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Abstract. The complexity of patient care is growing due to an ageing pop-
ulation. As chronic illnesses become more common, the incidence of multi-
morbidity increases. Generating disease management plans for multi-morbid
patients requires the integration of multiple evidence-based interventions, rep-
resented as clinical practice guidelines (CPGs), that are designed to treat a single
condition. Our previous work developed a mitigation framework called MitPlan
that represented the generation of treatment as a planning problem. The framework
used the Planning Domain Definition Language (PDDL) to represent clinical and
patient information needed to identify and mitigate adverse interactions resulting
from the concurrent application of multiple CPGs for a given patient encounter. In
this paper we describe MitPlan 2.0 that supports shared decision-making by iden-
tifying a treatment plan optimized according to patient preferences, treatment cost,
or perceived patient’s adherence to medication. It mitigates adverse interactions
using planning constructs, eliminating the need for procedural handling of adverse
interactions and as such provides flexible and comprehensive decision support at
the point of care. We demonstrate MitPlan 2.0’s extended capabilities using syn-
thetic scenarios approximating real-world clinical use cases and demonstrate its
new capabilities within the context of atrial fibrillation.
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1 Introduction

Clinical practice guidelines (CPGs) are statements developed systematically from avail-
able evidence to assist practitioners in themanagement of a patient with a specific disease
and their application improves quality of care and patient outcomes [1]. Yet their adop-
tion in clinical practice is lacking and one of the major obstacles is the limited support
for complex patients suffering from multi-morbidity [2]. Disease management of these
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patients is multidimensional by nature, and apart from the clinical dimension needs to
consider care settings and patient preferences to maximize patient outcomes.

In this work, we present a significant expansion of our previous planning-based app-
roach to mitigation of adverse interactions between recommendations coming from dif-
ferent CPGs [3] that improves support for multi-morbid patient management by enrich-
ing the representation of patient and clinical information. This improvement allows us
to provide support for shared decision making by explicitly capturing the multidimen-
sional nature of treatment using amultivariate objective function customized to a specific
patient encounter. We demonstrate how our improved framework, called MitPlan 2.0,
builds upon and extends our previous work using both synthetic and clinical examples.
We highlight its use across clinical settings, position it within the context of relatedwork,
and describe future work to realize our goal of integrating MitPlan 2.0 into a clinical
decision support system used at the point of care.

2 MitPlan 2.0

In planning, a planner is given an initial state of the world, a set of desired goals, and
a set of planning actions to find a sequence of planning actions that are guaranteed
to generate a new state that satisfies the desired goal(s). Each planning action has a
set of parameters, preconditions that must be true for the action to be taken, and effects
resulting from its execution. These planning actions are also characterized by a duration,
conditional effects, and a cost.

The original version of MitPlan (which we refer to as MitPlan 1.0), described in
detail in [3], addressed the problem of mitigation by combining an algorithmic app-
roach with the use of a planner. MitPlan 1.0 accepted as input patient data, patient
preferences, the length of a planning horizon, and clinical goals and produced a safe
management plan (i.e., where all adverse interactions were addressed), executed within
the specified planning horizon. It detected adverse interactions using a combination of
revision predicates and revision actions in its domain and mitigated these adverse inter-
actions algorithmically and outside the planner. Specific to the revision operators in
the MitPlan 1.0, the planner would terminate having identified what actions needed to
be replaced/deleted/added to mitigate adverse interactions between different extended
Actionable Graphs (AGs) [3] representing CPGs. TheMitPlan 1.0 algorithmwould then
create a revised problem instance with new actions representing the required revisions
and the planner would be applied to this instance. The process would be repeated until
the management plan inferred by the planner required no further revisions. In addition to
disjointed algorithmic and planning requirements for generating management scenarios,
MitPlan 1.0 had very basic support for a single cost associated with the plan.

MitPlan 2.0 addresses these shortcomings by taking a fully planning-based approach,
bringing the process of mitigation into the planning space via a new encoding of the
planning problem in PDDL. We expand the extended AG to include the nodes derived
from the underlying CPG and add to it all nodes introduced by revision operators that
are possibly applicable to the AG. The extended AG encapsulates the contingencies
introduced by revision operators, making them available to the planner much like patient
preferences in MitPlan 1.0 [3].



278 M. Michalowski et al.

Revision operators come from knowledge repository (KR). The representation of
revision operators is flexible to include clinical actions found in many CPGs, clinical
actions for a specific CPGs, and a combination of both. When applied to a specific AG,
a revision operator is translated to a binary vector of length equal to the number of
nodes in the AG, where each vector element indicates if a node is part of an adverse
interaction addressed by the given revision operator. In this way a binary vector can
represent multiple revision operators each with different costs. An adverse interaction
is present only if a chosen path through the extended AG contains all the nodes flagged
in a binary vector (if only a subset of nodes are contained, the adverse interaction is
not present). If detected, the planner is forced to search for an alternate path in the AG,
avoiding the adverse interaction. The binary vectors are automatically created for each
planning problem instance, making their implementation scalable.

All nodes in the AG are associated with costs, and revision actions are designed
to be costlier than the actions they (potentially) revise. The planner prioritizes paths
through the AGs with no adverse interactions, finding a clinically feasible plan first and
foremost, even if such a plan is more expensive than one that is clinically infeasible. If a
path without executing a revision action does not exist, the planner chooses an alternate
path containing revision actions that mitigate the adverse interactions and reach the goal
nodes with no adverse interactions present. Because revision information is already built
into the extended AG, the planner can optimize over various alternative paths, selecting
the path associated with the lowest cost. As a simplification, MitPlan 2.0 implements
cost minimization however utilities and their maximization are easily supported.

A revision action may itself introduce new adverse interactions, resulting in second-
order adverse interactions. MitPlan 1.0 processed revisions sequentially and the plan
depended on the order of revisions applied. In contrast, MitPlan 2.0 optimizes over all
revision information in a single run and returns the optimal plan, if one exists, selecting
the order of revisions to optimize the defined objective function.

MitPlan 1.0 treated patient preferences (e.g., preferred way of drug administration)
as alternatives nodes in anAG [3] that are selected based on their dispreference costs (i.e.,
lower cost indicates a higher preference level). MitPlan 2.0 presents a natural extension
of this approach, by unifying patient preferences and revisions, and modelling both as
cost-based alternatives. At the same time, it considers more than one metric, each corre-
sponding to a certain dimension, when looking for an optimal path. MitPlan 2.0 employs
an objective function given as a weighted sum of selected cost metrics where weights
indicate the importance of specific metrics. Possible metrics include various clinical
(resources, specialists, capacity, etc.) and patient (financial, burden, preferences, adher-
ence, etc.) indicators, thus it is possible to specify objective functions for a wide range
of care settings (e.g., urban or rural), patient populations with unique attributes (e.g.,
health literacy, income, attitude towards treatment, etc.), and care planning approaches
(physician-, nurse-, and patient-centered).

The overview of MitPlan 2.0 is given in Fig. 1(a) and the pseudocode illustrating its
operation is given in Fig. 1(b). MitPlan 2.0 is invoked for a specific patient/physician
encounter and takes patient data, patient preferences, a planning horizon, and an objective
function as input. The objective function can be defined by both the physician and the
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patient in a shared decision-makingprocess to combine patient- and the provider-oriented
perspectives of management.

(a) General structure (b) Operations (pseudo-code)

Fig. 1. Overview of MitPlan 2.0

MitPlan 2.0 starts by retrieving from the KR extended AGs that represent CPGs
applied to manage conditions of the patient. It then identifies and retrieves from the KR
revision operators (ROs) that are applicable to AGs selected in the previous step (see [3]
for a more detailed explanation). Subsequently, it creates a planning problem in PDDL
based on extracted AGs and ROs and provided input (patient data and preferences,
planning horizon, and objective function). A planner solves the planning problem to
obtain an internal plan optimized according to the provided objective function. Some
of the actions in the internal plan are then filtered out as they represent implementation
details of the planner (e.g., reaching a goal node) and as such are not relevant for patient
management (e.g., performing a test, prescribing a drug). Themanagement plan is finally
presented to the physician and the patient.

MitPlan 2.0 significantly changed the management of revisions as stated above and
the algorithmic part is no longer needed.We note that clinical quality of the finalmanage-
ment plan depends on the completeness of the KR and the quality of available revision
operators. If the KR is incomplete and does not contain an operator(s) addressing a cer-
tain interaction, then the resulting plan may be clinically unsafe. Moreover, if the KR
contains a revision operator for a specific interaction that is not based on the most recent
evidence, then the obtained plan may be clinically sub-optimal even though it optimized
the objective function. The maintenance of the KR in knowledge driven CDSSs is an
important part of their life cycle [4]. While it is beyond the scope of this work, we
acknowledge it is critical for the clinical validity of MitPlan 2.0.

3 Illustrative Example

We illustrate the extensions introduced in MitPlan 2.0 through examples. We use syn-
thetically generated examples, grounded in real-world applications and vetted by the
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physician on our team, to highlight how the embedding of costs (Sect. 3.1) and the new
representation of revisions (Sect. 3.2) in the planning problem expands the capabilities
of the planning framework. We use a subset of actions from the Atrial Fibrillation (Afib)
CPG (Sect. 3.3) to show the exploration enabled by our new approach.

In each extended AG, Dx represents a context node (i.e., the disease that the AG
represents), Ax a clinical action, Tx a clinical test (decision), Vx a patient value, and Gx
a goal node representing the successful completion of treatment for the corresponding
disease. For the MitPlan 2.0 generated plans, each line lists the planning action taken,
the time step it is taken in at the start, and its duration at the end.

3.1 Cost Optimization

MitPlan 2.0 makes use of an objective function when finding a plan to satisfy all goals,
where satisfying all goals means reaching all the goal node in all AGs. In Fig. 2(a) we
illustrate the use of a simple objective function with a single cost metric (execution cost).
Notice in this example that depending on the values of V1 the planner may choose A2 or
A5. Suppose V1= 9 and V3= 1. While A5 is costlier than A2, choosing A2will cause an
adverse interaction and necessitate a revision. Because revisions are assigned a higher
execution cost than original actions in the AGs (i.e., cost(A7) < cost(newAction)), the
planner opts to traverse A5 and A6 to reach goal G1 to minimize the overall cost of the
plan. Figure 2(b) shows the generated plan.

(a) AGs and available revisions 

(b) Internal plan generated by MitPlan 2.0 

Fig. 2. Selection of minimum cost path
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3.2 Revision Application

We demonstrated in Sect. 3.1 how execution costs of an action and optimization come
into play when selecting actions. Here we build on that example to show how execution
costs are used to select and prioritize revisions when adverse interactions are present.
Consider the extended AG in Fig. 3(a) with patient values V1 = 7 and V3 = 3. In
this case, an adverse interaction is unavoidable and one of the two available revisions
must be taken. The two choices for replacing A7 are newAction, which costs 100 units,
and newAction2, which costs 50 units. Since newAction2 is less expensive, the planner
prioritizes newAction2, replacing A7 with it. The generated plan is shown in Fig. 3(b).
In MitPlan 1.0, the prioritization of revisions would have been done algorithmically and
outside the planning process by revising a problem instance and passing it to the planner.
Now the selection and application of revisions is embedded in the planner’s search for
an optimal plan.

(a) AGs and available revisions 

(b) Internal plan generated by MitPlan 2.0 

Fig. 3. Prioritization of revisions

We use the extended AG in Fig. 3(a) also to demonstrate how MitPlan 2.0 finds
an optimal plan when multiple revisions are required (the second revision operator
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changed to if A4 and A3 then replace A3 with newAction1 [cost = 100] for the sake
of this example). In this problem instance, the patient values for V1 and V2 fall within
the range [5 . . . 10] and V3 falls within the range [0 . . . 4] , thus necessitating both
revisions. Figure 4 shows the resulting plan that does just that. This case demonstrates
that MitPlan 2.0 can apply any number of revisions necessary to find an optimal plan
while tracking and accounting for any second-order effects from the applied revisions.
This is a significant improvement over MitPlan 1.0 where each revision was applied
individually by revising the problem instance and rerunning the planner.

Fig. 4. Internal plan generated by MitPlan 2.0 when multiple revisions are required

3.3 Clinical Illustrative Example

At the core of our mitigation framework is the incorporation of external knowledge for
mitigating adverse interactions not found in individual CPGs. By including revisions
within the planning space (example in Sect. 3.2), MitPlan 2.0 is able to keep track of the
application of these mitigating actions, their sequence of application, and their second-
order effects. When clinical mitigation strategies and their effects are embedded into the
planning process and considered within an objective function, the resulting management
plan is constructed by holistically considering the impact mitigation strategies have on
patient management. Iteratively mitigating adverse interactions, as done in the MitPlan
1.0 fails to account for second-order effects.

To demonstrate the power of using an objective function involvingmultiple metrices,
consider the subset of the Afib AG, generated from the CPG, shown in Fig. 5 (full AG
is presented in [3] and not reproduced here due to space limitations). In this example,
an Afib patient with CHA2SDS2-VASc score greater or equal to 1 can be prescribed
an anticoagulant such as Warfarin (WARF, dosage 5 mg daily) or one of the direct oral
anticoagulants (DOACs) such as Dabigatram (DABI, dosage 110 or 150mg twice daily).
For a CHA2SDS2-VASc score less than 1, they are prescribed low dose aspirin (ASP).

MitPlan 2.0 can consider financial cost, patient’s burden, or the “cost” of adherence,
amongst others, during planning to generate different management scenarios. Let’s first
consider each independently. Financial Cost: the annual cost of anticoagulation treat-
ment (at a dosagementioned above)withWarfarin is about $55USDandwithDabigatram
is about $1200USD. We therefore assign a financial cost of 55 to the WARF node and
1200 to the DABI node in the AG. When financial cost minimization is the optimization
goal, treatment with Warfarin is the returned option (see the plan in Fig. 6(a)).
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Fig. 5. Subset of the Afib AG from [3]

(a) Financial cost optimized plan

(b) Weighted cost optimized plan 

Fig. 6. Afib generated plans for various cost considerations

Patient’s Burden: A patient on Warfarin needs their international normalized ratio
(INR) value checked as a stand-in to standardize the results of the prothrombin time test.
Checking the INR value requires a blood test. When a patient is started on Warfarin,
this test needs to be done weekly. When their INR value stabilizes, the frequency of the
test falls between 2–4 weeks. Performing each blood test requires the patient to visit a
laboratory service, imposing an additional treatment burden. On the other hand, a patient
on Dabigatram (or any other DOAC) does not need a blood test to measure their INR
value and does not incur any additional treatment burden. Using MitPlan 2.0, we assign
a burden cost to WARF that is greater than the burden cost of DABI. When minimizing
the burden is the optimization goal, Dabigatram is the action returned by MitPlan 2.0.

Adherence Likelihood: It is well documented in literature [5], that Afib patients on
anticoagulation treatment poorly adhere to their prescribed medication. Considering
that a patient on Dabigatram only takes pills and does not need to get a blood test, their
only checkpoint for adherence is during an annual visit with their specialist. On the
other hand, a patient on Warfarin needs to have regular blood tests in order to measure
that their INR value is in the optimal range and any adjustment of medication dosage
requires a visit with a specialist. Consequently, adherence to treatment with Warfarin is
typically higher than treatment with Dabigatram due to regular consults with a specialist.
As such, MitPlan 2.0 assigns a lower adherence cost to Warfarin than to Dabigatram.
When the minimization of non-adherence is the desired goal, regardless of a patient’s
burden consideration, treatment with Warfarin is the returned option.
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Multiple Weighted Considerations: Typically, there aremultiple treatment options for
multimorbidity. The selection of a given option is made by a physician in consultation
with the patient. MitPlan 2.0 uses a complex objective function to represent multiple
dimensions such as a patient’s burden, financial cost or perceived medication adherence
and weighs each one differently based on the information gathered during the shared
decision-making process. These weights can be revised and adjusted to reflect changing
patient’s attitude and evolving clinical context. In Fig. 6(b) we show the plan where
minimizing a patient’s treatment burden is considered more important than both the
financial cost of a treatment and the perceived patient’s adherence using the multivariate
objective function 0.2 * cost + 0.6 * burden + 0.2 * nonadherence (all weights are
rescaled to the range [0, 1.0]). Note how this plan differs from the one in Fig. 6(a)
when only financial cost is considered. The ability to customize a multivariate objective
function to a specific patient and encounter represents a powerful tool supporting shared
decision-making.

4 Discussion and Future Work

MitPlan 2.0 fully encapsulates the mitigation problem within a planning context with a
unified approach to supporting preferences and revisions of CPGs’ recommendations,
simultaneously handling multiple revision operations, and optimizing across different
metrics. Using various costs associated with nodes in the extended AG,MitPlan 2.0 finds
management plans that are optimized according to a weighted multivariate objective
function. This approach supports the combination of clinical dimensions with different
treatment aspects such as financial cost, patient’s burden, patient’s perceived adherence
to treatment, or cost of clinical resources required for treating a patient.

There are other approaches to mitigation of adverse interactions among multiple
CPGs reported in the literature and below we briefly summarize the ones that are most
closely related to MitPlan 2.0. META-GLARE [6] considers temporal characteristics
of CPG actions during mitigation, employs goals to control the planning process, and
it has been extended to model physician preferences [7]. However, no different types
of preferences or costs are considered and there is no optimization over possible plans.
Jafarpour et al. [8] propose an ontology-based framework for integrating multiple CPGs
during execution time using policies. Some of these policies can optimize the use of
clinical resources but other types of costs or preferences are not considered and there is
no global optimization of generated plans.

A multi-agent planning (MAP) framework [9] is used to automatically generate sev-
eral candidate management plans, evaluate them according to predefined patient- and
institution-related metrics, and select the optimal one that minimizes the overall cost.
MAP requires a more complex computational framework with multiple agents, and it
assumes that secondary knowledge representing revision operators is embedded inCPGs.
This assumption makes it more difficult to maintain than MitPlan 2.0, which uses an
external knowledge repository for the revision operators. Finally, Kogan et al. [10] pro-
pose a goal-driven mitigation framework that uses standard representations (PROforma
and HL7 FHIR), relies on existing knowledge sources, operates on different levels of
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abstraction, and generates explanations for proposed mitigations. Yet, it does not con-
sider patient preferences and other costs to prioritize candidate plans as the final selection
of a management plan is made by the clinician.

We are pursuing several directions for future work. The use of hard and soft con-
straints, that is, constraints that must be satisfied in any solution (e.g., a hypertension
drug must be administered) and those that are optional (e.g., a blood test applied only if
lab resources are available), respectfully, will add an additional level of personalization.
We are also exploring how to generate management plans from a partial satisfaction
of a subset of defined goals. Finally, we are studying the use of a stochastic model of
mitigation. As the representational and functional complexity of the CPGs and in turn
the planning problem increases, it will be necessary to shift from a deterministic rep-
resentation towards one that supports probabilities tied to the execution of actions. In
the real-world, medication may not be taken by a patient or may not have the intended
effects, test results may be inconclusive or inaccurate, and future test results assumed
for the sake of planning could return unanticipated values.

Acknowledgements. WethankAndrewColes andAmandaColes for their clarifications regarding
PDDL and OPTIC and the reviewers for their helpful comments.
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