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Abstract. There are many evaluation metrics and methods that can be
used to quantify and predict a model’s future performance on previously
unknown data. In the area of Human Activity Recognition (HAR), the
methodology used to determine the training, validation, and test data
can have a significant impact on the reported accuracy. HAR data sets
typically contain few test subjects with the data from each subject sepa-
rated into fixed-length segments. Due to the potential leakage of subject-
specific information into the training set, cross-validation techniques can
yield erroneously high classification accuracy. In this work (Source code
available at: https://github.com/imics-lab/model evaluation for HAR.),
we examine how variations in evaluation methods impact the reported
classification accuracy of a 1D-CNN using two popular HAR data sets.

Keywords: Model evaluation · Time-series data · Deep learning ·
Human activity recognition · Data resampling · Cross-validation

1 Introduction

With the advent of inexpensive wearable sensors in recent years, Human Activity
Recognition (HAR) has been a hot topic of research both for medical applications
and in human-computer interaction in general. In HAR, the methodology used
for model evaluation differs from other areas such as image recognition due
to the sequential nature of the data sets. HAR data sets typically consist of
accelerometer and gyroscopic data recorded using a smartphone or wrist-worn
device. Movement patterns specific to given activities such as running, walking,
and sitting are identified using classic machine learning or newer deep learning
approaches. HAR data sets typically differ from image and natural language data
sets because the number of subjects is usually quite small, typical ranges are from
5 to 50 [13], with each subject contributing multiple samples while performing
a range of activities. Traditional cross-fold and train/test split techniques can
result in subject data from the test group being included in the training set.

The goal of trained models is generalized performance which means the per-
formance on independent test data [7]. In the case of HAR the ability of a
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model to correctly classify activities for an unknown subject. The primary issue
seen in many accompanying analyses is that samples from a given subject may
be present in both the train and test groups. This work examines the impact
of subject assignment on two data sets. The remainder of this section briefly
describes three data sets, their evaluation method, and the reported accuracy
to illustrate the multiple approaches found in the literature. Section 2 describes
the two data sets and processing used in this evaluation.

An example of a popular data set and evaluation with subjects preallocated
into train and test groups is the UCI-HAR data set [1] which contains accel-
eration data captured on a waist-worn smartphone. Subjects were randomly
assigned: 21 in the training set and 9 in the test set. The accompanying analysis
reports an accuracy of 96% for six activities. Another example of a model evalua-
tion with preallocated subjects is [5] which contains Android-based Smartphone
data from 100 subjects. The reported accuracy without resampling is 93.8% for
eight different activities. The authors state “the signals of the training set and
test set are collected by different volunteers.” An example of hold-one-subject-
out with individual results is [6] which uses multimodal motion data from the
mHealth data set [2] and reports an average accuracy for 12 activities of 91.94%.

2 Materials and Methods

This section provides a brief overview of the two data sets used, the configuration
of the 1D CNN, and the overall methodology.

The first data set used in this work is the MobiAct data set [12] which contains
smartphone acquired raw accelerometer, gyroscope, and magnetometer data. 50
subjects were recorded performing nine types of activities of daily living (ADLs)
and four types of falls. The accompanying analysis reports a best overall accu-
racy of 99.88% using 10-fold cross-validation. The authors state “we expect [the
accuracy] to decrease when using leave-one-out cross-validation, which is a more
realistic scenario.” For this work the timestamp ‘nanoseconds’ and accelerometer
data (accel x/y/z) for the six Activities of Daily Living (ADL) were imported.
The four types of falls, ‘sit chair’, ‘car step in’, and ‘car step out’ activities are
not used as these are more events than activities. Gyro and magnetometer data
are also not used for simplification. One second was discarded from the start/end
of each record and the remaining data were segmented into 3-s windows. Prior
works, including UCI-HAR [1] have used a 2.56-s window based on the mechan-
ics and timing of human gait. This window length will yield multiple steps in
each segment [3]. The six activity labels in y were one-hot-encoded.

The impact of the variable sampling rate and benefits of resampling were
investigated using the MobiAct data. Sample timing is very consistent when
using specialized equipment such as the BioRadio1 or the Empatica E4 wrist-
band2. However, when using a general-purpose device such as a smartphone
preemption by other tasks results in a variation of timing between samples.
1 https://www.glneurotech.com/products/bioradio/.
2 https://www.empatica.com/research/e4/.

https://www.glneurotech.com/products/bioradio/
https://www.empatica.com/research/e4/
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Figure 1a shows the delta time between data samples for a 30-s MobiAct walking
segment. The Python’s Pandas mean resampling method was used to resample
and downsample the data.

The second data set used is the Smartphone Human Activity Recognition
data set from the University of Milan Bicocca (UniMiB SHAR) [8] which con-
tains both fall and ADL data from 30 subjects that have been preprocessed into
3-s samples. The subjects are not preallocated into train/test and the accompa-
nying analysis reports results for both component and total acceleration using
5-fold cross-validation and hold-one-subject-out validation. The highest perform-
ing RNN classifier achieves an accuracy of 88.41% using component acceleration
and 5-fold cross-validation. Each classifier showed a decrease in accuracy in the
Leave-One-Subject-Out validation. The accuracy drops to 73.17% using Leave-
One-Subject-Out and 72.67% using total acceleration. The authors state that
human subjects perform tasks in unique ways. The UniMiB SHAR accelera-
tion data were transformed into a 153 × 3 array and the total acceleration was
calculated. The nine ADL class labels were one-hot-encoded.

A fixed 1D-CNN Keras [11] model shown to have good performance on time-
sliced accelerometer data [4] was used for all experiments for consistency. Min-
imal tuning was performed, the primary change was increasing the convolution
kernels to span one second of activity time. For a brief description of the layer
functions with respect to time-series see [9]. The topology of the 1D-CNN is
shown in Table 1.

Table 1. Keras sequential model 1D-CNN layers

Type Input Conv1D Conv1D Dropout Max Pl Flatten Dense Dense

Params [60 × 1] #f = 50 size = 1 s #f = 50 size = 1 s rate = 0.5 size = 2, act = relu act = softmax

All subject allocation experiments use total acceleration; MobiAct was resam-
pled 20 Hz, UniMiB SHAR remains the 50 Hz. The next section describes how
subjects were allocated to the training, validation, and test groups.

Allocation Using Stratification: While is easy to implement using the Scikit-
learn [10] train test split method with stratification enabled a single subject’s
samples are likely to be present in each of the groups.

Allocation of Subjects by Attributes: The UCI-HAR data set preallocates
subjects but the UniMIB SHAR and MobiACT data sets do not. To generate
a baseline each subject was allocated to the train, validate, or test group in a
60%/20%/20% ratio. Assuming that height would affect the mechanics of motion
more than weight for the ADLs, subjects were sorted by height and manually
allocated. Swaps were made to preserve the male to female ratio and a mix of
age and weight3. The subject allocation is shown in Table 2.

3 Several MobiAct subjects did not complete all ADLs were dropped resulting in a
non-contiguous subject list. E.g. there is no subject number 14.
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Table 2. Subject numbers: attribute based assignment

Data Set Training Validation Test

MobiAct [2,4,5,9,10,16,18,20,23-28,
32,34-36,38,42,45-54,57]

[3,6,8,11,12,22,
37,40,43,56]

[7,19,21,25,29,
33,39,41,44,55]

UniMiB SHAR [4–8,10-12,14,15,19-22,24] [1,9,16,23,25,28] [2,3,13,17,18,30]

Subject Aware Cross-Validation: Each subject was placed into the test
group with the remaining subjects used for training and validation for hold-one-
subject-out. The process was repeated with two, three, five, and ten subjects
held out. To establish a range of possible results, the best and worst classified
hold-one-out subjects were placed into min and max test groups.

3 Results and Discussion

Figure 1a shows the variation in sampling time for a walking sample. Figure 1b
shows 5 Hz sampling results in reduced accuracy 10 Hz and above were largely the
same. Reducing the sampling frequency significantly reduced the GPU-based4

training time. This was even more pronounced when using CPU-based training
where the 20 Hz data required just 4.5% of the training time required for 100 Hz
data. For MobiAct the accuracy increased from 95.3% to 97.5% when using total
acceleration and the attribute-based subject allocation with negligible impact on
GPU training time. Table 3 shows that the accuracy when using stratification
is extremely high at 99.3% (average of 10 runs, 200 epochs). Using the same
model but with subjects allocated based by attribute, the accuracy drops to
96.9% for an error rate of 3.1% versus the stratified error of only 0.7%. The
allocation of individual subject’s data into both the train and test groups results
in erroneously increased accuracy when using stratified split. The UniMiB SHAR
data results show the same trend.

(a) Δ-time between samples (b) Accuracy & training time vs. sampling rate

Fig. 1. Smartphone data sample fluctuation and impact of resample.

4 GPU model Tesla P100-PCIE-16 GB at https://www.colab.research.google.com.

https://www.colab.research.google.com


Model Evaluation for HAR 213

Figure 2 is a box plot of five runs for each subject and shows the large
variation in accuracy among individual subjects. The overall by-subject cross-
validation results are shown in Table 4.

Table 3. Stratified versus attribute-based subject split accuracy

Data set: Train/Validate/Test Split Method Avg Error Delta

MobiAct: Stratified (incorrect) 99.3% 0.7% –

MobiAct: Manual by Subject Attributes 96.9% 3.1% 2.4%

UniMiB SHAR: Stratified (incorrect) 93.9% 6.1% –

UniMiB SHAR: Manual by Subject Attribute 92.3% 7.7% 1.6%

Fig. 2. Accuracy of each UniMiB Subject Tested Individually

Table 4. Accuracy based on X-fold and best/worst subjects. The delta between
best/worst vs average accuracy narrows as more subjects are placed in a fold.

MobiAct UniMiB SHAR

#subj/fold All Min Max #subj/fold All Min Max

1 95% 78% 100% 1 87% 67% 97%

2 95% 84% 98% 2 86% 72% 94%

3 95% 89% 98% 3 (10-fold-CV) 85% 70% 93%

5 (10-fold-CV) 95% 92% 98% 6 (5-fold-CV) 86% 74% 91%

10 (5-fold-CV) 95% 92% 97% – – – –
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4 Conclusion

In this work, we have shown that re-sampling smartphone acceleration data
does not improve accuracy but downsampling can substantially reduce training
time. This is important because consistent with prior work, stratified random
allocation where samples from a single subject are present in both the training
and testing groups generated higher accuracy than can be expected given an
unknown subject. Hold-one-subject out is recommended but requires a train/test
pass for each subject. We have shown that individual subject accuracies can vary
greatly in a hold-one-out scenario and as the number of subjects in each fold
increases the delta between possible min and max folds is reduced. Group-based
5-fold cross-validation can be used and closely matches the accuracy reported
by averaging hold-one-subject-out.
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