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Abstract. People affected by diabetes are at a high risk of developing diabetic
nephropathy, which, in turn, is the leading cause of end-stage chronic kidney dis-
ease worldwide. Predicting the onset of renal complications as early as possible,
when kidney function is still intact, is of paramount importance for therapy selec-
tion due to existence of a class of antidiabetic agents (SGLT2 inhibitors) with
known nephroprotective properties.

In the presentwork,we study the anthropometric and laboratory data of 28,955
diabetic patients followed for a median of 6.6 years (IQR 4.7–7.8) by 14 Ital-
ian diabetes outpatient clinics. We develop a deep learning model, based on the
incorporation of variable-length longitudinal baseline data via recurrent layers,
to predict the onset of impaired kidney function (KDOQI stage ≥ 3). We adopt
a multi-label output-coding system to address the irregularity and sparsity in the
sampling of endpoints induced by the real-life structure of the data.

Using the cumulative/dynamic AUROC with respect to a variable prediction
horizon of 1 to 7 years, we compare the proposed model against the predictor
of imminent deterioration of kidney function used in clinical practice, i.e., the
estimated glomerular filtration rate (eGFR), and a set of year-specific logistic
regressions trained on a single baseline visit.

The proposed deep learning model generally outperforms both benchmarks,
especially in themedium-to-long term, with AUROC ranging from 0.841 to 0.895.
Supplementary analyses confirm the effective encoding of sequence data within
the network.

Keywords: Diabetes · Kidney disease · Predictive modelling · Recurrent neural
network · Routine clinical data

1 Introduction

People affected by diabetes, a chronic, incurable disease characterised by elevated blood
glucose concentration levels, often experience a broad range of macro- and micro-
vascular complications. Among the latter, diabetic nephropathy is the leading cause
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of end-stage chronic kidney disease (CKD) worldwide [1]. Indeed, it is estimated that
the prevalence of CKD among people with diabetes may be as high as double that in
the general population [2]. Key intervention targets include improvements in glycaemic
control, blood pressure, and lipid profile, which, combined with frequent monitoring via
routine check-ups, appropriate therapeutic choices, and positive lifestyle changes, have
been shown to delay the onset and slow the progression of diabetic nephropathy [3, 4].
Recently, a novel class of antidiabetic agents known as sodium-glucose cotransporter 2
inhibitors (SGLT2is) have demonstrated marked nephroprotective properties in diabetic
patients with pre-existing albuminuria or reduced estimated glomerular filtration rate
(eGFR) [5–8]. However, as a much greater number of diabetic patients with preserved
kidney function would need to be treated with SGLT2is to prevent even a single case
of nephropathy [5, 9], suboptimal resource allocation remains a concern, and there is
no clear indication for specific CKD-preventing therapies in subjects at non-immediate
risk.

In light of these considerations, it is apparent that early prediction of impaired renal
function is a crucial target with notable ramifications not only on individual quality of
life, but also on resource allocation with respect to the early identification of potential
candidates for innovative anti-CKD therapy. Recent research in this direction has high-
lighted that machine learning models based on routinely acquired real-world data have
a great potential as tools to aid in the prediction of future CKD [10, 11]. Oftentimes,
however, data collection objectives for clinical practice and model development do not
align. This is the case, e.g., of routine check-up visits, where different batteries of labo-
ratory tests are usually performed at a physician’s discretion, resulting, on the one hand,
in the potentially advantageous acquisition of additional longitudinal information, but,
on the other, in incomplete or sparsely sampled data points, which might render baseline
definition and outcome adjudication more difficult.

Taking into account this inherent divergence of purposes, in the present work, we
develop a deep learning model based on recurrent neural networks to predict the onset
of impaired renal function using the routine check-up data of 28,955 patients, acquired
in 14 Italian diabetes outpatient clinics. In doing so, we address two main challenges
related to model development with this type of data: 1) the incorporation of longitudinal
baseline data in the form of the sequence of anthropometric and laboratory information
collected during a series of past visits; and 2) the highly irregular sampling of endpoints
that is ill-suited to traditional methods.

2 Prediction Target and Study Population

2.1 Prediction Target: Impaired Kidney Function on the KDOQI Scale

The prediction target was the onset of impaired kidney function, i.e., stage ≥ 3 on the
Kidney Disease Outcomes Quality Initiative (KDOQI) scale [12]. As only stages ≥ 3
meet the criteria for CKD, we will refer to “CKD onset” and “impaired kidney function
onset” interchangeably. Operatively, in terms of outcomes, we distinguished between
subjects with preserved renal function, i.e., eGFR ≥ 60 (KDOQI stages 1 and 2) and
those with eGFR < 60 (KDOQI stages 3a, 3b, 4, and 5).
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2.2 Study Population and Dataset Split

The primary source for the present studywas amulti-centre database comprising the data
of 28,955 subjects treated at 14 diabetes outpatient clinics in the Veneto region between
1st January 2010 and 14th May 2019 (median observation time: 6.6 years; IQR 4.7–7.8).
For each subject, a number of routine check-up visits, recorded with an irregular (on
average, yearly) sampling rate, were available. At each visit, demographic, anthropo-
metric, and laboratory data were collected as part of the subjects’ regularly scheduled
monitoring sessions. The complete list of variables comprised sex, age, diabetes dura-
tion, body-mass index (BMI), systolic and diastolic blood pressures, fasting glucose,
glycated haemoglobin (HbA1c), total and HDL cholesterol levels, triglycerides, aspar-
tate transaminase (AST), alanine transaminase (ALT), creatinine, and eGFR for a total
of 15 variables (14 dynamic, 1 static). All subjects met the following inclusion criteria.

1. At least three visits with known eGFR (at least two to serve as a sequential input,
and at least one more to determine the output).

2. At least two consecutive visits with eGFR ≥ 60.
3. No evidence of CKD at database entry.

We split the total cohort of 28,955 patients into a training, validation, and test sets,
comprising, respectively, 80% (23,164), 10% (2,895), and 10% (2,896) of the subjects.

Table 1. Population characteristics. Continuous quantities are expressed as mean ± standard
deviation, other quantities as counts. BP: blood pressure.

Training Validation Test
Sample size 23,164 2,895 2,896
Male sex 13,913 1,747 1,754
Age (years) 66.3 ± 11.7 66.2 ± 11.6 66.4 ± 11.6
Diabetes duration (years) 9.4 ± 8.3 9.2 ± 8.2 9.5 ± 8.2
BMI (kg/m2) 29.5 ± 5.4 29.5 ± 5.2 29.5 ± 5.2
Systolic BP (mmHg) 140.1 ± 18.9 139.9 ± 19.1 140.2 ± 18.7
Diastolic BP (mmHg) 79.6 ± 9.8 79.5 ± 10.1 79.6 ± 10.0
Fasting glucose (mg/dL) 144.7 ± 45.3 144.4 ± 42.9 145.5 ± 45.6
HbA1c (%) 7.2 ± 1.2 7.2 ± 1.2 7.2 ± 1.2
Total cholesterol (mg/dL) 175.5 ± 38.4 177.0 ± 38.8 173.9 ± 37.7
HDL cholesterol (mg/dL) 52.6 ± 15.3 52.7 ± 14.9 51.9 ± 14.8
Triglycerides (mg/dL) 125.2 ± 71.0 125.7 ± 73.0 125.8 ± 72.0
AST (IU/L) 23.1 ± 12.7 23.1 ± 12.0 22.8 ± 11.0
ALT (IU/L) 24.9 ± 16.7 24.9 ± 15.5 25.0 ± 16.0
Creatinine (mg/dL) 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2
eGFR (mL/min/1.73m2) 86.1 ± 13.8 86.3 ± 13.6 86.1 ± 13.5
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We define the most recent visit in the baseline sequence, i.e., the latest one before the
start of the follow-up period, as the end-of-baseline (EOB) visit. The EOB visit is the one
that would be used for prediction in the absence of sequence data. Table 1 summarises
the characteristics of the study population at the EOB visit (see Sect. 3.1). The average
subject had a 60% chance of being male, was 66 years old, had had diabetes for 9 years,
a BMI of 29.5, a blood pressure of 140/80 mmHg, a fasting glucose of 145 mg/dL, and
an HbA1c of 7.2%. The average eGFR was 86.1 mL/min/1.73 m2.

Missing data were present (except for sex, age, and diabetes duration), but their
proportion was small, i.e., <3.5% at the EOB visit.

3 Methods

3.1 Input Data Preparation

The input data preparation process was guided by our stated objective of incorporating
longitudinal baseline data into the model development pipeline. In summary, we identi-
fied each patient via a multidimensional sequence of data corresponding to a variable-
length sequence of baseline routine check-ups, and a single static feature, i.e., sex. The
minimum number of baseline visits was 2, as per the inclusion criteria in Sect. 2.2,
thus avoiding the degenerate case of 1-visit sequences. The actual number was subject-
specific, i.e., between 2 and the minimum between: a) the number of available visits
minus one (at least one was needed for the outcome, as per inclusion criterion 1); b) the
number of consecutive outcome-free visits; and c) an arbitrary threshold of 6.

We formatted each subject’s baseline data according to model requirements (see
Sect. 3.3), thus obtaining a 14-variable × 6-visit padded matrix and a scalar value
(technically, a 1-dimensional vector) encoding the static sex variable. Missing data in
the matrix were set to “0” if they were, in fact, missing in the original dataset, whereas “-
1” was the masking indicator to distinguish between informative and padded portions of
the variable-length sequence. Additionally, to aid in data description and benchmarking,
we created a static version of the dataset comprising only each subject’s (unmodified)
EOB visit and the “sex” variable.

3.2 Output Coding

The irregular and relatively sparce sampling rate induced by the real-life configuration of
the data source prevented us from encoding outcome occurrence via the typical (event
indicator, censoring time) tuples used in survival analysis. Indeed, survival analysis
requires that exact information on outcome occurrence be known and that there be no
gaps in the observation of follow-up. On the contrary, here, outcome information was
only available via inspection of the eGFR values collected during each follow-up visit,
meaning that status changes between two visits were inherently unknowable, and so was
the exact time or reason for right censoring.

To overcome this limitation, we cast the problem of predicting impaired kidney
function at different prediction horizons as a multi-label classification problem with a
7-dimensional output. Each of the 7 elements of the outcome vector, say j, encoded the
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answer to the question “Was there evidence of CKD onset by the end of the j-th year?”
Hence, if an eGFR< 60 was recorded between the start of follow-up and the end of the
j-th yeah, the j-th element of the outcome vector was equal to 1; if there was evidence
of eGFR ≥ 60 after the end of the j-th year (but no evidence to the contrary before then)
the j-th element of the outcome vector was equal 0; in all other cases, patient status was
unknown and the j-th element was encoded as “NA” (note that this may happen both in
the “natural” case of right censoring and due to gaps in eGFR sampling).

Table 2 shows the absolute frequencies of patient status across the 7 time points.
We observe an expected, progressive inversion of the ratio between 1s and 0s as the
prediction horizon moves forward into the future: as time goes on, follow-up visits that
confirm undeteriorated renal function become rarer and rarer, whereas the number of
CKDonsets accumulates. Predictably, “NA” values start appearing immediately after the
start of follow-up, demonstrating the presence of subjects forwhomendpoint information
is temporarily unclear in addition to truly right-censored subjects.

Table 2. Outcome distribution at each prediction horizon (PH). 1: CKD onset within the year, 0:
reportedly CKD free at the end of the year, NA: unknown status (% of right censored).

PH
Training Validation Test

0 1 NA 0 1 NA 0 1 NA

1 year 20,228 1,004 1,932 (0%) 2,545 117 233 (0%) 2,532 125 239 (0%)

2 years 13,971 2,570 6,623 (83%) 1,763 301 831 (82%) 1,720 331 845 (83%)

3 years 9,337 3,521 10,306 (93%) 1,195 418 1,282 (93%) 1,134 457 1,305 (94%)

4 years 5,723 4,107 13,334 (97%) 730 494 1,671 (96%) 684 533 1,679 (98%)

5 years 3,258 4,451 15,455 (99%) 404 550 1,941 (98%) 376 561 1,959 (99%)

6 years 1,572 4,634 16,958 (99%) 184 581 2,130 (99%) 172 579 2,145 (99%)

7 years 410 4,734 18,020 (100%) 56 592 2,247 (100%) 31 592 2,273 (100%)

3.3 Model Architecture and Development

Using a typical train/validate/test scheme, we developed a deep learning model based
on the incorporation of longitudinal baseline data via a recurrent layer. Operatively, we
optimised the network’s weights on the training set, selected the best combination of
hyperparameters via the validation set, and evaluated performance on the previously
unseen test set. We carried out weight estimation via the ADAM optimiser with a fixed
learning rate of 0.0005 for a maximum of 100 epochs. The cost function was a modified
version of the binary cross-entropywhere “NA” labels did not contribute toweight update
via back-propagation (this is done, e.g., by artificially setting the missing prediction to
the currently predicted value, resulting in a null contribution to the gradient).

As shown in Fig. 1, the proposed neural network initially handles sequence data
via a recurrent layer, namely a gated recurrent unit (GRU) [13]. The objective, here, is
encoding the variable-length multi-dimensional sequence as a fixed-length vector that
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can be concatenated with the static “sex” variable. In this portion of the network, the
hyperparameters were the number of GRU units (16, 32, or 48), and the dropout fractions
related to the inputs and recurrent connections (possible values for both: 0, 0.05, 0.1, 0.2,
0.3, 0.5). The result of this dynamic-to-static encoding step is then concatenated with the
static “sex” variable and sent to a cascade of fully connected layers. The hyperparameters
at this stage were the number of post-concatenation, pre-output layers (2 or 3) and their
dimensions (valid combinations: {64, 32}, {48, 24}, {32, 16}, {16, 8}, {64, 32, 16}, {48,
24, 12}, {32, 16, 8}, {16, 8, 4}). The fully connected cascade ends on the 7-dimensional
output layer. Finally, to obtain a more robust scalar score for each prediction horizon,
we implemented a cumulative summation step such that each prediction at j years was
the sum of the first j output neurons.

Fig. 1. High level overview of the network’s architecture.

We carried out the hyperparameter selection phase in two steps. First, for each
hyperparameter combination, we selected the set of weights that minimised the binary
cross-entropy on the validation set, thus obtaining a set of 864 candidatemodels. Second,
we computed the cumulative/dynamic areas under the receiver-operating characteristic
curve (AUROC) [14] at 1 to 7 years on the validation set, and ranked all 864 candidates
according to their predictive ability at each prediction horizon. The final model was the
one with the minimum year-wise median rank.

3.4 Performance Evaluation and Secondary Analyses

In our primary performance analysis, we evaluated the discrimination power of the
proposed model on the unseen test set via our target metrics, i.e., the seven AUROCs
corresponding to the 1- to 7-year prediction horizons.

Our first secondary analysis was meant to challenge the hypothesis that the deep
learning model was effectively encoding the sequence of visits comprising the longitu-
dinal baseline. Hence, we measured the model’s prediction ability on a modified version
of the test set where we artificially inverted the order of the visits comprising each
subject’s longitudinal baseline.

In another secondary analysis, we compared the proposed model to a trivial model
returning the eGFR collected at the time of the EOB visit, the known predictor of
imminent renal function deterioration used in clinical practice [15].

In a third set of secondary analyses, we compared the proposed model with a battery
of year-specific logistic regressions trained with the full EOB visit as the input and with



Recurrent Neural Network to Predict Renal Function Impairment 335

each year’s status (whenever available) as the output. The minority of missing values
was imputed via mean imputation.

In all analyses, we estimated 95% confidence intervals (CIs) via the DeLong
estimator [16], and assessed statistical significance at the 0.05 level.

4 Results

The hyperparameter selection process resulted in the identification of the optimal archi-
tecture as the one having 32 GRU units with standard and recurrent drop-out fractions
of 0.05 and 0.1, and three fully connected layers of sizes 16, 8, and 4.

As shown in the second column of Table 3, model performance was satisfactory
across the board (AUROC always > 0.84), and particularly promising in the medium
term, where it ranged from year 5’s 0.853 (CI: 0.828–0.878) to year 7’s 0.895 (CI:
0.852–0.937). The performance comparison with the artificially inverted version of the
test set (first secondary analysis) strongly suggests that the model’s good behaviour was
at least in part attributable to a fruitful encoding of temporal relationships between the
longitudinal baseline’s visits. This is apparent from the substantially (and significantly,
except at the 7-year mark) diminished performance of the model when confronted with
improperly ordered sequences (third column of Table 3). Had order been irrelevant, we
would have expected to see a negligible difference.

As expected, the proposed model always outperformed EOB eGFR in terms of dis-
crimination power. Interestingly, however, the AUROC difference at the 1-year mark
(0.15) was only nominally greater than 0, suggesting that eGFR alone might be a suffi-
ciently effective predictor of imminent deterioration in renal function, while additional
information should be collected for longer-term prediction.

The comparison with the battery of year-specific logistic regressions (third sec-
ondary analysis, fourth column of Table 3) also yielded encouraging results. Except at
the 1-year prediction horizon, the proposed model always outperformed logistic regres-
sion, and exhibited the most notable and statistically significant performance gains at
4, 5, and 6 years (respectively, AUROC 0.844 vs. 0.829, 0.853 vs. 0.830, and 0.874
vs. 0.839). Regrettably, despite the proposed model’s excellent AUROC of 0.895 (CI:
0.852–0.937), the 7-year comparison was underpowered and failed to detect statistically
significant differences. Overall, it appears that the inclusion of longitudinal baseline data,
possibly combined with increased model capacity and with the simultaneous learning
from different prediction horizons (via the proposed multi-label coding scheme), was
beneficial to long-term prediction. While, under the current experimental framework, it
is difficult to disentangle the contributions of these factors, it is notable that our deep
learning model, i.e., a single, one-size-fits-all model, was able to compete with and
generally outperform individual models specifically trained on the expected outcome
distributions observed at each prediction horizon (recall the inversion of the 1:0 ratio
shown in Table 2).
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Table 3. Cumulative dynamic AUROC on the test set (95% CIs). PH: prediction horizon; DL
inverted: deep learning model after sequence inversion. Statistical significance vs. deep learning
model marked with*

PH Deep learning DL inverted eGFR only Logistic regression

1 year 0.844 (0.815–0.874) 0.712 (0.672–0.751)* 0.829 (0.797–0.860) 0.858 (0.830–0.885)

2 years 0.841 (0.819–0.862) 0.693 (0.665–0.721)* 0.819 (0.796–0.843)* 0.834 (0.811–0.856)

3 years 0.841 (0.820–0.861) 0.701 (0.675–0.728)* 0.820 (0.798–0.842)* 0.838 (0.817–0.859)

4 years 0.844 (0.822–0.866) 0.735 (0.707–0.763)* 0.803 (0.778–0.827)* 0.829 (0.806–0.852)*

5 years 0.853 (0.828–0.878) 0.765 (0.733–0.797)* 0.797 (0.767–0.826)* 0.830 (0.803–0.856)*

6 years 0.874 (0.846–0.903) 0.832 (0.796–0.869)* 0.798 (0.760–0.836)* 0.839 (0.807–0.871)*

7 years 0.895 (0.852–0.937) 0.880 (0.817–0.943) 0.797 (0.724–0.871)* 0.882 (0.833–0.932)

5 Discussion and Conclusions

An early prediction of CKDonset in people affected by diabetes but whose renal function
is still satisfactory could be extremely useful in reconciliating therapeutic intervention
with patient needs and resource allocation constraints.Motivated by previously reported,
promising results obtainedusingmachine learning and real-world data [10], in the present
work we demonstrated the feasibility and potential benefit of developing a predictive
model of impaired kidney function (KDOQI stage 3) using deep learning to integrate
longitudinal information on routine check-ups. Thus, we obtained a well-performing
model that yielded AUROC values between 0.841 (1-year prediction horizon) and 0.895
(7-year prediction horizon), generally and often significantly outperforming the tested
benchmarks.

From amethodological perspective, our study showcases a fruitful approach to utilise
routine data whose natural format is suboptimal for traditional survival analysis or clas-
sification approaches. Indeed, at variance with most similar models [17, 18], which
attempt to recreate the clinical trial setting by predicting a well-behaved outcome via
one-shot baseline data, here, we embraced the longitudinal vocation of routine diabetes
check-ups by incorporating a sequence of past visits via a recurrent layer, and offset the
inconsistent sampling scheme of the CKD endpoint using a multi-label framework and
an opportunely modified cost function.

The main limitation of our study was the impossibility of disentangling the contri-
butions to performance improvement of 1) adding baseline sequence data (although we
showed that sequence order was effectively encoded by the model), 2) increasing model
capacity with respect to traditional techniques such as logistic regression, and 3) casting
the problem as amulti-label task. Future researchwill revolve around the systematic test-
ing of the proposed architecture (or variants thereof, e.g., using different recurrent units,
such as LSTMs [19]) against a stronger set of literature and custom-made benchmarks
to determine the key factors in achieving high discrimination ability.
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