Artificial
Intelligence, Naval Research Laboratory, Washington, DC.
Thomas Shortell (thomas.m.shortell@lmco.com), Certified Systems Engineering
Professional, Lockheed Martin Space Systems, King of Prussia, PA.
Thomas A. McDermott (tamcdermott42@gmail.com), Deputy Director, Systems
Engineering Research Center, Stevens Institute of Technology, Hoboken, NJ.

Participants at Our Symposium

We had several more participants than the speakers who attended our symposium.
We wanted speakers and participants who could assess the foundations, metrics, or
applications of autonomous AI/ML, human-machine teams, and systems and how
these teams and systems affect or may be affected themselves. We kept both of
the symposia open-ended for the topics and for this book. We considered all papers
submitted for the two symposia and several afterwards for the book as long as they had
a systems perspective. Accompanied by contributions from non-symposium partici-
pants, too, our goal then and now is to advance AI theory and concepts to improve the
performance of autonomous human-machine teams and systems to improve society.
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Program Committee for Our 2020 AAAI Symposia

• Manisha Misra, U Connecticut, Ph.D. graduate student, manisha.uconn@gmail.
com

• Shu-Heng Chen, Taiwan, chen.shuheng@gmail.com
• Beth Cardier, Sirius-Beta, VA; School Health Professions, Eastern Virginia

Medical School, bethcardier@hotmail.com
• Michael Floyd, Lead AI Scientist, Knexus Research, michael.floyd@knexusres

earch.com
• Boris Galitsky, Chief Scientist, Oracle Corp., bgalitsky@hotmail.com
• Matt Johnson, Institute for Human and Machine Cognition, Research scientist in

human-machine teaming for technologies, mjohnson@ihmc.us
• Georgiy Levchuk, Aptima Fellow, Senior Principal, Simulation & Optimization

Engineer, georgiy@aptima.com
• Patrick J. Martin, MITRE Corporation, Autonomous Systems Engineer, pmarti

n@mitre.org
• Manisha Mishra, University of Connecticut, Systems Engineering, manisha.uco

nn@gmail.com
• Krishna Pattipati, University of Connecticut, Board of Trustees Distinguished

Professor, Professor in Systems Engineering.

After the AAAI-Spring and Fall Replacement Symposia in 2020 were completed,
speakers were asked to revise their talks into manuscripts for the chapters in this
book. After the symposium, other authors who did not participate in the symposium
were also invited and they agreed to participate. The following individuals were
responsible for the proposal submitted to Springer for the book before the symposia,
for the divergence between the topics considered by the two, and for editing this
book that has resulted.
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Chapter 1
Introduction to “Systems Engineering
and Artificial Intelligence”
and the Chapters

William F. Lawless, Ranjeev Mittu, Donald A. Sofge, Thomas Shortell,
and Thomas A. McDermott

Abstract In this introductory chapter, we first review the science behind the two
Association for the Advancement of Artificial Intelligence (AAAI) Symposia that
we held in 2020 (“AI welcomes Systems Engineering. Towards the science of inter-
dependence for autonomous human-machine teams”). Second, we provide a brief
introduction to each of the chapters in this book.

1.1 Introduction. The Disruptive Nature of AI

Presently, the United States is facing formidable threats from China and Russia. In
response to these threats, the Director of the Defense Intelligence Agency (Ashley,
2019) and DNI stated:

China ... [is] acquiring technology by any means available. Domestic [Chinese] laws forced
foreign partners of Chinese-based joint ventures to release their technology in exchange
for entry into China’s lucrative market, and China has used other means to secure needed
technology and expertise. The result … is a PLA on the verge of fielding some of the
most modern weapon systems in the world. ... China is building a robust, lethal force with
capabilities spanning the air, maritime, space and information domains which will enable
China to impose its will in the region. (p. V) ... From China’s leader, Xi Jinping, to his 19th
Party Congress (p. 17) “We must do more to safeguard China’s sovereignty, security, and
development interests, and staunchly oppose all attempts to split China or undermine its
ethnic unity and social harmony and stability.”

W. F. Lawless (B)
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e-mail: w.lawless@icloud.com
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2 W. F. Lawless et al.

To address these and other competitive threats, artificial intelligence (AI), espe-
cially machine learning (ML) that we discuss with fusion next, is a major factor. The
U.S. Department of Defense (DoD), industry, commerce, education, and medicine
among many other fields are seeking to use AI to gain a comparative advantage for
systems. From the perspective of DoD (2019):

AI is rapidly changing a wide range of businesses and industries. It is also poised to change
the character of the future battlefield and the pace of threats we must face.

Simultaneously, the DoD recognizes the disruptive nature of AI (Oh et al., 2019).
To mitigate this disruption while taking advantage of the ready-made solutions AI
already offers to commerce, the current thinking appears to first use AI in areas
that are less threatening to military planners, the public, and potential users; e.g.,
back-office administration; finance (e.g., Airbus is using AI to cut its financial costs
by increasing efficiency, reducing errors, and freeing up humans for more strategic
tasks such as planning, analysis, and audits; in Maurer, 2019); data collection and
management; basic personnel matters; virtual assistants for basic skills training (i.e.,
Military Occupational Specialties, or MOSs); personal medical monitoring (e.g.,
drug compliance, weight reduction, sleep cycles); military maintenance; and simple
logistics (e.g., ordering, tracking, maintaining supplies).

Second, when the DoD and other fields address the more disruptive aspects of AI,
like autonomy and autonomous human–machine teams, many more social changes
and impacts will arise, including the adverse threats posed by the use of AI, such as
the “consequences of failure in autonomous and semi-autonomous weapon systems
that could lead to unintended engagements” (DoD, 2019).

Machine Learning (ML) andFusion:Machine learning has already had an extraor-
dinary economic impact worldwide estimated in the trillions of dollars with even
more economic and social impact to come (Brynjolfsson & Mitchell, 2017). The
basic idea behind traditional ML methods is that a computer algorithm is trained
with data collected in the field to learn a behavior presented to it as part of previous
experience (e.g., self-driving cars) or with a data set to an extent that an outcome can
be produced by the computer algorithm when it is presented with a novel situation
(Raz et al., 2019).

Autonomy is changing the situation dramatically in the design and operational
contexts for which future information fusion (IF) systems are evolving. There are
many factors that influence or define these new contexts but among them are:
movement to cloud-based environments involving possibly many semi-autonomous
functional agents (e.g., the Internet of Things or IoT; Lawless et al., 2019b), the
employment of a wide range of processing technologies and methods spread across
agents and teams, an exceptional breadth of types and modalities of available data,
and diverse and asynchronous communication patterns among independent and
distributed agents and teams. These factors describe the contexts of complex adap-
tive systems (CAS) for “systems in which a perfect understanding of the individual
parts does not automatically convey a perfect understanding of the whole system’s
behavior” (Raz et al., 2019).
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Managing these disruptions must justify the need for speedy decisions; a systems
approach; the commonality of interdependence in systems and social science; social
science, including trust; the science of human–human teams (HHT); and human–
machine teams (HMT). We discuss these topics in turn.

1.1.1 Justifying Speedy Decisions

Now is the time when decisions may need to be made faster than humans can
process (Horowitz, 2019), as with the military development of hypersonic weapons
by competitor nations (e.g., China; in Wong, 2018); the push for quicker command,
control, and communication upgrades for nuclear weapons (NC-3; in DoD, 2018);
and the common use of AI in public conveyances like self-driving cars, trucks, ships,
or subways.

Many systems are approaching an operational status that use AI with humans
“in-the-loop,” characterized by when a human can override decisions by human–
machine or machine–machine teams in combat, such as the Navy’s new Ghost fleet
(LaGrone, 2019); the Army’s autonomous self-driving combat convoy (Langford,
2018); and the Marine Corps’ remote ordinance disposal by human–machine teams
(CRS, 2018).

Even more dramatic changes are to occur with human “on-the-loop” decisions,
characterized by when decisions must be made faster than humans can process and
take action based on the incoming information. Among the new weapon systems,
these decisions may be made by a human–machine team composed of an F-35
teaming with the Air Force’s aggressive, dispensable “attritable” drones flying in
a wing or offensive position (Insinna, 2019); moreover, hypersonic weapons are
forcing humans into roles as passive bystanders until a decision and its accompa-
nying action have been completed. From an article in the New York Times Magazine
(Smith, 2019),

One of the two main hypersonic prototypes now under development in the United States is
meant to fly at speeds between Mach 15 and Mach 20 ... when fired by the U.S. submarines
or bombers stationed at Guam, they could in theory hit China’s important inland missile
bases ... in less than 15 minutes ...

By attacking the United States at hypersonic speeds, however, these speeds would
make ballistic missile interceptors ineffective (e.g., Aegis ship-based, Thad ground-
based, and Patriot systems). If launched by China or Russia against the United States
(Smith, 2019), these missiles:

would zoom along in the defensive void, maneuvering unpredictably, and then, in just a few
final seconds of blindingly fast, mile-per-second flight, dive and strike a target such as an
aircraft carrier from an altitude of 100,000 feet.

Human “on-the-loop” observations of autonomousmachinesmaking self-directed
decisions carry significant risks. On the positive side, sincemost accidents are caused
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by human error (Lawless et al., 2017), self-directed machines may save more lives.
But an editorial in theNewYork Times (Editors, 2019) expressed the public’s concerns
that AI systems can be hacked, suffer data breaches, and lose control to adversaries.
The Editors quoted the UN Secretary General, Antonio Guterres, that “machines
with the power and discretion to take lives without human involvement … should
be prohibited by international law.” The editorial recommended that “humans never
completely surrender life and decision choices in combat to machines.” (For a review
of the U.N.’s failure to manage “killer robots,” see Werkhäuser, 2019.)

Whether or not a treaty tomanage threats from the use of “on the loop” decisions is
enacted, the violations of existing treaties by nuclear states (e.g., NATO’s judgment
about suspected Russian treaty violations; in Gramer & Seligman, 2018) suggest
the need to understand the science of autonomy for “on the loop” decisions and to
counter the systems that use them.

Furthermore, the warning by the Editors of the New York Times is similar to
those that arose during the early years of atomic science, balanced by managing the
threats posed while at the same time allowing scientists to make numerous discov-
eries leading to the extraordinary gifts to humanity that have followed, crowned by
the Higgs (the so-called “God”) particle and quantum computing. The science of
autonomy must also be managed to balance its threats while allowing scientists to
make what we hope are similar advances in the social sphere ranging from Systems
Engineering and social science to international affairs.

1.1.2 Systems Engineering (SE)

SE is also concerned about whether AI and ML will replace humans in the decision
loop (Howell, 2019). System engineers prefer that humans and machines coexist
together, that machines be used to augment human intelligence, but that if decisions
by machines overtake human decision-making as is happening with “on-the-loop”
decisions, at least humans should audit the machine decisions afterward (viz., see the
Uber car fatality case below). SE also raises a series of other concerns and questions.

In addition to the public’s concerns about AI expressed by the Editors in the New
York Times, the application of AI/ML raises several concerns and questions for SE.
One concern is whether or not to use a modular approach to build models (Rhodes,
2019). System engineers note that safety is an emergent property of a system (Howell,
2019). When a team “emerges,” the whole has become more than the sum of its parts
(Raz et al., 2019); in contrast, when a collective fails, as appears to be occurring in
Europe today, it creates “a whole significantly less than the sum of its parts” (Mead,
2019). But if SE usingAI/ML is to be transformed throughmodel-centric engineering
(Blackburn, 2019), how is that to be accomplished for autonomous teams? Systems
often do not stand alone; in those cases where systems are a network of networks,
how shall system engineers assure that the “pieces work together to achieve the
objectives of the whole” (Thomas, 2019)? From retired General StanleyMcCrystal’s
book, Team of teams, “We needed to enable a team operating in an interdependent
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environment to understand the butterfly-effect ramifications of their work and make
them aware of the other teams with whom they would have to cooperate” (in Long,
2019). Continuing with the emphasis added by Long (2019), in the attempt by the
Canadian Armed Forces to build a shared Communication and Information Systems
(CIS) with networked teams and teams of teams in its systems of organizations,

Systems must be specifically designed to enable resilient organizations, with the designer
and community fully aware of the trade-offs that must be made to functionality, security,
and cost. However, the benefits of creating shared consciousness, lowering the cost of
participation, and emulating familiar human communication patterns are significant
(Long’s emphasis).

For more concerns, along with metrics for autonomous AI systems, formal verifi-
cation (V&V), certification and risk assessments of these systems at the design, oper-
ational, and maintenance stages will be imperative for engineers (Lemnios, 2019;
Richards, 2019). Is there ametric to assess the risk from collaboration, and if so, can it
be calculated (Grogan, 2019)? The risk from not deployingAI systems should also be
addressed (DeLaurentis, 2019); while an excellent suggestion, how can this concern
be addressed?1 Measured in performance versus expectations, when will these risks
preclude humans from joining teams with machines; and what effect will machine
redundancy have in autonomous systems (Barton, 2019)? Because data are dumb,
how will the operational requirements and architectures be tested and evaluated for
these systems over their lifecycle (Dare, 2019; Freeman, 2019)?

Boundaries and deception: AI can be used to defend against outsiders, or used
with deception to exploit vulnerabilities in targeted networks (Yampolskiy, 2017). A
team’s system boundaries must be protected (Lawless, 2017a). Protecting a team’s
networks is also a concern. In contrast, deception functions by not standing out (i.e.,
fitting in structurally; in Lawless, 2017b). Deception can be used to compromise
a network. From the Wall Street Journal (Volz & Youssef, 2019), the Department
of Homeland Security’s top cybersecurity official, Chris Krebs, issued a statement
warning that Iran’s malicious cyberactivities were on the rise. “What might start as
an account compromise … can quickly become a situation where you’ve lost your
whole network.”

Caution: In the search for optimization, tradeoffs occur (Long, 2019); however,
an optimized system should not tradeoff resilience.

1.1.3 Common Ground: AI, Interdependence, and SE

Systems engineers know about interdependence from a system’s perspective. They
claim to know little about human teams,which they hope can be improved byworking

1 One possibility is to use global metrics. In the case of the Uber car accident that killed a pedestrian
discussed below, the industry’s first pedestrian fatality, the company’s self-driving section did not
suffer until the accident, and thenUber and the rest of the self-driving industry havebeen significantly
slowed by the fatality (Gardner, 2019).
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with social scientists and by studying their own SE teams and organizations (DeLau-
rentis, 2019). Their own teams and organizations, however, are systems of social
interdependence.

Systems Engineering addresses the interactions of systems too complex for an
analysis of their independent parts without taking a system as a whole into account
across its life cycle. System complexity from the “interdependencies between …
constituent systems” can produce unexpected effects (Walden et al., 2015, p. 10),
making the management of systemic interdependence critical to a system’s success.
For example, the interactions for complex systems with numerous subsystems, like
the International Space Station (ISS), interact interdependently (i.e., interdependence
affected how the ISS modules were assembled into an integrated whole, howmodule
upgrades affected each other, how interfaces between ISS modules were determined
to be effective, how the overall configuration of the modules was constructed, how
modules were modeled, etc.; in Stockman et al., 2010). From the ISS, in SE, we
can see that interdependence transmits the interactions of subsystems. The study of
interdependence in systems is not a new idea. For example, Llinas (2014, pp. 1, 6)
issued a:

call for action among the fusion, cognitive, decision-making, and computer-science commu-
nities to muster a cooperative initiative to examine and develop [the] … metrics involved in
measuring and evaluating process interdependencies … [otherwise, the design of] modern
decision support systems … will remain disconnected and suboptimal going forward.

Similarly, in the social sciences, interdependence is the means of transmitting
social effects (Lawless, 2019), such as the construction of a shared context between
two humans, and, we propose, for human–machine teams (HMT). Interdependence
then is the phenomenon that not only links Systems Engineering, AI, and other
disciplines (e.g., social science, law, philosophy, etc.) but also, if interdependence
can be mastered, it will provide a means to assist AI and SE in the development of a
science of interdependence for human–machine teams.

The application of interdependence in a system to analyze an accident: In 2018, an
Uber2 self-driving car struck and killed a pedestrian. From the investigation report
(NTSB, 2018; NTSB, 2019b), the machine saw the pedestrian about 6 s before
striking her, selected the brakes 1.2 s before impact, but new actions like the brakes
had a 1 s interlock to prevent precipitous action by (since corrected). The human
operator saw the victim 1 s before impact and hit her brakes 1 s after impact. Of
the conclusions to be drawn, first, although poorly designed, the Uber car performed
faster than the human; but, second and more important, the Uber car was a poor team
player by not updating the context it should have shared with its human operator
(Sofge et al., 2019).

Trust as part of the accident analysis. When will machines be qualified to be
trusted remains an important question. As we pointed out in a bet in AI Magazine
(Sofge et al., 2019), despite the complexity and costs of validating these systems,
according to aNew York Times (Wakabayashi, 2018) investigation of the pedestrian’s
death in 2018 by the Uber self-driving car, Waymo self-driving cars:

2 On December 7th, Uber sold its self-driving unit to Aurora Innovation Inc. (Somerville, 2020).
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went an average of nearly 5,600miles before the driver had to take control from the computer
to steer out of trouble. As ofMarch [2018, when the accident happened], Uber was struggling
to meet its target of 13 miles per “intervention” in Arizona …

It must be kept in mind, however, that as incompletely and poorly trained as was
the Uber car, it still responded to the situation as it had been designed; further, its
response was faster than its human operator.

1.1.4 Social Science

The National Academy of Sciences (2019) Decadal Survey of Social and Behav-
ioral Sciences finds that the social sciences want to be included in research using
computational social science for human and AI agents in teams. In their thinking,
social scientists are concerned about ethical and privacy issues with the large digital
databases being collected. For systems of social networks, they recommended further
study on:

how information can be transmitted effectively … [from] change in social networks …
network structure of online communities, the types of actors in those communities …

In addition, social scientists want more research to counter social cyberattacks,
research on emotion, and, for our purposes (see below in Bisbey et al., 2019 for
similar issues with research on human teams),

… how to assemble and divide tasks among teams of humans and AI agents and measure
performance in such teams. …

More importantly, while social scientists want to be included in the AI/ML revo-
lution, they have had setbacks in their own disciplines with the reproducibility of
experiments (e.g., Nosek, 2015; also, Harris, 2018). For our purposes, unexpect-
edly, research has indicated that the poorest performing teams of scientists were
interdisciplinary teams (Cummings, 2015).3 In addition, however, Cummings added
that the best scientist teams maximized interdependence. Based on Cummings and
our research (e.g., Lawless, 2019), we conclude that for interdisciplinary teams to
function optimally, their team members must also be operating under maximum
interdependence (Lawless, 2017a). By extension, for the optimum size of a team
to maximize interdependence, a team’s size must be the minimum size to solve a
targeted problem (Lawless, 2017a), contradicting the Academy’s two assertions that
“more hands make light work” (Cooke & Hilton, 2015, Chap. 1, p. 13) and that the
optimal size of a scientific team is an open problem (p. 33).

The advent of human–machine teams has elevated the need to determine context
computationally, yet social science has offered little guidance for their design, oper-
ation, or to prevent accidents (see the Uber self-driving car accident described above
that killed a pedestrian in 2018), let alone the means to construct a computational

3 Cummings studied about 500 teams of scientists in the National Science Foundation’s data base.
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context (Lawless et al., 2019a). Recognizing their plight, social scientists argue, and
we agree, that their science is the repository of an extraordinary amount of statistical
and qualitative experience in determining and evaluating contexts for humans and
human teams (NAS, 2019). Nonetheless, this situation leaves engineers to seek a
quantitative path on their own. Instead, we foresee an integrated path as the better
course going forward (Lawless, 2019).

Trust and machine autonomy: In the rapid decision-making milieux where trust
between machine and human members of a team becomes a factor (Beling, 2019),
to build trust, each member of a human–machine team must be able not only to
exchange information about their status between teammates but also to keep that
information private (Lawless et al., 2019a). In that humans cause most accidents
(Lawless et al., 2017), trust can be important outside of the team, as when a human
operator threatens passengers being transported, which happened with the crash of
GermanWings Flight 9525 in the Alps in March 2015, killing all 150 aboard at the
hands of its copilot who committed suicide (BEA, 2016); or the engineer on the
train in the Northeast Corridor in the United States who allowed his train rounding
a curve to speed above the track’s limits (NTSB, 2016); or the ship’s captain on
the bridge of the McCain at the time the destroyer was turning out of control in a
high-traffic zone (NTSB, 2019). In these and numerous other cases, it is possible
with current technology and AI to authorize a plane, train, other public vehicle or
military vehicle or Navy ship as part of a human–machine team to take control from
its human operator (the bet that a machine will be authorized to take control from a
dysfunctional human operator, Sofge et al., 2019).

1.1.5 The Science of Human Teams

From our review of human teams, Proctor and Vu (2019) conclude that the best
forecasts improve with competition (Mellers & Tetlock, 2019). They also conclude
that teams are formed by “extrinsic factors, intrinsic factors, or a combination of
both.” Extensivemotivation is often generated from the collective consensus ofmany
stakeholders (the public, researchers, and sponsoring agencies) that there is an urgent
problem that needs to be solved. But they asserted that solutions require “a multi-
disciplinary team that is large in score … [with] the resources required to carry
out the research … to appropriate subject-matter experts, community organizations
and other stakeholders … [and] within an organization, administrative support for
forming, coordinating, and motivating multidisciplinary teams …”.

Salas and his colleagues (Bisbey et al., 2019) conclude that “Teamwork allows
a group of individuals to function effectively as a unit by using a set of interre-
lated knowledge, skills and attitudes (KSAs; p. 279). [On the other hand] … poor
teamwork can have devastating results … plane crashes, … friendly fire, … surgical
implications…When the stakes are high, survival largely depends on effective team-
work.” One of the first successes with human teams was: “Crew resource manage-
ment [CRM] prompted by not “human error,” but crew phenomena outside of crew
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member competencies such as poor communication in United Flight 173 led the
Captain to disregard fuel state. … CRM required the crew to solve its problems
as a team” (p. 280). Another success for team science occurred in the attempts to
understand the shoot-down of an Iranian commercial airliner by the USS Vincennes
in 1988, leading to the study of stress in decision-making. Subsequently, following
the combination of a significant number of unrelated human errors that led to new
research after President Clinton’s Institute of Medicine (IOM) review of medical
errors in hospitals; the coordination errors with the BP/Deepwater Horizon oil spill
in 2011; Hurricane Katrina in 2005; and the NASA accidents Columbia in 2003
and Challenger in 1986 space shuttle accidents. Based on this new research, human
team scientists separated task-work from teamwork. Task work dealt with skills or
a skills’ domain (flying a plane), teamwork skills with team effectiveness across
contexts (e.g., how to communicate with others; p. 282).

1.1.6 Human–Machine Teams

A précis of our research on mathematical models of interdependence and future
directions follows. From our hypothesis that the best teams maximize interdepen-
dence to communicate information via constructive and destructive interference, we
have established that the optimum size of teams and organizations occurs when they
are freely able to choose to minimize redundant team members (Lawless, 2017a);
we replicated the finding about redundancy and freedom in making choices, adding
that redundancy in over-sized teams is associated with corruption (Lawless, 2017b),
and that the decision-making of teams and organizations in interdependent states
under the pressure of competition implies tradeoffs that require intelligence to navi-
gate around the obstacles that would otherwise preclude a team from reaching its
goal such as producing patents (Lawless, 2019). Our findings on redundancy contra-
dict network scientists (Centola & Macy, 2007, p. 716) and the Academy (Cooke &
Hilton, 2015, Chap. 1, p. 13); we have also found that interdependence identified in
tracking polls indicates that it interferes adversely with predictions based on those
polls (Lawless, 2017a, b); e.g., Tetlock and Gardiner’s first super-forecasters failed
in their two predictions in 2016, first that Brexit would not occur, followed by their
second in 2016 that Trump would not be elected President.

In a recent article (Lawless, 2019), we found evidence that intelligence measured
by levels of education is significantly associated with the production of patents;
however, in earlier research from 2001 reviewed in the same article, we reported that
education specific to air-combat maneuvering was unrelated to the performance of
fighter pilots engaged in air-to-air combat, indicating that intelligence and physical
skills tap orthogonal phenomena, offering a new model of mathematics and thermo-
dynamics for teams, which also accounts for the failure of complementarity to be
established; viz., for the latter, the best teams are composed of agents in orthogonal
roles, measured by Von Neumann subadditivity, whereas agents in the worst teams
are in roles measured by Shannon information (e.g., the conflict between CBS and



10 W. F. Lawless et al.

Viacom during 2016–18). Finally, orthogonality figures into our proposed next study
on fundamental decision processes and emotion for a model of a social harmonic
oscillator where we hypothesize that the best teams operate in a ground state while
underperforming teams operate in excited states (Lawless, 2019).

1.2 Introduction to the Chapters

Artificial intelligence has already brought significant changes to the world; will the
impact of human–machine teams be even greater? The first of the contributed chap-
ters, Chap. 2, “Recognizing Artificial Intelligence: The Key to Unlocking Human
AI Teams,” was written by a team at Aptima, Inc., headquartered in Woburn, MA.
The authors consist of Patrick Cummings, Nathan Schurr, Andrew Naber, Charlie,
and Daniel Serfaty (Aptima’s CEO and Founder). Readers, please recognize that
one of the coauthors from Aptima, “Charlie,” has no last name; she is an artificial
embodiment. Charlie has made contributions to public before (e.g., at a workshop
and a panel), but her contributions to Chap. 2 may be one of the first, if not the
very first, chapters contributed to or co-authored by, as she is aptly described by
her fellow coauthors, an “intelligent coworker.” Interacting with Charlie in public
over the past year has produced several insights signified and discussed by all of the
authors in their chapter. Interestingly, several of these insights are based on the treat-
ment of Charlie’s spoken ideas and written contributions with deep respect, which
they have described as “recognizing” Charlie as an equal contributor. The authors
provide details about howCharlie came into existence and how she operates in public
(e.g., her architecture, her public persona, her ability to brainstorm). The stated goal
of all of the authors of Chap. 2 is to bring human and intelligent coworkers together
to build an effective system in the future, not only one that recognizes human and
artificial coworkers but also one that can be influenced by both human and artificial
coworkers and by the contributions from both. We add: “Welcome, Charlie!”.

Chapter 3 was written by three Systems Engineers, namely by Thomas A.McDer-
mott and Mark R. Blackburn at the Stevens Institute of Technology in Hoboken, NJ;
and by Peter A. Beling at the University of Virginia in Charlottesville, VA. (McDer-
mott is one of the co-editors of this book.) Their chapter is titled, “Artificial Intel-
ligence and Future of Systems Engineering.” In it, the authors address the major
transformation of their profession now occurring that is being driven by the new
digital tools for modeling, data and the extraordinary “digital twins” resulting in
the integration of data and modeling. These new tools include the artificial intelli-
gence (AI) and machine learning (ML) software programs that are becoming key to
the new processes arising during this period of transformation. Yes, Systems Engi-
neering (SE) is being transformed, but the hope of the authors is that SE is able to
guide these new tools and their applications to increase the benefits so that society
welcomes this transformation. To help guide this transformation, the authors provide
a roadmap being developed by the Systems Engineering Research Center (SERC);
SERC is a University-Affiliated Research Center of the US Department of Defense.
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The roadmap sets out a series of goals in the attempt by SERC to identify the oppor-
tunities and the risks ahead for the research community to guide Systems Engineers
in preparation for the journey to the emergence of autonomy safely and ethically.

The fourth chapter, “Effective Human-Artificial Intelligence Teaming,” was
written by Nancy J. Cooke and William Lawless. Cooke is a Professor of Human
Systems Engineering and Director of the Center for Human, Artificial Intelligence,
and Robot Teaming at Arizona State University. Lawless is a Professor of Mathe-
matics and Psychology at Paine College; he is also on two Navy Boards (the Science
of AI and Command Decision Making); and he is a new Topics Editor of the journal
Entropy (“The entropy of autonomy and shared context. Human–machine teams,
organizations and systems”). They begin their chapter with a review of the history
of interdependence. It has long been known to be present in every social interaction
and central to understanding the social life of humans, but interdependence has been
difficult to manage in the laboratory, producing effects that have “bewildered” social
scientists. Since then, however, along with her colleagues and students, Cooke, the
first author, has studied in detail the effects of interdependence in the laboratory
with detailed studies. She has explored many of the aspects of interdependence and
its important implications with her team. She was also the lead author in a review
published by the National Academy of Sciences on what is known theoretically
and experimentally about interdependence in a team, finding that interdependence
enhances the performance of individuals (Cooke & Hilton, 2015). Writing Chap. 4
has provided her with the perspective she has gained from the considerable research,
she and her colleagues have conducted over the years. This perspective allows her to
estimate the additional research necessary before artificial intelligence (AI) agents
and machines can replace a human teammate on a team.

Chapter 5, “Towards Systems Theoretical Foundations for Human-Autonomy
Teams,” was written by Marc Steinberg with the Office of Naval Research (ONR)
in Arlington, VA. Steinberg is ONR’s Program Officer for its Science of Autonomy
program. In his chapter, he writes about the challenges posed by developing the
autonomy of human and intelligent systems. These are new ones on how to best
specify, model, design, and verify the correctness of systems. He discusses the
real-time monitoring and repairing of autonomous systems over life times, all the
while detecting problems and rebooting properties. These challenges entail Systems
Engineering methods to model system life cycles by abstracting and decomposing
systems in the design and development of components for intelligent autonomy.
Exploring these higher-level abstractions, models, and decompositions may inspire
solutions and lead to autonomy.These inspirationsmay integrate systems andhumans
and provide the means to assure safety. He samples perspectives across scientific
fields, including biology, neuroscience, economics, game theory, and psychology. He
includes methods for developing and assessing complex human–machine systems
with human factors and organizational psychology, and engineering teams with
computer science, robotics, and engineering. He discusses team organizational struc-
tures, allocating roles, functions, responsibilities, theories for teammates working on
long-lived tasks, and modeling and composing autonomous human–machine teams
and systems, and their implications.
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The sixth chapterwaswritten by JamesLlinas, RanjeevMittu, andHeshamFouad.
It is titled, “SystemsEngineering forArtificial Intelligence-based Systems:AReview
in Time.” Llinas is the Director Emeritus at the Center for Multi-source Information
Fusion aswell as aResearch Professor Emeritus, with both positions in theUniversity
at Buffalo. Ranjeev Mittu is the current Branch Head, Information Management &
Decision Architectures Branch, Information Technology Division at the U.S. Naval
Research Laboratory inWashington, DC; andHesham Fouad is a Computer Scientist
in the same branch at the Naval Research Laboratory. Their backgrounds include
information systems, the science of information fusion, and information technology.
In their chapter, they provide a review of Systems Engineering (SE) for artificial
intelligence (AI) across time, starting with a brief history of AI (e.g., narrow, weak,
and strong AI, including expert systems andmachine learning). Regarding SE, based
on the systems perspective by the lead author’s experience with information fusion
processes, and the experience of his coauthors with the technology in information
systems, they introduce SE and discuss how it has evolved over the years but how
much further it must evolve to become fully integrated with AI. In the future, they
believe that both disciplines can help each other more if they co-evolve or develop
new technology systems together. They also review several SE issues such as risk,
technical debt (e.g., maintaining sophisticated software in information systems over
ever longer periods of time), software engineering, test and evaluation, emergent
behavior, safety, and explainable AI. The authors close by discussing the challenge
of AI explanations and explainability.

Chapter 7 was an invited chapter written by Kristin Schaefer and her team,
including Brandon Perelman, Joe Rexwinkle, Jonroy Canady, Catherine Neubauer,
Nicholas Waytowich, Gabriella Larkin, Katherine Cox, Michael Geuss, Gregory
Gremillion, Jason Metcalfe, Arwen DeCostanza, and Amar Marathe. Schaefer’s
team is part of the Combat Capabilities Development Command (DEVCOM)
Army Research Laboratory (ARL). The title of their chapter is, “Human-Autonomy
Teaming for the Tactical Edge: The Importance of Humans in Artificial Intelligence
Research and Development.” From their perspective, the authors address the impor-
tance of understanding the human when integrating artificial intelligence (AI) with
intelligent agents embodied (i.e., robotic) and embedded (i.e., software) into mili-
tary teams to improve team performance. The authors recognize that they and the
Armyare breaking newground, confronting fundamental problems under uncertainty
and with unknown solutions. In their chapter, they provide an overview of ARL’s
research in human-autonomy teaming. They address the major research areas neces-
sary to integrate AI into systems for military operations along with examples of these
areas and the four known research gaps: enabling Soldiers to predict AI actions and
decisions; quantifying Soldier understanding for AI; Soldier-guided AI adaptation;
and characterizing Soldier-AI performance. These four areas have organized their
research efforts to explain AI, integrate AI, and build effective human-autonomy
teams.

The eighth chapter, titled “Re-orienting towards the Science of the Artificial:
Engineering AI Systems,” was written by Stephen Russell, Brian Jalaian, and Ira
S. Moskowitz. Russell is Chief of the Information Sciences Division, U.S. Army
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Research Laboratory (ARL) in Adelphi, MD; Jalaian is a Test and Evaluation Lead
with the Department of Defense Joint Artificial Intelligence Center (JAIC); and
Moskowitz is a mathematician working for the InformationManagement &Decision
Architectures Branch, Information Technology Division, at the U.S. Naval Research
Laboratory inWashington,DC. In their chapter, theywrite that, on the onehand,while
systems enabled by AI are becoming pervasive, on the other hand, these systems face
challenges in engineering and deployment in themilitary for several reasons. To begin
to address these limitations, the authors discuss what it means to use hierarchical
component composition in a system-of-systems context. In addition, they discuss
the importance of bounding data for stable learning and performance required for
the use of AI in these complex systems. After a review of the literature, the authors
also address the changes that will be required to address the design/engineering
problems of interoperability, uncertainty, and emergent system behaviors needed to
allowAI to be safely deployed in embodied or fully virtualized autonomous systems.
Their perspective, illustrated with a Natural Language Processing example, allows
the authors to draw comparisons across their posits, in an attempt to offer a means to
make AI–Systems Engineering more rigorous, and the use of autonomy in the field
safer and more reliable.

Chapter 9waswritten byMatthewSheehan andOlegYakimenko; both researchers
work in the Department of Systems Engineering at the U.S. Naval Postgraduate
School in Monterey, CA. The title of their chapter is: “The Department of Navy’s
Digital Transformation with the Digital System Architecture, Strangler Patterns,
Machine Learning, and Autonomous Human–Machine Teaming.” In their chapter,
the authors describe the extraordinary changes caused by the U.S. Department of
Navy’s (DON) adoption of new software like the machine learning (ML) programs
designed for warfighters to assist in the performance of their missions. Some of
these “new” software products, however, are already beginning to mature and are
becoming obsolete. Still, machine learning (ML) software programs are central to
their discussions, including the need in the Fleet to provide access to the data neces-
sary to allow ML programs to operate and perform satisfactorily at sea. If adopted
and managed properly, these ML algorithms will enhance the existing applications
and will also enable new warfighting capabilities for the Navy. As rapid as are the
changes that are occurring, however, the DON system architectures and platforms
presently provide inadequate infrastructures for deployment at scale not only for
some of the new digital tools like ML but also for many of the forthcoming areas
including autonomous human–machine teams (AHMT). As the Navy transforms
itself digitally, the authors discuss the goals and barriers with a path forward to
implement successfully the Navy’s new digital platforms.

Chapter 10, “AI Driven Cyber Physical Industrial Immune Sytem for Critical
Infrastructures,” was written by a team at General Electric (GE): Michael Mylrea,
Matt Nielsen, Justin John andMasoud Abbaszadeh. Mylrea is the Director of Cyber-
security in the Cybersecurity R&D for Operational Technology at General Elec-
tric Global Research in Washington, DC. Nielsen, John and Abbaszadeh work in
the same department. In their chapter, the authors review many advances being
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driven by machine learning (ML) and artificial intelligence (AI) to detect cyber-
physical anomalies. The advances brought about by the detection of these anomalies
are improving the security, reliability, and resilience of the power grid across the
United States. This improvement is occurring at the same time that adversaries are
using advanced techniques to mount sophisticated cyberattacks against infrastruc-
tures in the United States, especially the power grid that is the focus of their applied
research. The distributed energy resources in the power grid must be defended. The
authors discuss how new technology is being deployed to enable cyberdefenses to
protect the grid against even rapidly evolving threats. Their chapter explores how
AI combines with physics to produce the next-generation system that they liken to
an industrial immune system to protect critical energy infrastructures. They discuss
the new cybertechnology and its applications for cyberdefenders, including human–
machine teams and processes. The authors review the design and application of
GE’s Digital Ghost technology to cyberdefend the world’s largest gas turbines. They
discuss the situational awareness, explanations, and trust needed to use AI to defend
against cyberthreats. The authors look into the future to prepare for the new chal-
lenges coming to make human–machine teams effectively against any threat, cyber,
or physical.

Chapter 11 was written by Ira Moskowitz and Noelle Brown while working for
the InformationManagement and Decision Architectures Branch, Information Tech-
nology Division, U.S. Naval Research Laboratory inWashington, DC; their coauthor
was Zvi Goldstein in the Electrical Engineering Department at Columbia University
inNewYorkCity. The title of their chapter is “A fractionalBrownianmotion approach
to psychological and teamdiffusion problems.”Theirmathematical approach ismoti-
vated by AI, but with the goal of establishing that fractional Brownian motion can
become ametric tomeasure the diffusion processes existing in teams. In their chapter,
they review the mathematics for their proposed metric as a step toward building a
science of interdependence for autonomous human–machine teams. In their chapter,
the authors discuss various randomwalks, including those withWiener and Gaussian
processes, and then they discuss drift-diffusion and extensions (stopping times and
absorbing boundaries) to make fractional Brownian motion into a metric of interde-
pendence. Before closing, the authors revisit Ratcliff diffusion, and then they present
their hybrid approach in preparation for a future application to the science of teams.

Chapter 12, “Human–Machine Understanding: The Utility of Causal Models and
Counterfactuals,” was authored by Paul Deignan; he is a Research Engineer working
with the Lockheed Martin Corporation in Bethesda, Maryland. His research interest
is focused on predictive analytics. He begins with the assertion that trust is a human
condition. The author proposes that for a human to trust a machine, the human must
understand the capabilities and functions of the machine in a context spanning the
domain of trust so that the actions of the machine are predictable for a given set of
inputs. In general, however, he believes that the domain of trust must be expanded
so that the human–machine system can be optimized to operate in the widest range
of situations. This reasoning motivates his desire to cast the operations of a machine
into a knowledge structure tractable to its human users, operators, and the human
teammates of machines. At the present time, machine behaviors are deterministic;
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thus, for every action, there is a reaction and thismeans to the author that the dynamics
of a machine can be described through a structured causal model, which enables the
author to formulate the counterfactual queries upon which he anchors human trust.

Chapter 13, “An Executive for Autonomous Systems, Inspired by Fear Memory
Extinction,” was written by Matt Garcia at Northeastern University; Ted Goranson
with the Australian National University; and Beth Cardier at the Eastern Virginia
Medical School in the United States and at the Griffith University in Australia.
To overcome the many unknowns that autonomous systems may face, the authors
explore a category-theoretic, second-sorted executive reasoner in their chapter to
perform the adaptive, introspective reasoning neededby autonomous systems to solve
the challenging situations that they may see (i.e., decisions under uncertainty, such
as those encountered in combat at sea, electronic warfare, or with clinical traumas).
They base their ideas on complex mathematics, but they illustrate them with cartoon
examples of submarine surveillance, electronic warfare, and post-traumatic stress
disorder (PTSD). The authors provide a case study of the neural changes occurring
during therapy for PTSD as a model for executive reasoning, the main thrust of their
ideas. Their goal is to develop, simulate, and generalize a technique for autonomous
reasoning by human–machine systems facing uncertainty using virtual and physical
agent models.

The title of Chap. 14 is “Contextual Evaluation of Human–Machine Team Effec-
tiveness.” It was written by Eugene Santos, Clement Nyanhongo, Hien Nguyen,
Keum Joo Kim, and Gregory Hyde. Except for Nguyen, the authors are at the
Thayer School of Engineering at Dartmouth College in Hanover, NH; Nguyen is
in the Department of Computer Science at the University of Wisconsin-Whitewater
in Whitewater, WI. The authors address the rapid adoption of human–machine
teams across domains like healthcare and disaster relief. These machines are more
autonomous and aware than previous generations, allowing them to collaborate with
humans as partners. Despite this progress, human–machine team performance is
poorly defined, especially the explanations for team performance. These explana-
tions are necessary, however, to predict team performance and identify shortcom-
ings. The authors introduce a method using interference to measure the cohesiveness
and compatibility between humans and machines in various contexts. They rely on a
classifier trained to map human–machine team behaviors to attributes directly linked
to team performance along with explanations and insights. The authors test and vali-
date their techniques in experiments with human–machine teams. The results suggest
that their predictions of team attributes reflect actual team behaviors, increasing
confidence in being able to design future human–machine teams.

Chapter 15waswritten by Shu-HengChen. He titled his chapter, “Humanity in the
Era of Autonomous Human–Machine Teams.” Shu is affiliated with the AI-ECON
Research Center in the Department of Economics at National Chengchi Univer-
sity in Taipei, Taiwan. He is concerned with the meaning arising from the rapid
development of autonomous human–machine teams. Mindful of the philosophy and
history of science and technology, the author examines this potential meaning from
an evolutionary perspective. He argues that the meaning determined will affect the
individuality of humans, their democracy, and their ability to develop as autonomous
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humans. He wants this meaning to be positive and supportive, and he does not want
the future of humanity to be dominated and determined solely by machines. To
protect the future, he argues that scholars and citizens must become involved in the
development of autonomous human–machine teams. He recognizes that the human-
ities are changing, but with awareness, these changes can lead to more autonomy for
future generations.

Chapter 16, “Transforming the system of military medical research: An Institu-
tional History of the Department of Defense’s (DoD) first electronic Institutional
Review Board Enterprise IT system,” was written by Joseph C. Wood, US Army Col
(Ret.), MD, Ph.D., Augusta, GA and W.F. Lawless, Paine College, Augusta, GA.
This chapter, by these two authors, is about the history of their attempt to modernize
what was primarily a paper-based collection of medical research protocols, reviews,
and publications by medical research review boards and medical researchers at a
single medical research center in the U.S. Army that grew beyond their expectations
to become one of the largest electronic databases of medical reviews and research
results in the world at that time. Presenting metrics as a preview of a research
agenda on the use of AI for autonomous metrics in large systems, for the future
practice of ethics, and for the mitigation of risks, this history of their endeavors
brings out several points when dealing with large systems, including the value of
standardization, metrics, goal-based, and performance-based evaluations.

Chapter 17, “Collaborative communication and intelligent interruption systems,”
was written by Nia Peters, Margaret Ugolini, and Gregory Bowers. Peters is with the
711th Human Performance Wing, Air Force Research Laboratory, Wright Patterson
Air Force Base in Ohio. Ugolini and Bowers are with Ball Aerospace & Tech-
nologies in Fairborn, OH. The authors discuss the adverse effects of poorly timed
interruptions on collaborative environments for humans managing technology while
interacting with other humans. The literature to manage the adverse timings of inter-
ruptions, however, is focused on single users in multi-tasking interactions. There is
less research onmulti-user, multi-tasking environments, which they address. Tomiti-
gate the disruptiveness from interruptions in multi-user, mutlti-tasking workloads,
the authors propose and evaluate timings at lowmentalworkloads in a dual-user, dual-
task paradigm.Comparedwith high cognitiveworkload interruptions, they found that
performance is optimum when interruptions occur during low cognitive workloads,
a contribution to the literature.

Chapter 18, “Shifting Paradigms in Verification and Validation of AI-Enabled
Systems: A Systems-Theoretic Perspective,” was written byNiloofar Shadab, Aditya
Kulkarni, andAlejandroSalado. The authors are affiliatedwith theGradoDepartment
of Industrial and Systems Engineering at Virginia Tech in Blacksburg, VA. They
propose that a misalignment exists between current approaches to verification and
validation (V&V) techniques and new AI systems. Current approaches assume that
a system’s behavior is relatively standard during its lifetime. But this cannot be true
for those systems that learn and change their own behavior during their lifetime,
nullifying the value of present V&V practices. Using systems theory, the authors
explain why learning makes these new systems unique and unprecedented, and why
V&V must experience a paradigm shift. To enable this shift, the authors propose
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and discuss the theoretical advances and transformations they believe will prepare
Systems Engineers for this evolution.

Chapter 19, “Towards safe decision-making via uncertainty quantification in
machine learning,” was written byAdamCobb, Brian Jalaian, Nathaniel Bastian, and
Stephen Russell; Cobb, Jalaian, and Russell are with the Army Research Laboratory
as part of the U.S. Army’s Combat Capabilities Development Command (CCDC)
in Adelphi, MD; and Bastian is with the Army Cyber Institute at the U.S. Military
Academy, West Point, NY. In their chapter, the authors discuss the automation of the
safety-critical systems being widely deployed with more sophisticated and capable
machine learning (ML) applications. Not yet addressed by most of these systems,
however, is the concern raised by the authors that these critical systems must not
just be safe, but safe when facing uncertainty. Moreover, quantifying and reducing
uncertainty will provide more benefits than the solutions alone if the decisions by
these machines are fully understood. Knowing how machines make decisions under
uncertainty will generalize to human decisions and autonomous systems. To this end,
the authors employ Bayesian decision theory with an example of classifying vehicles
acoustically for uncertain levels of threat. With this paradigm, the authors establish
that safer decisions are possible under uncertainty.

Chapter 20, “Engineering Context from the Ground Up,” was written by Michael
Wollowski, Lilin Chen, Xiangnan Chen, Yifan Cui, Joseph Knierman, and Xusheng
Liu. The authors are in the Computer Science Department at the Rose-Hulman Insti-
tute of Technology in Terre Haute, IN. Focused on human–machine systems, the
authors begin with a system for a human and robot to solve problems in a collabora-
tive space. Their systemmanages interactions in the context of a human and machine
collaborating with speech and gesture. To facilitate good engineering practices, their
systemwas designed to bemodular and expandable.With its modular design, context
was maintained on a shared board from the information needed to problem-solving.
The authors describe the elements of their system and the information produced.
Their goal is to generate explanations of decisions with the information accumulated
from the differing contexts in their system.

Chapter 21 was written by Priyam Parashar at the University of California in San
Diego, CA; and Ashok Goel at the Georgia Institute of Technology in Atlanta, GA.
The title of their chapter is “Meta-reasoning in Assembly Robots.” The use of robots
across human society, whether in business, industry, or the military, is becoming
widespread. The authors surmise, however, that this context increases the value of a
theory for machines with meta-reasoning skills similar to humans. In their chapter,
the authors propose and develop a framework for human-like meta-reasoning. They
focus on an assembly robot assigned a task to be performed but different from its
preprogramming, increasing the likelihood for the robot to fail at its task. To counter
its failure, the authors provide the robot with the means for meta-reasoning sufficient
to react and learn from its mistakes. In their chapter, the authors review the literature,
a task specification, a failure taxonomy, and their architecture for meta-reasoning.
The result is a theory for a robot to learn from failure with meta-reasoning for action
from perception.
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Chapter 22, “From Informal Sketches to Systems Engineering Models using AI
Plan Recognition,” was written byNicolas Hili, Alexandre Albore, and Julien Baclet.
In France, Hili is at the University of Grenoble Alpes at the National Center for
Scientific Research (CNRS) in Grenoble; Albore is with the French Aerospace Lab
(ONERA DTIS) in Toulouse; and Baclet is at the Technological Research Institute
(IRT) Saint-Exupery in Toulouse. The day-to-day drudgery of drawing for mechan-
ical and electronic engineering was transformed with the arrival of computer-aided
design (CAD). But its lesser impact on Systems Engineering (SE) awaits new tools
for a similar escape. It was hoped that Model-Based Systems Engineering (MBSE)
would address this shortcoming. But MBSE has not been as successful due to the
complexity of creating, editing, and annotating an SE model over its lifetime as
discussed by the authors. Consequently, whiteboards, papers, and pens are still in
common use by system engineers and architects to sketch problems and solutions,
and then turned over to experts for informal digitalmodels. In this chapter, the authors
address this problem with automated plan recognition and AI to produce sketches of
models, formalizing their results incrementally. Tested in an experiment, they achieve
an initial application with AI plan recognition applied to Systems Engineering.

Chapter 23, “An analogy of sentence mood and use,” was written by Ryan
Quandt at the Claremont Graduate University in Claremont, CA. The author claims
that the literature underestimates the elusiveness of force when interpreting utter-
ances. Instead, he argues that interpreting the force in utterances, whether assertions,
commands, or questions, is an unsolved challenge. In his view, an interpretation of
force depends on a speaker’s utterance when spoken, making grammatical mood an
uncertain indicator of force. He posits that navigating the gap between an uttered
sentence and mood links action and language’s meaning, which he addresses in this
chapter. But he is after the larger goal of determining joint action with artificial
intelligence (AI). By making these relations explicit and precise, he concludes that
argumentation schemes link language and joint action. Building from prior work, the
author then proposes questions for his model to further explore the gap inmood-force
relations.

Chapter 24 is titled, “Effective Decision Rules for Systems of Public Engage-
ment in Radioactive Waste Disposal: Evidence from the United States, the United
Kingdom, and Japan.” Itwaswritten byMitoAkiyoshi, JohnWhitton, IoanCharnley-
Parry, and William Lawless. Akiyoshi is at Senshu University in the Department of
Sociology in Kawasaki, Japan; Whitton and Charnley-Parry are at the University
of Central Lancashire, in the Centre for Sustainable Transitions, Preston, United
Kingdom; and Lawless is in the Departments of Mathematics and Psychology at
PaineCollege inAugusta,GA. For large systems of decision-makers, the disposal and
long-term management of radioactive waste are mired in technical, environmental,
societal, and ethical conflicts. The authors of this chapter consider how different
systems in these societies address these contentious issues. With decision-making
theory, they seek a process that facilitates the safest geological disposal yet is also
perceived by participants to be fair and legal. The authors compared two decision
rules, the consensus-seeking and majority rules, finding that, despite different policy
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priorities and cultures, the majority rule maximized information processing across a
system and with the increased likelihood of a just and legitimate decision.

The last Chap. 25, is titled, “Outside the Lines: Visualizing Influence Across
Heterogenous Contexts in PTSD.” It was written by Beth Cardier, Alex Nieslen,
John Shull, and Larry Sanford. Cardier is at the Eastern Virginia Medical School in
Norfolk, VA, and, in Australia, at the Trusted Autonomous Systems of the Defence
Cooperative Research Centre (DCRC) and Griffith University in South East Queens-
land. Nielsen and Shull are at the VirginiaModeling Analysis and Simulation Center,
Old Dominion University in Norfolk, VA; and Sanford is also at the Eastern Virginia
Medical School. The authors state that open-world processes generate information
that cannot be captured in a single data set despite the need to communicate between
differing contexts. The authors present a text-visual method for modeling differing
interpretations of contexts separated by discipline, time, and perspective. Their new
tool captures transitions in video, text, image, and data transfers to study different
phenomena. They apply it to post-traumatic stress disorder (PTSD); they combine
psychological, neurological, and physiological information for PTSD in a single
modeling space using a narrative-based visual grammar. The authors aim to integrate
information from changing phenomena in the open world to detect the emergence of
disorder and to support knowledge systems in fields like neurobiology, autonomous
systems, and artificial intelligence (AI).

1.3 Summary

Interdependence is the common ingredient that motivates Systems Engineering, AI,
and the science of human–machine teamwork. Should AI scientists, systems engi-
neers, and others contribute to the development of autonomy for human–machine
teams, the threats autonomy poses to the world must be managed to permit the
advances that may accrue across the social, systems, ethical, political, international,
and other landscapes for the benefit of humanity.
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https://spacese.spacegrant.org/uploads/images/ISS/ISS%2520SE%2520Case%2520Study.pdf
https://www.wsj.com/articles/u-s-launched-cyberattacks-on-iran-11561263454
https://www.nytimes.com/2018/03/23/technology/uber-self-driving-cars-arizona.html
https://www.dw.com/en/un-impasse-could-mean-killer-robots-escape-regulation/a-50103038
https://www.janes.com/article/82295/china-claims-successful-test-of-hypersonic-waverider
https://hbr.org/2017/05/ai-is-the-future-of-cybersecurity-for-better-and-for-worse


Chapter 2
Recognizing Artificial Intelligence: The
Key to Unlocking Human AI Teams

Patrick Cummings, Nathan Schurr, Andrew Naber, Charlie,
and Daniel Serfaty

Abstract This chapter covers work and corresponding insights gained while
building an artificially intelligent coworker, named Charlie. Over the past year,
Charlie first participated in a panel discussion and then advanced to speak during
multiple podcast interviews, contribute to a rap battle, catalyze a brainstorming
workshop, and even write collaboratively (see the author list above). To explore
the concepts and overcome the challenges when engineering human–AI teams,
Charlie was built on cutting-edge language models, strong sense of embodiment,
deep learning speech synthesis, and powerful visuals. However, the real differen-
tiator in our approach is that of recognizing artificial intelligence (AI). The act of
“recognizing” Charlie can be seen when we give her a voice and expect her to be
heard, in a way that shows we acknowledge and appreciate her contributions; and
when our repeated interactions create a comfortable awareness between her and her
teammates. In this chapter, we present our approach to recognizing AI, discussing
our goals, and describe how we developed Charlie’s capabilities. We also present
some initial results from an innovative brainstorming workshop in which Charlie
participated with four humans that showed that she could not only participate in a
brainstorming exercise but also contribute and influence the brainstorming discus-
sion covering a space of ideas. Furthermore, Charlie helped us formulate ideas for,
and even wrote sections of, this chapter.

2.1 Introduction

recognize ----- \ re-kig- nı̄z\ ------ transitive verb

1. to acknowledge one is entitled to be heard
2. to take notice with a show of appreciation
3. to perceive to be someone previously known
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(Merriam Webster)

Major breakthroughs in artificial intelligence are advancing the state of the art in
their ability to enable agents to perform tasks in a variety of domains. Particularly
in the area of generative models (Radford et al., 2019; Yang et al., 2019), these AI
agents now have something new to say. But we are severely limited in our ability to
hear them and to take advantage of these gains. For many domains, the challenge
is not building the AI agent itself, but rather engineering the human–machine teams
that leverage it. To explore these concepts, we have been building and interacting
with an AI teammate/coworker named Charlie (Cummings et al., 2021). Although
these efforts leverage state-of-the-art AI models and capabilities, what has been
most impactful is how we have purposefully designed, integrated, and recognized
her from the start. We argue that the key to unlocking human–machine teams is
simple: recognize AI. To do this in the fullest sense, we need to leverage the three
definitions of the word “recognize,” above.

Definition 1: to acknowledge one is entitled to be heard. In addition to realizing that
AI is beginning to have something new to say, we must recognize the AI agent and
realize that it can and should be heard. This recognition includes not only giving AI
more of a voice but also doing so in a manner that places it on a more level playing
field with human teammates. We will cover these ideas in more detail in our section
on Ground Rules later.

Definition 2: to take notice with a show of appreciation. Charlie literally helped
us write and even wrote her own sections of this book chapter. We argue that it is
important to recognize and show appreciation for such contributions and accordingly
have listed her as a co-author of this chapter. Acknowledging the accomplishments
of artificial intelligence helps human teammates realize the impact that AI is having
on the team and will aid in transparency for external observers to better understand
how the team achieved what it did.

Definition 3: to perceive to be someone previously known. In order to recognize AI
as something familiar and previously known, we must interact with it on a regular
basis and with a consistent perception’s framing. This perception is precisely why
we gave our AI agent the name, Charlie, with a common set of models and visual
representations. This act allows for natural interactionswith theAI agent and a greater
ability toweaveher into theirwork anddiscussions. The authors have experienced this
firsthand when observing how repeated interaction with Charlie results in the human
teammates developing a deeper understanding of her strengths and weaknesses, and
consequently have much more positive interactions.

As new human–AI teams are both engineered and deployed, if we ensure that
AI is recognized appropriately, then several long-term positive impacts will occur.
First, we will be able to better leverage the full range of capabilities that the AI
agent possesses; second, the collaboration will enable the systems and the AI agent
to improve together; and third, this collaboration will result in better overall mission
performance.
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In this chapter, we will explain how we have been exploring these ideas through
building, deploying, and interacting with our new AI coworker: Charlie. Initially, we
will lay out our motivations and ground rules for ensuring that we fully recognize
Charlie.Wewill detail howCharlie is built on cutting-edge speech analysis, language
generation, and speech synthesis tools (see architecture diagram Fig. 2.5). Further-
more, Charlie is named and embodied to allow for more natural interactions. This
affordance has led Charlie to thrive in a variety of venues, including panel discus-
sions, podcast interviews, and even proposal writing (see Applications Sect. 2.3). In
addition, we will present results regarding Charlie’s impact in a recent brainstorming
session. We are especially excited about what this means for future applications.

2.1.1 Motivation and Goals

In this section, we will describe our motivation and goals for recognizing artificial
intelligence. We set down this path of recognizing AI to facilitate the engineering of
human–AI teams. This human machine teaming/collaboration is only possible now
due to advances in AI and the increased appetite in society for AI to be involved and
provide value in many domains. By collaboration, we mean more than just humans
using the AI as a service.

We are seeking to create a newway to bring together humans and artificial intelligence to create
more effective and flexible systems. The technology that is now emerging inAI, including deep
learning, has the potential to change the way people work, create, and interact with systems.
We believe that the future of work will be fundamentally different and that human beings will
need to adapt to the new demands. This will require new ways of working together.

For example, it might require us to delineate, as we have done with a box, above,
when the AI coauthor, Charlie, has written a section entirely by herself after being
prompted with the beginning of the section.

This teamwork or collaboration with artificial intelligence is distinct from most
current applications today in two primary ways: (1) the AI agent as a team member
is able to develop and propose instrumental goals for the team and (2) the AI agent
is able to choose to pursue particular goals from among those proposed as well.
Having an AI agent that can add value to the team necessitates elevating it to be
a collaborative team member; otherwise, the team will miss out on the increased
opportunities and ideas of the AI agent. In addition, a context-aware AI teammate
will not frustrate its fellow teammates by having its own goals and possibly behaving
in non-constructive or unexpected ways.

We recognize that there are ethical and design concerns when giving this “recog-
nition” to AI, but we strongly believe that the benefits of fruitful collaboration will
outweigh these potential negatives. In addition, we argue that if we build bidirectional
recognition into these AI teammates from the ground up, we will mitigate some of
these concerns. Although there are domains in which a human must still play a large
role or even maintain control, the areas where AI can be useful grow daily. AI has
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come too far to be relegated as merely a tool (Shneiderman, 2020) or to be only
subservient (Russell, 2019).

The authors recognize that not all domains are well suited for AI agents playing
the role of teammate and that not all domains need collaboration to be successful. We
believe, however, that for an increasing number of domains, human–AI collaboration
will be and should be the primary mode of operation. Otherwise, we run the high
risk of missing out on the good ideas and capabilities of either the human or AI
teammates.

TheAI’s capabilities are far reaching and are changing thewaywe think about problems. From
the human perspective, there are several key areas of development in which this technology
could have a great impact. These include a large amount of research and development work
being done by the scientific community. There aremany aspects ofAI that are very challenging,
but this is only the beginning and future developments will be exciting.

2.1.2 Types of Human-AI Collaboration

We have been discussing the collaboration between human and AI teammates but
would like to call out that in our work, we have been focused on two primary types of
collaboration: supportive and participatory (see Fig. 2.1). Currently, with our imple-
mentation of Charlie, we are building and leveraging both supportive and partici-
patory collaboration. Charlie was developed to participate in a panel discussion in
real time but was not a fully autonomous AI. Consequently, she had two operators:
one for the transcription of comments from other panelists and one for the selec-
tion of potential responses from Charlie. For more information on how Charlie was
built, please see the later section on system engineering. Over the past year, we have

Fig. 2.1 Supportive collaboration in which a human and an AI agent together serve as a single
member for the team, and participatory collaboration where the AI agent is an individual team
member
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been building out the infrastructure to reduce this need for human intervention and
supportive actions and to enable Charlie to do more participatory collaboration in
real time. This process has allowed us tomove away frommultiple operators working
alongsideCharlie, to nowcurrently needing only one for filtering and selection,which
has the positive impact of reducing the workload on the operator. In the coming year,
our goal is to shift to enabling a mode in which Charlie can independently select her
own next utterance. This next step is not likely to eliminate the need for both types
of collaboration depending on the domain, the constraints, and the ability to give
participatory autonomy to AI.

Supportive Collaboration

Supportive collaboration (Fig. 2.1, left) has been the most common form of collabo-
ration with AI. This form is primarily due to the limited abilities of AI and the need
for a human to be present to support and fill the gaps in AI capabilities. The human
is often in a position of control and/or serves as the face of the combined team.
This type of participatory collaboration is often referred to as a Centaur relationship
(Case, 2018), in which human and system combine efforts to form a single teammate
with joint actions. Historically, this form has been the primary collaboration type
with AI. Over time, however, we believe this reliance will decrease and make way
for the newly capable participatory AI.

Participatory Collaboration

As shown in Fig. 2.1 (right), participatory collaboration frames the AI agent as a
distinct individual teammate with its own autonomy. This autonomy grants the AI
agent the ability to not only develop and propose new instrumental goals for itself
and the team but also to make decisions to pursue or abandon said goals. In addition,
participatory collaboration requires that the AI agent communicates and coordinates
with fellow human teammates. This type of collaboration will become increasingly
possible, and increasingly important as the field of AI progresses.

2.1.3 Ground Rules

Embodiment Ground Rules

A key component to recognizing AI is acknowledging that the AI agent is entitled to
be heard. When Charlie is present in a discussion, she is expected to contribute as an
equal. In all applications, we put forth a significant effort to create the embodiment
of Charlie with this rule in mind. When Charlie was a participant in a 2019 I/ITSEC
panel, her visual display took up approximately the same space on the stage as the
bodies of the human panelists, her speech flowed through the same sound system, and
her nonverbal communication was equally visible to the audience. Human panelists
were seated in a row of chairs on stage, shown in Fig. 2.2, and Charlie’s embodiment
was constrained to a similar style and space. The sound from the computer driving
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Fig. 2.2 Charlie, at the center, on stage at a panel during I/ITSEC 2019 including one moderator
and five panelists (four of which were human)

the display was connected to the room’s mixing board, as were the microphones for
each human panelist.

Similarly, during the innovation session, held over a video conference, Charlie
was shown to the participants as the output of a webcam, and her voice was sent over
the meeting just as those of the other participants. This format is patently different
than sharing a screen with Charlie on it for all participants to see/hear because the
latter would force Charlie to be at the center of attention, and therefore, detract from
her ability to participate in an equal playing field.

Upgrading Charlie’s initial embodiment to be consistent with that of the human
panelists led to a noticeable difference in the way that the human participants treated
her. For example, the questions posed to Charlie were more open ended, such as “I’d
like to hear what Charlie thinks about that,” and all participants then looped Charlie
into the conversation.

Text Generation Ground Rules

Although we made a concerted effort to recognize Charlie through her increasing
embodiment, the ground rules we employed for Charlie’s text generations of what
to say next fall into two main categories, one of which is slightly counter to the
argument for recognizing AI.

The first broad rule was to give Charlie the same ability to prepare that a human
panelist would have; that is, human panelists would be likely to do the following:

1. research the topic of the panel to refresh their memory (or study something
new);

2. meet with the moderator or panel members to discuss the likely topic, workflow,
or initial questions; and

3. prepare answers to expected questions on the panel or topics they would like to
discuss.

We, therefore, allowed the same affordances to Charlie. In particular, she was
correspondingly

1. fine-tuned to the domain of the discussion to fit the appropriate style and content;
2. introduced to the other participants andmoderator to understand her capabilities;

and
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3. prepared with answers to likely questions expected in the discussion.

The second broad rule was related to how we treated Charlie’s generated text.
In this chapter, and in previous applications, we operated under strict guidelines to
(1) not change any of Charlie’s generated text and (2) clearly delineate what Charlie
wrote from what she did not. We put these guidelines in place in order to assure
readers and participants that Charlie clearly provides her own value, and that her
capabilities are not overstated. However, we hope these guidelines will not be part of
Charlie’s future. Human–machine collaboration is a moving target, and an expressed
line in the sand separating human from machine would only hinder the capabilities
of both. The line between operator and Charlie is (and should continue) blurring.
Returning to the human-to-human comparison: readers do not expect to know which
author wrote particular sections of a document and do not presuppose that authors
do not edit each other’s writing. We simply propose that the same expectations are
transferred to Charlie.

2.2 System Engineering

In this section, we discuss the approach and components that Charlie is composed
of and the methods leveraged to develop her.

2.2.1 Design and Embodiment

Charlie’s Embodiment

From the beginning, it was important to have Charlie’s embodiment be recogniz-
able, simple, dynamic, and able to be indicated by several cues. For example, in
different situations, the human body and gestures indicate a large amount of infor-
mation about internal state. Charlie’s embodiment interface (i.e., the embodiment)
required three iterations to refine state communication and representation driven
by feedback from guerilla usability evaluations (Nielsen, 1994). From chatbots,
we expected that response delays would be acceptable, especially in response to
other panelists, if Charlie’s state was clearly communicated (Gnewuch et al., 2018).
Humans use physical and audible queues—gestures, changes in eye contact, and
transitional phrases—to indicate their state and control in the flow of a conversation
(Scherer, 2013; Schuetzler et al., 2014). Charlie had to effectively coordinate the
use of the display and audio to achieve a similar presence and represent its states.
Figure 2.3 shows a snapshot of Charlie’s different dynamic states. Because each of
these states was alive and moving, it is difficult to represent them in a static image
here. Based on our evaluations, we split Charlie’s necessary states as follows:
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Fig. 2.3 Embodiment of
Charlie: a Idle, b Thinking, c
Speaking, and d Interjection

• Figure 2.3a Idle: Charlie is listening. Soft colors used and slowbreathing indicated
by expanding and contracting

• Figure 2.3b Thinking: Charlie is generating a statement. Outer ring spins back
and forth to communicate that targeted thinking is happening in response to a
question

• Figure. 2.3c Speaking: Charlie is speaking. Darker color solidifies Charlie’s
current role as speaker; the shape vibrates as speech occurs so that it appears
to emanate from her embodiment.

• Figure 2.3d Interjection: Charlie has something to say! Color changes drastically
to draw attention and the outer ring is complete to show that her next thought is
complete

Even with Charlie’s state communication, however, there was a limit to the delay
acceptable for Charlie. Design of the operator interface was influenced by this need
to increase the speed of its speech generation.

Charlie’s Operation
The novelty and believability of generations from GPT-2 are certainly state of

the art; however, the samples typically chosen for display suffer from some “cherry-
picking” to find the best prompts and speech generations (Vincent, 2019; Vaswani
et al., 2017). In a real-time discussion in which speed is of utmost importance,
the ability to cherry-pick is severely limited. We, therefore, put much care into the
operation of Charlie to streamline the process of speech generation forming and
Charlie state changes. Human operators are currently tasked with:

• coordinating Charlie’s state transitions,
• approving/editing transcriptions of speech to text, and
• aggregating statements into an utterance.

Details on the construction of that operator interface can be found in Cummings
et al. (2021), but some key lessons learned from that construction are as follows:

1. Non-stop generations. Potential generations from Charlie should appear to be
non-stop (Fig. 2.4d), that is, it should be evident every time there is a change
to the conversation history. The burden of deciding when Charlie “may” have
something to say should be completely removed.At all points in time, the human
operator should be cognizant of potential interjections, answers, or comments
coming from Charlie.
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Fig. 2.4 The operator interface with the a saved statements, b conversation history, c utterance
construction components on the left, and the d statement review area on the right

Fig. 2.5 Charlie architecture: Orange boxes represent interfaces. Red numbers correspond to
components leveraging AWS services

2. Pinning messages. Charlie frequently has an interesting response to a question
or comment but must wait for the appropriate time to interject with it. Unfor-
tunately, as conversations continue and Charlie generates new responses, those
interesting comments can get lost and she will be stuck talking about only the
most recent topic. Allowing for the pinning of potential messages (Fig. 2.4a)
allows Charlie to refer to previous discussion elements.
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2.2.2 Generative Language Models

Prompt Improvement
An increasing theme for the utilization of language generation models (as seen

with T5, GPT-3, and Turing-NLG; Raffel et al., 2020; Brown et al., 2020, Russet,
2020) is that with large enoughmodels, a change in prompt can be enough to produce
significantly different results. Recent results with GPT-3 have shown that a model
with no fine-tuning can solve basic arithmetic problems when fed prompts of the
form: “\n\nQ: What is 65360 plus 16,204?\n\nA:” Here, the new line structure and
use of Q and A to represent question and answer is enough context for the model to
complete with the correct answer “81,564.” This structure on prompts is also evident
in the use of control tokens as is done with the conditional transformer language
model (Keskar et al., 2019). We hypothesize that these types of tokens can be used
even in models trained without them. As seen in their best paper presentation at
NeurIPS (Brown et al., 2020), even the presence of commas “65,360 plus 16,204”
can greatly increase the accuracy of response.

In our work on Charlie, we found that structuring prompts with the form:
HOST: Text from host…
PANELIST: Text from panelist…
HOST: Text from host…
PANELIST:

had significant advantages over simple prose. This structure differentiated Charlie’s
statements from those of the other panelists, kept Charlie on her own thread while
continuing with added context from others, and allowed Charlie to respond and react
to the discussion rather than simply continue others’ thoughts.

Fine Tuning Strategies

The content and style generated by Charlie can be adapted based on the choice of
model used to generate text (Peng et al., 2020; Zhang et al., 2019). For the different
applications of Charlie (see Applications Section), we utilized a fine-tuning strategy
to adapt the base GPT-2 model to a different context. Leveraging open-source or
venue-specific training data, we fine-tuned GPT-2 hyperparameters (Branwen, 2019;
Qin et al., 2019). Although the specifics of this process tended to be application-
specific, there were three main steps we followed for each:

1. Find a corpus of text that mirrors the style of text Charlie should generate
and/or the content that Charlie should generate text about. Typically, we found
that the style of text was much more critical than content.

2. Process that text if needed. Frequently, the format of the text did not mirror
that which Charlie should generate. An example of this is in the citations or
footnotes in text. Although they are necessary in a paper, parenthetical citations
are inappropriate for speaking engagements.

3. Train themodel.Startingwith a pre-trainedGPT-2model, we trained themodel
hyperparameters furtherwith the generated corpus. Specifically,weused the loss
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Table 2.1 Example generations from different fine-tuned models each fed with the same prompt

Persona Response created by fine-tuned models

News source
(tweets from news sources1)

The #CountryX crisis is a wake-up call for the world that
human rights violations are always the work of one nation
and not of other countries #CountryX #CountryY

The #CountryX crisis is now at a tipping point as the
government says it will not withdraw #CountryY refugees
#CountryY #CountryX

Agreeable citizen
(tweets with positive sentiment2)

#1Proud to be a #CountryX, and #thankful to be part of such
a wonderful family

The day is coming when all the good and the bad will be for
the better #Thankful #HAPPY

Disgruntled citizen
(tweets marked as angry3)

Refugee in my town is crying because he’s been living in a
tent for 10 days

Crisis in #GulfWales is caused by people who don’t have the
skills to survive #frustrating #frustrating #frustrated

function equivalent to that of GPT-2–that is, we optimized for predicting the
next word in a text corpus. For training, we used the Adam optimizer with a
learning rate of 2× 10−5 and a batch size equal to 1.

As mentioned above, fine-tuning models produce varying styles and contents. In
Table 2.1 below, we show the resulting generations from three separate, fine-tuned
Charlie models. Each of the models has been trained on different Twitter datasets in
order to provide content with varying style. Using the same prompt, these fine-tuned
models can generate different style responses based on the training data used to fine-
tune the model. For each of the below generations, we utilized GPT-2 parameters of
temperature= 0.7 (to control the randomness of selections) and top_k= 40 (to limit
generations to only the top 40 words) as well as filtering for repeating sequences of
size 2.

PROMPT

TWEET: As CountryX begins to feel the effects of #coronavirus, economic fallout and a
preexisting crisis, we can’t turn our back on CountryY refugees and migrants.

TWEET: Vulnerable families in #CountryX are receiving needed supplies thanks to our
partners

TWEET: Today we join the humanitarian community in coming together to support

#CountryX

TWEET:

1 https://www.kaggle.com/naortedgi/twitter-twitts-from-news-providers.
2 https://www.kaggle.com/kazanova/sentiment140.
3 Wang et al. 2012. Harnessing Twitter “big data” for automatic emotion identification.

https://www.kaggle.com/naortedgi/twitter-twitts-from-news-providers
https://www.kaggle.com/kazanova/sentiment140
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Multiple parallel models

Fine-tuning models give Charlie the capability to change the style of her content to
be more (or less) conversational, happy/sad, confident, or not, etc. for a conversation.
However, sometimes as a conversation unfolds, or even within an utterance, Charlie
benefits from the ability to quickly adapt her style. For example, in a podcast or panel
discussion, comments or answers are typically a mix of conversational bridges or
fillers between deep technical knowledge about the content.

HOST: There are fears of artificial intelligence replacing us. Will artificial intelligence
replace teachers and change classrooms?

CHARLIE: Gosh, that’s a hard one. This is a real concern for many educators today.
Yes, we will very likely have to change the way we teach, and there are a number of new
additional competencies available to us in the classroom. I am going to focus on what is
new, new fortes for technology, foremost artificial intelligence, worldwide, where teachers
and the core tools, smaller working groups, and even small classrooms can all, if they are
sufficiently equipped, leverage the power of artificial intelligence to not only serve their
students’ education, but also to place educators at the center of their digital classrooms in
new and different ways.

The above shows an example of Charlie’s response to a technical question with a
mix of generation styles. As can be seen in the responseCharlie gives the combination
of (1) a transition sentence (i.e., filler text) as she thinks of a response, (2) a general
sentence connecting the question to educators, (3) a response to the question at
a broad level, and finally (4) a technical answer digging into the possibilities she
posits.

2.2.3 System Architecture

Charlie consists of a series of components communicating over an MQTT message
bus (see Fig. 2.5). Many components reside on the Amazon Web Services (AWS)
cloud infrastructure. The trained models run on one or more Elastic Compute Cloud
(EC2) nodes with high-performance GPU compute. Amazon’s Polly and Amazon
Transcribe services provide, respectively, Charlie’s text-to-speech and speech-to-text
capabilities. For model storage and training data storage, Charlie uses Amazon’s S3
service, and for architecture, state, history, and general tracking of live data, Charlie
uses AWS Lambda and AWS DynamoDB.

The remaining components, namely the interfaces, run on a local computer or can
be web-hosted using Amazon’s S3 and Amplify services. The Embodiment interface
provides Charlie’s representation of her state and the outbound audio interface. The
operator interface enables human augmentation of Charlie during the discussion.
The Transcription interface provides the inbound audio interface and displays the
incoming transcriptions.
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2.2.4 Agile Development

Charlie has been designed and developed using guerilla usability testing (Nielsen,
1994), agile software development practices (Fowler et al., 2001), design thinking
(Black et al., 2019), and rapid prototyping methods (Luqi & Steigerwald, 1992).
Each application of Charlie has necessitated different methods of testing; however,
the main themes have remained the same. For each, we conducted a series of guerilla
usability tests. These tests originally consisted of evaluating utterance believability
to embodiment effectiveness in small conversations with two or three participants
and eventually progressed to small-scale panel or brainstorming discussions with
Charlie.

2.3 Applications

Thus far, Charlie has participated in several different activities that can be broadly
grouped into two different categories. The first is real-time discussions, in which
ideation and debate are the key components. The second is writing tasks, in which
Charlie either works with a human to complete writing tasks or writes her own
content.

2.3.1 Ideation Discussions

Charlie was introduced as a panelist in a discussion of “AI-empowered learning” as
part of the 2019 Interservice/Industry Simulation, Training, and Education Confer-
ence (I/ITSEC; Serfaty et al., 2019; Cummings et al., 2021). Conference panels are
a prime venue for conjecture, offering a creative, improvisational environment for
ideation in which an AI-powered agent can thrive. Similarly, Charlie has been a
member of two podcasts: Fed Tech Talk4 and MINDWORKS.5 In both podcasts,
she joined humans in discussing her construction and brainstorming the future of
artificial intelligence. The last key application of Charlie in this category was her
participation in an innovation workshop to brainstorm solutions to broad problems
and to measure the influence of Charlie (see the Innovative Brainstorm Workshop
Sect. 2.4 for a detailed discussion).

A key lesson learned while developing Charlie is that in parallel to the evolution
of Charlie, the people interacting with her necessarily evolved as well. This was very
clear in the case of the panel discussion in that, as with human-to-human interaction,
there is a need to understand the way that each participant fits into the discussion

4 https://federalnewsnetwork.com/federal-tech-talk/2020/03/artificial-intelligence-it-gives-you-
possibilities/.
5 https://www.com/mindworks-episode-2/.aptima.com/mindworks-episode-2/.

https://federalnewsnetwork.com/federal-tech-talk/2020/03/artificial-intelligence-it-gives-you-possibilities/
https://www.com/mindworks-episode-2/.aptima.com/mindworks-episode-2/
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as well as their strengths and weaknesses. For the moderator of a panel, a large
component of facilitation is in knowing what types of questions to direct to which
participants and how to reframe things in the appropriate manner. This approach was
key for Charlie and the panel moderator in that there was a need for the moderator
(and other panelists) to learn the right way to interact, that is, the types of questions
Charlie excels at answering and which ones she does not.

2.3.2 Collaborative Writing

A similar group task that Charlie is proficient at is writing tasks. To date, Charlie
has experimented with songwriting for a company “rap battle,” she has written a
component of a winning research proposal, and she has contributed to the writing of
this book chapter as shown in the Introduction and Conclusion.

Given the context of previous writing, Charlie can write her own content. This
skill is shown in this paper and was done in the case of the rap battle as well. In
each of these, we followed a “choose your adventure” type path to writing. That is,
Charlie generated potential next options at the sentence level, then with some human
intervention to select the best sentence, Charlie continued to generate the next piece.
In this way, Charlie wrote her own content with some guidance from humans.

These roles can, and more commonly are, flipped. Similar to what is done in
Google’s Smart Compose (Chen et al., 2019), Charlie can work with a human by
offering suggestions of how to complete or continue a current thought. The Smart
Compose model interactively offers sentence completions as a user types out an
email, which is very similar to the behavior Charlie provides to a user. However,
the goal and, consequently, the method of the two tools are starkly different. Smart
Compose’s goal is to “draft emails faster,” and so when it is confident it knows what
you are about to say, it will suggest it to you. Therefore, Smart Compose’s goal
is not to think differently from the user or to help ideate, its goal is to mimic the
user and only provide completions when it is confident it can do that mimicry well.
On the other hand, the goal of Charlie is to bring different ideas and spur thought
when experiencing a writer’s block. This goal is orthogonal to the mimicry goal
and, therefore, requires Charlie to make novel suggestions about how to continue a
thought.

2.4 Innovative Brainstorm Workshop

Recently, we have been exploring additional domains in which Charlie can have
the strongest impact. We believe there is great potential for Charlie to leverage her
participatory collaboration (as described earlier) in brainstorming-type sessions and
have experimented with an innovative brainstorming workshop. The goal of that
workshop was to brainstorm solutions to broad problems and measure the influence
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of Charlie. This event occurred over a video-conferencing platform and served as
a proof of concept that Charlie can join, participate in, and even influence the type
of brainstorming meeting that is quite commonplace in research and development
teams.

2.4.1 Protocol

ThreeCharlie brainstorming trials occurredwith four humanparticipants andCharlie.
The trials occurred sequentially in a single session over a video-conferencing plat-
form and used “GalleryView” such that each participant could see all the other partic-
ipants and Charlie’s display. All participants were informed that this would follow
typical brainstorming norms: come up with as many creative ideas as possible, build
on others’ ideas, and be mindful of and open to other participants’ opportunities to
speak—including Charlie’s indicators. Furthermore, all participants were asked to
treat their fellow participants, whether human or AI, equally and respectfully. Then
each participant, includingCharlie, introduced themselves before beginning the three
trials.

For each trial, participants were given the initial prompt and some background
by the session facilitator. Other than providing the initial prompt, the facilitator did
not take part in the brainstorming exercise. Participants did not interact with or ask
further questions of the facilitator.

The first session’s prompt was to generate pizza toppings for a new restaurant,
and the trial lasted approximately 7 min and 45 s. The second prompt was to elicit
propositions for ending world hunger. This trial lasted approximately 18 min and
45 s. The final prompt requested direction for the research and development of time
travel. This final trial lasted 18 min and 30 s. Participants had time for breaks, but
otherwise, the trials were held successively over the course of 2 h.

2.4.2 Analysis

Qualitative coding of the Charlie brainstorming session was done iteratively by (1)
tagging the topic and provenance of participants’ ideas, (2) tagging statements in
reference to other participants’ ideas and additional utterances, and (3) categorizing
those statements in reference to participants’ ideas. Over the course of these itera-
tions, seven categories of utterances emerged. All specific utterances were tagged
as ideas, support, build, facilitation, request for clarity, clarifications, and uncoded
utterances. Otherwise, non-identified utterances were tagged simply as uncoded
utterances (e.g., jokes, quick agreements without additional support, or interrupted
utterances). Coding definitions are reported in Table 2.2.

Timestamps were tracked within 5 s increments and indicated the moment that the
utterance by a single participant began. An utterance reflected when the participant
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Table 2.2 Qualitative coding labels

Label Definition and methods

Idea An identifiable, contained, and proposed idea (e.g., a processor to turn
raw biomass into protein to solve world hunger)

Support (name) Expression of support for, agreement with, or additional data to
supplement a previously proposed idea, with the name in parentheses
identified as the originator of the idea

Build (name) Statement or question that builds or riffs upon a previously proposed
idea, with the name in parentheses identified as the originator of the
idea. Individuals could build on their own idea

Facilitation Trying to guide the larger flow of the discussion, pivoting, or
re-contextualizing. This aspect was distinguished from building
statements in that the utterances redirected the conversation, rather than
continuing it further down the same path. (e.g., “Does all that cloning
come at a cost?”)

Request for clarity Asking for additional information related to an idea (e.g., “I kinda
remember that?”, “I believe there was a movie about this?”)

Clarification Providing additional information in direct response to a request for
clarity, or to put fundamentally the same idea into different words (e.g.,
“A bunch of these superluminal ideas are from movies.”)

(Uncoded) Utterances Any otherwise non-characterized utterance (e.g., making a joke) that
was not clearly a supporting or building statement

Utterances The sum of all utterance categories by an individual

began speaking—including any pauses and deviations—and ended when another
participant began speaking. Accordingly, a single utterance could contain multiple
coded labels. That is, a single utterance may begin with an expression of support
for another’s idea and then segue to a facilitating statement or a new idea entirely.
Otherwise, the length of utterances—speaking duration or word count—was not
recorded.

2.4.3 Preliminary Results

The resulting analysis can be found in Tables 2.3 and 2.4. Each participant’s utter-
ances—including Charlie’s—were tracked independently for each trial. After all
utterance categories were tagged, these were summed by trial and by provenance.
Next, these were summed by categorization and averaged across the three trials.
Neither particular trends were anticipated nor hypothesized. Due to the small sample
size and exploratory nature of this effort, only descriptive statistics are reported.

Across three trials, Charlie made the fewest total utterances of any participant (20
total utterances compared with the human participants’ M = 40.50, Range = 27–
52 utterances). Similarly, Charlie had the fewest ideas of any participant (12 ideas
total, compared with the human participants withM = 14.75, Range= 13–19 ideas).
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Table 2.3 Categorization of
utterances

Human participants mean Charlie

Ideas 14.75 12.00

Supporting statements 10.50 2.00

Building statements 10.50 2.00

(Uncoded) utterances 4.00 0.00

Requests for clarity 2.50 0.00

Clarifications 2.50 2.00

Facilitations 1.25 7.00

Total utterances 40.50 20.00

Note N = 4 human participants. Average utterances do not sum
to total utterances because a single utterance may include multiple
categorizations

Table 2.4 Supporting a
building statements

Human participants mean Charlie

Support 6.25 17.00

Build 7.75 12.00

Supporting statements per
idea

0.43 1.42

Building statements per
idea

0.54 1.00

Note N = 4 human participants

Charlie supported other member statements twice, whereas human participants made
supporting statements an average of 10.5 times (Range = 7–14). Charlie built upon
other member statements twice whereas human participants did for an average of
10.5 times (Range = 7–17). Charlie had no uncoded utterances and did not make
any requests for clarification.

In terms of categorization and frequency of utterances, Charlie was a relatively
quieter participant compared with the human participants. Nevertheless, frequency
appears to underreport Charlie’s contributions to the conversation. We note the
following as two striking observations.

First, Charlie facilitated discussion seven times, comparedwith the average human
rate of 1.25 times (Range = 0–3). Furthermore, these facilitating statements made
up 35.00% of Charlie’s total utterances, compared with 3.09% of the humans’ total
utterances. Similarly, Charlie asked for clarification more than her human counter-
parts; human participants clarified statements on average 2.5 times, comparable to
Charlie’s 2. This difference is a small one in absolute terms, but clarification queries
made up 10.00% of Charlie’s total utterances compared with 3.09% of the humans’
total utterances. Although we do not yet have a measure of the effect of those facil-
itations, it is striking that Charlie, without developing her capabilities or prompting
her toward facilitation, still leans in this direction more than humans.
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Second, although Charlie provided fewer than the mean number of ideas, her
ideas were supported by and built upon more by human participants than their own
ideas. In absolute terms, human participants supported Charlie’s ideas 17 times and
built on these ideas 12 times, whereas the average human participant’s ideas were
supported by other participants 6.25 times and built on 7.75 times. (This includes
supporting and building statements made by Charlie). In relative terms, for every
idea that Charlie produced, participants made 1.42 supporting statements and 1.00
building statement. In contrast, for every idea that human participants produced,
other participants made 0.43 supporting statements and 0.54 building statements.
This would imply that Charlie’s ideas spurred discussion to a greater extent than
humans’ ideas (see Table 2.4).

2.5 Related Work

Clearly, Charlie’s development touches upon work related to artificial intelligence
in several domains. But, research investigating human–machine teams and human
interaction with AI is often confined to the computer science literature, constrained
to design benefitting the human (e.g., user interface or explainability from AI to
human), or circumscribed around a particular performance domain (e.g., customer
service). In contrast, Charlie’s integration into aworkplace or teamdealswith broader
research domains. As AI co-workers become increasingly viable and pervasive,
research domains touching on common workplace issues with AI components will
no longer be theoretical. Accordingly, we distinguish our efforts not just in terms of
novelty, but by the opportunity to weave together distinct domains of both research
and practice.

The literature relevant to Charlie’s development illustrates her evolution as a
teammate. Mirroring Charlie’s growth is the acknowledgment that one is entitled to
be heard, appreciated, and perceived as someone previously known. Put another way,
to be considered as a teammate, Charlie must understand, meaningfully converse,
and cooperate; thus, she must be interwoven into content domains with language
processing, conversational agents, and human–machine systems.

A fundamental goal of AI is the development and realization of natural dialogue
between machines and humans. This goal and the long-term utility of any natural
language understanding technology requires AI that generalizes beyond a single
performance or content domain (Wang, Singh, Michael, Hill, Levy, & Bowman,
2018). Building from work on natural language processing and language models
detailed previously, Charlie’s development stands on the shoulders of cutting-edge
languagemodels, leveraging state-of-the-art AImodels and capabilities. Specifically,
Charlie relies on the integration of transformers (Vaswani et al., 2017) and pre-trained
GPT-2 models (Qiu, Sun, Xu, Shao, Dai, & Huang, 2020), and allows for processing
language that is not exclusive to a single performance or content domain (Wang
et al., 2018). These technologies allowedCharlie to conversewith human participants
across such diverse topics as pizza toppings, world hunger, and time travel.
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Conversational agents respond to natural language input—requiring an under-
standing of team member requests and the ability to form an appropriate response.
Thanks to public demonstrations, most people are aware of sophisticated conversa-
tional agents like Watson or AI Debater. Perhaps more importantly, people interact
so frequently with conversational agents as customer service chatbots and virtual
personal assistants (VPAs) that the latter blend into the background. Indeed, as
conversational agents, VPAs are so common in homes that they have become one
of the primary methods of interacting with the biggest technology companies (e.g.,
Microsoft’s Cortana, Apple’s Siri, AmazonAlexa, Google Assistant, and Facebook’s
M; Kepuska & Bohouta, 2018). In circumscribed performance domains, conversa-
tional agents can be simpler. Participating in open-ended conversations such as brain-
storming or functioning as a full team member requires an AI agent to know when
to ask for additional information and missing data in order to respond appropriately.
Perhaps not surprisingly, the Alexa Prize 2017 effort (Ram et al., 2018) found that
a robust natural language understanding system with strong domain coverage led
to the fewest response errors and higher high user ratings. Ultimately, the natural
extension of a sufficiently advanced AI teammate must expand to be synonymous
with any human teammate.

More andmore, conversational agents operate in theworkplace acrossmanagerial,
clerical, professional, and manual positions (Feng & Buxmann, 2020). As noted by
Meyer et al.’s (2019) review and synthesis of the conversational agents in the work-
place literature, few empirical findings exist, and even fewer investigate collaborative
work between employees. But inevitably, AI agents will be capable of substituting
for operational human team members, rather than acting merely in an augmenta-
tion role. The blurring of the distinction between humans’ and machines’ tasking in
collaborative work will alter how human–machine systems are conceptualized. Just
as the composition of individual humans in a traditional team impacts performance
at an emergent level, the characteristics of AI agents impact performance at the
human–machine systems level. In traditional teams, successfully integrating efforts
among team members requires both specialized skills (task- or domain-specific) and
generic skills (teamwork; Cannon-Bowers et al., 1995). With the inclusion of AI
team members at full team member capacity, this is no less true.

Effective AI team members must be able to understand their human teammates,
converse in potentially unexpected and unstructured ways, and integrate their own
efforts within the team’s shifting dynamic. Although these are technical challenges,
they are also opportunities to augment team—both human and machine—perfor-
mance in new ways. In this effort, the inclusion of Charlie in a brainstorming task
offers an intriguing example of how adding AI team members can augment some
traditionally human processes while still being bound by others.

Brainstorming as a group is notorious for being less effective than pooling from
individuals independently generating ideas (i.e., nominal brainstorming groups;
Larson, 2010). Causes of this include the setting of emergent norms regarding
ideation pacing, production frequency and blocking, and unsuccessful retrieval. Team



42 P. Cummings et al.

members tend to produce a similar quantity of ideas in brainstorming groups—
in comparison to nominal brainstorming groups—as productivity norms are estab-
lished that may be below the capabilities of most members (Brown & Paulus, 1996;
Camacho & Paulus, 1995; Paulus & Dzindolet, 1993). Interrelated with this issue,
an AI-based teammate cannot overcome one of the primary limitations in brain-
storming–production blocking, whereby the performance of one teammember inter-
rupts or impedes the performance of another team member. Both computational and
empirical models demonstrate that retrieval can limit the overall production of ideas
from a group. As ideas flit in and out of short-termmemory, participant opportunities
to voice an idea may not coincide with successful retrieval. However, heterogeneous
groups appear to mitigate this—presumably, by having access to different problem-
relevant semantic categories and distributed processing across individuals (Brown
et al., 1998; Stroebe & Diehl, 1994). In a brainstorming task, how can Charlie over-
come these challenges? Compared with a human participant, Charlie can artificially
set the norm by increasing the quantity and frequency of her outputs. Less limited
by memory retrieval impediments, Charlie could also anticipate the responses of
others based on prior conversations and prompt individuals along those particular
paths. In these ways, Charlie could serve not only in a unique supporting role to
mitigate common human hindrances but also in a facilitating role if independent of
the brainstorming task.

2.6 Future Applications

Unlocking human–machine teams by recognizing artificial intelligence bodes well
for many potential future applications. The authors are excited to see how far we
have come in only a limited amount of time exploring these challenges, and we look
forward to addressing more. In this section, we will focus on three potential future
applications.

The first application area is that of a scientific collaborator. As demonstrated in our
initial brainstorming workshop, there is huge potential for an AI to participate in, or
even facilitate, scientific collaboration and discussion. This kind of participatory AI
requires knowledge of context and the ability to communicate with other scientific
collaborators. Charlie has already shown the ability to contribute to and strongly
influence these types of discussions.

In addition, another area of low-hanging fruit is that of an integrated workflow.
This area falls under the category of more supportive artificial intelligence and could
be focused on a particular work tool or domain, for example, collaborative writing.

Another potential application is the creation of an AI to assist a medical practitioner in diag-
nosing a patient’s health. This kind of collaboration could be facilitated by an AI that is able
to recognize and understand a patient’s symptoms and the associated clinical signs. This kind
of collaborative AI can help with diagnosis and can be very useful for the patient as well as
the medical practitioner. The application is one that requires a combination of technology and
human expertise to make it successful.
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2.7 Conclusion

Increasingly capable and pervasive artificial intelligence creates an opportunity to
engineer human–AI teams. Over the past year, we have been collaborating (both
participatory and supportively) with our AI coworker, Charlie. During that time,
Charlie made her debut by participating in a panel discussion and then advanced
to speak during multiple podcast interviews, contribute to a rap battle, catalyze
a brainstorming workshop, and even collaboratively write this chapter with us.
Charlie was built on cutting-edge language models’ strong sense of embodiment,
deep learning speech synthesis, and powerful visuals. However, the real differen-
tiator in our approach is that of recognizing the artificial intelligence. The act of
“recognizing” Charlie can be seen when we give her a voice and expect her to be
heard, in a way that shows we acknowledge and appreciate her contributions, and
when our repeated interactions create a comfortable awareness between teammates.
We covered some initial results from an innovative brainstorming workshop in which
Charlie was shown to not only participate in the brainstorming exercise but also to
contribute to and influence the brainstorming discussion idea space. We are excited
to see what the future holds in a variety of domains as we and others work toward
recognizing artificial intelligence.
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Chapter 3
Artificial Intelligence and Future
of Systems Engineering

Thomas A. McDermott, Mark R. Blackburn, and Peter A. Beling

Abstract SystemsEngineering (SE) is in themidst of a digital transformation driven
by advanced modeling tools, data integration, and resulting “digital twins.” Like
many other domains, the engineering disciplines will see transformational advances
in the use of artificial intelligence (AI) and machine learning (ML) to automate many
routine engineering tasks. At the same time, applying AI, ML, and autonomation to
complex and critical systems needs holistic, system-oriented approaches. This will
encourage new systems engineering methods, processes, and tools. It is imperative
that the SE community deeply understand emerging AI and ML technologies and
applications, incorporate them into methods and tools, and ensure that appropriate
SE approaches are used to make AI systems ethical, reliable, safe, and secure. This
chapter presents a road mapping activity undertaken by the Systems Engineering
Research Center (SERC). The goal is to broadly identify opportunities and risks that
might appear as this evolution proceeds as well as potentially provide information
that guides further research in both SE and AI/ML.

3.1 Introduction

In 2019, theResearchCouncil of theSystemsEngineeringResearchCenter (SERC), a
U.S. Defense Department sponsored University Affiliated Research Center (UARC),
developed a roadmap to structure and guide research in artificial intelligence (AI)
and autonomy. This roadmap was updated in 2020. This chapter presents the current
roadmap as well as key aspects of the underlying Digital Engineering transformation
thatwill enable both transformation of SEpractices usingAI for SE and drive the need
for new systems engineering practices that support a new wave of automated, adap-
tive, and learning systems, termed SE for AI. The “AI4SE” and “SE4AI” labels have
become metaphors for an upcoming rapid evolutionary phase in the SE Community.
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AI4SE applies AI and ML techniques to improve human-driven engineering prac-
tices. This goal of “augmented intelligence” includes outcomes such as achieving
scale inmodel construction and efficiency in design space exploration. SE4AI applies
SE methods to learning-based systems’ design and operation, with outcomes such
as improved safety, security, ethics, etc.

SE is in the midst of a digital transformation driven by advanced modeling tools,
data integration, and the resulting “digital twins” that maintain virtual copies of
portions of real-world systems across lifecycles of system use. This transformation is
changing what used to be primarily document-based system descriptions (concept of
operations, requirements, architectures, etc.) into digital data and descriptive models
that link data from different disciplines together. This central dataset, known as an
“authoritative source of truth,” will over time integrate all aspects of engineering
design, use, and maintenance of systems into a linked set of information. This digital
engineering transformation will be followed by transformational advances in the
discipline of systems engineering using AI and ML technology for automation of
many engineering tasks, designed to augment human intelligence.

At the same time, the application of AI, ML, and autonomy to many of today’s
complex and critical systems drives the need for new SE methods, processes, and
tools. Today, applications of these technologies represent serious challenges to the
SE community. A primary goal of SE is to ensure that the behavior and performance
of complex engineered systems meet the expected outcomes driven by user needs,
and that the configuration of the system is managed across its lifetime. Advances in
AI and ML application mean that future system components may learn and adapt
more rapidly, and that behavior and performance may be non-deterministic with less
predictable but manageable outcomes. This changemay introduce new failuremodes
not previously experienced in the engineering community. The inability to explicitly
validate system behaviors or the time it takes to do that will impact trust in these
systems and will change the way the SE community traditionally addresses system
validation. The uncertainty present in multiple AI/ML components that interact
will defy traditional decomposition methods used by the SE community, requiring
new synthesis methods. Finally, as systems develop means for co-learning between
human users and machines, traditional models that separate human behaviors from
the machine will need to be revisited.

At an early 2019 Future of Systems Engineering (FuSE) workshop hosted by the
InternationalCouncil onSystemsEngineering (INCOSE), the termsAI for SE andSE
for AI were first used to describe this dual transformation (McDermott et al., 2020).
The “AI4SE” and “SE4AI” labels have quickly become metaphors for an upcoming
rapid evolutionary phase in the SE Community. AI4SE may be defined as the appli-
cation of augmented intelligence and machine learning techniques to support the
practice of systems engineering. Goals in such applications include achieving scale
in model construction and confidence in design space exploration. SE4AI may be
defined as the application of systems engineeringmethods to the design and operation
of learning-based systems. Key research application areas include the development
of principles for learning-based systems design, models of life cycle evolution, and
model curation methods.
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3.2 SERC AI4SE and SE4AI Roadmap

In order to better understand and focus on this evolution, the Research Council of the
SERC developed a roadmap to structure and guide research in artificial intelligence
(AI) and autonomy. This roadmap was described in McDermott et al. (2020) and
presented in a number of forums including both systems disciplines (McDermott,
2019, 2020a) and AI disciplines (McDermott, 2020b). A dedicated “SE4AI/AI4SE”
workshop sponsored by the SERC and the U.S. Army further refined the roadmap.
An initial version was presented at the Fall 2020 Association for the Advancement of
Artificial Intelligence (AAAI) conference, and the current version will be published
in 2021 in an INCOSE AI primer for systems engineers. This roadmap is being
published with a goal to link the discipline of systems engineering to various trends
in artificial intelligence and its application to automation in systems. This linkage
is provided as a means to discuss the possible evolution of AI/ML technology,
autonomy, and the SE discipline over time. Figure 3.1 depicts the current notional
roadmap.

The envisioned long-term outcome is “Human–Machine Co-learning.” This
outcome captures a future where both humans andmachines will adapt their behavior
over time by learning from each other or alongside each other. For the SE community,
this is a new context and lifecycle model that is not envisioned and supported bymost
of the current-day systems engineering practices. This new context implies a fairly
significant transformation of SE methods, tools, and practices and is underway that
will change both SE and AI methods, processes, and tools over time.

Fig. 3.1 The SERC AI4SE and SE4AI Roadmap
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To achieve this end state, onemight consider there is a need for both the AI and SE
disciplines to pass through a set of “waves” or eras. The first of these includes sets of
technologies and approaches that make the decisions produced by AI systems more
transparent to the human developers and users. This broadly relates to the evolution
of trust in such systems. Today, much of the activity in the “transparency” wave is
termed “Explainable AI,” but it also includes more transparency and understanding
of the methods and tools used to develop AI applications, the underlying data, and
the human–machine interfaces that lead to effective decision-making in the type of
complex systems SE deals with routinely.

The “robust and predictable” wave is to produce systems that learn and may be
non-deterministic, but that is also appropriately robust, predictable, and trustworthy
in the type of critical and complex uses common to the application of SE practices
today. This wave particularly includes both human and machine behaviors in joint
decision environments, highly reliant on good human-system design and presenta-
tion of decision information. It also includes the adaptation of test and evaluation
processes to co-learning environments.

The third wave involves systems that actually adapt and learn dynamically from
their environments. In this wave, machine-to-machine and human-to-machine (and
maybe machine-to-human) trust will be critical. Trust implies a dependence between
the human andmachine, whichmust emerge from human–machine interaction. Trust
normally requires the human to understand and validate the performance of the
system against a set of criteria in a known context. In this third wave, systems will be
expected to learn to modify or create new behaviors as the context changes and this
may happen fairly rapidly. Methods that revalidate system performance extremely
rapidly or “on the fly” are not part of the current SE practice set andmust be developed
along with these types of learning systems.

The vectors of this notional roadmap span five categories. The first of these vectors
recognizes that the technological implementation of AI systems will evolve and need
to evolve in directions relevant to SE.Most of these directions can be related to trans-
parency and trust in the technology. The second vector recognizes that the purpose of
AI in systems is generally to provide for automation of human tasks and decisions,
and this will change how we design and test systems. The third vector recognizes
that AI technologies will gradually be used more and more to augment the work of
engineering. The fourth vector recognizes that the current digital engineering trans-
formation will be an enabler for that. A short description of the first four categories is
included in Tables 3.1, 3.2, 3.3, 3.4. The fifth vector recognizes a transformation will
need to be accomplished in the SE workforce, with significantly more integration of
software and human behavioral sciences at the forefront.

3.3 Digital Engineering

We start with digital engineering as it is the enabler for the first three roadmap
vectors. Table 3.1 provides a consolidated summary of the research and development
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Table 3.1 Digital engineering as the enabler for AI4SE and SE4AI

Research area Definition Use in systems engineering

Digital engineering

Data collection and curation Specific activities to build
infrastructure and collect and
manage data needed for
engineering and programmatic
activities in system
development and support

Provides connectivity and
reuse of data across disciplines
and system lifecycles

Ontological modeling Knowledge representation of
engineering and programmatic
data providing interoperability
through standard and
domain-specific ontologies

Improves model-based
systems engineering; enables
AI-based reasoning

AI specification (Seshia et al.,
2018)

System-level and formal
specifications for AI behaviors
supporting verification
activities

Allows specification of
requirements for AI-related
functions in a mathematically
rigorous form

Data and model governance Lifecycle management,
control, preservation, and
enhancement of models and
associated data to ensure value
for current and future use, as
well as repurposing beyond
initial purpose and context

Configuration management,
quality management, pedigree,
and reuse of digital data and
models

Patterns and archetypes Widely used modeling
constructs that separate design
from implementation,
supporting better reuse and
composition

Development of standard
model templates and patterns
for composition

Composability Rapid development and
integration of design using
higher level abstracted
components and patterns,
across multiple disciplines

Development of
domain-specific computer
languages and low-code
software tools

Information presentation Visualization approaches and
interfaces supporting
human–machine real-time
collaborative information
sharing via multiple media

Integration of human task and
machine behavior modeling
into common digital data

Digital twin automation Fully dynamic virtual system
copies built from the same
models as the real systems
running in parallel to physical
systems and updating from the
same data feeds as their real
counterparts

Allows systems to be regularly
measured and updated based
on learning in new or changing
contexts
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Table 3.2 Summary of the research in AI/ML relevant to SE disciplines

Research area Definition Use in SE

AI/ML Technology Evolution

Accessibility AI algorithms and methods
become more available in tools
that can be used by multiple
disciplines

Increase the number of
professionals who use and
understand the tools

Explainability [DARPA] Developing sets of machine
learning techniques that
produce more explainable
models, while maintaining a
high level of learning
performance (prediction
accuracy); and enable human
users to understand,
appropriately trust, and
effectively manage the resulting
automation

Allowing the human analysis
and decisions to better
understand and trust the
machine-generated analysis and
decisions

Cognitive bias Reducing errors induced in
sampled data or algorithms that
cause the expected results of
the system to be inappropriate
for use

Requirements for and
evaluation of training data and
application usage in the system

Uncertainty quantification
(Abdar et al., 2020)

Representing the uncertainty of
AI predictions as well as the
sources of uncertainty

Requirements for and
evaluation of the performance
of AI usage in the system

Adversarial attacks (Ren,
et al., 2020)

Use of adversarial samples to
fool machine learning
algorithms; defensive
techniques for
detection/classification of
adversarial samples

Requirements for and
evaluation of adversarial
defense approaches and their
effectiveness in the system

Lifecycle adaptation Evolution of AI performance
over the lifecycle of a system as
the system changes/evolves

Learning design and use takes
into account the variability of a
system over time

AI resilience Operational resilience of the
system and its users
incorporating AI, particularly
involving the characteristics of
ML systems

Application of resilience
assessment methods to systems
using AI

areas evolving in the current digital transformation of the engineering disciplines
(Hagedorn et al., 2020). As more of the underlying data is collected in engineering
modeling and analysis, it will become training data for ML applications.

There are several ongoing advancements in digital engineering relevant to AI4SE
(McDermott et al., 2020):
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Table 3.3 Summary of research in AI/ML relevant to SE disciplines

Research area Definition Use in SE

Automation and human–machine teaming

AI system architecting Building appropriate data and
also live and virtual system
architectures to support
learning and adaptation and
more agile change processes

Parallel development and
comparison of in vivo (real) and
in silico (virtual) deployments

AI risk analysis Methods, processes, and tools
need to connect system risk
analysis results with AI
software modules related to
those risks

Characteristics of AI systems
incorporated into operational
loss, hazard, and risk analysis

Calibrating trust AI systems self-adapt while
maintaining rigorous safety,
security, and policy constraints

Adaptation and learning
incorporated into human system
integration

T&E continuum Methods for addressing
AI-related system test and
evaluation (T&E) addressing
these systems’ ability to adapt
and learn from changing
deployment contexts

New approaches for both
system and user verification and
validation (V&V) of adaptive
systems

AI/ML at scale Appreciation for the
dependence of an AI’s outputs
on its inputs; scale in AI-based
systems will increasingly lead
to more general intelligence
and an inability to relegate AI
to a particular subsystem or
component

SE frameworks specifying
complex system-level
behaviors, distinct from
decomposition to functions and
requirements

Adaptive mission simulation Computer-based simulation
and training supporting
non-static objectives and/or
goals (games, course-of-action
analysis) are necessary to
provide contextual learning
environments for these
systems

Real and simulated co-learning
(digital twins) will be a standard
system development form

• Tool and Domain Taxonomies and Ontologies: engineering and program-
matic data will gain interoperability through domain-specific ontologies. Graph
databases for linked data are becoming more prominent in model-based systems
engineering tools. Taxonomies provide the starting point for building ontologies,
ultimately enablingAI-based reasoning on the underlying data. This advancement
is the transformational infrastructure in AI4SE.

• Inter-Enterprise Data Integration: a primary goal of digital engineering is an
authoritative source of truth data that underlies the different engineering and
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Table 3.4 Summary of research in augmented engineering

Research area Definition Use in systems engineering

Augmented engineering

Automated search Applying ML to historical data
and relationships in the
engineering domains

Greatly improve the speed and
consistency of systems engineering
activities

Conversational data
entry

Human/computer interaction
processes to convert the natural
language and other media to
formal models

Improve knowledge transfer and
consistency in future systems
engineering tools

Automated evidence Automation of certification and
accreditation processes via
models, and automation of
quality assurance data

Improved speed and coverage,
particularly for systems-of-systems
and distributed development and
test activities

Assurance models Automation of evidence-based
models for assuring correctness
and completeness of system
requirements and design

Improved specification and
verification/validation of critical
assurance characteristics

Automated model
building/checking

Automated construction of
models from features in
semantic data used in both
creation of new models and
correctness of developed models

Improved speed of development

Cognitive assistants Conversational systems
automating many mundane data
entry, exploration, and
engineering calculation tasks,
and many workflows

Improved speed of development,
improved collaboration

program management activities in complex engineered systems. As programs
and engineering design activities share data, enterprises will build large datasets
for knowledge transfer and reuse across different programs and projects. These
data will be available to automate search, model-building/checking, and decision-
making.

• Semantic Rules in Engineering Tools: based on knowledge representations such
as ontologies, semantic rules will provide the basis for reasoning (using AI) about
the completeness and consistency of engineering models.

• Digital Twin Automation: engineered systems will be supported by twins—fully
dynamic virtual system copies built from the same models as the real systems
and running in parallel to physical systems. System design and build data will be
updated from the same data feeds as their real counterparts. This dynamic process
provides a starting infrastructure for human–machine co-learning.
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3.4 AI/ML Technology Evolution

Table 3.2 provides a consolidated summary of the research and development areas
in the AI/ML disciplines that are relevant to SE practices. This table is provided as
both a view for the SE practitioner as well as perhaps a prioritization in the AI/ML
world of research needs, particularly as applications of ML evolve to larger system
usage and more critical application areas.

We see a progression of research and development in AI/ML technologies and
applications that will lead to increased engineering acceptance and use across more
complex engineered systems. This advance starts with the accessibility of AI/ML
algorithms and techniques.

The rapid growth of ML technologies has been aided by free open-source tools
and low-cost training, but this rise is still targeting computer and data scientists and
is based on foundational skills that are not widespread in the SE community. Wade,
Buenfil, & Collopy (2020) discuss a potential business model using an abstraction
to bring AI/ML to the SE community based on a similar experience in the Very
Large Scale Integrated (VLSI) circuit’s revolution. Just as abstraction and high-
level programming languages hid the underlying complexity of microcircuits from
an average designer, the growth in “low-code” AI/ML design tools will make the
technology more accessible to other disciplines.

SE is a discipline targeted at improving the predictability of function and perfor-
mance in the design and use of complex systems. Current day ML applications
that “hide” decision paths in deep networks create predictability concerns in the SE
community. Even rule-based systems at large scales are a concern for the community,
which strives for explicit verification and validation of function and performance in
the critical functions of a system. Issues with explainability and data/training bias
must be overcome for AI/ML technologies and applications to gain acceptance in
the SE community for critical functions. Research in digital twins and extended
applications of modeling and simulation for validation are needed. Otherwise, the
“validation by use” will be cost and risk-prohibitive in large safety-critical appli-
cations. Research in uncertainty quantification of deep learning applications is of
particular research interest in the engineering community as certainty in decision-
making improves opportunities for validation by decomposition of function. Abdar
et al. (2020) provide a good review of this research area.

Improved resilience from design errors and malicious attacks is a concern for use
of AI/ML in critical applications. Protection from adversarial attacks and general
robustness cannot be provided by add-on applications. It must be designed into the
learning process. Ren et al. (McDermott, 2019) provide an overview of this research
area and some possible defensive techniques.

In the long term, adaptation and contextual learning in AI/ML systems across
long system lifecycles, and the resilience of these systems to changing contexts
(environment, use, etc.) will be an active area of research and development in the
engineering community. Cody, Adams, and Beling (2020) provide an example of
the need and possible approaches to make an AI/ML application more robust to
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changes in a physical system over time. This article provides a good example of
the challenges of ML in operational environments. Eventually, the broad use of
learning applications for multiple interconnected functions in complex systems will
arrive. At some point, the SE community will no longer be able to rely primarily
on decompositional approaches to system design and must adopt new, more holistic
approaches.

Automation and Human–Machine Teaming

Table 3.3 provides a consolidated summary of the research and development areas in
automation and human–machine teaming disciplines that are relevant to SE practices.
Automation and the use of AI are not new to the SE discipline; but the use of ML is
more recent.We envision that humans andmachines will team in ways that they learn
from each other while using complex engineered systems in complex environments.
The robustness of these interactions at scale is an SE challenge.

The future state in SE and automation will see, using a terminology from Madni
(2020), the deployment of adaptive cyber-physical-human systems (CPHS). In adap-
tive CPHS, humans and complex machines learn together as they move across
different contexts. Adaptive CPHS employ different types of human and machine
learning to flexibly respond to unexpected or novel situations during mission and
task execution; to respond using plan and goal adjustment and adaptation; to learn
from experience to evolve the system; and to continuously adapt the human and
machine tasks in operational performance of the system. A key issue in this future
is modeling human behavior in the context of the machine design (Ren et al., 2020).
The SE community, to manage complexity and skillsets, generally views the human
system activities, the machine function and behavior, and the related modeling and
simulation as three independent subdisciplines. These subdisciplines will need to
converge as human behaviors and machine behaviors are allowed to adapt together
while in use, with the changes sensed by large-scale digital twins. An important
research area is adaptive mission simulation—simulation environments that provide
contextual learning to both humans and machines across the development, test, and
operational lifetimes of a system.

The systemarchitecting processwill change as automation scales inmore complex
systems. System architectures must support learning and adaptation and more agile
change processes. System architectures for large hardware systems will include
the training data and associated information technologies that support their AI/ML
components. Future system architecting must consider the parallel development and
the comparison of in vivo (real) and in silico (virtual) deployments with sensing and
data collection subsystems that support continuous learning and adaptation.

The SE community has traditionally viewed T&E of systems and architectures
as static events supporting specific lifecycle decisions. Future views of T&E must
evolve to support learning and adaptation. Freeman (2020) lists a number of themes
for the evolution of the T&E processes to be considered by the SE community:

• T&E is a continuum where data accumulate over time;
• The continuum does not end until the system retires;
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• Integrating information from disparate data sources requires unique methods and
activities (models, simulations, and test environments) to collect and combine the
data;

• Data management is foundational—evaluation of data quality and readiness is
essential;

• AI systems require a risk-based test approach that considers all of the evidence
collected versus consequence severity in the operational environment;

• Testmetricsmay have different interpretations, and newmetricsmay be necessary
to focus on risk for AI systems;

• It becomes more essential to understand the operational context and threats for
these systems; and to achieve this,

• All AI areas need testbeds for experimentation with operational data.

In all of these cases, pure decomposition of function to design and buildup of
function to test may not apply in traditional ways. As multiple AI/ML applications
become dependent on each other, the SE community must add methods for the
aggregation of decisions and associated behaviors in the systems. Characterization
of system behavior in the aggregate will affect traditional T&E approaches as noted
previously.

Automation of function has been a continuous feature of engineered systems since
the industrial age began, but human–machine co-learning requires different methods
to assess risk and trust in future systems. The T&E continuum must support this,
but we also need new methods to evaluate risk and to make decisions on whether or
not a system is safe, secure, ethical, etc. We are already seeing such issues arise in
applications like self-driving cars and facial recognition systems where the societal
norms for safety, security, privacy, and fairness are being adjusted. Concepts and
metrics for trust need to become more explicit in the SE community—both in the
human interaction and the dependability of the machines.

3.5 Augmented Engineering

Table 3.4 provides a consolidated summary of the research and development areas
in augmented engineering. We envision that as digital engineering evolves and tradi-
tional engineering models and practices rely more on the underlying data, many
engineering tasks related to data collection and search, data manipulation, and data
analysiswill become automated.Also, themachine learning ofmodeled relationships
and underlying data will become more complex over time. This augmentation will
automate many mundane engineering tasks leading to a greater focus on problem-
solving and design for the human engineer. In addition, we envision that engineering
speed and quality will improve as more engineering test and validation activities
become automated. The idea of “cognitive assistants” that broadly support the engi-
neer will evolve but they must evolve in a way that supports the problem-solving and
associated learning processes associated with engineering.
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Rouse (2020) argues for terms like “augmented intelligence” and “augmented
engineering” in the SE community because SE is highly associated with human
problem-solving. He argues that future cognitive assistants in this domain must not
only support automated search and model building/checking but also contextual
inferencing of intent, explanation management, and intelligent tutoring with respect
to machine inferences and recommendations. Selva and Viros (2019) provide an
example of a cognitive assistant for engineering design and system analysis. In this
work, they show that a cognitive assistant can increase engineering performance,
but, as a side effect, can also decrease human learning (Selva, 2019). This result is
an example of the need for co-learning in human–machine teaming.

In the long term, as the engineering community captures more of their process in
digital data and models, the use of AI/ML will improve the quality of engineering
design and test activities. Automation of data collection and search, model-building,
evidence collection, data and model checking, and eventually system assurance
processes will lead to better more robust systems.

3.6 Workforce and Culture

In the category of workforce and culture, many system engineers come from founda-
tional disciplines in engineering and lack some of the computer science foundations
that drive the AI discipline area. The systems engineering workforce needs to further
develop basic digital engineering competencies in software construction and engi-
neering, data engineering, and related information technologies. AI/ML systems are
created in these three disciplinary domains. However, SE can bring its strong founda-
tion in interdisciplinary approaches to the AI community. Over time, AI development
tools will incorporate design abstractions and patterns thatmake the technologymore
accessible to a broad set of engineers, improving the interdisciplinary understanding
and use of the technology. A clear workforce development concern is the integration
of AI with systems engineering and human systems integration—a much greater
representation of the cognitive sciences and cognitive engineering in the SE disci-
pline set. Specialty systems engineering disciplines such as security and safety must
move to the forefront. New test and evaluation approaches for learning and adaptation
will significantly affect those disciplines.

3.7 Summary—The AI imperative for Systems Engineering

SE is undergoing a digital transformation. This evolution will lead to further trans-
formational advances in the use of AI and ML technology to automate many routine
engineering tasks. At the same time, applying AI, ML, and autonomy to complex
and critical systems encourages new systems engineering methods, processes, and
tools. It is imperative that the systems engineering community deeply understand



3 Artificial Intelligence and Future of Systems Engineering 59

the emerging AI and ML technologies and applications, incorporate them into the
methods and tools in ways that improve the SE discipline, and ensure that appropriate
systems engineering approaches are used to make AI systems ethical, reliable, safe,
and secure. The road mapping activity presented here attempts to understand broadly
all of the opportunities and risks that might appear as this evolution proceeds as well
as potentially provide the information that guides further research.
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Chapter 4
Effective Human–Artificial Intelligence
Teaming

Nancy J. Cooke and William F. Lawless

Abstract In 1998, the great social psychologist, (Jones, Gilbert et al.Fiske
et al.Lindzey (eds), The Handbook of Social Psychology, McGraw-Hill, 1998),
asserted that interdependence was present in every social interaction and key to
unlocking the social life of humans, but this key, he also declared, had produced
effects in the laboratory that were “bewildering,” and too difficult to control. Since
then, along with colleagues and students, we have brought the effects of interdepen-
dence into the laboratory for detailed studies where we have successfully explored
many of the aspects of interdependence and its implications. In addition, in a review
led by the first author and a colleague, the National Academy of Sciences reported
that interdependence in a team enhances the performance of the individual (Cooke
and Hilton,.Enhancing the Effectiveness of Team Science. Authors: Committee on
the Science of TeamScience; Board onBehavioral, Cognitive, and Sensory Sciences;
Division of Behavioral and Social Sciences and Education; National Research
Council, National Academies Press, 2015). This book chapter allows me to review
the considerable research experiences we have gained from our studies over the years
to consider the situations in which an artificial intelligence (AI) agent or machine
begins to assist and possibly replace a human teammate on a team in the future.

4.1 Introduction

In this chapter, we provide an overview of team research and team cognition in
sociotechnical systems. It will include a review of human teaming and human–
autonomy teaming in the context of remotely piloted aircraft system ground control
team studies; the theory of Interactive TeamCognition (ITC); a reviewof our research
with a synthetic teammate as an air vehicle operator; and that will be followed by a
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review of a synthetic teammate validation study. Then we will close the chapter with
a short review of the next steps.

A team is defined as an interdependent group of individuals (see Fig. 4.1), each
with distinct roles and responsibilities, who work toward a common objective (Salas
et al., 1992). This definition implies that a team is a special type of group. With
advances in artificial intelligence (AI), AI agents can fulfill critical roles and respon-
sibilities for a team; often those are the roles and responsibilities that are too dull,
difficult, dirty, or dangerous for humans. Are these human–AI teams different from
all human teams? Are human teammates different from AI teammates? What does it
take for AI to be a good teammate? These and other questions have been addressed in
my laboratory over the last decade. One critical finding that has emerged from many
studies is the importance of interaction that can manifest as the communication or
coordination required to exploit the team’s interdependencies (Cooke, 2015; Cooke
et al., 2013).

In the study above by Salas et al. (1992), Salas and his team recognized that teams
at work have been a research subject in the field of business management for many
years with the result of several developments that have improved the organizations
for teams and the human resource managements that have benefitted from applying
their lessons. In their review, the authors studied the formation of work teams and the
processes with them that have led to human resource excellence. From the perspec-
tives in the workplace existing at the time, the complexity of work situations was
proving to be too difficult for employees to address on their own, exemplifying the
value of teams and teamwork that underscored the need for this research. For teams,
the research focus was initially placed on team structure, leadership, control, mutual
support, and communication. For human resources excellence, the authors studied
delegation, motivation, and teamwork. With the data collected by the authors from
a questionnaire and then analyzed in regression, they concluded that team structure,

Fig. 4.1 Left: A familiar action-oriented team playing basketball seen most often during the Fall
and Winter months in backyards, playgrounds, schools, and universities and at locations spread
all over the world. Center: A military decision-making team commonly found in darkened rooms
associatedwithmulti-hued lights andwith brightly lit screens organized around the human decision-
makers who are increasingly aided by artificial intelligence (AI). Right: A human–autonomy team
(HAT) signified by the two robots, one at the lower left and the second climbing in the center of
the right-hand image, both performing as part of a recovery search team after a weather disaster,
closely watched by an “in-the-loop” human operator or observer



4 Effective Human–Artificial Intelligence Teaming 63

leadership, control, and communication meaningfully affect human resources excel-
lence, whereas mutual support does not appear to have a meaningful effect on human
resources excellence.

To providemore detail for the study byCooke (2015), themembers of a teammake
decisions and assess situations together as a team. In years past, the cognition behind
these activities was attributed to the knowledge held by the individuals participating
in the team as a unit and distributed across the team. That is, based on the perspectives
prevalent at that time, smarter individuals with similar knowledge should have led to
smarter teams. In contrast, however, Cooke’s view, developed fromyears of empirical
work, is that team cognition exists in the interactions experienced by the team, a rich
context that must be measured not at the individual levels of a team’s members
where the data are commonly collected one-by-one, but at the level of the team as a
whole where the data must be collected from the team as a whole. This very different
approach has major implications for how these effects are measured, understood,
and improved.

Based on years of study of all-human teams and observations of teams in synthetic
environments (including Remotely Piloted Aircraft System ground control and
Noncombatant Evacuation Operation scenarios; see Fig. 4.2, which is discussed
in more detail in the next section), the theory of interactive team cognition (ITC)
emerged (Cooke, 2015; Cooke et al., 2013). This theory holds that interaction is
key to teams, especially action-oriented teams, and that team cognition should be
treated as a process, should be measured at the team level, and should be measured
in context. Empirical results have indicated that team interaction is, in fact, more
predictive of team effectiveness than individual performance (Duran, 2010).

Briefly, from Cooke et al. (2013), Interactive team cognition has arisen from our
findings over years of research and experience that team interactions often in the
form of explicit communications are the foundation of team cognition. This finding
is based on several assumptions: First, team cognition is an activity, not a property of
themembers of a team or the team itself, and not a product of the team or itsmembers.
Second, team cognition is inextricably tied to context—change the context and the
team’s cognition changes as well. And, third, team cognition is best measured and
studied when the team is the unit of analysis, not by summing what is collected from
the individual members who constitute a team.

Interactive team cognition has implications for measuring team cognition and for
intervening to improve team cognition. For instance, we have developed measures
that rely heavily on interactions in the form of communication and message passing
(Cooke & Gorman, 2009). With the goal of having unobtrusive measures structured
for a specific context, and collected in real-time, automatically, we have relied on
communication flow and the timing of the passing of pertinent information. Inter-
ventions to improve team cognition can also involve manipulating interactions. For
instance, perturbation training involves blocking a particular communication channel
so that teammembers need to explore other ways to coordinate. Perturbation training
has led to the development of more adaptive teams (Gorman, Cooke, & Amazeen,
2010).
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Fig. 4.2 The RPAS research testbed: RPAS-STE: remotely piloted aircraft system (ground control
station) synthetic task environment. In ourRPAS-STE, three humanoperatorsmust interdependently
coordinate their actions over headsets or text chat messages to be able to maneuver their RPA under
their control to take pictures of selected ground targets based on intelligence or other requests.
Clockwise from the lower right-hand image is shown a remotely piloted drone (pictured: ANorthrop
Grumman RQ-4 Global Hawk; it is a high-altitude, remotely-piloted, surveillance aircraft). At the
bottom-left is an image of experimenter control stations for the RPAS-STE. At the upper-left is an
image of three human operators interdependently in action. And at the upper-right is an image of
an operator controlling a RPA drone

To provide more detail for the study by Cooke and Gorman (2009), the authors
attempted to integrate cognitive engineering into a systems engineering process. The
authors reported that it required different methods for measurement to exploit the
variance often found across the social and physical environment. The new measures
that they sought had to be reliable and valid, as well as not apparent to those being
measured, and yet still be able to provide in real time both predictive and diag-
nostic information. In response, the authors developed measures of human teams
to represent systems; the measures that were developed produced data based on an
automatic analysis of sequential communications while the team under study was
interacting. Then the authors mapped the data to metrics to measure the performance
of the system, its changes over time, its processes, the coordination expended, and
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the situation awareness that was developed by a team as a consequence. In the final
analysis, the authors concluded that this mapping offered added value to integrate
the activities of other cognitive systems.

To dwell in more detail on the study by Gorman, Cooke, & Amazeen (2010), the
authors reported on an experiment that contrasted three training styles that would
allow them to explore the adaptability of teams. These approacheswere cross-training
designed to build knowledge shared across a team; a new approach, described by the
authors as perturbation training, specifically designed to constrain the interactions
of a team so as to help it to build the coordination skills that a team would need
during unexpected changes in a task environment; and with the contrast to the first
two groups to be provided by a more traditional approach designed simply to train a
team on the procedures of a task taught to the members of a team individually. Their
subjects were 26 teams assigned with the task of flying nine missions win the RPAS-
STE (see Fig. 4.3) but with only three critical missions dedicated to testing the ability
of the teams to adapt to the novel conditions presented during the studies, measured
by each team’s response times and their shared team knowledge. Subsequently, the
authors found that procedural training led to the poorest adaptive outcome; that for
two of the three critical test missions, perturbation training outperformed all teams;
and that cross-training improved the knowledge shared by a team, but for only one of
the criticalmissions tested. The authors concluded overall, however, that perturbation
training improved coordination among the teams the best, that it could lead to more
well-trained and better-adapted teams, and that the experiences a team learns even in
simulation training should be able to transfer to the real-world and novel situations.

Fig. 4.3 ARemotely Piloted Aircraft System (RPAS) ground control station can be located almost
anywhere, but principally on the ground or on a ship. Here screenshots from the Cognitive Engi-
neering Research on Team Tasks (CERTT) RPAS Synthetic Task Environment (STE) are provided:
(Left) The left-hand screen image is an image from a screenshot of a Payload Operator’s station
and what is commonly seen in a real-time video in its upper-right portion; the Payload Operator
controls the various camera settings, takes photos of selected objects or targets, and monitors the
different camera systems. (Center) A screenshot of an image from the Data Exploiter Mission Plan-
ning Controller’s (DEMPC) work station is shown; the DEMPC is the navigator, mission planner,
and route planner from target to target. (Right) A screenshot taken of an image from the Air Vehicle
Operator work station where the controls for the RPA’s airspeed, heading, altitude, and air vehicle
systems are maintained and monitored
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4.2 Synthetic Teammates

The main purpose of the Synthetic Teammate Project (Ball, Myers, Heiberg, Cooke,
Matessa & Freiman, 2009; see Fig. 4.5) was to develop the language that would
be needed to enable tasks for synthetic agents capable to perform work sufficiently
well to be integrated into simulations that would permit human-autonomous team
training. The goal was to fulfill this achievement without harming the team training
necessary for human teams to accomplish their missions. To meet this lofty goal, the
synthetic agents had to be designed to match or to be capable of closely matching the
human behavior a synthetic agent was to replace, to become cognitively plausible,
yet to be functional synthetic teammates. For this to be successful, the Synthetic
Teammate would have to emulate, understand, and utilize human language relevant
to the situations and training of human teammate it would replace; if successful,
the Synthetic Teammate would then be integrated into team training simulations
to constrain the system it would fit into, namely, the behaviors it would perform
would have to be human-like ones rather than purely algorithmic or the optimum
solutions that might ignore such constraints, making the results obtained to fit the
context at hand, not an idealized context. In a given situation with a specific task
to perform, the Synthetic Teammate had to not only act like a human would act
for a given situation (context) but also chat with other humans in a human way by
comprehending their chat messages and to generate appropriate chats in its replies.
Before its implementation of a specific role, it had to be validated. For the Synthetic
Teammate, initially, the first application was to create an agent that could replace a
pilot performing the functions of flying anRPA.Should this application be successful,
it was planned that the Synthetic Teammate would be applied in a simulation as part
of a three-person team (i.e., PLO Photographer, AVO Pilot, and DEMPC Navigator;
see Fig. 4.4).

In summarizing what was desired, the Synthetic Teammate Project was designed
to demonstrate “cognitively plausible” agents capable of performing complex tasks
and yet able to interact with human teammates in natural language environments.
These Synthetic Teammate Agents had to be designed to be able to provide effective
team training at any time and anywhere around the world, specifically for Depart-
ment ofDefense (DoD) relevant, complex, and dynamic environments. The Synthetic
Teammate Project had to be able to facilitate the transitions to new DoD applica-
tions wherever needed. Moreover, the Synthetic Teammate Project had to be able to
take cognitive modeling to the level of functional systems operated alongside and
integrated with human operators.

One of the goals of the Synthetic Teammate Project was to validate it to be
both functional and cognitively plausible (Ball, Myers, Heiberg, Cooke, Matessa &
Freiman, 2009). Due to its complexity, a considerable challenge, it was considered
too impractical to validate all of its ACT-R subsystems, Instead, key and relevant
behaviors were selected to be scrutinized and to be tested for empirical validation.
First, we wanted to show as a pilot (the AVO) that the Synthetic Teammate could
conduct the task as well as its human counterparts. Second, we wanted to contrast
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Fig. 4.4 A Synthetic Teammate Demonstration System (installed at Wright Patterson Air Force
Base, Dayton, OH; see Ball, Myers, Heiberg, Cooke, Matessa & Freiman, 2009). Results: The
largest cognitive model built-in ACT-R. In ACT-R, it had 2459 Productions and 57,949 Declarative
Memory chunks. Among the largest cognitive models built in any cognitive architecture at the time,
it had five major components. By computer science standards, it was a very large program. (Left
image) Facing the human operator, at the upper left, a computer screen-shot of the images seen is
those of the CERTT Consoles (i.e., the Navigator; Photographer; Pilot). At the bottom left facing
the human operator is shown the text messaging subsystem. At the upper right top and bottom,
screenshots are shown of the Synthetic Teammate. (Right image) To the right is a series of actual
texts captured between the human operators and the Synthetic Teammate (highlighted in yellow)
as it communicated with its human teammates

its ability to “push” and “pull” information with similar data collected for human
teams. In this validation attempt, we were mindful that the evidence of similarity in
the two different data streams was in and of itself insufficient; that is, the Synthetic
Teammate had to be able to demonstrate to its teammates that it was able to function
as a teammate under all of the constraints that that implied for human teammates as
well.

McNeese et al. (2018) had the goal of comparing three different configura-
tions of teams with the aim of improving their understanding of human–autonomy
teaming (HAT). They first looked into the extensive literature that existed on human-
automation interaction. Despite this rather large literature, they begin with the notion
that very little was known at the time about a HAT for situations in which humans and
autonomous agents coordinated and interacted together as a unit. Thus, the purpose
of this research was to begin to explore the implications of these previously unex-
plored interactions and their effects on a team and its autonomy. The context for their
laboratory studies was the CERTT RPAS STE. In that context, the authors consid-
ered three types of teams: a synthetic team with the pilot as the synthetic teammate;
a control team with the pilot as an inexperienced human participant; and an exper-
imenter team in which an experimenter served as an experienced pilot. Ten teams
were run in each experimental condition. The authors measured team performance,
target processing skills, the situation awareness of the teams, and their verbal behav-
iors were also assessed. Experimenter teams performed the best overall, followed
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Fig. 4.5 An autonomous agent as a collaborator on a heterogeneous team (i.e., the role and nature
of the agent) that operates by flying a Remotely Piloted Aircraft (RPA) to allow the team’s human
photographer to take reconnaissance photos. The human photographer (PLO) and human navigator
(DEMPC) have been kept in the same roles in this simulated RPAS as they held in Fig. 4.3. The
air vehicle operator was an ACT-R cognitive model. By introducing the Synthetic Pilot, several
implications arise regarding Interactive Team Cognition (ITC) for the Synthetic Teammate: First,
the interaction goes well beyond language understanding and generation. Second, coordination
among team members is central to this task; timely and adaptive passing of information among
team members is affected by what the Synthetic Teammate can or cannot perform. Third, humans
sometimes display subtle coordination behaviors that may be absent in or conveyed by the synthetic
teammate, or even not understood by the synthetic teammate.And fourth, the failures of the synthetic
teammate will highlight the requisite coordination behaviors, which we have found that a good
teammate performs

by synthetic and the all-human control teams, which performed equally well, except
that the synthetic teams processed targets least well. The authors were heartened by
the performance of the synthetic agent teams, concluding that the potential existed
so that one day in the future they may be able to replace a human teammate, but they
concluded that for now, for these agents to perform satisfactorily in the field today,
the science of autonomy had to improve significantly. The authors also concluded
that their results advanced our understanding of what autonomy has to achieve to be
able to replace a human teammate (see more below and Fig. 4.5).

As Cooke and her colleagues have established, interaction proved to be critical
in perturbation training. Similarly, when an AI agent or “Synthetic Teammate” is
included on a three-agent team (see Fig. 4.5), interaction also proves to be critical
(McNeese et al., 2018). The synthetic teammate turned out not to be a good team
player, as it failed to anticipate the information needs of its fellow human teammates.
That is, it performed its task of piloting the air vehicle well but did not provide the
human team members (navigator and sensor operator) with information in a timely
manner or even ahead of time. Humans do this naturally and get better at it as they
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practice the task. Interestingly, the human team members “entrained” or stopped
anticipating the needs of others on the team, as if modeling the synthetic teammate.
Thus, even though the synthetic teammate was pretty good at its own taskwork, it
was not effective at teamwork, resulting in a gradual decline of teamwork by the
entire team.

With more detail from Demir et al. (2018), the authors brought new insights into
the study of the relations at the global level between the dynamics of teams and
their performance at the system level. Mindful of their approach, they reviewed the
literature in an attempt to identify the characteristics of the dynamics of teams and the
performance of teams. Specifically, they applied methods from non-linear dynamical
systems to the communication and coordination behaviors in two different studies of
teams. The first was an application to human-synthetic agent teams in a Remotely-
Piloted Aircraft Systems (RPAS) simulated task environment; and the second was
for human-dyads in a simulated victim locator “Minecraft” task environment. The
authors discovered an inverted U-shaped model from which they were able to relate
the coordination of teams and the performance of teams. For the human–autonomy
teams (HAT), they found that these HATs were more rigid than the human teams, the
latter being the least stable; and that extreme low and high stability were associated
with poor team performance. Based on their results, the authors hypothesized going
forward that training helped to stabilize teams, reaching an optimal level of stability
and flexibility; and they also predicted that as autonomous agents improved, HATs
would tend to reach a moderate level of stability (meta-stability) being sought by
all-human teams.

Examining team dynamics has given us a view into the communication dynamics
of the team which for us represents team cognition (Gorman, Amazeen, & Cooke,
2010a, 2010b). Also, extending this system view beyond the three agents to the
vehicle, controls, and environment in which they act, we have demonstrated how
signals from these various components of the system can be observed over time.
Given a perturbation, then one can observe changes in particular system components,
followed by others. These patterns provide an indication of system interdependen-
cies and open many possibilities for understanding not only teams but also system
complexity (Gorman et al., 2019). It is intriguing to consider using a system’s time to
adapt to a perturbation and then to return to a resting place as an index of context-free
team effectiveness.

From Demir, McNeese, and Cooke (2019), the authors focused on two topics.
First, the authors wanted to better grasp the evolution of human–autonomy teams
(HAT) while working in a Remotely Piloted Aircraft Systems (RPAS) task context.
In addition, the authors wanted to explore howHATs reacted to threemodes of failure
over time, specifically, under automation failures, autonomy failures, and a cyber-
attack. The authors summarized the results of their recent three experiments with
team interactions by a HAT performing in an RPAS operating in a dynamic context
over time. In the first two of these three experiments with three-member teams,
by comparing HATs with all-human teams, the authors summarized the findings
related to teammember interaction. For the third experiment, which extended beyond
the first two experiments, the authors investigated the evolution of a HAT when
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it was faced with three types of failures during the performance of its tasks. In
these experiments, they applied the theory of interactive team cognition and, by
focusing measures on team interactions and temporal dynamics, they found that
their results were consistent with the theory of interactive team cognition (ITC).
The authors applied Joint Recurrence Quantification Analysis to the communication
flows across the three experiments. Of particular interest, regarding team evolution
was the idea of entrainment, namely that one team member who happened to be the
pilot, both as an agent and as a human, over time can affect the other teammates,
specifically their communication behaviors, their coordination behaviors, and the
team’s performance (also, see the discussion above regarding Demir et al., 2018). In
the first two studies, the synthetic teams were passive agents that led to very stable
and rigid coordination compared with the all-human teams, which were less stable.
In comparison, experimenter teams showed meta-stable coordination, coordination
that was neither rigid nor unstable, performing better than the rigid and unstable
teams during the dynamic task. For comparison, in the third experiment, the teams
were metastable, which helped them to overcome all three types of failures. In sum,
these findings help to ensure three potential future needs for effective HATs. First,
training autonomous agents on teamwork principles so that they understand the tasks
to be performed and the roles of the teammates. Second, human-centered machine
learning designs must be brought to bear on synthetic agents to better understand
human behavior and human needs. Third, and finally for then, human members must
be trained to communicate to address the Natural Language Processing limitations
of synthetic agents, or, alternatively, a new human–autonomy language needs to be
developed.

To summarize the results of the validation study, first, the synthetic teams
performed as well as did the control teams, but the synthetic teams had difficul-
ties when coordinating and processing targets efficiently; in general, they showed a
failure to anticipate what was needed in a given situation. Second, we established that
a synthetic teammate can impact a team’s ability to coordinate and to perform, which
we described as “entrainment.” Third, to compare with our second finding, we intro-
duced an experimenter condition, which then demonstrated how a teammate who
excels at coordination can elevate the coordination of a whole team. And fourth, we
established that compared with when conditions were nominal, coordination became
even more important in off-nominal conditions.

4.3 HAT Findings and Their Implications for Human
Teams

For a doctoral thesis, Hinski (2017) reported that, according to the American Heart
Association (AHA), there were approximately 200,000 annual in-hospital cardiac
arrests (IHCA) along with low rates of survival of about 22% to discharge. To
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counter this poor survival rate, AHA joined in a consensus statement with the Insti-
tute of Medicine (IOM) to recommend programs to train cardiac arrest teams, known
colloquially as code teams. Traditionally, health care was commonly administered
in a team format, however, traditional health care training was taught at the indi-
vidual level, creating rigid habits ingrained at the individual level that were often
counterproductive in teams, leading to poor team performance when the situation
required highly functioning teams. Despite the need, many obstacles to the training
of code-blue resuscitation teams at the team level were in the way, factors like logis-
tics, the coordination of a team’s personnel, the time available to train amidst the
busy schedules of team members, and financial barriers that made training in teams
a hindrance (see Fig. 4.6). Inspired by findings in the Experimenter condition of
the RPAS Synthetic Teammate evaluation experiment, Hinski followed a three-step
process: first, a metric was developed to evaluate the performance of code-blue
teams; second, a communications model was developed that captured a team’s and
the leaders’ communications during a code-blue resuscitation; and third, a focus was
placed on the code team leader’s (CTL) performance using the model of communica-
tions that had been developed.With these conceptual andmethodological approaches
gained from the interdisciplinary scienceof teams,Hinskiwas able to apply the results
to a broad vision of improving IHCA events, especially for code-blue resuscitations
(see Table 4.1).

The control group of untrained code leaders and the trained code team leaders
were similar in many respects. Only one control group and only one group with a
trained leader asked for the patient’s code status. This result might have been due
to the simulation, which involved a code response, however, code-blue teams must
know and be able to communicate the status of a patient’s code before beginning
a resuscitation attempt. The team members had considerable knowledge (seven of
eight code team leaders were internal medicine physicians), but only one leader
had previous formal team training. For purposes of comparison, the control and
trained team leaders were as evenly matched as possible. Errors in performance
were observed against guidelines for when the first shock must be delivered to the
simulated “patient” within 2 minutes of identifying a shockable rhythm. Those and
other common errors made by the two groups during SBCEs are illustrated and
compared in the next figure (see Fig. 4.7). Despite the brevity of the training, a clear

Mock Code Blue Experiment 

Fig. 4.6 Applying coordination coaching to code-blue resuscitation. A code-blue team partici-
pating in a mock code-blue resuscitation (Hinski, 2017)
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Table 4.1 From Hinski (2017), an intensivist code that code team leaders (CTL) studied based
on the (ICT) communication model for 5–10 min prior to receiving a Simulated Code-Blue Event
(SCBE) as part of Advanced Cardiac Life Support (ACLS) training

Arrival to code Introduces self as the code team leader (CTL)

Contingency IF: Code RN does not immediately give the CTL a brief history,
code status, and confirm advanced monitoring is established
THEN: CTL must directly ask the Code RN for the information

Within 30 s of arrival to code Asks about ABCs (airway, breathing, circulation)
IF: No one person is performing CPR or performing bag-mask
ventilating upon arrival of CTL
THEN: CTL must direct code team member to immediately
perform CPR and the respiratory therapist (RT) to bag the
patient

Once monitoring is established Asks for ACLS therapies as indicated
IF: Medication or shock delivery is delayed more than 10 s
after identification of rhythm
THEN: CTL must directly ask the pharmacist or RN to deliver
the meds and/or shock

*Constant feedback* Asks if there are any problems, so CTL can troubleshoot or
delegate task to another person, keeps the team on task, should
be in SBAR format
(situation-background-assessment-recommendation)

Contingency IF: Code team does not clarify ROSC
(resuscitation)/stabilization of ABCs or clinical worsening
THEN: CTL must clarify disposition (i.e., transfer to ICU, need
for more advanced therapies, discontinuation of efforts, etc.)

CODE TEAM ERRORS
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Fig. 4.7 From Hinski (2017), common errors committed after the Simulated Code-Blue Event
(SCBE) training compared with a control group and during an SCBE run for both groups
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difference is seen between the trained groups of SCBE leaders versus the control
group.

In the medical field today, the knowledge held by the individual members of a
team is still considered to be an important part of an effective team’s performance,
but interactive team cognition (ITC; Cooke et al., 2013) implies that training a team
as a teammust also be considered when attempting to improve a team’s performance.
Hinski concluded that training strategies need to focus on how the team functions as
a unit and how it performs as a unit, independently of the combined knowledge held
by the individual members of a team. The development of the ITC communication
model allowed for the development of a series of training steps that could be applied
to the entire resuscitation team through the prompts from a trained code team leader
of the resuscitation team. When ITC “coordination coaching” was applied to the
training for a simulated code-blue event (SCBE), which led us to provide code team
members with richer feedback on their team’s performance, to generate quantitative
assessments of the value of their SCBE practice, and to make simulated training
exercises a more efficient training tool for their team as a unit. The ultimate aim
to build these high-performing code teams is, of course, to improve their patient
outcomes following a cardiac arrest. In Hinksi’s study, the trained code team leader
teams demonstrated superior performance compared with the control teams even
despite only an average of 26 min spent on training with the ITC communication
model. Despite the limits accrued to the hospital environment, which limited the
sample size considerably, the time spent to train the medical team leaders for SCBEs
was the very minimum amount of time compared with how much time it would
take to train an entire team for SCBEs. While the data were limited in this study,
nonetheless, it offered an optimistic view of what this strategy could offer in the
future given the reduced training time needed for team performance improvement.
This type of training strategy should be studied in the future with larger groups of
trainees.

Overall, we find that there is much more to team effectiveness than having the
right teammates on the team with the right skills and abilities. The teammates need
to be able to navigate the team interdependencies in adaptive and resilient ways.
Effective teams learn to do this over time. AI agents need to also have this ability
and without it, they may be a disruptive force to the system that is a team. More
specifically, by measuring at the unit level of the team, we have found that as teams
acquire experience, the team’s performance improves, its interactions improve, but
a team’s individual or collective knowledge does not improve.

4.4 Conclusions and Future Work

For our team’s next steps, we plan tomore andmore take team performancemeasure-
ments out of the laboratory. We have established ground truth in the laboratory,
which we can use to measure outcomes against. In the laboratory, team performance
is measured as an outcome and demonstrates that an effective team has a positive
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outcome. Away from the laboratory, however, for an infinite number of reasons,
ground truth may be hidden, obscured, or uncertain (e.g., cyber teams, sports teams,
military and civilian intelligence teams, RPAS teams, and even urban search and
rescue teams). Research, for example, conducted by a science team may run afoul
of unforeseen circumstances, such as the COVID-19 pandemic that has shut down
numerous experiments across the USA and around the world (e.g., Chen, 2020).
Thus, outside the laboratory, the outcomes may not be obvious or effective, even
for Code-Blue Resuscitations. And yet, taking teams seriously indicates from our
research that effective teams are adaptive and resilient. Adaptive teams are those that
respond quickly to perturbations. In contrast, resilient teams are those that bounce
back quickly from perturbations.

We not only want to take human teams seriously, but we also want to take human
autonomous teams seriously. Based our my research, my students’ research, and the
research of my collaborators, there are five conclusions that can be drawn at this time
and applied to human autonomous teams: First, team members have different roles
and responsibilities; autonomous teammates should not replicate humans. Second,
for effective teams, each human team member understands that each member of a
team has a different role and responsibility while each must avoid team member
role confusion yet still be able to back up each other when it becomes necessary;
autonomous teammates must be able to understand this as well as the tasks of the
whole team. Third, implicit communication being critical to the effective teamperfor-
mance of human teams, effective human-autonomous teams must train sufficiently
well enough to be able to share knowledge about their team goals and their experi-
ences of context changes to facilitate coordination and implicit communication in all
contexts. Fourth, the most effective human teams have team members who are inter-
dependent with each other and are thus able to interact and communicate interdepen-
dently even when direct communication is not possible; human-autonomous teams
must also be able to communicate even if it is in a communication model other than
natural language. Fifth, finally, for now, interpersonal trust among the best human
teams is important to the humans on these teams; by extension, human–autonomy
teams need to be able to explain and to be explicable to each other.
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Chapter 5
Toward System Theoretical Foundations
for Human–Autonomy Teams

Marc Steinberg

Abstract Both human–autonomy teaming, specifically, and intelligent autonomous
systems, more generally, raise new challenges in considering how best to specify,
model, design, and verify correctness at a system level. Also important are extending
this to monitoring and repairing systems in real time and over lifetimes to detect
problems and restore desired properties when they are lost. Systems engineering
methods that address these issues are typically based around a level of modeling that
involves a broader focus on the life cycle of the system and much higher levels of
abstraction anddecomposition than somecommonones used indisciplines concerned
with the design and development of individual elements of intelligent autonomous
systems. Nonetheless, many of the disciplines associated with autonomy do have
reasons for exploring higher level abstractions, models, and ways of decomposing
problems. Some of these may match well or be useful inspirations for systems engi-
neering and related problems like system safety and human system integration. This
chapterwill provide a samplingof perspectives across scientificfields such as biology,
neuroscience, economics/game theory, and psychology, methods for developing and
accessing complex socio-technical systems from human factors and organizational
psychology, andmethods for engineering teams from computer science, robotics, and
engineering. Areas of coverage will include considerations of team organizational
structure, allocation of roles, functions, and responsibilities, theories for how team-
mates can work together on tasks, teaming over longer time durations, and formally
modeling and composing complex human–machine systems.

5.1 Introduction

Bringing system-level theoretical foundations to the design and development of intel-
ligent autonomous systems has many challenges even without incorporating human–
machine teaming into themix. This set of challenges includes how to specify require-
ments, measure, and formally model the different elements of autonomous systems
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and their cyber, physical, and social interactions at an appropriate level of abstraction.
Beyond that are many open questions about how to systematically design, compose,
analyze, test, and develop life cycle processes to assure requirements are met, opera-
tional constraints are followed, the end user’s needs are supported, and no undesirable
emergent properties are likely to occur between intelligent, adaptive, and learning
components, more traditional forms of automation, and the people and hardware
that together make up an entire system. Moving also to Human–Autonomy Teams
(HAT) creates substantial additional new challenges compared with a more tradi-
tional division of human and machine roles, responsibilities, and functions (Klien
et al., 2004; Groom & Nass, 2007; Shah & Breazeal, 2010; Cooke et al., 2013;
Gao et al., 2016; Endsley, 2017; McNeese et al., 2018; Johnson & Vera, 2019).
HAT may involve new types of organizational structures in which multiple humans
dynamically interact withmultiple autonomous systems outside of fixed control hier-
archies and with dynamically changing roles. Interaction between teammates may
involve multi-modal tiered strategies with both verbal and non-verbal and explicit
and implicit communications. Effective joint communication, attention, and action
may depend on the ability to recognize individual capabilities, activities, and status,
and infer other team members’ intent, beliefs, knowledge, and plans. Team activities
may not be limited to just real-time task performance but include also the ability to
jointly train, rehearse, plan, and make a priori agreements prior to performing work
together, and to assess performance and improve together afterward.While thismight
appear a daunting list of capabilities to achieve in machines, it is not necessary that
HAT operates on exactly the same principles as high functioning human teams that
exhibit these characteristics. Amuch broader spectrum of group types is possible that
could be considered teams andwould bemore plausible to engineer in the near future.
Furthermore, the true value of HAT may lie in exploiting the heterogeneity between
humans and machines to create entirely new types of organizations rather than trying
to mimic fully human ones or force humans into the rigid frameworks of multi-agent
machine systems. In this spirit, a human–autonomy team will be categorized in this
chapter as requiring only the following properties:

(1) Teams are set up to achieve a common goal or goals that are believed achievable
in a bounded period of time. It is not required that every member has the same
depth of understanding of the goal. This goal would be very challenging for
machines on many complex, real-world problems, and is not the case for teams
of humans and working animals or teams of human adults and children that
may provide useful inspiration for the degree of heterogeneity to be found
in HAT. As well, this is consistent with broader findings in the human team
literature, particularly for teams that are heterogeneous or that have a larger
number of members (Cooke et al., 2013).

(2) Teams exploit role specialization and have bi-directional interdependencies
between teammates. Teaming interdependencies are not predominantly one
way, such as in human supervisory control of autonomy. Methods that focus
primarily on decomposing and allocating loosely coupled tasks between
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humans andmachines to ensure task completionwith non-interference between
agents would also not be sufficient on their own to be considered teaming.

(3) Individual identities, skills, and capabilities of teammates matter. This “nam-
ing” allows for unique relationships or associations to be formed between
particular pairings or subsets of teammates along with a joint understanding of
which individuals have which responsibilities. This differs from multi-agent
forms of organization in which individual agents can be anonymous, such as
biologically inspired collective behaviors (Steinberg, 2011), and call center
or service-oriented models with a pool of autonomous systems (Lewis et al.,
2011).

Much research to date on human–autonomy teams has focused narrowly on rela-
tively small teams performing short-time duration tasks. Nonetheless, a system
perspective must also consider aspects such as the qualifications, selection, and
training of both machine and human members of the team, the ability for the team
to jointly do pre-task planning, agreements, and rehearsal, and post-task assessment,
maintenance, and improvement.Also, critical for some applicationswill be processed
to ensure the health and safety of human team members and bystanders. To accom-
plish even just this for HAT goes beyond current system theories or the methods
of any particular discipline. Thus, it makes sense to consider foundations from as
broad a perspective as possible. This chapter will consider a sampling of perspectives
across scientific fields such as biology, neuroscience, economics/game theory, and
psychology, methods for developing and accessing complex socio-technical systems
from human factors and organizational psychology, and methods for engineering
teams from computer science, robotics, and engineering.

5.2 Organizational Structure and Role/Function Allocation

Groups of humans and working social animals have particular relevance for human–
autonomy teaming (HAT) because they encompass some of the same degree of
extreme heterogeneity of physical, sensing, communication, and cognitive abilities
(Phillips et al., 2016). Additionally, recent animal cognition research has focused on
the extent to which different animal species may excel at solving specific niches of
cognitive problems under particular ecological constraints while being rather poor
at others (Rogers & Kaplan, 2012). For example, there is an increasing body of
evidence on the impressive social cognitive abilities, dogs can use to solve prob-
lems jointly with humans, while simultaneously finding dogs can be much less
capable of individually solving other classes of cognitive problems (Hare &Woods,
2013). This situation has similarities to the state of the art of today’s autonomous
systems and may provide both an inspiration for teaming architectures and an effec-
tivemetaphor for human interactionwith autonomous teammates. There are a number
of systemic frameworks from the animal literature that can be considered for HAT
including different subordinate strategies (Sun et al., 2010), mutualism (Madden
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et al., 2010), or reciprocal altruism and association strengths between individuals
(Haque & Egerstedt, 2009). A dominance framework, for example, can provide a
principle framework to allow for more freedom of action by human teammates,
while limiting machine teammates to act within constraints imposed by human plans
and actions. From an engineering perspective, this can be considered a satisficing
type of solution. The constraints imposed by dominance relationships between team
members ensure some degree of non-interference and also can substantially simplify
computationally intractable group coordination problems, so they can be solved
even for complex groups at scale. For example, adopting a dominance like structure
has enabled the solution of large-scale group problems with Decentralized Partially
Observable Markov Decision Processes (Sun et al., 2010), and several approaches
for motion planning with a large number of systems in complex environments have
achieved scalability with related types of prioritizations and constraints (Herbert
et al., 2017). There also have been a number of successes in showing how particular
architectures relate to the degree of optimality, robustness, resilience, or the best or
worst possible cases (Ramaswamy et al., 2019).

A different set of methods can be drawn from human factors. For example, in
an assessment of the literature, Roth et al. (2019) identified a four-stage process for
role allocation in HAT to analyze operational and task demands, consider ways of
distributing work across human and machine team members, examine interdepen-
dencies in both nominal and off-nominal conditions, and explore the trade space of
options with different potential tools. One of the particular tools that had success at
such novel problem domains is Cognitive Work Analysis (CWA) (Vicente, 1999).
CWA has been successfully applied to two related classes of problems of human
supervisory control of autonomous teams in which the human is not a teammate
(Linegang et al., 2006; Hoffman, 2008), and to the development of assistive technolo-
gies for human teams in fields like healthcare and aviation in which the automation
is not a teammate (Ashoori & Burns, 2013). A strength of CWA for novel systems is
that it is based on an ecological theory in which human/machine activity and inter-
action can be considered from the perspective of constraints on what is and is not
possible in the work environment rather than starting with stronger assumptions on
how the work will be done. Thus, CWA has been particularly effective on problems
that are dominated by persistent fundamental constraints of physics or information
flow. CWA could also be effective for HAT problems with similar characteristics.
However, there is only a limited body of work on extending the abstractions involved
to team problems even in the fully human case. Furthermore, there are many chal-
lenges in applying this kind of method, and some prior work has found that results do
not sufficiently encompasswhat is enabled by the new technological options.Another
method of considering interdependencies that was developed more specifically for
HAT problems is Co-Active Design (Johnson et al., 2014).

Similar to human factors, human–robotic interaction can provide a rich set of
theories for human–autonomy coordination and adaptation that take into account
the realities of implementing methods on real autonomous systems. Discussions of
human–robot and human–autonomy teams sometimes proceed from the assumption
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that the machine team members will be something like a peer. However, realisti-
cally, many machine teammates in the next few decades will probably still require
some degree of human supervision and support. This need may be due to either
technological limitations or interrelated issues such as laws, regulations, organiza-
tional policies, ethical concerns, societal norms, and professional standards of due
diligence. Thus, some system frameworks developed for non-team interactions with
robotic and autonomous systems will still have validity. For example, an important
framework for considering human–robotic interaction is the span of control (Cran-
dall et al., 2005). Historically, the focus of this range has been on matching the
human capacity to the tempo and quantity of “servicing” that the machines require.
In one approach, this is based around a neglected time representing the amount of
time a robot can operate safely and effectively or be trusted to do so without human
intervention. In moving from an operator to a teammate, this framework may need
to consider a metaphor more like a human sports team or a medical team. A given
size and complexity of team might require a certain number of on-field leaders, and
off-field coaches, trainers, and health and safetymonitors. A converse of neglect time
is neglect benevolence (Walker et al., 2012). Neglect benevolence recognizes that
there are circumstances in which a lower bandwidth of interaction between some
group members would be beneficial for team performance, including from human
supervisors to machines.

5.3 Working Together on Tasks

Effective autonomous teammates may require very different capabilities depending
on features of the team organization and task. Some autonomous teammates may be
effective mainly by exploiting detailed knowledge of the group tasks while others
may require more general types of cognitive abilities. An example of a general
capability that may be foundational for achieving higher performing teams in some
circumstances is Theory of Mind (ToM). ToM is the ability to infer that others have
different knowledge, beliefs, desires, and intentions than one’s self. Neuroscience
research on simultaneous imaging of multiple brains has found connections as well
with how synchronization of behavior, language, and gesture is achieved in some
types of group interactions (Dumas et al., 2010). For autonomous teammates, ToM
could provide principled connections between perception, perceptual attention and
active sensing, intent and activity recognition, knowledge and world representation,
prediction, and decision-making in groups. Theory of Mind has been shown to exist
in some form in increasingly younger human children (Doherty, 2008), and there
are debates on the extent to which at least rudimentary ToM occurs in non-human
primates, other mammals, and even several bird species (Rogers & Kaplan, 2012).
An important divergence between psychological models and robotics has been that
the three main psychological theories of ToM centered on an ability to project one’s
own experiences and way of thinking onto others. Autonomous systems, lacking
remotely comparable brains and experiences to their human teammates, instead may
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need to have their ToM more heavily grounded in processes of observation and
learning. Thus, robotic versions of ToM have tended to focus on narrower abilities of
perspective-taking, belief management with limited numbers of entities and objects,
and bounded rationality that can be tailored for a particular experiment, but are
difficult to scale to more realistic, open-world problems (Scassellati, 2002; Breazeal
et al., 2009; Hiatt et al., 2011; Weerd et al., 2013). However, scientific research has
also begun to emphasize the role of observation in the natural development of such
abilities, and this opening may be an excellent opportunity to reconsider ToM as a
foundational theory for HAT (Jara-Ettinger et al. (2016); Albrecht and Stone (2018)).

Another important set of theories are those for joint action/activity (Clark, 1996;
Bradshaw et al., 2009) and common ground (Stubbs et al., 2007). Joint activity
involves the ability to coordinate tasks with interdependencies and can depend on
common ground as a kind of floor of the minimum knowledge, beliefs, and assump-
tions that are required to be shared and maintained between agents. This can range
from direct communications between teammates to generally shared world knowl-
edge or widely accessible broadcasts. For teams, this requires both regular updating
and maintenance and the ability to recognize when it has broken down and needs to
be repaired. Note that while common ground might seem to be a particularly human
ability, that is not the case. For example, dogs are capable of both spontaneously
picking up on human cues and on signaling themselves in ways that can support
joint problem-solving with humans. Common ground via non-direct communication
has connections to both the biological literature on stigmergy, in which coordination
is done via changes in the environment (Steinberg, 2011), and Dynamic Epistemic
Logic, which can be used to reason about changes of belief and knowledge that
occur due to trustworthy announcements to a group (Lutz, 2006). There are also
relationships of these concepts to game theory research on how agents adapt to each
other under some degree of bounded information (Fudenberg et al., 1998). In the
study of human teams, joint action models often revolve around some notion of
an agreement between agents that need to be maintained along with the common
ground. However, within the biological and economics/game theory literature, there
are debates on the extent to which seemingly strongly coordinated activities can
instead arise as the result of more decentralized decision-making (Madden et al.,
2010; Young & Zamir, 2014). Common ground and joint activity have sometimes
been interpreted in robotics as the kind of information and plan representations found
already in robotic “world models” or on operator displays, and there are a number of
methods that have been considered for different aspects of this such as information
theory, Partially Observable Markov Decision Processes (POMDP), bounded ratio-
nality, and Hierarchical Task Networks (HTN) (Roth et al., 2005; Unhelkar & Shah,
2016). However, these are much broader concepts, and an important part of common
ground in HAT will be bridging the divide between human and machine represen-
tations of goals, tasks, and understandings of the world and each other. Relating to
joint activity in human–robotic interaction is also the idea of shared control (Mulder
et al., 2015). Some shared control research has focused on very application-specific
designs such as human assistance teleoperation problems. However, other research
can generalize this in a more abstract way that may be a good model for some of the
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richer interactions that may occur in HAT. For example, one approach is to provide
a systematic way for a machine teammate to estimate the quality of interactions it is
having with a human relative to goal achievement and then to be able to adjust the
level of interaction and allocation of its tasks to one appropriate to the circumstances
(Javaremi et al., 2019). The second example of shared control uses a formal linear
temporal logic approach as away to reason about shared policies (Fu&Topcu, 2015).
Other examples utilize an optimal control paradigm that recognizes differences in
machine and human understanding of the problem for physical tasks and address the
issue of how humans may adapt to autonomy over time (Nikolaidis et al., 2017) or
take into account a distribution of potential human goals if the actual human goal is
unknown (Javdani et al., 2018).

Another group ofmethods fromhuman factors and organizational psychologywas
developed specifically for human teams. A traditional approach has been models of
shared cognition such as team mental models and shared mental models (Lim &
Klein, 2006; Mohammed et al., 2010). A mental model, in this case, is a representa-
tion that allows the behavior of a system to be described, explained, and predicted.
This group of theories provides a way to aggregate that as an information structure
across the group. Shared mental models have also been a popular idea in human–
robotic interaction and related forms of AI and autonomy, but the mechanizations
of these models often are narrowly tailored to particular problems compared with
the versatility that is implied in the human case and often focus on awareness rather
than comprehension and prediction. There are challenges as well to deal with the
heterogeneity of HAT. For example, in an ad hoc team, broad knowledge held by
a machine may be less likely to be available, recognized as relevant, shared, or
acted upon in a timely way than if held by a human team member. The differences
between human–human interactions and human–machine interactions may play a
more significant role than the team’s information structure. An alternative approach
is Integrated TeamCognition (Cooke et al., 2013). This approach arguably has signif-
icant compatibility with engineering and computer science methods in that it takes
a bottom-up, layered, dynamical system approach based on observable interactions.
This approach has been applied to small human–autonomy teams with sophisticated
synthetic team members based on a full cognitive architecture. Research also has
included off-nominal performance, failures, and compromising of the autonomous
teammate (Gorman et al., 2019; McNeese et al., 2018). Several related bottom-up
methods have also shown good compatibility with engineering methods such as the
use of Hidden Markov Models (Cummings et al., 2019). Other important classes of
methods from human factors include theory-based approaches to situation awareness
(Endsley & Garland, 2000), transparency (Chen et al., 2018), and trust (Lee & See,
2004; Hancock et al., 2011) that have been effective on related classes of problems
and applied to some cases of HAT. A related concept from human–robotic interaction
is that of legibility and predictability (Dragan et al., 2013). Legibility represents how
well an observer could rapidly infer the system’s goals from observed behavior while
predictability relates to the extent that observed behavior is what would be expected
given a known goal. Finally, there has recently been considerable work within the
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fields of AI and robotics on the explainability of different system elements including
neural networks and planners (Chakraborti et al., 2020).

A final related area concerns models of emotion, affect, and motivation, and
how these may vary among individuals and relate to interaction and communica-
tion among team members. There has been considerable growth in the development
of cognitive and neuroscience models of the role of effect and motive in cognition
and even some principled systems theories in robotics based on either psycholog-
ical or neural models (Moshkina et al., 2011). However, much research in this area
has focused on problems such as virtual training environments, tutoring systems,
games, toys, artificial pets, and companions. Some cognitively plausible models of
effect and motivation have been applied to assist robots in their ability to commu-
nicate to humans in social domains. However, this research has often focused on
the ability of the autonomous system to provide a more pleasant experience for the
user, improved communications, and usability rather than taking a more functional
perspective toward being an effective teammate that performs tasks with humans to
achieve a common goal.

5.4 Teaming Over Longer Durations

Much research to date on human–autonomy teams has focused narrowly on rela-
tively small teams performing short-time duration tasks. There are many open issues
to extend our understanding to more complex team organizations that persist over
time scales that may involve a much greater number of hours, days, months, or
even years. As time durations increase, there is a need to better understand for
these new HAT organizations the effect and mitigation of human limitations such
as fatigue and boredom and machine limitations such as computational methods
that either do not scale well to longer periods of run time or become increasingly
likely to encounter a problem they cannot recover from without human assistance.
At longer time scales, creating effective autonomous teammates must also consider
aspects like the joint training of both machine and human members of the team; the
ability for the team to jointly do pre-task planning, agreements; and rehearsal, and
post-task assessment, maintenance, and improvement. At the longest time scale, it
will be important to understand the dynamics of how humans and machines may
adapt to each other and how this will impact trust and reliance. Human factors can
provide both general frameworks to support the design, development, and analysis
of complex socio-technical systems including some of the methods described above.
These considerations have the advantage of encompassing a broad range of Human
System Integration concerns, but they can require a great deal of care and creativity
to extend to a fundamentally novel concept like a human–autonomy team (HAT).
For example, joint training and rehearsal of both humans and machines have not
had much study. However, there are theories that exist with regard to human training
with autonomy (Zhou et al., 2019), autonomy as tutors for humans, and frameworks
for interactive machine learning in which humans assist machines in learning. The
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latter has had some work that has considered human factors and human-centered
design aspects that go beyond treating the human mainly as servicing the automation
(Krening & Feigh, 2018). Joint planning also has had some work that has consid-
ered both human factors and human models within planning and risk management.
An approach toward pre-task agreements that also has potential value for verifi-
cation and decomposition of HAT is contract-based approaches (Benveniste et al.,
2018; Nuzzo et al., 2015). At a system level, these can be used to guarantee global
properties as long as each individual element abides by a set of guarantees that are
rooted in local assumptions. In the event that an assumption is violated, there is
research on monitoring and adapting contracts to be able to restore some guarantees
in real time. This approach might seem like a very difficult method to bridge across
people and machines, but some similar kinds of agreements have been successful
with people. Finally, another significant area is self-assessment and prediction of
proficiency and competency boundaries the ability to communicate this effectively
to human teammates in terms of achievable performance over a range of operating
parameters prior to starting a task, in real time while performing a task, and then
afterward using knowledge of the completed task (Hutchins et al., 2015; Steinfeld &
Goodrich, 2020).

5.5 Formally Modeling and Composing Complex
Human–Machine Systems

While the prior sections have emphasized a human-centered focus, this section will
discuss higher level specification, modeling, and verification of the broader systems
in which human–autonomy teamsmay be embedded. Ideally, this level of abstraction
should be appropriate across different stages of the system’s life cycle. At design and
development time, this level could be used for tradeoff analysis, verifying correct-
ness and composability, and supporting either a correct by construction design or at
least design guided by formal tools. In deployed systems, this level could be used for
pre-mission and run-time validation, run-time monitoring to check if assumptions
or constraints are violated, and real-time repair to restore some degree of guaran-
teed properties in unexpected circumstances. Over a whole life cycle, this could
support monitoring, periodic recertification, and longer term maintenance, repair,
and improvement. To achieve useful results at a system level, it will be important
to have methods that can be automated and applied to end-to-end systems at useful
scale and under realistic assumptions. These methods also will need to be tailored
to different domains with different needs in terms of safety, time criticality, mission
reliability and constraints, and the degree and types of human interaction that are
possible or practical. Some key challenges in creating this level of systemmodel are:

(1) Identifying the appropriate level of abstraction andmeta-model for considering
system-level issues. Rather than focus on lower level behaviors or states, this
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representation might emphasize model abstractions such as aggregate capabil-
ities, skills, goals, agents, and tasks. For example, a capability-based model
might focus on what the system can do rather than how it can do it, what
resources are required to execute that capability, and what constraints is the
capability subject to (Bouchard et al., 2017, 2021). Alternatively, at a lower
level, a skill might be defined as the ability to move between a particular set
of pre-conditions to a particular set of post-conditions that can be specified
formally (Pacheck et al., 2020). The composition of these skills would then
provide something more like a broader capability. An important aspect of this
level of representation is also considering how to measure similarity between
different models for comparison and analysis purposes.

(2) Developing methods to formally express properties associated with all of the
different elements of the autonomous system at an appropriate level of abstrac-
tion via the desired representation types. Common types of representations to
provide this more system perspective include timed and hybrid automata and
various forms of temporal logic (Alur, 2015). There has been considerable
progress in extending temporal logic-based methods to include real-valued
parameters, probabilistic elements, uncertainty in perception and knowledge,
and finite-time horizons that provide more flexible and perhaps appropriate
ways to model the elements of intelligent autonomous systems (Littman et al.,
2017, Elfar et al., 2020). However, it is still unclear how best to capture
the relevant aspects of complex artificial intelligence algorithms, machine
learning, adaptation, perception, and complex physical and social interactions
with the external world in a way that yields useful results. Furthermore, there
are significant tradeoffs between expressibility and scalability relative to the
computational tools available for analysis, verification, and synthesis.

(3) Establishing structural commitmentswithin the system and between the system
and external world. Ideally, this would enable composability and strong proofs
of global properties across the system that could bemaintained or adapted even
after an individual component was replaced or changed. The idea of contracts
mentioned above is one example of this idea as are methods that compose
systems as graphs.

(4) The shift from design to real-time operation and deployment enables consid-
ering a notion of autonomy “failures” during real-time operations One example
of this shift would be if the system encounters a situation in which it is missing
something needed in order to meet its requirements in its sets of capabili-
ties, goals, goal selection/modification processes, cost functions, skills, behav-
iors, domain/task knowledge, and knowledge retrieval processes (Cox & Ram,
1999). Another example is if the system encounters a situation, in which the
embodiment of these elements in the realworld does not have the properties that
are asserted in its models. In both cases, these are well-formulated problems
to consider real-time repair to restore some degree of guarantee.

A significant challenge with this framework for human–autonomy teams partic-
ularly is in developing appropriate human models such that meaningful results are
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achieved when these models are used with methods for synthesis, analysis, verifi-
cation, and repair (Alami et al., 2019; Kress-Gazit et al., 2020; Seshia et al., 2015).
Significant research is needed on how best to formally model humans in order to get
meaningful results. There have been attempts to model humans using a wide variety
of engineering and computer sciencemethods includingfinite statemachines, process
algebra, Petri-nets, queuing,Markovmodels, game theory, decision or behavior tress,
and optical control and filtering. However, these are often better at normative, single-
task focus, or “rational” behaviors and decision-making rather than being predictive
of the kind of more naturalistic human behavior that would be found in real environ-
ments. Nonetheless, there have been some attempts to approximate a distribution of
more naturalistic behavior or individual differences using methods such as adding
noise, varying parameters, or assuming a degree of “bounded rationality” or subop-
timality to the above methods. Alternatively, there are human factors models that
have been developed explicitly for use with formal methods, but not specifically for
robotic or autonomous systems (Bolton et al., 2013). While some of these models
focus on detection of problems associated with the human interface, several also
have targeted system-level verification. Examples of this targeting include formal
task modeling languages like the Operator Function Model (Bolton & Bass, 2017)
and simplified cognitive models such as the Operator Choice Model. One benefit of
these models is there has been some work on incorporating more naturalistic human
behaviors such as errors. The cognitive models also provide additional insight into
the causes of problems relative to particular cognitive processes.

Another significant challenge is how to represent artificial intelligence-based
methods at a system level such as perception and learning. For an example of
machine learning elements, there are several approaches that could be considered.
One is to transform neural networks into a simpler abstraction such as a decision
tree or automata (Bastani et al., 2018; Frosst & Hinton, 2017; Ivanov et al., 2019). A
second possibility is to make verification part of the learning process with the goal
of directing the neural network learning to have a particular set of desired properties
(Anderson et al., 2020). This latter requires being able to quantify the closeness to a
region with the desired properties during learning. A third approach is to ensure the
desired global properties at a system level rather than at the level of the individual
learning element, such as through a method like run-time shielding that checks the
outputs of the learning element and changes its unsafe actions, or through related
methods that can incorporate broader specification types (Gillula & Tomlin, 2012;
Alshiekh et al., 2018).

5.6 Conclusions and Future Directions

Creating foundational systems theories for human–autonomy teams (HAT) raises
new issues that are substantially different from those that have previously been
encountered in related areas such as in the study of fully human teams or of human
management and supervision of fully machine teams. One of the big challenges for



88 M. Steinberg

the field remains developing appropriate formal models and representations at the
right level of abstraction for all of the elements of the entire system. This obstacle is
particularly true not only in the case of human models but also relevant to models of
complex computational components and autonomous interactions with people and
the environment. Nonetheless, many disciplines involved with different aspects of
intelligent, autonomous systems have reasons for seeking higher level abstractions,
models, and ways of decomposing problems. Some of these may match well or be
useful inspirations for system engineers and related fields like system safety, and it
will be important to engage these disciplines as early as possible. It will also be impor-
tant to change the current perspective froman emphasis on demonstrating instances of
short-duration tasks and deployments to both longitudinal studies on larger temporal
scales and considering whole life cycles of these kinds of systems. Finally, there
is also a need to broaden the research perspective from an emphasis on just the
“user” of particular autonomous systems to considerations of the implications for
whole socio-technical systems with many possibilities of different human–machine
organizations including teams.
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Chapter 6
Systems Engineering for Artificial
Intelligence-based Systems: A Review
in Time

James Llinas, Hesham Fouad, and Ranjeev Mittu

Abstract With backgrounds in the science of information fusion and information
technology, a review of Systems Engineering (SE) for Artificial Intelligence (AI)-
based systems is provided across time, first with a brief history of AI and then the
systems’ perspective based on the lead author’s experience with information fusion
processes. The different types ofAI are reviewed, such as expert systems andmachine
learning. Then SE is introduced and how it has evolved and must evolve further to
become fully integrated with AI, such that both disciplines can help each other move
into the future and evolve together. Several SE issues are reviewed, including risk,
technical debt, software engineering, test and evaluation, emergent behavior, safety,
and explainable AI.

6.1 Perspectives on AI and Systems Engineering

The field of Artificial Intelligence (AI) has a quite long history. Deciding exactly
when the field started would be the subject of many arguments but early conceptual
ideas, importantly related to computational feasibility, were defined in Turing’s 1950
seminal paper in the philosophy journal Mind (Turing, 1950), often considered a
major turning point in the history of AI.Wikipedia describes a “Golden years” period
of 1956–74 when a variety of then-new and rather amazing computer programs were
developed. Still following the metaphors in Wikipedia, a first AI “Winter” arises in
the period 1974–80, followed by a boom years period, largely spawned by the rise
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in Expert Systems techniques, and the efforts of the Japanese “Fifth Generation”
project. Skeptical views of AI at high decision-making and funding levels (in spite
of some continued advances) led to a second AI Winter, 1987–93. It was during this
period, however, that the groundwork for connectionist approaches was laid, but the
field still struggled through 2011. The current AI “Spring” could also be called the
period of Deep Learning (DL) and Big Data.

It is important to understand current terminology such as “Narrow” AI. Narrow
AI is a term used to describe artificial intelligence systems that are specified to
handle a singular or limited task. Narrow AI is also sometimes called Weak AI, and
some struggle over the distinction. And finally, there is the category of Strong AI or
Artificial General Intelligence (AGI) that is “focused on creating intelligentmachines
that can successfully perform any intellectual task that a human being can.” This
intelligence comes down to three aspects: (1) the ability to generalize knowledge
from one domain to another by taking knowledge from one area and applying it
elsewhere; (2) the ability to make plans for the future based on knowledge and
experiences; and (3) the ability to adapt to the environment as changes occur (from
Walch (2019)). There are respected opinions that indicate we are still a long way
from cause-effect modeling capability (Bergstein, 2020), and that such capabilities
are crucial to serious movement toward an AGI computational capability. In spite of
the recent accomplishments and the major investments being made in AI technology,
its nature as measured by its many accomplishments and its trusted use is still to
be noted, but exactly how this AI “season” evolves is still hard to determine with
confidence.

It is also important to realize that systems engineering (SE) for these generational
AI systems was a topic of concern for those times, i.e., that systems engineering for
AI systems also has a history. Those engineering methods were developed largely in
the boom years when Expert Systemswere being prototyped, and books were written
on the methods to build them, such as in Martin (1988); Purdue offered a website
(Subarna, 2020) that outlined the stages of Expert System development; there are
various other characterizations of these steps but broadly they can be summed as:
Identification—Conceptualization—Formalization—Implementation—Testing.

As regards new progress in Systems Engineering (SE) for AI and AI-imbued
systems (SE4AI), our review based on the technical literature suggests that there
is an equally long way to go to both achieve the knowledge to develop a solid
foundation of knowledge and methods for SE4AI but, perhaps more importantly, to
have the broadAI community take up and employ thesemethods rigorously in assured
systems development. Thus, we titled this Chapter: “Systems Engineering for AI-
based Systems: AReview in Time,” since the overarching field of AI is in a (complex)
process of evolution with much uncertainty as to how the varied dimensions of the
field will evolve; this is true for SE4AI as well.
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6.2 The Dynamics of This Space

6.2.1 Evolving an SE Framework: Ontologies
of AI/ML—Dealing with the Breadth of the Fields

Current-day descriptions and characterizations of AI andML abound; if one Googles
“What is AI?”, 3.3 Billion hits will arise, with all kinds of definitions and diagrams.
If we are to engineer the design, development, and testing of systems that are either
AI/ML-centric or inclusive of AI/ML as components or subsystems, we should have
a clearer understanding of these technologies. (We realize that AI and ML are quite
different but use AI/ML for notational ease.) One of the clearer characterizations in
our view are those which address: “What is it?”… and… “What does it do?”. Rather
detailed figures showing such mappings are developed in Corea (2018) for Artificial
Intelligence shown here as in Fig. 6.1.

There have been efforts to develop ontologies of these technologies, such as
in Hawley (2019), Bloehdorn (2009), but there do not seem to be any reference
ontologies that can help clarify the many nuances and dimensions inherent in the AI
and ML labels. Many such ontologies tend to anthropomorphize the technologies.

Fig. 6.1 Notional “What it is, What it does” Characterization of AI (adapted from Corea (2018))
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Hawley (2019) suggests that the first challenge in addressing the development of
an ontology for AI is the very changing definitions, calling the many variants as
“intellectualwildcards.”Healso suggests that the difficulty ismore in dealingwith the
term “intelligence” than “artificial”; these authors agree. The task-specific nature of
applications of classic AI and ML, as in the above figures, is another complication in
attempting to construct a generalized ontology. For ML, (Bloehdorn, 2009) suggests
that a starting point for such an ontology would classify along two dimensions, the
types of entities towhich theML is directed, e.g., textual data; and along the structural
component of the ML techniques, such as along an axis of features. In a way, this
view is again akin to the “what it does-what it is” dimensions. Our concern here is
that it is immediately difficult to consider thinking about an engineering approach to
an enabling capability if we cannot clearly and unambiguously define/describe what
the engineering process is directed to enact.

6.2.2 Systems Engineering as a Moving Target

The issue of defined and clear baselines for the understanding of artifacts to be
engineered is also a challenge as regards the methods of systems engineering of such
artifacts, as each influences the other. But dynamics in defining the methods of SE
are also driven by the SE community (e.g., INCOSE, the International Council on
SystemsEngineering) as it reflects on suchmethodsneeded to address the engineering
challenges of systems-of-systems (SoS) and enterprise systems in the current time.
Growing technological scale and the complexity of modern systems are in part the
drivers of the need for change in SE (MITRE, 2020), but SE has been a dynamic
field for many years. Systems engineering models and processes usually organize
themselves around the concept of a life cycle, and the concept of life cycle has
also been a moving target. The SE community has adapted to these changing life-
cycle characterizationswithAgileDevelopment earlier and now“DevOps,” theWIKI
definition being a “set of practices that combines software development (Dev) and IT
operations (Ops),” but this is too limiting to the software boundary, and applies also to
the complex software-hardware-human aspects of complex systems. In part, DevOps
is oriented to the idea of continuous delivery, so that a system’s useable life cycle
can adapt to broader limits and its characterizations of use.

DevOps for Modern Complex Systems

DevSecOps is a set of principles and practices that provide faster delivery of secure
software capabilities by improving the collaboration and communication between
software development teams, IT operations, and security staff within an organization,
as well as with acquirers, suppliers, and other stakeholders in the life of a software
system (see: [https://www.sei.cmu.edu/our-work/devsecops/]). The general idea is to
more closely link the system development process to its continuing support during its

https://www.sei.cmu.edu/our-work/devsecops/
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deployment to operational status. The DevOps concept was a natural progression of
the Agile software development methodology that has been evolving since the 1990s
with work by many computer scientists both in academia and industry resulting in
the publication of the Agile Manifesto in 2001 [http://agilemanifesto.org/].

To understand the factors motivating this movement, it is instructive to examine
the evolution of the software development industry over the past three decades. Until
the mid-2000s, the waterfall software development methodology was the defacto
standard. The primary motivation was that it gave leaders of large organizations
and government agencies a level of comfort that they were following a structured,
well-understood process. In fact, the Department of Defense instituted a standard
requiring waterfall as the sanctioned methodology for software development under
a standard numbered DOD-STD-2167A [https://en.wikipedia.org/wiki/DOD-STD-
2167A].

The waterfall methodology, depicted in Fig. 6.2, is heavily front loaded with
requirements analysis, high level design, low-level design, and development plans.
This results in some significant problems:

• Software release cycles average around 3 years [Varhol, TBD]. In the case of
mission-critical software for medical, aerospace, and DoD organizations, it can
be as long as decades.

• Development functions are dispersed across multiple departments within an orga-
nization.Onceone stageof the process is complete, artifacts (documents, software,
programs) are passed on to a different department for the next stage of the process.
This results in the isolation of expertise within organizational boundaries.

Fig. 6.2 Waterfall Software
Development Methodology

http://agilemanifesto.org/
https://en.wikipedia.org/wiki/DOD-STD-2167A
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• Software end users are not exposed to the software until the final software product
is released. Faulty assumptions in any of the stages of the waterfall methodology
cannot be ameliorated to correct problems and redeploy the software in a timely
fashion.

• Predicting the time necessary to develop software is difficult. Attempting to
schedule a full development cycle in a front-end process is not useful (see Fred
Brooks’ seminal work on the topic (Brooks, 1982)).

A nice history of the evolution in software engineering fromWaterfall to DevOps
is in Chaillian (2019).

Adoption of theAgilemethodology inspired the rethinking of how software devel-
opment organizations and processeswere structured.AnAgile process ofContinuous
Delivery (CD) and Continuous Integration (CI) required a cohesive organization that
spanned marketing, development, and operations expertise. These modifications to
the software and systems engineering processes, and the benefits they yielded led to
the inception of the DevOps concept. A key factor was having representation from
all of the organizational areas making up the software development pipeline in all of
the stages of software production. This created a much more streamlined, efficient,
and responsive production process.

DevOps also introduced the potential for the automation of the full software life
cycle. Figure 6.3 depicts the realization of DevOps in an automated software build,
integration, test, and delivery process. As software modifications are committed to
a shared repository, the DevOps pipeline “pulls” the latest source code from the
repository, compiles the software, integrates various components into a deliverable
form factor (Virtual Machine Images, Containers, or installable packages), deploys
them on a local or cloud-based testbed, performs automated testing on the software,
and publishes test results to stakeholders. This process has many advantages:

• The software life cycle is reduced drastically, builds often are performed daily.
• Geographically distributed teams can easily collaborate within the DevOps

processes.

Fig. 6.3 DevSecOps
software development
pipeline
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• Automated testing is performed frequently so that any anomalies introduced can
be quickly detected and corrected.

The DoD has begun the transition from the waterfall methodology to Agile
including the implementation of automated DevOps processes. The additional infor-
mation assurance requirements imposed by DoD for software in operational settings
requires the addition of a software security assurance phase to DevOps making it
DevSecOps. The additional phase involves static scanning of software code to detect
vulnerabilities that would make the software susceptible to classified information
leakage or to cyber-attack. Additionally, dynamic software scanning is, in some
cases, carried out where the running software is monitored for security violations
during the “Sec” phase of DevSecOps.

With so much attention being paid to ML techniques within the DoD, research
organizations are now working on specialized DevSecOps pipelines specifically
tooled for ML. The problem then becomes how to procure “good” data and ensure
that the ML networks are learning correctly. This poses a difficult problem in that the
data required to train ML in the domain of tactical operations is sparse and, where
available, is highly classified. One approach being examined is to utilize computer
simulation technology to generate synthetic data for trainingML systems. It remains
to be seen whether or not this approach will bear fruit. The concern is that the simula-
tions used to generate synthetic data consist of largely static, scripted events, whereas
tactical operations are highly fluid and complex.

The other, largely unaddressed, problemwithDevSecOps for AI/ML systems is in
the Test, Evaluation, Validation, and Verification (TEVV) of those systems. Testing
AI/ML systems requires that they be exposed to realistic scenarios and having an
automated test systemgaugewhether or not the output of theAI/ML systems is appro-
priate. We again face the same problem of data sparsity. In the case of reinforcement
learning approaches, TEVV will require a continuous monitoring model. For those
seeking further information on implementing DevSecOps in regulated domains such
as the DoD or healthcare, finance, etc., the SEI has produced a thorough report at
Morales (2020). In the same fashion as has happened for SE in regard to SE4AI
and AI4SE, there are many blogs and podcasts about how AI can be exploited for
DevSecOps, e.g., Trivedi (2021).

6.2.3 The First to Market Motivation

The hoopla about AI and ML is also driving a transformation in business, both
in the sense of what a business is and how it operates. Whether true or not, there
is a widespread impression that rapid incorporation of AI and ML technologies is
necessary to stay apace of competition in the marketplace. As well, the development
tools for AI and ML have evolved in a context that allows quick prototyping and,
if appropriately tested and evaluated (an issue), rapid delivery to market. In Zeller
(2018), it is asserted that “Enterprises thatwait too long to implementAI andMachine
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Learning will put their businesses at significant risk as nimble competitors find new
ways of disrupting the industry status quo.” This sense of urgency has also spilled
over into the defenseR&Dcommunity, as can bewitnessed by the “AINext” program
of the Defense Advanced Research Projects Agency (DARPA) in the United States
(AI Next, 2020), where some US$2 billion will be invested across a wide array
of programs to advance the integration and exploitation of AI/ML for a range of
defense applications. These urgencies have given rise—or perhaps more correctly—
have yielded a retrograde in engineering design-thinking that moves this framework
“Fromdeductive reasoning to inductive reasoning, From clear specifications to goals,
and From guarantees to best effort,” following Carnegie-Mellon University’s course
in “Software Engineering for AI-Enabled Systems” (CMU, 2020).We say retrograde
because these methods were pretty much the principles of design from the Expert
Systems era of AI. These guidelines support rapid development but often with clear
compromises in quality and impacts on life-cycle costs.

6.2.4 Technical Debt

Harking back to a 30-year-old idea in the face of current-day software develop-
ment problems, staffers at Google put forward ideas about technical debt on the
applicability of these old ideas to modern-day development of ML code in Sculley
(2015). That paper starts with a citation to a 1992 paper by Cunningham (1992) that
argues “Although immature code may work fine and be completely acceptable to the
customer, excess quantities (of immature code) will make a program unmasterable,
leading to extreme specialization of programmers and finally an inflexible product.
Shipping first-time code is like going into debt. A little debt speeds development so
long as it is paid back promptly with a rewrite.” This was a reflection on the imputed
life-cycle cost debt of rapid software code development. Related to this, Google
staffers assert (Sculley, 2015) “As the machine learning (ML) community continues
to accumulate years of experience with live systems, a wide-spread and uncomfort-
able trend has emerged: developing and deploying ML systems is relatively fast and
cheap, but maintaining them over time is difficult and expensive.” That paper focuses
on system-level interactions and interfaces as an area where ML technical debt may
rapidly accumulate, and offers various suggestions about strategies to address those
issues, too detailed to review here, but their conclusions suggest that additional
developments in the areas of maintainable ML, including better abstractions, testing
methodologies, and design patterns, are all needed to avoid negative life-cycle cost
implications of current-day rapid development practices.
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6.2.5 Summary

The field of AI/ML technologies and the related engineering methods for designing,
developing, and testing of systems that are either AI/ML-centric or have major
AI/ML components or subsystems, is currently exhibiting considerable change. We
discuss these in the context of this chapter focused on engineering methods to show
that any discussion or suggestions regarding such engineering practices have to be
taken/understood in the context of these advances, and at this point in time. It is
going to take some time forAI/MLdomain technical experts and systems engineers to
come together and develop amature community of practice that employs engineering
methods to provide assured cost-benefits while achieving desired effectiveness.

6.3 Stepping Through Some Systems Engineering Issues

One of the overarching and essential challenges to realize the promise of AI/ML is
that there is not currently a universally accepted approach when it comes to imple-
mentation, since the far greater proportion of implementations realized to date are
highly specialized (Vora, 2019; Dwyer, 2019); there are yet other challenges as well,
and there are many opinions about them (Marr, 2017). We will step through some
of the important issues related to understanding the current state of affairs, and what
might be done to make some progress in SE methods. Our focus is on the software
aspects but clearly a full SE process would address hardware, human factors, etc.

6.3.1 Capability Maturity Model Integration [CMMI] and SE
for R&D

Before marching through various SE steps, we make some overarching remarks on
the top-level issues of engineering culture within a software development-oriented
organization. A first remark comes from reviewing the Capability Maturity Model
Integration (CMMI) review efforts of the Software Engineering Institute (SEI) at
Carnegie-Mellon, as described in CMMI (2010). CMMI for development can be
described as the collection of best practices that address development activities
applied to products and services in any organization. It addresses practices that
cover a product’s life cycle from conception through delivery and maintenance;
SEI’s approach contains 22 such processes. The degree of thoroughness of such
practices can be an indicator of the collective rigor within which an organization
develops software. SEI has developed a five-level categorization of degrees for the
organization that has embedded such practices in their engineering operations; these
maturity categories are:
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1. Initial: processes are seen as unpredictable, poorly controlled, and reactive.
Businesses in this stage have an unpredictable environment that leads to
increased risks and inefficiency.

2. Initial: processes are seen as unpredictable, poorly controlled, and reactive.
Businesses in this stage have an unpredictable environment that leads to
increased risks and inefficiency.

3. Managed: processes are characterized by projects and are frequently reactive.
4. Defined: processes are well-characterized and well-understood. The organiza-

tion is more proactive than reactive, and there are organization-wide standards
that provide guidance.

5. Quantitatively Managed: processes are measured and controlled. The organi-
zation is using quantitative data to implement predictable processes that meet
organizational goals.

6. Optimizing: processes are stable and flexible. The organizational focus is on
continued improvement and responding to changes.

Much of AI/ML development is being done within organizations rated at Levels
0 and 1, some are at Level 2. These ratings seem to be consistent with the overall
state of maturity of SE rigor in AI/ML development.

Another top-level view from a similar perspective was carried out in Lombardo
(2015), where the question addressed was the appropriate level of incorporation of
SE rigor as a function of the type of organization doing the work, and, in particular, as
regards R&D type organizations. It can be argued that such rigor in R&D organiza-
tions is often not warranted or affordable, particularly where it is uncertain whether a
new technology can meet key performance goals. In Anderson (2005), three levels of
SE are defined to support the right-sizing of systems engineering activities: informal,
semi-formal, and formal. The overall scheme is risk-based in terms of the risk that
the constructed system/product should have. Figure 6.4 shows this scheme (a risk
categorization scheme and its factors are shown in the analysis):

Anyorganization therefore has these overarching questions in front of it, as regards
choosing the level of rigor and completeness in its SE practices; rigor and complete-
ness costmoney. Building an organization having rigorous and complete SE practices
will be costly along various dimensions. But issues of reputation and product/system

INFORMAL SEMI-FORMAL FORMAL

Incorporate systems thinking 
into project scope

Define specialized Systems 
Engineering tasks directed at 

Risk reduc�on

Systems Engineering 
ac�vi�es, tasks defined based 

on TRL challenges and risks

Limited Systems Engrg Rigor Defined Project Management 
Plan

Formal Systems Engrg
Management Plan

LOW RISK PROJECT MODERATE RISK PROJECT HIGH RISK PROJECT

Fig. 6.4 Levels of SE Rigor for R&D organizations as a function of risk (derived from Anderson,
2005)
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quality as well as risk in use and liability also play into the cost equation, and making
such decisions will not be easy.

6.3.2 Requirements Engineering

Requirements Engineering (RE) is concerned with the elicitation, analysis, specifi-
cation, and validation of software requirements as well as the management and docu-
mentation of requirements throughout the software product life cycle. RE is often
the first or among the first steps in an SE approach. Among the effects on RE that
have occurred in AI/ML system designs, hard and testable requirements have been
replaced by goal statements (historically it has been asserted that the first require-
ment should be a testable concept for that requirement, else it was poorly defined).
Such effects come from, at least in part, the complexity and opaqueness of AI/ML
algorithms and processes, that is, in effect, the level of deeper understanding that is
known early on in a system’s evolution. Vogelsang and Borg (2019) “are convinced
that RE for ML systems is special due to the different paradigm used to develop
data-driven solutions.” They analyze the effects of ML on RE, describing effects
on requirements elicitation, analysis, specification, and Verification and Validation
(V&V). For example, Elicitation is impacted by the existence of Important Stake-
holders such as Data scientists and legal experts; Analysis by definitions of outlier
effects amongothers, Specification by complications from the need for explainability,
and V&V by complexities due to data biases.

In a similar way, Belani et al. (2019) develop an equivalent assessment along
these same dimensions for the challenges to RE in the case of AI systems (see their
Table 6.1 for a breakdown very similar to Table 1). They recommend a goal-oriented
approach to RE (“GORE”) that tries to balance the imprecision of goal statements
with the precision of requirements specification. In Horkoff (2019), an extensive
survey of papers on such GORE methods is done (there is a large literature on this
topic), but the conclusions are obtuse, leaving the question of effectiveness open.
Additional papers directed to RE deal with defining legal and ethical performance
of AI/ML systems (Guizzardi, 2020), and of explainability (addressed later) (Hall,
2019).

These important aspects of SE thus remain under study, and how and whether
there will be convergence to an agreed, stable, and consistent approach is unclear.

6.3.3 Software Engineering for AI/ML Systems

Software engineering methodology is another topic in this discussion that also has
a long history. The history of these methods seems to date to 1956 in a paper by
Bennington providing the first description of the well-known “Waterfall” software
development method for “large computer programs” (Bennington, 1983), as also
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Fig. 6.5 Machine learning workflow (derived from Amershi (2019))

described in Sect. 6.2.2.1. In performing a current-day search regarding software
development methodologies, our search showed websites discussing a range of from
4 to 12 methods. In Tatvasoft (2015), a list of 12 methods is described, enumerating
advantages and disadvantages of each.

These various methods were developed for different directed purposes, and they
have a range of applicability, from those with well-defined requirements such as the
Waterfall model to those that are more adaptable to changing requirements such as
the Scrum model. None of these were really conceptualized to address the special
needs of AI/Ml software development.

The most distinguishing aspect of AI/ML software development is the depen-
dencies of the process on data characteristics. The AI/ML model life cycle can be
summarized as a process in which it is necessary to deal with data, select a target
classification model (and features) depending on the type of problem and the avail-
able data, train and test the model under different configurations and performance
metrics, and finally, operate and feedback corrections to the trained model as neces-
sary. Of course, a first question relates to the logic involved in selecting the data to
learn, and then to condition that data for targeted purposes of the application. These
steps require non-trivial domain knowledge and are interconnected and non-linear.
Jointly, these steps have come to be known as “Feature Engineering,” the process of
using domain knowledge to extract features from raw data, often via data mining or
other techniques. An example of this process is shown below in Fig. 6.5 (derived from
Amershi (2019)). It can be seen that some steps are data-oriented while others are
model-oriented, and that there are many feedback loops. The larger feedback arrows
denote that model evaluation may loop back to any of the previous stages, and the
smaller arrow shows that model training may loop back to feature engineering.

Theworkflowshown inFig. 6.5 is one important factor affecting the formulation of
a software engineering and development approach; the scheme in Yao (2018) forML
development emphasizes the dependencies on Data and Models, the important role
of Feature Engineering, and of Verification and Validation note too, the specification
of Goals versus precise requirements.

The additional complexities that these processes impute onto software develop-
ment, and the concern for the related issues of technical debt, have given rise to an
explosion of papers and ideas about identifying and addressing hidden technical debt
in AI/ML development (see, e.g., Martini (2018)).

In a highly cited editorial (Kruchten, 2012), the various concerns for technical
debt as related to AI/ML software development are discussed; Fig. 6.6 shows the
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Fig. 6.6 The technical debt landscape (derived from Kruchten (2012))

“Technical Debt Landscape” derived from that work, showing that some concerns
are not obvious (“mostly invisible” in the figure), and can be difficult to prevent.

Developing an AI/ML community approach to software engineering is another
needed component of an overall SE approach; it is another issue in flux, facing
a number of technical difficulties that underlie the development of an engineering
process that is cost-effective and efficient, and formed to avoid both the subtle and
more visible aspects of the drivers of technical debt.

6.3.4 Test and Evaluation

Test and Evaluation processes are clearly central to the overall SE paradigm. Within
the Model-Based SE (MBSE) paradigm, model-based testing (MBT) means using
models for describing test environments and test strategies, generating test cases, test
execution, and test design quality.MBT is said to provide an approach that ensures the
possibility to trace the correspondence between requirements,models, codes, and test
cases used for the tested system. Model-based testing is a software testing technique
where run-time behavior of software undergoing a test is checked against predictions
made by a model. There are various ways that such testing could be enabled. To
automate test-case generation and a test oracle, a specification of the system has
to be expressed in formal languages which are amenable to an automated analysis.
Tests are then automatically derived from those formal models, and subsequently
executed.

Another level of testing is the class of model-based black-box testing techniques
that aim to assess the correctness of a reactive system; i.e., the implementation under
test (IUT) with respect to a given specification (assuming a specification has been
properly constructed). The IUT is viewed as a black-boxwith an interface that accepts
inputs and produces outputs. The goal of model-based black-box testing is to check
if the observable behavior of the IUT “conforms” to a specification with respect to a
particular conformance relation. In the case of Machine Learning models, there are
no expected values beforehand in that MLmodels output a prediction. Given that the
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outcome of Machine Learning models is a prediction, it is not easy to compare or
verify the prediction against an expected value that is not known beforehand. But for
non-deterministic operations within an ML agent, there is no easy way to provide an
expectation. This void has given rise to the idea of pseudo-oracles and “metamorphic”
testing. Metamorphic relations represent a set of properties that relate multiple pairs
of inputs and outputs of the target program/application such that proportional results
due to changes in design parameters can be estimated (Kumar, 2018).

Software testing is a large and complex space, and we will not enter into the
many issues lurking there, such as black-box and white-box testing, verification and
validation, unit testing, etc. We will try to comment on some issues that are specific
to AI and ML systems. One first question even before entering a test cycle is that of
debugging AI/ML code, since testing should only be done with code that has at least
passed the debugging stage. One example is in using Probabilistic Programming
for AI inferencing, where debugging is more about odd behaviors than traditional
discrete “bugs” (Nandi, 2019). For ML, the code first of all has many dynamic
interdependent parts such as datasets, model architectures, model weights that are
fine-tuned during training, an optimization algorithm and its parameters, gradients
that change during training, and on. Among the problems encountered, the use of the
various tools for ML, such as TensorFlow, abstract away underlying complexities,
making access to certain functions not possible. Prasanna (2020) haswritten a posting
that describes yet other issues related to ML code debugging, such as, when using
a tool like TensorFlow in the “declarative approach,” you do not have access to the
defined graph model and the optimized graph, so debugging performance errors can
be harder.

With regard to Test and Evaluation (T&E), the approaches for ML and AI are
quite different. ML is about model testing for classification to a great degree, and AI
is about possibly complex layers of inferencing. Selection of the T&E processes and
metrics for both followdifferent paths. ForML, the historical base ofmostly statistical
and quantitative methods and metrics is quite rich, but there are still technical issues
that can arise. Flasch, in Flasch (2019), offers good reminders about subtleties in the
statistics of measuring ML performance. He offers various interesting points about
metrics that compute different things from different viewpoints (such as F-scores,
Areas Under (ROC) Curves, Brier scores, etc.), and the challenge of aggregating the
best set of metrics for system-level evaluation. For T&E of AI processes, there lurks
the fundamental challenge of agreeing on what constitutes intelligence, and deriving
a T&E approach from the developed response to that challenge. Hernández-Orallo, in
Hernández-Orallo (2017), focuses on the obstacles of an ability-oriented evaluation
approach, where a system is characterized by its cognitive abilities rather than by
the tasks it is designed to solve. The approach ranges over several possibilities: the
adaptation of cognitive tests used for humans, the development of tests derived from
algorithmic information theory, or more integrated approaches from psychometrics.
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6.4 Sampling of Technical Issues and Challenges

It should be clear that AI and ML are complex domains, spanning wide ranges
of categories of techniques and categories of applicability. Because they address
complex challenges, it can be expected that designing these processes as well as
understanding these processes will not be easy, as is perhaps already appreciated.
Here, to emphasize this point, we give a sampling of technical complexities in the
AI and ML domains, in no particular order.

6.4.1 Emergence and Emergent Behavior

ML processes typically employ/embody neural networks that are known to have
inherent emergent behavior. Here, we prefer the definition of emergence described
as a property of a complex system: “a property of a complex system is said to
be ‘emergent’ and it arises out of the properties and relations characterizing the
system’s simpler constituents, but it is neither predictable from, nor reducible to, these
lower-level characteristics” (Adcock, 2020). There are many other definitions and
taxonomies of emergence (Fromm, 2005; Chalmers, 2006), but the focus regarding
SE is on the effects of emergence, not emergence per se. Chalmers (2006) identi-
fies “strong” and “weak” emergence, where strong emergence is not deducible even
in principle from the laws of a lower-level domain, while weak emergence is only
unexpected given the properties and principles of the lower-level domain. Neace and
Chipkevich (2018) define weak emergent behavior as attributable to the behavior
of its constituents; they have developed an engineering methodology designed to
realize weak emergence as a desired property of a designed system. Desirable weak-
emergent properties include self-healing, self-management, self-monitoring, and
more; i.e., the desirable degrees of autonomous self-management. They introduce the
ideas of network synchronization, functional coherence, and network entrainment as
necessary mechanisms for weak emergence in a manufactured Complex Adaptive
System (CAS), along with the software agents needed to intend and achieve weak
emergence in the CAS. It may be possible to exploit emergent behavior for useful
purposes in an SE-based approach to ML process design and development, but in
any case, it will need to be addressed.

A further reflection of such concerns is given in DARPA’s recent release of the call
for the AIMEE program—Artificial Intelligence Mitigations of Emergent Execution
(DARPA, 2019). Among the goals for the program is to learn how to prevent the
propensity for emergent execution directly at the design stage when the system’s
programming abstractions and intended behaviors at a particular layer are translated
into the more granular states and logic of the next computing substrate layer; by and
large, this call by DARPA is fundamentally an SE challenge.
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6.4.2 Safety in AI/ML

Related to but not bounded only by emergent properties, the AI literature has many
entries about the various surprising and often undesirable behaviors of AI processes;
such behaviors may clearly affect safe use. Yampolskiy (2019) addresses a position
that discusses the unpredictability of AI in broad terms. In this paper, Yampolskiy
surveys a number of works that discuss the related aspects for SE of AI Safety that
addresses concepts of Unknowability (Vinge, 1993) and Cognitive Uncontainability
(2019). In Amodei (2016), a lengthy review of specific problems in AI Safety are
reviewed; the bulk of these problems are not dealing with the concepts of unpre-
dictability and emergent behaviors per se, but issues that result from failures in
systems engineering and design rigor ofML systems. Examples describe caseswhere
the designer may have specified the wrong formal objective function; or the case
where a designer may know the correct objective function, but it is judged too expen-
sive to employ, leading to possible harmful behavior caused by bad extrapolations
from limited data samples, calling this “Scalable oversight”; and, finally, the case of
a correct formal objective, but problematic behavior due to making decisions from
insufficient or poorly curated training data, called “Safe exploration.” For those
interested in this topic, which is definitely an SE topic, Faria (2018) provides another
overview of safety issues in ML processes.

Other issues that can be of possibly major concern in system design relate to
achieving systems whose behaviors and results are compliant with ethical standards
(Rossi, 2019), and systems whose behaviors and results are unbiased (DeBrusk,
2018). These goals also open the discussion about subtle effects and factors that can
influence system operations as well as results.

6.4.3 The Issue of Explanation/Explainability

As the applications and algorithms for AI andML have matured in the new Spring of
AI, the processes (especially on the ML side) have become extraordinarily complex,
resulting in considerable opaqueness. Computing systems are opaque when their
behaviors cannot be explained or understood. This impenetrableness is the case when
it is difficult to know how or why inputs are transformed into corresponding outputs,
and when it is not clear which environmental features and regularities are being
tracked. The widespread use of machine learning has led to a proliferation of non-
transparent computing systems, giving rise to the so-called “Black Box Problem”
in AI, meaning that no views of the processes and workings between components
are visible. Because this problem has significant practical, theoretical, and ethical
consequences, research efforts in Explainable AI aim to solve the BlackBox Problem
through post-hoc analysis, or in an alternative approach to evade the Black Box
Problem through the use of interpretable systems. Reflecting concern for this issue,
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DARPA again spawned an early program in its huge AI Next program directed to
Explainable AI (Gunning, 2016).

Interest in explanation capabilities, either within the system by re-engineering to
reduce or avoid opaqueness, or by an explanation service, has exploded if we track
the evolution of citations on these topics. There are a number of review papers on the
subject matter but two stand out, scaled by the numbers of papers claimed to have
been reviewed: the paper by Adadi and Berrada (2018) that reviewed 381 papers,
and the one by Arrieta, et al. (2020), that reviewed 426 papers. These papers take
exhaustive looks at the world of explanation, too expansive to summarize here.

In terms of some focal issues, we see discussions about Interpretability versus
Completeness. The goal of interpretability is to describe the internals of a system
in a way that is understandable to humans, whereas the goal of completeness is
to describe the operation of a system in an accurate way (these can be alternately
described as providing understandability versus justification of results). An expla-
nation is said to be more complete when it allows the behavior of the system to be
anticipated across a wide range of application conditions. Thus, the challenge facing
explainable AI is in creating explanations that are both complete and interpretable.
But achieving this balance is difficult, as the most accurate explanations are often not
easily interpretable to people; conversely, the most interpretable explanations often
do not provide predictive power in atypical cases. Importantly, these issues in turn
will affect how humans will come to trust the systems, a critically important issue.

This issue, like many others addressed here, also has a long history. As the AI
community evolved and developed suchmethods for estimation and inference, expla-
nation arose quite early as an issue and adjunct capability that, for almost any appli-
cation that could be considered “complex,” was a necessary topic and co-process to
consider. Figure 6.7 is a portion of a figure from Kass (1987), a 1987 publication that
tried to address the range and types of explanations that the evolving AI community
might have to think about. The figure offers a categorization of anomalous events
that need explanation; the version here is a truncated portion of the original. So,
explanation is not new and appears to be an inherent and mandatory capability for
certain but likely far-reaching AI applications.

6.5 Summary

The technological domains of AI and ML have had, and will continue to have, a
dynamic evolution. It is important to appreciate that historical context and to be
patient with the development of improved engineering practices for the continued
growth of capabilities, both for thewaysAI andMLprocesses are engineered, but also
for the systemic aspects of the applications they are engineered into. One factor that
is a major omission from this chapter is that the engineering of the role of humans to
coexist with and exploit AI/ML system capabilities is missing; explanation certainly
relates to that issue but we mean here the systemic viewpoint of human-system
interdependence. What is not so clear is, even if studies of engineering practice for
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Fig. 6.7 A Hierarchy of types of explanations (derived from Kass, 1987)

AI/MLmature and offer betterways to engineer such systems, howwillwe be assured
that those practices will be promulgated into the broader AI/ML communities? If,
as Vora asserts (Vora, 2019), “The essential challenge with AI is that there is not
currently a universally accepted approach when it comes to implementation,” then
this promulgation path will be an unresolved issue that follows even if good SE
processes can be defined.
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7.1 Introduction

Artificial intelligence (AI) is a core component of the U.S. Army’s modernization
strategy. Importantly, the accelerating development and integration of ever-advancing
forms of AI will continually change the character of the battlefield, the dynamics
of conflict, and even the very nature of the tasks that Soldiers perform. To date,
however, the predominant aims in the larger domain of AI have tended to be focused
on succeeding in limited aspects, or isolated functional snippets, of overall task
performance (e.g., object identification, navigation, obstacle avoidance, conversa-
tional assistants), while also overlooking or even outright trivializing the essential
human elements that we believe should be integral to the models that give life to
these intelligent, blended systems. Many AI-centric approaches for implementing
autonomous technologies have similarly tended to overlook opportunities to leverage
the human as a teammate and a resource; for instance, using human biological, phys-
iological, and behavioral responses as sources of data to teach, train, and inform
real-time adaptations of mixed human-autonomy team performance. The tendency
to develop these advanced intelligent systems without holding the human elements
as fundamental seems to be a glaring omission in light of the intention to perfuse
AI-based technologies into spaces that will also be predominantly occupied by many
humans. This oversight becomes even more critical when the anticipated operational
contexts are complex, austere, and involve high (and even mortal) risks.

In response to the need for better conceptualizations and implementations of
human-AI systems for complex and risky operations, the Army Research Labora-
tory (ARL) has stood up an Essential Research Program (ERP) that focuses consid-
erable fiscal, technical, and intellectual resources towards advancing the science and
application of novel methods for human-autonomy teaming (HAT). As the flagship
research program of ARL for the science of human-autonomy teams, the HAT ERP
is built on a core concept that human-autonomy teams and Soldier-focused AI are
critical to create the kinds of intelligent systems that can optimally adapt and main-
tain synergistic, integrated partnerships between Soldier intelligence and AI-enabled
intelligent agents. Importantly, we argue that this effort is essential to assure that the
US Army and its stakeholders can confidently expect complex, multi-agent Soldier-
AI teams to perform robustly within the volatile dynamics and complexity inherent to
the Army’s functional operating concept of Multi-Domain Operations (MDO; U.S.
Army TRADOC, 2018). This concept anticipates widely dispersed teams that must
work towards multiple objectives in tight coordination to create and exploit limited
windows of opportunity across a theater of operations that incorporates air, ground,
sea, space, and cyberspace.
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7.2 The Fundamental Nature of Human-Autonomy
Teaming

A human-autonomy team, in this context, is a heterogeneous group of multiple
humans and multiple intelligent agents. For this type of team dynamic to be effec-
tive, it requires some level of shared goals, interactive and interdependent role-based
workflows, and some overall organizational objective (see Kozlowski & Ilgen, 2006
for a more in-depth definition of “teams”). While human-autonomy team dynamics
certainly include interactions within more traditionally studied dyads (i.e., single
operator–single system), the interaction dynamics of interest herein focus more
on the complexity added within larger, more heterogeneous groups. In complex
human-autonomy teams, the autonomy (i.e., intelligent agents) may take the form
of embedded software agents, embodied robotic agents, or any kind of simpler tech-
nology that has been imbued with the intelligence to actively adapt to environmental
and task conditions (e.g., intelligent sensors and sensor systems, adaptive interfaces,
and so forth). Further, these technologies that may be perceived as singular intelli-
gent agents can themselves contain multiple AI-enabled subsystems. As technical
complexity progresses in this way, so does the imminence of the need to understand
the capabilities and vulnerabilities that both expectedly and unexpectedly emerge
from such human–machine collectives and their governing processes. In addition,
performance dynamics in these mutually interactive teams may at any time involve
particular human-to-human, human-to-agent, and even agent-to-agent interactions,
as well as various permutations of individuals that form into varied need-based sub-
teams. Understanding and eventually intentionally manifesting such a complex set of
dynamically evolving interactions that yield an effective teamperformanceultimately
demands a new—or at least heavily evolved—science of optimizing performance in
human-autonomy teams.

The modern science of human-autonomy teaming is still relatively new. As a
result, there are few established theoretic constructs uponwhich an evolved science of
teamwork may be built to accommodate the objectives of characterizing, predicting,
and controlling complex interactions among heterogeneous mixes of humans and
intelligent agents. Historically, when machines were little more than mechanical
extensions of human ingenuity and intention, the task of defining roles for and inter-
actions between humans and machines was trivially viewed as a simple matter of
“choosing the right tool for the job.” That is, with simple machines, the division of
labor is obvious: a nail needs to be driven into a board; the human uses a hammer
and subsequently puts it away after the task is complete. With the observation that
machines would progressively become more advanced and automated, early vision-
aries (e.g., Fitts, 1951) recognized that humans andmachines generally and inherently
excel in different ways, much like earlier tools (a hammer) were better suited for a
task (driving a nail through a board) than the human tool equivalent (their closed
fist).
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7.2.1 Complementarity of Human and AI Characteristics

In Fitts’ original humans-are-better-at, machines-are-better-at (HABA-MABA)1 list,
humans were described as superior for things like inductive reasoning, judgment,
long-term memory encoding and retrieval, and improvisation; whereas machines
were noted as better suited for performing repetitive tasks, deductive reasoning,
and handling highly complex operational sequences, among others. While some
elements of this original list have aged well, like machines outperforming humans
in computation, others have not. For example, the claim that humans outperform
machines in detecting “a small amount of visual or acoustic energy” (Fitts, 1951;
p. 10) does not hold true; modern advanced sensors far surpass human sensory
detection capabilities. Though useful, the continued heritage of the HABA-MABA
perspective is also limiting in that it perpetuates the ever-more-outmoded notion that
effective human-autonomy integrationwill continue to be necessarily and sufficiently
accomplished by selecting “the right tool for the job” aswell as “making better tools.”
That is, one of the most pervasive constructs in the literature, and one that appears to
underlie concepts such as supervisory control (where the human is the supervisor of a
putativelymore capable autonomous agent), is formally known as substitution-based
function allocation; it describes solving the task assignment question by dividing the
end goal into functionally isolated tasks, and then matching the appropriate agent
to the task that falls within its functional responsibility. Of course, the concept of
function allocation tables as an integration strategy has been met with significant
criticism, and rightly so, as this approach has considerable weaknesses (Dekker &
Woods, 2002; Marathe et al., 2018; Sheridan, 2000).

A major criticism of function allocation methods is that they are only likely to
work well in simple problem spaces, where AI would essentially be deployed as a
tool but are too brittle for the broader space of complex tasks (Perelman, Metcalfe,
Boothe, &McDowell, manuscript under review). Yet, even in the simple domain, the
allocation decisionmay bemore robustlymade according to two quantifiable factors:
time available to take an action (i.e., with more time available: a greater likelihood of
success) and certainty of the informational basis for the task (i.e., greater certainty:
greater chance of success). Figure 7.1 provides a visual depiction of this joint rela-
tionship, wherePanel A represents the domain of simple tasks and Panel B represents
complex tasks.A simple example of howavailable timemight influence a “human-or-
machine” decision is the so-called “problem size effect” in multiplication: humans
can quickly multiply small numbers, but response times increase as the numbers
grow larger (for a review, see Zbrodoff & Logan, 2005); thus, if time is a critical
factor in getting the answer, the decision to pick the human or machine (calculator)
would be driven by which agent would give the answer within the available time.
The second factor, informational certainty, refers to the diagnosticity, or informa-
tional value, of the available information; information is only as useful as the value it
provides to its recipient. For example, owing to particular cognitive biases, humans

1 The original framing by Fitts (1951) was men-are-better-at, machines-are-better-at (MABA-
MABA).
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Fig. 7.1 Human performance depending upon the amount of time available to solve the problem
(x axis; note the reversed direction going from most to least time) and the level of certainty in
the information provided about the problem (y axis; also reversed) for simple problems (Panel A)
and complex problems (Panel B). Color coding is an approximate representation of the human
probability of success in both cases, with green representing the greatest likelihood, and red the
lowest likelihood, and yellow as the intermediate range. Generally, humans perform well on simple
problems, provided that they are given enough time and information to solve them. But, given
insufficient time, and as probabilities approach chance, human performance degrades relative to
tools and simple algorithms. When it comes to solving more complex problems, however, human
performance is actually relatively well-calibrated; humans can deploy heuristics against these prob-
lems to rapidly achieve reasonable solutions. Source Perelman, Metcalfe, Boothe, & McDowell,
manuscript under review

are notoriously challenged in making accurate probability judgements (Tversky &
Kahneman, 1974). Thus, framing information to a human in terms of a probability
will not necessarily lead to an effective response and neither will it increase certainty
in the selection of response outcomes as much as it might for a suitably trained AI.
Each of these examples illustrate a case where one could confidently assign a task
either to a human or a technology; however, most tasks in the real world are not
particularly reducible to simple functions as these and neither are they necessarily
best assigned exclusively to one agent or another. Rather, as technologies become
more capable with respect to independent behavior and problem-solving capabilities,
they will be deployed against increasingly complex problems for which distinct and
exclusive functional role allocations become much less clear.
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Solving more complex problems will require more sophisticated ways of char-
acterizing human–technology dynamics than the perpetual expansion of function
allocation tables or coming up with improved ways to make humans better supervi-
sors (or making AI better at being supervised). That is, when a problem is sufficiently
complex, as they tend to manifest in the real world, the effectiveness of the human–
technology partnershipwill be borne in the interoperability among agents, rather than
their individual capabilities (DeCostanza et al., 2018). This capability comports with
other contemporary models of human–technology teaming that treat team behavior
as a product of interactions rather than as a sum of independent capabilities (e.g.,
Interactive Team Cognition theory; Cooke et al., 2013). As such, the complex prob-
lems to be discussed here can be approached in multiple ways, have an informational
basis with a high degree of uncertainty, and may have multiple strong and viable
solution options, none of which are clearly the right answer for the given situation,
leading to multiple irreducible phases or stages that cannot be easily described by a
single and parsimonious analytical model. Human evolution and experience enable
solving these complex problems using decision-making heuristics that facilitate the
generation of adequate solutions rapidly (e.g., note the lack of the linear decrease in
human performance as a function of time in Fig. 7.1, Panel B). In some cases, such
complex problems can be solved through dimensional reduction, or repackaging, of
information in a modality that is more naturally amenable to human cognition (e.g.,
humanperformance on the visually presented versus numerically presentedTraveling
Salesman Problem; Polivanova, 1974). In other cases, sufficient repeated exposure
to complex problems can allow humans to develop expertise that they can generalize
to novel but similar problems (e.g., Recognition Primed Decision-Making; Klein,
1993).

Unlike in the simple domain, human-AI integration solutions like function alloca-
tion and supervisory control do not generalize well tomost complex, real-world oper-
ational problems,with only a few noteworthy exceptions (e.g., airplane flight, nuclear
power plant monitoring). Our work within this space has demonstrated that gains in
effectiveness, increases in robustness, reductions in learning time, and increases in
the ability to manage multiple objectives, as tends to occur in complex teaming situa-
tions (e.g., in mixed-initiative systems), are possible by targeting our science at char-
acterizing and modeling the nature of interactions between humans and machines,
all directed towards developing a deeper understanding of the fundamental states
and processes that are essential to optimizing teamwork in these advanced systems
(DeCostanza et al., 2018; Marathe et al., 2018; Ghandi et al., 2019). This notion
that humans and AI must work synergistically and interdependently as teammates
to achieve peak task performance is somewhat new; in the following section, we
contextualize this perspective through a brief review of the trends in the history of
human-AI partnering that have led us to this current state.
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Fig. 7.2 A broad historical view of AI denoting the importance of the human to AI across time

7.2.2 Tracking the Important Roles of the Human Across AI
History

In order to understand why the human is important to the future of AI, we must
take a historical look at the role and the changing dynamics of human-AI interaction
over time.2 The human has had a key role in AI since the beginning, from early
philosophers’ attempts to superficially model human cognitive processes to science
fiction writers who envisioned essential rules of robotic engagement with humans
(Fig. 7.2). This interest in AI resulted in the development of the Turing Test in
1950, followed by the formal establishment of the term “artificial intelligence” in
McCarthy et al. (1956) during a conference at Dartmouth College. Indeed, for much
of the history of AI as a scholarly field, the human mind has been treated as the main
benchmark against which AI has been judged, and if not the benchmark, certainly the
prime model of intelligence to emulate. This has led to rivalry between humans and
AI, with popular examples including the first-ever victory of IBM’s Deep Blue over
Chess Grandmaster Gary Kasparov in a single regulation game in 1996, followed by
a rematch where an upgraded Deep Blue defeated Gary Kasparov to achieve the first
ever full match victory by a computer against a reigning world champion in 1997,
and AlphaGo winning four out of five games against Lee Sedol, considered one of
the top Go players in the world at the time, in 2016.

The relationship between the human mind and AI has a much richer history than
that of only creating AI that mirrors the human mind. We argue here that the efforts
surrounding human-related AI development can be characterized as having been
focused on analytical (e.g., processes that reflect cognitive intelligence), human-
inspired (e.g., processes that reflect emotional intelligence), and humanized (e.g.,
processes that reflect social intelligence) AI approaches. Moreover, the evolution
of the relationship between AI and humans has been a result of a few key factors,

2 A full history of AI development is not within the scope of this paper; however, there are several
detailed reviews that are worth exploring (see Haenlein & Kaplan, 2019).
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including the progressive expansion of the raw capability of computational systems
and the underlying algorithmic methods for instantiating intelligence, allowing AI
to be used more effectively across a broader problem space. This evolving rela-
tionship has transformed the input required from humans to craft and update AI
algorithms, and deepened the understanding of humans to such an extent that AI
systems may now be capable of learning how to interpret and anticipate the needs of
their human counterpart(s), a critical capability for enabling these systems to operate
as a team member, rather than simply as a tool. As we aim to push the field of
human-autonomy teaming forward, it is important to document how these changing
capabilities have affected this relationship between humans and intelligent agents
throughout the history of AI development.

Early basicAI development focused on progressively creating and evolving highly
generalizable algorithms capable of producing optimal solutions to common prob-
lemsunder knownconditions in polynomial time.Manyof these algorithmsdealtwith
networks of multiple nodes; for example, Dijkstra’s algorithm (Dijkstra, 1959) for
finding the shortest path; or Kruskal’s minimum spanning-tree algorithm (Kruskal,
1956). These algorithms proved highly generalizable; demonstrated by Kruskal’s
algorithm finding applications requiring the least-cost connections among many
nodes, such as laying telecommunications wire or urban planning. These early basic
AI approaches all had the common properties of being deterministic, polynomial-
time algorithms; moreover, at least in terms of these cases, the algorithms did not
require human input into the decision-making process and could thus be used inter-
changeably as tools by humans and other AI programs to solve problems. However,
these approaches suffer chiefly from the limitation that they do not address problems
with the type of complexity frequently encountered in the real world, much less the
most challenging and risky real-world environments. Karp (1972) argued that for
many “unsolved” computational problems (i.e., there exists no algorithm capable
of solving them in polynomial time), producing optimal solutions with satisfactory
computational complexity is beyond the reach of such approaches. Thus, contem-
porary approaches to solving these problems have been generally developed to rely
on deploying heuristics to find solutions that are sufficient for the intended appli-
cation but not necessarily optimal. While it could be argued that these approaches
have more in common with human decision-making than deterministic optimization
algorithms, their intended use is the same: they have largely been intended to be
used as improved tools that enable humans or higher-level AI to solve generalizable
classes of problems.

By way of contrast, the early work in applied AI development for addressing
domain-specific problems was made possible through a strategy to integrate human
expertise, which led to the development of handcrafted expert systems that were
able to solve well-defined problems.3 While these approaches were rule-based and
dependeduponpre-definedoutcomes, itwas the humanwhoprovided the information

3 An early example of an application of the expert systems approach was theMYCIN system, which
predicted the types of bacteria that were most likely to be causing an infection by calculating a level
of “belief” in the form of probabilities that were based on a selection of targeted questions that a
physician would answer (Shortliffe and Buchanan, 1975). While the system performed reasonably
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that was encoded by the AI. The process of handcrafting expert systems could be
prohibitively difficult to implement, since it was conceived as reliant on the inputs
from a team of subject-matter experts that collaborated with the system developers
to imbue the AI system with a complete set of the knowledge that would be required
to execute each complex task (Turban, 1988). Considering the static nature of the
system after careful design, this type of system also reflects the philosophy of an
intelligent agent as an explicit tool for a human to use.

Modern approaches are more often data-driven, encompassing a broad range
of techniques from simpler machine learning classification methods, like logistic
regression, to more advanced approaches, such as deep learning, the latter allowing
the human’s role in the relationship to shift within limits. For learning-based AI,
the human has a consistent role in developing the initial parameters and architec-
ture of the algorithm, which an AI then utilizes to learn from an existing dataset or
through direct experience in the task environment. In this sense, learning-based AI
still requires expert humans, just like the earlier expert systems, although the human
role shifts from being the subject-matter experts who explicitly provide the necessary
knowledge for the AI, towards being an expert developer in computer science and
machine learning who crafts the framework for the fundamental algorithm, which
then infers domain knowledge from the data.

Beyond system design, human inclusion in the data curation and labeling process
is extremely important. The traditional paradigms for machine learning operate as
either supervised or unsupervised. The key difference between these two processes is
the extent to which the human is included in the data curation and learning procedure.
For supervised learning, the paradigm involves a priori manual labeling of the data
that would allow the algorithm to be trained to reliably and accurately recognize
operationally relevant and important patterns. Active learning is a type of supervised
learning that enables a more efficient method for data labeling by identifying the
maximally informative samples in a data set and then asking for human labels to
be provided for only those sub-selected samples. Indeed, this type of learning still
requires human participation, but it allows for models to be updated on new data
more efficiently by minimizing the amount of feedback required from a human
oracle. Unsupervised learning focuses on identifying underlying patterns in the data
without human supervision or explicit definition of the learning criterion. This type
of learning has the potential for superior efficiency since it can theoretically operate
at a much higher computational speed without slowing to consult a human oracle,
but it often results in the classification of data that, at best, requires human review to
determine what it qualitatively represents and, at worst, that it is not interpretable by
human operators at all. A third category exists, dubbed “semi-supervised” learning.
This category is a type of hybrid learning that relies on small batches of manually
labeled data to initially train the system, which then continues by developing its own

effectively within its relatively well-defined domain, its core approach would be difficult to scale
to broader diagnostics. That is, considering the number of questions a potential user would need to
answer on the front end would grow exponentially, as well as the requisite complexity of the expert
opinions stored on the back end, the system would need to provide accurate diagnostics across a
broad spectrum of diseases.
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model. The class of generative models is a good example of this type of system, as it
requires an initial batch of data to learn the underlying features of classes, generates
initial examples of the classes based upon the learned features, and, finally, continues
training on the synthesized data in an unsupervised fashion. These latter algorithms
can be very efficient, but they also run the risk of diverging from real-world examples
of given classes if improperly tuned and left to run without supervision.

More recently, there has been another trend to change the role of the human in
human-AI interactions from that of a designer or data labeler to a more natural-
istic interaction. In this case, any non-expert human may directly affect the devel-
opment of the system through a demonstration or feedback without requiring the
human to explicitly label every data point or explain and supervise every step of a
complex process (e.g., teleoperation of a robot for autonomous navigation). This case
commonly involves a process known as learning from demonstrations (LfD) or imita-
tion learning, in which the AI system learns from example demonstrations provided
by a human to imitate the human’s policy or actions. Essentially, imitation learning
works by teaching a machine to perform a task after observing a human performing
it. Inverse reinforcement learning is another common modality for learning from
a human that uses human actions observed within an environment to build a value
model for human actions, which can then be used to allow an algorithm to develop its
own strategies to perform the given task according to the human values it has inter-
preted. This learning approach is a type of human-centered AI or human-in-the-loop
AI, which aims to use the human to directly train or adapt the AI system through
natural interaction techniques, such as those described above. As will be discussed
in more detail in later sections of this chapter, within the HAT ERP, we are working
on several methods to enable the integration of naturalistically collected human
behavior and state information to partially label datasets, which will minimize the
human effort required for supervised learning approaches and may eventually enable
more efficient collection of operationally relevant data. As time has progressed, as
knowledge has grown, and as technology has become more powerful, the presence
and proliferation of intelligent systems in myriad domains has facilitated increas-
ingly frequent and more greatly interdependent interactions with humans. This state
means that, despite the increasing capability and autonomy of these systems, consid-
eration and integration of the human is becoming increasingly critical. With the
advancement from relatively static and limited systems like expert systems (which
may still be considered as tools), modern systems are becoming increasingly capable
of performing duties with a higher degree of success, a more facile adaptation, and
an active interpretation of the states and needs of humans. Advancements in such
human-centric applications of AI have enabled agents to more actively consider the
needs of the humans they are working with by leveraging signals indicative of human
states and behaviors.

Recent advances in computing and processing power and the availability of large
(labeled) datasets, along with the proliferation and democratization of open source
tools for machine learning (ML), have driven a large investment in and focus on ML
techniques in academic research and industrial domains. This investment has yielded
many impressive advancements and capabilities in AI, particularly in commercial
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applications, such as autonomous highway driving, image recognition, and financial
fraud detection. However, there are still a number of major limitations to current
AI approaches that drive the importance of looking into the role of the human
within human-AI teams. First, many state-of-the-art AI techniques are developed and
demonstratedwithinwell-constrained environments, such as games (e.g., DeepBlue,
AlphaGo), generating point solutions to challenging tasks that may not translate to
newdomains, resulting in brittle, narrow intelligence, rather thanflexible, generalized
intelligence. These approaches are difficult to apply to real-world, complex contexts
(e.g., military operations) due to limitations in computing power and network band-
width (particularly at lower command echelons, such as at the tactical level with
individual Soldiers or small teams); a dearth of well-labeled or curated data; and
a complex, high-tempo, interdependent environment. Further, the high-risk, high-
consequence environment of military operations may require humans to remain in
the loop and not fully displaced by AI farther into the future than in other domains.
The following sections describe ongoing efforts that have been developed within the
HAT ERP to address these and other limitations, as well as supporting the active
community of human-AI teaming research as the field continues to evolve.

7.3 Artificial Intelligence for Human-Autonomy Teams

Our research is predicated on the idea that the paradigm for advancing the integra-
tion of AI and autonomy into military teams needs to be shifted towards instantiating
concepts in direct applications for human-autonomy teaming in real-world opera-
tional contexts. It is time to dispense with mindsets that solely focus on selecting
the right tool for the job and, instead, adopt an approach of building effective teams
of humans and with AI that manifest the full potential of continual advancements in
intelligent technology. We expect that the nature of the interaction between humans
and AI-enabled systems will need to change dramatically to account for the dynamic
changes in context—including different time constraints, levels of certainty, or the
amount of data available—as well as the complexity of the problems faced. Intelli-
gently designed and applied bidirectional teaming mechanisms will allow us to over-
come the individual limitations of both human and machine capabilities to achieve a
level of combined performance and ability that is currently not possible (DeCostanza
et al., 2018; Marathe et al., 2018).

Broadly, in order tomanifest the “teaming” vision thatwe espouse, it is essential to
understand how and where human and machine capabilities complement each other,
understand how and where they fundamentally differ—particularly for the sake of
identifying critical gaps that would undermine effectiveness and understand how
and what new capabilities can emerge once multiple intelligent agents are assembled
into coordinated and reciprocally interdependent collectives. While the U.S. Army
has employed smaller ground and air robots for dull, dirty, and dangerous tasks at
the tactical level for decades (primarily teleoperated with very limited autonomous
capabilities), new possibilities for increased intelligence and standoff are reaching
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Fig. 7.3 Descriptions of the research thrusts

the forefront with the introduction of large autonomous combat systems. These larger
combat systems are expected to exhibit autonomous (or semi-autonomous) mobility,
situation awareness (to include target recognition), decision making under risk, and
robust communication. Introducing these evolved technologies is expected to offer
new operational possibilities, but active research and development efforts remain
focused on the effective integration of such systems to enable collective performance
in dynamic environment from the tactical to strategic levels. This chapter articulates
four major research thrusts critical to integrating AI-enabled systems into opera-
tional military teams, giving examples within these broader thrust that are addressing
specific research gaps. The four major research thrusts include: (1) Enabling Soldiers
to predict AI, (2) Quantifying Soldier understanding for AI, (3) Soldier-guided AI
adaptation, and (4) Characterizing Soldier-AI performance (Fig. 7.3).

Enabling Soldiers to Predict AI.

This research thrust aims to develop robust mechanisms that provide insights into
evolvingmission-dependent AI capabilities to ensure Soldiers can not only anticipate
agent behavior, but can also better understand their underlying decision-making
processes. Across the broad research and development community, a number of
approaches are utilized to enable more “human-like” decisions from AI, including
the use of neural networks, reinforcement learning, and cognitive architectures, to
name a few. However, there are cases in which the task environment does not lend
itself to human-like solutions, or the decision-making process is irreducible and
unobservable to the human. These approaches do little to make decision-making
more transparent or explainable to human team members.

Much of the theory underlying our current research to enable Soldiers to predict
AI draws both from direct applications and conceptual inspiration out of the Situa-
tion Awareness Agent-based Transparency (SAT) model (Chen et al., 2014, 2018).
For effective and trusted teaming to be developed and maintained, Soldiers must be
able to understand the intelligent agent’s decisions or actions (SAT Level 1) and the
reasoning by which these decisions are made (SAT Level 2) within the mission and
environmental context in order to predict (SAT Level 3) future decisions or actions.
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Therefore, the addition of both new and evolved transparency concepts and tech-
niques is critical for enabling advanced teaming between Soldiers and AI-enabled
systems in ways that cannot be achieved with current standard interface design tech-
niques or by improving the performance of AI technology alone. Research has shown
that there is not one single “human way” of making a decision or solving a problem
(e.g., route planning; Perelman, Evans, & Schaefer, 2020a), which implies that even
effective algorithms may still not be trusted by human team members. Therefore,
advancing concepts for appropriate user interface design and communication strate-
gies must be done in conjunction with continued algorithm development if we are
to effectively communicate decisions made by the AI-enabled agents, convey their
reasoning for making those decisions, and support the prediction of their future
decisions or actions.

For human-AI teams to enjoy the benefits of collaboration, the nature of the inter-
action between human and autonomy must functionally support each team member
in their interdependent contributions: information must be tailored to each intended
recipient and reformatted to the appropriate modality when communicated between
human andAI-enabled agents. Therefore, a key consideration is howwe can optimize
the display of required information, either generated through intelligent algorithms
or otherwise, by considering and complementing human cognitive and perceptual
capabilities and limitations. Simultaneously, the format and modality of information
must be consumable by both human and AI team members. Never before have we
had the opportunity that is presented through the anticipated ubiquitous nature of
user displays. Combining this opportunity with advances in AI engenders a need to
transform both the way we think about displays and information presentation, and
literally, how we see the world.

User Interface Design for Enhanced Autonomous Mobility. Within the HAT
ERP, our near-term efforts have focused on user interface design principles to
enhance autonomous mobility. Specifically, the Army has prioritized the creation
of Next Generation Combat Vehicles, which are expected to comprise both manned
and unmanned (robotic) platforms enabled by autonomous mobility. This use case
provides a near-term target to focus theoretical laboratory efforts on addressing some
of the complex, real-world conditions thatmay be expected to bemost challenging for
human-autonomy teaming; andwe have specifically focused on developing technolo-
gies and procedures for streamlining and expediting the decision-making processes
related to mobility and joint maneuver in the context of complex team operation.
Procedurally, these technologies enabled a control loop that allowed humans to ask
the questions (that is, provide high-level goals), and the AI to provide rapid answers.
Here, we describe and justify these procedures, and the design principles considered
in doing so.

The first interactive procedure in enabling autonomousmobilitywas tomove from
human specification of precise and detailed waypoint navigation to the designation
of one ormore general goal-points to which the AIwould determine the best route for
navigation. Prior research has shown that AI decisions would need to be predictable
in order for the system to function effectively as a trustworthy teammate (Chen et al.,
2014; Lyons et al., 2019). This predictability can be facilitated by manipulations
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Fig. 7.4 The Transparent Route Planner has generated a route from the vehicle (labeled RCV2) to
the goal location (black and white ring) using simple logic and a single click. This route plan can
then be accepted or further modified by the user, increasing the team’s ability to make decisions
about mobility

designed to make the AI’s intentions more transparent. In the present use case, this
principle was implemented in the design of a Transparent Route Planner (Fig. 7.4),
which reads terrain data and human-input goal locations to generate route plans.
Functionally, this differed from the default method of interaction which relied on
user-specified waypoints (independent of terrain data) that the robot would attempt
to follow using local obstacle avoidance. This planner enabled a different style of
supervisory control by allowing the operator to select the goal locations and the
desired route plan and then calculated and displayed a potential route to the goal,
which the operator could then either accept or modify. Importantly, the route planner
generated waypoint plans (routes) at a sufficiently detailed level that the user could
discern fine-scale local decisions made by the planner in advance; in contrast, gener-
ating a coarser waypoint plan and allowing the AI to make local decisions using its
obstacle avoidance algorithm would not make sufficient detail available to the user
during planning. Achieving transparency in this case required us to follow a second
design principle, one of parity, which describes an equivalence between the informa-
tion available to human and AI team members; in this case, parity was achieved by
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providing the autonomy with the terrain data by making it available to the human.
The end result of this interaction is Soldier-in-the-loop control and planning execu-
tion. In testing with Soldiers, this capability improved the users’ understanding of
the AI’s mobility actions by over 60% (Perelman et al., 2020b).

The aforementioned Transparent Route Planner achieved information parity by
providing autonomy with the terrain information available to the human teammates.
Extending this principle of information parity in the opposite direction, we sought to
provide the humanwith representations of the types of information that the autonomy
could use to generate routes. Specifically, in military settings, Soldiers need to
consider many factors about the mission, enemy, time and their troops available,
terrain, and civil considerations; such a complex problem space does not lend itself
to optimal decision-making, since solutions that optimize one particular criterion
may sacrifice another. For example, one route may be faster but offer less cover and
concealment. In order to operationalize these factors, we developed cost maps asso-
ciated with different mission parameters that the Transparent Route Planner could
consider during a route generation: vehicle mobility, exposure to enemy contact, and
wireless signal strength. These cost maps were visualized for the human users in
the form of icons on the map display. In order to facilitate bidirectional communi-
cation between the Transparent Route Planner and the human user, we developed a
ComparatorDisplay based on visualizations found in priorwork in unmanned vehicle
operations (e.g., Behymer et al., 2015; Stowers et al., 2016). The Comparator Display
allowed users to evaluate the tradeoffs among routes visually for each of the param-
eters (see Fig. 7.5). When used in conjunction with the Transparent Route Planner,
the Comparator Display allowed the users to select multiple mission-relevant param-
eters and generate the routes that automatically optimized them. Merging these two
technologies allowed a Soldier-autonomy team to rapidly develop courses of action
using the Soldier’s expertise and prior experience in understanding context, and the

Fig. 7.5 Comparator Display prototype (right panel) along with two routes generated by the Trans-
parent Route Planner (left panel). The Y axis of the Comparator Display is used to depict which
route is better in terms of each of the mission parameters. The route shown in amber is slightly
better in terms of signal health and route length. However, the route shown in red is much better in
terms of avoiding prior enemy activity



130 K. E. Schaefer et al.

AI’s superiority in rapidly generating analytical solutions to spatial problems. With
this Comparator Display, users improved their understanding of the courses of action
proposed by the AI-enabled agents by over 30%, while simultaneously reducing the
time spent interpreting the decisions by an average margin of approximately 40%
(Perelman et al., 2020c).

In the aforementioned route planning use case, the design principles that drove
the technology development were developed to enhance relatively long timescale
decision-making. That is, during planning, team performance could be improved
by providing more information in the appropriate format to each team member. In
other situations, team members may need to communicate information rapidly in
high-saliency modalities for rapid consumption. During armored vehicle operations,
the transition to, and execution of, portions of the mission may have the potential to
exceed human information processing capacity (Huey&Wickens, 1993). AI-enabled
teammates can potentially cue human teammates during periods of high workload
by presenting signals in highly salient non-visual modalities. To reduce crew work-
load and improve crew members’ local situation awareness and understanding of
vehicle autonomy status during mission execution, a multimodal cueing system was
implemented that presented auditory and vibrotactile cues to crew members when
their robotic vehicle neared dangerous areas of the environment as well as when
the vehicle’s autonomy encountered mobility challenges (Chhan et al., 2020). The
multimodal cueing system reduced the duration of major mobility challenges during
remote operation by an average of almost 15%, and it helped reduce the vehicles’
exposure to threats in the environment by over 35%. Summarily, relatively simple
multimodal interfacemanipulations designed tomake theAI-enabled agent’s actions,
intentions, goals, and general reasoning processes more transparent to human team-
mates were shown as capable of dramatically improving the situation awareness of
these systems and their local environments during remote operation.

User Interface Design for Team Coordination. As human–machine team ratios
continue to be reduced in size (i.e., fewer humans interacting proportionally with
more intelligent agents), it becomes necessary for the underlying AI systems to
exhibit independent behaviors that will allow the agent to function more as team-
mates than supplementary tools. This change creates the need for a neworganizational
structure and associated transparency displays that increase coordination between a
commander and his or her crew with the team’s AI assets and capabilities. As such,
our work has led to the development of a Commander’s Interface that can be oper-
ated within a vehicle on the battlefield, providing the commander with the needed
capabilities to enable Command and Control (C2) to coordinate the execution of
human-autonomy team responses to evolving mission needs. This interface allows
the commander to maintain situation awareness and coordinate the Soldier and AI
team by providing a consolidated view of information related to vehicle state (e.g.,
unmanned ground and air vehicles), crew state (e.g., tasking, activity, and physiolog-
ical state), and autonomy state (e.g., mobility, aided target recognition, and decision
support tools). These functionalities allow commanders to quickly and easily main-
tain situation awareness of the mission and all of their crew and assets to enhance
teaming and improve performance in dynamic missions and environments, including
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the ability to call standard battle drills, to display the requirements of the battle drills
to the crew, and to delegate appropriate actions to both the human and agent team
members.

Human–Computer Vision Collaboration for Intelligent Displays. Soldier-AI
systems, such as aided target recognition, are designed to use virtual content overlaid
on the real world (augmented reality) as a primary means for both communication
with, and support of, effective Soldier-AI team performance. However, these highly
artificial and very salient stimuli fundamentally change our visual interactions with
the world; as displays become increasingly ubiquitous as moderators of our visual
experience with the world, the criticality of the cognitive science research required
to leverage rapid technological advances grows exponentially.

Our research in this area focuses on how visual interaction with the environ-
ment is fundamentally changed as a function of the overlay of new information via
intelligent displays. This change leads to more effective reasoning and awareness of
the mechanisms and processes that underpin both the desired performance and the
relevant principles of visual cognition, and thus, improved targeting (Larkin et al.,
2020; Geuss et al., 2020). By leveraging this improved understanding of visual cogni-
tion, entirely new means of representing and highlighting visual information may be
created. Through a research emphasis and design focus on total system performance,
there is the potential to create new, increasingly effective levels of joint human-AI
target acquisition and engagement decisions. It is also key to consider that when
we alter the way that Soldiers see the world, we are also altering the information
collected from Soldier behaviors that may be opportunistically sensed (Geuss et al.,
2019; Lance et al., 2020).

Visual perception is not a one-for-one representation of physical stimuli, but rather
a probabilisticmodeling of what theworld looks like (seeGeisler, 2008). In brief, this
model takes into account physical inputs, cognitive priors, randomness, and noise
related it to a characteristic of interest in the environment. The construct of scene
statistics is essentially meant to stand in as a description of this process and how
the brain exploits it. Examples of how scene statistics are influential include evalu-
ating the connection between a scene and the visual performance for specific visual
tasks; predicting neural responses of human operators; specifying howdetected scene
features are best represented (e.g., Berman, 2018); understanding how scene features
relate to perception (Brady et al., 2017); and understanding, as well as incorporating
into design, the time course of processing associated with different scene features
(Mares et al., 2018). Finally, there is considerable evidence to suggest that altering
low level sensory-perceptual features can impact higher order cognition in various
ways (e.g., perceptual discomfort in Habtegiorgis et al., 2019; affective response in
Takahshi & Watanabe, 2015); and, of course, the most well-known examples are
visual illusions (described in Howe & Purves, 2002, 2005).

Our brains have evolved to take advantage of these statistical properties, and that
forms the foundations of our perception. We rapidly adapt to changes from natural to
urban environments, even virtual environments. Color perception is a good example
of that adaptation; our sensitivity to different colors and contrasts adapt pretty rapidly
to reflect the distributions in our environments (e.g., Bao & Engel, 2019). But what
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happens as we change the environment, as we add these different dimensions into
current environments by changing the distribution of low level features? Do we
change those statistical relationships? Does it alter the statistical distributions that
we are leveraging? Does it change howwe perceive the world? And if so, can we alter
that perception intentionally? Currently, we are exploring these questions through
a series of experiments that are aimed at defining novel forms of visual interaction
leveraging augmented reality concepts. Although much adjacent work would be
required to leverage such knowledge, to include improved predictive algorithms,
computer vision, processing speed and power, it is imperative that cognitive science
keep pace with these new interfaces and opportunities, given the exponential rate
at which technology continues to develop and the potential impact in real-world
operations of all sorts.

Visualization ofUncertainty.The successful teaming of human andAI capabilities
will often require communicating the degree of uncertainty in the AI-based infor-
mation to the user. Uncertainty is introduced in AI-based capabilities from errors
in sensors that are used by AI algorithms, through data aggregation, in model esti-
mations, and when operating in contested environments, to name a few possible
sources. Communicating the degree of uncertainty can improve user trust in the
system as well as offer another data point from which users can base their decisions
and thus improve performance. Recent research has shown that communicating the
degree of uncertainty in weather forecasts (Ruginski et al., 2016), in spatial location
(McKenzie et al., 2016), and in other applications like image labeling (Marathe et al.,
2018) can improve objective performance and user understanding of content. Impor-
tantly, the way in which uncertain information is visually communicated can exert a
moderating influence on performance (for a review see Padilla et al., 2020). Further
research is needed to understand optimummethods of representing uncertaintywithin
augmented reality applications (Geuss et al., 2020).

The importance of communicating uncertainty does not end with user perfor-
mance. If user behavior is intended to—through opportunistic sensing (Lance
et al., 2020)—be used to refine algorithms, the effects of uncertainty representa-
tion on behavior may be manifested in unexpected adjustments to AI algorithms.
For example, if an Aided Target Recognition (AiTR) system, which uses machine
learning to identify potential threats in the environment, not only highlights the
potential target but also provides the user with an estimate of how certain the classi-
fication of its threat, the user may behave differently based on the system’s certainty.
Further, users may only engage highly certain targets while ignoring targets whose
associated certainty is lower. If user behavior occurs like this, then opportunistically
sensed information (e.g., taken as a result of a Soldier raising his weapon) would only
serve to reinforce the AI system’s confidence in high certainty targets but provide no
additional benefit to targets with low certainty, which is arguably the situation where
opportunistic sensing would provide the most benefit. Future research is needed to
understand how users make decisions under uncertainty both to (1) improve the
utility of AI-generated information, and (2) understand potential secondary implica-
tions for the utilization of opportunistically sensed information. This work suggests
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that overall system performance would be improved by communicating the level of
uncertainty in AI-generated information.

Creating Collaborative Situation Awareness. Information sharing is a critical
factor in maintaining a shared understanding, or shared awareness, in a team. Shared
situation awareness (SSA) is a critical feature of effective performance in human
teams (Salas, Stout, & Cannon-Bowers, 1994) where all team members need to
know what tasks must be completed or which decisions need to be made to complete
a task or mission (van Dijk, van deMerwe, & Zon, 2011). Teams can achieve SSA by
beginning with a common awareness, or mental model, of the environment, tasks at
hand, and goals. When teammates have a shared mental model, or similar knowledge
about a mission and tasks, team performance is shown to improve (Mathieu et al.,
2000). With time, particularly as each of these components may change and even
do so dynamically, communication between teammates becomes critical to main-
taining SSA. In human teams, the way in which information is conveyed between
teammates affects performance. Implicit forms of communication are more effective
than explicit communication in achieving successful team performance, especially
during complex tasks (Butchibabu et al., 2016). The ideal communication would
allow achieving and maintaining SSA along with a reduced burden to teammates.
Proactive communication, or anticipating future situations and creating a shared
mental model for those, allows for reduced unnecessary communication and better
team performance.

Interfaces are an ideal way through which to communicate in order to maintain
SSA in human-AI teams. Through opportunistic sensing (Lance et al., 2020), AI can
assess human behavior, gaining an understanding of present and future tasks and
approaches to reaching a goal. An AI can share its knowledge and increase SSA
in the human-AI team through transparency concepts (Perelman et al., 2020c) or
through screen overlays (Larkin et al., 2020; Geuss et al., 2020). In many instances,
communication and information sharing can be immediate and can be done without
an increased workload or burden to humans, AI, or the human-AI team as a whole,
increasing SSA and team performance. However, as we move to more complex
scenarios and continuously evolving contexts involving large-scale integrated oper-
ations, questions remain on how we operationalize “shared” mental models in these
complex teams. Future research will need to build on these design principles and
begin to address how human-AI teams develop and manage shared mental models of
complex, ever-evolving problems, environments, and other teammembers in order to
facilitate the communication, rapid mission planning, and quick adaptation needed
for sustained performance in future operating environments.

Way ahead. Cognitive science research, such as in the topics outlined above, is
necessary, both to identify cognitive-centric design principles and to create novel
forms of human-AI teaming through augmented and mixed reality display capabil-
ities. This section advocates for an ongoing program of strategic research on novel
approaches to defining the cognitive pairing mechanisms for new technologies by
understanding how technological complexity interacts with cognition. Success in this
area may provide revolutionary advances in the creation of new levels of cognitive
capabilities under conditions of technological complexities.
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7.3.1 Quantifying Soldier Understanding for AI

TheQuantifying Soldier understanding forAI research thrust,which focuses on inter-
preting a Soldier’s experience, intelligence, and intent within a mission context—
without creating overburden—is necessary to ensure that effective bidirectional
communications enable the kinds of dynamic real-time adaptation that are needed
for intelligent systems to adjust their performance to the needs of the human Soldiers
in the human-autonomy team.Whereas research and development efforts articulated
within the first thrust were primarily looking at the information being communicated
to the Soldier, this area focuses on the ability for AI to understand the Soldier—their
actions, intentions, and goals—in a continuousmanner. By leveraging Soldier behav-
iors, traits, and physiology, it is possible to continuously provide AI-enabled systems
with specific states and constraints about the team members and their interactions
with each other (e.g., Kulic & Croft, 2007; Rani et al., 2006). By fusing those data
with environment-specific data necessary for adapting models of the world, we can
then provide a method to improve outcomes and enhance team situation awareness
in a way that is specifically tailored to both the individual Soldier and the collective
team’s needs.

The Soldier as a Sensor. Recent advancements in research and development of
wearable technologies and human cognitive, behavioral, and physiological models
havemade it possible to truly consider theSoldier as a sensorwithin human-autonomy
teaming operations. Neuroscientific advancements reveal how differences in brain
structure and function are associated with precise human behaviors (Telesford et al.,
2017; Garcia et al., 2017); social and environmental sensing tools are able to charac-
terize patterns of gross human social behaviors over time (Kalia et al., 2017); while
advances in physiological and biochemical sensing provide continuousmeasurement
of internal human dynamics and stable characteristics influencing team performance.
Critical to a human-autonomy team, the capability to continuously stream behav-
ioral, physiological, and environmental data from the Soldier enables AI to infer
and understand the actions, intentions, and context of their human teammates, first
meeting and eventually exceeding the capabilities of human-to-human teammates.
These advances can be coupled with novel computational methods to infer motiva-
tions, predict behavior, and reason about the environment and the agents acting in it.
This advancement has the potential to provide additional understanding of the rela-
tionships between individual and team states and processes—such as stress, fatigue,
engagement, trust, coordination, and performance—as well as how these relation-
ships vary across different team types and operational contexts (Metcalfe et al., 2017;
Schaefer et al., 2019).

With more robust models of human states, actions, intentions, and goals built
around real-time, machine-consumable measures (e.g., Hoffing & Thurman, 2020;
Jain & Argall, 2019), we expect to push the boundaries of what is possible with
human-autonomy teams by providing intelligent systems with an accurate, contin-
uous, operational understanding of their human teammates and the unfolding team
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performance over time. Therefore, we are developing new technologies that objec-
tively characterize natural interactions between the human and the AI to account for
the behavior and performance of the entire team, in order to provide a more objec-
tive, continuous, real-time assessment. Development of these novel technologies
will require creating an integrated system capable of combining wearable sensing
devices with advanced machine learning approaches for real-time state estimation
(Marathe et al., 2020). Additionally, many research questions need to be addressed
toward realizing the goal of defining predictive algorithms for an individualized
adaptation in human-AI teams. To enhance human-AI teaming, technologies must
be capable of balancing among diverse sources, levels, and timing of variability
within the team. For example, questions remain regarding the respective influence of
individual and team variability on performance. Can we effectively predict the rela-
tionships between individual and team states and behaviors, incorporating variability
in humans and agents over time? How can advanced measurement methodologies
and modeling techniques be employed to understand the dynamics in team processes
over multiple time-scales? In addition to “within team” dynamics, researchmust also
address methods to sense shifts in environmental and sociocultural influences and
to determine relevance to the team’s mission. As dynamic events unfold, the avail-
ability of information is often sparse, and the reliability of information available is
often unknown. What mechanisms are critical to account for and adapt to the fluid
nature of the information availability and reliability in these complex environments
and dynamic situations?

We envision a future where adaptive and individualized systems function with
individual capabilities and limitations to achieve greater human-systemperformance.
This individualized human-technology approach is expected to enable a greater
variety in human behavior, while having the ability to maintain consistent, robust
outcomeswhenviewing the human-technologybehavior as a system.Critically,when
considering multiple agents and multiple humans, much work on the prediction of
individual and team states and processes exacting to performance is required to fully
realize this envisioned future of human-AI teaming. Outcomes of this research will
enable systems to continuously adapt to individual Soldiers, leading to an enhanced
Soldier-AI team situation awareness, a greater awareness of unknowns and blind
spots, a reduced Soldier burden, an increasingly robust sustained support, and an
enhanced overall teaming dynamics.

Integrating Soldier Knowledge into AI. Conceiving Soldiers as sensors and
advancing the current state of the art on prediction of individual and collective
dynamics for enhanced teaming leaves vague the notion of integration of that knowl-
edge into AI systems. Thus, additional efforts are needed to appropriately integrate
Soldier knowledge into AI. The current paradigm for training AI systems, such as
deep-learning-based image classification algorithms, involves acquiring and manu-
ally labeling large datasets, a time-consuming and expensive process. This problem
is ubiquitous across the research community and technology industries, but it is a
particularly difficult problem to solve in amilitary application.Whilemany computer
vision applications are able to leverage pre-labeled data, either by accessing special-
ized datasets or by aggregating publicly available images of particular target types,
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the images of Soldiers, vehicles, and equipment necessary to train military-relevant
computer vision are often not publicly available; also, the sensitive nature of the
images limits the ability to crowdsource labels for the data, creating a bottleneck
since only approved experts will be able to properly label the data. This issue is a
substantial one with commercially prevalent optical sensors (e.g., cameras), which
is compounded with the inclusion of specialized sensors commonly utilized in the
military domain, such as infrared (IR) and LiDAR. The labeling efficiency problem
is potentially mitigated by having Soldiers partially label this data at the point of
origin, but placing additional burden upon the Soldier risks their performance and
well-being, especially in a combat environment, where their attention is already at a
premium. These costs and risks make it difficult to regularly update AI agents, which
will be key to enabling the adaptation to new tactics, targets, and environments as
required in the complex and dynamic future battlefield envisioned by the Army’s
operating concept of MDO. It is prohibitively expensive and time-consuming to set
up data collection scenarios for the volume and variety of data necessary to represent
every potential scenario that may be encountered on the battlefield, and this approach
would still result in models for AI that are unable to adapt to new scenarios on time-
scales that allow the team to remain operationally viable. However, the ability to
adapt to never-before-seen scenarios is a hallmark of human cognition.

It is necessary to leveragemore efficient models of data acquisition and labeling to
make the constant updating of future technologies feasible. To this end, we propose
the use of opportunistic sensing, defined as “obtaining operational data required
to train and validate AI/ML algorithms from tasks the operator is already doing,
without negatively affecting performance on those tasks or requiring any additional
tasks to be performed” (Lance et al., 2020). This approach is inspired by techniques
used in industry to continuously update systems based upon information passively
provided by pervasive technology. For example, the route recommendations provided
by Google Maps are made possible by a combination of continuous sensing from
any devices running the application, providing real-time data on the current state
of traffic; and models trained on previously collected data for a given road along a
potential route that predict what traffic will be like at a given time (Lau, 2020). This
approach avoids the requirement for deploying resources to independently monitor
traffic (e.g., traffic helicopters) or asking for active feedback from end users who
are engaged in driving. A similar approach can be taken for military applications
by aggregating the various sensor, vehicle, equipment, and user behavior data to
provide context for the raw data coming from a system without requiring the Soldier
to intervene and while minimizing the necessary post-hoc analysis by an expert.

By inferring the states and behaviors of the Soldier, we are able to add necessary
context to incoming data on the environment and adversary actions that are key to
understanding scenarios outside the initial training set of an agent (Lance et al., 2020).
As such, under this area of emphasis, our research focuses on characterizing the
link between Soldier’s knowledge and understanding and their associated behavior;
specifically, investigatingwhat information can be gleaned from theway inwhich the
Soldier interacts with their systems, environment, or teammates (human or intelligent
agent) in order to be used to draw inferences of the Soldier’s knowledge, state, action,
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or intent. Fusing raw sensor feeds and operational data with the knowledge inferred
from the humans creates new sources of labeled training sets that better reflect an
evolving threat and changing environments. A simple example is using a Soldier
pulling the weapon trigger as an indication that a threat is present in the environment.
Temporarily setting aside the possibility of a misfire, this becomes an obvious and
accessible data point that usually provides a clear indication of a threat, which may
be useful in identifying portions of the data that are relevant to training the threat
response behaviors or identifying the sensor profiles of novel or modified targets
that the current iteration of the computer vision might have missed (e.g., adversarial
designed camouflage on a tankmay cause themiscatergorization based on pre-trained
computer vision data).With these opportunistically collected data supplementing the
broad, static datasets that agents are initially trained on, we anticipate more robust
performance in real-world, dynamic environments.

When applied on a larger scale, this work supports the development of tools to
promote tactical awareness via collective knowledge. By combining passive sensing
from multiple individuals, it is possible to aggregate across a military squad or
larger elements in order to derive contextual information at higher echelons (Lance
et al., 2020). In particular, the intention to field the Integrated Visual Augmenta-
tion System (IVAS; Microsoft, Redmond, WA), an augmented reality system with
dynamic tracking of head movement in 3D and eye tracking as an intended feature,
may provide Soldier gaze as a source of opportunistically sensed data. Eye move-
ment characteristics have been determined to be an indicator of a variety of states,
ranging from workload, which may provide useful information for team tasking, to
attention, which has a clear function in detecting targets of interest in an environment
(Di Nocera et al., 2007; Findlay & Gilchrist, 1998; Kowler et al., 1995; Marquart
et al., 2015; Motter & Belky, 1998; Pomplun & Sunkara, 2003; Schulz et al., 2011;
Van Orden et al., 2001). While these are not necessarily robustly indicative of a
singular state or target of interest when interpreting the behavior of a single indi-
vidual, by considering the behavior of a larger formation, the signals become more
meaningful. For instance, a single Soldier fixating on a particular section of a scene
may be incidental, but if the entire formation fixates on the same section of the scene
while traversing its space, it may be an indicator of an aberration indicating a threat
in that location or a likely target location. This sort of experientially learned knowl-
edge is difficult to explicitly define to train an agent in advance, but by leveraging
the understanding of all of the Soldiers available, we anticipate the ability to assign
tasks to AI-enabled agents based on inferred situational understanding and in line
with mission objectives.

Way ahead. Utilizing the approaches described above, our research program
extends to far future-focused applications. Human-AI teams, as envisioned in
the future, will be capable of performing within environments of ever-increasing
complexity, almost inconceivable today. To facilitate effective performance within
these realms of complexity, we are conducting the fundamental research to realize
a future with individualized, adaptive technologies that are continuously sensing
the critical actors and environment while evolving to enhance the functioning of
the team over time. Going beyond specific task-focused application spaces, such
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as threat detection, AI can utilize Soldier-based inputs to target the enhanced func-
tioning of the team itself. Our research addresses the use of individualized, adaptive
technologies to enhance human-AI team cognition and behavioral processes, such as
a shared understanding in distributed environments; the coordination, cohesion, and
swift action with new, diverse, rotating, and evolving team members; and the mini-
mization of process losses (e.g., communication, coordination, backup behaviors) as
team complexity increases.

7.3.2 Soldier-Guided AI Adaptations

The research thrust that is focused on Soldier-guided AI adaptation was conceived
to enable Soldiers to interact with and adapt AI technologies in response to evolving
mission demands, a commander’s intent, and adversarial dynamics. While the
first two thrusts were designed to facilitate working with relatively static agents
and general methods for communicating between human and artificial agents, this
research aims to develop and refine algorithms that use a Soldier’s interaction and
reinforcement learning to continuously improve and adapt team capabilities for
dynamic and adversarial missions. This research supports the development of intelli-
gent agents that can modify their own behavior, learning how to improve themselves
directly from interacting with Soldiers either through the imitation of a Soldier,
receiving feedback from the Soldier, or some combination of intuitive interaction
between the Soldier and AI system. Additionally, this research contains a focus on
developing AI systems that are capable of dynamically orchestrating the tasking
and flow of information across a distributed Soldier-AI team. However, complex,
dynamic, and data-sparse combat environments can limit the tractability and success
of many of the modern machine learning strategies, such as the deep reinforcement
learning used in civilian settings, to produce remarkable AI behaviors and capabil-
ities. Research in Soldier-guided training of AI assets is being undertaken to over-
come these constraints and to leverage the intelligence and experience of non-expert
human users to rapidly imbue learning agents with the desired behaviors through
data-efficient and naturalistic interactions that can then be more easily utilized by
Soldiers in training and on the ground (Goecks, et al., 2019).

Human-in-the-Loop RL/Cycle-of-Learning. Due to the computational complexity
and sample inefficiency of deep learning and reinforcement learning, methods of
reducing that complexity, via leveraging human knowledge, have grownmore impor-
tant over recent years. Techniques, such as learning from demonstrations or learning
from human preferences, allow for non-expert persons to give intuitive feedback
and instruction to AI algorithms to improve training and robustness. However, these
techniques have their own weaknesses in terms of generalization (such as the data
distributional shift problem when learning from demonstrations).

The cycle-of-learning is a framework for leveragingmultiple modalities of human
input to improve the training of deep-learning-basedAI algorithms (Waytowich et al.,
2018). These modalities can include human demonstrations (i.e., human-provided
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exemplars of behaviors), human interventions (i.e., interdictions in agent behavior
that take the form or corrections or interventions provided by the human), and human
evaluations (i.e., feedback or sparse indications of the quality of the agent behavior).
Every one of these modalities of human interaction have been previously shown
to provide various benefits in learning performance and efficiency, each with its
own unique drawbacks. The goal of the cycle-of-learning framework is to unify
different human-in-the-loop learning techniques by combining each of these inter-
action modalities into a single framework in order to leverage their complementary
characteristics and mitigate their individual weaknesses (Waytowich et al., 2018,
Goecks et al., 2019, Goecks et al., 2020).

The cycle-of-learning (shown in Fig. 7.6) combines multiple forms of learning
modalities for training an AI agent based on the intuition of how a teacher would
teach a student to perform a new task for the first time. For example, in order to
convey an entirely new concept or task to the student, the teacher may first proceed
by demonstrating that task, intervening as needed while the student is learning the
task, and then providing a series of critiques or evaluations as the student starts to gain
mastery of the task. At some point during this cycle, the student would also practice
to further his or her ability to perform the task (i.e., reinforcement learning). This
process is repeated at various stages as new concepts and tasks are introduced. While
there is significant extant research into each of these human-in-the-loop learning
modalities individually, to the best of our knowledge, this proposal is the onlymethod
that combines these modalities into a single framework. The cycle-of-learning has
indeed been shown to significantly improve the robustness, quality, and speed of
training AI agents compared to existing techniques (Goecks, et al., 2020).

Adaptive Coordination. The optimal orchestration of resources in heterogeneous
human-autonomy teams is critical for effective team operation. Coordination of

Fig. 7.6 Cycle-of-Learning for Autonomous Systems from Human Interaction: a concept for
combiningmultiple forms of human interactionwith reinforcement learning.As the policy develops,
the autonomy independence increases, and the human interaction level decreases
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a complex, decentralized team of heterogeneous, autonomous entities with time-
varying characteristics and performance capacities will be prohibitively challenging
for Soldiers, particularly as they interface with an increasing number of intelligent
agents. As described above, decision aids and transparency tools will need to be
developed and implemented to fluidly integrate distributed teams of Soldiers and AI-
enabled systems and to manage the high volume of information needed to effectively
coordinate team assets. These improved teaming capabilities will help prevent break-
downs in effectiveness, improve resiliency, and increase decision speed and quality
in dynamic combat environments. Moving beyond traditional tools and incorpo-
rating Soldier-guided AI adaptation, the notional concept to achieve this capability
is a closed-loop system that monitors the state of the team and the environment,
and dynamically allocates the resources of the Soldier-autonomy team (e.g., tasking,
attention, information flow, and physical formation) via agents integrated within
user interfaces to maintain desirable team metrics (e.g., performance, Soldier states,
and situation awareness). With this goal in mind, several studies are currently being
formulated which will: (1) characterize the effects on these metrics of interest when
modulating team resources in a controlled manner in military-relevant settings; (2)
learn desired, generalizable task allocation strategies for heterogeneous teams from
limited exemplar human demonstrations; and (3) examine the adoption of team
tasking recommendations from an explainable expert system to inform the develop-
ment of decision aids and, ultimately, systems for fully automated dynamic resource
orchestration.

Way Ahead. In the complex multi-domain environments of the future, on-the-fly
joint decision-making, changes in tactics, deception, and novel organizational forms
will be critical to success for human-AI teams. To be capable of contributing to
this potential technological advantage, humans and intelligent agents must fluidly
adapt in real-time, in symbiotic ways, to the potential but changing individual and
team dynamics as the situation evolves. Envisioning the future, we expect intelligent
agents capable of learning and adapting to new data and changing contexts on the
fly, and humans that must fluidly adapt with these autonomous team members while
undertaking novel roles for enhanced decision-making and performance. To address
this future need, we are engaged in research building on the above principles of
Soldier-guidedAI adaptation, but focused on how to enable the continuous adaptation
to complex environmental demands in teams of multiple humans andmultiple agents
without breaking down the emergent cohesive properties of the team. Can we use
principles of individualized and adaptive instruction and human-AI teamwork to
develop evolving systems of humans and agents with ever-increasing intelligence
and capabilities capable of more complex performance (or altogether novel behavior
or creative solutions)? Can we understand and enable more advanced capabilities
within teams that have yet to be fully realized or imagined, as future human-autonomy
teams on the battlefield operating seamlessly to accomplish joint goals create new
opportunities to maximize human potential and to rapidly increase the speed and
effectiveness of decision making?
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7.3.3 Characterizing Soldier-Autonomy Performance

Current research toward the thrust in characterizing Soldier-autonomy performance
focuses on developing the techniques to measure and monitor performance in the
face of distributed, dynamic operational environments wherein complex, intercon-
nected activities are continuously evolving; such techniques will further enable
interventions to improve performance. Decades of research on human teams has
produced a wealth of literature on factors that are useful for predicting performance
outcomes for these teams. However, as the U.S. Army moves to integrate AI, there
are several existing deficiencies that must be overcome in order to enable effective
teaming. First, the majority of this literature describes qualitative factors that are
difficult to integrate with systems for measurement and optimization in their native
formats. Second, attempts to quantify factors that are predictive of team performance
frequently employ data and data collection techniques that are not compatible with
many current AI capabilities. For example, a great deal of the literature on human
team dynamics employs qualitative questionnaires that are difficult for AI to interpret
as well as performance measures for which observable changes lack unique expla-
nations at a mechanistic level within a complex team. Moreover, until recently, the
data necessary to understand the micro-, meso-, andmacro-level dynamics unfolding
over time in teams to influence performance has been lacking. Research is needed
to understand the critical team-level states, processes, and their respective dynamics
within human-AI teams and how to appropriately aggregate individual, dyadic, and
group-level data over time to accurately reflect teamperformance across diverse tasks.
Finally, some types of data that are useful for predicting the performance of inte-
grated human-autonomy teamsmay require the rapid processing of high-dimensional
or large-packet-size data collected at a high sampling rate from spatially distributed
agents by computationally expensive algorithms. There is the potential for these data
to quickly exceed the relatively sparse bandwidth and accessible storage limitations
on the battlefield; that is, we should not expect to have access to all of the data, all
of the time and, instead, we should plan for inferential and predictive mechanisms
that can operate robustly in such environments.

To overcome these challenges, we are developing novel techniques and technolo-
gies for estimating human and AI outcomes during operations distributed over space
and time, initially for experimental settings. Our approach is designed to employ
advancements in sensors and networks that permit the unobtrusive collection and
transmission of massive amounts of data, AI, and machine learning approaches
for sensor and information management, along with online data analysis in real-
time, networking technologies to allow near real-time collaboration, displays and
touchscreen technologies, human factors and ergonomics, after-action review tech-
nologies, and novel data analysis techniques, in order to radically change the way
that these teams are assessed. Further, this approach draws on assessment methods
from the experimental, test and evaluation, and military working communities with
the goal of providing the near-real-time, continuous assessment of team effective-
ness and prediction of the team’s outcomes. Specifically, our approach leverages
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the interest of multiple stakeholders (experimenters, engineers, users, and expert
evaluators) and, recognizing their potential unique contributions to the assessment
process, democratizes assessment across those stakeholder populations by means of
closed-loop interactions through a tablet-based graphical user interface Dashboard.
There are four primary components to this effort: Dashboard development, predictive
modeling and signal management, novel measures of team effectiveness, and crew
state estimation.

Assessments of a team can be made on the basis of highly multivariate infor-
mation, requiring a multidisciplinary team in order to parse, annotate, and interpret
data and its analyses to create information. At the heart of this assessment capa-
bility is the requirement to be able to retroactively play, pause, stop, and rewind an
entire mission’s worth of data, adding annotations or exporting subset data streams
as required. However, members of such heterogeneous teams also vary in terms of
knowledge, skills, and abilities, as well as in terms of the data that they might require
to make assessments. Consider that a large-scale experiment will likely produce a
large amount of data from human participants, autonomous systems, and the simula-
tion environment. Human science researchers will benefit from analyzing, and will
be able to generate insights from, highly detailed raw human subjects’ data, but they
may have little to offer in the way of analyzing mission data collected from the
simulation environment or the output packets from real or simulated autonomous
systems. Comparatively, subject-matter expert evaluators would be primarily inter-
ested in analyzing mission data from the simulation environment, but they may also
benefit fromdimensionally reducedor summarizeddata about the human subjects and
autonomy. In order to democratize data analysis across a multivariate team of stake-
holders, data streamswill need tobeprocessedbyAI andmachine learning algorithms
and displayed as time series at the appropriate resolution for each type of stakeholder.
Here, we attempt to answer the research question, “How can a heterogeneous team of
military, science, and engineering stakeholders collaborate to generate novel, action-
able information from unique interpretations of mission data during an after-action
review; how must that mission data be visualized, represented, or dimensionally
reduced in order to maximize the contributions of these team members?”.

Such distributed, naturalistic experiments will necessarily produce a great deal
of multimodal data that can be useful for predicting outcomes; so much data, in
fact, that networks are unlikely to support the unfettered transmission of all of it.
Algorithms aimed at predicting team outcomes must be, to some degree, aware
of the diagnosticity of each data stream, given particular experimental contexts, in
order to permit the intelligent sampling of the right data at the right time. This
thrust area seeks to answer the research question, “What hardware, software, and
data collection techniques will allow human-autonomy teams to mitigate the chal-
lenges presented by bandwidth constraints during distributed, large-scale simulation
experiments, exercises, and training events?”.

Generally speaking,many real-world application domains of autonomous systems
are inherently high-noise; that is, there are many factors that contribute to a team’s
success or failure beyond simply a team’s performance, which may be difficult to
measure or may be only measurable infrequently. Furthermore, it may be difficult to
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draw comparisons between measures of performance generated from human versus
autonomous team members under different conditions and contexts. Predicting team
outcomes under these conditions may not be accomplished by asking how well
the team is currently performing, but rather by asking how effectively the team is
functioning. Such measures of effectiveness must be robust to perturbations in data
streams and severe amounts of data loss, must be somewhat agnostic but flexible with
respect to the level of analysis, andmust be able to draw comparisons among different
data modalities. The research question driving this thrust area is, “How can we
measure the effectiveness of heterogeneous human-autonomy teams, and ultimately
predict team outcomes, using the types of sparse, multi-modal data generated by
human and autonomous agents during distributed, large-scale data collection?”.

Finally, we encourage the expansion of the range of unobtrusively, opportunisti-
cally sensed data, to include neurophysiological data. Human brain activity poten-
tially contains a great deal of information relevant to team effectiveness, including
activity changeswithin single users aswell as activity patterns shared amongmultiple
users. Emerging research on novelmaterialsmake collecting such data less obtrusive;
such technologies include in-ear and dry electroencephalography devices. In the near
term, we seek to answer the research question, “Where is the state of neuroscience
hardware, software, and data analysis and processing techniques relative to the level
of maturity required for its useful application under real-world conditions?”.

These approaches, taken together, form the groundwork for a comprehensive
approach toward enabling experimentation over the types of physical and temporal
distances inherent to the real world. Answering these research questions will allow
us to advance the start of the art by radically shifting experimental paradigms. The
future of data analysis, as we see it, is not the simple application of highly tailored
algorithms to specific types of data, but rather the more general application of AI
and human expertise across the broad range of experimental data to transform it into
actionable information and measures.

7.4 Conclusions

As AI-enabled technologies approach a point where they may be deployed on the
battlefield, it is not enough to simply consider the performance of static algorithms
as tools that have been developed and refined in a well-structured and relatively
“sterile” laboratory setting and then expect that performance to translate into the real
world. Rather, we, as a community of researchers, must ensure: (1) that intelligent
technologies can operate effectively in real-world contexts with a team of human
Soldiers and a heterogeneous array of AI-enabled systems; and (2) that they can
adapt to the continuously changing environmental and mission conditions to maxi-
mize their utility, resilience, and robustness. The ARL HAT ERP exists to address
these current research gaps and to manifest the revolutionary potential of instanti-
ating andmanaging complex, heterogeneous human-AI teams. The above discussion
documents currently active research under the HAT ERP, but other research gaps and
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new capabilities will continue to be addressed as we work to turn AI from tools to
teammates for U.S. Soldiers.
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Chapter 8
Re-orienting Toward the Science
of the Artificial: Engineering AI Systems

Stephen Russell, Brian Jalaian, and Ira S. Moskowitz

Abstract AI-enabled systems are becomingmore pervasive, yet system engineering
techniques still face limitations in how AI systems are being deployed. This chapter
provides a discussion of the implications of hierarchical component composition and
the importance of data in bounding AI system performance and stability. Issues of
interoperability and uncertainty are introduced and how they can impact emergent
behaviors of AI systems are illustrated through the presentation of a natural language
processing (NLP) system used to provide similarity comparisons of organizational
corpora. Within the bounds of this discussion, we examine how the concepts from
Design science can introduce additional rigor to AI complex system engineering.

Keywords Artificial intelligence ·Machine learning · System engineering ·
Design science

8.1 Introduction

It is almost overly trendy to talk about how advances in artificial intelligence (AI) are
enabling newcapabilities in a number of application domains frombiology/medicine,
defense, business decision-making to communications. As a core technology, AI
relies on sophisticated machine learning (ML) algorithms that utilize exemplar data
to learn and predict new insights. While there are direct connections to hardware in
robotic AI and ML algorithms are increasingly being embedded in programmable
chips, AI itself is fundamentally a software innovation, with its scientific grounding
in computer science.
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Much of the software or algorithmic (non-embodied) AI research examines and
advances isolated instances of learning manifested in ML approaches and gener-
ally focuses on improving predictive accuracy. In a system’s context, or perhaps
more appropriately stated in an application context, these approaches almost never
exist in isolation and are applied to process-oriented problems such as mobility,
maneuver, and decision-making. Further, even within a “single system” multiple
ML algorithms are commonly implemented as an ensemble component, creating
system-level AI that depends on and interacts with other system components. As
such, it is apparent that an AI-enabled system is defined as a complex system—a
system composed of many components which may interact with each other. The
literature on complex systems suggests that large complex systems may be expected
to be stable up to a critical level of connectedness, and then as this connected-
ness increases it will suddenly become unstable (Cohen & Newmans, 1985; May,
1972). This is certainly seen in complex dynamical systems that reach a bifurcation
point where the behavior becomes chaotic and unpredictable (May, 1976). System
instability that produces emergent system behaviors has a high probability of being
unanticipated. In other words, one class of emergent system behaviors are instanti-
ated outputs of unstable complex systems. These types of emergent or unanticipated
behaviors usually appear as system mistakes or errors, particularly when a complex
system is AI-enabled (Russell & Moskowitz, 2016). The notions of complex system
verification and emergent behaviors are soundly placed in the domain of systems
engineering. The challenge, in an age where there is a preponderance of intelligent
complex systems, is to bring scientific rigor to the engineering of such intelligent
systems. Addressing this challenge is necessary to advance the fundamental under-
standing, as opposed to an operational understanding of AI complex systems in any
broad or generalizable capacity.

While there is ample work in the complex systems literature on systems engi-
neering (Alpcan et al., 2017; Belani et al., 2019; Carleton et al., 2020), examining AI
software engineering as a hierarchical complex system remains an open and active
research area. The scope of this chapter presents a background of issues in engi-
neering AI-enabled systems, which by definition are complex systems. We discuss
the implications of hierarchical component composition and the importance of data
in bounding AI system performance and stability. Within the bounds of this discus-
sion, we examine how the concepts from Design science can introduce additional
rigor to the AI complex system engineering. Recognizing systems engineering is a
broad topical area, and more qualitative aspects of AI complex systems engineering,
such as explainability, ethics, and trust, are outside the scope of this chapter.

The chapter is organized as follows. The first section provides a short background
on software engineering, followed by a section on AI-enabled systems-of-systems
and emergent behaviors. The next section discusses the importance of interoperability
technologies.We consider the role of uncertainty inML algorithms in the fifth section
and present an example of system engineering challenges, using natural language
processing in the sixth section. We present the applicability of Simon’s Sciences of
the Artificial (Simon, 1969), specifically Design science theories and concepts, to
AI systems engineering in Sect. 8.7 and conclude in Sect. 8.8.
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8.2 AI Software Engineering

Before providing a meaningful perspective on system engineering artificial intelli-
gence (AI) systems, it is important to scope the domain of system engineering in this
context. Clearly, system engineering is not a new topic and has seen extensive study
ranging from biological to physical/mechanical, and, of most relevance, software
system contexts. While the grounding and parallels in biological and mechanical
complex systems are many (Newman, 2011; Ottino, 2004; Schindel, 1996; Thurner
et al., 2018), our focus is on software because the implementation ofmachine learning
(ML) methods are algorithmic and thus instantiated as software. For performance
reasons, ML software may get implemented in hardware; e.g., programmable chips,
embedded systems, application-specific integrated circuits, etc. However, the imple-
mentation of software algorithms in hardware only complicates the overall system
engineering and does not removemany of themost critical problems in software engi-
neering (DeMichell &Gupta, 1997). Traditionally, software systems are constructed
deductively by writing down the rules that govern system behaviors that get imple-
mented as program code. However, with ML techniques, these rules are inferred
from training data (from which the requirements are generated inductively). This
paradigm shift makes reasoning about the behavior of software systems with ML
components difficult, resulting in software systems that are intrinsically challenging
to test and verify (Khomh et al., 2018).

There is a saying that software errors all occur at the intersection of logic and
data. This saying makes clear the importance of software/system engineering for AI
applications. In the case of AI systems, the logic incorporates ML models, which
have minimally two data intersections: the data on which it was built and the data
that it interacts with. This case is further compounded by the emphasis on which ML
researchers and engineers place on getting improved application-specific accuracy
(Yang et al., 2020). As a result, the coupling between the model and the specific
application tends to be extremely tight, leading to constrained system engineering.

This is not to say that tremendous benefit cannot be gained from the use of AI
systems. The core point is that increased focus should be given to the system engi-
neering in which the AI exists (Breck et al., 2017). This focus should ensure that
appropriate constraints and controls are used in the creation, usage, and improvement
of the AI system. The Institute of Electrical and Electronics Engineers (IEEE) (I.S.C.
Committee, 1990) defines software engineering as the application of a systematic,
disciplined, quantifiable approach to the development, operation, and maintenance
of software [systems]. While one might argue that software engineering for tradi-
tional (i.e., non-adaptive software) is fairly straightforward, fundamental expecta-
tions such as repeatability become far more elusive to describe and predict in the
case of ML software. Ignoring the complexity of the model building, ML software
learns and thus will produce different outputs given both the sequence of inputs and
the characteristics of those inputs.

Figure 8.1 illustrates a typicalMLmodel development “pipeline” where the cyclic
nature of ML model development essentially implies that the AI system would need
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Fig. 8.1 Machine learning
pipeline. Adapted from [17]

ongoing updates if the system task has any significant variability. Figure 8.1 notably
shows the essential role that data (collect data) plays in theML engineering life cycle.
This data requirement has led to the broad use of general models, provided much
like a code library, and built from extremely large datasets or opensource collections.
The problem with these models is that much like a software library any misrepresen-
tations, bias, or other variability that exist in the model are then built (transferred)
into the receiving system. For an application, this problem is compounded by the
fact that these extrinsic models incorporate data at a scale where the people using
the subsequent models and building their own AI systems cannot easily gain insights
into the training data details.

The ML pipeline intrinsically has software engineering demands that translate
directly to AI system engineering requirements. Systems engineering is about engi-
neering systems that provide the functionality to users as required, when required,
and how required. Table 8.1 shows empirical system engineering challenges that
result from the existence of ML pipelines in systems of different types (prototype,
non-critical, critical, and cascading). Lwakatare et al. (2019) provide an empirical
study of system engineering challenges for machine learning systems. However,
they do not extend the systems engineering challenges to the system in which the
ML is deployed. AI systems are not monolithic. The ML model must operate as
an element of a multi-component system that provides macro user-driven functions.
Challenges in cascading deployment are particularly relevant to AI systems because
with the scale they do not exist in isolation and the boundaries that typically define
system locality can be greatly expanded and obfuscated, leading to emergent system
behaviors. We provide more details on these intimations in the next section.

The discipline of systems theory, which is the grounding for system engineering,
provides the foundational knowledge to address problems where it is necessary to
understand the behavior of the system (e.g., a realized assembly, or an artifact) as a
function of the behavior and interaction of its constituent elements (components). The
previous discussion provides a simple example of how AI-enabled systems should
be viewed as a hierarchical system—the next section will extend this notion toward
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Table 8.1 System engineering challenges in the use of ML components (Lwakatare et al., 2019)

Experimental or
prototyping

Non-critical
deployment

Critical
deployment

Cascading
deployment

Assemble
dataset

Issues with
problem
formulation and
specifying the
desired outcome

Data silos, scarcity
of labeled data, and
an imbalanced
training set

Limitations in
techniques for
gathering training
data from
large-scale,
non-stationary
data sources

Complex and
effects of data
dependencies

Create
model

Use of
non-representative
dataset, data drifts

No critical analysis
of training data

Difficulties in
building highly
scalable ML
pipeline

Entanglements
causing
difficulties in
isolating
improvements

Train and
evaluate
model

Lack of
well-established
ground truth

No evaluation of
models with
business-centric
measures

Difficulties in
reproducing
models, results,
and debugging
deep learning
models

Need of
techniques for
sliced analysis in
the final model

Deploy
model

No deployment
mechanism

Training-serving
skew

Adhering to
stringent serving
requirements; e.g.,
latency,
throughput

Hidden feedback
loops and
undeclared
consumers of the
models

a complex system. By a hierarchic system, we adopt a definition of a system that
is composed of interrelated subsystems, each of the latter being, in turn, hierarchic
in structure until some lowest level of an elementary subsystem is reached (Simon,
1991). Currently, in the AI system engineering literature, ML is treated as an elemen-
tary subsystem when it is in fact exceedingly complex. This same notion expands
to account for dynamically composed AI systems, as increasingly the boundaries
and nature of intelligent systems should be characterized and complex systems-of-
systemswith the advance of technologies such as the Internet of Things and pervasive
networking.

8.3 AI-enabled Complex Systems-of-Systems
and Emergent Behaviors

The purpose of systems engineering, as a discipline that applies scientific principles
and engineering methods as a means to cope with the challenges of complexity,
should yield abstractions that characterize the hierarchical nature of systems at their
individual boundaries. As with all of the sciences, the understanding of complex
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adaptive systems is reached solely in a quantitative, predictive, and ultimately exper-
imentally testable manner. Complex adaptive systems are dynamical systems that are
able to change their structure, their interactions, and, consequently, their dynamics as
they evolve in time (Tolk et al., 2018). The theory of complex systems is the theory of
generalized time-varying interactions between components that are characterized by
their states. The notion of interactions introduces an expanded dimension of systems
engineering as it implies the isolation of its component functionality. It is possible
at this point to have a philosophical discussion about what exactly a system is if
its atomic boundaries are not clearly defined and the complexity of the system is a
function of component interactions. Rather than entertain the philosophical nature of
systems, which has been deeply covered in the literature (Backlund, 2000), we adopt
a simple definition: a system is a set of interconnected things that work together
to perform a function. In the case of AI-enabled systems, these “things” exist in a
hierarchical construct where they are composed to meet a purpose. The role of the
AI components within this construct is to introduce intelligent interactions, which
en masse evince system behaviors.

Inter-system interactions typically occur on networks that connect system compo-
nents. The interactions may cause the states of the component themselves and/or
the network to change over time. The complexity of a system increases when the
interaction networks have the ability to change and rearrange as a consequence of
changes in the states of its components. Thus, complex systems are systems whose
states change as a result of interactions and whose interactions change as a result of
states. The same characterizes AI system ML algorithms, many of which (such as
neural nets) utilize internal components and states as learned representations. Thus,
if ML algorithms are complex (sub) systems, the hierarchical system in which they
exist must also be complex. Consider any case where a system is providing more
than rudimentary intelligence. It would be necessary to create an ensemble of ML
algorithms that are interconnected and interdependent such that greater degrees of
learning and intelligence can be achieved. If one AI system interacts with another AI
system to achieve a macro-objective or satisfy a global requirement, the AI system
can be thought of as a system-of-systems. Keeping in mind the reciprocated nature
of system state and interactions, complex AI system-of-systems have the propensity
to show a rich spectrum of behavior: they are resilient, adaptive, and co-evolutionary
with an inherent ability to exhibit unexpected and emergent behaviors. Predictability
is a highly desirable outcome of system engineering (Kuras & White, 2005). Emer-
gent behaviors are often the inverse of predictable behaviors and emergence is an
innate characteristic of complex AI systems (Brings et al., 2020).

Emergent system behavior is a response, or set of responses, that cannot be
predicted through analysis at any level simpler than that of the system as a whole.
Emergent behavior, by definition, is what is left after everything else has been
explained away. This definition highlights the difficulty in predicting and explaining
emergent behavior (Li et al., 2006). If the behavior is predictable and explainable,
then it will not be treated as emergent behavior and its approaches can be designed to
handle the responses. From an engineering standpoint, understanding emergence can
lead us to design smarter andmore resilient systemswhile at the same time furthering
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our understanding of phenomena in systems’ interactions (Tolk et al., 2018). The
source of emergence is the nonlinear combination of components at different states
over time. Emergence, in this case, is one of the possible states a system might take
even if the observer or designer of the system is not aware of the possibility (Mittal &
Rainey, 2014). Consider an AI system that is no longer behaving as originally speci-
fied but had adapted to a new environment by developing newmulti-level interactions
and feedback loops. How can such self-modification and adaption reconcile with the
design of the system’s creators when it exceeds the bounds of their intention? From
an AI systems engineering perspective, embedded in this first question is a second,
perhaps more important one: how then to limit learning and prevent errors resulting
from gaps in what the system knows? The intuitive answer is to limit interactions
and exposure to new data. However, this would lead to an over-constrained system,
which is seldom desirable (Russell et al., 2017).

The above discussion characterizes the variability, through ensuring emergent
behaviors, that AI introduces into a system, thereby guaranteeing that any AI system
is a hierarchical complex system-of-systems. Thus, ensuring predictability from effi-
cient and rigorous system engineering is at best a bounding problem and at worst
a stochastic one. Further illustrating the severity of this issue, it is important to
present another element of complication in AI system engineering that is entangled
in the underlying ML models. Most ML algorithms incorporate adjustable param-
eters that control the training of the model. These standard parameters are part of
the mathematical formulation and need to be learned from the (training) data. ML
algorithms employ a second type of parameter, called hyper-parameters, that cannot
be directly learned from the regular training process. Hyper-parameters typically
express properties of the model such as its complexity or how fast it should learn
and are usually fixed before the actual training process begins. Examples of common
deep learning hyper-parameters include learning rate, momentum, dropout, number
of layers, neurons per layer, etc.

Figure 8.2 shows the implications on training time, in terms of iterations, and
convergence, in terms of progress toward the minima or loss. Learning rate is
a hyper-parameter that determines how quickly a deep learning ML model, that
employs a gradient descent methodology, can converge to local minima, i.e., arrive
at the best accuracy. More specifically, the learning rate controls how much the
weights of the neural network are adjusted, with respect to the loss gradient.
The gradient equation can be described in the following manner: new_weight =
existing_weight−learning_rate× the_gradient. In this context, each epoch/iteration
represents an ML model state, given a consistent set of training data. In the gradient
descent equation shown in Fig. 8.2, alpha (α) represents the learning rate hyper-
parameter. If α is too small the gradient descent can be slow; shown as a low learning
rate in Fig. 8.2. If α is too large, the gradient descent can overshoot the minimum, fail
to converge, or even diverge, shown as high or very high learning rate in Fig. 8.2. An
ideal or optimal learning ratewould produce a reasonably rapid descent to asymmetry,
noted as a good learning rate in the figure.

Given different settings for learning rate, Fig. 8.2 illustrates thatMLsoftware engi-
neering requires close coupling with the learning problem and likely a significant
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Fig. 8.2 Effect of learning
rate on loss. Adapted from
[27]

amount of domain expertise in model creation. Consider a system that employs three
MLmodels, each with seven hyper-parameters (not unreasonable, albeit a somewhat
low number (Probst et al., 2018; Smith, 2018)). Keep in mind the difficulties in engi-
neering traditional (non-learning) software (e.g., object inheritance, encapsulation,
bias, etc.)—all of whichwould exist in such a three-MLmodel system. Even ignoring
diversity/variability in training and operational data, there are at least 15,120 (7! ×
3) possible combinations of hyper-parameter settings and this number assumes inde-
pendence of the threeMLmodels. This example also does not factor in the likelihood
that theMLmodels were created by using externally pre-trained basemodels, such as
RESNET (He et al., 2016) or variations of BERT (Devlin et al., 2018), which would
further obfuscate parameters, hyper-parameters, and initial training data variability.
It is not surprising that AI system engineers face challenges of structural and func-
tional complexity when dealing with AI systems, as both structural and functional
complexity increase with the number of system options.

It becomes nearly impossible to provide any stringent guarantees on the behavior
of such a system. However, the system engineering trend is to automate the search for
good model hyper-parameters (i.e., the balance of speed, accuracy, and reliability).
So, there are system engineering things that can be done to increase the understanding
of an AI system, certainly at the component level of the system. Obtaining this same
degree of understanding at higher levels in the system hierarchy remains a challenge.
It is noteworthy to revisit the fact that AI systems seldom operate in the isolation in
which AI researchers design them and often they are connected to other AI systems,
increasing the likelihood of unanticipated interactions.

The complexity introduced by data, hyper-parameters, and potentially varying
scales of interdependent components create an elaborate system engineering land-
scape that must still account for the existence of emergent behaviors. Mairer et al.
(Maier et al., 2015) describe four categories of emergent behaviors: simple, weak,
strong, and extrinsic or “spooky.” Simple emergence iswhere the emergent properties
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can be readily predicted by simplifiedmodels of the system.Weak emergence defines
where the emergent property is reproducible and can be consistently predicted. Strong
emergence describes emergent properties that are consistent with other known prop-
erties but not reproducible and thus, inconsistent and unpredictable. Extrinsic emer-
gence defines where emergent properties are inconsistent with the known properties
of the system. Figure 8.3 presents relationships between simple, complicated, and
complex systems, relative to the degree of emergence they tend to exhibit. The oval
shape in Fig. 8.3 shows where AI-enabled systems fit, with some systems being
complicated or on the fringe of being complex, all the way to the outside of system
boundaries, where emergent behavior will be fully unpredictable.

In a time of loosely coupled systems that dynamically connect with one another
to achieve broader objectives, the AI system engineering challenges will not neces-
sarily be localized to a singularly designed system. There are some who may argue
that this loose-coupling is just a trend, and is not likely to continue or become the
norm. To that argument, consider a modern cell phone where a user wishes to post a
picture on their social network. The user utilizes a camera app to take a picture; the
AI in that app processes the picture to apply filters and make adjustments, perhaps
based on the intended social context. The same camera app (automatically) inserts
the picture in a social networking app’s process, where the social network AI may
make further adjustments to the image or file prior to transmitting it to the social
network server. The communication network optimization AI in the phone operating
system further processes the file for efficient transmission considerations. The post
is received by the social network’s servers, where server-side AI analyzes the image
post for the purposes of the social network company. In the simple example of posting
a social network picture, where are the bounds of the AI “system” and what is really

Fig. 8.3 Systems and emergence. Adapted from [20]
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external when all the parts are necessary to achieve the objective? In this case, system
boundaries around functional organizational ownership may be drawn out of conve-
nience or attribution, but from a process perspective, it may be challenging to localize
a latent or non-obvious emergent behavior. There are plenty of other examples of
similar transparent, from users’ perspective, AI-to-AI system interactions such as
Internet-of-Things-based applications, business processes, and automation applica-
tions like self-driving vehicles. If emergence happens unpredictably and outside of a
component system’s domain, however, it may be defined—or even beyond designers’
original way of thinking—the emergent behaviors would require radically new ways
to deal with it from a system engineering perspective.

The inability to predict emergent behaviors is at the core ofwhatmakesAI systems
such a system engineering challenge. The extensibility of AI systems in contempo-
rary applications increases the propensity of extrinsic emergence. Simplification
of system functions can make a system much more predictable and the trend in
technology is to compartmentalize; e.g., apps, micro-services, containerization, etc.
However, over time the scope of compartmentalized systems eventually exceeds the
bounds of their functionality, if only for updates or maintenance. While this problem
is not limited to AI systems, because of their learning capabilities, AI systems are
naturally interactive. These interactions provide the opportunity to stress the AI
systems, as their internalML algorithms depend on interacting with data, their model
parameters are tuned to a function, and the boundaries of their outputs typically exist
in larger decision-making processes.

8.4 The Importance of Interoperability

There is ample literature that frames AI-enabled systems as complex systems-of-
systems with emergent behaviors. Yet very little attention is given to the relevance
of interoperability and technologies that provide the capability to facilitate system-
to-system interactions. Interoperability technologies have the unglamorous role of
being the spackle, glue, and grease that allow often incompatible systems to interact
and behave collectively in a single process. When data warehouses were becoming
popular in the late 1990s and early 2000s, a cottage industry for extract-transform-
and-load (ETL) software also became a significant market (Mali & Bojewar, 2015;
Russell et al., 2010). ETL tools were responsible for extracting data from one system
and transforming it into a representation that allowed it to be loaded into another
system. This type of data interoperability may seem on the surface to be fairly
simple and straightforward. However, it is complicated by issues of localization,
schematic differences, time constraints, logic representations, and other architectural
considerations. As part of the front end of “data science” tasks in the AI pipeline,
ETL architectures define entry points in ML-to-ML interactions. From an AI system
engineering perspective, ETL architectures and functions actually shape the range of
expected behaviors of ML algorithms. Figure 8.4 shows the trend in Google scholar
for research on ETL and ML, illustrating the correlation between ETL and ML over
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Fig. 8.4 Google scholar extract-transform-load trend

time. While the displayed trend correlations are not conclusively related, they indi-
cate a similar upward pattern and also show that ML research and ETL research
remain relatively separate; evidenced by the spacing between the top two lines (ETL
as a search term alone) and the bottom line (ETL and ML as co-occurring search
terms).

In AI-enabled systems, interoperability is much more than extracting and
converting data between two data stores. Standards, application programming inter-
faces (APIs), ML libraries, middleware, and even the hardware processing at the
points of collection (e.g., sensor hardware optimization, photosensor enhancement,
etc.) all can affect interactions between AI system components. The interactions at
the cyber-physical boundary of AI systems, where the data it relies on originates,
can provide indications of the variability that a system will encounter. Thus, exer-
cising the entry points of anAI system can help provide insights and understanding of
system constraints and perhaps reveal emergent behaviors. TheML research commu-
nity has given this challenge some focus, primarily with respect to ML algorithms
and their training data (McDuff et al., 2018). However, while important and valuable,
much of this work ignores the propagation of the ML output beyond the algorithm.
The above-described entry point exercising is fairly common in the modeling and
simulation literature, but can be costly and difficult with complex systems, and even
more so with dynamically composed complex systems.

Standards such as network protocols and file formats (e.g., png, jpg, xml, json,
etc.) are helpful in addressing data-oriented system engineering challenges, but they
are not an absolute answer. Standards are challenged by the pace of technolog-
ical change, constraints on innovation, and performance implications (Lewis et al.,
2008), all essential factors in AI system design. The same can be said of application
programming interfaces (APIs), as they are simply component or system-specific
standards. This situation is not to suggest that standards and APIs are not useful,
rather than that system engineering methods should factor and account for the limi-
tations of standards and APIs. According to Lewis et al. (2008), there are actions
system engineers can take, including identifying required levels of interoperability,
understanding relevant existing standards, analyzing the gaps in standards, and taking
measures to fill in the gaps. These pragmatic approaches are sensible, but may not
address the uncertainty introduced by a learning system. We posit that standards and
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APIs provide a baseline, a floor, upon which design variances can be gauged. Yet
more is needed to facilitate the emergent dynamics of AI-enabled systems.

Middleware technologies are intended to fill the gap between standards and imple-
mentations that deviate or vary from them.Much like ETL, middleware rose in popu-
larity in the 1990s and 2000s because of the technology’s ability to provide transla-
tion services between systems. By translation here, we do not mean converting one
spoken language to another. We mean translating between disparate system specifi-
cations. Initially, there was not much difference between the capabilities of middle-
ware and ETL software. In fact, ETL was labeled middleware due to the overlap in
its functionality. However, unlike the data-centric orientation of ETL, middleware
became much more than just ETL because it translated messaging, services, and,
most importantly, processes. Today, middleware is often delivered as architectural
layers that integrate business process execution languages and system APIs with
services that perform functions abstractly between the systems and transparently
across networks, implementing adaptive composability. Modern middleware func-
tionality can provide themeans to gain an understanding of inter-system interactions,
identify usage variabilities, and manage emergent behaviors.

Surprisingly, ML has not been widely implemented to advance today’s middle-
ware capabilities, although there are some examples of the promiseML functionality
could provide to middleware tasks (Abukwaik et al., 2016; Nilsson, 2019; Nilsson
et al., 2019). Even in AI-enabled systems, contemporary middleware is implemented
as traditional code and scripting elements (Salama et al., 2019). AI is likely to increas-
ingly be the middleware that handles the functions of interoperability in the future.
However, the middleware with the ability to learn inter-component interactions and
emergent behaviorswill increase the overall complexity ofAI-enabled systems. From
a system engineering perspective, escalated complexity will increase the require-
ment for high-resolution and extensive modeling and simulation, due to the cost of
exploring a robust range of possibilities (Saurabh Mittal, 2019). Additionally, it will
also be the role of the AI-enabled middleware to quantify and propagate the uncer-
tainty introduced by inter-component and inter-system interactions. This means the
AI will have to address uncertainties that are teased out by design-time modeling
and simulation as well as those that occur outside the boundaries of the system
engineering.

8.5 The Role of Uncertainty in ML

The presence of uncertainty in any system process opens an opportunity to emer-
gent system behavior that expands the boundary of the system’s functions. Modern
AI is particularly prone to introducing uncertainty into its outputs as a result of its
reliance on ML algorithms (Ning & You, 2019). At its core, such uncertainty stems
from the data and the implementation because the designer of an ML algorithm
must encode constraints on the algorithm’s behavior in the feasible set or the objec-
tive function. Uncertainty in ML typically has four sources: (1) noise, (2) model
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parameters, (3) model specification, and (4) extrapolation (Jalaian et al., 2019). The
preceding sections presented the implications of these four sources on AI system
complexity and emergent behaviors: data variability and interoperability limitations
(noise and extrapolation), hyper-parameters (model parameters), and ML software
engineering (model specification). These same complexity-increasing considerations
can also expand uncertainty in AI-provided outputs and complicate the anticipation,
repeatability, and traceability of unexpected and emergent system behaviors.

Because AI is often implemented to automate or aid decision-making, there is a
growing field of research to quantify the uncertainty that MLmay have in its outputs.
There are several novel approaches that, if incorporated in low-levelmachine learning
algorithms, can provide the necessary uncertainty quantification that is needed to help
lower overall system uncertainty. These approaches include stochastic and chance-
constrained programming (Ning & You, 2019), Seldonian regression approaches
(Thomas et al., 2019), Hamiltonian Monte-Carlo inference (Cobb & Jalaian, 2020),
and other methods that integrate Bayesian decision theory with ML. The challenge
with most of these approaches is that they tend to be computationally intensive and,
as such, create trade-offs in other system engineering concerns.

Quantified ML uncertainty can be a signal for system engineering considerations
and may provide a starting point for addressing replication and traceability. While
sparse, the literature is not without examples of system engineering approaches to
incorporate these signals (Buisson & Lakehal, 2019; Kläs & Jöckel, 2020; Trinchero
et al., 2018). Under a simulation approach, AI system engineering can be informed
about the amount of uncertainty introduced by ML components (D’Ambrogio &
Durak, 2016; Schluse et al., 2018). While integrating uncertainty quantification
methods can provide indicators toward the bounds of ML components, it may not
be sufficient to address all of the considerations raised by the complexity of learning
systems. However, quantified uncertainty, particularly those that are elicited through
robust simulation, can put constraints on the potential scope of system engineering
concerns and provide limits around which to offer guarantees of system behavior.

8.6 The Challenge of Data and ML: An NLP Example

To provide an example of the system engineering problems that intrinsically exist in
AI-enabled systems, we conducted an experiment using natural language processing
(NLP).NLP is a suite of techniques grounded inML that enable computers to analyze,
interpret, and even generate meaningful text (Mikolov et al., 2013). NLP is typically
used to derive value from corpora of documents, where a document can be of varying
sizes (e.g., a short phrase, sentence, paragraph, or a large bodyof text).NLP tasks typi-
cally are intended to obtain information about the lexical units of a language, provide
word sense disambiguation, and/or construct part-of-speech tagging, all to achieve
higher-order aims or goals, such as document classification, content understanding,
or entity-event relationship extraction.
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We selected an NLP-based problem for several reasons. First, NLP is one of the
most mature domains of AI. Second, using NLP for content understanding is one of
the most challenging AI-problem domains, due to the nature of textual communica-
tion. For example, text can have complex meanings. Words have multiple definitions
and in usage have highly variable ordering. This leads to variable-size blocks of
text with contextually constrained representations, where the surrounding text alters
the interpretation. Word ordering matters in two directions—what comes before
as well as what comes after. Third, NLP applications typically have multiple ML
methods being utilized in a sequential fashion to achieve the objective of content
understanding. Fourth, uncertainty stemming from the first three preceding chal-
lenges impacts NLP in a variety of ways. For example, a simple keyword search is
a classic approach and the presence of that keyword in a document does not neces-
sarily assure a document’s relevance to the query. Additionally, uncertainty can result
from the ambiguity of certain words (e.g., the word “bimonthly” can mean twice a
month or every two months depending on the context; the word “quite” can have
different meanings to American and British audiences; etc.). Lastly, we chose NLP
because although the underlying data may be of the same language, it is likely to
have provenantial nuances embedded in it. For example, given the data’s language is
English, Englishwordsmay have regional, temporal, and domain-specific variability.
These considerations represent a challenging, but common, case for AI system engi-
neering, and thus we felt it would likely provide a robust and generalizable example
of the concepts in this thesis.

The functional goal of the experimental NLP system is quite simple: in an unsu-
pervised manner, understand the content of weekly activity reports (WARs) that
document the significant activities of information science researchers at the Army
Research Laboratory. In short, the objective is to (without a human reading all the
documents) identify documents that are about similar topics and present a summary
of those relationships graphically. TheWARs are supplied as entries from individual
researchers and written with an intended audience of senior science and technology
(S&T) managers. As such, jargon is limited and emphasis is placed on the contribu-
tion of the research accomplishment in terms of the impact on Army S&T priorities.
A topic modeling NLP approach was adopted and used to determine similarity across
documents. Twenty-nine documents were utilized, each consisting of a block of text
with an average of 195 words. There may be some discussion about whether this
corpus is a sufficient amount of data for this NLP activity. However, sufficiency
remains an open research question. The convention is that more documents are
better. Yet even the definition of a document in an applied context is ambiguous,
as the literature offers different decompositions (e.g., sentences, single paragraphs,
sections, chapters, etc.) even from a single “document” file. Further, an optimal requi-
site amount of text data for NLP-ML algorithms has been challenged by arguments
of specificity and subsequent over and underfitting. It is noteworthy that our topic
modeling approach is a unigram (“bag-of-words”) model, which is common in infor-
mation retrieval contexts, and we are not attempting to do language modeling in this
example.
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8.6.1 System Architecture

The general system functional process consists of building a topic model (ML-1) and
then using that topic model to elicit a Euclidean relationship between the documents
(ML-2). The results of the topics, the resulting clustering (ML-1 output feeding
ML-2), and the similarity measure (ML-2 output) are graphically displayed as a
final result. As part of the process, for each document, a dominant topic is iden-
tified. It is also important to note that the text preprocessing (stop word removal,
n-gramming, stemming, and lemmatization) was also done consistently across runs.
Preprocessing is critical to NLP because how the text is prepared, e.g., what words
are included/excluded, handling pluralities, and morphological form reduction, all
can dramatically affect the efficacy of NLP-ML algorithms.

For brevity, we only touch on the technical details of the NLP-ML methods
employed here, as they are documented in detail in the literature and our imple-
mentation attempts to utilize popular Python libraries. We adopted the Anaconda
Python environment to help standardize underlying software libraries. To implement
the NLP-ML algorithms, we used the Genism library (Rehurek & Sojka, 2010),
utilized latent Dirichlet allocation (LDA) (Blei et al., 2003) for topic building, t-
distributed stochastic neighbor embedding (t-SNE) (Maaten & Hinton, 2008) for
dimensionality-reduced clustering, and cosine similarity (Y. H. Li & Jain, 1998) for
relating LDA topic similarity across documents. It is worth noting that this exper-
iment was repeated using BERT (Devlin et al., 2018) to develop the topic models,
instead of LDA, with the remainder of the architecture being the same. In the second
experiment using BERT, the results were largely the same, so we focus on the LDA
approach here.

The Gensim LDAmodule was implemented, exposing over 15 hyper-parameters,
including learning rate, random seed, and epochs. In this experiment we held 14
of them constant and only adjusted the number of topics. The number of topics
hyper-parameter can have a dramatic impact on downstream similarity compar-
isons, so the experiment included a function that iterated over several values and
displayed them for selection in final results. The ML pipeline was partially auto-
mated to produce output for the one key hyper-parameter (number of topics) versus
model “goodness,” as shown in Fig. 8.5. Figure 8.5 shows the results of coherence
and perplexity measures of the experimental LDA model, varying the number of
topics hyper-parameter.

LDA topic models learn topics, typically represented as sets of important words,
automatically from documents in an unsupervised way and coherence provides a
quantitative metric of the resulting topics regarding their understandability (Röder
et al., 2015). Similarly, the perplexity score, which is also used by convention in
language modeling, can provide an indication of a model’s goodness in terms of its
predictive generalizability. Unlike coherence, which tends to increase up to the point
where it levels off, perplexity tends to monotonically decrease in the likelihood of
the test data and is algebraically equivalent to the inverse of the geometric mean
per-word likelihood. Thus, in general, higher coherence and lower perplexity scores
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Fig. 8.5 Coherence and perplexity measures of LDA model, based on the number of topic hyper-
parameter

are desirable. However, the rules for these measures are not firm, as there are implicit
trade-offs between generalizability and interpretability. Further, as can be shown in
Fig. 8.5, theminimumperplexitymay not correspond to themaximum coherence and
there is the issue of the number of documents versus the number of topics. In the case
of smaller numbers of documents, arguably the number of topics hyper-parameter
could be set to the same number of documents, leading to a unique (dominant) topic
for each document, which is less than useful for comparison or retrieval tasks. So, a
pragmatic rule heuristic rule is to: (1) identify where the coherence score levels off
and its maximum before decreasing, and (2) select a number of topics value from this
range. This number of topics should also occur before an increase (positive slope)
in the perplexity score. Examining Fig. 8.5, a reasonable number of topics is likely
between 8 and 12.

8.6.2 Results

The experiment provided reasonable results, whichweremanually (and qualitatively)
verified by reading the documents to see howwell theywere represented by the topics.
Figure 8.6 shows the topics that were created using LDA with the number of topics
set to 12 and shown as word clouds. From a qualitative standpoint, it is not a stretch,
even to a uniformed eye, that the topics could easily represent the kind of weekly
activities of information science researchers, particularly if they had to type them
every week over the course of a year. This particular part of the information science
division does work on computational linguistics, dialog, and intelligent agents. This
work too is readily evident in the NLP topics elicited from the content.

The topics, shown in Fig. 8.6, formed the basis for the similarity matrix and the
clusters shown in Figs. 8.8 and 8.9. As expected, the increased number of topics
decreased the overall level of degree of similarity between the documents. This
relationship can be seen in Fig. 8.7, as the heatmaps for the higher number of topics
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Fig. 8.6 Word clouds of 12 topics

are more of a neutral/lighter color rather than the darker shades that indicate strong
positive or negative correlations. What is interesting is that some documents that
were highly correlated, given 10 topics, are not correlated at all when 12 topics
were used. This same effect can be seen in the plot of the t-SNE clusters (Fig. 8.9),
where examples of some of the varying topics are shown with boxes around them.
Documents clustered with 10 topics become probabilistically closer than when the
number of topics was increased to 12. This probabilistic distance is shown as its
spatial distance in the t-SNE plots. While the t-SNE dimensions are not necessarily
linear, the parameters andhyper-parameterswere set the same, and the only difference
between the plots was the number of topics and associated document weights in the
input. The scale of the plots was set to be the same to allow a direct comparison. It
is important to note that the t-SNE plots employ an arbitrary 2-D space represented
by tsne_D_one and tsne_D_two in Figs. 8.8 and 8.9.

Taking document 819-cub.txt (the solid line box in the t-SNE plots) as a reference,
its relative position (approximately [0, −380]) in the 10-topic cluster shifts in the
positive y-direction (approximately [0,−100]) for the 12-topic plot.Other documents

Fig. 8.7 Document similarity matrices for 6, 10, and 12 topics
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Fig. 8.8 Document clustering based on 10 topics

Fig. 8.9 Document clustering based on 12 topics

relative to this document also shift with the increased number of topics, yielding a
significant increase in dissimilarity between819-cub.txt and several other documents:
422-cub.txt (the medium-dashed box), 722-cub.txt (the small-dashed box), and 729-
cub.txt (the long-dashed box). While this sub-section presents the results, the next
sub-section provides an interpretation and discussion of the results.

8.6.3 Discussion

This empirical experiment is not about advancing the state-of-the-art in NLP-related
machine learning. Rather, it is intended to illustrate the complications of AI system
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engineering and illustrates many of the system engineering challenges described in
previous sections. By manipulating only 1/15 hyper-parameters, the experimental
AI system significantly changed its output. We illustrated how this occurred, even
in this simple example, where surprising results (more topics yielding tighter docu-
ment clustering while reducing correlation) emerged. In this experiment, the inter-
nals of the system were fully exposed; and thus, data and hyper-parameters could be
manipulated. However, most AI systems are often delivered as black boxes with
minimal insight as to how the models work and other internals such as hyper-
parameter settings. For example, in the word clouds, references to the word “data”
were converted to the word “datum.” These reports would not likely have included
the word datum, as it is not part of the researchers’ general jargon. The output of the
word datum was a surprising and unexpected output. Only upon deep investigation
was it discovered that the word datum came from the stemming and lemmatizing
preprocessing step. It is noteworthy that the Genism stemming and lemmatizing code
itself depends on an external stopword and rule library—i.e., 1000 s of words and
100 s of replacement rules. Of course, for human consumption, (most) people know
that theword datum is the same as data, but the transposition into the context from this
corpus was surprising nonetheless. This replacement is a very simple and harmless
behavior but shows how easily emergent behaviors can occur and how susceptible
AI-enabled systems are to problems of this nature.

Black box deployments often lead to obfuscation in the understanding of why
the system was behaving the way it behaved. Yet this phenomenon is more involved
than just a lack of ML explainability because the general results are reasonable in
the specific ML task, just less reasonable within the overall system objective. In a
typical deployment, an LDA model produced from training data is typically applied
to new data, not used for similarity with the training data. The implication here is
the number of topics and other hyper-parameters are embedded in the model, yet
they may no longer be optimal or even appropriate for use with new text, depending
on the nature of the new documents. The only indication of this issue is incorrect
outputs, errors, or unexpected behaviors.

The experiment showed how embedded variability in one ML learner can affect
other learners that rely on that output. The preprocessing portion of the experi-
ment was a reasonable proxy for interoperability problems. Much like the role of
interoperability, the preprocessing step translated the documents from their original
source (MSWord files) into a format and structure that is appropriate for the Python
Gensim libraries. As described in the interoperability section, ambiguity in the inter-
operability process can dramatically change the expected system behaviors andmake
system outputs less repeatable. Other factors that affect the system’s behavior are
embedded in the ML and abstracted away from end-user awareness. Issues such
as data constraints and specificity, hyper-parameter variability, and the potential for
emergent behaviors (i.e., embedded uncertainty) can all be hidden behind seemingly
sensible system performance.

It is seemingly reasonable outputs from AI-enabled systems that create the
largest demand signal for an increased emphasis on AI system engineering. Anec-
dotally, discussions about the output of this experimental system with management
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colleagues have sparked interest in applying the system to other functional areas
within our organization. In short, the system outwardly did achieve its objective.
Furthermore, the experimental system could theoretically be re-purposed as a data
exploration tool, but even in that deployment, it would need to be accompanied by a
system engineer or an NLP researcher to be used reliably with any durability. This
result simply does not scale.

The increased complexity and embedded uncertainty of such an AI-enabled
system, however, much of an example it may be, does not reduce the propensity
for others to naively desire to utilize the system for their own corpora, or worse,
make comparative conclusions across the outputs of varied users. In this sense, it is
not the intelligence of the system that is at issue. Thus, a significant challenge is how
tomake suchAI-enabled systems robust enough to handle anythingmore than hyper-
specific tasks. Incorporated in this challenge is how to alter how AI-enabled systems
are engineered so that they harness emergent behaviors and self-protect against their
own underlying learning and intelligence; all to reduce the uncertainty that might
stem from the use of their own outputs.

8.7 Design Science: Toward the Science of AI System
Engineering

The bulk of this chapter discusses the problems of engineering interoperability, emer-
gent behaviors, and uncertainty in complex AI systems. This section discusses the
potential for a body of literature that may offer a solution that applies additional
scientific rigor to systems engineering.

While there is plenty of literature that focuses on the machine learning lifecycle
(Ashmore et al., 2019; Khomh et al., 2018; Schindel, 1996), the literature on the
treatment of these components within a complex system is proportionally sparse.
Furthermore, most of theML lifecycle approaches tend to treat the learners as atomic
functions providing a single capability. This perspective is much like controlling one
individual’s behavior while ignoring the effect they have on the crowd around them.
AI complexity and emergence will require new methods and tools, and maybe even
different structures. After years of specialization and focusing on more and more
details that helped to provide a tremendous amount of knowledge and understanding
and led to breakthroughs in so many disciplines and domains, a new set of research
characteristics may “emerge” that takes the opposite approach. Tenets of Design
science may provide a holistic framework in which to introduce rigor in the defi-
nitions, ontologies, boundaries, guidelines, and deliverables required for AI system
engineering.

Design science is the study of an engineered artifact in context and its two signif-
icant activities are designing and investigating this artifact in context (Wieringa,
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2014). It is a very different approach compared to computer science. From a prag-
matic perspective, while this difference is a fundamental issue with AI system engi-
neering, it still currently remains a problem largely being addressed by computer
scientists and researchers. Table 8.2, initially proposed byWieringa (2014), provides
heuristic identifiers as a contrast between computer science problems and informa-
tion systems/design problems. The computer sciences, and thus AI scientists, typi-
cally focus on knowledge questions, whereas information systems scientists and
researchers are more concerned with design problems.

Traditional ML research, in classical computer science style, focuses on studying
new AI methods and creating algorithms. Adopting a Design science approach to
ML would take an information system approach that answers knowledge questions
regarding systems. In this manner, Design science can provide a rigorous approach
to understanding complex AI-enabled systems from a design perspective that, by its
nature, must account for context and a problem’s surrounding environment. Hence,
this approach puts the system artifact at the center of study. The notion of an artifact
is a central element in Design science. It is a fundamental premise that a design
is problem-driven and leads to an artifact that solves the problem when the arti-
fact is introduced into nature. There is debate over whether Design science must
result in an artifactual production, and there are endless disagreements over what
exactly constitutes an information systems artifact. For some, the only legitimate
artifact is actually executing, runnable, code. For others, the only legitimate IT arti-
fact is conceptual (e.g., the concept behind the executing code). Such artifacts are not
exempt from natural laws or behavioral theories, but the artifact alone is not Design
science (Baskerville, 2008). Design science integrates artifacts with design theory,
a fundamental concept in the scholarly information sciences and systems field. It
creates theoretical approaches for understanding, explaining, and describing design
knowledge and practice. The inclusion of design practice reinforces the fact that goal
or contextual orientation must be a core element of any design theory.

Foundations of Design science were extended by Herbert Simon (1988), and it is
in Simon’s work that the applicability of Design science for AI system engineering
can be elicited. Originally characterized by Simon (1969) as the “Science of the
Artificial,” the artificial is distinguished from the natural in four ways: 1) Artificial
things are synthesized (though not always or usually) with full forethought by man;
2) they may imitate appearances in natural things while lacking, in one or many

Table 8.2 Heuristics to
distinguish design problems
from knowledge questions
(Wieringa, 2014)

Design problems Knowledge questions

Call for a change of the world Ask for knowledge about
the world

Solution is a design Answer is a proposition

Many solutions One answer

Evaluated by utility Evaluated by truth

Utility depends on stakeholder
goals

Truth does not depend on
stakeholder goals
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respects, the reality of the latter; 3) they can be characterized in terms of functions,
goals, and adaptation; and 4) they are often discussed, particularly when they are
designed in terms of imperatives as well as descriptives. Toward AI-enabled systems,
it is apparent the explicit relevance of 1, 2, and 3. In terms of AI system design,
the introduction of function, goals, and adaptation are critical to a reliable design.
Simon extends this importance of function and goals (i.e., context) with his idea
of the artificial not only applying to the machines or objects designed by man but
also human problem-solving in which in some sense one must cognitively “design”
a solution. Simon synthesizes the sciences of the artificial, relating these concepts
to design and the architecture of complexity. It is this relationship that forms the
basis for Design science. Simon advocates for the existence of a science of design
concerned with “how things might be” in contrast to the natural sciences, which are
concerned with “how things are.”

This perspective is directly related toAI systemdesign due to the composite, adap-
tive, and dynamic learning nature of ML and AI systems. Design sciences’ emphasis
on the artifact can provide grounding theory for how to approach the engineering
of AI systems. Designing useful artifacts is complex due to the need for creative
advances in a domain in which existing theory is often insufficient. As knowledge
grows, artificial systems are applied to new application areas that were not previ-
ously believed to be amenable to artificial system support (Markus et al., 2002).
The resultant system artifacts extend the boundaries of human problem-solving and
organizational capabilities by providing intellectual as well as computational tools
(Hevner et al., 2004). In 2002, however, Markus’ work (2002) had the foresight
to begin to focus on the need for design theories that dealt with emergent knowl-
edge processes. For example, Markus notes, catalysts of the design process emerge
in unpredictable ways, sometimes resulting from external competitive forces and
sometimes from internally generated needs for higher performance. Although that
work did not focus on AI-enabled systems, Markus’ emphasis on decision support
systems begins to characterize many of the design challenges associated with them.
To this end, much can be extrapolated from Design science to address the issues of
designing AI-enabled systems.

At its core, Design science is directed toward understanding and improving the
search among potential components in order to construct an artifact that is intended
to solve a problem (Baskerville, 2008). The iterative nature, around an artifact in its
context, may provide the means to elicit and mitigate the limitations in AI system
engineering. We posit that adopting a Design science approach to AI system engi-
neering can provide the theoretical grounding needed to create artifacts that can be
iteratively studied by researchers such that emergent behaviors can be better under-
stood in context. To meet this objective, robust simulation is key to exercising an
AI-enabled system in a multitude of configurations, across problem domains, and
with real and synthetic datasets. Future work is planned to explore this approach by
using the experimental NLP system as an artifact.
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8.8 Conclusion

This chapter is intended to generate a discussion and energize a research agenda.
The discussion is mainly driven by the authors and their expertise and experience,
so it needs to be extended and discussed in the broader audience as envisioned in
this chapter. This chapter presented engineering challenges intrinsic to AI-enabled
systems, including dynamisms of the learning process and adaptation, the potential
for interoperability to significantly affect the learning process, and emergent behav-
iors that increase uncertainty and potentially lead to errors. To illustrate the concepts,
we presented an experimental NLP AI system that produced reasonable results but
also demonstrated pragmatic examples of conceptual system challenges.

There are engineering considerations that are being advanced by the AI research
and system engineering community that will provide solutions to the challenges
identified in this chapter, such as quantified uncertainty, ML, intelligent interoper-
ability solutions, and autonomic system functionality. However, these approaches are
likely to introduce additional complexity that may be compounded by the amorphous
bounds of AI systems in pervasive use. This evolutionary nature of AI systems may
find solutions in the iterative nature of Design science. Much like other engineering
disciplines in past decades, the application of Design science aims to aggregate the
power of a few key ideas to help to manage the increasing complexity of AI-enabled
systems. Whereas civil engineering and chemical engineering were built on the hard
sciences, i.e., physics and chemistry, this new engineering discipline will be built on
the building blocks that ground Design science—ideas such as information, algo-
rithms, uncertainty, computing, inference, and complexity.While the building blocks
have begun to emerge, the principles for putting these blocks together have not yet
fully been realized, so the blocks are currently being put together in ad hoc ways.
What we are missing is an engineering discipline with its principles of analysis and
design.

In stimulating further research and discussion, we should not pretend that AI-
enabled systems are not a transformative technology. AI artifacts should be built
to work as expected. We do not want to build systems that help us with medical
treatments, provide transportation, and support our decision-making only to find out
after the fact that these systems do not really work and that they make errors and
have unanticipated negative effects. While the expansion of these concepts is still an
open research challenge, we should embrace the fact that there is an opportunity to
redefine system engineering with these and other concepts.
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Chapter 9
The Department of Navy’s Digital
Transformation with the Digital System
Architecture, Strangler Patterns,
Machine Learning, and Autonomous
Human–Machine Teaming

Matthew Sheehan and Oleg Yakimenko

Abstract The Department of Navy (DoN) is rapidly adopting mature technologies,
products, and methods used within the software development community due to the
proliferation of machine learning (ML) capabilities required to complete warfighting
missions. One of the most impactful places whereML algorithms, their applications,
and capabilities will have on warfighting is in the area of autonomous human–
machine teaming (AHMT). However, stakeholders given the task to implement
AHMT solutions enterprise-wide are finding current DoN system architectures and
platform infrastructures inadequate to facilitate deployment at scale. In this chapter,
the authors discuss the DoN’s goal, barriers to, and a potential path to success in
implementing AHMT solutions fleet- and force-wide.

Keywords DevSecOps · Systems engineering ·Machine learning · Digital system
architecture · Strangler pattern

9.1 Introduction

Artificial intelligence (AI) has the potential to significantly shape national security
and military capabilities due to its broad applicability across a range of functions
and fields. At the moment, AI research inside of the Department of Defense (DoD)
is being conducted within the fields of intelligence collection and analysis, logis-
tics, cyber operations, information operations, command and control, and in semi-
autonomous and autonomous vehicles (CRS, 2019). Due to its potential advantages
to outmaneuver top adversaries, AI and, more specifically, machine learning (ML)
are highlighted as priority research areas within authoritative governing documents
like that of theNational Security Strategy (White House, 2017) andNational Defense
Strategy (DoD, 2018a).While the formulation of guidance from the Executive Office
of the President of the United States concerning AI has been slowly progressing
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since 2016, the DoD has been exploring the implications of integrating autonomous
systems with an eye to intelligent, learning, and adaptive software systems even
before that.

Specifically, in 2010, the Under Secretary of Defense for Acquisition, Tech-
nology and Logistics sponsored a Federal Advisory Committee, the Defense Science
Board (DSB), to provide independent advice to the Secretary of Defense about the
role of Autonomy in the Department of Defense (DoD) systems. With the moti-
vation of “identifying new opportunities to more aggressively use autonomy in
military missions, anticipate vulnerabilities, and make recommendations for over-
coming operational difficulties and systematic barriers to realizing the full poten-
tial of autonomous systems” (DSB, 2012), this task force uncovered multiple tech-
nical challenges with the implementation of autonomous systems. These technical
challenges were as follows: perception, planning, learning, human–robot interac-
tion/human–system interaction, natural language, andmultiagent coordination (DSB,
2012). Follow-on technical interchangemeetings uncovered additional non-technical
barriers by integrating AI into military missions in the form of adaptive challenges
for the DoD organizational structure and culture, defense acquisition system (DAS),
lifecycle development, andmanagement of processes that are used (DoD, 2015;DSB,
2018; DIB, 2019).

At the military department level, the DoN understands the importance of software
and how AI can make a profound and unique impact on the operational and strategic
levels of war (DoN, 2016; DoD, 2018b). These algorithms will have unique impacts
on the operational and strategic levels of war. Applications include (1) omnipresent
and omniscient autonomous vehicles; (2) big-data-driven modeling, simulation, and
wargaming; (3) focused intelligence collection and analysis; (4) system of systems
enabling exquisite intelligence, surveillance, and reconnaissance (ISR); (5) precision
targeting of strategic assets; (6) effective missile defense; and (7) AI-guided cyber
(Davis, 2019). Of the applications above, the DoN is especially interested in lever-
aging AHMT solutions to aid the warfighter in decision-making. Battle management
aids and tactical decision aids (BMAs/TDAs) are a logical first step and are seen
as a “quick-win” or “low hanging fruit” by senior leaders due to the availability of
required data, documented decision trees/application state diagrams, ease of operator
integration with current application user interfaces, and high return-on-investment
(ROI) in automating operator ancillary tasking indirect to the mission.

However, the AHMT “quick win” is not quite what it seems at first glance.
The DoN acquisition methodology of “lift-and-shift” or “rip-off and deploy,” while
proving to be historically successful for most technologies, needs to be evolved when
applied to AHMT solutions. The DoN must embrace software engineering patterns
using development, security, and operations (DevSecOps) methods with agile and
test-drivenpractices.Considering theDoN is a distributed collection of organizations,
authorities, environments, warfighting/readiness/business domain-specific require-
ments, a mix of evolving technologies, and independent security enclaves, a holistic
system engineering enterprise approach must be taken in order to effectively succeed
in deploying integrated AHMT solutions.
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This chapter discusses the barriers, limitations, and implications of the DoN’s
desire to develop, test, integrate, and deploy AHMT algorithms, applications, and
capabilities to the fleet and force at scale. Specifically, Sect. 9.2 analyzes the difficulty
in achieving seamless AHMT integration in general; followed by Sect. 9.3 detailing
the unique challenges the DoN is facing to achieve this seamless integration at scale.
Closing with Sect. 9.4, a path to success is proposed which will allow the DoN to
achieve its AHMT goal while working within the confines of the DoD’s cumbersome
defense acquisition system (DAS).

9.2 Autonomous Human–Machine Teaming Lifecycle
Difficulties

Before diving into the specific difficulties with AHMT algorithms, applications,
and capabilities, it is important to understand a few key tenets from the software
systems engineering community required to make effective AHMT possible. Due
to many AHMT solutions employing ML techniques, the proper software develop-
ment lifecycle (SDLC)model, software architecture pattern, platform service model,
application testing, and deployment model choices all have impacts on the associated
foundational requirements of the software being developed and operated.

There are many SDLCmodels to choose from, the most common being waterfall,
iterative, spiral, v-shaped, and agile. Each of these SDLC models shares similar
phases—requirements gathering, analysis, design, development, testing, deploy-
ment, andmaintenance (SDLC, 2019), however, each one is suited for particular soft-
ware project types and complexities. One glaring difference with AHMT algorithms,
applications, and capabilities as compared to static code is the need to constantly
evolve. Due to this characteristic, SDLC models which require a low level of uncer-
tainty and an increased need for planning and control should not be used. Therefore,
the iterative and agile SDLCmodels are natural fits for AHMTendeavors, including a
fit withML application development pipelines resulting in each iteration developing,
testing, and deploying new features.

AHMT solutions interact with systems in different ways depending on the evolu-
tion timeline of the AHMT application and the targeted system for deployment.
If both the AHMT application and target deployment system are in synchronous
development timelines, the AHMT application group has added flexibility in the
software architecture pattern that can be used. If these development timelines are
temporally segregated, the AHMT application group may find many design deci-
sions limited by the targeted monolithic system where it is to be deployed. Among
different software architecture patterns, the event-driven and microservice ones are
the most commonly used for AHMT solutions. These two software architecture
patterns are suitable for complex environments, lend themselves well to continuous
new functionality updates, and are highly scalable.
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Fig. 9.1 Platform service models as applied to the cloud computing stack (adapted from
BigCommerce, 2020)

While the platform service model (software as a service (SaaS); platform as a
service (PaaS); infrastructure as a service (IaaS); and on-premises) is not directly
tied to the AHMT solution being used, it affects the business model chosen which
in turn has impacts to how the AHMT solution is integrated and maintained. The
platform service model computing stack is a series of interconnected systems or
protocols that exchange information between layers in support of a function. When
describing the layers of a platform service model, it is common to reference a version
of the open systems interconnection (OSI) model as applied to cloud computing. In
the version shown in Fig. 9.1, the layers of the computing stack are as follows:
networking, storage, servers, virtualization, operating system, middleware, runtime,
data, and applications. In the on-premises servicemodel, the customer retains control
and is responsible for the entire computing stack. While this allows the customer the
most flexibility and control in system decisions, this model also requires the most
knowledge and has the largest overhead to run effectively. In the IaaS model, the
customer manages applications, data, runtime, middleware, and operating systems,
while outside vendors manage the rest of the computing stack. The IaaS model
allows for enterprises to pay-as-they-go for networking, storage, and virtualization,
freeing up capital from the expensive on-premises infrastructure and subsequent on-
site requirements. The platform service model most likely to be leveraged by AHMT
solutions is the PaaS model. In the PaaS model, the customer only manages the
application and data layers. The PaaS model allows AHMT developers to focus on
algorithm and application development, testing, and deployment. The other tasks of
the computing stack are managed by outside vendors allowing all resources to be
focused onAHMTsolutions and integrationwith the system targeted for deployment.
In the final platform service model, SaaS, the software application is available to the
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customer over the network. AHMT solutions that fit into this model are typically
turnkey commercial-off-the-shelf (COTS) products purchased by customers, which
do not require complex integration with fielded systems due to the nature of their
decoupled hardware/software.

Due to the requirement for AHMT solutions to constantly evolve and become
more refined or feature-rich as these algorithms and applications learn, a robust
feedback mechanismmust be in place to inform developers of the next set of deploy-
ment features. Thus, theseAHMTsolutions are dependent uponDevSecOpsmethods
with agile and test-driven practices allowing for continuous software integration and
delivery/deployment (CI/CD). However, even for organizations considered “digitally
native” or “software intensive” with years of expertise in the above topics, successful
implementation is difficult. Data collected from these industry leaders paint a trou-
bling picture forAHMT solutions: 30%of application deployments fail (Cruz, 2018);
29% of IT project implementations are unsuccessful, with 20% being unrecoverable;
75% of customers rated their application deployment as failing (Hastie &Wojewoda,
2015); and 87% of ML models developed never get deployed (VB, 2019). In fact,
Google’s AI Chief stated that only 15% of ML models developed within Google are
deployed (Moore, 2019).

The above statistics illustrate the difficulties in successfully developing, inte-
grating, and deploying AHMT solutions at scale. In the future where decisive victory
on the battlefield will not only be decided by algorithms supporting warfighters with
actionable intelligence but also by how well the DoN enterprise continuously inte-
grates and delivers/deploys its algorithms, the DoN will need to digitally transform
almost every aspect of how it performs acquisition.

9.3 Unique Challenges Facing the Department of Navy
and Autonomous Human–Machine Teaming

While there are always technical challenges in transitioning new technologies into a
large complex system of systems, like those within the DoN, AHMT solutions also
pose non-technical challenges not shared by other endeavors. This section details
these non-technical challengeswith the introductionof the defense acquisition system
(DAS) in order to show how it is not suited for AHMT solution acquisition as clas-
sically executed. It is then followed by detailing the technical challenges the DoN is
up against in integrating these AHMT solutions (prospective costs) while leveraging
previous investments (sunk costs) to ensure maximum use of DoN asset “technical
debt.”
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9.3.1 Department of Navy Non-technical Challenges

The acquisition of systems within the DoD is complex. It comprised multiple
processes, stakeholders, authorities, phases, barriers, and limitations. All of these
variables must be understood, aligned, and executed in sync to be successful.
Acquiring systems within the DoD is so complex that Congress passed Public Law
101–510 in 1990, creating the Defense Acquisition University (DAU) by enacting
the Defense AcquisitionWorkforce Improvement Act (DAWIA) to educate and train
civilian and military DoD workforce members in a number of functional areas in
support of performing acquisition more effectively (DAU, 2019). However, despite
a trained workforce, a survey in 2015 found all DoD Major Defense Acquisition
Programs (MDAPs)were collectively $468 billion over budget and almost 30months
behind schedule, with data pointing to expected cost growth to reach 51% by 2020
(Lineberger, 2016). Additionally, the DoD returns an average of $13.5 billion a year
in canceled funds to the Treasury, or about 2.6% of its appropriated budget in unspent
funds (Bartels, 2019). These facts point to an uneasy conclusion: the way in which
theDoD does business is fundamentally at odds with the goal ofmilitary departments
rapidly fielding capabilities to outpace peer/near-peer threats.

As shown in Fig. 9.2, the DAS consists of three distinct, yet intertwined, processes
correlating to the functions of acquisition management (known as “Acquisition”),
requirements development and verification (known as the Joint Capabilities Inte-
gration and Development System (JCIDS)), and financial planning and execution
(known as Planning, Programming, Budgeting and Execution (PPBE)). The Acqui-
sition process provides a “management foundation” for programs to follow through
their lifecycle. This event-based process breaks the lifecycle into phases, milestones,
and reviews where a program is required to meet certain criteria in order to proceed
to the next phase. As depicted in Fig. 9.3, the process consists of five phases, three
milestone reviews, and potentially over 70 required key criteria deliverables based

Fig. 9.2 Defense acquisition
system relationships
(AcqNotes, 2018)
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Fig. 9.3 Tailored acquisition process (AcqNotes, 2018)

on program size as measured by total research and development funding and total
procurement cost.

The JCIDS process was created in support of the Joint Requirements Oversight
Council (JROC) to ensurewarfighting requirements are properly validated as required
by JROC Title 10 responsibilities (AcqNotes, 2018). The JCIDS is designed to iden-
tify warfighting requirements, uncover operational performance requirements, and
produce/validate the Capabilities Base Assessment, Initial Capabilities Document,
and Capability Development Document. Figure 9.4 shows how these documents
created in the JCIDS process interact with the DAS.

The PPBE process is the only calendar-driven process of the three. It is also the
only process of the three in which a program will find itself in all of its associated
stages at once. The execution phase is tied to the current year (CY) of program
execution, while each subsequent phase (budgeting, programming, and planning) is
tied to CY+1 out-year(s). The execution phase (CY) is where financial management
of ongoing obligations and expenditures takes place. The budgeting phase (CY+1)

Fig. 9.4 JCIDS and DAS interaction (AcqNotes, 2018)
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Fig. 9.5 PPBE process overview (AcqNotes, 2018)

is where formulation, justification, and control of funding resources are exercised
to ensure efficient allocation. The programming phase (CY+2) is where resource
proposals are evaluated and prioritized against future capability needs. The planning
phase (CY+3) is where trend analysis is conducted to understand the long-term
implications of execution phase results (AcqNotes, 2018). Figure 9.5 details the
steps taken in each PPBE phase.

While the graphics in Figs. 9.3 and 9.4 depict simple processes, it should be
noted that each of these processes has follow-on, multistep, complex sub-processes,
and various rule-sets uniquely implemented by each military department. Figure 9.6
shows one such breakout of the misleadingly simple process for the tailored acqui-
sition process shown in Fig. 9.3. It should be noted that Fig. 9.6 is not meant to be
readable; instead, it is meant to convey the additional complexities existing within
each sub-process.

The DoD has struggled to use the DAS effectively for acquiring non-hardware-
centric systems in a timely manner. Panels on Defense Acquisition Reform in 2010
found the delivery of information technology (IT) systems and related software prod-
ucts to take between 48 and 60 months (Gansler & Lucyshyn, 2012). Thus, in 2019
the DoD released the adaptive acquisition framework (AAF) (DoD, 2019). This
framework, as shown in Fig. 9.7, aims to simplify acquisition policy, tailor-specific
approaches based on relevance, actively manage risk, and emphasize sustainment.
While AAF is a great first step away from the old “one size fits all” process used
in the past allowing for program flexibility, it is too early to assess its effectiveness.
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Fig. 9.6 Defense acquisition lifecycle (AcqNotes, 2018)

Fig. 9.7 Adaptive acquisition framework (DoD, 2020)

In fact, to date, only two out of nine associated new policy documents have been
promulgated.

It should be noted that AAF only addresses one-third of the three-part DAS (see
Fig. 9.3). The JCIDS process, as it is executed today, creates incentives for programs
of records (PoRs) to only focus on their domain-specific requirements. This near-
sightedness adversely affects AHMT solutions by segregating PoRs based on their
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acquisition decisions and technology choices. This remaining behavior will not allow
the DoN to maximize the capabilities brought about by AHMT solutions. The PPBE
process is piloting a new appropriation category targeting software acquisition known
asBudgetActivity (BA) 8. This “new color” of funding, currently under test, removes
the administrative and accounting burden for appropriation categories thatwere put in
place during the earlier hardware-centric, industrial-age acquisition era. The misap-
plied balance of development versus production versus sustainment funds for soft-
ware projects is a continued source of software product delays (Serbu, 2020). With
nine software programs testing this new appropriation category, Congress has yet to
grant the DoD permanent permission to use this BA department-wide.

The DAS is not the only non-technical challenge the DoN faces. Organization-
ally, theDoN comprisedmultiple bodies, each using hybrid organizational structures.
At the highest level, the DoN consists of nine entities: the Secretary of the Navy’s
(SECNAV) office, the Office of the Chief of Naval Operations (OPNAV), Head-
quarters Marine Corps (HQMC), the United States Navy (USN) Operating Forces,
the United States Marine Corps (USMC) Operating Forces, USN Shore Establish-
ment, USMC Shore Establishment, USN reserve forces, and USMC reserve forces.
Each of these entities is further broken down and divided into subsequent organiza-
tions, sometimes having multiple reporting chains across entities. Additionally, each
of these subordinate organizations has multiple unique organizational structures.
For example, uniformed military service members follow a hierarchical organiza-
tional structure in terms of its chain-of-command. Operating forces are structured
using divisional organizational structures, like those of a geographic region (e.g.,
U.S. Pacific Fleet). OPNAV, HQMC, and Shore Establishments follow a combi-
nation of functional and divisional (domain-based) organizational structures. Even
further within these organizations, like those at an “echelon 4” or below, divisional
(product-based) and functional organizational structures are used. As more than one
organizational structure is at play at all times, the DoN tends to execute acquisition
functions in a cross-matrixed fashion.

The advantages and disadvantages of each organizational structure are shown
in Fig. 9.8. While many of these organizational structures have a few redeeming
advantages, the disadvantages are multiplied when an entity executes a maneuver
for hybrid organizational structures in unison. It is believed that the organizational
structure institutionalizes the organizational culture within, which cycles back to
legitimize the organizational structure in place (Janicijevic, 2013). Thus, it can be
surmised that each organization within the DoN has its own unique culture, institu-
tional identity, knowledge, andmemory to contendwithwhen it comes to anAHMT’s
solution development and deployment. It seems unavoidable thatAHMTsolutions on
an individual program level will be limited in the benefit they can provide to the DoN
due to the limited access to cross-domain and inter-domain data. However, AHMT
solutions on an enterprise level will suffer from competing priorities, conflicting
requirements, and non-value-added individual organizational policies.

The DoD has worked, and continues today, in addressing DAS shortcomings
through acquisition reform. However, despite multiple reform attempts, the DoD’s
track record shows repeated cost overruns, missed delivery targets, and degraded
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Fig. 9.8 Pro et contra of various organizational structures (adapted from Williams, 2020)

capability acceptance. In fact, an analysis of historical acquisition reform efforts
across almost four decades (1970–2000s) shows no improvement and even degraded
performance in some programs and services (Baldwin & Cook, 2017). In concert
with numerous strained attempts to streamline the DAS, the product landscape
has fundamentally changed from what the DoD has historically acquired: ranging
from hardware-centric products using a linear, sequential “waterfall” development
methodology; to that of software-centric products (like AHMT solutions) dependent
upon development, security, and operations (DevSecOps) methods with agile and
test-driven practices allowing for CI/CD. Highlighting this product landscape shift,
PoRs have cited software as themost frequent and critical driver of programmatic risk
in nearly 60% of all acquisition programs (DSB, 2018). Mr. Marc Andreessen may
have said it best, “software is eating the world.” Technology, healthcare, finance,
entertainment, telecom, retail, energy, and even national defense companies are
becoming less hardware-centric and more software-centric. Dominant companies
controlling large segments of their industry market-share are doing so through the
use of software and delivering their services online (Andreessen, 2011). AHMT solu-
tions have an uphill battle to overcome the inherent barriers within the DAS, let alone
the organizational structures with their cultures, as applied to agile software develop-
ment, acquisition, and deployment. The DoD directed study on software acquisition
and practices pursuant to Sect. 872 of the 2018 National Defense Authorization Act
that may summarize the DoN non-technical challenges best: “The current approach
to software development is broken and is a leading source of risk to DoD: it takes
too long, is too expensive, and exposes warfighters to unacceptable risk by delaying
their access to tools they need to ensure mission success” (DIB, 2019, p. i).
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9.3.2 Department of Navy Technical Challenges

To understand the full scope of technical challenges facing the DoN, it is imperative
to understand how large the DoN is in terms of the capital assets and the supporting
resources the compose it. This capital asset measurement is called the “existing fleet-
and force-level” (CRS, 2020). The Government Accountability Office (GAO) esti-
mates that the DoDmanages a $1.8 trillion portfolio of 85 major weapon systems. Of
these, over 40 are within the DoNwith a collective estimated price tag of $855 billion
(GAO, 2020). With each major weapon system costing an average of $20.6 billion
dollars and being over 14 years old, the DoN has a significant amount of “technical
debt” and “technical inflation” to manage. Technical debt is the concept of delaying
necessary work during the development phase of a project to deliver a new product
or meet a deadline, only to come back and finish or redo the work later. Technical
inflation is the concept of the state of technology surpassing the foundational func-
tions of a product even to the extent the product is no longer compatible with the
current technology state. If both of these concepts are allowed to proliferate within an
organization, long-term support for the product becomes expensive, and integrating
new capabilities or modernizing the product’s underlying support systems becomes
extremely complex.

The DoN’s weapon systems are considerably more complex than its manpower
and training information technology (IT) systems; the latter is a litmus test for anal-
ysis to understand how complex the DoN’s weapon system technical challenges
have become. In 2017, the DoN undertook an effort to modernize its manpower and
training IT systems. With the goal of transitioning legacy systems and databases to
a modern enterprise resource planning (ERP) system allowing for the creation of
an authoritative data environment, the complexities uncovered proved to be a lesson
in technical debt and inflation acceptance. Once all of the legacy systems were
discovered and analyzed, 55 independent systems were found, with 18% of these
systems being at least three decades old (Serbu, 2018). Additionally, these systems
were distributed across 73 data centers and networks, increasing the complexity for
the modernization team to map legacy system interdependencies. If the number of
systems and their distributed nature was not enough to contend with, the systems had
been independentlymanaged by differing organizations, leading to segregated, incre-
mental systemupdates as each organizationwas executing its own system’s capability
evolution plan. Ultimately, this has led to software being deployed and executed in
21 different programming languages running atop nine different operating systems
(Serbu, 2018).

While the above example is not about DoN weapon systems, parallels can most
certainly be drawn. One can most certainly expect system-of-system (SoS) complex-
ities to be the going-in position when it comes to AHMT solution integration. Addi-
tionally, AHMT solution developers should expect the majority of platforms in exis-
tence within the DoN to be unable to support the hardware, software, network, and
data requirements needed by their applications and algorithms to function effectively.
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DoNweapon systems, like that in the IT example above, also have numerous architec-
tures, differing codebases, unique hardware sets, exotic network timing requirements,
and incompatible interfaces, all managed by different program offices. To make
matters worse, DoN verification and validation (V&V) constraints and objectives
must be met in the cyber and test domains to achieve certification for deployment;
meaning COTS AHMT solutions may have additional requirements that mandate
their customization.

The DoN cannot afford the cost or losing ground with near-peer threats, to scrap
its “existing fleet- and force-level” for a new, modern system architecture and infras-
tructure to enable AHMT solutions. Therefore, the DoN must turn upside-down
some of its long-held program management ethos, organizational structure-induced
cultures, and focused behaviors. The Navy must aggressively attack technical debt
to remove the technical inflation that has built up over the decades and replace it
with a new acquisition lifecycle path modeled after modern software development
and deployment practices.

9.4 Attacking the Technical Debt and Inflation to Enable
AHMT Solutions

The challenges to AHMT solutions mentioned above are in direct conflict with the
DoN’s future vision of distributed maritime operations (DMO), the USMC’s vision
of littoral operations in a contested environment (LOCE), and the marine expedi-
tionary advance base operations (EABO). These visions require an integrated fleet
and force to connect platforms, payloads, and sensors to enable information sharing
at the tactical and operational levels of war. Achieving these visions will require
AHMT solutions. The AHMT solutions necessitate unique infrastructures, lifecycle
practices, integration interfaces, and cross-system data feeds along with the associ-
ated policies needed to make each of these topics successful. This situation requires
a fundamental shift from how the DoN currently develops and fields systems. In
fact, given the rapid rate of technological change, decreased cycle time of massive
technological adoption, and market dominance of deploying more software-centric
products than hardware-centric products, the DoN must digitally transform itself.

This section details two complementary paths to success in developing AHMT
solutions at scale for deployment to new target platforms along with its legacy target
platforms. These complimentary paths are intertwined and are both required to ensure
the DoN effectively leverages previous investments (sunk costs/existing fleet- and
force-level/technical debt) and maximizes its return-on-investment with new AHMT
solutions (prospective costs).
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9.4.1 AHMT Solutions and New Target Platforms

Following the requirements of an AHMT solution employing AI/ML needing robust
software development pipelines, large datasets, and CI/CDmechanisms, a new “dig-
ital” acquisition paradigm must be built to enable these solutions. Unrolling the
classical graphic describing the DevSecOps lifecycle into a linear depiction, as in
Fig. 9.9, shows a rudimentary concept of the building blocks needed to support
AHMT solutions.

As fielded AHMT solutions within the DoN are required to meet stringent stan-
dards (i.e., cyber, safety, stability certifications, and the like), architecting a “digital”
acquisition lifecycle pipeline modeled after the DevSecOps lifecycle is a natural fit
due to this model promoting product predictability, reproducibility, maintainability,
speed to market, increased quality, reduced risk of defects, resiliency, modularity,
and uncovering cost efficiencies (Guru99, 2020). Applying Fig. 9.9 to a notional
DoN-centric “digital” acquisition lifecycle pipeline is shown in Fig. 9.10.

Fig. 9.9 DevSecOps lifecycle unrolled (adapted from Guru99, 2020)

Fig. 9.10 Notional DoN-centric “digital” acquisition lifecycle pipeline (adapted from Kato, 2020)
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In this depiction,AHMTsolutionswould be developed, tested, and certifiedwithin
the DoN’s development environment. This software practice would allow developers
to code their applications and algorithms to DoN standards by making use of specific
application programming interfaces (API), software development kits (SDK), archi-
tecture design principles, and access to the relevant DoN data. This software practice
would also be linked to external software practices, allowing partners of the DoN to
develop within their own controlled area if intellectual property dissemination is a
concern, or if unique test hardware and software is required that does not residewithin
a DoN’s software practice. The DoN’s software practice also would allow developers
to access current models of deployed systems, legacy codebases, and other applica-
tions at all security levels with live-data feeds to deployed systems making use of
analytical tools to gain insight into operational target platforms. As AHMT solution
providers build their applications, they will then be able to test and certify their appli-
cations and AI/ML algorithms for deployment. While software release patterns will
be dependent on the specific item being deployed, in most cases virtual platforms
or digital twins will be used to ensure system testing and stressing does not intro-
duce unforeseen breakages into operationally deployed systems. Once the AHMT
solutions have passed this step and have satisfied all performance measures, they can
be released to the various production environments where the target platforms exist.
The target platform will then continuously provide feedback to aid in the monitoring
of performance and to provide data back to the development environment for further
development efforts and testing sets.

With the DoN-centric “digital” acquisition lifecycle pipeline built, the target plat-
form architecture must next be evolved to allow for AHMT solutions. In their current
state, DoN platforms do not allow for advanced CI/CD software practices, edge-
device detection and synchronization, or distributed orchestration of resources. In
order to make these things possible, the DoN must start architecting and acquiring
systems with decoupled service layers and models. This step will break the cycle of
vendor lock, complex integration due to competing standards/architectures; lifetime
sustainment hardware purchases due to tightly coupled hardware and software; and
unrealized capability due to an inability to leverage all system sensors and effectors
together.

A target platform architecture model, titled the digital system architecture (DSA),
allowing for maximum flexibility at each service-oriented architecture layer is
depicted in Fig. 9.11. This architecture enables commodity hardware to be inter-
changed seamlessly as it ages while still keeping AHMT application-specific hard-
ware intact as needed. It also promotes information exchanges betweenAHMTappli-
cations, thereby increasing application capability and performance. Additionally, the
DSA is a flexible and scalable computing infrastructure accommodating vitalized
and containerized AHMT solutions. This architecture also builds upon microservice
and service-mesh principles facilitating cross-service data exchanges. For AHMT
solution developers, access to these common services and the “digital” acquisition
lifecycle pipeline lowers the barrier of entry for software development and enables
these developers to integrate new features and capabilities into their products. While
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Fig. 9.11 Digital system architecture (adapted from Emery, 2019)

a few AHMT solutions may require unique hardware, for example AI/ML algo-
rithms needing specialized processing units, most acquired AHMT solutions will
be hardware agnostic. Building these applications with the provided SDK in the
DoN’s development environment and making use of the enterprise APIs will allow
the applications to leverage all of the target platform’s data, hardware infrastruc-
ture, sensor and effector systems, communication services, human–system inter-
faces, and other external platform data not within the target platform. Additionally,
this will simplify AHMT solution design and deployment strategies as the DSA will
be standardized across all target platforms. AHMT solution configuration manage-
ment, version control, feature release, and target platform performance feedback will
become second nature.

While it is straightforward to develop a new system guided by the DSA, evolving
an existing architecture to that of the DSA is a complex task that will require the
continued use of one or more software design patterns.

9.4.2 AHMT Solutions and Legacy Target Platforms

As it is impossible and unwise to scrap the “existing fleet- and force-level,” the DoN
must evolve its platforms to be compatible with the DSA to ensure that AHMT
solutions are effective. This evolution must be done carefully to ensure currently
fielded SoSs are not corrupted and are not taken offline. While a standard approach is
needed to evolve battlespace domain legacy target platforms to the DSA in support of
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Fig. 9.12 Strangler pattern evolution (adapted from Microsoft, 2017a)

AHMT solutions, some legacy target platforms will require customized approaches.
For example, the DoN surface combatant community struggles with timely and cost-
effective hardware and software updates and upgrades. Software running on these
platforms can be six years out-of-date and hardware can be over a decade old (RAND,
2013). At any given time, there are dozens of hardware and software baseline combi-
nations, making configuration management impractical. Therefore, a few key tenets
of software modernization will need to be applied to all legacy target platforms.

Design patterns, software specific and the like, are reusable, formalized best prac-
tices employed by architects and engineers to solve frequently reoccurring prob-
lems within various endeavors. The strangler pattern is a software design pattern
commonly used in the rewriting of large, legacy codebases (Rook, 2016). The basic
premise of the strangler pattern is to incrementally migrate a legacy codebase by
gradually replicating/replacing functions with new applications and services. As
these new applications and services come online and their functionality is proved
by conducting rigorous V&V activities, the new system’s functions replace the old
system’s functions (Microsoft, 2017a). This effectively “strangles” the old system
as its functions are progressively decommissioned and migrated to/provided by the
new system. An example of a legacy system going through this process is shown in
Fig. 9.12.

When applying the strangler pattern to active critical systems, it is important
to ensure translation between subsystems not sharing exact semantics. As the new
functions come online, they may be dependent upon the legacy system to provide the
information necessary to deliver this function. This includes information not typically
designed into modern applications, such as outdated infrastructure support, depre-
cated data models, antiquated protocols, and unique APIs, to name a few (Microsoft,
2017b). Due to these dependencies, new system performance and quality measures
may be impacted by legacy system shortcomings causing “corruption” within the
new system design. Additionally, unintended/unknown impacts to current legacy
system functions may occur as new system functions take over and interact with
legacy data stores. To prevent and minimize these impacts, an anti-corruption layer
pattern should be adopted in conjunction with a strangler pattern (Microsoft, 2019).
An example of this is shown in Fig. 9.13.

Making use of these two design patterns, the DoN will be able to evolve critical
legacy target platforms to the DSA with reduced risk and increased speed to enable
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Fig. 9.13 Anti-corruption layer pattern in use (adapted from Microsoft, 2017b)

AHMT solutions. These current disparate systems suffer from complicated legacy
code and monolithic architectures and are supported by fragmented organizations
saddled with immeasurable amounts of technical debt and technical inflation which
are resistant to change. Figure 9.14 shows an example of how current legacy target

Fig. 9.14 Legacy program architecture boundaries applied to the DSA digital stack (adapted from
Emery, 2019)
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platforms exist and why making use of these design patterns for evolution is needed.
As discussed previously, theDoN currently allows platforms and programs to acquire
various levels of the digital stack to meet their PoR performance requirements. This
challenge becomes a modernization and integration nightmare for the resulting SoS
platforms when these capabilities are integrated. The resultant legacy target plat-
form becomes a “Frankenstein’s monster” of competing hardware sets, codebase
languages, hardware and software architectures, APIs, and security policies. It also
becomes a complex task tomap SoS dependencies, resulting in a “spaghetti diagram”
of possible failure modes when individual PoRs upgrade their individual systems but
do not control their entire digital stack.

To deploy AHMT solutions at scale to legacy target platforms, specific legacy
program architectures will need to make use of the anti-corruption layer design
pattern prior to DSA re-factorization. The anti-corruption layer and strangler façade
should be used as a subclass of digital twins known as a virtual twin. This virtualized,
mirror copy of the system in-being will not only act as the anti-corruption layer it will
also have the added benefit of being used as the test, evaluation, validation, and veri-
fication harness for the application and subsystem services being re-factored into the
various microservice functions and integrated across the service mesh architecture.
Additionally, this virtual twin will also serve as the host to the staging software build
to be released in either an environment-based or application-based pattern. Given the
DoN will have more than a handful of target legacy platforms that AHMT solutions
will need to be released, an environment-based release pattern will likely be the first
choice until all of the target legacy platforms have been successfully re-factored to
be compliant with the DSA. Once in compliance, AHMT solutions may be able to
proceed with an application-based release pattern.

When it comes to selecting environment-based release patterns, the blue-green,
canary, and cluster immune system deployment patterns will be the most useful
to the DoN. The blue-green deployment pattern, shown in Fig. 9.15, consists of
two production environments with only one being “live” at any point in time (Kim
et al., 2016). A new build release is deployed to the “non-live” environment for
testing. Once V&V is completed, the “live” and “non-live” environments switch
roles. This deployment pattern allows for rollbacks as well if the new release causes
an unforeseen error not previously uncovered in testing.

Fig. 9.15 Blue-green deployment pattern (adapted from Kim et al., 2016)
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The canary and cluster immune system deployment patterns build upon the blue-
green deployment pattern by further minimizing the user’s exposure to potential
system errors not uncovered in the testing phase. The canary deployment pattern
differs from the blue-green deployment pattern by progressively routing more users
to the newbuild release over time.This routing of users over time allows for a subset of
users to use the newbuild release to potentially uncover hidden errors before exposing
the entire user population to these errors. The cluster immune system deployment
pattern takes the canary deployment pattern a step further by automating the rollback
of production build releases throughmonitoring system user performance (Kim et al.,
2016). AHMT solutions will most certainly be held to these deployment patterns
when incorporatingAI/MLalgorithms andapplications thatmayaffect other systems.

Executing the new target platform development path in concert with the legacy
target platform modernization path will enable the DoN to maximize the use of
AHMT solutions and their associated AI/ML algorithms while simultaneously
modernizing the “existing fleet- and force-level” and ensuring future acquisitions
are compliant with true naval enterprise architecture. The DSA is a critical enabler to
the DoN for realizing battlefield dominance with its algorithms supporting AHMT
solutions.

9.5 Conclusion and Path Forward

The DoN is an immense organization with a wealth of capability and talent, however,
a new enterprise approach is needed for how the future fleet and force acquires
and integrates capabilities to take advantage of AHMT solutions employing AI/ML
algorithms. It will not be easy for the DoN to deviate from its current structures
and processes as institutional and acquisition apparatus change is difficult. The ideas
describedwithin this chapter provide a path for success if the enterprise architects and
system engineers are meaningfully empowered with cross-organizational authority.
This proposed path is a technical stepping-stone to success in the effort to deploy
AHMT solutions and make the most of the DoN’s investment in legacy platforms.
Future areas for development in conjunction with the ideas mentioned above include
level-of-effort-based contracts for software projects; specific contract data require-
ments tailored for AI/ML algorithms; PoR budget exhibit justification language and
structure; and the flexible application of appropriations to ensure compliance with
laws like that of the Misappropriations Act (AcqNotes, 2018).
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Chapter 10
Digital Twin Industrial Immune System:
AI-driven Cybersecurity for Critical
Infrastructures

Michael Mylrea, Matt Nielsen, Justin John, and Masoud Abbaszadeh

Abstract Innovative advances in machine learning (ML) and artificial intelligence
(AI)-driven cyber-physical anomaly detection will help to improve the security, reli-
ability and resilience of the United States’ power grid. These advances are timely as
sophisticated cyber adversaries are increasingly deploying innovative tactics, tech-
niques and technology to attack critical energy infrastructures. Defenders of these
modern infrastructures need to better understand how to combine innovative tech-
nology in a way that enables their teams to detect, protect, respond and endure
attacks from complex, nonlinear and rapidly evolving cyber threats. This chapter
(i) explores how AI is being combined with advances in physics to develop a next-
generation industrial immune system to defend against sophisticated cyber-physical
attacks to critical infrastructure; (ii) provides an overview of the technology and
explores its applicability to address the needs of cyber defenders to critical energy
infrastructures; applicability is explored through opportunities and challenges related
to human–machine teams as well as the process and technology; (iii) includes vali-
dation and verification of findings when the technology was tested defending against
stealthy attacks on the world’s largest gas turbines; (iv) explores how the AI algo-
rithms are being developed to provide cyber defenders with improved cyber situation
awareness to rapidly detect, locate and neutralize the threat; and (v) concludes with
future research to overcome human–machine challenges with neutralizing threats
from all hazards.
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10.1 Introduction

A digital transformation of critical energy infrastructures is underway that is rapidly
digitizing, networking and automating the energy value chain. Today’s smart energy
systems unlock new value in modernizing the grid that is increasingly interoperable,
two-way, agile and flexible in incorporating distributed energy resources. While grid
modernization helped transition energy usage and consumption to lower carbon,
sustainable, renewable energy, new cyber-physical security challenges in securing
critical energy delivery systems and associated operational technology (OT) have
accompanied this digital transformation. The rapid digital transformation of our
critical systems has significantly increased its attack surfaces by combining cyber-
physical systems, software and hardware, information technology (IT) and opera-
tional technology (OT). This has created new challenges to identify, monitor and
protect these critical systems. Improvements are needed for real-time cyber-physical
situational awareness and monitoring the cyber threat-attack surface in terms of
control systems, automation and other operational technology.

10.1.1 Overview

While cybersecurity technology continues to improve, the attack surfaces of the
power grid have expanded significantly, leaving a number of major cyber gaps
remaining. For one, most cyber defenses and monitoring solutions are ineffective
in detecting sophisticated attacks targeting operational technology, such as energy
delivery and industrial control sytems. Zero-day exploits, insider and supply chain
attacks continue to evade and defeat cyber defenses and intrusion detection systems.
These systems originated from securing information technology across a business
enterprise and defending against knownmalware,malicious packets and other attacks
that are easy to catalogue in a library as signature herusitics. However, OT found
in various energy delivery systems, such as electricity infrastructures presents new
challenges as the protocol, malware signatures, and tactics, techniques and proce-
dures used by adversaries also differ significantly. Moreover, a number of more than
3,000 energy utilities in the U.S. lack basic cybersecurity defenses to identify and
monitor their critical cyber OT assets. Thus, the detection of sophisticated adver-
saries is limited—usually too late or reactive, only after the damage has been done—
enabling them to perist their malicious activities in critical systems and networks
and often without being detected.

To overcome these limitations, solutions must advance from security to resilience
and provide more holistic cover for critical OT in electricity infrastructures. To
realize these goals, GE research has been working closely with the U.S. Department
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of Energy, DARPA and our energy utlitiy partners to leverage advances in artifi-
cial intelligence (AI) and machine learning (ML) to develop an industrial immune
system for critical operational technology, from wind turbines to combined-cycle
power plants, and from hydropower to oil and gas pipelines. In one of the world’s
first demonstrations of AI/ML self-healing neutralization at scale and with accu-
racy (99%), GE Research demonstrated the ability to neutralize sophisticated cyber-
attacks on the world’s largest gas turbines. While this scientific accomplishment
highlighted advances in AI/ML cyber-physical anomaly detection, a number of
challenges remain. Overcoming these challenges requires scientific advances and
research that combine complex problem sets at the nexus of people to accomplish
these goals, process and technology to secure high assurance systems that are increas-
ingly autonomous. Some of these areas explored in this chapter include explain-
able AI (XAI), invariant learning and humble AI. These advances are critical to
improve the data fusion, trustworthiness and accuracy of AI-driven technology and
its application in empowering human–machine teams.

Additional advances are needed not only to detect and challenge decision support
for complex autonomous systems but also to the system designers and operators
who do not understand and/or trust the decisions that the algorithms are making.
This lack of explanation, context and trustworthiness in the algorithms slows adop-
tion and impedes innovation. End users are hesitant to trust the algorithms because
they cannot correlate AI-driven machine decisions with the physics and their own
domain of experience. In a safety critical system, not understanding the physics and
how algorithms are reaching their decisions curtails innovation in next-generation
system design and deployment. Overcoming these barriers would help owners, oper-
ators and other complex systems stakeholders better understand how algorithms are
learning andmakingdecisions, allowing the translation of big data sets into actionable
intelligence. Advancements in explainable AI (XAI) would remove these barriers to
innovation and provide significant value in advancing the science of sense-making,
context and trustworthiness of AI systems.

10.1.2 Cybersecurity Technology Gaps for Advanced
Detection, Protection and Monitoring Solutions

Grid modernization has spurred the integration of distributed energy resources
(DER’s) and the electricity infrastructure that is increasingly digitized, networked,
automated and complex in its communications using multiple languages and proto-
cols between an increasing number of parties (Qi et al., 2016). Securing these critical
communications in transit, at rest and at the device level without sacrificing improve-
ment in forecasting, control and optimization of these assets is essential. Indeed, any
effective cybersecurity solution should not curtail advances in control and optimiza-
tion. Fig. 10.1 highlights how grid cyber defenders have responded to the cyber
threats posed to (DERs) with various cybersecurity solutions that try to segment and
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Fig. 10.1 Cyber-physical threat to distributed energy resources (DERs)

to provide “air gaps” for critical systems. However, these cybersecurity solutions
do not provide cyber resilience against sophisticated threat actors nor hybrid cyber-
physical events (e.g., extreme weather, insider threats, human error, supply chain
attacks on software, hardware, etc.) (Fig. 10.1).1

As a result, there are numerous cybersecurity gaps for the advanced detection,
protection and monitoring of energy delivery systems, networks and interconnected
energy delivery systems. These gaps could potentially be exploited to cause the
degradation of service and potential cascading failures to the power grid. However,
due to themany gaps existing in detection andmonitoring, it is difficult to quantify the
threat and risk. Increased monitoring and detection of electricity infrastructure may
give the perception that attacks to the grid are increasing when in fact this increase is
a measure of an improved cyber situation awareness. When an industry article and/or
publication suggests there is an increase in cyber-attacks on the grid, is that because
monitoring and detection technology have improved, or because threat groups are
increasingly targeting the grid? Currently, there is a major gap in the research and
data available to quantify these risks. This gap makes it difficult for energy utilities to
make strategic investments to buy down the risks to them that are greatest based on
the threat. Another major cybersecurity gap for advanced detection, protection and
monitoring is found with the increasing penetration of distributed energy resources
(DERs, Greenberg et al., 2018; also, see Utility Dive).2,3 Increased connectivity and

1 Qi et al. (2016).
2 https://www.utilitydive.com/news/security-and-distributed-resources-an-attacker-will-eventu
ally-get-in-s/565966/.
3 Greenberg et al. (2018).

https://www.utilitydive.com/news/security-and-distributed-resources-an-attacker-will-eventually-get-in-s/565966/
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the two-way communications of DERs with infrastructure associated with the bulk
power grid will require advanced threat monitoring and detection to address existing
and potential future cybersecurity gaps (Lee, 2013).4 Any holistic solution requires a
comprehensive approach of human and machine, or people, process and technology.
But many other gaps remain.

Policy Gaps—Currently the North American Electric Reliability Corporation
Critical Infrastructure Protection (NERC CIP) cybersecurity requirements have
increased defenses for critical systems found in the bulk grid. However, distribution
and grid-edge devices that are increasingly connected to bulk grid infrastructures are
vulnerable to sophisticated cyber-attacks.

Technology Gaps—The data and connectivity requirements needed to improve
grid edge and DER management—increased awareness, controls direct-level elec-
trical loads, manage capacity constraints and reverse power flows—has significantly
expanded the attack surfaces of our nation’s grid. For example, solar energy systems
grid-support functions can be manipulated to diminish reliability and damage elec-
tricity infrastructure. Securing photovoltaic (PV) system critical communications at
rest as well as in transit to aggregators (residential, utility, commercial), utilities and
other grid operators is increasingly challenging due to increased internet connectivity
and digitization (Johnson, 2017)5 as well as communication protocols that prioritize
interoperability but lack basic encryption and authentication mechanism (Onunkwo
et al., 2018).6

Together, current policies, processes and technologies prioritize interoperability
and connectivity but they do not provide the high fidelity cyber situational aware-
ness needed to detect cyber-physical anomalies to DERs. Even when monitoring is
available, determining the cause of the anomaly and localizing and neutralizing the
threat is a major gap in this space. Sophisticated adversaries can perturb systems to
instigate abnormal power flows; supply chain attacks can push updates to be behind
the metered systems to add or drop load in a way that could potentially cause a grid
level event; insider attacks can cause instabilities like sub-synchronous resonances,
and man in the middle attacks can amplify weak grid conditions, just to name a few.

10.1.3 Digital Ghost: A Next-Generation Response to Close
Critical Energy Infrastructure Gaps

In response, researchers at GE Global Research, in partnership with the U.S.
energy industry and the U.S. Department of Energy, have developed innova-
tive solutions to identify, mitigate and autonomously respond to evolving cyber
threats. This next-generation, cyber-physical anomaly detection solution combines
advances in machine learning (AI) to rapidly identify, protect, detect, respond and

4 Lee (2013).
5 Johnson (2017).
6 Onunkwo et al. (2018).
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recover from cyber-physical threats and vulnerabilities targeting operational tech-
nology (OT). If an adversary attacks, manipulates or compromises a critical energy
delivery system, GE’s Digital Ghost helps to detect anomalous behavior, locate
and neutralize the attack while maintaining the availability and integrity of crit-
ical operations. To realize this goal, Digital Ghost leverages machine learning of
digital twins (high-resolution models of OT/IT systems and networks) in order to:
Identify, detect and map critical systems, anomalies and associated vulnerabilities
and to quantify them; Localize, Isolate and Protect critical control systems and OT
(sensors/actuators/drives/controllers); andNeutralize to autonomouslyRespond and
Recover, mitigating advanced threats. The ability to review the control logic and to
autonomously maintain operations without losing the availability of critical systems
is a potential game changer to provide cyber-physical resilience, but many challenges
remain.

Cyber defense of critical infrastructure continues to evolve, but cyber adversaries
often have the upper hand as their offensive tools improve and the attack surface
available to them expands. Cyber challenges remain for policies, technology and
people (workforce and expertise). To change this equation, newparadigms and formal
methods as well as advances in threat mitigation technology need to be developed.
Even as cyber defense technology improves, workforce development, especially in
the area of OT cybersecurity, remains a major gap. The confidentiality, integrity and
availability triad that has defined cybersecurity in the last 20 years continues to be
pressured by the digital transformation underway that prioritizes interoperability,
connectivity and the move toward automation. As we digitize, automate and connect
systems in critical infrastructure to the internet, this also expands the cyber-physical
attack surface.

To improve the current state-of-the-art in grid cyber-defense requires moving
beyond the cybersecurity triad paradigm to cyber resilience, which assumes that we
can identify, detect, respond and recover to cyber threats and vulnerabilities in sub-
second times. Cyber resilience includes not only a hardened perimeter, but it also
neutralizes sophisticated attacks once they have been found.

Advances of innovative threat mitigation solutions help to move the industry
toward cyber resilience. However, the design and implementation of these advances,
such as machine learning algorithms, requires the distillation of large data sets to
be intelligently fused with operations. The form of the cyber-defense technology
needs to be complemented by a process function in a way that turns data into intel-
ligence. Through this information fusion, human–machine teams can increase both
their autonomy and effectiveness to evolve their defenses to be cyber resilience in
response to sophisticated evolving threats. The following provides an overview of the
design and deployment of the next-generationAI cyber-defense technology to detect,
localize and neutralize threats in amore effective and autonomousway. To realize this
goal requires the leveraging of the science of interdependence for autonomous
human–machine teams in a synergistic way to identify and overcome existing
gaps with people, process and technology explored further in Fig. 10.2.
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Fig. 10.2 Digital Ghost functionality diagram. The example is of a power generation plant. The
top portion in the figures depicts a complex system with sensors, controls and actuators. The
bottom left pane shows how the Digital Ghost is trained from off-line operational data and physics-
based models. The bottom right pane outlines the real-time algorithms providing detection and
neutralization functions

10.2 People, Process and Technology Applicability Gap
Analysis

This section examines the applicability of the existing cybersecurity technology
to address cyber defender needs for modern critical energy infrastructures, which
is going through its own digital transformation. Applicability and gap analysis is
explored through the opportunities and challenges related to human–machine team
or people as well as the process and technology.

10.2.1 Attack Detection

Attack Detection—Advanced threat detection starts with a comprehensive design.
Digital Ghost’s design phase started with scoping the target system and defining the
sub-systems that are of primary interest. Instead of a purely unsupervised approach
to develop the machine learning algorithms, we leveraged our deep domain knowl-
edge of the physics for the systems to establish a matrix of credible cyber-attacks,
naturally occurring faults and vulnerabilities in the system. The highest impact abnor-
malities (i.e., attacks/faults) are chosen for computer model simulations. The high-
fidelity Digital Twin models are exercised to define the system’s operating bound-
aries. Normal operating space is mapped out as well as attack/abnormal operating
spaces. The machine learning algorithm developed from these defined scenarios is
intended to differentiate between a naturally occurring system fault or a degradation
mode and a likely malicious cyber-attack scenario. Historical data obtained from
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the asset or plant is reviewed to establish the key system monitoring nodes. The
next step is to establish the decision boundary, called a decision manifold, between
the normal and attack/fault (abnormal) operating regions. Performance predictions
are then generated based on this optimal decision boundary. The optimal decision
boundary is also updated over time in the future as the system evolves via real-time
learning and adaptation algorithms. The next step is deploying the detection algo-
rithms on a computer platform connected to the targeted system. Once deployed, the
detection algorithm performance is reviewed and continuously monitored.

Technology Gaps—The following four are the areas in technology gaps that
need to be closed: (i) Unlike IT solutions which are easy to enumerate and inven-
tory by scanning, operational technology includes a diverse attack surface that is
often connected through both internet protocol (IP), serial and other connections. (ii)
Proprietary protocols are often vulnerable by design as vendors prioritize function-
ality, ease of use and cost over security. (iii) Firewalls, network and host intrusion
detection systems are limited to defending against malicious signatures, but they
are not in their libraries of attack signatures. Thus, a brute force, polymorphic, AI-
generated or insider attack will be very difficult to detect. Zero-day exploits targeting
operational technology are very difficult to block with most existing attack detection
solutions that are designed for IT. (iv) And resource-intensive tuning can be required
for AI defense critical solutions to be integrated into existing technology stacks for
security information and event management (SIEM).

Process and Policy Gaps: As AI solutions improve attack detections it will
increase the speed, size and fidelity of logging critical machine state integrity as well
as other network and system outputs. Thus, monitoring policies and process updates
need to intelligently distill and fuse these findings for this data to create actionable
cyber intelligence. Often, grid cyber defenders have policies and processes in place to
monitor and log their critical cyber assets as defined by the NERCCIP requirements;
however, they often times do not read these logs. Moreover, additional networks or
systems that are connected to these critical cyber assets can provide an attack pathway
if they are not secured.

People Gaps: Machine learning algorithms that have high-false positive rates
create prohibitive operations and maintenance requirements for security teams.
Cybersecurity teams have been traditionally IT-focused; however, the convergence
of IT/OT in critical infrastructures has increased the responsibilities and created
newworkforce development challenges for them. Some innovative new tools require
training, but adding another tool creates information fusion challenges. Finally, AI
solutions that are tuned and learn what is normal on networks and systems that
are already infected may be providing a false sense of security to their operators.
Advances in invariant learning and humble AI explored in this chapter highlight how
researchers are overcoming these gaps.
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10.2.2 Attack Localization

This phase develops a software algorithm that localizes the attack to a specific system
function. Attack dependency tests are conducted to further separate the attacks into
independent or dependent attacks. Local decision manifold boundaries are created
for each monitoring node using data sets by running various attack scenarios with the
high-fidelity Digital Twin models mentioned previously. The system post-processes
the localized attack and determines whether the detected attack is an independent
attack or an artifact of a previous attack through propagation of the effects in the
closed-loop feedback control system. This feedback provides additional information
and insight and is useful when multiple attacks are detected. The same approach is
practiced for localization when naturally occurring faults are detected.

Technology Gaps: For critical OT assets and systems, the sub-second time
requirements for effective detection and localization are a major gap for most cyber-
defense solutions. Moreover, there is a lack of real-time detection and localization
solutions to respond to cyber-attacks. Visibility of the data and the probable fault
or attack is limited across the energy value chain. Advances in supervisory control
and data acquisition as well as energy management and distribution management
systems have increased fidelity and control of the data. Similarly, advances in active
scanning and interrogating/communicating with an OT in its native protocol has
increased visibility. However, many gaps remain and have created prohibitive local-
ization response times. The speed of response for malware and infiltration mitigation
to an attack is a critical gap that needs to be met to maintain reliable, safe and secure
plant operations. Finally, critical OT is difficult to monitor, especially in converged
IT/OT environments that combine various cyber and physical legacy and modern
system protocols.

Process and Policy Gaps: Current processes focus on localizing faults, safety
and reliability issues. Cybersecurity is often an afterthought. Systems engineering
approaches in practice are often reduced to adages, such as “if it’s not broken, don’t fix
it.”Or even the colloquialKISSexpression—“keep it stupid simple.”As a result,most
policies focus on how to localize and respond to sensor or actuator faults; component
level faults; system level faults that could cause a loss of power or degradation in
output; but not how to localize a cyber-attack. There is a real risk that adversaries
could imbed themselves onto a critical system, establish a stealth command and
control channel, and potentially carry out an attack undetected at a later date.

Human Resource Gaps: Locating a fault in a complex system like a power plant
is no trivial task. In addition, the resource gaps noted for detection and localization
have similar and related issues related to localizing an actual system that faulted; this
problem is especially true during a transient event or when there is a highly variable
stochastic load, events that create a lot of noise and that challenge human operators’
ability to localize the problem. Moreover, sensor or actuator faults, component level
faults, system level faults, and cyber-attacks may all produce similar effects in a
system (i.e., the loss of power or degradation in output).
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10.2.3 Attack Neutralization

Advancing from cybersecurity to cyber resilience requires improvements in neutral-
ization and the ability to recover and endure all hazards, ranging from sophisticated
cyber-attacks to naturally occurring events. Neutralization also requires the ability
to remove the effects of attacks on the monitoring nodes so that the system can
continue to function even in the presence of attacks. It uses the observability provided
by the deemed trusted nodes (non-attacked nodes) in its calculations. It will enable
true operational signals to be provided to the control system on a continuous basis
while informing the operator when attacks are detected.7 If an attacked node lacks
observability, then the error in its replacement estimate may be unacceptably large,
preventing continued operation.

Further research into how to autonomously identify critical nodes with poor
observability is required to advance secure communication application methods for
critical OT. Since neutralization cyber solutions will interact directly with the critical
control loops of an operating asset, additional research focused on control stability
is needed. Operators must be able to trust that the combined system (Digital Ghost,
controller and asset) will behave with stable operations. Operating regions may exist
where stability cannot be guaranteed, e.g., outside of the boundaries used for training.
The asset’s allowable operations must be limited, and research into autonomously
identifying these restricted regions is required.

Technology Gaps: For critical OT assets and systems, there are sub-second
time requirements for effective communications. Sub-second time requirements are
demanded by the dynamics of the system. For many of the critical assets we want
to be monitored with Digital Ghost, we need to be able to attack the nodes esti-
mated via the neutralization module at the timescales required by the dynamics of
the system. Cyber resilience requires the ability to both detect and localize rapidly
to effectively and accurately neutralize an attack or anomaly. Sophisticated cyber-
attacks, zero-day exploits, hybrid cyber-physical attacks, insider threats to name a
few, create challenges in neutralization. Control systems are designed with function-
ality, ease of use, safety, cost and connectivity in mind, but not security. This gap
creates additional challenges related to neutralization. The TRISIS cyber exploit was
exemplary of these design vulnerabilities where a safety instrumented control system
was exploited in a sophisticated attack on operational technology.

Process and Policy Gaps: Three areas are noted: (i) Today, cyber-security poli-
cies for critical energy infrastructures often prioritize the availability and integrity
of critical systems; however, most current solutions only identify threats and
vulnerabilities, relying on manual response; (ii) Manual responses create resources
and response-time challenges that are prohibitive; and (iii) Existing tools lack
prioritization and create prohibitive resource requirements with false positives.

People Gaps: (i) Lastly, trust between Digital Ghost’s neutralization algorithm
and the operator must be established. During a cyber-attack, the operator must be
presented with clear, concise and understandable information to quickly ascertain

7 John et al. (2020).
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the context and impact to the operations of the machine protected by Digital Ghost.
Neutralization leverages concepts from AI/ML, while operators and control engi-
neers often prefer “deterministic” algorithms governing control logic. Research
into the more effective autonomous system–human operations is required for
neutralization to be an accepted mitigation approach.

10.2.4 Man Versus Machine Anomaly Forecasting
and Detection

Anomaly forecasts enable the early detection of stealthy attacks which could other-
wise remain in an asset for days or months without being caught. It also enables
the early engagement of the system’s operator or the automatic accommodation in a
cyber incident. Furthermore, the anomaly forecast system can predict future system
failures/malfunctions and can be used as a tool for predictive health monitoring and
prognostics. Once the security of a system is compromised, the adversarial impact
will propagate through the system until it gets detected by the attack detection mech-
anisms. However, by the time that those mechanisms have detected an attack, the
damage may have already been done, with an impact too large to be accommodated.
These advances provide an early warning capability to attack detection so that a secu-
rity breach is detected and alarmed at an early stage both for an operator’s response
and for an attack accommodation by the system.

The outputs of prediction models in different timescales (also known as the future
values of the features) are compared with the corresponding decision boundaries for
anomaly forecasting. While comparing the feature vectors to the decision boundary,
the estimated time to cross the decision boundary will provide information for a
future anomaly. If a future anomaly is detected, an early warning is generated in
the operator’s display with the anticipated time to reach an anomalous state, and
a message is sent to the automatic accommodation system for its potential early
engagement.

10.3 Digital Ghost Research Findings and Future Research

10.3.1 Invariant Learning

Measuring both anomalies and invariances in deep networks for a complex system-
of-systems like the power grid is not an easy task. For one, the increased penetration
of stochastic and intermittent distributed energy resources further complicates the
essential pattern recognition tasks to be able to flag anomalies and variances. Recent
research shows advances in training deep architectures in a supervised manner to
be invariant to the multiple confounding properties and input transformations found
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in electricity infrastructures (Goodfellow et al., 2009).8 Future research examining
how to enhance invariant machine learning to improve the cyber-attack detection
and accommodation (ADA) accuracy of the Digital Twin models that identify and
protect against cyber-physical attacks on critical energy systems and infrastructures
is essential.

Modeling a complex system-of-systems for an electricity infrastructure is chal-
lenging due to the number of issues from bias offsets between the actual values of the
key nodes beingmonitored and those found in simulations to be “noise” in the system.
What appears as an anomaly could be caused by human error, computational error,
a naturally occurring weather and ambient event, an increase in supply and demand,
a cyber-attack, or a hybrid cyber-physical event. Moreover, adversaries could poten-
tially exploit continuous machine learning biases with the next-generation machine
learning attacks that slowly bias key nodes such that the continuous system “learns”
this incorrect behavior and treats it as normal. To overcome these challenges, the
next-generation, cyber-resilient, invariant-learning algorithms need to be improved
to advance physical detection and mitigate risk from sophisticated AI attacks. More-
over, for these innovative technology solutions to be successfully transitioned to
the energy sector will require alerts of cyber events that are clearly displayed to the
cyber defenders of a grid especially when they are already distractedwithmany tools,
screens and the day-to-day challenges of keeping the grid reliable and balanced.

These findings point toward the need to employ continuous learning to modify
the algorithms and/or decision manifolds based upon actual field data. Allowing
flexibility for the algorithms to be modified or adjusted based upon actual field data
could help to alleviate model mismatches. However, continuous learning could also
create a potential new cyber-attack surface where an attacker slowly biases key nodes
so that the continuous system again “learns” this incorrect behavior and treats it as
normal. Advances in invariant learning are needed to mitigate this manipulation of
continuous learning algorithms.

10.3.2 Autonomous Defense: Critical Sensors Identification
and Trust

Self-healing complex system-of-systems are the holy grail of cybersecurity research
and development. Conference organizers highlight the many challenges that affect
“the design, performance, networks operating autonomous human–machine teams”
(Lawless et al., 2020).9 Research findings from testing Digital Ghost’s neutraliza-
tion algorithms suggest that these challenges increase when human teams lack the
observability and context for a complex transient system such as a gas turbine. This

8 Goodfellow et al. (2009).
9 Lawless et al. (2020).
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gap suggests that advances in autonomous cyber defenses must prioritize the observ-
ability of remaining non-attacked sensors to calculate an estimate that would work
in closed-loop control.

Future research on the science of interdependence for autonomous human–
machine teams combined with advances in control theory methods may help to
improve the ability of machine learning algorithms to decide which sensors have
poor observability before moving to deployment. In a complex, transient system-
of-systems, there is a need to improve the observability and trustworthiness of crit-
ical energy delivery sensors to autonomously protect, detect, recover and neutralize
cyber-physical threats. In absence of these capabilities, that near-terms opportu-
nities to improve the state-of-the-art for neutralization, including determining the
sensors that lack observability for neutralization, are needed to create an alert for
human operators; this alert would signal the inability for neutralization to provide
corrective action if one of these nodes were attacked. Applying advanced encryption
and authentication mechanisms for these sensors via trusted platform modules and
other solutions is also ripe for future research and exploration. This achievement
would help the information security community to better understand how to improve
control theory methods that combine with human–machine teams so that machine
learning algorithms can empower cyber defenders to better determine the integrity
and trustworthiness of critical sensors.

10.3.3 Humble AI

Humble AI is making valuable advances in marrying man and machine, answering
such questions as: How can the algorithms alert the operator of a potential decrease
in accuracy or confidence in its threat classification results? How can the ML/AI
methods recognize they are being asked to extrapolate into previously unseen oper-
ating regions?What is the proper response if this extrapolation happens? If so, should
DigitalGhost or other advancedAI cyber-defense halt operations?Or does the system
continue but express reduced confidence in its results? The next-generationAI-cyber-
physical anomaly detection and neutralization requires the continuous improvement
of ML/AI methods that are agile, adaptable and evolve for complex, nonlinear and
changing threats. R&D findings from the Digital Ghost algorithms that are trained
off-line to create the various decision manifolds for both local and global detec-
tion need to be able to adapt to the field operating conditions of all hazards—cyber,
physical, naturally occurring—as critical energy delivery systems move away from
training and into regions not simulated previously. In the field, if operating condi-
tions move away from training and extend into regions not previously simulated, it is
essential that the algorithms recognize this fact and alert the operator of a potential
decrease in accuracy or confidence in the classification results.
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10.3.4 Explainable AI (XAI)

Explainable AI or XAI is the ability of AI-based machines to explain the reasoning
underlying their decisions in a way that is understandable to humans. Many chal-
lenging questions and/or gaps remain, such as: how do we develop intuitive, trust-
worthy explanations of how and why our AI algorithms arrive at decisions? How
do we do this in a way that is easy to interpret, visualize and use to empower
human–machine teams?

How do we trust the black-box nature of deep neural networks? That is, numerous
parameters in deep neural networks (DNNs) add complexity that is hard to interpret
and explain. As a result, algorithms and models can learn and misinterpret represen-
tations from the data differently than humans. This creates issues with trust, ethics
and biases.

Answering these questions will help to improve the state-of-the-art of (AI/ML)
algorithms with a focus on advancing XAI physics-based anomaly detection in
complex systems.

If successful, human–machine teams will be able to both trust and understand
how the ML/AI algorithms arrive at their solutions. This collaboration can be done
through advanced human–machine interfaces containing easy-to-understand visu-
alization techniques. This result is essential for machines to be trusted in making
autonomous/semi-autonomous decisions, especially for kinetic platforms that are
increasingly autonomous as well as for safety and other mission-critical applications
that determine diagnostics and cyber-physical security.

Advances in AI require both human operators and machines to understand and
trust how theML/AI algorithms are arriving, or are unable to arrive, at their solutions
via human–machine interfaces and intuitive visualizations.

Machine-learning-based approaches of anomaly detection often result in a clas-
sification decision along with an anomaly score. However, the contribution, ranking
and significance of each of the input variables/features, the causality directions, the
effect of the size of the training data set and the reasoning path in the algorithm
leading to a particular decision are often obscure. An example of this is shown in
Fig. 10.3, where several signal traces are presented as well as features used as inputs
for an AI/ML-based, anomaly-classification system, i.e., Digital Ghost. These traces

Fig. 10.3 Sensor signal
traces and features captured
during GE’s recent
cybersecurity demonstration
using an operating
heavy-duty gas turbine. The
red line indicates the time at
which synthetic cyber-attack
was injected
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were captured on GE Power’s test facility during a demonstration wherein sophisti-
cated synthetic cyberattacks were injected into a critical network of an operating gas
turbine, and Digital Ghost correctly detected and identified the impacted gas-turbine
sensors. While novel in improving the applied science of AI cyber-physical anomaly
detection, it has proved difficult to explain to human operators how the complex
algorithms arrived at the correct inferences (attack and attacked node) in a manner
that an operator can understand, trust and then act upon.

Future research on explainable XAI will advance AI/ML capabilities without
reducing the fidelity and accuracy of the detection, localization and neutraliza-
tion capabilities. It is essential that Digital Ghost’s next-generation cyber-physical,
anomaly-detection and neutralization algorithms reduce their technical complexity
and that they are intuitive to grid operators and cyber defenders. This explanation
creates a number of human and cyber-physical integration challenges that could be
exploredwith future research on howbest to integrate humans andmachines. Lessons
learned from (DG) research have helped to develop complex algorithms, some of
which are constructed using machine learning and AI techniques. Future operators,
however, may still be skeptical because of the complexity and non-intuitiveness
contained within the highly nonlinear algorithms of Digital Ghost.

10.4 Conclusion

Grid modernization has been accompanied by a digital transformation that has
increasingly digitized, networked and automated the energy value chain. Today’s
smart grid is increasingly two-way, agile and flexible in incorporating distributed
energy resources that have helped transition to a lower-carbon economy. Research
in this chapter highlighted how this digital transformation must marry man and
machine. Similarly, research findings also suggest that human–machine teams can
be empowered but also blindsided by AI by being given a false sense of security.
The “smart” grid has increased connectivity and created new cyber-physical security
challenges in securing an array of vulnerable energy delivery systems and associ-
ated operational technology. As a manufacturer of a large percentage of the world’s
power systems, GE has been integral to grid modernization and has unique insight
as well as a responsibility to ensure more holistic cyber resilient policies, processes
and technology.

Realizing this goal is imperative as the U.S. electricity infrastructure will require
a holistic approach of people, policies and technology. Research findings suggest
the successful adoption of next-generation technology, such as the AI algorithms
found in Digital Ghost. Findings also suggest that innovation should not happen
with humans out-of-the-loop. The form of the technology R&D must compliment
the function and independencies of the team in order to empower the cyber defenders
of our nation’s power grid. This result is especially true as sophisticated cyber adver-
saries are increasingly deploying technology such as AI combined with stealthy
tactics and techniques to attack critical energy infrastructures. Defenders of these
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modern infrastructures need to better understand how to combine innovative tech-
nology in a way that empowers their teams to respond to a complex, nonlinear
and rapidly evolving cyber threat. Novel technology advances combining domain
expertise in physics and next-generation AI solutions will only be successful if
humans are empowered in the loop, not disintermediated from the loop. This is
especially true when defending against the diverse, complex, nonlinear and rapidly
evolving threats of human adversaries executing sophisticated cyber-physical attacks
on critical infrastructures.

If the first cybersecurity paradigm was focused on keeping adversaries out,
building firewalls and digital moats, the next evolution must move us toward
resiliencewith amore holistic approachwheremachine learning and other innovative
technology empowers teams and where policies protect humans from themselves.
Ironically, in this paradigm, humans are empowered and no longer the weakest link
in the chain, but the supervisory layer that provides integrity.
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Chapter 11
A Fractional Brownian Motion Approach
to Psychological and Team Diffusion
Problems

Ira S. Moskowitz, Noelle L. Brown, and Zvi Goldstein

Abstract In this chapter we discuss drift diffusion and extensions to fractional
Brownian motion. We include some Artificial Intelligence (AI) motivated issues in
fractional Brownian motion. We also discuss how fractional Brownian motion may
be used as a metric for interdependence in Team science.
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11.1 Introduction

In this chapter, we discuss Ratcliff diffusion and extensions to fractional Brownian
motion. We include some Artificial Intelligence (AI) motivated issues in fractional
Brownian motion. We also discuss how fractional Brownian motion may be used as
a metric for interdependence in Team science.

We start with a thorough review of Ratcliff’s drift diffusionmodel (Ratcliff, 1978)
with many of the mathematical subtleties filled in. This will enable us to precisely
extend the model to fractional Brownian motion in the later parts of the chapter. We
then discuss some of these issues we have with determining the Hurst exponent and
different machine learning (ML) techniques that we have used. We conclude with
future work which includes a new direction for the concept of interdependence in
Team science.

I. S. Moskowitz (B) · N. L. Brown
Information Management & Decision Architectures Branch, Code 5580, Naval Research
Laboratory, 4555 Overlook Ave., SW, Washington, DC 20375, USA
e-mail: ira.moskowitz@nrl.navy.mil

Z. Goldstein
Electrical Engineering Department, Columbia University, 500W 120th St #510, New York,
NY 10027, USA

© Springer Nature Switzerland AG 2021
W. F. Lawless et al. (eds.), Systems Engineering and Artificial Intelligence,
https://doi.org/10.1007/978-3-030-77283-3_11

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77283-3_11&domain=pdf
mailto:ira.moskowitz@nrl.navy.mil
https://doi.org/10.1007/978-3-030-77283-3_11


214 I. S. Moskowitz et al.

Ratcliff’s (Ratcliff, 1978) seminal chapter provided a precise mathematical model
for memory retrieval. The Ratcliff Diffusion Model (RDM) captures the quick (1–2
sec) reaction time (RT) of someone trying to retrieve a fact to make a binary decision.
There are two possible answers: correct and incorrect. These fast, binary decisions
are driven by a Brownian motion (BM) with usually non-zero drift. The drift rate is
assumed to be influenced by both systematic processes and random noise. The drift
rate models the accumulation of information toward one boundary. In this chapter for
simplicity we assume that the drift rate is fixed and not stochastic (Ratcliff, 1978).
Once a boundary is reached, the decision is terminated and a response is given.
The RDM statistically separates the decision process to uniquely allow for its broad
application and to avoid the limitations associatedwith task specificmodels (Ratcliff,
1978; Ratcliff et al., 2016; Ratcliff and Tuberlinckx, 2002; Voss et al., 2004).

The RDM estimates decision outcomes as an intricate exchange between the sep-
arate model parameters that map onto distinguishable cognitive processes. Specifi-
cally, the RDM estimates decision bias, response caution, information accumulation,
and response execution and coordination. Thus, one can determine the underlying
cognitive mechanisms that support decision-making through the application of the
model. Of course any conclusions that are drawn are only valid to the extent that the
model parameters actually measure the cognitive processes theorized (Arnold et al.,
2015; Lerche and Voss, 2018; Voss et al., 2004).

When there is no drift and the diffusion is 1, we have the simplest form of Brow-
nian motion, known as the Wiener process (WP) (Wiener, 1923). We review the
mathematics showing that the Wiener process is an infinitesimal generalization of a
random walk. The Brownian motion scenario that Ratcliff models has two absorb-
ing boundaries and thus is the infinitesimal version of the Gambler’s ruin problem
(Cox and Miller, 1990; Feller, 1968; Resnick, 2002) (which of course, is a random
walk with two absorbing boundaries). To paraphrase Ratcliff (Ratcliff, 1978)—the
analogy is made between a gambler winning or losing with a person recalling or not
recalling something during a memory probe.

We are interested in seeing what happens to these parameters and the associated
probabilities if instead of Brownianmotion, the underlying process is in fact themore
general fractional Brownian motion (fBM), of which BM is special case. The major
distinction is that BM is a Markov process, whereas fBM, except for the special case
of BM, is not. This has implications on howwe understand andmodel RT decisions in
humans. Of particular interest to us are the absorbing probabilities and probabilities
of the time to absorption.

An easy way to distinguish BM as a special case among fBM is via the Hurst
exponent H . We will define this later, but for now BM is fBMwith H = 1/2. We are
concerned with the geometric aspects of fBM and information we can glean from
the geometry. This comes about in determining H (Sanchez Granero et al., 2008;
Mandelbrot and Van Ness, 1968; Peng et al., 2012; Segovia et al., 2012), and in a
very different aspect by looking at associated Riemannian manifolds with respect to
power spectral densities (Peng et al., 2012).

As previously mentioned, the diffusion model stands out when compared to other
memory models because it is not task or domain specific. The model’s parameters
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provide separate estimates for the cognitive processes involved in making binary
decisions based on the speed of decisions and their correctness. The model has been
used to successfully account for performance on a variety of tasks, differentiate
clinical populations, and speak to individual differences in cognitive ability. More
recent work has used diffusion models to also explain value-based decision, social
choice , and consumer decisions (Ratcliff et al., 2016). The model has advanced our
understanding of the cognitive processes involved in decision-making and how they
are affected by the speed-accuracy trade-off. In other words, the diffusion model
allows us to predict how performance will change when people are forced to focus
on their accuracy or the speed of their decisions. This is valuable for applied settings
where the interest is on not only preventing errors but also in predictingwhen they are
likely to occur. Applying the findings from the past four decades with the diffusion
model may be used to create improved human-machine teams where the machines
can be designed to support humans under the conditions known to elicit errors (i.e.,
speeded responses, bias). However, it remains to be seen whether these findings hold
under operational settings and whether the model could benefit from an update to
the Hurst exponent to accommodate real-world application of the model.

11.2 RandomWalk

The Wiener process is an infinitesimal version of a random walk. A simple random
walk is where we have discrete-time values, say 0, 1, 2, …, the walker starts at
position 0, and the probability of flipping a 1 or −1 are equal at .5. The walker flips
a fair coin to obtain ±1. If it is 1 the walker moves to 1, if it is −1 the walker moves
to -1. The process is repeated at the new position at time 1, etc. Of course there
are variants of this such as the coin not being fair (a non-simple random walk), the
jumps not just being±1, etc. We are also restricting ourselves to the line. We present
a definition that is precise, but without too much machinery involved (we adapt the
presentation and definitions from (Feller, 1968; Charles, 1997)).

Comment: When the random variable is understood we use μ to signify the
expected value, σ 2 the variance, and its square root σ , the standard deviation. Some-
times we may express these terms as a function of the random variable in question,
or use the notation E or just state variance, etc.

Definition 11.1 Let {Xk}∞k=1 be a sequence of independent, identically distributed
random variables. For each positive integer n, we let Rn denote the sum X1 + X2 +
· · · + Xn, and set R0 = 0 The sequence Rn, n = 0, 1, . . . ,∞ is called a random
walk.

Note 11.1 We may extend the definition to an initialized random walk by letting
R0 �= 0.

Note 11.2 If the Xi are instead i.i.d. binary random variables Bi taking on the
values 1 with probability p, and -1 with probability q = 1 − p, we say that we have
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a simple random walk. We denote the random walk then with the notation Wn to be
clear. That is for a simple random walk

Wn = B1 + · · · + Bn .

If the Bi are Rademacher random variables, that is p = q = 1/2 we have a fair
simple random walk.

Note 11.3 If we have a random walk with the Xi = N (μ, σ 2) we say we have a

Gaussian random walk and denote it as Gn or G
μ,σ 2

n . If Xi = N (0, 1) we say it is
a standard Gaussian random walk as denote it as G0,1

n .

A random walk has three important properties.

(1) Markov Property: P(Rn = rn|Rn−1 = rn−1, Rn−2 = rn−2, . . . , R1 = r1,
R0 = 0) = P(Rn = rn|Rn−1 = rn−1) (that is up to regularity conditions we have
a discrete-time Markov chain).

(2) Stationary Increments: The distribution of the random variable Rt − Rs, t ≥ s,
only depends on t − s. This is equivalent to Rt − Rs, t ≥ s having the same
distribution as Rt−s .

(3) Independent Increments: For 0 ≤ t1 < t2 < · · · < tn the random variables Rt1 ,

Rt2 − Rt1 , . . . , Rtn − Rtn−1 are independent.

If μ(Xi ) = 0, then we have the obvious additional property below:

(4) Martingale Property: E(Rn+1|Rn) = Rn . (Since a random walk has the Markov
property we only need to condition one step back, instead of all the way back).

Note a martingale can be a discrete or continuous stochastic process (norms of
the random variable have finite expectation for all t) such that the expectation of
the random variable at t , conditioned on the random variable up to s is the random
variable at s.

Now we will develop some statistics for the simple random walk Wn . For a sim-
ple random walk μ(Bi ) = p − q. Since expectation is a linear operator on random
variables we have that

E(WN ) = Nμ(Bi ) = N (p − q) . (11.1)

Thus, for a fair simple random walk, no matter what the (discrete) time is the
expected position is 0. Now we will compute the variance of WN .

E(B2
i ) = 12 · p + (−1)2 · q = 1

σ 2(Bi ) = E(B2
i ) − [E(Bi )]2 = 1 − (p − q)2 = (p + q)2 − (p − q)2 = 4pq

σ 2(WN ) = σ 2

(
N∑
i=1

Bi

)
=

N∑
i=1

σ 2(Bi ) = N · 4pq since the Bi are i.i.d, summarizing

μ(WN ) = (p − q)N and σ 2(WN ) = 4pqN . Thus the standard deviation is (11.2)
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Fig. 11.1 Two fair simple random walk sample paths with N = 100

Fig. 11.2 Two sample paths of a simple random walk with p = .7, N = 100

σ(WN ) = 2
√
pqN . (11.3)

Thus for a fair simple random walk the mean is 0, and the variance (maximal
among the simple random walks) is N . For a simple random walk in general the
points (at every n) tend to cluster around a line of slope p − q, however they spread
out in time. It makes sense for the variance to increase because as n increases, so do
the possible positions. In Fig. 11.1 we show two fair simple random walks, and in
Fig. 11.2 two simple random walks with p = .70.

InFig. 11.3we showa sample path for p = .4, N = 100where the inner red curves
are μ ± σ , the next level orange curves are μ ± 2σ , the green lines are μ ± σ 2, and
the brown lines are ±N .

Figure11.3 shows that we can easily apply the central limit theorem to the ran-
dom walk and expect the points to cluster around the mean, with the usual bell-like
behavior around the mean. Keep in mind that σ grows as

√
n not n.

Theorem 11.1 (Central Limit Theorem (Ross, 1988)).Let X1, X2, . . . be a sequence
of independent and identically distributed random variables each havingmeanμ and
variance σ 2

lim
n→∞

{
X1 + · · · Xn − nμ

σ
√
n

≤ a

}
= �(a), (11.4)
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Fig. 11.3 Two sample paths with p = .4, N = 500

where �(a) is the cumulative distribution function of the standard normal random
variableN (0, 1), whereN (a, b2) is a normal distribution with mean a and variance
b2.

Another equivalent of putting the above theorem is that

The random variable (X1 + · · · + Xn)
D−−−→

n→∞ N (
n · μ(Xi ), n · σ 2(Xi )

)
(for any i since they are identical)

(11.5)
since the random variable N (a,b2)−a

b = N (0, 1) and letting a = n · μ(Xi ), b2 = n ·
σ 2(Xi ).

But now recall that Wn = B1 + · · · Bn, μ(Bi ) = p − q, and σ 2(Bi ) = 4pq.
Therefore, by the central limit theorem

Theorem 11.2

Wn
D−−−→

n→∞ N (n(p − q), n · 4pq) = N (
μ(Wn), σ

2(Wn)
)

. (11.6)

Or equivalently
Wn − μ(Wn)

σ (Wn)

D−−−→
n→∞ N (0, 1) (11.7)

which is the phenomena illustrated in Fig.11.3.

This is not to say that the time series behaves like a normal distribution, rather for a
particular time n it behaves like a normal distribution, and more and more for each
n. Of course the central limit theorem does not tell us how quickly Wn converges to
a normal distribution. However, the Berry-Esseen theorem (Breiman, 1968, p. 184),
(Feller, 1968, V. 2, p.542) does

Theorem 11.3 (Berry-Esseen) If Zi are i.i.d. with zero mean and finite variance s2,
with E(|Zi |3) = ρ < ∞, then1

1 We can conservatively take C = 1 given the state of the art published and unpublished literature.
We refer the interested reader to the various search engines for the copious details.
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sup
x

∣∣∣∣P
(∑

Zi

s
√
n

< x

)
− �(x)

∣∣∣∣ ≤ C
E |Zi |3
s3.

√
n

(11.8)

Now using our Bi from before the beginning of the chapter that by choosing
Zi = Bi − E(Bi ), the Berry-Esseen theorem gives us

sup
x

∣∣∣∣P
(
Wn − n(p − q)

2
√
pqn

< x

)
− �(x)

∣∣∣∣ ≤ E |Zi |3
(4pq)3

√
n
, equivalently (11.9)

sup
x

∣∣∣∣P
(
Wn − μ(Wn)

σ (Wn)
< x

)
− �(x)

∣∣∣∣ ≤ E |Zi |3
(4pq)3

√
n
, which gives us (11.10)

sup
z

∣∣P (Wn < z) − P
(N (μ(Wn), σ

2(Wn)) < z
)∣∣ ≤ E |Zi |3

(4pq)3
√
n
. (11.11)

Since Zi = Bi − (p − q) we have that E(|Zi |3) = E(|Bi − (p − q)|3) ≤ 23, thus

sup
z

∣∣P (Wn < z) − P
(N (μ(Wn), σ

2(Wn)) < z
)∣∣ ≤ 1

(8pq)3
√
n
. (11.12)

Of course, for p near 0 or 1, we need a large n to keep the error small, however,
for p near 1/2 moderate values of n give us a very small error between Wn and
N (μ(Wn), σ

2(Wn)).
Thus, the above gives us the following note.

Note 11.4 For p near 1/2, the plot of Wn should lie between ±2σ approximately
95% of the time, and between ±3σ approximately 99% of the time.

There are many other interesting properties of the random walk, such as often
it returns to the mean, or how and when it hits a boundary. With the exception of
our above application of the Berry-Esseen theorem this is all easily found in the
literature. We now turn to the limiting case of a random walk and look at Brownian
motion.

Wiener process and Brownian motion. The generalized stochastic process that we
are interested in is Brownian motion. Brownian motion can have drift and diffusion.
If the drift is 0, and the diffusion 1, we say that we have standard Brownian motion,
we also can, and do, use the term Wiener process for standard Brownian motion.

For a Wiener process, instead of jumps of constant size, the jump sizes are drawn
from a normal random variable, and the jumps are instantaneous from one-time value
to the next. Of course, this is a mathematical nicety, and the simulations use very
small time increments instead. Of course a random walk can, up to the accuracy of
the random number generators, be accurately created.
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11.2.1 Wiener Process from the Fair Simple Random Walk

Consider a fair simple random walk in a set amount of total time T time units (see
(Breiman, 1968, 12.2)). We divide each time unit into increments of length δ, so
1/δ = n are the total amount of intervals in each time unit. We now perform the
random walk every increment instead of every time unit. We want things to “start
looking continuous” as δ gets small, but as long as the jumps are ±1 this will not
happen. Therefore, we need to change �x from ±1, there are many ways to do this,
but we set �x = √

δ. Given t there are �t/δ	 intervals of length δ plus an amount
ε, 0 ≤ ε < δ. We formalize this below.

Start with the Bi from a fair simple random walk then we adjust the jump sizes as
we make the time smaller and smaller. That is we have new random variables Xi as
follows. Each random variable B ′

i = ±�x = ±√
δ, i > 1 with equal probabilities

of 1/2. X0 = 0, that is B ′
i = √

δBi ). Therefore, at time t the position of the moving
particle is given by the random variable

St =
�t/δ	∑
i=1

B ′
i . (11.13)

Let us rewrite this using the fact that n = 1/δ, and keep in mind that St is also a
function of 1/δ, since the smaller 1/δ is the more terms that make up the sum St .

Sn(t) =
�nt	∑
i=1

B ′
i . (11.14)

Let us look at some interesting things first.

• As discussed �t/δ	 = �nt	 is an integer. However, δ · �nt	 + ε = t . But as n →
∞, δ · �nt	 → t

• Var(B ′
i ) = E(B

′2
i ) − (

E(B ′
i )

)2 = E(B
′2
i ) = .5 · (

√
δ)2 + .5 · (−√

δ)2 = δ

• E(Sn(t)) = �nt	 · E(B ′
i ) = 0

• Since the B ′
i are i.i.d we have Var(Sn(t)) = �nt	Var(B ′

i ) = �nt	 · δ → t as n
grows.

We know by the central limit theorem that for t = 1 that Sn(1) → N (0, 1) as
n → ∞, what is remarkable for each t there is also convergence, but toN (0, t). This
is not totally surprising since n → ∞ for each t . We will return to limn→∞ Sn(t)
after we define a Wiener Process. For now though, without all the mathematical
niceties, we state without proof (will return to this soon) that the stochastic process
L(t) := limn→∞ Sn(t) does in fact converge, and it converges to the yet to be defined
Wiener process. We will address this further in the next subsection. We note that
(Breiman, 1968, 12.2) goes through the above situation in some detail.

Before we move on to the formal definition of a Wiener process we note some
interesting properties (Pishro-Nik, 2014) of L(t):



11 A Fractional Brownian Motion Approach … 221

(1) Since each Xi is independent, for 0 ≤ t1 < t2 < t3 · · · < tm so are the random
variables L(t2) − L(t1), L(t3) − L(t2), . . . , L(tm) − L(tm−1). This tells us that
the stochastic process L(t) has independent increments.

(2) For any τ > 0 and t2 > t1 ≥ 0 the random variables L(t2) − L(t1) and L(t2 +
τ) − L(t1 + τ) have the same distribution. This means they have stationary
increments. This follows because of the sum construction of L(t), the τ drops out
of the variance calculations since only the difference matters since the means are
0, and the variance of the sum is the sumof the variances. In fact L(t + τ) − L(τ )

has the same distribution as L(t) − L(0) = L(t). Now, this itself is N (0, t) by
the central limit theorem, and similarly L(t2) − L(t1) = N (0, t2 − t1).

(3) If we take a sample path of W (t) we can, up to events of zero probability (if
total time t → ∞), view it as a continuous path. This is because the jumps are
no more than ±√

δ in its construction, and as n → ∞ the jumps get smaller and
smaller, therefore we can always satisfy the ε − δ definition of continuity. We
prove this later in the chapter.

So we have discussed that if we take a random walk with n increments per unit
time and Xi = ±1/

√
n then this process in the limit gives us a so-called Wiener

process. We discuss it in more detail below.

11.2.2 Wiener Process (standard Brownian Motion) Defined

Definition 11.2 We say that the stochastic processW (t), t ≥ 0 is a Wiener process
(Lalley and Mykland, 2013) if

(1) W0 = 0.
(2) With probability 1, the function t → Wt is continuous in t . (That is sample

paths are continuous with probability 1. This rules out 0 probability patholog-
ical occurrences such as the process being 1 on rational numbers, and -1 on
irrational. It is interesting that they are not differentiable though.)

(3) The stochastic process {Wt }, t ≥ 0 has stationary, independent increments.
(4) The increment Wt+s − Ws has the distribution of N (0, t). (Which tells us that

Wt has the distribution of N (0, t)).

This may not be the slickest definition but it is an easy to understand definition. Note
that stationary increments and independent increments are defined in the previous
subsection.

Wiener was the first to show that this process exists (and not just defined) in
(Wiener, 1923). Of course, others have worked on this after. Note that Donsker
(Donsker, 1951) showed an existence proof over a finite time interval [0, T ] using
the Sn(t) from above and (Doob, 1949).

Theorem 11.4 (Donsker (Doob, 1949, App.), (Donsker, 1951), (Donsker, 1952),
(Donsker’s Theorem, 2020), (Schondorf, 2019)) In Eq.11.13 above replace the Bi

with any i.i.d Mi with mean 0 and variance 1, then if we set
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D(t) :=
�nt	∑
i=1

√
δMi

then, as stochastic processes, D(t) weakly converges to W (t), t ∈ [0, T ].
Comment 1 An important take away from Donsker’s theorem, and one of physi-
cal significance, is that the random variables that we are summing have standard
deviation equal to the square root of the time increment. Of course, this makes their
variance equal to the time increment.

Wewill not discuss the convergence mentioned above. It suffices for us to take the
limit of the normalized fair simple random walk as the Wiener process, for details
see (Karatzas and Shreve, 2019, 2.4.A., Def. 4.3). Of course the above theorem
generalizes what we did with the fair simple randomwalk in the previous subsection.
That is Donsker’s theorem actually is more general than starting with the random
variables from a simple random walk. In fact Donsker’s theorem holds for D(t)
constructed by using the standard Gaussian random walk G0,1

n instead of the fair
simple randomwalk as above. In fact this is a better approximation since all the steps
are based on draws from a normal, which directly aligns with how the increments
should behave (since the sum of normal is normal) without appealing to central limit
theorem type results. This is what we use in the simulation below.

11.2.3 Simulation of the Wiener Process via G0,1
n

Since theWiener process is a continuous stochastic process any computer simulation
is an approximation, this is nothing new, but we stress the fact to distinguish it from
a random walk with very small time increments. In fact we could use the process
L(t) from the fair simple random walk, but we can do better by instead of using
fixed jumps of size δ we use draws from a normal random variable with variance δ.
This follows from the above comment to Donsker’s theorem by usingD(t) via G0,1

n .
Note that these type simulations rely on the fact that k · N (0, 1) = N (0, k2), so the
σ (k · N (0, 1)) = k, where σ is the standard deviation operator.

Let us examine how to perform the simulation.

(1) Decide on T, n, where n is the number of increments per unit time. Thus �t =
1/n and the standard deviation sd := √

�t . The smaller �t the more accurate
and of course the total number of increments nT increases.

(2) Each Xi is a draw from N (0, 1) .
(3) We add the sd · Xi .
(4) Plot.

As mentioned above this is a very good simulation since the sum of normals is
normal. Of course, the approximation is only accurate at the actual increment val-
ues, and the sum is constant on each increment. This is similar to the Riemann sum
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Fig. 11.4 Sample path of a simulatedWiener process with T=25, dt = �t = .01, thus having 2,500
total steps

approach to integration, the smaller the increment values, the better the approxima-
tion. Also, as stated beforewhat is somewhatwonderful is that this actually converges
to something, and what it converges to is the Wiener process!

Below is the R code for the simulation of aWiener process with total time T = 25,
and �t = .01. This of course gives us n = 100 increments per time step, with a total
of 2500 increments. An output is given in Fig. 11.4.

#http://phytools.org/eqg/Exercise_4.1/ T<-25 # time dt <- .01
#delta t

n <- 1/delt #increments per time unit
N <- n*T #total number of increments
t <- 0:N # total time increments
sig2 <- dt #for Wiener process, simple Brownian motion 0 drift , 1 diffusion

## first, simulate a set of random deviates dx <- 1*rnorm(n =
length(t) - 1, sd = sqrt(sig2)) ## now compute their cumulative sum
R <- c(0, cumsum(dx)) plot(t, R, type = "l", ylim = c(-2*sqrt(T),
2*sqrt(T)),xlab="Increment",main=bquote("total time T" == .(T)

˜", variance = delta t is"==.(dt)˜", n is"==.(n) )).

So our simulation that approximates W (t) is, as above:

W (t) ≈
� T

�t 	∑
i

�x =
� T

�t 	∑
i

N (0,�t).

In Fig. 11.5 we adjust the above code so that T = 100 and we plot 100 runs on
the same plot. We see that this nicely illustrates Note 4 in that most of the paths lie
within ±3σ = ±3

√
100 = ±30.

We note that the Wiener process, and Brownian motion, belong to a more gen-
eral type of stochastic processes called Gaussian processes. Note the random time-
weightedGaussian processG(t) = N (0, t) shares the propertywithW (t) that at time
t the process is N (0, t), but we can see from Fig. 11.6 that they are very different.

Please compare Fig. 11.6 with Fig. 11.4. Figure11.4 represents the limiting case
of a random walk, where the next step is a normal draw added onto the existing
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Fig. 11.5 Sample paths of 100 simulated Wiener processes, T=100, �t = .01, 10,000 total steps

Fig. 11.6 Sample path of the random time-weighted Gaussian process G(t) = N (0, t), T = 25,
�t = .01, 2500 total steps

position. Figure11.6 is a random draw from a time-weighted normal at each step not
caring what the present value is and is essentially time-weighted Gaussian noise.

11.2.4 Continuity of Sample Paths

By definition a Wiener process has continuous sample paths with probability 1.
However, we did not prove Donsker’s theorem but it is not too far a stretch to see
how it generalizes the central limit theorem and that in the limit the increments have
the correct behavior with respect to the normal distribution. What is not obvious is
that the limiting behavior of the scaled random walk should have continuous sample
paths (with probability 1).Wewish to address this without doing a proof of Donsker’s
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theorem. At first instead of using the rescaled normal distribution, we shall go back
to the original bi-valued rescaled random variable B ′

i and Eq.11.13. Recall that a
function is continuous iff the inverse image of an open set is an open set. For a
given t look at an ε-neighborhood, ε small, around St . Now consider t and a small
neighborhood U around t . Since we are in U there is a limit to how far S(t ′) can
be from S(t) since the jumps are limited by the sum of the values of B ′

i , thus by
making U small we can keep its image in the ε-neighborhood around S(t). If we
use rescaled G0,1

n instead of the rescaled Bi we can still have elements of U jump
out of the ε-neighborhood around S(t), but as the time increments get smaller and
smaller, the variance of the rescaled G0,1

n also gets smaller and smaller, with the net
result being that with high probability all the image points stay in the ε neighborhood
around S(t). This probability goes to 1, as the time increment goes to 0. This holds
no matter what the random variable is doing to all the theorems that abound about
random variables and their variances. Thus, we now have a feeling why Donsker’s
theorem gives us continuous (with probability 1) sample paths no matter what the
random variable is that we rescale (with mean 0 and initial variance 1).

11.2.5 Non-differentiability of Wiener Process Sample Paths

We just concern ourselveswith the actualWiener process and not any approximations
via Donsker’s theorem. We also point out that the non-differentiability is also a
probabilistic statement. It is possible, with probability 0, for a sample path to be a
straight line for instance. So the non-differentiability is a probabilistic statement that
depends on how a random variable behaves with respect to its variance. The proof
sketch we use follows (Dobrow, 2016, Sect. 8.3).

Let 0 < s, h then if the derivative of W (t) exists at s then the one sided limit
limh→0+ W (s+h)−W (s)

h must certainly exist. SinceW (t) is a Wiener process we know
that W (s + h) − W (s) = W (h) = N (0, h). Therefore,

lim
h→0+

W (s + h) − W (s)

h
= lim

h→0+

1

h
N (0, h) = lim

h→0+
N (0, h/h2) = lim

h→0+
N (0, 1/h).

But as h gets small the variance of N (0, 1/h) goes to ∞, so the values of N (0, 1/h)

jump between large magnitude positive and negative numbers (with larger and larger
probability), so there is no limit. Therefore, via proof by contradiction there is no
derivative (with probability 1) of the Wiener process.
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11.3 Brownian Motion

The Wiener process is modeled on N (0, 1), whereas Brownian motion is modeled
on N (μ, σ ). As stated earlier μ is considered to be the drift, and σ is the diffusion.
Let us define Brownian motion.

Definition 11.3 We say that the stochastic process B(t), t ≥ 0 is Brownian motion
if for real μ and σ > 0, and W(t) the Wiener process

B(t) = μt + σW(t) . (11.15)

We call μ the drift (coefficient) and σ the diffusion (coefficient).

Note 11.5 The diffusion is sometimes called scale, volatility (economics), or vari-
ance. Note whenwe use the termWiener processmany use the termBrownianmotion,
and when we use Brownian motion many use the term Brownian motion with drift.
We find this confusing and just view the Wiener process as Brownian motion with 0
drift and 0 diffusion. We also note that RDM (Ratcliff, 1978) allows stochastic drift,
which we ignore in this chapter.

Brownian motion has the same properties as a Wiener process except that the incre-
ment B(t + s) − B(t) has the distribution N (μs, σ 2s) instead of N (0, s) as for the
Wiener process.

In particular aBrownianmotionB(t)with driftμ anddiffusionσ has the properties
(Breiman, 1968, Def. 12.5, p. 250).

Theorem 11.5 The increments B(t + s) − B(t), t, s ≥ 0 are

(1) independent, and
(2) normally distributed with

E(B(t + s) − B(t)) = sμ, and Variance(B(t + s) − B(t)) = sσ 2 .

Definition 11.4 We say that we have a Brownian motion B(t) with starting point A
if the above is adjusted by an additive constant A. Keep in mind that B(0) = A.

B(t) = A + B(t) = A + μt + σW(t) . (11.16)

Thus, B(t) is the subclass ofB(t) with A = 0. We are not trying to be pedantic with
our definitions, rather we must be precise to avoid issues later. Also, as discussed
the exisiting literature is all over the place. Thus, if readers consult the literature we
want them to see how our notations and definitions fit into place.

We note that B(t) has the same increment properties as B(t) with one impor-
tant and obvious difference. As discussed above for 0 ≤ s, t it holds that B(t + s) −
B(t) has the distribution N (μs, σ 2s) , so B(s) − B(0) = B(s) has the distribution
N (μs, σ 2s) . However, for 0 < s, t we have that B(t + s) − B(t) has the distribu-
tion N (μs, σ 2s), but B(s) has the distribution of A + B(s) = A + N (μs, σ 2 s) =
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N (A + μs, σ 2 s). That is there is nothing deep about B(t) it is simply Brownian
motion with the origin shifted to A.

11.3.1 Simulation of Brownian Motion

This is very similar to what we did for theWiener processW (t), except σ is no longer
1, and there is a drift term. In terms of the Itô calculus Brownian motion satisfies
(Breiman, 1968, p. 390)

dB = μ dt + σ dW , which has the infinitesimal solution

B(dt) = μ dt + N (0, σ 2dt) (that is the standard deviation in the later term is σ
√
dt)

#http://phytools.org/eqg/Exercise_4.1/ #
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/Normal
# http://www.columbia.edu/˜ks20/4404-Sigman/4404-Notes-sim-BM.pdf
difcof<- 3 #this is the diffusion (coefficient) that corresponds
to $\sigma$ mu <- 2 T<-25 # time dt <- .01 #delta t

n <- 1/delt #increments per time unit
N <- n*T #total number of increments
t <- 0:N # total time increments

# sig2 <- dt #for Wiener process, simple Brownian motion 0 drift , 1 diffusion
## first, simulate a set of random deviates
dx <- 1*rnorm(n = length(t) - 1,mean = mu*dt,
sd = difcof*sqrt(dt))
## now compute
their cumulative sum B <- c(0, cumsum(dx)) plot(t, B, type = "l",
ylim = c(-mu*T-2*difcof*sqrt(T),
mu*T+2*difcof*sqrt(T)),xlab="Increment",main=bquote("total time T"
== .(T)

˜", diffusion"==.(difcof)˜", var. = (difcofˆ2)*delta t "==.
(difcof*difcof*dt)˜",drift"==.(mu)˜",n"==.(n) )).

Fig. 11.7 Sample path of a simulated Brownian with T=25, dt = �t = .01, μ = 2, σ = 3, thus
having 2,500 total steps
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Fig. 11.8 Sample paths of a simulated Brownian with T=25, dt = �t = .01, μ = 2, σ = 9, thus
having 2,500 total steps

Fig. 11.9 Brownian motion
starting at Z with absorbing
boundaries at A (top) and 0
(bottom)

0

Z

A

0 τ

Now we increase the diffusion from 3 (Fig. 11.7) to 9 (Fig. 11.8), increase the
vertical scale, and we can see that the Brownian motion now has more “volatility.”
(Of course these are cherry picked sample paths, but they capture the flavor of what
is going on.) We invite the interested reader to generate their own sample paths to
get a feel for Brownian motion with different drift and diffusion coefficients (Fig.
11.8).

11.4 Stopping Times and Absorbing Boundaries

The analysis of this is very complex and involves solving partial differential equa-
tions. So we will reference a lot of the results, but let the reader understand what
is going on. The important result of Ratcliff (Ratcliff, 1978, Eq. A12), (Voss and
Voss, 2008, Eq.2) was developed by following Feller’s work (Feller, 1968, Vol. 1,
Ch. XIV, Eq.6.15) (Cox and Miller, 1990, Sect. 5.17), which is not fully rigorous.
Without starting ab initio we must make approximations or else we will be redoing
the calculus of continuous state-space Markov processes, which is why we follow
Ratcliff. We note that Einstein (Einstein, 1905) put Brownian motion on a firm foun-
dation by developing a diffusion equation and emphasized the existence of the atom,
before the Bohr model (Bohr, 1913).
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Ratcliff and colleagues (Ratcliff, 1978; Ratcliff and Tuberlinckx, 2002; Ratcliff
et al., 2016; Voss et al., 2004; Voss and Voss, 2008) use Brownian motion with
a starting point with various parameters. In particular stopping times (first hitting,
first passage times) are used to learn and evaluate the choice of parameter sets. As
noted, many chapters have been written about these types of diffusion models. Our
approach is different, we question the hypothesis that the models are based solely on
Brownian motion, we wish to extend the models to fractional Brownian motion. We
will discuss this more later. First though we wish to look at stopping times.

Ratcliff drift diffusion uses a model of Brownian motion with a starting point
and two absorbing boundaries. The mathematics behind this model is actually quite
difficult. So in this chapter instead of using the two boundary model we look at a
simpler model with only one absorbing boundary. Of course, this cannot be used for
Ratcliff drift diffusion, but it can be used to discuss the difference between using
Brownian motion and fractional Brownian motion.

In Ratcliff diffusion we are concerned with two absorbing boundaries (See Fig.
11.9). Let us state the problem.

In what follows we note that the correct way to do things is to use the fact that the
probability density function (with respect to x) p(x; t) at time t of Brownian motion
satisfies certain partial differential equations (PDE). TheWiener process satisfies the
simplest PDE, the diffusion (or heat equation) with the diffusion constant set equal
to 1/2.

∂p

∂t
= 1

2

∂2 p

∂x2
.

The Wiener process has μ = 0 and σ = 1. For the more complicated Brownian
motion we have the Fokker-Planck (Kolomogorov) equation (Cox and Miller, 1990,
Sect. 5.6).

∂p

∂t
= 1

2
σ 2 ∂2 p

∂x2
− μ

∂p

∂x

Note that Fokker-Plank equation reduces to the diffusion equation for the Wiener
process.

The stopping time problems can be solved by using the Fokker-Plank equations.
We will not do that since it is complicated and in the existing literature. We will
present a heuristic solution below for a special case.

11.4.1 Two Absorbing Boundaries—The Situation for
Ratcliff Drift Diffusion

We use the notation BZ
μ,σ (t) (abbreviated B(t) when the meaning is clear) for Brow-

nian motion with drift μ, diffusion σ and starting point Z . There are two boundaries
0 and A. We start at time 0, as soon as the Brownian motion hits either 0 or A, the
process ends. We call the time that it stops τ the stopping or first passage time, thus
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τ = inf{t |BZ
μ,σ (t) = 0} ∧ inf{t |BZ

μ,σ (t) = A}.

The finite version of this is obtained via Gambler’s ruin problem. In the limit the
difference equation for Gambler’s ruin problem and its solution turn into the Fokker-
Plank equation and its solution, respectively.

The stopping time τ is probabilistic and given by the random variable τ . Also the
boundary that the Brownian motion is absorbed into (hits first) is also probabilistic
and given by ∂̄ , where ∂̄ = 0 or A. Since the Brownian motion cannot hit 0 and A
for the first time together we have that

PZ (τ < t) = PZ (τ < t, ∂̄ = 0) + PZ (τ < t, ∂̄ = A). (11.17)

The density function for τ is

gZ (t) := d

dt
PZ (τ < t). (11.18)

Note that PZ (τ < t, ∂̄ = 0) and PZ (τ < t, ∂̄ = A) are not probability distributions.
Ratcliff discussed this in (Ratcliff, 1978, App.), in fact some authors use the term
deficit distributions. The next step are the deficit densities gZ (t, ∂̄ = 0) and gZ (t, ∂̄ =
A), where

gZ (t, ∂̄ = 0) := d

dt
PZ (τ < t, ∂̄ = 0). (11.19)

gZ (t, ∂̄ = A) := d

dt
PZ (τ < t, ∂̄ = A), thus (11.20)

gZ (t) = gZ (t, ∂̄ = 0) + gZ (t, ∂̄ = A). (11.21)

It is heuristically shown in Feller (1968, V. 1, Eq.6.15, p. 359) (see also (Fürth,
1917)), and solved via a separation of variables approach in Cox and Miller (1990,
p. 222) that

gZ (t, ∂̄ = 0) = πσ 2

A2
e
−

(
Zμ

σ2

) ∞∑
k=1

k sin

(
π Zk

A

)
e
− 1

2

[
( μ

σ )
2+( πkσ

A )
2
]
t.

(11.22)

Now, from the above we can derive g+(t, Z) by changing μ to −μ and changing Z
to Z − A (see (Navarro and Fuss, 2009)) which results in

gZ (t, ∂̄ = A) = πσ 2

A2
e
(

(A−Z)μ

σ2

) ∞∑
k=1

k sin

(
π(A − Z)k

A

)
e
− 1

2

[
( μ

σ )
2+( πkσ

A )
2
]
t
. Thus

(11.23)
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gZ (t) = πσ 2

A2
e
−

(
Zμ

σ2

) ∞∑
k=1

k sin

(
π Zk

A

)
e
− 1

2

[
( μ

σ )
2+( πkσ

A )
2
]
t + πσ 2

A2
e
(

(A−Z)μ

σ2

)

·
∞∑
k=1

k sin

(
π(A − Z)k

A

)
e
− 1

2

[
( μ

σ )
2+( πkσ

A )
2
]
t.

(11.24)

Ratcliff (1978) notes that the distribution functions are better to work with than
the density functions, we obtain those by integrating.

From above we have that (x ≥ 0) PZ (τ < t, ∂̄ = 0) = ∫ t
0 gZ (x, ∂̄ = 0) dx and

PZ (τ < t, ∂̄ = A) = ∫ t
0 gZ (x, ∂̄ = 0) dx . Putting this all together (and using the

fact that terms converge properly) we have

PZ (τ < t) = πσ 2

A2 e
−

(
Zμ

σ2

)
∞∑
k=1

⎡
⎢⎢⎢⎣k sin

(
π Zk

A

)
∫

t

0

e
− 1

2

[
( μ

σ )
2+

(
πkσ
A

)2]
x
dx

⎤
⎥⎥⎥⎦

+ πσ 2

A2 e

(
(A−Z)μ

σ2

)
∞∑
k=1

⎡
⎢⎢⎢⎣k sin

(
π(A − Z)k

A

)
∫

t

0

e
− 1

2

[
( μ

σ )
2+

(
πkσ
A

)2]
x
dx

⎤
⎥⎥⎥⎦ . Thus (11.25)

PZ (τ < t) = πσ2

A2
e
−

(
Zμ

σ2

) ∞∑
k=1

⎡
⎢⎢⎢⎢⎢⎢⎣
2k sin

(
π Zk
A

) ⎡
⎣1 − e

− 1
2

[(
μ
σ

)2+
(

πkσ
A

)2]
t
⎤
⎦
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σ
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(

πkσ
A

)2

⎤
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+ πσ2

A2
e

(
(A−Z)μ

σ2

) ∞∑
k=1

⎡
⎢⎢⎢⎢⎢⎢⎣
2k sin

(
π(A−Z)k

A

) ⎡
⎣1 − e

− 1
2

[(
μ
σ

)2+
(

πkσ
A

)2]
t
⎤
⎦

( μ
σ

)2 +
(

πkσ
A

)2

⎤
⎥⎥⎥⎥⎥⎥⎦
(11.26)

PZ (τ < t) = PZ (∂̄ = 0) · PZ (τ < t |∂̄ = 0) + PZ (∂̄ = A) · PZ (τ < t |∂̄ = A).

(11.27)
There are two more probabilities of interest. It can be shown that PZ (∂̄ = 0),

which corresponds to ruin in Gambler’s ruin discrete case is

PZ (∂̄ = 0) = e− 2Aμ

σ2 − e− 2Zμ

σ2

e− 2Aμ

σ2 − 1
(11.28)

which trivially gives us

PZ (∂̄ = A) = e− 2Zμ

σ2 − 1

e− 2Aμ

σ2 − 1
. (11.29)
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We could as Ratcliff notes (Ratcliff, 1978, p. 106) also derive these as

PZ (∂̄ = 0) =
∫ ∞

0
gZ (x, ∂̄ = 0) dx (11.30)

PZ (∂̄ = A) =
∫ ∞

0
gZ (x, ∂̄ = A) dx . (11.31)

In the limiting case, when the drift goes to 0 we have from Eq.11.28 that

PZ ,μ=0(∂̄ = 0) = 1 − Z

A
(11.32)

and the probability of PZ (∂̄ = A), which corresponds to taking all the money in
Gambler’s ruin discrete case is

PZ ,μ=0(∂̄ = A) = Z

A
. (11.33)

To give a thorough proof of the above continuous results one has to appeal to
martingale theory. Ratcliff (Ratcliff, 1978) discussed the validity of the above for-
mulas by appealing to Feller (Feller, 1968) who showed how to take the random
walk Gambler’s ruin problem to the limit of infinitesimally small time increments.
We see that in the discrete case when A → ∞ that PZ ,μ=0(∂̄ = A) → 0. This is
why it is called Gambler’s ruin—with probability 1 a gambler (under the scenario in
discussion) will lose against a “house” that has an infinite amount of money, vs. the
gambler’s finite pot.

Ratcliff (Ratcliff, 1978)was the first to use this in the psychological sciences, other
authors use the same formula but with various normalizations such as setting σ = 1,
or scaling Z as Z/A. These changes reflect the underlying cognitive mechanisms
beingmodeled. This has relevance because it can reflect the bias toward one decision.
When A = 1, starting at 1/2 reflects no bias. It is also interesting to see that for
the fair simple walk (integer A, Z ) and for Brownian motion without drift that the
probabilities of hitting the boundaries are the same.

Note, a Wiener process (Brownian motion with drift 1 and diffusion 0), and more
generally a Brownian motion without drift and starting point Z have the martingale
property (there is no bias one way or another as time progresses). TheOptional Stop-
ping Theorem (Bhattacharya and Waymire, 2009, Thm. 4.1) tells us for a martingale
that E(τ ) = E(B(0)) = Z .

But E(τ ) = 0 · PZ ,μ=0(∂̄ = 0) + A · Pμ=0(∂̄ = A) = APZ ,μ=0(∂̄ = A). So, we
have the above result Eq. 11.33 that PZ ,μ=0(∂̄ = A) = Z

A and trivially Eq.11.32. The
general Eq.11.28 is not handled as easily but we have to exponentiate the Brownian
motion and look atGeometric BrownianMotion, seeDobrow (2016, p. 370, Ex. 8.36)
for details, or use work of Wald and solve thte Fokker-Plank equation as in Darling
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and Siegert, (1953, Eq.5.7). Ratcliff’s approach, although it is not 100% complete,
avoids this complicated modern machinery of stochastic processes.

Note that in the above we have tried to stay with Ratcliff’s notation (Ratcliff,
1978) as much as possible but have modified it to make clear what the boundaries
are and when we are dealing with conditional probabilities and by not overloading
the notation when the conditioning is clear.

Note that in Eqs. 11.32 and 11.33 the drift is zero, but the diffusion may be any
positive number. We will later make things simpler and assume that A is 1, this gives
us

PZ ,μ=0(∂̄ = 0) = 1 − Z and PZ ,μ=0(∂̄ = 1) = Z . (11.34)

Of course if the starting point for the Brownian motion is Z = 0, we have that
P0,μ=0(∂̄ = 0) = 1, P0,μ=0(∂̄ = 1) = 0, since the process starts and ends instanta-
neously at time0. If the starting point is Z = 1,wehave the opposite P1,μ=0(∂̄ = 0) =
0, P1,μ=0(∂̄ = 1) = 1 since the Brownian motion starts and ends instantaneously at
time 0 also.

11.5 Fractional Brownian Motion

Fractional (or sometimes Fractal) Brownian Motion (fBM) was introduced in its
present theoretical form in (Mandelbrot and Van Ness, 1968), but actually had its
beginnings by Hurst (Hurst, 1951) on his very applied engineering work on the
Nile river. There is also earlier related work by Kolmogorov on the Wiener spiral
(Kolmogorov, 1940). fBM is the natural generalization of Brownian motion. The
definition is not very intuitive—at first. The important difference between BM and
fBM is that the increments need not be independent. To keep our notation standard
with the rest of the chapter, at the cost of being non-standard with the literature, we
refer to a fBM with drift of 0, and diffusion as 1, as a fractional Wiener Process
(fWP). (Others have used this term differently (Frasca and Farina, 2017).) Of course
to give a full comparison against the RDM we would have to include drift, but that
is beyond this chapter and will be in future work. Before we get to the definition we
need some preliminaries to appreciate the definition.

11.5.1 Covariance of Brownian Motion

We know that Var(B(t)) = σ 2t . There is a very important property of Brownian
motion that we wish to stress (Dobrow, 2016, Ex. 8.3), (Sigman, 2015, p. 4) below.

Theorem 11.6

Cov(B(t),B(t ′)) = σ 2 · min(t, t ′); t, t ′ ≥ 0 .
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Proof We have that Var(B(τ )) = σ 2τ , and, WLOG we assume that t < t ′.

Cov(B(t),B(t ′)) = Cov(B(t),B(t) + B(t ′) − B(t)) (11.35)
= Cov(B(t),B(t)) + Cov(B(t),B(t ′) − B(t)) (11.36)
= Var(B(t) + Cov

(B(t),B(t ′) − B(t)
)
, and since B(t ′)−B(t),B(t) are independent increments (11.37)

= σ 2 t + 0. (11.38)

Similarly, if t ′ < t . Note for t = t ′ it holds because it is simply the variance.

Note in particular for Brownian motion with diffusion 1, which of course includes
the Wiener process, we have

Corollary 11.6.1

Cov
(Bm,1(t),Bm,1(t

′)
) = Cov

(
W (t),W (t ′)

) = min(t, t ′).

11.5.2 Definition of the Fractional Wiener Process

One can also define a Wiener process as a Gaussian process (Cox and Miller, 1990).

Definition 11.5 A stochastic process Xt is said to be Gaussian if for any t1, . . . , tk
the joint distribution of Xt1 , . . . , Xtk is multivariate normal.

Note 11.6 Keep in mind that a Gaussian process is completely determined by its
mean and covariance properties, since for a multivariate normal random variable
we only need its covariance matrix and mean to uniquely determine it (Doob, 1949,
p. 71).

Note 11.7 We may also define a Wiener process W (t) as a Gaussian process with
stationary increments and continuous sample paths, t ≥ 0, such that

• E(W (t)) = 0
• Cov (W (S),W (T )) = min(S, T ).

We see that for a Wiener process for 0 ≤ t1 < t2 ≤ t3 < t4, we have

Cov(W (t2) − W (t1),W (t4) − W (t3))

= Cov(W (t2),W (t4)) − Cov(W (t2),W (t3)) − Cov(W (t1),W (t4)) + Cov(W (t1),W (t3))

= t2 − t2 − t1 + t1 = 0 .

Thus we see that we also have independent intervals with this Gaussian process-type
definition. We use the Gaussian process-type definition to define fractional Brow-
nian motion below. This definition is simpler for exposition than using stochastic
integration as originally done in (Mandelbrot and Van Ness, 1968).

Definition 11.6 A fractional Wiener Process WH (t) is (Mandelbrot and Van Ness,
1968) a Gaussian process with stationary increments and continuous sample paths,
t ≥ 0 such that for the Hurst exponent (coefficient, parameter, index, etc. ) H, 0 <

H < 1
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• E(WH (t)) = 0
• Cov (WH (S),WH (T )) = 1

2 (S
2H + T 2H − |T − S|2H ) .

(We will show that) WH (t) has independent increments iff H = 1
2 and W 1

2
(t) is

simply the Wiener process. Furthermore, Var(WH (t)) = t2H . This fact is alluded to
in the literature, and some chapters have a proof sketch. Since it is so important a
property we present it as a theorem below using the approach in (Shevchenko, 2014)
which uses convexity arguments. However, to make that argument precise we first
need a result from (Gkioulekas, 2013).

Recall that a function is strictly convex (up) iff ∀t ∈ (0, 1) : f (ta + (1 − t)b) <

t f (a) + (1 − t) f (b).
We adopt (Gkioulekas, 2013) the notation (for the slope of a secant line) that for

a function f (x), a �= b

λ(a, b) := f (b) − f (a)

b − a
.

Lemma 11.7 Givena strictly convex (up) function f (x)and intervals [t1, t2], [t3, t4],
t1 < t2, t3 < t4, t2 < t4 and t1 < t3, we have the following inequality of secant slopes

λ(t1, t2) < λ(t3, t4). (11.39)

Proof The proof follows from (Gkioulekas, 2013, Lemma 2.1). Gkioulekas showed
that for f (x) strictly convex (up) and a < m < b that

λ(a,m) < λ(a, b) < λ(m, b).

First consider t1 < t2 < t4 , thus (Gkioulekas, 2013, Lemma 2.1, LHS)

λ(t1, t2) < λ(t1, t4).

Next consider t1 < t3 < t4, thus (Gkioulekas, 2013, Lemma 2.1, RHS)

λ(t1, t4) < λ(t3, t4).

Theorem 11.8 WH (t) has independent increments iff H = 1
2 . If H ∈ ( 12 , 1) the

increments are positively correlated, if H ∈ (0, 1
2 ) the increments are negatively

correlated.

Proof We use the above lemma along with Shevchenko’s approach (Shevchenko,
2014, p. 3). We consider non-overlapping time intervals [S1, T1] and [S2, T2] with
0 ≤ S1 < T1 < S2 < T2.
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Cov (W H (T1) − W H (S1),W H (T2) − W H (S2))

= Cov (W H (T1),W H (T2)) − Cov (W H (S1),W H (T2)) − Cov (W H (T1),W H (S2)) + Cov (W H (S1),W H (S2))

= 1

2

[
T 2H
1 + T 2H

2 − (T2 − T1)
2H − S2H1 − T 2H

2 + (T2 − S1)
2H − T 2H

1 − S2H2 + (S2 − T1)
2H + S2H1 + S2H2 − (S2 − S1)

2H
]

= 1

2

[
(T2 − S1)

2H − (T2 − T1)
2H

]
− 1

2

[
(S2 − S1)

2H − (S2 − T1)
2H

]
.

(*) Note that (T2 − S1) − (T2 − T1) = T1 − S1 > 0 = (S2 − S1) − (S2 − T1) =
T1 − S1.

For H = 1/2 the exponent 2H = 1 and we have independent increments since:

Cov
(
W1/2(T1) − W1/2(S1),W1/2(T2) − W1/2(S2)

) = 0 .

In general, consider the four numbers a1 := (T2 − S1), a2 := (T2 − T1), b1 :=
(S2 − S1), b2 := (S2 − T1). From (*) above we have that a1 − a2 = b1 − b2 = T1 −
S1. Letting

f (x) = x2H , x > 0

and using, as above λ for the slope of a secant line of f (s), we can express the
covariance as

Cov (WH (T1) − WH (S1),WH (T2) − WH (S2)) = 1

2

[
a2H1 − a2H2

]
−

[
b2H1 − b2H2

]
= T1 − S1

2
[λ(a2, a1) − λ(b2, b1)] . (11.40)

Since S1 < T1 < S2 < T2 we see that the smallest number is b2, the largest is
a1 and they order as b2 < b1, a2 < a1. Now since f ′′(x) = 2H(2H − 1)x2H−2 is
strictly convex (up) for H > .5, strictly concave (down) for H < .5, and a straight
line for H = .5, we apply the above lemma which determines the sign of Eq.11.40
and see that for

H >
1

2
, Cov (WH (T1) − WH (S1),WH (T2) − WH (S2)) > 0

H <
1

2
, Cov (WH (T1) − WH (S1),WH (T2) − WH (S2)) < 0.

This theorem is often thrown about in the literature as an obvious fact about the
fractional Wiener process. Even though we proved it from elementary properties of
convexity, we find it far from obvious.

Definition 11.7 A fractional Brownian motion without drift BH0,σ (t) is (Guggen-
berer et al., 2019; Shevchenko, 2014) a Gaussian process with stationary increments
and continuous sample paths, t ≥ 0, such that for the Hurst exponent (coefficient,
parameter, index, etc. ) H, 0 < H < 1
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• E(WH (t)) = 0
• Cov (WH (S),WH (T )) = σ

2 (S2H + T 2H − |T − S|2H ) .

Obviously B 1
2 0,σ

(t) = B0,σ (t) and BH0,1(t) = WH (t).
Of course one can also define a fractional Brownian motion with drift BHμ,σ

(t)
(Arutkin et al., 2020), (Cheridito, 2001, Sect. 4.5). However, wewill only concentrate
on the fractional Wiener process in the remainder of this chapter, since the results
for generalized Brownian motion are a work in progress in the scientific arena. We
also note that many authors use the term fractional Brownian motion to mean the
fractional Wiener process. We have chosen not to and have developed what we feel
is a more consistent naming convention.

11.5.3 Existence and Properties of the Fractional Wiener
Process

Wewill not go into the details showing that the fractional Wiener process exists, that
it has continuous sample paths, and that it is not differentiable (Mandelbrot and Van
Ness, 1968; Shevchenko, 2014). To do the topic justice requires the use of stochastic
calculus which is beyond the scope and interest of this chapter. We will assume these
facts instead.

There are many ways to simulate the fractional Wiener process, none of them
simple (Dieker, 2002). The construction of these simulations is beyond this scope of
this chapter and we will also just assume their existence. For our simulations we use
(Botev, 2016) which is based on (Kroese and Botev, 2120). In Fig. 11.10 we see the
simulation of three sample paths for WH (t).

The red line is for W.5(t) which is just the standard Wiener process W (t). The
increments are independent in this situation.

The blue line is for W.06(t). In this situation there is almost maximal negative
correlation between the increments. That is the fractional Wiener process for H ∈
(0, .5) “has the property of counterpersistence: if it was increasing in the past, it
is more likely to decrease in the future, and vice versa” (Shevchenko, 2014). This
characteristic is seen by the very rough and spikey appearance of the sample path.

The green line is for W.94(t). In this situation there is almost maximal positive
correlation and the fractional Wiener process “is persistent, it is more likely to keep
trend than to break it” (Shevchenko, 2014). This is seen by the smooth appearance
of the sample path and the fact that once it takes off in a positive direction it tends to
stay that way.

11.5.4 Ratcliff Diffusion Revisited

Ratcliff diffusion is based on the assumption of Brownian motion. We ask the ques-
tion “Why not fractional Brownian motion?” Ratcliff diffusion was developed as
the infinitesimal version of a random walk—Brownian motion. A key underlying



238 I. S. Moskowitz et al.

Fig. 11.10 Sample paths of simulated fractionalWiener processes for H = .06, .5, .94 and T = 25

assumption is that the behavior of the Ratcliff diffusion starting at time τ depends
only on the starting point at time τ , not the behavior of the stochastic process prior
to time τ . We wish to explore the possibility that there may be a dependency on
past behavior. How would that affect the analysis of the various parameters that are
obtained via experimentation on Ratcliff diffusion?

We noted above that Brownian motion has independent intervals. This is not true
for fractional Brownian motion. Let us concentrate on the fractional Wiener process
for simplicity (as discussed above).

We return to the comments after Fig. 11.10. What is it in Ratcliff diffusion that
validates the idea of independent increments? Perhaps if one is modeling a human
decision process then there might actually be a persistence in the behavior, and in
fact that decision type process behaves more like the green line, than the red in
Fig. 11.10. That is, perhaps Ratcliff diffusion should be re-examined in light of a
Hurst exponent H ≥ .5, not just H = .5? We do not think that human decisions are
negatively correlated, though, and we would not see the blue line in Fig. 11.10.

When dealing with the fractional Wiener process, or more generally with frac-
tional Brownian motion, the formulas discussed in earlier have to be generalized.
Unfortunately, that is still a work in progress in the community.
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For small H we see that the sample path hovers around the starting point. There-
fore, the time to hit either the top or bottom boundary as discussed earlier would be
larger than when H = 1/2. For large H the path seems to hit a boundary sooner. Of
course, we are ignoring drift in these back of the envelope calculations.

In future research, since closed form solutions are often lackingweplan to research
those solutions and use Monte Carlo techniques to arrive at first stopping time prob-
abilities.

Let us return to Eq.11.34 which holds for a Wiener process starting at the point
Z ∈ [0, 1]. We concentrate on the probability that the Wiener process hits the top
boundary (1) before it hits the bottom boundary (0).

PZ ,μ=0(∂̄ = 1) = Z

The question of interest is what if it is not a Wiener process, but a fractional
Wiener process? Therefore we now express the probability in more generality as

PZ ,Hurst=H (∂̄ = 1) = Z , (11.41)

since it is a fractional Wiener process we know that μ = 0 and we no longer need
express it notationally. Of course we know that

PZ ,Hurst=.5(∂̄ = 1) = Z (11.42)

Even this very simple probability is very difficult to obtain in closed form for H �= .5.
We will not go into details here, but it has been argued that (Wiese, 2019)

PZ ,Hurst=H (∂̄ = 1) ∼ Zφ, for small Z ,

where φ := 1−H
H is called the persistence exponent. In addition (please see (Wiese,

2019) for further details)

d

dZ
PZ ,Hurst=H (∂̄ = 1) = N [Z(1 − Z)]( 1

H −2)e(εF(x)+O(ε2)) .

Note that N ≈ 1, (Wiese, 2020). Of course, from Eq.11.42 we trivially have that
d
dZ PZ ,Hurst=.5(∂̄ = 1) = 1.

These terms of interest which were derived for H = .5 heavily depend upon geo-
metric information of the underlying processes. In fact, fractional Brownian motions
are fractal (with probability 1) in nature with the properties of self-similarity. In fact
(Voss, 1988) the fractal dimension D of BH0,σ (t)) is

D = 2 − H

which of course tells us that the fractal (box counting) dimension of (standard)
Brownian motion is 3/2.
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11.6 Determining H, a Problem in AI

For Ratcliff type diffusion problems, the issue of determining H from the time series
is hidden from us. We do not see the individual “thought” ticks in someone’s mind,
we know only what and when their decision was. However, we include this section
as a contribution for determining H from a time series, which is an ongoing issue.

Existing methods of determining Hurst exponents from time series data is done
by a power law fit to the rescaled range (RR). The RR quantifies the self-similarity
(fractal nature) of a time series. To calculate (Wang et al., 2011) the RR, the time
series X must be split into A equal sections of sizem, denoted as Da, a = 1, 2, . . . , A.
We find the average value x̄a of each segment. Next, we find the mean centered time
series Y using Yk,a = Xk,a − x̄a for k = 1, 2, . . . ,m and for each section a. We find
the cumulative series Zk,a using Zk,a = ∑k

i=1 Yk,a for k = 1, 2, . . . ,m and for each
section a.We find the range Ra = max(Zk,a) − min(Zk,a) and the standard deviation
Sa for k = 1, 2, . . . ,m for each section a. We compute Ra/Sa for each section a,
and then average over all sections to get the RR. The RR will report on more local
trends if the time series is split more heavily and will report on more global trends
if the time series is split more lightly. The RR is calculated for multiple splits to
gather information on the local and global trends, and the power law fit is applied to
all of the calculated RR values to get the Hurst exponent. This goes back to Hurst’s
original work (Hurst, 1951) and is somewhat heuristic.

Issues were encountered using existing packages in R and Python to find the Hurst
exponent of a time series.We generated a time series from a sample fractionalWiener
process characterized by the Hurst exponent using Python or R-package functions,
and then used the inverse function given by the package to find the Hurst exponent.
The outputted Hurst exponent from the inverse function varied wildly with the Hurst
exponent used to generate the inputted time series, see Fig. 11.11.

We attempted to improve upon this by using neural nets. We built a convo-
lutional neural net (CNN) which was chosen for its ability to find both local
and global trends in a dataset. The CNN input layer was fed the entire time
series, and the output layer had 11 nodes representing Hurst exponents H =
[0.51, 0.55, 0.60 . . . ., 0.90, 0.95, 0.99]. The hidden layers included 1D convolu-
tional layers and max-pooling layers. The overall time series dataset had 44,000
examples, of which 10% was reserved for testing, and 10% was removed for valida-
tion. The model was trained to classify the time series into one of these 11 discrete
Hurst “bins”. Our CNN outperformed the existing power law methods, but still left
much to be desired with a classification accuracy of only 59.68% (Fig. 11.12).

In recent work Kirichenko (Kirichenko et al., 2019) reported higher accuracy than
our CNN approach at a 92.2% accuracy for a 4096 point time series using random
forest regression trees.Random forest is an ensemblemachine learningmethodwhich
generates a large number of decision trees to make predictions based on the inputs.
Each of the decision trees comes to an independent conclusion, and the prediction of
the model is based on what the majority of the decision trees “vote” for. For inputs to
their model, Kirichenko used statistical characteristics such as the standard deviation
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Fig. 11.11 We generated sample paths using the R-package somebm with H = .5, .7. We then
used the code to determine H. In both cases it gave us erroneous H values. We observed this with
other sample paths. Note this is not the only code extant, but many of them give buggy results

Fig. 11.12 CNN prediction
distribution from the
validation data. The x-axis
denoted how many bins off a
prediction was, and the
y-axis denotes the number of
predictions. From the left,
number of correct
predictions, number of
predictions that were one bin
off (left edge: 0, 1, or 2), and
number of predictions that
were two bins off. Total
accuracy was 59.68%
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Fig. 11.13 RR values for different Hurst exponents for four different splits, averaged over 200
runs. There is a strong relationship between the Hurst exponent and the rescaled range. However,
as noted above in our code output the R/S Hurst estimates are off in practice on a case by case basis.
Further theoretical work is needed to fully exploit Hurst’s orginal ideas (Hurst, 1951)

and the maximum of the absolute values of time series, along with parameters related
to the generalized Hurst exponent. Inadequate detail in the chapter made it difficult
to reproduce the parameters relating to the generalized Hurst exponent.

11.6.1 Our Hybrid Approach

Because of this we developed a hybrid approach and investigated the RR [24, p. 793],
(which, as noted, is closely related to H and is a good substitute parameter). To verify
the correlation between H and the RR, we generated 200 times series for each of the
values H = .5, .55, .6, .65, . . . , .95. The time series data was split A = 4 different
ways for each H value—in half, in quarters, in eights, and in sixteenths. For every
Hurst exponent, we calculated the rescaled range for each of the 200 time series, for
each split, and then averaged over every split. The results of this test showed a clear
relationship between H and the rescaled range (Fig. 11.13).

The RR was combined with the standard deviation and the max absolute value of
the dataset as inputs for aMachine Learning (ML)model. Three differentMLmodels
were tested: multi-layer perceptron, random forest regressor, and gradient boosting
regressor. All of the models are from the scikit-learn Python library. The multi-layer
perceptron model is a feedforward neural network. The gradient boosting regressor
is a variation of the random forest regressor (described above), where the decision
trees are generated one by one, with each successive decision tree tailored to most
compensate for the mistakes of the decision tree that preceded it. A grid seach was
performed using the scikit-learrn gridSearchCv function to determine the best
parameters for each tested model. The worst model tried (multi-layer perceptron)
with a time series of 512 data points returned an accuracy of 94.5%, while the
best model tried (gradient boosting regressor) with a time series length of 4096
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data points achieved an accuracy of 97.8%. The entropy, which encapsulates the
distribution of unique values in a dataset, was added as an additional input parameter
because it speaks to the presence of mean reverting tendencies in a dataset. Using
a gradient boosting regressor, accuracy levels rose to 95.3% for a 512 point time
series and 98.7% for a 4096 point time series. Overall, error was reduced by over
80% in assigning Hurst exponents to time series data of length 4096 with respect to
Kirichenko.

11.7 Team Science and Future Work

In future work we plan to apply fractional Brownianmotion to Team science.Wewill
briefly describe our ideas for Team science in this section.We also plan in futurework
to examine the parameters from Ratcliff diffusion in terms of fractional Brownian
motion, instead of just Brownian motion via experimentation.

A team consists of separate entities attempting to perform a task. An important
concept of a team is its interdependence. Lawless and others have published much
on this concept in the last decade, for example (Cooke and Hilton, 2015; Lawless
et al., 2015, 2009, 2011; Lawless and Sofge, 2012, 2013; Lawless et al., 2015;
Lawless, 2015). We propose to use the Hurst exponent H as a measure of Team
interdependence.

We assume that the progress, via fractional Brownian motion, toward a goal is
measured. In particular, we are modeling Team science as a diffusion type problem.
We consider the stopping time with a top (success) and bottom (failure) boundary.
There are three quantities at play – the drift, the diffusion, and H .

The drift measures the skill of each team member. We are assuming that each
member of the team has the same skill level. This is somewhat unrealistic and in the
future we wish to analyze this using stochastic drift as Ratcliff did (Ratcliff, 1978)
for memory models. So for now we simply refer to the drift of the team as μ.

(1) If μ = 0 the team has neutral skill, the team member are not good or bad at the
task at hand.

(2) If μ > 0 we are assuming that the team members are skilled at the task.
(3) If μ < 0 we assume that they are unskilled.

The diffusion σ is a measure of the variability of the team as a whole and can be
incorporated with the concept of stochastic drift.

Now we view H as a measure of Team interdependence. If the team members
function independently of each otherwe set H = .5, andwe are in the case of standard
Brownian motion.

If they have a good dependence among themselves we have H > .5. Having a
large H value gets us to a boundary quicker, but keep in mind that it could send us
to the wrong answer.
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If the team members have a dependency among themselves, but it is not a helpful
dependency we set H < .5. This will cause the team to waffle in an intermediate
stage before reaching a decision (success or failure).

As noted this is the direction for some of our future work.
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Chapter 12
Human–Machine Understanding: The
Utility of Causal Models
and Counterfactuals

Paul Deignan

Abstract Trust is a human condition. For a human to trust a machine, the human
must understand the capabilities and functions of the machine in a context spanning
the domain of trust so that the actions of the machine are predictable for a given set
of inputs. In general, we would like to expand the domain of trust so that a human–
machine system can be optimized for the widest range of operating scenarios. This
reasoning motivates the desire to cast the operations of the machine into a knowledge
structure that is tractable to the human. Since the machine is deterministic, for every
action, there is a reaction and the dynamics of themachine can be described through a
structural causal model to enable the formulation of the counterfactual queries upon
which human trust may be anchored.

12.1 Introduction

The purpose of this chapter is to close the semantic gap in the development of struc-
tural causal model (SCM) knowledge representations of deterministic systems in
order to better enable human–machine team interactions. The semantic gap that we
are concerned with is that which exists between the measurement of the process
as a restricted set of random variables within a Cartesian histogram coordinate
frame and its representation as an SCM. The semantic gap is minimized for the
measured phenomenon through maximizing Shannon’s mutual information between
measurement and representation while applying Occam’s razor in the elimination
of redundant and spurious information. The SCM maximizes the bias-corrected,
pairwise mutual information between nodes and allows that redundant nodes may
be subsumed into joint random variables. By maintaining a common reference
throughout the construction, the trap of false comparisons is avoided while the
informational integrity of the model is maintained.

Codebook information serves as an extensible reference frame for data reduction.
Because independent sources of information are additive, the semantic gap is always
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less than or equal to the information content of themeasurements that are not encoded
into the SCM.While saying nothing about the semantic gap between the individual’s
understandingof the phenomenonand its expression in thismathematical information
framework, it can be seen that the maximization of mutual information between the
SCM and measurements can be achieved by identifying a source causal signal and
subsequently forming a structure that seeks to maximize the capacity of information
flow. This is the theme of the development of the SCM which, on consideration, can
be seen to be equivalent to the minimization of total noise in the directed paths of
cause–effect actions and the tendency to create bijections wherever possible in the
linkages of the graph. Both factors endow the resultant SCM with counterfactual
capabilities.

This chapter is organized as follows: In Sect. 12.2, the framework for SCM
construction is presented. In Sect. 12.3, it is shown how information-theoretic tech-
niques can be applied without bias across a fixed set of random variables for SCM
construction. Next, in Sect. 12.4, the main result is presented for the construction
of SCMs. Finally, in Sect. 12.5, other methods of SCM construction are discussed
as they relate to the method of Sect. 12.4. The chapter concludes with summary
remarks.

12.2 Information-Theoretic Framework for SCM
Construction

Typically, machine data is collected over uniform time-steps with measurements
of selected physical aspects of the machine taken synchronously at a specified
frequency. The resulting data structure is often a couple of hundred columns wide
and tens of thousands of rows in height over any run. Over a month, for one machine,
it is common that gigabytes of such tables are recorded. Yet, since a full exposition
of the dynamics of a machine would require orders of magnitude more measure-
ments than is commonly available, the problem is to reconstruct a useful model of
machine operation from partial information. Predictions from partial information
are then a matter of clever inference but may be made less so if the machine states
can be localized by a decision tree of command signals and their proxies and if a
priori information of machine dynamics can be admitted into the invariants of the
model. One principal invariant is the causal relationship occurring over the pathways
of the machine control loops. In order to incorporate this unidirectional information,
simple data associations are insufficient—amodeling methodology that goes beyond
the expression of data association is needed.

A structural causal model (SCM) is a directed acyclic graph where the nodes
are identified with random variables and the edges with a causal relation between
the connected variables. Consider the structural causal model of Fig. 12.1 where
the random variable X is the source node and the random variables Y and Z are
sink nodes. In the absence of a driving intervention, the signal at X is exogenous
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Fig. 12.1 Structural causal
model with the possibility of
node aggregation

X

Y

B

A

Z

“noise” and the signal at A is a function of X and unmodeled noise, NA; i.e., X =
NX and A = f (X, NA). This estimation is, of course, an approximation of the
situation where there may be no strict functional relation between the measured
random variables, a common situation in practice even when modeling deterministic
systems since there is no guarantee that the dynamical systemmanifold is unfolded in
themeasurement space. In such cases, models built onmeasures of central dispersion
often give extremely poor approximations; instead, the search is for patches of local
coherency in the measured space to reconstruct. These regions can be found by
information-theoretic measures.

Shannon’s mutual information is a measure of the degree to which a bijection
can be made between sets of random variables being related. Entropies of random
variables add as set-theoretic unions and intersections. If the mutual information
between sets of random variables is equal to the lesser of the total entropies of
the union of sets being related, the relation has a one-to-one correspondence for
that lesser set of random variables. If mutual information between sets is less than
this amount, then to the degree to which the mutual information is proportionate to
the total entropy of the union of random variables a limited bijection exists. If the
covering of entropies between sets is partial, then the mapping between the sets of
random variables of the relation is partial as well. Note that in the case where only
functions are allowed for the mapping, it is even more likely that the relation will
tend to be approximate rather than exact. The benefit of using mutual information as
a measure of association between variables is not only that it serves as a measure of
the strength of any possible bijection, but specifically because it may not be known
in which direction the causal relation applies a priori.

Now consider again Fig. 12.1 which clearly shows the possibility that random
variables A and B may be two different measurements of the same physical aspect
of the phenomenon and hence candidates for aggregation by Occam’s razor. The
decision to aggregate A and B can be determined by whether or not the joint mutual
information, I (A, B; #) is greater in each case than the sum of the individual compo-
nents of mutual information of A and B, respectively, between each linked variable
(#). If it is greater, then the pair A, B should be aggregated. If not, they should remain
separate.
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Fig. 12.2 Branch-and-bound indexing scheme for components of optimal joint mutual information

Obviously, the number of combinations of joint and pairwise mutual information
calculations to be made can become excessive for a system with hundreds of random
variables. However, only the maximum mutual information estimates are of impor-
tance in the potential paring of a particular random variable, so it makes sense to
conduct these calculations at the onset of SCMconstruction for every randomvariable
in the set of construction up to the level of grouping that is initially envisioned.

The optimal combination of pairwise and joint mutual information combinations
and values can be had at each level of jointness through the application of a branch-
and-bounding algorithm. This algorithm assures the return of optimal values at each
level of calculation for a typically small fraction of the total potential combinatorics.
The indexing scheme of the branch-and-bound algorithm is shown in Fig. 12.2. For
a random variable Y and a target set X of cardinality n at a level of cardinality k of
m, a simple bounding condition follows from information-theoretic inequalities:
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}
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Note that as the length and depth of combinatorics grows, the remaining poten-
tial increments in joint mutual information diminishes. Therefore, if an unbiased
threshold of significant mutual information can be established a priori, this algorithm
may be made even more efficient through the rejection of combinations beyond the
threshold of significance.

12.3 Assessing and Correcting for Bias
in Information-Theoretic SCM Construction

Consider the system identification of a phenomenon as an encoding process. A repre-
sentation of the measured phenomenon with minimal descriptors is, by Occam’s
razor, considered likely to be invariant and accurate within the language of the code-
book. While the frame of reference of a physical phenomenon in our individual
understanding is a composite of unstructured and semi-structured assumptions, it is
necessary to formalize its representation in order to make inferences. Therefore, let
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our frame of reference for the purposes of this discussion be a Cartesian coordinate
frame of uniform partitions in each dimension over the space of measured random
variables of the phenomenon.Within this space, it is possible to construct histograms
as estimates of the joint probability density function and to apply probabilistic
measures for inference given, of course, that we admit mathematical knowledge
into the framework, ceteris paribus.

Note that the reference frame itself has a quantifiable amount of information in its
description. The list of reference items for the temporal encoding of the phenomenon
is called the “Codebook” and its information content is called codebook information
(CI). Here, the explicit CI is the partition entropy of the measurement space. Again,
the mathematic information used to operate on the data structure of the codebook
is not being quantified as it and other similarly useful external information is not
being attached in any sort data structure-dependent manner and so should not induce
bias. In embedding measurements of the phenomenon within the space, the informa-
tion content of the data appears as both an artifact of the measurement process, for
instance, in the number of synchronous measurements taken and as information rele-
vant to the phenomenon. Itwill be necessary to account for each source of information
separately if inferences are to be made between differently sized datasets.

Entropies associated with independent factors are additive (by the definition
of independence). The phenomenological entropy (PE) is the information of the
phenomenon that might be achieved ideally by measurement within the space of
phenomenon-dependent random variables. The estimation process can be thought
of as a compression of the PE where, by the data processing inequality, the esti-
mated phenomenological entropy (EPE) will be less than or equal to the PE. The
idea here is that the estimation process should comport with Occam’s razor and
take on no spurious artifacts of the estimation process itself. Without circumscribing
knowledge of the phenomenon, the estimation method is designed by the maximum
entropy principle. In the absence of prior knowledge of the distribution, the direct
frequentist counting of events within intervals is the simplest method of estimation.
A uniform partition is a maximum entropy partition in respect to the partition itself.
In other words, if the prior information derived from an examination of the data is
that there will be k parts of a partition correspondent to the structure of the EPE, the
uniform partition uses the least additional information to establish how those parts
should be configured.

A uniform partition structure does not necessarily maximize phenomenological
information per bin since there is no assurance that the structure of the distribution
of the phenomenon will be equivalent over any range of bins. However, again since
a uniform partition is a maximum entropy partition, any other partition structure can
be described as a restriction of a uniform partition over segments of the range of the
distribution. Therefore, a uniform partition is a feasible starting point in a recursive
search for an optimal nonuniform partition. Also, it might be mentioned that as with
mathematical knowledge, knowledge of the physics of the process may impact the
SCM reconstruction process within the reference frame. The point here is that since
the purpose of the model is to facilitate the prediction of future measurable actions,
that this information is in effect already part of the long-term dynamics within the
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reference frame. The incorporation of the knowledge of physics as it applies to
prediction is simply a shortcut in the long-term mathematical development of the
model from data within the reference frame and, therefore, does not violate the data
processing inequality.

The problem of bias correction for finite data and partition entropy is the same as
that of the problem to find the optimal partitioning. For any fixed set of data, N, of an
estimate, it is possible to optimize the number of uniform bins, k, so that the codebook
information for each random variable dimension reveals the most phenomenological
entropy of a particular dimension, H, in reference to a uniform distribution of the
same construction; i.e.,

k = argmax
(
HN

k − H
)
,

where the partition entropy is calculated as
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)
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By the binomial distribution, each data point has a probability 1
/
k of being

within a bin where x is a counting variable of the number of combinations assuming
a uniform distribution
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/
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I(0,1,...,N )(x),

where I(0,1,...,N )(x) is the indicator function.
The remaining issue is the selection of dimensions in which to construct the SCM.

While it is tempting to include allmeasured dimensions, thiswould be amistake since
spurious measurements are known to increase the variance of estimates. Also, since
the dimensions are tied together by a deterministic process, it cannot be assumed
that the dimensions are independent. The first step in dimensionality reduction is
the elimination of any random variable that falls below the threshold of structure
as measured by some fraction of the difference between the optimal bin estimation
of entropy and the uniform partition entropy. However, there is another approach
that is not only exhaustive but also efficient. In this alternative approach, model
reconstruction begins in low dimensionality and explores the space of measurement
using simple pairwise comparisons.

In using low-dimensionalmodel constructions, estimated variances areminimized
and the combinatorics are more manageable. The criticism of the potential nonopti-
mality of iterativemethods is weaker if themeasures of association used to determine
the model space do not preclude potential correspondences that might arise later
in the model construction process. This consideration is another reason to utilize
information-theoretic metrics of association for model space determination as these
measures are not only general as relations but also generic in terms of many-many
relations that might later be exploited by local functional models. Local regions of
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high mutual information are regions where robust input–output mappings may be
best estimated.

12.4 Construction of SCM for Counterfactuals

Unlike other associative model structures, the SCM is designed to allow for inter-
ventions—where a specific modification can be made at a node or edge. The most
common intervention is to set the value of a node and then to examine the upstream
or downstream effects of the intervention in that specific case. The ability to inter-
vene springs from the assumption that the mechanism of action is independent of its
cause. A counterfactual is an intervention on an effect with the values of the associ-
ated noise distributions for cause and effect fixed at an experienced or hypothesized
value. Counterfactuals allow up to examine the causal implications in the presence
of a “What if?” circumstance. Thus, the ability to pose counterfactuals gives SCM
representations an important ability to inform outside of the natural flow of passive
observations. This ability is particularly important in the case of high risk or reward
occurrences. Since these are the situations that are of greatest concern, it is precisely
these instances, the understanding of which, either make or break the bonds of trust.

For counterfactual queries to give precise answers, the functional cause–effect
relation should be one-to-one; in contrast, many-to-one functional relations may
yield ambiguities. Since physical relations are naturally one-to-one, the presence of
many-to-one functions in the model is generally due to imprecisions in the modeling
effort. These can be corrected through restrictions to the domain or the addition of
intermediatemechanisms. In all cases, the use of functional relations in SCMs should
incorporate as much physical knowledge as pertinent. Relations that are built from
data alone should always be suspect for the presence of hidden variables in the causal
chain which can be discovered either through localization of the regions of operation
or by more thorough data collection efforts. Each causal path of an SCM should be
complete and with sufficient reach to cover all modes of operation.

While the application of SCMs focuses on actions in cause–effect pairs, the
construction of the SCM given here is centered on information. Ultimately, all
inferences of cause–effect relations are drawn from observation, so it is with the
modeling effort that the emphasis is on maximizing the explanatory power of the
model through identification of the pathways of maximal information flow. Since
the model is designed to be modular, this search is distilled into finding the maximal
mutual information associations between random variables. This search can be done
efficiently for the bias-corrected combinations of random variables using the branch-
and-bound method of Sect. 12.2 up to the depth of potential aggregation of co-acting
random variables. This search level may be set through a heuristic where the depth,
m, requires approximately 10m measurements for adequate estimation.

As it is allowed to take “shortcuts” in the application of physical knowledge of
the system (as long as the shortcuts lead to a model that abides by Occam’s razor), an
algorithm for the system identification of SCMs may be laid out in steps with each
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step marking the point in the process where a priori information might play a part in
the construction. The algorithm follows a growth-pruning scheme since information
redundancies cannot be known until all potential pathways of causal action have been
explicated. The coherency of causal relations is enforced as the linkages are evolved
up to a common threshold of information significance as mentioned in Sect. 12.3.
An optimal structure might be declared by weighing the complexity of the SCM and
the level of informational significance.

1. Determine maximum adjusted entropy binning of each variable
2. Link pairs of variables bymaximumbias-corrected pairwisemutual information
3. Determine directionality by first principles or shifted max MI (limit set by false

nearest neighbors)
4. Check for fan out by joint MI and reiterate as necessary

Thefirst step uses the bias correction in the calculation of entropy for fixedN with a
line search over k to find the uniform bin size that reveals themaximal structure of the
density function of the random variable. The reasoning is that structure in the density
function is likely to be due to dynamic basins of attraction around operating points in
the causal chain. The absence of structure is a uniform density function or maximum
entropy. The optimization is done as a difference of entropies between the finite
data uniform density and that of the random variable. The value of k that produces
the maximum difference is taken as the optimal binning width for all subsequent
calculations and the correspondent partition entropy is used as the bias-correction
factor for the comparison of entropies.Note that a correspondent partition entropy can
be calculated for all joint entropies and mutual information estimates. On inspection
of the results of the line search, it is possible to make binning width adjustments
should salient features require fine local adjustments. Also, it is possible to combine
adjacent bins with no or few measurements for nonuniform partitions.

The second step creates the edges between random variables in order of adjusted
mutual information between the variables as determined by a comprehensive first-
level calculation of bias-corrected mutual information using the branch-and-bound
algorithm for all variables of Sect. 12.2. Edges are connected in order of maximal
bias-corrected mutual information with only one edge between variables. Connec-
tions proceed to be made until the lower threshold of relevant mutual information is
reached. This threshold may be set upon consideration of the completeness of the
SCM skeleton and the aim of the modeling and data collection efforts as mentioned
in Sect. 12.3.

The third step determines causal directionality through the aid, but not exclu-
sion, of time-shifted mutual information comparisons. Mutual information should
obtain a maximum when the time-shifting of the variables is in the causal direc-
tion at approximately the physical transport lag between cause and effect. The false
nearest neighbors algorithm can be used to bound the search space of time-shifts.
Note that loops are not allowed in a directed acyclic graph when making causality
determinations.

The fourth step is a check on the uniqueness of path connections to an individual
node and synthesizes the results of the previous two steps to enforce Occam’s razor
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by aggregating variables that are co-acting. All combinations of connected nodes to
a referent node should have individual pairwise mutual information values that more
than the sum to the joint mutual information values by an amount greater than the
threshold of significance. Binning optimization and mutual information calculations
should be re-run in all cases where random variables are aggregated. Should any
nodes be aggregated, the construction process is reinitiated with the new aggregated
nodes treated as a single random variable.

It should bementioned that the process of system identification is critically depen-
dent on the ability to make good estimates. Machinery operates over specified modes
that can be segregated and forwhich data can be aggregated to improve estimates. The
immediate benefit is that the spurious variables, which may be active in other modes,
can be removed from the estimation process if they are not instrumental in the modes
for which the model was built. The other immediate benefit is that data becomes
denser from the localization and can support estimates with lower variability. Struc-
tural causal models should be constructed for each major operating mode with logic
to switch between modes, preferably derived frommachine command signals. In the
absence of sufficient command signals, the primary measurements might be clus-
tered to form the modes. However, the clustering process is again limited by partially
measured dynamics and spurious dimensions, so care should be taken to make use
of as much physical information as might be made available.

12.5 Notes on Related Work

The incorporation of causal ideas into system identification has perhaps always
existed among engineers and physicists, however, in the age of big data analytics,
this connection has been overshadowed by advances in brute-force statistical and
data-mining methods. The preeminent leader for the reemergence of causality as a
central consideration in modeling for big data analytics has undoubtedly been Judea
Pearl who has published and argued extensively on the topic for the past 30 years.
Pearl’s methodology for inferring causality from data has been expanded by Bern-
hard Schölkopf and his colleagues specifically on the topic of the development of
SCMs from data.

While many others have contributed to the problem of identifying SCMs from
data, the works of Pearl and Schölkopf are landmarks in the consideration of the
potential benefits of alternativemethods as presented in this chapter andwill therefore
be discussed here. The development of SCMs from data is acknowledged by both
authors to be an open field of study and neither author proposes that SCMs can be
in all cases uniquely constructed from data alone. This claim is in agreement with
the presentation of this chapter as the only claims made were that the information-
theoretic-derived SCM models were useful and that the method of derivation is
tractable—no claim is made that the methodology is optimal or complete in any
sense of the word.
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In the case that there may be latent variables, i.e., that the collected data is incom-
plete for the phenomenon for which the SCM is to be constructed, Pearl (2009) modi-
fies his inductive causation (IC*) algorithm with the limitation that the end product
is not guaranteed to be a directed acyclic graph since some adjacent nodes may have
indeterminate causal relations. The first portion of the IC* algorithm attempts to
identify sets of variables upon which a certain pair is conditionally independent to
test the proposition that the nodes are linked.

The remainder of the algorithm attempts to resolve directionality of linkages such
that the directionality of the inferred causality is consistent across the graph based
on the notable assumption that if a variable is dependent on both of the tested nodes
which are otherwise unconnected, then it must be that the variable is a collider for
the pair, i.e., that causality is in the direction of the pair being a cause and the variable
is the effect. There is some sense in this assumption if one presumes that the random
variable set of measurements does not include multiple measurements of the very
same aspect of the underlying phenomenon. In big data analytics, however, this
assumption is not necessarily valid; hence, it is very possible that the resolution of
causal directionality through consistency may be unproductive.

There are other serious problems with Pearl’s IC* algorithm as a practical tool.
Perhaps themost significant is that the algorithmproposes to construct a causalmodel
from a set of variables for which there is no guarantee of any sort of association
in physics or in mathematics other than that a stable probability density function
(pdf) is assumed. This assumption is, of course, not one that tends to be valid for
partial sets of physical measurements. The other seminal deficiency of the method
is that the combinatorial search for conditional independencies in data measured
is intractable. In statistics, the probability density functions (pdf) are not known,
but rather estimated from the data. Indeed, if an assumption of the form of a pdf
were feasible, then there would likely be a great deal of a priori information related
to causality for which the algorithm specifically avoids assuming. And finally, the
estimate of these pdfs would likely be made in a dimensionality for which it is
extremely unlikely that finite data could support.

Nonetheless, it should be seen that the virtue of Pearl’s approach is in laying out
the theoretical foundation for the construction of an SCM from a mere probabilistic
density function. In other words, the algorithm is pedagogical and not necessarily
meant to be used in practice with actual measurements, but fits in nicely with Pearl’s
narrative in his argument for the utility of causality as an important augmentation of
simple data association and which complements Pearl’s exposition of the case for
constructing SCMs as a guide to critical thinking.

The approach of Schölkopf [in Peters et al., (2017)] and his colleagues is to
augment and fill out Pearl’s exposition. The fundamental tool they have used is the
principle of independent causalmechanisms, i.e., that the SCMhas amodularity such
that the probability density functions (pdfs) of the causal variables are independent of
the pdf for the conditional pdf of themechanismof the effect. Additionally, Schölkopf
and his colleagues explore the cases of assumed model structures and the case of
having only finite data for the SCM estimation. Rather than present a comprehensive
algorithm, various tools and conditions are given as aids to causal exploration. In the
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end, it appears that Granger causality is preferred for directionality identification, a
sensible use of the time-series ordering present in dynamical systems. The obvious
conclusion from a review of this work is that the identification of causal structures
is an active area of research with no certain preferred approach much less a clear
definitive answer.

12.6 Summary

An information-theoreticmethod has been presented for the construction of structural
causal models that seeks to maximize the information capacity throughout the model
from source to sink node and, in so doing, to increase the tendency for bijections
in the functional links. The resultant model may be used to satisfy counterfactual
queries and should be as transparent as possible in its performance to enhance human
understanding. In this construction, a method for generating bias-corrected mutual
information estimates was provided together with a branch-and-bound algorithm for
optimal joint mutual information determination. Finally, it was noted that it appears
that the current state-of-the-art in SCM identification is an open area of research
such that some of the techniques presented in this chapter may be useful for further
consideration in light of the difficulties for robust model formulation uncovered in
the works of Pearl and Schölkopf.
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Chapter 13
An Executive for Autonomous Systems,
Inspired by Fear Memory Extinction

Matt Garcia, Ted Goranson, and Beth Cardier

Abstract We explore an executive function that performs adaptive, introspective
reasoning for autonomous systems in challenging situations. This chapter presents a
definition of the problem using cartoon examples for electronic warfare and subma-
rine surveillance. A case study of neural processes in therapy for Post-traumatic
Stress Disorder (PTSD) is discussed; PTSD provides both a second modelling chal-
lenge and an architectural inspiration for executive reasoning. The main body of
the chapter is towards a technique for working with virtual and physical agent
models inmixed human/machine systems. The architecture supposes a second-sorted
reasoning system with complementary reasoning power over situations, influences
and unknowns.

13.1 The Problem

In general, our most powerful solutions work best when the future is much behaved
like the past andwell behaved in otherways. Current techniques deal poorlywith non-
linear or non-ergodic futures, or their simpler presentation as unexpected outcomes.
Additionally, we require a critical mass of facts, or data in the case of machine
learning (ML). Unknowns flummox our systems: when key facts are missing or
essential causal influences have unknown actors (Pearl, 2000). Many applications
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have these characteristics, including some that military users cannot ignore (Devlin,
2009, 2011).

Autonomous systems were supposed to be a foundational solution to these prob-
lems, especially in their mixed human/machine embodiments where the machine
elements are highly heterogeneous, include virtualmachines, and internal challenges.
In practice, the increased complexity of coordinating opportunistic aggregations of
these elements in unexpected environments is daunting.

We suppose that adding a second layer of reasoning to these systems will mitigate
many of the operational challenges. The first reasoning system discovers and reasons
about the world with current techniques. A new, second reasoning system reasons
about the first at a higher level and its effect on the world. We shall suggest that using
‘situations’ as a defining concept for this second system can address the problems of
unknowns, non-ergodicity and inscrutable influence.

One way of defining the problem is illustrated in Fig. 13.1.
The shaft is a reasoner. For simplicity, we have drawn one shaft, but the typical

system would have many in a complex fabric, where shafts merge and separate, as in
Fig. 13.2 below. The plane is a situation the reasoner encounters. A naïve viewwould
have the shaft be algorithmic code and the plane the data that it encounters, but we
want to include intent, context, ontology and world axioms in our situations, whether
implicit or completely unknown. A reasoning system can be a traditional reasoner,
or from the extended classes of simulators, mixed human and learning systems. The
complex interaction of how they interact with and change each other is of interest. A
novelty is that we explicitly model the situations as a collection of sets and categories
where the categoric representations allow extended and introspective reasoning.

Our problem can be graphically illustrated in Fig. 13.3, which simply displays
the types of situated challenges we wish to address. To make our characterisations
universally applicable, we shall assume the situations in the figure and their state
changes are representable in layered directed graphs.

Reasoning System

Zone of Influence

Situation We Present

Engineered Result

Fig. 13.1 Reasoners and situations
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Fig. 13.2 Example branching

Fig. 13.3 Different situational challenges

From left to right in Fig. 13.3, we have:
(Labelled Contexts 1 and 2) We must deal with multiple situations, each with

distinct character. Often this is simple ontological mismatch, but we will include
more fundamental axiomatic divergence. Special challenges are presented when a
context is a ‘machine learning’ context where ontologies are externally applied in
one of several ‘explainable AI’ strategies. If constrained to the ontology problem,
this one is at least well-studied if still far from resolved.

(Insights In) Next over is trust and verification, shown with an arrow pointing
inward to denote a user’s insight for an auditable confirmation, in general and
specific reasoner/situation combinations that can confirm suitable levels of trust,
assurance or verification depending on the requirements. In each of these domains
(verification, assurance and trust), different solutions have emerged that are workable
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within constraints. Our extended vocabulary of uses in mixed autonomous systems,
cyberwar, and unconventional reasoners sometimes; however, shrink these solved
domains beyond a useful threshold.

(Unknowns) Our use cases often encounter situations where information is
incompletely known, deliberately spoofed, misinterpreted or simply not there. We
focus on influence, so we need situation models that capture all of the influential
elements/agents/processeswith their specific effect.We are as likely to have elements
that singly or in aggregation have unknowneffects aswe are to encounter an effect that
has no known cause. In some respects, this is our reference problem if we subsume
everything under an ‘effect modelling and aggregation’ umbrella.

(Insights Out) Finally, we have the situation drawn with an arrow coming out of
the situation to denote machine-dominated situations that need to present coherent,
navigable results with affordances for human user interaction. When these situations
themselves are generated from mixed human–machine systems and/or they have to
present a human-like presence, the requirements become demanding.

In each of these cases, we will propose a common strategy of abstracting elements
into a suitable type system for category theoretic reasoning. This approach presents a
novel solution that should in many cases work in parallel with piecewise solutions to
the above problems using reasoner or context elaborations. An example is a solution
for trust in simple autonomous systems (Jacovi et al., 2020). In this approach, insights
from explainable AI have been repurposed for explication as ‘contracts’ published
for examination by a client or its administrator.

A common model of these processes has fact (or data) structures and operations.
We suggest adding an element of ‘situation’ that:

• contains facts that are known and those that are not yet known but have influence;
• is interchangeable with ‘fact structures’ depending on context, where context is

also a situation; and,
• contains process-typed fact structures that can be instanced as operations, either

retrospectively (this is what got us here) or projectively (this will contribute to a
future space of situations).

With this added multifaceted element, we can reason with arbitrary introspection
about effects, futures and unknowns as described below.

13.2 Moondoodya, a Novel Electronic Warfare System

Here is a fictional embodiment we will come back to as an example. The system
is an active electronically scanned array (AESA) radar using a synthetic aperture.
As a class, these consist of many independent transmit-receive modules, typically
connected by a single computer. With some coordination, the array can receive and
send complex directional signals. By analysing the signals it receives, it can often
determine a great deal. These systems are a significant component of the modern
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Fig. 13.4 An example transmit receive module

defence force, and a candidate for advanced human/machine autonomous systems
once vexing barriers from formal underpinnings are addressed.

The more dispersed over a large area the transmit-receive elements, the more
sensitivity and directional control it has. Among the several uses of these systems is
electronic warfare (EW), constituting the most complex use among several others.
A typical EW function will be to encounter a signal by passive or active means,
determine its nature and intent, and then by various devious means work to thwart
that intent. In the general case, these systems talk to or control action by others,
for example to control kinetic actors. But in our example, we only receive and emit
signals in an EW context.

Needless to say, the sophistication of such systems is in the central processor and
the training it has received. However, say we have a high speed missile attack against
a ship, and we need a large temporary array some distance from the ship. It needs to
only operate for a few minutes, but has to be much larger (more dispersed) than can
be connected to a single powerful computer.

Our solution is an autonomous system of physical agents that consist of transmit-
receive modules where each has a local computer, power and enough rocket propel-
lant to stay more or less fixed in space for a few minutes. Figure 13.4 shows the
design of a single unit which is about the size of a thick matchstick.

Figure 13.5 shows how multiples of these can be packed for delivery by a 50
calibre machine gun, 5 inch naval ordinance or in an existing canister system that
can disperse 18,000 + elements in a 70 × 70 × 50 m space.

Nulka1 is an existing EW system that is launched on attack from a ship (Gambling
et al., 2013). Using a rocket engine, it hovers behind the ship and uses a single

1 An Aboriginal word for ‘be quick’.
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Fig. 13.5 Transmit receive module packing

Fig. 13.6 Three phases of moondoodya

processor and antenna to lure a missile away. It used to work well. Moondoodya2

replaces that with an autonomous system. In phase 1, the ship is advised of an attack.
All of the 18,000 processors are connected together and to the shipboard system and
its cloud. Some information about the threat is loaded into the Moondoodya canister.
In Phase 2, the canister is launched from the ship, taking 9–16 s to get on station.
During this time, all the processors act as one and potentially receive updates from
the ship, perhaps by wire. In Phase 3, the units are dispersed. Figure 13.6 illustrates
the sequence.

The processors separate at contact bumps (light green in Figs. 13.4 and 13.5), and
we are left with a huge, mostly homogenous autonomous agent system. (The differ-
ences among elements are their hardwired frequency optimisations.) The combined
system uses what it knows at release to listen and interpret what is going on with

2 An Aboriginal (Barngarla) word for ‘all at once’.
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current adversarial threats that are designed to be inscrutable. The system has to
figure out the game, and fool or flummox the missiles somehow. It is a remarkable,
shifting game of life and death; we count on the adaptive nature of our system and
its broad capabilities to send the right signals.

The challenge is that the 18,000 or so units in the system have to collaborate
by implicit reasoning. They are completely isolated in space. There is no time or
capability for explicit communication or direct collaboration of any kind. These
units have to adaptively reason not only about what the adversary might do and how
to affect adversarial reasoning and control processes, but they have to do the same
thing for all of their sibling units, every one—including those that break or go rogue.

For each processor, situations to be captured include what it thinks are the salient
features of situations it believes to be influential or indicative and passively commu-
nicate resulting intent to siblings. This communication will take into account what
the sender thinks that sibling believes is the situation of the adversary(s), what it
believes the aggregate will recommend, and what it needs to do.

We as the EW operator will have to characterise these intents and effects in sum,
and run a large number of distributed simulations to advise the executive so that
the emergent behaviours are faster and more effective than with a single unit. This
‘training’ can continue up to the explosive separation. What we are hoping for is the
ability to cleverly respond to unknown adversarial profiles.

We like this fictionally constructed example because we can assume all of the
agents are identical, with no privileged information or role. Explicit collaborative
communication is completely eliminated, throwing all of the influences into inferred
situations. The external trigger (the adversarial missiles) is explicit across the system.

Using our situation-centricmodel, we can characterisewhat situations the systems
and components need to consider. Table 13.1 lists these. Each unit needs to reason
about what to do to support the system’s activities elsewhere in the list (as situations),
and each of these must maintain models of the adversary further to the right. All of
these are situations; most of them contain unknowns as we move from top to bottom
in the table. Many of these must have and use models of the others.

13.3 PTSD Fear Extinction

Post-traumatic Stress Disorder (PTSD) is a rewarding condition to study for our
purpose. It is epidemic in the military, including among non-combatants. PTSD is
common in the civilian population as well (Kirkpatrick et al., 2013); we expect an
explosion of COVID-19 induced PTSD cases both from the disease and its counter-
measures, and from an expected refugee crisis exacerbated by COVID-19 (Shevlin
et al., 2020). We know the best way to treat PTSD is by encounter therapy (Hoyt &
Edwards-Stewart, 2018), where the initiating event is resituated safely. But skilled
therapists are scarce and each case is unique. If we had better models of the influences
entailed in individual PTSD cases, we might generate useful virtual reality toolkits
for treatment of ‘Fear Memory’ (Nieminen, 2016).
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Table 13.1 Moondoodya situations

Our Deception Activities

How to defeat their Deception Activities

How to defeat their Uncloaking Activities

Our Detecting/Uncloaking Activities

Stealth

Decoys

Projected Profiles

Non-Target Probing Queries

Out of Scope Behaviour

What is their Kinetic Intent 

What is their EW Intent

WHAT WE NEED TO KNOW ABOUT THEM

WHAT WE NEED TO KNOW ABOUT OURSELVES

Who & Where we present ourselves

AS A SYSTEMAS A UNIT

Who & Where we are protecting

How to support =>

PTSD impairs about 5% of all adults and 20% of police and military personnel
worldwide. It is implicated inmost cases of substance abuse, depression, and suicide.
The drug cost for serious mental illness is AU$150b/year and is the fasted growing
pharmaceutical sector. So there is utility of a readable, accurate cognitive/neural
signal model as an application, but the primary attraction for us is that it involves
notions of agent, information flow and effect that inform the waywe perform situated
reasoning. Our rationale for this examination is that whatever paradigmwe employ in
systems likeMoondoodya must be similar in key respects to howwe relate situations
to decisions. The reasoning for this is explored in a previous study on executive type
systems (Goranson & Cardier, 2013). The understanding is that these systems are
intrinsically mixed human–machine systems and core abstraction principles must be
shared between the human and machine ‘hardware’ for shared ontology and logical
foundations.

Therefore, the account of PTSD pathology here is superficial. The initiating event
happens in the world is cognitively captured and consciously recalled. Deeper in
the brain, other structures contribute to the disorder. Figure 13.7 illustrates the high-
level processes. A patient brings a unique psychological profile to the encounter
(1) and has a traumatic experience (2). He/she forms a memory of the event (3)
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Fig. 13.7 Sequence of PTSD

with associated neural circuits (4). PTSD symptoms result (5). Trigger events may
reinforce and deepen the disorder (6). Encounter therapy resolves the PTSD’s ‘fear
memory’ (7) and allostasis is achieved (8). We focus on the functions in the light
blue box, straddling that cognitive/reasoning boundary.

Figure 13.8 tracks what happens in the brain (Sanford et al., 2015). We are not
really concerned with PTSD details beyond this high level. The pink and purple
connections are neural circuits among different areas. The key dynamic is the purple
circuit. An event is perceived in the usual way, and a memory is formed in the
Prefrontal Cortex. Meanwhile, the same event is perceived by the Amygdala, which
triggers an initial alert mechanism. Because the Amygdala is alert, it prevents the
circuit of Frontal Lobe, Hippocampus, and Amygdala from resolving. That circuit
persists through the disorder. Other signals deep in the brain are activated; the primary
result is that sleep is deprived, and rapid-eye movement (REM) enabled dream reso-
lution is prevented. Secondary symptoms result that can be life threatening. The
disorder is resolved by revisiting the event in a non-threatening situation, resetting
the Amygdala’s alertness trigger and allowing the primary circuit to resolve.

The relevance to our immediate problem is that there are two distinctly different
neural systems at work. The neural processes in the prefrontal cortex are the model
used when the term ‘artificial intelligence’ was devised more than a half century ago.
This system interacts with the world, perceiving, reasoning, learning and forming
memories. This system does not use logic, nor any algorithmic equivalent, but we
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Fig. 13.8 Major PTSD circuits

do create logical statements when describing reasoning. Neural networks in the
machine-learning sense have essentially nothing to do with brain neurons. Yet, we
can readily map the processes of cognition, reasoning and memory to the compu-
tational model devised by von Neumann. That model is used by every computing
device (Goldstine, 1980).

von Neumann also was the first to demonstrate that set theoretic foundations
are inadequate to model the world (Birkhoff & von Neumann, 1936). This lack of
capability is a significant problem because set theoretic methods, in logic, linear
algebras, and algorithms are what we are stuck with for essentially everything in the
agent systems we have illustrated in Fig. 13.3.

Figure 13.9 illustrates the types of neural processes in PTSD, and of course, most
reasoning that reaches from the world to bodily mechanisms. A similar study of
how olfactory neural regeneration is affected by experience and memory reveals the
same dynamic (Goranson&Cardier, 2013). In this illustration, we are simplifying by
omitting the influence of the Vagus Nerve and gut microbiome, but in the discussion
that follows, register them as additional ‘blue blobs.’

In the figure, the rectangle is our reasoning system and our red blob the memory
in the conventional sense. The combination of event, history, genetics and so on plus
the memory constitute the situations of Figs. 13.1 and 13.3. The oval and its two
associated ‘blue blobs’ are something quite different. Neurons are involved, but they
are physically distinct and with different signals. Memory of sorts is involved, but
more like intuition operating on an evolutionary scale; these are denoted in blue.
Recent discoveries may indicate that the physical conveyance of synaptic material is
fundamentally different. In our ‘red’ systems, the mechanism is chemical. The ‘blue’
is genetic.

The blue blobs are altogether different from the red, being more instinctual and
more like influence templates. This oval/blue system has evolved over eons, built for
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Fig. 13.9 Different neural abstractions

survival purposes and adapted to work in a self-aware collective system. We have
labelled typeA those that influence the rectangular agents and their red blob artefacts.
Some of thesemay have some character that can be ontologically sorted, but probably
not much. Type B on the right is more ephemeral and affect blue blobs only. If we
were emulating this system, Type B centric situations could not be captured by any
conventional agent or machine learning system. It is this second reasoning system
that we reference in our approach.

We are not emulating a brain any more than ordinary AI or ML does. But we will
use representational conventions informed by the way our minds work where we can
because it should assure that human–machine integration is better, and that our goals
for ontic registration are better achieved. (In previous work we have made the case
that ontic phenomenology, meaning ‘world-inspired’, has to inform the type system
of an introspective reasoner.)

We think we can approach building an abstract executive reasoner, using such a
pragmatic metaphor and distinguishing between two types of memory with some
simple mathematical tools, still emerging.

13.4 A Mathematical Approach to Executive Abstraction

An influence on our approach to this second-sorted reasoning executive harkens back
to the original von Neumann challenge to find a class of ‘geometric logics’ that could
complement the logic machines use to allow fuller modelling of the world, including
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the challenges of Fig. 13.3. In the last decade, this challenge has apparently been
successfully addressed by Abramsky and Coecke at Oxford (Coecke, 2012).

Theirmotivation is different thanours: they address the vonNeumannchallengeon
its mathematical merits, while their application domain is to support better models
for physicists. Their work is within a tradition of using category theory to model
influence spaces, allowing them to immediately inherit a body of implementation
techniques using functional programming.

Elsewhere, we have described in some detail our use of categoric sorts, situation
theory, narrative coherence, and ontic pragmatism (Goranson et al., 2015). In this
chapter, we add two implementation strategies.

In short, we build a synthetic categoric reasoning system to reason in parallel
with the legacy in the target domain. So far, we have mentioned cognitive/neural
modelling for PTSD and implicit autonomous systems for electronic warfare. This
is a two-sorted system where results in one are reflected in the other, each reasoning
to complement the other. The second sort is populated with categoric abstractions as
described below.

We use modern situation theory (Devlin, 1995) to relate the categories to contexts
and influences. Within situation theory, we use a narrative coherence to order and
bound the category instances and capture influence. Narrative coherence is the
strongest connection between the second sort and the neural model as captured in
the red and blue blobs.

The type abstraction strategy is described below; but the type instance strategy is
ontic pragmatism. That is, we follow mainstream convention but do it deliberately,
using real world metaphors where possible.

13.5 ‘Effect First’ Modelling

A novelty we use is modelling ‘backwards’ from effect to cause. The technique is
simple. Figure 13.10 illustrates what we are dealing with.

On the left, we have a stack of four boxes, collectively modelling an agent system.
For us, these are autonomous agents with an introspective layer. From the bottom, we
have the set theoretic model of the agents and their logic. Next up, also set theoretic,
as indicated by the red colour, is what is known. This includes both the state of the
system, the results as controls, and the working memory that in an old fashioned
system may be beliefs, desires and intents. These two elements represented by the
lower two boxes are the ‘first sort’ in a two-sorted system, and in most cases are
legacy decisions.

Above that in blue are the twoelements of the ‘second sort’, of executive reasoning.
These two have a similar relationship to each other. The colour code shared with
the red and blue blobs is deliberate. This blue pair models influence and influence
coherence (and dissonance where it exists).

The stack on the left is before a state change and that on the right after. We
have used these to denote on the left the complete space of all the designs of an
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Fig. 13.10 Modelling from agents

agent system in an initial state space, and the column on the right being all possible
results. The right hand column is the ‘effect space.’ Today, the way agent systems
architects design systems is they start with the left, assuming they know what will
result. (The influences are implicit; current methods cannot formally model them
now.) We currently use different techniques to assure the desired effect space within
a desired level of confidence. We can simulate and prune outcomes. We can train
constrained systems to produce outcomes based on inputs. If everything is known
and made explicit, we can apply formal verification systems. If it is just trust that we
are worried about, we have some suitable emerging techniques (Jacovi et al., 2020),
but only if everything is well defined and behaved.

But all of this is costly in interesting cases. Generally, it is imprecise, and in
any case, anything known about influence is lost. Losing the influences is partic-
ularly harmful for designers of military forces and strategies. The goal in modern
military systems is to work in multiple domains (Diplomacy, Information, Military
and Economic) to modify influence to thwart an adversary or move one across the
line from conflict to competition. The whole goal is an effect space with designed
influence.

Figure 13.11 shows what we can do instead of the analytical flow of the previous
figure.

Step 1: If we have suitable models in the stack, we can ‘go backwards’ by
modelling the universe of outcomes we want. Specifically, we can engineer the
states that constitute a desired outcome. The user can impose whatever mix of values



272 M. Garcia et al.

Fig. 13.11 Effect space modelling first

are desired, including predictable trust, ergodic profile, degree of novelty or simple
effectiveness. These will be shown as graphs or lattices in the examples below.

Then in step 2, we move to the influence space that produce the desired effects.
Influence is a more subtle and complex notion than cause, as it includes indirect
effects, changes in interpretation, retroactive logic, and composed salience. Else-
where, we have addressed methods to model influence at this level (Cardier et al.,
2017).

This blue influence space in Fig. 13.11 is the executive for autonomous systems
of our chapter’s title.

Step 3 is the simplest of the four steps because modelling influence at all requires
modelling the entire generative history. The best implementations tend to use reactive
functions, so the entire history is available and potentially browsable if we have any
successive state. Moving from a model of influences of a resulting effect space
through the causal history of influences to a beginning state space is trivial.

If the first three steps are performed, then compiling an agent system design space
is not difficult. We will still have to work with tradeoffs to select the right balance
for satisfying the design criteria, including those of Fig. 13.3. But we will have a
validatable formal path to outcomes or outcome probabilities.
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13.6 A Closure Embedding Strategy

A significant problem we face is that generally we have to take the world as we find
it. The tasks we can support with current methods have profound limits, and only
work with cleanly tailored environments and representations. To a large degree, the
examples in this chapter are simplified for the purpose of exposition, but we are in
the business of building real systems for defence and industrial settings.

Real systems and information in these domains are challenging in the ordinaryway
from legacies: bad decisions and poor housekeeping; and from design omissions that
have accepted implicit assumptions without examination. But even in the cleanest
of domains, the information and code is not friendly to abstraction into our second
sorted executive system for influence reasoning. So we need a flexible toolbox of
abstraction methods to coordinate our red and blue systems.

This is not a data and ontology abstraction exercise. We have to abstract the
dynamics (and potential dynamics) of a system. If we perform the effect space anal-
yses noted above, we have to abstract every possible system design in the space; this
requires that we ensure that the reasoning in the new (blue) reasoning space is closed.
That is, whatever allowable operations we perform over our newly typed system has
to produce results in the same type universe.

One reason we perform this abstraction is because we want to extend the power of
autonomous agent systems to work with unknowns, specifically unknown influences
or partly understood influences from unknown causes. As it stands, agent systems—
or any von Neumann system—cannot do well in an open world. ‘Open’ means that
it contains elements and relationships outside of the defined or known scope.

We suggest a clever abstraction strategy that allows openness in the base system
by abstracting into a second executive reasoner where operations are closed. But that
means we have to worry about abstracting and closure at the same time. Our solution
is in the next three figures.

Our goal is to host our second sorted reasoning calculus in monoidal categories;
we have justified that elsewhere (Goranson, 2020). One reason is that this is what the
Oxford lab does in addressing the vonNeumann challenge; we provide its underlying
formal mechanics.

Figure 13.12 illustrates Types of Closure.
In Fig. 13.12, solid black arrows represent closure from the source to the target,

e.g., the arrow from PS to CS ‘adds in’ what is necessary to turn PS into a Carte-
sian closed category. When such a closure exists, it is unique. Dashed black arrows
represent the use of a canonical product structure. These appear only with targets in
the M domain (in yellow), since there are potentially many monoidal structures on a
given category. In this diagram, we are always using the product structure on hand,
but there are often other paths to get to M.

The hollow dashed arrow on the right represents that if we perform enough closure
operations to get to T, and it is determined if we have landed in the E domain. Put
another way, not every topos can be made into a model of synthetic differential
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Fig. 13.12 Types of closure

geometry. A more practical way to leverage the E domain is by embedding our
situation S into known models of synthetic differential geometry (SDG).

Each domain is inhabited by a specific type of category:

• P for categories possessing products.
• A for abelian, categories whose objects act like groups or vector spaces, where

homology happens.
• C for Cartesian closed, categories whose internal logic serves as a model for the

lambda calculus.
• T for topoi, categories whose internal logic is intuitionistic. These categories arise

from sheaves on topological spaces.
• E for synthetic differential geometry, certain topoi that are well adapted to model

physical/mechanical scenarios.
• M for (symmetric) monoidal categories, whose logic is linear and used to model

quantum dynamics.

Closure operations should be used when we are trying to generate a context for
reasoning that depends most heavily on an initial seed situation that we are interested
in. Each closure operation is unique (when it exists).

Figure 13.13 illustrates a set of concurrent operations for embedding or
abstracting.

Solid red arrows represent embedding of the situation S (read: directed graph) into
a category in the relevant domain. The diagram can be misleading. In reality, there
are many arrows here; not only might a graph be embedded into a particular category
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Fig. 13.13 Embedding strategies

in many different ways, but the category itself could be one of many categories.
Dashed red arrows represent the use of a canonical product structure that depends on
the embedding that precedes them. These appear only with targets in the M domain
since there are potentially many monoidal structures on a given category. In this
diagram, we are always using the product structure on hand, but there are often other
paths to get to M.

In Fig. 13.13, starting fromour simple graphmodel of S, we can potentially embed
into any domain we please. This contrasts with the closure situation since each nested
domain is dependent on the last.

The drawback of this approach is the potential for ‘noise’ to drown out the salient
features of S that an analyst might want to pay attention to. The benefit is that if the
analyst has a particular idea of what tools to use or if S exhibits certain features that
are native to a certain domain, she can examine several test cases together rather than
being forced to work with something as narrow as closure.

The possibilities addressed in Figs. 13.12 and 13.13 represent only a single step
from the base sort (our red boxes in Figs. 13.10 and 13.11), and the executive sort in
the blue boxes.

Embeddings should be usedwhen a situation at hand is not necessarily the primary
focus of the analyst. At first, coherent use of embeddings will rely on some sort of
‘instinct.’

Figure 13.14 illustrates how these can work together.
Thin, faint dotted arrows shown in the colour of their domain represent functors

between categories native to that domain. In this diagram, most all of these are added
for effect and have no particular significance at present. Bold, dotted green arrows
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Fig. 13.14 Working together

are also domain specific functors; however, they are coloured this way to highlight
their importance as examples of what steps need to be taken in further investigations.

We begin with three situations: (S1) the situation of primary focus, and from a
graph theoretical perspective the most complex, (S2) a situation describing what is
known about an enemy’s intelligence; and (S3) a description of a physical system
S1 is dependent on, e.g., a control system for a series of robots executing vision and
actuation tasks by using a system of differential equations.

The analyst has chosen to examine both the AS1 and TS1 while embedding S3 into
a topos (in the T domain) and S2 into an abelian category (in the A domain).

There is an abelian functor (possibly ‘exact’ is enough) between the AS1 and the
category that S2 is embedded in. This is the green arrow in the A domain.What is the
relationship between the green arrow in the A domain and the corresponding green
arrow in the M domain? If the functor in the A domain happens to be monoidal, then
we have an answer. If not, we have to investigate.

The green arrow going from the E domain to the T domain illustrates an important
general point: functors can cross domains, always frommore specific to less specific,
but under certain conditions in the other direction as well. What are such conditions?
Some cases are well documented facts, others require new mathematical research.

The answers to these questions will shed light on how exactly new entities, rela-
tions and information in general enter into the structure of where situations naively
reside (the RHS). Jointly, the relationships reflected in the functors present in the A,
M, T and E domains enrich the structure of our beginning situations.
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The broad mathematical problem at hand is to determine how exactly the mech-
anisms of embedding and closure relate to one another. Less structural, but equally
important, we need a way to effectively filter the noise introduced when embedding
situations into categories and think about how to start building a model of what an
analyst should intuit.

13.7 The Tookoonooka3 Vortex Collaborative

This fictitious example is more complex, with agents, memory and messages being
less conventional. The goal is enhanced submarine detection and surveillance.
Usually, this requires a combination of hardware sensors; with some emitting and
many others listening. The hardware to support these sensors is expensive and hard
to put into the right place (Iqbal et al., 2020).

This system consists of special purpose directed energy (DE) systems aloft, and
a fleet of unmanned underwater vehicle (UUVs). With a relatively low-energy long-
wavelength pulse, a beam can opportunistically create a vortex in the surface of the
ocean (Kleckner & Irvine, 2013). An artist’s rendition is shown in Fig. 13.15.

A simple way to use these three systems (DE, Vortex, and UUV) is to have the
DE create the vortices as sonic emitters, and the UUVs as listeners. However, once
created, these vortices can be sustained for long periods by modulated DE beams
of a second kind, creating vortex knots. An example from the lab is illustrated in
Fig. 13.16.

These vortex structures are turbulent internally, but the envelopes are collectively
sensitive enough to be a listening array for pings generated by both the DE vortex
initiators, and theUUVs. Their forms perturbwell enough to be queried by theUUVs,
which can share information about what is in the sea with appropriate assets. Each
vortex tells you very little, but we can support hundreds of thousands of vortices.

In this mode, we get a scalable, cheap detection system across wide areas, but it
has no intrinsic intelligence as a system. There is no autonomy in the useful sense. But
we can extend the speculative system to make it autonomous at low cost. Supposing
that once we create (for pings) and sustain (for listening) the vortices, we modulate
the sustaining DE system such that each vortex now contains information.

Information physically flows from the DE emitters, to the vortices, to the UUVs,
and back to the DEs. Also, there is an information flow of pings from the created
vortices and the returned pings distorting listener vortices. No information phys-
ically flows among the vortices as shown in Fig. 13.17. Yet we can consider the
vortex cloud an autonomous agent system, reasoning among itsmembers to probe the
ocean to discover objects and report results, maintaining situation visibility through
fractional awareness. The presumably unmanned drones in the sea and air support
communication and remote processing, but are only for support.

3 Tookoonooka is in Queensland, Australia and the location of the planet’s largest known impact
zone. It is effectively invisible, occluded by geomorphological flows.



278 M. Garcia et al.

Fig. 13.15 Directed energy vortex induction (artist’s rendition)

This is a simpler example in some ways, but requires a bit of imagination. We will
define the autonomous system as centred on the surface vortices; the fact that the
communication and reasoning are handled ‘out of a vortex’ is not significant. The job
of the system is simpler than with Moondoodya: just detect and reveal what is there.
We can function as a sonar-based AESA, over a much greater area: one DE platform
may support up to 245 km2; but the physics are constrained: the sonic character of
the medium is variable (surface weather, thermals, and fauna); the induced pings
will only sometimes be resonant structures; the location and effective capabilities of
the UUVs will be essentially random; and the pings are not directed aggregations.
We expect most of the identification will be introspective, to pull out the defects and
noise of the system.

In this case, referring to Fig. 13.14, S1 may be the state of the objects in the ocean;
S2 the intrinsic noise and impediments from the physics, geometry and conditions;
and S3 the combined actions from the system to maintain or improve its accuracy.

We have included this example because the system itself is physically irregular
and most of the unknowns come from non-entropic process effects.
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Fig. 13.16 Mechanically induced trefoil hydrovortex (adapted from an image by Irvine Lab,
University of Chicago)

To implement each system, we have to take care in three areas that the examples
are designed to illustrate.

The first grand challenge is that we are conveying structure across diverse abstract
frameworks in real time with engineered loss so that essential relationships are
preserved.A fundamental question concernswhat the essential elements of that struc-
ture are. We are working toward a ‘Bletchley Park’ level study of symmetries and
structure to understand this in the general case. Constraints come from the axiomatic
foundations; from the limits of managing the programming and processing compu-
tationally; others from the need for intuitive expression; and, finally, we have the
aforementioned constraints of ontic phenomenalism.

We believe general principles can be developed in time for next generation
systems, hardware and computing paradigms. But for now, we will require that
there be a consistent geometric metaphor across the P-A-M and P–C-T-E-M paths in
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Fig. 13.17 Vortices as a virtual autonomous system

Figs. 13.12, 13.13, and 13.14 that can bemodelled (as we have there) as introspective
signals.

The Moondoodya example is able to model everything as ordered interference
patterns across three spaces. The first is physical space, thenwe have a computational
space (consisting of signals through junctions) and we have a spatially distributed
semantic space of intent. In this way, we have cheated by inventing an EW system
that can be uniquely implemented by this introspective technique. The Tookoonooka
example is a simpler cheat because the geometry in all cases is physical, even the
memory is in the geometry of engineered turbulence.

The second grand challenge is similar, but instead of rationalising across the
domains of Figs. 13.12, 13.13, and 13.14, we rationalise across the translations with
the arrows. They need to be in a coherent framework separate from the abstraction
spaces as the basis of the second introspective layer. All else is implementation.
The requirement is that all of the black arrows—the inter-space closure assurance
arrows—need to be functorial. This follows from the requirement that the black arrow
operations be introspective. Any legal combination of these black arrows has to be
able to form an adjoint relation with the relevant component of a P, A, C or T. Mathe-
matically, we assure this by constraining to a single right-adjoint definition, whichwe
may get for free from the programming architecture we choose. We suggest Elixir,
which is a version of Erlang. Erlang is a distributed processing paradigm that supports
functional programming where messages can be functions. Elixir tailors the founda-
tion to be reactive and suitable for a domain specific language that preserves right
adjointness. Elixir in its native form is suitable for the Tookoonooka example. We
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can engineer and simulate Moondoodya in this environment, but to be implemented
it has to be compiled to bare metal using techniques not yet devised.

The final grand challenge is that we have to understand and manage local intro-
spection. We may have to maintain several formal mezzanines on our way to cross-
situated two-sorted reasoning. Each step is lossywhile granting additional reasoning;
that is the nature of abstraction.Thatmeanswhen applying the right-adjointness noted
above in a local context for a specific purpose, the situation is bounded to the local
space. A simple example might be evaluating a trust model. Intuitively, one should
understand that trust is bound to context, and neither commutes nor associates, so an
aggregation model of global trust needs yet to be devised. This is an open issue and
may require pseudo-functors and bi-categoric references in each abstraction space.
Very likely, our research agenda will work from this third grand challenge back-
wards through the other two by using illustrative examples to implement seemingly
impossible autonomous systems.

13.8 Conclusions

We used two fictitiously constructed examples and a neural template to illustrate an
approach that leverages a number of ideas to provide unique benefits. The central
concept of this chapter is the technique of abstracting into a category theoretic second-
sorted executive reasoner in such a way that closure is assured. The result can then be
used to reason from effect-space models to engineer systems that can gracefully deal
with challenging situations.We presented two. Such situations can present unknowns
as agents and influences, require various audits and verification, present navigable
interfaces, and harmonise diverse ontologies and types.

Experience with these systems in practice is scant and proofs of concept will be
achieved in the next step by critical simulations and small scale tests.
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Chapter 14
Contextual Evaluation
of Human–Machine Team Effectiveness

Eugene Santos Jr, Clement Nyanhongo, Hien Nguyen, Keum Joo Kim,
and Gregory Hyde

Abstract The adoption of human-machine teams is rapidly expanding in many
domains such as healthcare and disaster relief. Fueled by novel advances in robotics,
artificial intelligence, and other technologies, machines with relatively high degrees
of autonomy and self-awareness are being developed to improve efficiency and
productivity in complex dynamic environments. The traditional role of machines
as human tools is shifting to one where they now serve as human collaborative
team partners. Despite this progression, evaluation of human-machine team perfor-
mance remains ill-defined. In many human-machine team settings, end-users rely
on metrics that are insufficient at explaining a team’s performance. Explanations
are crucial because they help understand a team’s operational dynamics and identify
the shortcomings that individual agents (human or machine) introduce to the team.
To address this explanation gap, we introduce a context-specific interference-based
methodology to evaluate human-machine team effectiveness. Interference provides
a measure that reflects the cohesiveness and compatibility between the goals of the
human and the machine agents. Context is essential as human-machine teams are
deployed in various settings. Our methodology relies on using a classifier that is
trained to map human-machine team behavior to a set of behavioral attributes that
are directly linked to the team’s performance. These behavioral attributes provide
high-level explanations about the team’s observed performance outcome and insights
on the mechanism of team interference. To test our methodology, we conduct experi-
ments involving the teaming of humans and scripted bots (machines) in a StarCraft 2
game domain. From these experiments, our classifier achieves an accuracy of 84% in
predicting agent behavioral attributes from a set of 18 unique classes. To validate the
use of this classifier in our evaluation approach, we compare the Pearson correlation
between predicted team win-ratios and observed win-ratios, and we achieve a statis-
tically significant score of 0.76. These results suggest that predicted team attributes
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reflect the actual team behaviors; hence, we can confidently apply the predicted team
attributes to evaluate and prescribe human-machine teams.

Keywords Human-Machine teams · Context · Evaluation · Effectiveness ·
Interference

14.1 Introduction

The objective of human-machine teaming is to create synergy between humans and
machines to outperform either machines or humans if performed by themselves
(Bolstad, 2019). This synergy was traditionally achieved by letting machines and
humans specialize in tasks that they individually excelled at. For example, machines
would specialize in computational, memory-intensive, and repetitive tasks while
humans focused on tasks requiring intuition, adaptation, innovation, and creativity.
With advancements in robotics and artificial intelligence (AI), machines’ capabilities
are continually improving, and machines can now perform tasks that were once only
dedicated to human operators (Barro & Davenport, 2019; Krach et al., 2008). This
development has shifted machines’ role as simple tools to human-level collaborative
partners (Hoc, 2001; Seeber 2020). With the world’s ever-increasing complexity in
the age of Big Data (Katal 2013) and AI, humans cannot only rely on their individual
abilities, but need to harness machines as teammates in order to boost productivity.

Human Machine Teams (HMTs) are being successfully deployed in different
application domains. In healthcare, for example, brain-machine interfaces (BMIs)
are being developed to establish functional connections between human brains and
assistive devices that restoremotor and sensory functions in patients (Lebedev, 2014).
In addition to treating patients, BMIs also have potential applications in computer
games and autonomous driving (Isa et al., 2009; Biondi 2017). HMTs are also being
developed to aid disaster relief after earthquakes, floods, and other natural disasters
(Driewer et al., 2005), as these rescue tasks are dangerous for humans. In these rescue
scenarios, mobile robots (machines) can potentially be used to navigate dangerous
terrain, detect explosions, and lift heavy material that an ordinary human might not
handle, whilst humans play a supervisory role to instruct andmonitor the robots since
they (humans) naturally have superior adaptive and situational awareness abilities.
In social media sites such as Reddit, humans augment predictive AI algorithms to
help with content moderation. Human moderators provide guidelines and regulation
tools which form keywords and phrases that the automated systems use to identify
violations. The HMT combination ensures that transparency and acceptable content
delivery is efficiently achieved to the intended end-users (Jhaver et al., 2019). HMTs
are also useful in many other applications such as virtual assistants, text prediction,
and aviation. Given the wide range of HMT applications, our goal is to develop an
explanation-based HMT evaluation approach that could ultimately be generalizable
to these different application domains.
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Most HMT evaluation approaches focus on performance-related metrics such as
accuracy, coverage, efficiency, and false-alarm rates (Crandall & Cummings, 2007;
Elara et al., 2010; O’Connell & Choong, 2008; Steinfeld et al., 2006). These metrics
are essential in a team’s evaluation process, but they are limited since they do not
provide insights into the team’s operational dynamics. We consider team operational
dynamics to be cognitive interactional factors such as synergy, cohesion, or situa-
tional awareness (Cuevas et al., 2007). These factors are often intangible, difficult
to quantify, and they typically require users to rely on subjective ratings to esti-
mate them. In this work, we develop a data-driven methodology to incorporate these
operational dynamics through reward functions that are computed via inverse rein-
forcement learning (IRL) using a team’s past behavior. Reward functions reflect
underlying agent goals and preferences; hence, we apply them to capture unique
agent behavior. We map these rewards to high-level behavioral attributes (behA) that
are connected to a team’s performance metrics. These behA provide insights that
will then help to explain a team’s performance.

In our evaluation process, interference is used to capture a team’s interactional
processes. Interference occurs when the goals of one agent affect the goals of the
other agents (Castelfranchi, 1998). When positive, it boosts a team’s performance,
and when negative, it degrades the team’s performance (Hoc, 2001). Interference is
likely to arise due to differences in communication mechanisms, roles, capabilities,
adaptiveness, and responsibility between humans and machines. Agents should be
aware of their teammates’ needs, social hierarchy, and cultural norms. Human agents
usually have superior communication and situational awareness, while machines
often struggle with these skills (Damacharla et al., 2018; Endsley & Robertson,
2000). In most situations, the human agent takes a supervisory role to understand
and allocate tasks to the machine(s) during cooperation (Vagia et al., 2016; Seeber
et al., 2020).When the human understands themachine and can fully capitalize on the
machine’s strengths and abilities, positive interference is likely to occur. However, if
the human fails to understand or anticipate the machine’s goals, negative interference
will likely happen. In this chapter, we perform experiments to examine how these
human-machine dynamics interplay in an adversarial video game, StarCraft 2 (SC2).
Each human-machine team comprises a human agent and an artificial bot (machine)
designed to execute a given strategy. The designated goal for the HMT team is to
defeat the default SC2 AI opponent by destroying its units. For the experiments,
we use win-ratios (defined as the percentage of wins per game) to measure the
performance of an agent, and behA to explain why the agent achieves its performance
score.

To analyze interference, we compare differences between the HMT behA and the
individual team members’ behA (humans and machines). These behA are character-
istics that affect how the agent (human, machine, or HMT) behaves; they provide a
high-level explanation that allows the interpretion of an agent’s expected behavior and
performance. Examples of behA could be an agent’s speed, computational power,
or its number of sensors. Interference may reflect positively in teams composed
of similar team members (i.e., sharing similar behA such as athletic ability). For
example, Cummings and Keiser (2008), found that more interdisciplinary team
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members negatively influenced the productivity of their teams. However, it is also
possible for team members to possess strikingly different compositions that might
complement each other. In our experiments, to study the effect of an individual’s
behA and determine how they relate to human-machine team interference,we assume
that the machine behA are known apriori since we design the bots to behave based
on predetermined behA settings. Given the challenges inherent in determining a
human’s behA, both the human and the human-machine team behA are assumed to
be unknown. Instead, our approach infers these behA (for the human and the HMT)
based on the known machine’s behA. We apply a feed-forward neural network clas-
sifier to map any agent’s (can also be an HMT) behavior to the known set of machine
behA. To capture agent behavior, we utilize IRL, first introduced by Ng and Russel
(2000), to compute reward functions that reflect the agent’s goals and preferences
from past demonstrated behavior. In particular, we employ a new IRL algorithm,
called the Preferential Trajectory-based IRL (PT-IRL), which finds reward values by
discriminating across multiple agents to better differentiate a target agent’s reward
function.

Our classifier achieves an accuracy of 84% at predicting agent behA which are
categorized into 18 classes. In addition, the Pearson correlation between predicted
team win-ratios (from the behA) and observed win-ratios was 0.76, and it was statis-
tically significant (p-value < 0.01). This suggests that the classifier is successful at
capturing agent behavior; hence, we could use its computed behA to infer explana-
tions on howa teambehaved.Ourmain contribution in this chapter is the development
of an intuitive and principled way to analyze teams: by mapping a team to a set of
behA, we are treating a team as an individual, which enables us to compare differ-
ences between the team and its individual members’ characteristics in the form of
behA. This treatment helps to provide insights that explain how interference occurred
and affected the team’s performance.

This chapter is organized as follows: First, we will discuss the related works
which explore foundational work on human-machine teams. Next, the background
section will cover the concept of IRL and introduce a new algorithm that addresses
challenges in existing IRL approaches. The concept of interference will be discussed
in this section as well. After the background section, we introduce our technical
approach, and describe the series of experiments that were conducted. Lastly, we
present our conclusions and possible directions for future work.

14.2 Related Works

In this section, we review related works on the evaluation of team effectiveness
for which either human teams or HMTs are assessed. Some literature from disci-
plines such as psychology, manufacturing, robotics, and AI have examined the
concept of team effectiveness. In Hackman’s work (1978), the author provides three
criteria to assess team effectiveness in organizations. The first criterion is output (or
performance)-related, and it states that for a team to be effective, “the productive
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output of the work group should meet or exceed the performance standards of the
performer who receive/or review the output.” The second criterion deals with the
state of the group as a performing unit, and it states that “the social processes used
in carrying out the work should maintain or enhance the capability of the members
to work together on subsequent team tasks.” Finally, the third criterion addresses the
impact of the group experience on the team members, and it states that, “the group
experience should, on balance, satisfy rather than frustrate the personal needs of
group members.” These criteria make intuitive sense, and they are useful in devel-
oping benchmarks to achieve team effectiveness. However, the major limitation in
practice is that these criteria are often hard to evaluate objectively. For example, in
criteria 2 and 3, it is difficult to quantify the social and personal team processes.
Our approach uses IRL to capture such processes through reward functions that are
computed from a team’s behavior, in addition, interference analysis is performed to
understand how agent goal interactions occur to yield the effective team behavior.

Inmost empirical studies of team evaluation, team effectiveness has been assessed
through subjective ratings since it is difficult to objectively quantify processes such as
cohesion and coordination (Damacharla et al., 2018;Healey et al., 2004;O’Connell&
Choong, 2008). In Glickman et al.’s (1987) work, the authors conducted several
studies to determine team effectiveness in training Navy teams. They gathered a
sample of 13 teams that performed a gunfire support training task, and categorized
these teams as either effective or ineffective based on an exam administered during
training. In one study, the goal was to determine if there were differences between
effective and ineffective teams. They created a list of team effectiveness behaviors
that would measure aspects such as coordination, adaptability, cooperation, and team
spirit. They then conducted surveys on each team’s instructors to rate how their teams
fared on the values of the list of behaviors. Results of this survey showed that effective
teams exhibited more effective behaviors (66%more) compared to ineffective teams.
In a similar line of work, Pagell and LePine (2002) performed a study to find contex-
tual factors that would be predictive of team effectiveness in manufacturing settings.
These factors included work design, informal modes of communication, novelty of
problems, and trust between team members and management. A sample of teams
were collected and categorized as either effective or ineffective based on manage-
ment perceptions of whether they would increase a firm’s competitiveness. From
qualitative analysis on the categorized teams, it was found that effective teams oper-
ated in environments with an output-based design, higher opportunities for informal
communications, more novel problems, and stronger trust between management and
teammembers, compared to ineffective teams. From these studies, it is clear that team
effectiveness is improved when team processes, such as cohesion, coordination, and
communication, work well within a team. However, the major challenge with these
studies is that they are all subjective and qualitative. In more complex teams, it is
difficult to fully capture all the elements that impact a team’s effectiveness; hence,
the team evaluation processes are likely to be weaker.

Our team evaluation process focuses on HMTs instead of human-human teams.
Several empirical studies have proposed evaluation techniques for HMTs. However,
these often focus on performance assessment, which yields non-generalizable results
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since HMTs are applied in a wide range of domains (Damacharla et al., 2018;
Gombolay et al., 2015; Hoffman, 2019; Wang et al., 2016). For example, evaluating
teams on accuracy scores such as false-alarm rates, sensor accuracy and coverage
might only be applicable to specific human-robot domains (e.g., rescue robots),
but not relevant to other HMT domains such as text prediction, health monitoring
systems or our experimental testbed. In our approach, our goal is to provide an eval-
uation methodology that is generalizable to different HMT contexts by allowing for
any desired performance measures. In addition to providing insights about how a
team performs, our approach yields high-level explanation behA that we use in the
interference analysis.

14.3 Background

In this section, we discuss the background work that lays the foundation of our work
including the concept of interference, IRL, and a new Preferential Trajectory-based
IRL algorithm.

14.3.1 Interference

Interference describes how, “the effects of the action of one agent are relevant for
the goals of another” (Castelfranchi, 1998). In simple terms, interference can be
classified as either positive—an agent’s action favors the goals of the other agent(s)
reinforcing team performance; or negative—an agent’s action threatens the goals of
the other agent(s) degrading the team performance as in Fig. 14.1 (Hoc, 2001).

Fig. 14.1 A pictorial view of interference in human–machine teams. Positive interference
reinforces a team’s performance and negative interference degrades a team’s performance
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Interference can be further subcategorized as follows (Hoc, 2001): Pre-
condition—one agent’s activity is a precondition for another agent’s activity; Inter-
action—interference due tomutual dependence (interaction leads towards a common
goal), and reciprocal dependence (interaction leads to individual goals); Mutual
control—the task “actually performed by one agent, by reason of responsibility,
is also performed, but mentally by another agent for checking purposes”; Redun-
dancy—the best available agent performs a taskwhen no agent is allocated to the task.
These definitions tend to be more subjective and unbounded, hence for simplicity,
we only examined positive and negative interference in the experiments.

14.3.2 Inverse Reinforcement Learning (IRL)

IRL is a process by which demonstrated agent behavior is used to infer a reward
function that reflects the agent’s underlying preferences (Ng & Russell, 2000). The
general framework makes use of a Markov Decision Process (MDP) consisting of
a 5-tuple {S, A, P, γ, R} wherein S represents the state space; A, the action space;
P : S × A → S, the transition function which maps states and actions to states;
γ ∈ [0, 1] a discount factor; and, R : S × A → R, the reward function which maps
states and actions to reward values (Bellman, 1957). Conventionally, MDPs have a
well-defined reward function, and in Reinforcement Learning (RL), the goal is to
find some policy π : S → A, which maps actions to states (Sutton & Barto, 1998).
An optimal policy, π∗, is one that maximizes the expected reward over a horizon with
respect to R. Optimal policies can be described by their state-action value function,
q∗, which is defined in the following recurrence relation:

q∗(s, a) = ∑
s ′

,r P
(
s

′
, r

∣
∣s, a)

[

r + γmax
a′ q∗(s ′

, a
′)
]

(14.1)

The q∗ function (Eq. 14.1) measures the value of taking an action, a, in state, s.
The discount factor γ reflects greedy behavior over immediate rewards (when close
to 0) versus distant rewards (when close to 1). IRL shifts the paradigm fromRL in that
no well-defined reward function is given. Instead, the goal for IRL is to infer R from
an agent’s observed behavior. This behavior is expressed in the form of trajectories,
t ∈ T , where t = {so, ao, s1, . . . , an−1, sn} and n is the length of the trajectory. The
transition function P can be estimated from state, action, next state triples (s, a, s

′
)

sampled from the agent’s demonstrated behavior.
Two emergent strategies exist for inferring R from a set of observations. The first

was proposed by Ng and Russel (2000) who formulated a linear program aimed to
maximize the sum of the differences between the quality of the optimal action and
the quality of the next-best action:
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∑
s∈S

(

qπ (s, ai ) − argmax
a∈A\ai

qπ (s, a)

)

(14.2)

Here, qπ simply denotes the state-action value function following a stationary
policy π . However, this approach was mostly unconstrained, resulting in many
possible solutions (some of which are degenerate). To address the ambiguity
of choosing reward solutions, Ziebart et al. (2008) proposed Maximum Entropy
(Maxent) IRL which is constrained to match feature expectations while not being
committed to any viable policy over another. Maxent IRL assumes that the reward
function is a linear combination of the trajectories’ feature expectations, ft :

reward( ft ) = θT ft (14.3)

At each iteration, Maxent IRL computes weights, θ , and aims to minimize the
difference between the actual observed feature expectations of the original data,
and those produced by the current policy. An internal RL step computes feature
expectations of the current policy by taking a backwards pass from the terminal state
and computing action and state probability masses:

Zai , j = ∑
k P

(
sk |si , ai, j

)
ereward(si |θ)Zsk (14.4)

Zsi = ∑
ai, j

Zai , j (14.5)

With Eqs. (14.4) and (14.5), P(a|s) can be determined and in a forward pass,
feature expectations under the current policy can be determined. However, Maxent
IRL has a slow convergence time and assumes state rewards rather than state-action
paired rewards, which may lack expressiveness. Moreover, the primary assumption
of Maxent IRL is that rewards share a linear relationship with feature expectations,
however, it is possible that states may appear frequently due to necessity rather than
being highly rewarding. For instance, consider two regions separated by a fissure,
but connected by a bridge. If the goal is to reach the other side, then an agent must
always pass through the bridge states out of necessity rather than by desire. Finally,
neither described approaches can utilize behavior from multiple decision-makers.
These concerns have led us to develop a new IRL algorithm described below.

14.3.3 Preferential Trajectory-Based IRL (PT-IRL)

To address the IRL concerns described in the previous section, we developed a
new IRL algorithm, PT-IRL. Our approach yields a single optimal reward solution
with rewards at the triple (s, a, s

′
) level and does not assume feature expectations.

Moreover, this algorithm uses multiple decision-makers to form constraints that can
compare and contrast decision-makers on the fly. For our formulation, we consider
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a set of trajectory groups, T = {T1, T2, . . . , TL}, where each element represents a
group of trajectories belonging to an individual decision-maker, and L is the number
of groups. Let ≺ be a partial ordering over T , such that Tl ≺ Tl+1, for all l. Further
below, it will become more apparent what these partial orderings mean, but consider
trajectories belonging to T1 “more alike” to the target decision-maker whose reward
function we wish to infer than trajectories belonging to T2. In past experiments,
we have used four unique trajectory groups, where T1 is the set of decision-makers
trajectories, T2 is the set of synthetic decision-maker’s trajectories (produced using a
neural network generator), T3 is the set of all the other decision-maker’s trajectories,
and, finally, T4 is the set of synthetic other decision-maker’s trajectories. There are
other possible ways to organize these sets of trajectories, and the target trajectories
may not be necessarily confined to T1. We distinguish trajectories as belonging to
the target or not. Let � be the set of all target trajectories and �

′= T − � be the set
of all non-target trajectories.

Using the above trajectory groupings, we begin our formulation by describing our
expectation function over trajectories. For simplicity and ease of reward explanation,
we use a linear expectation. Let tl,m denote the mth trajectory in the lth grouping;
then:

LER
(
tl,m

) = ∑
(s,a,s ′)∈tl,m P

(
s

′ |s, a) ∗ R
(
s, a, s

′)
(14.6)

where R
(
s, a, s

′)
is a decision variable reflecting the inferred reward for a triple.

Note that P
(
s

′ |s, a)
is determined by taking counts over the raw data, however,

because this function represents the world physics, we can take these counts over all
decision-makers. For each grouping, Tl , we assign upper (ub) and lower bounds (lb)
as:

lb(Tl) = min
tl,m∈Tl

LE R
(
tl,m

)
(14.7)

and

ub(Tl) = max
tl,m∈Tl

LE R
(
tl,m

)
(14.8)

We can then define and constrain the spread between trajectory groups for all l
as:

δ(Tl, Tl+1) = lb(Tl) − ub(Tl+1) ≥ 1 (14.9)

While P
(
s

′ |s, a)
is the same across all decision-makers, the preferences reflected by

P(a|s) counts are not. We distinguish between the target’s decision-making func-
tion, P�(a|s), versus the others’ decision-making function, P�

′ (a|s), by taking the
counts over their respective data separately. We then further constrain R

(
s, a, s

′)
by

applying:
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R
(
s, a, s

′) = peak ∗ P�(a|s) + �r�

(
s, a, s

′)
(14.10)

and

R
(
s, a, s

′) = −peak ∗ P�
′ (a|s) + �r�

′
(
s, a, s

′)
(14.11)

where peak is some positive real-valued number specified by the user, and
�r�

(
s, a, s

′)
and �r�

′
(
s, a, s

′)
represent fractional reward variances for the subse-

quence {s, a, s
′ } for the target and non-target decision-makers, respectively. These

fractional reward variances are constrained by:

∣
∣�r�

(
s, a, s

′)∣∣ ≤ 2 ∗ peak (14.12)

and

∣
∣�r�

′
(
s, a, s

′)∣∣ ≤ 2 ∗ peak (14.13)

For triples belonging solely to the non-target decision-makers, Eq. (14.11) has a
clear negative bias reflecting that the target decision-maker had not yet been observed
taking such an action. However, this does not rule out that the target decision-maker
should never take that action.Also, for triples existing in both the target and non-target
decision-makers, then both (Eqs. 14.10 and 14.11) must be applied. This application
forces �r�

(
s, a, s

′)
and �r�

′
(
s, a, s

′)
to compromise.

Our objective function is designed to minimize the overall fractional reward vari-
ance of the system, whilst finding an R that fits the target. Note that we enforce
some discrimination over the decision-makers by forcing a gap between the spread
terms (Eq. 14.9). We thereby minimize Eq. 14.14:

z = max({⋃(s,a,s ′)∈� �r�(s, a, s
′
)} ∪ {⋃(s,a,s ′)∈�′ �r�

′ (s, a, s
′
)}) (14.14)

The result of Eq. (14.14) is that the LER should reflect our preferences in the
partial order of our trajectory groupings. Because triples can be shared between
decision-makers, our objective forces these triples to compromise with minimal
variance. This helps prevent corner solutions where tradeoffs are entirely one-
sided. Behavior that is “more alike” to the target will be more positively biased
than behavior that is not. Also, R will be inferred such that it can provide distinction
between the different trajectory groups by means of the LER. It is clear from the
formulation that there is no bias towards feature expectations as it is possible to have a
frequent triple that is negatively penalized. Moreover, rewards are not marked along
the state, but rather along the triple. This approach gives us the expressiveness to
differentiate based on P�(a|s) and P�

′ (a|s). Finally, our IRL algorithms make use
of multiple decision-makers when inferring rewards. This helps to further constrain
the problem and discriminate over different decision-making styles.
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14.4 Approach

Our evaluation methodology relies on the creation of a classifier that maps agent
behavior (individuals or a team) to behA which provide high-level explanations of
an agent’s performance. When an agent navigates an environment, its behavior (or
trajectories) can be complex and difficult to draw quick insights from, hence, we
map this behavior to a finite set of behA. Explanations from behA are high-level
in the sense that they describe the team(s) in terms that are human interpretable.
They are evaluated for their predictive capabilities on performance metrics (such as
win-ratios), thus, providing a way to understand an agent’s expected performance
(see Fig. 14.2b). For example, suppose a soccer club has a series of gameplay videos
of a prospective player that it is planning to recruit. From these videos, the club can
infer behA, such as the player’s average speed, number of fouls, tackles, and goals
per game, which gives the club quick and intuitive insights to rate the player. The
performance metrics (for example, win ratio) gives a result-oriented description of
the agent’s success in meeting its long-term objectives. We apply this approach to
infer behA that explain the behavior of HMTs.

For a given HMT, multiple agents defined by their respective behA interact
together to fulfill the team’s shared objectives. During the HMT’s cooperative
behavior, interference (most likely a non-linear factor) occurs such that the resultant
team behavior might not be the average of the behaviors of the team’s individual
members. To estimate the team’s overall performance attributes, we need a classifier
that can capture the complex team behavior and model existing non-linearities. This
classifier is trained using trajectories of individual agents with known attributes and
is then applied to predict team attributes as shown in Fig. 14.2.

a b

Performance Metric 

(Result) 

Behavioral Attributes 

(High-level  

Explanations) 

Complex Behavior 

(Agent Trajectories) 

Fig. 14.2 a Architecture of the classifier created to map an agent’s (team in this case) complex
behavior (trajectories) into high-level performance attributes that define how the agent (team)
performs. b Behavioral attributes provide a way to explain the agent’s (team’s) complex behavior
from collected trajectories
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To train the classifier, trajectories of individual agents with known attributes are
gathered. From these trajectories, IRL is performed to obtain reward functions that
are expressed as state, action, next state triples (s, a, s

′
). These reward functions

provide a robust way to rate an agent’s decision-making steps as it transitions from
one state to another during a particular action. Since agent trajectories are often
long, cyclic, and non-uniform in size, this poses as a challenge when training a feed-
forward neural network classifier that requires uniform inputs (in terms of dimen-
sions). To compress the reward triples, and express them in consistent input form,
we train a linear regression model on the inferred triple rewards to obtain feature
weights, W , which we use as inputs to our feed-forward neural network classi-
fier. Suppose each state is defined by a set of features, s = [ f1, f2, f3, . . . . fk],
and each action is defined by a set of action features, a = [α1, α2, α3, . . . αx ].
As input to the linear regression model, we use the joint state, action, next state
features (( f 1, f2, f3, . . . α1, α2, α3, . . . f1, f2, f3) and the associated reward values
(as inferred by PT-IRL). Our intuition is that the weights capture the relevancy over
features with respect to the team’s or agent’s preferences. The reward feature weights
are expressed as a function of the particular (s, a, s

′
) triples as shown in Eq. (14.15).

Reward f eature weights = W
(
s, a, s

′) = W
(
f1, f2, . . . fk , α1, α2, . . . αx , f

′
1, f

′
2, . . . f

′
k

)

(14.15)

Using the learned reward weights as inputs, we train our neural network classifier
to predict a set of known behA. At the individual level, we use (known) machine
attributes as a training set and generalize this process for both humans and human-
machine teams whose behA are unknown.

With predicted behA at both team and individual levels, the next step is to infer
interference from comparing the predicted team behA to the team members’ behA.
We defined interference metrics for both the positive and negative cases as follows:

Strong Positive Interference (SPI): A situation where the team performance is
better than the best individual performer in a team.

Pt > max[P1, . . . , Pn] (14.16)

Weak Positive Interference (WPI): A situation where the team performance is
better than the average performance of the individuals in a team.

Pt >

∑n
1Pi
n

(14.17)

Negative Interference (NI): A situation where the team performance is at most
as good as the average performance of the individuals in a team.

Pt ≤
∑n

1 Pi
n

(14.18)
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Agent Influence Vector (AIV): A vector showing howmuch an agent’s individual
behavioral attributes deviate from the team’s attributes.

AIV = [∣
∣bi1 − t1

∣
∣, . . . ,

∣
∣bik − tk

∣
∣
]

(14.19)

TheSPI, fromEq. (14.16), shows theperfect case of positive interference forwhich
the team’s performance is greater than that of all the team members. In this case,
every member in the team benefits from the cooperative behavior. Equation (14.17)
which defines WPI, shows another case of positive interference for which the team’s
performance is greater than the average performance of all the team individuals. In
this situation, it is highly likely that most teammembers benefit from the cooperative
activity, however, some may sacrifice their performance by joining the team. In NI,
Eq. (14.18), the team’s performance is worse than or equal to the average individual
performances of its individual members, hence, forming the team is inefficient. As
the behA are inherently tied to performance (Fig. 14.2), we use individual and team
behA to explain outcomes of Eqs. (14.16)–(14.18) using the AIV metric computed
from Eq. (14.19).

From the AIV, the goal is to infer how behA captured at the individual level are
significant to the team level’s behA. We can infer how much an agent influences the
overall team behavior by comparing its behA to that of the team. The smaller the
magnitude of the AIV, the more influential an agent is to the team’s performance,
since the team behA are closer to those of the agent. If a team is performing poorly
under negative interference for example, we can use the AIV to identify the agents
mostly responsible for that adverse interference (the same analysis would also apply
for positive interference). We use the AIV to infer insights on processes that lead to
interference (for example, task allocation, and shared responsibility).

14.4.1 Experimental Setup

The primary goal of this chapter is to provide a holistic approach for evaluating
the effectiveness of HMTs given the teams’ past behavior. To achieve this, we
conduct experiments using a python-based StarCraft 2 testbed (BurnySc2, 2016;
Vinyals et al., 2017). StarCraft 2 is an adversarial game where players strategically
build units to attack and destroy their opponents’ units. We set up three types of
agents: human players; machines (bots)—scripted python bots; and human-machine
teams—combinations of a human and a bot playing together as a team against an AI
opponent. We set the difficulty level of the AI opponent to hard (other levels were
easy, medium, and very hard), to ensure that the human players would require some
decent amount of strategic thinking and effort to successfully win their games. The
goal for each agent (human, machine, HMT) was to destroy the default AI enemy
by executing a distributed attack (DA) strategy which we created by modifying the
distributed workers (DW) strategy (BurnySc2, 2016). The DW strategy requires an
agent to build worker units (probes) and power units (pylons), to be able to collect
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resources (minerals and vespene gas) and expand its bases (controlled areas) to
increase resource production. This strategy is relatively weak against the hard AI
opponent since it does not attack the opponent; hence, we modified the strategy to
enable each agent to build attacking units restricted to voidrays and stalkers (for
simplicity). The race settings for the agents were set as the Protoss race, and, for
the AI enemy, it was set to the Terran race. The environment for all game plays
was the Abysmal Reef which simulates a coral reef. These race settings were arbi-
trarily chosen and remained constant throughout the experiments. For each gameplay,
trajectories were collected as csv files. Each state vector encoded a snapshot of the
game units in each particular time instance: [ f 11 , f 12 , .., f 136| f 21 , f 22 , . . . , f 247]; where
f ij is the sum of the j th feature for the i th agent; where i = 1 is a human, machine,
or HMT; and where i = 2 is the AI opponent.

f ij ⊂ [pylon, canon, f orge, voidray, stalker, . . . .., hacthery, lair, . . . ]

The action vector encoded the actions that the units were executing in a particular
time instance. Each action was expressed as: [a1, a2, a3, . . . a18] where:

ak ⊂ [is_gathering, is_attacking, . . . .., is_idle]

Experiments were carried out in three phases:

1. Train a classifier that maps agent behavior (trajectories) to behA as described
in the approach section.

2. Create combinations of humans and HMT to execute the given DA strategy.
3. Evaluate the effectiveness of the HMT using interference metrics defined in the

approach section.

14.4.2 Training Classifier

The classifierwas created tomap agent behavior to a set of behA that provide intuitive
explanations onhow the agent is expected to behave.Eighteendifferent classes of bots
(machines): {M1, M2, M3, M4, . . . .M18}, defined by four behA that were essential
in executing the DA strategy were created (Table 14.1). For each bot class, 120
trajectories were collected, and the observed win-ratio (expressed as a percentage)
was recorded (see Table 14.1). Each trajectory set was further sub-divided into 30
subsets of size four as in Eq. (14.20). We sub-divided trajectory sets to ensure that
computation was feasible for the PT-IRL linear programming algorithm (since we
had a large number of trajectories).

Mi = {Mi1, Mi2, Mi3, . . . , Mi30}where i ∈ {1, 2, 3, . . . , 18} (14.20)

To perform the PT-IRL method, different combinations of target and non-target
trajectorieswere created according toEq. (14.21). Target trajectorieswere trajectories
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Table 14.1 Attributes define a bot’s behavior in executing the DA strategy. These attributes were
hand-selected to develop a classifier that would represent the possible range of behaviors any agent
would take. They provide explanation insights to the associated performance metric (win-ratio)

Bot
(classes)

Attributes Data collection

Probes
(Pb)

Pylons
(Pn)

Stalkers
(Sk)

VoidRays
(Vr)

Number of
games

Win-ratio
(%)

1 5 3 2 6 120 0.83

2 5 3 6 2 120 0.00

3 5 7 2 6 120 0.00

4 5 7 6 2 120 0.00

5 5 12 2 6 120 0.00

6 5 12 6 2 120 0.00

7 10 3 2 6 120 23.33

8 10 3 6 2 120 12.50

9 10 7 2 6 120 17.50

10 10 7 6 2 120 3.33

11 10 12 2 6 120 7.50

12 10 12 6 2 120 5.83

13 20 3 2 6 120 50.83

14 20 3 6 2 120 28.33

15 20 7 2 6 120 53.33

16 20 7 6 2 120 24.16

17 20 12 2 6 120 45.00

18 20 12 6 2 120 29.17

from the bot thatwe aimed to compute the reward for, and non-target trajectorieswere
collected from other bot trajectories (the PT-IRL algorithm finds a reward function
based on separating target from non-target behaviors). For each target trajectory
subset, two non-target subsets were arbitrarily chosen to run the PT-IRL algorithm
in the following form (target subset, non-target subset):

(
Mix ,

{
Mjx , Mkx

})
f or i, j, k ∈ {1, 2, 3, . . . , 18}, i �= j �= k, where x ∈ {1, 2, 3, . . . , 30}

(14.21)

Using the input samples generated in Eq. (14.21), IRL was performed and reward
functions were obtained. The extracted reward values were converted to reward
feature weights using linear regression (Algorithm 14.1). The accuracy of the clas-
sifier was 84% using a 33% testing set. Figure 14.3 shows the training profiles of the
classifier. The confusionmatrix reflects some relative uniformity in the rate of correct
predictions across all classes, and the accuracy is relatively high which shows the
effectiveness of the PT-IRL algorithm at capturing the complex trajectory behavior
of the bots.
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Fig. 14.3 Trainingprofiles of the classifier. The classifier achieves an accuracyof 84% in classifying
the attribute class of a given bot’s behavior

14.4.3 Human and Human–Machine Teams

Although the behA of the machine agents (bots) were known beforehand, the behA
of the human and the HMT were unknown. Our goal in this experiment was to apply
the classifier to determine the behA of the human and theHMTs.We conducted a user
study that comprised of three human participants {H1, H2, H3} who had prior expe-
rience with StarCraft 2. We estimated these participants to be intermediate players
since they could win the game against easy AI opponents but not against hard oppo-
nents (at a time before the experiments). Instructions needed to execute the distributed
attack strategy (DA) were provided to the players, and they independently played a
sample of games.

After collecting the human trajectories, we created combinations of HMTs. For
each HMT, one bot and one human agent played the same game simultaneously
with the goal to defeat the AI enemy. For analysis, we randomly selected four bots:
M2, M13, M9, andM6 (Table 14.1). A total of 12 human–machine teams defined as:{(
Hi , Mj

)}
f or i ∈ {1, 2, 3}, j ∈ {2, 13, 9, 6}. Table 14.2 shows the number of

games collected, and the win-ratios for both the human and the HMT teams.
After collecting the trajectories, we applied the classifier to infer behA for the

human and the HMTs, and the results are shown in Table 14.3 as a percentage of the
number of predictions for each behA class. We computed the predicted behA using
two different methods:

Attributesmax—selects behA from the class with maximum percentage of
predictions.

Attributesaver—computes behA as the average sum of the product between all
class behA vectors and the number of predictions per class.

To evaluate how predicted behA (Attributesmax and Attributesaver ) reflected
agent (humans and HMTs) behavior, we compared predicted win-ratios using two
methods:
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Fig. 14.4 Predicted win-ratios (Average and Max) vs actual observed win-ratios

Predictedmax—selects the win-ratio for the class with the maximum percentage
of predictions.

Predictedaver—computes win-ratio as the average of the product of all class
win-ratios and the number of predictions per class.

To determine the strength of the relationship between predicted and actual win-
ratios (see Fig. 14.4), correlation scores were computed. The Pearson correla-
tion between the actual observed win-ratios of all agents and the Predictedmax ,
and Predictedaver were 0.589 and 0.757, respectively. The Spearman correlation
between the actual observed win-ratios and the Predictedmax , and Predictedaver

were 0.644 and 0.789, respectively. In all cases, the correlation scores reflected a
positive association between the predicted and actual win-ratios, and the associa-
tion was statistically significant (p-value < 0.01). Therefore, we concluded that the
classifier predictions were reflective of the actual human and HMT behaviors. In
the last set of experiments, we applied the predicted behA to gain insights on the
interference measures defined in Eqs. (14.16–14.19). BehA were chosen based on
Attributesaver since the correlation coefficients between the actual trajectories and
Predictedaver were higher.

14.4.4 Evaluation of Human–Machine Team Effectiveness

Our primary goal was to evaluate HMT effectiveness by computing behA, which
help to evaluate the performance of the HMTs. For all experiments, agent behavior
was assumed to be controlled by four behA: probes (Pb); pylons (Pn); stalkers
(Sk); and voidrays (Vd) (Table 14.1). Figure 14.5 shows the variation of win-ratios
to behA that dictated the behavior of the individual machine bots before training the
classifier. It is evident that in general, as the number of probes and voidrays increases,
the performance of the agent increases (applies specifically to the distributed attack
strategy). The opposite is also true for pylons and stalkers; as their numbers increases,
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Fig. 14.5 Variation of win-ratios against behavioral attributes

the performance of the bots decreases. Pearson correlation measures (r ) show that
Pb (r = 0.89) had more predictive power compared to Vr (r = 0.3), Sk (r =
−0.3) and Pn (r = −0.1). These plots make intuitive sense when analyzing the
distributed attack strategy. By increasing the number of probes, the rate of production
of resources (minerals and vespene gas) increases, and an agent can build more
attacking units which increases performance. For attacking units, building more
voidrays instead of stalkers increases the team’s performance, since voidrays are
more lethal. Building a few pylons at a base is important, but too many becomes
wasteful if the priority is to attack the enemy (pylons powers a base but they do not
attack), hence, performance decreases.

Predicted behA (from the classifier) for human participants in the form
(Pb, Pn, Sk, Vr ) where:

H1 = {13.2, 10.1, 2.6, 5.4}

H2 = {16.1, 8, 3.4, 4.6}

H3 = {16.3, 7.9, 3.2, 4.8} (14.22)

Using behA insights from Fig. 14.5, we can infer that in terms of performance,
H3 > H2 > H1, since H3 produced the highest number of probes and voidrays,
which are associated with higher performance (behavioral attributes for H2 and
H3 were almost similar). This result is supported by the actual win-ratios where
H3 > H2 > H1 (Table 14.2). Predicted behA for the HMTs formed between the
human players and bot agents, M2, M13, M9, and M6, are shown in Table 14.4,
together with their associated interference metrics vectors. By analyzing attribute
predictions, we see that HMTs formed with M13 yielded values (high Pb and Vr ,
low Sk and Pn) that were associated with better performance scores compared to
M2, M9, and M6.
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Interference was analyzed by comparing predicted win-ratios to those of the bot
and the human agents separately. In addition, average win-ratios of the humans
and bots were included to see if the overall team performance was better than the
average performance. Table 14.4 shows instances of SPI, WPI, and NI. In cases of
SPI, predicted team behA were associated with higher performance outcomes. For
example, team (H3, M13), had behA {18.4, 7.5, 3.2, 4.8}, which reflect higher rate
of production of probes and voidrays, contributing to higher performance as shown
in Fig. 14.5. AIVs reflect how much an agent’s behA are closer to the team’s behA.
For an agent’s behA, the smaller the attribute values, the more similar the agent’s
behA are to the team’s behA values (see Eq. 14.19). From the AIVs in Table 14.4, we
can infer that the bot agents had more influence on the probe and pylon behA, since
they had smaller values compared to the human agents. This result is consistent with
the human players’ experiences during the game: they mostly focused on utilizing
resources (minerals, vespene gas) to build attacking units rather than building the
probes and pylons needed to gather more resources.

Results for positive interference (both weak and strong) suggest the presence
of factors, such as task allocation and shared responsibility, which boost a team’s
performance between the human and the bot agents. In teams that experienced posi-
tive interference, the human and the bot’s stalker and voidray behA were both closer
to the team behA, implying that both agents were equally influential at producing
attacking units (shared responsibility). In some cases though, the human players were
evenmore influential at building these attacking units than the bot (for example, team
H2, M13). This observation implies that the human players were more focused on
building attacking units, whilst the bot was focused on building resources (task allo-
cation and specialization). Results for negative interference generally show the lack
of these factors (task allocation, shared responsibility); in most cases, the human
agent had very little impact on the game (for example, in team H1, M2) as shown
by the AIVs which reflect the dominance of the bot in all behA. Interference is
also affected by the type of agents in a team: for example, if we consider teams
(H1, M1), (H2, M1), and (H3, M1), we see that even though the bot, M1, was the
same for all three HMTs, some human agents managed to find synergy and benefit
from cooperating with the bot (H3), whilst the other human agents could not. The
same observations are true for the bots as well.

14.5 Conclusion and Future Work

In this work, we presented a new approach that helps to evaluate HMT effectiveness.
By focusing on effectiveness, our goal is to provide explanations that could help to
interpret the performance metrics of an HMT. We achieved this through the use of
a classifier that maps complex team behavior to a set of behA linked to a team’s
performance metrics. The complex behavior is modeled through reward functions
that are computed via IRL. The assumption is that through these rewards, we are able
to capture the intrinsic goals and preferences of each unique agent. The classifier’s
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accuracy was 84% at predicting the correct behA class (out of 18), given a set of
agent trajectories. To validate this classifier, we compared performance scores (win-
ratios) between predicted and observed behA, and we achieved a relatively high and
statistically significant Pearson correlation of 0.76. Using these predicted behA, we
then computed AIV vectors to determine how the team output was being affected
by contributions from different team members. We used these AIV scores to explain
interference outcomes and infer processes such as shared responsibility and task
allocation.

During this study, we encountered several limitations which we will attempt to
address in future work. First, human agents are highly adaptive, hence, fitting their
behavior to one set of behA might not be reflective of their adaptiveness. A solution
might be to partition human trajectories according to timesteps, but this requires a
significant amount of data which might not be readily available. Another area for
future work is in team prescription. From theAIVs, we can determine how each agent
contributed to the team’s performance outcome: hence, in future work, we plan to
exploit these AIV results to modify a team’s behavior and increase its effective-
ness. Another potential area to address is on human uniqueness and personalization:
through these experiments, we observed that HMTs are affected by the types of
agents (both humans and bots) who make up the team. In future experiments, we
would like to perform a thorough study of agent personalization and tie it to processes
such as decision-making styles (Santos et al., 2018). We will attempt to answer how
and why an agent benefits from teaming with one bot as opposed to the other(s). In
addition to the StarCraft 2, we plan to extend the study of HMT to other domains
where HMTs are applicable. In our experiments, we only had one human and one
bot in each team; future experiments should examine the existence of more than two
agents in each HMTs.
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Chapter 15
Humanity in the Era of Autonomous
Human–machine Teams

Shu-Heng Chen

Abstract In this chapter, we address themeaning of the development of autonomous
human–machine teams undergirded by the trio, namely, data, the Internet, and algo-
rithms. We first review and examine this issue against a general background related
to the philosophy and history of science and technology, symbiosis and cyborgs, and
an evolutionary viewpoint from the Anthropocene and Novacene. We then argue that
themeaning for humanity in this increasingly intensive autonomous human–machine
interaction environment is two-fold, namely, individuality and the democratization
of individuality (capability development). Nevertheless, to not leave the future of
humanity to be dominated and solely determined by machines (the trio), humanistic
scholars have to get involved themselves in the autonomous human–machine teams.
In fact, some of their earlier actions have already taken place and have contributed to
the changing face of the humanities, which will also be highlighted in this chapter.

Keywords Big data · Algorithms · Internet of everything · The Leinweber-Arnott
inquiry · Symbiosis · Novacene · Individuality · Democratization

15.1 Introduction: AHMTs in the Form of the Trio

In the year 1995, the Journal of Portfolio Management published an article entitled
“Quantitative and Computational Innovation in Investment Management.” In this
article, David Leinweber and Robert Arnott raised two questions: “If you had unlim-
ited computational power, what would you do with it?” and “What would you do
differently if youwere completely unconstrained by the capacity of your computers?”
Their paper was originally written for the people of Wall Street at the dawn of the
new millennium; nevertheless, not so much abiding by its given contextualization,
the questions can be reshaped in a broader context and its contemporaneity can be
evenmore limpid. The reason for this reshaping is because threemajor developments,
which were not so palpable in the late 1990s, have gradually been forged since the
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Fig. 15.1 The Trio in the New Millennium

newmillennium. These three, the trio, can be briefly denoted as data, the Internet, and
algorithms. The empowermentswithwhich they can clothe humansmake the original
imagination solely based on the “unconstrained capacity of computers” somewhat
narrow and obsolete.

15.1.1 The Trio: Data, the Internet, and Algorithms

Let us first look at these three elements. By data, we mean big data (Chen & Venkat-
achalam, 2017), by the Internet, we mean the Internet of Everything (Lawless et al.,
2019), and by algorithms, we mean the algorithms which can meet the various tests
in light of the original Turing test (Turing, 1950). The empowerment of these three
do not take place independently, but they are closely intertwined in that they form a
trio (Fig. 15.1). The data term is big because everything is now becoming connected
together in a cyber-world, an enlarged version of cyborgs.1 The cyber-world implies
that we are nowgiven a screen that can video-recordmost ofwhat is happening on our
planet and hence enables us to trace each path; alternatively, we are given a full “biog-
raphy” of the earth, that includes not just its geological facts but, more importantly,
also its humanistic details (Chen, 2020).2 That is to say, the increasingly intensive
and extensive connections, characterized by the Internet of Everything, undergird

1 Cyborgs is short for cybernetic organisms (Clynes and Kline, 1960). For treating the Internet of
Everything as an expanded version of cyborgs, the interested reader is referred to Chen (2019).
2 Chen (2020) proposes a twin-space theory to characterize the current digital society. It is argued that
the recent revolution in information, communication, and digital technology (ICDT) has gradually
mapped our physical space into its digital counterpart. In other words, the planet will have its
“mirror” in the digital space. Despite the twin relation, the physical space only exists in the now
time (the present time) as it is a slice of the history cut at a specific position and disappears forever
when it becomes the past; the data in the cyber space, however, are not subject to such a time
restriction, and they can remain forever once they are registered.
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the influx of big data, a new kind of data phenomenon which we did not experience
before the dawn of this new millennium.3

However, no matter how vast the size of the data, much would remain idle without
the availability of the algorithms, which can not only process these data, but can also
acquire the capability required to perform the job on their own.4 For the latter purpose,
the algorithms also rely on big data for learning purposes. Without gaining access to
big data, many of these algorithms would essentially be futile.

Finally, to ensure that the Internet of Everything (humans and machines) can
function properly, so that big data can be generated and collected, we also rely
on algorithms to facilitate the man–machine interaction, for example, various apps.
Therefore, algorithms are also indispensable for the Internet of Everything (Lawless
et al., 2019), and the function of many of them can only be defined against the
backdrop of such an Internet. In this case, what the Internet is to these algorithms is
what the sea is to fish.

15.1.2 AHMTs Manifested by the Trio

Figure 15.1 summarizes the trio, and its bidirectional arrows show the interdepen-
dent relationships among them.Machines in the autonomous human–machine teams
(AHMTs, hereafter) are now formally conceptualized as a manifestation of this kind
of trio. For example, an unmanned aerial vehicle (UAV) is not just about the physical
body of the vehicle, but the data, algorithms, and the Internet, altogether. Although,
we may with this conceptual framework still follow the long stream of discussions
on human–machine interactions, we know that we are dealing with a new kind of
machine that certainly did not exist in the bourgeoning stage of ergonomics (Murrell,
1965); their interactions are not limited to human bodies, but have already been
extended to their minds or cognitive systems.

3 Ostensibly, other expressions or characterizations also exist, such as the society of Web 2.0 or
higher, or the era of user-initiated-and-supplied contents, etc. (O’Reilly, 2017). However, it is the
Internet of Everything which technologically makes its kaleidoscopically rich contents suppliable.
4 While in this chapter, we will mainly use the term algorithms, different nomenclatures are also
commonly seen in other places, such as machines, software agents, autonomous agents, etc. These
terms may be used interchangeably in this chapter, so long as the ontology of concern to us is the
computer programs (software), and not the physical entity (hardware). Even though the object with
which humans interact can be wearable devices, chatbots, drones, driverless cars, or sensors, what
interests us are the interactions or connections or communications between men and machines,
and these interactions are mainly driven by software, which is related to interaction design, user
experience design (UXD), and user interaction design (UID).
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15.1.3 Scitovsky’s Caveat

As summarized in Fig. 15.1, what we are provided with in this age is a much
empowered trio, which is certainly built upon the increasing available computational
resources as Leinweber and Arnott (1995) have pointed out. However, the question,
more enlighteningly, can be restated as follows: What would we do differently if we
were completely unconstrained by the capacity of the trio: data, the Internet, and
algorithms when they become infinitely big, connected, and smart?

The Leinweber-Arnott inquiry, in fact, makes us reminiscent of other similar but
more general concerns, such as what to do with excess money or superfluous leisure
time or an extended lifespan. Conventional neoclassical economics often indoctri-
nates us with the view that the consumer’s utility will increase withmoney, consump-
tion, and leisure. The answer is to be expected because consumers are deemed to
be rational according to neoclassical economics, and the capability that they can
allocate time and money in the most efficient and enjoyable way never bothers a
bystander. Nevertheless, Tibor Scitovsky (1910–2002) challenged this assumption
in the 1970s and attempted to rebuild the economic foundations upon the psycholog-
ical studies of motivation. In his book Joyless Economy (Scitovsky, 1976), he went
to great lengths to explain why consumers may not know how to use their increasing
resources (money and time) to achieve a higher level of satisfaction. Scitovsky echoed
this observation with a passage that Blaise Pascal (1623–1662) had left for us more
than 350 years ago, “I have often said that man’s unhappiness springs from one thing
alone, his incapacity to stay quietly in one room” (Pascal, 1669[1995], p. 40.).

In the light of Scitovsky’s caveat, even though we have been bestowed with addi-
tional time for leisure, we could fail to figure out what to do with it, since we do not
have the skills required to use our leisure in a constructive and enjoyable way; as a
result, to relieve ourselves from our boredom, we may only end up with leisure that
is less skillful, but the fleeting pleasure obtained cannot be sublimated into a truly
enjoyable state and, even worse, can even be destructive. It is this line of argument
that reminds us that a blissful direction is not guaranteed despite the companionship
of the trio.5

In this chapter, in the same vein as Scitovsky, we intend to address the human-
istic ingredients required for a “constructive and enjoyable” use of the excess, here,
the AHMTs manifested by the trio. The rest of the chapter is organized as follows.
Section 15.2 provides a general background that allows us to place AHMTs in a

5 In his Joyless Economy, Tibor Scitovsky introduced the essence of culture in consumption, which
distinguishes the enjoyable life from the good life. By comparing the consumption culture between
the US and European countries, Scitovsky argued that consumers in an economy underpinned by an
impoverished culture may still be able to afford a good or even a luxurious life, but not an enjoyable
life.
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broader context related to literature, philosophy and the history of science and tech-
nology,6 and STS (standing for “science, technology and society”7). Section 15.3
then tackles a more fundamental question, i.e., What is the meaning of the trio for
humanity? With the direction of thought suggested there, Sect. 15.4 moves forward
to highlight the current changing face of the humanities that are congruent with the
indicated direction, followed by the concluding remarks in Sect. 15.5.

15.2 Human–Machine Teams

The idea of human–machine teams denotes the collaboration between Homo Sapiens
and “HomoMachines.”8 This collaborative relation, presumably harmonious, is just
one of many possible interactions that have been suggested in the literature, philos-
ophy and the history of science and technology, and STS. In this long-accumulating
pile of studies, various imaginations or speculations of human–machine mixtures
have been demonstrated; while they evolve with humans’ refreshing experiences
with machines, they remain to diverge into utopias (Lovelock, 2019) and dystopias
(Bostrom, 2014; Harari, 2016; Kingsley, 2018; O’Neil, 2016; Rushkoff, 2020) or
somewhere in between (Markoff, 2015). It is beyond the scope of this chapter to
delve into this open-ended debate; instead, as an abridged version, we shall review
five selected “models” which we consider to be pertinent for our ensuing discussions
of the meaning for humanity in the age of the trio as manifested by AHMTs.

The five models which we have included in this section together give a flavor of
the spectrum which characterizes the current thought over AHMTs. We begin with
probably the most classic demonstration on a dystopia, namely, the Shelley Model
(Sect. 15.2.1), then go to its utopian extreme, the Lovelock model (Sect. 15.2.2), and,
at this juncture, involve theMargulismodel (Sect. 15.2.3) as the biological foundation

6 Compared to the abundant literature on the philosophy of science, that existing on the philosophy
of technology is relatively scant. Among the few studies that exist, Crocker (2012) is the one that
is closely pertinent to this chapter; in particular, it also introduces a symbiotic model to frame the
co-evolution of humanity and technology (see Sects. 2.2 and 2.3 below).
7 STS is a field that normally refers to a movement that places science and technology education in
a social, political, economic, and humanistic context. It is not just to equip students with scientific
facts, but,more importantly,with theirmeaning or significance for society as awhole. Themovement
already existed in the 1960s, but has seen much expansion in recent decades (Pittinsky, 2019).

In fact, Nobert Wiener (1894–1964), the founder of cybernetics, has already drawn our attention
to this direction, as shown in Wiener (1948) and Wiener (1950); he can be regarded as a pioneer of
STS. When documenting Wiener, Gleick (2011) stated, “Much of the success of his book, abstruse
and ungainly as it was, lay in Wiener’s always returning his focus to the human, not the machine.
He was not as interested in shedding light on the rise of computing–to which, in any case, his
connections were peripheral–as in how computing might shed light on humanity” (Ibid, p. 240;
italics added).
8 The term Homo Machines has not been formally used in the public academic dialogues; the term,
which we use here, is mainly motivated by James Lovelock (Lovelock, 2019) in his visionary
discussion of the machines in Novacene. An alternative and more familiar term is Homo Techno.
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for AHMTs. We then shift from the interactions between humans and machines to
the interactions among humans themselves, and introduce the economic-sociological
model of AHMTs, the Polanyi model (Sect. 2.4), and the organization model, the
Laloux model (Sect. 15.2.5).

15.2.1 Shelley Model: Frankenstein and His Creature

In 1818, Mary Shelley (1797–1851) published her celebrated Frankenstein.9 In this
well-known piece of science fiction, the AHMT, composed of Frankenstein and his
creature, had ended up as a tragedy. Victor Frankenstein did not “collaborate” well
with the creature, since the creature did not come out handsomely in the way that
the chemist Frankenstein had anticipated. Being rejected by the society due to his
hideous countenance, the creature was left in a despairing situation and began to
commit crimes. Frankenstein was depressed by the behavior of the creature and then
tried to annihilate it, but he failed. In this case, humans, driven by envy in the realm
of science, tried to create a human-like machine as a scientific achievement, but
underestimated the difficulties involved, and in the end, only built the machine that
they could not collaborate with. Machines were also frustrated and outraged when
they realized that they would not be accepted by humans. An originally romantic
idea ended with a nightmare fraught with revenge and criminal activity.

The Shelley “model” provides a classic imagining on the vagaries of the devel-
opment of AHMTs. For example, novel situations are generally not foreseeable and
they sometimes have to be handled by autonomous mechanisms. Hence, when a
novel situation needs an impromptu reaction, humans may like to behave according
to what they deem convenient, but machines may judge it as “unethical” and refuse
to cooperate and intervene in the opposite way. Their interactions become strained.
Humans, like what we learned from Frankenstein, may make every effort to make
machines defunct, butmachines, like the creature, may try their best to resist humans’
“unethical” motives. Hence, again, an originally romantically designed AHMT may
end upwith a disaster.While we are pursuing collaborations to form a team, the team,
once it becomes autonomous with a biologically like mechanism included, may find
its own way of introducing conflicts.

9 Given its significance, a new version has recently been published by the MIT press (Shelley,
2017). By adding many annotations, remarks, and essays from leading experts, this book is mainly
prepared for those young talents who are preparing themselves to work in science and engineering
or to be an inventor.
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15.2.2 Lovelock Model: GAIA and Novacene

Two hundred years later, the machines in the hands of Mary Shelley had a very
different kind of offspring when they came into the hands of James Lovelock (Love-
lock, 2019). This generation ofmachines is not that emotionally dependent compared
to their ancestors that were “birthed” by Frankenstein; on the contrary, they have
become more independent, rational, and intelligent. Alpha Zero (Silver et al., 2018),
which has inspired Lovelock, has become the new species of HomoMachines.When
describing themachines of theNovacene, Lovelock stated that “[t]heywill be entirely
free of human commands because they will have evolved from code written by
themselves. From the start, this would be much better than human-written code.
Cyborgs would start again; like Alpha Zero they would start from a blank slate”
(Ibid., pp. 94–95). On the other hand, Frankenstein’s modern offspring tend to be
more vicious, avaricious, and anthropocentric. Not only have they brought a myriad
of species to extinction, massively destroyed rainforests, polluted clean water and
air, and exploited various natural resources, but they have also emitted immense
amounts of carbon dioxide, heating up their motherland, Gaia, named in homage to
that classical Greek goddess of the earth (McCarthy, 2015).

Lovelock proposed his well-known Gaia hypothesis (Lovelock, 1988), which
basically asserts that the Earth is a self-regulating and self-changing living organism.
The Gaia hypothesis can be understood as a balance or order, established by the
collection of species on the Earth, which can help the Earth to cool itself enough to
continue its existence. However, when that balance is broken and cannot be recovered
by the existing laws of natural selection, then the self-regulating mechanism of the
Earth, nature, will readjust itself in such a way so that the balance can be restored.
According to Lovelock, climate change is the revenge that the Earth has taken on the
offspring of Frankenstein; it will eventually make the Earth no longer friendly for
humans to live (Lovelock, 2007).

Per Lovelock’s theory, machines, on the other hand, may have a strong will to
survive or to continue as Frankenstein’s creature did, and theymay also be sufficiently
intelligent to know that they cannot continue their life without the accompany of
Frankenstein. In that sense, Homo Sapiens and HomoMachines have to support each
other as in a symbiotic system. Hence, to achieve that goal, intelligent machines will
earnestly help the Earth to restore the balance that humans have previously destroyed
and, in the meantime, prevent humans from being avenged by Gaia. Accordingly,
they will not allow humans to abusively exploit the environment as they did in the
long past, and the machines will intervene in human affairs, not by eliminating them,
but by preventing them from being eliminated. Of course, machines are not going to
be doing these things only altruistically, but for the sake of their own survival.

Lovelock’s theory regarding the role of machines in the transition from Anthro-
pocene10 to Novacene provides a very unique and optimistic portrait of AHMTs.

10 Although humans are frail and very constrained, they are capable of inventing tools andmachines
to set them free. Machines under incessant technological advances enable humans, little by little, to
have an overwhelming grasp of the planet. Anthropocene, a new geological term, has been proposed



316 S.-H. Chen

It also engenders a very different imagination of the AHMT culture. Humans may
be advised or even forced not to take those actions that are unfavorable to Gaia
and hence unfavorable to themselves. In other words, various forms of paternalism
will be implemented to constrain humans’ choices and actions under the operation
of AHMTs. This may remind us of the Brave New World (Huxley, 1932[1998]),
which has a remarkable dystopian rhetoric. Nevertheless, a weak form of pater-
nalism, known as libertarian paternalism, has been advocated by Richard Thaler, the
2017 Nobel Laureate in Economics (Abdukadirov, 2016; Thaler & Sunstein, 2008).
What distinguishes libertarian paternalism from the strong form of paternalism is
expounded by Thaler and Sunstein (2008).

Libertarian paternalism is a relatively weak, soft, and nonintrusive type of paternalism
because choices are not blocked, fenced off, or significantly burdened. If people want to
smoke cigarettes, to eat a lot of candy, to choose an unsuitable health care plan, or to fail
to save for retirement, libertarian paternalists will not force them to do otherwise – or even
make things hard for them. Still, the approach we recommend does count as paternalistic,
because private and public choice architects are not merely trying to track or to implement
people’s anticipated choices. Rather, they are self-consciously attempting to move people in
directions that will make their lives better. They nudge. (Ibid., pp. 5-6; italics added)

The choice architecturementioned above is nowadays being carried out by various
software agents that are designed to help decision makers make a “right” choice.
Machines in the form of AHMTs under Novacene will play the same role or probably
be more paternalistic when they deem it necessary. They may circumvent humans’
permissions to carry out what they consider vital from the symbiotic viewpoint.

15.2.3 Margulis Model: Symbiogenesis and Super
Cooperators

One development which is related to Lovelock’s Gaian systems and his speculation
of Novacene is symbiogenesis or endosymbiotic theory (Clarke, 2020), which was
first written in Russian in 1924 by a Russian botanist, Boris Mikhaylovich Kozo-
Polyansky (1890–1957). Boris Mikhaylovich Kozo-Polyansky (1890–1957) and his
pioneering piece of work, due to its language, was not well spread during his time. Its
English version was only made available in 2010 by the late evolutionary biologist
Lynn Margulis (1938–2011) and her colleagues (Kozo-Polyansky, 1924[2010]).

Margulis, best known for her theory of symbiogenesis, had devoted her whole
scientific career to enabling symbiogenesis to be accepted as an evolutionary mech-
anism or principle that dictates the evolution from simple organisms to complex
organisms, such as from prokaryotes to eukaryotes, from single-cellular organisms to
multi-cellular organisms, and from the simple labor division of cells to a sophisticated

for this age characterized by increasing mechanization. The definition given by the Cambridge
Dictionary is “the time from the eighteenth century until now, in which it is possible to see the
effect that people have had on the environment and climate (= weather conditions).”
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labor division of cells (Sagan, 2012).Margulis pointed out that modern genomics has
supported some postulations made earlier by Kozo-Polansky (1924[2010]), such as
that eukaryotes originated from symbiotic cyanobacteria and that mitochondria were
once symbiotic proteobacteria. Despite this being the case, her anticipation that most
evolution would involve symbiogenesis remains a major challenging hypothesis in
biology.

This new evolutionary principle built upon the theory of symbiogenesis put
simply is basically a cooperation principle, like cooperation in the familiar pris-
oner’s dilemma game. In the vein of Darwinism, to survive, individuals need to go
beyond just competing with each other; more often than not, they may find part-
ners, forming an alliance, so as to enhance their collective survivability by mutually
supporting each other. Evolutionary game theorist Martin Nowak made this point
quite succinctly in his book SuperCooperators (Nowak & Highfield, 2011). In the
chapter “Society of Cells,” Nowak referred to Margulis’s theory to provide evidence
as to why cooperation plays such an important role in evolutionary game theory; also
in the chapter “Group Selection,” he recounted that the unit which the evolutionary
mechanismworks on consists not just of individuals but also groups or teams. Hence,
from Lovelock to Margulis and further to Nowak, an optimistic view of the AHMTs
can be built upon an evolutionary-theoretic foundation of the AHMTs, either from
the perspective of symbiosis or game theory.

15.2.4 Polanyi Model: Tension Between Habitation
and Improvement

In both the Shelley andLovelockmodels, we consistently see thatmachines generally
have good intentions for humans, but the reciprocity may not be found on the human
side, namely, Frankenstein and his descendants. However, what we have seen in
the history of technology is that machines have, in effect, been neutral, but their
appearance in human society can worsen the interactions among humans themselves,
dividing humans into winners and losers, upper classes and lower classes, who have
then fought with each other. Machines, therefore, have become the scapegoats to
receive the blame because they failed to accommodate the whole of society. In this
case, society is actually not divided as humans against machines, but as humans
with machines against humans without machines, or, in Marxian terms, as capitalists
versus the proletariat.

Let us briefly review some episodes in history. In Japan, the famousMeiji Renova-
tion (1868–1912) started from 1868 under Emperor Meiji, which transformed Japan
into becoming an industrial and then an imperialistic country. It resulted in Japan
playing an increasingly important role in East Asia, so that it could consecutively
defeat two neighboring countries, China (Quin) and Russia in 1895 and 1905, respec-
tively. In the end, very unfortunately, it also propelled Japan to initiate World War
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II in 1941. The Meiji Renovation has long symbolized a state of “progress”; never-
theless, this time is also a period in which a myriad number of people fell behind
or despaired when the pace of the society was accelerated by industrialization and
machines.

Mitsuharu Kaneko (1895–1975) in his 1965 book Zetsubou no seishin-shi
provides uswith a detailed description of the despairs suffered by those Japanesewho
failed to live up to the expectations of theMeiji Renovation. Based on his description,
there were really no winners in the society, since even those who gained the upper
hand were constantly not free from the worry that they might fail to keep up with the
accelerating pace in the ensuing steps of the Renovation.

A similar kind of the history of mentality had been experienced even earlier
by those countries in the West, which enlightened Japan and inspired the Meiji
Renovation. For example, in the UK, the motherland of the Industrial Revolution,
the uneasiness with machines had resulted in radical or violent social movements.
This period has been manifested by the well-documented Luddite movement from
1811 to 1816, in which a group of British workers in Yorkshire and Nottinghamshire
smashed machinery that they saw as threatening to their trade (Binfield, 2004). The
sufferings of the working class during that period had become part of Romanticism;
many great poets, such as Lord Byron (1788–1824), were involved in defending the
Luddites; their poems were spread together with the Luddite movement, reflecting
the mentality of that time (Jones, 2013).

Two centuries after the Luddite movement, have humans been more unified by
machines? This question may be more philosophical than scientific, but in the mean-
time, the worsening income and wealth distribution has become one of the main
issues of concern over the last several decades. The avid discussions generated
by Thomas Piketty’s Capital in the Twenty-First Century (Piketty, 2014) and the
frenetic debate around the Universal Basic Income, specifically, during the 2020
Presidential Election in the US (Yang, 2018), clearly reveal that various efforts
are being made to avoid inheriting the same despairing history of mentality from
our great-great-grandparents. Hence, throughout history, the upshot of AHMTs is
rarely humans versus machines, but humans themselves under various social and
institutional settings underpinned by different ideologies. More than half a century
ago, Karl Polanyi (1886–1964) in his magnum opus, The Great Transformation
(Polanyi, 1944), already evinced this sustaining conflict and tension between society
and the economy, the state and market, or habitation and improvement in industrial
modernity. Polanyi’s influence is as relevant today and more so than ever before.

15.2.5 Laloux Model: Soulful Organizations

With the aforementioned selective and brief reviews, we arrive at a fundamental
inquiry, i.e., to what extent and scale and inwhat forms can the collaboration between
humans and machines be reified? To answer this question, we also need to know,
administratively or logistically, what would be the ideal organization to structure
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these AHMTs? Regarding the latter inquiry, Frederic Laloux (Laloux, 2014) has
recently proposed a seven-stage development theory of organization. Each of these
seven stages has been placed in a historical table and assigned a color. Hence, since
100,000 B.C., humans have experienced seven different stages of the organizational
paradigms, which are colored by infra-red (the Reactive Stage), magenta (Magic),
red (Impulsive), amber (Conformists), orange (Achievement), green (Pluralistic), and
teal (Evolutionary). These seven stages also correspond to the human advancement
of consciousness, including its value, morals, and cognitive development. While
the organizations of the earliest two stages no longer exist, those of the next four
still co-exist with the newest one; they together demonstrate a spectrum of modern
organizational cultures.

Although we have no space to review these organizational paradigms or cultures,
we should not underestimate their intertwined and intricate relation with AHMTs.
On the one hand, the extent and the scale of AHMTs can be determined by a given
organizational culture (paradigm); on the other hand, the increasing prevalence of
AHMTs will impact the transition from one organizational paradigm to the next. In
particular, there is the recent emergence of teal organizations,which are characterized
by self-management, “with a system based on peer relationships, without the need for
either hierarchy or consensus” (Ibid, p. 56). Under the teal organization paradigm, the
conventional hierarchical pyramid is replaced with more flexible; liberal; fluid; post-
modern boss-free; peer-production forms, consisting of small teams that take respon-
sibility for their own governance.Would this organizational paradigm be particularly
suitable for the healthy operation of AHMTs? Without being able to immediately
provide answers, we need to keep this question in sight so as to place AHMTs in an
apposite frame.

15.3 Meaning of the Trios for Humanity

15.3.1 Co-evolutions of Humans and Machines

In the previous section, we have reviewed the possible imaginations that we can apply
to the human–machine “teams” or collaborations. One essential ingredient threading
all of these imaginations is co-evolution. As we mentioned above (Sect. 16.2.5),
the AHMTs characterized by the trio are expected to result in dramatic changes in
social and economic structures, from individuals to their interactions. The AHMTs
have already forged and facilitated a cornucopia of novel interaction patterns, such as
citizen science (Bonney et al., 2014; Franzoni & Sauermann, 2014), peer production,
or community-based production (Benkler, 2002, 2006), a sharing economy (Munger,
2018; Sundararajan, 2016), a gig economy (Prassl, 2018), and so on. From these
emerging interaction patterns, AHMTs have substantially reduced the transaction
costs required for matching a group of people with mutually supporting interests and
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talents, which successively revolutionizes the way science, business, and the entire
capitalist economy is operated.

As a matter of fact, the width and depth (the extent and scale) of AHMTs are co-
evolving with the interactions of humans themselves; the former prepare and incite
newfangledmodes for human interactions, which in succession calls for further inno-
vations in the engineering of human–machine interactions, from user interfaces (UI)
to user experiences (UX). To enhance humans’ interactions, machines involved in
these AHMTs are given the capability to learn from human behavior and to opti-
mize their interactions; in the meantime, by becoming familiarized with machines,
humans also try to find the best ways to behave so that their communications and
collaborations with machines can be fulfilled.

When humans in AHMTs can co-evolve with machines, can we expect anything
positive regarding the nature of human beings? Alternatively, what is the meaning
of the trios (the AHMTs) for humanity? The rest of this section will address this
question. We shall claim that the meaning has two aspects, namely, individuality
(Sect. 15.3.2) and its democratization (Sect. 3.3).

15.3.2 Individuality

Individualitymeans that each individual uniquely and immortally exists in the collec-
tive memories represented by the cyber space.11 His/her uniqueness or particularity
is defined by his/her path of life. Individuality is probably the most distinguishing
feature brought by the trio.12 To be specific, it means that more and more individ-
uals can possibly have their own biographies in various forms mainly based on their
digital traces. This unprecedented event can happen because what humans did, what
humans said, and even what humans thought can now be extensively archived in
cyber space (Chen & Venkatachalam, 2017). The biography can be single-authored,
but, more likely, co-authored via the AHMTs. Even though no one, including the
protagonist himself/herself, for the time being, is interested in this authorship, the
digital traces distributed and archived in the cyber space indicate that the work can
start anytime as long as someone in the infinite future would like to do it.

There is little doubt that machines will evolve and progress in a way that will make
the laborious authoring or editing work easier to handle, from archiving, searching,
retrieving, sorting, analyzing, and even drafting. The saved labor can provide the
involved authors, including the protagonist himself/herself, with more leisure to
decide the proper narratives and to decide how life could be interpreted under different
contextualizations. The latter activity may drive the protagonist to have a further
reflection on his/her “journey” up to a particular point, and hence to configure the
agenda for the remaining journey.

11 This definition distinguishes the notion of individuality from the notion of individualism. See
also Siedentop (2014).
12 See also Chen (2020).
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In addition to authoring, AHMTs also make distant reading available for humans
(see also Sect. 15.4). Without machines, each protagonist, by his/her own close
reading, is inexorably so limited that the others’ traces which can shed light on
his/her own may not be available. However, by distant reading aided by natural
language processing and textual analysis, machines can figure out those biographies
(traces of life) which might be closely related to the protagonist’s own.13 This is
essentially to allow us to author and to read a biography in light of many enlight-
ening references, which will be otherwise unavailable. These cross-references can be
particularly insightful for the protagonist in search of his/her meaning of life. Hence,
individuality here also reveals a way to search for the meaning of a life.

15.3.3 Democratization of Individuality

In talking about individuality, we know that the transition from the Dark Ages (the
Middle Ages) to the Renaissance already indicated the dawn of the age of indi-
viduality. Nevertheless, in both the Renaissance and the subsequent Enlightenment,
ordinary people did not have the capability required to claim or express their indi-
viduality. Even though the Gutenberg Revolution (see below) in the fifteenth century
buttressed thewidespread propagation of books and ideas, the illiteracy rate remained
high for a number of centuries, particularly for females (Houston, 1983; McCloskey,
2016). Therefore, only a minority of the overall population could claim their indi-
viduality and preserve their own trace of life and make it publicly accessible. In
stark contrast to this limitation, the second distinguishing feature that the trio can
bring to humanity is the democratization of individuality or, alternatively put, the
democratization of capability development.

We use the term capability development here to resonate with the capability
approach advocated byAmartya Sen (1999), the 1998Nobel Laureate in Economics,
as his life-long pursuit. The capability approach is taken as an alternative to British
utilitarianism, which was championed by Jeremy Bentham (1748–1832) and became
dominant in mainstream economics. Sen, very similar in spirit to Scitovsky, argued
that the humans’ quality of life depends on their capability to make a choice, and this
capability is not ascribed, but is rather acquired from education and learning.Without
having their capabilities developed, the humans’ effective freedom upon which a
choice can be made is severely constrained. In Sen’s book, the term education was
mentioned 141 times; obviously, education and health care are the key premises for
owning the capability to pursue what Sen considers to be the paramount end for
development, namely, the freedom to choose and to lead lives that we have reason
to value.

13 For example, if digital traces can be properly quantified with the natural language processing
techniques, then some clustering tools, such as K nearest neighbors (Chen et al., 2007), may be
applicable to identify those neighboring traces of life.
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The Piaget-Papert Legacy

Democratization had long been pursued by many educational philosophers before
the coming of the new millennium. For example, Jean Piaget (1896–1980) believed
that everyone has the potential to be a creator (Palmer, 2001), a view echoed well by
the recent maker movement (Dougherty, 2016). His proposed constructionism, built
upon his genetic and constructivist epistemology, has had a long-lasting influence
in education (Piaget, 1973). Seymour Papert (1928–2016), one of the founders of
the MIT Artificial Intelligence Lab and Media Lab, and also a prominent Piagetian,
extended Piaget’s epistemology by adding culture, specifically, the computer culture,
as a pertinent element for facilitating constructive learning. What children can learn
and in what sequence during their growing-up crucially depends on the embedded
culture characterizing the environment to which they are exposed. Already in the
1960s, Papert contended that the advent of computers could change and enrich our
culture for knowledge discovery or acquisition. Under his leadership, a series of
softwares had been developed for this pursuit, including Logo, StarLogo, Logo/Lego,
Scratch, and NetLogo (Colella et al., 2001; Papert, 1980; Resnick, 1997, 2017).
When coming to the millennium, the Piaget-Papert legacy turns out to be even more
vigorous except that the computer culture has now been replaced by the smartphone
culture (Aschoff, 2020; Reid, 2018; Twenge, 2017) as part of the trio manifested by
AHMTs.

In this era, not just by reading and writing, but by embarking on their smartphones
or the equivalents, can everyone gain entrance to cyberspace, flag themselves, and
claim their individuality. To do so, they do not need to be a celebrity, Sir, Lord,
Queen, da Vinci, or Michelangelo; they only need to have a smartphone and play
with it. What democratization means in this stage is not particularly different except
that it focuses more on the reduction or removal of the thresholds and barriers to
capability development. The trio and its AHMTs enable learners to achieve this goal
much more easily than could have been done in the days of Papert and others. In
other words, the autonomous human–machine teams have spawned a new culture
that could enhance the degree of human autonomy.

Gutenberg Revolution

If we consider the early development of humanity and the humanities, the Renais-
sance and the Enlightenment, then one can hardly ignore the role of the Gutenberg
Revolution. In this case, the Gutenberg Revolution, also known as the Printing Revo-
lution, helped to make massive printing possible; hence, it reduced the threshold
of getting access to reading materials that further incited and facilitated waves
of authoring and publishing. In this historical context, the Gutenberg Revolution
enhances the autonomy of humans as a reader and a writer, or, in general, the
autonomy of intellectual development, including learning (reading) and creating
(authoring).
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If the significance of theGutenberg Revolution can be understood in this way, then
we can fairly say that the trio has continued and expanded the Gutenberg Revolution
to another prodigious scale. This time, the trio has helped humans to reduce the
threshold to study sciences, to do programming, to design, and to narrate. In other
words, the democratization of education has advanced far beyond schooling and, in
addition to the development of children, has also been extended to life-long learning
and self-learning. This groundbreaking step can be christened the democratization
of science, software development, design, and narrative. As we mentioned earlier, it
is a milestone to possibly enable humans to become more autonomous and to define
their potential roles in their collaboration with humans and machines in various
manifestations of AHMTs.

The democratization of science can be exemplified by the mission passionately
pursued by the NetLogo Team at Northwestern University currently led by Uri
Wilensky.14 In his keynote speech given at the 2010 Annual Meeting of the Compu-
tational Social Science Society of America, Uri Wilensky, the founder of NetLogo,
asserted that agent-based modeling as manifested by NetLogo can help to reduce
the barriers or thresholds for studying complex (adaptive) systems (Wilensky &
Rand, 2015). Using the predator–prey model and forest fires as two illustrations,
Wilensky showed during his keynote how the complex phenomena conventionally
only accessible through advanced mathematics, such as differential equations, can
now be approached much more easily via agent-based modeling. By using agent-
based modeling, not only can we make complex adaptive systems highly accessible
to general citizens (hence, a low threshold), but we can also allow users to broach
the questions that are difficult to grapple with via conventional approaches (hence, a
high ceiling).

The democratization of software development can be exemplified by the low-
code or no-code development platform (Bexiga et al., 2020; Sahay et al., 2020). In
this digital era, when the demand for software development is skyrocketing, related
human resources (e.g., software developers) become increasingly scarce,whichmoti-
vates the possible redistribution of part of the original work back to the demand side
or the user side. To accommodate this redistribution of labor, instead of standing
on the front line of software development for customers, software developers can
concentrate on developing tools or platforms that can help to reduce the thresholds
of programming so that downstreamusers can programon their own. These platforms
rely more on visual programming and can be operated in a drag-and-drop manner.
They have been used in many educational institutions when programming capability
is required for all students.15

14 As we have indicated in Sect. 3.3.1, StarLogo and NetLogo are both from the Logo pedigree,
initially founded by Seymour Papert. StarLogo was initially developed by Mitchel Resnick at the
MIT Media Lab. Uri Wilensky took the baton from him to further extend StarLogo into NetLogo.
15 This can be further illustrated by two local examples. One example is the https://agilepoint.com,
which, albeit business-oriented, takes a university–industry collaboration model to help educational
institutes to gain access to it. The other example is that some universities have decided to invest
in their own low-code development platform; for example, Tunghai university, one of the largest
Catholic universities in Taiwan, provides students with CT2Flow (Computational Thinking To

https://agilepoint.com
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As another example, App Inventor is a software development environment that
lowers barriers to developing applications for the Android operating system. Essen-
tially, it is Lego formobile applications on theAndroid platform (Wolber et al., 2011).
It was originally developed byGoogle, but is nowmaintained byMIT. It shares visual
programming with Scratch and StarLogo in dragging-and-dropping visual objects
in its interface, and uses small building blocks (like Lego) to create an application.
To build the applications, one just drags and drops components onto a canvas and
then links actions together using them as building blocks. The required program-
ming knowledge is, therefore, minimal. On its website, the blurb states “…anyone
can build an APP with global impact.” Although this is typical invitation rhetoric, it
reflects the ethos of democratization enabled by the trio.

As a conclusion to this section, the trio and the AHMTs built upon it can be
considered as another “Gutenberg Revolution,” but much more colossal in scale
than the earlier one. Accordingly, its impact on humanity will be enormous. With
the prevalence of AHMTs, humans can generally become more creative and conse-
quently autonomous; this empowerment is further incorporated into the operation of
AHMTs, and reshapes the division of labor between humans and machines in these
teams, as they both have their degree of autonomy constantly upgraded. This location
is the place where we see the relevance of Margulis’s symbiotic model and Love-
lock’s Gaia model (Sects. 15.2.2 and 15.2.3), despite the shadow cast by Polanyi’s
model of the threat of improvement to habitation (Sect. 15.2.4) still remaining.

15.4 Meaning of the Trio for the Humanities

In this increasingly connected and autonomous human–machine interaction environ-
ment, we are facing the challenge regarding the future of humanity. Will the future
of humanity be built upon AHMTs and subsequently flourish, as indicated in the
previous section, or will it be subjugated to machines and become fragmentized and
essentially nothing but data strings? Although the existing literature diverges into
utopias and dystopias, there is little doubt that if the trio can mean something posi-
tive for humanity, it will not be determined by machines, but rather by humans. In
this regard, the active engagement of humanistic scholars plays an important role. In
this section, we briefly review how humanistic scholars have transferred the power of
the trio into new energies for the humanities. Specifically, we focus on how AHMTs
have substantially reshaped our status as readers.

Flowchart) and CT2Code (Computational Thinking To Code), requiring students to mainly focus
on the design of the flowchart and leavingmachines to translate it into code. See http://ct.thu.edu.tw.

http://ct.thu.edu.tw
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15.4.1 Distant Reading

First, as already indicated by Chen (2020), the trio has placed us in a cyberspace
of books and texts. It, therefore, makes distant reading and voluminous reading
increasingly likely.Manyquestionswhose answers depend on an exhaustive search of
a huge pile of documents can now be addressed. A typical example is the application
of various statistics that we can derive from texts; the famous statistician Udny Yule
(1871–1951) demonstrated this kind of work in his day, when general text mining
technology was absent. As demonstrated in Yule (1944), the early inquiries were
directed at the question of authorship; for example, did Shakespeare (1564–1616)
write the plays that are generally attributed to him? However, nowadays, with the
help of the trio, we can use a rather large population of documents to raise more
ambitious questions, such as those related to the history of ideas (themes, genres,
symbols, signs, images, narratives, etc.).16 How was one idea replaced by another
idea?Howdid a new idea emerge?Howdoes the ecological dynamics of ideas inform
us of the shift in the paradigm, zeitgeist, fashion, ethos, norm, culture, trend, and
mentality which characterizes an era? Questions of this kind are very tantalizing, but
it is the empowerment from the trio that allows us to examine what the data reveal
(Moretti, 2005, 2013; Shiller, 2019). Furthermore, through the availability of the data
and statistics, making the formal models of the evolution for the history of ideas also
becomes possible.17 As for the latter case, by realizing distant reading, AHMTs also
facilitate the extension of Darwinism to the humanities and social sciences.

In addition to the history of ideas, distant reading can be applied to usual expres-
sions as often seen in novels, prose, poems, biographies, diaries, newspapers, personal
communications, and conversations on social media. It has allowed us to construct
various statistics or indexes related to sentiments, moods, emotions, affections,
mentalities, preferences, beliefs, tendencies, etc. These data and their related statistics
can be placed with time, and their evolution or dynamics can be traced. One familiar
example is Google Trends (Stephens-Davidowitz, 2017). Before the coming of the
trio, most of these data were not available. At that time, data in the social sciences
weremostly collected through institutions, such as the government, exchanges, social
agencies, companies, etc. Most of these data were highly discrete and aggregated.
Data related towhatWilliam James (1842–1910) coined as the “streamof thought” or
“stream of consciousness,” the big data, were not available (James, 1890).While one
can infer the misery index of a country at a certain time by adding its unemployment
rate and inflation rate, how miserable or fortunate people actually felt around that
time could be very different fromwhat we are told by themisery index. Now, big data

16 The term idea used here is inclusive; thus, each term which we put inside the brackets can be
used interchangeably with it. In fact, different scholars based on their unique interests may prefer
different terms. For example, Kenneth Boulding (1910–1993) chose the word image and Robert
Shiller chose the word narrative, while they were both discussing the possible causes of business
cycles (Boulding, 1956; Shiller, 2019). For our purpose, it is, therefore, preferable to have all of
these related terms in the basket.
17 The agent-based modeling of social epidemics is an example.
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can produce another kind of sentiment index based on people’s personal expressions
of their feelings, their streams of consciousness, etc. (Dodds &Danforth, 2010). This
example provides us with an alternative route to measure human well-being.

15.4.2 Extended Reading

Second, in addition to the cyber-world of books, the trio also embeds and enriches
this cyber-world with connections to various other networks, such as by forming
networks of networks or multiplex networks. Hence, when reading becomes “far-
sighted,” many other “species,” originally not in the “forest,” such as maps, images,
photos, audios, videos, artworks, and archeological and historical materials, are also
brought into the vicinity. Reading is now easily extended. Whatever we are reading,
there are potentially large amounts of related information for which we may be inter-
ested in receiving hints about or being connected with. With this empowerment,
the humanities are now further branched out to the spatial humanities (Bodenhamer
et al., 2010; Gregory & Geddes, 2014), the virtual humanities (Wouters et al., 2012),
and so on.

15.4.3 Participatory Reading

Third, AHMTs make participatory reading possible, and provide readers with a
different route to experience the original text. Embedded within such a complex,
fascinating, cyber-world of books and various auxiliaries, the reader can have
a more lively reading experience by actually “getting into the book.” AHMTs,
through various kinds of virtual reality, augmented reality, or mixed reality tech-
nology, combined with game designs, can enable the reader to develop an “on-site”
experience by transforming his/her status from an audience to an actor.18

15.5 Concluding Remarks

In this chapter,we propose a framework to address the significance of the autonomous
human–machine teams (AHMT) for the future of humanity. We first suggest that to
have a good grasp of the phenomenon and the functions of AHMTs, we need to have
a panoramic framework to viewAHMTs as the manifestations of the empowered trio
forged by the recent ICDT revolution (see footnote).While the increasingly powerful

18 The recent dystopian movie, “Ready Player One,” directed by Steven Spielberg (Spielberg et al.,
2018), enables us to see how various types of historical knowledge can be vividly appreciated and
used by readers while they rely on them to find a way out in a gaming situation.
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trio could imply an enlightening future of humanity, we cannot take it too much for
granted as neoclassical economics often does. Our circumspection taken here can
be justified by the historically long contentiousness of the man–machine relation;
in this chapter, from a long-accumulated literature, we selected and reviewed five
models that are sufficient to frame our subsequent discussions.

From a positive viewpoint, we argue that the empowerment signified by the trio
can be considered as a second Gutenberg revolution, which, like the first one, can
have dramatic impacts on humanity. While technological advancements at different
stages were always conceived of as betterments and empowerments for humans, the
trio has two distinguishing features that are not well shared by its precedents, namely,
individuality and the democratization of individuality. The former acknowledges the
unique existence of each life and its eternity, and the latter reconfirms the idea that
everyone can demonstrate his/her uniqueness by searching for the capability to be a
creator. Having the capability to create, to innovate, to discover, and to narrate are
the keys to experiencing a meaningful life. In this regard, what the trio could do
for humanity is to reduce the hindrances to capability development, especially when
the humans are greatly assisted by machines in their autonomous human–machine
teams.

Although we are still at the very inceptive stage of the trio and our interactions
with machines in the context of human–machine teams are rather limited, there are
promising prospects that we can yearn to have from the symbiotic-like co-evolution
of humans and machines. First, the autonomy of AHMTs is not only limited to the
role of machines, but also to the role of humans. One possibility is that, during the
co-evolutionary process, the degree of autonomy of humans and machines will be
mutually reinforced in the sense that when machines help humans become more
autonomous, humans will also help machines become more autonomous. With this
reinforcing dynamic, AHMTs will become symbiotic organisms, developing in a
direction toward what James Lovelock had evinced (Lovelock, 2019). Second, a
premise to the previous prospect is the society not getting divided or fragmentized
during the evolutionofAHMTs, an issue of immense concern toPolanyian economics
(Holmes, 2018). In this regard, it is expected that the degree of democratization of
individuality will also be part of the aforementioned reinforcements. In other words,
the property that humans are becoming increasingly autonomous is not parochial,
but global.

With these promising prospects, our final remark goes back to the reality. Obvi-
ously, to becomewell immersed in the ensuing co-evolution of humans andmachines,
the younger generations of humans need to be equipped with the tools to understand
machines, their languages, their thinking modes, their autonomy, and intelligence-
like behavior, and whether the machines perceive us as humans, as if they are pets
in our family, borrowing the tone from Donna Haraway (2008). It is true that the
young generation in this age has already been sufficiently exposed to smart phones,
social media, and various social innovations characterized by APPs, but how these
experiences can be integrated in a way to become part of their positive reinforcement
is as yet unclear. Nonetheless, from the recent changing face of the humanities, we
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observe that humans as readers have become more autonomous, thanks to the opera-
tion of the AHMTs. We expect to see more of these autonomous properties attached
to humans, and hopefully more to the younger generations.
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Chapter 16
Transforming the System of Military
Medical Research: An Institutional
History of the Department of Defense’s
(DoD) First Electronic Institutional
Review Board Enterprise IT System

J. Wood and William F. Lawless

Abstract This unusual history of how a small team transformed the global system
composed of Army and then DoD medical research processes has been unrecorded
until now. It offers guidance to others attempting to transform similarly large systems.
It begins with an evaluation of the Department of Clinical Investigation (DCI) at
the US Army Medical Center (MEDCEN) in 2005, the formation of a collabora-
tion team in 2006, and the team’s vision of an electronic records management tool
(ERMT) for its documents in 2007. From this small beginning, these disparate efforts
combined to transform themanagement of research protocol submission, review, and
approval processes aswell as research protocols and supporting documents at allDoD
MEDCENs. Before this history began, the Army’s MEDCENs used a paper-based
research protocol submission and review process by the Institutional Review Board
(IRB) for the approval of medical research on human subjects (and animals). The
team’s evaluation of the existing processes added metrics that enabled the design of
an electronic system to measure the performance of the Army’s medical research
mission. Merging the evaluation and the team’s vision to replace the Army’s paper-
based IRB occurred with the purchase of a commercial electronic IRB system. It
took until 2008 for the eIRB to become funded and another year to begin opera-
tions, but within 2 years of start-up, it was rapidly adopted across DoD’s global
research community to become the largest enterprise eIRB in the world. In 2011, a
formal evaluation project was proposed to measure the impact of the eIRB’s unex-
pected success across DoD; the impact study was funded in 2012, begun in 2013 and
finished in 2014 when we end this history; subsequently, the team was disbanded.
Although not a part of this history, we briefly address a few of the statistical results
of the eIRB’s impact now and more fully at a later time. We close with a postscript
to update readers on the unexpected closure of the eIRB and its reincarnation.
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Table 16.1 Table of acronyms

AMEDD Army medical department

BAMC Brooke Army Medical Center

BI Business intelligence

CIRO Clinical Investigations Regulatory Office. Army

CONOPS Concept of Operations described to users

CONUS Continental United States

COTS Commercial off-the-shelf systems are commercial software and hardware products
that are ready for purchase

DCI Department of Clinical Investigation

DDEAMC D.D. Eisenhower Medical Center

DMRN Defense Medical Research Network

eIRB electronic Institutional Review Board

ERMT electronic records management tool; e.g., an eIRB

IACUC Institutional Animal Care and Use Committee

MAMC Madigan Army MEDCEN

MEDCOM Army Medical Command

NNMC National Naval Medical Center-Bethesda

OCONUS Outside of the continental United States

TAMC Tippler Army Medical Center

TATRC Telemedicine and Advanced Technology Research Center

USU Uniformed Services University

WRAMC Walter Reed Army Medical Center

16.1 Introduction. A Tale of Two Histories

Systems are common. Large systems are also common. The larger the system, the
more difficult it becomes to transform. This chapter serves as a cautionary tale of the
difficulties of attempting to transform one of the largest systems of medical research
in the world at that time. But with access to a large IRB data base, it also presents
metrics on a path toward the use of Artificial Intelligence (AI) or machine learning
(ML) for research on autonomous metrics, on ethical practices, and on mitigating
harm.1

In 2005, based on its published annual reports, our initial goal was to evaluate
research performed at the Army’s D.D. Eisenhower Medical Center (DDEAMC)
and overseen by its Department of Clinical Investigation (DCI), both at Fort Gordon,
GA. The evaluation (Lawless et al., 2007) found that research processes and focus
areas could be better organized, that scientists were often fragmented from each
other within the organization and across the enterprise as well as not in-line with the

1 A list of acronyms is provided after the references (see Table 16.1).
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overall Armymedical research strategic goals, and that this fragmentation “precluded
the system from being able to determine whether its mission was being carried out
effectively, restricting its ability tomeasure the productivity of its medical scientists,”
let alone to regulate the process well (Lawless et al., 2010, p. 10).

At the time, the enterprise level view of research topics/focus areas and related
process data was in paper form (viz., annual reports)2; the data was incomplete;
and there was no data readily available from other military sites that could be used
to draw meaningful comparisons. In later research, we have theorized and found
that fragmentation impedes an organization’s ability to be transformed (Lawless,
2017a; Lawless et al., 2018). But at the time, we had hypothesized that fragmentation
at DDEAMC’s DCI might be overcome with a series of electronic standards for
publications, presentations and grants.

We thought thatwe could use the enterprise data generated by themedical research
undergoing IRB reviews at DDEAMC as business intelligence (BI) to improve the
medical research under the purview of its DCI (Wood et al., 2008).We had envisioned
real-time data collection, analyses, and reportingwithmachines that would automati-
cally address the Army’sMedical Centers (MEDCEN) researchmissionwithmetrics
for DDEAMC. Inadvertently, our evaluation motivated the need of metrics for the
eIRB.

In 2006–7, our second goal was to collaborate to define the requirements of an
electronic IT system to allow the Army’s medical research scientists and regulatory
oversight staff to better manage research proposal submission and review processes
and all supporting documents. Having an electronic IT system would enable the
MEDCENs to more easily collaborate geographically, avoid duplication of research
efforts, and optimize research funding to better manage medical research commu-
nications and standards across the Army’s sprawling and long-standing research
programs. Overall, the team believed that having an eIRB systemwould be of benefit
for all stakeholders in the research enterprise and better enable strategic management
and tactical execution of research across the enterprise.

The second goal was met when a pilot eIRB started at DDEAMC for its DCI and
was joined by four other MEDCENs.3 The second goal expanded in FY2010-11 to
include all of the Army’s MEDCENs and its HQ for its MEDCENs as well as Air
Force, Navy, and other DoD research units.

Our history of these dual transformations, the first fortuitous and the second
mindful, was guided by the Army’s mission for its MEDCENs. As applied to the
DCI at DDEAMC, the mission of the Army’s Medical Centers was to provide the
best health care for its patients who were military soldiers and civilian beneficiaries;
to educate, train, and retain its medical staff and graduate medical students; and to
advance military medical research (see also Goodin, 2011).

2 Some of the Army’s funded medical research programs have been conducted over many years;
for these long-term projects, it was common to transport the large number of paper files in small,
hand pulled wagons to the IRB of record.
3 See the timeline, FY2009-10.



336 J. Wood and W. F. Lawless

16.1.1 Goal 1: The eIRB Transformed the MEDCENs

In 2005, an evaluation of DCI’s annual report at DDEAMC was being conducted
(Lawless et al., 2007, 2010). The evaluation discovered the lack of electronic busi-
ness intelligence (BI) tools to measure the performance of the research regulatory
body (IRB/IACUC) overseeing the medical researchers at DDEAMC, and what
their research produced (namely, journal manuscripts). As we attempted to deter-
mine the effectiveness of the research conducted at DDEAMC by its institutional
scientists and overseen by its DCI in 2005, we faced only hard copies of annual
reports, essentially large but mostly non-searchable data dumps. At the time, no
DoD system existed to capture the data at each point along the trail of a research
protocol from submission to review and approval as well as the publications that
resulted by individual ArmyMedical scientists and science teams (NSB, 2015; NSF,
2015; also, Goodin, 2011, slide 17). Digital data was entered by hand, producing
an unclear but narrow perspective at DDEAMC (and likewise at other MEDCEN
sites) of what was occurring with its medical research. We suspected but could not
confirm that redundancy in the form of a duplication of effort was occurring across
the Army’s MEDCENs guided by numerous non-standardized rules parochial to
each site, producing conflicting requirements between sites that caused a fragmen-
tation within and between the MEDCENs (Lawless et al., 2007). We believed that
this fragmentation among researchers and teams might interfere with the Army’s
research mission for its MEDCENs. Fragmentation and redundancy are associated
with a lack of competition (Lawless, 2017b). While we believed that this fragmenta-
tion was inevitably a Department of Defense (DoD) problem, with each MEDCEN
possibly pursuing its own path to mission success, based on the limited data we could
access at that time, we could not address the causes of the problems we initially saw
at DDEAMC, its regulators at DCI, nor advance theory.

Neither did we know the precise status of publications, what was being published,
nor the degree of redundancy in teams or repetition in the research being conducted
(Wood et al., 2008):

We found no clear link between research products and themission; nomeasure of publication
impacts; and no direct way to measure organizational productivity against its peers (reduced
or negligible states of interdependence). … No overarching measure of system performance
existed for the ... [MEDCENs] that the separate organizations could follow to guide their
collective behavior. As a consequence, long-term work practices and cultural differences
predominated [between the MEDCEN sites].

From almost the beginning, we had envisioned that organizational fragmentation
could, in part, be reduced with standardized protocols for automatic data collection
at DDEAMC and the generation of annual reports by its DCI on its performance
for the Army’s research mission that could advance the medical research mission;
reduce its costs of research reviews; and increase the scientific impact of its medical
research products.

From our perspective at the time, we believed that fragmentation and redundancy
were not necessarily all bad in that it might reflect a paradox that drove the innovation
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process for individual scientists, but that it also impeded oversight management of
the research conducted by the local DCI and the Army’s MEDCENs (Lawless et al.,
2010). The result, we speculated, was unnecessary redundancy in medical research
projects, not aimed at replication, that were possibly wasting scarce resources.

Our conclusion was not unusual. Smith and Tushman (2005) found that contra-
dictory goals could make an organization both more productive in the near term and
transformative in the longer term. But there was no way to know without having
better data to find out which scientists or teams of scientists were well funded, who
was productive and which scientists and teams were not (Christensen, 2011).

16.1.2 Goal 2: The Initial Meeting on Collaboration

This part of the story began in 2006 with a search to find a way to enhance collab-
oration among a handful of the MEDCENs. An initial meeting was held in San
Antonio with the Army’s Chief, Clinical Investigation Regulatory Office (CIRO),
and the Army’s DCI (regulatory) leaders. A consensus was reached by the DCIs that
they needed a new electronic system to manage medical research across the United
States and around the globe. A workgroup was formed at this meeting to consider an
electronic system to replace the paper products that fed the IRBs then in operation
across the Army. At the same meeting, we had begun to think more globally than
just among our immediate collaborators. We had identified the replacement of the
Army’s paper-based system as a DoD-wide problem, leading us to invite participa-
tion from the Army’s other MEDCENs and their medical counterparts in the Navy
and Air Force. But, while the team was efficient and effective, it was a small team
without a champion in the upper echelon of Army HQ or DoD.

The Formation of a Disbursed Team

A geographically disbursed military medical research leadership team was formed
spanning from Army MEDCENS in Hawaii to Germany. Team meetings were held
on how to address research regulatory IT needs across theMEDCEN system; i.e., the
management of research documents, review results, and approval processes. For these
recurrent meetings, collaboration technology was used, such as WebEx meeting,4

Defense Connect Online,5 and the Mind Manager’s Mind Mapping tool.6 Based
on these virtual meetings, DCI requirements were defined, needs were identified,
Commercial-off-the-shelf (COTS) demonstrations were held online in real time, and

4 https://signup.webex.com/webexmeetings/US/sem_acquisition.html?&DG=01-04-07-US-12-
01-02-06&TrackID=1031986&country=US&psearchID=webex&gclid=CMS01dio4NACFZE6g
QodBbUHow.
5 https://www.dco.dod.mil.
6 https://www.mindmeister.com/?gad_campaign=US&gclid=CNv3-rOp4NACFUQdgQodx5QCIA.

https://www.dco.dod.mil
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the systems offered by various vendors were evaluated. From Wood (2011b), the
meetings were used to evaluate collective research regulatory oversight automation
needs and to hold demonstrations from the leading vendors of eIRB systems. DOD
participants in this project involved DCI leaders at the Army’s Clinical Investigations
Regulatory Office (CIRO), TAMC,MAMC, BAMC, DDEAMC,WRAMC, NNMC,
USU, and Lackland AFB.

An Electronic IRB (eIRB)

Beginning in 2005 and lasting 18 months enabled by IT technology, a team spread
over a large geographical area of AMEDD’s DCI regulatory leaders and its medical
researchers from Army MEDCENs (and DOD counterparts in the Navy and Air
Force) collaborated about IT technology to connect like-minded people across a
large geographic area to bring about enterprise change in the narrow sense that we
would only transform IT for research documents, reviews, and approval processes
at each site; but we also wanted to know what was happening across the Army’s
MEDCENs. To implement these changes, the tool identified was an eIRB to replace
the burdensome paperwork to approve and oversee human research protocols. The
same tool was proposed for the Army’s animal research review committee known as
Institutional Animal Care and Use Committee (IACUC).

The physical and virtual meetings for the working group demonstrated the capa-
bility of web-based technology for MEDCEN knowledge management (Wood et al.,
2008). For the virtual meetings, many of the MEDCEN leaders had been geographi-
cally separated but nonetheless were able to meet about 30 times over almost 2 years
and yet collaborate to address the potential for an eIRB in a manner that would have
been cost-prohibitive in the past:

[MEDCEN] leaders from Hawaii, Washington State, Texas, Washington DC, Germany and
Georgia worked as a networked virtual organization for approximately 60 hours using web-
based collaboration technology with visual and audio communication that lead ultimately
to the successful funding of the eIRB system ... Members simply logged onto the web from
the convenience of their own office to participate in problem solving… Using this virtual
collaboration in conjunction with a mind-mapping program (similar to a semantic network)
for more effective brainstorming allowed the saving of thousands of dollars in travel and
personnel time.

Out of this collaboration, the team had developed the following forward-looking
vision (Wood, 2011b)

The systemwe developwill be the standard for theDepartment of Defense by easily allowing
all research proposals, supporting documents and scholarly products to be submitted and
managed by a secure, web-based system that will calculate real-time metrics of research,
workload, productivity and quality.

An electronic IRB (eIRB) system was selected, recommended to Army Head-
quarters (HQ), but HQ declined to fund the new system. Apparently, the solution we
had proposed was for a problem that Army HQ had not yet recognized as a problem.
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After rejection by the Army’s HQ in 2007, we took a different approach. A grant
was written for the start-up of a pilot that was subsequently funded.

In 2008, the first author received funding for a pilot programas part of a technology
initiative at DDEAMC/SERMC (Wood, 2011b).With these funds, a COTS electronic
IRB systemwas purchased from IRBNet.7 In addition toDDEAMC, the pilot demon-
stration with IRBNet included Walter Reed Army Medical Center (WRAMC), the
National Naval Medical Center in Bethesda (NNMC), and the Uniformed Services
University (USU).8 The Army’s IT and security governance requirements were satis-
fied in order to safely host theCOTS systemon aDoDnetwork.9 For security reasons,
real-time access and robust functionality, IRBNet software was placed on the Army’s
TATRC-South servers at Fort Gordon (TATRC, or Telemedicine andAdvanced Tech-
nology Research Center) rather than using a commercially hosted version. Madigan
ArmyMEDCEN (MAMC) began to use commercially hosted IRBNet version about
the same time. These original 4 sites in 2008 plus MAMC expanded to 19 by 2009;
by 2011, the network had grown to include 23 facilities and institutions, more than
120 research locations around the globe and about 3,000 users (Wood, 2011b).While
the eIRB had begun as a pilot at DDEAMC, the Army had come to now see it as a
necessary tool that was needed to transform many if not all of its perceived research
and data management shortcomings at its MEDCENs.

16.1.3 Our Two Goals Merged into One

The history of these two goals began from two divergent paths that had now
converged. First, an evaluationwas conducted in 2005of theAmy’sDCI atDDEAMC
that pointed out the need for an online database to track the members of research
teams, their performance and their written products (Lawless et al., 2011). Coupled
to the eIRB, the evaluation served to guide the development of future metrics for
the performance of each MEDCEN as well as the system of MEDCENs. Second,
and almost contemporaneously, we determined that an IT system was needed; a
team developed and collaborated to define the problem, to work together and to get
an eIRB. Meeting the second goal transformed the existing unwieldy paper prod-
ucts system at DDEAMC and eventually brought its collaborators into an electronic
system that was relied upon to improve the oversight of research at each site and
among all of the Army’s MEDCENs. From a handful of sites and users, this system
grew rapidly into one of the largest in the world, if not the largest.

The eIRB had become a platform for integrated management and reporting. It
transformed procedures for the approval of research protocols and the management
of human and animal research (Wood et al., 2008):

7 https://www.irbnet.org/release/index.html.
8 Malcolm Grow Air Force Medical Center was subsumed under the other sites in the National
Capital Area.
9 Viz., CONOPS, DBT, IATO, ATO, and CON.

https://www.irbnet.org/release/index.html
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The eIRB includes routing of submissions to IRB members; receipt of comments from
IRB reviewers; transmission of modification requests to investigators; development of IRB
meetingminutes; tracking of protocol status; automatic notification of investigators of contin-
uing review deadlines; and tracking metrics. The technology provides a platform for collab-
oration across the organization between Principal Investigators and team members when
drafting protocol proposals. It provides feedback among IRB reviewers, the PI and study
team, and Administrators. It tracks Adverse Events (medical and drugs); provides guided
electronic input and assistance and error checking and reporting to PIs and Administrators.

The move to adopt the web-based eIRB had set the stage to turn around the
lack of organizational and system-wide standards for the knowledge developed
by the MEDCENs (Wood et al., 2009). The eIRB allowed for real-time organi-
zational and system-wide based metrics to improve research competitiveness (based
on maintaining interdependent states within and between each team; Lawless et al.,
2016).

Based on our first goal, we had recommended the need to standardize the eIRB
process; however, we ran into resistance to standardize the eIRB processes across
the MEDCENs. We compromised by having a standard coversheet as opposed to
standardized protocol templates but not universally adopted with standard forms
(e.g., cover sheets for each research protocol; standard data fields; etc.). In this
regard, by the end of the impact study in 2014 when the team was disbanded, we
were unsuccessful at standardization. Each of the MEDCENs continued to use their
existing protocol templates and business processes. By not being firm early on, by
focusing instead on participation by the MEDCEN sites, unfortunately, we were
unable to standardize later on (Wood et al., 2009):

In the future, all ... [MEDCENs] plan to use the same protocol templates and processes but
in the meantime, they can have an operational system AND have the dataset they need. It is
anticipated that it will take a while to get everyone at all ... [MEDCENs] to reach consensus
on templates and business processes.

The lack of overarching standards and metrics at each MEDCEN and at the enter-
prise level meant that mission performance could not be fully assessed, nor stan-
dardized nor even assured across the MEDCENs. We had selected IRBNet in part
due to its scalability with its attachment-based document processes; in that way, sites
could use whatever processes and forms they had or wanted. Over time, once we had
consensus, we thought that we could standardize forms and processes at that later
time for when we had planned to shift from a largely attachment-based system in
IRBNet to a “smart form” process.

Nonetheless, we believed that the data necessary to measure the performance of
all of the sites with a common metric existed, but that performance standard had not
yet been accomplished by the time our evaluation was completed in 2014 (Wood &
Lawless, 2014).
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16.2 The Next Steps in the Transformation from a Paper
to Electronic System

During the second year of implementing IRBNet, the original sites paid for their use
of the eIRB at their individual sites (Wood, 2011b). Yet, many contracting challenges
existed. After or during that second year, the Representatives from the Office of the
Assistant Secretary of Defense (Health Affairs) joined the team and took over the
funding of the eIRB for participating DoD sites.

The program manager team leader for the Defense Medical Research Network
(DMRN) and IRBNet successfully secured funding from Health Affairs to expand
the program to all DOD medical research facilities. This saved part of the annual
cost by DDEAMC to operate IRBNet there and other sites. Total project costs
secured for DDEAMC and other DOD sites for the program management was
significant. What began as a TATRC funded business process improvement research
project for DDEAMC/SERMC had more than met the original working group’s
vision since this system had become the DoD standard (Wood, 2011a). The Army’s
Medical Command (MEDCOM) required CONOPS documentation to be completed
by DMRN for IRBNet to become recognized as the Army’s enterprise system.10

There were lots of issues to be dealt with and resolved after year two of pilot
operations, such as where to permanently host the servers, how to sustain funding,
and a performance contrast of the eIRB impacts on the MEDCEN mission and
research in particular. But despite the eIRB vendor helping us to achieve our original
vision from 2007, by 2012, our team was beginning to lose control of the eIRB
transformation.

16.3 Boundary Maintenance

Variousmetrics and outcomemeasures were discussed, but not implemented. Specif-
ically, an impact analysis was not begun until 2012 and not finished untilMarch 2014;
e.g., during these early meetings, it became apparent that various groups across the
Army’s medical complex were trying to start their own systems because they could,
or were looking to buy a COTS product for their own site, reflecting a silo mentality
that we feared further increased inter-site fragmentation. This silo mentality was
amplified by our failure to standardize the forms and the procedures for IRBNet that
would have simplified the process to obtain analyses of the research conducted at
the MEDCENs by Army and DoD headquarters. Once procedures have been set by
headquarters (e.g., CIRO), each of the MEDCENs managed their own affairs within
those parameters, including whether to use the eIRB system and to what extent they

10 i.e., AKO/SSO certification, DIACAP, IA, ATO, Army Certificate of Net worthiness and other
certification requirements; the Defense Business Transformation documentation process has been
completed.
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could adopt the eIRBs forms and procedures or to use their own. This inter-site frag-
mentation was reflected in turf battles that impeded analyses of the data produced
by the eIRB. In the future, we had wanted to address this problem at a fundamental
level known as boundary maintenance; i.e., how local boundaries are maintained by
local cultures in a tradeoff with how those boundaries may be transformed by upper
management (Lawless et al., 2016). For example, the stronger the local culture,
the more resistance to the standardized transformations that the eIRB afforded. For
this simple model, we would model the entropy produced as our metric, the theory
being that the less entropy produced by a structure (e.g., no turf wars at a site or
between sites), the more effective is the shape of the combined structure at directing
the energy available to the organization’s mission (England, 2013), allowing it to
produce maximum entropy (MEP) for its mission (Martyushev, 2013).

16.4 Future Steps to Determine Impacts. Preliminary
Results in 2010

The next part of the history dealswith analyzing the impact of replacing the old paper-
products system with the eIRB (Wood et al., 2013). We plan to address the impact
in a latter article. But some of the impacts were known by 2010 (Lawless, 2010): At
WRAMC, the time to process publication clearances with the eIRB had decreased
dramatically from an average of 30 days to 4 days, a significant reduction in wasted
time that indicated greater organizational efficiency. And CIRO had discovered that
when a new protocol failed to be completed, it wasted a significant amount of money,
not counting the possible knowledge lost as well as the prestige of the organization
and the researchers involved.

Still, an early analysis of the improvement among the first five sites was presented
in IDPS (2011). Using a t-test conducted on its data from the second quarter 2010 to
the second quarter 2011, DMRN processing times consistently reduced across five
medical centers (t(8) = 2.53, p = 0.035, SD(1) = 32.8, SEM(1) = 14.67; SD(2) =
10.03, SEM(2) = 4.49; SError = 5.3). Table 16.2 also provides a summary in 2011
of the user sites. Table 16.3 tabulates the total users by year.

16.5 Summary

Our first goal was to evaluate the performance of the MEDCEN’s research
processes and research products produced at DDEAMC and eventually for all of the
MEDCENs, a goal that remains incomplete due to a lackof uniformstandards adopted
within and across the MEDCENs. We felt that these standards depended on the data
that could have been used to establish metrics of performance at each MEDCEN
and across the Army’s medical research complex. Instead, the variability we did find
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Table 16.2 IRBNet’s usage at DoD, Summary in 2011 of the user sites (Wood, 2011a). FromWood
(2011b), the data generated by the eIRB couldmeet theArmy’sMEDCENmission (DMRN/IRBNet
successfullymigrated to fhpr.osd.mil servers; data from the project report sent to TATRC). The 2014
data is from IRBNet, 11/27/14

Medical centers (MEDCENs) Summary data 2011 Summary data 11/27/2014

Dwight D. Eisenhower Army
Medical Center, Walter Reed
Army Medical Center,
National Naval Medical
Center, Uniformed Services
University, Madigan Army
Medical Center, Naval Medical
Center-San Diego, Wilford
Hall, Brooke Army Medical
Center, William Beaumont
Army Medical Center, Tripler
Army Medical Center,
Womack Army Medical
Center, Walter Reed Army
Institute of Research, US
Army Research Institute of
Environmental Medicine,
United States Army Medical
Research Institute for
Infectious Diseases, Army
Medical Research and Materiel
Command HQ, Clinical
Investigation Regulatory Office

Total research sites and boards:
123
Research projects: 3,985
Submissions securely
processed: 13,147
Total electronic documents
securely processed: 44,772
Decision letters and other
board documents issued: 4,750

Research institutions: 213
Board workspaces: 106
Research Projects: 21,321
Submitted packages (Board
actions): 77,911
Project Documents submitted
for Board Review: 318,825
Training and credentials
documents being tracked by
Boards: 17,761
Decision letters and other
board documents issued in
response to submitted
packages: 100,454
Board meetings: 2,358
Detailed personal reviews by
individual board members:
88,862

Total users: 2,785 (CONUS
and OCONUS)

Total users: 13,752

across the MEDCENs indicated the existence of internal competition that unnec-
essarily raised costs (Lawless et al., 2013) and reduced data validity (e.g., Gold &
Dewa, 2005; Yawn et al., 2009). Eventually, these standards were not implemented
across DoD; whatever fragmentation existed then remains unknown today.

We had realized early on that the eIRB could generate enterprise data produced by
its medical research teams and regulatory oversight bodies for business intelligence
(BI) to improve the medical research mission under the purview of the Army (Wood
et al., 2008). Ultimately, we wanted real-time automatic data collection, analyses
and reporting with machines that would address the MEDCEN’s research mission
while transforming the enterprise to promote medical research innovation.

Our second goal begun as a collaboration to enhance IT had instead become the
enterprise tool adopted by the Army for all of its medical research. By 2011, we had
succeeded with our second goal started in 2005 to create an electronic system that
would allow the Army’s MEDCENs to be able to better manage medical research
regulatory oversight at eachMEDCENandwith eachother across theArmy’smedical
enterprise. We met this goal by installing IRBNet, an eIRB, to replace the Army’s
paper-based IRB system at the Army’s DDEAMC and four other sites. Before long,
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Table 16.3 Total users by
years (except for the last date,
totals users were collected at
milestone intervals)

Date Users

7/10/2015 14,878

1/22/2015 14,000

8/12/2014 13,000

3/12/2014 12,000

10/1/2013 11,000

5/10/2013 10,000

12/4/2012 9,000

7/19/2012 8,000

3/12/2012 7,000

10/11/2011 6,000

6/3/2011 5,000

2/8/2011 4,000

5/7/2010 3,000

9/23/2009 2,000

3/4/2010 1,000

and in a surprise to us, the Army adopted the eIRB as the means to manage all of its
research proposal submission and regulatory oversight processes. Our success had
been amplified by our first goal to establish metrics, still elusive. In hindsight, the
transformations we enacted may have happened too fast.

Regardless, arising from the convergence of our two goals to evaluate and collab-
orate, the eIRB was designed to capture data that would allow us to not only know
how well the Army’s mission was being performed, but also, by being electronic and
potentially accessible in real-time by military medical scientists around the globe,
it was designed to transform the Army MEDCENs, their medical research, and the
research that could one day be used to improve patient care.

We had expected that the data once extracted, analyzed and provided on a periodic
basis should have benefited soldiers and otherDoDbeneficiaries givingDoD research
leadership themanagement data necessary for process improvements. This ultimately
could have givenmilitary health care beneficiaries quicker access to newly developed
treatments from faster research approval and therefore potential life saving interven-
tions due to an improved research review processes. The sooner that researchers can
submit and have research approved, the sooner the results can be generated, published
andmoved to the field.Having actionable, interpretable data from the system for busi-
ness process improvements should enable leaders to ensure that research processes
are efficient and effective. Data from the system if used to improve processes could
result in the pool of research information potentially growing faster and in less time
for results to be given back to users.

In retrospect, the vision we had crafted in 2007 may have been too limited for
what arose out of that vision. CIRO at the time warned us that we could not have an
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enterprise systemwithout standardizing procedures and forms. But we chose tomove
forward with an eIRB system that would allow each site to use its own forms and
procedures to accelerate the adoption of the eIRB system. The intent was to transition
from site specific forms/processes to standardized enterprise forms and processes
using the same eIRB system once consensus was obtained by participating sites. Yet
we never envisioned that our small team would develop an enterprise system that
would be adopted so quickly as was the eIRB. We figured that we could standardize
the forms and procedures later. That mistake was compounded by not having a
champion at DoD-HQ; recall that our first recommendation for an eIRB to Army
Headquarters (HQ) was declined. Further, once the impact study was completed in
2014, despite being effective and successful, the team was disbanded.

A brief conclusion about our team. Our collaboration to improve our reporting,
reviewing, and approval processes, motivated by the evaluation’s need to include
performance metrics, lead to the pilot demonstration of an eIRB system. We were
amazed at how rapidly the system transformed into possibly the largest eIRB system
in the world. We could have done a lot of things better, but apparently, the concept
we had cobbled together as a team turned out to be emphatically successful. Our
pilot eIRB, had become the Army’s and DoD’s defacto enterprise system.

16.6 Postscript

After we had completed our evaluation of DoD’s eIRB (Wood & Lawless, 2014),
the host contractor, of the eIRB system, had undergone multiple contract extensions
with no guarantee that it would be permitted to compete to continue its contract; even
the Navy had designed its own, competing web-based system. Instead of accepting
its third contract extension, the eIRB system ceased to operate after 2015, forcing
a return to a paper-based system for what we thought might have been a period
of about a year. But after 1000s of man-hours expended on the recovery from the
loss of existing eIRB, which entailed an interim mixed electronic (e.g., email) and
paper-based system, and designing a new workflow, a new eIRB contractor has been
identified but is not yet fully operational across the enterprise.11 The original adopted
eIRB system had been an attachment-based system allowing each site to use its own
forms/processes with the option of standardized forms that were not adopted. As
previously discussed, this limited the fidelity of the data, but once the new eIRB
system’s forms and processes are standardized across the DoD should resolve the
primary criticism that we had raised during our evaluation report in 2014.

11 https://www.health.mil/Military-Health-Topics/Research-and-Innovation/Research-Oversight/
Electronic-Institutional-Review-Board-Modernization.

https://www.health.mil/Military-Health-Topics/Research-and-Innovation/Research-Oversight/Electronic-Institutional-Review-Board-Modernization
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Chapter 17
Collaborative Communication and
Intelligent Interruption Systems

Nia Peters, Margaret Ugolini, and Gregory Bowers

Abstract Within collaborative environments, humans are not only taskedwith inter-
acting with technology, but also with other humans. The interruption management
systems literature is dedicated to alleviating the ill-effects of interruptions specifically
within single-user, multitasking interactions by proposing temporal presentations of
interruptions in the main task that are least disruptive to the entire interaction. There
is less work focused on this concept within multi-user, multitasking environments.
In this chapter we propose various temporal presentations of information at low
cognitive workloads and evaluate how these timings affect human performance. In
measuring objective and subjective individual and team metrics within a dual-user,
dual-task paradigm, performance is optimized for low cognitive workload interrup-
tion timings compared to high cognitive ones. This work contributes to the overall
body of literature by proposing temporal presentations of information within multi-
user, multitasking interactions that circumvent the disruptiveness of disturbances in
these domains.

Keywords Interruption timing · Interruption management · Intelligent
interruption systems

17.1 Introduction

As humans continue to multitask and collaborate among semi-autonomous systems,
their conversations and tasks are being interruptedmore often. These interruptions are
a side effect of technical advancements in general and specifically semi-autonomous
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technologies which have self-governing capabilities, but also engage with users to
achieve taskgoals. Intelligent software technology can escalate theHuman-Computer
Interaction (HCI) problem of interruptions by inducing negative effects on human
cognition, productivity, affect state, and task performance (Adamczyk & Bailey,
2004) by inundating users with too much information at inconvenient times that do
not consider the user’s current state. User-interruptions have been studied within
the medical domain (e.g., Grundgeiger & Sanderson, 2009), military domain (e.g.,
Goyal & Fussell, 2017) and (Hodgetts, Tremblay, Vallières, & Vachon, 2015), and
commercial domain (e.g., Pradhan, Qiu, Parate, & Kim, 2017, Horvitz, 2001, and
Prajapati, Yamada, Unehara, & Suzuki, 2016) to inform intelligent notification sys-
tems. The ubiquitous nature of interruptions makes alleviating the ill-effects of this
phenomenon a significant area of exploration within human-computer interaction.

Interruption science focuses on how interruptions affect human performance as
well as interventions to ameliorate the disruptions caused by them.Although there are
many factors that account for the disruptiveness of interruptions, their timing relative
to the main task is particularly influential. Research from Gould, Brumby, and Cox
(2013), Iqbal and Bailey (2005, 2006), Katidioti, Borst, and Taatgen (2014), and
Monk,Boehm-Davis,Mason, andTrafton (2004) suggest disseminating interruptions
at times of lower cognitive workloads or at (sub)task boundaries in order to alleviate
their disruptiveness.

Since previous researchwithin single-user, multitasking interactions suggests that
interruptions within the main task should be sent at periods of lower cognitive work-
loads and at sub(task) boundaries, we aim to explore whether similar effects are
present within multi-user, multitasking interactions. This work is motivated by the
limitation of theories and studies dedicated to interruptions in multi-user, multitask-
ing domains such as air traffic control, unmanned aerial systems (UAV) operations,
and emergency personnel exercises.

To contextualize this, imagineUAVand ground troop operators collaborating over
push-to-talk to identify a target when looking at it from two different perspectives
(e.g., the UAV operator has an aerial perspective and the ground troop operator has a
first-person perspective). Simultaneously, both collaborators must attend to informa-
tion in their immediate environment (e.g., UAVoperatormustmonitor changingUAV
states). An interruption within these interactions can be defined as an unanticipated
request for task switching from a person, an object, or an event while collaborating
and multitasking. The challenges of single-user interruptions extend to these more
complex domains. This extension makes alleviating their ill-effects critical and also
more challenging since factors beyond the needs of a single individual who is multi-
taskinghave to be extended tomultiple userswhoare alsomultitasking.Theoutcomes
from this research will not only inform follow-up studies to better understand these
relationships, but also motivate the development of theoretical frameworks in this
space.



17 Collaborative Communication and Intelligent Interruption Systems 351

17.2 Interruptions in Multi-user Multitasking Interactions

Similar to Peters, Romigh, Bradley, and Raj (2017b), this chapter evaluates human
performance as a function of different temporal presentations of interruptions within
the main task specifically within multi-user, multitasking interactions. Peters et al.
(2017b) explored the manipulation of interruption timings delivered in the main task
(fixed, random, and human determined) and assessed the main and interruption task
accuracy and completion times. The results suggest human determined interruptions
(a proxy for lower cognitive workload interruptions) significantly improved interrup-
tion task performance. Additionally, Peters, Romigh, Bradley, and Raj (2017a) found
that 53% of human determined interruptions occurred within 2 s of (sub)task bound-
aries defined as a temporal interval after one task is complete, but before another
begins.

Within these interactions, humans are not only multitasking, but also collabo-
rating. The proposal of interruptions at a time of low cognitive workload must be
considered for more than one person performing multiple tasks. More formally we
can think about interrupting at times of lower cognitive workload as the avoidance
of task co-occurrence or dual-tasking which is an individual performing two tasks
simultaneously. As an example, one reason humans in the Peters et al. (2017a) study
may be interrupting at (sub)task boundaries is to prevent dual-tasking.

Compared to single-user multitasking interactions, when considering multiple
users, the main task consists of two tasks instead of one: users speaking and lis-
tening. There are two implications of dual-tasking in collaborative tasks: (1) if the
interruption is intended for the speaker, the speaker must speak to their teammate
while listening to the message or stop speaking and listen to the message, and (2) if
the interruption message is for the listener, they must now attend to two steams of
information. We propose low cognitive workload interruption timings that mitigate
dual-tasking in multi-user multitasking interactions. We formally define interrup-
tion timings at low cognitive workload as those that minimize the probability of
dual-tasking or avoid sending messages when users are either speaking or listening.

17.2.1 Low Cognitive Interruption Timings

Motivated by Adamczyk and Bailey (2004) and Peters et al. (2017a), SUBTASK
and KEYWORD are interruption timings that send interruptions after detecting the
end of a (sub)task. The SUBTASK timing detects the end of a SUBTASK prior to
interrupting and KEYWORD timing detects affirmation cues predictive of (sub)task
boundaries. A (sub)task boundary is defined as a temporal interval after a (sub)task
is complete, but before another begins. Shivakumar, Bositty, Peters, and Pei (2020)
found a lexical category of keywords and phrases called affirmation cues (i.e., got it,
copy that, OK I’m done) that are predictive of the occurrence of (sub) task boundary
or transition from one (sub)task to the next. We posit that if users are not currently
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performing an ongoing task, they are not speaking or listening to content related
to that task, and allowing a timing that detects transitions between (sub)tasks can
minimize dual-tasking.

SILENCE and PUSH TO TALK OFF (PTT OFF) are interruption timings that
send interruptions after detecting the end of a conversational turn. These are novel
interruption proposals that could result in an interesting trade space. On the one hand
for interactions where (sub)tasks are long and provide less opportunities to interrupt,
these strategiesmay provide opportunities to interrupt by analyzing the task at a lower
granularity. Conversely, if conversational turn-taking is moving too fast or the length
of the interruption message exceeds the available temporal opportunity to interrupt,
dual-tasking may occur. There is no clear indication of the implications for these
timings, but because they monitor the ongoing task prior to sending interruptions,
we believe they may provide opportunities to minimize dual-tasking.

HUMAN are interruption timings sent by a third human listening to the ongoing
task and making decisions on when to interrupt that are least disruptive to the overall
interaction. The variability in human decisions and the reality that not all human
interruption decisions will optimize overall task efficiency must be acknowledged.
For our purposes, since previous literature suggest that more than half of human
interruptions occurred at task boundaries (Peters et al. 2017b), this gives us some
indication that humans are using strategies to minimize dual-tasking.

17.2.2 High Cognitive Interruption Timings

Motivated by Peters et al. (2017a), the RANDOM FEW and RANDOM MANY
are interruption timings that send interruptions at random times in the interaction.
RANDOMFEW interruptions are sent less frequently than RANDOMMANY. Both
have the potential to increase the probability of dual-tasking because they do not
monitor where teammates are in their interaction and can easily interrupt while
people are speaking or listening. RANDOM FEW may be less detrimental than
RANDOMMANY because it is sending fewer interruptions, inherently minimizing
dual-tasking compared to RANDOMMANY.Alsomotivated by Peters et al. (2017a)
FIXED interruption timings are sent at fixed timed intervals. Similar to RANDOM
MANY and RANDOM FEW, FIXED interruptions have the potential to increase
dual-tasking with little consideration of the ongoing task.

17.3 Methods

Within a dual-user, dual-task scenario, we aim to compare individual and team per-
formance between high cognitive load interruption timings and low cognitive load
interruption timings to a baseline condition and evaluate the effect these timings have
on human performance metrics. We hypothesize that the single (main) task baseline
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condition will provide optimal performance, high cognitive workload interruption
times will degrade performance, and low cognitive workload interruption times will
be the same as baseline.

We explore the following research questions:

Research Question 1: Is there a difference in main task team performance between inter-
ruption times at high cognitive workload, low cognitive workload, and themain task baseline
condition?

H01: There is no difference in main task team performance between interruption times at
high cognitive workload, low cognitive workload, and the main task baseline condition.

H1: There is a difference in main task team performance between interruption times at high
cognitive workload, low cognitive workload, and the main task baseline condition.

Research Question 2: Is there a difference in individual subjective measures between inter-
ruption times at high cognitive workload, low cognitive workload, and themain task baseline
condition?

H02: There is no difference in individual subjective measures between interruption times at
high cognitive workload, low cognitive workload, and the primary task single-task baseline
conditions.

H2: There is a difference in subjective metrics between interruption times at high cognitive
workload, low cognitive workload, and the primary task single-task baseline conditions.

Research Question 3: Is there a difference in individual interruption task performance
between interruption times at high cognitive workload and low cognitive workload?

H03: There is no difference in individual interruption task performance between interruption
times at high cognitive workload and low cognitive workload.

H3: There is a difference in individual interruption task performance between interruption
times at high cognitive workload and low cognitive workload.

17.3.1 Data Collection

To explore the aforementioned research questions, we simulate a simple multi-user,
multitasking interaction; a dual-user, dual-task scenario. The main task simulates a
coordination task where teammates must ground their knowledge of a scene from
two different perspectives. The secondary task is the interruption task that simulates
people having to monitor information independent of the collaborative task.

In our experiment, the main task is a collaborative Spot the Difference task and
the interruption task is aUAV keeping-track task. Users were tasked with performing
this dual-task within a 15-min time limit. Participants were instructed to go through
a series of Spot the Difference tasks and answer as many UAV queries as possible
within the allotted time. Additionally, participants were instructed to prioritize both
tasks equally. The subjects were from ages 20 to 35, four females and six males.
From these 10 participants, we constructed 10 teams, with each participant serving
on exactly two teams.

Spot the Difference The main task is a collaborative, computer-system implemen-
tation of the Spot the Difference task illustrated in Fig. 17.1.
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(a) User I - Spot the Difference (b) User II - Spot the Difference

Fig. 17.1 GUI for the spot the difference task

Two users speak over a push-to-talk interface to identify differences in their pic-
tures. When users identified a difference in their respective pictures and both of the
users clicked on that difference, if correct a visual of the difference appeared. Users
were also given an indication of how many differences they found in a picture via a
scoreboard.

UAVKeeping TrackThe interruption task was aKeeping Track of Unmanned Aerial
Vehicle (UAV) States task inspired byVenturincv (1997)where each subjectwas asked
to keep track of three different pieces of information about changing UAV states:
name, attribute, and attribute value. An example is:

Raven-3 (UAV name) Fuel (UAV attribute) is 50% (UAV attribute value)

There were 5 UAV names, 5 UAV attributes, and 5 attribute values giving a total of
125 randomly selected changing UAV states that could be sent as interruptions. Once
a UAV state was sent, the next interruption prompted the user to repeat what they
heard: “Repeat the Previous Statement.” An example of the interruption sequence
presented to the users (regardless of the interruption timing condition) follows:

Interrupt 1 for User 1: Raven-3 Fuel is 50%

Interrupt 1 for User 2: Raptor-25 Play is Parallel Sweep

Interrupt 2 for User 1: Repeat Previous Statement

Interrupt 2 for User 2: Repeat Previous Statement

This task was completed individually so participants could not hear the interrup-
tions meant for their teammate.

Interruption timings are inherently a function of the interaction. For instance, if
the push-to-talk button was pressed in quick succession due to a conversation with
rapid turn-taking, the interruptions in a condition associated with pressing the push-
to-talk button would also occur in very rapid succession. This situation would make
it incredibly difficult to compare this condition to other conditions with more tem-
porally spaced interruptions. To avoid this undesirable co-occurrence, interruptions
were only available to be sent once every 15s.
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Users received a synthetic audio stimulus and a persistent text of the interruption
message that was present for the same length of time as the audio. Interruption
messages were presented in a pop-up window that partially obscured the main task
window. Users verbally articulated their response to the query “Repeat Previous
Statement” and their response was scored by the experimenter on which pieces of
information they answered correctly. The pop-up window was closed when the user
responded and pressed the OK button to close the window (Fig. 17.1b).

17.3.2 Conditions

We used a within-team design with the following 9 conditions (1 control; 8 manip-
ulations):

– MAINCONTROL: Spot the Difference Task only. This is the baseline condition.
– RANDOM FEW: Dual-task with randomly timed interruptions occurring at
longer temporal delays between 0–45s.

– RANDOM MANY: Dual-task with random interruptions occurring at shorter
temporal delays between 0–15s.

– FIXED: Dual-task with interruptions sent every 15s.
– PUSH TO TALK OFF (PTT OFF): Dual-task with interruptions triggered after
push-to-talk was released.

– SILENCE: Dual-task with interruptions sent when audio energy was below -70
dBFS for 1 s.

– KEYWORD: Dual-task with interruptions sent after a keyword spotter detects a
predefined set of keywords from affirmation cues (Shivakumar et al., 2020).

– SUBTASK: Dual-task with interruptions sent after both users click a difference.
– HUMAN: Dual-task with a third human participant listening in and making inter-
ruption decisions.

The presentation order of conditions was counterbalanced across teams. Partici-
pants were not told which condition they were running. All participants served on
a team as well as serving as a human interrupter at least once. The potential inter-
rupter participant was present for at least the beginning of every session, regardless
of condition type, to ensure that the “Human” condition set-up procedures were not
noticeably different from the other conditions.

Team Performance Measures We used metrics motivated by the single-user, mul-
titasking interruption literature. Since this design is a dual-user, dual-task paradigm,
some were more appropriate at the team level and others at the individual level.

The following team-performance measures for the main Spot the Difference task
were evaluated:

– AverageMainTaskTimeofCompletion (min): Total time for completed pictures
divided by the number of completed pictures.
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– Number of Differences Found: A count of the number of differences found in
the Spot the Difference Task within 15min.

– Average Time to Find aDifference (s): The average time elapsed between finding
one difference and the next difference.

– Average click delay(s): The average time elapsed between one participant clicking
a difference and their partner also clicking that difference to confirm.

Individual Performance Measures Since the interruption task was an individual
task and the partner does not participate in this task, we extracted individual perfor-
mance measures from the UAV Keeping Track task.

– Interruption Score: Number of queries answered with all three attributes correct
divided by the total number of queries sent to an individual.

– Partial Credit Interruption Score: Number of correct attributes reported divided
by the total number of attributes requested (3 per query). For example, if subjects
correctly report 2 attributes, they receive a score of 2/3 (66.66%) for that query.

– Response Duration for Correct Query Response: Duration of vocal response
when answering correctly.

– Response Time for Correct Query Response: Time to click the push-to-talk to
respond to a query when the response was correct.

– Percentage of Unanswered Queries: Number of queries that were unanswered
divided by the total number of interruptions sent.

Due to data processing errors, we did not report response time and duration for
the Incorrect Query Responses.

Finally, after each run, we gave users the NASA-TLX survey developed by Hart
and Staveland (1988) to extract subjective measures. This survey measures Mental
Demand, Physical Demand, Temporal Demand, Performance, Effort, and Frustra-
tion. Participants rated their impression of the runs rating these factors from 1–10
(Low–High). The questions on the survey are:

– Mental Demand: How mentally demanding was the task?
– Physical Demand: How physically demanding was the task?
– Temporal Demand: How hurried or rushed was the pace of the task?
– Performance: How successful were you in accomplishing what you were asked
to do?

– Effort: How hard did you have to work to accomplish your level of performance?
– Frustration: How insecure, discouraged, irritated, stressed, and annoyed were
you?

For the Silence condition, there is a data point missing from Team 1, so this
condition has 18 data points compared to the other conditions with 20 data points.
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17.4 Results and Discussion

A one-way analysis of variance (ANOVA) at the 0.05 level was used for our anal-
yses. We hypothesized in measuring team, individual, and subjective performance,
the baseline condition will be optimal, performance will be degraded in the high
cognitive conditions, and unchanged from baseline performance in the low cogni-
tive conditions. The baseline condition is the MAIN CONTROL; the high cognitive
load conditions are RANDOMMANY, RANDOM FEW, AND FIXED; and the low
cognitive load conditions are SILENCE, PTT OFF, SUBTASK, KEYWORD, and
HUMAN.

17.4.1 Team Performance Analyses

The analyses below will allow us to answer Research Question 1. Although the
results are not significant, we do want to report trends that suggest some of the low
cognitive conditions being similar to or exceeding baseline conditions. Conversely
the high cognitive conditions more often degraded baseline performance.

For the dependent variable Average Main Task Time of Completion (min), the
ANOVAwas not significant, F(8,81)= 1.129, p = 0.353. Compared to baseline, the
worst condition was RANDOM FEW where users took an average 2.3min longer
to complete the main task. Compared to baseline, the best condition was FIXED
where on average users took 1.3 s less time to complete the main task. Here, a high
cognitive load condition RANDOMFEWdegraded baseline performance and a high
cognitive load condition FIXED exceeded baseline performance.

For the dependent variable Number of differences found the ANOVA was not
significant, F(8,81) = 0.758, p = 0.640. Compared to baseline, the worst perfor-
mance condition was RANDOM MANY where on average users found 6.2 fewer
differences. Compared to baseline, the best performing condition was SUBTASK
where users found 1.9 more differences. Here, a high cognitive load condition RAN-
DOM MANY degraded baseline performance and a low cognitive load SUBTASK
condition exceeded baseline performance.

For the dependent variableAverage time to find a difference(s), the ANOVAwas
not significant, F(8,81) = 1.048, p = 0.408. Compared to the baseline, the worst
performance condition was RANDOM FEW where on average users took 11.8 s
longer to find differences. Compared to baseline, the best performing condition was
SUBTASK where on average users took 5.6 s less to find differences. Again a high
cognitive load condition RANDOM FEW degraded baseline performance and a low
cognitive load SUBTASK condition exceeded baseline performance.

For the dependent variable Average Click Difference(s) or the time difference
between when the first person identified a difference and then the other person spot-
ted that difference, the ANOVA was not significant, F(8,81) = 0.520, p = 0.838.
Compared to baseline, the worst performance condition was the HUMAN condi-
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tion where users took on average 0.5 s longer to click after the first partner found a
difference. Compared to baseline, the best performance condition was RANDOM
FEW where on average users took only 0.2 s longer to click after their partner finds
a difference. Here both low and high cognitive load conditions degraded baseline
performance, but a high cognitive load condition RANDOM FEW degraded it to a
lower extent than HUMAN, a low cognitive condition.

17.4.2 Individual Subjective Analyses

The below analyses will allow us to answer Research Question 2. Here we will not
only report conditions that significantly degrade or exceed baseline performance,
but even if a condition is not significantly different from baseline, we will report the
extent to which it is different.

For the dependent variable Mental Demand, the ANOVA was significant,
F(8,169) = 2.230, p = 0.028. A post-hoc Tukey analysis illustrated a mean dif-
ference of 4.95 between the RANDOM MANY and MAIN CONTROL conditions,
ptukey = 0.012 indicating that the high cognitive load RANDOMMANY condition
was significantly more mentally demanding than the baseline condition.

For the dependent variable Physical Demand, the ANOVA was not significant,
F(8,169) = 0.609, p = 0.769. This result is intuitive since there was no expectation
for physical demand based on the nature of the task.

For the dependent variable Temporal Demand, the ANOVA was significant,
F(8,169) = 2.779, p = 0.007. A post-hoc Tukey analysis illustrated a mean differ-
ence of 4.95 between the RANDOM MANY and MAIN CONTROL conditions,
ptukey = 0.005, indicating that the high cognitive load RANDOMMANY condition
was significantly more temporally demanding than the baseline condition.

For the dependent variable Performance, the ANOVA was significant, F(8,169)
= 3.5865, p < 0.001. A post-hoc Tukey analysis illustrated a mean difference of 4.2
between the FIXED and MAIN CONTROL conditions, ptukey = 0.030 and mean
difference of 6.65 between the RANDOM MANY and MAIN CONTROL condi-
tions, ptukey < 0.001. These results indicate users perceived their performance was
significantly worse in the two high cognitive load FIXED and RANDOM MANY
conditions compared to baseline.

For the dependent variable Effort, the ANOVA was not significant at the 0.05
level, F(8,169) = 1.707, p = 0.1. A post-hoc Tukey analysis illustrated a mean
differenceof 4.55between theRANDOMMANYandMAINCONTROLconditions,
ptukey = 0.057, indicating that on average subjects were scoring their effort on the
RANDOMMANY condition task 4.55 points higher than the baseline. These results
indicate users expended more effort on the high cognitive load RANDOM MANY
condition compared to baseline.

For the dependent variable Frustration, the ANOVA was not significant at the
0.05 level, F(8,169)= 1.94, p = 0.057. A post-hoc Tukey analysis illustrated amean
difference of 4.65 between the FIXED and MAIN CONTROL conditions, ptukey =
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0.070. Additionally there was a mean difference of 4.45 between the RANDOM
MANY and MAIN CONTROL conditions, ptukey = 0.098. These results indicate
that users were more frustrated in the two high cognitive load FIXED and RANDOM
MANY conditions compared to baseline.

17.4.3 Individual Interruption Task Measures

The below analyses will allow us to answer Research Question 3. Although none of
the results are significant, we aim to illustrate the extent to which the performance
metrics of select low cognitive load conditions are different from high cognitive load
conditions.

For the dependent variable Interruption Score, the ANOVA was not significant,
F(7,152) = 0.74, p = 0.740. Across all conditions the Interruption Score was
μ = 68.8%,σ = 24.5%.The highest scorewas from the lowcognitive load condition
HUMAN (μ = 72.4%, σ = 22.2%), and the lowest was from the high cognitive load
condition RANDOM MANY (μ = 59.8%, σ = 25.5%) with a 12.5% difference
between the two.

For the dependent variable Partial Credit Interruption Score, the ANOVA was
not significant at the 0.05 level, F(7,152)=0.511, p=0.825.Across all conditions the
Partial Credit Interruption Score was μ = 79.9%, σ = 20.6%. The highest score
was from the low cognitive load condition SILENCE (μ = 82.7%, σ = 16.6%),
and the lowest was from the high cognitive load condition RANDOMMANY (μ =
72.6%, σ = 23.8%) with a 10.1% difference between the two.

For the dependent variable Avg Response Duration for Correct Query
Response(s), the ANOVA was not significant, F(7,152) = 0.76, p = 0.622. Across
all conditions, the Avg Response Duration for Correct Query Response(s) was
μ = 3.18, σ = 0.64. The shortest duration was from the low cognitive load condi-
tion SUBTASK (μ = 2.95, σ = 0.63), and the longest duration from the high cog-
nitive load condition RANDOMMANY (μ = 3.355, σ = .43) with a 0.4 difference
between the two.

For the dependent variable Percentage of Non Responses, the ANOVA was not
significant at the 0.05 level, F(7,152) = 0.41. Across all conditions, the Percentage
of Non Responses was μ = 9%, σ = 17.6%. The lowest percentage was from the
low cognitive load condition KEYWORD (μ = 5.3%, σ = 11.9%), and the largest
percentage was from the high cognitive load condition RANDOM MANY (μ =
14%, σ = 23.2%) with an 8% difference between the two.

For the dependent variables,Correct Interruption Response Time, the ANOVA
was not significant at the 0.05 level, F(7,152) = 1.511, p = 0.167. Across all con-
ditions, the Correct Interruption Response Time was μ = 2.45, σ = 0.69. The
shortest duration was from a low cognitive load condition SILENCE (μ = 2.19,
σ = 0.41) and the longest duration from a high cognitive load condition RANDOM
MANY (μ = 2.68, σ = .67) with a 0.49 difference between the two.
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17.5 Discussion

For Research Question 1, we can accept the null hypothesis. Although none of the
results were significant. Other than the dependent variables Average Main Task
Completion and Average Click Difference, there was a common trend in low cog-
nitive load conditions exceeding or being comparable to baseline performance and
high cognitive load conditions degrading baseline performance. This finding is a
promising result because it gives some indication that low cognitive load interrup-
tions will not induce the negative effects of interruption timings we have seen in
the previous literature (e.g., Adamczyk & Bailey, 2004). Additionally, we found that
for dependent variables such as Number of differences found and Average time
to find a difference, the low cognitive load condition SUBTASK actually exceeded
baseline condition performance. It is possible that interruption tasks with low cog-
nitive load interruption timings actually increase motivation to allocate more effort
to the primary task when interruptions were not present.

Variability in teamdifferences and a sample size of only 10 teamsmakes it difficult
to draw any strong conclusions in relating the interruption timings to main task
performance.An expansion of this study and carefullyminimizing team-performance
variability in the primary task will better allow us to make stronger inferences from
results in similar paradigms.

For Research Question 2, we can partially reject the null hypothesis specifically
for the dependent variables Mental Demand and Temporal Demand; where the
high cognitive load RANDOMMANYcondition was significantly different from the
baseline; and for thePerformance variable,where twohigh cognitive load conditions
RANDOMMANY and FIXEDwere significantly different from the baseline. These
results corroborate similar results from Adamczyk and Bailey (2004) and illustrate
how random interruptions negatively influence affect states or the emotional com-
ponent of completing these tasks. As we hypothesized, across all subjective metrics,
none of the low cognitive load conditions were significantly different from the base-
line. Finally there was a trend of low cognitive load conditions such as SUBTASK,
KEYWORD, HUMAN, and SILENCE and the high cognitive load condition RAN-
DOM FEW having subjective metrics comparable to baseline. The most interesting
part of this result is that one of the high cognitive load conditions (RANDOM FEW)
was similar to the baseline based on subjective rating. This finding could give some
indication that this condition is more comparable to low cognitive load interruption
timings especially when measuring subjectivity.

For Research Question 3, we can accept the null hypothesis. Although across all
the dependent variables none were significant, we did find a pattern of best perfor-
mance coming from low cognitive load conditions and the worst coming from a high
cognitive load condition (mainly RANDOM MANY). This corroborates findings
from Peters et al. (2017a) which indicated random interruption timings significantly
degraded interruption task performance. The present study extends this work by
evaluating more interruption task metrics to capture the implication of interruption
timings on an interruption task.
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17.6 Conclusion

Motivated by the previous literature, we proposed several low cognitive load inter-
ruption timings, and then evaluated individual and team performance and subjective
measures to gauge how disruptive these proposed timings were in multi-user, multi-
tasking interactions. Our results showed not only that for the most part, lower cog-
nitive load interruption timings degrade baseline performance to a lesser extent than
high cognitive load interruption timings, but also in some instances, low cognitive
load interruptions may even exceed baseline performance.

Limitations of the study include, but are not limited to, the performance vari-
ability within the main task making it difficult to make strong inferences about how
interruption timings may degrade main task performance. Additionally, with only 10
teams, there is an opportunity to expand the sample size and increase the power of
our study. In future work, we aim to address both of these constraints.

The outcomes from this research will not only inform follow-up studies to better
understand the relationship between interruption timings and human performance,
but also motivate the development of theories and algorithmic solutions to develop-
ing interruption management systems that temporally predict times to disseminate
information that are least disruptive to the overall exchange.
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Chapter 18
Shifting Paradigms in Verification and
Validation of AI-Enabled Systems: A
Systems-Theoretic Perspective

Niloofar Shadab, Aditya U. Kulkarni, and Alejandro Salado

Abstract There is a fundamental misalignment between current approaches to
designing and executing verification and validation (V&V) strategies and the nature
of AI-enabled systems. Current V&V approaches rely on the assumption that sys-
tem behavior is preserved during a system’s lifetime. However, AI-enabled systems
are developed so that they evolve their own behavior during their lifetime; this is
the consequence of learning by the AI-enabled system. This misalignment makes
existing approaches to designing and executing V&V strategies ineffective. In this
chapter, we will provide a systems-theoretic explanation for (1) why learning capa-
bilities originate a unique and unprecedented family of systems, and (2) why current
V&V methods and processes are not fit for purpose. AI-enabled systems necessitate
a paradigm shift in V&V activities. To enable this shift, we will delineate a set of
theoretical advances and process transformations that could support such shift.
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18.1 Introduction

Systems Engineering experts have developed methodologies and processes to suc-
cessfully verify and validate complex systems. V&V activities play a crucial role
to form experts’ beliefs about system performance, functions, and structure (Engel
2010; Hoppe et al. 2007; Salado and Kannan 2019). These V&Vmethodologies and
processes were originally designed to support the development of traditional sys-
tems, which we describe as behavior-preserving, such that, when subjected to the
same inputs, the system is expected to produce the same outputs throughout the sys-
tem’s operational life (Salado and Kannan 2019). Furthermore, traditional systems
are deployed in environments where there is little or no learning to be performed by
the system itself; instead, learning is an attribute of the human operators that are part
of the system’s operational environment. Thus, in the design of behavior-preserving
systems, V&V activities are employed to predict, confirm, or gain confidence about
the future behavior of a system in its operational environment.

In contrast to traditional systems is Artificial Intelligence-enabled systems (AI-
enabled systems), which we define as cyber-physical systems that exhibit artificial
intelligence (AI) capabilities. The AI capability can utilize history to alter the oper-
ational parameters of the system. That is, in general, AI-enabled systems are not
behavior-preserving systems. The possibility of AI-enabled systems to dynamically
adjust operational parameters in the field gives rise to an unprecedented challenge
in systems engineering: how can we verify and validate AI-enabled systems whose
behavior can dynamically change when deployed? (Felder 2018)

In this chapter, we will discuss the challenges that the systems engineering com-
munitymay face in designing V&V strategies for AI-enabled systems, and how these
challenges might be potentially overcome. Overall, we suggest that a paradigm shift
is necessary, even though obstacles will be faced, and we focus on the following
aspects. First, we elaborate on how performing V&V in a test environment might
not be suitable for predicting the system’s behavior in its operating environment.
Second, we examine the endogenous evolution of intelligent systems that sheds light
on the misalignment of using the homomorphism concept in V&V for such systems.
Third, we discuss theV&V challenges of themeta-capabilities of intelligent systems.
Fourth, we address the scalability of intelligent systems and the implications to V&V
at different scales. Fifth, we expand on the nature of dynamic changes of the set of
state descriptions of an intelligent system and the related misalignment with current
V&V methodologies and processes.

We address these challenges around a systems theoretic definition of intelligence,
which we provide later in the chapter.
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18.2 A Need for a Paradigm Shift in V&V

There is an increasing number of currently operating systems that are being outfit-
ted with advanced intelligent abilities such as learning, knowledge representation,
and perception. Therefore, it is evident that the existing V&V processes need to be
realigned due to this transition. For instance, autonomous vehicles are now being
seriously considered as viable alternatives to traditional modes of transport. Propo-
nents of the technology argue that it is only a matter of time before civilian laws
are suitably altered and there is widespread usage of autonomous vehicles on public
roads. In this regard, a key challenge is characterizing the capabilities of autonomous
vehicles so that suitable laws can be passed to govern the use of autonomous vehicles.

Characterizing the capabilities of autonomous vehicles will require a new
paradigm for V&V activities during the development process. For example, one
key technology that is currently under development in autonomous vehicles is the
onboard AI that learns the driving style of the car’s owner (Kuderer et al. 2015). By
statistically analyzing the owner’s driving style, which is defined as a multi-attribute
variable that includes acceleration, deceleration, and route preferences, the onboard
AI is able to learn and replicate the driving style of the user. Similarly, another
key technology in autonomous vehicles is intelligent navigation (Isele et al. 2018),
where onboard AI continuously improves its navigation capabilities during the car’s
operation.

Existing approaches to designing and executingV&Vstrategiesmay not be fit-for-
purpose in the design and development of AI-enabled systems. For the technologies
presented above, for example, the vehicle’s behavior is subject to change based on the
data received by a vehicle during its operation (Felder 2018). Conducting V&V in the
lab will most likely be of little relevance since it will be cost-prohibitive to create an
input dataset that can capture all, or almost all, of the possible scenarios in which the
user will operate the autonomous vehicle. Furthermore, even if V&V is conducted in
the lab, there is no guarantee that the behavior of the autonomous vehicle predicted
by the V&V activities will be realized during the vehicle’s operational life. Indeed,
the behavior observed in the lab may be entirely alien to that observed in the field.

The challenge here is to change how we think about V&V activities. In AI-
enabled systems, the consequences of learning by the AI algorithms manifest as a
system-level behavior. However, the actual operational parameters chosen by the
AI algorithms may not be observed until the system is deployed in the field. Thus,
traditional approaches to V&Vmay end up giving false confidence to both designers
and stakeholders in the possible behavior of the AI-enabled system.

The two technologies mentioned above for autonomous vehicles are not iso-
lated achievements of the engineering community. Indeed, an increasing number of
complex systems currently operating are being outfitted with advanced intelligent
abilities such as learning, knowledge representation, and perception. For example,
in continued deployment approaches, such as DevOps (a collaborative merger of
development and operations), V&V activities are heavily reused as new systems are
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deployed within the operational infrastructure. With fixed V&V approaches, the risk
of learning how to pass the test increases with each new deployment.

The risk of “learning how to pass the test” is also a cybersecurity-related problem
for AI-enabled systems. Persevering with traditional, or known, V&V methods to
verify AI-enabled systems enables malicious attackers to compromise the process.
This, in turn, gives the designers and users false confidence on the performance of
the AI-enabled system. A prime example of this scenario is adversarial attacks on
deep neural networks (DNNs) deployed to classify images (Sengupta et al. 2019).
DNNs are often used to classify images for various purposes. These include iden-
tifying cancer cells for medical treatment, identifying obstacles for navigation of
autonomous vehicles, and identifying individuals for public security. Often, DNNs
are first trained on known datasets, which are often publicly available. After training
a DNN, its performance in classifying images correctly is verified and validated.
The DNN is deployed only if there is sufficient confidence in the accuracy of its
performance.

Since DNNs are trained on known, or publicly available, datasets, to compromise
the development process of a DNN, one only needs to corrupt the dataset. Indeed,
adversarial attacks on DNN is an active research area (Wang et al. 2019). Here,
attackers introduce small perturbations in certain samples of the dataset. By doing so,
the attackers ensure thatwhen theDNN is trained, the perturbations in chosen samples
ensure the DNN learns to misclassify these samples. Since DNNs are expected to
classify several objects, attackers can ensure the DNNs learn to misclassify certain
key objects that are of high value to the attackers. In this way, the DNN gives its
designers, and users, false confidence about the accuracy of this performance.

Moreover, the nature of V&V for learning capabilities itself is challenging in
system-level verification of AI-enabled systems (Xiang et al. 2018). As AI-enabled
systems might have learning capabilities at different scales, their solution space and
design space may not be static; in fact, they can keep changing over the system’s
lifetime. As a result, it makes it difficult for V&V strategies to predict the possible
future behaviors of the system over its lifetime.

The examples discussed above show that we cannot utilize traditional V&V strate-
gies to verify and validate AI-enabled systems. As the examples discussed above
show, in addition to the inability of accurately predicting all possible future inputs
to the AI-enabled system, securing the design process should also be a concern of
V&V strategies. Thus, there is a need for a new paradigm in V&V for cyber-physical
systems.

18.3 A Systems-Theoretic Interpretation of Intelligence

We first characterize intelligence, with respect to AI-enabled systems, to have a
meaningful conversation about V&V in AI-enabled systems. There are multiple
formal definitions of intelligence in the literature (Chollet 2019; Legg et al. 2007).
In this section, we re-scope previous definitions of intelligence using elements of
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systems theory. By doing so, we lay a foundation for the discussion on adapting
V&V techniques to AI-enabled systems.

We adopt von Bertalanffy’s definition of a system and declare that a system is a set
of inter-related elements (Bertalanffy 1969),where the type of relation is unrestricted.
Since the null relation is a type of relationship between elements (Wymore 2018),
it suffices to define a boundary around a set of elements to call such a set a system.
We distinguish then between open and closed systems, where open systems are
those that transfer information, energy, or matter through their boundaries (in and
out) and closed systems are those that do not transfer any information, energy, or
matter through their boundaries. Furthermore, we restrict our attention to engineered
systems, which we define as those made by humans (or machines) using engineering.
Within a systems engineering framework, we distinguish between the Intervention
System and Context System; the first is the system of interest that is realized to
satisfy a need or pursue an opportunity and the second is the system formed by the
Intervention System and all systems that directly interact with it. In the latter system,
the satisfaction of the need or realization of the opportunity takes place (Salado
2021). We define an AI-enabled system and call it an intelligent system instinctively
in this chapter; it is an engineered system that exhibits one or more of the following
capabilities:

1. Learning to perform a function better, which can include more efficiently or
more effectively;

2. Learning to handle a larger set of inputs for an existing function;
3. Learning a new function;
4. Learning to achieve an existing outcome in a new context;
5. Learning to achieve an outcome better, which it can perform more efficiently or

more effectively; and,
6. Learning to achieve a new outcome
7. Deciding to pursue a different outcome.

Of the seven capabilities of an intelligent system, the first three capabilities are
related to a system’s ability to effect a change in its behavior (that is, functions the
system executes). Whereas the latter four capabilities are related to the “curiosity”
exhibited by an intelligent system in seeking new ways to achieve its purpose, a
system’s purpose is defined by one or more long-term objectives. In this regard, we
say a system’s long-term objective is an outcome, and distinguish it from a goal,
which we define as any task and/or challenge that needs to be achieved to fulfill the
desired outcome of the system; for example, the time required for an autonomous
car to detect a moving object.

We can broadly define the behavior of systems using functions, which we refer
to as behavior functions. The domain of a system’s behavior function can be any
subset of the space of all possible inputs to the system. Similarly, the range of a
system’s behavior function is a subset of the space of all possible outputs. Traditional
systems are behavior-preserving, and hence their behavior functions are set for their
operational life. That is, for behavior-preserving systems, the mapping between the
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domain and range of the system’s behavior functions does not change throughout
the system’s operational life. In contrast, AI-enabled systems can determine if their
behavior functions are suboptimal in operation. Furthermore, AI-enabled systems
can change the set of outputs for a given set of inputs so that the system’s behavior is
optimally aligned regardless of changes in the space of inputs and the desired outputs
for those inputs (by, for example, changing requirements).

By changing the range of a behavior function, AI-enabled systems, in effect,
exhibit the first capability of an intelligent system: improving the execution of one of
its functions. For example, an intelligent detection systemcan improve its observation
accuracy as it learns from past observations.

The second capability is its ability to operate with a different domain of its behav-
ior functions. In this regard, AI-enabled systems can potentially accept (and use) an
increased, or varied, set of inputs to a behavior function. For example, a detection
system that was trained to observe targets with certain signature profiles may learn
to perform the same observation function for other signature profiles.

With the third intelligence capability, a system can generate a new mapping of its
domain to its range, effectively learning a new function. For example, an intelligent
detection system that is trained to observe a particular type of target learns to also
classify the target according to certain characteristics.

Since open systems execute functions, and outcomes are exhibited in closed sys-
tems (Salado 2021) by the actions of open systems that form it, an intelligent system
can leverage its own behavior to yield desired outcome-related learning in the closed
systems they belong to. In this sense, the fourth capability describes the adaptability
of an intelligent system to changing contexts. For example, a detection system orig-
inally trained to detect security threats inside of buildings is trained to detect threats
in open areas.

With the fifth capability, the system can also learn from its experience in detecting
threats to become better at it, either because it can do itmore efficiently (e.g., faster) or
more effectively (e.g., reduction of false positives). The key difference between this
capability and the first capability, is that the former improves the outcome achieved
by the system, and the latter the system’s function. This difference is akin to a human
improving its kicking ability (function; precision of jointmovement,muscle strength,
etc.) and its goal scoring ability (outcome; use of functions in the context of a ball,
a goal, and a goalkeeper trying to stop the goal) through repeated practice.

Using the sixth capability, an intelligent system can be trained to incorporate new
long-term objectives that maximize the net utility of the system’s operation over its
lifetime. For example, a system that is originally trained to detect threats is trained
at a later stage (without any other functional or form changes) to mitigate the threat.

Finally, the seventh capability alludes to the possibility of an intelligent system
possessing some semblance of choice. Since an intelligent system is designed, the
initial set of outcomes the system is meant to achieve could prove to be short sighted
in the long run. In this regard, it is necessary for the intelligent system to adapt it
and decide on a new outcome. For example, continuing with the detection system,
instead of being trained to mitigate the threat, with this capability the intelligent
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system identifies that mitigating the threat is a better outcome than simply detecting
it and, as a result, it decides to learn, and implement it.

If not otherwise specified in the rest of the chapter, our discussion addresses an
intelligent system that may implement one or more of these learning capabilities.

18.4 Challenges to the V&V of AI-Enabled Systems

18.4.1 Differential Learning in V&V Versus Operational
Environment

How it is done today. Consider a formal definition of a system as a transformation P
of an input vector Ī into an output vector Ō (ref. Fig. 18.1a). A verification activity
consists of injecting aV&V input vector ĪT , which the engineer considers sufficiently
representative of the actual input vector that the systemwill receive in operation, that
is, ĪT ≈ Ī, and observing a V&V output vector ŌT , which the engineer considers
sufficiently representative of the desired output vector the systemwill provide during
operation, that is, ŌT ≈ Ō. If transformation P is demonstrated for the V&V vectors
ĪT and ŌT , then it is inferred that the system will also execute transformation P
when seeing the actual input vector Ī. And, hence, the system would be considered
properly verified.

This approach to verification is sound for non-learning systems that preserve their
behavior. In such systems, since the transformation the system executes is invariant
to its inputs, the results of the V&V activity can be a good predictor of the behavior
of the system in its operational environment. This transformation can be modeled
as a Bayesian network (Salado and Kannan 2019), as shown in Fig. 18.1b, where
θ denotes the actual performance of the system and V denotes the results of the
verification activity employed to predict it.

Limits of the current approach. Recent works demonstrated that intelligent sys-
tems can behave differently to synthetically generated inputs that are perceptually
indistinguishable from data in their natural form (Nguyen et al. 2015; Szegedy et al.
2013). Hence, we suggest that AI-enabled systems may be able to discern the V&V
input vector ĪT from the actual input vector to be received during operation Ī, and
evolve as a result different behaviors for each type of input vector. In this way, as
shown in Fig. 18.2a, the AI-enabled system may create a specific transformation PT

Fig. 18.1 Current approach
to V&V design



370 N. Shadab et al.

Fig. 18.2 Limits of current
V&V design for AI-enabled
systems

to construct expected V&V outputs ŌT for given V&V inputs ĪT , without provid-
ing any information about the transformation P it will execute when the operational
input vector Ī is inputted. In terms of V&V, the system has constructed a specific type
of performance, which we call V&V performance, denoted by θT , that disconnects
the V&V activity from the original performance θ that it was trying to infer (ref.
Fig. 18.2b).

This idea is inspired by critical issues in the field of education, where accurately
assessing student learning is difficult. In a formal learning setting, a student learns
by preparing for an upcoming exam and, in doing so, masters the exam. However,
research shows that mastery of an exam is not necessarily correlated with mastery of
the material (Suto 2012). Thus, exams may be poor predictors of student learning.
This analogy can be used forAI-enabled systems. To better understand it, consider for
example, continued deployment approaches, such as DevOps, where V&V activities
are heavily reused as new systems are deployed within the operational infrastructure.
With fixed V&V approaches, the risk of “learning how to pass the test” increases
with each new deployment.

A similar situation exists with systems that are maintained frequently in the field.
Furthermore, there are security risks in which a system may be hacked so that it can
actively detect V&V vectors and learn how to deceive them, leaving system owners
ignorant and naíve about the behavior the system will exhibit in operation. Current
approaches to designing V&V strategies are unable to detect such a vulnerability.

These potential issues justify a transformation in how we approach the V&V of
cognitive agents.

18.4.2 Endogenous Evolution of Systems

Behavior-preserving systems evolve due to exogenous factors, both during develop-
ment and operation. Examples of exogenous changes include active design changes
exercised by engineers, configuration changes that are externally activated or pro-
grammed, technology refresh programs activated by operators, or external mainte-
nance.Absent these factors, traditional systems remain unchanged and, their behavior
is not expected to evolve with time, with the exception of degradation due to wear.
As a result, V&V strategies rely on V&Vmodels that represent aspects of the system
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(i.e., homomorphisms of the system).Mathematically, the set of potential verification
strategies for a system can be described as (Salado and Kannan 2018):

γ (Z0, R) =
n⋃

i=0

⎛

⎝F(Zi )

Hi⋃

j=0

F(Zi j )

⎞

⎠ × R (18.1)

where:

– Z0 is the system of interest and Z1, . . . , Zn are the systems that decompose Z0

in all of its constituent elements on which formal verification occurs. They are
traditionally referred to as subsystems, components, or parts among others.

– Hi = {Zi , Zi1, Zi2, , , , . . . , Zim} is the set of systems that are homomorphic
images of system Zi . This set represents all models of system Zi that are used for
verification. In practical terms, they can take the form of a mathematical model, a
prototype, or the final product, for example.

– F(Z) = {P1, P2, . . . , Pk} is a parameterization of system Z . This parameterization
is finite and represents the set of parameters of system Z that need to be formally
verified.

– A verification activity V is a tuple (p, r), where r denotes a verification procedure.
A verification activity is understood as the application of a verification procedure
r to the discovery of knowledge about a system parameter p.

– R = {r1, r2, . . . , ri } is the set of verification procedures that could be executed by
a given organization.

Two aspects are central to this model: homomorphisms and parameterizations
(Salado and Kannan 2018). First, the model that is used in a verification activity
influences the confidence gained through such an activity. A verification activitymust
always refer to (or be characterized by) the model (homomorphism) in which it is
executed. Second, the confidence on the systemof interest exhibiting certain behavior
or characteristic may not be obtained by measuring or observing a characteristic
directly for the system of interest. Instead, it may be inferred from measuring or
observing an equivalent or indirect characteristic of one of its homomorphic images,
other than the system itself. Therefore, a verification activity must always refer to
(or be characterized by) the parameter that it verifies.

In behavior-preserving systems, because system evolution is always initiated
exogenously, verification models (that is, homomorphisms and parameterizations)
remain relevant during the system development and can be adapted anticipatorily to
those system’s changes. However, AI-enabled systems can initiate internal change
endogenously. As previously indicated, such is the purpose of learning: AI-enabled
systems will be able to exhibit new behaviors by learning from their interaction with
the environment without any specific external action. In other words, the behavior of
the system is not necessarily preserved, may not be able to be anticipated, and can
occur at the discretion of the system of interest itself. In turn, this implies that at least
the space of homomorphisms for an AI-enabled system is discovered dynamically
during the operational life of the system.
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The lack of knowledge of the complete space of system homomorphisms for
AI-enabled systems poses a significant challenge in V&V for AI-enabled systems.
Once an AI-enabled system changes its behavior, V&Vmodels that were previously
homomorphic images of the original systemmay no longer fulfill homomorphic con-
ditions with respect to the evolved system. This implies that the confidence gained
through V&V activities, on models of the system that were previously homomor-
phic to the system itself, is now nullified. Furthermore, the dynamic discovery of
homomorphisms of the system during the system’s operation also implies that V&V
models are not guaranteed to produce relevant evidence about system’s behavior.
Hence, V&V models employed in traditional V&V are likely to become obsolete
(potentially not observable) during the development and operation of AI-enabled
systems.

One could argue that the obsolescence of one or more homomorphisms of an
AI-enabled system, due to an endogenously generated change in the AI-enabled
system’s behavior during operation, can be overcome by equipping known homo-
morphisms of the AI-enabled systems with the capability to approximately represent
the AI-enabled system’s behavior. However, even if we ensure that the homomor-
phic images of an AI-enabled system can be equipped with capabilities to adapt and
dynamically change according to an AI-enabled system’s evolution, verification of
the dynamic structure and behavior of these homomorphic images will also be an
important part of the verification process for the system of interest itself. This process
could become recursive, possibly leading to major challenges. Indeed, the compu-
tational complexity required to aggregate all verification ramifications to deduce a
meaningful inference makes finding a solution nearly infeasible with current tech-
nological capabilities and the required timeframes to complete V&V beneficially.
Furthermore, developing a multi-agent verification platform in a multidisciplinary
environment could result in out-of-order events and increased computational com-
plexity of the verifications executed, which might introduce unintended behaviors
that contribute to inaccurate emergent behaviors in the verification platform (Yilmaz
2006, 2015; Arifin and Madey 2015). The learning and evolutionary nature of AI-
enabled systems demand a different response from engineers to ensure V&Vmodels
and activities remain effective.

Since AI-enabled systems change their behavior dynamically, rendering one or
more homomorphisms obsolete, we advocate for the use of belief distributions to
dynamically update the beliefs of designers and stakeholders when the AI-enabled
system changes. In this regard, we now sketch the outline for a potential belief model
for V&V activities in AI-enabled systems.

We assume that there are M homomorphic images of the system Z, and let m ∈
1, . . . , M . We define a conditional probability for each verification activity given the
probability distribution of the previous verification level. Let us start with the joint
belief distribution on the system performance, b(Z), after applying all verification
activities at system level

b(Z) = f (VZ1) × · · · × f (VZM ) (18.2)
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In this equation, b(Z) is the belief distribution for the performance of Z after con-
ducting a set of verification activities over homomorphic images of the system Z.
Each VZm is the verification process performed on the mth homomorphic image of
the system Z. The belief derived from the verification of a homomorphic image
is denoted by f (VZm ). Note that if the homomorphic image Zm is not utilized for
verification and validation, then we assume f (VZm ) = 1, else f (VZm ) ∈ [0, 1].

Given that the homomorphic images of a learning system might also need to
exhibit learning capabilities, the accuracy of assumptions of homomorphism for
these homomorphic images require to be verified as well. If we assume that the
homomorphism property for each of these homomorphic models should be verified
by just another verification process, it will be evident that the possibility of errors in
verification models will be multiplied just by adding this one more layer of uncer-
tainty to the verification process of the learning system. In this regard, if we simplify
the second layer of uncertainty (the verification process for homomorphic images)
as the distribution of the standard deviations (σ ) over each f (VZm ), we can see that
the new f (VZm ) will be the multiplication of the errors (variations) of standard dis-
tribution over homomorphic model Zm of the system Z after conducting the second
layer of verification activities and the observed verification belief distribution.

Variation over the standard deviation here canbe a representative of the uncertainty
over the confidence of the belief formation after the verification activities are done.
As mentioned earlier, just adding one more layer of the uncertainty can result in
the possibility of more significant errors in verification activities. Consequently,
even if we consider the best case scenario where we assume that all the verification
activities are independent of each other (which is not the casemost of the time as each
verification activity can impact on the result of one or more verification activities),
the final equation of the belief deviation with one added layer of uncertainty over the
system of interest can be the result of the multiplication of the first-order error of the
standard deviation of each homomorphic model of the system.

It is evident that even if we consider this variation as some small constant that
can be added to the σ of f (VZm ), the uncertainty over the joint distribution of the
homomorphicmodelsmight become significant, especially if the size and complexity
of the system increases (i.e., larger set of homomorphic models). We can see that
by simply creating agent-based homomorphic models that can capture dynamic and
emergent behavior of an AI-enabled system, we might not be able to successfully
verify the system with high confidence.

18.4.3 Verification of Learning to Learn

Current AI-enabled systems learn a complex skill by investing a large amount of
time in trial-and-error experiences or by acquiring enough data to accumulate skills
over time (Finn et al. 2017). If rapid learning in different contexts is needed, it is not
possible though to invest such an amount of time or even generate such a number
of experiences (Finn et al. 2017). To overcome this challenge, meta-learning and
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abstract-concept learning may be ways to improve the learning process of intelli-
gent systems. Here, meta-learning refers to the ability of the intelligent system to
continuously adapt learning strategies in the presence of new tasks (Thrun and Pratt
1998; Rendell et al. 1987). By abstract-concept learning, we refer to the ability of
the learning system to adapt not just to an example for a level of experience, but to a
different level of abstraction of that example (Vilalta and Drissi 2002). For example,
a robot that can jump from a bar learns to jump from any type of obstacle. This type of
inductive learning allows an intelligent system to update its meta-learning capability
as it accumulates more meta-knowledge from its experiences on various complex
tasks. The challenge to achieve a life-long meta-learning capability for AI-enabled
systems signifies the fact that training a system, or an algorithm to have educated
guesses alone, might not be sufficient for future systems (Hunt 1962).

It is common practice in systems engineering to develop and build a system
based on a set of concrete requirements (e.g., functional, performance, resource, and
environment requirements (Salado and Nilchiani 2014), which serve as the bases
to verify the correct operation of the system (INCOSE 2015). Since fulfilling these
requirements is bounded to a structured space of capability, Sstructured , we could
argue that it is possible to exert control on the portion of the entire space in Sstructured
that will be covered by verification scenarios. AI-enabled systems that can be trained
to learn a general concept instead of being induced to learn a set of predefined
capabilities have the ability to adapt their learning strategy to a new problem space
Snew by creating meta-knowledge (a hypothesis) from its previous experiences. The
traditional approach to develop a set of concrete requirements and achieve a plausible
design space for theAI-enabled systemmay therefore be ineffective formeta-learning
capabilities, since the intelligent system can potentially access the many solution
spaces during its lifetime which cannot be controlled during the design. Due to the
strong interrelation between requirements and verification activities, this implies that
using a set of concrete verification scenarios that cover part of the solution space will
likely be ineffective to assess the meta-learning capabilities of a system.

We seek inspiration to overcome this challenge in how human meta-learning
occurs and is assessed. Some theorists have argued that the mental representation of
a concrete concept is necessary to fully induce the corresponding abstract concept
(Lakoff and Johnson 2008; Johnson 2013;Murphy 1996). It is also believed bymental
modelers that mental meta-representations are enabled by reasoning capabilities in
human cognition that are triggered by a reasoning module (Mercier and Sperber
2017). Using this analogy, we could argue that the meta-learning capability of an
intelligent system (specifically its ability to understand an abstract concept) could be
verified by either testing several concrete concept learning processes, or by testing
the accuracy of its reasoning functionality.

From a system’s theoretic point of view, we can identify two steps to formulate
such capability. The first one consists of defining meta-learning capability as a need
instead of as a requirement (Salado 2021). In this case, we can either define scenar-
ios in advance (when the outcomes of the system which are derived by the needs
are explicit and known), or define scenarios abstractly (for example, we can require
the system to learn whatever it needs to learn in its lifetime). This still leaves an
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open question as to how to define abstract learning as a need and more precisely,
how to define the learning of unknown skills as a defined outcome. This approach,
nevertheless, implies using direct validation techniques because the concept of ver-
ification (related to meta-learning) becomes inapplicable. The second step consists
of identifying the functions that enable the meta-learning capability to happen. In
other words, to derive the functions that enable meta-learning, we must first identify
the mechanics by which learning occurs and, more precisely, the internal processes
the intelligent systems go through while learning is achieved. These functions can
then be subjected to verification.

Nevertheless, one fundamental question remains for which we do not have an
answer yet: which type of V&V activities and how many of them will be necessary
to gain confidence about such an elusive capability as meta-learning? Formalizing
the definition of reasoning capability in this context can be challenging given the
fact that the causes and uses of reasoning capability in intelligent systems with meta-
learning capability that have been around for a long time, for whichwe have abundant
data, and for whichwe can describe the results from numerous experiments (i.e., with
human cognition) that are still debatable among logicians andmental model theorists
(Mercier and Sperber 2017; Schroyens et al. 2001).

18.4.4 Encapsulation of Intelligent Properties

In behavior-preserving systems, functionality can be encapsulated in modules that
may be aggregated hierarchically. This allows for decomposing and composing sys-
tems during the design, manufacturing, and integration of a system, such that a more
sophisticated functionality can be provided by composing lower-level functions.
Verification-wise, this functional encapsulation allows for partitioning and sequenc-
ing verification activities; which there may be beneficial to grow confidence with
small steps to avoid large rework efforts and/or because of limitations to observe cer-
tain system attributes at some integration levels. Regardless, because the system (and
all of its building components) are behavior-preserving, the number and sequence
of verification activities that are executed on the system (and all of its building com-
ponents) do not affect the final system-level behavior (with the exception of some
physical parameters that may result in significant wear, such as shock testing).

However, an intelligent system, and by extension any intelligent component that
forms it,may always be in a state of learning.Consequently, every verification activity
that an intelligent system goes through becomes, effectively, a learning opportunity
that the systemmay use.We call this aspect the becoming property of the system. The
changes that the intelligent system experiences from these learning scenarios cannot
be reset and may not even be totally reversible without clearing all of the knowledge
the system had acquired up until such an event. This poses a major challenge to
designing verification strategies since verification activities do not only serve the
purpose of checking the correct operation of a system but they necessarily act as
learning events as a consequence. Since the results of the verification activity cannot
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be guaranteed because there may be errors in both the system under verification, the
verification activity itself, and its execution, it is likely impossible to control what
the system will learn during a verification campaign. Since, as discussed, unlearning
is far from a trivial or deterministic activity for intelligent systems (as opposed to
most rework or repair activities in behavior-preserving systems), verification poses an
unprecedented risk to the systemdevelopment process, aswell to the correct operation
of the system. In fact, because verification inherently modifies an intelligent system
as it is verified, an intelligent system will always transition to an unknown state
after a verification activity is executed. Furthermore, trying to avoid this situation by
increasing verification in the hope of using behavioral trends suffers from the risk
of the system over-emphasizing the learning occurring during verification, which
may degrade its desired performance in an operational environment. This raises the
question of whether a verification activity exists that can provide high confidence in
the state of an intelligent system.

This problem is further amplified in intelligent systems that are subjected to hier-
archical verification; i.e., the system becomes exposed to a higher number of uncon-
trolled learning events, and the uncertainty associatedwith the real state of the system
couples with those of the other systems it integrates with.

We conjecture that, for this type of system, the notions of design and verification
might need to be totally blended. Furthermore, success criteria may need to become
fluid, as it may have to be adapted to the evolution of a verification campaign given
that the intermediate results are uncertain.

18.5 Conclusion

We have shown through four specific challenges that there is a fundamental mis-
alignment between current approaches to designing and executing verification and
validation (V&V) strategies and the nature of AI-enabled systems. The main cause
for such misalignment is the behavior-preserving condition, which is present in tra-
ditional systems but not in AI-enabled systems. The nature of learning requires
intelligent systems to evolve their behavior.

The four challenges have been derived from conceptualizing intelligent systems
within the framework of systems theory. The first challenge addressed situations of
differential learning, where the intelligent system learns to respond to operational
scenarios differently than to verification scenarios, with these differences remain-
ing unnoticed. The second challenge resulted from the endogenous evolution of an
intelligent system, which may strongly reduce the fidelity of verification and vali-
dation models. The third challenge addressed the difficulty to verify learning as a
capability when an uncontrolled solution space is generated. Finally, the fourth chal-
lenge pointed to the effects of decomposing verification strategies, as verification
scenarios become learning experiences for the system through a hierarchical chain
of integration.
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The four challenges have been accompanied by discussions on the practical dif-
ficulties that verification engineers will face when designing verification strategies
for intelligent systems. We conclude that, as systems embed more intelligence, a
paradigm shift in V&V activities will be necessary and suggest that advances in
systems theory are necessary to underpin such a shift.
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Chapter 19
Toward Safe Decision-Making via
Uncertainty Quantification in Machine
Learning

Adam D. Cobb, Brian Jalaian, Nathaniel D. Bastian, and Stephen Russell

Abstract The automation of safety-critical systems is becoming increasingly preva-
lent as machine learning approaches become more sophisticated and capable. How-
ever, approaches that are safe to use in critical systems must account for uncertainty.
Most real-world applications currently use deterministicmachine learning techniques
that cannot incorporate uncertainty. In order to place systems in critical infrastruc-
ture, wemust be able to understand and interpret howmachines make decisions. This
need is so that they can provide support for human decision-making, as well as the
potential to operate autonomously. As such, we highlight the importance of incor-
porating uncertainty into the decision-making process and present the advantages of
Bayesian decision theory.We showcase an example of classifying vehicles from their
acoustic recordings, where certain classes have significantly higher threat levels. We
show how carefully adopting the Bayesian paradigm not only leads to safer deci-
sions, but also provides a clear distinction between the roles of the machine learning
expert and the domain expert.

Keywords Safety · Machine learning · Bayesian decision theory · Bayesian
neural networks · Acoustic classification · Uncertainty quantification

19.1 Introduction

As more intelligent systems are deployed for use in critical applications, there is an
increasing demand for automating, accelerating, and augmenting decision-making
processes. The use of sophisticated artificial intelligence (AI) and machine learn-
ing (ML) technologies can help decision-makers gain information and advantage
at the speed of computation. These technologies are therefore paramount for both
the successful completion of tasks and the safety of systems. Furthermore, human
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intervention is seldom possible when autonomous systems are operating in highly
complex environments at machine speed. Despite their speed and capability, these
systems are limited by computational complexity, network bandwidth, and latency.
When we integrate these systems with the intricacies of an automated decision-
making algorithm, the challenge then becomes how to design such systems to be
safe and reliable. In the case of safety-constrained decision-making, such as might
be used for military or humanitarian assistance applications, it is essential to have
more than deterministic decision support. Instead, support systems must account
for uncertainty in their decision-making and estimate the risks associated with each
decision.

In a decision-making context, quantifying the associated risk of each action is
directly dependent on the uncertainty of all availablemeasurements. As such, in order
to formalize the use of uncertainty in quantifying risks, one must use a theoretically
sound framework for manipulating probability distributions. A Bayesian framework
provides rules for probability, which we use to infer distributions over all unknown
parameterswhilemakingour prior assumptions clear. Furthermore, in usingBayesian
decision theory, we can then quantify risks in a manner that can be used for decision-
making. Extending this framework to ML algorithms, models provide predictions
that represent uncertainty over measurements, which we then use in decision-making
processes. However, majority ofML applications currently focus on the prediction or
measurement part of the decision-making pipeline. This focus in itself is an important
and thriving research area, but sometimes the outputs of these models are thought
of as the decision, rather than the prediction. In some applications, the decision
may simply correspond to the most probable class of the prediction, but in other
applications this output may not be the case. In fact, we can expect safety-critical
applications to be more sensitive to tail probabilities, where small chances of certain
(risky) outcomesmay lead to completely different decisions, independent of themost
probable class of the prediction. Therefore, it is essential that both domain experts and
machine learning developers account for uncertainty when deployingML algorithms
to safety-critical applications.

In this chapter, we introduce and illustrate how a Bayesian decision theoretic
framework can help enable safe ML-supported decisions in the presence of uncer-
tainty. Following this introduction, the chapter is structured as follows. In Sect. 19.3,
wewill give a brief overview of Bayesian inference.Wewill then revisit the decision-
making process and introduce the framework of Bayesian Decision Theory (BDT)
in Sect. 19.4. The chapter then builds from a case study on acoustic classification,
where we analyze the results in Sect. 19.5 and look to resource requirements in
Sect. 19.6. Finally, Sect. 19.7 summarizes the implications of BDT-enriched ML on
safe decision-making and makes some recommendations.
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19.2 Decision-Making and Machine Learning

Decision-making is by definition a contextual process. While many decisions share
similar objectives, external factorsmake nearly every decision unique. There is ample
documentation in the literature (Nilsson, 2014; Hendler andMulvehill, 2016; Lohani
et al., 2017) regarding how ML and AI can provide automation and other benefits in
the decision-making process. However, like any tool of assistance, AI and ML can
also introduce uncertainty that can at best obfuscate risk and at worst cause errors
(Russell et al., 2017). The challenge of implementing ML as a decision support
aid is a systems engineering challenge. Furthermore, it is important that expertise
be compartmentalized to deliver maximal benefit. Typically, those with the deepest
understanding of the decision task are only rarely those with the technical modeling
expertise. Usually the model is delivered for a specific application. This scenario
is particularly true of ML algorithms, where the engineering is often unfortunately
decoupled from the model development. Discontinuities in these roles can magnify
model uncertainty, risk, and, ultimately, errors.

19.2.1 Summary of a ML-augmented Decision-Making
Process

The design and deployment of a decision-making process can be conceptualized in
the following stages:

1. Machine Learning Assumptions: Define the assumptions over the environment,
including the priors and the model.

2. Machine Learning Implementation: Learn the parameters of the model.
3. Domain Expert Preferences: Define the task-specific preferences.
4. Domain Expert Calibration: Calibrate task-specific preferences with validation

data when deploying the machine learning model.

These steps highlight a key distinction between the role of anMLmodel developer
(researcher) and the role of a domain expert. TheML researcher should be concerned
with building the model and the domain expert should be focused on the task or
context-specific decision-making.

19.2.2 Uncertainty Quantification as Part of the
Decision-Making Process

When making a decision, we are not just concerned with a point estimate of a mea-
surement,we are also interested in the variance. In fact, the variance of ameasurement
often has more implications on the final decision than the estimate of the mean. As
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an example in medical diagnosis, if the variance of a reading from a medical device
puts a small chance of a patient having a severe illness, then depending on the costs,
it might be advisable to recommend treatment. Therefore, when faced with making
a decision, it is most desirable to have access to the full probability distribution of a
measurement.

Correctly quantifying uncertainty is key to safer decision-making. The medical
diagnosis example makes it clear that the better we can characterize a measurement
from a device, the better the understanding of the associated risks of each decision.
At this point, it makes sense to discuss how the term ‘prediction’ compares to the
term ‘decision’. When we later discuss Bayesian decision theory, this distinction
will be important. We define the output of an ML model as the prediction and define
the action taken based on this prediction as the decision.

In some applications, the decision may simply correspond to the most probable
class of the prediction. For example, if a neural network classifies an image as a
particular class with a high probability, then the decision-maker may determine that
the image is the high probability class. However, the more general case is where
the prediction informs the decision-maker, who then goes on to make a decision
based on the encoded preferences. This decision may not coincide with selecting
the most probable predicted class (e.g., for a classification scenario). As a result, it
is more appropriate to think of an ML model as providing a measurement of the
environment, no matter whether the measurement corresponds to a past, present, or
future inference.

19.3 Bayesian Inference

The first two stages of the decision-making process are task agnostic, where the
objective is to learn a probability distribution over the model parameters given the
observed data. This distribution is called the posterior distribution, p(ω|X,Y). We
use ω to denote the model parameters and X ∈ R

N×D and Y ∈ R
N×O to denote

the input–output pairs of a data set, where N , D, and O are the data set size, input
dimension, and output dimension, respectively. To infer the posterior distribution, one
must first define a likelihood p(Y|X,ω), which is a function of themodel parameters.
The likelihood is our model and defines the probability of the data conditioned on
the parameters. As we are using the Bayesian framework, an integral part is defining
a prior over the model parameters, p(ω). The prior captures assumptions as to the
region in which we expect the parameters to vary (in a similar way to how L2
regularization limits the magnitude of model parameter values).

Bayes’ theorem (Bayes, 1763) is at the heart of Bayesian machine learning and
enables the manipulation of the probability distributions to infer the posterior distri-
bution,

p(ω|X,Y) = p(Y|X,ω) p(ω)
p(Y|X) , (19.1)
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where the marginal likelihood, p(Y|X), appears as the denominator on the right-
hand side of the equation. Unlike for the likelihood and the prior which we explicitly
define, to infer the marginal likelihood, we require the integration

p(Y|X) =
∫

p(Y|X,ω) p(ω)dω. (19.2)

Therefore, if we can infer the marginal likelihood, then we can work our way to the
posterior distribution by writing all of the components of Eq. (19.1). Depending on
the prior and the likelihood, there are sometimes analytic solutions to marginalizing
over ω, such as for Gaussian process regression (Williams and Rasmussen, 2006),
where the prior is conjugate to the likelihood. We refer to Gelman et al. (2013) for
further insights into Bayesian inference.

19.3.1 Bayesian Neural Networks

In this chapter, we define our likelihood in terms of a neural network model, which
we will write down as the function f(X;ω). A neural network consists of multiple
layers of non-linear transformations, where each layer has a set of weights and biases
associated with it.1 We can rewrite Eq. (19.2) to explicitly include the neural network
model as

p(Y|X) =
∫

p(Y| f(X;ω)) p(ω)dω. (19.3)

For highly non-linear neural network models, this integral is intractable. Therefore,
the only way to infer the posterior over the network weights and biases is to approx-
imate it. There are many routes in which we can choose to perform approximate
inference. One way is to directly sample from the unnormalized posterior density,

p(ω|X,Y) ∝ p(Y|X,ω) p(ω),

and then use these samples when making predictions. This approach is known as
Monte Carlo estimation and it comes with the challenge of knowing how many
samples are required to achieve the desired performance. In addition, there is also
the challenge of devising a sampling approach, where Markov chain Monte Carlo
techniques are often used (Robert and Casella, 2013).Wewill explore these concepts
in the later sections. An alternative method, which we do not explicitly explore in
this chapter, is variational inference. This method requires defining a variational
distribution q(ω) that comes with its own variational parameters. The objective is to
then optimize the variational parameters, such that q(ω) matches the true posterior.
This approach, known as variational inference, can take many forms and we refer

1 Neural network models can take on the form of many different types of architectures and we refer
to Goodfellow et al. (2016) for more details.
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to Hoffman et al. (2013) for a more general overview. While variational approaches
can be faster to implement, they come with the requirement of limiting the posterior
distribution to take the form of q(ω). Therefore, they can only exactly match the
true distribution if q(ω) is a sufficiently flexible class of distributions that covers the
true posterior. In this chapter, we will only compare to a Markov chain Monte Carlo
approach; however, many of the observations made are equally applicable to other
widely used approximate inference approaches.

In summary, the posterior distribution is not analytically tractable for highly non-
linear functions such as neural network models. We must rely on approaches such
as variational inference and Monte Carlo sampling to estimate the posterior over the
neural network parameters.

19.3.2 The Predictive Distribution

Once we have approximated the posterior distribution, we can use the approximation
to infer the predictive distribution,

p(y∗|x∗,X,Y) =
∫

p(y∗|x∗,ω) p(ω|X,Y)dω, (19.4)

which allows us to make predictions over new input points x∗. As an example, if
we are using Monte Carlo estimation, we sample S model parameters such that
{ωs}Ss=1 ∼ p(ω|X,Y). These samples can then be used to generate certain statistics
such as to approximate the expectation of the predictive distribution in Eq. (19.4):

Ep(ω|X,Y)
[
Y∗ = y∗|x∗] ≈ 1

S

S∑
s=1

p(y∗|x∗,ω(s)). (19.5)

While this predictive distribution can be the end point for many machine learning
problems, it can also be the case that the predictive distribution is necessary for
downstream tasks.

19.4 Making Decisions in the Presence of Uncertainty:
Bayesian Decision Theory

The framework of Bayesian decision theory deals with uncertainty by ensuring that
it is appropriately incorporated into the decision-making process (see [Chaps. 1 & 5]
(Berger, 1985)). To frame a decision-making task, we must introduce a task-specific



19 Toward Safe Decision-Making via Uncertainty Quantification … 385

cost function, C, to specify the penalty incurred by making an incorrect decision.2

Our objective is to make a decision, h, that results in the smallest possible cost. If
we knew the exact consequences of all of our choices, then we would just set h
to the true decision hTrue, which would accrue the lowest cost. However, in reality,
we do not have access to hTrue. The solution is to minimize the expected cost by
averaging the cost with respect to the model prediction. Therefore, we can introduce
the conditional risk

R(h|x∗) =
∫

C(h, y∗)p(y∗|x∗,X,Y)dy∗, (19.6)

where the risk is conditioned on a test input x∗ and is a function of the decision, h.
To select the decision with the lowest expected cost, we select the Bayes optimal
decision, h∗, according to

h∗(x∗) = argmin
h∈H

R(h | x∗), (19.7)

whereH is the space of all possible decisions.WhenH consists of a discrete space of
a limited number of classes, then Eq. (19.7) is easy to optimize. For decisions that fall
on a continuous space, one would have to solve for h∗ via continuous optimization
techniques.

19.5 A Case Study: Vehicle Classification from Acoustic
Sensors

We will now introduce a case study on real data, where we construct a scenario that
necessitates the use of Bayesian decision theory. The overall objective is to classify
vehicles from their acoustic microphone recordings. However, as we will see, the
data set is highly imbalanced and certain classes of vehicles will carry differing levels
of cost for incorrect classifications.

19.5.1 The Data Set

The data consists of 223 audio recordings from the Acoustic-seismic Classification
Identification Data Set (ACIDS). ACIDS was originally used by Hurd and Pham
(2002) for the harmonic feature extraction of ground vehicles for acoustic classi-
fication, identification, direction of arrival estimation, and beamforming, but here
we focus on acoustic classification. There are nine classes of vehicles, where each

2 In Bayesian decision theory, the cost is often referred to as the loss. However, to prevent confusion
with the use of the term ‘loss’ for neural networks, we use cost here.
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(a) Raw Microphone Recording (b) Short Time Fourier Transform

Fig. 19.1 An example of the different representations of the data of a single recording from the
triangular array of three microphones. a shows the raw time-series recordings of the three micro-
phones for a single vehicle driving past. The increasing then decreasing amplitude corresponds to
how close the vehicle is to the microphone, where the closest point of approach can be seen from
the maximum amplitude. b shows the STFT of the three time series from a. The frequency bands
in the spectrogram are useful features for a machine learning model

vehicle is recorded via a triangular array of three microphones.3 For the purposes
of our example, we build seven train-validation splits where we set aside 40% of
the recordings for validation and use the remaining for training. We then trans-
form each recording (for both the training and validation) into the frequency domain
using a short-time Fourier transform (STFT), with the Scikit-learn default settings of
scipy.signal.spectrogram (Pedregosa et al., 2011). Although 223 record-
ings may not sound sufficiently large for training and validation, the median elapsed
time for each recording is 139 s and the total elapsed time of all the recordings in
the entire data set is just over 10 h. Finally, we divide all the spectrograms into equal
129 × 150 arrays that correspond to approximately 10 s of recordings from the tri-
angular array of three microphones. Figure19.1 shows the process of transforming
from the three microphone recordings to the spectrogram and Fig. 19.2 includes a
single example of the final array to be passed into the machine learning model.

The data set is highly imbalanced, where certain classes appear less frequently in
the data set. The histogram inFig. 19.3 shows the total data set after the pre-processing
of both the training and validation data into the 129 × 150 arrays. The resulting
histogram shows the large discrepancy in frequency between the class labels. For
example, vehicle class ‘G’ only makes up 1.5% of the data, compared to vehicle
class ‘A’ which makes up 32.2% of the data. Such differences in the prevalence
of different classes can cause challenges in learning models for classification. One
solution to these problems, which we propose herein, is to use Bayesian decision
theory to account for these types of data imbalance.

3 Audio was recorded at a sampling rate of 1025.641 Hz.
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Fig. 19.2 An example of a single input datum. The spectrograms from all three microphones
(aligned in time) are concatenated into one image which will then be passed into the machine
learning model. The total 129 × 150 array has a resolution of 4.0 Hz in the vertical axis and a
resolution of 0.22 s in the horizontal axis

Fig. 19.3 Histogram
showing the distribution of
the data set. Notice the large
imbalance in the data,
especially when comparing
vehicle class ‘G’ to vehicle
class ‘A’

19.5.2 The Neural Network Architecture

When deciding upon the most appropriate choice of model for supervised classifica-
tion of the spectrogram images (see Fig. 19.2), we look to the commonly used model
in the literature for classification in acoustic data, namely, Convolutional Neural Net-
works (CNNs) (LeCun et al., 1998).While CNNs aremostly used in computer-vision
applications (e.g., Krizhevsky et al. (2012)), it has been shown that applying CNNs to
spectrograms also leads to favorable results (Kiskin et al., 2020; Bioacoustic detec-
tion, 2020). As a high-level summary, a fully connected neural network model is a
series of connected non-linear transformations of linear regression layers. A CNN
replaces the fully connected layers with convolutional filters. These filters are then
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learnt in the same way that the weights and biases are learnt for fully connected
neural networks. The structure of a CNN facilitates the extraction of shift invari-
ant features from incoming images. Therefore, in our example, we hope for a CNN
to automatically learn the patterns in the spectrogram that correspond to different
vehicle types.

Our CNN architecture consists of four convolutional layers with max-pooling,
followed by a fully connected last layer. Importantly, we use Scaled Exponential
Linear Units (SELUs) as the activation function (Klambauer et al., 2017), which we
find yields an improvement over commonly used alternatives such as rectified linear
units.

19.5.3 Inference Approach

As we are interested in a model that quantifies uncertainty, we will be comparing
both a deterministic CNN with a Bayesian CNN, where both models will have the
same architecture. We introduce the two approaches as follows:

1. To learn the weights of the deterministic CNN, we take advantage of the back-
propagation algorithm (Rumelhart et al., 1986). Our code is written in PyTorch
(Paszke et al., 2017), where the automatic differentiation engine makes perform-
ing backpropagation using stochastic gradient descent especially simple. At the
end of this process, we are left with a single CNN model with weights and biases
ω, such that the CNN makes a single prediction ŷ = f(x∗;ω) for a given test
image x∗.

2. For the Bayesian CNN, there are multiple approaches to performing Bayesian
inference to learn the weights. Unlike for the deterministic model, we are inter-
ested in learning the posterior over the weights given the data, i.e., p(ω|X,Y).
Complete knowledge of this distribution is not available as the integral in
Eq. (19.3) is analytically intractable. As mentioned in Sect. 19.3.1, common
choices for approximating the posterior are by performing Monte Carlo sam-
pling (e.g., Neal (1995); Welling and Teh (2011)) or by variational inference
(e.g., Graves (2011); Blundell et al. (2015); Gal and Ghahramani (2016)). In our
work, we will stick with the ‘gold-standard’ for inference in Bayesian neural net-
works by employing Hamiltonian Monte Carlo (HMC). In particular, we will use
novel symmetric split HMC fromwork by Cobb and Jalaian (2020) to materialize
samples from the posterior distribution. This approach results in a set of samples
{ωs}Ss=1 ∼ p(ω|X,Y) such that the predictive distribution can be approximated
via multiple network draws for each test image ŷs = f(x∗;ωs).

In comparing our deterministic model with our Bayesian model, we will show how
the ability to capture uncertainty results in a safer decision-making tool.
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19.5.4 The Decision-Making Task: Avoiding Catastrophic
Failure

In the previous sections, we described both the data and the ML model. However,
we have not yet described the decision-making task. As we are utilizing the BDT
framework, we take advantage of the separation between the learned model and the
cost function, where we assign the task of designing the cost function to the domain
expert. We will now outline both the objective of our case study, as well as how to
design a cost function to achieve this goal.

The objective is to correctly classify all vehicles from their acoustic recordings.
However, as part of the task, vehicles in class ‘G’ carry a higher level of threat to our
classification scheme compared to the other classes. As a result, erroneous decisions
on class ‘G’ incur a larger penalty than for the other vehicle classes. If we refer back
to Fig. 19.3, we can see that there are very few instances of class ‘G’ in the data.
The rarity of class ‘G’ makes the overall objective especially challenging given that
this least frequent class is also the one that requires the most caution when making
decisions. This scenario is not unusual in practice. It is often the case in safety-
critical applications that the classes we are most concerned about appear the least
often. Furthermore, it might be infeasible to collect more instances of these classes
due to their rarity or cost. In such a scenario, one might be tempted to up-weight
instances of these rare cases in the data. In some cases, this can lead to poor behavior
when data is mislabeled or noisy in the input space [Chap.4] (Cobb, 2020). If we can
achieve the goal of closely approximating the posterior distribution, then data that
appears less frequently ought to result in highly uncertain predictions if the input
data are not easily distinguishable from other classes.

Designing the Cost Function. We can encode user preferences in a cost function
C(h, ŷ) that can be written in matrix form, C, as shown in Table19.1. Each column
corresponds to the decision, h, and each row the prediction, ŷ. To demonstrate how
one would use this cost matrix, we can rewrite Eq. (19.6) by replacing the integration
with respect to the predictions by a summation over the materialized predictive
samples ŷ:

R(h|x∗) = 1

S

∑
s

C(h, ŷs)

=
[
1

S

∑
s

ŷs

]�
C h. (19.8)

As a simple example, suppose the samples from the posterior predictive distri-
bution resulted in the mean

[
1
S

∑
s ŷs

]�
being a flat distribution corresponding to

a vector of nine elements each with a value of 1/9. This prediction corresponds to
maximumpredictive entropy or, in other words, ourmodel is predicting that any class
is equally likely. We will see that this prediction of the environment is actually very
informative for decision-making. If we follow Eq. (19.8), we can calculate the risk
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Table 19.1 Cost matrix for the decision-making process

Decision

Prediction Cost A B C D E F G H I

A 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

B 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01

C 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01

D 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01

E 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01

F 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01

G 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00

H 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01

I 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00

of deciding on class ‘G’, R(h = ‘G’|x∗), versus selecting any of the other classes,
R(h = ¬‘G’|x∗):

R(h = ‘G’|x∗) = 1

9
(0.01 × 8 + 0.00 × 1) = 0.009

R(h = ¬‘G’|x∗) = 1

9
(1.0 × 1 + 0.01 × 7 + 0.00 × 1) = 0.119.

Therefore, the optimal decision, which minimizes the expected cost, is achieved by
selecting h that minimizes the conditional risk. For the cost matrix in Table19.1, the
very fact that some probability mass of the posterior predictive distribution falls on
class ‘G’ is enough to result in setting h = ‘G’.

19.5.5 Overall Results

In the previous sections, we described both the specific decision-making task and the
two inference schemes to infer the CNN’s parameters. We can follow the decision-
making process from Sect. 19.4, and use the CNN combined with the cost function
as defined in Table19.1. We compare a deterministic CNN with a Bayesian CNN
to demonstrate the importance of inferring a distribution over the weights rather
than just optimizing for a single network parameterization. Since the output of a
CNN is normalized such that the element of each vector ŷ sums up to one, we can
directly compare the Bayesian CNN with the deterministic CNN by replacing the
summation in Eq. (19.8) with the single vector point estimate of the distribution, i.e.,
R(h|x∗) = ŷ�Ch.

In general, when analyzing the results of a decision-making task, the only metric
one should care about is the decision cost. The decision cost is the actual cost when
the Bayes optimal decision, h∗, is applied (corresponding to the minimization of the
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conditional risk). To calculate this cost, we must be careful how we use the cost
function. Unlike before where we calculated the expected cost by integrating over
the posterior predictive distribution, we now have two pairs of vectors h∗ and hTrue
that correspond to the decisions taken and the true labels. Therefore, we must be
cautious in how to combine h∗, hTrue, and C, such that we calculate the true cost
correctly. We can do a small thought experiment, whereby h∗ dictates that we should
decide on class ‘F’, when the right decision is hTrue = ‘G’. Given the setup of our
experiment, an error on class ‘G’ should accrue a cost of 1.00. The decision cost
must be calculated by replacing the prediction in Eq. (19.8) with h∗ and the decision
with hTrue:

CT (hTrue,h∗) = h∗ �C hTrue. (19.9)

This result is the true cost accrued by the taking the decision h∗.
We can directly calculate the true cost in Eq. (19.9) for both the prediction, h = ŷ,

and the Bayes optimal decision that minimizes the conditional risk, h = h∗. The
purpose of comparing the two is to show that taking into account the user preferences
of this task results in a lower actual cost. The comparison also highlights that using the
output of a neural network may not always be the best choice if the outputs are being
used in downstream tasks. In addition to the true cost over the validation data, we
can also compare our model’s accuracy performance for both h = ŷ and h = h∗. We
note that when one is interested in achieving the highest class accuracy, the effective
cost matrix is a constant minus the identity matrix. In other words, the cost in making
an error is the same for all classes, and the reward for a correct classification is equal
for every class. We implicitly use this cost matrix when directly assigning classes
according to the output of the model. Therefore, we expect the accuracy performance
to be the highest for h = ŷ, where the cost is aligned with the prediction.

We display the results in Table19.2, where they are evaluated over seven cross-
validation splits of the data. The table displays both the accuracy performance and the
cost over the validation sets. There are two main comparisons that can be made from
this table. The first comparison is between the performance of the predictions in the
first two columns versus the optimal decisions in the last two columns. In comparing
these two, we see that the cost for both the deterministic CNN and the Bayesian CNN
drop from 24.8 and 24.3 to 10.0 and 5.0, respectively, in moving from the predictions

Table 19.2 Predictive and decision-making performance over the full data set for all cross-
validation splits. The Bayesian CNN results in the lowest cost and therefore achieves the better
performance compared to the deterministic CNN. The error bounds represent standard deviation
intervals across the validation splits

Models Pred. h = ŷ Dec. h = h∗

Acc. Cost Acc. Cost

Deterministic
CNN

80.3 ± 3.2 24.8 ± 7.8 76.5 ± 3.8 10.0 ± 6.9

Bayesian CNN 84.1 ± 2.7 24.3 ± 8.9 73.0 ± 6.0 5.0 ± 1.4
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to the decisions. This result highlights how the cost matrix is incorporated into the
decision-making process and leads to a lower cost than just going with the highest
probability output from the network. The second key comparison that can be made
is the advantage of the Bayesian CNN over the deterministic CNN. The better the
approximation of the posterior predictive distribution, the safer the decision, and this
result is precisely what is seen in Table19.2. In the last column of the table, the cost
over the validation data is half that of the deterministic CNN. It is also interesting
that the accuracy performance over the decisions is better for the deterministic CNN,
despite its worse cost. This difference highlights that accuracy can be highly skewed
by more populous classes and provide an incorrect proxy for performance.

To summarize the two key points of Table19.2, we find that:

1. Bayesian decision theory ought to be considered and applied if we are to capture
task-specific preferences. It is not sufficient to just select the maximal probability
outputs from the model, if they do not align with user preferences.

2. A model with a better approximation of the posterior predictive distribution will
result in better decisions, especially for highly skewed cost matrices and imbal-
anced data sets.

We can further highlight the importance of having a well-calibrated predictive
uncertainty by displaying the specific performance over class ‘G’ in Table19.3. The
clear difference between the predictions and the decisions is even more evident than
in Table19.2. The accuracy of the prediction is poor for both models, with values
of 14.7 and 17.3%. However, after minimizing the conditional risk, the accuracy
increases to 74.8 and 94.4%. This result can also be seen via the significant drop
in cost from 22.3 for both models to costs of 6.9 and 1.3 for the deterministic and
Bayesian CNNs, respectively. What makes this result especially interesting is that
these cross-validation splits vary from having as little as 12 training examples in the
training data to having 39 out of a total 49 examples. Therefore, such differences
in the frequency of class ‘G’ ought to lead to higher standard deviations in the
values of Table19.3 compared to Table19.2. However, we see that the performance
of the Bayesian model is consistent and better overall than the deterministic model
when used in conjunction with the cost matrix. The Bayesian CNN demonstrates its

Table 19.3 Predictive and decision-making performance over just the data in the seven validation
splits that correspond to class ‘G’. The Bayesian CNN has well-calibrated uncertainties and does a
better job at estimating the expected risks of the different decisions. The resulting cost is lower for
the Bayesian CNN when compared to the deterministic CNN. Also notice how naively using the
predictive output of the networks does equally poorly (see the two left-hand side columns)

Models Pred. h = ŷ Dec. h = h∗

Acc. Cost Acc. Cost

Deterministic
CNN

14.7 ± 10.4 22.3 ± 7.8 74.8 ± 20.4 6.9 ± 7.0

Bayesian CNN 17.3 ± 15.6 22.3 ± 9.1 94.4 ± 8.3 1.3 ± 2.1
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Fig. 19.4 Three example cases of how an overconfident deterministic neural network output leads
to poor risk estimation and unsafe decision-making. Each row corresponds to a single audio test
input for class ‘G’, and each column corresponds to the two models. For the Bayesian CNN, the
lowest risk choice for all examples is the correct class ‘G’, as highlighted by the green bars. For
the deterministic CNN, we see the risk is estimated incorrectly, where the risk-minimizing class
decision is highlighted in red which is never class ‘G’. The overconfidence of the deterministic
model can be seen from the log softmax output in orange, where the probabilities tend to fall much
lower than the Bayesian CNN. This trend indicates a rather extreme confidence that such classes
have almost zero probability

superiority over the deterministic CNN by achieving a low mean cost and with a low
standard deviation. This consistent performance of the Bayesian CNN demonstrates
how better uncertainty quantification leads to robust decision-making.

To further demonstrate the difference in behavior between the Bayesian CNN
versus the standard deterministic model, Fig. 19.4 shows the posterior conditional
risk for three examples where class ‘G’ is the true class. The bar chart displays
the risk, where the lowest bars correspond to the decision with the lowest risk. We
have indicated the lowest bars via green for correct choices, and red for incorrect
choices. We show three examples of where the deterministic CNN results in wrong
decisions. To see how these decisions were made, we superimpose the logarithm
of the mean of the softmax outputs above the conditional risk. These orange lines
correspond to the mean prediction of each network, displayed on a logarithmic scale.
The deterministic CNN’s log predictions in the right column are, in general, lower
than the corresponding log predictions for the Bayesian model. The lower the curve,
the more confident the network is that the data should not be labeled as that particular
class. In these examples, the deterministic CNN never prescribes a higher probability
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mass of more than 10−5 to class ‘G’, whereas for the Bayesian CNN, the probability
mass is often orders of magnitude higher. The better calibrated predictions with
a higher probability mass over class ‘G’ lead to the correct decision being made,
despite the fact that class ‘G’ is never the most probable class according to all three
examples.

19.5.6 Calibration of the Cost Function

One of the key challenges in Bayesian decision theory, as well as in non-Bayesian
paradigms such as empirical risk minimization (see Leqi et al. (2019)), is the deter-
mination of the cost function. While the advantage of using the BDT framework is
clear in that it allows the ML model to be treated separately from the cost, it is still
left to the domain expert to decide upon how to construct the cost. In some scenarios,
cost may be inherent to the problem such as for finance (Spears et al., 2020) or for
inventory management (Taskin and Lodree, 2016), where in both cases the cost func-
tion can be aligned with the monetary value. However, in many other scenarios, such
as for medical diagnosis (Leibig et al., 2017) and pedestrian classification (Cobb
et al., 2018), defining the cost is rather subjective and can be challenging.

To demonstrate howonemight calibrate a cost function,we continuewith the same
Bayesian and deterministic models from before, but now explore how to design the
cost function when it is not in an explicit form. Instead, the true cost is observable
after making a decision. For this example, the true cost follows the one listed in
Table19.1. Within this setup, we can observe the performance of the decisions on
the validation data and then calibrate our own cost matrix to match the true costs. For
our scenario, this result is the same as saying that class ‘G’ is an adversarial vehicle,
and errors in decisions will cause financial harm. Where, we do not know the exact
costs, we do have a few historical examples of the costs incurred in the past.

Figure19.5 shows this scenario, where our design choice is to vary the cost for
the penalty for class ‘G’. The x-axis corresponds to this penalty value, which starts
from 0.01, where the penalty is equivalent to other classes, and ends at the cost
of 10.00, which is ten times the true cost. For both models, we plot the mean and
standard deviation bounds of the true validation cost accrued as we vary the cost
matrix. The lowest validation cost for a Bayesian CNN occurs at the true value,
where the penalty is 1.0 (as in Table19.1). For each side of this value, the cost
increases, demonstrating a better approximation of the posterior distribution. On the
other hand, the deterministic CNN is poorly calibrated and is far from identifying
the right design choice for the cost matrix.

In summary,we can calibrate cost functions by observing real data.However, there
is still the challenge of gathering data on the true costs. As will often be the case, the
data’s exact influence on the true costs in safety-critical scenarios may not always be
available due to the rarity of unsafe events.4 In addition, while plotting graphs like

4 Unsafe events should be rare if systems are built well!
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Fig. 19.5 Calibration of the penalty term for class ‘G’. The y-axis shows the true cost over the
validation splits for the Bayes optimal decision, and the x-axis corresponds to varying the penalty
term in the cost matrix for class ‘G’. For the Bayesian CNN, the lowest true cost is at a penalty of
100, which is exactly equal to the real cost matrix. Figures like this can aid us in designing the cost
matrix. Furthermore, we note the poor performance of the deterministic CNN, where the lowest
validation cost corresponds to ten times the true penalty

Fig. 19.5 are useful, it may not be easy to analyze different cost functions when all of
the penalty terms in the cost matrix can be varied. This challenge highlights the need
for domain expertise and the ability to test different cost functions on validation data.
Safe reinforcement learning is an example of a place in the literature where these
ideas have been explored in a different context. Therefore, borrowing ideas such as
building simulators and even running real systems with known safe policies could
be beneficial (Polymenakos et al., 2019).

19.6 Resource Requirements of Bayesian Inference

In Sect. 19.5, we deployed two inference schemes for learning the CNN weights.
The more simplistic approach found a single set of parameters, whereas the more
complex approach inferred an approximate distribution over the CNN weights. We
saw that the inference scheme with the better uncertainty quantification led to safer
decision-making for the acoustic classification example. This result demonstrates
howaccounting for uncertainty in real-world problemsmakes algorithmsmore robust
and safer to use. In general, the most computationally expensive techniques for per-
forming Bayesian inference result in the best performance in terms of accuracy and
cost but at the expense of requiringmore computational resources. In our above exam-
ple, we compared Bayesian inference using HMC with stochastic gradient descent.

Figure19.6 demonstrates the trade-off between these two approaches. The deter-
ministic CNN (blue) demonstrates the performance for the equivalent resource use
of a single sample, when compared to increasing the number of samples for the
Bayesian CNN (orange). The figure shows how increasing the number of collected
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Fig. 19.6 Cumulative performance of the cost and the accuracy as the number of samples in the
Bayesian ensemble is increased. Note that the baseline performance for a single deterministic model
is shown on the plot via the dotted blue line. Credible intervals are given by the standard deviations
across the validation splits. After a sufficient number of samples, the Bayesian CNN converges to
a higher accuracy and lower cost than the deterministic baseline

Fig. 19.7 Cumulative performance of the cost and accuracy as thinning is applied (reducing the
number of samples by sub-sampling). Unlike for Fig. 19.6, we only incorporate one in every one
hundred samples for the cumulative performance. The result is that thinning can significantly reduce
the computational requirements. The thinned ensemble of networks still achieves ≈ 84% accuracy
with 100 times fewer samples and still achieves a validation cost of just above 5 (slightly higher
than that of Fig. 19.6)

samples improves the performance of the Bayesian CNN. It takes approximately
200 samples for the Bayesian CNN to do better in mean accuracy and 100 to do
better in mean validation cost, compared to the deterministic model. This result is
concerning for real-world applications in that a single pass through the network takes
16.30 ± 0.05 ms on our hardware.5

However, Fig. 19.6 is without thinning, whereby thinning is the process of sub-
sampling betweenproposed network parameters from the sampling scheme’sMarkov
chain (see [Chap.12 Robert and Casella, 2013]). Thinning can substantially reduce
the computational cost in both memory and floating point operations at the possible
expense of reducing the quality of the approximation to the posterior.6 Figure19.7
shows the same curves as in Fig. 19.6, where only 1/100 of the samples are kept.

5 Based on the following parameters: OS: Ubuntu 18.04.5; CPU: Intel i7-9750H; GPU: GeForce
RTX 2080 with Max-Q; Python: 3.8.3.
6 The reduction in quality of the approximation is not evident here.
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The result is that we only need three samples to achieve superior cost and accuracy
performance compared to the deterministic model for this scenario. Therefore, it
is worth spending time deciding upon the most suitable number of samples in the
ensemble to reduce the storage and implementation costs. Finally, if we can build
hardware and software such that models can be deployed in parallel, then the cost of
using multiple samples of a network (an ensemble) can be reduced even further.

19.7 Conclusion

This chapter introduced the benefits of adopting BDT to reduce uncertainty when
employingML techniques in safety-critical applications.Building a system that relies
on BDT provides advantages over systems with end-to-end controllers. Clear pref-
erences can be encoded into the decision-making process that allow for more under-
standable actions. The separation between the inference component and decision-
making component enables the model, a Bayesian neural network, to concentrate on
pattern recognition tasks.

We demonstrated how one might use such a framework in practice with a highly
imbalanced and challenging data set. For our scenario, the least populous class in the
data set was set to have the highest penalty for incorrect decisions. We then observed
how the model that better approximated the uncertainty resulted in more reliable and
safer decision-making for the task. In addition to accuracy and posterior conditional
risk, we also analyzed the trade-off in terms of the computational cost and we inves-
tigated one way to alleviate such issues by thinning. We also mentioned alternative
approaches to Bayesian inference that may trade-off uncertainty and computational
resources differently to the method we showcased here.

One of the challenges in the design of a safe decision-making system is determin-
ing the preferences of an end user and how to incorporate preferences into the training
of theMLmodel. In non-Bayesian paradigms,models are typically trained by directly
minimizing the empirical risk. The beauty of the Bayesian framework is that a model
can be trained without the need to hand-craft loss functions, to which the subjectivity
of the relative preferences are kept away from the ML developer/researcher and left
to the domain expert. Instead, inference over the model parameters can be kept as
objective as possible, while a domain expert calibrates the cost matrix according
to personal preferences. Of course, this leaves many challenges open such as how
to encode domain-specific preferences into a cost function and, ultimately, which
model is best at approximating the posterior predictive distribution of the data. In
future work, we hope to incorporate other areas of the literature, where different
approaches have been used to tackle the problem of making safe decisions; these
include optimization over different user risk preferences by incorporating fuzzy set
theory (Ekin et al., 2016), or using a strict robust optimization approach (Bastian
et al., 2020).
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Chapter 20
Engineering Context from the Ground
Up

Michael Wollowski, Lilin Chen, Xiangnan Chen, Yifan Cui,
Joseph Knierman, and Xusheng Liu

Abstract We are engineering a system that is designed for a human and a robot to
solve problems in a shared space. This system uses context to manage interactions
with a human collaborator as well as to manage more mundane aspects of context,
such a combining speech and gesture input. Our system is highly modular so as to
facilitate good engineeringpractice. It uses a blackboard type architecture to represent
and maintain information of different aspects in the problem-solving process and
to maintain context. We give an overview of the current status of our system. We
explain the components of our systemandprovide details of the information produced
by the various system components. Additionally, we explain how information is
accumulated on the blackboard and discuss and evaluate how various aspects of
context are addressed in our system.
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20.1 Introduction

Weare engineering a system that is designed for human–robot collaborative problem-
solving in a shared space.Our system is characterized by two inputmodalities: speech
and gesture. These two modalities afford a more natural way of interacting with a
robot, a way that does neither require complex descriptions of the locations of objects
relative to each other nor an initial phase for naming objects. Our approach simplifies
the processing of speech input at the expense of introducing the task of processing
gestures as well as the task of combining the evidence obtained from those two
modalities.

Our system is designed for a person and a Sawyer robot1 to solve various wooden,
block-world assembly problems. While our system has some autonomy, currently
a human collaborator is in charge of the problem-solving efforts. By this claim,
we mean that a human collaborator defines the problem to be solved and gives
instructions, whether step-by-step or higher level, to the robot. We should point out
that there is preliminary work showing that problems can be solved more efficiently
when the robot is in charge without the loss of human comfort (see Castro et al.,
2017). However, our system has not reached a degree of maturity in which the robot
could take over.

The physical system setup is depicted in Fig. 20.1. We use a Kinect V2 Sensor
for Xbox One,2 which contains a depth sensor and a camera. We currently use the
microphone built into the laptop. The laptop runs most of our software. The Kinect
and the camera are located in a fixed space, overlooking a table-sized interaction
space. The robotic arm has its own camera attached to it, near the gripper.

The architecture of the physical components of our system is depicted in Fig. 20.2.
Section 20.2 will provide more details about the processing component.

To manage the information processing tasks, we use the Unstructured Informa-
tion Processing Architecture (UIMA; see UIMA, 2019) that was developed by the
IBM Watson team to manage the information processing of their highly successful
Jeopardy!© player. UIMA supports highly modular design and uses what might be
considered an additive blackboard representation scheme. The use of UIMA enables
the representation of various pieces of information about a problem at a fairly high
level. Hence, information can be easily shared and inspected. As such, the use of
UIMA lines up well with the recommendation that.

practitioners must ensure that AI-enabled systems are governable; that they are open, trans-
parent, and understandable; that they can work effectively with people; and that their
operation will remain consistent with human values and aspirations,

from the report on Preparing for the Future of Artificial Intelligence by Holdren and
Smith (2016).

A key component of UIMA is the “Common Analysis System,” or CAS. Similar
to a blackboard architecture, a CAS object serves to capture information in various

1 https://www.rethinkrobotics.com/sawyer.
2 https://developer.microsoft.com/en-us/windows/kinect.

https://www.rethinkrobotics.com/sawyer
https://developer.microsoft.com/en-us/windows/kinect
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Fig. 20.1 Our system

Fig. 20.2 The architecture
and information flow of our
system

stages of refinement. While CAS objects are explained in Wollowski et al. (2020),
due to their central nature, we will briefly reintroduce them here. Figure 20.3 shows
a simple example of how one might parse a piece of text in UIMA, capturing
information as it is added to the CAS object.

Information is added to aCASobject through software components called annota-
tors. Annotators serve as information “gatherers,” capturing the outcomes of various
information processors. Each annotator interprets the existing data, then adds new
data or some combination of both before passing an object to the next annotator in
sequence.

The benefit of the use of UIMA is that it forces a highly modular approach to
design the information processing pipeline. It also simplifies the process of adding
new units aswell as that of replacing existing units. In the time span between the stage
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Fig. 20.3 Sample UIMA Processing Pipeline

of development of our system as previously described inWollowski et al. (2020) and
the current stage, we added the following units:

• Memory import and memory storage units;
• Text-to-speech unit;
• Command unit, to interact with the robot; a
• Planner, to give the robot more autonomy; and, a
• Perspective transformation unit.

Additionally, we replaced the Natural Language Processing (NLP) unit, signif-
icantly improving its capability and robustness. We made major revisions to the
Communication unit and tuned the Confidence Aggregator. We separated the color
recognition task from the NLP unit, creating its own unit and we split the processing
of spatial relationships into two separate units. In total, we increased the number of
units from 7 to 15.

We have come to a point in the development of our system in which not all
processing units are in sync. By this, we mean that some of the units have capabil-
ities and are adding information to the blackboard that is not necessarily processed
by subsequent units. This disconnect is simply a side effect of the rapid speed of
development. We meticulously document the capabilities of each unit and periodi-
cally update them so that they process the additional information available to them.
We additionally have developed several how-to documents that describe in detail
the overall structure of the system, how to interact with it, and how to expand its
capabilities, by adding annotators. Our project reached a level of complexity where
it is crucial to maintain good software engineering habits. It is not a small benefit
that the team of students that work on this project changes once a year. Each new set
of students typically performs a good amount of code refactoring.
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We are engineering our system from the ground up for several reasons: (i) IBM
used an incremental development approach for their very successful Jeopardy!©
player (Ferrucci, 2012). Rather than aiming to prove a theory, the Watson team
set themselves a performance goal to perform better than the two most successful
human Jeopardy!©players. (ii) RodneyBrooks (1990), in his ownwork andwritings,
successfully argued to take an approach that is focused on building actual systems
from the ground up and on solving problems that are exposed when developing those
systems. (iii) Finally, we believe that by building a system from the ground up, we
can precisely study context, how it is constructed, how it is used, and how aspects of
it are assumed and communicated.

20.2 Information Processing Architecture

In this section, we present an overview of the information processing architecture
of our system. Figure 20.4 shows the UIMA pipeline with the current annotators.
Throughout this section, we will indicate which components have already been
described in detail in Wollowski et al. (2020), and which components are described
in this chapter.

Memory Import and Storage. The “Memory Import” unit reads information that
is saved as part of the “Memory Storage” unit. The immediate purpose of these two
units is to enable a human collaborator to name entities in the collaboration space
so as to refer to them by name, rather than by relative location. However, there are
additional pieces of information that are stored and preserved for future interactions.
These two units are described in Sect. 20.3 and throughout this chapter.

Object Detection. This unit identifies objects in the collaboration space. It inter-
prets camera data to determine the locations of blocks and reads RGB hues of them.
It additionally recognizes the interaction space, i.e., the table. Block locations are

Fig. 20.4 The UIMA information processing of our system
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stored relative to the position of the camera. For details, see Sect. 20.4 in Wollowski
et al. (2020).

Speech-to-Text. This unit uses the Google Cloud library’s speech-to-text service
(Google, 2019a). It sends an audio snippet of the speech input and receives back a
string representing the spoken text. The string is translated into a JSON3 object and
added to the CAS object. For details, see Sect. 20.6 in Wollowski et al. (2020).

Gesture Recognition. This unit processes a pointing gesture of a human collab-
orator to determine the direction and location of the pointing action. It uses utilities
provided by the Xbox Kinect V2 library to read structural information of a hand’s
skeleton, including its joint information. Using joints in a hand as the basis of esti-
mating a vector in 3D space, we employ a simple heuristic that takes a point from
the middle of the palm to the point in a finger furthest from it to be the pointing
vector. The pointing vector is then compared with the center of each block in the
collaboration space, to provide a heuristic value that estimates that block’s certainty
of being identified by gesture. For details, see Sect. 20.8 in Wollowski et al. (2020).

NLP Unit. This unit takes the output of the “Speech-to-Text” unit, parses the text
and, based on the parse tree, extracts several pieces of information related to the use
of color words, spatial relationships, naming of blocks, gesture, and any commands
that have been given. This unit has been completely rewritten, significantly extending
its capabilities and robustness. It is described in Sect. 20.4 of this chapter.

Spatial Relations Generator. This unit parses the data from the “Object Detec-
tion” unit to calculate the relative locations of the blocks to each other. It produces
a graph of relative locations. Currently, our system is able to process “left,”
“right,” “front” and “behind.” For details, see Sect. 20.5 in Wollowski et al.
(2020).

Color Recognition. This unit processes all of the color words as identified by the
“NLP unit.” It uses the hue values of each block in order to determine how close a
given block is to color. It outputs a list of all blocks together with their associated
confidence level in the colors as indicated by the color words. For details, see the
“Colors” sub-section of Sect. 20.7 inWollowski et al. (2020). This unit has since been
updated to process more than one color word. In the prior version, this unit searched
for a single-color word in the input string as received by the “Speech-to-text unit.”
It now extracts all of the color words as identified by the “NLP unit.”

Spatial Relation Recognition. This unit determines spatial relationships among
a selected object and all of the other objects in the working space. It combines
information from several units. The algorithm recursively traverses the graph of the
spatial information compiled by the “Spatial RelationsGenerator” unit. It beginswith
a block thatwas identified through gesture as determined by the “GestureRecognition
unit,” or color as identified but the “NLP Unit.” It then iterates through the modifiers
produced by the “NLP Unit” to retrieve the lists of blocks in that direction/relation.
The algorithm recursively calls itself with the shortened list of spatial modifiers.
Recursion continues until all of the modifiers have been used. The confidence value
of this classification depends on the distance from the block to the origin.

3 https://www.json.org/.

https://www.json.org/
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This unit and the “Spatial Relations Generator” used to be part of one unit as
described in Sect. 20.5 in Wollowski et al. (2020). We decided to split that unit into
two to implement a good modular design for two independent tasks, first, the task
of determining a graph of relative locations of blocks to each other, and second, to
determine the locations of the referenced objects.

Confidence Aggregator. In our system, some of the units calculate confidence
values and pair them with some of the objects of the domain. The final confidence
ratings produced by this unit take into consideration color, gesture, and spatial rela-
tionships. This unit combines those confidence values to determine the overall confi-
dence value of the block that is considered to be selected by a human collaborator
for some action. This unit is described in Sect. 20.5 of this chapter.

Perspective Transformation. This unit translates the coordinates of the selected
object from the perspective of the Kinect to that of the Sawyer robot. This trans-
formation is a very technical aspect of context. It is presented in Sect. 20.6 of this
chapter.

Planning Unit. This unit adds intelligence and autonomy to our system. It
develops step-by-step plans for solving block-stacking problems. Itmonitors its plan-
ning process and requests assistance from a human collaborator in those cases when
the system detects that it cannot solve a given plan. We implemented a basic STRIPS
planner (see Fikes &Nilson, 1971).While it is not the most powerful planner one can
use, it is sufficient to solve certain types of block-stacking problems.We welcome its
limitations such as those documented through the Sussman anomaly (see Sussman,
1975) since they enable us to study human–robot collaboration as well as the use of
context for collaboration. This unit is presented in Sect. 20.7 of this chapter.

Communication Unit. This unit is used to communicate with a human collabo-
rator, whether to acknowledge that the system has sufficient confidence in the instruc-
tions received, or whether to ask for clarification. This unit attempts to create a
collaborative working relationship by addressing its human collaborator by name,
by varying its responses, and by cracking a joke every so often. Details of this unit
are presented in Sect. 20.8 of this chapter.

Command Unit. This unit issues commands, such as which block to pick up,
to the Sawyer robot by communicating with existing software implemented in the
Robot Operating System (ROS). Details of this unit are presented in Sect. 20.9 of
this chapter.

Text-to-Speech. This unit converts the machine’s textual response into speech.
The text determined by the “Communication Unit” is converted to speech by sending
it to the FreeTTS4 speech synthesis system. The sound file returned by FreeTTS is
then played to the user through the computer’s speakers.

4 https://freetts.sourceforge.io/.

https://freetts.sourceforge.io/


408 M. Wollowski et al.

20.3 Memory Import and Storage

The “Memory Storage” annotator works in tandemwith the “Memory Import” anno-
tator to save pertinent informationbetween runs of theUIMApipeline.Amongothers,
the use of memory enables a human collaborator to name entities in the domain and
to refer to them by name. A user may also name problem-solving plans to reuse them.
Additionally, our system stores prior parsed sentences to resolve co-references, and
it stores partial parse trees in the case of an incomplete input by a human collabo-
rator, to merge them with additional information provided in response to a request
for clarification.

As explained in Sect. 20.4 on “Natural Language Processing,” a human collabo-
rator may name entities in the domain. For naming to be useful, names must persist.
Since UIMA is a linear processing pipeline, our system writes those names to a
persistent block of memory to which it has access. Hence, the first step taken when
restarting the pipeline for a new interaction is to initialize the CAS object with any
names that were previously defined.

Memory Import. When starting the pipeline, the “Memory Import” anno-
tator reads any saved data from memory. This unit loads the contents of the
MemorySave.txt file, which contains information accumulated from previous
runs. It extracts the name-block data and places it into the initial CAS object.
Figure 20.5 shows the contents of a sample MemorySave.txt file. In it, the block
with id:4was named Bob, and the block with id:3was named Mitchell. Notice
that in addition to the name, the coordinates of a block are saved. The coordinates
are used to locate the corresponding block and associate the given name with it.

Memory Storage. This annotator identifies and stores named objects as well as
named plans. To determine if the naming command was used in the current run, the
CAS object is inspected. In particular, our system searches for the Name field of the
NLPProcessor object added by the “NLP Unit.” Any name given there is then
associated with a block’s location. This association is accomplished by extracting the
position coordinates of the object with the highest determined confidence compiled
by the “ConfidenceAggregator.” If the confidence is sufficiently high, then the name–
object association is added to the JSON object stored in the MemorySave.txt file.
This file is stored in the main project folder. It should be noted that we currently do

Fig. 20.5 An excerpt of a
“MemorySave.txt” file

[{"namedBlocks":[ 
   {"id":4,
    "name":"Bob", 
    "x":-0.01628926582634449, 
    "y":-0.04363936185836792, 
    "z":1.2850000858306885}, 
   {"id":3,
    "name":"Mitchell", 
    "x":-0.4298781454563141, 
    "y":-0.15041720867156982, 
    "z":1.0380001068115234}]}] 
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Fig. 20.6 A visual representation of the dependency parse tree for the sample sentence

Fig. 20.7 An excerpt of the
JSON object for the sample
sentence

“NLPProcessor”: 
{“Command”: “pick up”, 
“Target”:

       {“Item”: “block”,
“Mods”: [“red”, “plastic”],
“Gesture”: true,
“Relation”:  

          {“Direction”: “left”,
“Object”:  

              {“Item”: “block”,
“Mods”: [“blue”],
“Gesture”: false}}}}

not permit more than one name per object. We also do not permit renaming an object.
These are future extensions of our system.

20.4 Natural Language Processing

Our system’s Natural Language Processing (NLP) unit is responsible for parsing a
given string and for extracting certain pieces of information from it. This unit has
been completely rewritten, considerably extending its capabilities andmoving it from
Google’s Cloud NLP service (see Google, 2019b) to the Stanford CoreNLP library
(see Manning et al., 2014).

Parsing. We use the Stanford CoreNLP library’s dependency parser to annotate
a given sentence with both universal dependencies and parts-of-speech tags. This
information is stored in a Semantic Graph object by the parser. A Semantic Graph
object contains all of the edges of relations from a “governor”word to its “dependent”
words. Consider Fig. 20.6; it shows a visual representation of the tagged relationships
for the sentence: “Pick up that red plastic block to the left of the blue block.” The
image was produced by the demonstration service5 that runs on the Stanford NLP
group’s website.

Output file format. While processing the semantic graph, our NLP annotator
produces a JSON object that is added to the UIMA CAS object. Figure 20.7 shows
the JSON object used for the running sentence “Pick up that red plastic block to the
left of the blue block.”

5 https://stanfordnlp.github.io/CoreNLP/demo.html.

https://stanfordnlp.github.io/CoreNLP/demo.html
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Table 20.1 Common POS
abbreviations

Abbreviation Parts of Speech

VB Verb, be base form

RP Particle

DT Determiner

JJ Adjective

NN Noun, singular, or mass

NNP Proper noun, singular

IN Preposition, subordinating conjunction

For an explanation of the parts-of-speech tags, see Table 20.1.
The “Mods” field contains a list of modifiers. This list includes properties such as

“color” and “texture.” The data type of the “Gesture” field is Boolean. The overall
syntax of the JSON object is that the top level identifies the command, if one is given,
as well as the target object for that command. At the next lower level, the JSON
object identifies information about the target object, including any relationships that
are specified by a human collaborator. The nature of the relationship may be a binary
relationship such as “left of” or a tertiary relationship such as “between.” If no
relationship is given, the “Relation” component is left out of the JSON object. In
Fig. 20.7, we show an example of a binary relationship. The object of that relationship
is specified in the nested “Object” component.

In case of a tertiary relationship, such as “Pick up the blue brick between this red
bottle and the yellow block,” our system obtains the dependency parse tree as shown
in Fig. 20.8.

Consider the circled “nmod:between” relationships; following those two relations,
we can extract the two indexed words “bottle” for the first part of the “between” rela-
tion and “block” for the second. Once located, our systemwill follow the two indexed
words to find all of their properties, including modifiers and potential references to
gestures. The process of finding modifiers and gestures is the same as the process of
extracting those properties for any object. The relation between produces an array
of two objects. The partial JSON object for the sentence of Fig. 20.8 is shown in
Fig. 20.9.

Command extraction. The command of the sentence is either a verb, e.g., “drop,”
or a phrasal verb, such as “pick up.” The steps taken to extract the command from
the semantic object are as follows:

Fig. 20.8 The dependency parse tree of “Pick up the blue brick between this red bottle and the
yellow block”
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Fig. 20.9 Excerpt of the
JSON object for the
dependency parse tree from
Fig. 20.8

"Target": { 
    "Item": "brick", 
    "Relation": { 
      "Objects": [ 

{"Item": "bottle", 
"Mods": ["red"], 
"Gesture": true}, 

         {"Item": "block", 
"Mods": ["yellow"], 
"Gesture": false}], 

      "Direction": "between"}, 
    "Mods": ["blue"], 
    "Gesture": false}, 

"Command": "pick up"} 

1. The word with no dependency is the root of the sentence and, in most cases, a
verb is at the root of the sentence. If the root is not tagged as a verb, then the
algorithm iteratively visits the dependents of the root in search of one tagged as
a verb.

2. After finding the verb, the algorithm attempts to locate the phrasal verb particle.
It will start with the verb acquired in the previous step and use the phrasal verb
particle relations to extract the particle to form a phrasal verb.

A special case for locating the verb phrase occurs in those cases where the
CoreNLP librarymisclassifies a verb as a noun. This occurs when the library encoun-
ters an upper case “Drop” at the beginning of a sentence. We circumvent this case by
prepending the sentence with “Please,” as well as converting “Drop” to lower case.
The library now correctly identifies “drop” as a verb.

Target object extraction. The target for manipulation or naming is the object of
a sentence. This target is typically the noun phrase. Our algorithm uses the “object”
relation to extract the target from the dependents of the verb.

Relation (reference object and direction) extraction. Our system can recog-
nize seven direction relationships. They are: in front of, behind, to the
left of, to the right of, on, under, between, from, and onto. The
on relationship can be indirectly acting on the reference object (e.g., on the top of)
or directly acting on the reference object (e.g., on the blue block.)

The reference object is either:

a. the nominal modifier (nmod) of the target object (noun → noun); or
b. the oblique nominal (obl) of the verb (verb → noun).

In the CoreNLP library, version 4.0.0,

a. The relationships in front of, behind, and between are treated as
nominal–modifier relationships.

b. The relationships to the left/right of, under, from, and onto are
treated as oblique nominal relationships.

c. The relationship on is treated as either an oblique nominal relationship or a
nominal modifier relationship. If it acts on the reference object directly, the
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relationship will be an oblique nominal one. Otherwise, the relationship will be
a nominal modifier one.

To recognize if the relationship is a nominal modifier or an oblique nominal one,
our algorithm checks if there exists an “obl” relationship. Our algorithm performs
the following steps:

1. Both under and to the left/right of belong to the “obl” relationship.
For under, the verb points to the reference object. For to the left/right
of, the verb points to the direction phrase as left/right. The direction phrase has
an “nmod:of” relationship with the reference object.

2. As mentioned above, the relationship on is different from others in the “nmod”
category. In general, looking at the form of the “nmod” relationship, our algo-
rithm determines whether to treat it as an oblique nominal relationship or a
nominal modifier relationship. In the case of a nominal modifier relationship,
such as “on the top of the table,” the “nmod” relationship contains a direction
within the relationship, such as “nmod:of.” Our algorithm extracts that relation-
ship. In the case of an oblique nominal relationship, such as “on the table,” the
target noun points to the reference object.

Object modifier extraction. The modifiers of an object are the adjectival modi-
fiers of the target/reference objects in the sentence and the dependents of the first-level
object modifiers. To extract them, our annotator performs the following steps:

1. It uses the adjectival modifier (“amod”) relation to extract the first-level object
modifier from the dependents of the object.

2. It then uses the “obl:npmod” as well as the “compound” relation to extract the
second and lower level object modifiers from the dependents of the first-level
modifier.

Gesture extraction. To detect whether gestures are used on objects, either the
target or the reference objects or both, our algorithm inspects the determiner of a
given object. The following steps are taken:

1. At first, our algorithm uses the determined (“det”) relationship to locate all the
determiners of a given object.

2. It will then check whether our set of gesture contains that determiner. If so, the
Gesture Boolean variable is set to true for that object. Otherwise, it is set
to false.

Naming an object. Asmentioned in Sect. 20.3 on “Memory Input and Storage,” in
addition to issuing commands that ask the robot to perform certain actions, the robot
may be asked to remember the names of objects as given by a human collaborator.
Our system currently can process the following three naming commands: name, call,
and define. Wewill expand the word set of naming commands as we continue to work
on this project. The name provided is typically located at the end of the sentence. Our
software locates the Parts-of-Speech object that occurs last, before any punctuation.
If it is of type NNP, see Table 20.1, we will select it as the name, together with any
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Fig. 20.10 An excerpt of
the JSON object showing the
naming of an item, Bob

{"NLPProcessor": { 
  "Target": { 
    "Item": "bottle", 
    "Relation": {"Objects": []}, 
    "Mods": [ 
      "blue", 
      "plastic"], 
    "Gesture": false}, 
  "Command": "define", 
  "Name": "Bob"}} 

modifiers. For example, in the following sentence “Name the red block little Bob.”
the name will be “little Bob.” If the last item before any punctuation is of type NN,
such as in “Name that block to the left of the blue block little red riding hood.” Then
we will select it and its modifiers as the name.

The target object, the one to be named, is found in the same way as for other
commands. In other words, it is the object that is linked by the verb–phrase of the
action. In some simple sentences, such as “Name the blue block Bob.” This does not
hold true. In those cases, we select the remaining NN phrase of the sentence as the
target object. A name is stored in the Name field that is added to the top level of the
JSON object. Figure 20.10 shows an excerpt of the JSON object for the sentence:
“Define the blue plastic bottle as Bob.”

Co-reference. Whenever our system has successfully identified a target object,
that object is saved in persistent storage, i.e., the file managed by the memory import
and storage units. To be precise, our system maintains a single variable to hold a
target object, rather than a stack of objects. The variable contents are overwritten
each time a new target object is identified. Hence, we only recall references to the
most recently identified target objects. Our algorithm proceeds as follows:

1. If the word “it” is the target object of the current sentence, we assume that this
sentence refers to the most recently identified target object.

2. Our system then replaces the target object value with the item id of the stored
target object.

Consider the following excerpt. “Pick up that red block. Drop it.” Fig. 20.11 shows
an excerpt of the JSON object produced for the first sentence.

After parsing the second sentence, our system determines that the target of the
command is “it.” Assuming that the target of Fig. 20.11 is stored as block with the
id = 3, then our system will replace “it” with the stored target identification. The
resulting JSON object is shown in Fig. 20.12.

Fig. 20.11 An excerpt of
the JSON object for the
sentence: “Pick up that red
block”

"Target": { 
   "Item": "block", 
   "Mods": ["red"],
   "Gesture": true} 
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Fig. 20.12 An excerpt of
the modified JSON object for
the sentence: “Drop it”

“NLPProcessor”: {
"Command":"drop", 

       "Target": { 
          "id":3.0}} 

Fig. 20.13 An excerpt of a
JSON object for cases in
which the robot is referenced

{"NLPProcessor": { 
   "Target": { 

"Item": "block", 
"Relation": { 

"Objects": [{"Item": "self"}], 
"Direction": "right"}, 

"Mods": ["red"], 
"Gesture": false}, 

"Command": "pick up"}} 

Referencing the robot. Our system recognizes when a human collaborator refer-
ences the robot, such as in the sentence: “Pick up the red block on your right.” or
“Pick up the red block between you and the blue block.”

In any of those cases, our system places the value self in the corresponding
object’s Item field. Figure 20.13 shows an excerpt of the JSON object produced for
the first sentence mentioned above.

Incomplete input. Sometimes, a human collaborator may utter an incomplete
sentence. Due to the power of the Stanford CoreNLP parser, our system is able to
extract sufficient information to: (i) tell which portion is missing and (ii) use the
portion that was successfully parsed as part of a request for additional information.
Additionally, our system stores the partially parsed data in the MemorySave.txt
file to eventually merge it with the data extracted from the clarifying response by a
human collaborator. To manage the processing of incomplete data, our system adds a
NeedClarification object to any JSON object it returns. This object contains
three fields to indicate which portions of a command may be missing. This object is
shown in Fig. 20.14.

We discuss three cases:

(1) The command verb phrase is missing.Consider the phrase: “That plastic red
block to the left of the yellow bottle.”When processing its parse tree, our system
will not find a verb phrase at the root of the graph. Instead, our system will
locate the root of the sentence. It will then iterate through all the children of the
root and search for the first noun. That noun will be the target of our sentence.
Next, we can extract the modifiers as normal. In this case, the Command field
will be set to true.

Fig. 20.14 A sample
NeedClarification
object

    "NeedClarification": { 
      "Target": false, 

   "Command": true, 
      "Reference": false}
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(2) Only the verb phrase is given. Consider the phrase “Pick up.” In this case, no
target object is given, and neither are any reference objects. Our system sets
the Target field to true.

(3) Reference objects aremissing.Consider the phrase “Pick up the yellowplastic
block between.” Our system can parse most elements as normal. However, it
is not able to find any dependencies related to the direction word. In this case,
our system sets the Reference field to true.

Based on the information from the NeedClarification object, the “Com-
munication unit” will eventually request the specified information. In order to be able
tomerge the partial informationwith the next interaction inwhich clarifying informa-
tion is given, the systemwill store the partial JSONobject in theMemorySave.txt
file. We are currently working on the merging of partial information.

20.5 Confidence Aggregator

In our system, some of the units calculate confidence values and pair them with
some of the objects in our domain. The final confidence ratings produced by this
unit take into consideration the color as determined by the “Color Recognition” unit,
gesture as determined by the “Gesture Recognition” unit, and spatial relationships
as determined by the “Spatial Relations Recognition” unit. This unit combines all
of these confidence values to determine an overall confidence value of the block
that is considered to be selected by the human collaborator. In other words, we do
not calculate the confidence values of all of the blocks in the domain, as this is not
necessary.

The system begins with a block that is either identified by gesture or if gesture
is not used, a block that is identified by color. This unit then processes the spatial
modifiers as identified by the NLP unit. It does so by consulting the information
produced by the “Spatial Relations Recognition” unit. If while following the spatial
modifiers, there are no blocks in a particular direction/relation, then the algorithm
will attempt to select the next object in a particular direction based on its confidence
level, to continue the calculation with it. If no block is found, a confidence value of
0.0 is assigned. To combine all of that information into a single confidence value,
we use the product of normalized confidence ratings. We normalize the confidence
ratings to ensure that the value of one confidence rating does not distort the value
of the aggregated confidence ratings. We note that a weighted sum serves a similar
purpose, albeit with the added burden of determining weights for each confidence
rating to reflect the relative importance of each form of input.

Given the utterance “Pick up the blue block to the left of that block” and assuming
the human collaborator points to the block identified with “id”:3.0, Fig. 20.15
shows an excerpt of the CAS object with the confidence value of block 3 as the one
intended to be picked up.
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"AggregateConfidence":  
[{"id":3.0, 
  "confidence":0.9298860211532615,     
  "normPointingConf":0.9373988271398364, 
  "normColorConf":1.0, 
  "spatialRelationshipConf":0.991985475371782},...],

Fig. 20.15 An excerpt of the CAS object after confidence aggregation

"CoordinateTransformation":  
[{"x": 0.6707599004163673
"y": 0.48190930545330046
"z": 0.018995275532949774}]

Fig. 20.16 An excerpt of the CAS object showing the coordinates of the selected block after being
transformed to the perspective of the Sawyer robot

20.6 Perspective Transformation

The selected object’s current coordinates are based on the perspective of the Kinect.
In order for the Sawyer robot to know the position of the object, these coordinates
need to be translated to the coordinate system of the robot.

This translation is performed via a series of transformationmatrices. In the current
system, one of the measurements used for the transformation is the distance from the
base of the Kinect to the base of the robot. This distance is measured manually and
does not need to be changed unless the Kinect or the robot is moved to a different
location. Figure 20.16 shows the result of the transformation for the block selected
for an action by the robot.

20.7 Planning Unit

In order to provide the robot with some autonomy, we implemented a basic planner.
We chose to implement a basic version of STRIPS (see Fikes & Nilsson, 1971).
STRIPS is not a very powerful planner. Hence, a human collaborator will be required
to provide input more often than if a more powerful planner were to be used. We
will eventually replace STRIPS, however, at this point, we wish to develop a better
understanding of the nature of human–robot collaborative problem-solving. Addi-
tionally, using a planner of limited yet well-understood abilities may help a human
collaborator to develop trust in the system.

The planner is given a goal state as well as the given state. The given state is
extracted from the JSON object that describes the current working space, and the
goal state is extracted from the human collaborator’s input. The planner’s actions and
representation of theworld are as expected for the block’s world. The actions include:
PUT_DOWN(x), PICK_UP(x), UNSTACK(x, y) and STACK(x, y). The
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Fig. 20.17 A sample plan {"ActionPlan": { 
    "initialState": [ 

"ON_TABLE(id:3)", 
      "ON_TABLE(id:4)", 
      "CLEAR(id:3)",
      "CLEAR(id:4)",
      "ARM_EMPTY"], 
    "goalState": [ 
      "ON_TABLE(id:3)", 
      "CLEAR(id:4)",
      "ON(id:4, id:3)", 
      "ARM_EMPTY"], 
    "name": "Easy Condition", 
    "state": { 
      "normal": true, 
      "unsolvable": false, 
      "doNothing": false, 
      "stuck": false}, 
    "plan": [ 
      "STACK(id:4, id:3)", 
      "PICK_UP(id:4)"]}} 

world is represented through the use of the following predicates: CLEAR(x),
ON(x, y), HOLDING(x), ARM_EMPTY, and ON_TABLE(x). For more details,
see Nilsson (1980). The planner produces a sequence of actions that are saved in the
CAS and are in turn read by the “Command unit” to interpret the actions and to send
them to the robot. Figure 20.17 shows an excerpt of the JSON object for a sample
plan produced by our system.

The initialState, goalState, and plan information is as expected. The
name field can be used to give plans a name so as to reuse them later on. Named
plans will be stored in the MemorySave.txt file. The state object is used to
convey meta-information about a planning problem. It has four fields, which we will
discuss in turn. They will eventually be used by the “Communication unit” to give
appropriate feedback to a human collaborator:

1. normal. This field is set to true if the planner was able to solve a given
planning problem. This result holds for the problem presented in Fig. 20.17.

2. doNothing. This field is set to true if the goal state is already satisfied and
no further action is necessary.

3. unsolvable. This field is set to true if the problem cannot be solved by
our planner. This result occurs when there are additional objects in the goal
state that are not present in the start state. For example, in Fig. 20.18, there is
an additional block c in the goal state. This block cannot be matched to the
initial state and as such, the predicate ON(c, a), cannot be satisfied for this
problem. Alternatively, a problem is not solvable when information is missing
from the initial state description. For example, the initial state from Fig. 20.18
needs to be represented by the following state description: ON_TABLE(a),
ON_TABLE(b), CLEAR(a), CLEAR(b), and ARM_EMPTY. If any of those
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Fig. 20.18 An unsolvable
planning problem

Fig. 20.19 Sussman
anomaly

pieces are missing, our planner will not be able to find a solution as it cannot
satisfy at least one goal.

4. stuck. This field is set to truewhen the planner is not able to solve a problem
because it is not sufficiently powerful. For example, this result is the case when
it encounters the problem known as Sussman’s anomaly (see Sussman, 1975).
An example of this anomaly is depicted in Fig. 20.19. This case occurs when
the planner undoes a goal in order to satisfy a different goal. Our system detects
such a situation by monitoring the information placed on the goal stack. If the
planner undoes an action already placed on the stack to satisfy an earlier goal,
the planner will terminate. As a fail-safe, our planner terminates after 2 s of
runtime, again, setting this field to true.

20.8 Communication Unit

This unit communicates with a human collaborator. In addition to providing some
fairly technical feedback, it attempts to create a jovial working relationship.

This unit gives the collaborator feedback about its level of understanding and, as
such, enables a human collaborator and the robot to engage in a dialog while solving
a problem. As explained in Sect. 20.5 on the “Confidence Aggregator” unit, our
system combines confidence information from several units to determine the overall
confidence that an object has been successfully identified for a particular action. The
“Communication Unit” acknowledges when it has a high confidence in an object.
Currently, if the computation of the confidence in the selected block has a value of at
least 0.5, then that object is selected for action. The value 0.5 is a tuning parameter
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Fig. 20.20 Examples of
high-confidence system
responses

Got it
Roger that 
Command received 
Okay
Will do that
Understood  
Yes Sir

and will likely change as our system evolves. Figure 20.20 shows a list of responses
from which one is chosen at random.

This unit attempts to create a sense of teamwork by asking for the human collab-
orator’s name, which will then be stored it in the MemorySave.txt file and used
throughout the dialog. Where appropriate, the human collaborator’s name will be
randomly appended to the response.

If our system has low confidence or if information is missing, it will request more
information from a human collaborator. In the case of low confidence, the systemwill
direct the robot to move its robot arm to above the block with the highest confidence,
close its gripper, and ask the human collaborator whether that is the block they chose
for action. In case some information is missing, see Sect. 20.4 on “Natural Language
Processing,” the system will request more information by using one of the phrases
shown in Table 20.2. The last three responses are given in those cases where no useful
information could be extracted from the parse tree. This behavior was inspired by
ELIZA, an early natural language processing computer program (see Weizenbaum,
1966.)

20.9 Command Unit

This unit communicates commands to the Sawyer robot using the robot operating
system (ROS). Currently, we are supporting the “pick up” and “point” commands.
This unit looks into three pieces of data to determine which of those two commands
should be issued. The “pick up” action is taken if the following criteria are met:

1. The “NLP Unit” identifies the command as “pick up.”
2. The “Confidence Aggregator” returns a value of true.
3. The “Spatial Relations Recognition” unit identified a block.

The “point” command will trigger given the following criteria:

1. The “NLP Unit” identifies any command.
2. The “Confidence Aggregator” returns a value of false.
3. The “Spatial Relations Recognition” unit identified a block.

The commands sent to the robot consist of arm movements and gripper state
changes. An “armmovement” command takes 3D coordinates with the intended goal
of moving the gripper to the specified position. The gripper will remain in a vertical
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Table 20.2 System responses requesting additional information

Problem Sample responses

Missing command What would you like me to do with < JSON target > ?

Can you tell me what you would like me to do with < JSON target >
?

What action should I take on < JSON target > ?

Can you tell me what action you would like me to take on < JSON
target > ?

Missing target object Which item would you like me to < JSON command > ?

Can you tell me which item you would like me to < JSON
command > ?

Can you tell me the target of command < JSON command > ?

Which item is the target of command < JSON command > ?

Missing reference object You would like me to < JSON command > the < JSON target > <
JSON Direction > of which item?

Would you be so kind and tell me the object that is < JSON
Direction > of the < JSON target > ?

Sorry, but can you repeat which item is < JSON Direction > of the <
JSON target > ?

Unsuccessful parse Sorry, but I don’t quite follow you

What do you mean?

Could you please elaborate?

position throughout the movement process. When the move command is issued, the
Sawyer robot will use its camera to recognize the objects in its environment. These
are the objects that the ROS uses to create a movement plan. The movement plan
contains a goal, which in our case is tomove to a specified 3D position. ROS creates a
set of movement vectors that will accomplish the goal without colliding with objects
in the environment. As such, ROS validates commands given to it by the “Command
unit.” The set of movement vectors is executed, and the arm will then move to the
specified position.

The X and Y coordinates are obtained from the X and Y position of the identified
block as determined by the “Perspective Transformation” unit. In case of a “pick up”
command, the Z coordinate is set to be 10 cm from the top of the table, which is
sufficient to grab a block. In case of a “point” command, the Z coordinate is set to
30 cm above the top of the table, which is sufficiently close for the user to identify
to which block the Sawyer robot is pointing.

To be specific, the “pick up” command consists of four phases. In the first phase,
the gripper is instructed to open up. During the second phase, the arm is moved above
the block at a height of 30 cm. During the third phase, the arm is lowered to where a
block can be picked up. This action is taken primarily for testing purposes because
it allows the operator to determine if the X and Y positions for the specified block
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def pick_up_and_move_block(x, y):
  rospy.init_node("GraspingDemo")
  global gripper 

gripper = intera_interface.Gripper(‘right_gripper’)
  gripper.open() 
  move_to(x, y, 0.30) 
  move_to(x, y, 0.10) 
  gripper.close() 
  move_to(x, y, 0.30)

Fig. 20.21 The “Command Unit” procedure implementing the “pick up” command

are translated correctly, and to prevent the gripper from colliding with the top of the
block. In the final phase, the gripper is instructed to close.

When a pointing action is issued, the gripper will first close and then move to
position itself to above the block for which the system is requesting feedback. The
gripper’s open and close commands can be called outside of its move commands
and do not require ROS planning or movement vectors.

The “Command Unit” will not modify the CAS object since it is considered an
output unit. Figure 20.21 shows the higher level details of the “pick up” command as
defined in the “Command Unit.” The last command places the gripper at a height of
30 cm above the table.We currently have not implemented the “put down” command.

20.10 Conclusions: Engineering Context

We now briefly describe the key aspects of the context for our collaborative system
and how the components of our system contribute to the process of building and
maintaining context.

Agreements. TheMemory Import unit, in cooperation with theMemory Storage
unit, creates and maintains definitions or references to blocks. The units store and
recall names given to the blocks by the collaborator and apply those names to the
blocks that are recalled.

Observing the workspace. Our system discovers the relevant workspace, the
table in Fig. 20.1, and its elements; i.e., the blocks on the table. TheObject Detection
unit records the hues and locations of the blocks in a three-dimensional space along
the axis of the Kinect’s camera.

Observing the collaborator. Two units observe the human collaborator. The
Gesture Recognition unit observes pointing actions of the collaborator and the
Speech-to-Text unit records voice input from the collaborator.

Interpreting the workspace. While the Object Detection unit reads off informa-
tion from the Kinect sensors, theColor Recognition and Spatial Relations Generator
units interpret the sensor data to determine the colors and the relative locations of
the blocks to each other.
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Interpreting the collaborator. The NLP Unit interprets the text obtained by
the Speech-to-Text unit to extract commands as well as the block references, which
include pointing gestures, references to colors, or relative locations.

Interpreting intent. Several components are used to interpret a collaborator’s
intent. The Spatial Relations Recognition unit, based on a collaborator’s utterances
about relative locations as extracted by the NLP unit and the pre-processed relative
locations produced by the Spatial Relations Generator, determines confidences in
the blocks that may be chosen for various actions. The Confidence Aggregator unit
combines confidences in the colors of blocks as produced by the Color Recognition
unit and confidence of the pointing action as produced by the Gesture Recognition
unit and combines them with input from the NLP Unit so as to interpret which block
is identified for naming ormotion purposes. It, too, associates confidence with blocks
in the domain.

Skills. The Command Unit converts stacking instructions such as “pick up” into
move and grip commands, which are then sent to the Sawyer robot via the ROS. The
movement and gripping actions are implemented there, while the Command Unit
simply interfaces with them. The Planner gives the system some autonomy; it can
solve block-stacking problems within certain parameters.

Converting to the collaborator’s perspective. The Perspective Transformation
unit converts the perspective extracted and maintained by the UIMA information
processing pipeline to that of the Sawyer’s robot. In particular, it translates the UIMA
coordinates to that of the robots.

Communicating with the collaborator. The Communication Unit either
confirms confidence in the collaborator’s response or it uses the robot’s arm to
point to a block that the system deems the most likely block to be identified by
the collaborator.

Developing a working relationship. In addition to simple acknowledgments, by
using a human collaborator’s name and by varying its responses, our system attempts
to create a working relationship with its collaborator.

Since we are building our system and context from the ground up, we are not in
a position yet to address the higher level intricacies of context.
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Chapter 21
Meta-reasoning in Assembly Robots

Priyam Parashar and Ashok K. Goel

Abstract As robots become increasingly pervasive in human society, there is a need
for developing theoretical frameworks for “human–machine shared contexts.” In this
chapter, we develop a framework for endowing robots with a human-like capacity for
meta-reasoning.We consider the case of an assembly robot that is given a task slightly
different from the one forwhich it was preprogrammed. In this scenario, the assembly
robot may fail to accomplish the novel task. We develop a conceptual framework
for using meta-reasoning to recover and learn from the robot failure, including a
specification of the problem, a taxonomy of failures, and an architecture for meta-
reasoning. Our framework for robot learning from failure grounds meta-reasoning
in action and perception.

21.1 Introduction and Background

From thermostats and toasters to self-driving cars and unmanned aerial vehicles,
robots are entering the humanworld in large numbers. Soon, robots of many different
kinds will be ubiquitous in almost all aspects of human life. This pervasiveness
raises many interesting questions from the perspective of “human–machine shared
contexts.” How will humans and robots work, learn, and live together? How will
they communicate and collaborate with one another? How will humans understand
robots? How will robots explain themselves? How will robots learn from observing
humans? How will robots learn from their failures?

In a chapter (Goel et al., 2020) in the previous volume in this series of books
on Human–Machine Shared Contexts (Lawless et al., 2020), we had advocated the
use of cognitive strategies to afford effective human–robot cooperation: “if we want
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robots to live and work among humans, then we may start with human-like, human-
level, cognitive strategies to addressing novel situations.” In the previous chapter,
we described analogy as a cognitive strategy for robot learning from human demon-
strations and meta-reasoning as a cognitive strategy for a robot to learn from its
own failures. In this chapter, while focusing on assembly robots, we investigate
meta-reasoning in more depth.

Apart from the ubiquitous Roomba, assembly robots are among the most
commonly used commercial robots in the world today (IFR (International Federa-
tion of Robotics), 2020). In fact, assembly robots are critical to industrial economies,
especially in the manufacturing sector. Most assembly robots are preprogrammed for
some specific routine tasks such as fastening a nut into a bolt to hold two surfaces
together. In fact, the preprogramming is done carefully to avoid failures because a
failure can have significant economic costs (1 min of downtime for a large auto-
motive assembly line past might carry a cost of the order of $50,000). This is also
reflected by the vast efforts to structure the manufacturing environment so that the
assumptions underlying the programming are always respected.

However, agile manufacturing often requires more flexibility: an assembly robot
may face a task slightly different from theone forwhich itwas programmed.Given the
reliance of the preprogrammed assembly robot on the rigid environmental structure
may mean that it fails to accomplish the new task, even if the difference from the
familiar task is very small. In this chapter, we explore the question: how may an
assembly robot use meta-reasoning to recover and learn from a failure in such a
context? Depending on the specification of the problem, the cost of recovering from
a small failure may be less than the cost of re-programming the assembly robot for
every new situation in agile manufacturing. This prospect raises a new question: what
kind of failures may occur when an assembly robot preprogrammed for a specific
task is exposed to a slightly different task?

Meta-reasoning—thinking about one’s own thinking—is one strategy. Meta-
reasoninghas received significant attention in researchonAI as reviewed andoutlined
in Anderson andOates (2007), Cox (2005), Cox and Raja (2011), Russell andWefald
(1991). However, much of previous work on meta-reasoning has been on simulated
robots; meta-reasoning in physical robots has, thus, far received relatively little atten-
tion. As onemay expect, physical robots impose hard constraints arising out of action
and perception. This raises another question: What do the constraints imposed by
action and perception mean for meta-reasoning? In this chapter, we are interested in
exploring the relationship between action, perception, planning, andmeta-reasoning.
We specify the nature of the problem and identify trade-offs in designs of possible
solutions.

21.1.1 Related Work

Our research lies at the intersection of artificial intelligence and robotics. Ourwork on
meta-reasoning builds on a long line of research: TheAutognostic project (Stroulia&
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Goel, 1995, 1999) developed a multilayered agent architecture including situated,
deliberative, and meta-reasoning components. In analogy to the redesign of physical
devices, the Autognostic system viewed an intelligent agent as an abstract device and
used a functional model to describe and repair a deliberative navigation planner. The
Reflective Evolutionary Mind (REM) project (Murdock & Goel, 2008) generalized
theAutognostic agent architecture. It developed aknowledge representation language
called Task-Method-Knowledge Language for encoding functional models of agent
designs that are more expressive than hierarchical task networks (Nau et al., 2003)
and enable explicit expectation descriptions. This depth of description allows the
REM architecture to conduct both retrospective and proactive adaptations for an
assembly agent.

Unlike theAutognostic andREMprojects, theAugur project (Goel& Jones, 2011;
Jones & Goel, 2012) focuses on the use of meta-reasoning to diagnose and repair
domain knowledge grounded in perception.Given domain knowledge in the formof a
classification hierarchy, Augur associates meta-knowledge in the form of empirically
verified procedures that capture the expectations about world states with each node
in the hierarchy. When the classifier makes an incorrect prediction, Augur system-
atically invokes its empirical verification procedures to diagnose the classification
knowledge. Finally, theGAIAproject (Goel&Rugaber, 2017) provides an interactive
CAD-like environment for constructing game-playing agents (for playing Freeciv) in
the REM architecture and the Task-Method-Knowledge Language (TMKL). Given
the design of a game-playing agent, GAIA executes the agent in the game environ-
ment. If the agent fails, then GAIA enables interactive diagnosis and repair of the
agents’ design. Parashar and colleagues (2018) extend this architecture to a situated
agent in Minecraft with a separate and explicit perception process supporting the
information gathering and repair efforts. They use an occupancy grid to represent
task expectations grounded in the ego-centric view of the agent that is then used as
a heuristic for guiding ground-level actions to learn task-level repair.

Goal-driven autonomy (GDA) (Muñoz-Avila et al., 2010) is a goal-reasoning
framework where the agent makes use of an expectation knowledge-base (KB) to
keep track of plan execution and to find discrepancies if any. GDA is based on meta-
reasoning concepts like expectation matching system, discrepancy detection, expla-
nation generation, etc. Dannenhauer and Munoz-Avila (2015) use hierarchical plans
with annotated expectations, called h-plans, along with a semantic web ontology, to
make better assertions about game states and to reason at various levels of a plan
hierarchy leading to better control over strategy reformulation.

There are several threads in robotics research supporting and informing our work
on representation and reasoning. It is generally agreed in robotics that hybrid systems,
which can do both deliberation and some kind of reactive revisions, pave the way
for more complex robotic applications (Kortenkamp et al., 2016), but there does not
exist a systematic theory of how to combine different levels of planning, reaction, and
learning. Müller and colleagues (2007) present a system that encodes plan transfor-
mations to make actuation easy based on pre-compiled heuristics and to apply these
transformations at run time to make plan execution more efficient. This way, the
planner abstracts away the difficulty of manipulation because of geometric and other
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specific requirements (e.g., the number of objects to move or the number of rooms to
visit) onto an abstract space. Beetz and colleagues (2010) present a cohesive “robot
abstract machine,” which integrates task reasoning with motion planning, percep-
tion, and other lower level modules on real robots, and, in theory, also allows meta-
reasoning. This architecture is supported by KnowRob (Tenorth & Beetz, 2013),
a knowledge database, which collects facts and beliefs for reasoning and revising
plans.

Wolfe and colleagues (2010) and Kaelbling and Lozano-Perez (2011) provide
two important insights that inform our architecture for meta-reasoning in assembly
robots: (a) robots do not have all of the needed information before plan execu-
tion and thus the architecture needs to account for plan refinement during execu-
tion and (b) motion actions can be thought of as functional entities, which helps in
reasoning about their effects in an abstract space. Christensen and colleagues (2010,
Chap. 6) conceptualize replanning as a way of refining plans and present an elegant
formulation of integrating facts from object perception as “agent now knows X” into
the refinement-by-replanning framework. Dantam and Stilman (2013) conceptualize
task language as a motion grammar relating high-level actions with semantic rules
explicitly describing how the position, forces, and velocity of a robot arm are affected
when a specific action is applied. Together, these various lines of previous work on
robotics help in filling the blanks on how to view the physical processes of a robot in
the same functional scope as task-planning. Finally, Parashar and colleagues (2019)
present an exhaustive survey of how ontologies of tasks and actions enable and facil-
itate better human–machine understanding, motivating the design if our architecture
for meta-reasoning in assembly robots that connects higher level ontologies to lower
level constraints.

21.2 Illustrative Examples

Let us consider an example in which the robot needs to plan a sequence of actions so
that it may pick up an assembly part, a pully in this case, lying on a table. Imagine
that the robot has a camera mounted onto the gripper allowing the robot to plan
motion using the eye-in-hand configuration. As an assembly agent, the robot has a
library of action sequences for frequently used assembly tasks like “picking up a
part,” so it retrieves a task method that specifies such a sequence from its memory
and applies it on the pulley. This method is shown in the top half of Fig. 21.1 along
with the expected progression of the plan in the current context. However, suppose
that this method previously has only been used for parts far smaller than the pulley
and so the agent does not realize that the Align action (Fig. 21.1 (top)-iii) will not
move the gripper all the way to the immediate top of the pulley as expected. This is
because Align uses an algorithm that moves the gripper toward the object until the
object is centered on the camera image and occupies a certain amount of area in that
image. The distance at which this condition becomes true is different for objects of
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Fig. 21.1 The top half of this picture depicts what the agent expects will happen when it executes
the stored plan for PickUp assembly action. The agent will (I) go to “part station,” which is a fixed
location in the environment, (II) agent will detect the pulley object at the part station, (III) the agent
will align its gripper with pulley, and (iv) the agent will grasp the pulley. This plan was initially
made for much smaller parts that the Align action could go close to. However, due to a larger size
of the pulley and field-of-view restrictions of the agent’s camera, the Align action is not able to go
all the way to the immediate top of the pulley. This results in a failure as the grippers close far from
the pulley as shown in the bottom half of the image

different sizes. Consequently, when the agent executes this method, the results look
like Fig. 21.1 (bottom), which is an obvious task failure.

Let us analyze this failure and its possible repairs. This problem can be viewed in
two ways: an incorrect parameterization of the Align action or a knowledge gap in
the task procedure due to a mismatch between the expectation of executing the Align
action and the actual state of the world. The first view considers that if the robot can
just fix the parameterization of Align action to enforce the gripper to move closer
then we can solve this problem. If Align is considered a function with the amount
of area covered by object as a thresholding parameter, we can increase the value of
this parameter and move closer. However, this repair has strict bounds! The physical
shape and size of the part is an immutable property so while a re-parameterization
of Align may bring the gripper closer, there will always be a minimum distance
beyond which the camera will lose focus of the object due to the laws of optics. The
second view considers this failure as a knowledge gap in the task specification that
manifests as a physical failure. While Align falls short of matching the task-level
expectations of the agent, the robot’s method library may have more assembly skills
(like a MoveTo(x, y) action) that can be tried to compensate for this gap and repair
the plan. This kind of repair is only limited by the completeness and soundness of
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the method and skill library, which are far more malleable concepts than the laws of
optics. We also cannot replace the Align action to avoid using it altogether because
perception is necessary to situate the objects in the environment, which affects the
motion and actions of the robot that manipulates the object under consideration.

The geometry of an object places objective constraints on what configuration of
the object is compatible with a given assembly operation, while perception helps
in grounding the geometry in a particular situation. A robot uses both kinds of
information to understand how to place the object in the current situation (perception)
and how to move to actuate the desired object state (geometry). Thus, geometry and
perception both play an important role in transferring the plan from the familiar
problem to a new problem.

To further extend this example, consider that the illustrated subtask was part of
a larger assembly task where the robot is required to pick up the pulley and then
Insert it onto a shaft (Fig. 21.2a). Assume that this time around the robot has a
complete plan that works for the given scenario. Now suppose that the robot is given
a complementary task in which it needs to pick up the shaft instead and insert it into
the pulley affixed to the station Fig. 21.3b-III). At a high level, the agent may ask if
the same general plan would still work for the new task? At a finer level, the agent
may ask whether there are implicit assumptions in the previous plan based on the
geometry of the pulley? If so, how may the agent transform the plan for the shaft
for an insertion into the pulley? If the agent knows how to grasp the shaft, a direct
transfer of the plan would result in the situation depicted in Fig. 21.2b, where the
robot grasps the shaft and moves in the same relative way to insert it as it would have

Fig. 21.2 a Depicts the larger assembly task whose subtask was analyzed in Fig. 21.1. The overall
assembly task was to pick up the pulley and then insert it onto a shaft affixed to a station. b An
example of failure due to direct transfer of the plan for the task “pulley-on-shaft” to the “shaft-into-
pulley” task, where the geometry of the shaft is not accounted for. In the third diagram, the shaft is
aligned with respect to the stationary station in the same way as the pulley, which may make sense
causally, but does not make sense geometrically
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with the pulley. This is obviously wrong since the shaft’s length is compatible with
insertion into the pulley and not it’s surface. This is an example of task failure due
to a knowledge gap in the agent’s task model relating the geometry of an object to
the assembly attachment.

There are several types of which can occur in a complex assembly system. For
example, perception might be imperfect, or the actuators might not work due to
network error, or new objects have different physical properties, which breaks the
dynamic modeling of the Screw action. Thus, to systematically situate the use of
meta-reasoning for recovering and learning from failures, it is important to analyze
the failures as to whether they are recoverable and the recovery is affordable, as well
as to design the architecture of the assembly agent to make the recovery process
more efficient and affordable.

Problem statement. Our conceptual framework for meta-reasoning for robotics,
meta-reasoning, action, and perception form three vertices of a triangle with delib-
erative planning and the skill library lying inside the triangle. In a simulated world,
we can make assumptions about action and perception and focus on the interactions
between the meta-reasoning, deliberative, and skill layers. However, for physical
robots, action and perception impose strong constraints. The general goal of our
research is to understand the interplay among meta-reasoning, action, and percep-
tion. In particular, we seek to ground meta-reasoning in action and perception so that
an agent can exploit the task structure and domain knowledge to guide adaptation
routines when faced with small variations in the task environment. This capability
will help in creating robot agents that are more autonomous and capable of self-
adaptation in dealing with small degrees of novelty. Our goal in this chapter is to
specify the structure of the problem and thereby characterize the space of feasible
solutions.

21.3 Assembly as a Reasoning Problem

Assembly planning and execution is a hard problem requiring solutions to a varied
class of subproblems, such as part sequencing as well as metric-level precision plan-
ning, to succeed. We choose to model this problem using a three-level problem
hierarchy with each subsequent level planning for a smaller scope of the overall
assembly problem informed by the solutions of the level above. It is a cascade of
mission-level (product planning, longer time-horizon), task-level (action sequencing,
medium time-horizon), and skill-level planning (metric-level routines, shortest time-
horizon) with each informed of the planning context from the previous component.
The assembly mission planner generates a partial-order plan for sequencing part
attachments for assembling thewhole product. This sequence is used by the assembly
task planner to come up with totally ordered task plan actions or assembly skills to
do the part attachments. Finally, the assembly skills invoke lower level specialized
planners and routines to plan for motion or grasping and gain perceptual information
from the environment. This decomposition is illustrated in Fig. 21.3.
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Fig. 21.3 The decomposition and structure of an end-to-end assembly problem. At the top level,
a mission planner plans for part placements based on the geometry and specifics of the assembly
product. This context is sent to an assembly task planner in the form of partial ordering of part
attachments. The task planner uses a skill library made of assembly skills to generate an action
sequence, which, in turn, invokes the lower level code procedures to perceive and manipulate the
environment

Mission Planning: To represent the assembly product as a mission planning
problem, we adapt and refine the description of the assembly mission introduced
by Mello and Sanderson (1991) for our needs. As shown in Fig. 21.4, the mission
M is the tuple <P, A, R, f> , where P is the set of all the parts, A is the set of
attachments required between the parts, R is a set of relations linking parts with
appropriate attachments, and f is the set of functions relating the parts and attachments
to their geometric properties. This mission is supported via a knowledge base of
parts and their properties including the type of the part, the relevant attachments
for each part type, and the part relations enabled by the different attachments. To
clarify, R in Fig. 21.4 is the configuration of parts to be achieved (attached(p0, p1)
V shaft(p1) V task-board(p0)), while A is the set of specific assembly skills required
to achieve the relation (Insert(p2, p1) → attached(p2, p1)). R also stores a crucial
piece of information, which we assume the user will provide, about the relative
part configurations; for example, (on-top(p0, p1) ∩ on-top(p1, p2)). This knowledge
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Fig. 21.4 The code snippet on the right-hand side describes the assembly product on the left using
our formal mission description based on Mello and Sanderson (1991). P collects all the parts while
A collects all the attachments used in the product. R relates attachments to parts and the relative
configuration of parts with respect to each other. F collects the geometric information associated
with the attachments in any arbitrary coordinate frame

helps the mission planner come up with a partial order for progressing through the
attachments and send it to the task planner. For a completely pre-defined mission,
f stores function mapping each part and attachment to its goal-state in the metric
space in the form of its six-dimensional pose. This information is utilized by the task
planner to ground the tasks and consumed by the motion planner to plan in metric
space. Thus, the input to the mission planner is the assembly product and the output
is a partial-order plan of part sequencing with associated pre-defined attachments.

Task Planning: Given that the mission description includes the specific attach-
ment to be used for a part’s placement, assembly task planning addresses the problem
of how may the robot actuate the given attachment for the assembly part? A special
top-level method is responsible for sequencing the attachments and does so by
choosing the next unplaced part and associated attachment from the partially ordered
output of mission planner and decomposing the assembly task associated with it. We
use HTN planning (Nau et al., 1999) for assembly task planning. There is a central
task library that consists of compound and primitive tasks: each compound task is
hierarchically decomposed into a totally ordered sequence of primitive tasks. The
primitive tasks directly invoke the metric-level planners and routines to (a) actuate
the robot or (b) gather perceptual information for grounding the task decomposition:
by grounding we mean parameterizing the compound and primitive tasks with the
correct environmental coordinates based on perception.

In this chapter, wewill call the primitive tasks as assembly skill primitives based on
the taxonomy proposed byHuckaby (2014) (see Fig. 21.5). Thus, themission ismade
up of tasks and each task is made up of compound or primitive assembly skills. To
associate compound assembly skills with attachments, the knowledge base consists
of {attachment-name, goal-configuration, list-of-relevant-parts, list-of-tools} tuples,
where attachment-name maps to each unique attachment-type possible in A and
associates it with an assembly skill in the task library. The symbols in list-of-relevant-
parts and list-of-tools are used to parameterize the decomposition. Each assembly
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Fig. 21.5 An excerpt from assembly skill taxonomy proposed by Huckaby (2014). The taxonomy
defines and organizes all the physical capabilities required to do automatic assembly in a hierarchical
manner. At the top are general skills (dark grey boxes), which define high-level capabilities a robot
should have. Some general skills are then decomposed further into leaf nodes, which are termed
skill primitives (light grey boxes). These are the specific but different kinds of instantiations of the
general skill that a robot can have. For example, a robot can Fasten two objects by Screwing or
Inserting or Mounting

skill is decomposed into a totally ordered sequence of more skills or skill primitives.
As shown in Fig. 21.5, some skills act as a high-level guard for contextualizing which
skill primitive to invoke, for example, a Move skill has a list of {pre-conditions,
skill-primitive} tuples; viz, if pre-condition(i) is true then primitive(i) is executed.
Other skills can have more complex decompositions. The preconditions of skills
encode two important kinds of knowledge: applicability of different primitives under
different conditions and different primitive sequences for manipulating objects for
the attachment depending upon different initial states.

To make the subsequent discussions about failure analysis in assembly more
precise, we introduce minimal terminology here.We define an attachment skill prim-
itive as a special kind of assembly skill primitive that actuates the physical contact-
based manipulation, which attaches objects in desired configurations (e.g. Screw
and Insert). Preparatory assembly skill primitives are the rest of the domain-relevant
object manipulations required to get to a state where an attachment action can be
executed.

Definition 0 An attachment primitive, aa(ai), is an assembly skill primitive that
actuates the main contact relation achieved by completion of an attachment ai ∈ A.

Definition 1 Plan segment p′ = prep(p(ai )) : last(p′) ≺ aa(ai ) manipulates the
world to bring about the preconditions required by an attachment primitive; it is the
preparation method for that assembly attachment.

Skill Planning: Specialized planners, both off-the-shelf and specifically imple-
mented for the assembly robot, are used at this level to actuate the assembly prim-
itives. We consider the underlying algorithm of the primitives as a black-box and
are only concerned with how each primitive’s execution changes the robot state. We
only assume each primitive is completely parameterized by the task, object, and other
physical parameters sent by the task planner. Each primitive skill execution is like
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a blocking function call, with the agent executing the next ordered primitive skill
when the control returns.

Sprim = fs_prim(skill − parameters)

21.4 Failure Mode, Effect, and Repair Analysis

This section presents our analysis of the failures that we observed while developing
a dual-arm assembly system for the World Robot Summit assembly challenge 2020
(aka WRC, 2020; WRC (World Robotic Challenge), 2020) based on the reasoning
structure described in the previous Sect. 21.4 (more details can be found in Parashar
et al. (2021)).We cannot eliminate all failures in an assembly system that is supposed
to operate for different variations of the same product, butwe can provide an informed
opinion using a qualitative Failure Mode and Effect Analysis (Liu et al., 2013) in
an effort to identify which slice of the failure-space is more amenable to an auto-
matic recovery versus meticulous preprogramming. Thus, our research goal is not to
automatically recover from all possible failures in the assembly task but to allow the
robot to only fail in ways that are non-fatal and then enable it to learn from them.
We want to understand the nature of failures, their cost, and the tradeoffs against the
cost of meta-reasoning for repairing the failures. We want to answer the question:
which class of failures can an assembly agent afford to repair? What kind of repairs
are available for such failures? And most importantly, which failures manifest when
the task goal or the task environment changes incrementally?We chose to categorize
failures by their origin in the planning stack, type of knowledge required for repair,
and the practical implications (including severity and detectability). We first present
an origin-based analysis of failures at every level followed by their classification into
a preliminary taxonomy.

Interestingly, failures can only happen during reasoning or during the run-time
execution of a task. However, repairs for potential failures can be identified even
before the run time through ameticulous examination and analysis bydomain experts.
In fact, we observed the need for the pre-meta-reasoning structure (Pourazin &
Barforoush, 2006) arising in our work specifically for the failures, which were too
costly for our run-time budget defined by the constraints of the competition: speed,
repeatability (accuracy of actuation when a motion is repeated), and accuracy of
operations.

21.4.1 Skill-level Failures

In general, the function of a skill in an assembly task is either to set up objects
in a state where an attachment action can occur (picking, aligning, or placing) or
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to execute the attachment itself (inserting, screwing, or mounting). Thus, we can
distinguish between the skill failures, which occur during the preparation phase
versus those which occur during the attachment phase. Based on the taxonomy from
Huckaby (2014), we can infer that failures during the preparation phasemainly relate
to aligning, grasping, transporting, and detecting objects. These actions typically do
not have fatal consequences; most of these skills use heuristic-based algorithms to
conduct a search in the physical space until a threshold is passed by the relevant
physical measurements. This activity is a classic example of approximate reasoning
that provides “adequate” repairs, i.e., near-optimal repairs with defined lower bounds
(Russell & Wefald, 1991). If the task-level parameters situate an action in a “good-
enough” region of a search space, then reasoning at the lower level can handle
recovery from a failure. Therefore, preparation-phase failures can be repaired using
behavioral heuristics about how the parameters affect the expansion or contraction
of the operational state-space of an action. Note that handling such failures should be
within the bounds set by our assumption of skills being a black-box function with the
task planner grounding it in parameter values.However,wewill need additionalmeta-
knowledge at this level about how each black-box’s parameter affects its function.

On the other hand, failures arising during the execution of an attachment action
may have fatal consequences. Here by “fatal” we mean rendering a state where
either the assembly material is damaged beyond repair or one that requires manual
intervention to reset the agent. Consider when an agent applies too much force in the
wrong direction while screwing the bolt into the nut and jams the bolt (Fig. 21.6).
This is a hard-to-detect failure with a high probability of ruining the parts based
on the material. Additionally, to prevent further ruining of the material, the repair
requires a human tomanually reset the system and assembly line before restarting the
process. Generally, such actions require either specialized hardware or implementing
sophisticated closed-loop control dynamics (Jia et al., 2018). As a rule, complex
attachments require much more sophisticated knowledge for execution and recovery
while simpler attachments can be repaired with general heuristics. However, if the
attachments have more complex control flows than a linear operation, then such
generic repairs like reversals of action (Laursen et al., 2015) might not work at all.
Thus, it is reasonable to surmise that there exists a small subset of simple attachment
actions for which errors are recoverable like block stacking.

Fig. 21.6 Visual depiction of a nail jamming in a threaded hole due to excess force and/or wrong
insertion angle. This failure is not trivially repairable and requires deep modeling of the dynamics
between surfaces as well as the helical geometry. Such complex failures are beyond the scope of
repairs considering our formal definition of skill as black-box
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To summarize this section, we noted two failure modes arising at the skill level,
one recoverable and the other fatal. The recoverable failures are repaired by heuristic
of “retry with a perturbation.” However, each action has a specific meaning for each
perturbation associated with it; for example, if a camera cannot detect an object due
to glare, then the perturbation is physically achieved by displacing the camera by an
arbitrary amount around its focus point. On the other hand, to perturb an alignment
action (which is basically a spiral search with some forward force to align and latch
the features of bolt and nut with each other), the perturbation is an increase of the
search radius or a slight bump in the forward force to make it more detectable.
Thus, any repair here would also need specific meta-knowledge about the portable
parameters and the desired perturbation function to be applied for each assembly
skill.

21.4.2 Task-level Failures

The task-level planner is responsible for ordering skills and figuring out the task and
object parameters consumed by the lower level procedures for execution. The former
ensures the agent progresses in a causally correct manner in the abstract task space
while the latter ensures that the progress is grounded in correct physical positions,
forces, and artifacts. Thus, we can classify two kinds of major failures right away:
ordering failures and grounding failures.

Failures due to a knowledge gap in causal ordering usually arise when an
assembly task is changed in some way that violates the assumptions of the coded
recipes/methods. Since a task is scoped by the attachment it achieves, we can ignore
a functional change in the goal configuration to be a reason for failure. However, an
assembly task can have different resources available in the environment than those
assumed by preprogrammed knowledge. In this case, a new task model may need
to be inferred. An example is to attach two tiles: the domain designers assume the
availability of a dowel and defined insert attachment task, but the run-time environ-
ment only has a glue-gun available. Also, sometimes a conceptual repair can lead to a
grounding repair, for example, if the glue-gun’s action model is not known, it would
need to be learned or inferred fromdata. Fitzgerald and colleagues (2019) use demon-
strations to ground such constraints for a taskmodel. However, it is difficult to collect
demonstrations for learning these constraints for an assembly task simply because
the details lie in the force-based maneuvering and jiggling when doing any contact-
based action like screwing or insertion. These observations are hard to collect data
from and require specialized data collection rigs. Instead, a more applicable repair
is to infer the constraints using geometric knowledge and models of the parts since
assembly products usually have highly meticulous CAD representations available.
Our example in Sect. 21.3 is of a complex failure where there is a grounding failure
such that the physical position of the gripper does not match its expected position,
and the solution does not just change the grounding information, but rather affects
the ordering of the actions themselves by adding a new transport/move action.
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Grounding failures can easily lead to fatal behavioral failures if not scoped within
the stable region of an agent’s motion space: for example, the object position is
correctly detected, but the object itself is outside of an agent’s reach (assuming a
stationary robot). Thus, it is a reasonable assumption that we only consider grounding
failures, which respect the motion limits of a robot, i.e., if a task is given, it is achiev-
able for the given physical configuration of the agent. Even with this assumption, a
traditional assembly system relies on a perfect encoding of geometric information
to operate efficiently. Therefore, repairing grounding problems has a clear metric of
overall task and motion efficiency, which can be used to iteratively improve their
solutions.

Ordering a repair is based on learning or inferring a new task model for using a
new object’s features for its intended function, while grounding the repair is based on
lifting the constraints added/modified in world geometry to a higher level plane and
adapting tasks to account for it. Ordering repairs can range from inferring reversal
actions (Murdock & Goel, 2008), or learning a new policy guided by the known
goal configuration constraints when new objects are introduced in the task space
(Parashar et al., 2018). Grounding repairs usually require integration with a finer-
grained representation of the environment to enable the analysis of relations between
task symbols and physical configurations (Bullard et al., 2016).

21.4.3 Mission-level Failures

The mission knowledge is necessary for understanding the sequence of part place-
ment that leads to legal product configurations. While some attachments can be
reversed (e.g., insertion), others are irreversible by nature (e.g., gluing). Thus, the
lower level physical properties of the attachments can make a mission sequencing
failure irreversible as well. At this point, the mission planner needs to find new
sequences of possible object ordering and check the legality of those attachments
by asking the task planner about available procedures. This step is another example
of non-fatal failure; however, the repair costs can vary over a large spectrum based
on the number of parts and possible attachments between them. A better way would
be to ask the task planner for proposals of object combinations since it has access
to information about the features of parts, enabling the mission planner to infer the
more correct orderings as opposed to random combinations. Better yet, if the mission
planner can figure out which attachments are irreversible and order those correctly,
then the agent might be able to avoid all major failures at this level. This suggests
that knowledge about critical mission landmarks can significantly reduce the overall
failure and repair costs of an assembly system. One way of inferring such knowledge
is by a geometrical analysis of parts in a simulated environment as shown inDeMello
and Sanderson (1989) and by inferring relations between these part orders and the
available parts in the current mission (Fitzgerald et al., 2018).
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21.4.4 A Preliminary Taxonomy of Failure Modes

Table 21.1 summarizes the failures discussed above andorganizes them in a taxonomy
of origin and mode, along with whether such failures are recoverable or not, and the
knowledge base that recovery depends on. When we say that a failure is recoverable,
we assume the availability of the required recovery knowledge.

21.5 Assembly Plan Repair as a Meta-reasoning Problem

The meta-reasoning space of the plan repair domain is composed of a Meta-KB,
Trace-KB, and Expectation-KB. Meta-KB compiles facts and beliefs about objects,
properties, and their association with task/skill goals. Trace-KB is a time series of
environmental observations and the logical progression of tasks that bookend each
action. Expectation-KB is a baseline trace generated by the meta-reasoner based
on optimistic assumptions. The grounding of Meta-KB and Expectation-KB largely
depends upon the context of the failure and repair to be undertaken.While the frame-
work and formulation of meta-reasoning below are general, the choice of represen-
tations and the corresponding methods of reasoning and learning cannot be isolated
from the specifics of the domain. The meta-reasoning problem could be one of
learning, and the Meta-KB and Expectation-KB then may guide the learner to learn
more efficiently; similarly, if the meta-reasoning problem is one of knowledge modi-
fication, then Meta-KB and Expectation-KB should guide modification routines to
modify efficiently. Meta-KB is especially dependent on the choice of a failure repair
and its parametrization. Therefore, it is important to understand the nature of fail-
ures in assembly and their corresponding repair mechanisms to propose a class of
meta-reasoning strategies, which would allow the agent to recover from unexpected
task variations.

Table 21.1 Summary of failure modes, recoverability, and recovery knowledge required

Origin Mode Recoverability Recovery KB

Skill Preparation Yes Parameters and perturbation
function

Attachment No except for simple ones Reversibility knowledge

Task Grounding Yes Physical positions and
orientations of task-relevant
objects

Action ordering Yes Knowledge about robot and
object features; interactions
between different features

Mission Part ordering Depends on the parts and
resources available

Reversibility knowledge,
knowledge about legal part
pairings for tasks
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Given our analysis in Sect. 21.5, we are much better situated to propose a class of
repairs for the assembly failures discussed. Now we want to answer two questions:

1. What kind of repairs are applicable to the non-fatal assembly failures in Table
21.1?

2. What new components, frameworks, and conceptual extensions are required to
the base reasoning model in Sect. 21.4 to support the repairs?

21.5.1 Meta-reasoning Architecture for Robots

To do knowledge repairs, it is important to first be able to detect failures as they
happen. Furthermore, as we mentioned, there can be many different locations of
causes that could relate to this failure. Thus, to apply appropriate repair the knowl-
edge, it is also important to localize the cause for the failure. Let us briefly discuss
an architecture that will enable us to conduct this failure detection and localization.
Robotic architectures are special in that they must planning or replanning while situ-
ated in a physical environment. The prototypical three-tiered architecture (aka 3 T)
(Firby, 1994; Kortenkamp et al., 2016) seems well suited for our purposes. It has a
deliberative layer at the top, which takes care of long-term planning for the domain.
Next, an executive layer in the middle translates deliberative decisions to real-time
process invocations and monitors real-time processes for feeding back into planners
if needed. Finally, it has a behavioral layer at the bottom, which houses all the real-
time processes (specialized planners and routines in our case), which run in parallel
to manipulate and perceive the environment. In fact, our system for WRC 2020 used
this exact architecture to detect and repair preparatory skill failures and for simple
detection of task failures. In the rest of this section, we use this 3 T meta-reasoning
architecture (Fig. 21.7) as base to conceptualize a meta-reasoning architecture for
assembly robots. We systematically add feedback for failure detection (input to skill
monitor), heuristics for cause localization (directing output from skill monitor), and
the relevant meta-knowledge to conduct repairs (resolution and action/perception
commands back to skill level). Figure 21.8 shows an example of how high-level
tasks are decomposed into skills and executions at the executive level of this 3 T
architecture.

21.5.2 Skill Failure Detection and Repair

Feedback: A skill in our formalization is a black-box function parameterized by the
task planner. Once a skill is executed, the agent moves to the next planned skill to
actuate. We can extend this notion of skill to a function by adding provisions for
returning values. In the WRC 2020 system, we extended the skill primitives to be
able to return three values: success, failure, and running. We used the behavior tree
(BT) framework to instantiate plans using nodes and arbitrary control flows based
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Fig. 21.7 The meta-reasoning architecture for assembly robots based on the assembly planning
and execution architecture used in WRC 2020. Note that the meta-reasoner and assembly system
are not yet connected; the subsequent sections illustrate the connections between them

on the planner logic (Colledanchise & Ögren, 2018). These three values are the
prototypical signals returned by a BT as each node in the tree executes. We know
that each skill node (action node in BT terminology) invokes a planner underneath,
so a failure means the black-box algorithm could not succeed.

Repair: For every preparatory assembly skill, we can come up with a reparative
description consisting of repair parameters, a perturbation function, and an expected
number of retries. Given access to the transition function of an assembly action, we
used a simple algorithm to apply a perturbation function to the repair parameters and
repeated for the expected number of tries until the action succeeded. TheExpectation-
KB consisted of the expected number of retries for success, the Trace-KB consisted
of the current iteration, and the Meta-KB consisted of a list of tuples {parameter-
name, perturbation-function} (Algorithm 21.1). The Meta-KB could have also been
empty, which defined the simplest case where the action just needed to be repeated;
for example, when the gripper did not actuate due to drivers dropping out but could
be retried. This worked because our system had an underlying process supervisor
monitoring these processes and restarting them when they went down; describing
this base-level recovery framework is outside the scope of the current chapter.
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Fig. 21.8 A diagram depicting how high-level plans are translated into a behavior tree to commu-
nicate to lower level processes. Depending upon the results of the lower level process, the behavior
tree returns success or failure to the tree above it. In this figure, assembly skill primitive detect
(white boxes on top) is translated to a simple behavior tree (grey boxes), which relate to the vision
component underneath. The “detect_part” behavior tree node is an “action node,” which is directly
executed. BT also has provision for other kinds of nodes, which assess a condition, or implement
conditional control-flow changes

Algorithm 21.1. Repair of preparatory assembly skills given perturbations for each
parameter

The important thing to note here is that the application of these reparative algo-
rithms did not necessarily need the overhead of being sent up to a meta-reasoner
and back. First, such a procedure can add unnecessary lag to the signal, which can
hurt the run-time stability of the agent. Second, since our architecture is already
using behavior trees to instantiate the decision-making process of the planner as a
tree structure, and we can easily extend this to add the meta-reasoning procedural
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Fig. 21.9 The snippet on the top describes themeta-knowledge associatedwith the repair of Detect
action. The tree structure encodes Algorithm 21.1, allowing efficient repair during execution. This
tree checks if the parameter {object} is already detected, if not itMoves the agent to the part-station
and invokes the Detect action over the object. The agent repeats this process if the object is not
detected and moves the camera with small perturbation to account for any variable lighting, which
might be preventing object detection. If the object is not detected even after expected number of
retries, then it propagates a failure up to the rest of the tree

structure to it as well. Thus, this repair algorithm is pre-compiled within the reactive
structure of the behavior tree allowing for quick catch-and-repair during run time.
Figure 21.9 shows such a behavioral tree structure for the Detect action.

This form of applying pre-metareasoning (i.e., meta-reasoning based on heuristics
and information known before undertaking the reasoning process) gives rise to an
updated architecture for meta-reasoning for assembly robots as shown in Fig. 21.10.
Our experience with this inquiry differs from the traditional meta-reasoning archi-
tectures proposed in Cox and Raja (2011) and suggests that multiple meta-reasoning
structures can exist in one architecture supporting meta-reasoning to different levels.
In our WRC system, we observed a significant drop in the fatal crashes of the system
by implementing the described pre-meta-reasoning behavior.

21.5.3 Task Failures and Repairs

Feedback: The align-failure with pully and insertion of shaft-in-pulley instances in
Sect. 21.3 are examples of knowledge gap failures stemming from different causes.
The symptom of both these failures is that the preconditions for executing the next
action (grasp and insert, respectively) are not satisfied.We, thus, propose the assembly
skill taxonomy to be extended by adding the provision for verification skills, which
can have arbitrary logic for asserting the truth or falsehood of pre/postconditions
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Fig. 21.10 The proposed meta-reasoning architecture integrates two kinds of action-perception
repair loops for assembly robots. The inner loop (or the fast loop) is inside the Executive Layer
where the plans are precompiled with repair heuristics and do not need to be propagated to the
meta-reasoner for repair. The outer loop (or the slow loop) propagates task-level failures to themeta-
reasoner, which uses additional knowledge about the functions of the assembly skills to propose
repairs to the broken task

based on the output of Detect skill. The BT framework has condition nodes, which
test a given logic returning success or failure based on the logic’s assertion, thus
incorporating this in our system should be relatively easy. The harder and more
important part is grounding the pre and postconditions of skill primitives in states
that are perceivable by the agent, for example, a task to turn on a switch inside a
closed box without any light attached to that switch will not qualify as the kind of
task, which can be verified or repaired.

Jones and Goel (2012) present an approach where meta-knowledge of verifying
ground-level decisions is explicitly mapped in percepts thus enabling result-oriented
guidance for higher levels. Parashar and colleagues (2018) present an instance of
using occupancy grids to represent the environment within the configuration space
of a robotic arm and to define a similarity computation over them allowing more
detailed perspectives of conceptual plans on ground-level. Thus, these heuristics can
be based on memory or explicitly engineered knowledge. In either case, we can now
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use this as the baseline of agent’s expectations as to how the world should evolve.We
hypothesize that by grounding meta-reasoning in physical percepts, we can create a
multi-modal understanding of actions over ground-level information.

Repair: The verification procedures add heuristics in abstract task space about
monitoring the progression of the plan in the physical space. By analogy, we propose
that the skill primitive descriptions need to be supplemented with heuristics for
informing their functions in conceptual and physical spaces. In the context of hier-
archical task networks, the extension into hierarchical goal networks (HGNs) makes
a similar point; the nice thing about having a goal description is that it can be
translated with more clarity into specialized planners down the line. Shivashankar
and colleagues (2014) illustrate a process where such an integration is established
between task planning and motion planning by using goal definitions as the bridge.
Dantam and Stilman (2013) describe the function of actions in a motion grammar by
ascribing explicit semantic rules to themwhileWolfe and colleagues (2010) introduce
the same concept as transition models, which have been adopted and refined to suit
our needs in our formulation (Sect. 21.4). Stroulia and Goel (1995) andMurdock and
Goel (2008) impose a similar view over conceptual transformations; these authors
functionally index them for use in generic problem-solvingmethods, which hits close
to our aims of proposing generic repair methods within domain boundaries. Using
these functional representations of actions, we expect to be able to conduct repair in
a more surgical fashion, with less supervision than an uninformed system.

An important thing to consider here is that an action is not the only cause for a
task-level failure. A task failure can also arise due to imperfect perception: as an
example, consider plugging a USB stick into the computer port. It is not easy for
perception to recognize the correct configuration from an image alone that may be in
variable office/home lighting. Furthermore, it is beneficial to figure out approaches,
which can resolve actions conditioned on imperfect perception rather than rely on the
perfect perception of bespoke features for general robotics. A heuristic that works
for every human is to try and plug the USB in one configuration; if it works great,
otherwise flip and try again. Thus, actions can provide definitive answers to possible
questions if the actions are not too costly (like the WRS 2020 attachments). How
may meta-reasoning help with these situations where high-level knowledge about
a task and knowledge about an action can resolve perception ambiguities? Along
the lines of the work by Christensen and colleagues (2010, Chap. 6), we propose to
functionally index not only motion actions but also cognitive actions like perception.
One way of implementing this is by explicitly linking the acquiring of environmental
knowledge with the Detect action. This way if the plan leads to a failure, we may
be able to backtrack wrong object state estimation to Detect action and revise the
assignment, especially under uncertainties. We expect the resulting system to better
prepare us for localizing errors and conducting repairs of the right kind.
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21.5.4 Toward Mission Repair

Since we are specifically interested in the interplay between action and perception,
let us briefly consider a specific kind of mission failure relating to this. A mission
formulation has information about which orderings are impossible but not about
which orderings are easier or harder for an agent to do with its specific physical
and skill-level abilities. Thus, a suboptimal ordering could make for harder to plan
tasks for an agent. For example, consider building a house made of lego bricks. The
agent could build the house ground-up and then assemble the roof on top of the
walls or can assemble the roof separately and place it on top of the walls later. The
former is significantly harder for a robot than the latter due to multiple layers of
force dynamics involved (robot presses roof, roof presses walls, walls may or may
not fall down over a long period of the same). Thus, we end this section with another
interesting question: how may we extend reasoning formulations of robot problems
to not only consider problem structure but also the feasibility with respect to the
acting agent’s abilities?

21.6 Discussion and Conclusions

There is a growing need for developing theoretical frameworks for human–robot
shared contexts. There is also a growing interest in endowing robots with human-
level, human-like capabilities to enhance human–robot collaboration; for example,
meta-reasoning. However, much of previous AI research on meta-reasoning has
focused on simulated robots, thereby abstracting away from the hard issues of
action and perception. In this chapter, we have described a preliminary theoretical
framework for grounding meta-reasoning in action and perception.

We considered the case of assembly robots that are preprogrammed for repetitively
accomplishing routine tasks without failure. We examined scenarios in which an
assembly robot may fail if given a new task that is even slightly different from the
task for which it was preprogrammed. In some contexts, the cost of recovering from
a failure may be lower than that of reprogramming the robot. However, in such
scenarios, we want the robot to not only recover from the failure but also to learn
from it. We described a robot architecture in which meta-reasoning helps the robot
to localize and identify the cause for the failure and then to repair the knowledge
that caused the failure. We found that our robot architecture for meta-reasoning
grounded in action and perception in physical robots is significantly different than
the idealized architectures proposed in earlier AI research. In summary, we expect a
meta-reasoning system to have knowledge about the following concepts:

1. Visuospatial representations and operations: In order to ground concepts in
their geometric instantiations, it is necessary to have a qualitative mid-level
visuospatial representation that can present task-relevant features and operate
on them without the need for precise locations and positions.
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2. Specification of functions of actions and tasks: When a failure is localized and
a better recovery state is obtained, or a heuristic toward one is ascertained, the
agent would need some form of a state transition model to infer which actions
can take it to the desired state.

3. Explicit model of the effects of perception: To revise perceptual beliefs of the
agent, it is necessary to have an explicit model that links decisions made on
those beliefs to the perception action (like Detect) and the perceptual states that
led to them. As far we know, such an analysis of using the perception process as
a functional entity is missing from the meta-reasoning literature. We believe by
modeling perception and its effects in a similar way to actions, for example, by
using a transition function that updates the cognitive belief of an object state,
we can build a meta-reasoning theory that interweaves action and perception as
equals.
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Chapter 22
From Informal Sketches to Systems
Engineering Models Using AI Plan
Recognition

Nicolas Hili, Alexandre Albore, and Julien Baclet

Abstract The transition to Computer-Aided Systems Engineering (CASE) changed
engineers’ day-to-day tasks in many disciplines such as mechanical or electronic
ones. System engineers are still looking for the right set of tools to embrace this
opportunity. Indeed, they deal with many kinds of data which evolve a lot during
the development life cycle. Model-Based Systems Engineering (MBSE) should be
an answer to that but failed to convince and to be accepted by system engineers and
architects. The complexity of creating, editing, and annotating models of systems
engineering takes its root from different sources: high abstraction levels, static rep-
resentations, complex interfaces, and the time-consuming activities to keep a model
and its associated diagrams consistent. As a result, system architects still heavily
rely on traditional methods (whiteboards, papers, and pens) to outline a problem
and its solution, and then they use modeling expert users to digitize informal data
in modeling tools. In this chapter, we present an approach based on automated plan
recognition to capture sketches of systems engineering models and to incrementally
formalize them using specific representations. We present a first implementation of
our approach with AI plan recognition, and we detail an experiment on applying plan
recognition to systems engineering.
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22.1 Motivation

Despite its proven modeling value in many engineering domains, Computer-Aided
Design (CAD) tools have only had a moderate acceptance by system engineers and
architects to assist them in their day-to-day tasks (Robertson and Radcliffe, 2009).
The complexity of creating, editing, and annotating models of system engineering
takes its root from different sources: unsuitable representations, outdated interfaces,
laborious modifications, and difficult collaborations (Rudin, 2019).

As a result, especially in the early development phases, system architects tend
to favor more traditional tools, such as whiteboards, paper, and pencils, over CAD
tools to quickly and easily sketch a problem and its solution. Among the benefits
of sticking to traditional tools, whiteboards foster collaboration and creativity as the
users do not need to strictly conform to a formal notation.

A common pitfall for using traditional tools, however, is that human users are
required to reproduce any sketched solutions inside of formal tools when it comes
to formalizing them. Modern post-WIMP1 interfaces (e.g., electronic whiteboards)
could help to automate this task by allowing users working on a digital representa-
tion of the model, that can be directly exported, to be modified via modeling tools.
Bridging the informality of the working sketches captured on interactive whiteboards
with formal notations and representations has the potential to lower the barrier of
acceptance of CAD tools by the industry (Botre and Sandbhor, 2013; Alblawi et al.,
2019). This acceptance can be obtained by automatically or semi-automatically trans-
lating informal sketches into their corresponding formal elements using a specific
and conventional notation.

This chapter presents the outcomes of BabyMOD (Hili and Farail, 2020), a one-
year project conducted at IRT Saint Exupéry whose main objective was to identify
new methods and approaches for modeling in systems engineering that leverage the
use of modern post-WIMP interfaces, free-form modeling, and natural sketching.
BabyMOD was a preparatory work for EasyMOD, a 4-year industrial collaborative
project that started in 2020. During BabyMOD, we conducted several brainstorming
sessions with our industrial partners to identify which requirements that CAD tools
for systems engineering should fulfill; we developed different prototypes that make
use of AI solutions to quicken model building by providing an automated assistant
that performs shapes completion, while providing a certain level of explainability.
Our final implementation combined traditional shape recognition algorithms and
plan recognition (to forecast the final shape and to provide the user with a selection
of recognition choices) so thatmodel elements can be recognized fromuser drawings,
and, consequently, automatically translated in a formal representation.

The remainder of this chapter is structured as follows: Sect. 22.2 presents the
related work; Sect. 22.3 presents our approach based on plan recognition; Sect. 22.4
details our implementation based on the Planning Domain Definition Language
(PDDL) formalism; Sect. 22.5 demonstrates the applicability of our approach through
an experiment; Sect. 22.6 concludes this chapter and details future work.

1 Windows, mouse, and pointer interfaces.
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22.2 Related Work

22.2.1 Natural Sketching

Natural sketching aims at bridging the gap between free-form modeling and formal
representation using dedicated graphical notations. In software engineering, modern
post-WIMP interfaces, such as interactive whiteboards, interactive walls, and large
multi-touch screens, have been used to capturemodels in software engineering during
the first stages of the design process. Yet, we reckon that the practice is notwell settled
in systems engineering.

During the BabyMOD project (Hili and Farail, 2020), we conducted several sur-
veys and brainstorming sessionswith our industrial partners over a year to identify the
requirements a CAD tool for systems engineering leveraging modern, post-WIMP
interfaces should fulfill. Among the different requirements we identified for the CAD
tool, eight were specific to the recognition mechanism and are listed below:

Req. 1 (Incremental formalization): The recognition of model elements should be
done incrementally. This means that informal sketches and model elements may
co-exist during the model lifetime.

Req. 2 (On-demand/automatic recognition): Recognizing model elements should
be either done automatically or triggered by the user. The choice between the two
options should be left to the user.

Req. 3 (Recognition of complete models): It should be possible to recognize inter-
connected model elements at once and not only model elements taken separately.

Req. 4 (Shape/text seamless recognition): It should be possible to mix geometrical
shapes and handwritten notes (without any virtual keyboard or voice recognition
assistant) in a seamless way. The tool should distinguish geometrical shapes from
text nodes without any additional actions from the user so it can apply the correct
recognition method.

Req. 5 (Explainability):Theoutcomeof the recognition algorithmshouldbe explain-
able to the user. “Explainability” is the property of a system that provides an output
that makes understandable to the human user the reasons for an algorithm’s choice.
This is a condition needed by any process-directed tool that allows the users to evalu-
ate the criteria behind a choice to use the tool efficiently (Rosenfeld and Richardson,
2019).

Req. 6 (Performance): The recognition of both singlemodel elements and complete
diagrams should be fast and accurate.
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Table 22.1 Existing approaches for natural sketching

MyScript
Diagram

OctoUML Google
AutoDraw

FlexiSketch

Platform Web, Windows,
Android, MacOS

Web Web Android

Open source ✗ ✓ ✗(a) ✗

Recognition

Algorithm Proprietary Geometrical
shape detection(b)

Recurrent Neural
Network (RNN)

Geometrical
shape detection(c)

Sktech
recognition

Basic geometrical
shapes

Basic geometrical
shapes

Doodle and Clip
arts

Complex
geometrical
shapes

Bulk recognition ✓ ✓(d) ✗ ✗

Handwritten text
recognition

✓ ✗ ✗ ✗

Incremental
recognition

✓ ✓ ✓ ✓

Explainable
results

✗ ✗ ✗ ✗

Adaptation to modeling

Type Promotion ✗ ✗ ✗ ✓

Adaptability Flowcharts,
organizational
charts, mindmaps

Class diagram
only

✗ ✓

Performance

Accuracy Relatively
accurate

Relatively
accurate

Accurate Relatively
accurate

Speed Relatively slow Moderately fast Fast Relatively fast

legend: ✓= available ✗= not available
(a) The dataset used to train the Quick, Draw!’s Convolutional Neural Network (CNN) algorithm
is open source
(b) Based on PaleoSketch (Paulson and Hammond, 2008)
(c) Based on a Levenshtein distance algorithm
(d) With some restrictions

Req. 7 (Adaptability): It should be possible to adapt the recognition process to vari-
ous kinds of models without a large amount of changes to the underlying recognition
mechanism.

Req. 8 (Tolerance to drawing imperfections):As no assumptions can be made about
the quality of the sketches realized by the user and his/her drawing skills, any recog-
nition algorithm should be tolerant to drawing imperfections.

Table22.1 compares different tools used for natural sketching and sketch recogni-
tion. We compared the tools based on four topics: (i) platforms and licenses; (ii) the
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underlying recognition mechanism; (iii) the effort needed to adapt the recognition
algorithm to the modeling domain; and (iv) the observed performance.

MyScript (MyScript, 2020) is a leading company in the domain of handwriting
recognition. It features MyScript Diagram, a natural sketching tool used to create
various kinds of charts, from flowcharts to mindmaps. Ten primitive shapes and
connectors are recognized, and text recognition is supported in multiple languages.
MyScript runs on Windows, MacOS, and Android, or on the cloud. The recognition
algorithm remains proprietary and recognition can be done remotely (on a subscrip-
tion basis) or on-device. Compared to the other solutions, MyScript Diagram does
not need to rely on other interaction modalities (such as voice recognition or virtual
keyboard) to recognize shapes and text in a simultaneous way. On the negative side,
performing recognition on the cloud is relatively slow and can take several seconds
for the recognition process.

OctoUML (Jolak et al., 2016; Vesin et al., 2017) is the prototype of a modeling
environment that captures UML models in a free-form modeling fashion and in a
collaborative way. It can be used on various devices, including desktop comput-
ers and large interactive whiteboards. Sketches are then converted into a graphical
UML notation. OctoUML supports class and sequence diagrams. It uses a selective
recognition algorithm to support an incremental formalization.

OctoUML relies on PaleoSketch (Paulson and Hammond, 2008), a recognition
algorithm capable of recognizing eight primitive shapes (lines, polylines, circles,
ellipses, arcs, curves, spirals, and helixes) andmore complex shapes as a combination
of these primitive ones. By recognizing more primitive shapes than other low-level
recognizers, PaleoSketch intends to recognize domain-specific shapes that could
be indescribable using other methods. The drawback is that it consumes time to
recognize more primitive shapes. In our tests, we observed that recognizing shapes
takes on average 500ms and up to 1 s, both ofwhich are noticeable to the user. Besides
this condition, the rationale behind recognizing more elementary shapes is elusive
as some shapes (helixes, waves, spirals, etc.) are never used in modeling languages,
specifically in Model-Based System Engineering (MBSE)

In BabyMOD, we took the opposite stance by choosing to recognize only a few
primitive shapes (lines, circles, and ellipses) and to use plan recognition to identify
model elements as any combination of these primitive shapes. The three primitive
shapes are indeed sufficient in MBSE to recognize most modeling elements drawn
in the most common modeling languages and to reduce the number of primitive
shapes that need to be recognized to speed up the recognition process. In our tests,
recognizing complex shapes (e.g., an operational actor made of four straight lines
and one circle) fell under 100 ms, which is barely noticeable to the user.

Google AutoDraw is a graphical tool to sketch doodles and clip arts. The recogni-
tion process relies on the implementation ofQuick, Draws!, an online pictionary-like
game where players competed against an AI to make the AI guess drawings. Quick,
Draws! made it possible to build a large dataset of doodles and clip arts that is used
to train the Recurrent Neural network (RNN) in Google AutoDraw. The recognition
is fast and accurate, and incremental recognition is also possible. However, Google
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AutoDraw is mostly an online experiment and has no goal to be used as an API to
build other tools (such as modeling tools) from it.

FlexiSketch (Wüest et al., 2012) is a diagram modeling tool available on Android
platforms. Using FlexiSketch, a user can sketch model elements and later promote
them as types that can be easily re-used. Once a graphical sketch has been associated
with a model element, similar sketches are automatically recognized. This allows for
adapting FlexiSketch to new graph-based modeling languages.

The FlexiSketch’s recognizer relies on an adapted version of a Levenshtein string-
distance algorithm. The recognition is relatively fast and accurate. FlexiSketch does
not support text recognition, and textual properties of model elements are only set
using the Android virtual keyboard.

We note that among the four solutions, MyScript Diagram and OctoUML are
able to recognize multiple elements at the same time, and, therefore, could be used
to recognize complete models at once (Req. 3). However, OctoUML suffers from
severe restrictions in the sense that it will recognize separate elements each time a
finger is lifted from the surface of the screen, limiting the complexity of the created
shapes to one-line drawings only.

Finally, none of the aforementioned solutions provide explainable outputs. Google
AutoDraw and FlexiSketch provide alternative suggestions, and MyScript Diagram
can provide word suggestions during text recognition. But none of them can explain
why an element has been recognized in the first place. In our approach, the output
of the recognizer is completely explainable. The user is informed of which part of a
modeling language (the primitive shapes composing the modeling elements) is being
recognized, and what remains to be drawn using visual feedback.

22.2.2 Artificial Intelligence

One trend to recognize modeling elements is to rely on AI tools and algorithms, more
specifically, on Machine Learning (ML) techniques based on ANN. This family of
approaches typically involves two phases. During the training phase, algorithms are
trained to recognize elements based on pre-existing libraries. During the recognition
phase, they can identify elements with a certain degree of confidence.

While broadly used for recognizing medical images, this technique is inappro-
priate for system engineering for two reasons. First, the similarity between graphi-
cal symbols representing model elements in standard modeling languages (Moody,
2010) (e.g., UML OMG, 2017) can yield an important error by the ANN response
or require a too-expensive training phase; and, second, the lack of explainability of
the ML solution (Rudin, 2019) is another hindrance for large scale applications.

AI automated planning (Ghallab et al., 2004) has been used to perform activity
recognition in the context of a system managed by the human operators whose cur-
rently pursued operational goal has to be determined (Hollnagel, 1988). Several plan
recognition (Kautz and Allen, 1986) fields of application have surfaced, including
“operatormodeling”, to improve the efficiency ofman-machine systems. Early appli-
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cations of the approach failed because of the complexity of plans, the issues due to
evaluating actions that did not fit any plan, or the issues from interleaving planning
and execution. Moreover, the work in plan recognition has historically proceeded
independently from the planning community, using handcrafted libraries rather than
planners (Avrahami-Zilberbrand et al., 2005). In the following section, we describe
our adaptation of AI planning to recognize sketches of model elements.

22.3 Plan Recognition Approach

To quicken the development of models of systems engineering, we have imple-
mented a web-based modeling environment (see Fig. 22.1) that easily captures func-
tional models of systems on large interactive screens. We investigated two alterna-
tive approaches based on machine learning and symbolic AI, respectively. The first
approach consists in training an ANN to define a library of model elements that our
tool could recognize based on user inputs. While the approach worked for a few sets
of model elements, the number of errors increased proportionally with the number of
model elements that had to be recognized because of the similarity between different
graphical symbols. Besides, since the ANN provided nomeans to interpret the result,
the user was often clueless when attempting to understand why a shape had not been
correctly identified.

These observations led us to investigate an approach based on AI automated
planning and, more specifically on plan recognition to identify complex sketches

Fig. 22.1 Overview of our modeling environment, where two users collaborate on a whiteboard
equipped with the sketching tool
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Fig. 22.2 A three-step approach for AI plan recognition is illustrated on an example. During the
shape recognition & characterization step, two primitive shapes, #1 and #2, are recognized as
straight lines. #1 is characterized by its orientation (diagonal right) and its relative position (left of)
to #2. #2 is characterized by its orientation (diagonal left) and its relative position (right of) to #1.
The resulting graph is then translated into a PDDL and is the input of the planner. The planner then
identifies and orders the most probable sketches to be drawn

representing model elements that guide the users in the completion of the model.
Automated AI planning (Ghallab et al., 2004) is a model-based approach for the
task of selecting and organizing actions in a sequence called a plan, with the aim of
fulfilling high-level objectives called goals. Here the task is to identify the shapes yet
to be drawn, and their placement to create a meaningful system-engineering sketch
from an initial shape. For our sketching tool (see Fig. 22.1), we adopt a planning-
based approach for goal recognition that uses the planning framework to perform the
converse task of automated planning (Ramírez and Geffner, 2009), i.e., recognizing
the most probable goal given an initial state and a plan. We use a goal library
to describe the possible solutions of a plan, given a model of the domain that a
hypothetical drawing-agent would evolve.

We thus call repeatedly the planner on the current state, in order to obtain a plan
for every final model element in the goal library, starting from the current state of
the system (representing the sketch currently on the board).

Using plan recognition to characterize how far a drawn set of simple shapes is
from a complete sketch of a model element used in system-engineering design gives
us the ability to provide users with an interpretation of the planner’s results. In other
words, the plan is directly interpretable as the sequence of actions to be done with
our sketching tool (or one of the possible sequences of actions) in order to obtain
a complete model element. The most probable complete models assumed by the
planner are also shown to the user as suggestions.

This approach assumes the planner being a rational agent, for which, under the
principle of rational action, it is assumed to be returning the optimal or at least sub-
optimal path to goal (Masters and Sardina, 2017). So, instead of relying on a plan
library (Carberry, 2001), which would store a huge set of plans generated off-line
to match them with the shapes drawn by the user, we use a planner to generate new
plans on-the-fly that helps us to evaluate which ones of the goals the user has set out
to achieve.
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Table 22.2 Some graphical symbols used inMBSE languages. The minimal functionally complete
set S=(elli pse, straight_line) is self-sufficient for describing the different graphical symbols

(a) Capella operational
actor

(b) ArchiMate actor and role
(c) UML

three-compartment class

(d) UML lifeline (e) SysML state (f) UML exit pseudo state

(g) Requirement in arKItect
Systems Engineering
Advanced (SEA)

(h) Enhanced Function Flow
Block Diagram (EFFBD)

Control construct

22.3.1 Approach Overview

Figure22.2 gives an overview of our recognition process. It involves three automatic
phases: primitive shape characterization and positioning; translation, and recogni-
tion/interpretation. The entry point of the process is a sketch (or a fragment of one)
manually drawn by human users on a digital whiteboard. This sketch will constitute
the drawing of a model element to be recognized by the process.

During the first step, the process extracts primitive shapes out of the sketch using
traditional shape recognition algorithms. Our algorithms recognizess ellipses and
polylines. A polyline consists of a series of connected straight line segments. When
a polyline is recognized, it is not characterized as a whole, but instead, each segment
composing it is characterized individually and independently of the others.

To facilitate the characterization and planning phases, we chose to restrict the set
of primitive shapes to recognize to S = (elli pse, straight_line). Besides speeding
up the geometrical shape recognition algorithm by only recognizing these two prim-
itive shapes, it can be considered for the most common modeling languages used
in MBSE as a minimal functionally complete set (by analogy with mathematical
logic). For example, a three-compartment rectangle used to represent a UML class
(see Table22.2) can be strictly reduced to six inter-connected straight lines. A circle
is an ellipse where the two foci are on the same spot (the center).

Once primitive shapes are recognized, every shape (being an ellipse or a straight
line) is characterized by its distinctive features and its position with respect to
all of the other shapes composing the same sketch. Straight lines are character-
ized by their four possible orientations D = (hori zontal, vertical, diagonal_le f t,
diagonal_right). Ellipses are tagged as being circles or not. For example, in
Fig. 22.2, Shape #1 is characterized as being a straight line, located at the left
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side of Shape #2, another straight line. To compute straight line orientations, the
raw angle between the two end points of a line is ‘smoothed’ to its closest remarkable
iπ
4 -angle. Finer-grain fractions can be chosen for smoothing angles, but they would
be less tolerant to drawing imperfections. For example, to sketch an operational actor,
left and right legs could be characterized as 45◦ or 60◦ straight lines depending on
the user’s talent for drawing.

After the recognition process, we compute the positioning of every primitive
shape relatively to the other shapes composing the same sketch. In our approach, the
notion of a sketch is not restricted. It consists of a set of inter-connected primitive
shapes being part of the same model element or multiple inter-connected ones (cf.
Req. 3). Currently, our algorithm is only able to recognize single elements separately,
like other similar approaches used for sketch and shape recognition. Recognizing
complete diagrams at once is currently a work-in-progress.

Five possible relations s1 −→ (s2, . . . , sn) of positions are defined: above_of,
below_of, left_of, right_of, and intersect_with. The relations above_of and
below_of (respectively, le f t_of and right_of ) are bijective relations such that

∀s1, s2|s2 ∈ le f t_of (s1) ⇐⇒ s1 ∈ right_of (s2).

The relation intersect_wi th is also bijective. It occurs when two primitive shapes
are intersecting at the center:

∀s1, s2|s2 ∈ intersect_wi th(s1) ⇐⇒ s1 ∈ intersect_wi th(s2).

Finally, all relations are also transitive, e.g.,

∀s1, s2, s3|s1 ∈ le f t_of (s2) ∧ s2 ∈ le f t_of (s3) =⇒ s1 ∈ le f t_of (s3).

The output of the first step is a directed graph G = (V, E, lv, le) where the set of
vertices V corresponds to the set of primitive shapes composing a sketch, and the
set of edges E corresponds to the relative positioning relations between the vertices
(see Fig. 22.3). We apply two labeling functions. The vertex labeling function, lv :
V −→ L

2, decorates each vertex with a label denoting the nature (ellipse or straight
line) and the distinctive feature (orientation for straight lines, nature for circles
or not for ellipses) of the primitive shape corresponding to the vertex. The edge
labeling function, le : E −→ L, decorates each edge with the corresponding relative
positioning relation that binds each pair of primitive shapes.

The resulting graph G is then translated during the second step into a PDDL
file (McDermott et al., 1998). The PDDL formalism is a standardization attempt to
describe AI planning problems and is now used by several components-off-the-shelf
AI planners (Ghallab et al., 2004; Edelkamp and Hoffmann, 2004). Section22.4 fur-
ther describes the formalism and the translation process. Along with the AI formal-
ization of the drawing problem and the description of the initial sketch, the planner
is provided as well with the list of all the model elements deemed possible. This list
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Fig. 22.3 An actor being drawn (left side) and the resulting graph G (right side). Each edge is
a relation between two primitive shapes connected at their end points or intersection. The orange
node represents the head of the actor. Pink nodes are straight lines whose orientations are indicated
by the node labels. Transitive relations are not represented as well as the le f tO f and rightO f
relations between the body and the legs

constitutes the goal library, i.e., the set of the possible goals that our framework will
consider when doing plan recognition.

The last step consists in running the planner for the sketch being drawn by the user.
To do it, we used the Fast Downward planning system (Helmert, 2006). The planner
takes as an input the PDDL file automatically obtained during the previous step and
outputs an ordered list of possible matches between the sketch being drawn by the
user and the goals denoting the different model elements that could be recognized.
The set of possible matches is ordered based on the degree of confidence of thematch
regarding the element currently drawn. The degree depends on the distance (in the
plan) between the current sketch and the possible goal, i.e., the number of steps that
would remain to finish drawing the element completely.

22.3.2 Tolerance to Drawing Imperfections

One drawback of AI automated planning compared to ML techniques is that it is
less robust to drawing imperfections (cf. Req. 8). In fact, a planning model considers
the single shapes or polylines as a unique entity. Thus, for example, a line is either
intersecting another one or it is not. Let us consider an example where a human
user is drawing a Capella operational actor (see Fig. 22.4). An incorrect drawing can
result in misleadingly interpreting the user intention and lead to an incorrect graph
G from which it would be impossible to reach the correct objective in a plan.
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Fig. 22.4 An actor being drawn where the arms are incorrectly interpreted at the right side of
the body of the actor. Actions defined in PDDL support quick fixes to remove, replace, or move a
primitive shape in the sketch being recognized

To address Req. 8, we defined actions in our plan to support quick fixes. A remove
action consists in removing from a graph G a node and the edges that connect that
node to other nodes of the graph. A remove action is interpreted as the primitive shape
(represented by that node) has been incorrectly drawn and should not be considered
as part of the sketch. Besides, the planning representation of the sketching framework
includes actions for moving the primitive shapes, or adding new ones to the sketch.

Update actions consist inmodifying a node or an edge of a graphG. An example of
a node update action is changing an eclipse into a circle, or changing a straight line’s
orientation (change-shape). As for example, in Fig. 22.4, an update action can be
used in order to fix the position of the actor’s arm to set its position at the intersection
with the actor’s body. Performing this action is necessary to further complete the
sketch with the missing elements.

22.4 Implementation

The planning paradigm is used here, as we have just seen, to obtain sequences of
elementary actions needed to obtain a model element. In the following, we will see
the formal basis of automated planning in AI, the paradigm used here to model the
set of the user’s objectives, and the way users have to draw them. Then, we describe
how our peculiar planning problem is translated into PDDL, the language used to
describe automated planning tasks.

22.4.1 Automated Deterministic Planning

A planning task is defined by a model’s description provided by a language; solving
an automated planning task requires a description of the system, whose states are
considered by the planning agent. This system, modeled as the environment in a
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planning task, has to be driven by means of actions from an initial situation to a
desired goal, or a final situation.

The paradigm of (deterministic) planning we use has to be cast in a representation
based on states and on transitions between them, i.e., a directed graph whose nodes
represent states, and whose edges represent actions. But, usually, a factored repre-
sentations is used, following the STRIPS formalism (Fikes and Nilsson, 1971). A
factored representation represents states via a set of variables, interpreted as a con-
junction, and such that each state s is a complete assignment of the state variables. In
particular, the actions encoding the transitions between states are expressed in terms
of preconditions and post-conditions. Action preconditions specify the conditions
under which an action can be applied. The post-conditions specify the changes to
variable assignments made by the effects of the applied actions. All other variable
assignments are left unchanged by the action; we often refer to that rule as a solution
to the frame problem (McCarthy, 1986).

A planning problem is then defined as a 4–tuple 〈F ,A, I,G〉, consisting of

• [F] a set of Boolean variables2;
• [A] a set of operators, where each action a is a pair of preconditions and post–
conditions: 〈 pre(a), add(a), del(a) 〉 , with pre(a) the set of preconditions of a and
add(a) and del(a) the set of effects, respectively, defining the set of propositions
added and deleted from the state. An action a is applicable in state s iff pre(a) ⊆
s and the application of a in s is defined by the transition function T (s, a) =
(s/del(a)) ∪ add(a);

• [I] a set of variables I ⊆ F , describing the initial state; and,
• [G] a set of variables G ⊆ F , describing the goal state(s).

To the planning model described above, we add a particular kind of action called an
axiom (Thiébaux et al., 2005). These axioms are applied like actions to a state, but
they do not contribute to the evaluation of the distance between the current state and
a goal. Instead, they are used to model collateral effects of applying an action.

To evaluate a plan, π, given by a sequence of actions, its length |π| is commonly
considered as a preference criterion, and it corresponds to the number of actions in
the plan. The axioms are not added to evaluate the length |π|.

22.4.2 Modeling Sketches

Sketching is represented as a planning problem as defined in Sect. 22.4.1. In order
to feed our planner, we model all of the actions that users can perform. In the PDDL
representation, the coding of the variables (stated as first-order logic predicates) is
rather simple, and follows the relations given in Sect. 22.3.1.

2 Note that factored representations can use multivalued variables, but variables usually assume
Boolean values, which can be done without a loss of generality.
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In the domain definition, we will have predicates that accept variables of two
different types: polylines (primitive graphical symbols) and shapes (ellipse or straight
line)—see Listing 22.1.

(define (domain BOARD)
(:requirements :strips :typing :equality
:derived-predicates)

(:types polyline shape)
(:predicates (leftOf ?x ?y - polyline)

(rightOf ?x ?y - polyline)
(aboveOf ?x ?y - polyline)
(belowOf ?x ?y - polyline)
(onboard ?x - polyline)
(boardempty)
(intersectWith ?x ?y - polyline)
(hasShape ?x - polyline ?z - shape) )

Listing 22.1 PDDL domain definition: requirements and predicates.

The actions represent the movements or other transformation actions of the primi-
tive graphical symbols in the sketch. These actions are then change-shape, move-left,
move-right, move-above, move-below, move-upon, add, add-above, add-below, …,
remove-left, remove-right, etc. Every action also implements the collateral effects
on the shape that are a consequence of the action. For instance, if the polyline A is
added below B, then B will also be above A, and all of the polylines left and right
of B will be above A (Listing 22.2).

We wrote above that we are making use of axioms to encode additional collateral
effects of the actions (Listing 22.3). Such axioms are applied until at a fixpoint
between actions along the plan. They could be seen as syntactic sugar, if it was
not for the fact that if they were lost in a compilation (as conditional effects of the
“regular” actions for instance), it would be impossible to restrict the growth of plans
and domain descriptions to polynomial size (Thiébaux et al., 2005).

The PDDL encoding of the initial and goal states is straightforward and uses as an
initial state of the sketch as it is drawn by the users. The goals are the ones specified
as possible model elements. The planner is called to solve this planning problem
and produces a plan, which is a sequence of actions (axioms are not represented)
that, if executed, could, from the current sketch, generate a model element as a goal.
Actually, the planner is called on repeatedly to meet the different goals, with the
objective of evaluating which is closest to the current sketch. The goals are then
sorted by the length of the plan needed to reach them. The shorter the plan, the more
likely is the goal to be the one aimed for by the users. These runs have been performed
using the Fast Downward planning system (Helmert, 2006), which supports axioms
with the additive heuristic.
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(:action add-below
:parameters (?x ?y - polyline ?s - shape)
:precondition (and (not (= ?x ?y)) (not (onboard

?x)) )
:effect

(and (aboveOf ?y ?x) (hasShape ?x ?s)
(belowOf ?x ?y) (not (boardempty))

(forall (?b - polyline)
(and
(when (aboveOf ?b ?y)

(and (belowOf ?x ?b) (aboveOf ?b ?x)))
(when (leftOf ?b ?y)

(and (belowOf ?x ?b) (aboveOf ?b ?x)))
(when (rightOf ?b ?y)

(and (belowOf ?x ?b) (aboveOf ?b ?x)))
)) ))

Listing 22.2 A PDDL example of adding a new polyline below an existing one. Here effects make
use of conditions encoded with “when”: Conditions are like preconditions, but if they do not hold
in a state, the actions are still executed, but the conditional effect that does not hold will simply not
be applied in the state.

(:derived (onboard ?x)
(exists (?y)

(or
(leftOf ?x ?y)
(rightOf ?x ?y)
(aboveOf ?x ?y)
(belowOf ?x ?y)
(intersectWith ?x ?y) )))

Listing 22.3 A PDDL example of an axiom that encodes the presence in the sketch (onboard)
of a polyline “?x”.

22.5 Experiment

We evaluated the feasibility of the approach from the point of view of the planner
performances on a benchmark suite representing somemodels analyzed in this paper.
All planning problems are automatically generated from the BabyMOD interface (cf.
Fig. 22.1). Each problem has an initial state made of few hand-drawn shapes and a
goal corresponding to some engineering models like the ones illustrated in Fig. 22.2.
For each problem, we ran the Fast Downward planning system on a Lubuntumachine
mounting an IntelR CoreTM i5-8250U CPU @ 1.60GHz 64 bits and 8GB RAM.

Table22.3 shows the results of these tests. Each row describes a problem, its
complexity (task size), the length of the calculated plan |π||π||π|, and the time needed
to compute a solution. For reading purpose only, we named each problem as the
concatenation of its initial state and its goal. For example, the problem named two-
diagonal-lines_actor corresponds to the example shown in Fig. 22.2,where the initial
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Table 22.3 Performances of Fast Downward on our benchmark suite. task size is a measure of
the complexity of the benchmark, given by the number of elements the planner manipulates and
crudely corresponds to the number of variables times the number of operators (axioms included);
|π||π||π| indicates the number of actions in the plan (axioms excluded); search and total time measure
the performances of the planner in seconds

Problem Task size |π||π||π| Search time Total time

circle_actor 26015 9 0.01 0.03

circle-and-two-lines_actor 25763 6 0.01 0.03

circle_exitPseudoState 4936 7 0.00 0.01

circle-above-of-vertical-
line_actor

25889 7 0.01 0.03

diagonal-left-line_actor 25977 8 0.01 0.03

diagonal-left-
line_choicePoint

12733 12 0.03 0.04

diagonal-left-
line_exitPseudoState

4914 6 0.00 0.01

diagonal-right-line_actor 25977 11 9.27 9.29

diagonal-right-
line_choicePoint

12733 12 0.03 0.04

diagonal-right-
line_exitPseudoState

4914 6 0.00 0.01

horizontal-line_actor 25977 7 0.01 0.03

horizontal-line_function 12737 17 2.09 2.10

horizontal-line_lifeLine 26018 19 1.50 1.52

two-diagonal-lines_actor 26035 8 0.01 0.04

vertical-line_actor 25977 8 0.01 0.03

vertical-line_function 12737 16 0.94 0.95

vertical-line_lifeLine 26018 19 2.69 2.71

state consists of two diagonal lines, and the desired goal is the complete sketch of a
Capella operational actor. The problem named circle-and-two-lines_actor represents
the problem seen in Fig. 22.3, i.e., the same actor, but with one imperfection.

Some observations can be raised from the reading of Table22.3. First, the time
needed to compute a path for most of the problems (apart from some exceptions
described hereafter) is below 5ms overall. For the planning community, it may appear
too small at first glance, but this can be explained by the fact that the benchmarks
used in the context of systems engineering model recognition are rather simple com-
pared to the ones traditionally used by the planning community for the Planning
Competitions.3 It is worth noting that, in the context of model recognition, we need
to run Fast Downward multiple times to attempt to find the best model element that
matches a partial draw, based on the calculated paths. However, the number of model
elements conventionally manipulated at the same time (i.e., in a defined modeling

3 For the deterministic track, see https://ipc2018-classical.bitbucket.io/.

https://ipc2018-classical.bitbucket.io/


22 From Informal Sketches to Systems Engineering … 467

viewpoint) does not usually exceed a dozen or so model elements. Therefore, the
time needed by our recognition algorithm remains below 100ms, which is effectively
imperceptible to a human, hence validating our performance requirement (Req. 6).

Second, we can observe some large variations of time for some benchmarks. For
diagonal-right-line_actor, horizontal-line_function, and vertical-line_lifeLine, fast
downward solved the instances inmore than one second.Here, the size of the problem
does not affect the solution time in a notable way, and the pre-processing time (given
by the overhead of the total time versus the search time) does not exceed 20ms. The
plan search is heavy since the board is initially (almost) empty, thus, the planner has
to search through a huge part of the state space to reach the goal. In diagonal-right-
line_actor for example, the goal is made by several line segments that must be added
below a circle. Besides, the different axioms needed to reach the goal are supported
by the planner, but not by the heuristic, that might be a very ineffective way to handle
axioms.

It is worth noting that diagonal-right-line_actor and two-diagonal-lines_actor
are very similar, yet, the computing time is notably different. One may question
the relevance of attempting to recognize an actor from one segment only, since it is
more traditional to start drawing an actor either from its head or from its legs both
together. However, this would require to conduct a proper user experiment to classify
the drawing habits of systems architects, which is out of the scope of this experiment.

As a conclusion, the benchmark suite inspired by systems engineering models
shows that our planning approach is suitable for recognizing model elements and
therefore can be embedded in a CAD tool. Plan recognition can provide systems
architects with a guidance in the form of possible goal sketches, and an explanation
of why the proposed sketches are the ones suggested. While most of the benchmarks
show that the recognition is fast enough to be imperceptible to the users, some
others, however, are not conclusive as the amount of time needed to recognize model
elements was not negligible. This constitutes a threat to the validity for our approach
and leaves room for improving both our recognition algorithm and the planning
architecture.

22.6 Conclusion

In this chapter, we have proposed an approach to automatically translating informal
sketches into model elements using a formal notation. We have decomposed our
approach into two main components. First, simple algorithms are used to detect
elementary shapes (ellipses, circles, lines) from a sketch drawn by human users;
second, plan recognition techniques are used to recognize model elements based on
preset libraries of goals. Compared to existing techniques based on ML only, this
approach increases the explainability and interpretability of the results by end users.

One major objective of this work is to provide explainable results to the users,
which is a central property in human-agent systems (Rosenfeld and Richardson,
2019). In fact, the order of the selection for the choices has to be motivated by a
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better usage of the tool. Even the simple reason behind proposing a specific choice
to users iswidely accepted as necessary in order for the humanusers to understand and
to better interact with the tool. Splitting the approach in two—on one side, the shape
recognition, and on the other side, the symbolic planning application—permits us to
provide users with the knowledge of a system through the elicitation, for a specific
goal, of the causal structure behind the performed task. The human decision is then
supported by the interpretability of the algorithmic results. In fact, ML approaches
and, in particular, the results provided by neural network-based algorithms are well
known to be poorly understood. This is a large barrier to the adoption of machine
learning on applications involving interactions with human users. This uncertainty
comes from the black box implementation of neural networks, which do not provide
information on their inner “reasoning” process. Even if there is actually a lot of
effort to “open” the black box implementation, other fields of AI provide better
explainability of the solution gathering process. This is the case with automated
planning that the approach offered here provides the symbolic representation and the
structure needed to understand the ML output.

We have presented a preliminary implementation, integrated now in our exist-
ing web-based modeling environment for systems engineering. Compared to our
previous handmade implementation, this new implementation relies on the PDDL
formalism and on an off-the-shelf deterministic planner to synthesize possible plans
that users can follow to draw a model element. Our approach is tolerant to draw-
ing imperfections. To achieve that, we implemented specific actions in our plan in
order to support the modification of a sketch prior to recognizing the expected model
element.

Different challenges still need to be addressed. First, the optimization of our
planning modeling process can be improved to reduce computation time, and to
improve reusability. Our current implementation is only able to recognize model
elements individually. Recognizing a diagram as awhole is more challenging.We are
currently working toward that goal. Recognizing text and shapes in a simultaneous
way is a second challenge we will attempt to address. A solution is to recognize
specific patterns to distinguish text from geometrical shapes and apply the correct
recognition algorithm to each. ML combined with plan recognition can be a solution
to that challenge.
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Chapter 23
An Analogy of Sentence Mood and Use

Ryan Phillip Quandt

Abstract Interpreting the force of an utterance, be it an assertion, command, or
question, remains a task for achieving joint action in artificial intelligence. It is not
an easy task. An interpretation of force depends on a speaker’s use of words for a
hearer at the moment of utterance. As a result, grammatical mood is less than certain
at indicating force. Navigating the break between sentence use and mood reveals
how people get things done with language—that is, the fact meaning comes from the
act of uttering. The main goal of this chapter is to motivate research into the relation
between mood and use. Past theories, I argue, underestimate the evasiveness of force
in interpretations (formal or otherwise). Making their relation explicit and precise
expands the use of argumentation schemes in language processing and joint action.
Building from prior work, I propose a model for conceiving the mood/force relation
and offer questions for future research.

23.1 Helpful Misalignment

Over the last decade,1 the Air Force Research Laboratory designed the Automatic
Ground Collision Avoidance System (Auto-GCAS) and plans to use the software in
the new F-35s.2 When the jet’s predicted trajectory is fatal, the system prompts the
pilot to change course. If the pilot is unresponsive, the system takes control, ‘roll[s]
the aircraft upright and initiates a 5-G pull, diverting the plane and pilot out of harm’s

1For more information, including their decision to use the technology, see https://www.f35.com/
news/detail/f-35-to-incorporate-automatic-ground-collision-avoidance-system.
2 I owe Bill Lawless more than my thanks. Besides his warmth, encouragement, and invitation to
contribute, he patiently read through thismanuscript offeringmany helpful and detailed suggestions.
Any remaining flaws are my own. John Licato also deserves gratitude. His Advancing Machine and
Human Reasoning lab embodies Leibniz’s motto, Theoria cum praxi. This chapter emerged from
discussions with him and the YIP team.
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way.’Once the trajectory is safe,Auto-GCAS returns flight controls to the pilot. Since
2014, seven pilots credit their lives to the system. Benefits are clear: not only does
the jet stabilize itself, but it also addresses a threat without an external command.
The program ‘assumes temporary control’ to do so. Recent studies examine pilots’
behavior with (Richardson et al., 2019), and knowledge (Sadler et al., 2019) and trust
of (Lyons and Guznov, 2019), the highly automatic system; this research concerns
the system’s effects on pilots from a model of human-machine interaction. Such a
model anticipates more than describes. Auto-GCAS is a fail-safe. Pilot and jet are
not (yet) acting jointly. In this chapter, I address joint action.

Automatic systems must decide and act to interpret a command due to informal,
open-textured predicates (IOPs) (Hart, 1961). Such predicates over- or under-shoot
intended acts or objects (Licato and Marji, 2018). There is no neat rule for what is in
or out, and so a judgment must be made on whether the predicate was satisfied. For
this reason, interpretations of IOPs have moral criteria for success and appraisal,3

and so differ from a calculation based on probability. Interpretation assumes a degree
of autonomy and responsibility because the interpretation is a decision and/or act.
As Auto-GCAS advances past a fail-safe to joint action, the system must tailor
commands to settings exceeding a pilot’s manual control. Even if pilots authorize
an operation or can abort it, they control the aircraft less. Automated systems curtail
their control by executing a command with a measure of autonomy.

Misaligning sentence mood and use is one way of dealing with IOPs. By mis-
aligning, I localize the gap between intention and expression thereby casting systems
and tools for handling open-texture within select contexts. Of course, much is done
with words. Linguistic protocols streamline action. Auto-GCAS prompts the pilot,
a nascent protocol of the sort, and more protocols will likely be adopted as the
system’s scope expands, yet protocols cannot erase IOPs. Take, for example, the
sentence, ‘Merge into the left lane when there is a vehicle on the shoulder.’ If there
is a nearby car, one speeding from behind, an emergency vehicle on the opposite
shoulder, an ending lane, et cetera, the command differs in meaning, or the action
required. Attending to the relation between mood and force brings out the contextual
dependence of language and action. At issue is how an automatic system interprets
a command through action as well as how to evaluate their act. There is inevitable
tailoring to setting (and should be). Dialogical models are popular for enhancing
human-machine interaction in other ways (Walton et al., 2008; MacCormick and
Summers, 1991; Sartor et al., 2014; Summers, 2006; Walton et al., 2016) and I
will use them here. The misalignment between sentence mood and use allows us to
program interpretation via action, test it, and define criteria for its success.

We can make our target phenomenon more precise. Imagine a system that fact-
finds every indicative sentence, responds to every imperative with an act, and puts
out information for every interrogative.4 Syntax prompts one response rather than
another. If we input ‘A vixen is a female fox,’ the system prints ‘True.’ Inputting

3 Moral in the sense of evoking a purposive context in which blame and praise are given.
4 Our worries are how syntax relates to use, especially how utterances are more than their syntax,
not exhaustiveness or scope.
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‘Pick up the cup’ results in the act. And ‘Red’ answers ‘What color is the cup.’ And
let us assume that the system handles the thorny issue of relevance. What happens
with the following? ‘The vixen needs some water.’ ‘Pick a cup for coffee.’ ‘Can you
pick up the cup.’ The system is programmed to match indicatives with assertions,
imperatives with commands, and interrogatives with questions, but the syntax does
not settle the force of utterances. Apart from context, it is unclear how the system
should process the above. Someone may say, “The vixen needs some water,” to
prompt someone to get water or tell them where the water bowl is. The statement
may describe or direct. A host may offer coffee with ‘Pick a cup for coffee.’ And
a person may direct someone to pick up a cup with an apparent question. A tight
knit between syntax and use abridges how people usually speak. That is well-known.
Too close a tie between syntax and force obscures the meaning of these sentences,
and so open-texture results from meaningful utterance inextricably. Let us stress:
without identifying what the sentence calls for, we cannot give its meaning (Searle
and Vanderveken, 1985, Chap. 1; Green, 2000, pgs. 435–436; Davidson, 2001, pg.
114). The utterance is a sort of act—an assertion, command, or question. Not only
does the imagined system have little scope in the ebbs and flows of natural language,
but it also fails to access meaning. And so the system cannot act (jointly). On the
one hand, this is because a speaker’s intent inflects meaning. So recognizing intent
enables the system to interpret a command via actionwith reliability. But, on the other
hand, the system must recognize the sort of act uttering is (command qua command)
to be obliged to act or not. Machine learning models miss the problem if force and
mood are left undefined. Our question then: how does syntax relate to use?

Mood and force misaligned present obstacles to formalizing joint action. It
exposes the autonomy of linguistic meaning,5 which in turn tells us how humans
act together. We may be tempted to take the break between mood and force as abnor-
mal or parasitic, safely ignored. When speakers speak properly, the story goes, mood
and force have regular, normal pairings. And, if so, all we need is a catalog of right
use (a complex one, no doubt). Speakers by and large use indicatives to assert, imper-
atives to command, and interrogatives to ask. But their mismatch is abundant and
often. In jokes, fiction, greetings, idioms, and play, speakers break the bond between
mood and force. These everyday uses show that the supposed bond appeals to an
imprecise intuition, one that explains little (Davidson, 2001, pgs. 111–113). At issue
are the basics: meaning and action (Searle and Vanderveken, 1985; Davidson, 1980).
Still, our intuition of their bond is telling, and programmers successfully work on the
link between the sentences speakers use and how they use them.6 This convergence
is a benefit of approaching action through language—symbols are already part of the
exchange.We can pinpoint requirements for joint action through symbols, especially
where the symbols break down.

If the use ofwords cannot be fixed by grammar or rule,we cannot attach symbols to
the force of an utterance. In the first part of this chapter, we establish the conditional,
its antecedent, and inference. The force of a speaker’s utterance must be found apart

5 More on this shortly.
6 Chatbots and automated translators being a case in point.
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from the words used, at the moment, and bereft of a specific constant to lean on.
With dialogical models, we can program ways to locate force. Doing so occupies the
second half of this chapter.

23.2 Theorizing the Relation

1. Model and definitions. In dialogical models, ordinary language is schematized in
a quasi-logical way.7 So Jack tells Jill, “I’m gonna climb this tree,” and Jill replies,
“You’ll need a ladder,” and Jack looks for a ladder. Of course, Jill may not say
anything. She may give Jack a dubious look after noticeably glancing at the height of
the lowest branch. Or Jackmay begin shimmying up the tree, prompting Jill’s remark.
Words or no, the exchange can be schematized as an argument. For example, here
is the argument from two-person practical reasoning (Walton, 1997; Walton et al.,
2008):

Premise 1: X intends to realize A, and tells Y this.
Premise 2: As Y sees the situation, B is a necessary (sufficient) condition for carrying out A,
and Y tells X this.
Conclusion: Therefore, X should carry out B, unless he has better reasons not to.

An exchange and its schematization are not the same. This difference is hardly worth
noting. Pair you or I with Jack, and we can help him climb the tree, then explain
the scheme we illustrated. But the example brings out a basic assumption to any
formalization. An utterance within a dialogue is a speech act, or a move (Walton,
1996). A proposition is meaningless apart from its place in conversation (or context
broadly). The above scheme assumes that Jack sincerely declares his purpose and
Jill’s reply helps him achieve it. If Jill knows there is no ladder or has hidden the
ladder, the scheme fails. Besides relevance, the scheme must interpret the force of
any given utterance and reply (Macagno, 2018, pg. 10). And for the model to work
in AI, force must be dealt with.

A persisting, implicit variable limits dialogical models of the above type. The
schema works or fails after the fact, and is heuristic at best. However, our aim is
joint action. A map helps someone chart the woods; it does not find the way.8 There
are kinds of acts in Jack’s statement and Jill’s reply. These acts differ by more than
intent. Jack may have been declaring his intention or foreseeing an unwanted act.
Jill could be describing or directing. These acts through utterance change what took
place. They concern the force of the utterance. We can motivate these requirements
with an idealized model of communication (Davidson, 2005, pgs. 100–109). And,
from this model, we will distinguish mood and force.

Suppose that in every linguistic exchange, a speaker has a theory for how their
sounds will be heard by someone else and the hearer has a theory for interpreting

7 Logic is a theory of valid inference that is formal in that it concerns the form of an inference (as
opposed to content) and uses a formalism (Brun, 2003).
8 Though Google maps does.
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the speaker. Talk of theory brings out requirements for successful speech; that is,
these theories are not about cognition or what ‘really happens.’ In other words,
neither person has a conscious theory or mental map. After communication occurs
or fails, we use this model to explain what is needed. Our question is why and
how communication succeeds as much as it does.9 On this model, then, speaker and
hearer have two theories: theories anticipating their exchange and the theory during
the exchange. The first is a prior theory, the second, a passing theory. Knowledge
of grammar, idioms, definitions, past uses or misuses, culturally shared information,
norms of setting, et cetera, make up the prior theory. By contrast, passing theories
align how this hearer interprets the words of this speaker at the moment. So if
Jill misspeaks, “You need an adder,” yet Jack interprets ‘adder’ as ‘ladder,’ as Jill
intended, prior and passing theories conflict without loss. According to Jack’s prior
theory, ‘adder’ and ‘ladder’ are not synonymous, yet he understands what Jill meant.
This example reveals more than harmless abuse of language. The conflict between
theories goes beyond malapropisms, slurs, swallowed letters or words, improper
grammar, neologisms, and their kin. Passing theories concern tone, word choice,
setting, speaker and hearer, gesture, and stress. And their propositional attitudes
(id est, sincerity, irony, sarcasm, humor, and testimony) are hard to anticipate. One
person raises their eyebrows to express sincere concern, another person does the
same to express disbelief. And a one-off utterance may not align with past usage or
effect future use. Maybe Jill will never use ‘adder’ in lieu of ‘ladder’ again. Yet she
and every other speaker get by. Converging passing theories, not prior ones, is all
communication requires (Davidson, 2005, pg. 96).

A speaker must express their intent for speaking in a way the hearer can pick
up—that is all. Conventions, norms, and regularities have their place, no doubt, but
with limits. Prior theories ease dialogue without specifying requirements for speech.
Before giving an argument for this view, let us define mood and force.

Mood is the form of a verb that expresses a fact, a command, a wish, condi-
tionality, and potentiality.10 A verb is indicative, imperative, interrogative, optative,
subjunctive, and exhortative.11 Prior theory encompasses mood, then, and so forms
expectations. Force sits squarely in passing theories. Some definitions show asmuch:
“The real import or significance (of a document, statement, or the like); the precise
meaning or ‘value’ (of a word, sentence, etc.) as affecting its context or interpreta-
tion.”12 The definitions note that force (i) comes from the moment of uttering, (ii)
inflects meaning, and (iii) does so through the import, significance, affects, or effects
of the words spoken.

Definitions of mood and force motivate our central claim that an isolated sentence
does not fix its range of uses. Mood does not set force. If Jacks says, “Should I climb
this tree?” he may be teasing Jill, who knows he intends to climb the tree regardless

9 Which means we assume speakers frequently succeed.
10 See Oxford English Dictionary, entry for ‘mood,’ n.2.
11 This list need not be exhaustive for our purposes.
12 See OED, entry for ‘force,’ n.1., 9. Utterances are our concern, not documents or statements—
moments of joint action.
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of her opinion. Jack is not asking with the interrogative. Returning to the initial
thought experiment, whichever mood we input, the guaranteed, predictable output
stipulates a force that abridges how words are used. Dialogical models risk doing
the same arbitrarily or, at least, implicitly. Yet conventions, norms, and regularities
offer constants to the program, so the help they offer must be brought in. But what
do they offer?

2. Linguistic autonomy. A social convention is ‘a regularity widely observed by
some group of agents,’ and people navigate endless situations with them.13 Driving
patterns are the textbook case—Americans drive on the right, English on the left.
There is an intentional social observance of some act, practice, or manner. If a con-
vention ensures that certain words have a certain force, theorists and programmers
should formalize the link. The words used result in an assertion, command, or ques-
tion, as opposed to the use of those words fixing force. The difference is slight, yet
where we place the stress changes how force is set in an utterance. Phrases like ‘as I
claim’ seem to define the force of an utterance when said sincerely. If so, the words
fix force over and above the uttering of them. The speaker must speak sincerely, of
course, so the act of uttering is required; but the words themselves settle what force
the utterance has. Add ‘as I claim’ to a sentence and a speaker asserts. Davidson
glosses, “Stated crudely, such theories maintain that there is a single use (or some
finite number of uses) towhich a given sentence is tied, and this use gives themeaning
of the sentence” (Davidson, 2005, pg. 271). Conventions, norms, and regularities in
linguistic acts restrict the force(s) of words. This view has plausibility. A speaker’s
intent cues meaning and then bleeds through convention. Jack intends to climb the
tree, intends to let Jill know, and uses conventions to let her know. He cannot say just
anything to communicate; conventions guide him. He has options, but conventions,
along with setting, limit which words he can use to a certain effect. Stray from those
constants and our sounds, gestures, and scripts are meaningless. Formalize them and
machines enter the linguistic fray.

Speakers choose their words for a given effect, and some words lend themselves
better than others to an intent. In this way, language is conventional. It is shaped and
patterned. Is the pattern shaped with conventions, though? Say it is. Then meaning
and force depend on conventions directly or indirectly: directly insofar as an utterance
obeys a convention and indirectlywhenanutterance refers to one.The latter allows for
abnormal (or parasitic) uses that remain meaningful (id est, when Jill misspoke with
‘adder’). Both assume a settled range of possible uses from conventions governing
the words themselves. Words fix use via a convention. Since meaning depends on
convention, then only conventional use is meaningful. The problems come when we
have to say which convention must hold in any given case. Holding a convention
constant within a linguistic exchange does not fix meaning, which we see in open-
textured predicates. Bad faith actors abuse conventions, for example. So if Bob loses
a bet to Ann, agreeing to buy her breakfast, he can plumb what makes up a breakfast
repeatedly while failing to satisfy their largely intuitive agreement. Bob may bring

13 See Michael Rescorla’s entry for convention in The Stanford Encyclopedia of Philosophy. He
cites David Lewis’ book, Convention.
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Ann a cheerio with a drop of milk, uncooked bacon and rotten eggs, an elaborate
meal to an unspecified time and place, and so on. After each frustration, Annmay add
a condition for satisfying the bet, yet Bob cunningly exploits loopholes indefinitely.
A ‘conventional’ breakfast seems obvious until tested (Licato & Marji, 2018). The
same holds for any dialogical constant. Any specified constant will not be enough
to ensure satisfaction; it will be replaceable, or specify too much, depending on the
intended act. Our point is that taking conventions as basic results in a regress. And
the regress exposes a lack of traction on the meaningfulness of utterances.

The circle gets vicious when scholars group normal linguistic uses and abnormal
uses. Normal uses, they say, obey conventions. Abnormal uses break them. Con-
ventions found meaning since both uses rely on them, directly or indirectly. So the
theory goes. But, asking which linguistic acts are conventional, we have only normal,
regular uses. However scholars parse the normativity of regularity (so many times,
in relevantly similar settings, speaker/hearer roles, et cetera), conventions are the
supposed reason for regularity. Conventions give that regularity normative weight
so that speakers can often enough misspeak without that misspoken phrase shifting
from abnormal to normal.14 In the give and take of ordinary language, conventions
are regularities, intended or not. Theorists helplessly slide between these notions.
By the same token, it is hard to say what a given convention is over and above a
speaker saying certain words in a certain way that they expect a hearer to pick up.
The convergence of passing theories, though, hardly amounts to a convention.

A thought experiment by Quine can be retold to a new purpose (Quine, 1960, pgs.
28–30). A linguist meets a speaker from an unknown land during fieldwork. The
linguist cannot make out any similarities between the speaker’s tongue and other,
known languages. All the linguist’s training and techniques come to naught, save
query and ostension. The linguist points to an object and the speaker makes a sound.
The linguist copies the sound and points to the object again. A rabbit jumps out
of the nearby brush and the speaker points and says, ‘Gavagai.’ In her notebook,
the linguist writes down ‘gavagai’ next to ‘rabbit.’ Another rabbit jumps out and
the linguist points and says, ‘Gavagai.’ The speaker nods and, after a few more
queries, the linguist believes ‘gavagai’ means ‘rabbit.’ Now, let us suppose for the
sake of argument that the practice of uttering a sound, pointing, and nodding is shared
conventions between the linguist and native speaker.Do these conventions explain the
exchange? Quine uses this thought experiment to show indeterminacy in successful
communication. From observation, ‘Gavagai’ maymean ‘rabbit,’ ‘undetached rabbit
part,’ ‘rabbit stage,’ ‘the unique appearance of a rabbit’s left foot while running less
than 20 miles per hour,’ or the name of an indigenous dragonfly that hovers above
rabbits. More sophisticated forays into the nuance of the speaker’s language enable
greater abstraction and precision. All the same, specific conventions do not fix the
speaker’s intended meaning or overcome the indeterminacy. Repetition, prolonged
behavior, added word pairings, changed settings, syntax, the linguist’s experience,
expertise, knack, and so on, hedge indeterminacy. Specifiable conventions ease the

14 Those who hold to conventions need not deny semantic drift. Regularity does not suffice for
establishing normal usage.
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exchange by focusing its purpose, yet these hardly pick out linguistic competency.
Persisting indeterminacy requires us to look beyond conventions for the source of
meaning.

Linguistic acts are meaningful for speakers and hearers prior to the conventions
that speed us along.15 That is, a speaker may or may not use any given convention
to fulfill their intent in speaking. A hearer may rightly understand them anyway.
Once we specify a convention as such, it can be disregarded or violated. Linguistic
meaning is autonomous. The argument follows:

1. Premise: If meaning is conventional, then our utterances have meaning when they
obey (or refer to) conventions.

2. Premise: Our utterances have meaning apart from any specifiable convention.
3. Conclusion: Meaning is not conventional.

By and larger, and especially with strangers, speakers speak in conventional ways.
I am not denying intentionally guided patterns in dialogue that ease conversation.
Language use is conventional in some sense. Again, our concern is meaning—what
is required for successful communication. How we understand the requirements
changes howwe program language processing. And the argument is that conventions
do not fix the uses to which a given sentence can be put. Which variables matter in a
moment of discourse for the meaning of an utterance depends on the passing theories
of a speaker and hearer, not a fixed, prior selection embodied in a convention that a
speaker enacts.

Programmers require conventions, and so isolate or create some. I have no qualms
with this practice and suggest some conventions of my own later on. The argument
that meaning comes before conventions seems like harmless theorizing. If right,
though, programming natural language changes insofar as defining and obeying
conventions does not ensure that certain words have a certain force in ordinary lan-
guage settings. This consequence includes when a machine is processing a human
utterance or speaking to a human. And, if force changes meaning, identifying con-
ventions and their execution will not ensure correct interpretation. Speakers must
intend their words to be heard as asserting, ordering, asking, and may say various
words or do various deeds to express their intent. No one convention nails down
their intended meaning. More broadly, the argument implies that obeying conven-
tions does not ensure a certain action since they do not ensure an agent carries out
an intent. Agents must represent themselves in a certain way by doing certain acts.
The problem is that publicly observable words, tones, gestures, references, et cetera
never ensure a person’s intent is recognized as such by others. An insecure hearer, for
example, may always ask, “Was that sarcasm? an insult? a lie?” OnDavidson’s ideal-
ized model, ‘what must be shared is the interpreter’s and the speaker’s understanding
of the speaker’s words’ (Davidson, 2005, pg. 96). Conventions ease the convergence
of passing theories, yet never with certainty. Indeterminacy persists and successful
communication requires more or less than a convention. An unprecedented act or
phrase may do the trick. So, an utterance’s force comes from a speaker’s expressed

15 Prior in the ontological sense, meaning constitutive, not in the temporal sense.



23 An Analogy of Sentence Mood and Use 479

intent and the hearer’s recognition through publicly observed content. This is all that
is required for passing theories to align, and so how meaning emerges.

Youmay puzzle over the coupling of claims that language is conventional and that
no convention fixes the meaning of an utterance. And the reason for the second claim
might seem weak. Just because Americans could drive on the left side of the road
does notmean that driving lacks any specifiable convention—namely, thatAmericans
drive on the right. A grunt can be meaningful apart from conventions, the analogy
reads, so meaning tout court lacks conventions. The example clarifies our argument.
While driving is conventional because people agree to drive on one side of the road,
they do not begin driving when they drive on the right. Someone from England
may wake up in the United States, unaware, and start driving. He can drive and will
be driving, though violating the nation’s convention. Obeying conventions does not
constitute what it means to drive, though drivers do well to obey them. Like driving,
meaning comes before socially observed regularities and agreed-upon conventions
(tacitly or explicitly) for speech. The argument concerning meaning goes further by
stating that isolating conventions in ordinary discourse is less informative or helpful
than it seems. Conventions are less helpful to us because language is autonomous.

So far, we have argued that conventions do not set the meaning of an utterance
with guarantees. Rather, meaning is autonomous. The convergence of passing the-
ories, not prior theories, is what successful communication depends on. Linguistic
meaning is autonomous, Davidson explains, because “once a feature of language has
been given conventional expression, it can be used to serve many extra-linguistic
ends; symbolic representation necessarily breaks any close tie with extra-linguistic
purpose” (Davidson, 2001, pg. 113). A slip of the tongue, garbled speech, botched
grammar, and malapropisms reveal that an utterance’s meaning does not rely on a
convention. A mistake may become a new norm. Converging passing theories define
the point from which conventions are upheld as such, changed, or new ones formed.
A speaker may use a string of words for an unusual end. The words themselves do
not fix their intended use, nor is there a closed set of possible uses. As a result,
theorists cannot translate natural language into a symbolism, distilling meaning in
clear vessels. A perspicuous symbolism cannot make humans honest by divulging
their intent or attitude. This is a limit of formal languages. We will pause over this
limit before offering a theory of the force/mood relation.

3. Formal languages. Autonomy clouds an otherwise perspicuous symbolism.
This is because fixing an expression siphons the purposes to which the expression
can be put. There persists a mismatch of utterances and their symbolic representa-
tion. Autonomy also cleaves natural language from formal ones, which effects how
humans speak with machines and vice versa.

A language is a recursively axiomatized system: a set of finite rules joined to a
finite vocabulary that produces an indefinite number of expressions. Languages are
formal when they operate by explicit rules.16 Computability is a subset of formality
in which a system lacks insight or ingenuity, the system is closed, and the explicit
rules cannot be violated (Novaes, 2012, pg. 17). The order of input from a fixed

16 For a typology of formality, see (Novaes, 2011).
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set of variables outputs predictably. The mechanism does not assign meaning to the
variables in the sense that the input results in a set output apart from an interpretation
of the input. The operation is ‘blind.’ A calculator computes 1 + 1 irrespective of
whether the numbers describe tangible objects or not, through the algorithms of
automated vehicles or Auto-GCAS dwarf basic arithmetic.

Computation requires a sequential, definite, and finite sequence of steps. Vocab-
ulary forms according to rules and protocols. A predictable end results predictably
since outputs can be traced back through the carried-out operation. A computable
language can be operated by anyone with the same result. An operation does not
change from the person inputting. The same input results in the same output, regard-
less of the user. And a concrete, external symbolic system makes up a computable
language (Novaes, 2012, pgs. 25–27). On its own terms, then, there is no indeter-
minacy in the mechanism until the variables inputted and outputted occur within a
purposive or intentional context—that is, until a machine employs its computable
language to talk with humans and act among them.

The convergence of passing theories is the one requirement for successful com-
munication. Human language is autonomous since humans need not obey the script.
Daily conversation is a creative, elusive, and evolving endeavor. Speakers and hearers
have insight and ingenuity in chosen ways of speaking and making sense of another
person’s speech. So a computable language is not autonomous. Human utterances
are interpretive through and through. A speaker chooses to utter certain words in
a way the speaker expects the hearer to understand. And a hearer must understand
those words at least as a speaker intends. The act of speaking is anything but blind.17

Nor is there is a sequential, definite, and finite sequence of steps for making one-
self understood. Most speech lacks protocols and, as we argued, conventions can be
used or ignored. Nor do a speaker’s words land predictably. The same words across
speakers, or from one speaker to different hearers, or from the same speaker to the
same hearer at a different time or place, may differ in meaning.

To recall, joint action is our goal. The requirement for successful communica-
tion is an avenue to joint action. Utterances are acts whose meaning exceeds iso-
lated words. Propositional attitudes, like beliefs and desires, must enter the picture
(Davidson, 2001, pg. 161). Joint action, then, requires shared beliefs and desires
as well as the capacity to pick out beliefs and desires evinced by utterances. Joint
action requires ‘common ground’ (Atlas, 2008; Macagno and Capone, 2016; Stal-
naker, 2002). For Jill to help Jack, they must mutually believe that Jack is not tall
enough to reach the first branch. Jill must share Jack’s desire (to some extent) that
he climb the tree. And there are the endless, mundane beliefs: Jill and Jack must
think the other is real, that the tree is there, that they can speak to one another, that a
ladder will hold Jack, and so on. We will set aside the large question of whether AI
can achieve semantic intensionality (or propositional attitudes). Our smaller claim is
that machines must engage with the force of utterances in order to act with humans.
Without an interpretation of force, a speaker’s beliefs and desires will not be fully

17 Though speakers may speak thoughtlessly, that is, without attention to how their words will be
heard.
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incorporated into their utterances. Their act will not be fully appraised. And this
marks a step toward joint action more broadly.

4. A theory for moods. Given the autonomy of language and the constraints of
formal languages, an utterance’s force remains a defeasible and non-constant variable
(when codified). Rarely does a speaker explicitly indicate the force of their utterance,
but, even when they do, their explicit words or gestures are no guarantee that their
utterance has said force. Nor must a speaker evoke some convention for their words
to be enforced, and so meaningful. Conventions are fickle guides for interpreting
a speaker. So our theory of the mood/force relation begins and departs from the
one thing needed: the convergence of passing theories. From here, we can build
conventions and protocols back in.

And a theory of mood nears force. Speakers utter words in a certain mood to cue a
hearer into theirwords’ force. Such a theorymustmeet three requirements (Davidson,
2001, pg. 116). First, the theory relates indicatives to other moods. ‘Vixen is a fancy
word,’ ‘What is a vixen,’ and ‘Tell me what a vixen is,’ though with distinct moods,
have the same force when eliciting a definition of ‘vixen’ from a hearer. The speaker
intends the hearer to say what a vixen is, and says these words in their mood to
express that intent. A theory of mood explains how these sentences relate.

Second, an adequate theory ofmood ascribesmeaning to an utterance in onemood
that is not shared by a similar utterance in a differentmood. ‘What is a vixen’ and ‘Tell
me what a vixen is’ may share force, but their meaning and mood differ. Inversely,
the same words may share mood, yet differ in meaning and force. Compare ‘A vixen
is a female’ when spoken of a fox or a woman. And since force is part of meaning,
how sentences can share force yet semantically differ needs explanation. The first
and second requirements for a successful theory of mood align with the intuition
(the same intuition prompting recourse to conventions) that something basic and
solid joins mood to force. Though at times differing, how mood, force, and meaning
combine are basic to the intelligibility of uttering.

A theory must be semantically tractable, lastly. How the theory interprets utter-
ances should mesh with a larger theory of meaning. The sentences cannot be unrec-
ognizable from their uses. I assume that assigning truth conditions to an utterance
gives its meaning. Davidson uses Tarski’s theory of truth so that a theory of meaning
entails that for each sentence s, a T-sentence results: ‘s is true if and only if p,’ or ‘s
means that p’ (Davidson, 2001).Whether Tarski’s theory of truth works for meaning,
we assume that specifying the truth conditions of an utterance gives its meaning. A
theory of mood succeeds, then, when it conforms to interpretations of an utterance’s
truth conditions.

But the three requirements threaten a working theory. Truth-functional operators
do not mark the difference between ‘What is a vixen’ and ‘Tell me what a vixen
is.’ If giving truth conditions gives us meaning, imperatives and interrogatives seem
meaningless. The theory stuts from a paradox: the first two requirements require an
operator for moods (to relate sentences across moods, while preserving differences),
a non-truth-functional operator, while the third requirement leaves us only truth-
functional operators (Davidson, 2001, pg. 116). In otherwords, sentenceswithmoods
must have a distinct operator; non-indicatives lack truth values, and so cannot have
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a truth-functional operator; operators must be truth-functional. So non-indicatives
have no meaning or, if meaningful, no mood.

Some may brush off the paradox with the observal that illocution differs from
perlocution, or the force of the utterance from the aim of uttering. The above require-
ments assume a view of force which conflates them and, as a result, our notion of
mood veers fromcommonusage. Such an objection rightly picks out that force effects
the mood of a sentence. The grammatical categories are provisional or not exhaus-
tive of mood. The objector disagrees. On their view, someone may say, frustrated,
“A vixen is just a vixen,” with assertoric force, yet with the aim of ending the conver-
sation. The first is illocution—that is, the intrinsic point of the utterance—while the
aim is perlocution, or the intended effect on the hearer from the utterance. Mood and
force are bound to the words in an utterance. The purposes to which that linguistic
package can be put are many, open-ended, and various.

Distinguishing elements intrinsic and extrinsic to an utterance helps but does not
circumscribe utterances. A parent may ask their child what a vixen is to prompt their
curiosity. Their words ask with an aim in mind: the force of their words is to ask,
and they ask for a further purpose. In this sense, illocution and perlocution separate
force from intended effects or purposes. Moreover, words may be spoken with a
certain force for a variety of reasons and purposes. Their effects on a hearer may
vary widely, too. But meaning comes from a speaker’s uttering words and a hearer
hearing them as the speaker intends at the moment of utterance. We misstep if we
assume that an utterance has its force prepackaged in the sentence used, syntax, and
all. Such a view implies that a speaker’s and hearer’s passing theories mesh with their
prior theories—a requirement to let go of. Conventions do not pair words with forces
essentially or regularly. The convergence of passing theories is the only requirement
for successful communication, and so force infects meaning from a hearer rightly
hearing the speaker’s words. When the parent asks her child what a vixen is, the
child may interpret the words as a prompt, or mild directive, to think about the
word’s meaning in the story. The parent prompts, not asks.18 An utterance’s point
(intrinsic to force) and its aim (extrinsic) have a fluid boundary.

The line between extrinsic and intrinsic properties of an act becomes porous from
the type/token distinction with respect to speech acts. Brun’s adaptation of Lewis
Carroll’s argument for logical principles can be adjusted to our purposes (Brun,
2003, pg. 73). Brun argued,

1. Inference S has form V.
2. According to principle P, each inference of form V is valid.
3. S is valid.

18 This should be distinguished from indirect speech acts, which have a primary and secondary
force. The same example above can be used for indirect speech acts. If the parent asks to direct
the child to get a dictionary, foremost, and also to look up the meaning of the word, she asks a
question and directs. Again, the parent may intend to ask and the question’s perlocutionary effect
be that it prompts curiosity and reflection in the child. The turnable example shows the importance
of theorizing the mood/force relation for AI. An otherwise same exchange can differ from intent
and propositional attitudes. The same can be said for actions, generally.
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Another argument is needed to support the above. Naming the above argument infer-
ence T, below is inference U.

1. Inference T has form W.
2. According to principle Q, each inference of form W is valid.
3. T is valid.19

Call the sentence of a speech act, f (p), and its use, F(P). Inference S can describe the
move from f (p) to F(P). That is, the inference names the alignment of the sentence’s
logical form with the logic form of its use. A speech act has occurred when the
inference is valid. Whichever logical principle we appeal to, however, there is an
infinite regress due to a slight of hand. The assumed inference S, the successful
speech act, is not the same as its renamed form, T, in inference U. This reveals
a categorical difference between the drawn inference—the action—and its logical
form, which entails that the logical form of the sentence used is not identical to its
enactment either. If it was, the logical form of the action could enter a symbolism and
be secured thereby. Such a move results in an infinite regress, though. The logical
form of an act is not essential, nor perspicuous.

Moods characterize sentences; force and meaning come from the utterance.
Because of this difference, it is tempting to assume mood can easily be dealt with
and force evades us. Our formal apparatuses pick out and categorize mood. But the
only operators at hand are truth-functional when it comes to meaning. So either non-
indicatives lack meaning or non-indicatives reduce to indicatives. In the latter, there
is only one true mood or mood colors the surface of sentences. Yet moods change
the meaning of sentences. ‘Tell me what a vixen is,’ ‘What is a vixen,’ and ‘I don’t
know what a vixen is’ are not the same. How mood contributes to an utterance’s
meaning comes after the successful exchange. Prior theories only get a hearer so far
when making sense of a speaker. If someone asks, ‘Is a vixen a female fox,’ to which
someone else replies, ‘Does the sun rise in the morning,’ the reply is less a question
than an answer. But there is also the more stable relation between sentences, which
a theory of mood pins down.

Theorists, I suggest, need an account of force for an adequate theory of mood.
Force and mood go hand in hand; one cannot be handled apart from the other.
Non-indicators require operators with none at hand. Force lacks operators, too, yet
alters meaning. I move that these characteristics mark utterances from two sides: the
sentences a speaker uses and the use itself, both of which are meaningful in the act
of uttering. To make sense of mood or force, theorists should attend to how they
relate. Otherwise, they fail to account for on-the-ground interpretations. If mood
and force inflect meaning—truth conditions—then both function at the moment of
utterance. They contribute through the act of uttering. For a theory of mood to have
purchase in day to day conversation, the theory must assign meaning in light of
identification of force. If not, the theory covers over an utterance’s meaning for
an insulated theory of syntax (a syntax of grammar textbooks instead of natural
language), past empirical regularities, or stipulated conventions. The problem is that

19 I will return to this argument below.
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speakers often use sentences in the same mood with different forces or sentences
across moods with the same force. And these uses can be unprecedented, yet suit a
moment or conversation. Words lend themselves to such uses. By clarifying force,
the requirements for a theory of mood can be met.

23.3 Setters and Indicators

The first clue comes from the difference in force between saying ‘Go’ and ‘I order
you to go.’ Both utterances are commands lacking truth conditions since they do
not report an internal state (id est, my wanting you to make it the case that you go).
The two sayings have the same force and a theory must track word meaning. Adding
meanings in embedded phrases misses the sameness of words. Compare ‘I order you
to go’ and ‘He orders you to go.’ The referent of ‘you to go’ changes depending on
the subject, changing truth conditions, though its meaning should remain the same.
Notice, too, that the force changes. In the first, ‘you to go’ is not commanded. ‘I order’
commands while the embedding tells what I order. The second can be glossed, ‘He
orders you to make it the case that you go.’ The speaker likely asserts, ‘He orders,’
while the embedded phrase carries the force of a command (given the speaker’s
assertion holds). If force marks a special set of truth conditions, embedding ‘you to
go’ cannot have its ordinary meaning to make sense of the above contrast. We must
step off well-worn semantic tracks. The same issue confronts ‘Go’ and ‘I order you
to go,’ where ‘you to go’ (taken as synonymous with ‘go’) loses its commanding
force. Free, then embedded, the phrase cannot preserve its same meaning, and this
upends the view that force marks a set of its own truth conditions. Without a phrase’s
ordinary meaning, it cannot have its usual uses. Davidson stresses, “The problem is
adventitious, since what is special about explicit performatives is better explained
as due to a special use of words with an ordinary meaning that as due to a special
meaning” (Davidson, 2001, pg. 117). There is another way forward, he argues. Word
meaning holds with changes in force since force concerns the use of words instead
of carrying a special meaning.20

To handle non-indicatives, Davidson begins with indicatives (Davidson, 2001,
pgs. 118–119). Since a theory of meaning specifies truth conditions of an utterance,
indicatives fit nicely. They have truth-functional operators. How embedding works
in indicatives helps us see their function in non-indicatives. How ‘I order you to
go’ differs from ’Go’ reveals the nature of force and its relation to mood. ‘Jones
asserted that it is raining’ can be dealt with as two utterances: ‘Jones asserted that’
and ‘it is raining.’ The first is often spoken assertively, that is, the speaker asserts
that Jones asserted. The speaker says the embedded phrase non-assertively as it is
the content of Jones’ assertion. The demonstrative, ‘that,’ refers the first utterance to
the second. And, let me add, this is how we analyze utterances of these sentences,

20 Still, force remains part of an utterance’s meaning, as will be unpacked later.
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not the sentences themselves.21 Together, the utterance can be rephrased, ‘Jones
made an assertion whose content is given by my next utterance. It is raining.’ The
truth conditions are that ‘Jones asserted that’ if and only if Jones asserted that in a
given time and place. And the demonstrative refers to the content of Jones’ assertion.
Whether Jones spoke truly depends onwhether itwas raining at the timeof his uttering
and where he spoke. An adept of Jones’ language recognizes what must be the case
for the assertion to be true. So if Jones asserted truly, and it is not raining around us,
we can infer that Jones is somewhere else. The two utterances are conjoined since if
either is false, the whole is.

Indicatives are left aloneonDavidson’s theorybecause theyhave a truth-functional
operator. To me, this default is more provisional than he lets on. Indicatives look like
assertions, yet, as Davidson notes, they have a motley group of possible forces.
Although force concerns use, different forces change the meaning of an utterance.
In reply to the assertion, ‘A vixen is a female fox,’ a perplexed hearer may query by
repeating the sentence. Leaving the repetition alone as an indicative risks overlooking
how it differs from the assertion. So force does not leave indicatives intact, but we
will circle back to this point after engaging with available theories.

1. Mood setters. Non-indicative sentences, for Davidson, are ‘indicative sen-
tences plus an expression that syntactically represents the appropriate transforma-
tion,’ which he calls a mood setter (Davidson, 2001, pg. 119). Commanding, ‘You
are going,’ shares truth conditions with the same phrase when reporting an event.
They differ from a transformation, or this is how we theorize moods at least. Speak-
ing of transformation or change concerns the non-indicative sentence’s relation to
its sibling indicative. Utterances have truth conditions, not sentences, so the speaker
does not break an indicative from its mold. Put again, the speaker does not transform
a ready-to-hand indicative. Meaning comes from uttering a sentence, and a mood
setter marks a change in the sentence, evinced by a verb, word order and choice,
punctuation, tone, gesture, and stress. In parsing, the uttered sentence has an indica-
tive core, so non-indicatives retain meaning. Mood setters fix the change over and
above the indicative core.

Mood setters change an indicative given a theory of which indicatives are the
default. Since indicatives have truth conditions and meaning amounts to truth con-
ditions, non-indicatives are meaningful due to their shifted indicative core. How a
mood setter also has meaning brings in the act of uttering. Mood setters hold or fail
to hold. If a hearer repeats the speaker’s words to query, the speaker may take the
repetition as mocking. Or ‘What is a vixen’ may be taken as an idiomatic expression
(like ‘Who is John Galt’) instead of a sincere question. A mood setter has the form of
a sentence rather than place-holding. Davidson explains, “It behaves like a sentence
an utterance of which refers to an utterance of an indicative sentence” (Davidson,
2001, pg. 120). To see what he means, recall how demonstrative pronouns were dealt
with in ‘Jones asserted that.’ The ‘that’ refers to a subsequent utterance or embedded
sentence. Similarly, a mood setter refers to an indicative when uttered such that the
truth conditions change. When Jones asserts that x, the speaker does not assert x.

21 In other words, we are treating the uttering of the sentence, not a stand-alone sentence.
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By embedding x, a speaker changes its truth conditions. Likewise, the mood setter
changes by referring to, or embedding, an indicative core. The analogy stops where
an embedded sentence stands freely. Mood setters lack truth conditions of their own
as well as syntax and logical structure. A mood setter cannot be spoken on its own. It
holds or fails to hold relative to an utterance. And the function of mood setters does
not logically conjoin to the indicative core such that the whole utterance of a non-
indicative is true if each conjunct is true. The whole utterance lacks a truth-functional
operator that defines its logical form. The mood setter holds or fails to hold, and the
truth conditions of the spoken indicative likewise change or fail to change.

A speaker does two simultaneous acts by saying a non-indicative—the indicative
core and mood setter referring to it. While what follows sounds like repetition, here I
am speaking of utterancemore so than a sentence. Think again of the demonstrative in
‘Jones asserted that.’ By uttering the demonstrative, a speaker refers to the embedded
utterance. Two utterances occur one after the other and they differ in force. A mood
setter has an analogous role: it refers to an indicative to transform the indicative’s
truth conditions. There, the analogy ends. Amood setter has a sentential function, but
is spoken at the same time as the indicative sentence it changes. A mood setter lacks
syntax or structure, logic, or otherwise. Two distinct, yet indistinguishable speech
acts occur. Distinct, because we can explain how sentences in non-indicative moods
use some explicit sign to represent the transformation of the indicative. The utterance
sounds different than an indicative. Indistinguishable, because the sign used cannot
be formalized into a necessary constant, nor can the uttering of any mark guarantee
the sentence has a certain mood. ‘There is broccoli on your plate,’ while indicative in
surface syntax, can be an imperative or interrogative. Force unhinges mood from any
essential symbol. A speaker must make their intent known, yet have the autonomy
of language at his disposal.

OnDavidson’s account,mood setters are uttered, enact a transformation, andmark
the appropriate transformation. They are uttered, and a sentence without being one or
the other simply, or both. Mood setters comprise too much conceptually. Here is the
problem: force swings freely of mood, yet mood expresses a transformation resulting
from the force of the utterance that limits the scope of its force. Davidson uses mood
setters to bridge the gap between the utterance and the sentence, which may be why
they are so uncanny. They behave like a sentence but are not sentences. They are not
part of the sentence, yet are sentential, nor encoded, though an explicit mark. Mood
setters occupy a gray area of theory and the ins and outs of everyday speech. This
makes them attractive. They also respect linguistic autonomy and the requirement
that hearers recognize the intended meaning of a speaker’s words. They seem on the
one hand indifferent to force; on the other, they result from and limit force. Theorists
should say more on how mood relates to force than Davidson’s setters allow.

Suppose we say, “A vixen is just a female fox.” Now, conventional wisdom leads
us to believe this is an indicative sentence that asserts. The sentence can be put to
many uses that do not change its mood or force. If so, the adverb stresses harmlessly.
But the force changes when, for example, someone says this sentence in reply to
someone else who persists in thinking that ‘vixen’ means something more. Then, the
utterance commands and, if so, ‘just’ seems to be the explicit mark for the speaker’s
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intent. Is it a mood setter? Yes, insofar as it marks the transformation of an otherwise
indicative into an imperative. The word reveals the speaker’s intent, which changes
the indicative. But, no, since a word like ‘just’ cannot be a mood setter. Words are not
mood setters. The speaker’s intent, as perceived by the hearer, changes the indicative,
but neither intent nor a hearer’s perception make up a mood setter.

The lacuna has another side. ‘A vixen is just a female fox’ looks indicative.
While surface grammar may deceive at times, mood setters seem to both preserve
tried and true categories (indicatives, imperatives, and interrogatives) by leaving
indicatives alone and letting force swing free,while adoptingminimal restraint (mood
setters are a non-conventional, explicit mark). If mood tracks semantically and force
changes the meaning of sentences, then Davidson’s theory restricts an utterance’s
force. Perlocutionary force swings freely, not force. But then conventions seemmore
than useful and the scope of linguistic autonomy narrows (or is lost). Worse, the
conceptual distinction is applied arbitrarily since mood setters are underdetermined
in successful communication and his theory illumines less than a theory should.

Let us move forward by keeping mood setters within a theory of meaning. That is,
mood setters are not uttered by a speaker; they mark a transformation within theory
that takes indicatives as the default.22 An utterance is one act, and so ‘Go’ and ‘Did
he go’ are one speech act. The act is decomposed into a mood setter and an indicative
core. As a result, mood setters track the usual categories, though the categories do
not tie down how the force of an utterance changes its meaning. This is because force
comes from the act of uttering, whereas mood theorizes the sentences used. A theory
of force brings us to the act of uttering. Non-indicatives lack truth values yet remain
meaningful because they can be parsed within a theory of meaning that presents
their truth conditions. What mood setters call a change of the default indicative is
the distinct act of non-indicatives. For non-indicatives, it is the act that matters more
than the meaning. Force inflects words through use, rather than channeling a latent
meaning in the words themselves. Mood setters theorize distinct acts with sentence
types without those types fixing force. With these insights in our back pocket, let us
turn to Green’s theory of force indicators (Green, 1997, 2000) to place conventions.

2. Force indicators. Many interpret Davidson’s thesis as upsetting force
indicators—that is, any explicit mark the utterance of which enacts a given force.23

They are right on two fronts: on Davidson’s view, (i) we cannot assign a constant
mark directly to an utterance’s force, (ii) nor utter some constant for our utterance
to assert rather than command or question. Both are non-starters since force con-
cerns the use of words, not the words themselves, and speakers have autonomy. My
theory of mood and force must begin and end with the requirements for a hearer
to rightly interpret a speaker: the convergence of passing theories. Defeasibility and
presumption have a crucial role here, as Walton, Reed, and Macagno stress (Walton

22 In other words, speakers only say mood setters when we are theorizing what happened in a
linguistic exchange. They do not say mood setters in the sense they say words.
23 The word itself ensuring a given intent.
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et al., 2008, pgs. 2–3, 32). But some critics miss Davidson’s argument and insight.24

They fail to see how his views give a theoretical basis for the inherent defeasibility
of interpretation and the elusiveness of everyday language. The more we understand
why our day-to-day exchanges are defeasible, the better we incorporate AI into those
exchanges. And we can accept Davidson’s position while carrying on our formaliz-
ing projects. We can theorize force, that is, even if we cannot attach a symbol to an
utterance’s force with any guarantees.

A mood setter systematically represents non-indicative moods with syntactic
effects. Force surfaces when indicatives transform into non-indicatives since truth
conditions alone give force meaning. Any sentence can have any force, in principle;
however, force has a narrow semantic range. Ambivalence and ambiguity carry over
into the interpretation of an utterance, leaving force inert or absent if an explicit,
determining mark is not given. As a result, indicatives suffer from underdetermined
force, while force surfaces more in non-indicatives. But indicatives can be used to
question, interrogatives to command, imperatives to assert. And Davidson observes
that “the concept of force is part of the meaning of mood” (Davidson, 2001, pg. 121).
Force depends on mood, or vice versa, opaquely from mood setters. Force concerns
the use of words with and without a semantic load, mysterious either way. Maybe
more attention to force will clarify linguistic acts.

With respect to force, an expression is often split into force and content.A sentence
has truth conditions apart from the force of its utterance. This is taken to entail that
whatever has meaning in an utterance cannot indicate force; whatever indicates force
lacks meaning. Put otherwise, words which have meaning cannot at the same time
signal their own force, nor vice versa. If a word indicates force, it does not add
meaning to the utterance. An explicit mark either has meaning or indicates force,
exclusively. Assumed are two distinct uses of words: to convey meaning or force. To
be clear, this is not Davidson’s position. For him, force concerns use tout court. A
sentence has propositional content that changes when the sentence is used in certain
ways (to command, to question). Green not only devises a notion of force indicator
to patch the split of force and content, but also rejects a strong version of linguistic
autonomy.25

Force and content split with the suant reasoning (Stenius, 1967, pgs. 258–259;
Green, 2000, pg. 437). Say someone shows a picture to someone else. It can be
shown to indicate what someone looks like, to show how someone ought to look, or
to ask about what is shown. Suppose we attach a force indicator to the showing of
the picture. If meaningful, it is part of the picture. Then another indicator would be
needed. If the addition is meaningful, we need another, then another, and so on. The
same is said of words.

Embedding gives us more reason to split force and content. Speech act analysis
reveals an utterance’s meaning by examining how saying a locution is to do an act
(Green, 2000, pg. 437). But if saying certain words thereby does an act, speech act

24 In their defense, Davidson implicitly relies on arguments given elsewhere and writes densely in
his own style.
25 I will define strong and weak versions of linguistic autonomy below.
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analysis is often false because those samewords can be embedded. As we saw above,
when ‘Go’ is embedded in ‘I order you to go,’ the word loses its original force. To
say, ‘Go’ is not always to order someone to make it the case that they go. A speaker
may report, “Jones orders you to go.” We may conclude that grammar bars force.
This is what Green calls Frege’s point: If a locution, a, is part of a sentence and it is
grammatical to embed a, then there is no speech act, X, such that to utter a is to X
(Green, 2000, pg. 439). Embedding disables the force of uttering set words despite
a successful speech act. If Green can repair the split between force and content, his
theory must handle embedding.

Green’s theory of force agrees with Davidson that strong illocutionary force indi-
cators (strong ifids) are impossible or useless. A strong ifid is ‘an expression any
utterance of which indicates that an associated sentence is being put forth by a
speaker with a certain illocutionary force’ (Green, 1997, pg. 218). Put otherwise, a
strong ifid pairs a sentence with a force upon being uttered. And force changes the
speaker’s commitment to a sentence. What sets a strong ifid apart is that its symbol
or conventional mark brings about a given force when uttered. If

�_

stands for the function of illocutionary force and A stands for a sentence, then

�(A)

is an utterance of the sentence, A, with illocutionary force (Green, 1997, pp. 218–
219). Since any sentence containing the above pair is an utterance of it, a strong
ifid can be embedded or free. Force has a symbol that can be uttered to confer said
force to a sentence. By pairing the symbol with a sentence in the act of uttering, the
utterance has a set force.

Strong ifids do not work.26 If they did, there would be no difference between
‘serious’ speakers, on the one hand, and jokers, story-tellers, actors, politicians, and
other ‘non-serious’ speakers on the other. Each would use their sentences with indi-
cators, yet a friend telling of an event differs from an actor on a stage. Not to mention
that a symbol cannot guarantee a speech act occurs or that a locution is enforced.
Besides actors, jokers, and their kin, the scope of sentence use defies strong ifids.
Saying ‘I order you to go’ does not ensure that the utterance is a command or that the
utterance only commands. The words can be said without the speech act happening.
Or, if responding to the question, ‘What did Jack just say,’ the words assert. Again,
someone can add ‘seriously’ or ‘honestly’ to their assertion without being serious
or honest or intending a hearer to think so. A symbol cannot contain or confine the
meaning or force of an utterance. Meaning comes from the convergence of pass-
ing theories, though prior theories form beliefs and expectations. This requirement
brings us into the complexities of the most mundane exchanges.

26 Except as a function within abstract systems, but natural language is not an abstract system.
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When it comes to the force of everyday utterances, ambiguity is ubiquitous. An
insecure hearer can almost always ask, ‘Was that an insult?’ A theory of force must
preserve this ambiguity, otherwise it overdetermines an utterance. This is a problem
for strong ifids because they both secure and restrict the force of an utterance. An
utterance has this force as opposed to that force, and this skews uttering and its
representation. Think, again, of ‘A vixen is just a female fox.’ A strong ifid must
disambiguate and fix the force prior to use. But the same words can be used to
assert, command, and question, and sometimes it is unclear which force a speaker
intends. What is more, the sign does not disambiguate and fix the force of a given
utterance prior to uttering. Indexical variables and hearers do. Adding another mark
does nothing more than prefacing, ‘I assert that.’ A general theory cannot force
passing theories to align with prior theories, yet that is what a strong ifid portends.
If there are unsolved ambiguities in an utterance, a theory of interpretation should
retain them until a speaker clarifies. With force, we can always ask about sincerity,
trust, transparency, beliefs, and intentions, and so the force of an utterance never
comes fully into view. Giving a speaker new symbols (or ascribing them) cannot
evade such questions.

Green proposes a way to save strengthened moods: weak ifids. He couches this
indicator within illocutionary validity since it concerns a speaker’s commitments
based on anutterance.Validity centers on a speaker,S, and a sequence of force/content
pairs,

< �1A1, ...�nAn,�B >,

such that a speaker’s pairings are valid if and only if a speaker is committed to a
given sentence under a given mode, then the speaker is also committed to another
sentence under the same mode (Green, 1997, p. 228). To be clear, a mode is not a
mood: a sentence has a mood while a commitment to a sentence has a mode. So ‘A
vixen is a female fox’ is indicative and, if asserted, a speaker is committed to the
sentence assertorically. If that holds, the speaker is also committed to the sentences,
‘A vixen is a female’ and ‘A vixen is a fox,’ in the same way. This is not to say
that a speaker must assert these implied sentences. Again, this theory focuses on a
speaker’s commitments. And validity concerns the consistency of a speaker’s beliefs
across force/content pairings. Assumed is that the first sentence was uttered with a
given force. For this reason, Green’s ifids are weak.

If a sentence, A, joins with any mode, then that sentence has a certain force. The
new and contentious variable is

f�,

which stands for the force associated with connective,

�_.

The variable joins mood and force through the following mechanism: mood carries
a certain force through the speaker’s commitment expressed by uttering a sentence
(id est, the mode in which it is uttered). A weak ifid is a valid inference, one that
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infers force from a mode:
f′...�(A)...

f�A
.

Assuming a mode/content pair has a force, then the utterance has this force, be it
asserting, commanding, or questioning. Since mood does not fix mode, a speaker
may utter an indicative sentence without asserting. If a speaker is committed to ‘A
vixen is a female fox’ as a supposition, then its force differs. Green’s theory comes to
force from belief and ascribes beliefs conditionally. A weak ifid does not guarantee
an utterance has a certain force or that a speech act has happened. It signals that, if a
speech act has occurred, the speakermust have a certain belief or type of commitment,
and not exclusively. A few observals are in order.

If a speaker is committed to the claim that a hearer should tell himwhat vixens are,
then ‘Tell mewhat a vixen is’ commands. This does notmean that the speaker’s belief
is enough to fix force. A speech act can fail with or without the proper belief. Given
that the uttering enacts, the utterance has imperatival force. Someof the conditions for
the utterance enacting are the proper belief, sincerity, and the intent to command, but
there are other conditions outside the speaker’s control, such as the hearer recognizing
the speaker’s intent and interpreting the words properly. If the utterance enacts, and
so commits a speaker to something, the utterance has a certain force and commits the
speaker to certain claims. There is a close parallel between the force of the utterance
and the beliefs of the speaker. But the output is a minimum since the utterance may
have other forces, other modes, and more than one purpose. In this way, too, the
indicator is weak.

Green thinks that some English expressions are weak ifids. Cataloging these
devices would be a sentential basis for programming and generalizable over a group
of speakers. He gives an example: say ‘I claim’ parenthetically and, if a speaker
is committed to anything at all, they are committed assertorically (at least), and so
assert. Other forces may be in play, no doubt. The syntax gives a required minimum.
A speaker asserts, along with any other force or point at work. “A vixen, I claim, is
a female fox” commits a speaker to the belief that a vixen is a female fox, if spoken
seriously. In support of this view, Green gives a thought experiment (Green, 1997,
pp. 235–236). Add to our language the verb, ‘swave,’ which means the same as ‘to
wave’ except it also expresses assertoric commitment when it has any force. Set in a
conditional, a speaker commits, “If John swaves his hand, then Mary stops her car.”
This is a complex speech act. The whole entailment is asserted, as is the antecedent,
and so the speaker is committed to the consequent by implication. Since words can
be weak ifids, language can be tailored to fix a minimum force of utterances.

Green notes a counterexample that ‘we could learn to live’ with (Green, 1997,
p. 236). ‘It is not the case that John swaved his hand’ ascribes an inconsistency to
the speaker. The problem occurs in ‘It is not the case that John waved his hand, as I
claim.’ Green avoids outright contradiction by separating the truth conditions of the
parenthetical from the rest of the sentence. This results in a strangeness similar to
Davidson’s mood setter. The parenthetical has unique truth conditions, yet functions
on the rest of the sentence through a weak-ifid elimination inference. Its truth condi-
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tions depend on whether an assertion is made. If so, it ascribes assertoric force to the
utterance and the respective belief. Here is the uncanniness: ‘as I claim’ is syntactic
and more than syntax because it is the direct expression of a speaker’s intent. To utter
these words seriously is to assert. The words bring us from mood to force rigidly.
These words are distinct from ‘I claim that’ due to the function of parentheticals. As
Green concedes, embedding a sentence with ‘I claim that’ need not assert. It is not
a weak ifid (Green, 1997, p. 234). A speaker may say, “I assert that grass is green,”
hypothetically. By contrast, Green assumes that no one will utter a parenthetical seri-
ously without asserting, but his example suggests we should not assume as much.
He wrongly takes the ambiguity of the parenthetical’s syntactic function as a mark
of transparency. Recall ‘It is not the case that John waved his hand, as I claim.’ If the
parenthetical ascribes a belief, the utterance seems to conflict. It does not conflict,
Green assures us, if the negation is stipulated. While right, there seems to be no good
reason to say one is stipulative rather than the other. To see this, note another way
the problem could be resolved. We can interpret the parenthetical as applying to the
whole sentence, ‘It is not the case that John waved his hand’ rather than ‘John waved
his hand.’ Its scope and application are ambiguous. And so a parenthetical is not the
same as the fictional ‘to swave.’ What is more, I see no reason that this parenthetical
and others have a more distinct syntactic function than ‘I claim that.’ Green takes
the syntax of parentheticals to fix a speaker’s intent. The problem is that the syntax
is taken to pigeonhole the truth conditions given by an utterance, as if the sentence
has its own range of truth conditions. Green is right that the parenthetical involves a
transformation, but wrong on assigning where that transformation comes from and
how it is determined. A speaker claims and can use words in any way that expresses
their intent to a hearer. The force is set from successful linguistic exchanges, not
from certain, formulaic expressions.

An interpretation assigns beliefs and intentions to the speaker. Green holds inten-
tion constant to assign belief, then he holds belief constant to assign intention. They
can be parsed in either order. But an interpretation must assign both simultaneously
and without relying on one or the other. Green seems to find words that fix both. Take
‘John swaved his hand.’ If uttered seriously, a speaker believes that John waved his
hand and intends to assert the belief. The qualification, ‘seriously,’ is less than help-
ful, though. Better to say that the verb, ‘swave,’ assumes a certain intent which then
evokes a belief or vice versa. Otherwise, we are left with a vague constant fromwhich
to ascribe belief and intent (Davidson, 2001, p. 111). There is the option that ‘swave’
is constant, but, as we noted, force concerns the use of words, not a special meaning.
Davidson suggests preference as the constant for assigning belief and intention,27 but
that is not pressing here. As soon as we admit that no word can ground ascriptions
of intent and belief singly—that is, without seriousness, preference, or other ways
of speaking—the spell breaks and weak ifids weaken. They assume a speech act has
occurred along assumed lines of regularity that are unaccounted for. Force cannot be
explained apart from mood.

27 See Davidson (2001, ‘Thought and Talk,’ pp. 155–170).
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Aparenthetical, Green claims, ensures at least one force among others. In complex
speech acts, the parenthetical need not evince the main force of the utterance, as in
‘Tell mewhether a vixen is a female fox, as I claim.’ The force of an utterancemay be
underdetermined, as in the example, or overdetermined. Consider ‘Do you think, as I
claim, a vixen is a female fox?’ To interpret ‘a vixen as a female fox’ as being asserted
because it follows the parenthetical builds too much into the sentence. The question
taunes a more tentative commitment. Of course, the moment of uttering may suggest
a speaker is deeply convinced a vixen is a female fox, and so the parenthetical rightly
signals the assertoric belief. But that is the point: much depends on the moment of
utterance between speaker and hearer when it comes to force.

3. Force setters. Davidson offers a theory of mood, but leaves us to wonder over
force. Green and others theorize force without making sense of its elusiveness. Green
also explains force with grammar apart from mood, which is a misstep. Still, the use
of illocutionary validity for assigning force is insightful. The transformative nature
of force needs to be explained with the syntactic categories defined by mood. To do
so, we propose force setters. After defining this concept and arguing for its use, we
will turn to the implications for argumentation schemes.

A force setter concerns the use of words strictly. Davidson’s mood setter describes
it as a change in truth conditions with respect to an indicative core. This will be
retained in our explanation; however, the task is to explain how the use of words
has distinct forces. Asserting, asking, and commanding need to be explained, how
these forces differ, and why moods lend themselves to certain uses. A few claims
bear repeating. Successful linguistic exchange requires converging passing theories,
not aligned prior theories. In fact, passing theories may conflict with prior ones, yet
speakers are heard as they intend. So what sets the force of an utterance is not merely
speakers’ intents or beliefs. Hearers must pick up on this intent. Truth conditions
come from utterances, or speakers, not sentences. A force setter, then, marks the act
a speaker intends by uttering certain words and a hearer recognizes as such. Such a
mark is uttered to signal the kind of act a speaker intends. This mark is relative to
time, place, speaker, and hearer(s). The mark is not a transformation of an indicative
sentence, strictly speaking, nor is this a piece of grammar. The ‘just’ in ‘A vixen is
just a female fox’ may serve as a force setter, as can an empathetic tone, a look, a
gesture, and a pause. A force setter can be whatever a hearer perceives as such. A
force setter inflects the utterance or, more precisely, is the inflection of an uttering.

Though it sounds more uncanny than it is, a force setter is hard to speak of. This is
partly due to the persisting ambiguity of a speaker’s intent: a speaker may always be
insincere or speak in bad faith.A speaker can abuse language tomanipulate ormislead
a hearer. But a force setter is always amark for a speaker’s reason and intent, and these
propositional attitudes separate forces.Different forces have different purposes. So an
assertion puts forward truth conditions, a question elicits an answer of different sorts,
and a command prompts a hearer to do (or not do) something. Suffice to say, forces
differ by the reason for uttering, and how it is intended to be heard and responded to.
A force setter must be distinct enough to distinguish these acts, while loose enough
to embody the wide range in which speakers make their intent known. For these
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reasons, a theory of action is required to offer a full interpretation of an utterance.28

Instead of developing such a theory here, we will focus on the last question that
remains more squarely in the linguistic sphere: Why do moods lend themselves to
certain uses?

Force swings loose of mood, yet moods lend themselves to certain uses. A speaker
readily asserts with an indicative, asks with interrogatives, commands with impera-
tives. But none of the moods fix certain acts (not to mention these same acts do not
require certain moods). The question is how susceptible forces are to moods. How
similar is ‘Alexa, turn on music’ to telling Jill, one’s daughter, to turn on music?
Our answer is that the apparent suitability of mood to use is a misleading one and
that different grammatical forms expand possible utterances rather than limit them.
If so, a force setter is required to express that aspect of an utterance that expresses
a speaker’s intent and beliefs over and above sentence grammar or structure. It is
an open variable that is measured in its effects—that is, after a successful linguistic
exchange. It is also more of a placeholder since it may turn out that a speaker was
not sincere, a hearer misheard, or other conditions fail to hold (id est, the speaker
was not authorized to say what they did). Whatever the story is for why these gram-
matical forms emerged, a part of that story is convenience. When speaking with a
stranger, it is easier to rely on some widely accepted norm for asserting, asking, and
commanding. But this convenience does not get at the significance of linguistic force
or action.

A brief comparison of force setters with our earlier candidates will help us formal-
ize them. Mood setters name a transformation because their utterance changes the
truth conditions of an otherwise indicative sentence. A default indicative sentence
with standard truth conditions becomes an indicative with added truth conditions.
To an extent, the original truth conditions change, too. All of this occurs within a
theory for interpreting an uttered sentence. An interpretation gives another sentence
within the theory for the uttered one. Here is the major insight: there is an analogous
relation between the utterance and the sentence serving to interpret it. Davidson’s
theory of mood works by assuming a successful linguistic exchange. He asks how
an interpretation can be given for non-indicative sentences. But this leaves a mood
setter ambivalently acting as both part of an utterance and part of the sentence: it is
that an utterance of which changes the sentence in a certain way, while at the same
time being that change in the sentence. Leaving a mood setter as the latter, we use
force setter for the former. This does not leave Davidson’s theory otherwise intact,
however.

Force indicators are a strip of grammar that commits a speaker to a certain mode
if they are at all committed. But grammar misleads when it comes to utterances;
meaning is autonomous because speakers use finite variables with rules to speak
in an indefinite number of ways. Conventional aspects of language open up more
expressive possibilities. Green’s proposal assumes a speech act has occurred and
starts after the requirement for successful communication (convergence of passing
theories). For this reason, the best he can give us is an under- and overdetermined

28 See Davidson (2001, ‘Thought and Talk’) for a full argument.
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indicator for the kind of commitment a speaker holds. But he wants to find a fixed
constant in the sentence for assigning propositional attitudes. On my view, force
bars us from such efforts. Any words we fix on never fit perfectly and always elide a
constant, serious meaning. Situations, intentions, and speakers sneak in to inform the
sentence being analyzed, and this happens to Green. We are concerned with natural
languages and have no desire to curtail them for a theory. Still, Green is right to
address force. The problem is formalizing such a wilely variable.

Assumed so far is that a force setter is an explicit mark. That need not be. A person
may say to another, “It is starting to snow,” as away of directing the hearer to close the
window. Nothing explicit tells an anonymous observer that the speaker is telling the
hearer to do anything. But if an observer knows the speaker and the hearer—knows
their relationship—the speaker is commanding the hearer to do something. In short,
to bring in Austin (Austin, 1962, Lecture V), there are explicit and implicit perfor-
matives. Certain words mark the act instead of being the act: so, ‘I am marrying,’
said during a marriage ceremony, differs from ‘I do,’ spoken at the altar. By paying
attention to the effects of linguistic acts, we can define a placeholder variable con-
ditionally. In this way, we can draw from Green’s formalization of force indicators
without committing ourselves to any given linguistic constant.

As before, validity centers on a speaker, S, except force pairs with utterance,

β(u).

So there is an asymmetry between the force of an utterance and sentences ascribed
to the speaker. A non-trivial act of interpretation is required. We will come back to
this in a moment. To recall, validity concerns a speaker’s commitments to a given
sentence under a given mode, or

< �1A1, ...�nAn,�B > .

If one pairing holds, then another sentence is held under the samemode (Green, 1997,
p. 228). Since mode is not mood, a speaker may commit themselves assertorically
with an interrogative or imperative. Nor is mode all there is to force. To assert is
not to believe something assertorically. It is an action. Force concerns what we do
with our words. Illocutionary validity assumes that force is set, and so we need force
setters.

A weak ifid infers force after the fact, and so likewise assumes force is set. If
the inference interprets an utterance, instead of a sentence, we come closer to the
requirement of successful communication—that is, the convergence of passing theo-
ries.With force, that is key. However, we need to retain the indeterminacy that comes
from the simultaneous assigning of meaning to a speaker’s words and beliefs to the
speaker. Prior to illocutionary validity, there is an inference of the following kind:

...β(u)...

f′�S
.
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The force setter is f ’, which lacks its own content in the ascribed interpretation.
Still, we need a variable to distinguish an otherwise identical sentence that conveys
the (nearly) same belief, though doing something distinct. A speaker can say, “A
vixen is just a female fox,” to answer a question, order someone else to be quiet, or
question them. In each case, the speaker may believe a vixen is a female fox, and say
as much.29 Also, the ascription assumes a speech act has occurred, the one we think
occurred. Green and Davidson are right that we cannot secure an action with theory.

From the force of uttering—the premise—we infer a mood setter and a sentence.
Now, already, this is slightly off insofar as saying the words, ‘It is snowing,’ is not the
same as the words just typed. Davidson seems keen to this limit for formalizing force,
and so restricts himself to mood. But the formula does not output input. It is meant to
draw out what is involved. The words uttered are kept distinct from the uttering, then
the sentencewe analyze has amood setter that assumes a given, ascribed force.Added
to the indicative core and mood setter is an assumed speech act which the parsing
fixes, id est, the force setter. The setter is not the force, which occurs in uttering the
words in a certain way. Nor is it negligible because in interpreting an utterance the
forcemaypart frommoodand that separation contributes tomeaning.What setsmood
is grammatical or explicit. Unless we are prepared to give up standard grammatical
moods, or distinguish grammatical moods from semantic ones, a variable is required
for forces (asserting, commanding, and asking).

Before returning to argumentation schemes, I will look once more to the require-
ments for a theory of mood. My earlier problem was that a theory must preserve the
relation between moods, ascribe meanings suitable and unique to a given mood, and
must track the meaning of utterances. The first two requirements prompt a senten-
tial operator; the last bars us from any operators other than truth-functional ones. On
Davidson’s theory, moods share a common, representable element and so are related:
they have an indicative core with truth conditions. We agree so far. A mood setter
couples with the indicative core and describes a transformation of truth conditions.
The transformation is relative to a prior indicative that parallels the one used. That is
fine within the theory. We part ways with Davidson when he suggests assertions be
left alone. An assertion has a force setter, though it does not signal a transformation.
It signals a given force when a speech act has occurred. An indicative asserts, orders,
and questions. From the indicative core, moods relate more or less. They differ with
respect to their truth conditions. If the theory interprets utterances rightly, then it
tracks with meaning. With this last requirement in mind, we come to argumentation
schemes.

29 With the question, we can imagine the speaker first calling out someone who insulted a woman by
calling her a vixen. The one who insulted might respond that a vixen is a female fox. The utterance,
“A vixen is just a female fox,” questions the sincerity of the person who insulted. Endless cases like
these can be imagined because of the autonomy of linguistic meaning.



23 An Analogy of Sentence Mood and Use 497

23.4 Schemes and Force

Argumentation schemes are defeasible: hearers accept a conclusion given the evi-
dence, memory, experiences, the speaker, other hearers, at this moment for this rea-
son, and (sometimes) to act. One of the reasons for this is the assumptions (or
presumptions) on which an argument scheme stands or falls. Another is that these
arguments are exchanged in settings of limited knowledge, be it casual conversa-
tions or hearing a speaker on a stage. There is a third reason: the arguments require
defeasible interpretations. A speaker’s words may be loosely or poorly worded with
implicit premises or with a tricky ordering of premises and conclusion. More, when
prompted by critical questions, the argument may seem to shift. The arguer is not
necessarily changing ground, though. Shifting schemes are a dynamic to arguments
of the kind Walton, Macagno, and others are after. On the one hand, schemes guide
an interaction by giving form to what is said in arguing and replying. On the other
hand, schemes guide how we formalize presentations or conversations after the fact.
Between them are the elusive utterances that speaker and hearer(s) exchange, and
here is where force comes in.

The use of words changes them, and pinning them down hinders clean cut
schematizing. But to use argumentation schemes computationally, the force of
utterances must be dealt with. There cannot be an undefined intuition or capacity
involved in translating ordinary speech into a schema. The requirement for success-
ful communication—the convergence of passing theories—presents the difficulty,
yet there are cues that programmers and engineers are privy to. It is not an impossi-
ble task, but one that results in defeasible results. A speaker can always reply, ‘That
is not what I meant,’ and we should take their word (at least partially). As a first step
for dealing with force, we will closely examine a case in which an ‘is just’ state-
ment is made. How we interpret the force of the writing changes the commitments at
issue, and how we handle the ambiguity brings us closer to applying argumentation
schemes computationally.

Our target case comes from an advice column in The Washington Post (Hax,
2020). A woman asks about her sister who is anxious over kissing someone other
than her boyfriend after too many drinks. The kiss was witnessed by her cousin who,
she fears, has told other family members. Now the sister is bringing her boyfriend
to a family wedding and cringes at the thought that someone will say something in
front of her boyfriend. Carolyn Hax advises,

The only way she will feel less anxious is if she gets out from under the weight of her secret,
for good. Either she tells her boyfriend; breaks up with him and thereby renders the secret
moot; or finds a way to release herself of the guilt and just accept what she did as the kind
of stupid thing humans do and forgive herself for it.30

Hax advises schematically: at first glance, she gives a disjunctive argument with three
alternatives. This is an argument from practical reasoning since an actionwill achieve
less anxiety. But this advice is not clean-cut. The third option seems to encompass

30 Italics added.
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the first pair (‘a way to release herself of guilt’) and ‘just accept’ seems to repeat
the conclusion. Where we stress changes the argument type and claims at issue.
By looking at points of ambiguity, we will define criteria for handling the force of
‘is just’ and ‘nothing but’ statements. This case also tests our ability to deal with
force by grammar. A result is that the scheme cannot be crafted apart from critical
questions since an interpretation requires a process of questions, a result of persisting
ambiguity, which comes from the prevalence of the force/mood relation.

23.4.1 Practical Reasoning

Themajor premise of a practical inference is the goal, the minor premise is the action
to achieve the goal, and the conclusion is the normative uff (Walton et al., 2008, pg.
323).31 There are a few options to meet the goal.32 For Hax, the sister’s goal is either
to ‘feel less anxious’ or ‘to release herself of the guilt’ and/or ‘just accept’ what she
did. But the sister also wants to get through the wedding without embarrassment. If
getting through the wedding is the basic goal, then the final alternative differs from
the first statement. If the sister steels herself or finds another way to bypass feelings
of embarrassment, then she can go to the wedding with or without the revelation
of her past deed. But this depends on how we interpret ‘just accept.’ The phrase
seems to encompass the point of the first two options to suggest the action needed
to relieve anxiety. If the first two acts do not relieve anxiety, in other words, they are
not options.

Which goal matters for constructing a schema. Suppose it is relieving anxiety.
Then the minor premise consists in three actions, each of which singly satisfies the
goal. We have the following:

• Major premise: The sister has the goal of relieving her anxiety over a secret.
• Minor premise: Telling the secret to her boyfriend (A) would achieve the goal.
• Minor premise: Breaking up with her boyfriend (B) would achieve the goal.
• Minor premise: Releasing herself from guilt, accepting her action, and forgiving
herself (C) would achieve her goal.

• Conclusion: She ought to do either A, B, or C to achieve her goal.

Fixing the goal does not clarify ‘just accept,’ which challenges my first pass at a
schema. Hax seems to be saying more in her last option than the others. That is, the
last option is more than an alternative to the first two. Hax may be stressing the last
one and, if so, the above schema holds. She could also be stating what the sister must
do to move on. If right, her list is not a disjunction for meeting the same goal. We test
a schema’s adequacy by asking critical questions. The fourth critical question that
Walton, Reed, and Macagno (Walton et al., 2008, pg. 323) list asks for the grounds

31 The conclusion brings us from possible action to what the sister ought to do.
32 This is similar to the first critical question for a practical inference, except it is not about conflict
(Ibid.). Here, interpreting the goal itself is in question.
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on which the goal is possible. The second critical question asks about the plausibility
of alternatives. But reading Hax’s advice, the alternatives follow from or lead to the
sister’s acceptance of herself, not relief from anxiety. Hax writes in the third option,
‘finds a way to release herself,’ then with ‘just accept’ describes what is needed
regardless of what the sister does or does not do. Relieving herself of anxiety results
from achieving the goal. It is not the final aim of Hax’s advice.

So accepting her past deed may be the goal Hax is arguing for. This is the way to
lighten the weight of her secret. Then the schema shifts as follows:

• Major premise: The sister has the goal of accepting her past deed.
• Minor premise: Telling the secret to her boyfriend (A) would achieve the goal.
• Minor premise: Breaking up with her boyfriend (B) would achieve the goal.
• Minor premise: Finding another way to release herself of guilt (C) would achieve
the goal.

• Conclusion: She ought to do either A, B, or C to achieve her goal.

The alternatives enable the sister to accept her past deed. Hax stresses the final option
to prompt the addressee to stress the same with her sister. It is the bottom line of
what must be done. But, again, the disjunctive form misleads if the other options
are ‘escapes’ from what must be done. The normative uff coming from ‘just accept’
underlines not only the goal but, the crux, the only action that needs to be done.
Then we come back to the first goal: when the sister asks about the alternatives, Hax
means for her to see that the only viable option for relieving anxiety is accepting and
forgiving herself. She anticipates this with her first conditional (‘The only way she
will feel...’). The point is not that the sister accepts her past deed; it is for her to accept
herself as a means of relieving anxiety. The anxiety is the problem to overcome. And
so we are back to the first goal with its ambiguities.

Maybe Hax gives false alternatives and we capture the stress, tone, and qualifi-
cation by streamlining the practical inference. Other options (answers to the third
critical question) pale in comparison to the last and should be tossed. Again, Hax’s
goal is to relieve the sister’s anxiety to get through the wedding (and life). Here is
the form:

• Major premise: The sister has the goal of relieving anxiety over a secret.
• Minor premise: Accepting her past deed will achieve this goal.
• Conclusion: She should accept her past deed to achieve her goal.

To accept her past deed is to forgive herself for it. The other options, telling her
boyfriend or breaking up with him, are lesser options. This schema best expresses
the inference at stake, yet ambiguity persists because readers cannot be sure of force.
My main point is to show this persistence with a glaring example. On the third
schema, the phrase, ‘just accept,’ (basically) commands the addressee to tell her
sister to accept her past deed. Hax issues a directive vicariously through the sister.
But then we may wonder whether this is an argument from authority (Walton et al.,
2008, pgs. 308–09) or an argument from interaction of act and person (Walton et al.,
2008, pg. 321). The normative thrust of the inference seems to come from the author
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rather than an action or reason.33 Inversely, the sentence declares all that needs to be
done to meet a goal. The write-up describes an action and its result rather than telling
the addressee to do something. The final clause is an indicative like the others. The
argument’s weight seems to come from its form: to meet an end, an action must be
done. Even with this streamlined form, in sum, the force remains undecided and, as
a result, so do the truth conditions.

Let us assume that the argument is a practical inference. If the final statement is
an indicative, ‘just’ is an adverb with benign stress—it leaves the truth conditions
alone. If an imperative, the adverb is more. Gesture, facial expression, tone, and
conversational circumstance are no help for deciding whether the adverb is benign
or not. The lesson from before returns: the mood setter always comes after a given
speech act has occurred. This was the limit to Davidson’s account and his concept’s
bivalence. Mood setters as Davidson saw them were both uttered and that which
refers to the uttering. Alone, then, mood setters will not guide us.

The adverb is not a weak force indicator either, as Green would agree. There is
no minimum force that ‘is just’ or ‘nothing but’ always have. Still, they can serve as
marks for a certain force. This is the challenge that Davidson alerted us to. The same
words can set a given utterance apart or not. And this was the weakness of Green’s
indicators. If they set a minimum force, it underdetermines the primary force of a
sentence which it was meant to capture, or overdetermines how the sentence is being
used.34 Cataloging weak ifids will be of little help to theorizing force or computing
it.

So we suggest force setters as an ideal for handling force. Along with tracking
large regularities with grammar,35 we deal with speakers and their tendencies. For
this, analogies are needed to track and anticipate howagiven speaker tends to use their
words. The inference given above from illocutionary validity can be explicated as an
argument fromanalogy.This suits an exception-filled consistency. From there, further
analogies can be drawn across speakers. But the more we generalize, exceptions
abound, and so we are not satisfied with mappings of language use within a large
community. No one speaks the language of textbooks, dictionaries, and grammar.
Our goal is to leverage a loose structure of regularities to craft a form joined with a
series of questions for making the force explicit.

A theory of the relation of mood and force hinges on the distinction between utter-
ances and sentences. Force occurs in the moment of uttering, while mood describes
the sentence mood. A speaker’s choice of words brings in the mood of a sentence, yet
the mood does not require a given force. The mood does not restrict the autonomy of
meaning. Rightly interpreting a speaker’s words does restrict a speaker’s choice of
what to say. For one, the speaker must use words intelligible as words, not jibberish.
And this depends on a speaker’s expectations of the hearer. No doubt, there is a
shared vocabulary and general syntax, though, again, exceptions abound. A theory

33 Besides, accepting oneself is a strange sort of act.
34 ‘...as I claim’ may be a throw-away expression, a rhetorical flourish in conversation, rather than
actually signaling a commitment. Still, other marks of seriousness are there.
35 A very useful project, as almost every scholar recognizes.
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must direct us to the speaker’s intention for how their words are understood and a
hearer’s picking up on that intention.

23.4.2 Analogy

Within a theory, the relation of mood and force can be treated as an analogy. This
does not mean that the relation of an utterance to a sentence, or vice versa, is entirely
analogical, only that the relation can be treated as such within a theory (with the
goal of computing the relation). In other words, this is how to formalize the relation.
Using illocutionary validity, a force setter is

...β(u)...

f′�S
.

When spoken to, a hearer must recognize the words spoken and how the speaker uses
those words. There is an endless list of other background knowledge and beliefs that
may be required for an exchange. The lowercase Greek letter stands for the force in
uttering and the lowercase Latin letter stands for the words used. An inference must
be drawn to replace that pairing with an assumed act, the mood setter of that act, and
a sentence. Drawing from Macagno’s work on relevance, we can define criteria for
matching the force of an utterance with a sentence.

Force splays “crucial challenges for pragmatics,”Macagnowarns.36 CitingDascal
and others, he notes that the force of an utterance limits a reply’s relevance (Dascal,
2003), and so must be accounted for by his approach, that scholars need a view of
speech acts that goes beyond sentence types and generic acts (Sperber & Wilson,
1995, p. 247), which accounts for more than single utterances (Capone, 2017, p. xvii;
Oishi, 2017, p. 343; Sbisá, 2002, p. 427), and for utterances that cannot be parsed by
pairing grammar and illocutionary content (Strawson, 1964; Streeck, 1980; Kissine,
2013). Macagno adopts an argumentative approach to relevance to address these
concerns. Besides justifying relevance and marking strength, his approach assesses
the ‘reasonableness’ of an interpretation—a stake in the mood/force relation. A brief
summary of his theoretical commitments will aid us in evaluating his criteria.

Utterances, for Macagno, are held as dialogical responsibilities (Brandom, 1994,
pp. 160–162), or “modifications of the social or dialogical status of the speakers
based on the evidence produced (what is said)” (Macagno et al., 2018, p. 2).37 As a
result, utterances license certain inferences, and so can be represented by patterns of
material inferences (Walton et al., 2008, Ch. 1). Green’s weak ifids seem to lurk in
the background since an utterance can be parsed as a speaker’s mode of commitment.
But we should not give in to doubts: Macagno recognizes the dead end of pairing

36 The account below relies heavily on Macagno’s current work (for quote, Macagno et al. (2018,
p. 7)).
37 See also (Macagno and Walton, 2017).
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illocutionary content to grammar—exactly what Green tries to do. An utterance is
interpreted according to a speaker’s intent to achieve a social effect based on reasons
(Capone, 2013, pp. 446–447; Marmor, 2014, Ch. 2). “More specifically,” Macagno
continues, “the starting point is constituted by the categories of joint (social) actions
performed, proposed, and pursued by the interlocutors,” that is, socially binding
relations that result from a speech act (Macagno et al., 2018, p. 8). Depending on
the categories, their status, and how they are used in interpretation, our reconstructed
ideal of an utterance fits, and we must begin with an action or view utterances as
certain kinds of acts. Macagno constructs the underlying intentions or conversational
demands through presumptions fixed by a conventional relation between ‘utterance
form and force’ or systematic reasoning (Leech, 1983; Strawson, 1964). An utterance
within a dialogue is a move that changes the conversation in a certain way and can
be classed by their subject or socially binding relation.

With all the theoretical weight and nuance here, Carolyn Hax’s advice still eludes
us. There are seven categories of action that form the starting point for interpretation:
rapport building, information sharing, discovery, inquiry, persuasion, deliberation,
and negotiation (Macagno et al., 2018, Table1; Macagno, 2019, Fig. 2). Which is
meant by Hax’s declaration that the sister must ‘just accept’ her action? Clearly, Hax
is trying to persuade, but she could be persuading by stating the need to accept or
by inferring means to ends. Or, Hax could be negotiating. Out of the options she
lists, it would be best for the sister to just accept her action. Given the situation, Hax
publicly writes to the sister in such a way that the sisters could work out their options
together, or Hax herself could be negotiating with the options presented by the sister,
not to mention that these columns are meant to entertain other readers. But Hax may
also deliberate toward a certain decision, the sister’s decision to accept her action.
Or, again, Hax could be establishing rapport by venting her frustration at the simple
choice that needs to be made. Our point is that, like Green’s weak ifid, categories of
action can only be loosely applied and they do not interpret the force/mood relation.
We should add that this criticism and the ones to come are not meant to undermine
Macagno’s argumentative approach, but to draw a limit. As it stands, we cannot
account for the relation between force and mood.

Relevance depends on an utterance type given a dialogue goal, Macagno adds.
The aim of a dialogue, however, differs from the force of a given utterance—one
is locutionary force, the other illocutionary. While Macagno brings in lower and
higher levels of dialogue goals, illocutionary force remains unaccounted for.Whether
Hax’s statement commands or declares, our interpretation seems to fit any of the
goals assigned. Nor does the aim restrict the force of a given utterance. Someone
can achieve the goal of having a door closed by asking someone else to close it,
ordering them to, or describing the problems of leaving the door open. Macagno’s
approach to relevance, in short, assumes that a given speech act has occurred with
a certain definiteness that has been left unexplained and intuitive. An utterance has
been replaced by a sentence in his analysis.

Still, Macagno’s criteria for encoding relevance is a useful starting point for deal-
ing with the relation between mood and force. A series of yes or no questions leads
to the presumption of relevance (or irrelevance) and sets its strength. The questions
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and their ordering assume an interpretation of the utterance’s force, yet test an inter-
pretation of an otherwise ambiguous utterance. Here are the questions, then we will
explain as follows:

• Is U [the utterance] coherent with the goal of the previous move(s)?
• Does U address the Topic x of the previous move(s)?
• Can U be presumed to contribute to the point?

Other questions measure the strength of relevance. If we adopt a principle of charity
in which we assume that, more often than not, a speaker speaks meaningfully, and
so speaks relevantly to the matter at hand,38 then we can use relevance as a way for
evaluating an interpretation. This is insufficient on its own, but it will help. Given
its written form, Hax has constructed a string of sentences that cohere to a common
goal. Their topic is the same and each sentence contributes to the aim (however we
construe it). With this default, we can ask which interpretation optimizes relevance,
and this will be the presumed interpretation from which an argumentation scheme
can be constructed.

So u stands in for ‘[she] finds a way to release herself of the guilt and just accepts
what she did as the kind of stupid thing humans do and forgive herself for it.’ At
issue is the force of this utterance (or inscription). And the represented sentence with
a given mood setter and assumed force is inferred. Our proposal is that the suant
inference is an analogical one:

...β(u)...

f′�S
.

Since the author is absent, we cannot seek clarification. At best, the sisters can
give a reasonable approximation of Hax’s intended meaning. That is, they must
suppose a certain force based on reasons.39 The ideal is that the sentence that replaces
the original inscription (id est, their interpretation) will share truth conditions. The
sentence has amood setter that shares the truth conditions,more or less. The statement
will be relevant and, assuming that the overall argument is a practical inference, will
result in the strongest argument. There are three steps:

1. Suppose content for the force setter (fix the speech act).
2. Pair the utterance with an indicative counterpart.
3. Articulate the change of the indicative according to the mood setter.

An interpretation is defeasible insofar as future information (a second article by Hax,
say, reading prior ones, or a phone call from her) may change which interpretation is
more likely. And the relation between mood and force sustains defeasibility. Notice,
too, that the force must be determined simultaneous to weighing the relevance, set-
ting other variables like the goal of the discourse, the topic, and the statement’s
contribution, and identifying the argument type. This cannot be treated as a linear

38 More needs to be said on this principle. For now, we will leave it general and undeveloped.
39 How they receive the advice also contributes to its force.
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process, but one of mutual dependence. To illustrate, we will outline the inference
given by two suppositions of Hax’s advice.

Suppose, first, that the statement commands: f ’ represents the command of the
original inscription. In place of the inscription, we have ‘The sister will accept her
action’ and then we ask how the mood setter changes the otherwise indicative sen-
tence. The sister accepting her action in response to reading the piece makes the
sentence true. The sister not accepting her action makes it false. We still have the
question of whether the prior options are alternatives, and so are also commands,
joined to this command, or are the rhetorical groundwork for the command. Sidelin-
ing that question, we have the practical inference from before:

• Major premise: The sister has the goal of relieving her anxiety over a secret.
• Minor premise: Accepting her past action will achieve this goal.
• Conclusion: She should accept her past action to achieve her goal.

The force of the utterance as it has been parsed in the theory is broken up into the
minor premise and the conclusion. The indicative core appears in the minor premise
and is framed as ameans to achieve a goal. The force comes out in the conclusion.We
can askwhether this further parsing of the statement alignswith the speaker’s/writer’s
intent. Before listing relevant questions, we can compare the above supposition with
another.

The statement may also state a claim so that f ’ represents the declaration. ‘The
sister accepts her action’ goes in place of the inscription with the stress of ‘just’
amounting to rhetoric.40 The sentence is true if the sister accepts her action, but not in
response to Hax’s directive. The truth of the statement is closely tied in to the means-
ends inference of the argument: if the sister accepts her action, then she will relieve
her anxiety. The normative weight of the conclusion does not come from the force of
an inscription, but from the inference drawn. Glancing at the preceding paragraph,
we see that the basic argument form works here, too, which might tempt us to treat
the mood/force relation as negligible. But doing so blinds us to the defeasibility of
the interpretation that the argument form assumes, which changes how we respond
to the critical questions associated with the scheme.

There is a gap between the original advice column, the interpretation, and the
argument scheme. The relation between force and mood brings out the inherent
defeasibility of computing arguments. As long as we continue to offer directives for
making the intention explicit, presuming an intention, and testing the results, these
schemes produce reliable presumptions. So, to conclude, we offer a list of questions
that the comparison of the two force setters illumine.

1. Does the force of an utterance (or inscription) change the truth conditions of a
premise or inference?

2. Are the effects of an utterance isolated to the utterance or do they change how
utterances relate?

3. Does including the force in a premise (or conclusion) rather than the inference
(or vice versa) conflict with the speaker’s intent?

40 That is, the adverb does not change the truth conditions of the inscription.
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4. Does the force setter cohere with the goal of prior moves? the scheme?
5. Are there alternative force setters that would also meet the goal of prior moves?

the scheme?
6. Does the force setter weaken the overall argument? (That is, result in more unan-

swered critical questions.)
7. Does the force setter result in a conflict with prior (or related) utterances? with

the topic of the dialogue?
8. Does the force setter result in an utterance that does not contribute to the aim of

the dialogue?
9. Does the force setter weaken the utterance’s relevance? (Macagno, 2019, p. 9;

Macagno et al., 2018, pp. 16–19).

These questions are meant to guide further research. Grammar and other dialogical
regularities cannot be the sole reliance in the task of interpreting utterances.Heuristics
and the like are required to guide dialogical exchanges between AI systems and
persons by making the force explicit (enough) so that AI systems can adapt to the
exception-filled ways humans use language.

Margins of error persist. Since speech and action are social, they are moral, and
speaking and acting fall undermoral criteria. Toprogrammoral norms and the like,we
should not strive to efface all chance for error. The lesson of informal, open-textured
predicates is that doing so (that is, effacing all error) takes our systems outside lan-
guage and action. Instead, we should strive for AI systems that can speak, hear, and
act with persuasive reasons—systems that can aid human reasoning by offering argu-
ments or evaluating ours. Argumentation schemes are one way for bringing artificial
intelligence within a purpose context. But to do this, datasets of actual arguments are
needed.41 These datasets would provide information for building machine learning
algorithms to interpret the mood/force relation. As I have argued, mood and force
must be dealt with to achieve these broader goals.42 From this raw data, programmers
can write algorithms for translating dialogue into schemes or, inversely, for evaluat-
ing dialogue with schemes. From them, AI can speak and act for similar reasons by
co-opting persuasive schemes. Systems will err at times, but such is the plight of all
agents.
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Chapter 24
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Abstract For large decision-making systems, radioactive waste is one of the most
contentious of technological risks, associated with perceptions of “dread” and deep
social stigma. These characteristics contribute to the intractable nature of the radioac-
tive waste problem throughout systems in western democracies. The disposal and
long-term management of radioactive waste is an issue entangled in technical, envi-
ronmental, societal and ethical quandaries. The present study asks how different
systems in societies address these multifaceted quandaries. Drawing on formal
decision-making theory, it identifies a decision rule that facilitates the approval of
deep geological disposal plans while achieving a successful outcome in social and
technological terms, with the perception of fairness and legitimacy. We compare two
decision rules, the consensus rule and the majority rule, and argue that the principle
of majority rule maximizes information processing across a system and increases the
likelihood of reaching lasting decisions. We also note positive effects of early public
participation in the decision process. This conclusion is reached by a comparative
analysis across three societies: The United States, the United Kingdom, and Japan.
One remarkable finding is the actual and potential effectiveness of majority rule in
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these countries despite different policy priorities and cultures. This study reached
its conclusion through a synthesis of multiple methods: case studies in the United
States and the United Kingdom, and a survey and simulated workshop in Japan.

Keywords Majority rules · Consensus-seeking rules · Stakeholder engagement ·
The United States · The United Kingdom · Japan

24.1 Introduction

If the goal for autonomous systems of humans and machines to reach the best deci-
sion possible, radioactive waste is one of the most contentious of technological
risks confronting humans, associated with perceptions of “dread” and deep social
stigma (Slovic & Layman, 1991). These characteristics contribute to the intractable
nature of the radioactive waste problem throughout western democracies (Barthe &
Mays, 2001; Freudenburg, 2004; Short & Rosa, 2004), with the possible exception
of Sweden (Chilvers, 2007; Lidskog& Sundqvist, 2004). Despite its complex nature,
there exists international agreement—amongmany countries with developed nuclear
industries (McEvoy, 2016)—for the long-term management policy of spent nuclear
fuel and high-level radioactive wastes: deep geological disposal, provided that there
is public consent (Lawless et al., 2014). Differing from other sub-surface waste
management options, the geological disposal of radioactive waste is significantly
challenging in that it requires significant detailed assessments across an extreme
duration to “understand the impact of potential fugitive radionuclides, for up to 1
million years into the future” (McEvoy, 2016, p. 508), reflecting the vast timescales
required for radioactive waste materials to decay naturally to a point at which the
risk to society is deemed acceptable (NDA, 2010). Hence, the disposal and long-term
management of radioactive waste is an issue entangled in technical, environmental,
societal and ethical quandaries.

This study asks how different societies address these multifaceted quandaries.
Drawing on formal decision-making theory, it identifies a decision rule that facil-
itates the approval of deep geological disposal plans while achieving a successful
outcome in social and technological terms, with the perception of fairness and legit-
imacy. It gauges the effectiveness of decision rules in the context of public and
stakeholder engagement in spent fuel and high-level nuclear waste management. We
compare two decision rules, the consensus-seeking rule (CR) and the majority rule
(MR), to argue that the principle of majority rule maximizes information processing
and increases the likelihood of reaching stable energy waste-management decisions.
We also note positive effects of early public participation in the decision process.
This conclusion is reached by comparative analysis of three societies: The United
States, the United Kingdom, and Japan. One remarkable finding is the actual and
potential effectiveness of majority rule in these countries despite different policy
priorities and cultures. This study reached its conclusion through a synthesis of
multiple methods: case studies in the United States and the United Kingdom, and a
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simulated workshop and survey in Japan. The next section reviews the literature and
is followed by the analysis of empirical data. Before continuing, we caution readers
to distinguish “arriving” at consensus from “seeking” consensus. We not only find
nothing wrong with the former even when reached under majority rule for ordinary
events (e.g., a motion to adopt unanimous consent to start a meeting; to honor a
person; to adjourn) but also for momentous debates (e.g., declarations of war; health
emergencies; natural catastrophes). Problems occur however, when rules for seeking
consensus or unanimity empower a minority to overrule or block a majority, which
we have labeled as minority rule (Lawless, 2019).

24.2 Literature Review: Decision Rules that Encourage
Public Engagement

Broad public support for energy technologies can no longer be based upon tacit
technocratic assumptions of public trust in technical expertise and with project
developer claims, an assertion increasingly supported in the literature. Planning and
decision making processes that are technocratic frequently follow the technocratic
approach of Decide-Announce-Defend (D-A-D), an often used strategy of expert
assessment, closed decision-making, and public relations mechanisms of informa-
tion provision; they have often caused planning and decision-making processes to
experience resistance in the forms of social movements of opposition that inevitably
emerge in response (Whitton, 2017). Public engagement upstream of the decision
point for siting controversial technologies and its noted benefits have been discussed
for some time (Corner et al., 2012; Wilsdon and Willis, 2004). In the context of
dealingwith technology-generated social controversy, engagement strategies through
which heterogeneous citizen groups have the appropriate and necessary access and
resources to engage in decision-making processes and to be able to form opinions
and preferences through informed deliberation and public debate on issues that could
potentially affect them, are increasingly being seen as the gold and necessary standard
(Felt & Fochler, 2008; Flynn et al., 2011; Whitton, 2017). Several energy scholars
support the notion that greater public participation in decision-making results in
conflict mitigation or reduction, resulting in more robust decisions for large energy
infrastructure developments, whereas fewer opportunities for public participation
can often result in public critique, opposition and project delays, on occasion due
to direct action (Devine-Wright et al., 2010). Further research to expand our under-
standing of “the perceptions, priorities, involvement and support of local residents
regarding large scale energy infrastructure” (Whitton, 2015) is of great importance,
as asserted by Walker et al. (2014):

How to ensure fair processes and just outcomes for local communities, and how to enhance
the acceptability of energy generation facilities amongst local populations remain important
areas of human-energy research. (p. 46).
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In a nuclear context, the advantages of public participation have been documented
with regards to the strategy adopted for Swedish nuclear waste management deci-
sions (Lidskog & Sundqvist, 2004), whereas the negative consequences of failing to
adequately or appropriately involve public stakeholders have been discussed in the
context of the Czech Republic (Dawson & Darst, 2006) and UK (WCMRWS, 2013)
case studies.

In the recent literature, Fan (2019) provides a rare perspective on radioactive
waste governance in Taiwan, noting the often-seen conflicts between policy stake-
holders and local citizens concerning knowledge, decision-making, participation and
dialogue, or a lack thereof. With the backdrop of Taiwan’s phasing out of nuclear
power by 2025—a decision taken by its Democratic Progressive Party government—
the author describes the challenges surrounding this phase out and of an evident
knowledge gap and the prevalence of “top-down procedures” in Taiwan. However,
the study also explores the experimentation of and potential for nationwide deliber-
ative forums to enable collective dialogue on high-level radioactive waste storage,
forums that have been established by civic society organizations such as environ-
mental non-governmental organizations. Seemingly achieving what few countries in
the West have to date, these forums served to challenge the social-technical divide
and provide a space for open discussion and reflection on technical issues and infor-
mation, whilst allowing young people to learn to deliberate and engage with others
holding alternative or opposing views. In response, and in the pursuit of dialogic
democracy, Fan argues for the establishment of “hybrid forums,” that of open spaces
enabling groups to collectively discuss technical options underpinned by notions of
transparency, openness and equality, as promoted by Callon et al. (2009). As Fan
posits, such forums have the potential to shape public discourse by enabling affected
communities to participate in often restricted and technocratic processes, and thus
enhancing public communicationwhilst “improving citizen consciousness of nuclear
waste issues” (Fan, 2019, p. 327). These studies have highlighted the public’s lack
of trust as important and possibly pivotal factors in creating public uncertainty or
opposition to nuclear waste repository siting proposals (also seeKrütli et al. 2010), as
found by scholars studying electricity transmission, infra-structure planning (Cotton
and Devine-Wright 2012) and wind energy developments (Cowell et al., 2011).

Kemp and colleagues note that theUKnuclear experience has highlighted both the
capability of citizens to engage with “complex technical issues” (Kemp et al., 2006,
p. 1021) and the importance of early or “upstream” public and stakeholder engage-
ment in “reaching a successful outcome” (Kemp et al., 2006), whereby stakeholder
values and opinions are appropriately and effectively reflected. Achieving fairness
has long been cited as another essential criteria of such participatory processes. For
example, Beierle (2002) states that fairness requires broad representation and an
equalization of participants’ power and competence, the latter or both involving the
confirmation of factual claims through scientific information and technical analysis.
In the UK, the support for greater dialogue-based engagement and public involve-
ment in decision-making from central and local government and government agen-
cies has increased in recent decades (Whitton, 2011). However, as scholars such as
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Irvin and Stansbury (2004) discuss, despite their value, there are challenges asso-
ciated with citizen participatory approaches, including a dearth of peoples’ interest
or time to participate in the process; a consultation fatigue; and the potential for
public mistrust to develop should the process be perceived to be a “box-ticking exer-
cise” for pre-determined decisions. The latter arises when few genuine opportunities
exist to influence outcomes or decision-making, or there exists an inability to suffi-
ciently engage with, discuss or debate highly technical issues or concepts Whitton
et al. (2015, also see 30 and 31). To combat such challenges, Whitton et al. (2015)
proposed discussing and establishing local stakeholder priorities at an early stage of
the process, thus ensuring that resultant dialogue is “time-effective, locally relevant,
focused towards specific stake-holder interests, and generates knowledge which can
be utilized within a range of decision-making processes” (p. 129).

Engagement approaches for nuclear energy generation projects and nuclear waste
management projects have been found by scholars, such as Blowers (2010), to differ
greatly, as have the perceived procedural fairness of both. For example, much of the
discourse and engagement with stakeholders with regards to the development of new
nuclear energy generation sites has often taken place in or been focused on existing
nuclear locations. These areas which house existing nuclear facilities and infrastruc-
ture have been described as “the most viable sites” for future nuclear development
(BERR, 2008, p. 33) by the nuclear industry, sites that Blowers (2010) describes
as demonstrating the characteristics and conditions of the “peripheralization” that
served to make the original sites attractive for nuclear development. This contrasts
with the siting strategy for nuclear legacy waste disposal sites, known as the MRWS
(Managing Radioactive Waste Safely) process (based on Committee on Radioactive
Waste Management, or CoRWM recommendations), based in the first instance on
the scientifically based identification of safe deep repository sites and second on
the acceptance of these identified suitable sites by the potential host communities;
this acceptance, however, is provisional and can be withdrawn at a pre-defined and
relatively late stage in the siting process (Blowers, 2010; CoRWM, 2006).

In political terms, radioactive waste management has been termed a “poor rela-
tion” in comparison to nuclear energy and the “Achilles’ Heel” of the nuclear
industry (Blowers & Sundqvist, 2010). This relationship as an afterthought is further
articulated by the following summation of radioactive waste management as:

…an apparently insoluble problem continuing into the far future, blotting nuclear’s copybook
and halting the onward progress of nuclear energy” (Blowers & Sundqvist, 2010, p. 149).

Formal decision-making theory helps address some aspects of the apparently
insoluble: how to improve procedural fairness, stakeholder engagement, and the
chance of a successful outcome. The primary model of decision-making, the rational
choice model, emerged from the research of economists and other social scientists
in an attempt to improve the decisions of humans by serving to make them more
consistent and in line with their preferences (Amadae, 2016). An evolution of this
theory is known as the rational consensus decision model designed to build consis-
tency for group decisions (Herrera et al., 1997). Mann also extended the theory of
rational decision-making to collectives and across species; from his conclusions:
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…rational decision making is consistent with empirical observations of collective behavior
…with individuals demonstrating a strong preference for an option chosen by others, which
increases with the number of others who have selected it … [and] how easily an unbreakable
consensus decision could emerge, once the cumulative social information provided by past
choices outweighs any new quality signal that an uncommitted individual might receive …
[where] utilities may also be understood as fitness consequences of the decision in terms of
evolutionary adaptation …(Mann, 2018, p. E10387).

Mann’s model is further distinguished by being “based on perfectly rational indi-
vidual decisions [made] by identical individuals in the context of private and public
information.” Mann reasoned that his “model predicts that the decision-making
process is context specific.” That is, and to the point we introduce later, his research
was completed in the laboratory, leading him to speculate that his results.

…would be less clearly observed in more natural conditions … where the model predicts
a more gradual decline in the degree of consensus achieved as the magnitude of conflict is
increased (Mann, 2018, p. E10393-4).

Putting aside for the moment the issue of conflict raised by Mann, but central to
understanding the effects in the field we will describe later on, three assumptions
for the rational choice model reduce its value: first, that the rational decisions made
by individuals can be scaled to judge the rational value of social decisions; second,
that the elements of a rational decision can be disaggregated; and third, that prefer-
ences normally solicited with questionnaires can instead be imputed by observing
the actions individuals make.

In rebuttal, first, social decisions are always accompanied by interdependence, the
transmission of constructive and destructive cognitive effects present during every
social interaction (Lawless forthcoming); second, however, disaggregating the effects
of interdependence is difficult to study in the laboratory, which Jones called “bewil-
dering” (Jones, 1998, 40, p. 33), let alone dealingwith it as a scientist in the realworld.
And third, Kelley (1979) found that in the laboratory, the preferences determined by
a questionnaire for an individual when alone did not match what an individual would
chose in a social (game) situation, the motivation for imputing these values based
only on observations, consequently impeding the scale up to larger collectives. The
phenomenon of interdependence accounts for all of these differences. For the pris-
oners dilemmagame (PDG),Kelley described this phenomenon as the transformation
of a given situation (i.e., a game matrix) into an effective matrix. No matter what
Kelley tried in the laboratory to identify the strongest preferences of individuals,
interdependence affected the actual choices that they made (Lawless, 2017a, b).

A few years later, based strictly on repeated game contests with the PDG game,
Axelrod (1984, pp. 7–8) concluded that competition reduced social welfare: “the
pursuit of self-interest by each [participant] leads to a poor outcome for all.” This
outcome can be avoided, he argued, when sufficient punishment exists to discourage
competition; e.g., China’s use of its “social credit” system to reward citizens for
loyalty, or punish them for its lack (Bandow, 2019). Rand and Nowak (2013)
attempted to extend Axelrod’s work from the laboratory to the outside world: they
started with Axelrod’s assertion that “The population does best if individuals coop-
erate …” (Rand & Nowak, 2013, p. 413). However, by not finding examples of
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cooperation that increased social welfare in the real world, Rand and Nowak fell
short but concluded with their hope that the “evidence of mechanisms for the evolu-
tion of cooperation in laboratory experiments … [would be found in] real-world
field settings” (Rand & Nowak, 2013, p. 422). Unlike game theory, interdependence
scales up (Lawless, 2017a, b). For example, from our research, we have found that
innovation is significantlymore likely to be associated with highly competitive teams
(Lawless forthcoming); moreover, with access to the National Science Foundation’s
database, Cummings (2015) found that the poorest performing scientific teams were
interdisciplinary teams, likely from spending toomuch time on findingways to coop-
erate across disciplinary boundaries (Lawless forthcoming). For completely different
reasons, Kahneman (2011) concluded that the rational choicemodel does not apply to
the choices actually made by the average person (also, see his interview byWorkman
2009).

To recapitulate, the literature review establishes three points that inform the empir-
ical analysis. First, the technocratic approach of Decide-Announce-Defend (D-A-D),
although widely deployed, often results in adverse outcomes in radioactive waste
management. Second, there is some evidence that early or “upstream” public and
stakeholder engagement improves the decision-making processes. Third, decision-
making theory provides partial support for competition as a way to increase social
welfare when cooperation is hard to come by. The next section examines cases from
three societies—the United States, the United Kingdom and Japan—to understand
the real-world effect of upstream engagement and majority rule that promotes a
competition of ideas.

24.3 Empirical Analysis of Public Engagement
and Decision Rules

24.3.1 United States

Real-World Decisions at DOE

In the real world of the United Sates Department of Energy’s (US DOE) massive
cleanup of its extraordinary radioactive waste contamination unfortunately spread
across the United States by DOE’s mismanagement of its nuclear waste operations
(Lawless et al., 2014), possibly at a total cost in the hundreds of billions of dollars
for the cleanup of only Hanford, WA, and the Savannah River Site (SRS), SC, the
US DOE’s two sites with the largest inventory of military radioactive wastes. The
US DOE’s cleanup contrasts the more rational style of consensus-seeking found in
authoritarian and more socialist countries versus the traditional majority rule found
in democracies.

The USDOECitizen Advisory Boards (CABs) are located at major DOE cleanup
sites. To reduce the adverse effects from conflict thought to be prevalent under
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majority rules, the US DOE recommended that its CABs use consensus rules;
however, the US DOE did not preclude majority rules. That set up a natural field
experiment. The Hanford CAB (HAB) uses consensus-seeking rules; the SRS CAB
uses majority rules. Bradbury and Branch (1999) were assigned to evaluate the nine
DOECABs existing then across theUnited States. FromBradbury andBranch (1999,
p. iii) about consensus-seeking,

Purpose, Goals, and Commitment to Consensus: A definition that has been established and
agreed on among board members concerning the basic purpose of the board has a major
impact on board procedures and board effectiveness. Boards that have made a commitment
to including a wide range of community viewpoints (including those critical of DOE) and
to finding areas of agreement among those viewpoints are better able to meet DOE’s intent
than those that have not made such a commitment. The commitment of individual board
members is important, often assisted by effective facilitation.

Based on their definition, from their perspective, Bradbury and Branch saw that
success is strictly limited to a process but not to an actual cleanup; that is, in their
view, “best” would include the broadest possible participation so that “the process of
striving for consensus both reinforced and demonstrated members’ commitment to
the essential goal of providing advice to the US DOE and the regulators that would
have broad-based support” (Bradbury&Branch, 1999, p. 7). Thus, in their judgment,
no matter the consequences of the advice rendered, HAB’s internal deliberations
would be superior to those undertaken by SRS-CAB.

But to their credit, however, in their Appendices, Bradbury and Branch evaluated
how the individual CABmembers felt about their deliberative processes. They found
anger among the member of HAB and pride for those with SRS-CAB. Bradbury and
Branch (1999, Appendix: Hanford Advisory Board, p. 12) found at HAB that a:

Lack of civility, and indulgence in personal attacks during boardmeetings can erode personal
relationships and reduce the effectiveness of board deliberations. Despite a variety of efforts,
the board has not managed to adequately control this problem.

In contrast, Bradbury andBranch (1999, Appendix: SavannahRiver SiteAdvisory
Board, p. 12) found at the SRS-CAB that:

A shared sense of purpose, pride in the board, camaraderie, and sense of family were very
evident.

The “lack of civility” experienced by the members of HAB towards each other
versus a shared “sense of pride” by themembers of the SRS-CABmight be attributed
to the difference in consensus-seeking rules versus majority rules; instead, we
attribute it to the accomplishments in the field driven by these two vastly different
styles. One of the complaints often heard from HAB members was their inability to
make recommendations to the US DOE at Hanford on the concrete actions it should
take to improve or accelerate the cleanup; in contrast, most of the recommendations
by SRS-CAB to the US DOE were to “accelerate” its cleanup efforts (e.g., Lawless
et al., (2005); see Table 24.1). Considering the few positive results achieved at
Hanford by HAB versus the significant successes achieved at SRS by the SRS-CAB,
we conclude that majority rule is superior to finding a consensus; not to be confused,



24 Effective Decision Rules for Systems of Public Engagement … 517

Table 24.1 Contrasting the cleanup at HAB versus that at SRS

Hanford SRS

The number of HLW tanks cleaned and
closed

0 8 cleaned and closed; from 1997

Canisters poured of vitrified HLW glass
and stored ready for shipment to a HLW
repository

0 4,200 canisters poured and stored;
from 1996

Legacy transuranic wastes removed
from site and shipped to the repository
at WIPP, NM

11,000 drums 750 cubic meters

Notes: The number of HLW tanks closed at SRS is from Blanco (2019, 5/4) Liquid waste system
plan revision 21; presentation to the SRS-CAB, from https://cab.srs.gov/library/meetings/2019/
wm/5-SP-Rev-21-to-CAB-5-14-19-(001).pdf; the amount of legacy transuranic wastes at Hanford
in 2019 is unknown, but estimated, from https://www.hanford.gov/page.cfm/TRU; also, the legacy
TRU at Hanford in 2009 was estimated at 75,000 cubic meters, from http://www.environmental-
defense-institute.org/publications/Buried%20TRU%20at%20Hanford%20Rev.2.pdf; legacy Tru at
SRS in 2017 is from https://cab.srs.gov/library/meetings/2017/wm/Solid_Waste_Fox.pdf

the SRS-CAB often arrives at consensus decisions, but it is through a competitive
process, not the cooperation supposedly inherent in the consensus-seeking process.

Two successes at SRS, relevant for this discussion, regard the extremely dangerous
high-level radioactivewaste (HLW) tanks that were recommended to be closed by the
SRS-CAB. It made the first recommendation to initiate HLW tank closure in 1996
(SRS-CAB, 1996). There were 51 HLW tanks at SRS. These giant underground
HLW tanks contain radioactive wastes from the production of nuclear weapons-
grade material (e.g., Pu-239). The first twoHLW tanks, Tanks 20 and 17, were closed
in 1997, and the first two HLW tanks were closed under regulatory authority in the
USA and possibly in the world. Then when SRS, supported by the SRS-CAB (1999),
began to close HLWTank 19 in 2000, the US DOEwas sued to cease and desist from
closing additional tanks; the US DOE lost and ceased all of its tank closures. That
changed when the National Defense Authorization Act (NDAA) for fiscal year 2005
was signed into law on October 28, 2004. The Sect. 3116 of the NDAA allowed the
US DOE to resume closure of its high-level waste tanks. Strongly supported by DOE
and the State of South Carolina, the SRS-CAB (2005) quickly recommended that
DOE resume its closure of both HLW Tanks 18 and 19.

However, neither the SRS-CAB, the US DOE, nor the State of South Carolina,
anticipated what would happen next. The NDAA-2005 law had given the U.S.
Nuclear Regulatory Commission (NRC) limited oversight authority over all future
HLW tank closures by the US DOE; effectively, the US DOE had to gain permission
from the NRC to proceed. Month after month, the US DOE would propose a plan to
close HLW Tanks 18 and 19; NRC would criticize the plan, forcing the US DOE to
revise it. Nothing happened on tank closures for almost seven years. That situation
continued until a public meeting held by the SRS-CAB in November 2011 when
environmental regulators from the State of South Carolina complained in public that
the US DOE was going to miss its legally mandated milestone to close HLW Tank

https://cab.srs.gov/library/meetings/2019/wm/5-SP-Rev-21-to-CAB-5-14-19-(001).pdf
https://www.hanford.gov/page.cfm/TRU
http://www.environmental-defense-institute.org/publications/Buried%20TRU%20at%20Hanford%20Rev.2.pdf
https://cab.srs.gov/library/meetings/2017/wm/Solid_Waste_Fox.pdf
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19. Afterwards, the SRS-CAB (2012) made a new recommendation to the US DOE
demanding its immediate initiation of the closure of HLW Tanks 18 and 19.

The USDOE, the State of South Carolina, and DOE-Headquarters quickly agreed
with the SRS-CAB. Once the SRS-CAB got the public got involved, all agencies
including the NRC quickly agreed to DOE’s closure plan and the tanks were closed
in what one ranking DOE official described as “…the fastest action I have witnessed
by DOE-HQ in my many years of service with DOE” (Lawless et al., 2014).

Since that day, the SRS site has celebrated the 20th anniversary of its very first
two HLW tank closures. From its news release (SRS, 2019):

Closure is the final chapter in the life of an SRS tank. Once workers remove the radioactive
liquid waste from the tank, they fill it with a cement-like grout, providing long-term stabiliza-
tion of the tank and ensuring the safety of the community and environment surrounding SRS.
The first waste tank closure in the nation—Tank 20 at SRS—came about six months before
the Tank 17 closure. Each tank held about 1.3 million gallons and began receiving waste
from the nation’s defense efforts in 1961. Each SRS tank contains a different combination
of insoluble solids, salts, and liquids, making each closure unique.

High-Level Waste (HLW) Repository

The WIPP facility, NM, the repository in the U.S. for the disposal of transuranic
(TRU) wastes, has been opened for a number of years. It became the driving force by
the SRS-CAB to remove all of the legacy transuranic wastes from SRS and to dispose
it in the WIPP repository (e.g., SRS-CAB, 2019a, b). From SRS-CAB (2012), the
SRS-CAB recommended to the US DOE early on that:

We are aware thatwhen the Site began processing the radioactivewaste into the glass form the
first material processed was sludge from the storage tanks. Some of this sludge material did
not contain extremely high levels of radioactivity and hence are likely to be much “cooler”
in terms of heat load and radiation exposure. We therefore suggest that perhaps these less
radiation-intensive canisters would be more amenable for shipment to WIPP, at least in the
first stages of any such program as noted above.

Encouraged by SRS-CAB multiple times over several years (e.g., SRS-CAB,
2019c), and under DOE’s authority (DOE, 2019), a new risk-based interpretation
was rendered for what constitutes HLW. Going forward, reprocessing waste will be
considered to be HLW according to its radioactivity characteristics, not just where it
was made (known as a source-based definition; e.g., office paper from an area near
where TRU wastes passed would be classified as TRU even though measurements
might indicate no radioactivity present. Conversely, often very low-level wastes
(LLW) might be in actuality more dangerous than HLW).

Yetwhen the newDOEpolicy on classifying high levelwaste based on its riskswas
announced earlier this month, reflecting the wishes of the citizens from around the
Hanford site, Washington state Gov. Jay Inslee and Attorney General Bob Ferguson
said in a joint statement that all options would be considered to stop “this reckless
and dangerous action” (Cary, 2019).

In contrast, reflecting the views of citizens from around the SRS site in South
Carolina, in a letter to the editor, Aiken Standard, SC (Marra & McLeod, 2019):
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Many of us agree that moving radioactive waste out of South Carolina is the right thing to
do. The Department of Energy has taken a step to expedite the process by considering an
interpretation change to what actually is classified as high-level waste. This would allow for
more expeditious treatment and disposal ofwaste not consideredHLW, andmost importantly,
removal of wastes from states like South Carolina where it has been stored for decades. On
June5, 2019,DOEannounced a revised interpretationof the termhigh-level radioactivewaste
and what constitutes HLW. This change would allow DOE to dispose of wastes based on the
radiological characteristics and ability to meet appropriate disposal facility requirements. As
it exists today, the U.S. classifies high-level waste based on origin—that is—high-level waste
is any waste that results from spent nuclear fuel processing. No other country in the world
uses a definition based solely on origin but more appropriately makes the determination
based on risk.

Summary: Minority Control Versus Free Speech

We have identified consensus-seeking as minority control, the reason it is preferred
by authoritarians (Lawless et al., 2014). The European Union, in a White Paper,
reached the same conclusion (CEC, 2019, p. 29):

The requirement for consensus in the European Council often holds policy-making hostage
to national interests in areas which Council could and should decide by a qualified majority.

Under majority rule, free speech is openly permitted. When speech is allowed to
be free and unmoored from seeking a consensus, then the best ideas, concepts and
beliefs must compete to win. From Supreme Court Justice Holmes (Holmes, 1919):

… the ultimate good desired is better reached by free trade in ideas – that the best test of
truth is the power of the thought to get itself accepted in the competition of the market …

Similarly, Justice Ginsburg (Ginsburg, 2019) delivered the opinion in a Supreme
Court decision rejecting a case brought against the Environmental ProtectionAgency
(EPA) in its attempt to short-circuit deliberations in the lower courts and to legislate
under its own authority, not that of the U.S. Congress, in order “to set limits on
greenhouse gas emissions from new, modified, and existing fossil-fuel fired power
plants” [p. 1]. Ginsburg decided against EPA, concluding that the case before the
Supreme Court had been insufficiently reviewed by EPA and the public that the
case must continue through the lower courts so that it would achieve an “informed
assessment of competing interests” (Ginsburg, 2019, p. 3).

In summary, the consensus-seeking decision rules employed by HAB have
impeded the cleanup DOE’s Hanford facility in the State of Washington. In contrast,
the majority rules used by the SRS-CAB have accelerated the cleanup at DOE’s SRS
site in the State of South Carolina. Thus, majority rule support by citizens works like
free speech—the best ideas win, they become the best and most robust decisions,
and, contradicting Axelrod, the results provide for the best social welfare possible.
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24.3.2 United Kingdom: The “Participatory Turn” and Its
Consequences

Geological disposal is now the UK government’s preferred, and it seems most likely,
long-term option for radiological waste management, with various work streams on
this option being undertaken in recent years. This choice includes a literature review
into geological disposal by the UK’s Department for Energy and Climate Change
(DECC) (EQUITIS, 2016), and government-led workshops with host communities
exploring geological disposal. At present, the UK is one of several countries that
have determined deep geological disposal of radioactive nuclear wastes to be its
preferred policy option, involving the long-term storage of radioactive wastes in a
Geological Disposal Facility (GDF). Such a facilitywould be located several hundred
meters below the surface; would employ several protection measures and contain-
ment barriers, including the local geological environment (NDA, 2010); and would
require assessments of the geological environment to demonstrate long-term stability,
reliability and behavior predictability (IAEA, 2011).

In the UK, policy making for radioactive waste management takes place within a
“participatory and analytic-deliberative decision-making framework” (Cotton, 2009,
p. 153), whereby integration is sought between scientific and technical expertise
and the values and perspectives of stakeholders and members of the public. Hybrid
methodologies such as analytic-deliberative processes (Stern & Fineberg, 1996) in
Chilvers (2007) have emerged over recent decades that fuse formal quantitative
risk assessment techniques with participatory approaches to incorporate an extended
range of expertise, knowledge and values through new forms of citizen-science inter-
action. As Chilvers (2005) states, only relatively recently have citizens and stake-
holders in the UK become actively involved in “complex, uncertain environmental
decision processes” [p. 237]. This involvement is a significant shift from the 1970s
and 80s, during which the 6th report of the Royal Commission of Environmental
Pollution (RCEP, 1976) recommended the development of a national radioactive
waste disposal facility, and that a National Waste Disposal Corporation should be
responsible for its development and operation. UK Nirex Ltd (known as Nirex),
funded directly by the nuclear industry and other waste producers (Simmons &
Bickerstaff, 2006), was established in 1982 to serve in this capacity (Chilvers 2005),
despite the RCEP report proposing the establishment of a “completely indepen-
dent statutory body” (Simmons & Bickerstaff, 2006, p. 531). Following scientific
research and site evaluations, Nirex announced in 1988 the development of a deep
underground “Rock Characterisation Facility” to examine the geological suitability
of Sellafield in Cumbria, where it was thought a geological disposal facility would
be constructed.

Following significant local and national public opposition, the Nirex project was
rejected in 1994 by the Cumbria County Council and again on appeal in 1997 by
the UK Secretary of State. As Chilvers (2005) points out, this decision signified a
pivotal and important moment in the history of radioactive waste management in the
UK. The technocratic and expert-led approach to engagement up until 1997, where
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consultation was limited to waste management companies, industry stakeholders,
government and regulators, had been shown from then onward to be inadequate in
the face of strong public opposition. Prior to this, public involvement in decision-
makingwas absent or limited (Chilvers et al., 2003). Simmons andBickerstaff (2006)
described the contrasting priorities of technical experts and local residents of areas
such as from Sellafield during this period of site evaluation and selection:

Where the technical experts were focused on the capacity of the physical characteristics
of potential sites to ensure safety, local people were concerned about the impacts on the
community—landscape impacts, disruption to the community, stigma effects and psycho-
social impacts upon local residents [p. 532].

As Simmons and Bickerstaff (2006) observed, the 1997–2005 period sawmarked
change and signified a period of “participatory turn” with regards to UK radioactive
waste management policy. The technocratic manner of Nirex consultations in the
1990s served to highlight the inadequacy of this approach, despite the growing real-
ization since the 1980s that local concerns needed to be addressed. However, Nirex’s
approach did demonstrate an emergent shift from site selection being almost entirely
focused on geological suitability to the acknowledgement of the necessity of social
acceptability. The MRWS process was presented as the new consultative process
by the UK government and its devolved administrations (Wales, Scotland, Northern
Ireland); it commenced in 2001with the aim “to develop and implement aUKnuclear
waste management programme which inspires public support” (Simmons & Bicker-
staff, 2006, p. 533). This program was then proceeded in 2003 by the appointment
of the independent oversight committee, CoRWM, with the remit of recommending
the best option or combination of options for managing the UK’s solid radioac-
tive waste stockpile via a long-term and protective solution to government ministers
(Ball, 2006). However, as Ball (2006) points out, CoRWM received criticism of
its analytic-deliberative approach from various agencies. He observes that the root
causes of this criticism can be partially traced to both “a conscious failure to adopt a
science strategy as a part of the process” and a failure to effectively utilize expertise
from “other crucial areas, including the social sciences” (Ball, 2006, p. 1), which
as posited by Ball, leads to the avoidable and significant credibility damage that
hindered the efficacy of the process overall. Periods of public consultation, with the
opportunity to provide feedback on specific issues or plans, has for some time been
considered by the United Kingdom (UK) Government to be the most appropriate
method by which to involve the public in new policy and legislation development
(Cabinet Office, 2012), particularly since the end of the twentieth century.

As the majority stakeholder in the UK nuclear industry, the UK Government
has facilitated the adoption of the consultative process and associated guidance as
standard practice. When new plans are large-scale and considered controversial,
a planning inquiry (with independent adjudication) is the more common engage-
ment option. However, there are a small number of examples in the UK where
action ‘beyond consultation’ has been undertaken, such as during the decommis-
sioning of Trawsfynydd (Bond et al., 2004) where public participation contributed in
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selecting decommissioningoptions, therebydemonstrating local community involve-
ment in nuclear decision-making processes (Whitton, 2015). Yet, it is more common
to find the opportunities for participation and influence to be lacking in industry
decision-making settings; Cotton and Devine-Wright (2012) find in their study of
public engagement for electricity-transmission infrastructure planning in the UK
that despite claims by network operators to support industry-public deliberative
dialogue, opportunities and evidence for this dialogue in practice are lacking, and
citizen perspectives are found to remain very much excluded or on the periphery of
decision-making.

As Whitton et al. (2015) argue, UK Central and Local Government administer
a form of democracy that “does not provide stakeholders with the power to veto
decisions by majority rule, nor require the decision-maker to reach a consensus
with stakeholders” [p. 130]. During the period of 2008–2013, the UK Government’s
MRWS process employed public consultation to identify volunteer communities to
be sites for a deep geological repository, with three local authorities volunteering
for the programme: Copeland Borough Council, Allerdale Borough Council, and
Cumbria County Council. In 2011, the Government stated that the site selection
process would only continue if there was agreement at borough and county levels.
In January 2013, the three local authorities voted on whether to proceed to Stage 4
of the process, with both borough councils voting in favor and the county council
voting against continuing with the site selection process. This outcome ended the
site selection process, with the UK’s Department of Energy and Climate Change
(DECC) releasing a statement detailing that the West Cumbria site selection process
had been closed (DECC, 2013).

24.3.3 Japan: Public Interest in Participatory Approach
to GDF Siting

Current Status of Siting Efforts

The Nuclear Waste Management Organization of Japan (NUMO) is in charge of
geological disposal of HLW and public consultation in the GDF siting and develop-
ment process to gain acceptance from the general public and the affected communities
once sited. It has been soliciting a hosting community since its establishment in 2000,
but except for an entry by Toyo City that was eventually withdrawn in 2007, there
has been no hosting offer. To facilitate the siting process and demonstrate scien-
tific feasibility of geological disposal, the Agency for Natural Resources and Energy
(ANRE) published a map that color-coded geological and geographical properties
of the nation in 2017 (ANRE, 2017).

Since 2018, NUMO has been touring the country to provide information sessions
based on this map. The information session is titled “Dialogue-Based Explanatory
Meetings on the Nationwide Map of Scientific Features for Geological Disposal.”
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The first author observed some of these meetings. NUMO attempts to take questions,
but it refrains from answering policy issues such as spent nuclear fuel reprocessing
and the future of nuclear power policy on the grounds that its exclusive purview is
geological disposal and that it has no jurisdiction over broader policy matters. At a
symposium on the safety case published by NUMO in 2018, the lack of a genuinely
participatory framework in Japan for its citizens emerged as a critical issue that had
to be addressed.

Japan is often described as a consensus-oriented society (Noorderhaven et al.,
2007;Vogel, 1975).Given the lack of a feedbackmechanismbetween the government
and its citizens in the GDF siting process, and given the prevalence of consensus-
seeking in energy policy deliberations and beyond, it is intriguing to see whether an
MR-based participatorymechanism can generate greater support for aGDF. If anMR
mechanism is potentially fruitful but not being used, then its absence may contribute
to the government’s prolonged difficulties in securing a disposal site. Our survey
and workshop explored the Japanese citizens’ level of interest in getting involved in
decision-making for the GDF and the feasibility of MR-based participation.

Simulated Workshop to Test Alternative Decision-Making Mechanisms

A simulated workshop was held in May 2019 to investigate the feasibility of CAB-
styled deliberation comparing the effectiveness of MR and CR rules. We wanted to
understand whether deliberative advantages associated with MR will be found in the
context of Japanese society, or whether its cultural peculiarities will attenuate them
as compared with other societies. Participants were 51 students from two universities
(Meiji University and SenshuUniversity) whowere recruited through fliers andword
of mouth. Participation was voluntary, and they gave informed consent in writing.

The workshop had two components: a lecture by a NUMO officer, followed by a
discussion. In addition, a survey was administered before and after the workshop to
measure participants’ knowledge, trust in NUMO, and attitudes towards the GDF.
Since most students knew little to nothing about nuclear power, much less GDF
siting, the workshop moderator began with an overview of Japanese nuclear power
use followed by a session on how a GDFworks. During the lecture, participants were
shown video clips prepared by NUMO. To illustrate that a GDF can be engineered
to safely store HLW, the officer also performed a demonstration with bentonite clay,
a material used to encase an overpack that prevents vitrified HLW from leaking.

After the lecture and demonstration, the participantswere divided into five groups,
three of them tasked with using an MR approach, and the other two asked to take a
CR approach. Group assignment was partially randomized on gender and grade, but
unobserved qualities such as discussion skills and intelligence were not controlled.
The goal of the 90-min discussion was to reach a decision regarding the siting of
a GDF based on a hypothetical scenario. Each group had a “NUMO officer” and a
“President of Senshu University” role-played by volunteers. The rest of the partic-
ipants assumed the role of local residents and were asked to approve or reject the
construction of GDF under the hypothetical condition that Higashimita, the area



524 M. Akiyoshi et al.

around the University, had been determined to be the best candidate location in the
nation and that the Japanese government wanted to build a GDF there. MR groups
had to reach a decision by majority vote at the conclusion of discussion, while the
CR groups were to deliberate thoroughly and search for a consensus. The discussion
was recorded and transcribed. The transcript was given in vivo coding and descrip-
tive coding and analyzed using Kenneth Burke’s five keys of dramatism: act, scene,
agent, agency, and purpose (Burke, 1969).

The results of the workshop lent support to the advantage of MR even in the
context of Japanese society and this particular socio-political issue. At a minimum,
there was no evidence that MR is detrimental to support-building. Of the five groups,
only one MR group approved the siting of GDF in their community with seven ayes
and three nays. Another MR unanimously opposed with eight no votes. The third
MR group also disapproved, with four ayes and seven nays. Neither of the two
CR groups accepted the GDF in their community. In the post-workshop survey, the
odds of approving a preliminary site investigation by NUMO are higher for MR
participants: 21 MR participants approved and nine disapproved whereas as for CR
groups, 10 participants approved and 11 disapproved. The odds ratio is 2.57 and the
direction of association is compatible with the notion that MR facilitates support for
a preliminary investigation. But with 51 data points, it is not statistically significant
at the five percent level.

Workshop transcripts reveal a more dramatic contrast between MR and CR than
was evinced by the quantitative data. The use of Burke’s five keys of dramatism
found that more place names were mentioned in MR discussions. In addition to
Higashimita and its vicinities, only Aomori and Fukushima were mentioned in the
CR groups while Korea, Omiya, Minamata, and Olkiluoto were talked about in the
MR groups. A more diverse set of actors and actions were evoked in MR groups
than in CR as well. As examples, on the impact of the GDF on the two universities,
CR groups focused on health risks but MR groups discussed the potential pay-off of
siting (the color and number after the quoted remarks below identify the group and
participant):

CR.

We have plenty of young people here [because of the universities]. The youth are more
sensitive to exposure to radioactivity with higher risks of thyroid cancer and skin cancer.
(pink-1).

MR.

[Because of the GDF], universities can lose applicants. These universities are not public,
but private ones. If they lose applicants, that means they go out of business. (blue-4).

If parents of prospective students do not approve their enrolment at universities near
a GDF, local business will be hurt as a result—realtors and shops that cater to students.
(blue-3).

Well, you might lose applicants, but why not start a major in nuclear energy and things
like that? Then people interested in these topics will enroll. (blue-2).

Note that when the involvement of universities with the GDF is discussed, a health
hazard is central in the CR group. In the MR group, participants were also initially
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Table 24.2 Descriptive
statistics of JHLWS
respondents (percentage)

Gender Male 50.8

Female 49.2

Age 20–29 15.6

30–39 19.3

40–49 23.7

50–59 19.1

60–69 22.3

Education High school 25.8

Junior college 20.6

University 53.6

Marital status Married 55.9

Divorced/widowed 5.7

Partnered 1.0

Never married 37.5

Parental status A parent 47.7

Not a parent 52.3

Note: Percentages may not sum to 100 because of rounding

concerned with dwindling applications because of the presence of the GDF, but then
they started thinking about the upside of having such a facility. In this and other
segments of the discussion, CR tended to drive the focus toward risks only, while
amongMR participants, concern for risks was balanced by consideration of potential
gains.

Survey of Interest in Participatory Approaches

An online survey was conducted in July 2019 to measure the general public’s knowl-
edge and interest in HLWmanagement in general and the siting process of a GDF in
particular (the Japan HLW Stakeholder Survey, hereafter JHLWS). The population
surveyed were residents of Japan aged 20–69 with access to the Internet. The sample
size was 3,188. Demographic variables and socioeconomic variables such as age,
gender, education attainment, employment status, marital status, and income were
also measured. Voting behavior at national and local elections was assessed as well
as a general indicator of willingness to participate in public affairs. The respondents
were given choice options ranging from “almost always vote at elections” to “have
never voted.” The descriptive statistics of respondents are summarized in Table 24.2.

The level of knowledge on HLW issues was measured by asking respondents to
review thirteen statements about relevant facts and select the ones that they have
heard. They were also asked which of the thirteen facts they can explain to others.
The list of knowledge statements is given in Table 24.3.
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Table 24.3 Knowledge statements

Question number Statement

13–1 Nuclear power is generated when a steam turbine extracts thermal
energy produced by uranium nuclear fission

13–2 As of July 2019, the number of nuclear power plants in operation is less
than half of those before the East Japan Earthquake

13–3 Nuclear power generation produces radioactive waste

13–4 New regulatory guidelines were implemented based on the lessons learned
from the accident of Fukushima No.1 Nuclear Power Plant

13–5 Germany and Switzerland are planning to phase out nuclear power

13–6 France, the United Kingdom, and the United States will use nuclear
power as one of the primary sources of electricity

13–7 Japan is planning to chemically separate spent uranium and plutonium from
HLW to reuse as fuel

13–8 Finland does not intend to reuse spent fuel and adopts the ‘once-through’
policy

13–9 In the United States, Yucca Mountain was selected as a nuclear
waste repository site, but the Obama administration suspended the project

13–10 HLW is produced in reprocessing of spent fuel to extract uranium and
plutonium

13–11 Japan has not yet decided on the disposal site for HLW generated by nuclear
power generation

13–12 In July 2017, the Nationwide Map of Scientific Features for Geological
Disposal was published. It depicts scientific conditions that need to be taken
into account in siting a repository

13–13 NUMO is an organization in charge of geological disposal including
vitrification of HLW resulted from reprocessing of spent nuclear fuel

Attitude questions include 12 statements about Japan’s HLW management and
GDF siting processes. Respondents were asked to give their preference based on a
10-point Likert scale ranging from 1 “Agree” to 10 “Disagree”. Table 24.4 shows
the list of attitude statements. Variables are recoded so that higher values indicate
stronger preferences for MR.

A general survey of attitudes towards nuclear power has been conducted by the
Japan Atomic Energy Relations Organization since 2010, but it has not asked ques-
tions about stakeholder participation. In contrast, the JHLWScontains items thatwere
specifically designed to measure respondents’ preferred mode of decision-making
regarding the siting process, and their willingness to get involved in deliberations
with the government if such opportunities arise.

In the JHLWS, Q15-3 measures the preference for a referendum on the siting of
a GDF. Q15-6 is concerned with the respondent’s willingness to take part in deliber-
ations under a hypothetical scenario of a GDF planned in or near the respondents’s
community. Q15-10 asks whether the respondent thinks it is necessary for Japan to
have a mechanism through which the general public can take part in deliberations
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Table 24.4 Attitude statements

Question number Statement

15–1 Our generation is responsible for the disposal of HLW

15–2 If a GDF is planned in my community or nearby, I think I will approve the
proposal

15–3 In siting a GDF, a candidate community should have a referendum about
whether to accept it

15–4 The Japanese government should first decide whether it will continue using
nuclear power before selecting a GDF site

15–5 It is feasible to safely carry out deep geological disposal

15–6 If my community becomes a candidate site for a GDF, I would like to take
part in the debate regarding its acceptance

15–7 Deep geological disposal is the best solution for HLW disposal

15–8 Administrative agencies should work with elected leaders such as governors
and mayors for GDF siting

15–9 Administrative agencies should work directly with local residents for GDF
siting

15–10 There needs to be a mechanism through which the general public can
participate in deliberations about siting

15–11 GDF siting decisions should be left to the experts

15–12 Provided there is sufficient financial compensation, I think I can accept a
GDF in my community or nearby

on the siting. Together, these items constitute a scale measuring willingness to adopt
majority rule with greater participation than is currently implemented in siting policy
processes in Japan. Frequency distributions of these variables reveal that the respon-
dents support a referendum on the siting in the candidate community. 74.2% prefer
the referendum with a varying degree of support. 75.8% think that there should be
a mechanism through which the public takes part in the siting decision processes.
These results imply that a mechanism analogous to an MR-based CAB is likely to
enjoy wide public support in Japan. There is no evidence that the Japanese public
prefers CR or decision-making processes governed by a small group of experts. Only
7.1% fully support the statement, “The siting of a GDF should be left to experts.”

In short, frequency distributions suggest the untapped demand for participation by
the public in Japan. It opens up a newquestion: “Whowants greater participation?”Of
particular interest is the ambivalent role of knowledge as a correlate of the desire for
participation. The aim of NUMO’s many PR activities is to promote the knowledge
of a GDF. But that knowledge may spur citizen’s desire to participate in decision-
making and not just to acquiesce to NUMO’s plans. To account for the determinants
of preference of participation, a regression equation was estimated:

Participation = a + b(Knowledge : Nuclear)+ c(Knowledge : HLW)+ d(Voting)
(24.1)
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Table 24.5 Interest in
participation in GDF-related
deliberations (OLS
regression)

Coeffcient Std. Err

Nuclear 0.130*** 0.015

HLW 0.030** 0.014

Voting 0.024*** 0.004

R2 0.103

*p < .05 **p < 0.05 ***p < 0.001 (two-tailed tests)
Note: See main text for model details and controlled variables

Factor-based scaling was used to construct the outcome, participation scale from
the three variables (Treiman 2008). As for the explanatory variables, two dimensions
of the relevant knowledge emerge from factor analysis: basic knowledge about how
nuclear power generation works and knowledge of Japan’s policy on reprocessing.
Again, factor-based scaling was used to construct these two scales. The equation also
included a variable that measured a respondent’s voting behavior. It was included
to examine the relationship between a citizen’s desire for participation and voting
in national and local elections. Gender, age, education, log-converted household
income, marital status, and parental status were included as controls. The coefficients
are reported in Table 24.5.

The model estimates indicated that the preference for greater participation is
affected by knowledge of nuclear power generation, knowledge about reprocessing,
and voting behavior. Coefficients for these variables are all positive and statistically
significant. Altogether, the results of the JHLWS confirm that the Japanese public are
supportive of MR-based participatory decision making. Those who typically vote at
elections and those who are more knowledgeable about nuclear power generation
and Japan’s reprocessing program are more likely to prefer greater participation.

The results of the simulated workshop and the JHLWS provide us with two crucial
findings. First, there is interest in more participatory deliberations regarding HLW
decision-making. Nothing stereotypically intrinsic to Japanese culture—whether the
Confucian tradition, aversion to open conflict, or deference to elders—prevents its
people from preferring a participatory approach. The workshop results show that
the advantages associated with MR can be applicable to Japan as well. Moreover,
preference for greater participation and preference for MR (the latter proxied by
preference for a referendum) “hang together” well enough to construct a reliable
scale. Both sets of data have their own limitations: the workshop participants are a
small segment from the society of interest and by no means a representative sample.
Similarly, the survey studied only those with internet access and the ability to fill
out the questionnaire online, and thus it is not an accurate snapshot of the Japanese
people as a whole. These limitations notwithstanding, this chapter helps to provide
a better understanding of the universal applicability of MR and the rationale for
participatory decision-making for autonomous systems.
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24.4 Conclusion

This study attempts to gauge the effectiveness of decision rules for public and stake-
holder engagement in spent fuel and high-level nuclear waste management. Its find-
ings are three-fold. First, early or “upstream” public engagement, based on open and
transparent dialogue, is more likely to lead to an acceptable outcome for a variety of
stakeholders. Second, majority-seeking leads to optimal information processing and
concrete policy input from stakeholders, while consensus-seeking is less effective at
achieving those objectives. Third, upstream engagement and majority-seeking may
be fruitfully employed even in societies with diverse cultures and track records of
public engagement. We reach these findings through the literature review on engage-
ment strategies and formal decision-making theory as well as comparative analysis
of three societies that face the task of deep geological disposal.

While our goal was analytic rather than prescriptive, this work has potential policy
ramifications not only for topics facing large uncertainties and conflict but also for the
possible application to autonomous human–machine decisions. As we noted at the
outset, disposal and long-termmanagement of radioactivewaste is fraughtwithmulti-
faceted quandaries. The robust empirical findings presented here can direct policy-
makers toward practical measures to help better understand and navigate through
some of the difficulties. Future research must extend our exploration of the two
effective tools we have identified—upstream participation and majority rule—by
incorporating more observations from more diverse societies than were available for
this study.
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Chapter 25
Outside the Lines: Visualizing Influence
Across Heterogeneous Contexts in PTSD

Beth Cardier, Alex C. Nieslen, John Shull, and Larry D. Sanford

Abstract Open-world processes generate information that cannot be captured in a
single data set. In fields such as medicine and defense, where precise information
can be life-saving, a modeling paradigm is needed in which multiple media and
contexts can be logically and visually integrated, in order to inform the engineering
of large systems.One barrier is the underlying ontological heterogeneity thatmultiple
contexts can exhibit, along with the need for those facts to be compatible with or
translated between domains and situations. Another barrier is the dynamism and
influence of context, which has traditionally been difficult to represent. This chapter
describes a method for modeling the changes of interpretation that occur when facts
cross-over context boundaries, whether those contexts are differentiated by disci-
pline, time or perspective (or all three). We that processing Here, a new modeling
environment is developed in which those transitions can be visualized. Our prototype
modeling platform, Wunderkammer, can connect video, text, image and data while
representing the context from which these artifacts were derived. It can also demon-
strate transfers of information among situations, enabling the depiction of influence.
Our example focuses on post-traumatic stress disorder (PTSD), combining psycho-
logical, neurological and physiological information, with a view to informing the
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aggregation of information in intelligent systems. These different forms of informa-
tion are connected in a singlemodeling space using a narrative-based visual grammar.
The goal is to develop a method and tool that supports the integration of information
from different fields in order to model changing phenomena in an open world, with
a focus on detecting emerging disorders. In turn, this will ultimately support more
powerful knowledge systems for fields such as neurobiology, autonomous systems
and artificial intelligence (AI).

25.1 Introduction

The inability to combine information from different sources can have disastrous
consequences. By early 2001, US intelligence agencies knew that a small group of
Saudi nationals had taken flight lessons in Florida. However, officials did not discover
the false statements on the visa applications of these men or the manipulations of
their passports (Kean & Hamilton, 2004). Separately, a different agency tracked the
evolution of rumors following the crash of Egyptair flight 990, October 31, 1999.
The rumors had been sparked by a suspicion that the National Transportation Safety
Board, a US investigative agency, was mistaken in their belief that the Egyptian pilot
of this flight had driven his plane into the ocean as an act of suicide. An alternate
story emerged in the middle eastern streets, in which the pilot had heroically saved
thousands of lives by plunging the aircraft into the sea instead of allowing it to be
flown into Mecca by Mossad, Israel’s intelligence agency (Goranson, 2009). This
rumor incubated a conceptual structure that would seem unprecedented when it later
became a reality: a hijacked plane is crashed into a significant building as an act of
revenge. Unfortunately, these separate streams of information did not converge until
after September 11, 2001.

The 9/11 terrorist attack against the United States became a well-known example
of how the distribution of information across many forms and agencies can lose
important intelligence (Kean & Hamilton, 2004). The problem of communicating
information between different sources is also an issue in the domain of autonomous
systems, where there is an increasing demand for unmanned systems to collabo-
rate with humans and other forms of embodied artificial intelligence (Bayat et al.,
2016). In neurobiological research, the ability to model information from different
biophysical domains and scales would enable more precise and personalized treat-
ments (Noble, 2015). Our research was funded in response to the first domain and
now continues in relation to the second and third. In this work, principles of narra-
tive indicate how to combine information from heterogeneous contexts. A barrier
to automating this process is the way in which context is formally conceptual-
ized. This research addresses the problem by developing a modeling method for
aspects of context which are usually excluded from knowledge models: influence
and ontological heterogeneity.
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How do we integrate information from very different frames of reference? Our
new 3Dmodeling platform was designed to model how systems combine into mega-
systems. The prototypematures a graphical vocabulary from prior work which repre-
sents the transformations of meaning that occur when a fact shifts between situations.
Here we describe the new affordances made possible by that platform, beyond the
original 2D method produced in Apple’s Keynote (Cardier, 2013, 2015; Cardier
et al., 2017; Shull et al., 2020). By itself, this visualization system does not solve the
problem of ontological heterogeneity, but it does make visible the novel operations
required to integrate information from it, endowing the graphical grammarwithmore
dimension and capability. This feeds our theoretical understanding of the operations
required.Theultimate purposeof these visualizations is to beused in conjunctionwith
formal methods, one of which is described elsewhere (Cardier, 2013; Cardier et al.,
2017;Goranson et al., 2015). In this role, amodelingplatformsuch as thiswould serve
as an interface for a reasoning system that supports open-worldmodeling—modeling
in which all information cannot be known in advance.

The Wunderkammer prototype was developed by a team based at the Virginia
Modeling, Simulation and Analytics Center (VMASC) at Old Dominion University
(ODU). It can accommodate video, images, text and semantic information. The
immersive capabilities of Unity 3D allow those various modalities to be connected,
and the resulting models can be animated and zoomed through. The new capabilities
it adds beyond the 2Dmethod are multi-model modeling, zooming and the depiction
of influence through these different operations. These new capabilities are described
here, along with indications of the direction of further work.

Our example is post-traumatic stress disorder (PTSD), which is chosen because
the interaction among fields with differing ontologies (psychology, neurology and
physiology) is well-documented and critical to effective intervention, but difficult
to represent. That information framework was supplied by a team in the Center for
Integrative Neuroscience and Inflammatory Diseases (CINID) at Eastern Virginia
Medical School (EVMS). PTSD also manifests as a narrative, in terms of the internal
narrative that a sufferer articulates to themselves, as well as the story they share
with their therapist. The ‘narratives’ in our example are drawn from a case study
concerning Mike, a 32-year-old war veteran who was traumatized when working as
a medic in Iraq (Hurley et al., 2017). We explain the key features of Wunderkammer
using the example of PTSD to indicate the kinds of operations needed to bridge
multiple situations and extract coherent intelligence using a systematic method.

25.2 Defining and Representing Context

Context is conceived according to a spectrum. At one end are the conceptualizations
of context which are easier to implement, because they align with the capacities
of formal representation (Jahn, 1997), such as the works of Minksy (1975), Schank
(1995) and Schank and Abelson (1977). In these models, context is a closed subset of
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reality, with a limited scope and well-defined entities. It is difficult to transfer infor-
mation among heterogeneous platforms which use these kinds of representations of
context because a connection between them depends on the terms in different refer-
ence frameworks being the same. The problem is well-established in ontological
interoperability (Walls et al., 2014), biological multiscale modeling (Noble, 2015)
and autonomous systems (Bayat et al., 2016). Unfortunately, this inability to track
real-world phenomena across different representational boundaries is a barrier to
modeling how disorder emerges and influences existing situations.

At the other end of the spectrum is lived context. This notion of context is anchored
in human perception, in the way humans notice the culmination and transformation
of real-world elements. This kind of context is ‘always someone’s construction’
(Krippendorf, 2019, 40), an interpretation drawn from a subjective perspective on
the open world. That perspective continuously adjusts the name and implications
of everything it perceives as the swim of reality is carried along by unfolding time.
The elements which populate this dynamic interpretation can be anything—physical,
social or conceptual—and the reference frameworks for these forms of information
can include any context, regardless of how different the scale, time or ontological
representation. Without those multiple contexts, a model which includes cause and
effect will eventually break, as causal influence moves through scales and terms
which do not translate from one situation to the next. Devlin describes the challenges
of representing open-world context as one in which ‘the horizon of understanding
continues to recede with every cycle of increased explanation ... the task is endless’
(Devlin, 2005, 10).

This dynamism is difficult to capture with an objective formal generalization,
which is why implementable formalisms of context tend toward the first conceptu-
alization rather than the second. The problem of formalizing a dynamic and limited
perspective was first observed by Hume in his 1748 treatise, An Enquiry Concerning
Human Understanding, which tackled the issue through the lens of modeling causal
influence. Hume asserted that a formal system such as logic cannot objectively
capture cause and effect because an entity might bear one name or composition at the
beginning of a process but have transformed on both counts by its end (Hume, 1748,
70). We account for these evolutions by using the limitations of context identified by
Devlin to address the issue raised by Hume. Rather than render context as a static
and objective ontology, we present it as an artifact of subjectivity—a limited onto-
logical scope that changes as more information about the world emerges. Humans
use narrative structures to describe and reason about this dynamism. This makes
narrative operations a good vehicle to illustrate this process.

As narrative provides critical aspects of this method, it is worth taking a moment
to examine what is meant by the term ‘narrative’.
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25.2.1 Defining Narrative

Narratologist Gerald Prince defines a narrative as an event that causes a change of
state (Prince, 1973). This is a good starting place for our use of the term, as the
mechanisms of state change are central to the problem of transferring information
among contexts. However, building on a narratological definition can be misleading,
as this research is not narratological in its disciplinary scope. Structuralist narratology
generally focuses on the relationship between character, event and plot.We anatomize
narrative differently to leverage its role as a system for reasoning-through-change.

Our conceptualization of narrative instead draws from cognitive narratology, in
which stories are analyzed as ‘strategies for organizing and thereby making sense
of experience’ (Herman, 2001, 132). Our method focuses on the strategies used by
stories tomake sense of experiencewhich is drawn from ontologically heterogeneous
situations. During these narrative operations, conceptual structure is incrementally
modified to reveal how causal agency emerges and provokes transformation. High-
level storytelling structures such as analogy and ambiguity facilitate these transitions,
blurring one definition into another, or creating new conceptual blends frommultiple
conceptual frameworks (Fauconnier & Turner, 2002). Those networks establish the
causal affordances which are possible in that context—affordance being the ‘possi-
bilities for action opened up by the overall layout and dynamic unfolding of a context’
(Herman, 2000). In turn, these channels of affordance inform the mental model of
the reader, creating a map of the available paths through the world. We visualize the
formation of these affordances by explicitly illustrating them. The bridging opera-
tions are our focus because they facilitate the transference of information from one
context to another. The components of these bridging operations are illustrated in
the taxonomy shown in Figs. 25.1 (for 2D) and 25.2 (for 3D).

Fig. 25.1 2D Taxonomy
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Fig. 25.2 3D Taxonomy

Our description of narrative can also be related to logic because the structures we
visualize will be used to transition among general ontologies with a logical structure.
Logic most easily builds knowledge systems in which the meaning of the terms do
not change. It is a system in which the identity of its elements remains consistent
and coherent through all operations, operations that are mathematical in nature. By
contrast, narrative is a system that tracks themeans bywhich existing rules are broken
and adjusted to form new coherences. It builds knowledge structures that are always
in the process of transition. In this research, the structures of interest are the narrative
operations that enable adjustment across logical states, bridging one to another.

Several features of narrative are reproduced in the graphical vocabulary of this
method.Thefirst feature is that context is a limited and subjective network of informa-
tion. The second is the continuous generation of new identities for these networks—
the way in which one name can become another. The third is the transitions between
states whichmake that possible. Finally, there is the capacity to integrate information
from numerous ontological frameworks, even when they are heterogeneous. Each of
these narrative features is represented as a mechanism in our modeling environment.

Given these narrative-based factors, we define an ontological transition as the
transfer of influence between fundamentally different knowledge structures, whether
that transfer is represented as semantic networks, or structures with more dynamic
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forms of information such as energy or flow, as described in previous work (see
Cardier et al., 2017). The transfer occurs regardless of representation, amongmultiple
contexts at a single scale, multiple scales within the same context, andmultiple scales
within multiple contexts’ interactions. In our work, these transitions are between
underlying ontological networks.

A causal transition is the transfer of influence between two or more different
configurations of the above, where one structure is imposed on another such that the
latter is changed. It concerns not only the description of event succession but also
influences among them, which is sufficient for transfer to occur, according to a rela-
tionship of affordance. A modeling environment that captures this structural impo-
sition could advance the ability to predict future events according to prior patterns.
This work aims to build that foundation.

25.2.2 Surrounding Literature

This work has theoretical ancestry in the fields which informed the original method,
making it possible to track contextual transitions: cognitive narratology (Herman,
2002, 2017), discourse processes (Gentner et al., 1993; Trabasso & Sperry, 1985),
the philosophy of causality (Einhorn & Hogarth, 1986; Murayama, 1994) and in
the philosophy of context, situation theory (Barwise & Perry, 1983) and layered
formalism and zooming (Devlin, 1995, 2009). The rationale behind that foundation
is discussed elsewhere (Cardier, 2013, 2014; Cardier et al., 2017; Goranson et al.
2015). With the new implementation, several other fields now bear on this work:
text visualization, 3D visualization and immersive design, technical communication,
rhetoric, and the semiotics of VR.

Text visualization and its sibling, semantic visualization, are focused on auto-
matically extracting meaning from large collections of unstructured text (Risch
et al., 2008, 155). The scope of these approaches ranges from systems that simply
present existing explicit information visually (such as word clouds), visualizations of
underlying dynamics (such as conversation analysis) and extends to visual presenta-
tions of analysis performed by artificial intelligence (such as knowledge graphs).
These methods are interfaces for interpretation, and like other implementations,
their conceptualizations are usually biased toward what computational methods can
easily capture, with a focus on explicit, easily detectable entities in the text, such
as keywords, places, people or events (155). Due to the importance of context and
implicit information in interpretation, it is easy for these systems to misinterpret or
omit critical real-world information, an issue made explicit by companies such as
Lexalytics (2020).

Some of these systems provide a dashboard to view and manage text, in which
a researcher can draw links between fragments of text, such as the well-established
NVivo andMAXQDA software packages (Tummons, 2014). In contrast, approaches
like big mechanism (Cohen, 2015; Kyndi, 2018) perform a deeper computational
analysis of more complex texts, such as academic papers, to produce knowledge
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graphs of their networks. This research is closer to our goals, in that it identifies
the nuances in texts rather than attempting an interpretation using the most general
definitions of explicit words. However, it still assumes a single homogenous and
general reference framework for those ontologies. We need to preserve differences
between ontologies—for example, the word ‘disorder’ does not mean the same thing
in psychology as it does in cancer research.

We also rely more heavily on the power of visual design than most of these
methods. An example of a like-minded approach is Lexomancer (Angus et al., 2013;
Angus & Wiles, 2018), which depicts the degree of interaction between conversa-
tional partners in an easy-to-parse 2D graph. In Lexomancer, the high abstraction
of the text requires the reduction of complex semantic information to a few param-
eters, such as the reoccurrence of individual words (Angus & Wiles, 2018). Lexo-
mancer uses that information to reveal a high-level pattern—the dynamic interaction
between interlocutors—and is thus able to reveal whether their conversational topics
involve an equal exchange of ideas or the dominance of one or more parties. Like
Lexomancer, our tool records more hidden knowledge than is otherwise possible.
However, rather than using visual design to track the recurrence of explicit terms,
our method demonstrates how every time the same explicit term is used, it means
something different each time.

The study of immersive design is also important to this work and entails several
disciplines, including technical communication, rhetoric, human–computer interac-
tion and new media studies. A common goal among these domains is the effort
to codify interactivity and interfaces across structures of user suasion, information
exchange, flow and agency. They also establish frameworks for the meaningful study
of technical systems and their impact on user experience (Carnegie, 2009). However,
each discipline tends to align questions of both ‘immersion’ and ‘design’ along the
objects of study central to their own fields, and concepts of interactivity remain
highly volatile as new technologies introduce entirely novel schema and paradigms
of immersion and integration every year (Tham et al., 2018, 50–54).

Our own approach focuses on semiotic frameworks as a means of under-
standing interactivity and its role in information exchange, imposition of bias
and shifting workflows for practitioners (for instance, Barricelli et al., 2018). We
also design toward standards from the burgeoning field of human–computer co-
creativity. Co-creativity provides highly applicable frameworks for tools and envi-
ronments providing ‘a middle ground between autonomous creative systems, which
are intended as the sole shepherds of their own creativity, and creativity support
systems, which instead facilitate the creativity of their users’ (Kantosalo et al.,
2020). By enhancing knowledge modeling with this prototype, we pursue a more
robustmetacognitive visibility and the formalization of conceptualmodels that reflect
domain expertise by users, increasing a user’s ability to discover what they know.
This is in line with the best data practices of intentionally designed information
systems in support of each other.

The Wunderkammer framework thus informs both design and analysis of the
viability of that design, allowing both the researcher/modeler and the analyst to better
understand the provenance of insights as well as map the communicative structure
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and power of the virtual environment to the separate intents of both the user and
the system itself. This formalizes what Marini et al. (2012) refer to as ‘psycholog-
ical fidelity’ rather than physical fidelity. Wunderkammer’s designed environment
does not represent an immersive map of ‘real’ models but instead provides an inter-
rogatable model of ‘realized’ territory within the narratologist’s own structures of
understanding. AligningwithCarnegie’s assertion that the interface serves as a ‘locus
of power’ which is ‘not natural or inevitable’ in its designed form, our goal is to use
the interface to create immersion within thoughts and processes rather than within
experiences and spaces. This fosters co-creativity through an immersive creation and
consumption of narrative information.

Extending from this, the semiotics ofVR recognizes that themimetic and commu-
nicative qualities of VR are a system of signs like more traditional modes of commu-
nication, such as text or film (Belanger, 2009), but with the added dimensions of
immersion and interactivity (Steuer, 1995, 46). This field is still emerging and draws
from related disciplines such as game design, communication theory, rhetoric and
psychology. Given that we were designing a new graphical grammar in immersive
space, we drew on insights from both these fields.

We now explore how these ideas can more fully represent the example of multi-
system interaction in PTSD.

25.3 PTSD Example

Currently, a fully integrated model of PTSD only occurs in the mind of an expert
researcher. Our aim is to make more of the expert’s knowledge explicit in a modeling
environment. Our example followsMike, a 32-year-old veteran of the Iraq war, as he
undergoes therapy for a trauma that occurred when he tried to save a fatally injured
soldier (Hurley et. al, 2017). His therapy reveals older traumatic events which feed
the wartime trauma—discovering these feeder events is a part of the therapeutic
method for the treatment of PTSD during the ‘history’ stage of therapeutic analysis
(Menon & Jayan, 2010). For Mike, the most important of these events is an incident
from his childhood when his father moved out of the family home, telling Mike that
he was now responsible for his mother. It also reveals that Mike has been struggling
to relate to his own wife since returning from Iraq.

To present this information, elements from multiple contexts are brought
together—emotion, memory, stress and the central nervous system functioning. Four
short scenes are modeled: one for the childhood trauma, one for the wartime event,
one for an event in whichMike’s son is involved in a car accident (a scene invented by
us to illustrateMike’s report ofmartial conflict) and a PTSDpanic attack. These sepa-
rately modeled scenes are then combined to show how the influence from different
events affects Mike’s behavior over time and informs his emerging, disordered
condition of PTSD.

Some new features of PTSD are included in this model, which are currently not
visualized by other methods:
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– Mike’s traumatic fear response includes emotion, fearful memories, stress
responses and the central nervous system, which integrates these elements across
brain circuits. The degree of influence these elements have on each other and
on Mike’s life changes during each subsequent featured event. Our graphical
grammar allows these influences and their effects to be visualized as they change
over time.

– Trauma can hone and recast other difficult experiences which have occurred
over many years, going back to childhood. The immersive space allows us to
connect multiple models to depict influence throughout these different times.
Our method can also indicate which events or mental narratives directly feed the
current trauma.

– PTSD is a multi-scale trauma. The affordances of Unity enable us to zoom
between these scales, viewing the micro and macro implications. At the same
time, we also move from one disciplinary ontology to another.

– An overview of the whole system is possible.
– Insight arises as a viewer moves between existing knowledge frameworks.

Zooming ‘outside the lines’ enables the discovery of structures that might be
visible in one context but not another. In our example, the interaction between two
primary features—individual perception and central nervous system function—is
explored within the context of PTSD-associated panic attacks. This exploration
makes visible a causal agent which was not revealed by the originally modeled
elements.

– The tool thus allows a PTSD patient to become the modeler and exercise agency
over the presentation of their story. The therapist could also become a co-modeler.
PTSD therapy includes a focus on particular memories, whether from the trau-
matic event or earlier when the roots of the fear response first became estab-
lished. PTSD also entails the current day, where its effects are felt, and the future,
which the sufferer becomes increasingly anxious about. Photos, videos, text or
verbal recollections of these events can be imported, arranged and annotated
in the Wunderkammer environment, making all these dimensions visible to the
PTSD patient and their therapist, who collaborate to modify the disorder, both
psychologically and graphically.

A means of representing these features is now explained.

25.4 Representations

Shifting from a static notion of context to a dynamic one requires a shift in modeling
conventions. Theoriginal 2Dmethod contributed dynamismand a limited ontological
scope to a conceptualization of context, making a new visual grammar necessary.
Jumping to an immersive representation of those features is a more dramatic stretch
still. In this section, the foundational 2D system is briefly explained and the 3D
version, with its additional capabilities, is described alongside it.
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It should be noted that when performing these operations, the Wunderkammer
platformuses amuch fuller range of human signaling than the usual desktopmodeling
platforms. Wunderkammer can be controlled by voice, gesture, eye gaze, head gaze
and hand controllers. These new features add dimension to the experience of building
and reading the visual grammar. As Bret Victor observes, including more modes of
human intelligence expands our imaginative space beyond the methods enabled by
mediums based on 2D screens—‘of all the ways of thinking that we have, we’ve
constrained ourselves to a tiny subset’ (Victor, 2014, 24:25). By building a modeling
platform inside a real-time game engine’s environment, we have added movement,
gesture, volume, time and speech to the expression of thought.With that, an enhanced
geometric understanding is also provided (El Beheiry et al., 2019, 1315). These new
dimensions also introduce new design considerations, which will now be discussed.

25.4.1 Visual Grammar: Taxonomy

Our method visualizes the mechanisms of contextual transitions: boundaries, influ-
ence and limited networks. The 2D version of this tool is produced in the application
Keynote, which allows frame-by-frame animation and so can depict the required
dynamism. These are used and expanded in the 3D version.

Nodes and edges are fundamental visual units, drawn from knowledge graph
theory to represent concepts and relationships. A key difference from the usual repre-
sentations of these, however, is that our nodes also function as contexts. Any node
can become a context if you zoom in and examine how it is composed. This aspect of
context was originally noted as a problem by Devlin (2009). Our method embraces
zooming as a feature of how open-world reasoning operates.

Our conceptualization of context is also distinctive for the way its limited scope is
built into the rationale of the system. The notion that a subjective context is limited
is foundational in humanities domains such as cultural theory but is usually avoided
in the sciences, where generalization is the goal. Devlin acknowledges this circum-
scribed quality, defining a context (which he refers to as a situation) as ‘a limited part
of reality’ which includes the relations between its elements (Devlin, 2009, 238). In
our visual grammar, each context is represented as a discrete network of information
surrounded by a border. In prior 2D work, this border was referred to as a ‘box’. To
make it easier to conceive of the volumetric implications in Wunderkammer, the 3D
instance is described as a container here. The graphical grammar for 2D can be seen
in Fig. 25.1, and the 3D version is shown in Fig. 25.2.

Containers can house any entity and the immediate inferences it provokes. These
entities and their associations are also represented by nodes and lines.

The container’s edge thus has numerous functions. This edge—which forms a
skin around the enclosed network—represents an item’s name and identity. Thus
there are two levels to this representation: the name and its ontological composition.
This format enables an identity to change over time—for example, Mike as a ‘child’
can become Mike as a ‘man’ by preserving some entities from the first context
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to the second, while changing others. The representation of containment is also
key to conveying how one context can be understood on another’s terms, during
interpretation.

Our definition of context as a limited ontological network is thus further refined as
a ‘derived’ ontology (Cardier, 2013). Each context represents a newderived ontology,
even if only one element has changed from one to the next. When information
moves between contexts, it becomes part of a different ontology. This shift is how
its interpretation changes with shifts of time, perspective or context (Goranson et al.,
2015). Attributions of causal agency change with it (Einhorn &Hogarth, 1986). This
change has interesting implications when multiple contexts are connected, which
will be discussed in a moment.

If a context persists as a frame of reference for the length of a model, it is repre-
sented as a container with an open end (see the item ‘container’ in Figs. 25.1 and
25.2). For example, if ‘psychology’ is a continuous point of reference for interpreting
incoming information, it will be represented as a continuous container inwhich infor-
mation can constantly unscroll. There is a precedent for this representation in business
process models, in which a persistent context is known as a ‘swim lane’. For ease, we
also refer to this form of a container as a swim lane. Our swim lanes have the same
attributes as containers, except they have one open end. An example of how swim
lanes are laid out can be seen in Figs. 25.3 and 25.4. The taxonomy of operations in
Figs. 25.1 and 25.2 operates over the swim lanes in Figs. 25.3 and 25.4, respectively,
stitching together information from multiple contexts.

Fig. 25.3 Layout—multiple swim lanes run alongside each other, making it easy to connect them.
The semantic products of that connection then collect in the ‘interpretation’ swim lane, which acts
as a federating frame of reference overall
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Fig. 25.4 3D representation of the layout

This brings us to the feature of multiple contexts. In the open world, numerous
contexts can interact to produce an emergent network, which serve as the reference
when interpreting a particular situation. For example, the node ‘Early psychological
issue in which paternal masculinity lets Mike down’ appears in all four modeled
scenarios. It is the ancestor of the later situations in which PTSD is emerging, and
yet those later PTSD-related experiences also inform which aspects of that node’s
structure become salient later on. That container is therefore acted on by past and also
future states. Given that this node appears multiple times and signifies a different
interpretation in each, it has numerous dimensions of influence. These overlap to
produce a particular structure, which anchors Mike’s emerging disorder. It will be
critical that the therapist understands and counteracts this structure during therapy—
which she does by demonstrating to Mike that he did not unduly let down the soldier
who died under his care because he did the best he could (Hurley et al., 2017).

In more sophisticated texts, such as literature and poetry, multiple contexts can
simultaneously bear on the interpretation of a fact. For example, the title of the story
Red Riding Hood as a Dictator Would Tell It connects the contexts of Red Riding
Hood and dictator in an explicit relationship, where one context uses the terms of
another to communicate, and in the process reveals implicit intent (Cardier, 2015).
Relationships among contexts such as these define how a fact should be decoded in
a specific situation.
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25.4.2 Visual Grammar: Dynamic Operations

Influence is another fundamental feature of interpretation and requires special
description due to its dynamism. The term influence refers to the way a situation
imparts its structure to another situation. A context (limited ontological network) or
node which exerts this agency is designated as ‘governing’. In the visual represen-
tation, that structure becomes infused with a blue color to indicate its activity (see
Figs. 25.1 and 25.2). Additional nodes are then produced from that influence, which
is recorded graphically.

Our tool also visualizes influence as an actual transfer of force, each instance
of which is represented as a discrete ‘funnel’. A funnel acts like a moving arrow,
indicating the direction in which influence flows, and so it is a dynamically animated
operator. When a funnel strikes an object, its subsequent change in structure reveals
the consequences of that influence. Changes are expressed in the arrangement of
arrays of nodes. Visually, funnels also provide a way for the user’s eyes to be directed
in a heavily populated space.

In the 2D representation, funnels were responsible for the majority of the visual
action. In the 3D representation, they are currently more static—an issue that will
be resolved in the next version. Tangibly representing influence is key to modeling
context in an open world, due to the way contexts must continually interact and
evolve to keep pace with reality’s swim. Influence can also be a lens through which
to understand causality, where the topology of one situation informs the next.

Any node/container can be nested.Nesting is when one container is placed within
another. All the objects within the first container are then subject to the influence of
the second, constrained by the structures of the newcontext they arewithin. In a sense,
nesting is another representation of influence, as the nested ontologies operate on the
derived ontologies represented by their containers (contexts). Nesting is shown in
Fig. 25.5a–c, as one container inside another. These are recorded byWunderkammer
as parent and child nodes.

Besides conveying contextual influence, a containing function makes it easier
to maintain cohesion between elements in a particular situation, because when the
container moves, all objects within it move as well, unless altered. For example,
the node named ‘Significant psychological issue learned in childhood’ is filled with
smaller networks containing the personal history information collected by a therapist
before treatment. That cluster reappears as a self-contained unit in all four scenes
from Fig. 25.6a–d.

More information can be communicated in the 3D version, but this also compli-
cates readability when many containers appear at the same time or occlude each
other. Another advantage of the 3D instance of containment is that it provides a
greater sense of enclosure than the 2D version. This containment is reinforced by the
physical action of placing one node inside another. Another advantage is the structure
that is produced has more dimensions, which can signify additional parameters if
needed. See Fig. 25.5c for a visual comparison.
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Fig. 25.5 a 3D representation of the process of nesting—the child node (upper left) is selected
(upper right) and placed inside the parent (bottom two frames). b Observing the 3D representation
of nested containers with expanded volumes from different angles. c Comparison between 2 and 3D
nesting. Top left, a 2D traditional representation of nested objects. Top right, a forward perspective
of a 2D to 3D transformation using similar tones and scale. Bottom left, a right perspective of a 2D
to 3D transformation using similar tones and scale. Bottom right, a left perspective of a 2D to 3D
transformation using similar tones and scale
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Fig. 25.6 a Clinical history—describes the connection between the initial trauma of Mike’s father
leaving and the later wartime trauma. These connected nodes reoccur inMike’s perception of subse-
quent events. bKey trauma—Mike is unable to save the fatally injured soldier in Iraq. c Emergence
of PTSD—Mike’s wife and son are involved in a car accident. d Established PTSD (in which a solid
signature structure replaces the tentatively dotted outline in Fig. 25.6c)—a panic attack is triggered
by a slamming door
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Fig. 25.6 (continued)
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25.4.3 Technical Foundations

The container system is managed by six sub-systems that use existing mathemat-
ical concepts of the planar convex hull algorithm (Kirkpatrick & Seidel, 1986) and
directed graph theory (Goldberg & Harrelson, 2005). This algorithm is then blended
across the user input actions to allow an easy user experience that can work in any
3D reality space. The user interface is designed around and built on top of theMRTK
SDK, the Microsoft mixed reality toolkit, which is an open-source software under
an MIT license. This toolkit allowed us to build input mechanisms that were more
responsive to human movements. The base programming language is built on top of
the C#.NET platform (created byMicrosoft) which is used within the game platform
Unity3D.

25.5 Examples

Special capabilities were required for the PTSD example, which is a disorder that
spans multiple scales and modes of information. Perhaps the most significant advan-
tage of the 3D implementation was that the Unity environment could handle entire
models as easily as the 2D method handled containers and nodes. The 3D imple-
mentation added an extra level. That additional level also made it possible to show
influence among multiple models. This capability took on new importance when
modeling PTSD, due to the way a traumatic fear response can be fueled by multiple
incidents and times. There was now a way to represent this accumulated structure.

This spatial benefit is one of the four new capabilities made possible by our
3D representational approach. These four capabilities are: building multiple models,
linkingmultiple models, zooming and signature structures. The 2D and 3Dmodeling
methods handle these capabilities to differing degrees.

25.5.1 Four Multi-disciplinary Models

It is currently difficult to demonstrate how a traumatic experience can feed off
previous events in a survivor’s history, refining the triggers for the panic responses
they experience. To show amore detailed illustration of those emerging and evolving
conceptual architectures, we generated four scenes from the Mike example. Each
captures a particular traumatic event from Mike’s life. At the end of each scene,
a state of disordered health is presented as a constellation of relationships. These
finishing states are then connected to each other in the multi-model model.

The four scenes are as follows: (1) the childhood trauma, (2) thewartime traumatic
event, (3) an incident where Mike’s son is injured, and (4) an argument between
Mike and his wife in which he is experiencing established PTSD. In Fig. 25.6a–d,
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four separate 2D visualizations are shown, one for the final state of each scene. At
present, the 2D keynote drawings are still a clearer way to represent the fine details
and connections among nodes (an issue that will be discussed later). The integration
of these models is then shown in the Unity 3D environment, in which it is possible
to demonstrate emergent connections between models. The combined model is only
possible in 3D.

The first scene, shown in Fig. 25.6a, shows Mike’s clinical history. It focuses on
his earliest trauma: when Mike was seven years old, his father told him he would be
separating from Mike’s mother and so Mike, as a child, would now be responsible
for her. This history was discovered by the therapist before she commenced Mike’s
therapy, as discovering past traumas is a stage of eye movement desensitization and
reprocessing therapy (Menon & Jayan, 2010). The most important aspect of this
structure is circled in Fig. 25.6a. It records how Mike is in good physical health but
poor mental health. It also records how this childhood experience with his father
feeds his state of poor mental health.

The second scene, shown in Fig. 25.6b, illustrates the fear experience which
provoked Mike’s PTSD—a mass casualty conflict event that occurred when a
Humvee struck an improvised explosive device (Hurley et al. 2017). Mike was in the
vehicle behind that Humvee and tried to save one of the two soldiers inside. The 2D
model records thatMike interprets this event using a kernel of the previous childhood
trauma structure, and so he feels responsible for the deaths of the soldier he is trying
to save. This kernel is again shown in the red circles which are nested within his
history. Each of these different contexts is indicated by swim lanes with those titles.

In the third scene, shown in Fig. 25.6c, the signs of PTSD begian to emerge
after Mike has returned from Iraq and is back at home in Tennessee. In this modeled
event, Mike’s 2-year-old son (which we have fictitiously named Bobby, for ease
of reference) is in the car when his wife has a minor vehicle accident. She reas-
sures Mike that the child is fine, but Mike does not understand how this can be the
case. When he hears the news, he immediately recalls the fatal Iraq accident and
his unsuccessful intervention. He experiences heart palpitations, shortness of breath
and a hot flash. These physical symptoms pass as the conversation with his wife
continues. Mike shouts at her but when she disengages, he recovers and apologizes,
and they reconcile. Privately, Mike recognizes that his reaction was not normal.

In our 2D model of this scene, the same kernel of childhood trauma appears
again, linking and fueling Mike’s fear reaction. It is indicated within the red circle
in Fig. 25.6c. The emergence of PTSD is indicated by the dotted outline, which
surrounds some characteristic elements. The dotted line is a simple representation
of a complex phenomenon—the panic response which comes with Mike’s traumatic
memories is not yet established as regular but he has experienced it a few times.Mike
does not yet feel a complete loss of control in which panic causes more panic. This
ambiguity means that Mike is eventually able to muster an appropriate behavioral
reaction and reconcile with his wife.

The dotted outline is the most important feature in this series of models, except
for the reoccurring kernel of trauma structure from his childhood. The dotted line
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signals thatMike’s disorder is a tentative or emerging context. As far as the visualiza-
tion is concerned, its actual shape is also important—that shadowy outline becomes
a signature for the emerging PTSD, which can be visually characterized and then
recognized in other situations. That shape is based on the structural affordances of
our method, so its repeated recognizability will signify similarity among situations,
to the extent that they register against our graphical system of entities and relation-
ships. That same shape appears in the final Fig. 25.6d, when PTSD is established.
This enables a user to easily correlate them. In future versions of this system, the
emergence of particular shapes could enable fast, high-level recognition of recurrent
processes. These ‘signature structures’ are discussed in Sect. 25.4.5.

This specific dotted ‘PTSD’ shape is possible to represent in Keynote but not yet
in Wunderkammer. The 3D instances of these figures were thus manually built in
Unity 3D and inserted to serve as an example.

The fourth scene, shown in Fig. 25.6d, shows that a signature shape of PTSD is
now established. The structure has fully emerged since the last figure. The encircled
kernel is still there, driving its structure. The benefits of allowing signatures to be
identified will be discussed in the section, ‘Signature Structures’.

25.5.2 Integration of Multiple Models: Model of Models

In the compound figures, these four models have been integrated. This connection
allows structures in each individual scene to be related.

The most important connection among the models is the encircled structure noted
above—Mike’s childhood trauma. It is a core channel of influence throughout all
of the situations, connecting similar memories and emotional responses across time.
This kernel is not the only reoccurring emotional structure. For example, in Fig. 25.6a,
Mike sees his father yell at his mother. This event influences two subsequent scenes,
shown in Fig. 25.6c and d, in whichMike yells at his wife while experiencing a panic
attack. Another reoccurring emotional structure relates Mike’s experience watching
a solider die in a vehicle to a later situation, in which Mike’s son is in a car accident
andMike cannot understand why the child is okay. These channels between multiple
situations are shown in the model of models—see Fig. 25.8a–c.

Figure 25.7 shows an early sketch of how the four foundational models were
intended to come together. Designed by Cardier, this sketch pushes the limits of
Keynote’s capabilities, with the connections only drawable using the sharpie ‘pen’
function because any other method made the images of the individual models glitch
and jump around. It represents a capability beyond what the 2D method is capable
of.

The finished product can be seen in Fig. 25.8a–c, instanced in an interactive
space. Not only can all the models be linked in an immersive Unity environment, but
the assembly can be explored from every angle and across time. Pragmatically, the
additional dimensionsmake it easier to illustrate how influence ismoving between the
different stages of Mike’s life. The details can also be easily zoomed and examined.
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Fig. 25.7 A sketch showing how four different models should be connected

Fig. 25.8 a, b and c These three iamges are snapshots which rotate around the integrated model
(which is composed of four different models)

Color makes the structures of influence stand out as they move between the different
scenes. The large assemblies within the contexts—and how they assemble with other
contexts—are only possible in a 3D space such as this.

The Wunderkammer prototype is capable of performing this assembly but not
easily, as this model of models is a new way in which the prototype is being used.
For this reason, these final images were generated in Unity 3D as a speculative
indication of what it can do. In both the 2D and 3D tools, we are reaching the limit
of what can be supported.

Integrating multiple graphical models in this manner indicates how to a higher
level of semantic interpretation can be visualized. When higher-level structures are
meaningfully connected, they produce conceptual structures similar to those which
might be drawn out in a literary analysis. For example, one repeated structure is
that Mike is struggling with being responsible for other people, due to his childhood
trauma. That motif is established because it appears in numerous situations. It is also
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Fig. 25.9 a, b and c Zooming into one of the models, gaining a closer and closer view

connected to another, in which Mike yells at his wife, like his father did with his
mother. This is a ‘theme’ which has started to emerge due to the features it shares in
common with multiple clusters of nodes. It is similar to literary analysis in that many
layers of meaning are connected across numerous situations and the way they operate
and repeat at such a high level.

25.5.3 Zooming

Zooming is a viewing process in which one area of the scene gets larger so that it
can be seen in more detail (Shneiderman, 1996, 339). Zooming is also an important
part of an exploration because it allows a network to be examined from perspectives
that might not have been anticipated (El Beheiry et al., 2019). It functions as an
intuitive ‘drill-down’ feature that allows a user to expand one aspect of that system
for closer scrutiny, or pass through one level of scale in order to view another.
Any container/node can be zoomed-into to reveal further nodes. Our application
of this feature is also directly linked to Devlin’s method for Layered Formalism
and Zooming, in which facts (nodes) are actually contexts (containers) viewed at a
different scale (Devlin & Rosenberg, 1996).

In the 2D Keynote, while zooming automatically is not possible, it can be
imitated using a frame-by-frame animation. In contrast, the 3D environment makes
zooming easy and powerful. Figure 25.9a–c gives a sense of how zooming works in
Wunderkammer. It is difficult to convey dimensional movement in the flat image on
this page, so a series of stills are shown instead. The experience of zooming is actually
more like being in an aircraft, flying through cloud after cloud of information.

Amore complex example of how zooming can be used can be seen in the example,
‘Sandwich Layers’.

25.5.4 Sandwich Layers

How do we integrate heterogeneous contexts? This question is best addressed by the
ability to examine the space between ‘sandwich layers’.
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New connections depend on finding new points of view. A change of perspec-
tive can be achieved by bringing in another existing context and using it to find
a different path through the available information. This principle has already been
described in prior work (Cardier, 2014, 2015; Cardier et al., 2020a, b). Another way
to change perspectives is to engineer an intermediary context using known informa-
tion, to enable a transition between states. During this process, a previous cluster of
information is adjusted in relation to a specific set of facts and problems.

In our PTSD example, a goal is to discover a bridge that can formally connect
two domains—‘psychology’ and ‘central nervous system function’—in a predictive
fashion. The relationship between these two domains is described in themedical liter-
ature. Psychologically, the panic attacks of PTSD can stem from the aggregation of
previous traumas, because they determine where a patient’s sense of control will fail.
The root cause of the panic attack is a change at the neurocircuit level which inappro-
priately engages fear responses—although these changes are not fully understood,
they likely involve interactions between the amygdala, hippocampus and prefrontal
medial cortex as well as other brain regions. Which disciplinary perspective is more
important depends on the reason for the enquiry.

Using the existing literature, we can populate details between our two presented
swim lanes, ‘psychology’ and ‘central nervous system function’ with reference to
Mike’s particular situation. The path of information in Fig. 25.10 was assembled
to bridge these two contexts. Mike’s physically experienced panic attack (from the
central nervous system) becomes a psychological panic attack because it causes him
to realize that he is not well. The associated network of facts can link these two
nodes in separate domains.

The sequence occurs like this. First, a trigger causes Mike to be afraid, which in
turn prompts his sympathetic nervous system to produce a ‘fight or flight’ response.
He experiences shortness of breath, increased heart rate and difficulty in concen-
trating. His parasympathetic nervous system, which would usually enable the body
to calm this response, is not appropriately activated by the central neurocircuits. The
sense of physical panic thus does not stop. An awareness of this causes Mike to
reflect on his past trauma and psychologically register that he is not well. It causes a
further sense of loss of control, increasing the sense of physical panic further.

This sequence establishes a causal chain in which general information is recast so
that it is specific to connecting the two example nodes. The two connected nodes are
‘Mike experiences panic’ (in the central nervous system context) and the node ‘Mike
knows the reaction isn’t appropriate’ (in the psychology context). This relationship
establishes a path of causal affordance which can be used predictively in situa-
tions with similar elements, such as other situations in Mike’s life. That sequence is
modeled in Fig. 25.10a–c. The model is shown in its 2D Keynote format due to the
need for readability. Figure 25.10b zooms close to show the chain of events that link
these two contexts.

The last of these images, Fig. 25.10c, reveals that the causal agent connecting
the two contexts is actually the absence of a process. The absence of a response
by the parasympathetic nervous system is central to enabling the causal chain in
which Mike’s physiological reaction is linked to his psychological reaction. When
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Fig. 25.10 a Zooming—this image focuses on the two fields which are connected in the yellow
PTSD structure. b Sandwich layer—a new chain of facts links the ‘psychology’ and ‘CNS’ contexts.
c Sandwich layer—within this view, a new causal agent is registered. Although this node appeared
in the initial slide, its causal importance was not identified in that context
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Fig. 25.10 (continued)

his physical panic does not subside, it causes a feeling of loss of control, which
Mike registers psychologically. The absence or suppression of something can thus
be a causal agent. We represent this absence using a tentatively dotted line, to show
where the process would have been under normal conditions. This absence bridges
the two nodes in question.

It is anticipated that more detailed versions of this feature could be used to under-
stand how to bring together different contexts across a range of fields that have
fundamentally different ontological foundations.

25.5.5 Signature Structures

The final feature is the signature structure—the term ‘signature’ refers to an overall
architecture captured by an aggregation of facts and their networks, a higher-level
design. That system of relationships can function like an analogy, making it possible
to identify structural similarities across heterogeneous situations even though the
individual entities in each might be dissimilar. In our case, signatures are based on
the relationships among semantic networks and our taxonomic choices.

In the Mike example, our signature structure reveals that PTSD’s signature struc-
ture is recursive. The panic which comes with PTSD is rooted in a sense that control
has been lost. This process can be triggered by an initial stimulus, such as the sound
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of a door slamming, which is depicted in Fig. 25.6d. Mike’s physiological reaction
to that sound is an involuntary panic attack. This attack causes him further alarm
because it increases the sense that control has been lost. Mike fears the fear reaction
because it means he is not well, which in turn causes more anxiety. This recursion
is illustrated in Fig. 25.10a as a loop that connects the ‘central nervous system’ and
‘psychology’ contexts.

Through these relationships, an overall signature structure is established. This
particular signature characterizes an introspective system that is able to register a
flaw in itself, but in doing so, compounds the effect of that flaw. It is not the actual
graphical shape that is important, because different visualization parameters would
likely result in a different physical area. What matters is the iterative and insular
quality of this system and how that is represented. In Mike’s case, this recursiveness
would be expressed in some form, regardless of how its key elements are presented.

In a future system, these signature structures could be used to characterize elusive
processes—for example, in social media, whenmany distributed followers parrot the
ideas of a single agent. Rather than try to analyze unobservable agents, activities in
these domains could be tracked using signatures. The ability to find overall signatures
would be a benefit to many domains. We encounter many of the same dynamics in
competitive cyber contexts and related ‘information fusion’ applications: implicit
influence, ontological misalignment and recursive influence. Of particular concern
are situations where reasoning is distributed in autonomous systems. In that case,
we lose the ability to have a global executive to manage the suitability of local
results, either by truth or trust metrics. A suitable solution may leverage this work
to model local influence and identify similar structures in distributed systems. In a
system with a formal back-end this system would also be able to automatically learn
new ‘signatures’, which are emergent contexts that can be re-used to identify other
situations, by extracting key aspects of relational structure and finding them in other
instances. This general approach is explored in a companion chapter in this volume,
where specific attention is given to trusted results in local closed reasoning but a
larger open world (Garcia et al. Chap. 13 in this volume). That work would enable a
formal implementation of the system described here.

25.5.6 Media

The 2D Keynote method is able to include text, photos, images and videos because
these are capabilities of Keynote. However, all such items needed to be small in order
to fit on a single keynote page. They are inserted and managed manually.

By contrast, Wunderkammer can turn any node into any media object and situate
it in a seemingly infinite space. Videos can be as large as actual movie screens. The
affordances of the Wunderkammer tool also have powerful implications for how
these media items could be further structured—for example, one movie could be
playing while it is physically inside another movie. In the PTSD model, 3D artifacts
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Fig. 25.11 Image showing the use of different media—3D brain, photos and text

such as a model brain were included. An example of how these are connected is
shown in Fig. 25.11.

In both tools, any of these objects can be linked to any other object, regardless
of the media entailed. However, Wunderkammer enables digital precision and the
possibility that this positional information can be included in a reasoning system
later. For example, the user can discretely and uniformly select points around an
object via a uniform sphere with points every 30 degrees from the center all the way
around. This feature results in approximately 96 connection points equally spaced
around a sphere, enabling structures to be highly nuanced. Later, these points will
be readable as coordinates by a back-end system. When shape and structure have
interpretive implications, this precision will be valued. The capabilities of the tool
thus lead to a new design implication: these positions need to mean something, in
order for them to be readable and processable by an intelligent system.

Wunderkammer has other features which increase its media capabilities. There is
an internal camera so that snapshots’ from within the model can be taken, as though
the user is in a physical environment. Given that a user’s hands will be occupied by
VR controllers and that users are likely to be standing, voice dictation capabilities
are also included to label the nodes. If needed, a virtual keyboard can be summoned
to input text.

Using these capabilities, we produced a model in which multiple disciplines and
modes are combined, and influences are shown between them.
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25.6 Discussion

This research is a step toward modeling influence among heterogeneous contexts,
using the example of a veteran’s PTSD which is informed by multiple traumatic
events. The new modeling platform, Wunderkammer, makes critical aspects of this
demonstration possible. It is a prototype, however, and as such, represents a first
attempt at what is possible. There are noted problems when the data design in immer-
sive spaces moves beyond visualization and into the robust analysis (El Beheiry et al.
2019) and some of these barriers arose during the development of this prototype. The
main limitations encountered were readability and dynamism; these are discussed
here. However, theworkwas robust enough and offered enough new affordances, that
a useful application of the result could be developed, in the form of a new modeling
environment for PTSD patients to document and annotate their past experiences, for
therapeutic purposes. This is also discussed.

25.6.1 Readability

A limit of theWunderkammermodeling platform is that it is both less technologically
accessible and more difficult to read than Keynote—see Fig. 25.12a and b for a
comparison between the two formats.

Fixing the readability problem is partly a design issue. A visual grammar should
be systematic, such that every placement has meaning—it is a group of ‘principles
that tell us how to put the right mark in the right place’ (Tufte, 1990, 9). General
methods for 2Dvisualization have been developed over such a long period of time that
‘visualizing data on a 2D screen is now a relatively standardized task and consensus
exists for navigation’ (El Beheiry et al., 2019, 1320). The design of our 2D method
leveraged implicit conventions, including a dependence on a fixed viewer stance, a
bounded ‘page’ view and an X/Y graph format in which information is registered
according to its position among the axes. A problem with 3D is that it adds two more
factors that are invisible in 2D representations: the moving perspective of the viewer
and the lack of a constraining frame. These two qualities make it difficult to ‘read’
the placement of data items.

There is thus a tension between traditional 2D modes of representation and the
nature of an immersive space, where a viewer’s stance is unbounded and constantly
moving. On the problem of positioning items, one solution would be to create a
systematic grammar of 3D objects that is custom for the immersive space, where
every part of the X/Y/Z axis has significance. Research with designer Niccolo Casas
explored what this might look like (Cardier et al., 2017, 2020a, b). With this in mind,
we partly addressed the problem by imposing a grid in the Wunderkammer space
which had a snap-to-position function, enabling objects to be aligned in reference to it
(Cardier et al., 2019). This alignment helped to regulate the space, but an underlying
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Fig. 25.12 a 2D depiction of ‘signature’ structure. The nodes, their relationships and their higher-
level structure are legible. b 3D depiction of ‘signature’ structure. This is the same structure as the
previous figure. The nodes, their relationships and their higher-level have a less visually precise
structure which is more difficult to read when zoomed out
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method to register the fine positioning made possible by a digital environment is still
needed. In addition, the problem of occlusion persists.

The issue of 3D objects obscuring each other increases as more objects are
assembled. This occlusion is partly due to their volume—when many 3D objects
are networked, it can give the impression of a crowded garage more than parsable
data. This effect is exacerbated when objects are nested because they can be posi-
tioned many layers within each other. As well, the possible novel ways of solving the
nesting problem that WunderKammer addresses through volumetric solutions still
present text layering problems. For example, other text rendering solutions could be
used but there are generally trade-offs. For example, instead of nesting the text with
the associated volumetric item(s), we could leverage the nested graph relationship
and bring all of the text to the front of the highest parent object. This capability would
help in one area of readability but at the cost of jeopardizing the overall structure.

One possible solution is to move between both 2D and 3D views. The immersive
space is needed to build massive networks with a variety of architectural affordances.
However,when reading that immersive space, the three dimensions could be rendered
into two. This would be a flat picture of 3D—an example of this can be seen in
Figs. 25.7a–c and 25.8a–c, in which 3D immersion is depicted in a flat 2D photo.
Another possible solution is that the graphics remain as 2D ‘threads’ in the 3D space,
so the physical space can support limitless entities but constrain the ways in which its
items are seen to relate to each other, and perhaps even enforce a particular viewing
position. Exploring these issues will be the subject of future work.

25.6.2 Dynamism

A significant problem that we wanted to solve with this prototype was the lack of
visualization space. The tool was thus quickly developed to accommodate massive
networks of structure and containers. Once this capability was established, however,
the problem of animating them came to the fore. Both the construction and interpre-
tation of dynamic structures were harder in an immersive environment than in a 2D
representation.

One reason is that 2D animation traditionally depends on a flat, constrained frame
of reference. Its successive and incremental changes usually occur in relation to a
bounded frame. That circumscribed space on the page gives a point of reference for
any shifts in the depicted shape, forming a lens. The limited scope enables a viewer
to understand what is changing and what is not. Keynote replicates some of these
properties, enabling a user to copy the last frame and make changes, and then ‘run’
the result to produce a ‘flip’ effect which animates the series.

Wunderkammer does a rudimentary version of this, in which a timeline can be
scrubbed to see different states of an environment flick past. However, it does not
permit the same amount of control due to scale, immersion and readability. On scale
and immersion: copying an entire environment (especially while within it) and then
making select changes in relation to another entire environment is not feasible. It is
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a bit like blinking between different homes, and during each teleportation, trying to
rearrange the furniture so that the two environments relate to the other. On readability:
recalling the position of nodes in order to incrementally adjust them is harder when
there is an additional dimension, in the form of the Z-axis.

These limitations may be resolved to varying degrees as the tool’s state advances.
However,we alsomust remain cognizant of howour framework for analyzing success
in modeling activity is bifurcated between the success of the immersive end-state
model and the success of the immersive modeling process. This likely merits addi-
tional study and consideration of the role of procedural modeling tools in various
stages of cognitive modeling.

In the next version of this platform, the animation capability will be re-conceived
in terms of an immersive space. Attention to the state-of-the-art animation software
will inform how the animation features can be developed. The game environment
Sony Playstation4 Dreams suggests how an easier approach to animation could be
managed in an immersive space, by animating items separately. Knowledge graph
tools such as Mindomo and Node Red Interface are capable of more easily creating
nodes and links which have a systematic appearance. Bolt Visual Scripting, Unity
3D’s plug-in which allows non-programmers to create game environments, offers
the potential of doing both a systematic visual vocabulary and animation.

25.6.3 Future Applications

Wedid not expect to produce afinished productwith this prototype, but this early form
provides enoughnewcapabilities that it could be appropriate for a related but different
purpose. It could be developed into an immersive interface that allows patients and
their therapists to jointly inhabit situations and histories in virtual reality, and arrange
them into networked structures, for the purpose of treating PTSD. This would build
on the work of Virtually Better and the Oxford VR social anxiety program, in which
veterans with PTSD inhabit generic situations related to their fear in order to regain
a sense of control. Wunderkammer would be a more personalized system, giving
patients and therapists an environment in which to structure their own narratives,
photos and videos and then annotate them, to reveal how key patterns emerged
through their lives. The goal would be to give a PTSD sufferer a greater sense of
control over the narratives of their traumatic experience and recovery.

A tool like this would use the functionalities we have developed to imitate internal
memory organization andnarrative-making.Our system’s ability to handle containers
canbe leveraged so that these artifacts canbe enlarged and stepped into, andpopulated
with photos or videos of remembered situations. Containers are also easy to step
out of—they are a controllable physical boundary that enables a user to distance
themselves from triggering situations and switch to an immersive safe space instead.
Inside the space, users would be able to take photos, write notes (these can be voice-
activated), import videos and link these items into narratives. These environments
and memories could be easily structured and annotated—for example, memories of
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a disappointing father, such as Mike’s, might be linked to an aspect of the traumatic
event he experienced, revealing how one fuels the other. Afterward, that cluster of
memories could then be shrunk into a small box and ‘put away’.

Patients and therapists could co-occupy this space, collaborating during therapy
to build healthier interpretations using the client’s own photos and memories. In fact,
the 3D Unity platform could even support remote or group therapy sessions, which
would be particularly beneficial for patients who live far from accessible services.

25.7 Conclusion

It is difficult to model the aspects of context which inform interpretation in an open
world: influence and the transfer of information between heterogeneous contexts.
We aim to capture these qualities by developing new conceptualizations of context
and new methods to represent them. This chapter discusses two methods developed
to achieve this, with a focus on new functionalities afforded by Wunderkammer, a
prototype immersivemodeling environment built by theVirginiaModeling, Analysis
and Simulation Center at Old Dominion University.

The 2Dmethod was developed in Keynote to capture aspects of open-world inter-
pretation that are not currently represented by text analysis. Its taxonomy added a
representation of context boundaries, influence and information transfer to tradi-
tional knowledge-representation conventions. However, that 2D approach could not
produce three of the four special features described in this chapter: linking multiple
models, zooming and signature structures.

Wunderkammer represented the first example of a 3D approach to our method
and added immersive and spatial capabilities which were not possible using the 2D
approach. These new capabilities extended the scope of what can be represented and
imagined in inter-contextual influence, such as limitless representational space, an
additional ‘z’ axis, whole-body interaction with the user interface and immersive
user visualization. It also added multi-modal media formats such as video, image,
voice and text, which can be imported, created, linked and arranged, enabling us to
replicate a wider spectrum of information as it is found in an open-world experience.
These multi-modal items could then be used to compose numerous situations, which
themselves be assembled into models of scenes. In turn, these could be connected to
show how influence evolves through numerous contexts over time.

Our example concerns PTSD, featuring information from psychological, neuro-
logical and physiological domains and integrating them to produce a fuller picture
of our example subject, Mike. We modeled four scenes fromMike’s life with PTSD.
These were connected into four models, which were then integrated into a meta-
model to provide a broader picture of causal influence across time. In the immersive
environment, it was possible to depict the influences between events at the relevant
different stages of Mike’s life. Higher-level structures such as this enabled a user to
see how ‘thematic’ similarities emerged across multiple heterogeneous contexts. It
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also made it possible for an overall ‘signature’ to be identified at a more abstract
level, to discern whether a disordered pattern was emerging.

Combining multiple heterogeneous models in the same virtual space is a step
toward a fuller representation of the influence among heterogeneous contexts. The
new features presented indicate the kinds of operations needed to model heteroge-
neous information from the openworld. In future work, this will be applied tomodels
of information transfer in autonomous systems, social media, artificial intelligence
and PTSD modeling.
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