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Preface

The European Society for Artificial Intelligence in Medicine (AIME) was established in
1986 following a very successful workshop held in Pavia, Italy, the year before. The
principal aims of AIME are to foster fundamental and applied research in the appli-
cation of artificial intelligence (AI) techniques to medical care and medical research,
and to provide a forum at biennial conferences for discussing any progress made. The
main activity of the society thus far has been the organization of a series of biennial
conferences, held in Marseilles, France (1987), London, UK (1989), Maastricht,
Netherlands (1991), Munich, Germany (1993), Pavia, Italy (1995), Grenoble, France
(1997), Aalborg, Denmark (1999), Cascais, Portugal (2001), Protaras, Cyprus (2003),
Aberdeen, UK (2005), Amsterdam, Netherlands (2007), Verona, Italy (2009), Bled,
Slovenia (2011), Murcia, Spain (2013), Pavia, Italy (2015), Vienna, Austria (2017),
Poznan, Poland (2019), and Minneapolis, USA (2020) - the latter hosted virtually due
to the COVID-19 pandemic.

AIME 2021 was to be hosted in Portugal but, due to the ongoing pandemic, it was
held virtually. This volume contains the proceedings of AIME 2021, the International
Conference on Artificial Intelligence in Medicine, hosted virtually by the University of
Coimbra, Portugal, during June 15–18, 2021.

The AIME 2021 goals were to present and consolidate the international state of the
art of AI in biomedical research from the perspectives of theory, methodology, systems,
and applications. The conference included two invited keynotes, full and short papers,
tutorials, workshops, and a doctoral consortium. In the conference announcement,
authors were invited to submit original contributions regarding the development
of theory, methods, systems, and applications for solving problems in the biomedical
field, including AI approaches in biomedical informatics, molecular medicine, and
health-care organizational aspects. Authors of papers addressing theory were requested
to describe the properties of novel AI models potentially useful for solving biomedical
problems. Authors of papers addressing theory and methods were asked to describe the
development or the extension of AI methods, to address the assumptions and limita-
tions of the proposed techniques, and to discuss their novelty with respect to the state
of the art. Authors of papers addressing systems and applications were asked to
describe the development, implementation, or evaluation of new AI-inspired tools and
systems in the biomedical field. They were asked to link their work to underlying
theory, and either analyze the potential benefits to solve biomedical problems or pre-
sent empirical evidence of benefits in clinical practice. All authors were asked to
highlight the value their work, created for the patient, provider, or institution, through
its clinical relevance.

AIME 2021 received 138 submissions across all categories. Submissions came from
34 countries, including submissions from Europe, North and South America, Asia,
Australia, and Africa. All papers were carefully peer-reviewed by experts from the
Program Committee, with the support of additional reviewers, and by members of the



Senior Program Committee (a new layer to the review process introduced in AIME
2020). Each submission was reviewed by at least three reviewers. The reviewers judged
the overall quality of the submitted papers together with their relevance to the AIME
conference, originality, impact, technical correctness, methodology, scholarship, and
quality of presentation. In addition, the reviewers provided detailed written comments
on each paper, and stated their confidence in the subject area. A Senior Program
Committee member was assigned to each paper and they wrote a meta-review and
provided a recommendation to the Organizing Committee.

A small committee consisting of the conference co-chairs, Allan Tucker, Pedro
Henrique Abreu, and Jaime Cardoso, made the final decisions regarding the AIME
2021 scientific program.

This process began with virtual meetings starting in March 2021. As a result, 28
long papers (an acceptance rate of 23%) and 30 short papers were accepted. Each long
paper was presented in a 20-minute oral presentation during the conference. Each
regular short paper was presented in a 5-minute presentation and by a poster. The
papers were organized according to their topics in the following main themes: (1) Deep
Learning; (2) Natural Language Processing; (3) Predictive Modeling; (4) Image
Analysis; (5) Unsupervised Learning; (6) Temporal Data Analysis; (7) Planning; and
(8) Knowledge Representation.

AIME 2021 had the privilege of hosting two invited keynote speakers: Virginia
Dignum, Wallenberg chair on Responsible Artificial Intelligence and Scientific
Director of WASP-HS (Humanities and Society) based at Umeå University, Sweden,
who gave the keynote exploring “The myth of complete AI-fairness” and Pearse
Keane, Associate Professor at the UCL Institute of Ophthalmology and Consultant at
Moorfields Eye Hospital, UK, who talked about “Transforming healthcare with arti-
ficial intelligence - lessons from ophthalmology”.

AIME 2021 provided an opportunity for PhD students to present their research
goals, proposed methods, and preliminary results at an associated doctorial consortium.
A scientific panel consisting of experienced researchers in the field provided con-
structive feedback to the students in an informal atmosphere. The doctoral consortium
was chaired by Dr. David Riaño.

Two workshops: (1) The 12th International Workshop on Knowledge Representa-
tion for Health Care - KR4HC 2021 (David Riaño, Mar Marcos, and Annette ten
Teije); (2) Explainable Artificial Intelligence in Healthcare (Jose M. Juarez, Gregor
Stiglic, Huang Zhengxing, and Katrien Verbert); and an interactive half-day tutorial:
Evaluating Prediction Models (Ameen Abu Hanna), took place prior to the AIME 2021
main conference.

Prizes were awarded for best student paper, best bioinformatics paper, and a new
rising star award for young researchers within the AIME community who are running
labs with recent breakthrough papers in the area.

We would like to thank everyone who contributed to AIME 2021. First of all, we
would like to thank the authors of the papers submitted and the members of the Pro-
gram Committee together with the additional reviewers. Thank you to the Senior
Program Committee for writing meta-reviews and to members of the Senior Advisory
Committee for providing guidance during conference organization. Thanks are also due
to the invited speakers, as well as to the organizers of the tutorials and doctoral
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consortium panel. Many thanks go to the Local Organizing Committee, who helped
plan this conference and transition it to a virtual one. The free EasyChair conference
system (http://www.easychair.org/) was an important tool supporting us in the man-
agement of submissions, reviews, and selection of accepted papers. We would like to
thank Springer and the Artificial Intelligence Journal (AIJ) for sponsoring the con-
ference. Finally, we thank the Springer team for helping us in the final preparation of
this LNAI book.

June 2021 Allan Tucker
Pedro Henriques Abreu

Jaime Cardoso
Pedro Pereira Rodrigues

David Riaño
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Transforming Healthcare with Artificial
Intelligence – Lessons from Ophthalmology

(Abstract of Invited Talk)

Pearse A. Keane

UKRI Future Leaders Fellow
Consultant Ophthalmologist, Moorfields Eye Hospital NHS Foundation Trust
Associate Professor, Institute of Ophthalmology, University College London

pearse.keane1@nhs.net

Abstract. Ophthalmology is among the most technology-driven of the all the
medical specialties, with treatments utilizing high-spec medical lasers and
advanced microsurgical techniques, and diagnostics involving ultra-high reso-
lution imaging. Ophthalmology is also at the forefront of many trailblazing
research areas in healthcare, such as stem cell therapy, gene therapy, and - most
recently - artificial intelligence. In July 2016, Moorfields announced a formal
collaboration with the artificial intelligence company, DeepMind. This collab-
oration involves the sharing of >1,000,000 anonymised retinal scans with
DeepMind to allow for the automated diagnosis of diseases such as age-related
macular degeneration (AMD) and diabetic retinopathy (DR). In my presentation,
I will describe the motivation - and urgent need - to apply deep learning to
ophthalmology, the processes required to establish a research collaboration
between the National Health Service (NHS) and a company like DeepMind, the
initial results of our research, and finally, why I believe that ophthalmology
could be first branch of medicine to be fundamentally reinvented through the
application of artificial intelligence.

https://orcid.org/0000-0002-9239-745X
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The Myth of Complete AI-Fairness

Virginia Dignum(B)

Ume̊a University, Ume̊a, Sweden
virginia@cs.umu.se

Just recently, IBM invited me to participate in a panel titled “Will AI ever
be completely fair?” My first reaction was that it surely would be a very short
panel, as the only possible answer is ‘no’. In this short paper, I wish to further
motivate my position in that debate: “I will never be completely fair. Nothing
ever is. The point is not complete fairness, but the need to establish metrics and
thresholds for fairness that ensure trust in AI systems”.

The idea of fairness and justice has long and deep roots in Western civiliza-
tion, and is strongly linked to ethics. It is therefore not strange that it is core
to the current discussion about the ethics of development and use of AI sys-
tems. Given that we often associate fairness with consistency and accuracy, the
idea that our decisions and decisions affecting us can become fairer by replac-
ing human judgement by automated, numerical, systems, is therefore appealing.
However, as Laurie Anderson recently said1 “If you think technology will solve
your problems, you don’t understand technology—and you don’t understand
your problems.” AI is not magic, and its results are fundamentally constrained
by the convictions and expectations of those that build, manage, deploy and
use it. Which makes it crucial that we understand the mechanisms behind the
systems and their decision capabilities.

The pursuit of fair AI is currently a lively one. One involving many
researchers, meetings and conferences (of which FAccT2 is the most known)
and refers to the notion that an algorithm is fair, if its results are independent of
given variables, especially those considered sensitive, such as the traits of individ-
uals which should not correlate with the outcome (i.e. gender, ethnicity, sexual
orientation, disability, etc.). However, nothing is ever 100% fair in 100% of the
situations, and due to complex networked connection, to ensure fairness for one
(group) may lead to unfairness for others. Moreover, what we consider fair often
does depend on the traits of individuals. An obvious example are social services.
Most people believe in the need for some form of social services, whether it is for
children, for the elderly, for the sick or the poor. And many of us will benefit from
social services at least once in our lives. Decision making in the attribution of
social benefits is dependent on individual characteristics such as age, income, or
chronic health problems. Algorithmic fairness approaches however overempha-
size concepts such as equality and do not adequately address caring and concern
for others.

1 As quoted by Kate Crawford on Twitter https://twitter.com/katecrawford/status/
1377551240146522115; 1 April 2021.

2 https://facctconference.org/.
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Many years ago, I participated in a project at my children basic school that
was aimed at helping kids develop fairness standards, roughly modelled along
Kohlberg’s stages of moral development. It became clear quite quickly that chil-
dren aged 6–12 easily understand that fairness comes in many ‘flavours’: if given
cookies to divide between all kids of the class, the leading principle was equality,
i.e. giving each kid the same amount of cookies. But they also understood and
accepted the concept of equity: for instance in deciding that a schoolmate with
dyslexia should be given more time to perform a school exam. Unfortunately, for
the average algorithm, common sense and world knowledge is many light years
away from that of a six year old, and switching between equity and equality
depending on what is the best approach to fairness in a given situation, is rarely
a feature of algorithmic decision making.

So, How Does Fairness Work in Algorithms and What
is Being Done to Correct for Unfair Results?

Doctors deciding on a patient’s treatment, or judges deciding on sentencing,
must be certain that probability estimates for different conditions are correct
for each specific subject, independent of age, race or gender. Increasingly these
decisions are mediated by algorithms. Algorithmic fairness can be informally
described as the probability of being classified in a certain category should be
similar to for all that exhibit those characteristics, independently of other traits
or properties. In order to ensure algorithmic fairness, given often very unbalanced
datasets, data scientists use calibration (i.e. the comparison of the actual output
and the expected output). Moreover, if we are concerned about fairness between
two groups (e.g. male and female patients, or African-American defendants and
Caucasian defendants) then this calibration condition should hold simultane-
ously for the set of people within each of these groups as well [4]. Calibration is
a crucial condition for risk prediction tools in many settings. If a risk prediction
tool for evaluating defendants is not calibrated towards race, for example, then a
probability estimate could carry different meaning for African-American than for
Caucasian defendants, and hence the tool would have the unintended and highly
undesirable consequence of incentivizing judges to take race into account when
interpreting the tool’s predictions [7]. At the same time, ideally the incidence
of false positives (being incorrectly classified as ‘X’) and false negatives (failing
incorrectly to be classified as ‘X’) should be the same independently of other
traits or properties. That is, fairness also means that, for instance, male and
female candidates have the same chance of being offered a, for them irrelevant,
service or product, or failing to receive for them relevant services or products.

Unfortunately, research shows that it is not possible to satisfy some of these
expected properties of fairness simultaneously: calibration between groups, bal-
ance for false negatives, and balance for false positives. This means that if we
calibrate data, we need to be prepared to accept higher levels of false positives
and false negatives for some groups, and to deal with their human and societal
impact [6]. Taking the diagnostic example, a false positive means that a patient
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is diagnosed with a disease they don’t have. With a false negative that disease
goes undiagnosed. The impact of either, both personal as well as societal, can be
huge. In the same way, being wrongly classified as someone with a high risk to
re-offend(false positive) has profound personal consequences, given that innocent
people are held without bail, while incorrect classification as someone with a low
risk to re-offend (false negative) has deep societal consequences, where people
that pose a real criminal threat are let free3.

Given these technical difficulties in achieving perfectly fair, data-driven, algo-
rithms, it is high time to start a conversation about the societal and individual
impact of false positives and false negatives, and, more importantly, about what
should be the threshold for acceptation of algorithmic decisions, that, by their
nature, will never be completely ‘fair’.

Fairness is Not About Bias but About Prejudice

A commonly voiced explanation for algorithmic bias is the prevalence of human
bias in the data. For example, when a job application filtering tool is trained
on decisions made by humans, the machine learning algorithm may learn to
discriminate against women or individuals with a certain ethnic background.
Often this will happen even if ethnicity or gender are excluded from the data
since the algorithm will be able to exploit the information in the applicant’s
name, address or even the use of certain words. For example, Amazon’s recruiting
AI system filtered out applications by women, because they lacked ‘masculine’
wording, commonly used in applications by men.

There are many reasons for bias in datasets, from choice of subjects, to
the omission of certain characteristics or variables that properly capture the
phenomenon we want to predict, to changes over time, place or situation, to the
way training data is selected.

Much has been done already to categorize and address the many forms of
machine bias [8]. Also, many tools are available to support to unbias AI systems,
including IBM’s AI Fairness 3604 and Google’s What If Tool5. Basically, these
tools support the testing and mitigation of bias through libraries of methods
and test environments. According to Google “[...] with the What If Tool you
can test performance in hypothetical situations, analyse the importance of dif-
ferent data features, and visualize model behaviour across multiple models and
subsets of input data, and for different ML fairness metrics.” Note the focus on
performance, a constant in much of the work on AI.

However, not all bias is bad, in fact, there are even biases in the way we
approach bias. Bias in human data in not only impossible to fully eliminate, it
is often there for a reason. Bias is part of our lives partly because, we do not

3 This example is at the core of the well-known Propublica investigations of the
COMPAS algorithms used by courts in the US to determine recidivism risk: www.
propublica.org/article/how-we-analyzed-the-compasrecidivism-algorithm.

4 https://github.com/Trusted-AI/AIF360.
5 https://pair-code.github.io/what-if-tool/index.html#about.

www.propublica.org/article/how-we-analyzed-the-compasrecidivism-algorithm
www.propublica.org/article/how-we-analyzed-the-compasrecidivism-algorithm
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have enough cognitive bandwidth to make every decision from ground zero and
therefore need to use generalizations, or biases, as a starting point. Without
bias, we would not been able to survive as a species, it helps us selecting from
a myriad of options in our environment. But not all biases are bad. But that
doesn’t mean we shouldn’t address them.

Bias is not the problem, prejudice and discrimination are. Whereas prejudice
represents a preconceived judgment or attitude, discrimination is a behaviour. In
society, discrimination is often enacted through institutional structures and poli-
cies, and embedded in cultural beliefs and representations, and is thus reflected
in any data collected. The focus need be on using AI to support interventions
aimed at reducing prejudice and discrimination, e.g. through education, facili-
tation of intergroup contact, targeting social norms promoting positive relations
between groups, or supporting people identify their own bias and prejudices.

Facial analysis tools and recognition software have raised concerns about
racial bias in the technology. Work by Joy Buolamwini and Timnit Gebru has
shown how deep these biases go and how hard they are to eliminate [1]. In fact,
debiasing AI often leads to other biases. Sometimes this is known and under-
stood, such as the dataset they created as alternative to the datasets commonly
used for training facial recognition algorithms: using what they called ‘parlia-
ments’, Buolamwini and Gebru created a dataset of faces balanced in terms of
race and gender, but notably unbalanced in terms of age, lighting or pose. As
long as this is understood, this dataset is probably perfectly usable for train-
ing an algorithm to recognise faces of a certain age, displayed under the same
lighting conditions and with the same pose. It will however not be usable if
someone tries to train an algorithm to recognise children’s faces. This illustrates
that debiasing data is not without risks, in particular because it focus on those
characteristics that we are aware of, which are ‘coloured’ by our own experience,
time, place and culture.

AI bias is more than biased data. It starts with who is collecting the data,
who is involved in selecting and/or designing the algorithms and who is training
the algorithms and labelling the data. Moreover, decisions about which and
whose data is collected and which data is being used to train the algorithms
and how the algorithm is designed and trained also influence the fairness of the
results. From labelling farms to ghost workers, the legion of poorly paid, badly
treated and ignored human labourers, working behind the scenes of any working
AI system, is huge and little is being done to acknowledge them and to improve
their working conditions. Books such as ‘Ghost work’ [5] by Mary L. Gray and
Siddharth Suri, or ‘Atlas of AI’ [2] by Kate Crawford, are raising the issue but,
as often is the case, the ‘folk is sleeping’: it is easier to use the systems and
profit from their results, than to question how these results are being achieved
and at what cost. The question is thus: how fair is algorithm fairness for those
that label, train and calibrate the data it needs to produce fair results and, more
importantly, if we expect them to provide us with unbiased data, shouldn’t we
be treating them fairly?
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Beyond Fairness

The fact that algorithms and humans, cannot ever be completely fair, does not
mean that we should just accept it. Improving fairness and overcoming prejudice
is partly a matter of understanding how the technology works. A matter of
education. Moreover, using technology properly, fair treatment of those using
and being affected by it, requires participation. Still many stakeholder are not
invited to the table, not joining the conversation. David Sumpter describes the
quest for algorithmic fairness as a game of ‘whack-a-mole’: when you try to solve
bias in one place, it appears up somewhere else [9]. The elephant in the room
is the huge blind spot we all have about our own blind spots. We correct bias
for the bias we are aware of. An inclusive, participatory, approach to design and
development of AI systems will facilitate a wider scope.

Lack of fairness in AI systems is often also linked to a lack of explanatory
capabilities. If the results of the system cannot be easily understood or explained,
it is difficult to assess its fairness. Many of the current tools that evaluate bias
and fairness help identify where biases may occur, whether in the data or the
algorithms or even in their testing and evaluation. Even if not all AI systems
can be fully explainable, it is important to make sure that their decisions are
reproducible and the conditions for their use are clear and open to auditing.

Current AI algorithms are built for accuracy and performance, or for effi-
ciency. Improving the speed of the algorithm, minimizing its computational
requirements and maximizing the accuracy of the results are the mantras that
lead current computer science and engineering education. However, these are
not the only optimization criteria. When humans and society are at stake, other
criteria need be considered. How do you balance safety and privacy? Explainabil-
ity and energy resources? Autonomy and accuracy? What do you do when you
cannot have both? Such moral overload dilemmas are at the core of responsible
development and use of AI [3].

Addressing them requires multidisciplinary development teams and involve-
ment of the humanities and social sciences in software engineering education. It
also requires a redefinition of incentives and metrics for what is a ‘good’ system.
Doing the right thing, and doing it well means that we also need to define what
is good and for whom.

Finally, it is important to keep continuous efforts to improve algorithms and
data, define regulation and standardisation, and develop evaluation tools and
corrective frameworks. But the same time, we cannot ignore that no technology
is without risk, no action is without risk. It is high time to start the conversation
on which AI-risks we find acceptable for individuals and for society as a whole,
and how we distribute these risks, as well as the benefits of AI.
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Abstract. With the rise of deep learning, there has been increased interest in
using neural networks for histopathology image analysis, a field that investigates
the properties of biopsy or resected specimens traditionally manually examined
under a microscope by pathologists. However, challenges such as limited data,
costly annotation, and processing high-resolution and variable-size images make
it difficult to quickly iterate over model designs.

Throughout scientific history, many significant research directions have lever-
aged small-scale experimental setups as petri dishes to efficiently evaluate
exploratory ideas. In this paper, we introduce aminimalist histopathology image
analysis dataset (MHIST), an analogous petri dish for histopathology image anal-
ysis. MHIST is a binary classification dataset of 3,152 fixed-size images of col-
orectal polyps, each with a gold-standard label determined by the majority vote of
seven board-certified gastrointestinal pathologists and annotator agreement level.
MHIST occupies less than 400 MB of disk space, and a ResNet-18 baseline can
be trained to convergence on MHIST in just 6min using 3.5 GB of memory on
a NVIDIA RTX 3090. As example use cases, we use MHIST to study natural
questions such as how dataset size, network depth, transfer learning, and high-
disagreement examples affect model performance.

By introducing MHIST, we hope to not only help facilitate the work of cur-
rent histopathology imaging researchers, but also make the field more-accessible
to the general community. Our dataset is available at https://bmirds.github.io/
MHIST.

Keywords: Histopathology images · Deep learning ·Medical image analysis

1 Introduction

Scientific research has aimed to study and build our understanding of the world, and
although many problems initially seemed too ambitious, they were ultimately sur-
mounted. In these quests, a winning approach has often been to break down large ideas
into smaller components, learn about these components through experiments that can
be iterated on quickly, and then validate or translate those ideas into large-scale applica-
tions. For example, in the Human Genome Project (which helped us understand much
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Fig. 1. Key features of our minimalist histopathology image analysis dataset (MHIST).

of what we know now about human genetics), many fundamental discoveries resulted
from petri dish experiments—small setups that saved time, energy, and money—on
simpler organisms. In particular, the Drosophila fruit fly, an organism that is inexpen-
sive to culture, has short life cycles, produces large numbers of embryos, and can be
easily genetically modified, has been used in biomedical research for over a century to
study a broad range of phenomena [1].

In deep learning, we have our own set of petri dishes in the form of benchmark
datasets, of which MNIST [2] is one of the most popular. Comprising the straightfor-
ward problem of classifying handwritten digits in 28 by 28 pixel images, MNIST is
easily accessible, and training a strong classifier on it has become a simple task with
today’s tools. Because it is so easy to evaluate models on MNIST, it has served as the
exploratory environment for many ideas that were then validated on large scale datasets
or implemented in end-to-end applications. For example, many well-known concepts
such as convolutional neural networks, generative adversarial networks [3], and the
Adam optimization algorithm [4] were initially validated on MNIST.

In the field of histopathology image analysis, however, no such classic dataset cur-
rently exists due to many potential reasons. To start, most health institutions do not
have the technology nor the capacity to scan histopathology slides at the scale needed
to create a reasonably-sized dataset. Even for institutions that are able to collect data,
a barrage of complex data processing and annotation decisions falls upon the aspir-
ing researcher, as histopathology images are large and difficult to process, and data
annotation requires the valuable time of trained pathologists. Finally, even after data
is processed and annotated, it can be challenging to obtain institutional review board
(IRB) approval for releasing such datasets, and some institutions may wish to keep
such datasets private. As a result of the inaccessibility of data, histopathology image
analysis has remained on the fringes of computer vision research, with many popular
image datasets dealing with domains where data collection and annotation are more
straightforward.
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To address these challenges that have plagued deep learning for histopathology
image analysis since the beginning of the area, in this paper, we introduce MHIST:
a minimalist histopathology image classification dataset. MHIST is minimalist in that
it comprises a straightforward binary classification task of fixed-size colorectal polyp
images, a common and clinically-significant task in gastrointestinal pathology. MHIST
contains 3,152 fixed-size images, each with a gold-standard label determined from the
majority vote of seven board-certified gastrointestinal pathologists, that can be used
to train a baseline model without additional data processing. By releasing this dataset
publicly, we hope not only that current histopathology image researchers can build
models faster, but also that general computer vision researchers looking to apply mod-
els to datasets other than classic benchmarks can easily explore the exciting area of
histopathology image analysis. Our dataset is publicly available at https://bmirds.github.
io/MHIST following completion of a simple dataset-use agreement form.

2 Background

Deep learning for medical image analysis has recently seen increased interest in analyz-
ing histopathology images (large, high-resolution scans of histology slides that are typ-
ically examined under a microscope by pathologists) [5]. To date, deep neural networks
have already achieved pathologist-level performance on classifying diseases such as
prostate cancer, breast cancer, lung cancer, and melanoma [6–12], demonstrating their
large potential. Despite these successes, histopathology image analysis has not seen
the same level of popularity as analysis of other medical image types (e.g., radiology
images or CT scans), likely because the nature of histopathology images creates a num-
ber of hurdles that make it challenging to directly apply mainstream computer vision
methods. Below, we list some factors that can potentially impede the research workflow
in histopathology image analysis:

– High-resolution, variable-size images. Because the disease patterns in histology
slides can only occur in certain sections of the tissue and can only be detected at
certain magnifications under the microscope, histopathology images are typically
scanned at high resolution so that all potentially-relevant information is preserved.
This means that while each sample contains lots of data, storing these large, high-
resolution images is nontrivial. For instance, the slides from a single patient in
the CAMELYON17 challenge [13] range from 2 GB to 18 GB in size, which is
up to one-hundred times larger than the entire CIFAR-10 dataset. Moreover, the
size and aspect ratios of the slides can differ based on the shape of the specimen
in question—sometimes, multiple large specimens are included in one slide, and so
some scanned slides may be up to an order of magnitude larger than others. As deep
neural networks typically require fixed-dimension inputs, preprocessing decisions
such as what magnification to analyze the slides at and how to deal with variable-
size inputs can be difficult to make.

– Cost of annotation. Whereas annotating data in deep learning has been simpli-
fied by services such as Mechanical Turk, there is no well-established service for
annotating histopathology images, a process which requires substantial time from

https://bmirds.github.io/MHIST
https://bmirds.github.io/MHIST
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experienced pathologists who are often busy with clinical service. Moreover, access
to one or two pathologists is often inadequate because inter-annotator agreement is
low to moderate for most tasks, and so annotations can be easily biased towards the
personal tendencies of annotators.

– Unclear annotation guidelines. It is also unclear what type of annotation is needed
for high-resolution whole-slide images, as a slide may be given a certain diagnosis
based on a small portion of diseased tissue, but the overall diagnosis would not apply
to the normal portions of the tissue. Researchers often opt to have pathologists draw
bounding boxes and annotate areas with their respective histological characteristics,
but this comes with substantial costs, both in training pathologists to use annotation
software and in increased annotation time and effort.

– Lack of data. Even once these challenges are addressed, it is often the case that,
due to slides being discarded as a result of poor quality or to remove classes that are
too rare to include in the classification task, training data is relatively limited and
the test set is not sufficiently large. This makes it difficult to distinguish accurately
between models, and models are therefore easily prone to overfitting.

To mitigate these challenges of data collection and annotation, in this paper we
introduce a minimalist histopathology dataset that will allow researchers to quickly
train a histopathology image classification model without dealing with an avalanche of
complex data processing and annotation decisions. Our dataset focuses on the binary
classification of colorectal polyps, a straightforward task that is common in a gastroin-
testinal pathologist’s workflow. Instead of using whole-slide images, which are too large
to directly train on for most academic researchers, our dataset consists only of 224 ×
224 pixel image tiles of tissue; these images can be directly fed into standard com-
puter vision models such as ResNet. Finally, for annotations, each patch in our dataset
was directly classified by seven board-certified gastrointestinal pathologists and given
a gold-standard label based on their majority vote.

Our dataset aims to serve as a petri dish for histopathology image analysis. That is,
it represents a simple task that can be learned quickly, and it is easy to iterate over. Our
dataset allows researchers to, without dealing with the confounding factors that arise
from the nature of histopathology images, quickly test inductive biases that can later be
implemented in large-scale applications. We hope that our dataset will allow researchers
to more-easily explore histopathology image analysis and that this can facilitate further
research in the field as a whole.

3 MHIST Dataset

In the context of the challenges mentioned in the above section, MHIST has several
notable features that we view favorably in a minimalist dataset:

1. Straightforward binary classification task that is challenging and important.
2. Adequate yet tractable number of examples: 2,175 training and 977 testing images.
3. Fixed-size images of appropriate dimension for standard models.
4. Gold-standard labels from the majority vote of seven pathologists, along with anno-

tator agreement levels that can be used for more-specific model tuning.
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Table 1. Number of images in our dataset’s training and testing sets for each class. HP: hyper-
plastic polyp (benign), SSA: sessile serrated adenoma (precancerous).

Train Test Total

HP 1,545 617 2,162

SSA 630 360 990

Total 2,175 977 3,152

The rest of this section details the colorectal polyp classification task (Sect. 3.1),
data collection (Sect. 3.2), and the data annotation process (Sect. 3.3).

3.1 Colorectal Polyp Classification Task

Colorectal cancer is the second leading cause of cancer death in the United States, with
an estimated 53,200 deaths in 2020 [14]. As a result, colonoscopy is one of the most
common cancer screening programs in the United States [15], and classification of col-
orectal polyps (growths inside the colon lining that can lead to colonic cancer if left
untreated) is one of the highest-volume tasks in pathology. Our task focuses on the
clinically-important binary distinction between hyperplastic polyps (HPs) and sessile
serrated adenomas (SSAs), a challenging problem with considerable inter-pathologist
variability [16–20]. HPs are typically benign, while SSAs are precancerous lesions
that can turn into cancer if left untreated and require sooner follow-up examinations
[21]. Pathologically, HPs have a superficial serrated architecture and elongated crypts,
whereas SSAs are characterized by broad-based crypts, often with complex structure
and heavy serration [22].

3.2 Data Collection

For our dataset, we scanned 328 Formalin Fixed Paraffin-Embedded (FFPE) whole-
slide images of colorectal polyps, which were originally diagnosed on the whole-slide
level as hyperplastic polyps (HPs) or sessile serrated adenomas (SSAs), from patients
at the Dartmouth-Hitchcock Medical Center. These slides were scanned by an Aperio
AT2 scanner at 40x resolution; to increase the field of view, we compress the slides with
8x magnification. From these 328 whole-slide images, we then extracted 3,152 image
tiles (portions of size 224 × 224 pixels) representing diagnostically-relevant regions of
interest for HPs or SSAs. These images were shuffled and anonymized by removing all
metadata such that no sensitive patient information was retrievable from any images. All
images contain mostly tissue by area (as opposed to white space) and were confirmed
by our pathologists to be high-quality with few artifacts. The use and release of our
dataset was approved by Dartmouth-Hitchcock Health IRB.

3.3 Data Annotation

For data annotation, we worked with seven board-certified gastrointestinal pathologists
at the Dartmouth-Hitchcock Medical Center. Each pathologist individually and inde-
pendently classified each image in our dataset as either HP or SSA based on the World
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Fig. 2. Distribution of annotator agreement levels for images in our dataset.

Table 2. Model performance for five different ResNet depths. Adding more layers to the model
does not improve performance. n indicates the number of images per class used for training.
Means and standard deviations shown are for 10 random seeds.

AUC (%) on test set by training set size

ResNet n = 100 n = 200 n = 400 Full

18 67.4 ± 3.1 73.6 ± 3.7 79.3 ± 2.3 84.5 ± 1.1

34 64.1 ± 2.2 74.8 ± 3.1 78.0 ± 2.4 85.1 ± 0.7

50 64.7 ± 3.1 72.2 ± 2.8 76.6 ± 1.9 83.0 ± 0.6

101 65.2 ± 5.6 73.2 ± 1.9 77.3 ± 0.9 83.2 ± 1.3

152 62.3 ± 3.3 73.3 ± 1.2 77.5 ± 1.9 83.5 ± 0.8

Health Organization criteria from 2019 [23]. After labels were collected for all images
from all pathologists, the gold standard label for each image was assigned based on the
majority vote of the seven individual labels, a common choice in literature [24–33]. The
distribution of each class in our dataset based on the gold standard labels of each image
is shown in Table 1.

In our dataset, the average percent agreement between each pair of annotators was
72.9%, and each pathologist agreed with the majority vote an average of 83.2% of the
time. There is, notably, nontrivial disagreement between pathologists (approximately
16.7% of images have 4/7 agreement), which corresponds with the difficulty of our
colorectal polyp classification task. The mean of the per-pathologist Cohen’s κ was
0.450, in the moderate range of 0.41−0.60. Although not directly comparable with prior
work, a similar evaluation found a Cohen’s κ of 0.380 among four pathologists [20].
To facilitate research that might consider the annotator agreement of examples during
training, for each image, we also provide the agreement level among our annotators
(4/7, 5/7, 6/7, or 7/7). Figure 2 shows the distribution of agreement levels for our dataset.
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4 Example Use Cases

In this section, we demonstrate example use cases of our dataset by investigating sev-
eral natural questions that arise in histopathology image analysis. Namely, how does
network depth affect model performance (Sect. 4.2)? How much does ImageNet pre-
training help (Sect. 4.3)? Should examples with substantial annotator disagreement be
included in training (Sect. 4.4)? Moreover, we vary the size of the training set to gain
insight on how the amount of available data interacts with each of the above factors.

4.1 Experimental Setup

For our experiments, we follow the DeepSlide code repository [11] and use the ResNet
architecture, a common choice for classifying histopathology images. Specifically, for
our default baseline, we use ResNet-18 and train our model for 100 epochs (well past
convergence) using stochastic data augmentation with the Adam optimizer [4], batch
size of 32, initial learning rate of 1× 10−3, and learning rate decay factor of 0.91.

Table 3. Using weights pretrained on ImageNet significantly improves the performance of
ResNet-18 on our dataset. n indicates the number of images per class used for training. Means
and standard deviations shown are for 10 random seeds.

AUC (%) on test set by training set size

Pretraining? n = 100 n = 200 n = 400 Full

No 67.4 ± 3.1 73.6 ± 3.7 79.3 ± 2.3 84.5 ± 1.1

Yes 83.7 ± 1.7 89.3 ± 1.8 92.4 ± 0.7 92.7 ± 0.4

For more-robust evaluation, for each model we consider the five highest AUCs on
the test set, which are evaluated at every epoch. We report the mean and standard devi-
ation of these values calculated over 10 different random seeds.

Furthermore, we train our models with four different training set sizes: n = 100,
n = 200, n = 400, and Full, where n is the number of training images per class and
Full is the entire training set. To obtain subsets of the training set, we randomly sample
n random images for each class from the training set for each seed. We keep our testing
set fixed to ensure that models are evaluated equally.

4.2 Network Depth

We first study whether adding more layers to our model improves performance on our
dataset. Because deeper models take longer to train, identifying the smallest model that
achieves the best performance allows for maximum accuracy with the least necessary
training time.

We evaluate all five ResNet models proposed in [34]—ResNet-18, ResNet-34,
ResNet-50, ResNet-101, and ResNet-152—on our dataset, and all hyperparameters
(e.g., number of epochs, batch size) are kept constant; we only change the model depth.
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As shown in Table 2, adding more layers does not significantly improve perfor-
mance at any training dataset size. Furthermore, adding model depth past ResNet-34
actually decreases performance, as models that are too deep will begin to overfit, espe-
cially for small training set sizes. For example, when training with only 100 images per
class, mean AUC decreases by 5.1% when using ResNet-152 compared to ResNet-18.

We posit that increasing network depth does not improve performance on our dataset
because our dataset is relatively small, and so deeper networks are unnecessary for the
amount of information in our dataset. Moreover, increasing network depth may increase
overfitting on training data due to our dataset’s small size. Our results are consistent with
findings presented by Benkendorf and Hawkins [35]—deeper networks only perform
better than shallow networks when trained with large sample sizes.

4.3 Transfer Learning

We also examine the usefulness of transfer learning for our dataset, as transfer learning
can often be easily implemented into existing models, and so it is helpful to know
whether or not it can improve performance.

Table 4.Removing high-disagreement images during training may slightly improve performance.
Means and standard deviations shown are for 10 random seeds.

Training images used AUC (%) on test set

Very easy images only 79.9 ± 0.8

Easy images only 83.1 ± 0.6

Very easy + Easy images 84.6 ± 0.8

Very easy + Easy + Hard images 85.1 ± 0.8

All images 84.5 ± 1.1

Because deeper models do not achieve better performance on our dataset (as shown
in Sect. 4.2), we use ResNet-18 initialized with random weights as the baseline model
for this experiment. We compare our baseline with an identical model (i.e., all hyperpa-
rameters are congruent) that has been initialized with weights pretrained on ImageNet.

Table 3 shows the results for our ResNet-18 model with and without pretraining. We
find that ResNet-18 initialized with ImageNet pretrained weights significantly outper-
forms ResNet-18 initialized with random weights. For example, our pretrained model’s
performance when trained with only 100 images per class is comparable to our baseline
model’s performance when trained with the full training dataset. When both models are
trained on the full training set, the pretrained model outperforms the baseline by 8.2%,
as measured by mean AUC. These results indicate that, for our dataset, using pretrained
weights can be extremely helpful for improving overall performance.

The large improvement from ImageNet pretraining is unlikely to result from our
dataset having features expressed in ImageNet because ImageNet does not include
histopathology images. Instead, the improvement is, perhaps, explained by our dataset’s
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small size, as ImageNet pretraining may help prevent the model from overfitting. This
would be consistent with Kornblith et al. [36], which found that performance improve-
ments from ImageNet pretraining diminishes as dataset size increases.

4.4 High-Disagreement Training Examples

As many datasets already contain annotator agreement data [24–30,33,37–41], we also
study whether there are certain ways of selecting examples based on their annotator
agreement level that will maximize performance. Examples with high annotator dis-
agreement are, by definition, harder to classify, so they may not always contain features
that are beneficial for training models. For this reason, we focus primarily on whether
training on only examples with higher annotator agreement will improve performance.

For our dataset, which was labeled by seven annotators, we partition our images
into four discrete levels of difficulty: very easy (7/7 agreement among annotators), easy
(6/7 agreement among annotators), hard (5/7 agreement among annotators), and very
hard (4/7 agreement among annotators), following our prior work [42]. We then train
ResNet-18 models using different combinations of images selected based on difficulty:
very easy images only; easy images only; very easy and easy images; and very easy,
easy, and hard images. For this experiment, we do not modify the dataset size like we
did in Sects. 4.2 and 4.3, as selecting training images based on difficulty inherently
changes the training set size.

As shown in Table 4, we find that excluding images with high annotator disagree-
ment (i.e., hard and very hard images) during training achieves comparable performance
to training with all images. Using only very easy images or only easy images, however,
does not match or exceed performance when training with all images. We also find that
training with all images except very hard images slightly outperforms training with all
images. One explanation for this is that very hard images, which only have 4/7 annota-
tor agreement, could be too challenging to analyze accurately (even for expert humans),
so their features might not be beneficial for training machine learning models either.

5 Related Work

Due to the trend towards larger, more computationally-expensive models [43], as well
as recent attention on the environmental considerations of training large models [44],
the deep learning community has begun to question whether model development needs
to occur at scale. In the machine learning field, two recent papers have brought attention
to this idea. Rawal et al. [45] proposed a novel surrogate model for rapid architecture
development, an artificial setting that predicts the ground-truth performance of archi-
tectural motifs. Greydanus [46] proposed MNIST-1D, a low-computational alternative
resource to MNIST that differentiates more clearly between models. Our dataset falls
within this direction and is heavily inspired by this work.

In the histopathology image analysis domain, several datasets are currently avail-
able. Perhaps the two best-known datasets are CAMELYON17 [13] and PCam [47].
CAMELYON17 focuses on breast cancer metastasis detection in whole-slide images
(WSIs) and includes a training set of 1,000WSI with labeled locations. CAMELYON17
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is well-established, but because it contains WSIs (each taking up >1 GB), there is a
large barrier to training an initial model, and it is unclear how to best pre-process the
data to be compatible with current neural networks’ desired input format.

PCam is another well-known dataset that contains 327,680 images of size 96 ×
96 pixels extracted from CAMELYON17. While PCam is similar to our work in that
it considers fixed-size images for binary classification, we note two key differences.
First, the annotations in PCam are derived from bounding-box annotations which were
drawn by a student and then checked by a pathologist. For challenging tasks with high
annotator disagreement, however, using only a single annotator can cause the model to
learn specific tendencies of a single pathologist. In our dataset, on the other hand, each
image is directly classified by seven expert pathologists, and the gold standard is set as
the majority vote of the seven labels, mitigating the potential biases that can arise from
having only a single annotator. Second, whereas PCam takes up around 7 GB of disk
space, our dataset aims to be minimalist and is therefore an order of magnitude smaller,
making it faster for researchers to obtain results and iterate over models.

In Table 5, we compare our dataset with other previously-proposed histopathol-
ogy image analysis datasets. Our dataset is much smaller than other datasets, yet
it still has enough examples to serve as a petri dish in that it can test models and
return results quickly. Additionally, our dataset has robust annotations in comparison
to other histopathology datasets. Datasets frequently only have one or two annotators,
but MHIST is annotated by seven pathologists, making it the least influenced by biases
that any singular annotator may have.

Table 5. Comparison of well-known histopathology datasets. Our proposed dataset, MHIST, is
advantageous due to its relatively small size (making it faster to obtain results) and its robust
annotations. ROI: Regions of Interest.

Dataset Images Image type Annotation type Number of
Annotators

Dataset size

MITOS (2012) [48] 50 High power fields Pixel-level 2 ∼1 GB

TUPAC16 [49] 821 Whole-slide images ROI 1 ∼850 GB

CAMELYON17 [13] 1,000 Whole-slide images Contoured 1 ∼2.3 TB

PCam (2018) [47] 327,680 Fixed-sized images Image-wise 1 ∼7 GB

BACH (2018) [50] 500 Microscopy images Image-wise 2 >5 GB

LYON19 [51] 83 Whole-slide images ROI 3 ∼13 GB

MHIST (Ours) 3,152 Fixed-sized images Image-wise 7 ∼333 MB

6 Discussion

The inherent nature of histopathology image classification can create challenges for
researchers looking to apply mainstream computer vision methods. Histopathology
images themselves are difficult to handle because they have high resolutions and are
variable-sized, and accurately and efficiently annotating histopathology images is a
nontrivial task. Furthermore, being able to address these challenges does not guarantee
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a high-quality dataset, as histopathology images are difficult to acquire, and so data is
often quite limited. Based on a thorough analysis of these challenges, we have presented
MHIST, a histopathology image classification dataset with a straightforward yet chal-
lenging binary classification task. MHIST comprises a total of 3,152 fixed-size images
that have already been preprocessed. In addition to providing these images, we also
include each image’s gold standard label and degree of annotator agreement.

Of possible limitations, our use of fixed-size images may not be the most-precise
approach for histopathological image analysis, as using whole-slide images directly
would likely improve performance since whole-slide images contain much more infor-
mation than fixed-size images. Current computer vision models cannot train on whole-
slide images, however, as a single whole-slide image can take up more than 10GB of
space. Thus, our dataset includes images of fixed-size, as this is appropriate for most
standard computer vision models. Another limitation is that our dataset does not include
any demographic information about patients nor any information regarding the size and
location of the polyp (data that is often used in clinical classification). Our dataset con-
tains purely image data and is limited in this fashion.

In this paper, we aim to have provided a dataset that can serve as a petri dish for
histopathology image analysis. We hope that researchers are able to use MHIST to test
models on a smaller scale before being implemented in large-scale applications, and
that our dataset will facilitate further research into deep learning methodologies for
histopathology image analysis.
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Abstract. Functional Magnetic Resonance Imaging (fMRI) is a neu-
roimaging technique with pivotal importance due to its scientific and
clinical applications. As with any widely used imaging modality, there
is a need to ensure the quality of the same, with missing values being
highly frequent due to the presence of artifacts or sub-optimal imaging
resolutions. Our work focus on missing values imputation on multivari-
ate signal data. To do so, a new imputation method is proposed consist-
ing on two major steps: spatial-dependent signal imputation and time-
dependent regularization of the imputed signal. A novel layer, to be used
in deep learning architectures, is proposed in this work, bringing back
the concept of chained equations for multiple imputation [26]. Finally, a
recurrent layer is applied to tune the signal, such that it captures its true
patterns. Both operations yield an improved robustness against state-of-
the-art alternatives. The code is made available on Github.

1 Introduction

The ability to learn from functional Magnetic Resonance Imaging (fMRI) data
is generally hampered by the presence of artifact and limits on the available
instrumentation and acquisition protocol, resulting in pronounced missingness.
As MRI is collected in frequency space with the usual type of missing/corrupted
values occurring at the frequency space. On the other hand, low-quality (voxel
space) recordings prevents whole-brain analyzes in clinical settings and is spe-
cially pervasive among stimuli-inducing setups in research settings. Imputation
of incomplete/noisy recordings is critical to classification [19], synthesis and
enhancement tasks. For instance, given the unique spatial and temporal nature
of each neuroimaging modality, synthesis between distinct modalities is a diffi-
cult task (particularly of multivariate time series nature), being imputation an
important step of the process [16,22]. Finally, the integration of heterogeneous
sources of fMRI recordings by multiple initiatives worldwide also drives the need
to increase image resolutions and correct differences arriving from distinct setups.

This work reclaims the importance of a machine learning based model to
perform imputation of multivariate signal data, as opposed to individual-specific
imputation. In this context, we propose a novel layer that perform feature based
imputation with the principle of chained equations [26]. Further, a recurrent
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layer is proposed to serve as a denoiser to the spatially imputed signal. This
two-step principled approach for imputation is illustrated in Fig. 1. Results on
resting-state and stimuli-based fMRI recordings validate the robustness of the
proposed approach against competitive alternatives.

2 Problem Setting

Multivariate Time Series (MTS) Missing Value Imputation is the focus of this
work, specifically high-dimensional MTS data from fMRI recordings. The prob-
lem is divided into two parts: spatial imputation, in which missing values are
sequentially predicted from the existing features; and time dimension regular-
ization, where the imputed values are time tuned.

Consider an fMRI recording to be a multivariate time series x ∈ R
v×t, being

v = (v0, ..., vV −1) the voxel dimension with V voxels and t = (t0, ..., tT−1) the
temporal dimension with T timesteps. An fMRI volume, at timestep t, is denoted
as xt = [xt

0, ...,x
t
V −1] and a voxel time series, at voxel v, is denoted as xv =

[x0
v, ...,xT−1

v ], each can be seen as the column and row of matrix x, respectively.
In the problem of imputation, consider ψ ∈ R

v×t ∪ {nan}, ϕ ∈ R
v×t and

μ ∈ {0, 1}v×t as the variables involved in the learning phase. The nan symbol
denotes a missing value in the fMRI instance ψ. μ is the mask, with 0 represent-
ing a complete value and 1 a missing value. ϕ is the complete fMRI instance.
Illustrating1, given V = 5 and T = 7,

ψ =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5 6 7

nan nan nan nan nan nan nan

15 16 17 18 19 20 21

nan nan nan nan nan nan nan

nan nan nan nan nan nan nan

⎤
⎥⎥⎥⎥⎦

, μ =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎦

, ϕ =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

⎤
⎥⎥⎥⎥⎦

Consider the imputation of missing values is made by a model, I, and each
imputed value is denoted as ιtv ∈ R. Continuing our example, an fMRI instance,
ψ, after processing by I, is ι ∈ R

v×t,

I(ψ) = ι =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5 6 7
ι01 ι11 ι21 ι31 ι41 ι51 ι61
15 16 17 18 19 20 21
ι03 ι13 ι23 ι33 ι43 ι53 ι63
ι04 ι14 ι24 ι34 ι44 ι54 ι64

⎤
⎥⎥⎥⎥⎦

Considering typical fMRI resolution, each voxel has a 3D euclidean point
correspondence. As such, a spatial distance matrix, d ∈ R

V ×V , is defined, where
di,j corresponds to the distance between voxels vi and vj , with i, j ∈ {0, ..., V −
1} ∈ N.

Missing voxels can occur at random or, in contrast, be spatially autocorre-
lated within a variable number of regions, resembling the characteristics of an
artifact. Both modes are targeted in this work.
1 ψ, μ, ϕ and ι values selected for simplicity sake, not necessarily resembling fMRI

values.
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3 Proposed Approach

In this section, two main steps are proposed to perform imputation of missing
values from MTS data:

– Spatial imputation, where imputation is done by estimating missing values,
μj

i = 1, from complete features, μl
k = 0, with i, k ∈ {0, ..., V − 1}, j, l ∈

{0, ..., T − 1}.
– Time series regularization, where the previously derived missing values

are processed by a recurrent neural network.

This two-step approach is shown in Sect. 6 to outperform competitive baselines.

3.1 Spatial Imputation

We propose a novel neural network layer, Φ, that performs imputation inspired
by the chained equations principle proposed by [26]. This imputation method
consists of filling a missing value at a time, and using its estimate to guide the
imputation of the remaining missing values.

The priority in which the values are filled is given by the pairwise voxel
correlation matrix, C, computed from the training set data.

This layer, Φ, is characterized by a weight matrix WΦ and bias BΦ,

WΦ =

⎡
⎢⎢⎢⎣

0 w1
0 ... wV −1

0

w0
1 0 ... wV −1

1

...
...

. . .
...

w0
V −1 w1

V −1 ... 0

⎤
⎥⎥⎥⎦ , BΦ =

⎡
⎢⎢⎢⎣

b0
b1
...

bV −1

⎤
⎥⎥⎥⎦ .

The activation function of Φ is linear, making the imputed values a linear
combination of the already filled and complete values. The weight matrix has a
zero-filled diagonal for each voxel to be described as a linear combination of the
remaining voxels.

Since this neural function estimates a single value at a time, one only needs to
compute the dot product of the missing value, v, with the corresponding column,
W v

Φ, and add the bias, Bv
Φ. The imputation operation of a missing value, v, is

denoted as
ψ0WΦ

v+BΦ
v

−−−−−−−→.
Let us consider the input presented in Sect. 2, with ψ0 = [1, nan, 15,

nan, nan], and
ψ0WΦ

c+BΦ
c

−−−−−−−→ as the operation made by layer Φ at each iteration
to impute a missing value, c. Being c = max(Cμ0=1) the missing voxel that has
the highest correlation with the complete and filled voxels. This scheme allows
an imputation of missings under the chained equation principle, φ is the output
of layer Φ, with φi corresponding to the vi missing voxel imputation. A total of∑

μt iterations are necessary, corresponding to the number of missing values,
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Φ(ψ0) =

⎡
⎢⎢⎢⎢⎣

1
nan
15

nan
nan

⎤
⎥⎥⎥⎥⎦

T

ψ0WΦ
c+BΦ

c

−−−−−−−→

⎡
⎢⎢⎢⎢⎣

1
φ1

15
nan
nan

⎤
⎥⎥⎥⎥⎦

T

ψ0WΦ
c+BΦ

c

−−−−−−−→

⎡
⎢⎢⎢⎢⎣

1
φ1

15
nan
φ4

⎤
⎥⎥⎥⎥⎦

T

ψ0WΦ
c+BΦ

c

−−−−−−−→

⎡
⎢⎢⎢⎢⎣

1
φ1

15
φ3

φ4

⎤
⎥⎥⎥⎥⎦

T

= φ.

Algorithm 1 Φ chained
imputation cycle

φ ← ψt

while
∑

μt > 0 do
c ← max(Cμt=1)
φc ← ψtWΦ

c + BΦ
c

μt
c ← 0

end while
φ

Algorithm 1 presents the pseudocode for this
imputation scheme. The Φ layer imputes all missing
values per time frame, t, of an fMRI recording, ψt.
Imputation is merely done accounting other features
on the same time frame, therefore spatial. This layer
contrasts with the traditional dropout layer for imput-
ing missing values. In a dropout layer, each weights’
column, W v, shows intra-correlation, converging to
a single target independently. However, there is no
inter-column correlation/dependency. Φ layer forces

the columns, W v
Φ, to be inter-correlated, converging to the same target as a unit.

Here, the estimates of a column (the imputed values) influence the estimates of
the upcoming columns along the imputation process.

3.2 Time Dimension Regularization

Once spatial imputation is done for each voxel, v, of an fMRI recording, φv, the
imputed values are fed to a recurrent layer, tweaking the signal in such a way
that it emulates the target time series patterns. The recurrent layer removes the
noise created by the spatial imputation method. We refer to this recurrent layer
as the Denoiser, D, component of the imputation pipeline. An illustration of this
noise removal is shown in Fig. 1.

Fig. 1. Time regularization (denoising) component.

D is a single layer Gated
Recurrent Unit (GRU) [4].
This choice was motivated
by results collected against
its rival Long-Short Term
Memory Layer on the tar-
get task, and further sup-
ported by studies showing
that GRU performs well on
datasets with limited observa-
tions [13], the common case
when learning Neuroimaging
datasets. [3,15] altered the
internal function of a GRU layer to perform direct imputation on a multivariate
time series. In contrast, we maintain the GRU layer as it was originally pro-
posed [4] since our purpose is to remove noise and capture the desired temporal
patterning properties of the (neurophysiological) signal. The imputation model
we propose is denoted as Φ + D, corresponding to the junction of the spatial
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imputation scheme described in Sect. 3.1 and the time regularization described
in Sect. 3.2.

3.3 Validation and Hyperparameters

Bayesian Optimization (BO) [20] was used to find the hyperparameters that
best fitted the pipeline. For each BO iteration a 6-Fold Cross Validation was
ran and the Mean Absolute Error (MAE) was the metric targeted as alternative
residue-based scores can overly focus on the minimization or large residues. Man-
ual tweaking was performed before to check which optimizers should be used.
In consensus, Adam optimizer [11] is used to optimize the D and Φ trainable
parameters. Missing data generation (explained in Sect. 5.3) is made at every
iteration of the BO algorithm, in order to avoid overfitting towards a certain
missing values setting. Besides Φ + D, BO was also ran for Φ, Dropout and
Dropout+D. The hyperparameters were subjected to a total of 50 iterations.
Their range spaces are: Φ learning rate, LΦ ∈ [1e−5, 1e−2] ∈ R; D learning
rate, LD ∈ [1e−5, 1e−2] ∈ R; Φ number of epochs, EΦ ∈ {2, 3, 4, 5} ∈ N;
D number of epochs, ED ∈ {2, 3, 4, 5} ∈ N; number of alternating epochs,
E ∈ {2, 4, 8, 10} ∈ N; D L1-norm regularization constant, RD ∈ [1e−5, 3] ∈ R;
D Use of bias, BD ∈ {0, 1} ∈ N; D Dropout [21], DrD ∈ [0, 3e−1] ∈ R; D
Recurrent Dropout [21], RDrD ∈ [0, 3e−1] ∈ R.

4 Related Work

Smieja et al. [19] address the presence of missing values by training a Gaus-
sian Mixture Model (GMM) of neural network activations. Missing values are
imputed at the first hidden layer by computing the expected activation of neu-
rons (instead of just calculating the expected input). Thus the imputation is not
made by single values, instead it is modeled by a GMM. Although competitive,
this approach performed worse than a Context Encoder (CE) [17] which, in con-
trast, is learnt from a loss function using the complete data. In this work, we
perform chained imputation based on correlation ranking, instead of imputing
values at one step by taking advantage of a GMM for each feature. Che et al. [3]
proposed a variant of the Gated Recurrent Unit (GRU) to handle generic time
series with missing values, claiming that, by placing masks and time intervals in
accordance with the properties of missing patterns, their model, GRU-D, is able
to take advantage of missing data to improve classification. Masking and time
intervals in GRU-D [3] are represented using a decay term computed by a expo-
nentiated negative rectifier function. Given a missing occurrence, the decay at
that timestep is used over time to converge to the empirical mean. Cao et al. [2]
perform missing imputation from two estimates produced from a spatial-based
and a recurrent model. Results on air quality, health care and human activ-
ity datasets show superiority among baselines reaching 11.56, 0.278 and 0.219
MAE. The imputation task is mapped as a classification task to learn the tar-
get models. After imputation is made separately by these two models, a linear
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combination, defined by a parameter, is computed to produce the final esti-
mate. In contrast, we take advantage of a recurrent model described in Sect. 3.2
to remove prediction noise from the spatial imputation model and strengthen
the temporal consistency. Further, Cao et al. [2] further assume missing values
occur sporadically in a feature time series of the multivariate time series, on
the other hand our work focuses on the imputation of whole feature time series
to resemble the characteristics missing neuroimaging data. Luo et al. [14] pro-
pose a disruptive model based on a Generative Adversarial Architecture [9]. The
Discriminator and Generator components are both an internally tweaked ver-
sion of GRU. The Discriminator classifies generated and real multivariate time
series samples and the Generator performs imputation on samples with missing
values. Results show classification superiority using the AUC metric. Fortuin et
al. [8] use a Variational Autoencoder Architecture [12] to perform imputation.
The Generative model is a Gaussian Process that generates samples from com-
plete encoded feature representations. All the discussed works in this section
perform multivariate time series imputation from incomplete data. For a more
objective assessment, our work tests imputation methods over complete datasets
with generated missing entries and regions according to the proposed validation
scheme.

5 Experimental Setting

The imputation baselines, target fMRI datasets, missing generation procedures,
and evaluation metrics are detailed in Sects. 5.1, 5.2, 5.3 and 5.4, respectively.

5.1 Baselines

For the sake of comparison, the following baselines were implemented to gather
the results: kNN imputation [10]; Barycenter [18]; MICE [26]; Mean imputation;
Context Encoder (CE) [17]; Dropout; Dropout with time regularization, denoted
as Dropout+D; and Φ with no time regularization. kNN was used with a k=3
since there were no overall significant improvements for alternative k. Barycenter
computes the average time series of a multivariate time series and imputation is
made with the average time series under the Dynamic Time Wrapping (DTW)
distance criterion. MICE, a.k.a. multiple imputation by chained equations, is a
method similar to ours as it has its basis on the same rationale of imputing one
missing value at a time. It is thus considered a baseline as well. Mean imputation
method takes the mean of each feature from the training set and performs kNN
imputation (k = 3) if there is no information about a voxel in the training set.
Context Encoder (CE) is a simple Autoencoder with 2-Dimensional Convolution
Layers. Dropout method drops the weights linked to the missing values. Dropout
was also extended with the time regularization scheme presented in Sect. 3.2.
Finally, we also considered comparing Φ alone against Φ + D to measure the
impact of reshaping the imputed time series.
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5.2 Datasets

EEG, fMRI and NODDI Dataset. This dataset [6,7] contains 16 individ-
uals, with an average age 32.84 ± 8.13 years. Simultaneous EEG-fMRI record-
ings of resting state with eyes open (fixating a point) were acquired. The fMRI
acquisition was done using a T2-weighted gradient-echo EPI sequence with: 300
volumes, TR of 2160 ms, TE of 30 ms, 30 slices with 3.0 millimeters (mm), voxel
size of 3.3 × 3.3 × 4.0 mm and a field of view of 210 × 210 × 120 mm. For a
more detailed description please see the dataset references [6,7]. The dataset is
available for download in its original source at https://osf.io/94c5t/. Each indi-
vidual recording was divided into 24 equally sized time series of fMRI volumes.
Each time series is 28 s long and resampled to a 2 s period. The training set is
composed of 12 individuals and the test set of 4 individuals per fold.

Auditory and Visual Oddball EEG-fMRI Dataset. This dataset [5,23,
24] contains 17 individuals. Simultaneous EEG-fMRI recordings were performed
while the subjects laid down. Stimuli of auditory and visual nature were given
to the subjects, which makes this a stimuli-based dataset. The fMRI imaging
acquisition was made with a 3T Philips Achieva MR Scanner with: single channel
send and receive head coil, EPI sequence, 170 TRs per run with a TR of 2000
ms and 25 ms TE, 170 TRs per run with a 3 × 3 × 4 mm voxel size and 32 slices
with no slice gap. For a more detailed description of the dataset please refer to
[23]. The dataset is available at https://legacy.openfmri.org/dataset/ds000116/.
Each individual recording is divided into 12 equally sized time series of fMRI
volumes, each time series is 28 s long, sampled at 2 s period. The training set is
composed of 12 individuals and the test set 5 individuals per fold.

Validation. In both datasets, the 6-Fold cross validation schema introduced in
Sect. 3.3 is applied. One might argue that as datasets contain multiple individuals
and not a single subject on the same scanner, it might be difficult to fit the
correlation matrix, due to different line ups and brain sizes. To tackle it, we
align and downsample the fMRI spatial resolution by a factor of 6, going from
approximately 30K voxels to 100 voxels to represent the whole brain.

5.3 Random Value and Region Removal

This work performs missing data imputation using a supervised learning method.
To guarantee an objective assessment, we operate on a complete dataset [6,7]
and generate missing data using two distinct procedures: random value removal
and random region removal, where the last captures the spatially correlated
nature of artifacts. Random region removal can be further used to assess the
applicability of supervised principles of imputation to facilitate the synthesis of
images (e.g. EEG-to-fMRI). The occurrence of a missing on a voxel from a certain
fMRI instance generally implies the absence of all values for that voxel along the
time axis, t = (0, ..., T − 1). As such, We do not consider differentiated random
removal across time frames (i.e. removing a different set of voxels for each time
frame). The random value removal strategy generates missings from uniform

https://osf.io/94c5t/
https://legacy.openfmri.org/dataset/ds000116/
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space distribution. To remove random regions, a value is chosen at random and
removed along with its adjacent values. The number of adjacent values is set by
a removal rate, r, indicating the number of values to remove per region or, in
alternative, by a maximum value of adjacent values. Adjacencies are identified
from the 3-Dimensional fMRI voxel coordinates.

5.4 Evaluation Metrics

For comparing results, Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) are suggested, with RMSE as the preferred option for penaliz-
ing large imputation errors. Residuals are also subjected to statistical testing.
Considering N individuals, S recordings per individual, and M missing voxels,

e =
1

N × S

N×S∑
i=0

RMSEi, with RMSEi =

√∑M
v=0 d(yv, ŷv)2

M
,

where v is a missing voxel and d is the Manhattan distance (absolute differences).

6 Experiment Results

Table 2 presents the gathered results from assessing the imputation methods
(Sect. 5.1) over the target datasets (Sect. 5.2) using the random region removal
strategy (Sect. 5.3). The results outline the relevance of applying a recurrent
layer D for the time-sensitive regularization of spatially imputed signals in com-
parison with Context Encoder and MICE alternatives. MICE does not scale with
increases on missing rate, due to its inability to deal with features that have not
been observed before. The chained imputation principle (Φ + D) further shows
slight improvements against weakly-correlated signals under a Dropout+D archi-
tecture, indicating the importance of identifying voxel priorities. Considering
the general performance limits of kNN (k = 3) and DTW-based barycenter, the
results further motivate the difficulty of the task at hands (Table 1).

Table 1. RMSE on time axis results on the NODDI EEG-fMRI Test Set.

Missing 10% 25% 50% 75% 90%

kNN 1.00 ± 0.79 0.99 ± 0.79 1.02 ± 0.84 1.01 ± 0.85 1.05 ± 0.93

Barycenter [18] 1.02 ± 0.81 1.02 ± 0.81 1.12 ± 0.92 1.10 ± 0.89 1.16 ± 0.94

Mean 1.01 ± 0.80 0.99 ± 0.79 1.03 ± 0.86 1.01 ± 0.85 1.02 ± 0.87

CE [17] 1.01 ± 0.78 1.01 ± 0.74 1.06 ± 0.80 1.04 ± 0.76 1.06 ± 0.76

MICE [26] 1.02 ± 0.80 1.02 ± 0.80 1.15 ± 0.93 4.63 ± 5.50 1.11 ± 0.93

Dropout 1.01 ± 0.80 1.02 ± 0.80 1.05 ± 0.84 1.00 ± 0.82 1.00 ± 0.84

Dropout+D 0.81 ± 0.65 0.85 ± 0.68 0.94 ± 0.76 0.95 ± 0.75 1.00 ± 0.84

Φ 1.01 ± 0.80 1.01 ± 0.80 1.04 ± 0.85 1.00 ± 0.85 1.02 ± 0.88

Φ + D 0.81 ± 0.65 0.84 ± 0.67 1.00 ± 0.83 1.02 ± 0.87 1.03 ± 0.89
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Table 2. RMSE on time axis results on the Oddball EEG-fMRI Test Set.

Missing 10% 25% 50% 75% 90%

kNN 1.21 ± 0.86 1.21 ± 0.84 1.19 ± 0.81 1.11 ± 0.71 1.05 ± 0.64

Barycenter [18] 1.23 ± 0.88 1.25 ± 0.87 1.26 ± 0.85 1.23 ± 0.80 1.22 ± 0.77

Mean 1.21 ± 0.84 1.17 ± 0.80 1.14 ± 0.77 1.05 ± 0.66 1.01 ± 0.61

CE [17] 1.09 ± 0.66 1.08 ± 0.66 1.03 ± 0.62 1.03 ± 0.62 1.00 ± 0.60

MICE [26] 1.24 ± 0.86 1.27 ± 0.88 1.28 ± 0.86 3.33 ± 3.57 16.97 ± 21

Dropout 1.23 ± 0.86 1.22 ± 0.84 1.21 ± 0.82 1.11 ± 0.71 1.04 ± 0.64

Dropout+D 0.72 ± 0.44 0.81 ± 0.50 0.90 ± 0.57 0.93 ± 0.58 1.06 ± 0.65

Φ 1.23 ± 0.87 1.22 ± 0.84 1.18 ± 0.80 1.06 ± 0.67 1.02 ± 0.61

Φ + D 0.70 ± 0.43 0.80 ± 0.49 0.87 ± 0.55 0.98 ± 0.58 0.99 ± 0.58

Results gathered using the alternative random value removal strategy
(Sect. 5.3) are provided in Appendix A. Generally, these appended results yield
similar ranks among the compared methods. Please also refer to Appendix B for
results collected using alternative residue-based scores that offer complementary
information on the spatial adequacy of the assessed methods, further supporting
the relevance of the proposed Φ + D imputation approach.

Fig. 2. MAE for varying brain volumes on the
NODDI testing data under a 50% missing rate.

Figure 2 provides a comple-
mentary view on the perfor-
mance of imputation methods for
the first dataset when consider-
ing a varying brain volume under
analysis. The gathered results
evidence the superiority of the
proposed approach and suggest
that performance is independent
of the spatial extent.

Fig. 3. Impact of time regularization on the impu-
tation of voxel with coordinates (14, 29, 14).

Figure 3 illustrates the denois-
ing property of D on a ran-
domly selected missing voxel –
with coordinates [14, 29, 14] –
from the first dataset. It com-
pares, side by side, the error of
a single time series imputed spa-
tially, Φ, with the error of an
imputed signal with time regu-
larization, Φ + D. This image,
together with results (Table 2),
show the importance of this
recurrent layer to capture the
neurophysiological temporal patterning of the signal.
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7 Concluding Remarks

The rich spatiotemporal nature of neuroimaging modalities such as fMRI,
together with their high susceptibility to noise artifacts, create unique diffi-
culties for missing data imputation for both resting-state and stimuli-induced
settings [1]. This work highlights the role of combining time regularization, D,
with expedite spatial imputation methods to achieve significant improvements
on neuroimaging data with variable amount and structures of missing values.
We further presented a chained imputation method applied in a neural network
setting which achieves state-of-the-art results. In fMRI stimuli-induced settings,
the importance of iterative imputation of missing time series in accordance with
their pre-computed priority is highlighted by the stable performance of the Φ
layer, even when the missing rate increases. Performing imputation all at once
is illustrated by the Dropout baseline. Φ has the advantage of leveraging infor-
mation from the already imputed information, showing robustness as the miss-
ing rate increases, aided by the removal of spatial prediction noise from the D
layer. This stable performance is particularly interesting given the heightened
differences between resting state and stimuli based fMRI [25]. As future work,
we intend to extend the proposed imputation approach to aid modality trans-
fer. The complexity of devising end-to-end approaches for image synthesis from
modalities with different spatiotemporal resolutions can be guided under the
proposed imputation principles.
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Abstract. Deep Learning has achieved a state-of-the-art performance in
medical imaging analysis but requires a large number of labelled images
to obtain good adequate performance. However, such labelled images
are costly to acquire in time, labour, and human expertise. We pro-
pose a novel practical Bayesian Active Learning approach using Drop-
weights and overall bias-corrected uncertainty measure to suggest which
unlabelled image to annotate. Experiments were done on Brain Tumour
MR images, Microscopic Cell Image classification, Fluoro-chromogenic
cytokeratin-Ki-67 double staining cancer images and Retina fundus
image segmentation tasks. We demonstrate that our active learning tech-
nique is equally successful or better than other existing active learning
approaches in high dimensional data to reduce the image labelling effort
significantly. We believe Bayesian deep active learning framework with
very few annotated samples in a practical way will benefit clinicians to
obtain fast and accurate image annotation with confidence.

Keywords: Bayesian Active Learning · Bias-corrected uncertainty ·
Dropweights · Image annotation · Semantic segmentation, classification

1 Motivation

Artificial Intelligence based medical diagnosis requires a large number of many
labelled images to obtain a good performance. In the real-world, unlabelled medi-
cal images are available in abundance, however annotating the data with reliable
class labels after careful inspection of numerous images can be very tedious, time-
consuming, and expensive, as well as being subject to errors on the interpreter’s
part. Active learning is a mechanism that tries to minimise the amount of labelled
data required to control the labelling process. Thus, developing active learn-
ing algorithms to learn from a small sample, high-dimensional labelled images,
querying the highly informative unlabelled images, and minimising redundant
examples with limited resources is of paramount practical importance.

There are many heuristic methods and numerous query strategies in active
learning for medical image classification using traditional machine learning
[1,6,9,12,13,16,17]. In deep active learning, uncertainty based acquisition func-
tion is heavily influenced by an average of the softmax probability values and
c© Springer Nature Switzerland AG 2021
A. Tucker et al. (Eds.): AIME 2021, LNAI 12721, pp. 36–42, 2021.
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miscalibrated due to the diverse nature of the medical image samples, disease
conditions and sampling bias.

We designed a novel Active Learning sample selection strategy for high dimen-
sional image data to measure the confidence of the model uncertainty in classifi-
cation and unbiased calibrated uncertainty weighted by the Euclidean Distance
Transform (EDT) of the prediction for semantic image segmentation. A sample is
selected based on the lowest uncertainty confidence score for labelling as highly
informative and little redundancy. Using this metric can significantly reduce
the number of labelled samples required compared to other selection strategies
whilst achieving higher accuracy. In semantic segmentation, we have quantified
aleatoric uncertainty and epistemic uncertainty by leveraging the functional rela-
tionship between the mean and variance of multinomial predictive probabilities
from Bayesian neural networks (Fig. 1).

Fig. 1. Example - Active Learning Framework: At each round of active learning, the
algorithm computes bias-corrected confidence score of uncertainty for all images in the
unlabelled pool. Images with the least score value of uncertainty confidence is selected
for the clinician to label, and then the corresponding images are added to the training
set in the next round of the model training. Our method relies on the bias-corrected
confidence score of uncertainty sampling, in which the algorithm selects the unlabelled
images that it finds manually hardest to annotate.

2 Proposed Method

Active learning depends on the ability to select the right sample to be anno-
tated to improve model performance and decrease model uncertainty. There-
fore, defining the acquisition function is a real challenge. The most popular
Dropout Bayesian Active Learning by Disagreemement (BALD) [5] maximises
the mutual information between predictions and model posterior [9]. However it
double counts Mutual Information (MI) between data points and overestimates
the true MI. Estimation of entropy from the finite set of data suffers from a
severe downward bias when the data is under-sampled.
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2.1 Estimating Confidence in Image Classification

We employed the maximum Class Predictive Probability Distance (CPPD), which
is the highest predictive probability value amongst the class probabilities as a
measure of a representativeness heuristic. In a multi-class setting, given dataset
D = {(xn, yn)}N

n=1, the vector of softmax probabilities ŷt = Softmax(f θ̂t(x̂))
obtained after the tth stochastic forward pass is denoted p

(
ŷt|x∗, θ̂t

)
, where θ̂t

denotes the sampled parameters resulting from DropWeights. Thus, the class prob-
abilities of estimates are given by 1

T

∑T
t=1 p

(
ŷt|x∗, θ̂t

)
.

We obtained the Class Predictive Probability Distance (CPPD):

CPPD(xi ∈ Du) = p(yBest|xi) − p(ySecond−Best|xi) (1)

The Monte Carlo dropweights (MCDW) estimate of the vector of softmax
probabilities aim to decompose the source of uncertainty. The entropy of the pre-
dictive distribution as a measure of bias-corrected uncertainty (ĤJ ) is obtained
using Jackknife correction [7]. The main idea is to select unlabeled samples that
are not only highly informative but also highly representative. Now we can define
confidence score as below:

Confidence Score =
CPPD (xi)

Bias-corrected Uncertainty
(
ĤJ

) (2)

We used a standard Convolutional Neural Networks (CNN) containing
the following model architecture: Conv-Relu-BatchNorm-MaxPool-Conv-Relu-
BatchNorm-MaxPool-Dense-Relu-DropWeight-Dense-Relu-DropWeight-Dense-
Softmax, with 32 convolution kernels, 3× 3 kernel size, 2 × 2 pooling, dense
layer with 512 units, 128 units, and 10 feedforward dropweights probabilities 0.3.
We optimised the model using Adam optimiser with the default learning rate
of 0.001. We explored baseline acquisition functions (Random selection, BALD
and Max Entropy) for image data classification on two datasets (Brain Tumor
and Malaria).

2.2 Calibrated Uncertainty in Semantic Image Segmentation

The uncertainty obtained by Bayesian Neural Network [8] is prone to miscalibra-
tion, i.e. perfectly segmented image could have a higher uncertainty. The pro-
posed method is presented threefold: First, uncertainty obtained by dropweights
variational inference; second, pixel-wise estimated uncertainty is weighted by the
Euclidean Distance Transform (EDT) [4,10] to standardise the importance of the
pixel and so reduce overconfident prediction errors in dense pixels regions; and
finally, calibrated uncertainty is compared with by random sample selection.

In semantic segmentation tasks, we demonstrated that the uncertainty esti-
mates obtained from dropweights using the Bayesian residual U-Net (BRUNet)
provide additional insight for clinicians with help from deep learners [8].
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3 Application of Active Learning for Medical Image
Analysis

3.1 Image Classification

A. Magnetic Resonance Imaging (MRI) Based Brain Tumor Clas-
sification: In order to validate the effectiveness of ‘Confidence Score’ in
deep learning model accuracy and robustness of our proposed approach, we
performed experiments on Brain MRI scan images of 3 brain tumour types
(Astrocytoma, Glioblastoma, Oligodendroglioma) with an additional 2 categories
(Healthy brain MRI and Unidentified tumour) obtained from three sources
(REMBRANDT, MIRIAD and BRAINS) [2,3]. As shown in Fig. 2(a), our “Con-
fidence Score” has performed better than Bayesian Max Entropy, and Random
acquisitions function on the brain tumour dataset.

B. Microscopic Cell Image Classification: We performed experiments on
Giemsa-stained microscopic cell image [11], using our Active learning framework.
However, when we observed the results for the malaria parasite in thin blood
smear images (Fig. 2(b)), which has a more realistic dataset with larger query
batch sizes. We present here an advantage of our method for a smaller batch size
over all other sampling methods.

Fig. 2. (a) Brain Tumour test accuracy as a function of the number of acquired images
[Initial Training Size: 100; Pool Size: 5000; Batch Size: 10, AL Iterations: 50] (b) Malaria
dataset test accuracy as a function of the number of acquired images [Pool Size: 5511;
Initial Training Size: 20; Batch Size: 100, AL Iterations: 50]

3.2 Semantic Segmentation

Estimated aleatoric and epistemic uncertainty add additional insights to under-
standing the intrinsic uncertainty in deep learning. The value of each pixel rep-
resents the variance computed on MC samples. We used Dice loss function to
train the network to highlight contrasting areas of the image and weighted uncer-
tainty by distance transformation normalisation to address unreliable uncer-
tainty mainly on class boundaries. Figure 3 and Fig. 4 illustrate the uncertainty
map evolutions over active learning iterations for the Epithelial Cells in Breast
Cancers and Retina Fundus images semantic segmentation.
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A. Cytokeratin-Supervised Epithelial Cells in Breast Cancers Seman-
tic Segmentation: Immunohistochemistry (IHC) staining’s of oestrogen recep-
tor (ER), progesterone receptor (PR), and proliferation antigen Ki-67 are rou-
tinely used for automated epithelial cell detection in breast cancer diagnostics.
Manual annotation of complex IHC images to determine the proportion of non-
malignant stromal or inflammatory cells in stained cells is extremely tedious,
expensive and may lead to errors or inter-observer variability. Dataset included
images from 152 patient samples stained with fluoro-chromogenic cytokeratin-
Ki-67 double staining and sequential hematoxylin-IHC [15].

B. Digital Retinal Images for Blood Vessel Extraction (DRIVE)
Semantic Segmentation: Diabetic retinopathy (DR) is one of the reasons
for vision loss in diabetic patients due to the retinal blood vessels damage. Auto-
matic detection and segmentation of retina fundus images are essential to prevent

Fig. 3. Active Learning Performance: We observe that as the number of images in the
training set grows, active learning through uncertainty dominates random selection.

Fig. 4. Prediction with estimated aleatoric and epistemic uncertainty maps [8]. (a) We
observe that the Dice coefficient increases as active learning iterations progress with
more training images. (b) We observe that less variance is on thin boundary pixels and
the model seems to be more confident where it can distinguish line shapes vs. round
shapes.
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vision loss in diabetic patients. The DRIVE database contains 40 images using
400 diabetic patients (seven of them have various pathological cases) [14]. All
images also have corresponding manually segmented masks. The images have
been divided into training and test set. Each part contains 20 images. We use
testing images for performance evaluation. All images were resized to 96 × 96
pixels.

4 Conclusion and Future Research

We present a novel practical Bayesian deep active learning framework. It can sig-
nificantly improve classification and semantic segmentation performances. The
heatmaps of aleatoric and epistemic uncertainty in semantic segmentation along
with prediction would help clinicians better understand spatial relations in
images and where the model tends to fail the most. Future research includes
an evaluation in which all samples are learned and when the model reaches the
optimal learning performance level.
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Abstract. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry
Imaging (MALDI-MSI), also referred to as molecular histology, is an emerg-
ing omics, which allows the simultaneous, label-free, detection of thousands
of peptides in their tissue localization, and generates highly dimensional data.
This technology requires the development of advanced computational methods to
deepen our knowledge on relevant biological processes, such as those involved in
reproductive biology.

The mammalian ovary cyclically undergoes morpho-functional changes.
From puberty, at each ovarian cycle, a group of pre-antral follicles (type 4, T4)
is recruited and grows to the pre-ovulatory (T8) stage, until ovulation of mature
oocytes. The correct follicle growth and acquisition of oocyte developmental com-
petence are strictly related to a continuous, but still poorly understood, molecular
crosstalk between the gamete and the surrounding follicle cells.

Here, we tested the use of advanced clustering and visual analytics approaches
onMALDI-MSI data for the in-situ identification of the protein signature of grow-
ing follicles, from the pre-antral T4 to the pre-ovulatory T8. Specifically, we first
analyzed follicles MALDI-MSI data with PCA, tSNE and UMAP approaches,
and then we developed a framework that employs Topological Data Analysis
(TDA) Mapper to detect spatial and temporal related clusters and to pinpoint dif-
ferentially expressed proteins. TDAMapper is an unsupervisedMachine Learning
method suited to the analysis of high-dimensional data that are embedded into a
graphmodel. Interestingly, the graph structure revealed protein patterns in clusters
containing different follicle types, highlighting putative factors that drive follicle
growth.
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1 Introduction

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-
MSI) is a powerful tool for mapping the native tissue localization of peptides and has
great potential for biological applications. MALDI-MSI combines classical histology
and molecular analysis, offering the flexibility of the simultaneous and label-free detec-
tion of a variety of molecules, including peptides, over a tissue section sampled in a grid
of square regions (spots). In a histological section, mass spectra are recorded for all the
spots, thus generating molecular images that map peptide distribution over the inspected
regions. A single experiment generates highly dimensional data and can produce up to
50.000 spectra, each representing intensities measured at a large number ofm/z bins and
describing different peptides [1]. Raw spectra pre-processing (i.e., normalization, base-
line correction, smoothing and peak picking) is essential for data analysis, although the
intrinsic dimensionality of MSI data, containing both molecular and spatial information
of each spot, still represents a challenge. For this reason, computational and statistical
methods are essential for the identification of relevant protein signatures. Among unsu-
pervised machine learning algorithms, factorization methods (including PCA), cluster-
ing approaches and manifold learning methods (such as tSNE and UMAP), as well as
deep learning approaches, are widely applied for dimensionality reduction andMSI data
analytics [2, 3]. Yet, most of these methods are based on the similarities of mass spectra
alone, considering the spectra as independent, and do not take spatial information into
direct account.

Up to date, a handful of studies attempted to investigate the gonads using MALDI-
MSI in either physiological or pathological conditions [4], highlighting the potentialities
of this approach to reveal molecular actors crucial for the correct function of the testis or
ovary. The ovary is a dynamic organ, which houses folliculogenesis, the cyclic growth of
the follicle together with the maturation of the enclosed oocyte. In the mouse, folliculo-
genesis progresses from primordial type 1 (T1) follicle, through the pre-antral (T4-T5),
antral (T6-T7) and up to the fully-grown follicle (T8), ready to ovulate a mature oocyte
[5]. Follicle growth and acquisition of oocyte developmental competence are strictly
regulated by a complex, and still poorly understood, molecular crosstalk between the
gamete and the surrounding follicle cells [6].

Here, we tested the use of advanced clustering and visual analytics approaches on
MALDI-MSI data collected from mouse ovarian histological sections for the in-situ
identification of the protein signature of growing follicles, from the pre-antral T4 to the
pre-ovulatory T8 stage. We first applied dimensionality reduction methods, and then
we developed a framework that uses Topological Data Analysis (TDA) Mapper. TDA
Mapper is an emerging method based on algebraic topology and geometry, which allows
pattern and shape recognition and that was successfully applied in the biomedical context
[7]. The algorithmproduces a graph by slicing the data-space in overlapping bins and per-
forming clustering within each: the resulting clusters are then linked together to recover
a simplified yet structured picture of the data topology [8]. Applied to folliculogenesis,
TDAbuilds a continuous shape on top of the data, representing a “follicle-growth space”,
allowing for the analysis of follicle development as a continuum, in which data relative
to different stages are connected. In our study, the TDA graph highlighted homogeneous
clusters, across which enrichment on differentially expressed proteins was performed.
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2 Exploratory Analysis and Dimensionality Reduction

We analyzed over 29.000 mass spectra of 550 different tissue sections acquired with
MALDI-MSI from 59 follicles (from T4 to T8 stage). Pre-processed spectra are
characterized by 55 different m/z values, corresponding to 94 putative proteins.

First, for visualization anddimensionality reductionpurposes,we appliedPCA, tSNE
andUMAP to themass spectra, each relative to a differentmeasured spot, embeddingdata
in three-dimensional reduced spaces. Multiple values for tSNE and UMAP parameters
have been tested to achieve the optimal data embedding. The first three PCA components
explained 70%of the total variance. Inspecting the loadings allowed for the identification
of the most important proteins in calculating the components (Fig. 1D). However, none
of these methods extracted clusters representative of single follicle types (Fig. 1A–C).

Fig. 1. Embedding obtained with (A) PCA, (B) tSNEwith perplexity= 100, (C) UMAPwith 250
neighbors and cosine distance metric. (D) Proteins importance in PCA in terms of the contribution
of each m/z (corresponding to one or more proteins) to the three PCs.

3 TDA Mapper Approach

Then, the application of the TDAMapper algorithm allowed to account for spots spatial
dependency, by considering each tissue section as a k-dimensional image (being k =
55, the number of m/z bins). TDA Mapper requires the definition of a distance metric,
one or more filter functions to project data into a lower dimensional space, and a set
of resolution parameters, specifying the number of bins built on the projections and
the overlapping percentage for the covering. We explored a wide combination of these
parameters. Interesting results were obtained using the Kullback-Leibler divergence as
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distance metric between sections images, and two-dimensional UMAP as filter func-
tion. We identified several nodes that group sections pertaining to the same follicle type,
highlighting their spectral similarity (Fig. 2, red circles). However, such nodes are dis-
tributed all over the graph and not always directly connected. Then, the graph was used
as starting point for the detection of communities through a modularity optimization
algorithm [9], identifying groups of nodes with strong internal connections. Based on
their entropy, we selected three communities, each associated to T4, T6 or T8 follicles
(Fig. 2, blue boxes).

Fig. 2. TDAMapper graph: each node is colored according to the clustered follicle sections. Red
circles: nodes containing only sections from the same follicular types. Boxes: communities con-
taining at least 4 distinct sections and with a maximum entropy of 0.68. Blue boxes: communities
strongly associated with a specific follicular type (C1: T4, C2: T6, C3: T8). (Color figure online)

Enrichment analyses over the differentially expressed proteins (DEPs) across these
three communities revealed matches with biological pathways (p-value ≤ 0.05). Specif-
ically, DEPs between T4-T6 and T6-T8 communities overlapped with three pathways
(Establishment of Sister Chromatid Cohesion, Cohesin Loading onto Chromatin,Mitotic
Telophase/Cytokinesis), from theReactome_2016 set, associated with the process of cell
division, crucial for follicle enlargement and growth. DEPs between T4-T8 communi-
ties matched the Focal Adhesion pathway from the Kegg_2019_Mouse set, particularly
important for oocyte-follicle communication [10]. Also, T4-T8 comparison highlighted
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some proteins known to be involved in folliculogenesis: TPM2, contributing to follicle
growth; NUCL, KHDC3, EIF3A, FLNA and ACTB, responsible for oocyte maturation
and quality; ZYX, contributing to ovulation. Other interesting results are reported on
GitHub (https://github.com/giuliacampi/MALDI_TDAMapper).

4 Conclusions

We analyzed MALDI-MSI data with advanced visual analytics and unsupervised
machine learning techniques to identify proteins relevant during the ovarian follicu-
logenesis. Unsupervised techniques did not reveal clusters of data that could be linked
to a follicular type. In comparison with standard techniques that treat each tissue spot
as independent, our approach considered the spatial dependency of mass spectra by
organizing data in k-dimensional images. Although the complexity of the underlying
biological processes and the unavoidable data noise hampered the direct association of
communities with single follicle types, the TDA Mapper resulted in a graph connect-
ing clusters of sections, among which we identified interesting communities that reflect
important stages of follicle growth. Enrichment analyses on communities DEPs con-
firmed the presence of proteins known to be important in folliculogenesis, highlighting
the potentiality of this preliminary approach. Future work will involve the analysis of
more data and the possibility to use other advanced techniques, such as deep learning.
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Abstract. Kidney transplantation can significantly enhance living stan-
dards for people suffering from end-stage renal disease. A significant
factor that affects graft survival time (the time until the transplant fails
and the patient requires another transplant) for kidney transplantation is
the compatibility of the Human Leukocyte Antigens (HLAs) between the
donor and recipient. In this paper, we propose new biologically-relevant
feature representations for incorporating HLA information into machine
learning-based survival analysis algorithms. We evaluate our proposed
HLA feature representations on a database of over 100,000 transplants
and find that they improve prediction accuracy by about 1%, modest at
the patient level but potentially significant at a societal level. Accurate
prediction of survival times can improve transplant survival outcomes,
enabling better allocation of donors to recipients and reducing the num-
ber of re-transplants due to graft failure with poorly matched donors.

Keywords: Feature extraction · Human Leukocyte Antigens ·
Survival analysis · Graft survival

1 Introduction

Kidney transplantation is the therapy of choice for many people suffering from end-
stage renal disease (ESRD). A successful kidney transplant can enhance a patient’s
living standards and diminish the patient’s risk of dying. Although allograft (organ
or tissue transplanted from one individual to another) and patient survival have
improved because of new surgical technologies and effective immunosuppression,
a transplant is not a lifetime treatment. Allografts, or simply grafts, will stop func-
tioning over time, requiring re-transplantation for the patient after graft failure.
There is a significant societal demand for kidney transplants, with over 90,000 peo-
ple on the waiting list in the United States alone!
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The time to graft failure or graft survival time is determined by a variety of
factors, including the age, race, and overall health of the donor and recipient.
The compatibility of the donor and recipient also plays a key role, particularly
with respect to their Human Leukocyte Antigens (HLAs) [11].

In this paper, we aim to predict the graft survival time for a transplant
given a variety of covariates on the donor and recipient. We focus on ways of
incorporating HLA information into the predictor by examining multiple feature
representations for HLAs. We incorporate these HLA features into several sur-
vival analysis models. By building a base model without HLA information and
then comparing to models that contain more detailed representations of HLAs,
we can identify whether the HLA information can improve prediction accuracy.

Our main contribution is 2 new feature representations for HLA types and
pairs that account for biological mechanisms behind HLA compatibility and dif-
ferences in categorization of HLAs. We find that incorporating HLA information
can improve the accuracy of predicted graft survival time by about 1%, which
is a modest improvement for an individual patient, but could translate to sig-
nificant improvements at the societal level by increasing graft survival times,
thus enabling more transplant recipients with the same number of donors, and
potentially reducing the size of the waiting list.

2 Background and Motivation

Chronic kidney disease (CKD) is a public health issue and a general term for
heterogeneous disorders affecting a kidney’s function, which may lead to ESRD.
According to 2019 reports of United States Renal Data System, CKD affects
at least 10% of adults in the U.S., with nearly 750,000 Americans requiring
kidney transplantation. In the absence of kidney donors, life support therapy for
these patients is associated with exorbitant morbidity, mortality, and tremendous
financial burden. Successful kidney transplantation may save about $55,000 per
year in Medicare costs for every functioning transplant [15].

Human Leukocyte Antigens (HLAs): HLAs are a category of surface proteins
encoded in a distinct gene cluster. These HLAs, which have multiple sequences,
play a fundamental role in the body’s immune system integrity. In organ trans-
plantation, donor HLAs are also recognized as foreign to be attacked by the
recipient’s immune system [4]. Each human inherits 2 copies (1 maternal and 1
paternal) of each HLA gene. In the cluster, 3 specific loci, HLA-A, -B and -DR,
are of utmost clinical significance for kidney transplantation. Thus, 6 HLAs (2
copies of each of HLA-A, -B, and -DR) are routinely typed in the clinic. An HLA
is typically represented by the locus and a 2-digit number such as A1, which we
call the HLA type. For example, a donor may have the following 6 HLA types:
A1, A2, B1, B2, DR1, and DR2.

HLA antigen categorization has evolved, and some HLA types (broads) have
actually been discovered to be multiple types (splits). For example, the splits
and associated antigens of the broad antigen HLA-A9 are A23 and A24. Thus,
some instances of the splits A23 and A24 may be coded as the broad A9.
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The clinical importance of HLA stems from the sheer polymorphism [14],
resulting in donor HLAs being in most instances different from recipient HLAs.
Each HLA type present in the donor but not in the recipient leads to an HLA
mismatch (MM). There may be 0 to 6 HLA-A/B/DR MM between a donor and
recipient, with higher MM generally resulting in shorter graft survival times [11].

Survival Analysis: Survival analysis is a well-established technique in statistics
used to predict time to an event of interest during a specific observed time inter-
val. It is a form of regression where the objective is to predict the survival time,
i.e. the time until an event of interest occurs. For many data points, however, the
exact time of the event is unknown due to censoring, and thus, standard regres-
sion models are not well-suited to handle such time-to-event problems. Many
survival analysis algorithms have been proposed to handle censored data—we
refer readers to the survey [19]. We consider 3 machine learning-based survival
analysis algorithms in this paper, which we describe in Sect. 4.2.

3 Data Description

This study uses data from the Scientific Registry of Transplant Recipients
(SRTR) and includes data on all donors, wait-listed candidates, and transplant
recipients in the U.S., submitted by the members of the Organ Procurement and
Transplantation Network (OPTN).

Inclusion Criteria: We acquired 469,711 anonymous cases on all kidney trans-
plants between 1987 and 2016 from the registry. We apply the following inclusion
criteria to the data. We consider only transplants with deceased donors, recip-
ients aged 18 years or older, and only candidates who are receiving their first
transplant. We include only transplants between 2000 and 2016 due to the intro-
duction of new therapy regimes and a new kidney allocation system [2] around
the year 2000. Finally, we include only recipients with peak Panel Reactive
Antibody (PRA) less than 80% since patients with high PRA levels experience
increased acute rejection rate and graft failure [16]. After applying the inclusion
criteria, subjects with missing values in any basic covariates except cold ischemia
time (see Sect. 4.1) or HLAs are removed from the study. 106,372 transplants
remain after the stages mentioned above to build the predictive models.

Target Variable: We use death-censored graft loss as the clinical endpoint (pre-
diction target), which means that patients who died with a functioning graft
are treated as censored since they did not exhibit the event of interest (graft
loss). Graft loss is determined based on the record of either graft failure, return
to maintenance dialysis, re-transplant, or listing for re-transplant. For censored
instances, the censoring date is defined to be the last follow-up date.
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4 Methods and Technical Solutions

Research Questions: We pose two main research questions in this study. First,
does incorporating donor and recipient HLA information into a graft survival
time predictor improve prediction accuracy? If so, what type of representation for
the HLA information results in the highest prediction accuracy? We first describe
the different HLA feature representations we propose in Sect. 4.1 and then discuss
the survival analysis algorithms we use in Sect. 4.2. Our data processing pipeline
is shown in Fig. 1.
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Fig. 1. Illustration of data processing and survival analysis pipeline.

4.1 Feature Representations

We consider 7 different feature sets ranging from 23 to 3,900 covariates. Some of
the covariates are pre-transplant covariates, meaning that they are available prior
to the transplant time, while others are post-transplant covariates, available only
at the time of transplant or after a transplant has been performed and the patient
has been discharged. We first consider prediction using only the pre-transplant
covariates, as they can be used to predict graft survival prior to the transplant
being performed and could potentially be used in the process of matching donors
and recipients. We also consider prediction using both pre- and post-transplant
covariates, which should be more accurate and can still be useful to a clinician.

Basic Features: Pre-transplant basic features consist of age, sex, race, and body
mass index (BMI). Race is encoded using a one-hot representation. The post-
transplant covariates employed are donor and recipient serum creatinine levels
at the time of transplant, recipient serum creatinine at discharge time, whether
the patient needs dialysis within the first week of the transplant, and the cold
ischemia time (CIT), which denotes the amount of time the kidney was preserved
after the blood supply has been cut off. Missing values for CIT were imputed
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using the mean over all other transplants. There are a total of 23 and 29 features
for the pre- and post-transplant settings, respectively.

HLA Mismatches: We first consider the number of mismatches (MM) between
donor and recipient, which has been found to be a significant factor in the time
to graft failure. We consider two possible representations: the total number of
MM (0 to 6), as well as the separate A-B-DR MM (0 to 2 each). These result in
1 and 3 features appended to the basic features, respectively.

HLA Types: We consider directly encoding the HLA types of the donor and
recipient. The digits in an HLA type should be treated as categories and not
numeric values, e.g. A2 and A1 differing by 1 does not imply that they are more
similar than A2 and A23. One focus of our study is to address the methodological
challenges arising from HLA broad and split antigens. We propose to encode
HLA types using a one-hot-like encoding that also maps splits back to broads so
that a split like A23 has a one in both the columns for A23 and A9. We encode
donors and recipients separately so that each transplant has at least 12 ones (6
donor, 6 recipient), and possibly more due to splits. This encoding results in 229
features appended to the basic features.

HLA Pairs: We refer to the combination of a donor and a recipient HLA type as
an HLA pair. For example, if a donor has HLA-A1 and a recipient has A2, then
the HLA pair (A1, A2) is associated with the transplant. We can use a one-hot-
like encoding for HLA pairs by placing a one in the column for each HLA pair
associated with a transplant, similar to what we do for HLA types. However,
this does not account for the biological mechanisms behind HLA compatibility.

The recipient’s immune system may reject a transplant if the donor possesses
HLA types not present in the recipient. However, if the recipient has HLA types
that are not present in the donor, there is no issue, which creates an asymmetry
in the roles of the donor and recipient HLA types. Thus, some HLA pairs are not
biologically relevant. An example of inactive pairs is shown in Fig. 1 with 0 HLA-
A mismatches resulting in only (A3, A3) and (A9, A9) as active pairs. We place
a one in the columns of only active HLA pairs and consider broads and splits
in the same manner as for HLA types. The HLA pair encoding results in 3,638
features appended to the basic features. Due to the large number of features, we
also consider a smaller frequent pairs representation where we remove all HLA
pairs observed in less than 1,000 transplants, which results in 180 features.

All: We consider also a combined feature set by concatenating all of the above
feature representations.

4.2 Survival Analysis Algorithms

Coxnet: The Cox Proportional Hazards (Cox PH) model is one of the most
widely used models for survival analysis. It models the hazard ratio using a
weighted linear combination of covariates. The coefficient vector is estimated
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by maximizing the partial likelihood. We use a Cox PH model with combined
�1 and �2 regularization, known as the elastic net, which leads to the Coxnet
model [18]. The model has 2 hyperparameters: α, which controls the strength of
regularization, and r, which denotes the ratio between the �1 and �2 penalties.
We use a grid search with α uniformly distributed on a log scale between 10−4

and 10−2 and r uniformly distributed between 0.1 and 1.

Random Survival Forest: Random forest is a bootstrap aggregating (bagging)
ensemble learning algorithm with decision trees as base learners. Ishavan et al. [5]
proposed the random survival forest (RSF) algorithm that can handle right-
censored data. We use an RSF with 500 trees and consider random selection
of the square root of the number of features for each split. We perform a grid
search on the maximum depth of each tree in the range {5, 10, 15, 20, 25, 30}.

Gradient Boosted Regression Trees: Gradient boosting (GB) is an ensemble
learning technique that combines the predictions of many weak learners. Boost-
ing algorithms using survival regression trees as their weak learners have been
developed to be used in survival analysis problems [19]. We use stochastic gradi-
ent boosting with 200 trees using a 50% subsample to fit each tree. We perform
a grid search on the maximum depth of each tree in the range {1, 2, 3}.

5 Empirical Evaluation

To evaluate the accuracy of our predictors, we randomly split the data into 3
sets: 60% training, 20% validation, and 20% testing. The validation set is used
for hyperparameter tuning. For each algorithm, we choose the set of hyperpa-
rameters with the highest validation set C-index and then retrain it on the 80%
set containing both the training and validation sets. We then finally evaluate
each algorithm and feature set on the 20% test set, which was initially held
out and not used at any point to prevent test set leakage. Our experiments are
conducted using the scikit-survival Python package [12].

5.1 Evaluation Metric

We consider two metrics to evaluate the accuracy of our survival time predictions.
First, we use Harrell’s concordance index (C-index), which is perhaps the most
widely used accuracy metric for survival prediction models [3]. The C-index is
merely dependent on the ordering of predictions and is calculated by counting
all possible pairs of samples and concordant pairs. A pair is a concordant pair if
the risk ηi < ηj and Ti > Tj , where Ti is the survival time for patient i.

We also consider the cumulative/dynamic area under receiver operating char-
acteristic curve (AUC) metric that measures how accurately a model can predict
the events that happen before and after a specific time t [7]. We consider the
mean cumulative/dynamic AUC over 5 equally-spaced time points.
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5.2 Effects of Feature Representations

The two main research questions are both centered around the effects of incorpo-
rating HLA information into graft survival time prediction. From the results in
Table 1, notice that incorporating HLA information almost always results in an
improvement in prediction accuracy in the pre-transplant prediction setting. The
amount of improvement compared to the basic features varies for the differing
feature representations and evaluation metrics.

Table 1. Survival prediction accuracy using only pre-transplant covariates. Best fea-
ture set for each predictor and each metric is listed in bold.

Feature set Coxnet Random surv. forest Gradient boosting

C-index Mean AUC C-index Mean AUC C-index Mean AUC

Basic 0.630 0.636 0.629 0.653 0.641 0.653

MM (total) 0.633 0.643 0.631 0.656 0.642 0.657

MM (A-B-DR) 0.633 0.643 0.631 0.655 0.642 0.657

Types 0.632 0.636 0.636 0.656 0.641 0.652

Pairs 0.633 0.642 0.627 0.656 0.641 0.653

Freq. pairs 0.633 0.642 0.635 0.660 0.642 0.655

All 0.633 0.641 0.624 0.652 0.642 0.656

HLA Mismatches: In all cases, adding HLA MM (either total or separate A-B-
DR MM) improves the accuracy of the predictive models. We notice minimal
differences in accuracy from including total MM and A-B-DR MM.

HLA Types: For Coxnet and GB, including HLA types resulted in worse accu-
racy than including HLA MM. Conversely, for RSF, including HLA types led to
the highest C-index. Since the Coxnet is linear in the features, it cannot learn
interactions between features, and thus, cannot learn compatibilities between
different HLA types, so this result is not too surprising for Coxnet. On the other
hand, the tree-based predictors should be able to learn donor-recipient HLA
compatibilities, so it is somewhat surprising that GB also performs worse.

HLA Pairs: Unlike with HLA MM, the results with HLA pairs vary by model.
The Coxnet benefits from the inclusion of all HLA pairs. Since it is linear in the
features, it requires HLA pair features in order to learn compatibilities between
donor and recipient HLAs. It is also robust to overfitting in high dimensions due
to the elastic net penalty. On the other hand, the nonlinear predictors see no
gain (GB) or even decreases (RSF) in accuracy from the inclusion of all HLA
pairs. When restricting to just the most frequent HLA pairs, resulting in a much
smaller number of HLA pair features (180 compared to over 3,600), the accuracy
of RSF and GB now increase rather than decrease. This suggests that the high
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dimensionality may be causing a problem for the tree-based predictors. The high
dimensionality results from the one-hot-like encoding mechanism we are using
for HLA pairs, which can be disadvantageous for trees because it splits a single
categorical variable into multiple variables, potentially requiring many splits for
a single categorical variable with a large number of categories.

All: The accuracy when all features are included seems to be similar to that of
including all HLA pairs, which contribute the highest number of features. The
Coxnet model that achieves highest C-index includes all of the features, while
RSF sees a decrease in C-index, and GB sees a slight increase.

Prediction with Post-transplant Covariates: For both models, the C-index and
mean cumulative/dynamic AUC improve by about 0.3−0.4. The highest C-
indices are 0.663, 0.676, and 0.675 for Coxnet, RSF and GB, respectively. The
results indicate that integrating post-transplant covariates tremendously helps
the survival prediction algorithms improve their accuracy, as one might expect.

6 Related Work

A broad group of studies has used data-driven statistical models to predict
graft survival times or measure risk factors’ impact on graft survival. Prior work
includes multivariate analysis using Cox proportional hazards (Cox PH) models
with a small number of covariates [1,13,20]. There has been more recent work
on machine learning-based survival analysis applied to kidney transplantation,
including an ensemble model that combines Cox PH models with random sur-
vival forests [10] and a deep learning-based approach [9].

Our results compare favorably to prior studies [1,9,13,20] using the same
SRTR data we use in this study. Each study differs in inclusion criteria, time
duration, and several other factors that prevent a direct comparison; however,
we include their reported results here for reference. Two older studies [13] and
[20] using Cox PH models without regularization achieved C-indices of 0.62 and
0.61, respectively. A more recent study also using a Cox PH model with only
pre-transplant covariates [1] including HLA MM achieved a C-index of 0.64; how-
ever, their study included both living and deceased donors while ours considers
only deceased donors. Transplant outcomes with living donors are much more
favorable [1], which may result in easier prediction. Another recent study [9] used
a deep learning approach applied to both pre- and post-transplant covariates to
achieve a C-index of 0.655, less than the 0.676 we achieved.

Several other recent studies have focused on prediction of patient survival
rather than graft survival, with [8] and [10] achieving C-indices of 0.70 and
0.724, respectively. Prediction of patient survival is much easier than prediction
of graft survival, which we focus on in this paper. For example, [20] considered
both patient and graft survival and achieved a C-index of 0.68 for patient survival
compared to 0.61 for graft survival. We also argue that graft survival is the more
relevant clinical endpoint, as a patient who survives a transplant but suffers a
graft failure will require a re-transplant and returns to the waiting list.
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7 Significance and Impact

Transplantation outcome prediction is instrumental for clinical decision-making,
as well as allocation policy development. The kidney allocation policy by the
OPTN was developed to encourage fairness (equal access to treatment) and effec-
tiveness (the longest predicted survival) [6] in transplantation. Informed clinical
decision making allows for avoidance of high-risk transplants and thus reduces
number of graft losses. However, accurate prediction of transplant outcomes
remains a daunting challenge due to the high complexity of human biology. By
adding biologically-relevant representations of HLA, our models improved pre-
diction accuracy, which may help to avoid transplants with poor survival times.

Despite the somewhat modest 1% improvement in prediction accuracy, the
large number of patients and exorbitant cost of dialysis mean that a small
improvement in kidney graft survival can result in a significant impact on the
waiting list and financially. Illustrating this dependence, a kidney allocation
simulation study showed the potential for saving $750 million if transplant rates
would improve by 5.7% in a 4,000 patient pool [17]. Based on OPTN national
data, 16,000–17,000 deceased donor transplants are performed in a single year.
Thus, using sophisticated outcome prediction tools for extending median kidney
graft survival by even a single year may save this many surgeries annually, with
high economical and social impact. Our findings are thus useful for assisting
clinical decision making aimed at improving long-term allograft survival.
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Abstract. Recent research in syndromic surveillance has focused pri-
marily on monitoring specific, known diseases, concentrating on a certain
clinical picture under surveillance. Outbreaks of emerging infectious dis-
eases with different symptom patterns are likely to be missed by such a
surveillance system. In contrast, monitoring all available data for anoma-
lies allows to detect any kind of outbreaks, including infectious diseases
with yet unknown syndromic clinical pictures. In this work, we propose
to model the joint probability distribution of syndromic data with sum-
product networks (SPN), which are able to capture correlations in the
monitored data and even allow to consider environmental factors, such as
the current influenza infection rate. Conversely to the conventional use
of SPNs, we present a new approach to detect anomalies by evaluating
p-values on the learned model. Our experiments on synthetic and real
data with synthetic outbreaks show that SPNs are able to improve upon
state-of-the-art techniques for detecting outbreaks of emerging diseases.

Keywords: Sum-product networks · Syndromic surveillance ·
Outbreak detection · Anomaly detection

1 Introduction

The spread of infectious disease outbreaks can be greatly diminished by early
recognition which allows the application of suitable control measures. To that
end, syndromic surveillance aims to identify illness clusters in syndromic data
before diagnoses are confirmed and reported to public health agencies [4]. The
conventional approach of syndromic surveillance is to define indicators for a par-
ticular infectious disease on the given data, also referred to as syndromes, which
are monitored over time to detect unusually high number of cases. Rather than
developing highly specialized algorithms which are based on monitoring specific
syndromes, we argue that the task of outbreak detection should be viewed as a
general anomaly detection problem where an outbreak alarm is triggered if the
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distribution of the incoming syndromic data changes in an unforeseen and unex-
pected way. Therefore, we distinguish between specific syndromic surveillance,
where factors related to a specific disease are monitored, and non-specific syn-
dromic surveillance, where general, universal characteristics of the data stream
are monitored for anomalies.

In previous work on non-specific syndromic surveillance [6], we have shown
that statistical modeling techniques often outperform more elaborate algorithms.
In this work, we transfer the idea of these modeling approaches to sum-product
networks (SPNs) [8], a statistical and generative machine learning algorithm.
Instead of fitting one particular distribution for each single syndrome, we use
SPNs to model the joint probability distribution of syndromic data. We further
introduce a technique that allows to detect anomalies by reasoning with the
p-values of the SPN model. In addition, syndromic data can be enriched with
information about environmental factors, such as the weather or the season,
which can be used to condition the SPN on particular circumstances before
p-values are computed. We experimentally compare our proposed approach to
established algorithms for non-specific syndromic surveillance on a synthetic
data set [2,14] and real data from a German emergency department in which
we injected synthetic outbreaks. Our results demonstrate that SPNs can further
improve upon the state-of-the-art statistical modeling techniques.

2 Non-specific Syndromic Surveillance

2.1 Problem Definition

Syndromic data can be seen as a constant stream of instances of a population
C where each instance c ∈ C is represented by a set of response attributes A =
{A1, A2, . . . , Am} [14]. To be able to detect temporal changes, instances are
grouped together according to pre-specified time slots, so that C(t) ⊂ C denotes
all patients arriving at the emergency department at day t. In addition, each
group C(t) is associated with e(t) ∈ E1×E2×. . .×Ek where E = {E1, E2, . . . , Ek}
is a set of environmental attributes, which represent external factors that may
influence the distribution of instances C(t). This allows, e.g., to model that flu-
like symptoms are more frequent during the winter. We denote the history of the
information available at time t as H(t) = ((C(1), e(1)), . . . , (C(t − 1), e(t − 1))).

The goal of non-specific syndromic surveillance is to detect anomalies in the
current time slot C(t) w.r.t. the history H(t) as potential indicators of an infec-
tious disease outbreak. From the perspective of specific syndromic surveillance,
the non-specific setting can be seen as monitoring all possible syndromes at the
same time. The set of all possible syndromes can be defined as

Sall =

{∏
i∈I

Ai | Ai ∈ A ∧ I ⊆ {1, 2, . . . ,m} ∧ |I| ≥ 1

}

where
∏

i∈I Ai for |I| = 1 is defined as {{a} | a ∈ A ∧ A ∈ A}. In addition, we
denote S≤n = {s | s ∈ Sall ∧ |s| ≤ n} as the set of all possible syndromes having
a maximum of n conditions.
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C(1) =

gender symptom
female cough
male fever
male cough
. . . . . .

e(1) = (summer)

. . .

C(t − 1) =

gender symptom
male cough
female cough
female fever
. . . . . .

e(t − 1) = (winter)

=⇒

time gender symptom
slot #male #female #fever #cough season
1 3 4 2 5 summer
2 2 2 1 3 summer
. . . . . . . . . . . . . . . . . .
t-1 7 8 9 6 winter

Fig. 1. Example for the creation of a structured data set using syndromes S≤1.

2.2 Creation of Structured Data

We transform H(t) into a structured format, which facilitates the analysis with
common machine learning algorithms. For a given set of syndromes S ⊆ Sall,
we denote fS : 2C → N

|S| as the function that counts the number of occurrences
fs(C(i)) for each syndrome s ∈ S in a given set of instances C(i) at time i. Based
on the syndrome counts, we form a data set D = {(fS(C(i)), e(i)) | (C(i), e(i)) ∈
H(t)} in which each instance represents a single time slot. Section 2.2 depicts an
example of how the data set is created for syndromes S≤1. Note that in case of
syndromes S≤2, the data set would additionally contain the columns #(male ∧
cough), #(female ∧ cough), #(male ∧ fever), and #(female ∧ fever).

2.3 Related Work

While specific syndromic surveillance is a well-studied research area, we found
that only little research has been devoted to non-specific syndromic surveillance.
Brossette et al. [1] adopts the idea of association rule mining to identify anoma-
lous patterns in health data. Wong et al. [14] first learn a Bayesian network over
historic health data and then compare a sample of historical cases to current
cases C(t) to detect potential outbreaks. Fanaee-T and Gama [2] track changes
in the data correlation structure using eigenspace techniques to identify anoma-
lies. In particular, Wong et al. [14] and Fanaee-T and Gama [2] distinguish
between indicator and environmental attributes to improve detection perfor-
mance which is also known as contextual or conditional anomaly detection [10].
For more details on these methods, as well as an empirically comparison to
common anomaly detectors and statistical modeling techniques, we refer to [6].

A particular result of Kulessa et al. [6] is that statistical techniques for a
simultaneous and individual monitoring of syndromes S≤1 or S≤2 already achieve
very competitive results and often outperform more elaborate algorithms. More
precisely, for each syndrome s a distribution P (Xs) is fitted on H(t) such that
fs(C(t)) ∼ P (Xs) where Xs denotes the random variable associated to syn-
drome s. The Poisson and the negative binomial distribution are natural choices
but also the Gaussian distribution is used in practice [5]. However, this approach
has two main limitations. Firstly, independence among the monitored syndromes
is assumed and, secondly, environmental factors are not taken into account.
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Fig. 2. The left SPN represents P (#fever,#cough, season) while the right SPN rep-
resents P (#fever,#cough | season = summer) derived from the left.

3 Sum-Product Networks for Syndromic Surveillance

Most statistical techniques, including those mentioned in the previous section,
model the joint probability distribution as a product of individual syndrome
distributions. Clearly, this is only valid if the syndromes are independent of
each other. Sum-product networks [8] are an elegant way of extending this sim-
ple model by taking dependencies between the monitored syndromes and even
dependencies to environmental factors into account.

A sum-product network (SPN) models the joint probability distribution P (X )
of a data set, where X = {X1,X2, . . . , Xm} is a set of random variables, as a
rooted directed acyclic graph of sum, product and leaf nodes. In this graph,
the scope of a particular node is defined as the set of features appearing in the
subgraph below that node. Formally, sum nodes provide a weighted mixture of
distributions by combining nodes which share the same scope, whereas product
nodes represent the factorization over independent distributions by combining
nodes defined over disjunct scopes. Finally, each leaf node contains a univari-
ate distribution P (X) for a particular feature X ∈ X . In this work, we use
mixed SPNs [7] which allow to learn an SPN over both, continuous and discrete
attributes. Figure 2 shows an exemplary SPN, representing the joint probability
distribution P (#fever,#cough, season). The top product node indicates that
the distribution of #cough is independent of the other attributes. In contrast,
the distribution of #fever depends on season and, therefore, it is split into two
clusters by a sum node, one for the winter and one for the summer.

SPNs can be adapted to represent a conditional probability distribution
P (X \ Xi | Xi = xi) by evaluating one or more conditions Xi = xi in
the leaves of Xi and propagating the resulting probabilities upwards. When-
ever a sum node is passed, the weight for a child node is updated by mul-
tiplying it with the up-coming probability. In a final step, the weights for
each sum node are normalized and the leaves for attribute Xi are removed
from the SPN. Fig. 2 shows an SPN for the conditional probability distribu-
tion P (#fever,#cough | season = summer). Note that the child node for the
summer now has a weight of 100%.
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3.1 Inference of p-values in Sum-Product Networks

The main advantage of SPNs over other probabilistic models is that inference for
probabilistic queries is tractable and can be computed in linear time w.r.t. the
size of the network [8]. For syndromic surveillance we are particularly interested
in p-values, which express the chance of obtaining data at least as extreme under
a given null hypothesis. In the following, we propose novel extensions to SPNs
that allow them to properly reason with p-values.

To compute the p-value for a query q ⊆ {X1 ≥ x1, . . . , Xm ≥ xm} for
arbitrary xi, the conditions of q are forwarded to the leaves of the SPN. In case
q contains conditions only on a subset of attributes of X , the SPN is marginalized
beforehand by simply removing all leaves on attributes which are not contained
in the query. In the remaining leaves, the p-value for the respective condition is
evaluated and propagated upwards. At product nodes, we use either Fisher’s or
Stouffer’s method for merging independent p-values [13]. At sum nodes, which
encode a mixture of distributions over the same attributes, we need to merge
dependent p-values. Vovk and Wang [12] recommend to use the harmonic mean
in case of substantial dependence among the merging p-values and suggest to
use the geometric or the arithmetic mean for stronger dependencies. We have
implemented the weighted versions of these three merging functions in order
to consider the weights of sum nodes during merging. As a result, the resulting
value at the root node of the SPN can be seen as a composite p-value for query q.

3.2 Application to Non-specific Syndromic Surveillance

The key idea of our approach is to learn an SPN over a data set that is structured
as described in Sect. 2.2. In particular, the SPN models the joint probability
distribution P (XS ,XE) where XS = {Xs | s ∈ S} and XE = {XE | E ∈ E} are
random variables associated with syndromes S and environmental attributes E
respectively. For environmental attributes, categorical distributions are used in
the leaves, whereas for the syndrome counts we either use Gaussian, Poisson or
negative binomial distributions, which are commonly used for monitoring count
data in syndromic surveillance.

To check for outbreaks in a given time slot t, we first condition the SPN on the
current environmental setting to obtain P (XS | XE1 = e1, . . . , XEk

= ek) where
ei is the i-th element of e(t). The set of queries Q1 = {{Xs ≤ fs(C(t))} | s ∈ S}
is then evaluated on the conditioned SPN, which results in a p-value for each
syndrome s ∈ S. This sensitivity to changes for each individual syndrome is
indeed important if the potential disease pattern for an outbreak is unknown
beforehand. Moreover, the p-values can be used to generate a ranking of the
most suspicious syndromes. Combined with the functionality of SPNs to compute
expectations, a report can be provided to local health authorities in order to
analyze and understand the found irregularities.

However, for our empirical study in Sect. 4 a single score for the evaluated
time slot is required. Therefore, the p-values need to be aggregated under con-
sideration of the multiple-testing problem. Following Roure et al. [9], we only
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Table 1. Synthetic data.

A #values E #values

Age 3 Weather 2

Gender 2 Flu level 4

Action 3 Day of week 3

Symptom 4 Season 4

Drug 4

Location 9

Table 2. Real data.

A #values E #values

Age 3 Weather 2

Gender 2 Flu level 4

Symptom 28 Day of week 3

Fever 4 Season 4

Oxygen saturation 2

Blood pressure 2

Pulse 3

Respiration 3

report the minimum p-value for each time slot t since the Bonferroni correction
can be regarded as a form of aggregation of p-values based on the minimum
function. In particular, note that scale-free anomaly scores are sufficient for the
purpose of identifying the most suspicious time slots. The complement of the
selected p-value represents the anomaly score reported for time slot t.

3.3 Handling of Higher Order Syndromes

Note that an SPN modeled over frequency counts of syndromes of length 1 (S≤1)
models the dependencies between the frequency counts of individual syndromes,
but it does not model the frequency of their co-occurrence. For example, if both
cough and fever occur with high frequency in the current window C(t), it does
not imply that there are many patients that exhibit both symptoms at the same
time. For modeling such interactions, we have two options: First, we can directly
include syndromes of length two (S≤2) or even higher. The obvious disadvantage
is that the number of possible syndromes grows exponentially with their length.
Nonetheless, we can use the SPN for making a best guess. More specifically,
if we only model syndromes of length 1 (S≤1), we can still form the query set
Q2 = Q1 ∪ {{Xs1 ≤ fs1(C(t)),Xs2 ≤ fs2(C(t))} | s1 �= s2, s1 ∈ S, s2 ∈ S}, and
use the resulting p-values as a heuristic best guess for the p-values of syndromes
S≤2. We will evaluate both approaches in the experimental section.

4 Experiments and Results

The goal of our experimental evaluation is to demonstrate that modeling of
syndromic data through an SPN can further improve state-of-the-art statisti-
cal modeling techniques. To that end, we conducted experiments on synthetic
data [2,14] and on real data from a German emergency department. As the lat-
ter did not contain any information about real outbreaks, we injected synthetic
outbreaks. This common practice allows the evaluation for arbitrary types of out-
break patterns in a controlled environment. The development of more realistic
evaluation strategies —or alternatively the acquisition of complete and certain
patient data— remains a major challenge for the research field.
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4.1 Evaluation Setup

In both scenarios, we generate 100 data streams, where each data stream cap-
tures daily information C(t) over a time period of two years. The time slots of the
first year are used for training, whereas the second year is reserved for testing
only. Each test data stream contains exactly one simulated outbreak starting on
a randomly chosen day. The synthetic data (Table 1) were generated as proposed
by Wong et al. [14]. In each stream, an outbreak is simulated which lasts for 14
days, during which people have a higher chance of catching a particular disease.
On average, 34 patients are reported per time slot.

The real data (Table 2) consist of fully anonymized patient data from a Ger-
man emergency department. With the help of a physician, we have extracted a
set of attributes and discretized them into meaningful categories. In addition, we
enriched the syndromic data with environmental attributes matching the syn-
thetic data. Information about the flu level has been obtained from SurvStat1

and weather data from the DWD.2 On average 165 patients are reported per
day. To simulate an outbreak, we first uniformly sampled a syndrome from S≤2.
In a second step, we sampled the size of the outbreak from a Poisson distribution
with mean equal to the standard deviation of the daily patient visits. To avoid
over-representing outbreaks on rare syndromes, we ensured that only 20 streams
contain outbreaks with syndromes that have a lower frequency than one per day.

Preliminary experiments showed that statistical tests on low counts are often
too sensitive to changes, causing many false alarms. As outbreaks are usually
associated with a high number of infections, we reduced the sensitivity of sta-
tistical tests by setting the standard deviation σ (Gaussian) and the mean μ
(Poisson and negative binomial) to 1. We compare our approach to the statistical
benchmarks, WSARE and anomaly detection algorithms which performed best
in previous work [6]. Parameters were tuned in a grid search using 1000 iterations
of bootstrap bias corrected cross-validation [11] which integrates hyperparameter
tuning and performance estimation into a single evaluation loop. The evaluated
parameters combinations for all algorithms can be found in our repository.3

As a performance measure, we rely on the activity monitor operating char-
acteristic (AMOC) [3], an adaptation of the receiver operating characteristic
(ROC) in which the true positive rate is replaced by the detection delay mea-
sured in days. We report the partial area under AMOC-curve for a false alarm
rate less than 5% (referred to as AAUC5%) because of the importance of very low
false alarm rate in syndromic surveillance. Note that contrary to conventional
AUC values in this case lower values represent better results. We report average
AAUC5% scores over all 100 data streams. Note that the worst possible result
for AAUC5% is 14 on the synthetic and 1 on the real data, respectively.

1 Robert Koch-Institut: SurvStat@RKI 2.0, https://survstat.rki.de, 11.01.2021.
2 Deutscher Wetterdienst: Open Data, https://www.dwd.de/opendata, 11.01.2021.
3 Our code is publicly available at https://github.com/MoritzKulessa/NSS.

https://survstat.rki.de
https://www.dwd.de/opendata
https://github.com/MoritzKulessa/NSS
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Table 3. Results AAUC5%.

Algorithm Synthetic data Real data

S≤1 S≤2 S≤1 S≤2

Benchmark Gaussian 0.859 0.957 0.331 0.296

Benchmark Poisson 1.312 1.321 0.283 0.220

Benchmark neg. binomial 0.964 1.021 0.259 0.216

Without E Autoencoder 1.647 1.549 0.443 0.372

One-class SVM 1.031 1.536 0.353 0.350

Gaussian mix. models 1.128 3.601 0.332 0.449

WSARE 0.907 1.066 0.333 0.281

SPN(·, Q1) 0.913 1.082 0.271 0.200

SPN(S≤1, Q2) 1.102 0.250

With E Autoencoder 2.523 1.629 0.452 0.365

One-class SVM 1.519 1.427 0.392 0.347

Gaussian mix. models 3.404 4.033 0.403 0.443

WSARE 0.907 0.996 0.302 0.266

SPN(·, Q1) 0.647 0.869 0.244 0.190

SPN(S≤1, Q2) 0.983 0.230

Fig. 3. AMOC-curve for monitor-
ing S≤2 on the real data.

4.2 Results

Comparison of Algorithms. Table 3 shows the results of all algorithms for moni-
toring syndromes S≤1 and S≤2. As the consideration of environmental attributes
is one of the main differences compared to the benchmarks, we performed addi-
tional evaluations without considering environmental attributes (c.f. without E).

We can see that the SPNs with the conventional queries Q1 and taking
environmental variables into account outperform all other competitors, on both
syndrome sets S≤1, S≤2. The AMOC curve shown in Fig. 3 confirms this result.
Clearly, SPN(Q1) offers the best trade-off between detection delay and false
alarm rate, also for the extended range from 0 to 0.5. Going into more detail,
we can observe that the improvement over the benchmarks is more pronounced
for the synthetic than for the real data. This is in line with previous findings
that indicated a higher dependency on environmental factors in the synthetic
data set [6]. Regarding the exclusion of environmental attributes, we expected
an advantage of SPNs over the benchmarks due to the modeling of dependen-
cies between syndromes. Conversely, in accompanying analyses we found that
overfitting of the SPN can also result in less stable estimates. In fact, both
effects seem to balance each other out in our comparison since the SPNs are on
par with the benchmarks. Nonetheless, the results indicate that in our analyzed
data SPNs can benefit from dependencies between the syndrome patterns if they
are combined with environmental factors. Similar experiments have been con-
ducted for the anomaly detectors. Contrary to the SPNs, we can observe that
these approaches do not benefit from environmental information. An explana-
tion could be the inability to condition on the given environmental attributes
as all attributes are treated in the same manner by the anomaly detectors. For
example, a rare environmental scenario can lead to an high anomaly score even
though the observed syndromic situation might not be exceptional.
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Table 4. Detailed SPN results

Setting Distribution Synthetic data Real data

Average Harmonic Geometric Average Harmonic Geometric

S≤1, Q1 Gaussian 0.711 0.862 0.894 0.267 0.332 0.332

Poisson 0.660 1.317 1.130 0.276 0.244 0.243

neg. binomial 0.634 0.962 1.112 0.228 0.235 0.234

S≤2, Q1 Gaussian 0.853 0.966 0.966 0.276 0.284 0.278

Poisson 0.805 1.328 1.106 0.232 0.216 0.200

neg. binomial 0.876 1.026 1.127 0.207 0.178 0.187

S≤1, Q2 Stouffer Gaussian 1.045 1.152 1.152 0.276 0.314 0.263

Poisson 0.993 2.322 1.549 0.261 0.250 0.252

neg. binomial 1.091 1.500 1.683 0.263 0.256 0.232

S≤1, Q2 Fisher Gaussian 0.943 1.110 1.112 0.265 0.295 0.268

Poisson 0.930 2.099 1.414 0.262 0.254 0.253

neg. binomial 0.968 1.372 1.538 0.253 0.256 0.228

Comparison Between S≤1 and S≤2. We can observe that outbreaks in the syn-
thetic data are better detected when monitoring single condition syndromes S≤1

while monitoring S≤2 works better for the real data. As discussed in Sect. 3.3,
we can approximate S≤2 results when using query Q2 on SPN(S≤1) (last line of
Table 3). We can see that in both cases, the approximation with SPN(S≤1,Q2)
does not reach the performance of directly modelling SPN(S≤2, Q1) but in the
case of real data it improves over SPN(S≤1, Q1). Thus monitoring Q2 can be
beneficial when the computational costs of direct modelling higher order syn-
dromes are prohibitive.

Analysis of Parameters of the SPN. Table 4 shows the results of different methods
for combining p-values with respect to the distributions used in the leaves of the
SPN. The columns correspond to the method for merging p-values in sum nodes
while rows represent the setting and the used distribution. Note that p-values in the
product node are only merged if we evaluate Q2, in which case, we tested merg-
ing with Fisher’s or Stouffer’s method. Most notably, we observe that a simple
weighted average of p-values works best on the synthetic data regardless of the
other parameter settings. Following the theoretic results of Vovk andWang [12], we
can only hypothesize that this is the case due to strong dependencies between the
attributes. In contrast, the results are less clear on the real data set. For instance,
regarding the negative binomial distribution, the arithmetic mean seems to be
more preferable when using S≤1 whereas the harmonic mean achieves the high-
est score on S≤2. With respect to Q2 the results suggest a slight advantage of the
Fisher’s method over the Stouffer’s method on both data sets. In summary, the
results exhibit clear differences between the merging options, but these seem to be
highly dependent on the data, distributions and architectures used. An approach
that goes beyond the proposed parameter selection and makes these decisions at
each inner node of the SPN in a data-driven way could be a way of further exploit-
ing these gaps. We leave these extensions for future work.
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5 Conclusion

In this work, we proposed the use of SPNs for modeling the joint probability
distribution of syndromic data. The main technical contribution is a method for
propagating p-values in SPNs in order to detect anomalies as potential indica-
tors for an outbreak of an infectious disease. In addition, the SPN can consider
environmental factors, such as the season, the weather, or the current level of
influenza infections, which may increase or decrease the awareness of outbreaks
with particular disease patterns. Our empirical study revealed that our proposed
approach outperforms state-of-the-art algorithms in the field of non-specific syn-
dromic surveillance, hence, on the task of detecting emerging diseases. In partic-
ular, by taking correlation between the monitored syndromes and environmental
factors into account, the performance of our approach improved substantially.
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Abstract. The CAPABLE project aims to improve the wellbeing of
cancer patients managed at home via a coaching system recommend-
ing personalized evidence-based health behavioral change interventions
and supporting patients compliance. Focusing on managing stress via
deep breathing intervention, we hypothesise that the patients are more
likely to perform suggested breathing exercises when they need calm-
ing down. To prompt them at the right time, we developed a machine-
learning stress detector based on blood volume pulse that can be mea-
sured via consumer-grade smartwatches. We used a publicly available
WESAD dataset to evaluate it. Simple 1D CNN achieves 0.837 average
F1-score in binary stress vs. non-stress classification and 0.653 in stress
vs. amusement vs. neutral classification reaching the state-of-art per-
formance. Personalisation of the population model via fine-tuning on a
small number of annotated patient-specific samples yields 12% improve-
ment in stress vs. amusement vs. neutral classification. In future work we
will include additional context information to further refine the timing
of the prompt and adjust the exercise level.

Keywords: Blood volume pulse · Stress · Classification · Wearable ·
Fogg behavioral model

1 Introduction

Cancer patients frequently experience negative emotions such as stress, sadness
and fear for the future, that hinder their emotional wellbeing [13], correlate with
reduced treatment compliance [5], and increase risk of mortality [15]. Improv-
ing the emotional and physical wellbeing of patients is a goal of the Horizon
2020 CAncer PAtient Better Life Experience (CAPABLE) project. CAPABLE
aims to develop and implement new persuasive computing methods that will
provide cancer patients at home with continuous support for treatment adher-
ence and the development of positive health habits that ultimately can improve
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Fig. 1. Stress intervention system

their wellbeing. Patients are equipped with a smartwatch, which monitors their
pulse, sleep, and physical activity, as well as a coaching system (a virtual coach),
accessed via a mobile app. Our goal is to design an app-based mobile interven-
tion facilitating patients with becoming engaged with their health and inspiring
them to undergo behavioural change that builds emotional resilience. The vir-
tual coach can suggest to patients evidence-based activities from the domain
of mindfulness and positive psychology, known to have positive effects on one’s
wellbeing. Each (tiny) activity is meant to become a habit aligned with patients
physical and psychological wellbeing goals.

Fogg’s Tiny Habits Behaviour Model. [3] proposes that habits formation (i.e.,
performing a target activity) depends on three factors: motivation, ability to
perform the task (which depends on the task’s difficulty) and the presence of a
trigger reminding the person to perform the target behaviour. For the purpose
of this feasibility study, we assume that patients are motivated to achieve their
wellbeing goals and that there are simple behaviours that match their abilities;
therefore we concentrate on designing appropriately-timed prompts. To identify
the simplest behaviour that all cancer patients have the ability to perform and
that can impact their emotional wellbeing we draw inspiration from Integrated
Performance Model [23]. According to Watkins, physiology impacts emotions,
which in turn elicit feeling, thinking, and behaviour, leading to desired outcomes
(results). Hence to achieve the best outcome, the starting point is changing one’s
physiology. Watkins points out that controlled rhythmic breathing can influence
one’s heart rate variability (HRV) and change one’s physiological state, leading
to a state of ‘stable variability’ called coherence[23]. This is in line with research
that investigated the impact of breathing techniques on the autonomic and the
central nervous systems [25]. Conscious slow breathing has been found to reduce
negative emotions and stress [24] and increase emotional control [6]. Therefore,
in CAPABLE, breathing exercise is the target behaviour that our cancer patients
have the ability to perform and can benefit from [7].
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The challenging part and a primary focus of this paper, is designing the
trigger that will deliver the recommendation to perform the breathing exercise
at a suitable time. We propose to use wearable sensors and machine learning
for that purpose. We want to prompt the patient when they might most need a
mindful breathing intervention; at the point their physiology signals their stress
(Fig. 1).

There is a considerable volume of literature around automatic stress detec-
tion methods using measurements from electrocardiogram (ECG), respiratory
rate, electrodermal activity (EDA), speech excitation, body posture or thermal
infrared imaging [4]. In this paper, we pay particular attention to methods that
can detect stress from blood volume pulse (BVP) (Sect. 2). We designed a person-
alised stress detector, leveraging only BVP (Sect. 3). BVP can be continuously
captured with minimum inconvenience to the patient wearing a consumer-grade
smartwatch. Additionally, BVP is altered by the breathing pattern [21], thus it
can provide useful evaluation of effectiveness of the prompt and the breathing
exercise intervention. In this paper we focus on experimental evaluation of the
first part of the system, namely of our proposed stress detector (Sect. 4) that will
dictate the appropriate timing for the breathing exercise prompt. Specifically,
we intend to answer the following research questions:

– Is it possible to develop a stress detector using raw BVP data (without hand-
crafted features)?

– Does personalisation of a stress detector improve its performance?

2 Related Work

Stress is characterised by high physiological arousal [9]. Regardless of the per-
son’s age, tense arousal is associated with higher heart rate [16]. However, dis-
criminating stress from other emotions, such as excitement or flow (an intrin-
sically rewarding experience of being immersed in a task [1]), is not straight-
forward, as both result in elevated physiological arousal and modulation of the
heart period [14]. According to Russel, emotional states can be mapped into a
2D space [17], where arousal can be assigned to the first dimension and valence
to the second one [10]. Valence reflects how positive or negative the emotion is.
From the perspective of this study, it is important to discriminate between posi-
tive arousal states and stress, as both fall high in the arousal spectrum compared
to relaxation but differ in the enjoy-ability of the experience (valence).

McCraty and Rees argue that positive emotions are characterised by the
coherent pattern of the heartbeat rather than the heart rate [12]. Therefore, to
distinguish between emotions it is important to acquire the full pulse signal and
inspect fluctuation in the heartbeats rather than look only at the cumulative
measure of the beats per minute. The heart beat-to-beat variability over time
can be captured through measurement of the BVP using Photoplethysmography
(PPG) sensor. The PGG sensors can be attached anywhere on the body, however,
most commonly they are placed on a finger [22] or wrist [19] and importantly
they are integrated into consumer-grade smartwatches [18].
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Fig. 2. An exemplar 1 min snippets of BVP measurements from one subject in the
WESAD dataset captured during 3 different emotions: neutral, stress, amusement.

Schmit et al. utilise both wrist and chest-worn sensors to acquire a mul-
timodal dataset for Wearable Stress and Affect Detection (WESAD)[19]. This
data set is particularly interesting because it captures the positive arousal state of
amusement alongside stress and neutral emotion from 15 subjects (Fig. 2). Con-
structively, Schmit et al. [19] provide baseline performance of multiple machine
learning methods trained on features extracted from each of the sensors sepa-
rately and in combination. When utilising only BVP, Linear Discriminant Anal-
ysis (LDA) achieved the best emotion classification performance in leave-one-out
evaluation. The reported F1 score for the three-class problem is 0.547 from LDA,
closely followed by Random Forest (0.538) and AdaBoost (0.533). In the reduced
version of the problem limited to a binary classification of stress vs. not-stress,
the F1 score from BVP reached 0.831. This is the state of the art performance
of a generalised model on this dataset when leveraging only BVP. Neverthe-
less, given that people differ in their physiological response, personalised stress
models might offer better performance [20]. Indikawati and Winiarti used all
wrist sensor measurements from WESAD dataset to train personalised emotion
classifier and obtained 88–99% classification accuracy using Random Forest [8].
However, they do not report the performance using BVP without the inclusion
of EDA and temperature measurements.

3 Methods

3.1 Dataset

We use publicly available WESAD dataset [19] for development of our stress
detector. The BVP measurements (64 Hz) from 15 subjects are accompanied by
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the annotation of stress, amusement and baseline state, corresponding to the
experimental conditions that were designed to evoke these emotions and can be
used as the labels for training of the machine learning models. For each subject,
the duration of the baseline condition is ∼20 min, of amusement - 6 min, and of
stress - 10 min.

The WESAD dataset comes additionally with the Short Stress State Ques-
tionnaire (SSSQ) questionnaire, which captures subjective reports on how the
participants felt during each experimental condition. Our evaluation considers
self-reported worry that reflects the degree of negative emotion of a given sub-
ject.

3.2 Stress Detector

Unlike prior methods applied to this dataset [8,19], we do not use hand crafted
features derived from the BVP, but directly input 60 seconds long snippets of the
signal to a simple 1D convolution neural network. This type of model was used
previously for classification of 1D signal gathered with a wearable device [11].
The model is constructed from two convolutional layers with 16, 8 filters respec-
tively and kernel size of 3, followed by max pooling layer and fully connected
layer with 30 nodes and output layer, which size corresponded to the number of
the classes (emotions). The number of filters and nodes was chosen empirical.
Each convolutional layer has a ReLu activation function and output layer with
softmax. The model is implemented in Keras with a TensorFlow backend.

Fig. 3. Experimental set up.

3.3 Experiments

To answer our research questions we conduct two experiments (Fig. 3). The first
experiment investigates if our stress detector trained on BVP signals reaches
state-of-the-art classification performance. In the second experiment we examine
if stress detector personalisation can provide further performance boost.
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Experiment 1: When evaluating the generalised stress detector we follow
Schmidt et al. [19] and adapt a leave-one-out (LOO) approach to directly bench-
mark against other previously reported approaches. The extracted examples
from the test patient have a window size of 3840 samples and a step size of
1600 samples, yielding ∼88 test examples (Fig. 4). We use weighted F1-score as
a performance metric recommended for unbalanced classification tasks.

Fig. 4. An example of test example extraction from patient signal.

For population model training we extract training examples with window size
of 3840 samples. In two-class problem the step size is 18 samples for non-stress
condition and 12 samples for stress condition, which yields ∼117000 training and
8600 validation examples. In three-class problem, we use a step size of 18, 10,
12 samples for baseline, stress and amusement conditions respectively, yielding
∼130000 training and 9300 validation examples. The step size was varied during
training to reduce the imbalance between classes.

Experiment 2: The number of annotated examples that can be obtained from
the patient using the mobile app is very small, therefore training the model from
scratch on the single patient data is not feasible. We suggest that the personalised
model can be trained by fine-tuning of the population model on a small number
of annotated samples from the patient of interest. All the layers of the population
model except the last one are frozen and the first half of the patients’ BVP signal
from each emotional condition is used for the model retraining. Similarly as in
population model training the step size for non-stress events was of a size 18
samples and 12 for stress, resulting in ∼4000 retraining examples per patient.
In three-class classification baseline examples were extracted with a step size 16,
stress with 7 and amusement of 5 yielding ∼6000 retraining examples. In both
personalised fine tuning conditions 80% of retraining examples were used for
training and 20% for validation. To be able to directly compare population and
personalised models we applied both the second half of the patient’s BVP signals.
We used the same windows and step size (3840 and 1600 samples, respectively)
as in experiment 1 and obtained ∼43 test examples for each patient. Obtained
performance is reported using micro F1.
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Fig. 5. Left: Population model performance vs. subjects perceived worry. Right: An
exemplar BVP signal from 1 min of the stressed condition.

In all experimental conditions we run model training 3 times with different
random seeds used for model initialisation and batch ordering. We trained the
model with categorical cross-entropy using Adam optimiser and batch size 256.
To avoid overfitting we use early stopping on validation data.

4 Results

Experiment 1: In discriminating stress vs. non-stress our model reached aver-
age across all subjects of 0.837 F1 score and in three-class condition 0.653. These
results are slightly higher than the results obtained by LDA, the best generalised
approach using BVP previously reported [19]. Nevertheless, the variation in per-
formance between subjects is very high at 0.71–0.98 in a two-class problem. We
hypothesised that the generalised model works well for subjects who are more
stressed and is less accurate for moderately stressed subjects. To investigate
whether the model performance reflects the degree of negative emotion of the
subjects we plot the stress F1 score from the 3 class model against self-reported
worry (Fig. 5). Note that the weak positive trend between model performance
and subjects perceived worry is not significant (rs = 0.477, p = 0.07). The stress
detector performed better for the subjects, whose stress response manifested in
very erratic BVP.

Experiment 2: Table 1 shows the F1 score for each patient using the small
patient-specific testing set. In stress vs. non-stress classification, personalised
model achieved better classification results for 10 subjects out of 15, there was
no difference in performance for 1 subject and for 4 subjects personalised model
yielded slightly worse results. The decrease in performance might be due to
an insufficient number of samples retraining examples leading to overfitting
of already well performing population models. On average personalised model
achieved a higher score of 0.822 compared to the population model 0.813 with
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Table 1. Mean F1 micro for each subject from 3 runs with different random seeds in
personalised evaluation set up for both 2 class and 3 class classification problem. The
better performing model is highlighted in grey.

Stress vs. Non-stress Baseline vs. Stress vs. Amusement

subj.
Population

Model Mean [std]

Personalised

Model Mean [std]

Population

Model Mean [std]

Personalised

Model Mean [std]

2 0.894 [0.023] 0.813 [0.050] 0.715 [0.046] 0.732 [0.040]

3 0.821 [0.064] 0.829 [0.060] 0.520 [0.064] 0.585 [0.087]

4 0.870 [0.083] 0.911 [0.023] 0.870 [0.064] 0.870 [0.064]

5 0.937 [0.022] 0.937 [0.030] 0.468 [0.045] 0.754 [0.011]

6 0.762 [0.019] 0.778 [0.011] 0.651 [0.022] 0.683 [0.030]

7 0.889 [0.011] 0.944 [0.011] 0.548 [0.085] 0.635 [0.129]

8 0.849 [0.062] 0.794 [0.059] 0.595 [0.070] 0.500 [0.118]

9 0.675 [0.011] 0.714 [0.019] 0.373 [0.096] 0.619 [0.101]

10 0.742 [0.057] 0.735 [0.054] 0.462 [0.070] 0.636 [0.067]

11 0.891 [0.011] 0.915 [0.011] 0.535 [0.083] 0.814 [0.076]

13 0.845 [0.022] 0.791 [0.083] 0.636 [0.029] 0.659 [0.090]

14 0.752 [0.044] 0.760 [0.040] 0.535 [0.087] 0.783 [0.194]

15 0.620 [0.044] 0.674 [0.033] 0.194 [0.029] 0.543 [0.105]

16 0.814 [0.068] 0.891 [0.077] 0.845 [0.040] 0.868 [0.011]

17 0.833 [0.077] 0.841 [0.064] 0.818 [0.037] 0.894 [0.021]

Mean 0.813 0.822 0.584 0.705

Std 0.084 0.081 0.176 0.119

similar standard deviation (0.08). In a classification of baseline (neutral) emo-
tion vs. stress vs amusement, the personalisation of the model leads to better
performance for 13 subjects, for 1 there was no difference and for one the per-
formance decreased. The average F1 score for the personalised model is 0.705
(0.119) and population model 0.585 (0.176). Note the variance of the population
models in this condition is higher than of the personalised models. In three-class
problem the advantage of the model personalisation is more apparent than in
binary classification task.

5 Discussion

The CAPABLE project aims to support cancer patients with achieving their
wellbeing goals. In this work, we take emotional health as a case study and
propose a system for stress intervention. As a first step, we focus on empirical
evaluation of the stress detector that we intend to utilize for prompting the
patient to perform simple breathing exercise. Our generalized stress detector
requires fewer preprocessing steps than previously used methods (as it is applied
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directly on the raw BVP signal) and achieves the state of the art performance on
WESAD dataset. Nevertheless, there is a large variation in the appearance of the
BVP signal in stress conditions between patients suggesting that personalization
of the models could be beneficial. We find that personalisation of the generalised
stress detector simply via fine-tuning on the small number of annotated samples
shows an encouraging improvement in classification performance.

In practice, further improvements to the personalised models could be
obtained with methods as active learning, where the patient is occasionally asked
to report their emotion via annotation of their current emotional state. Similar
techniques could drive improvements of the population model where annotated
samples are gathered from multiple users and used to retrain the model in fed-
erated learning fashion. The best stress detectors might rely on a combination
of the personalized models or assignment of the patient to the subpopulation
model based on patients’ similarity to that subpopulation.

However, from the perspective of the full stress intervention solution, the
performance of the stress detector is not the only important factor; while others
intended to simply detect stressful events, we try to determine when it is the best
time to prompt a patient to perform a selected breathing activity. We hypoth-
esize that prompting patients when they need the intervention the most (i.e.,
when they are stressed) will increase their compliance. We plan to evaluate this
hypothesis by comparing the effectiveness against that of prompts sent randomly.
Effectiveness could be concluded if coherent BVP would be measured soon after
the patient clicked on the prompt reminding him to perform the breathing.

In future work, we will incorporate additional information such as GPS loca-
tion, or time of the day, to try to predict the best timing of the prompt further.
We also plan to follow Fogg’s 8 steps persuasive design process [2], and figure out
what is preventing users from performing target behaviour. Therefore, in case
the activity was not performed, we will request the patient to specify whether the
suggested exercise was adequate and whether the timing was good; the patient
might have been stressed but the timing of the prompt could have been poor
because the patient was performing some other activity (e.g. driving, shopping)
preventing them from engaging in the suggested exercise.

Acknowledgments. The CAPABLE project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
875052.
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Abstract. Cancer is one of themost commonand seriousmedical conditions,with
significant challenges in the detection of cancer originating from the non-specific
nature of symptoms and very low prevalence. For general practitioners (GPs), this
can be particularly important, as they are the primary contact for patients for most
medical conditions. This places high significance on using the data available to a
GP to design decision support tools that will aid GPs in detecting cancer as early
as possible. With pathology data being one of the datasets available in the GP
electronic medical record (EMR), our work targets this type of data in an attempt
to incorporate an early cancer detection tool in existing GP practices. We focus on
utilizing full blood count pathology results to design features that can be used in
an early cancer detection model 3 to 6 months ahead of standard diagnosis. This
research focuses initially on lung cancer but can be extended to other types of can-
cer. Additional challenges are present in this type of data due to the irregular and
infrequent nature of doing pathology tests, which are also considered in design-
ing the AI solution. Our findings demonstrate that hematological measures from
pathology data are a suitable choice for a cancer detection tool that can deliver
early cancer diagnosis up to 6 months ahead for up to 8 out of 10 patients, in a
way that is easily incorporated in current GP practice.

Keywords: Early lung cancer detection · Primary care data · Explainable AI

1 Introduction

Through one’s medical history we come in contact with our General Practitioners (GPs)
far more often thanwe dowith other medical staff, particularly specialists. The resources
and technology available at the GP practices are, however, more limited to those in
hospital specialist care. GPs play a key role in diagnosis of serious diseases, but this
can be challenging due to the fact that symptoms alone are poorly predictive, especially
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for uncommon conditions in primary care. Decision support tools could potentially
contribute to flagging patients at increased risk of serious disease and prompting further
referral or investigation.

One of the medical conditions that can have serious consequences on patient’s lives
depending on the time of diagnosis is cancer. In Australia, there are more than 144 000
cancer patients who were diagnosed in 2019 alone. Early detection of cancer by GPs is
challenging if symptoms alone are used and patients existing history is underutilized.
In the last 15 years, the research in the epidemiology of cancer symptoms in primary
care data has grown, with many findings demonstrating how advanced analysis and
combinations of different symptoms and tests from a patient’s medical history can be
used to assess cancer risk [1–3]. If patients have a regular GP they visit, having just 2-
years’ worth of patient data can be sufficient in some cases to combine several different
tests into a risk prediction model that can provide the initial diagnosis around 3 months
ahead of the current practice [3, 4]. This may not seem like too long a period at first, but
with studies showing how every additional month of an undiagnosed cancer can increase
the mortality rate for certain types of cancer [5], establishing early diagnosis at the GP’s
office is even more important.

Pathology results are one of the most common types of data that exist in the patient
EMR that is readily available to a GP. This opens the opportunity to investigate if some of
the blood tests can be associated with certain types of cancer. Recent research highlights
raised platelet count (thrombocytosis) as a predictor of cancer risk [6, 7], but there have
been no specific studies that focus on understanding how to introduce a more advanced
AI component into cancer detection and how it can be adapted to current pathology
data in the GP’s EMR. Our work places a strong emphasis on this, allowing for both
interpretability of our results and easy application and usage.

The full blood count test results we investigate as a potential input for a Machine
Learning/AI model are: Platelet count, MCV (Mean Corpuscular Volume), MCH (Mean
Corpuscular Hemoglobin - average mass of hemoglobin per red blood cell), MCHC
(Mean Corpuscular Hemoglobin Concentration - concentration of hemoglobin in a given
volume of packed red blood cell) and RDW (Red blood cell distribution width). Platelet
count is already associated to lung cancer from other studies, and this set of features
allows to develop an initial approach to use pathology results in cancer detection, provid-
ing opportunity to expand the list of pathology test metrics with more metrics in future
work. We focused on lung cancer patients’ pathology results as this is a common cancer
and patients often have multiple pathology results; lung cancer has a high mortality rate
and could benefit from an early cancer detection model.

Theworkwe conducted places a heavy focus on delivering an initial cancer diagnosis
early as possible, which is why we developed our models to make predictions 3-months
and 6-months ahead of current practices. We attempted to design a model that could flag
a diagnosis 6 months in advance specifically to aid in early detection of cancer for high
risk patients - patients who did not survive the cancer, who potentially have most to gain
from earlier detection.

We present our work with the following contributions:

• We discuss the ideas of using pathology results in an AI model for cancer detection
and show reasoning behind this hypothesis.
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• We demonstrate how the metrics listed above can be relevant to cancer patients.
• We address the type and structure of pathology results data available to a GP to design
features that are easy to implement and use in a cancer detection model.

• We present AI models with performance that shows promising results in detecting
cancer, especially for high risk patients.

• We list future opportunities that can improve this type of work even further with little
modification and wide application.

2 Related Work

With more than 2.9 million deaths worldwide associated to lung cancer in 2018, it
has become imperative to find additional ways to better detect the early symptoms of
lung cancer and provide timely diagnosis [8]. The main challenge about the symptoms
however is that they can vary from one patient to another and can take even up to 2 years
for the symptoms to be visible enough to have them attributed to cancer [8]. Raised
platelet count, or thrombocytosis, has been shown to be an indicator for cancer, with
differences in the results for biological male vs female patients – male cancer patients
were 50%more likely to have thrombocytosis than female patients [6, 10]. This resulted
in the practice of referring patients with thrombocytosis to an x-ray scan in an attempt to
detect the cancer patients promptly [11]. Anemia has also been shown to have association
with lung cancer, with slightly higher presence in male patients as well [2, 10], which
brings us to our hypothesis of investigating blood count results in combined scenario.

Designing risk prediction models with individual metrics have been investigated to
a good extent [12–14], but without strong emphasis on combining several metrics into
singlemodel, or considering the application range of the predictionmodels in GP offices.
Reviews on the use of primary care data for cancer prediction with other types of primary
care datasets are also indicating that blood results are increasingly popular for the task
[15, 16], and with indications that lung cancer patients tend to have blood tests more
often [17], it provides fertile grounds for introducing AI models in the bigger picture.

3 Dataset Description

3.1 NPS MedicineInsight

The Australian Government Department of Health (DoH) established the NPS
MedicineInsight initiative as a nationally representative primary care dataset that can
be used by academic researchers in attempt to deliver new research findings that can
improve medical practices. The NPS MedicineInsight contains patients records from
more than 500 general practices and 5000GP providers, which includesmore than 8mil-
lion recorded diagnoses, 23 million prescriptions, 32 million encounters and 85 million
pathology test results [18]. For our research work, we obtained the lung cancer patients
cohort, as well as a non-cancerous patients’ cohort as a control group.

With an extensive amount of records and results from pathology tests, we focused our
work on the five blood test metrics listed earlier: Platelet count, MCHC,MCV,MCH and
RDW. We looked at the out of range records for these metrics, with the standard range
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being: platelet count of 150–450 × 109/L, MCV of 80–98 fL, MCH of 28–32 pg/cell,
MCHC of 330–370 g/L, RDW of 12.2%–16.1% F/11.8%–14.5% M. Our models used
an out of range value in at least one of these metrics as a trigger for classification,
meaning that lung cancer patients that have no out of range values unfortunately were
not assessed for early detection. The analysis showed that around 20% of the patients per
each metric had a record with an out of range value for that metric, so combining several
metrics increased the total subset of lung cancer patients suitable for early detection.
Subsequently, we only considered non-cancerous patients with out of range values as a
control group.

3.2 Cancer Patient’s Analysis

The available lung cancer patient cohort showed a very interesting pattern compared to
other patients. One of the things we noticed initially was that not only did lung cancer
patients had around 20% out of range value for a given blood test metric, they also had
on average 3 times more tests taken in the two year period before cancer diagnosis than
patients that had no out of range results, allowing both better quality in data and initial
indication of use of pathology results for early diagnosis.

Another interesting aspect of our analysis showed that not only there were out of
range tests for a good portion of cancer patients, but that the mortality rate for patients
with out of range tests was much higher than for patients with no out of range results.
Shown in Fig. 1 is an example for patients with out of range results for RDW compared
to patients with no out of range results and the mortality figures per age group (group
2 = 20–29 y.o. etc.). We can observe higher mortality ratio for patients with out of
range, showing that even if we can only include patients with out of range results in the
final model, these patients are high risk patients and they may benefit from early cancer
detection the most.

Fig. 1. Patients that survive vs. patients that did not survive cancer based on out of range results
for RDW: a) Patients with no out of range results; b) Patients with out of range results 3 months
prior diagnosis date
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4 Features Design and Methods Selection

4.1 Uncertainty Based Features Design

Pathology tests are readily available to GP to order, but as we could see in the previous
analysis, the number of tests per patient can vary – lung cancer patients that had out of
range results had more tests than other patients which worked in favor of our work to
some extent. The frequency and regularity of these tests is not a matter of standardized
practices: GPs issue a request for test when patients visit them, and this is something that
is irregular and driven by a range of factors. This poses some limitations on the quality
of data as well as the use of this type of data for AI models.

Our approach was to handle this uncertainty by using time periods and occurrences
of out of range tests results to incorporate some structure in the features and allow for
use of pathology data without any special need for its format other than the current ones
used in practice. For the lung cancer patients, from the initial diagnosis date recorded
at the GP clinic, we took the pathology tests within the two-year period prior to that
date. We then represented the occurrence of any out of range results for each of the five
listed metrics in the periods of 24–18, 18–12, 12–6 and 6–3 months before the cancer
diagnosis date. The occurrence of each metric per individual period formed one original
feature, with 0 meaning no occurrence of out of range result for that metric for the given
time period, and 1 meaning at least one occurrence of out of range result for that metric
in that time period. This created data suitable for 3 months before diagnosis, and by
removing the features with the 6–3 months period we could also perform a 6 months
before diagnosis feature. For the control group of non-cancerous patients we selected
the period of 2016–2017 and the same features were calculated for that period. We did
not consider multiple occurrences within one time period as often pathology tests can
be issued subsequently, and this would bring no new information to our models.

4.2 Soft Out of Range Results

The normal ranges for each of the hematological measures were listed earlier, and based
on some of the test results, we included the results at the very end of the normal ranges as
soft out of range. For example, platelet count is most commonly defined within normal
range of 150–450 thousand platelets per microliter of blood, so patients with results of
150 will be within the range, but patients with results 149 are out of range. In order to
allow patients with results of 150 or just above it to still be considered as out of range
we defined soft range as being the 2.5% ends from within the lowest and highest values.
Using the platelets example, 2.5% of the 450–150 = 300 is 7.5 units, so the soft ranges
would be (157.5–442.5).
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This means that we ended upwithmore test results being out of range and potentially
more patients being suitable to be considered for early diagnosis. For the 3months before
diagnosis, using the standard range we had 592 patients within our dataset, and that
number increased to 683 with the soft out of range definition.

4.3 Additional Features

Besides the original features for the five metrics for each time period listed above, we
combined some more features based on those and other patient data to allow some more
temporal and quantitative aspects to be included in the algorithm. These were:

• Summary of occurrences per blood test metric
• Summary of occurrences of any metrics over a 3- or 6-month pre-diagnosis period
• Separating the out of range values into two separate features for upper and lower
threshold out of range

• Separating the previous features per biological sex
• Separating the previous features per age group

By using this feature set, we could get a clearer view of the importance of occurrences
vs. frequency of out of range results, both total and per individual age group or biological
sex.

5 Model Selection, Experiments and Results

5.1 Model Selection

The use of pathology data in the features listed above not only handled the uncertainty
in the data that originated from the irregularity of pathology tests, but it also provided
another crucial contribution: it allowed us to see if the individual original features or the
combinatory ones hadmore useful information. In order to allow evenmore interpretabil-
ity in both the final performance and the relevance of the features, we used decision tree
style models: Decision Tree, AdaBoost, LightGBM and XGBoost. We also used an
ensemble approach to check for additional performance evaluation: a stack model that
uses the forecasts of the other classifiers as an input, as well a simple ensemble with the
OR logic between all the classifiers.

Wewere interested to see how ourmodels performed in correctly classifying the lung
cancer patients. We wanted to achieve both high values for True Positive Rate (TPR)
and True Negative Rate (TNR), and also from all the predicted positives we wanted the
cancer patients to have the highest portion (Positive Predictive Value, PPV). We had a
total of 592 patients for the 3 months ahead early diagnosis, and 683 patients for the
same diagnosis with soft out of range features. For the 6 months ahead early diagnosis,
we had 499 patients total for both standard range and soft out of range.
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The use of different ratios of non-cancerous patients: cancer patients allowed us to
see how the TPR and TNR changed and if we could avoid having lots of false positives.
We used the ratio of 1:1, 1.5:1 and 2:1, and suggested not going higher than 4:1 in order
to avoid issues due to an imbalanced dataset. The chi-squared statistic for ranking the top
features was used, and we showed the average performance when using 41–54 features.

Our cancer patients were all 50+ years old, and we also added a subset the 50–
79 years range to allow for better quality of data as patients aged 80+ had different
frequencies of pathology tests and could have more health issues that made it difficult
to differentiate between cancer based out of range pathology tests and other conditions
out of range tests.

5.2 Experiments and Results

The results presented in Tables 1 and 2 show the average performance of the models with
over 14 runs, with 41–54 features used per run. The standard deviation over each metric
was rarely higher than 0.01, so the performance was quite consistent per each run. We
investigated the impact of three ratios of non-cancerous patients to cancer patients (1:1,
1.5:1 and 2:1) and in all cases the ratio of 1:1 showed best results for TPR and only those
figures are presented here. As we increased the ratio, the value of TPR dropped in all
cases while TNR (True Negative Rate) increased to values of 0.9. The PPV value also
shows good performance, and it is closely matched with the Negative Predictive Value
(NPV).

Table 1. Performance metrics for data with regular range

All samples 3 months ahead 6 months ahead

Classifier TPR TNR PPV NPV TPR TNR PPV NPV

AdaBoost 0.686 0.722 0.711 0.697 0.684 0.679 0.680 0.682

DecisionTree 0.613 0.747 0.708 0.659 0.586 0.692 0.656 0.626

Ensemble 0.807 0.619 0.679 0.763 0.784 0.565 0.643 0.723

LightGBM 0.705 0.710 0.708 0.707 0.684 0.686 0.685 0.684

Stack 0.705 0.710 0.708 0.707 0.684 0.686 0.685 0.684

XGB 0.722 0.748 0.742 0.730 0.671 0.715 0.702 0.685

Under80

Classifier TPR TNR PPV NPV TPR TNR PPV NPV

AdaBoost 0.650 0.690 0.678 0.664 0.617 0.684 0.661 0.642

DecisionTree 0.594 0.730 0.688 0.643 0.541 0.670 0.621 0.594

Ensemble 0.770 0.573 0.643 0.714 0.755 0.569 0.637 0.701

LightGBM 0.664 0.717 0.701 0.681 0.650 0.653 0.652 0.651

Stack 0.665 0.718 0.702 0.682 0.649 0.653 0.652 0.651

XGB 0.655 0.762 0.733 0.689 0.652 0.717 0.697 0.704
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The results confirm that not only we were able to provide 3 months ahead forecast
with our pathology resultswith good accuracy (7–8 out of 10 correctly classified patients)
but we could also provide similar accuracy with the 6 months forecast as well. The
individual models when combined in an Ensemble with OR logic (if onemodel classifies
a 1, the ensemble outputs 1) performed well for the 3 months ahead forecast, but not as
good for the 6 months ahead. The Stack model did not seem to suffer this issue. Still, a
7 out of 10 forecast delivered 6 months ahead with only 5 metrics is very promising in
the future use of the pathology results in primary care data for early cancer detection.

The performance of the 6 months ahead forecast was also satisfactory in the predic-
tion of the high-risk patients task. We can observe from Fig. 2 that for both regular out of
range and soft out of range, the percentage of deceased patients in the correctly classified
cancer patients was higher than the percentage of deceased patients in the false negative
forecasts: in some cases nearly 45% of the patients in the correct classifications were
high risk patients that were deceased within 4 years of the cancer diagnosis, and this
number was as low as 35% in the false negative forecasts. This shows that our models
were able to detect the cancer patients that can benefit from an early diagnosis the most.

Table 2. Performance results for metrics with soft range

All samples 3 months ahead 6 months ahead

Classifier TPR TNR PPV NPV TPR TNR PPV NPV

AdaBoost 0.659 0.760 0.733 0.690 0.665 0.712 0.698 0.680

DecisioTree 0.622 0.765 0.725 0.669 0.601 0.704 0.670 0.638

Ensemble 0.783 0.661 0.698 0.753 0.772 0.595 0.656 0.723

LightGBM 0.686 0.758 0.739 0.707 0.665 0.711 0.697 0.680

Stack 0.686 0.758 0.739 0.707 0.665 0.711 0.697 0.680

XGB 0.657 0.775 0.745 0.694 0.639 0.742 0.712 0.673

Under 80

Classifier TPR TNR PPV NPV TPR TNR PPV NPV

AdaBoost 0.689 0.732 0.720 0.703 0.592 0.717 0.676 0.639

DecisioTree 0.591 0.689 0.656 0.628 0.537 0.646 0.603 0.583

Ensemble 0.781 0.613 0.668 0.737 0.738 0.585 0.640 0.692

LightGBM 0.675 0.680 0.679 0.677 0.620 0.649 0.639 0.631

Stack 0.675 0.680 0.679 0.677 0.620 0.649 0.638 0.631

XGB 0.670 0.741 0.721 0.692 0.628 0.704 0.680 0.655
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Fig. 2. Percentage of deceased patients in theTrue Positives (TP) and FalseNegatives (FN) groups
per classification model and out of range type

6 Conclusion

The work presented in this paper demonstrates the opportunities to use currently under-
utilized set of data for early cancer detection:Aprimary care dataset containingpathology
results. Not only do we justify the reasoning behind the use of full blood test metrics for
early cancer detection, but we also handle the challenge of the data containing records
at irregular and infrequent time periods. By using features that represent both temporal
and quantitative values in the out of range results, we were able to predict lung cancer
diagnosis up to 6 months ahead of time, with models that required no modification to
current GP practices and would be relatively easy to implement in clinics for both lung
cancer detection and other types of cancer as well.

This work opens opportunities for further research in areas such as more high-risk
patient focused forecast, inclusion of other pathology tests, and potentially incorporating
social and economic features in the AI models. Based on availability of additional data
about the stage of cancer at the time of detection and hospital treatment, we may further
deliver more insights by using pattern detection and visualization methods to determine
the most descriptive features in the pathology tests per different type of cancer or patient
cohort.
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Abstract. Tweets mentioning medications are valuable for efforts in
digital epidemiology to supplement traditional methods of monitoring
public health. A major obstacle, however, is to differentiate them from
the large majority of tweets on other topics posted in a user’s timeline:
solving the infamous ‘needle in a haystack’ problem. While deep learn-
ing models have significantly improved classification, their performance
and inference processing time remain low on extremely imbalanced cor-
pora where the tweets of interest are less than 1% of all tweets. In this
study, we empirically evaluate under-sampling, fine-tuning, and filtering
heuristics to train such classifiers. Using a corpus of 212 Twitter time-
lines (181,607 tweets with only 0.2% tweets mentioning a medication),
our results show that combining these heuristics is necessary to impact
the classifier’s performance. In our intrinsic evaluation, a classifier based
on a lexicon and a BERT-base neural network achieved a 0.838 F1-score,
a score similar to the score achieved by the best classifier on this task dur-
ing the #SMM4H’20 competition, but it processed the corpus 28 times
faster - a positive result, since processing speed is still a roadblock to
deploying classifiers on large cohorts of Twitter users needed for phar-
macovigilance. In our extrinsic evaluation, our classifier helped a labeler
to extract the spans of medications more accurately and achieved a 0.76
Strict F1-score. To the best of our knowledge, this is the first evaluation
of medications extraction from Twitter timelines and it establishes the
first benchmark for future studies.

Keywords: Social Media · Medication detection · Text classification

1 Introduction

With more than 321 million monthly active users worldwide [11], Twitter is
among the most influential Social Media platforms of the last decade. On Twit-
ter, users discuss a great variety of subjects, including their health. These tweets
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are now recognized as a valuable source of information in digital epidemiology to
supplement traditional methods for population health surveillance [12]. A major
obstacle, however, is to differentiate health-related tweets from the majority
of tweets with other topics. Particularly relevant to a variety of health-related
studies are those mentioning medications.

Previous studies on detecting medications on Twitter usually started by
building their corpus. However, collection methods often biased such corpora by
using a predefined list of medications [2,10], imposing co-occurrences of medica-
tions and diseases in tweets [8], or removing tweets with common terms ambigu-
ous with medications [1]. This changed with the advent of the Social Media
for Health Mining (#SMM4H) Shared Tasks, focused on deploying standard
corpora to test and compare systems that extract health information in Social
Media [9,16]. In 2018 and 2020, shared tasks included those to detect tweets
mentioning medications and dietary supplements, with suitably annotated cor-
pora made available. This task is often the first process applied in a pipeline
for population health surveillance when mining Twitter data. In #SMM4H’18,
the corpus was composed of randomly selected tweets and manually balanced.
The task served as a proof of concept. In #SMM4H’20, the corpus consisted of
112 Twitter users’ timelines and exhibited the real distribution of medication
mentions in typical Twitter user timelines. This task was intended to measure
the performance to expect in a “real world” application.

During the challenges, participants abandoned machine learning models that
use hand-engineered features and largely adopted deep learning models, in par-
ticular, transformer models. While deep learning models significantly improved
the accuracy of the systems, two limitations impede their use at a large scale
in “real world” applications. First, their training is difficult on extremely imbal-
anced corpora. Corpora are imbalanced when negative examples outnumber pos-
itive examples, a very frequent occurrence in “real” data [7]. When classifiers
are trained on these corpora, their optimizing algorithms tend to classify all
examples as negative to reduce their losses. Imbalance was the main concern
for the #SMM4H’20 participants who proposed various heuristics to improve
their training: under-sampling and fine-tuning were the most popular. Ensem-
ble learning, over-sampling, data augmentation, and cost-sensitive learning were
proposed as well. Given the time constraints of the shared task, most partici-
pants focused on one heuristic at a time, and when they did combine heuristics,
they usually did not evaluate methodically the individual contribution of each.
Second, the speed of prediction of transformer models remains slow on very large
corpora. When Twitter is used to identify cohorts with suitable statistical power,
a large number of tweets has to be processed by the model to discriminate users
of interest. It is not unusual to process billions of tweets to collect such cohorts.
Despite hardware improvements, the inference times of transformer models are
high [13]. This limits the size of the cohorts and the datasets that can be pro-
cessed and studied. For example, it would take 1,750 h (72.9 days) for the BERT
classifier used in our experiments to process the 1.5 billion tweets of our current
collection of Twitter timelines where users are announcing a pregnancy [15].
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In this study, our goal was to achieve F1-scores similar to those of the state-
of-the-art deep learning classifiers for the task of finding tweets with medica-
tion mentions in user timelines but using a more agile system. To this end,
we empirically evaluated three re-sampling heuristics and their combinations-
under-sampling, fine-tuning, and filtering - to train a binary classifier. We exper-
imented with two classifiers, a Convolutional Neural Network (CNN) and a
BERT-based classifier. Among all possible heuristics to improve training on
imbalanced datasets, we chose filtering because large lexicons of medications
exist and the decisions made by the filter uniformly remove a large number
of unlikely candidates, greatly speeding up the processing time of the classifier
at run time while remaining reproducible. Under-sampling and fine-tuning are
complementary heuristics to use with filtering since they allow for training a
classifier on a balanced training set, removing the need for a corpus with the
natural imbalance of the examples ratio, a corpus very expensive to annotate.

Our contributions are: 1) the release of 212 Twitter timelines annotated with
medication spans as a benchmark for the extraction of medication mentions in
Twitter, which will be used for a BioCreative shared-task [14]; 2) the design
of a fast and efficient classifier to detect tweets mentioning medications; 3) an
intrinsic evaluation of the classifier as well an extrinsic evaluation when it is used
to help in the extraction of the spans of the medication mentions.

2 Methods

Data. We ran our experiments on three corpora. The first corpus was released
during #SMM4H’18. It is composed of tweets mentioning medications or
ambiguous terms that can be confused with medications. For example, ‘Propel’
is an English verb but it is also the brand name of a corticosteroid. The corpus
was manually balanced with an equal number of positive and negative tweets
(7,827 vs 7,178, respectively). The second corpus, released for #SMM4H’20,
includes 98,959 tweets from 112 user timelines. This corpus has the natural dis-
tribution of tweets with very few tweets mentioning medications (258 positive
vs 98,701 negative tweets). The inter-annotator agreements reported previously
[15] for both corpora were high, with .892 Cohen’s kappa for SMM4H’18 and
.880 Cohen’s kappa for SMM4H’20. With only 77 tweets mentioning medica-
tions in the test set, and common medications like Tylenol occurring multiple
times, the SMM4H’20 corpus test set contains few positive examples. Therefore,
we decided to create a larger corpus to evaluate our models more accurately. In
the SMM4H’20+ corpus, we added 100 new timelines to the existing 112 time-
lines of the SMM4H’20 corpus (for a total of 442 positive and 181,165 negative
tweets). With 2.5 h on average to annotate a timeline, the SMM4H’20+ corpus
was very expensive to produce. We selected and annotated these 100 timelines
by following the guidelines defined during the #SMM4H’20 shared-task. The
SMM4H’20+ test set has 131 positive tweets and includes all examples of the
SMM4H’20 test set.
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Classifiers. We implemented three binary classifiers to detect tweets mention-
ing medications1. Each classifier receives raw tweets as input and returns 1 for
tweets predicted to mention medications, 0 otherwise. As a baseline, we re-
implemented the lexicon classifier proposed in [15]. This baseline classifier relies
on an extensive list of 44,948 medications from RxNorm. We extended the lex-
icon with 231 generic mentions such as statin, antibiotic and pain meds. Since
medications are often misspelled in Twitter, we automatically generated variants
for our 44,948 medications by following the method described in [15] and man-
ually removed variants that were too ambiguous with common English phrases,
like some, a variant of sone. This classifier labels as positive all tweets with a
phrase matching an entry in the lexicon. Besides, we implemented a CNN with
word2vec embeddings trained on 400 million tweets [6]. Lastly, we implemented
a classifier using BERT-base with no additional output layers and trained follow-
ing the recommendations of the authors [5]. We chose BERT over more recent
transformer-based classifiers because it is now a well-accepted milestone in text
mining and it allows us to compare our performances with the ones of the best
classifier of #SMM4H’20, which used an ensemble of 20 BERT classifiers [4].
Other participants did not perform better with more recent transformer-based
classifiers such as RoBERTa or Electra. For simplicity, we will refer to these
three classifiers as the lexicon, CNN, and BERT classifiers, respectively.

Training. We trained our CNN and BERT classifiers following different set-
tings to evaluate the effects of our re-sampling heuristics: under-sampling, fil-
tering, and fine-tuning. Our under-sampling heuristic is to train our classifiers
on SMM4H’18. This corpus was under-sampled by manually keeping a balanced
number of positive tweets, which were correctly predicted as mentioning med-
ications by at least two of the four weak classifiers used in [15], and negative
tweets, which were false positives of one weak classifier. The filtering heuristic
also under-samples a corpus by removing all examples predicted as not mention-
ing a medication by the lexicon classifier. Our fine-tuning heuristic consists of
training our classifiers for a few epochs on a corpus with a given ratio of nega-
tive/positive examples, and continuing their training on a corpus with a different
ratio.

In all settings, the classifiers were trained on the official training set of the
corpora mentioned and evaluated on the test set of SMM4H’20+. Setting (a):
We trained our classifiers only on SMM4H’20+. This setting is the default train-
ing method for supervised classifiers: examples are randomly selected from users’
timelines, and all examples sampled are annotated and used for training and eval-
uating the classifiers. Any improvements over the scores of our classifiers trained
with setting (a) will show the benefits of the heuristics tested with other settings.
Setting (b): We show the impact of under-sampling alone. We trained our clas-
sifiers on SMM4H’18, as it helps to learn the linguistic patterns to speak about
medications and their homonyms. However, this training corpus is not represen-
tative of the test corpus, the SMM4H’20+, which exhibits the real distribution
1 All classifiers are available at https://tinyurl.com/fo9u9xnn.

https://tinyurl.com/fo9u9xnn
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of tweets. Setting (c): We show the impact of filtering alone. We trained our
classifiers on SMM4H’20+ and applied them only to the tweets of the test set
of SMM4H’20+ matched by the lexicon classifier. For the tweets filtered out
by the lexicon classifier, the label was set to 0. For the tweets filtered in, we
applied the CNN or the BERT classifier to make the final decision on their label
values. Setting (d): We combined the under-sampling and fine-tuning heuris-
tics. We pre-trained our classifiers on SMM4H’18 and continued their training on
SMM4H’20+. By continuing the training on SMM4H’20+, the classifiers learned
the real distribution of positive examples in the test corpus. Setting (e): We
combined the filtering and under-sampling heuristics. We trained our classifiers
on SMM4H’18 and we applied them to the tweets of the test set of SMM4H’20+
filtered in by the lexicon classifier. Setting (f): We combined the three heuris-
tics. We trained the classifiers on the SMM4H’20+ corpus providing more nega-
tive examples, fine-tuned on SMM4H’18, and applied the classifiers to the tweets
of the test set of SMM4H’20+ filtered in by the lexicon classifier.

Evaluation. We intrinsically evaluated the performance of our classifiers with
the Precision, Recall, and F1-score metrics. During this evaluation, all classifiers
were evaluated on how well they individually perform the classification task
and were ranked according to their F1-scores. We trained and evaluated our
classifiers three times for each setting and reported the means of their scores in
Table 1 to account for the variations due to the stochastic optimization of the
neural networks. We kept in our experiments the results obtained on SMM4H’20
to compare our performance to that of the participants of the #SMM4H’20
shared-task.

We also extrinsically evaluated our best classifier. We measured the changes
of performance of a baseline sequence labeler extracting medications with and
without prefiltering the tweets with our best classifier. A medication labeler
should return, for each medication occurring in a tweet, its span - i.e. the starting
and ending positions. We evaluated the labeler with the Overlapping/Strict Pre-
cision, Recall, and F1-score metrics. In the overlapping evaluation, we rewarded
the labeler if it found a span that overlaps with the span of a medication, and
in the strict evaluation, only if it found the exact span of the medication.

To perform our extrinsic evaluation, we implemented three labelers. Our first
baseline labeler applies our lexicon to a corpus and extracts the spans of every
entry of the lexicon matched in the tweets without additional controls. For our
second labeler, we converted into a sequence labeler the best classifier based
on a lexicon and BERT in setting (f). This labeler extracts the spans of every
entry of the lexicon matched in the tweets labeled as mentioning a medication by
the BERT neural network. All other tweets do not contain medications for the
labeler. Our third labeler is a standard labeler based on a bidirectional-LSTM
using BERT embeddings and trained to recognized all tokens constituting a
medication mention within a tweet using the IO annotation schema. We evalu-
ated various settings to train the BERT labeler but we only report the two best
settings due to space constraints. In setting (α), we trained the BERT labeler on
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the SMM4H’18 training set and fine-tuned it on the SMM4H’20+ training set.
We evaluated the labeler on the full test set of SMM4H’20+, therefore perform-
ing the detection and extraction at the same time. In setting (β), we trained
the BERT labeler on the SMM4H’18 training set but fine-tuned it only on the
tweets of the SMM4H’20+ training set filtered in by our best classifier. During
the evaluation, we applied the labeler only on the tweets of the SMM4H’20+
test set filtered in by our best classifier - making the decision that all tweets
filtered out by the classifier did not contain any medications - thus, performing
the detection independently from the extraction. Since the labelers in settings α
and β only differ by filtering the tweets with the classifier during their training
and evaluation steps, the differences between their performances measure the
impact of the classifier.

3 Results and Discussion

3.1 Intrinsic Evaluation Results

An interesting aspect of Table 1 is the performance of our classifiers on
SMM4H’18. With a 0.954 F1-score, our BERT classifier outperformed the ensem-
ble of bi-LSTMs proposed in [15], which to the best of our knowledge, was the
highest score achieved on this corpus with a 0.937 F1-score.

Another interesting finding is that under-sampling and filtering heuristics
cannot be used alone, since settings (b) and (c) perform worse than the default
setting (a) for both classifiers. When under-sampling is used alone, both classi-
fiers became over-sensitive to words related to health but used in other contexts,
such as “been drinking”, or tweets related to health but not mentioning any
medications, such as “I might as well show him since I’m at the OBGYN”. Both
classifiers have a good recall, higher than the recall of our lexicon classifier, but
they have a very low precision, making their annotations unusable in upstream
processes. When the filtering heuristic is used alone, the opposite phenomenon
is observed. We expected our lexicon classifier to have a good recall but a low
precision due to medication homonyms. Since our classifiers learned the contexts
where medications occur, they should have detected false positives predicted by
the lexicon classifier and corrected their labels. However, having seen too few
positive examples in the training set, our classifiers were over-conservative and
rejected valid patterns such as “prescribed me [medication]” or tweets mention-
ing unseen medications like “femestra”, resulting in low recalls of 0.49 and 0.46.

Our heuristics improved the training of our classifiers when they were com-
bined. On SMM4H’20+, the best classifier was the CNN trained on the under-
sampled corpus and fine-tuned with an 0.80 F1-score. The BERT classifier using
under-sampling and filtering heuristics in setting (e) achieved a performance very
close to that of the BERT classifier in setting (f), with 0.79 F1-score, showing
a marginal help from the additional negative examples from the SMM4H’20+
corpus used in setting (f). However, the setting (e) has three main advantages
over other settings. Our classifier does not require to be trained on SMM4H’20+,
a corpus that is very expensive to produce, as annotation of each timeline takes
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Table 1. Performance of binary classifiers on the SMM4H’18, SMM4H’20, and
SMM4H’20+ test set corpus

SMM4H’18
Training setting Classifier P R F1

lexicon 67.96 92.60 78.39
[17] 93.3 90.4 91.8
[15] 95.1 92.5 93.7

Training: SMM4H18
CNN 89.14 93.88 91.45
BERT 95.47 95.30 95.38

SMM4H’20 SMM4H’20+
P R F1 P R F1

lexicon 29.49 83.12 43.54 25.32 75.57 37.93
[4] 83.75 87.01 85.35 — — —
[3] 77.11 83.12 80.00 — — —

(a) Training: SMM4H20+
CNN 78.87 61.04 68.41 75.44 58.78 65.81
BERT 78.86 62.77 69.87 79.75 67.18 72.92

(b) training: SMM4H’18
CNN 3.40 81.82 6.56 3.22 83.97 6.20
BERT 16.62 85.71 27.85 17.46 90.08 29.24

(c) training: SMM4H’20+ CNN 95.31 52.38 67.60 94.67 49.11 64.65
Filter: lexicon BERT 92.38 47.62 62.36 92.61 45.53 60.69

(d) Training: SMM4H’18, CNN 91.69 74.89 82.31 88.32 74.05 80.43
fine-tuning: SMM4H’20+ BERT 81.39 64.50 71.96 83.16 68.96 75.36

(e) Training: SMM4H’18, CNN 66.21 77.92 71.57 67.34 69.98 68.61
Filter: lexicon BERT 88.85 78.79 83.50 87.50 72.77 79.45

(f) Training: SMM4H’20+, CNN 79.44 78.35 78.88 79.11 70.99 74.82
Fine-tuning: SMM4H’18, BERT 90.10 78.35 83.81 90.11 71.76 79.89
Filter: lexicon

around 2–4 h. Our classifier was only trained on the SMM4H’18 corpus, a corpus
composed of tweets that mention medication names rather than full timelines.
This corpus was built semi-automatically and can be updated and annotated at
a rate of 30–40 tweets per minute. With new medications released each year, it is
preferable to train our classifiers only on the under-sampled corpus. With the set-
ting (e), the classifier is fast. With parallel computing and indexing, our lexicon
classifier can pre-filter millions of tweets in minutes; the BERT classifier is then
only applied on a fraction of the initial tweets. Our classifier took 41 s on a Mac-
Book Pro 2020 with a CPU to predict the labels of the 29,687 tweets (3.4 MB)
of the SMM4H’20 test set. In comparison, the best classifier of #SMM4H’20, an
ensemble of 20 BERT classifiers [4], took 19.4 min on Google Colab Pro with a
GPU V100 to process this test set. Finally, since the lexicon classifier matches
the spans of the medications in tweets, it is trivial to convert the classifier into
a sequence labeler and perform the extraction of the medications, as we have
done for the extrinsic evaluation.
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On the SMM4H’20 test set, our best classifier was the BERT classifier trained
with the three heuristics with an average of 0.838 F1-score, and 0.853 F1-score
(0.924 Precision and 0.792 Recall) during its best iteration. Our classifier per-
forms better than the BERT classifier proposed in [3] which ranked second dur-
ing the shared task with 0.80 F1-score and achieved similar performance to the
best system [4]. However, due to the small number of positive examples in the
SMM4H’20 test set, we found the differences between these scores to be not
significant using a McNemar test (p = 0.05).

3.2 Extrinsic Evaluation Results

The results reported in Table 2 show the good performance of our classifier by
improving the scores of the extrinsic task. One may argue that developing an
independent classifier is not needed since a labeler performs the medication
detection and extraction tasks at the same time by discovering the spans of the
medications; all efforts should rather focus on developing an efficient medica-
tion labeler. Our empirical results show that when processing very imbalanced
data, it is better, to first detect the tweets of interest with a classifier, then
apply the labeler only on the tweets detected to extract the concepts positions.
A condition, however, is to fine-tune the labeler on a training set filtered by the
classifier. Without the help of the classifier, the labeler extracts the medication
spans on the full corpus and achieves 0.76 overlapping and 0.72 strict F1 scores.
When the labeler is helped by the classifier and extracts the spans only in the
tweets filtered in, its scores slightly improved to 0.77 overlapping and 0.76 strict
F1 scores. However, the difference between the scores of the labeler achieved
with, or without, the help of the classifier was not found to be significant using
a McNemar test (p = 0.05). A possible explanation for this might be that it is
easier to optimize two different loss functions: the classifier’s, dedicated to rep-
resenting the semantics of health-related tweets, and the labeler’s, only focused
on extracting the spans of medications.

Table 2. Performance of medications extraction on the SMM4H’20+ test set corpus

SMM4H’20+
Strict Overlapping

Training setting Labeler P R F1 P R F1

Lexicon 22.3 62.6 32.9 25.2 70.7 37.1
Lexicon+BERT 77.4 60.5 67.9 87.0 68.0 76.3

(α) Training: SMM4H’18 BERT 79.5 65.1 71.6 84.4 69.1 76.0
Fine-tuning: SMM4H’20+
(β) Training: SMM4H’18 BERT 89.0 66.0 75.8 90.8 67.3 77.3
Fine-tuning: filtered SMM4H’20+
Filter: Lexicon+BERT
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4 Conclusion

We propose an efficient classifier to detect tweets mentioning medications based
on a lexicon and a BERT-base neural network. With a 0.838 F1-score, it
also achieves performance comparable to those of the best classifiers on the
SMM4H’20+ benchmark dataset, 212 timelines where only 0.2% of tweets men-
tioning medications. The intrinsic evaluation of the classifiers shows that train-
ing them on such imbalanced data is still a major challenge and underlines the
need for dedicated training methods. We empirically evaluated three re-sampling
heuristics - under-sampling, fine-tuning, and filtering - and showed that their
combinations are required to be beneficial. Whereas under-sampling/filtering was
not the best combination, it removes the need to train the classifier on a corpus
exhibiting the real distribution of the data, a corpus very expensive to produce.
It also improves the speed of the classifier by pre-filtering the tweets. Consider-
ing the difference in performances of our classifiers on balanced and imbalanced
corpora, 10 F1-score points, there is still space for improvement. The extrinsic
evaluation of our classifier on the medication extraction task shows that, when
working with an imbalanced corpus, it is still preferable to perform the detec-
tion of the tweets mentioning medications independently from the extraction
of their spans. By doing so, we achieved 0.773 overlapping F1-score and 0.758
strict F1-score on the medication extraction task. To the best of our knowledge,
this is the first evaluation of this task on Twitter timelines and it establishes
the first benchmark for future studies. A limitation of our study is that only
three heuristics were tested. We plan to evaluate additional heuristics such as
learning with generated data, cost-sensitive, transfer, few-shot, active, and dis-
tance learning. Another limitation is that few positive examples occur in our test
sets, making the difference between the performances of the classifiers observed
non-significant. We will combine the SMM4H’20+ test set with a larger collec-
tion of tweets manually imbalanced with the same 0.2% ratio to reassess the
performances of our classifiers.
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Abstract. ICU management depends on the level of occupation and
the length of stay of the patients. Daily prediction of the days to dis-
charge (DTD) of ICU patients is essential to that management. Previous
studies showed a low predictive capability of internists and ML-generated
models. Therefore, more elaborated combinations of ML technologies are
required. Here, we present four approaches to the analysis of the DTDs
of ICU patients from different perspectives: heterogeneity quantification,
biomarker identification, phenotype recognition, and prediction. Several
ML-based methods are proposed for each approach, which were tested
with the data of 3,973 patients of a Spanish ICU. Results confirm the
complexity of analyzing DTDs with intelligent data analysis methods.

Keywords: ICU · Patient phenotyping · Days-to-discharge
prediction · Feature selection

1 Introduction

According to the World Federation of Societies of Intensive and Critical Care
Medicine, intensive care units (ICU) are “organized systems for the provision of
care to critically ill patients that provides intensive and specialized medical and
nursing care, an enhanced capacity for monitoring, and multiple modalities of
physiologic organ support to sustain life during a period of acute organ system
insufficiency” [1]. Patients attended in ICU use to have, or are at risk of having,
some acute, severe, life-threatening organ dysfunction requiring critical care ser-
vices which need to be provided in a continuous and specialized manner. Patients
case-mix in ICUs uses to be heterogeneous [3] and it may include diverse patient
types (e.g., medical or surgical), either scheduled or not, and resulting from con-
ventional hospitalization, derived from other hospital areas (e.g., Emergency) or
transferred from other hospitals.

It was estimated that in the US the mean ICU cost and length of stay were
$31,574 ± 42,570 and 14.4 days ± 15.8 ($2,193 per day in average) for patients
requiring mechanical ventilation, and $12,931 ± 20,569 and 8.5 days ± 10.5
($1,521 per day in average) for those not requiring mechanical ventilation [4]. A
multi-country study in Europe showed that ICU direct costs ranged, in average,
from 1168 to 2025 per patient and day [8]. The European Hospital and Health
c© Springer Nature Switzerland AG 2021
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Care Federation reported that, in 2014, the average length of stay in acute care
hospitals was 6.4 bed days in the EU-28 countries, ranging from 5.2 to 7.0 days.
These important daily costs urge governments and ICU managers in a effort
to reduce the length of stay of ICU patients without compromising healthcare
quality.

In this context, it is desirable to count with reliable tools to predict the dura-
tion of patients in ICU for a better planning and also to optimize costs. There
are two approaches to such predictive tools: static and dynamic. Static tools
predict the length of stay (LOS) at the admission time (or 24–48 h after admis-
sion) whereas dynamic tools make predictions in a daily basis, as the patient
evolves. Some studies found that physicians are not good at predicting ICU-
LOS statically and they are poor at predicting stays longer than five days [9,10].
Moreover, a systematic review analyzed 31 ICU-LOS predictive models and con-
cluded that they suffer from serious limitations [11]. Statistical and machine
learning approaches (e.g., [12,13]) provide moderate predictions of short term
LOS (1–5 days), but are unable to correctly predict long-term LOS (>5 days).

In order to confront the long-term prediction limitation of static methods,
dynamic tools propose a day by day prediction of the days to discharge (DTD).
So, a patient with total LOS = x, in day y < x is expected to have a DTD predic-
tion of x−y days. This dynamic approach presents some conceptual benefits: (1)
predictive errors in day y can be fixed in subsequent days and clinical decisions
readjusted, (2) predictions are current and not based on the patient condition
at the admission time days ago, (3) as patients approach discharge, their clinical
parameters tend to be normal1, and it is expected that the accuracy of dynamic
predictions may improve with respect to the static predictions in the admission
day.

However, not many works have been published on the prediction of DTD for
ICU patients. An exception is [2], where Random Forest was applied to construct
a DTD predictor for general ICU patients which achieved an average root mean
square error of 1.73 days. Since then, our repeated attempts to produce a highly
accurate predictive model that reduces the mean error to below one day have
failed, but in the process we have carried out a series of studies with artificial
intelligence technologies that may be useful for the analysis and understanding
of DTD in ICU. These are: measuring DTD-based patient heterogeneity, iden-
tification of biomarkers for DTD prediction, DTD phenotype recognition, and
construction of DTD predictive models.

Measuring DTD-Based Patient Heterogeneity : Heterogeneity is the quality of
being diverse. In ICUs, patients are heterogeneous by nature. When dealing with
a DTD patient group (i.e., all the ICU patients who are within the same days of
being discharged), heterogeneity can be used to measure the variability within a
group, or the similarity between different groups. DTD-based heterogeneity can
explain, for example, the reason why two clinically similar patients have very
different discharge days, and also why clinically different patients may have the
1 This is only true for patients discharged alive for whom ICU discharge is due to

stabilization of their vital signs.
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same discharge day. In [3] we proposed four alternative methods to calculate
DTD-based patient heterogeneity. They are summarized later.

Identification of Biomarkers for DTD Prediction: In ICUs, multiple clinical signs
from patients are continuously recorded. Some of these values are aggregated to
provide a daily clinical summary of the patient’s condition, when combined with
other data that are captured once a day. These could be the subject of a feature
selection process to determine which clinical parameters are more relevant to
determine the DTD of ICU patients, thus acting as DTD biomarkers.

DTD Phenotype Recognition: A consequence of DTD patient heterogeneity is
that similar ICU patients may have very different DTDs, and the opposite. This
defines DTD prediction in ICUs as a complicated task that could be simplified
by the identification of patient phenotypes representing subgroups of patients,
all of them with identical DTD. Technically, these phenotypes should have DTD
precisions close to one, and DTD recalls as high as possible.

Construction of DTD Predictive Models: The benefits of having a predictive
model of DTD for ICU patients are multiple in clinical, organizational, resource
optimization, and analytical terms. For example, knowing when the current
patients are leaving the ICU, provides useful information on when new patients
could be admitted, and permits implementing better ICU strategies. The ulti-
mate challenge, which we have not yet reached, is the construction of a model
with a average error of the prediction of DTD of the ICU patient below one day.

In Sect. 2, we describe the methods that we followed for the analysis of these
four previously described DTD issues and the results obtained. In Sect. 3, we
discuss about the clinical implications and benefits these results can entail. The
conclusions of the paper are exposed in Sect. 4.

2 Methods and Results

The analysis of the days to discharge (DTD) of patients in an ICU is a complex
problem due to multiple factors: critical condition of the cases, possible unex-
pected complications, intervention of multiple practitioners, diversity of cases,
etc. In this section, we address four DTD-related issues whose analysis can con-
tribute to a better understanding and management of patients in ICUs. For each
one of these issues, we describe the methods and artificial intelligence technolo-
gies that we have used to deal with them, and the results obtained.

All the studies were made on the same dataset containing data about all the
patients admitted to the ICU of a Spanish tertiary hospital between 2014 and
2019. Survival was expected to be analyzed with specialized methods such as
Kaplan-Meier, and our study focused exclusively on patients discharged alive.
Patient data was treated individually.

2.1 The Dataset

Important information about patients admitted in the University Hospital Joan
XXIII in Spain was captured in a database providing daily description of all the
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ICU cases in terms of demographic, clinical, and treatment features which are
essential in the professional decision of discharging patients from ICUs.

All the 3,973 patients discharged alive in 2014–19 were considered. The aver-
age LOS was 8.6 days, with 1 and 159 days the minimum and maximum LOS.
Only information of patients in their seven last days in the ICU was consid-
ered. The average age was 59.9, with all patients between 18 and 99 years, and
1,424 (35.8%) being women. There were 2,878 (72.4%) medical cases and 1,095
(27.6%) surgical.

Forty-three parameters were considered: 8 categorical, 11 Boolean, and
the rest numeric. Eleven were static in the sense that they remained
constant during all the ICU stay of the patient. These were: “Age”,
“Gender”, “DisYear”, “PatType”, “AdmType”, “AdmWardGroup”, “Pre-
vHospDays”, “APACHE Adm Group”, “Pincipal Diag G”, “APACHEII”, and
“CHE”2. Other parameters were taken at the rate of once a day, including signs
(e.g., platelets, bilirubin, or creatinine), scales (e.g., NAS -nursing work load,
EMINA -pain scale, STRATIFY -risk of falling, or SOFA scores), and treat-
ment actions (most of them Boolean; e.g. arterial catheter, urinary catheter,
central venous catheter, insulin treatment, vasoactive drugs, analgesics, antibi-
otics, mechanical ventilation -either invasive or not, etc.). The remaining five
parameters whose frequency of observation was below one day were aggregated
per day and represented by their mean, stdev, min, or max daily values (e.g.,
heart rate, temperature, or glucose).

Table 1 describes the dynamic numeric variables in the dataset.

2.2 Measuring Heterogeneity

The case-mix complexity of patients in ICUs is high. Patients can be medical or
surgical, they may be scheduled or urgent, come from different clinical units (e.g.,
ER, surgery, conventional hospitalization, etc.), have different primary diagnosis
(e.g., cardio-vascular, respiratory, digestive, infections, etc.), or they may show
different levels of severity. This heterogeneity may affect the analysis of DTD of
patients in ICUs, for example if two similar patients have different discharge days.
In order to get some insight into the ICU patient heterogeneity, our previous work
[4] proposed four methods to interpret heterogeneity and their corresponding
measures to quantify the heterogeneity of intensive patients.

The first method (clinical parameter analysis) leveraged the mean and the
standard deviation functions of each numeric parameter in the last days before
discharge, grouped by DTD. The mean functions of clinical parameters were
2 “Age”: age of the patient at admission time, “Gender”: female or male, “DisYear”:

year of ICU diagnosis, “PatType”: patient type as medical or surgical, “AdmType”:
either scheduled or urgency, “AdmWardGroup”: source among ER, surgery, other
hospital areas, or other hospital, “PrevHospDays”: number of days in hospital pre-
vious to ICU admission, “APACHE Adm Group”: post-operations, heart failure,
respiratory failure, trauma, etc., “Pincipal Diag G”: principal diagnosis group (e.g.,
respiratory system, infection, external injuries, etc.), “APACHEII”: APACHE II
score value at ICU admission, and “CHE”: Charlson comorbidity index.
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Table 1. Statistical description of the dynamic numeric variables in the dataset: heart
rate (HR); temperature (Tmp); glucose (minimal, maximal, and standard deviation
within the day); nursing workload score (NAS); pain scale (EMINA); time since ICU
admission (TSA); risk of falling (STRATIFY); SOFA scales (cardio, central nervous
system, coagulation, liver, renal, respiratory, and total).

expected to converge to normality values and the standard deviation functions
decrease as it gets closer to the discharge day. The results showed, however, that
the variability of clinical parameters remained at similar mean values regardless
of the DTD. Only SOFA-Cardio, SOFA-CNS and SOFA-Resp scales decreased
as they approached to the patient’s discharge day.

The second method (severity scales analysis) simplified the medical interpre-
tation of ICU patients by merging multiple clinical parameters into one single
parameter or score. EMINA, NAS, and SOFA-Total scores were studied. Their
mean within each one of the last DTDs should trend to normality values (i.e.,
as the patient approaches discharge, her clinical parameters should progres-
sively approach values that allow discharge). Their standard deviation should
also decrease as patients approach discharge. Again, SOFA-Total and NAS were
the scores that better adjusted to this expected behaviour of the mean and the
standard deviation functions.

The third method (confusion analysis) used a similarity function between
patients to calculate the number of ICU patients to be discharged in x days who
are similar to other patients to be discharged in y days. The result was shown in a
nδ(x, y) confusion matrix for the last days of stay. It reflected a large proportion
of patients (37% on average) who were similar to other patients discharged in
the previous day and 26% of patients who were very similar to other patients
discharged in later days. When we focused on the patients in their last ICU day,
63% of them were similar to other patients discharged in previous days.

The fourth method (cluster analysis) grouped all the patients with a same
DTD value. Supposedly, patients in the same group should be more similar
between them and less similar to patients in other groups. Cluster analysis met-
rics such as silhouette, Davies-Bouldin and Dunn scores [5,6] were computed to
assess the quality of the clustering. The scores showed serious difficulties to dif-
ferentiate between patients with different DTDs, either if we compare patients
with close discharge days, or patients with distant discharge days.
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2.3 Identification of DTD Biomarkers

The complexity of DTD analysis is not only related to the heterogeneity of ICU
patients. A different approach could be taken, based on the clinical parameters
used to describe the ICU patients. The relevance of these parameters in relation
to the DTD was analyzed with several supervised feature selection methods.
These methods were also used to identify low-relevant features.

Two approaches were followed: one which considered DTD as a n-ary vari-
able and calculated the relevance of all parameters respect to this variable, and
another one that binarized the DTD variable by applying dummy coding with-
out comparison group. In this last one, n DTD binary new attributes DTDx

(x = 1, ..., n) were obtained, such that DTDx was 1 for patients with DTD= x,
and 0 for patients with DTD�= x.

For the first method, filter-type feature selection was applied with five selec-
tion functions [7]: information gain, information gain ratio, correlation, Chi
square, and Gini index. The results were min-max normalized to allow cross com-
parison. The ten best attributes were kept as the most significant in the study of
DTD. These were SOFA-CNS, EMINA, sedative/analgesic, SOFA-Resp, arterial
catheter, SOFA-Cardio, SOFA-Total, vasoactive drugs, central venous catheter,
and NAS.

For the second method, we obtained the list of the most significant parame-
ters of every DTD group individually. The normalized relevance of these features
was used to select those which were among the 30% best ones to be considered
for biomarkers. Table 3 shows the resulting features per DTD group (Table 2).

Table 2. Significant biomarkers for each of last 7 DTD with a 30% threshold.

DTD group Most significant parameters for biomarkers

DTD = 1 EMINA, SOFA-Total, SOFA-CNS, SOFA-Resp

DTD = 2 EMINA, SOFA-Total, SOFA-CNS, SOFA-Resp, STRATIFY, Tmp

DTD = 3 EMINA, SOFA-Total, SOFA-CNS, SOFA-Resp, STRATIFY, Tmp, TSA

DTD = 4 EMINA, SOFA-CNS, SOFA-Total, TSA, Tmp, SOFA-Resp, STRATIFY

DTD = 5 Tmp, TSA, SOFA-CNS, EMINA, SOFA-Total, SOFA-Resp, STRATIFY

DTD = 6 TSA, Tmp, Glucose min

DTD = 7 EMINA, Glucose min, HR, TSA, NAS, APACHE-II, Sofa-Resp

The level of overlapping of values of the top three DTD possible biomarkers
(i.e., EMINA, SOFA Total, and SOFA CNS) is represented with the boxplots in
Fig. 1.

2.4 Phenotype Extraction

The diversity of ICU patients in every DTD group limits the possibility of finding
general DTD prediction models, as we will see in the next section. In order to
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Fig. 1. Overlapping of EMINA, SOFA Total, and SOFA CNS values among DTD
groups.

alleviate this problem of finding general descriptions for all patients in a DTD,
we worked to identify patient phenotypes as descriptions of subgroups of patients
with the same DTD who cannot be confused with patients with other DTDs.

To this end, we followed two methods. The first method applied subgroup
discovery [14,15] in order to find interesting associations among different vari-
ables with respect to the DTD, our property of interest. The second method
combined feature selection [16] and unsupervised clustering, focused on numeric
parameters, in order to first reduce the dimension of the problem, and then,
based on the selected features, find out interesting subgroups of patients (i.e.,
phenotypes), with the use of k-means.

The first method, which used all the parameters of the dataset, discovered a
subgroup of patients for each DTD, corresponding to a feasible phenotype (see
Table 3).

Table 3. Feasible phenotype for patients in their last seven DTD

DTD group Feasible phenotype

DTD = 1 SOFA-CNS = 0, SOFA-Resp = 0

DTD = 2 SOFA-CNS = 0, SOFA-Resp = 0

DTD = 3 SOFA-Resp = 0

DTD = 4 SOFA-Resp = 0

DTD = 5 SOFA-Liver = 0, TSA < 2

DTD = 6 SOFA-Liver = 0, SOFA-Total = [2:4]

DTD = 7 SOFA-Total = [4:6]

The second method selected the most relevant numerical attributes for every
DTD group (i.e., group of patients with the same DTD). These are the ones
contained in Table 3. The k-means algorithm used these parameters to obtain
three subclusters per DTD group. Our current selection of k = 3 for each group
of patients with DTD = x attends to our intention to separate those patients who
are closer to patients with DTD < x (i.e., patients in a better health condition),



110 D. Cuadrado and D. Riaño

and patients who are closer to patients with DTD > x (i.e., patients in a worst
health condition), from those which are dissimilar to these (i.e., patients with
a health condition that justifies their discharge in x days), and therefore define
a proper subgroup of patients for DTD = x. For these proper groups (x =
1, ..., 7) and for their respective selected features, a 95% confidence interval was
calculated, in order to define one phenotype per DTD group.

As a result we obtained 21 feasible phenotypes, one for each one of the k = 3
subgroups of each one of the seven DTD groups. To evaluate the quality of the
phenotypes, the dataset was split in two subsets: patients admitted from 2014 to
2018 were used to obtain the phenotypes as previously explained, and patients
admitted in 2019 were used to evaluate the phenotypes. Their low quality in
terms of accuracy, sensitivity, and f1-value (75%, 23%, and 24%, respectively)
confirmed the complexity of generating clinical decision models for the problem
of DTDs in ICU.

2.5 Building DTD Predictive Models

Our initial approach to DTD prediction with standard supervised machine learn-
ing methods such as decision trees, logistic regression, näıve Bayes, and SVM
did not obtain good predictive qualities. An exception was found in the Random
Forest algorithm when trained with the patients in 2014–18, with a 10-fold-cross
validation that reached a Mean Absolute Error (MAE) of 1.34, a Root Mean
Square Error (RMSE) of 1.73, and a coefficient of determination R2 = 0.61 [2].

3 Discussion

Our experiences in the analysis of the days to discharge of patients in an ICU
have shown that this is a complex area of work. We explored four different
DTD-related issues with multiple methods and the help of a database on all the
patients discharged alive in an interval of six years from an ICU.

The study of patient heterogeneity can confirm the complexity of the field, and
having metrics to quantify this heterogeneity is not only good for benchmarking
but also to gain insight on different interpretations of what heterogeneity in ICU-
DTD means. When we gather all the patients in their x-th day before discharge
in a DTDx group, the longitudinal analysis of the progression of the means (and
standard deviations) of their clinical parameters contributes to identify whether
there are some parameters that we have to look at in order to determine if a
patient is close to discharge or not. In [3], we found that SOFA-Cardio, SOFA-
CNS, and SOFA-Resp are scores playing this role. Alternative scores such as
SOFA-Total and NAS are also good at this purpose. An alternative interpre-
tation of heterogeneity uses a distance function between ICU patients in order
to calculate how confusing is to predict discharge for the patients in a DTDx

group by computing the quantity of patients in DTDx who are similar to patients
in other DTD groups. Our experiments showed that the degree of confusion is
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extremely high, which hinders the possibility of making good global DTD pre-
dictors, even for patients who are close to discharge.

The second issue analyzed concerns the identification of DTD biomarkers
[17]. That is to say, measurable indicators concerning some biomedical condition
of the ICU patients that could simplify the “diagnosis” of the patients’ DTD
group. Our application of several feature selection techniques identified SOFA-
CNS, EMINA, and sedative/analgesic as best general biomarkers, but these may
change if we focus on concrete DTD groups. For example, for patients in their 1,
2, 3, or 4 days to discharge EMINA, SOFA-Total, and SOFA-CNS seem to be the
best biomarkers, but patient temperature (Tmp) becomes the most important
for patients 5 or 6 days before discharge. According to [17], for an indicator to
become a good biomarker, it must meet (1) analytical validity (i.e., be accurate
and reproducible), (2) clinical validity (i.e., be medically meaningful and useful
differentiating between groups), (3) clinical utility (i.e., improve health care),
and (4) other validities (e.g., cost-effectiveness, psychological implications, or
ethical implications). Currently, the indices out of our study fail to satisfy clinical
validity due to the high level of overlapping between DTD groups (see Fig. 1).

The third issue addressed in this work is the extraction of phenotypes from
the data that could identify subgroups of patients with a positive day to dis-
charge. Our first approach with subgroup discovery techniques obtained pheno-
types based on SOFA CNS, SOFA Resp, SOFA Liver, TSA, and SOFA Total.
In the same way as for biomarkers, the number of patients with different DTDs
in the same phenotype is high. Our attempt to overcome this problem with the
generation of biomarkers for each DTDx group by means of a binary analysis
of all patients with DTD = x, versus all patients with DTD �= x, obtained low-
sensitive DTD phenotypes that require futher improvement before they can be
of practical use.

Our final issue concerned the application of supervised machine learning to
construct predictive models of DTD for ICU patients. Our first approach with
regular algorithms such as decision trees, näıve Bayes, or logistic regression were
soon discarded in favor of ensemble methods such as Random Forest, which
so far, is the best approximation that we have obtained for the analysis and
prediction of the days to discharge from the ICU [2].

4 Conclusion

Predicting DTDs of patients is essential to ICU management. Optimal predic-
tion with models achieving an average error below one day is still far from being
a reality. The high heterogeneity of ICU patients makes this a difficult objec-
tive. Here, we proposed four ways to analyze the DTD problem from different
perspectives. For them, we suggested and implemented alternative ML-based
methods that were tested with the data of the patients in an ICU. Results are
commented and they confirm DTD analysis as a complex tasks for intelligent
data analysis. In the future, a previous filtering might be convenient to reduce
the diversity of patients before applying the methods proposed in this article.
Time-series analysis methods will also be explored for a better DTD prediction.
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Abstract. Recent advancements in machine learning-based multi-label
medical text classification techniques have been used to help enhance
healthcare and aid better patient care. This research is motivated by
transformers’ success in natural language processing tasks, and the
opportunity to further improve performance for medical-domain spe-
cific tasks by exploiting models pre-trained on health data. We con-
sider transfer learning involving fine-tuning of pre-trained models for
predicting medical codes, formulated as a multi-label problem. We find
that domain-specific transformers outperform state-of-the-art results for
multi-label problems with the number of labels ranging from 18 to 158,
for a fixed sequence length. Additionally, we find that, for longer docu-
ments and/or number of labels greater than 300, traditional neural net-
works still have an edge over transformers. These findings are obtained
by performing extensive experiments on the semi-structured eICU data
and the free-form MIMIC III data, and applying various transformers
including BERT, RoBERTa, and Longformer variations. The electronic
health record data used in this research exhibits a high level of label
imbalance. Considering individual label accuracy, we find that for eICU
data medical-domain specific RoBERTa models achieve improvements
for more frequent labels. For infrequent labels, in both datasets, tradi-
tional neural networks still perform better.

Keywords: Multi-label · Fine-tuning · Medical text · Transformers ·
Neural networks

1 Introduction

There has been a significant advance in natural language processing (NLP) in the
last couple of years. Transformers such as BERT models (Bidirectional Encoder
Representations from Transformers) have outperformed state-of-the-art (SOTA)
results [4,6,7]. Such advancements are not restricted to general-domain tasks.
Biomedical and health-related domains have also seen evidence of improve-
ments in some medical domain-specific tasks such as question answering and
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recognizing question entailment [2,3,9]. This research sets out to fill the gap in
the use of transformers in multi-label medical domain-specific tasks for highly
imbalanced datasets.

Multi-label problems predict multiple output variables for each instance.
Consider a dataset D = {x(i), y(i)}Ni=1 with N samples, where x(i) = (x(i)

1 , ...,

x
(i)
m ) and y(i) = (y(i)

1 , ..., y
(i)
l ). Each instance is associated with L labels, and

each label is binary where y
(i)
j ∈ 0, 1. For example, given a patient admitted in a

hospital with chest pain, any other medical condition that the patient has, such
as cholesterol, blood pressure, or obesity, can be considered as labels.

This research focuses on electronic health records (EHR) from two distinctly
different large publicly available medical databases: MIMIC-III contains huge
documents in a free-form medical text; eICU has concise, compressed medical
data presented in the semi-structured form. Automatically predicting medical
codes is the down-stream task for this research where we fine-tune pre-trained
transformer models, and we present results for multi-label medical code classifi-
cations with the number of labels being 18, 93, 158, 316, and 923.

The contributions of this work are: (i) we analyse the effectiveness of using
transformers for the task of automatically predicting medical codes from EHRs
for multiple document lengths and number of labels; (ii) we demonstrate that
for documents with sequence length truncated at 512 tokens, medical domain-
specific transformer models outperform SOTA methods for multi-label problems
with 18, 93 and 158 labels for both datasets; (iii) it is shown that for longer doc-
uments, larger multi-label problems, and infrequent labels, transformer models’
F1 scores are not as good as the traditional word-embeddings-based SOTA neu-
ral networks.

2 Related Work

This research is motivated by the recent advancements of transformer mod-
els which have shown substantial improvements in many NLP tasks, including
BioNLP tasks. With minimum effort, transfer learning of pre-trained models by
fine-tuning on down-stream supervised tasks achieves very good results [2,3].
For example, PubMedBERT [9] achieves SOTA performance on many biomedi-
cal natural language processing tasks such as named entity recognition, question
answering and relation extraction and holds the top score on the Biomedical
Language Understanding and Reasoning Benchmark (BLURB) [9].

Automatically predicting medical codes from EHRs has been studied over the
years, where rule-based, machine learning-based and deep learning approaches
have been proposed. Techniques including CNNs, RNNs and Hierarchical Atten-
tion Networks are some examples of deep learning approaches [2,16]. Mullen-
bach et al. (2018) [17] present Convolutional Attention for Multilabel classifica-
tion (CAML) which uses the MIMIC III dataset for ICD-9 code predictions. As
mentioned by the survey of deep learning methods for ICD coding of medical
documents presented by Moons et al. (2020) [16] CAML is considered the SOTA
method for automatically predicting medical codes from EHRs.
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There is some evidence of the use of transformer models in automatically
predicting medical codes such as submissions to CLEF eHealth 2019 ICD-10
predictions from German documents [2,19], and BERT and XLNet performance
on most frequent ICD-9 codes from MIMIC III with a maximum number of
tokens set at 512 [20]. However, it is unclear how well transformer models can
perform with long clinical documents and in multi-label problems with a large
number of labels [20]. Also, many studies [3,20] focus on high-frequency labels.
Nonetheless, datasets such as MIMIC III and eICU consist of many infrequent
labels where most codes only occur in a minimal number of clinical documents.
This research presents results of multiple transformer methods and compares it
with SOTA methods for various token lengths and number of labels.

For both word embeddings based networks and transformers, there is evidence
to show domain-specific pre-trained models outperform general text pre-trained
models [9,10,22]. This research uses word embeddings pre-trained on health-
related text and transformers pre-trained on general and health-related data.

3 Data

Medical Information Mart for Intensive Care (MIMIC-III) [8,11] is a publicly
available large database from the MIT with de-identified medical text data of
more than 50,000 patients. We make use of free-form medical text from the
discharge summaries. Figure 1 (top) presents a small sample of a discharge sum-
mary. MIMIC III discharge summary length varies between 50 to 8500 tokens
with an average pre-processed text length of 1500 tokens. There are approxi-
mately 9000 unique ICD-9 codes associated with the hospital admissions in this
database, with more than one code assigned to each patient.

Electronic Intensive Care Unit (eICU) is a database formed from the Philips
eICU program [8,18], and contains de-identified data for more than 200,000
patients admitted to ICU. eICU data is found in tabular format with a drop-down

MIMIC III - Discharge Summary (sample text)
82 yo M with h/o CHF, COPD on 5 L oxygen at baseline, tracheobronchomalacia
s/p stent, preseents with acute dyspnea over several days, and lethargy. This morning
patient developed an acute worsening in dyspnea, and called EMS. EMS found patient
tachypnic at saturating 90% on 5L. Patient was noted to be tripoding. He was given a
nebulizer and brought to the ER.

eICU - Drop down menu (sample text)
Admission |Non-operative |Diagnosis |Cardiovascular |Sepsis, pulmonary |Non-
operative Organ Systems |Was the patient admitted from the O.R. or went to the
O.R. within 4 hours of admission? |No

Fig. 1. Sample data of MIMIC III (top) and eICU (bottom) obtained from the
database. It includes acronyms and typos that are present in the data.
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menu. Sample text data is presented in Fig. 1 (bottom). The length of medical
text ranges from 10 to 1350, with an average of 130 tokens. eICU contains 883
unique ICD-9 codes.

The frequency of ICD-9 codes in both MIMIC III and eICU is unevenly
spread with a large proportion of the codes occurring infrequently. For example,
in MIMIC III and eICU only 0.02% and 0.2% of the codes are associated with
at least 500 (1%) of the hospital admissions. One of the main reasons for the
infrequent nature of medical codes in MIMIC III and eICU is because data are
obtained from patients admitted in critical care. For this research, we consider
each level of the ICD-9 hierarchy, as categorised by the World Health Organisa-
tion, as an individual flat multi-label problem. We remove all codes that occur
in less than 10 unique hospital admissions. Consequently, our MIMIC III and
eICU datasets contain 18 labels at level 1, 158 and 93 labels respectively at level
2, and 923 and 316 labels respectively at level 3.

4 Neural Network Algorithms

4.1 Transformers

Transformers [21] are one of the main recent developments in NLP which
have achieved SOTA results in many language tasks [6,7,9]. Transformers are
sequence-to-sequence models based on a self-attention mechanism. Given the
linear projections Q, K, V , self-attention is computed as following [21]:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

where the input queries and keys are of dimension dk, and values of dimension
dv. See Vaswani et al. (2017) [21] for details of the transformer architecture.

BERT [7] is a deep neural network model that applies bidirectional training
of the transformer encoder architecture [21] to language modelling. The BERT
model relies on two pre-training tasks, masked language modelling and next
sentence prediction. The 12-layer BERT-base model with a hidden size of 768,
12 self-attention heads, 110M parameter neural network architecture, was pre-
trained on BookCorpus, a dataset consisting of 11,038 unpublished books and
English Wikipedia.

ClinicalBERT model follows the same model architecture as the BERT-base
model and was continually pre-trained on all notes from MIMIC III [1] from the
BERT weights. PubMedBERT [9] uses the same architecture as the BERT-base
model. However, unlike ClinicalBERT, PubMedBERT is domain-specifically pre-
trained from scratch using abstracts from PubMed and full-text articles from
PubMedCentral to enable better capturing of the biomedical language [9].

RoBERTa [14] is a robustly optimized BERT approach with improved train-
ing methodology and 160GB of general-domain training data in comparison
to the 16GB data used in BERT. BioMed-RoBERTa-base [10] is based on the
RoBERTa-base [14] architecture. RoBERTa-base was continuously pre-trained
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using 2.68 million scientific papers from the Semantic Scholar corpus starting
with the RoBERTa-base weights.

Longformer [4] is a transformer model that is designed to handle longer
sequences without the limitation on the maximum token size of 512 set by other
transformers such as BERT. Longformer reduces the model complexity by refor-
mulating the self-attention computation. This modified self-attention operation
scales linearly with sequence length, instead of quadratically as in the original
transformer models, making it possible to handle long documents. Longformer
combines attention patterns such as sliding windows, dilated sliding windows
and global attention (see Beltagy et al. (2020) [4] for more details). When com-
pared to Eq. 1, Longformer uses two sets of projections, one to compute attention
scores for a sliding window and another for global attention, providing the needed
flexibility for the best performance of downstream tasks [4]. Longformers can be
used for other NLP tasks in addition to language models. When compared to
Transformer-XL [6], which can also handle long documents, Longformer is not
restricted to the left-to-right approach of processing the documents.

After pre-training the models, the transformers are fine-tuned on task-specific
data. All the parameters are fine-tuned end-to-end. Pre-trained transformer
models learn good, context-dependent ways of representing text sequences which
can be used on a specific downstream task. The models only need to fine-tune
their representations to perform a particular task. Compared to the pre-training
cost of transformers, the subsequent fine-tuning is relatively inexpensive.

4.2 Traditional Neural Networks

TextCNN [12] combines a single layer of one-dimensional convolutions with a
max-over-time pooling layer and one fully connected layer. If xi:i+j is a con-
catenation of words from a sentence, each word, xi, xi+1, ... is mapped to its
embeddings using the lookup table of word embeddings. The final prediction is
made by computing a weighted combination of the pooled values and applying
a sigmoid function. In our experiments, we use TextCNN with four different
window sizes where each window takes 2, 3, 4 or 5 words with 100 feature maps
each; the drop out rate is set to 0.2 and the learning rate to 0.003.

Gated Recurrent Units (GRU) [5] are a type of recurrent neural networks,
with fewer parameters in comparison to long short-term memory (LSTM) net-
works. Bidirectional GRU (BiGRU) considers sequences from left to right, and
right to left simultaneously. The learning rate used for our experiments is 0.003.

Mullenbach et al. (2018) [17] present CAML which achieves SOTA results
for predicting ICD-9 codes from MIMIC III data [16]. CAML combines convo-
lution networks with an attention mechanism. A secondary module is used to
learn embeddings of the descriptions of ICD-9 codes to improve predictions of
less frequent labels and are used as target regularization. For each word in a
given document, word embeddings are concatenated into a matrix and a one
dimensional convolution layer is used to combine these adjacent embeddings.
The document is represented by matrix H ∈ Rdc×N where dc is the size of con-
volutional filter and N is the length of the document. Then a per-label attention
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mechanism is applied, where HTul is computed for a given label l and a vector
parameter ul ∈ Rdc . The resulting vector is passed through a softmax operation
with an output αl. The vector representation for each label is calculated using
vl =

∑N
n=1 αl,nhn. The probability for l is calculated using a linear layer and a

sigmoid transformation. A regularizing objective was added to the loss function
of CAML with a trade-off hyperparameter. This variant is called Description
Regularized-CAML (DR-CAML) [17]. The learning rate used for both CAML
and DR-CAML in our experiments is 0.0001, and the regularization hyperpa-
rameter λ for DR-CAML is 0.01.

5 Experiments

We present results for multi-label medical code predictions for MIMIC III and
eICU datasets. The number of labels being 18, 93, 158, 316, and 923. All experi-
mental results presented are obtained from validations based on training-testing
scheme, and are averaged over three runs. We explore a number of different trans-
former models and compare the performance to some traditional word embed-
dings based neural networks, including SOTA networks. The medical documents
are truncated to a maximum number of tokens (512 and 4000). MIMIC III text
was pre-processed by removing tokens that contain non alphabetic characters,
including all special characters, and tokens that appear in fewer than three
training documents. As eICU is already pre-processed extensively, no additional
pre-processing was done for our research.

All neural network models presented in this research are implemented in
PyTorch, and evaluations were done using sklearn metrics. All transformer
implementations are based on the open-source PyTorch-transformer repository.1

Transformer models are fine-tuned on all layers without freezing. As the opti-
mizer we use Adam [13] with learning rates of 4e−6, or 4e−5. Training batch
sizes were varied between 1 and 16, and the cut-off threshold was set to t = 0.5.
Embeddings used for TextCNN, CAML, DR-CAML and BiGRU are health
domain-specific fastText [15] pre-trained, skipgram word representation, 100-
dimensional embeddings.

6 Results

Results for levels 1, 2 and 3 of the ICD-9 hierarchy, where each level is treated
as an individual flat multi-label problem, for both eCIU and MIMIC III data
are presented in Table 1. For eICU, we present results for 18, 93 and 316 labels.
We find that using transformers for 18 and 93 labels, especially domain-specific
models, result in performance improvements. We experimented with a maximum
token length of 128, 512, and 1250 for eICU, and noticed a consistent improve-
ment in performance between 128 and 512 tokens. However, there was no change
between the micro and macro F1 scores for data truncated at 512 tokens and

1 https://github.com/huggingface/transformers.

https://github.com/huggingface/transformers
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Table 1. Micro and macro F1 scores for multi-label problem with labels ranging from
18 to 923 are presented for eICU (left) and MIMIC III (right) datasets. Bold is used to
indicate the highest scores within the grouping of networks, and underline to indicate
the best score across all presented. Reported results are from validations based on
training-testing scheme, averaged over three runs.

eICU - 93 Labels MIMIC III - 158 labels

512 tokens 512 tokens 4000 tokens

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextCNN 0.54 0.30 0.62 0.32 0.69 0.39

CAML 0.57 0.31 0.64 0.32 0.72 0.42

DR-CAML 0.57 0.32 0.64 0.32 0.72 0.42

BiGRU 0.56 0.32 0.60 0.31 0.70 0.42

Longformer 0.60 0.28 0.64 0.35 0.70 0.38

BERT-base 0.59 0.28 0.62 0.37 n/a n/a

ClinicalBERT 0.59 0.28 0.64 0.36 n/a n/a

BioMed-RoBERTa-base 0.60 0.32 0.64 0.40 n/a n/a

PubMedBERT 0.58 0.24 0.65 0.41 n/a n/a

eICU - 512 tokens MIMIC III - 512 tokens

18 labels 316 labels 18 labels 923 labels

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextCNN 0.63 0.48 0.43 0.17 0.79 0.70 0.50 0.18

CAML 0.65 0.51 0.50 0.20 0.79 0.69 0.54 0.19

DR-CAML 0.65 0.51 0.51 0.20 0.80 0.70 0.53 0.19

BioMed-RoBERTa-base 0.68 0.52 0.50 0.13 0.79 0.72 0.52 0.15

Pub-MedBERT 0.68 0.52 0.50 0.14 0.81 0.74 0.53 0.16

1250 tokens. Due to space limitations, we only present results for the maxi-
mum token length of 512. It is important to notice that only 0.2% of the eICU
data contains medical text with a sequence length greater than 512. This might
explain the small variation in neural network performances when the maximum
sequence length is greater than 512 tokens. Compared to the word embeddings
based methods, there is an improvement in micro-F1 when transformers are
used. The overall best results are obtained using BioMed-RoBERTa-base for 93
labels, and Pub-MedBERT and BioMed-RoBERTa-base for 18 labels. However,
for larger multi-label problem, such as the 316 labels, CAML and DR-CAML
performs better with more significant differences in macro-F1 scores.

For MIMIC III, we present results for a maximum sequence length of 512
and 4000 tokens for 158 labels, and 512 tokens for 18 and 923 labels. As men-
tioned in Sect. 3, MIMIC III contains long documents and benefits from the
increase in the length of maximum sequence size. Results using 4000 tokens are
only presented for Longformer as the other transformer models are designed to
handle a maximum of 512 tokens. Compared to the SOTA methods CAML and
DR-CAML, most transformers show performance improvement for maximum
sequence length of 512 tokens for 18 and 158 labels. For 158 labels macro-F1 of
all transformers are considerably better than that of the SOTA methods, with
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PubMedBERT setting a new SOTA results for ICD-9 code prediction. Similarly,
with 18 labels, PubMedBERT results are better than that of word embeddings-
based methods for 512 tokens. However, as observed for eICU with 923 labels,
none of the transformers perform as well as the traditional neural networks,
when the number of labels increases. However, we have only explored a subset
of possible transformers. Future research might result in transformers that work
well for multi-label problems with many infrequent labels.

Longformer is one of the very few transformers that can handle long docu-
ments. The model used in this research is pre-trained using general-domain data;
however, like BERT and RoBERTa models, Longformer models trained on health
domain-specific data may improve performance. To the best of our knowledge,
there is no publicly available health domain-specific pre-trained Longformer, and
it requires extensive resources to undertake such a task. Hence, we only present
results for the general domain pre-trained publicly available model. It is essential
to point out we also explored the option of using XLNet. However, a down-stream
task for such large multi-label problem for text with tokens > 512 requires con-
siderable computational power and time. Also, preliminary experiments with 18
labels for MIMIC data did not improve the performance of Longformer.

Figure 2 presents the winning F1 score and the differences between the two
individual F1 scores for a given label for 93 labels for eICU and 158 labels for
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Fig. 2. The winning F1 score for each label, and the difference between the F1 scores
from two networks are presented. Best F1 score is represented in the positive y-axis
and the difference in the negative y-axis. F1 scores of 93 labels of eICU (top) where

is BioMed-RoBERTa-base and is DR-CAML, and 158 labels of MIMIC III (bottom)

where is CAML, and is Longformer.
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MIMIC III data. The best performing (refer to Table 1) embeddings based neural
network and transformers for each dataset is represented by different impulses
in the Fig. 2. Positive F1 scores represent the best F1 score for each label of
the two compared systems: Bio-Med-RoBERTa-base and DR-CAML for eICU,
and Longformer and CAML for MIMIC III. The negative F1 scores represent
the difference between the worst and the best compared F1 scores. Both data
labels are ordered per frequency of occurrence. For eICU, for most labels with
frequency > 0.2% F1 scores obtained using Bio-Med-RoBERTa-base are equal to
or better than the DR-CAML ones. In some cases, for label frequencies between
0.7% to 0.2%, F1 scores obtained using DR-CAML are zero, while this is not the
case for the transformer model. However, for infrequent labels, DR-CAML has
a slight edge over transformer models. For MIMIC III data, for most labels F1
scores obtained using CAML model are better than the Longformer ones. Also,
for rare labels the CAML model predicts some labels well, whereas Longformer’s
F1 scores are mostly zero.

7 Conclusions

This paper has shown that using transformers, especially domain-specific pre-
trained models, can be highly beneficial in multi-label medical text classifica-
tions. We have presented new SOTA results for predicting medical codes from
electronic health records for two very different text datasets, highly pre-processed
semi-structured eICU, and free-form MIMIC III, using a fixed sequence length
and a number of labels less than or equal to 158. We show that new transformer
models, such as Longformer, can be beneficial for long medical documents. Per-
formance is improved compared to standard transformer models, which can only
handle sequences of at most 512 tokens.

For longer documents and larger label sets transformers do not show improve-
ments in results when compared to traditional neural networks. Also, imbalanced
label distributions are poorly predicted when transformer models are used. Our
future works includes looking at ideas such as dual BERT and Siamese BERT to
enhance transformers’ performance for longer documents. Other research avenues
include exploring extreme multi-label classification techniques using transform-
ers such as X-Transformer, and considering medical codes as a hierarchical multi-
label problem.
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Abstract. The complex and insidious presentation of certain health conditions,
such as pituitary disorders, makes it challenging for primary care providers (PCP)
to render a timely diagnosis—often delaying appropriate treatment for years.
In contemporary clinical laboratories, laboratory interventions can appropriately
add-on extra tests to help confirm or rule out complex disorders. For these pro-
tocols to be clinically valid and economically efficient, they require combining
knowledge on abnormal test result patterns and patient health data to automat-
ically “reflex” add-on tests and issue comments subsequent to their results. In
this paper, we present a Semantic Web based framework for the computerization
of reflex testing protocols. To avoid casting too wide a net in terms of add-on
tests, a reflex (testing) protocol may include an arbitrary number of stages, where
test result patterns in stagen can trigger add-on tests in stagen+1. Our evaluation
applies a computerized reflex protocol for pituitary dysfunction on 1-year ret-
rospective data, and compares its accuracy and financial cost with a combined
reflex/reflective approach that included manual laboratory clinician intervention.

Keywords: Semantic web · Reflex protocols · Pituitary disorders

1 Introduction

In recent decades, clinical biochemical laboratory services have grown to include lab-
oratory interventions, such as interpreting initial test results, adding-on tests on patient
samples, and providing comments to aid PCP in appropriate diagnoses [1, 2]. A com-
mon use case is pituitary disorder, as it is associated with clinical manifestations that
are highly variable and insidious in onset. Endocrinologists are well aware of indicative
abnormal patterns of basal pituitary hormones, but non-specialist PCPs are often chal-
lenged by test results that do not “flag” as abnormal, or when a stimulating hormone
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level is inappropriately normal [3]. In prior work that applied laboratory interventions
for pituitary disorders, we detected a higher incidence of pituitary dysfunction than
the largest prospective study to date [4], which highlights the potential of laboratory
interventions in early diagnosis of these conditions [5].

In general, there exist two types of protocols for laboratory interventions. Reflective
testing protocols involve a Laboratory Clinician (LC) to manually “reflect” on initial test
results and patient data, possibly issuing add-on laboratory tests on the patient sample
and formulating reflective comments [1, 5, 6]. Reflex testing protocols are automated
mechanisms, which “reflex” add-on laboratory tests by applying a set of fixed criteria on
initial test results [2, 5, 6]. Reflex protocols have been found useful for early detection of
conditions such as hypovitaminosis, haemochromatosis, and pituitary disorders [5, 6],
but tend to be based exclusively on initial test results [6, 7]. In reflective protocols, LCs
further consider patient data and prior test results from hospital/laboratory information
systems [6, 7]. Compared to reflex protocols, reflective protocols issue fewer add-on
tests, thus resulting in less marginal test cost and fewer false positives, and provide the
same or higher levels of accuracy [6]. However, reflective protocols are also known to
be very time-consuming: even in a combined reflex/reflective protocol [5, 6], i.e., where
a reflex protocol is used to filter test results to be assessed for add-on by an LC, we
estimated their time spent at 112 h over a year [5]. Given that financial factors will enter
into organizational decision making, such high intervention costs call into question the
feasibility of systematic, reflective laboratory interventions.

We present a generic Semantic Web framework for the computerization of reflex
testing protocols as automated, economical and interpretable methods for adding-on
laboratory tests, which can be specialized for different clinical domains. The comput-
erization of the reflex testing protocols builds on our prior work of computerizing and
executing clinical guideline protocols [8, 9]. To reduce the number of added-on tests
compared to reflective protocols, while still casting a wide-enough net for clinical dis-
orders, reflex protocols can include a series of stages: add-up tests in stagen are only
issued when certain result patterns are encountered in stagen-1. To offer a degree of
interpretability by the requesting PCP, reflex protocols generate interpretive comments
based on initial and add-on test results [10]. In part, we aim for these comments to act as
a safety net against false positives caused by the relatively larger amount of add-on tests.
Our Semantic Web framework is centered on the ReflexOntology, which includes a set
of reflex rules that recommend follow-up tests in stages, based on initial and add-on test
results, along with a rationale for the PCP. The ReflexOntology is freely available online
[11] so others can re-use and build upon our work. In a retrospective evaluation, we
compare the accuracy and cost of a computerized reflex protocol for pituitary disorders
to a combined reflex/reflective protocol that includes manual LC intervention.

2 Reflex and Reflective Testing Protocols for Pituitary Disorder

Figure 1 illustrates a combined reflex/reflective pathway for the detection, intervention
and follow-up of pituitary disorders, which was validated in a 12-month prospective
study [5]. In this section, we highlight opportunities to refine this combined protocol,
which paves the way for a fully reflexive protocol that does not require LC intervention.
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In the reflex/reflective pathway, we setup reflex rules in the local Laboratory Infor-
mation System (LIS) to reflex on possibly indicative test results (1), as exemplified in
Table 1. Upon receiving a list of reflexed tests, the Laboratory Clinician (LC) excluded
any test requested by a specialist (2), or where the Hospital Information System (HIS)
yielded clear reasons for the abnormality (3). Then, the LC performed reflective add-on
testing1 (4), i.e., adding-on laboratory tests on the patient sample at their discretion.

Fig. 1. Reflex/reflective pathway for detection, laboratory intervention and followup. Abbr. Lab-
oratory Information System (LIS), Laboratory Clinician (LC), Hospital Information System (HIS)
* As per Table 1.

Subsequently, the LC examined add-on test results and noted interpretive comments
for those requiring further follow-up (5.1): listing possible non-pituitary causes for the
result(s), and/or suggesting referral to Endocrinology. In cases of significant pituitary
dysfunction, the LC directly contacted the requesting PCP (5.2).

Table 1 shows two reflex criteria together with all potential add-on tests2. These
criteria are based on our local reference ranges and consensus between laboratory and
endocrine physicians. We note that differences in testing platforms mean these values
are not easily interchangeable; however, the underlying concepts are based on our own
experience and review articles [3, 12–14].

These laboratory interventions, over a one year period, were successful in identifying
24 cases of pituitary dysfunction; these would have otherwise been overlooked, resulting
in missed/delayed diagnosis. Subsequently, the overall incidence of pituitary disorders
was found to be higher over that study period compared to the incidence in general
populations, as reported by the largest prior prospective study to date [4]. However, even
for a reflex/reflective pathway, i.e., where the LC is supported by a reflex algorithm, we
found that the LC needs to spend considerable time to provide this service (estimated at
112 h [5]). However, a fully reflexive protocol, i.e., lacking LC reflection, would need to
issue all suggested tests (Table 1, column 3) to capture all potential conditions: reducing
cost-effectiveness and increasing likelihood of false positives. To pave the way for an
efficient and cost-effective fully reflexive protocol, we refine Table 1 by distinguishing
between first- and second-stage tests: certain second-stage tests only become relevant
once first-stage test results are within certain bounds.

Table 2 illustrates this approach using the two reflex criteria from Table 1.

1 Patient samples remained available for five days, as per our local laboratory policy.
2 We refer to [5] for the full criteria and reflective tests (note these have been refined since).
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Table 1. Criteria for Reflex capturing and Reflective testing protocol. Abbr.: FT4: free T4; TSH:
thyroid stimulating hormone; FT3: free T3; FSH: follicle stimulating hormone; E2: estradiol; LH:
luteinizing hormone; TST: testosterone; HRT: hormone replacement therapy

Criteria for
reflexing tests

Exclusion criteria Reflective tests Results requiring
clinical follow-up

FT4 < 9.5 &
TSH < 4.3

- On thyroid medication
- Non-thyroidal illness

- If female add FSH ± E2
- If male add LH, FSH, TST
- If before noon add cortisol
- Add prolactin

- Female > 55 yrs: FSH < 15
- Female< 55 yrs: FSH< 0.5
- Cortisol < 180
- Male: Low testosterone
(<8), non-raised LH ± FSH
- Raised prolactin

Female ≥ 55 yrs:
FSH < 15

- On HRT - Add E2
- Add TSH & FT4
- If before noon add cortisol
- Add prolactin

- Low E2
-Non-raised TSH & low FT4
- before noon cortisol < 180
- Raised prolactin

Table 2. Criteria for Staged Reflex testing protocol. See Table 1 for Initial reflex and exclusion
criteria and abbreviations.

Stage 1 Reflex tests Criteria for Stage 2 Stage 2 Reflex tests Results requiring
clinical follow-up

- If female add FSH ± E2
- If male add LH,
FSH,TST

- Female > 55 yrs:
FSH < 15 and E2 < 100
- Female < 55 yrs:
FSH < 0.5 and E2 < 100
- Male: Low TST &
non-raised LH ± FSH

- If before noon
add cortisol
- Add prolactin

- Stage 1 results match
Stage 2 criteria
- Stage 2 results that
match:
Cortisol < 180
Raised prolactin

- Add E2 - Low E2 - Add TSH & FT4
- If before noon
add cortisol
- Add prolactin

- Stage 1 results match
Stage 2 criteria
- Stage 2 results that
match:
Non-raised TSH, low FT4
a.m. cortisol < 180
Raised prolactin

E.g., in the second row, 4 second-stage tests, i.e., TSH, FT4, a.m. cortisol and
prolactin tests, will only be added in case E2 is low, else they will not be recommended.

Further, we formulated a-priori interpretative comments for each follow-up case
(fourth column, Table 2), which delegate reflective elements to the PCP to aid them in
acting on suggested referrals. Below, we show comments for the first row in Table 2:

Comment 1: Low TSH and FT4. If this patient is not on therapy for a thyroid condition,
or is not unwell due to a systemic illness (non-thyroidal), suggest referral to the endocrine
neuro-pituitary clinic to exclude secondary hypothyroidism.

Comment 2: Low TSH and FT4 which has triggered further endocrine testing. Results
are suggestive of secondary hypothyroidism and other possible endocrine abnormalities.
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If there is no clinical condition or therapy known in this patient to explain these results,
referral to the endocrine neuro-pituitary clinic is warranted.

3 Semantic Framework for Computerizing Reflex Protocols

We present a knowledge-based approach for computerizing staged reflex protocols that
encode clinical knowledge on test result patterns and health characteristics. We utilized
Semantic Web technology, including OWL2 DL [15] and SWRL [16], to create a Reflex
Ontology. The advantage of SemanticWeb technology is that computerized reflex proto-
cols have unambiguous formal semantics, are executable by any SemanticWeb reasoner,
and are interoperable with other biomedical ontologies.

Our ReflexOntology can be extended to computerize reflex protocols for any clinical
domain; for this project we extended the Reflex Ontology for pituitary disorders. Both
the Reflex Ontology, and its pituitary disorder extension, can be found online [11]. In
Fig. 2, we show the rule concepts from the Reflex OWL2 ontology:

Fig. 2. Rules in the Reflex ontology.

A ReflexRule is triggered when initial test results lie within certain bounds and the
patient matches certain criteria. A related ExclusionRulemay exclude patients based on
reasons for the abnormality (e.g., medications). Next, relevant TestPatternRules from
stagen will recommend add-on tests. The followup rules will be tested in a sequential
manner, whereby stagen FollowupRules will recommend followup when their results
match certain criteria. In that case, TestPatternRules from stagen+1 will be triggered,
possibly followed by FollowupRules from stagen+1, and so on. This process is imple-
mented by domain-agnostic SWRL rules3 described below (15 rules in total). Clinical
domain criteria (e.g., Table 1) are implemented by domain-specific SWRL rules, and
are exemplified later. A Semantic Web reasoner reasons over a ReflexOntology instance,
including initial test results, to recommend add-on tests and follow-ups.

3 For simplicity, the shown rules assume that the system reasons over one patient at a time.
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In particular, a HealthCondition (e.g., pituitary disorder) is associated with (hasRe-
flexRule) a set of ReflexRules. In case a reflex rule’s domain-specific criteria are met
(meetsCriteria), the rule will “reflex” on the patient (reflexOn):

HealthCondition(?condition) ∧ hasReflexRule(?condition, ?reflexRule)∧
Patient(?patient) ∧ meetsCriteria(?reflexRule, ?patient) → reflexOn(?reflexRule, ?patient)

(1)

If there are clear reasons for the abnormality, an ExclusionRule associated with the
ReflexRule (hasExclusion) will be triggered (exclude):

reflexOn(?reflexRule, ?patient) ∧ hasExclusion(?reflexRule, ?exclRule)∧
meetsCriteria(?exclRule, ?patient) → exclude(?exclRule, ?patient)

(2)

At this point, the reflex protocol will recommend a series of (staged) add-on tests
to confirm or rule out the health condition. After the ReflexRule was triggered4, a
stage1TestPatternRule (case [a]), associated with the reflex rule (hasTestPattern), will
recommend add-on tests when its domain criteria are met. (We discuss case [b] later.)

reflexOn(?reflexRule, ?patient) ∧ hasTestPattern(?reflexRule, ?testRule)∧
([a] hasStage(?testRule, 1)[/a] ∨

[b] (hasFollowupRule(?reflexedRule, followupRule)∧
followup(?followupRule, ?patient)∧

hasStage(?testRule, ?stage) ∧ hasStage(?followupRule, ?stage − 1))[/b])∧
meetsCriteria(?testRule, ?patient) → addOn(?testRule, ?patient)

(3)

After being triggered (addOn), the system uses the involvesTest predicate to identify
recommendedLaboratoryTests (Fig. 2); and follows the inverse testPatternOf to identify
itsReflexRule.When an add-on laboratory test has been performed (NewTest), the system
will represent it as follows (based on properties of the TestPatternRule):

hasTest(Patient,NewTest) ∧ stage(NewTest,TestPatternStage)∧
reflexedTest(ReflexRule,NewTest) ∧ outcome(NewTest,Outcome).

(4)

In turn, a FollowupRule will recommend follow-up when added-on test results meet
the domain criteria, together with an interpretative comment (e.g., Comment 1):

reflexOn(?reflexRule, ?patient) ∧ hasFollowup(?reflexRule, ?followupRule)∧
meetsCriteria(?followupRule, ?patient) → followup(?followupRule, ?patient)

(5)

At this point (see rule (3), case [b]), when a FollowupRule from the same reflex
scenario (hasFollowupRule) recommended a follow-up (followup) at stagen-1 (has-
Stage), a TestPatternRule at stagen within the same reflex scenario (hasTestPattern)
will recommend further add-on laboratory tests when its domain criteria are met.

4 SWRL (and OWL2) lack negation-as-failure, so it is left to the system to cope with exclusions.
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Regarding laboratory test criteria (meetsCriteria), first, we formulate generic,
domain-agnostic rules to ensure that criteria related to laboratory tests are properly
checked. Reflex rule criteria only pertain to “stage-0” tests (i.e., initial tests): a reflex
rule with two test-related criteria5 and profile-related criteria is supported as follows:

TwoTestReflex(?r) ∧ hasTest(?p, ?t1) ∧ stage(?t1, 0) ∧ hasTest(?p, ?t2) ∧ stage(?t2, 0)∧
meetsProfile(?r, ?p) ∧ meetsTest1(?r, ?t1) ∧ meetsTest2(?r, ?t2) → meetsCriteria(?r, ?p)

(6)

Domain-specific SWRL rules (see below) will implement meetsProfile and meet-
sTestx predicates. Secondly, test-related criteria of follow-up rules must only be checked
against tests ordered in the context of the reflex rule. In some cases, multiple reflex sce-
narios could lead to the same add-on tests. When a test is added-on within a particular
reflex scenario, only follow-up rules within that scenario should be triggered:

TwoTestFollowup(?f ) ∧ reflexOn(?r, ?p) ∧ hasFollowup(?r, ?f )∧
reflexedTest(?r, ?t1) ∧ reflexedTest(?r, ?t2) ∧ meetsTest1(?f , ?t1) ∧ meetsTest2(?f , ?t2)∧

meetsProfile(?f , ?p) → meetsCriteria(?f , ?p)

(7)

I.e., a follow-up rule within a reflex scenario (reflexOn; hasFollowup) where two tests
were reflexed (reflexedTest; see code (4)) will succeed if these tests meet the criteria. We
similarly support TestPatternRules with test-related criteria (not shown).

To computerize a reflex protocol for a particular clinical domain, we first instantiate
and link a set of reflex, exclusion, test-pattern and follow-up rule individuals (Fig. 2).
E.g., for pituitary dysfunction, we created individuals ReflexRule1, ExclusionRule11,
TestPatternRule11 and FollowupRule11 that partially represent the first row in Table 1
and Table 2. Secondly, we computerize their domain-specific criteria using SWRL:

type(?t1,FT4) ∧ outcome(?t1, ?o)∧?o < 9.5 → meetsTest1(ReflexRule1, ?t1)

type(?t2,TSH ) ∧ outcome(?t2, ?o)∧?o < 4.3 → meetsTest2(ReflexRule1, ?t2)
(8)

I.e., when the patient has two initial tests matching the test-related criteria from
Table 1 (column 1), then the patient meets the criteria for triggering ReflexRule1.

If the patient is on Thyroid medication, they meet the exclusion criterium:

medication(?p, ?m) ∧ type(?m, ThyroidMedication) → meetsCriteria(ExclusionRule11, ?p)

When the patient is female, they will meet profile-related criteria for TestPattern-
Rule11, which will recommend add-on tests of FSH and E2 (rule not shown).

The criteria of FollowupRule11 as per Table 2 (column 2) are represented as follows:

type(?t1,FSH ) ∧ outcome(?t1, ?o)∧?o < 15 → meetsTest1(FollowupRule11, ?t1)

type(?t2,E2) ∧ outcome(?t2, ?o)∧?o < 100 → meetsTest2(FollowupRule11, ?t2)

gender(?p,Female) ∧ hasAge(?p, ?a)∧?a > 55 → meetsProfile(FollowupRule11, ?p)

(9)

When a reflex scenario has completed, the systemwill indicate associated tests using
hadPriorTest instead of hasTest, so they will no longer trigger any rules (e.g., rule (6)).

5 This could be generalized using universal quantification, but this is not supported by SWRL.
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4 Implementation of the Pituitary Disorder System

Fig. 3. Screenshot of the Pituitary Reflex system.

The prototypeReflex systemwas developed usingApache Jena6 for storing, querying
and reasoning over the Reflex ontology. In the left pane, the user enters profile details
(e.g., age, gender) and initial tests results (FT4 = 8.7, TSH = 3.8). In the right pane,
the system shows the fired reflex rule, its associated test patterns and any recommended
follow-ups. In the prototype, results for add-on tests are directly entered (e.g., E2 = 91;
FSH = 0.4). In this case, add-on test results met stage-1 follow-up criteria (see “follow-
up” header), and a series of stage-2 test patterns were fired. In turn, results for these
added-on tests were found to meet stage-2 follow-up criteria (Fig. 3).

5 Evaluation of Accuracy and Cost Effectiveness

We previously performed a 12-month prospective study of a combined reflex/reflective
protocol for early detection of pituitary dysfunction [5]. From the clinical notes of the
study LC, we extracted structured data on initial and added-on tests, follow-ups and
profile data, which was utilized for a retrospective evaluation of our reflex protocol.
Hence, a limitation of our evaluation is that the reflex protocol can only “reflex” on tests
that were added-on in the prospective study, as it is based on that study’s records.

Table 3 shows the matches between added-on laboratory tests and follow-ups by the
reflex protocol vs. those from the combined reflex/reflective protocol.

In ca. (circa) 92%of cases, added-on tests from the reflex protocol directlymatched or
subsumed (i.e., included, but also extended) those issued by the reflex/reflective protocol.
Hence, in ca. 8% of cases, test results that are possibly indicative of pituitary dysfunction
may be missed. In the prospective study, the LC also considered other data, such as
LIS hormone level trends and other HIS data (e.g., comorbidities); but since it was

6 https://jena.apache.org.

https://jena.apache.org
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Table 3. Laboratory interventions of reflexive vs. combined reflex/reflective protocols.

Reflexed add-on tests Reflexed follow-ups

Match No match Match No Match
(FN)Exact Subsume Total Overlap None Total

74.51%
(652)

17.14%
(150)

91.66%
(802)

2.97%
(26)

5.37%
(47)

8.34%
(73)

89.83%
(786)

10.17%
(89)

not practical to capture all this data in the study records, it was not available to the
reflex protocol. This situation, while not ideal, does reflect a typical situation for reflex
protocols, as they do not tend to consider the same range of data as reflective protocols
[6, 7]. Therewas ca. 90%match in recommended follow-ups (10% false negatives); since
not all relevant tests were added-on (see above), but also since the LC again considered
extra data that was not captured in the study records.

Regarding cost effectiveness, we compared the combined reflex/reflective, reflex:
non-staged, and reflex: staged protocols. Table 4 lists the total number of add-on tests,
their total marginal7 cost for the QE II hospital laboratory site (Nova Scotia Health
Authority), and salary cost for the LC. For laboratories that lack a full track system, i.e.,
capable of automated add-on testing (including recall from storage), we also account for
the salary of technical staff for manual handling of add-ons; we assume a total time of
7.5 min per set of add-on tests, with an avg. salary of 33 CAD/hour. Average LC salary
for clinical/ medical biochemist was estimated at 120 CAD/hour.

Table 4. Financial impact of the evaluated testing protocols (costs are in CAD).

Protocol # add-on tests Marginal test cost LC salary Tech staff salary Total cost

Reflex/reflective 244 463 13 440 (112 h) 512 (15.5 h) 14 415

Reflex: non-staged 1206 1721 0 883 (26.8 h) 2604

Reflex: staged 678 1123 0 1064 (32.3 h) 2187

The reflex protocol significantly increases the total number of add-on tests (factor
ca. 4.95 for non-staged, ca. 2.8 for staged). Indeed, since the reflex protocol does not
have access to the same comprehensive data as the LC, they need to cast a wider net
to catch all relevant laboratory interventions. Nevertheless, the staged protocol only
involves ca. 56% of tests required by the non-staged version. Due to the higher number
of add-on tests, the reflex protocols yield higher marginal test and tech staff salary cost,
but neither reflex protocol require LC involvement. Hence, the overall costs of reflex
non-staged and staged protocols amount to only ca. 18% and ca. 15% of the combined
reflex/reflective strategy. When an automated track system is available, total cost is only
12% (non-staged) and 8% (staged) of the reflex/reflective approach.

7 I.e., extra cost of add-on tests on a patient sample (avg. CAD 1.15 per test).
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At the same time, we observe that the significant increase in add-on tests will invari-
ably result in an increase of false positives, due to their false positive rate. Tailored
interpretive comments, i.e., generated on a case-by-case basis (Sect. 2, p. 4), are meant
to act as a safety net against this, as they include an element for the PCP to reflect before
acting on the recommended follow-up, but they are not a perfect solution.

6 Conclusions and Future Work

We presented a Semantic Web framework in the form of the Reflex Ontology for com-
puterizing reflex protocols. These reflex protocols encode knowledge on abnormal test
patterns and relevant patient data to automatically issue and follow-up on add-on labora-
tory tests for early detection of health conditions. These protocols (a) support “staged”
reflex testing, where further stages of testing are only indicated for certain prior test
results; and (b) generate interpretive comments for recommended follow-ups, delegat-
ing a degree of reflection to the PCP. We compared the accuracy and cost-effectiveness
of a reflexive pathway to a combined reflex/reflective approach.

Improved reflex protocol accuracy is needed to avoid missed diagnoses, which them-
selves carry a long-term cost to the healthcare system. Given the evaluation results, we
expect that a staged reflex protocol, with ties into HIS and LIS and outfitted with analysis
tools for trending test results—i.e., with access to the same comprehensive data as the
LC—will present an accurate and economical approach for early diagnosis of pituitary
dysfunction or other health conditions. Utilizing a more expressive Semantic Web for-
malism, such as Notation3 [17], will allow us to improve the formal reflex semantics
(e.g. Code (6), (7)) using (scoped) negation as failure. Finally, we aim to incorporate
the Reflex system into clinical practice at the QE II laboratory site and connect it to the
local LIS and HIS. A 12-month prospective study of the reflex protocol will compare
pituitary diagnoses and added-on tests with the combined reflex/reflective protocol.
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Abstract. Clinical predictive models are vulnerable to degradation in
performance due to changes in the distribution of the data (distribution
divergence) at application time. Significant reductions in model perfor-
mance can lead to suboptimal medical decisions and harm to patients.
Distribution divergence in healthcare data can arise from changes in
medical practice, patient demographics, equipment, and measurement
standards. However, estimating model performance at application time
is challenging when labels are not readily available, which is often the
case in healthcare. One solution to this challenge is to develop unsuper-
vised methods of measuring distribution divergence that are predictive of
changes in performance of clinical models. In this article, we investigate
the capability of divergence metrics that can be computed without labels
in estimating model performance under conditions of distribution diver-
gence. In particular, we examine two popular integral probability metrics,
i.e., Wasserstein distance and maximum mean discrepancy, and measure
their correlation with model performance in the context of predicting
mortality and prolonged stay in the intensive care unit (ICU). When
models were trained on data from one hospital’s ICU and assessed on
data from ICUs in other hospitals, model performance was significantly
correlated with the degree of divergence across hospitals as measured by
the distribution divergence metrics. Moreover, regression models could
predict model performance from divergence metrics with small errors.

Keywords: Clinical predictive models · Electronic health records ·
Distribution divergence metrics · Concept drift · Dataset shift

1 Introduction

Prediction is central to many of the key activities in medicine. In medical prac-
tice, prediction is ubiquitous and includes evaluating the risk of developing dis-
ease in the future, diagnosis or establishing the presence of disease at the current
time, prognosis or forecasting outcomes and complications related to ongoing
disease, and estimating the response to therapeutics and other medical interven-
tions [10,16,25]. Predictive models have immense potential to improve clinical
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predictions and aid medical practitioners in clinical decision making. Typically,
such models are derived from data using statistical and machine learning meth-
ods. Recent advances in the availability of big data, machine learning methods
that can handle a wide range of data types, and abundant computing capability,
have led to the development of a large number of predictive models for potential
clinical use [16].

Many clinical predictive models are regression or classification models where
the model predicts a target variable (or label) from several predictor variables.
Such models are trained using supervised machine learning methods that make
a fundamental assumption: the training data from which the models are derived,
and the data on which the models will be applied, follow the same distribution.
However, in medicine, as well as in other domains, properties of data change over
time and across different geographical regions [17,26]. When the distribution
changes, the performance of most predictive models is likely to change for the
worse, and the models will likely need to be retrained using new data to regain
the performance.

A straightforward mathematical solution to this generalization problem is
to reconstruct the model from newer data or from data where the model will
be used. However, practically, the collection of new data can be costly or even
impossible. In clinical predictive models that are derived from observational data
such as electronic health records (EHRs), obtaining labels may be expensive
and time-consuming if clinical expertise is needed to determine them. Labels
in EHRs may be unreliable or not available at all. For example, a code for
pneumonia in an EHR may mean that the patient was screened for pneumonia
rather than diagnosed with pneumonia [10]. As another example, whether a
particular data element such as a hemoglobin laboratory test result is relevant
to a clinical task cannot be readily obtained from EHRs [14]. Another solution
is to use unsupervised domain adaptation [3] to improve predictive performance
by including the new unlabeled data in the model training step. Nevertheless,
evaluation at application time is not possible without obtaining labels. Therefore,
it is necessary to develop approaches that evaluate the performance of predictive
models that reduce or eliminate the need for collecting labels.

In machine learning, a significant difference between the distribution of train-
ing and test datasets is known as distribution divergence (or, divergence, for
short), concept drift, or dataset shift [13,30]. As a result of divergence, the per-
formance of a machine learning model may deteriorate on the test dataset if its
distribution deviates significantly from the training dataset. Divergence between
distributions is typically estimated empirically from samples drawn from those
distributions. Popular metrics for distribution divergence are f -divergence met-
rics such as Kullback-Leibler (KL) divergence [15], and integral probability met-
rics (IPMs) including maximum mean discrepancy (MMD) [11] and Wasserstein
distance (WD) [27]. IPMs are easier to implement in high-dimensional data and
have better convergence rates compared to f -divergence estimators [24]. Note
that these metrics are typically unsupervised, i.e., they do not use labels for
computing the divergence, although supervised forms for some of these metrics
have been developed [1].



Using Distribution Divergence to Predict Model Performance 137

In this article, we investigate the relation between unsupervised distribution
divergence metrics and the performance of clinical predictive models that are
derived using supervised learning. In particular, we investigate the effect of dis-
tribution divergence across intensive care units (ICUs) in 12 hospitals on the
performance of predictive models that are derived from one hospital (training
dataset) and evaluated on the other hospitals (test datasets). Our experiments
include the prediction of mortality and long stays in the ICU. These labels are
easily computable from the EHR data that we use and thus provide an abun-
dant amount of labels for our experiments. However, in practice, we would use
divergence metrics for clinical predictive models for which labels are not readily
available and are expensive to obtain.

2 Related Work

2.1 Divergence Metrics to Predict Changes in Model Performance

Several investigators have explored the use of unsupervised divergence metrics
to predict changes in model performance [5,8,12,22]. For example, Elsahar and
Gallé [8] developed unsupervised methods to predict performance drop in models
in the presence of distribution divergence. They used three classes of metrics:
H-divergence metrics, which are based on the performance of a domain classifier
in distinguishing between training and test examples; confidence-based metrics,
which measure the drop in the average predicted probabilities; and reverse model
accuracy metrics, which use pseudo labels to derive a new model on the test
dataset and compare its performance to that of the original model. As another
example, Chuang et al. [5] used a set of domain-invariant features as a proxy to
estimate the unknown labels in new data and estimate the model’s performance
in an unsupervised manner.

2.2 Distribution Divergence in Healthcare Data

A predictive model that is deployed in a clinical setting is not guaranteed to
maintain its performance over time. Similarly, a model trained on data from one
institution may perform poorly when deployed in another institution [10]. Model
performance may suffer due to changes or differences in medical practice, patient
demographics, equipment, and measurement standards [18]. Several studies have
investigated distribution divergence in healthcare data and its effects on clinical
predictive models [2,17,26]. For example, Davis et al. [6] studied the effects of
changes in the patient population on the calibration of risk prediction models.
The authors attributed calibration drift to changes in the patient population
distribution rather than shifts in the marginal or conditional distribution of the
outcome. Calibration drift was also investigated in the context of estimating
the risk of hospital-acquired acute kidney injury [7]. The findings supported the
need for continual model adaptations due to changes in the data distribution.
In another study [29], distribution divergence due to differences in equipment
between hospitals led to significant performance deterioration of models that
predicted pneumonia from chest X-rays.
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3 Divergence Metrics

3.1 Wasserstein Distance (WD)

Given X ∼ P and Y ∼ Q as i.i.d samples, WD between P and Q is the dual rep-
resentation of Kantorovich metric on a given metric space (M,ρ), where ρ(x, y)
is a distance function for two instances x ∈ X and y ∈ Y in the set M :

WD(P,Q) = inf
μ∈Γ (P,Q)

∫
M×M

ρ(x, y) dμ(x, y) (1)

where Γ (P,Q) is the set of all measures on M × M with marginals P and
Q. In optimal transport theory, if μ(x, y) represents a randomized policy for
transporting a unit quantity of some volume from location x ∈ P to y ∈ Q with
the cost of ρ(x, y), then WD(P,Q) is the minimum expected cost to transport
the mass P to Q. Given X = {xi}m

i=1 and Y = {yi}n
i=1 as i.i.d samples, [24]

proposed a non-parametric approach to compute WD based on an empirical
estimate of its dual form:

WD(P ′, Q′) = sup
f∈F

∣∣∣∣∣
1
m

m∑
i=1

f(xi) − 1
n

n∑
i=1

f(yi)

∣∣∣∣∣, (2)

where P ′ and Q′ denote the empirical distributions of P and Q, respectively,
and F = {f : ‖f‖L ≤ 1} where ‖f‖L denotes the Lipschitz semi-norm of a
real-values function f on M . Equation 2 can be solved by linear programming as
shown in [24]. We used Python package POT [9] to implement the WD metric.

3.2 Maximum Mean Discrepancy (MMD)

Let X ∼ P and Y ∼ Q be two datasets in R
d. The MMD metric measures the

divergence between P and Q:

MMD(P,Q) = sup
‖f‖H≤1

(EP [f(X)] − EQ [f(Y )]) , (3)

where function f is the unit ball in a reproducing kernel Hilbert space (RKHS)
H. Given X = {xi}m

i=1 and Y = {yi}n
i=1, an empirical unbiased estimate of

MMD2 is calculated as follows [11, Lemma6]:

MMD2(X,Y ) =
1

m(m − 1)

m∑
i=1

m∑
j �=i

k(xi, xj) +
1

n(n − 1)

n∑
i=1

n∑
j �=i

k(yi, yj)

− 2
mn

m∑
i=1

n∑
j=1

k(xi, yj).

(4)

A popular choice of k is Gaussian RBF kernel kσ(x, y) = exp(−‖x−y‖2

2σ2 ).
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3.3 MMD p-value

A non-parametric test based on the MMD2(X,Y ) estimator was proposed by
[11] to distinguish between the null hypothesis H0 : P = Q and the alternative
hypothesis HA : P �= Q. In our experiments, we used the p-value of the MMD
test as an additional divergence metric. We implemented the MMD metrics using
Python package hyppo [19].

4 Methods

4.1 Dataset

We used electronic health record (EHR) data from ICUs as a real-world EHR
dataset. We obtained the data from the High-Density Intensive Care (HiDenIC)
dataset that contains EHR data on 120,722 adult patients admitted to ICUs
at 12 hospitals at the University of Pittsburgh Medical Center (UPMC) from
February 2008 through December 2014. Table 1 shows the number of ICU stays
per hospital. The dataset contains structured data including demographics, vital
signs, and laboratory test values, and unstructured data that includes a variety
of clinical text reports. For our experiments, we used only structured data.

Table 1. Number of ICU stays per hospital from February 2008 to December 2014.

Hospital

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

No. ICU Stays 60,895 25,573 20,210 13,143 10,848 8,312 7,012 6,970 4,987 3,053 2,443 1,459

4.2 Experimental Setup

Distribution divergence is often found naturally in real-world datasets. For exam-
ple, in a multi-hospital EHR dataset, the distribution of data usually changes
from one hospital to another [2]. We take advantage of the multi-hospital nature
of our dataset and partition the ICU stays by hospital. We trained models on
each hospital’s data in turn and evaluated the models on data from the remaining
hospitals. The pseudo-code for our experiments is shown in Algorithm1. First,
we partitioned the data by hospital into 12 datasets {Hi}12i=1. Each Hi was used
as the training set once and the remaining datasets were used as test sets. For
more robust analysis, the experiment on each training dataset Hi was repeated
for 10 iterations. At each iteration, a bootstrap sample of Hi, H

(k)
i , was obtained;

a model f was trained on H
(k)
i and evaluated on the remaining datasets {Hj}12j �=i.

The model performance results were stored in a matrix P . Pairwise divergence
between the training set and test sets were stored in a matrix D. Matrices D
and P are 10 by 11, with one row per bootstrap iteration and one column per
test dataset Hj . We used D and P to fit a linear regression model that predicted
model performance from distribution divergence.
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Algorithm 1
Input: datasets {Hi}12

i=1

Output: pairwise divergence results D, model performance results P

1: Let D = {Di}12
i=1 and P = {Pi}12

i=1 be sets of empty matrices
2: for i = 1 to 12 do � iterate over datasets {Hi}12

i=1

3: for k = 1 to 10 do � bootstrap iterations
4: H

(k)
i = (X

(k)
i , y

(k)
i ) ← bootstrap(Hi) � a bootstrap sample of Hi

5: f ← train(H
(k)
i ) � train model f

6: for j �= i to 12 do � iterate over test sets {Hj}12
j �=i

7: (Xj , yj) ← Hj

8: Di ← Di ∪ divergence(X
(k)
i , Xj) � unsupervised divergence metric

9: Pi ← Pi ∪ evaluate(f, Hj) � evaluate f on test set Hj

10: return D and P � return divergence and model performance results

We investigated two prediction tasks, two types of models, and two data
representations, the details of which are described next.

Prediction Tasks. We used two prediction tasks including: (1) in-ICU mor-
tality defined as death during the ICU stay, and (2) long stay defined as ICU
stay that is longer than 3 days (following the definition used in [18]). For both
tasks, the prediction was based on data from the first 24 h of ICU stay.

Models. We investigated two types of models: (1) Random Forest (RF).
We implemented the RF model using Scikit-learn package [21]. We used 3-fold
cross validation to select the optimal number of tree estimators from values
{100, 500, 1000}. (2) Multilayer perceptron (MLP). We implemented MLP
using PyTorch [20]. Grid search and a validation set were used to tune hyperpa-
rameters including model architecture and weight decay values {0.1, 0.01} for the
ADAM optimizer. The MLP model was selected from two architectures: Small
MLP and Large MLP. Small MLP includes 3 linear layers (500, 100, 50 units),
whereas Large MLP contains 4 linear layers (1000, 500, 200, 100 units). Hidden
layers in both architectures were followed by ReLU activations and Dropout reg-
ularization. Softmax function was used at the output layer of both networks, and
classification loss was measured by Binary Cross Entropy criterion. Univariate
feature selection (ANOVA) was applied to both RF and MLP models to select
1,500 features during training.

Data Representation. Two data representations were used as input to diver-
gence metrics: (1) Raw representation. This representation is high dimen-
sional (1,500 vectorized features) and is the only representation that was used
in experiments with the RF model. (2) Embedding representation. We used
the output from the second layer of an MLP model as an embedding data rep-
resentation (only used in experiments with MLP models). The embedding rep-
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resentation has been shown to contain meaningful and rich features that may
result in more accurate divergence estimates [23].

4.3 Dataset Preparation

Cohort Selection. If a patient had multiple ICU stays, we included only the
first ICU stay. Another inclusion criterion was that the stay should be a minimum
of 36 h and a maximum of 10 days. Stays shorter than 36 h were excluded to
enforce a minimum gap of 12 h between the prediction and outcome time. We
required patients to be 15 years or older. We followed a MIMIC-III extraction
process [28] to apply the selection criteria, which resulted in a dataset with
53,100 unique ICU stays.

Data Preprocessing. (1) Time-series discretization. Time-varying mea-
surements such as laboratory test values and vital signs are unevenly spaced
time-series observed during a stay at irregular time intervals. It is standard
practice to discretize such time-series into equally-spaced hourly buckets [28].
We followed this approach and assigned the mean of values in each hour to the
corresponding bucket. Each stay was censored to the first 24 hourly buckets.
(2) Normalization. We normalized each numerical feature to have zero mean
and unit standard deviation. In each experiment, the normalization was fit on
the training set and applied to the test sets. (3) Imputation. We replaced
missing values using the Simple Imputation method described in [4]. For each
numerical feature, the method forward-fills the missing values and adds two addi-
tional features: a binary indicator denoting that the value was missing within
an hourly bucket, and the time since the last measurement of the feature. (4)
Vectorization of time-series. Standard machine learning algorithms such as
RF and MLP expect a fixed-sized vector per stay. We vectorized each stay by
transforming each time-varying feature into a vector of 24 values (each value
corresponds to an hourly bucket). Demographic features were concatenated to
the end of the vector. (5) Features. We used 70 features that included the 50
most frequent laboratory tests, 11 vital signs, and 9 demographic variables. Vital
signs consisted of systolic and diastolic blood pressure, heart rate, respiratory
rate, temperature, central venous pressure, intracranial pressure, and four Glas-
gow Coma Scale scores. Demographic features included age, height, weight, and
one-hot encoded representations of gender and race.

4.4 Evaluation

Each experiment consisted of a training set from a specified hospital and test sets
from the remaining hospitals, a specified prediction task, and a specified model
type. For each experiment, we calculated three divergence metrics including WD,
MMD, and MMD p-value, and we assessed the performance of the model on both
the training set (using bootstrap samples) and the test sets with the area under
the Receiver Operating Characteristic curve (AUC). We used linear regression
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to estimate the correlation between the values of a divergence metric and the
AUC values. For example, for predicting mortality with RF using hospital H1

as training data, we trained 10 RF models from 10 bootstrap samples of H1

and applied them to data from the other 11 hospitals. This provided a total of
10×11 = 110 pairs of AUC and WD values that we used to fit a linear regression
model (see Fig. 1).

For WD and MMD metrics, a negative value for the slope (β) of the regression
line indicates that the higher the divergence of the test set from the training set,
the lower is the model performance on the test set. The MMD p-value is inversely
related to MMD and is expected to be positively correlated with the AUC when
the MMD is negatively correlated.

To further assess the predictability of AUC values from divergence metrics, we
used the AUC and divergence value pairs to train linear regression models with
10-fold cross-validation and reported the average mean absolute errors (MAEs).
Lower MAE values indicate more accurate predictions (see Tables 2 and 3).

5 Results

Figure 1 shows example results where Hospital H1 was used as the training
hospital (i.e., Hi in Algorithm 1) for mortality prediction task with the RF
model. As can be seen from the figure, WD and MMD are inversely correlated
and MMD p-value is directly correlated with the AUC.

Fig. 1. Results from using Hospital H1 as the training hospital for the mortality pre-
diction task with the RF model. Each panel shows a linear regression line fitted to
the values of a divergence metric and the corresponding AUC values. Note that MMD
p-values are in log scale.

Tables 2 and 3 show the average slope (β) and average MAE of regression
models for the three divergence metrics on the mortality and long stay prediction
tasks. The WD metric more strongly correlated with the AUC compared to
the other metrics, although the prediction performance (MAE) is similar across
the three divergence metrics. Regression models could predict model AUC from
divergence metrics with average MAEs of 0.02 to 0.05.
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Table 2. Correlation between divergence and AUC for the mortality prediction task.
Average slope (β) and average MAE of linear regression models to predict AUC from
a divergence metric. The standard error of the mean is given for each mean value.

WD MMD MMD p-value∗

Model Representation β MAE β MAE β MAE

RF Raw −0.84 ± 0.25 0.03 ± 0.002 −0.18 ± 0.08 0.03 ± 0.002 0.004 ± 0.001 0.04 ± 0.003

MLP Raw −0.31 ± 0.10 0.05 ± 0.002 −0.06 ± 0.18 0.05 ± 0.002 0.001 ± 0.001 0.05 ± 0.002

Embedding −0.56 ± 0.26 0.05 ± 0.002 −0.01 ± 0.12 0.05 ± 0.002 0.003 ± 0.002 0.05 ± 0.002
∗MMD p-value was converted to log scale for regression analysis.

Table 3. Correlation between divergence and AUC for the long stay prediction task.
Average slope (β) and average MAE of linear regression models to predict AUC from
a divergence metric. The standard error of the mean is given for each mean value.

WD MMD MMD p-value∗

Model Representation β MAE β MAE β MAE

RF Raw −0.60 ± 0.29 0.02 ± 0.002 −0.07 ± 0.06 0.02 ± 0.002 0.002 ± 0.001 0.05 ± 0.023

MLP Raw −0.57 ± 0.26 0.02 ± 0.001 −0.08 ± 0.07 0.02 ± 0.001 0.001 ± 0.001 0.02 ± 0.002

Embedding −0.41 ± 0.22 0.02 ± 0.001 −0.08 ± 0.06 0.02 ± 0.001 0.001 ± 0.001 0.02 ± 0.001
∗MMD p-value was used in log scale for regression analysis.

6 Discussion and Conclusion

We investigated the correlation between unsupervised distribution divergence
metrics and predictive model performance. Specifically, we analyzed the effects
of divergence across ICU datasets from different hospitals on predictive model-
ing. The results show a significant inverse correlation between WD and MMD
divergence metrics and model AUC values and a direct correlation between MMD
p-values and model AUC values. In most of the experiments, the correlation was
statistically significant (not included in the results). The direction of the corre-
lation was more consistent, and the strength of the correlation was strongest for
the WD metric.

There are several limitations to this study. First, we measured divergence
only across the marginal distribution of predictor variables. These divergence
metrics are likely to fail when changes occur in the distribution of labels without
associated changes to the distribution of predictor variables. Second, we inves-
tigated only one scenario of the effect of divergence in EHR data which is the
transfer of models across hospitals. Another scenario that we plan to examine in
future work is the effect of divergence in the transfer of models from one period
of time to another at the same hospital. Third, our study is limited to data from
only one hospital system. In future studies, we plan to include EHR data from
other hospital systems.
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Abstract. Health screening is conducted in many countries to track
general health conditions and find asymptomatic patients. In recent
years, large-scale data analyses on health screening records have been
utilized to predict patients’ future health conditions. While such predic-
tions are significantly important, it is also of great interest for medical
researchers to identify factors that could deteriorate patients’ medical
conditions in the future. For this purpose, we propose to use interpreta-
tions of trained predictive models. Specifically, we trained machine learn-
ing models to predict future diabetes stages, then applied permutation
importance, SHapley Additive exPlanations (SHAP), and a sensitivity
analysis to extract features that contribute to aggravation. Among the
trained models, XGBoost performed best in terms of the Matthews cor-
relation coefficient. Permutation importance and SHAP showed that the
model makes good predictions using a number of attributes convention-
ally known to be related to diabetes, but also those not commonly used
in the diagnosis of diabetes. A sensitivity analysis showed that the pre-
dictions’ changes were mostly consistent with our intuition on how daily
behavior affects type 2 diabetes’s aggravation.

1 Introduction

Health screening, including annual health screening, are conducted in a number
of countries due to their importance in finding early signs of diseases. Recently,
there have been attempts to predict the onsets of disorders by training machine
learning models by using electronic medical records and health screening records
[5,6,9,15]. In many works, the goal was to increase the accuracy of prediction.
However, it is also of interest for medical researchers to give an interpretation
or explanation to trained predictive models [13]. Unfortunately, trained models
of many machine learning methods are hard to interpret. They often fail to add
new knowledge regarding the observed phenomena’s underlining mechanism [2].
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In this paper, we propose to use permutation importance, SHapley Additive
exPlanations (SHAP), and a sensitivity analysis for health screening records to
discover relationships between behavioral factors and stages of diseases.

2 Related Work

There have been a few studies that analyze annual health screening records by
machine learning. Shimoda et al. predicted whether a patient who came to a
health screening in a specific year would return the following year [12]. Ichikawa
et al. predicted whether a patient should be given health guidance using health
screening records [7]. Kim et al. used recurrent neural networks to predict missing
values on the basis of previous records [6]. Tsunekawa et al. used a random forest
to predict the onset of malignant neoplasms such as cancer [15]. Sisodia et al.
trained models such as decision trees and SVMs to predict whether a patient
would develop diabetes [14]. Zou et al. suggested that the use of fasting blood
glucose as well as other attributes are necessary to improve prediction accuracy
[16]. Garske et al. used deep neural networks to predict the onset of diabetes
at different time scales [5]. Manini et al. used a Bayesian network to analyze a
causal structure for clinical complications in type 1 diabetes [10].

3 Method

Dataset: We used a medical checkup dataset collected from Mito Kyodo General
Hospital in Japan. The dataset consists of three annual medical checkup records.
The number of samples (patients) for each year was 4,133, 4,261, and 4,269 for
years 2016, 2017, and 2018, respectively. Since the goal was to predict a disease
stage of the following year (output year) using the present year (input year), we
only used data from patients who came consecutively for at least two years. The
number of such patients were 2,396 for 2016–2017 and 2,530 for 2017–2018. We
removed attributes that were missing in over 95% of the patients.

Classification Task: Our goal of training a prediction model is to predict
whether a patient’s stage of diabetes will aggravate. We formalized it as a two-
class categorization problem. In our dataset, each patient is labeled with one
of six possible stages of diabetes, namely nothing particular, mild abnormality,
follow-up, requires treatment, requires further testing, and under medical treat-
ment. These stages were defined by the Japan Society of Ningen Dock1. We only
used data from patients whose stage in the input year is in nothing particu-
lar, mild abnormality, or follow-up. When the stage of the output year did not
change or was alleviated, we labeled the patient as stable. When the stage of
the output year was worse than that of the input year, we labeled the patient as
aggravated. We calculated class weights using the compute class weight func-
tion in scikit-learn and obtained 0.6241 for stable and 2.5146 for aggravated.

1
https://www.ningen-dock.jp/wp/wp-content/uploads/2018/06/Criteria-category.pdf.

https://www.ningen-dock.jp/wp/wp-content/uploads/2018/06/Criteria-category.pdf
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Parameter Optimization for Prediction: We compared other prediction
models used in related works, namely fully-connected neural networks, XGBoost
[4], a random forest, logistic regression, and an SVM. We evaluated the models
with and without batch normalization and dropout (rate: 0.2) for each fully-
connected layer. We used ReLU as the activation function, the sigmoid as the
output function, and the binary cross-entropy as the loss function. We employed
the early-stopping strategy for the neural networks and XGBoost model, training
them up till 200 and 1,000 epochs, respectively. We evaluated using multiple
values for each method and selected the model that obtained the highest MCC.

Dataset Size and Preprocessing: For attributes taking continuous values,
we replaced missing values with the average value. For attributes taking dis-
crete values, a missing value is treated as an additional category. Attributes tak-
ing continuous values were standardized. Attributes taking discrete values were
encoded as one-hot vectors. We split the whole dataset into training, validation,
and testing datasets by a ratio of 8:1:1.

Evaluation Criteria: Permutation importance estimates how significant each
attribute is to determine the prediction value [1]. The sensitivity analysis
observes the amount of change in prediction results as the input is perturbed [11].

4 Evaluation

Prediction Model: The neural network having the highest MCC was a seven-
layer fully-connected neural network whose structure is Dense(8) - Dense(8) -
Dense(8) - Dense(8) - Dense(8) - Dense(4) - Dense(2) - Output(1), having a
dropout layer between the fully-connected layers. Adam with a learning rate
set to 0.0001 performed best. The best XGBoost model was max depth: 4, min
child weight: 1, gamma: 0.4, colsample by tree: 0.6, and subsample: 0.9. The best
random forest was criterion: entropy, max depth: 5, and min samples leaf: 1.

Comparison of Performance with Existing Methods: Table 1 summarizes
the resulting prediction performance. Precision, recall, and F1 score were calcu-
lated for items in the aggravated category.

Table 1. Prediction performance of each method

Methods Accuracy Precision Recall F1 Score MCC

Neural network 0.7431 0.3984 0.5698 0.4689 0.3149

XGBoost 0.8148 0.5333 0.5581 0.5455 0.4294

Random forest 0.7454 0.4063 0.6047 0.4860 0.3367

Logistic regression 0.6620 0.3295 0.6744 0.4427 0.2709

SVM 0.6389 0.3177 0.7093 0.4388 0.2657
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Comparison of Permutation Importance and the SHAP Values: We
calculated the accuracy-based permutation importance and the SHAP values for
each attribute using the testing data. To obtain the latter, we used TreeExplainer
[8]. Table 2 shows that the status of diabetes mellitus, hemoglobin A1c, FBS,
BMI, age, and weights were ranked high for both permutation importance and
SHAP values. The results match our intuition that these attributes are likely to
contribute to improved prediction performance. Attributes showing a high degree
of importance include creatinine, hematocrit, and total cholesterol. Creatinine
is an indicator to diagnose the state of renal function. Hematocrit is the volume
of red blood cells and is an indicator when diagnosing the state of blood. Total
cholesterol is an indicator to diagnose the state of blood lipids. These indicators
are usually not used to diagnose diabetes directly; however, it might be of clinical
interest that our result suggests their contribution to enable better predictions.

Table 2. Top 10 items in permutation importance and SHAP

Rank Permutation importance SHAP

1 Hemoglobin A1c Hemoglobin A1c

2 FBS Creatinine

3 Age C-reactive protein

4

Status of

Diabetes mellitus

(Follow-up)∗

Status of

Diabetes mellitus

(Follow-up)∗

5 Creatinine FBS

Rank Permutation importance SHAP

6 C-reactive protein

Status of

Diabetes mellitus

(Nothing particular)∗

7 Uric acid White blood cell count

8 Height BMI

9 Cholinesterase (ChE) Neutral fat

10
γ-Glutamyl

Transpeptidase
Age

* One of the category variables

Results of Each Question in the Sensitivity Analysis: Figs. 1, 2 and 3
show the results of the sensitivity analysis. Figures 2 and 3 show that maintain-
ing weight and having enough sleep can have a positive effect. Weight gain, or
obesity, is well-known to be a high-risk factor for diabetes. Moreover, it has been
pointed out that skipping breakfast relates to the onset of type 2 diabetes [3].

Fig. 1. Changes in Q8: Have you smoked in the last month?

Fig. 2. Changes in Q9: Have you put on
weight by 10 kg since your 20s?

Fig. 3. Changes in Q20: Do you sleep
enough?
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5 Conclusion

We developed a method of analyzing relationships between test items and the
stages of diabetes using trained predictive models. We obtained interpretations of
the predictive models. The result of permutation importance and SHAP showed
that the predictor was primarily affected by attributes already known to be
related to diabetes, but also by attributes that are usually not used for moni-
toring stages of diabetes.
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Abstract. Seasonality plays a significant role in the prevalence of infec-
tious diseases. We evaluate the performance of different approaches used
to deal with seasonality in clinical prediction models, including a new
proposal based on sliding windows. Class imbalance, high dimensional-
ity and interpretable models are also considered since they are common
traits of clinical datasets.

We tested these approaches with four datasets: two created syntheti-
cally and two extracted from the MIMIC-III database. Our results cor-
roborate that clinical prediction models for infections can be improved by
considering the effect of seasonality. However, the techniques employed
to obtain the best results are highly dependent on the dataset.

Keywords: Seasonality · Concept drift · Clinical prediction models

1 Introduction

It is widely accepted that seasonal variations are a common trait for many of
infectious diseases [3]. Seasonality is usually considered in epidemiological stud-
ies (i.e. to predict the spread of a disease over a population), although it is
rarely examined in clinical prediction models (i.e. to predict whether a particu-
lar patient will suffer a disease) [2,5].

In this paper, we explore the most promising approaches as regards dealing
with the problem of seasonality in prediction models for infectious diseases. We
focus on classification problems and use the approach of simply ignoring season
in the models as a gold standard. We consider common approaches for dealing
with seasonality and propose a new algorithm based on sliding windows. We also
consider their combination with interpretable models and techniques focused on
solving high dimensionality and class imbalance, since these issues can reduce the
usability of models [1]. The effects of these approaches were studied in synthetic
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datasets and in data related to infectious diseases extracted from the MIMIC-III
database.

The contributions of this research are the following: 1) a new approach to
deal with seasonality based on sliding windows and 2) a study of the best com-
binations of techniques for the creation of interpretable models in the presence
of seasonality, high dimensionality and imbalanced datasets.

2 Methods

In this work we focus on interpretable models since they are the most used in
clinical practice. As consequence, we use logistic regression with LASSO as the
basic technique for creating prediction models.

High dimensionality and class imbalance are also considered since they are
common problems in clinical datasets. We study in this work the performance
of P -value filtering, Fast correlation-based filter (FCBF) [10], random under-
sampling and random oversampling with different class ratios when dealing with
these problems. These approaches have in common their negligible impact on
model interpretability.

The problem of seasonality in data is commonly addressed by including the
season as an additional feature to explore [9] or by building different models,
one per season [5].

Additionally, we propose a new algorithm to deal with the problem of season-
ality in those datasets in which observations do not follow a strict temporal order
(e.g. owing to de-identification processes) yet the month in which the observation
was made is available.

Our algorithm is based on the sliding window approach. Let assume that
we need to predict an observation belonging the month m. We first classify our
training dataset according to the month of the year in which the data point
was obtained. We then select a window of L-months in length, which includes
training data points for the month m, along with the previous and subsequent
L−1
2 months, assuming a circular disposition and where L is an odd number. The

model created with only these data is used to predict the observation. Figure 1
shows a graphical representation of the process explained.

Fig. 1. Sliding window approach for seasonality with window size of 3 months.
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3 Experiment

We tested the aforementioned methods and combinations in two synthetic and
another two clinical datasets extracted from the MIMIC-III database [7].

In the synthetic datasets we assumed the model defined by the equation
k1x1 + k2x2 = y, where x1 and x2 are two random variables in the interval
[−10, 10]. The values of k1 and k2 are the unknown factors of the model, with
values in [0, 1], and being k2 = 1 − k1. Since we focus on classification models,
a binary outcome class is generated with two values: non-negative if y ≥ 0 and
negative otherwise. We varied k1 according to a timestamp attribute in order
to simulate seasonality, following a Gaussian curve whose maximum (k1 = 1) is
centred in the middle of the winter season. Furthermore, we included 10 random
variables and 20 variables correlated with x1 or x2 to simulate high dimension-
ality. The problem of class imbalance is also simulated by randomly removing
samples until obtaining 10 negative samples for each non-negative sample.

Two different synthetics datasets were created: In the condensed dataset k1
reaches 0 in the boundaries of the winter season, whereas in the sinusoidal dataset
k1 decreases slightly until reaching its minimum in the middle of the summer
season, and therefore the seasonal effects are present throughout the year.

In the clinical datasets we gathered the first positive microbiology test,
for each microorganism and type of sample, available in the patient’s stays of
the MIMIC-III database. We extracted as features: date and time (already de-
identified in MIMIC-III) when the test was performed, specimen tested, type of
admission, location of the admission, patient’s insurance, marital status, ethnic-
ity, patient’s gender, patient’s age group, minimum, mean and maximum values
of white blood cells in [−24, +24] hours around test time, minimum, mean and
maximum values of lactate in [−24, +24] hours around test time, time since
the patient was admitted to the Intensive Care Unit when the test was ordered
(discretised) and hospital service in which the test was ordered.

Two different clinical datasets were created with the extracted data, each of
them focused on clinically relevant bacteria species: Acinetobacter species and
Streptococcus pneumoniae. Therefore, in the Acinetobacter dataset we assumed
as positive those microbiology tests whose microorganism found belongs to the
Acinetobacter species and negative the rest of them, and the S. pneumoniae
dataset was created with the same strategy.

Our experiments followed a training-validation-test strategy. First, each
dataset was split randomly into train/validation (80% of the data) and test
datasets (20% of the data). We then generated 100 datasets from the original
train/validation subset by using a sampling with a replacement strategy.

Each particular combination of preprocessing techniques was then subse-
quently applied to each resample of the train/validation dataset in order to
create a logistic regression model using LASSO.

The resulting model was then used to predict the class of observations in
the test dataset. Once all the predictions were available, they were collected and
used to calculate the AUC of the experiment and the mean number of predictors
included in these models.
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All the experiments were performed on the R platform, version 4.0.2 and
RStudio, version 1.3.1093. The LASSO models were fitted using the glmnet R
package [4,6], with parameters α = 1.0 − 10−5 and λ = λ1se as recommended
in [6]. The Biocomb package [8] was used for the experiments with FCBF with
threshold parameter set to 0 as suggested in [10].

4 Results

Table 1 shows the 3 best combinations of techniques, ranked by AUC and includ-
ing the mean number of features per model as an approximate measure of model
complexity.

Table 1. Best results (and 95% confidence intervals) obtained in each dataset.

Filter Balancing Seasonality Mean AUC Mean features per model

Condensed
dataset

FCBF Oversample 2:1 Model per season 0.995 (0.994, 0.995) 1.08 (0.99, 1.17)
FCBF Undersample 2:1 Model per season 0.994 (0.994, 0.995) 0.62 (0.58, 0.66)
FCBF Oversample 2:1 3-month window 0.993 (0.992, 0.994) 1.33 (1.28, 1.39)
... ... ... ... ...
None None None 0.959 (0.959, 0.959) 7.79 (7.41, 8.17)

Sinusoidal
dataset

None None 3-month window 0.992 (0.991, 0.992) 7.91 (7.67, 8.15)
P value None 3-month window 0.991 (0.990, 0.993) 6.11 (5.93, 6.29)
P value Undersample 2:1 5-month window 0.989 (0.988, 0.989) 8.74 (8.57, 8.91)
... ... ... ... ...
None None None 0.919 (0.918, 0.919) 9.60 (9.11, 10.07)

Acinetobacter
dataset

None None 7-month window 0.671 (0.664, 0.678) 10.53 (10.03, 11.03)
None None 5-month window 0.670 (0.664, 0.677) 10.79 (10.36, 11.23)
P value None 7-month window 0.667 (0.660, 0.675) 9.56 (9.28, 9.84)
... ... ... ... ...
None None None 0.660 (0.654, 0.666) 11.05 (10.19, 11.91)

S. pneumoniae
dataset

None Oversample 2:1 Season as a feature 0.762 (0.759, 0.765) 35.31 (34.88, 35.77)
P value Oversample 2:1 Season as a feature 0.762 (0.759, 0.764) 33.79 (33.35, 34.23)
None None Season as a feature 0.760 (0.758, 0.763) 21.31 (20.52, 22.10)
... ... ... ... ...
None None None 0.755 (0.753, 0.757) 18.07 (17.31, 18.83)

5 Discussion and Conclusions

Despite the fact that all the experiments used LASSO, a feature selection tech-
nique before modelling reduced model complexity even more in most cases.
FCBF drastically reduced the number of features, as will be noted in the results
obtained for the condensed dataset, yet it was not among the best techniques in
the remaining experiments. On the contrary, the P -value filter attained a smaller
reduction of complexity yet did not drastically affect model performance. When
reducing the complexity of the model is a critical requisite, extra filtering tech-
niques would, therefore, be advisable even in the presence of seasonality.

Our approach clearly obtained the best results in two datasets, the sinusoidal
and the Acinetobacter datasets. This might seem odd in the latter dataset, bear-
ing in mind that the months in the data obtained from the MIMIC-III database
had been randomised to ensure patient confidentiality. However, since the sea-
son was preserved, the month of the shifted date should be close to the real
month, and this may explain the good performance of these methods. Moreover,
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the drift in data might not occur precisely within an astronomical season, but
may be delayed respect to its boundaries. Our proposed monthly window may,
therefore, be a good option in these cases.

In all datasets, the use of a combination of techniques improved the resulting
models as regards both AUC and model simplicity when compared to the appli-
cation of only LASSO and logistic regression. However, this improvement clearly
depends on the dataset and the best combination of techniques also varied, which
led us to the conclusion that the best approach for dealing with seasonality is
highly dependent on the dataset and that several of them should, therefore, be
tested in future studies in order to obtain better clinical prediction models.

As future work, we intend to explore ensemble methods and extend our exper-
iments to include other interpretable AI modelling techniques.
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Abstract. Supporting older people, many of whom live with chronic conditions,
cognitive and physical impairments to live independently at home is of increasing
importance due to ageing demographicssss. To aid independent living at home,
much effort is being directed at reliably detecting activities from sensor data to
monitor people’s quality of life or to enhance self-management of their own health.
Current efforts typically leverage large numbers of sensors to overcome challenges
in the accurate detection of activities. In this work, we report on the results of
machine learning models based on data collected with a small number of low-
cost, off-the-shelf passive sensors that were retrofitted in real homes, some with
more than a single occupant.Modelswere developed from sensor data to recognize
activities of daily living, such as eating and dressing as well as meaningful activi-
ties, such as reading a book and socializing.We found that a Recurrent Neural Net-
workwasmost accurate in recognizing activities. However, many activities remain
difficult to detect, in particular meaningful activities, which are characterized by
high levels of individual personalization.

Keywords: Activity recognition · Sensors ·Machine learning · Independent
living

1 Introduction

An understanding of a person’s activities and the extent to which activities are being
achieved or not can be used to improve self-monitoring and self-care at home, includ-
ing their quality of life [1]. There are two main challenges to implementing activity
recognition at home. First, there is the challenge of retrofitting residences with sensors.
Typically, smart home solutions have hundreds of sensors with the aim of collecting data
to recognize a range of different activities. The cost and complexity of such installations
often prevents their take-up in real-world applications. Second, even with large amounts
of sensor data, there are challenges to developing machine learning models for activity
recognition. These include noisy sensor data, large numbers of false positives, difficulty
training activity recognition algorithms on data collected in homes with a different lay-
out and the multiple-occupancy problem. Research has typically focused on detecting
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activities of daily living (ADLs), which are tasks that people undertake routinely in their
everyday lives, for example, eating, sleeping and grooming [2]. There is less research on
monitoring meaningful activities, i.e. physical, social, and leisure activities that provide
the patient with “emotional, creative, intellectual, and spiritual stimulation” [3], as an
important indicator of quality of life.

To address these challenges, we developed and investigated a toolkit composed of a
small number of low-cost off-the-shelf passive sensors, typically up to 10, which were
retrofitted into real, sometimes multiple-occupancy homes to detect both ADLs and
meaningful activities. To measure meaningful activities we employed beacons sensors,
small devices that broadcast packets of data over Bluetooth, and are placed on objects
in the home that residents interact with frequently. This allows capturing more minute
details on a resident’s activities. For example, in [4] the authors demonstrated how
accelerometer data captured from beacon sensors could detect not only the presence of
residents interacting with the objects, but also the way the objects were moved (e.g.
placing a knife on the table vs. using the knife to cut food in its preparation). Niu
et al. [5] propose a similar approach using BLE (Bluetooth Low Energy) beacons to
measure movement and achieved an accuracy of 70% averages across seven activities.
There are challenges with the use of such small sensors affixed to objects. In addition
to the size constraints of the sensors themselves, energy consumption can be a problem,
as analyzing accelerometer data requires a high transmission rate in order to capture
the movements effectively with machine learning techniques. However, accuracy of
detection using beacons is relatively high and they are suited to multiple occupancy
environments as they can provide specific location accuracy allowing to identify who
is interacting with a device. We collected data from five users in five different homes,
each over a period of one week. Three of the homes were multi occupancy homes. We
used this data to train five machine learning algorithms and evaluated their accuracy
in recognizing ADLs and meaningful activities. In this paper we present the methods
employed in our study, including how we collected data and ground truth labels from
human participants, and how we trained and evaluated the machine learning models. We
present our results, focusing on the overall accuracy of the machine learning models as
well as the accuracy in recognizing individual activities. We conclude by discussing the
potential implications of our work, as well as directions for future research.

2 Methods

2.1 Data Collection

We recruited 5 participants (3 males, 2 females), all aged 18 and above, without any cog-
nitive or physical impairments to take part in a pilot study. We received ethics approval
prior to commencing the study and obtained informed consent from all participants. Par-
ticipants were able to choose a set of activities (Table 2), agreed between the researcher
and each participant, with a mixture of ADLs and meaningful activities. Participants
carried out a set of activities over the course of one week in their own homes. To detect
interaction with objects around the home sixmain sensor types were used - motion, door,
power, ambient (temperature and humidity), pressure and beacon sensors. The motion,
door, and pressure sensors are binary sensors that can detect motion in an environment,
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for example, opening of a door and the application of a pressure on a surface such as a
bed respectively. The temperature, humidity, and power sensors are continuous sensors
that detect changes in temperature, humidity and power surges. Finally, the beacon sen-
sor is a binary sensor that detects the disturbance of any object or surface it is attached
to. For example, they were attached to bookmarks and the remote control for the TV.
Based on the selected set of activities, the appropriate set of sensors was provided and
installed by the researcher, who noted down the location on a rough sketch of the floor
plan of the participant’s home. During the study, data collected from the sensors was
stored in a database on a Raspberry Pi. Because of the time-dependent nature of the data
being stored, we used InfluxDB [6], an open-source time series database framework,
optimized for fast, storage and retrieval of time series data. The motion, door and ambi-
ent sensors were from the same manufacturer, Xiaomi. The pressure and power sensors
interfaced with the Raspberry Pi, using a z-wave communication protocol. We used the
Home Assistant open-source framework [7] as a service for asynchronously listening
for sensor readings and updating the InfluxDB database. A typical kit was composed of
25 sensors and cost on average £412 including the hub components.

Data collection took place over February and March 2019. Participants recorded
a log of activities using a journaling app called ATracker [8] on an Android tablet to
record the start and end time of activities as they were completed. These logs were
used as ground truth labels for the sensor data. We collected data for 14 activities.
There was high variation in the frequency and the duration of completing each task.
Sleeping, was recorded the most frequently (11 times) and recorded the most (95.34 h),
followed by Going Out (10 times, 30.44 h). Food preparation was the most frequently
recorded activity (24 times) but on average took much less time (0.29 h). On the other
end of activity frequency and duration were Vacuuming (3 times), Nail Care (2 times),
Grooming (2 times), Laundry (3 times) and Playing Board Games (1 times); these
activities only happened infrequently and also recorded the least amount of time overall.
To reduce bias in the prediction models (such that models developed would not be biased
towards classes with higher frequency or duration), we removed infrequent activities
where there are not enough training and testing data (playing board games) and we
applied a class weight to “boost” activities with lower frequencies.

2.2 Model Development and Evaluation

We used the ScikitLearn Python machine learning library to implement SVM, Naïve
Bayes, Logistic Regression, and Perceptron models. The Naïve Bayes was multinomial
and trained with an adaptive smoothing parameter (alpha) of 0.01. The SVM model
was trained with 5 maximum epochs. The Perceptron model was trained with a stopping
criterion of 1e-3. TheRNNwas implementedwith theTensorFlow framework and trained
with a learning rate of 0.001, weight decay of 0.005 and under 2 epochs. Data was split
into training and validation sets by a 75:25 ratio. Model performance was measured
by comparing predicted activities with ground truth gathered via the Atracker app. We
calculated accuracy for each algorithm as a ratio of all correctly labelled data point to
all test data points. To take into consideration the imbalanced nature of the data, we also
computed micro and macro averages for precision, recall, and F1-score.
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3 Results

3.1 Model Accuracy

RNN achieved the highest average accuracy, correctly recognizing 65.59% of the activ-
ities from the dataset followed closely by Perceptron on 65.09%. The other models per-
formed as follows - SVM (59.3), Logistic Regression (58%) and Naïve Bayes (53.95%).
Themicro-average,macro-average andF1 scores for each classifier and shown inTable 1.
TheRNNyields thehighest scores,withmacro-averageprecisionand recall scoresof0.88
and0.41respectively, andanF1-scoreof0.46. It significantlyoutperforms theotherclassi-
fiers at correctly recognizing a rangeof activities, achieving amacro averageF1-score that
is228.5%higher than thePerceptron.AMcNemar testwithalpha=0.05.indicated that the
prediction performance of the RNNwas statistically significant compared with the other
fourmodels.We hypothesize that the superiority of RNN is owed to its inherent feedback
architecture,whichallowsit toholdlatent informationabout thepreviousstateof themodel
in memory. For example, the Sleeping activity is typically completed in 8 h, hence a suit-
able timewindow for tracking the Sleeping activitywill be too large for tracking Laundry
(which typically takes 40min). The RNNmodel is better able to adjust its weight (during
the training step) to adaptively retain information.

Table 1. Micro-averaged and macro-averaged precision, recall and F1-scores

Algorithms Precision Recall F1-Score

SVM Micro average 0.59 0.59 0.59

Macro average 0.18 0.10 0.09

Naïve Bayes Micro average 0.54 0.54 0.54

Macro average 0.04 0.07 0.05

Logistic
regression

Micro average 0.58 0.58 0.58

Macro average 0.11 0.10 0.09

Perceptron Micro average 0.65 0.65 0.65

Macro average 0.16 0.14 0.14

RNN Micro average 0.56 0.56 0.56

Macro average 0.88 0.41 0.46

3.2 Activity Accuracy

We explored the performance of the models across the different activities (Table 2).
The Perceptron had high overall accuracy and a high micro-average accuracy, however,
the macro-average accuracy showed that it is not very good at recognizing a variety of
activities. In comparison, RNN can recognize a much wider range of activities reliably
than the Perceptron. Seven activities had low F1-scores across all algorithms - Washing
Dishes, Mealtime, Food Prep, Watching TV, Sleeping, Reading and Grooming.
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Table 2. F1-scores per activity, decreasing order of RNN’s F1 score

SVM Naïve Bayes Logistic regression Perceptron RNN

Nailcare 0.00 0.00 0.00 0.00 1.00

Laundry 0.00 0.00 0.00 0.00 0.98

Housekeeping 0.00 0.00 0.00 0.00 0.85

Bathing 0.00 0.00 0.00 0.00 0.82

Mealtime 0.00 0.00 0.00 0.00 0.22

Dressing 0.00 0.00 0.00 0.00 0.75

No activity 0.72 0.70 0.72 0.76 0.71

Wash dishes 0.00 0.00 0.00 0.00 0.46

Food prep 0.00 0.00 0.00 0.00 0.14

Watching TV 0.00 0.00 0.00 0.31 0.11

Sleeping 0.16 0.00 0.00 0.00 0.04

Going out 0.40 0.00 0.51 0.88 0.04

Reading 0.00 0.00 0.00 0.00 0.00

Grooming 0.00 0.00 0.00 0.00 0.00

4 Discussion and Conclusions

Our results demonstrate that an RNN model shows promise given a limited number
of cheap off-the-shelf sensors and a low number of training examples. Activities that
involved a number of distinct subtasks were difficult to detect, e.g. meal times may
involve laying a table with cutlery or plates and sitting at a table. Furthermore, real users
may have different routines, for example, breakfast may be a faster event and involve
fewer tasks than eating dinner. This suggests careful consideration needs to be given
to the set and combination of sensors to capture activities. Furthermore, high levels of
personalization are likely to be necessary for detecting meaningful activities, which can
be learned from datasets collected over longer periods to analyze user habits. In future
work we are interested in addressing our limitations in using BLE sensors. Rather we
propose the use of conventional Bluetooth. Although this will consume more energy,
they can be detected by sensors on mobile devices more consistently. This approach can
detect location and therefore activity recognition in multi-occupancy scenarios and may
also help recognizing more personalized meaningful activities.
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Abstract. Parkinson’s disease (PD) is a progressive, neurodegenerative disease
characterised by the presence of motor and non-motor symptoms and signs. The
symptoms of PD tend to begin very gradually and then become progressively
more severe. The rate of PD progression is hard to predict and is different from
one person to another. Namely, while in some patients the disease develops fast
in just a few years from the diagnosis, in some the disease takes a more idle
course and progresses slowly. We aimed to identify patients that develop severe
motor symptoms within four years from PD diagnosis (early progressors) and
separate them from those in whom severe symptoms develop beyond this point.
We used data from the Parkinson’s Progression Markers Initiative (PPMI) dataset
to calculatemotor progression of the disease by the use ofmotor scores as assessed
by MDS-UPDRS III. The predictors were defined as baseline scores of selected
clinical variables and the difference betweenmotor scores at 1-year after enrolment
in the study and the same scores at baseline. The rationale for predictor selection
was that they should be readily available in routine clinical practice.We tested four
different classifiers: logistic regression, decision tree, random forest, and gradient
boosting. The best performing classifier was the logistic regression with an area
under the ROC curve of 81%. We believe this can be the basis for a reliable and
explainable classifier, using only standard clinical variables, for identifying early
progressors with high recall (80%) three years in advance.

Keywords: Parkinson’s disease · Early progression · Clinical predictors ·
Artificial intelligence ·Machine learning

1 Motivation

Parkinson’s disease (PD) is a chronic, progressive, neurodegenerative disease charac-
terised by the presence of motor and non-motor symptoms and signs. The symptoms
of PD tend to begin very gradually and then become progressively more severe. The
rate of PD progression is hard to predict and is different from one person to another.
Namely, while in some patients the disease develops fast in just a few years from the
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diagnosis, in some the disease takes a more idle course and progresses slowly. Under-
standing progression of PD is of outmost importance to improve clinical management of
the patients and to offer patients accurate information regarding progression of the dis-
ease in the early stages of PD. In addition, accurate baseline/early disease predictors can
also improve clinical research by optimizing trial efficiency (e.g. trial duration, selection
criteria, sample size estimates). Different clinical predictors of fast motor progression in
PD have been identified so far, such as higher age at onset, symmetrical disease at onset,
postural instability and gait disorder type of the disease, cognitive decline, bradykinesia
score, and female gender [1–3]. However, it still not known how reliable these predictors
are, alone or combined with other clinical and paraclinical investigations to predict the
rate of progression of PD.

Different approaches have been tried to explore the prognostic factors of PD progres-
sion. In addition to the use of the classical statistical approaches [4] recent studies have
employed machine learning approaches on clinical [5], or a combination of both clini-
cal and paraclinical data [6]. However, so far studies have identified too many different
clinical and paraclinical predictors to be of practical use in routine clinical practice. In
addition, in practice, it is very difficult to predict the progression of the disease based on
the initial neurological examination only. Therefore, the aim of this study was to identify
patients that develop severe motor symptoms within four years from PD diagnosis (early
progressors) and separate them from those in whom severe symptoms develop beyond
this point by the use of a more rational approach with only a limited number of routine
clinical predictors.

2 Patients

We used data from the Parkinson’s Progression Markers Initiative (PPMI) [7]. PPMI
is a longitudinal observational clinical study including various cohorts of PD patients.
In this paper we considered the De Novo PD patients cohort. These are patients with a
diagnosis of PD for at most two years and without yet starting medication treatments
and ideally fit the purpose of this research.

We divided the patients into two groups based on their results of the Movement
Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III.
During this examination, composed of several tests, the patient is asked to perform
several physical tasks (e.g. finger tapping test, hand movement test, etc.). To avoid any
kind of bias we excluded patients that performed the MDS-UPDRS part III examination
on PD medication. For each patient, we computed the MDS-UPDRS part III overall
score (sum of scores of all tasks) both at baseline and at the fourth year. There were
310 patients that have reached the fourth year of the study and have completed the
MDS-UPDRS part III without medication. Next, we computed the difference between
the fourth-year overall score and the baseline overall score.

Finally, based on the input of a neurologist, specialised in PD, we defined two groups
of patients: early progressors (difference> 20) and non-early progressors (difference
<15). Patients with the difference between 15 and 20 were excluded from further study
since they represent borderline cases that could always be interpreted as correct even if
misclassified. We also decided to exclude all the patients with at least one missing value
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in order to avoid imputing. The final dataset was thus composed of 209 patients (162
non-early progressors and 47 early progressors).

3 Predictors

Our choice of possible predictors of early progression was guided by the final utility of
the predictive model in routine clinical practice. As such we decided on a selection of
predictors commonly used in routine clinical practice. We also decided not to consider
each score from each test but to compute some overall scores that are usually used in
clinical practice. Furthermore, in the opinion of our neurology expert, it is improbable to
be able to estimate the progression rate of the disease from only a single visit at baseline.
Thus, we decided to consider both baseline data and 1-year data. However, instead of
including 1-year predictors in the models directly, we computed the difference between
each predictor at 1-year and at baseline in order to simulate a follow-up of 1-year (called
Delta (�) predictors). The final selection of predictors, approved by a neurologist, is
given in Table 1.

Table 1. List of routine clinical predictors used for training the classifiers. The total number of
predictors considered was 62: 36 from baseline data and 26 delta predictors.

Category Routine clinical predictors

Vital parameters Body Mass Index*, Systolic supine blood pressure*, Heart Rate
Supine*

Demographic data Age at baseline, Gender, Education years, Age on set symptoms,
Age at diagnosis, Dominant side

MDS-UPDRS part I Cognitive*, Sleep*, Autonomic Nervous System*,

MDS-UPDRS part II Bulbar*, Common daily activities*, Bed*, Gait*,

MDS-UPDRS part III Axial I*, Axial II, Limb rigidity*, Limb bradykinesia, Tremor*,
Resting Tremor, Appendicular, overall score**

Activities of daily living Modified Schwab & England activities of daily life: overall score*

Neuropsychological Benton Judgment of line orientation: derived score*, Hopkins verbal
learning test: derived total*, Letter number sequencing PD: derived
score*, MoCA: overall score*, Symbol digit Modalities: derived
score*

Neurobehavioral QUIP: overall score*, Geriatric depression scale short: overall
score*, STAI overall score*

Autonomic SCOPA-AUT: overall score*

Sleep disorders Epworth Sleepiness Scale: overall score*, REM Sleep disorder
questionnaire: overall score*

Smell disorders University of Pennsylvania smell id test: overall score
*For this predictor also the equivalent delta version was computed.
**For this predictor only the delta version was computed.
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4 Methods

Spearman’s correlation coefficient (SCC) was used to further reduce the number of
considered predictors. We deleted one predictor from pairs with SCC higher than 0.8;
keeping the more meaningful one from a clinical point of view. Furthermore, we per-
formed a filtered feature selection based on univariate feature ranking method using the
Mann-Whitney U test (for continuous variables) and χ2 test (for categorical variables).
The nested 10-fold cross validation was used for feature selection and for estimating the
performance of the trained models. At each iteration of the inner loop, feature selection
was performed on the training set: we selected the best n1 features on the training set.
At the end of the inner loop, we obtained 10 sets of n features. Among these sets, we
counted the occurrences of each feature and took the n most often selected ones.

Since the ratio between both classes was one-to-four we decided to balance the
dataset before training the models. This can improve learning the minority class (early
predictors) – the class we are particularly interested in. We used Synthetic Minority
Oversampling Technique (SMOTE) for balancing the training set. We followed the
recommendation by Chawla et al. [8] to first undersample the majority class in order
reduce the ratio to 1:2 and then create samples from the minority class increasing the
ratio to 1:1.

5 Results and Discussion

We compared four classifiers: decision tree (DT), logistic regression (LR), gradient
boosting (GB) and random forest (RF). The results are reported in Table 2. The best-
performing classifier is the logistic regression that achieves the best results for all the
metrics considered. The relatively high recall (0.80) means themajority of early progres-
sors will be detected. On the other hand, comparatively low precision (0.50) does not
modify the risks-benefit trade-off of the model. In the clinical practice the model would
be used as a warning for the clinician who could pay extra attention to potential early
progressors. In addition, these patients and their family would be warned in advance and
could prepare from a psychological point of view. They could also prepare their living
environment in order to increase the safety of the patient.

The final logistic regression model was built with the six most selected variables
during the feature selection procedure: � MDS-UPDRS III, � Axial I, � Tremor,
� Limb rigidity, � Common daily activity, � Bulbar. As we can see these are only
�predictors, i.e., differences between one-year and baseline. The results obtained are
reasonable from a medical point of view since all the selected variables come from
MDS-UPDRS scores and PD is characterized principally by motor signs that are among
the first to worsen during the years.

1 Since we had a validation set in the inner cross validation loop, we decided to use it to tune
this parameter. We tried to increase the number of features n until the mean performances of
the chosen algorithms on the inner loop continued to increase. When, rising n, they started to
decrease we found the optimal number of features n = 6.
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Table 2. Results comparison (10-fold CV). The simple accuracy was avoided due to the
unbalanced situation of the test sets as SMOTE/undersampling were applied only on training
folds.

Balanced
Accuracy

AUC_ROC Recall Precision

DT 0.67 0.60 0.63 0.40

LR 0.76 0.81 0.80 0.50

RF 0.71 0.72 0.66 0.44

GB 0.69 0.56 0.39 0.27

Finally, the fact that the most selected predictors are routinely computed sub-scores
allows for the inexpensive and clinically useful tool able to help the clinicians in
recognising early-progressing patients three years in advance.
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Abstract. Over 50 million people today live with some form of dementia as
it is the most common neurodegenerative disease in the world. Mild cognitive
impairment (MCI) is a stage before dementia symptoms overtly manifest. An esti-
mated 10–15% of patients diagnosed with MCI annually convert to Alzheimer’s
dementia. Early detection of MCI is imperative as disease-modifying therapies in
development could have the potential to significantly delay disease progression
before dementia symptoms develop. There is evidence that observing oculomotor
movements during different neuropsychological tasks can serve as a biomarker for
MCI. A clinical study with 105 participants was performed at several centres in
Ljubljana, Slovenia. All the participants underwent an extensive neurological and
psychological evaluation and were, on the basis of this evaluation, divided into
two groups: cognitively impaired and healthy controls. At the same time the par-
ticipants performed several short tasks on the computer screen, including smooth
pursuit dot tracking and a modified version of the Corsi block-tapping test. During
the tasks, performed using their gaze alone, their eye movements were recorded
with an eye-tracker. The eye-tracking data was analysed and a number of fea-
tures describing the gaze behaviour was proposed. These features were used to
construct several machine learning models to predict whether a person exhibits
signs of cognitive impairment or not. A model based on random forest classifier
achieved the best performance with 80% classification accuracy and an area under
the ROC curve of 85%.
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1 Introduction

Over 50 million people today worldwide live with some form of dementia as it is the
most common neurodegenerative disease in the world. The concept of mild cognitive
impairment (MCI) represents a state of cognitive function between that seen in normal
aging and dementia in which, despite the cognitive impairment, the activities of daily
living and the quality of life are not substantially affected. An estimated 10–15% of
patients diagnosed with MCI annually convert to Alzheimer’s dementia (AD) [1]. Early
detection of MCI is imperative as disease-modifying therapies in development could
have the potential to significantly delay or even stop disease progression before dementia
symptoms develop.

Different approaches, based on clinical, biochemical and imaging grounds, have
been used for early detection of MCI [2]. However, these methods are in general time
consuming, expensive and require highly specialised staff to execute them. This renders
them unsuitable for a wider use to detect cognitive impairment on a population level.
Therefore, the quest for sensitive measures to assess subtle cognitive decline in MCI is
still ongoing.

There is evidence that observing eye movements during different neuropsycholog-
ical tasks can serve as a biomarker for MCI and AD [eg. 3]. In addition to saccadic,
impairments of smooth pursuit eye movements have been shown in AD [4]. However,
the rate and quality of smooth pursuit abnormalities in MCI is not known, just as it is
not known whether they can be useful biomarkers for early detection of MCI.

The aim of this study was to explore the usefulness of smooth pursuit in combination
with a modified eye-tracking compatible version of the Corsi block-tapping memory test
[5] to detect MCI.

2 Patients and Methods

The data of 105 participants from an ongoing clinical study in Slovenia was analysed.
The participants underwent an extensive neurological and psychological evaluation on
the basis of which they were assigned into two groups: cognitively impaired (denoted
as MCI + and consisting of borderline cases, MCI, and dementia) and healthy controls
(HC). As the study is ongoing, we initially had data from 67 participants (37 MCI +
and 30 HC) that we used as a training set. The remaining 38 participants (15 MCI + and
23 HC) were used as a test set. Furthermore, all the participants’ eye movements were
recorded while they performed a digitalised neuropsychological test battery composed
of several short tasks. A combination of two tasks, smooth pursuit and Corsi block-
tapping, was analysed in this paper to understand whether it is possible to detect MCI
based on the features derived from these tasks.

2.1 Smooth Pursuit Test

The smooth pursuit test consists of following a moving dot on the screen. The movement
is sinusoidal in time and it can be either vertical or horizontal, while the speed can be
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low (period of 4800 ms), medium (2400 ms) or high (1600 ms). All combinations of
speed and direction are presented to the user.

The eye-tracker records the spatial coordinates (x, y) on the screen of both eyes at
each timestamp (90 Hz). The raw data was pre-processed: (1) tasks with less than 90%
of valid data points were discarded; (2) initial 10% of the recording was removed to
analyse only the most stable part of the data; (3) a median filter of window size 5 was
applied to reduce the noisy artefacts; and (4) only the best of the two eyes in terms
of each considered feature was used for machine learning. A number of features were
constructed from the pre-processed recordings: mean squared error (MSE), range, speed
difference, #predictions, #fixations, and latency error.

MSE measures how well the user follows the dot. It is computed as the mean of
the squared differences between the position of the dot and the gaze in the direction
of the given task. The range feature compares the amplitude of the dot oscillation with
the gaze amplitude in order to understand if the users are following the dot until the
very end of the oscillation or if they are overshooting/undershooting. The difference in
speed was computed as the sum of the absolute speed differences between the eye and
the dot speed point by point in the direction of the dot movement. It is known from the
literature that the sinusoidal smooth pursuit is one of the best stimulus waves to observe
the user’s predictive behaviour [6]. When the user stops following the dot with a smooth
pursuit movement and just anticipates its next extreme end position, we can see a jump
in the space curve that corresponds to a speed peak. The feature #predictions measures
the number of speed peaks in each gaze curve. The #fixations feature is the number of
detected eye fixations during the task; these were defined as consecutive samples with an
inter-sample distance of less than 30 pixels and a duration of more than 200 ms. Finally,
the latency error is computed as the MSE for the first 700 ms for each task (for this
feature the first 10% of the recording was not removed). In humans there is normally
a latency of ~100–130 ms before smooth pursuit movement starts [6] and this initial
delay can be bigger in cognitively impaired subjects even if sinusoidal target trajectory
is not the best one to observe the typical smooth pursuit latency [7].

2.2 Modified Corsi Block-Tapping Test

In our eye-tracking version of theCorsi block-tapping test the user sees 9 circles arranged
in a 3 × 3 grid. There are two different versions of the test; one forward and one reverse.
In the forward test, when the task starts, the user sees two of the 9 circles lighting up in
a random sequence, one at a time, and after that, the user is asked to repeat the sequence
by looking at the circles in the same order. For the reverse test the user is asked to repeat
the displayed sequence in the reverse order. There are 8 different levels depending on
the sequence length. The first level consists of a sequence of two circles. If the level is
cleared, the sequence length increases by one – up to a maximum sequence length of 9
circles. Each level is repeated twice (with a different sequence of the given length) and
one correct answer is enough to proceed to the next level. The first level is an exception;
it is repeated three times.

Measures related to how the users move their eyes in the case of the Corsi task
are likely not a direct and simple indicator of memory functioning. Therefore, as Corsi
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features we simply used the highest levels (forward, reverse) reached; considering a level
"cleared" if at least one of the sequences of that level was correctly repeated.

Most of the cognitively impaired participant (78% for the forward task and 76% for
the reverse task) did not reach the second level. Therefore, we used a threshold of level
two to binarize both features, forward and reverse maximum level reached, to maximize
the differences between the classes.

3 Results

A deep learning approach for the automatic extraction of the features was avoided in
order to identify few clinical and explainable predictors based on the knowledge-domain.
Therefore, we used the statistically significant features from smooth pursuit and both
Corsi features (15 features in total) when training the machine learning models. We also
decided against imputing missing data, therefore we deleted five subjects with one or
more missing values. The final dataset was thus composed of 100 participants (50 MCI
+ and 50 HC): 65 participants (36MCI+ and 29 HC) in the training set and 35 (14MCI
+ and 21 HC) in the test set. Continuous variables were standardised before training
and one of the two features (the one with a higher p-value in the initial analysis) for
the couples with an absolute Spearman’s correlation coefficient ≥ 0.7, was discarded,
bringing the final number of features to 12.

We used 10-fold cross validation on the training data to select the best features,
performing a ranking at each round of the cross validation and choosing as final features
only the most often selected ones. The ranking was made on the basis of the p-value
returned by a statistical test (Mann-Whitney U test for continuous features and Fisher’s
exact test for binary features). The sevenmost frequently selected features were: forward
Corsi level (10/10), reverse Corsi level (10/10), MSE 4800 y (10/10), speed 2400 x
(10/10), MSE 4800 x (9/10), speed 4800 y (8/10), MSE 1600 x (7/10).

Table 1. The performance on the previously unseen test set (n = 35).

Model ROC AUC Accuracy (CI 95%) Precision Recall

Decision tree 0.65 0.63 ± 0.16 0.52 0.79

Logistic regression 0.79 0.71 ± 0.15 0.64 0.64

Random forest 0.85 0.80 ± 0.13 0.77 0.71

Gradient boosting 0.82 0.69 ± 0.15 0.57 0.86

We compared fourmachine learning algorithms: Decision Tree, Logistic Regression,
Random Forest, and Gradient Boosting. For the last two we tuned the parameters using
a randomised search cross validation followed by an exhaustive grid search cross vali-
dation. The evaluation results on the previously unseen test set are presented in Table 1.
The best classifier is Random Forest with an AUC of 85% and a classification accuracy
of 80%. It is also the best model in terms of combined precision and recall with both
above 70%.
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4 Discussion and Conclusions

Due to aging population a fast and non-invasive screening test would be of great benefit to
health care system, patients, and care takers. The usefulness of saccadic eye-movements
in diagnosing deviations from normal cognitive functioning is well established, but there
is very little information on the use of smooth pursuit and Corsi-computer based test in
the context of eye-tracking based detection of MCI. The results show good potential of
using eye-tracking technology in combination with digitalised neuropsychological tests
for detecting MCI. If used in the clinical practice, subject classified as MCI + would be
referred for neurological examination so that any misclassification would be corrected.
In addition, we believe that if preformed periodically in people after a certain critical
age (e.g. 50), it could even detect MCI more accurately. Another way to improve the
accuracy of the system would be to integrate additional neuropsychological tests that
cover other cognitive domains.

Further research on the topic is of outmost importance because of the potential the
proposed technology holds. Since it requires only a technician to carry out the test it
could be used as a screening test at a large-scale, populational level to detectMCI as early
as possible. This will specially become important in near future when neuroprotective
drugs become available.
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Abstract. Clinical event sequences consist of thousands of clinical
events that represent records of patient care in time. Developing accurate
prediction models for such sequences is of a great importance for defin-
ing representations of a patient state and for improving patient care.
One important challenge of learning a good predictive model of clini-
cal sequences is patient-specific variability. Based on underlying clini-
cal complications, each patient’s sequence may consist of different sets
of clinical events. However, population-based models learned from such
sequences may not accurately predict patient-specific dynamics of event
sequences. To address the problem, we develop a new adaptive event
sequence prediction framework that learns to adjust its prediction for
individual patients through an online model update.

1 Introduction

Clinical event sequence data based on Electronic Health Records (EHRs) con-
sist of thousands of clinical events representing records of patient condition and
its management, such as administration of medications, records of lab tests and
their results, and various physiological signals. Developing accurate temporal
prediction models for such sequences is extremely important for understanding
the dynamics of the disease and patient condition under different interventions
and detection of unusual patient-management actions, and it may ultimately
lead to improved patient care [6]. One important challenge of learning good pre-
dictive models for clinical sequences is patient-specific variability. Depending on
the underlying clinical condition specific to a patient combined with multiple dif-
ferent management options one can choose and apply in patient care, the event
patterns may vary from patient to patient. Unfortunately, many modern event
prediction models and assumptions incorporated into training of such models
may prevent one from accurately representing such a variability. The main chal-
lenge, which is also the main topic of this paper, is how to recover at least some
of the patient-specific behavior of such models.

We study this critical challenge in context of neural autoregressive models.
Briefly, neural temporal models based on RNN, LSTM, and attention mecha-
nism have been widely used to build models for predicting clinical event time-
series [3,10–13,15]. However, when built from complex multivariate clinical event
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sequences, aforementioned neural models may fail to accurately model patient-
specific variability due to their limited ability to represent distributions of
dynamic event trajectories. Briefly, the parameters of neural temporal models are
learned from many patients data through Stochastic Gradient Descent (SGD)
and are shared across all types of patient sequences. Hence, the population-
based models tend to average out patient-specific patterns and trajectories in
the training sequences. Consequently, they are unable to predict all aspects of
patient-specific dynamics of event sequences and their patterns accurately.

To address the above problem, we propose, develop, and study two novel
event time-series prediction solutions that attempt to adjust the predictions for
individual patients through an online model update. First, starting from the pop-
ulation model trained on a broad population of patients, we adapt (personalize)
the model to individual patients to better fit patient-specific relations and pre-
dictions based on the current history of observations made for that patient. We
refer to this model as the patient-specific model. However, one concern with the
patient-specific model and adaptation is that it may lose some flexibility by being
fit too tightly to the specific patient and its recent condition. To address this,
we also investigate a model switching approach that learns how to adaptively
switch among multiple prediction models that may consist of both population
and patient-specific models. These solutions extend RNN based multivariate
sequence prediction to support personalized clinical event sequence prediction.
We demonstrate the effectiveness of both solutions on clinical event sequences
derived from real-world EHRs data from MIMIC-3 Database [9].

2 Related Work

Patient-Specific Models. The problem of fitting patient-related outcomes and
decisions as close as possible to the target individual has been an important
topic of biomedical research and personalized medicine. One classic approach
identifies a small set of traits or features that help to define a subpopulation the
patient belongs to and applies a model built specifically for that subpopulation
[7,8]. More flexible patient-specific models [4,22,26] identify the subpopulation
of patients relevant to the target patient by using a patient similarity measure,
and then build and apply the model online when the prediction is needed.

Online Adaptation Methods. However, in many sequential prediction sce-
narios, the models that are applied to the same patient more than once create an
opportunity to adapt and improve the prediction from its past experiences and
predictions. This online adaptation lets one to improve the patient-specific mod-
els and their prediction in time gradually. The standard statistical approach
can implement the adaptation process using the Bayesian framework where
population-based parameter priors combined with the history of observations
and outcomes for the target patient are used to define parameter posteriors [1].
Alternative approaches for online adaptation developed in literature use sim-
pler residual models [16] that learn the difference (residuals) between the past
predictions made by population models and observed outcomes on the current



Neural Clinical Event Prediction Through Personalized Adaptive Learning 177

patient. Liu and Hauskrecht [16] learn these patient-specific residual models
for continuous-valued clinical time-series and achieve better forecasting perfor-
mance.

Online Switching Methods. The online switching (selection) method is a
complementary approach that has been used to increase prediction performance
of online personalization models by allowing multiple (candidate) models to be
used together [14,24]. At each time in a sequential process, a switching decision is
made based on recent prediction performance of each candidate model. For exam-
ple, for continuous-valued clinical time-series prediction, Liu and Hauskrecht [17]
have a pool of population and patient-specific time-series models and at any point
of time the switching method selects the best performing model.

Neural Clinical Event Sequence Prediction. EHR-derived clinical event
sequence data consists of thousands of sparse and infrequently occurring clinical
events. In recent years, neural-based models have become the most popular and
also the most successful models for representing and predicting EHR-derived
clinical sequence data. The advantages of such models are their flexibility in
modeling latent structures, feature representation, and their learning capabil-
ity. Specifically, word embedding methods [20] are effectively used to learn low-
dimensional compact representation (embedding) of clinical concepts [2] and
predictive patient state representations [25]. For autoregressive event prediction
task, hidden state-space models (e.g., RNN, GRU) and attention mechanism
are applied to learn latent dynamics of patient states progression and predict
clinical variables such as diagnosis codes [18,19], ICU mortality risk [27], heart
failure onset [3], and multivariate future clinical event occurrences [10–13,15]. For
neural-based personalized clinical event prediction, most works focus on using
patient-specific feature embedding obtained from patient demographics features
[5,28]. A limitation of the approach is that complex transitions of patient states
in time cannot be modeled in a personalized way through static feature embed-
dings. In this work, we develop and investigate methods for adapting modern
autoregressive models based on RNN that have been successfully applied to var-
ious complex clinical patient states and prediction models.

3 Methodology

3.1 Neural Autoregressive Event Sequence Prediction

Our goal is to predict occurrences of multiple target events in clinical event
sequences. We aim to build an autoregressive model φ that can predict, at any
time t, the next step (target) event vector y′

t+1 from a history of past (input)
event vectors Ht = {y1, . . . ,yt}, that is, ŷ′

t+1 = φ(Ht). The event vectors are
binary {0, 1} vectors, one dimension per an event type. The input vectors are
of dimension |E| where E are different event types in clinical sequences. The
target vector is of dimension |E′|, where E′ ⊂ E are events we are interested in
predicting.
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One way to build a neural autoregressive prediction model φ is to use Recur-
rent Neural Network (RNN) with input embedding matrix Wemb, output linear
projection matrix Wo, bias vector bo, and sigmoid (logit) activation function σ.
At each time step t, the RNN-based autoregressive model φ reads new input yt,
updates hidden state ht, and generates prediction of the target vector ŷ′

t+1:

vt = Wemb · yt ht = RNN(ht−1,vt) ŷ′
t+1 = σ(Wo · ht + bo)

Wemb,Wo, bo, and RNN’s parameters are learned through SGD with loss
function L defined by the binary cross entropy (BCE):

L =
∑

s∈D

T (s)−1∑

t=1

e(y′
t+1, ŷ

′
t+1) (1)

e(y′
t, ŷ

′
t) = −[y′

t · log ŷ′
t + (1 − y′

t) · log(1 − ŷ′
t)] (2)

where D is training set and T (s) is length of a sequence s. This neural autore-
gressive approach has several benefits when modeling complex high-dimensional
clinical sequences: First, low-dimensional embedding with Wemb helps us to
obtain a compact representation of high-dimensional input vector y. Second,
complex dynamics of observed patient state sequences are modeled through RNN
which is capable of modeling non-linearities of the sequences. Furthermore, latent
variables of neural models typically do not assume a specific probability form.
Instead, the complex input-output association is learned through SGD based
end-to-end learning framework which allows more flexibility in modeling com-
plex latent dynamics of observed sequence.

However, the neural autoregressive approach cannot address one impor-
tant characteristic of the clinical sequence: the variability in the dynamics of
sequences across different patients. Typically, EHR-derived clinical sequences
consist of medical history of several tens of thousands of patients. The dynam-
ics of one patient’s sequence could be significantly different from the sequences
of other patients. For typical neural autoregressive models, parameters of the
trained model are used to process and predict sequences of all patients which
consist of individual patients who can have different types of clinical complica-
tions, medication regimes, or observed sequence dynamics.

3.2 Online Adaptation of Model Parameters

To address the patient variability issue, we propose a novel learning framework
that adapts the parameters of the neural autoregressive model to the current
patient sequence via SGD. For simplicity, we denote population model φP as
a model trained on all training set patient data and patient (instance)-specific
model φI that adapted to the current patient sequence at the prediction (test)
stage. As described in Algorithm 1, the online model adaptation procedure at
time t for the current patient starts by creating a patient-specific model φI from
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Algorithm 1: Online Model Adaptation
Input : Population model φP , Current patient’s history of observed input

sequence Ht = {y1, . . . ,yt} and target sequence (y′
1, . . . ,y

′
t)

Initialize patient-specific model φI from φP ; τ = 0; L∗
t (0) = ∞;

repeat
τ = τ + 1;

L∗
t (τ) =

∑t−1
i=1 e

(
y′
i+1, ŷ

′
i+1

) · K(t, i) where ŷ′
i+1 = φI(Hi);

Update parameters of φI with L∗
t (τ) via SGD;

until L∗
t (τ − 1) − L∗

t (τ) < ε;

Output: Patient-specific model φI

the population model φP . They have identical model architecture and values of
parameters in φI are initialized from φP . Then, we compute an online error L∗

t =∑t−1
i=1 e(y′

i+1, ŷ
′
i+1)K(t, i) that reflects how much the prediction of φI deviates

from the already observed target sequence for the current patient. With L∗
t , we

iteratively update parameters of φI via SGD. Stopping criterion for the iterative
update is: L∗

t (τ −1)−L∗
t (τ) < ε where τ denotes the epoch of adaptation update

and ε is a positive threshold.

Discounting. Please note that our adaptation-based loss L∗
t combines predic-

tion errors for all time steps of the sequence. However, in order to better fit it
to the most recent patient-specific behavior, it also biases the loss more towards
recent clinical events. This is done by weighting prediction error for each step
i < t with K(t, i) that is based on its time difference from the current time t.
More specifically, K(t, i) defines an exponential decay function:

K(t, i) = exp
(

− |t − i|
γ

)
(3)

where γ denotes the bandwidth (slope) of exponential decay; if γ is close to +∞,
errors at all time steps have the same weight.

Online Adaptation of Model Components. The RNN model may have too
many parameters, and it may not help to adapt to all of them at the same
time. One solution is to relax and permit to adapt only a subset of parameters.
We experiment with and compare the adaptation of output layer parameters
(Wo, bo) and transition model (RNN) parameters.

3.3 Adaptation by Model Switching

One limitation of online patient-specific adaptation is that it tries to modify
the dynamics to fit more closely the specifics of the patient. However, when
the patient state changes suddenly due to recent events (e.g., a sudden clinical
complication such as sepsis), the parameters of the patient-specific model φI may
not be able to adapt quickly enough to these changes. In such a case, switching
back to a more general population model could be more desirable.
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Algorithm 2: Online Model Switching
Input : φP , φI , Ht = {y1, . . . ,yt},(y′

1, . . . ,y
′
t)

LI =
∑t

i=1 e(y′
i+1, ŷ

′I
i+1) · K(t, i) where ŷ′I

i+1 = φI(Hi);

LP =
∑t

i=1 e(y′
i+1, ŷ′P

i+1) · K(t, i) where ŷ′P
i+1 = φP (Hi);

if LP ≥ LI then

ŷ′
t+1 = ŷ′I

t+1

else

ŷ′
t+1 = ŷ′P

t+1

end

Output: Prediction at time step t + 1: ŷ′
t+1

Model switching framework [17,24] can resolve this issue by dynamically
switching among a patient-specific model and the population model. Driven by
the recent performance of models, it can switch to the best performing model
at each time step. Algorithm 2 implements the model switching idea. Given a
trained population model φP , a patient-specific model φI trained via online adap-
tation, and the current patient’s observed sequence, we can compute discounted
losses LP ,LI for both models on the past data. By comparing the two losses,
we select the model that gives the best error and use it for predicting the next
step.

4 Experimental Evaluation

4.1 Experiment Setup

Clinical Sequence Generation. We extract 5137 patients from publicly avail-
able MIMIC-3 database [9] using the following criteria: (1) age is between 18 and
99, (2) length of admission is between 48 and 480 h, and (3) clinical records are
stored in Meta Vision system, one of the systems used to create MIMIC-3. We
generate train and test sets using 80/20% split ratio. From the extracted records,
we generate multivariate event sequences with a sliding-window method. We seg-
ment all sequences with a time window W = 24 h. All events that occurred in a
time-window are aggregated into a binary vector yi ∈ {0, 1}|E| where i denotes
a time-step of the window and E is a set of event types. At any point of time
t, a sequence of vectors created from previous time-windows defines an (input)
sequence. A vector representing events in the next time window defines the pre-
diction target.

Feature Extraction. We use medication administration, lab results, proce-
dures, and physiological results to define events. For the first three categories,
we remove events that were observed in less than 500 different patients. For phys-
iological events, we select 16 important event types with the help of a critical
care physician. Lab test results and physiological measurements with continuous
values are discretized to high, normal, and low values based on normal ranges
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compiled by clinical experts. In terms of prediction targets, we only consider
and represent events corresponding to occurrences of such events, and we do not
predict their normal or abnormal values. This process results in 65 medications,
44 procedures, 155 lab tests, and 84 physiological events as prediction targets,
for the total target vector size of 348. The input vectors are of size 449.

Baseline Models. We compare proposed models to the following baselines:

– GRU-based POPulation model (GRU-POP): For RNN-based time-
series modeling described in Sect. 3.1, we use GRU. (λ = 1e−05) The patient
(INstance)-specific model (GRU-IN) has the same architecture.

– REverse-Time AttenTioN (RETAIN): RETAIN is a representative work
on using attention mechanism to summarize clinical event sequences, pro-
posed by Choi et al. [3]. It uses two attention mechanisms to comprehend
the history of GRU-based hidden states in reverse-time order. For multi-label
output, we use a sigmoid function at the output layer. (λ = 1e−05)

– Logistic regression based on Convolutional Neural Network (CNN):
This model uses CNN to build predictive features summarizing the event his-
tory of patients. Following Nguyen et al. [21], we implement this CNN-based
model with a 1-dimensional convolution kernel followed by ReLU activation
and max-pooling operation. To give more flexibility to the convolution oper-
ation, we use multiple kernels with different sizes (2, 4, 8) and features from
these kernels are merged at a fully-connected (FC) layer. (λ = 1e−05)

Model Parameters. We use embedding dimension 64, hidden state dimension
512, for all neural models. The population model, RETAIN, and CNN use learn-
ing rate 0.005 and patient-specific models use 0.005. To prevent over-fitting, we
use L2 weight decay regularization during the training of GRU-POP, RETAIN,
and CNN, and the weight λ is determined by the internal cross-validation set
(range: 1e−04, 1e−05, 1e−06, 1e−07). For the SGD optimizer, we use Adam.
For the early stopping criteria parameter, we set ε = 1e−04. For γ, we use fixed
value 3.0.

Evaluation Metric. We use the area under the precision-recall curve (AUPRC)
as the main evaluation metric. AUPRC is known for presenting a more accurate
assessment of performance of models for a highly imbalanced dataset [23].

4.2 Results on Online Adaptation vs. Population Model

We first compare the prediction performance of the population model (GRU-
POP) and the proposed method on a patient-specific online adaption model
that adapted all parameters (GRU-IN) as described in Algorithm 1. As shown in
Fig. 1, patient-specific model clearly outperforms population-based model across
all time-steps. Especially in earlier days of admissions (day = 1–3), the perfor-
mance gap is smaller, but as time progresses on, the gap is increasing. It shows
patient-specific online adaptation models can learn to more accurately predict
patient-specific dynamics of event sequences compared to the population-based
model.
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Fig. 1. Prediction performance
(AUPRC) of online adaptation method
(GRU-IN) and population-based model
(GRU-POP).

Fig. 2. Performance of online adaptation
methods on all parameters (GRU-IN)
and two subsets of parameters (GRU-IN-
AT, GRU-IN-AO).

4.3 Results on Adaptation on Partial Components

Next, we relax the online adaptation procedure to update only subsets of param-
eters: GRU-IN-AO is only adapting the output weight layer (Wo, bo) and GRU-
IN-AT is only adapting parameters of the transition layer (GRU) only. As shown
in Fig. 2, the overall performance of GRU-IN-AO is close to GRU-IN which
adapts all parameters. Since GRU-IN-AO is more efficient, it offers the best
overall approach for patient-specific model adaptation.

Table 1. Prediction results of all models averaged across all time steps

CNN RETAIN GRU-POP GRU-IN GRU-IN-SW GRU-IN-AO-SW

AUPRC 30.81 29.67 29.61 41.13 42.14 42.62

4.4 Results for Online Switching-Based Adaptation

We also experiment with online switching-based adaptation approach. It chooses
the best predictive model from among a pool of available prediction models. We
run the method to choose between a population-based model and a patient-
specific adaptation model. We try the switching model in combination with
the population model and two patient-specific models GRU-IN and GRU-IN-
AO. The switching model results use post-fix ‘-SW’. As shown in Fig. 3, models
that rely on multiple models and online switching outperform baseline models
of GRU-POP, CNN, and RETAIN. When the prediction performance is aver-
aged across all time steps, we can observe that GRU-IN-AO-SW outperforms all
models as shown in Table 1. Particularly, GRU-IN-AO-SW’s AUPRC is +43%
higher than GRU-POP and RETAIN models. Compared to GRU-IN-AO (aver-
aged AUPRC: 40.89), the online switching adaptation method increases AUPRC
by +4.2% and this reveals the benefit added by the online switching method.
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Fig. 3. Performance of online switching methods (-SW) with population and patient-
specific adaptation models. Online switching methods clearly outperform baseline mod-
els (GRU-POP, RETAIN, CNN)

When the Model Switches? To have a better understanding of the behavior
of online switching-based adaptation, we investigate when the model switches to
a patient-specific model and to the population model. First, we analyze how
many times the online switching mechanism selects a patient-specific model
(instead of a population model) over time and report the ratio of it. As shown
in Fig. 4, in the early time steps, the online switching mechanism chooses the
population model. However, at later time steps, the switching mechanism selects
patient-specific models. This can be explained by the fact that patient-specific
models need enough observations to adapt the patient-specific variability which
is not possible with shorter sequences. To properly interpret the results, Fig. 5
shows the number of patients in each time step. This number can also be inter-
preted as the length of patient sequences and their volume. We can clearly see
that the number of patients with longer sequences is very small, as the majority
of sequences are very short. For example, patients with sequences longer than 13
days of admission are only about 12% of all patients in test set. From this, we can
conclude that the population model is often biased towards the dynamics and
characteristics of shorter patient sequences. Meanwhile, patient-specific models
can effectively learn and adapt better to the dynamics of longer sequences.

Predicting Repetitive and Non-repetitive Events. To perform this anal-
ysis, we divide event occurrences into two groups based on whether the same
type of event has or has not occurred before. We compute AUPRC for each
group as shown in Table 2. The results show that for non-repetitive events, the
performance of the patient-specific model is the lowest among all models. This
is expected because with no previous occurrence of a target event, a patient-
specific model could have difficulty making an accurate prediction for the new
target event. In this case, we can also see the benefit of the online switching
mechanism: the prediction of the population model is more accurate than the
patient-specific model, and the online switching mechanism correctly chooses
the population model. More specifically, GRU-IN-SW recovers most of the
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Fig. 4. Ratio of patient-specific models
selected in GRU-IN-SW. On latter time,
online switching mechanism choose per-
sonalized models.

Fig. 5. Number of patients in each
time step. The number of patients
quickly deteriorates with longer sequence
lengths.

Table 2. Prediction result on non-repetitive and repetitive event groups. For non-
repetitive events, the performance of patient-specific models (GRU-IN) is the lowest.
The online switching approaches (GRU-IN-SW, GRU-IN-AO-SW) recover the pre-
dictability by switching to the population model.

CNN RETAIN GRU-POP GRU-IN GRU-IN-SW GRU-IN-AO-SW

Non-repetitive 14.13 15.54 15.85 11.11 15.55 14.37

Repetitive 45.16 50.30 52.04 52.83 53.73 53.91

predictability of GRU-POP for non-repetitive event prediction. For repet-
itive event prediction, we can see that the patient-specific model (GRU-
IN) outperforms the population-based models. However, the online switching
approaches (GRU-IN-SW, GRU-IN-AO-SW) are the best and outperform all
other approaches.

5 Conclusion

In this work, we have developed methods for patient-specific adaptation of pre-
dictive models of clinical event sequences. These models are of a great impor-
tance for defining representations of a patient state and for improving care.
We demonstrate the improved performance of our models through experiments
on MIMIC-3, a publicly available dataset of electronic health records for ICU
patients.
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Abstract. Current surveillance methods may not capture the full extent
of COVID-19 spread in high-risk settings like food establishments. Thus,
we propose a new method for surveillance that identifies COVID-19 cases
among food establishment workers from news reports via web-scraping
and natural language processing (NLP). First, we used web-scraping to
identify a broader set of articles (n = 67,078) related to COVID-19 based
on keyword mentions. In this dataset, we used an open-source NLP plat-
form (ClarityNLP) to extract location, industry, case, and death counts
automatically. These articles were vetted and validated by CDC sub-
ject matter experts (SMEs) to identify those containing COVID-19 out-
breaks in food establishments. CDC and Georgia Tech Research Institute
SMEs provided a human-labeled test dataset containing 388 articles to
validate our algorithms. Then, to improve quality, we fine-tuned a pre-
trained RoBERTa instance, a bidirectional transformer language model,
to classify articles containing ≥1 positive COVID-19 cases in food estab-
lishments. The application of RoBERTa decreased the number of arti-
cles from 67,078 to 1,112 and classified (≥1 positive COVID-19 cases in
food establishments) articles with 88% accuracy in the human-labeled
test dataset. Therefore, by automating the pipeline of web-scraping and
COVID-19 case prediction using RoBERTa, we enable an efficient human
in-the-loop process by which COVID-19 data could be manually col-
lected from articles flagged by our model, thus reducing the human
labor requirements. Furthermore, our approach could be used to pre-
dict and monitor locations of COVID-19 development by geography and
could also be extended to other industries and news article datasets of
interest.
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1 Introduction

Though several studies have captured outbreaks of COVID-19 among employees
in congregate settings [18,22,31], to our knowledge few reports [14,28,32] com-
prehensively characterize outbreaks among essential workers in food production
and retail settings. Local news reports can be an important source in identify-
ing outbreaks. This project applies machine learning-based web-scraping and a
RoBERTa (A Robustly Optimized Bidirectional Encoder Representations from
Transformers Pretraining Approach) [21] language model to locate, quantify,
and characterize outbreaks among food system workers via local news reports.
Our system highlights the utility of media reports in characterizing COVID-19
outbreaks and can be extended to other industries and congregate settings.

2 Background

2.1 COVID-19 and Food Establishments

Understanding the scope of outbreaks of COVID-19 identified in non-healthcare
settings, such as food settings, is crucial to both informing public health decision-
making and prevention messaging tailored to reducing transmission among
worker populations and identifying potential health equity issues in workplaces.
Though outbreaks in food settings have been reported through various state
surveillance mechanisms [1,2,7], in web-based portals1 and in scientific reports
[3,14,20,28,32], which specifically highlight incidence in meat processing facili-
ties, little to no systematic and ongoing data collection exists for all food system
sectors, including restaurants or grocery settings. Additionally, public, and occu-
pational health data collection systems often do not collect information on social
determinants of health (such as race, ethnicity, nativity, language spoken, etc.)
in workplaces [26]. Workers in food settings are predominantly critical infras-
tructure workers, who contribute to the security and well-being of our food
supply. Collecting these data may aid in the early identification of workplace
transmission of SARS-CoV-2, the virus that causes COVID-19. This creates
potential opportunities for successful mitigation efforts and improving overall
worker safety and health.

2.2 Bidirectional Transformers

Transformer language models have seen widespread development and use
[13,21,24,30] over the past several years and achieve state-of-the-art results
across various natural language processing tasks, like text generation and classi-
fication [12,29,34]. Introduced in 2017 by Vaswani et al. [30], the Transformer is
a purely attention-based model (i.e., with no convolutional layers or recurrence)
that is faster to train and achieves better results than previous techniques on a
1 https://public.tableau.com/profile/leah.douglas#!/vizhome/CumulativeCovid-

19casesbysector/Dashboard1.

https://public.tableau.com/profile/leah.douglas#!/vizhome/CumulativeCovid-19casesbysector/Dashboard1
https://public.tableau.com/profile/leah.douglas#!/vizhome/CumulativeCovid-19casesbysector/Dashboard1
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language translation task [30], and its architectural details can be found in the
original 2017 paper [30].

Several variations on the original Transformer architecture and training pro-
cess have been developed since 2017 [12,13,21,30], including Bidirectional Trans-
former models like BERT (Bidirectional Encoder Representations from Trans-
formers) [13] and RoBERTa [21]. BERT extended previous transformer-based
models [24,30] by incorporating bidirectional pre-training; i.e., BERT is pre-
trained using the masked language model (MLM) objective, by which it learns
to predict a masked word given the context words that come before and after
[13]. Devlin et al. [13] also leveraged next sentence prediction (NSP) to pre-train
BERT, which is an objective by which the model attempts to predict the next
sentence given a current sentence input [13]. Together, these pre-training objec-
tives build a robust language model that can be fine-tuned for a target task like
text classification [29].

RoBERTa [21] shares the same model architecture as BERT but modifies the
BERT pre-training process to omit the NSP task and leverages additional data
during pre-training (e.g., CC-News, which consists of 63 million English news
articles) not used by BERT. The result is a model that outperforms BERT across
several tasks [21] and that may be especially suited to the task of news article
classification, due to the news article data used during RoBERTa pre-training.

3 Methods

Our proposed method (Fig. 1) leverages NLP-Based Web-Scraping and a
RobERTa model [21] to classify news articles as containing mention of ≥1 cases
of COVID-19 in food establishments. Once a model is trained and evaluated, a
daily list of relevant news articles could be output for human review.

Fig. 1. A flow diagram of what our method would look like if it were deployed. In our
experiments, we ran each of these steps on our overall dataset once, but we did not
deploy our approach to produce real-time daily outputs.
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3.1 NLP-Based Web-Scraping

Since April 2020, we tracked keyword mentions of COVID-19 in the news media
from articles reported from March 15, 2020, to September 30, 2020 to develop
a COVID-19 news dataset. From aggregating lists of news media sources from
web sites, such as Wikipedia, we created a list of over 1,700 news sources [8–10].
Each news source was visited daily by an automated Python script, using a web-
scraping library to discover publicly available news articles mentioning COVID-
19 [25]. Next, we ran each article through two NLP pipelines, ClarityNLP and
spaCy [15–17].

NLP Pipelines. ClarityNLP is an open-source project written in a modern,
Python-based stack, and it leverages a user-friendly query language, NLPQL
[16,17]. ClarityNLP allows for building custom NLP pipelines with a focus on
biomedical text. To build our COVID-19 news dataset, we utilized ClarityNLP’s
NLPQL query language to find non-negated mentions of keywords relevant to our
dataset. These keywords were deemed relevant to potential COVID-19 outbreaks
in congregate settings, such as food processing facilities, long-term care facilities,
and correctional facilities. Each keyword was reviewed by SMEs from the CDC.
Additionally, we developed a regular expression algorithm to extract case counts
and death counts from each news article.

We utilized the advanced NLP library, spaCy to identify the location of the
news article [15]. SpaCy provides a named-entity recognition feature to extract
categories of entities from sections of text. We used the location (LOC), organi-
zation (ORG), geographic (GPE), and facility (FAC) categories to identify the
location of the potential COVID-19 outbreak.

Location Identification and NAICS Codes. We cross-referenced the loca-
tion entities found by spaCy against the news source’s location, and the
SafeGraph Places dataset [4]. SafeGraph is a data company that aggregates
anonymized location data from numerous applications in order to provide
insights about physical places via the Placekey Community. In addition to name
and address, the SafeGraph Places dataset provides the North American Indus-
try Classification System (NAICS) Code for each location. The NAICS system
is a hierarchy used to classify industries for analysis and publication [5]. At the
time of building our COVID-19 news dataset, there were 5.4 million places in
the SafeGraph Places dataset across the United States.

Persistence. Finally, we saved the metadata, case/death count, NAICS code,
and location variables for each news article in a MySQL database. Currently,
there are over 93,000 keyword mentions in our news dataset. These articles were
the basis for training the RoBERTa model2.

2 At the time we trained the RoBERTa model, we evaluated just over 67,000 articles.



Characterize COVID-19 Outbreaks in Food Settings 191

3.2 Data Validation

We validated the extracted variables and removed duplicate facilities mentioned
in multiple articles by manual review. We specified “potential” outbreaks if there
were ≥2 positive cases identified as employees of a single food setting. However,
we could not always confirm that the infection was attributable to workplace
exposure as the sources for the data were only news articles. We also could not
verify the reporting mechanism of the case; whether a case was identified as a case
by confirmatory laboratory testing or whether it was self-reported. News articles
may not always include how the establishment was made aware of employee
cases–whether through laboratory confirmation of a diagnosis or through self-
reporting. Self-reporting without lab confirmation might have led to introduction
of biases which could lead to misclassification (e.g., an employee reports COVID-
19-like symptoms to workplace but has not confirmed infection [11]). While
validating, we also extracted more qualitative information; for example, if these
establishments opted to close their doors for 1–2 weeks after an employee or
employees were identified as having COVID-19.

3.3 Applying RoBERTa to Article Classification

Implementation. We implemented our RoBERTa model training and evalua-
tion using Python with the PyTorch [23] and HuggingFace [34] libraries between
October 2020 and January 2021.

Training. We trained a RoBERTa model to automatically assign a positive
tag to an article, based on its contents, if it contains mention of ≥1 cases of
COVID-19 in food establishments, which we also combined with a NAICS code
filter for food-related industries. To train our RoBERTa model, we first randomly
divided our overall human-labeled dataset (n = 2061) into a training dataset (n
= 1189), validation dataset (n = 471), and test dataset (n = 388). The training
dataset is what the RoBERTa model sees at every training iteration in order to
update its weights. In contrast, the validation dataset determines which model
weights should be kept after completing all the training epochs (i.e., we keep
the model weights with the lowest loss on the validation dataset). The test
dataset is used for model evaluation, which we discuss in the next section. We
used cross-entropy loss, with class weights set to be balanced using scikit-learn’s
compute class weight function as our loss function and trained for 300 epochs
at a batch size of 32 using the Adam optimizer [19]; here, an epoch is defined
as a single complete pass through the training dataset (i.e., the model seeing
every training example once constitutes one epoch) and the batch size refers to
the number of training examples used to update the model’s weights at each
iteration of training.

Evaluation. We evaluated our models by computing various metrics on our
human-labeled test dataset, including accuracy, precision, recall, and F1-score
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(terms are defined below). We also counted the number of positive examples
flagged by our models in the overall 67,078 articles; for this evaluation, an arti-
cle is considered a ground truth positive example if it contains mention of ≥1
positive cases of COVID-19 in food establishment employees and a ground truth
negative example otherwise. Accuracy was computed as the number of correctly
classified examples divided by the total number of examples classified (n =
388 in the test dataset). Precision is computed as:

(
true positives

true positives+false positives

)
,

where a true positive refers to a ground truth positive example, as defined
above, that the model correctly classifies as positive, a true negative refers to
a ground truth negative example that the model correctly classifies as nega-
tive, a false positive refers to a ground truth negative example that the model
falsely classifies as positive, and a false negative refers to a ground truth pos-
itive example that the model falsely classifies as negative. Next, recall is com-
puted as:

(
true positives

true positives+false negatives

)
. Finally, the F1-score is computed as:(

2
1

precision+
1

recall

)
.

4 Results

4.1 Web-Scraping, Manual Data Validation, and Visualization

This paper summarizes results from a web-scraping analysis of news articles
and media reports, where one or more employees in specific food settings were
identified as having COVID-19. Through an automated web-scraping process
followed by manual cleaning and data validation, we identified 276 facilities with
30,734 employees who reportedly tested positive for COVID-19, according to the
news articles (see Table 1)3.

Ninety percent of these cases were identified among the animal slaughter-
ing and processing facility workers, with some plants reporting as many as 1,000
positive cases at a single location. Although most articles were about restaurants
among the consumer-facing establishments, news articles reported significantly
more employees per facility with COVID-19 in grocery store settings. News
reports mentioned only five food distribution centers, but they had 151 employ-
ees with COVID-19. Of note, articles reported that most restaurants opted to
close their doors for 1–2 weeks after an employee or employees were identified
as having COVID-19. We also categorized the outbreaks by geographic region

3 The US map, which can be accessed at: https://www.google.com/maps/d/u/0/
viewer?mid=1ymY4bzI70AOCeFzRYvfe4HPWVvgPBoJh&ll=45.80359787060013
%2C-114.35715944999998&z=4 shows the food-setting locations found using
manual validation of news articles. The legend on the left within the map shows the
different types of food settings based on NAICS codes. The user may access more
details about each facility including the title, a link to the article, and descriptors
including case and death counts by clicking on a chosen location on the map.

https://www.google.com/maps/d/u/0/viewer?mid=1ymY4bzI70AOCeFzRYvfe4HPWVvgPBoJh&ll=45.80359787060013%2C-114.35715944999998&z=4
https://www.google.com/maps/d/u/0/viewer?mid=1ymY4bzI70AOCeFzRYvfe4HPWVvgPBoJh&ll=45.80359787060013%2C-114.35715944999998&z=4
https://www.google.com/maps/d/u/0/viewer?mid=1ymY4bzI70AOCeFzRYvfe4HPWVvgPBoJh&ll=45.80359787060013%2C-114.35715944999998&z=4
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Table 1. Below, we show a summary of the reported facility types organized by
NAICS code descriptors. This includes facility type, number of facilities (with ≥1
case reported), number of potential outbreaks (≥2 cases) of COVID-19, and number
of cases linked to the type of facility.

NAICS
code

Industry classification/type of facility No. of
facilities

No. of potential
outbreaks

No. of
cases

3116 Animal slaughtering and processing 132 130 27704

7225 Restaurants and other eating places 65 13 91

4451 Grocery stores 30 15 254

7224 Drinking places (alcoholic beverages) 13 7 42

3114 Fruit and vegetable preserving 9 9 561

3117 Seafood product preparation and
packaging

6 6 283

4244 Grocery and related product merchant
wholesalers

5 5 151

3119 Other food manufacturing 4 4 312

1113 Fruit and tree nut farming 2 2 77

1119 Other crop farming 2 2 131

7223 Speciality food services (food trucks) 2 1 3

3112 Grain and oilseed milling 1 1 13

1122 Hog and pig farming 1 1 60

1151 Support activities for crop production 1 1 6

1112 Vegetable and melon farming 1 1 14

Unk Unknown 2 2 1032

Total 276 200 30734

(interactive map) and industry sector (e.g., food processing, restaurant, grocery
stores), and number of cases/deaths4.

4.2 RoBERTa Model Evaluation

Using our RoBERTa model enabled article classification at 88.4% accuracy
with a 62.8% F1 score (Fig. 2). The combined RoBERTa-with-Food-NAICS
model achieved the best performance (Fig. 2). Furthermore, RoBERTa-with-
Food-NAICS flagged 1,112 articles as positive of the 67,078 total articles, which
is less than the 4681 flagged by Food-NAICS-only (Fig. 2). However, the recall
was lower for RoBERTa-with-Food-NAICS than for Food-NAICS only (Fig. 2,
79.2% vs. 91.7%).

Next, we extended our initial dataset of 67,078 news articles to include
news articles through to the end of 2020, thus adding 17,170 new news arti-
cles. We used this expanded dataset of 84,248 articles to generate Fig. 3, which
4 We developed a public dashboard of news article keywords of COVID-19 in food pro-

cessing facilities from March 15-September 30, 2020. It is available at https://public.
tableau.com/profile/charity.hilton\#!/vizhome/COVID-19NewsReportsaboutFood
Settings/COVID-19NewsMap.

https://public.tableau.com/profile/charity.hilton\#!/vizhome/COVID-19NewsReportsaboutFoodSettings/COVID-19NewsMap
https://public.tableau.com/profile/charity.hilton\#!/vizhome/COVID-19NewsReportsaboutFoodSettings/COVID-19NewsMap
https://public.tableau.com/profile/charity.hilton\#!/vizhome/COVID-19NewsReportsaboutFoodSettings/COVID-19NewsMap
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shows the daily number of articles flagged as positive (i.e., containing mention
of ≥1 COVID-19 cases in food establishments) by considering all articles, Food-
NAICS-only, and combined RoBERTa-with-Food-NAICS. To generate Fig. 3,
we applied our RoBERTa model trained on the original 67,078 articles to the
expanded dataset, which spans from March 15, 2020 to December 31, 2020.
When considering all articles, the maximum number of daily articles was 2315,
which occurred on May 28, 2020, and the mean number of daily articles is 277
(Fig. 3). Food-NAICS-only has a maximum number of daily articles of 143 (on
May 27) and a mean of 25 articles, while RoBERTa-with-Food-NAICS model
has a maximum number of daily articles of 40 (May 29) and a mean of 4 (Fig. 3).

Fig. 2. In (A), we show the precision, recall, F1 score, and accuracy for 3 variations
of our model on a held-out test dataset of 388 articles (48 positive examples and
340 negative). In (B), we apply our models to our overall dataset and display how
many articles are flagged as containing mention of ≥1 COVID-19 cases in a food
establishment.

Fig. 3. In (A), we show the number of daily news articles without any NAICS or
model-based filtering (i.e., the total number of articles). In (B), we show the number
of daily news articles using a food NAICS filter only (blue) and a combined RoBERTa
model output and food NAICS filter (orange). (Color figure online)
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5 Discussion

5.1 RoBERTa Model and NAICS Codes

Because RoBERTa-with-Food-NAICS flagged a total of 1,112 articles and Food-
NAICS-only flagged 4,681 articles, RoBERTa-with-Food-NAICS reduces the
amount of human manual review needed for validation. The recall being lower
for RoBERTa-with-Food-NAICS than for NAICS-only means that RoBERTa
with NAICS misses more positive examples than NAICS-only; however, this is
counterbalanced by the greater precision of RoBERTa with NAICS.

One limitation of the combined approach is that the NAICS code is not
always available, in which case RoBERTa-only (i.e., without the food NAICS
filter) could be used. Another limitation is the inability to differentiate between
true transmission among workers in a food setting versus exposure within the
community, particularly in geographic locations with sustained COVID-19 trans-
mission. A third limitation is the likely differences in case definitions reported by
various news sources. There were no efforts made to account for inaccuracies in
reporting and all “news” sources were treated equally. Future efforts are needed
to compare results from the proposed model to proven methods of public health
surveillance relying on case investigation and contact tracing.

5.2 COVID-19 Surveillance

Some of the earliest reported cases of COVID-19 in food settings were identi-
fied in meat processing facilities in early April 2020 [14]. During that time, this
web-scraping platform was in the early stages of development. In fact, a num-
ber of outbreaks had occurred within food settings by the time the tool was
fully developed (see Fig. 3). Though we could not detect outbreaks using this
systematic web-scraping approach during the early months of the COVID-19
pandemic, we were able to capture and quantify these outbreaks retroactively.
This methodology can prove invaluable in addressing any time lapse between
outbreak and response; during infectious disease outbreaks it takes significant
time and effort to ramp up the public health response, yet news agencies often
have the capacity to quickly collect and disseminate reports on cases and local-
ized outbreaks. Because early detection of outbreaks is crucial for effective mit-
igation and successful public health coordination [33], a proactive approach in
using this methodology and addressing that time lapse may be a useful tool to
aiding in earlier outbreak detection, particularly for novel pathogens for which
no transitional surveillance methods or reporting requirements exist.

This methodology could also be used to identify health equity issues within
these worker populations during infectious disease outbreaks. Using an Occupa-
tional Health Equity framework (OHE), i.e., that social, economic, environmen-
tal, and structural factors impact work-related disparities in illness and disease
in avoidable ways [6], this methodology could be used to identify the frequency
of OHE-relevant mentions in news articles. By leveraging the by-the-minute
reports of news agencies to compare outbreak data and OHE variables, we can
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aid in early identification of potential compounding social factors affecting dis-
ease transmission. Such early identification is vital; as we have seen during the
COVID-19 pandemic, rates of infection and disease can be heavily impacted by
the interactions between type of work and social variables (like race, ethnicity,
and migration status). To properly address how social and structural vulnerabil-
ities impact work-related illness and disease we must enhance our data collection
through both innovative targeted efforts and expansion of current surveillance
efforts. By developing new ways to incorporate race, ethnicity, work arrange-
ment, and other variables, into OSH surveillance we can better understand how
these variables interact to affect different worker populations [27].

Our findings improve our understanding of outbreaks in food settings and
help identify health equity issues and health disparities among essential work-
ers. Ideally this methodology may produce more focused and industry-specific
public health interventions and provide meaningful feedback to partners, includ-
ing federal agencies and policymakers.

6 Conclusion

By combining NLP-based web-scraping and a RoBERTa language model, our
approach enables an efficient human-in-the-loop process to identify COVID-19
outbreaks in food establishments based on news article contents, which addresses
the limitation of current COVID-19 surveillance largely underreporting occupa-
tional data. We found that combining the RoBERTa outputs with a NAICS code
filter for food settings yielded better performance on our dataset than using only
the RoBERTa outputs or only the NAICS code filter. Our approach could be
applied to help predict geographic areas of concern for COVID-19 outbreaks
based on early event-based reporting in news articles. Other future directions
include extending the RoBERTa method to improve its performance without
requiring the NAICS code (e.g., by gathering more human-labeled data and/or
applying self-supervised learning) and applying our approach to other industries
or news article datasets. Future studies are warranted for true validation of the
surveillance model results against existing public health surveillance tools.

7 Disclaimer

The findings and conclusions in this report are those of the author(s) and do not
necessarily represent the official position of the Centers for Disease Control and
Prevention (CDC).
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Abstract. Neural models, with their ability to provide novel repre-
sentations, have shown promising results in prediction tasks in health-
care. However, patient demographics, medical technology, and quality
of care change over time. This often leads to drop in the performance
of neural models for prospective patients, especially in terms of their
calibration. The deep kernel learning (DKL) framework may be robust
to such changes as it combines neural models with Gaussian processes,
which are aware of prediction uncertainty. Our hypothesis is that out-of-
distribution test points will result in probabilities closer to the global
mean and hence prevent overconfident predictions. This in turn, we
hypothesise, will result in better calibration on prospective data.

This paper investigates DKL’s behaviour when facing a temporal shift,
which was naturally introduced when an information system that feeds
a cohort database was changed. We compare DKL’s performance to that
of a neural baseline based on recurrent neural networks. We show that
DKL indeed produced superior calibrated predictions. We also confirm
that the DKL’s predictions were indeed less sharp. In addition, DKL’s
discrimination ability was even improved: its AUC was 0.746 (±0.014
std), compared to 0.739 (±0.028 std) for the baseline. The paper demon-
strated the importance of including uncertainty in neural computing,
especially for their prospective use.

Keywords: Deep kernel learning · Temporal shift · Time series ·
Calibration · Gaussian process · Mortality prediction

1 Introduction

In the ICU, the prediction of in-hospital mortality is the task of providing proba-
bilities for Intensive Care patients to die in the hospital, either in the ICU or after
discharge to another ward. The (early) detection of such patients is relevant for
clinical decision making. Mortality prediction models (MPMs) are often trained
with large collections of electronic health records (EHR) that contain structured
patient information such as demographics and physiological variables. MPMs
based on deep learning are becoming prevalent in medical applications [18]. One
reason for this is that NNs automatically derive representations for time series
c© Springer Nature Switzerland AG 2021
A. Tucker et al. (Eds.): AIME 2021, LNAI 12721, pp. 199–208, 2021.
https://doi.org/10.1007/978-3-030-77211-6_22
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data, which may provide predictive ability superior to that of standard regres-
sion models [9,21]. Specifically, neural models learn features from the input data
by the incremental composition of simpler layers, resulting in complex represen-
tations for non-linear prediction models [1].

However, patient characteristics, medical technology, and clinical guidelines
change over time, thus forming a challenge for the validity of MPMs for prospec-
tive patients, as these models were learned on historical data [14]. In particular,
due to their flexibility, NNs have the ability to leverage on slight patterns in
the data, but such patterns may not be stable over time and hence NN models
may be sensitive to such temporal shifts causing a change (usually a drop) in
performance [16]. For prediction models of a binary outcome, not only the dis-
criminatory capability of the model may suffer, but especially its (mis)calibration.
Calibration refers to the correspondence between the predicted probabilities and
the true probabilities. The true probabilities are estimated on the test set by
some measure of averaging the number of events for a set of patients. Perfor-
mance drift has consequences for the task at hand, and the detrimental effects
on benchmarking ICUs have been demonstrated [14]. One way to tackle this
problem is to augment NNs with the notion of uncertainty: whenever the data
distribution changes due to shift, the predictions should be more uncertain [13].

In contrast to NNs, The Gaussian process (GP) is a probabilistic framework
for time series modelling that is able to increase model capacity with the amount
of available data, and to produce uncertainty estimates. A GP characterises a
distribution over possible functions that fit the input data. It is defined by a
Gaussian function with a certain mean and, more importantly, a kernel function
that captures the correlations between any two observations. The kernel encom-
passes the notion of uncertainty by performing a pairwise computation among all
input data using some notion of similarity between the observations. The kernel
can be viewed as providing a probability distribution over all possible models
fitting the data.

The prediction models based on GPs successfully model time series data,
incorporate confidence regions to predictions, and offer interpretability of the
variables with the kernel function [20]. Moreover, the GP framework has been
used to develop clinical prediction models [2,5]. In particular, Ghassemi et al. [8]
use a multitask GP to model time series with physiological variables and clinical
notes for mortality prediction. Directly relevant to our paper is the proposition
in [23] to combine both NNs and GPs on a common framework of deep kernel
learning (DKL). DKL leverages inductive biases from the NNs and from the
non-parametric GPs.

In this paper, we investigate the behaviour of mortality prediction models
based on DKL. In particular, we are interested in inspecting the robustness
of the DKL model to a temporal shift. We also compare it to a strong NN-
based baseline. Our hypothesis is that incorporation of uncertainty improves
predictions. More specifically, we expect the DKL, when faced with uncertainty
in the test set, to provide less extreme predictions that are closer to the global
mean rather than providing overconfident predictions. In turn, the resultant
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prediction set would be less sharp than for the baseline model. Sharpness, which
is also referred to refinement in weather forecast [15] measures the tendency of
predictions to be close to 0 and 1. We therefore also compare the sharpness of
both models but check that this does not come at the cost of discrimination.
Finally, we also performed internal validation of the DKL model with all the
population (i.e. no temporal shift) to understand whether the DKL’s behaviour
is specific to temporal validation.

Our main contribution in this paper is the introduction of a DKL model
for in-hospital mortality prediction based on the first hours of an ICU stay in
the context of temporal validation. The GP component in the DKL is shown to
be robust to the shift in population and produces better calibrated predictions,
without sacrificing discrimination. Our feature extraction is based on an open
source benchmark [9] using the publicly available MIMIC-III [11] database. This
facilitates the reproducibility of our results1.

2 Deep Kernel Learning

The Gaussian Process [19] is a Bayesian non-parametric framework based on
kernels for regression and classification. The set of functions that describes a
given input data is possibly infinite and the GP assigns a probability to each
one. For a dataset X = {(x1, y1) , (x2, y2) , . . . , (xn, yn)} where x is an input
vector and y a corresponding output, we want to learn a function f that is
inferred from a GP prior:

f(x) ∼ GP(m(x), k(x,x′)) (1a)

where m(x) defines a mean (often set to 0) and k(x,x′) defines the covariance in
the form of a kernel function. The kernel function models the covariance between
all possible pairs (x,x′) and provides a measure of uncertainty. The choice of
kernel determines properties of the function that we want to learn, usually this
choice is based on background knowledge of the problem.

Wilson et al. [22] propose kernels based on deep learning architectures for
GP regression. The DKL employs a GP with a base kernel as the last hidden
layer of a NN. In other words, the DKL is a pipeline for learning complex NN
features, and a distribution over functions that fit our input data. The base kernel
k (x,x′ | θ) with hyperparameters θ is parameterized by a non-linear function.

k (x,x′ | θ) → k (g (x, ω) , g (x′, ω) | θ, ω) , (2a)

where g(x, ω) is a NN architecture with weights ω. In addition, the DKL jointly
learns the NN weights and kernel hyperparameters under the GP probabilistic
framework. Learning a GP involves computing the kernel function, and finding
the best kernel hyperparameters. The DKL optimises both the kernel hyperpa-
rameters and the NN weights, by maximising the marginal likelihood.

In Fig. 1, we define the architecture for extracting features g(x, ω), xi denotes
the input vector in the ith element of X .
1 Code is available at: https://github.com/mriosb08/dkl-temporal-shift.git.

https://github.com/mriosb08/dkl-temporal-shift.git
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xi

ei = linear(xi, proj)

si = birnn(ei , hid)

qi = ReLU(linear(si, feat))

fi = avg(qi)

GP

NN g(x, )

Fig. 1. NN architecture g(x, ω) for extracting features fi for the GP prediction layer.

The input features are first projected with an affine layer (linear(.)), then fed
to a bidirectional LSTM (birnn(.)) [10] for encoding time series. Next the result
goes through an affine layer with a non-linearity (ReLU(.)) that combines the
hidden states of the bidirectional LSTM. Next the features fi are summarised
by averaging (avg(.)) and then fed to the GP layer.

3 Experiments

The Medical Information Mart for Intensive Care (MIMIC-III) database includes
over 60,000 ICU stays across 40,000 critical care patients [11]. Harutyunyan et al.
[9] propose a public benchmark and baselines based on MIMIC-III for modelling
mortality, length of stay, physiologic decline, and phenotype classification. We
use the benchmark for predicting in-hospital mortality based on the first 48 h
of an ICU stay. The cohort excludes all ICU stays with unknown length-of-stay,
patients under 18, multiple ICU stays, stays less than 48 h, and no observations
during the first 48 h. The in-hospital mortality class is defined by comparing the
date of death against hospital admissions and discharge times with a resulting
mortality rate of 13.23%.

We use the benchmark to extract 17 input physiological variables (i.e. fea-
tures), that are a subset of the Physionet challenge2.

The benchmark [9] code processes the time series data with imputation of
missing values with the previous hour, and normalisation from MIMIC-III. The
normalisation of the features is performed by subtracting the mean and dividing
by the standard deviation. The features also provide a binary mask for each vari-
able indicating which time-step is imputed. All categorical variables are encoded
using one-hot vectors (e.g. Glasgow coma scales). The final feature vector is
formed by the concatenation of the clinical variables and the one-hot vectors
with a total of 76 features. The clinical variables are shown in Table 1.

We use the architecture g(.) as the baseline defined as: BiLSTM, which is
based on a bidirectional LSTM for feature representation, and a linear prediction
layer. We implement the DKL model with GPyTorch [7], with the following
2 https://physionet.org/content/challenge-2012/1.0.0/.

https://physionet.org/content/challenge-2012/1.0.0/
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Table 1. Clinical variables used in our experiments from MIMIC-III.

components: the RBF kernel as the base kernel, feature extractor g(.), and grid
size 100 which is the number of inducing points used to approximate the GP
for faster computations. The computation of the posterior distribution in the
GP is expensive and several methods have been proposed to accelerate it by
approximating it with a function over a set of inducing points [17,24]. In addition,
we perform a simple ablation on the architecture by replacing the bidirectional
LSTM with a LSTM for both models, baseline and DKL defined as: LSTM, and
DKL-LSTM.

We use the following hyperparameters: optimiser Adam [12], learning rate
1e−3, epochs 30, encoder size 16, hidden size 16, batch size 100, dropout 0.3
applied after the linear layer. We perform model selection with the validation
dataset based on AUC-ROC.

3.1 Temporal Shift: Strategy and Results

The MIMIC-III dataset includes data using the CareVue electronic patient record
(EPR) system from 2001 to 2008. From 2008 to 2012 the MetaVision system was
used instead. In the first experiment for inspecting temporal shift, we split the
datataset into the CareVue period for training with 9, 646 instances and 1, 763
for validation (for tuning the hyper-parameters), and the data in the MetaVision
period with 7, 689 as the test set. We excluded patients present in both registries.
This constitutes a temporal validation strategy in which the model is tested on
data collected in the future relative to the data on which it has learned. This
means that the model faces possible temporal shift due to changes that occur in
time, and indeed possibly also due to the change of the EPR system that collects
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Table 2. In-hospital mortality results with a temporal population shift over 10 runs
± one standard deviation. The training and validation datasets are on CareVue (2001–
2008), and the test on MetaVision (2008–2012).

Model Validation Test

AUC-ROC AUC-PR AUC-ROC AUC-PR

LSTM 0.838 ± 0.003 0.532 ± 0.006 0.693 ± 0.027 0.317 ± 0.037

BiLSTM 0.857 ± 0.002 0.572 ± 0.007 0.739 ± 0.028 0.386± 0.018

DKL-LSTM 0.854 ± 0.002 0.562 ± 0.010 0.701 ± 0.033 0.327 ± 0.026

DKL 0.856 ± 0.002 0.569 ± 0.004 0.746± 0.014 0.373 ± 0.018

the data that could have affected the workflow and/or the way of registration.
Performance was measured in terms of: Discrimination, by the AUC-ROC; the
balance between the positive predicted value and sensitivity, by the AUC-PR; the
accuracy of predictions by the Brier score; and calibration by calibration graphs
and the Cox recalibration approach [3] in which the observed outcome in the
test set is regressed using logistic regression on the log odds of the predictions. If
the predictions were perfectly calibrated then the linear predictor of this model
would have an intercept of 0 and a slope of 1. We test deviations from these
ideal value of 0 and 1, respectively. To test our hypothesis whether the DKL
approach provides more conservative predictions due to uncertainty for areas
in the test set, we measure the (un)sharpness of the predictions. We use the

following measure of unsharpness:
∑N

1 pi(1−pi)

N where pi is the ith prediction and
N is number of observations.

(a) (b)

Fig. 2. Receiver operating characteristic curve (a) and calibration curve (b) for in-
hospital mortality with temporal shift in population.

Table 2 shows the AUC-ROC and AUC-PR results for in-hospital mortality
with a temporal shift in population. The baseline outperforms the DKL model on
the validation (tuning) dataset for both metrics. On the test dataset, however,
the DKL shows competitive performance on the AUC-ROC. We use the best
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Table 3. In-hospital mortality results over 10 runs ± one standard deviation. Valida-
tion and test dataset from all sources (2001–2012).

Model Validation Test

AUC-ROC AUC-PR AUC-ROC AUC-PR

LSTM 0.843 ± 0.003 0.513 ± 0.006 0.840 ± 0.005 0.434 ± 0.008

BiLSTM 0.858 ± 0.004 0.549 ± 0.010 0.851± 0.004 0.478± 0.016

DKL-LSTM 0.838 ± 0.002 0.485 ± 0.014 0.841 ± 0.003 0.425 ± 0.013

DKL 0.854 ± 0.004 0.536 ± 0.010 0.847 ± 0.005 0.454 ± 0.018

run from the validation based on the AUC-ROC for reporting the ROC and
calibration curves. In addition, we select the best performing models from Table 2
based on AUC-ROC, namely BiLSMT and DKL, for comparing the calibration
and ROC curves. The LSTM models consistently underperform compared to the
bidirectional ones. Figure 2 shows the ROC and calibration curves for in-hospital
mortality with a temporal shift. The Brier score for the DKL is 0.101 which is
better that the 0.109 of the BiLSTM. The DKL outperforms the baseline and it
shows better calibration.

In the Cox re-calibration on both models the BiLSTM had a calibration
intercept of 1.965 (1.88, 2.049), and slope of 0.538 (0.5, 0.577) compared to
the DKL’s of 0.6615 (0.586, 0.734), 0.712 (0.652, 0.772). Although both models
deviated significantly from the ideal values (of 0 and 1), the DKL showed sig-
nificantly much better calibration. The DKL’s predictions were also much less
sharp: unsharpness of 0.061 for DKL versus 0.025 for BiLSTM.

3.2 Experiment 2: Internal Validation

We report the results with all the sources (2001–2012) for in-hospital mortality,
with no shift in population. The training, validation and test datasets consisted
of respectively 14, 681, 3, 222, and 3, 236 instances.

Table 3 shows the AUC-ROC and AUC-PR results for in-hospital mortality
with all sources (2002–2012). The baseline outperforms the DKL model on the
test dataset for both metrics the AUC-ROC, and AUC-PR. Figure 3 shows the
ROC and calibration curves for in-hospital mortality with all sources. Both of
our models perform similarly on the ROC curve. The Brier score for the DKL is
0.082 slightly better than the 0.084 of the BiLSTM.

In the Cox re-calibration the BiLSTM’s calibration intercept was −0.358
(−0.49, −0.229), and slope 0.802 (0.726, 0.88); compared to the DKL’s −0.066
(−0.185, 0.05), and 1.177 (1.062, 1.298). Unlike the BiLSTM the DKL showed
no significant deviations from the ideal values of 0 and 1. The DKL was slightly
more unsharp: 0.089 versus 0.081 for the BiLSTM.
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(a) (b)

Fig. 3. Receiver operating characteristic curve (a) and calibration curve (b) for in-
hospital mortality with all sources.

4 Related Work

Dürichen et al. [5] propose a multi-task GP that jointly models physiological
variables for clinical time series. Cheng et al. [2] develop a real-time clinical
prediction model based on a GP model. Aside from producing confidence regions
in the predictions, the GP also scales to large patient databases, and produces
interpretable relations across (clinical) variables. The interprtability is produced
by inspecting the correlation across variables in the kernel function. Futoma
et al. [6] propose a sepsis prediction model based on a pipeline with a GP that
produces inputs for a NN classifier. The model takes into account uncertainty
estimates and outperforms strong sepsis prediction baselines. On the other hand,
our DKL model uses RNNs to model the time series physiological variables and
feed the resulting features into the GP for prediction. Our work, however, is the
first to investigate DKL in the context of temporal shift.

5 Conclusions and Future Work

We investigated the DKL framework for the task of in-hospital mortality pre-
diction under a temporal shift in population. The DKL shows competitive per-
formance compared to a strong NN baseline, as well as a better calibration.
However, when the test dataset is in the same distribution as the training both
models show similar results. The GP component does not degrade the overall
performance, and in addition, it provides extra guarantees such as uncertainty
estimates. By contrasting the two experiments and inspecting the sharpness of
the predictions we can ascribe the improved performance on the test set to the
robustness of the GP when facing uncertainty.

For future work, we will analyse different base kernels, evaluate the uncer-
tainty estimate of the DKL, and use the framework described in [4] for better
understanding of discrepancies in performance over time.
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Abstract. There are many evaluation metrics and methods that can be
used to quantify and predict a model’s future performance on previously
unknown data. In the area of Human Activity Recognition (HAR), the
methodology used to determine the training, validation, and test data
can have a significant impact on the reported accuracy. HAR data sets
typically contain few test subjects with the data from each subject sepa-
rated into fixed-length segments. Due to the potential leakage of subject-
specific information into the training set, cross-validation techniques can
yield erroneously high classification accuracy. In this work (Source code
available at: https://github.com/imics-lab/model evaluation for HAR.),
we examine how variations in evaluation methods impact the reported
classification accuracy of a 1D-CNN using two popular HAR data sets.

Keywords: Model evaluation · Time-series data · Deep learning ·
Human activity recognition · Data resampling · Cross-validation

1 Introduction

With the advent of inexpensive wearable sensors in recent years, Human Activity
Recognition (HAR) has been a hot topic of research both for medical applications
and in human-computer interaction in general. In HAR, the methodology used
for model evaluation differs from other areas such as image recognition due
to the sequential nature of the data sets. HAR data sets typically consist of
accelerometer and gyroscopic data recorded using a smartphone or wrist-worn
device. Movement patterns specific to given activities such as running, walking,
and sitting are identified using classic machine learning or newer deep learning
approaches. HAR data sets typically differ from image and natural language data
sets because the number of subjects is usually quite small, typical ranges are from
5 to 50 [13], with each subject contributing multiple samples while performing
a range of activities. Traditional cross-fold and train/test split techniques can
result in subject data from the test group being included in the training set.

The goal of trained models is generalized performance which means the per-
formance on independent test data [7]. In the case of HAR the ability of a

c© Springer Nature Switzerland AG 2021
A. Tucker et al. (Eds.): AIME 2021, LNAI 12721, pp. 209–215, 2021.
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model to correctly classify activities for an unknown subject. The primary issue
seen in many accompanying analyses is that samples from a given subject may
be present in both the train and test groups. This work examines the impact
of subject assignment on two data sets. The remainder of this section briefly
describes three data sets, their evaluation method, and the reported accuracy
to illustrate the multiple approaches found in the literature. Section 2 describes
the two data sets and processing used in this evaluation.

An example of a popular data set and evaluation with subjects preallocated
into train and test groups is the UCI-HAR data set [1] which contains accel-
eration data captured on a waist-worn smartphone. Subjects were randomly
assigned: 21 in the training set and 9 in the test set. The accompanying analysis
reports an accuracy of 96% for six activities. Another example of a model evalua-
tion with preallocated subjects is [5] which contains Android-based Smartphone
data from 100 subjects. The reported accuracy without resampling is 93.8% for
eight different activities. The authors state “the signals of the training set and
test set are collected by different volunteers.” An example of hold-one-subject-
out with individual results is [6] which uses multimodal motion data from the
mHealth data set [2] and reports an average accuracy for 12 activities of 91.94%.

2 Materials and Methods

This section provides a brief overview of the two data sets used, the configuration
of the 1D CNN, and the overall methodology.

The first data set used in this work is the MobiAct data set [12] which contains
smartphone acquired raw accelerometer, gyroscope, and magnetometer data. 50
subjects were recorded performing nine types of activities of daily living (ADLs)
and four types of falls. The accompanying analysis reports a best overall accu-
racy of 99.88% using 10-fold cross-validation. The authors state “we expect [the
accuracy] to decrease when using leave-one-out cross-validation, which is a more
realistic scenario.” For this work the timestamp ‘nanoseconds’ and accelerometer
data (accel x/y/z) for the six Activities of Daily Living (ADL) were imported.
The four types of falls, ‘sit chair’, ‘car step in’, and ‘car step out’ activities are
not used as these are more events than activities. Gyro and magnetometer data
are also not used for simplification. One second was discarded from the start/end
of each record and the remaining data were segmented into 3-s windows. Prior
works, including UCI-HAR [1] have used a 2.56-s window based on the mechan-
ics and timing of human gait. This window length will yield multiple steps in
each segment [3]. The six activity labels in y were one-hot-encoded.

The impact of the variable sampling rate and benefits of resampling were
investigated using the MobiAct data. Sample timing is very consistent when
using specialized equipment such as the BioRadio1 or the Empatica E4 wrist-
band2. However, when using a general-purpose device such as a smartphone
preemption by other tasks results in a variation of timing between samples.
1 https://www.glneurotech.com/products/bioradio/.
2 https://www.empatica.com/research/e4/.

https://www.glneurotech.com/products/bioradio/
https://www.empatica.com/research/e4/
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Figure 1a shows the delta time between data samples for a 30-s MobiAct walking
segment. The Python’s Pandas mean resampling method was used to resample
and downsample the data.

The second data set used is the Smartphone Human Activity Recognition
data set from the University of Milan Bicocca (UniMiB SHAR) [8] which con-
tains both fall and ADL data from 30 subjects that have been preprocessed into
3-s samples. The subjects are not preallocated into train/test and the accompa-
nying analysis reports results for both component and total acceleration using
5-fold cross-validation and hold-one-subject-out validation. The highest perform-
ing RNN classifier achieves an accuracy of 88.41% using component acceleration
and 5-fold cross-validation. Each classifier showed a decrease in accuracy in the
Leave-One-Subject-Out validation. The accuracy drops to 73.17% using Leave-
One-Subject-Out and 72.67% using total acceleration. The authors state that
human subjects perform tasks in unique ways. The UniMiB SHAR accelera-
tion data were transformed into a 153 × 3 array and the total acceleration was
calculated. The nine ADL class labels were one-hot-encoded.

A fixed 1D-CNN Keras [11] model shown to have good performance on time-
sliced accelerometer data [4] was used for all experiments for consistency. Min-
imal tuning was performed, the primary change was increasing the convolution
kernels to span one second of activity time. For a brief description of the layer
functions with respect to time-series see [9]. The topology of the 1D-CNN is
shown in Table 1.

Table 1. Keras sequential model 1D-CNN layers

Type Input Conv1D Conv1D Dropout Max Pl Flatten Dense Dense

Params [60 × 1] #f = 50 size = 1 s #f = 50 size = 1 s rate = 0.5 size = 2, act = relu act = softmax

All subject allocation experiments use total acceleration; MobiAct was resam-
pled 20 Hz, UniMiB SHAR remains the 50 Hz. The next section describes how
subjects were allocated to the training, validation, and test groups.

Allocation Using Stratification: While is easy to implement using the Scikit-
learn [10] train test split method with stratification enabled a single subject’s
samples are likely to be present in each of the groups.

Allocation of Subjects by Attributes: The UCI-HAR data set preallocates
subjects but the UniMIB SHAR and MobiACT data sets do not. To generate
a baseline each subject was allocated to the train, validate, or test group in a
60%/20%/20% ratio. Assuming that height would affect the mechanics of motion
more than weight for the ADLs, subjects were sorted by height and manually
allocated. Swaps were made to preserve the male to female ratio and a mix of
age and weight3. The subject allocation is shown in Table 2.

3 Several MobiAct subjects did not complete all ADLs were dropped resulting in a
non-contiguous subject list. E.g. there is no subject number 14.



212 L. B. Hinkle and V. Metsis

Table 2. Subject numbers: attribute based assignment

Data Set Training Validation Test

MobiAct [2,4,5,9,10,16,18,20,23-28,
32,34-36,38,42,45-54,57]

[3,6,8,11,12,22,
37,40,43,56]

[7,19,21,25,29,
33,39,41,44,55]

UniMiB SHAR [4–8,10-12,14,15,19-22,24] [1,9,16,23,25,28] [2,3,13,17,18,30]

Subject Aware Cross-Validation: Each subject was placed into the test
group with the remaining subjects used for training and validation for hold-one-
subject-out. The process was repeated with two, three, five, and ten subjects
held out. To establish a range of possible results, the best and worst classified
hold-one-out subjects were placed into min and max test groups.

3 Results and Discussion

Figure 1a shows the variation in sampling time for a walking sample. Figure 1b
shows 5 Hz sampling results in reduced accuracy 10 Hz and above were largely the
same. Reducing the sampling frequency significantly reduced the GPU-based4

training time. This was even more pronounced when using CPU-based training
where the 20 Hz data required just 4.5% of the training time required for 100 Hz
data. For MobiAct the accuracy increased from 95.3% to 97.5% when using total
acceleration and the attribute-based subject allocation with negligible impact on
GPU training time. Table 3 shows that the accuracy when using stratification
is extremely high at 99.3% (average of 10 runs, 200 epochs). Using the same
model but with subjects allocated based by attribute, the accuracy drops to
96.9% for an error rate of 3.1% versus the stratified error of only 0.7%. The
allocation of individual subject’s data into both the train and test groups results
in erroneously increased accuracy when using stratified split. The UniMiB SHAR
data results show the same trend.

(a) Δ-time between samples (b) Accuracy & training time vs. sampling rate

Fig. 1. Smartphone data sample fluctuation and impact of resample.

4 GPU model Tesla P100-PCIE-16GB at https://www.colab.research.google.com.

https://www.colab.research.google.com
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Figure 2 is a box plot of five runs for each subject and shows the large
variation in accuracy among individual subjects. The overall by-subject cross-
validation results are shown in Table 4.

Table 3. Stratified versus attribute-based subject split accuracy

Data set: Train/Validate/Test Split Method Avg Error Delta

MobiAct: Stratified (incorrect) 99.3% 0.7% –

MobiAct: Manual by Subject Attributes 96.9% 3.1% 2.4%

UniMiB SHAR: Stratified (incorrect) 93.9% 6.1% –

UniMiB SHAR: Manual by Subject Attribute 92.3% 7.7% 1.6%

Fig. 2. Accuracy of each UniMiB Subject Tested Individually

Table 4. Accuracy based on X-fold and best/worst subjects. The delta between
best/worst vs average accuracy narrows as more subjects are placed in a fold.

MobiAct UniMiB SHAR

#subj/fold All Min Max #subj/fold All Min Max

1 95% 78% 100% 1 87% 67% 97%

2 95% 84% 98% 2 86% 72% 94%

3 95% 89% 98% 3 (10-fold-CV) 85% 70% 93%

5 (10-fold-CV) 95% 92% 98% 6 (5-fold-CV) 86% 74% 91%

10 (5-fold-CV) 95% 92% 97% – – – –
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4 Conclusion

In this work, we have shown that re-sampling smartphone acceleration data
does not improve accuracy but downsampling can substantially reduce training
time. This is important because consistent with prior work, stratified random
allocation where samples from a single subject are present in both the training
and testing groups generated higher accuracy than can be expected given an
unknown subject. Hold-one-subject out is recommended but requires a train/test
pass for each subject. We have shown that individual subject accuracies can vary
greatly in a hold-one-out scenario and as the number of subjects in each fold
increases the delta between possible min and max folds is reduced. Group-based
5-fold cross-validation can be used and closely matches the accuracy reported
by averaging hold-one-subject-out.
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Abstract. Heart failure (HF) is a deadly disease and its prevalence is
slowly increasing. The sub-types of HF are currently mostly determined
by the so-called ejection fraction (EF). In this work, we try to find novel
subgroups of heart failure following a complete data-driven approach
of clustering patients based on their electronic health records (EHRs).
Using a validated phenotyping algorithm we were able to identify 14,334
adult patients with heart failure in our database. We derived embed-
dings of patients using two different strategies, one processing aggregated
clinical features using principal component analysis (PCA) and uniform
manifold approximation and projection (UMAP), and one where we learn
embeddings from the sequence of medical events using a long short-term
memory (LSTM) autoencoder. Then we evaluated different clustering
strategies like k-means and agglomerative hierarchical to derive the most
informative subtypes. The results were compared based on different met-
rics such as silhouette coefficient and so on and also based on compar-
ing outcomes such as hospitalization, EF etc. between the clusters. In
the most promising result, we were able to identify 3 subclusters using
the aggregated data approach in combination with UMAP as dimension
reduction method and k-means as cluster method. Patients in cluster 1
had the lowest number of hospital days and comorbidities, while patients
in cluster 3 had a significantly higher number of hospital days together
with a higher prevalence of comorbidities such as chronic kidney disease
and atrial fibrillation. Patients in cluster 2 had a high prevalence of drug
allergies in their medical history.

Keywords: Unsupervised learning · Electronic health records · Heart
failure

M. Hackl and S. Datta—Contributed equally to this paper.

c© Springer Nature Switzerland AG 2021
A. Tucker et al. (Eds.): AIME 2021, LNAI 12721, pp. 219–228, 2021.
https://doi.org/10.1007/978-3-030-77211-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77211-6_24&domain=pdf
http://orcid.org/0000-0002-5877-6421
http://orcid.org/0000-0002-2714-3250
http://orcid.org/0000-0002-7815-6000
http://orcid.org/0000-0001-6868-6676
https://doi.org/10.1007/978-3-030-77211-6_24


220 M. Hackl et al.

1 Introduction

Cardiovascular diseases are the number one cause of death from a global per-
spective [15]. Heart Failure (HF) is one of the major cardiovascular diseases. HF
describes the medical condition, where the heart has no longer the original func-
tional range of pumping blood [3]. In the US 6.2 million people are currently suf-
fering from HF and 379,800 people died in 2018 because of HF [6]. HF is a long
term illness that requires continuous treatment. The main treatments are lifestyle
changes, such as more exercise or a healthier diet, drugs such as angiotensin-
converting enzyme (ACE) inhibitors or beta blockers, and surgery such as bypass
[13]. It is especially important here to identify patients with comorbidities, as
treatments for these conditions could have a worsening effect on HF or, for exam-
ple, could contribute to more hospital stays. To reduce the impact of HF it is cru-
cial to get a better understanding of HF disease subtypes and with that provide
more personalized treatment plans. Subgrouping or subtyping generally describes
the process of clustering of a large group of data points, in this case patients, into
different subgroups. The groups (or clusters) should then represent patients with
similar features and can lead to new insights within a disease population. Patient
subgrouping is an important tool to enable personalized medicine. In this context,
electronic health records (EHR) can help to identify subgroups within a specific
disease cohort and better understand comorbidities, demographics, and treatment
patterns observed for that cohort [8].

Most of the works related to HF and machine learning are approaches to
classify HF patients into the already known subgroups [2]. One study tried to
subphenotype HF patients based on a clinical cohort study data [1]. To the best
of our knowledge, no other studies have retrospectively and in a complete data-
driven manner tried to subphenotype HF patients based on EHR data. In this
work, we try to subphenotype HF patients based on data from a large EHR
system. We adopt 2 different approaches to learn patient embeddings from the
EHR data, one where we aggregate the different medical features over time, and
a second one where we embed the sequences of medical events for each patient
using a long short-term memory (LSTM) autoencoder. We experimented with
broad range of dimensionality reduction and clustering techniques and present
the best results we observed.

This work is detailed as follows: Sect. 2 describes the dataset and methods we
used to subgroup HF patients. In Sect. 3 we convey our findings and results, fol-
lowed by a discussion in Sect. 4 and Sect. 5 describing the implications of this work.

2 Methods

2.1 Data Source and Phenotyping Algorithm

The data used for this work was obtained from the Mount Sinai Health System
(MSHS). The MSHS is an integrated health care system in the greater New
York area. All the treatment data of the different facilities are combined in the
so called Mount Sinai data warehouse (MSDW). MSDW contains clinical EHR
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data from over 3.4 million patients [7]. Since the Mount Sinai health system
is an alliance of hospitals and outpatient facilities, the entire patient journey
can be captured here. Therefore the data from MSDW usually provides a good
representation of the patients current health status and history.

The main purpose of a phenotyping algorithms is to correctly identify
patients exposed to a particular disease using different diagnostic codes, labora-
tory values and clinical free text notes a physician makes during an examination
[9]. For creating our cohort of interest the HF phenotyping algorithm by Suzette
J. Bielinski was used [19], was used. This algorithm is able to detect HF patients
from EHR data and is also able to distinguish between the types of ejection
fraction.

2.2 Features and Patient Embedding

The EHR data out of the MSDW provides different dimensions about a patients
health journey like diagnosis medications, procedures, laboratory values and vital
signs. All these dimensions were used to create a holistic view of the patient’s
health status. In order to avoid considering too many sparse features, individual
concepts were selected from the dimensions based on their frequency of occur-
rence.

We chose different thresholds for extracting the features of each dimension.
The threshold describes the fraction of patients that must have a certain code or
dimension in their EHR, for that feature to be considered. For the dimensions
medication and diagnosis we chose a threshold value of 20%, i.e. at least 20%
of the patients must have that particular feature in their records, for it to be
considered as a valid feature. For the dimensions procedures, vital signs and
laboratory values we chose a threshold value of 80%, since they are usually
more often present than the features of the other dimensions. The number of
different type of features we considered is shown in the Fig. 1 inside the rectangle
titled Feature selection. In total, our cohort consists of 14,334 patients and 284
features. The average age of onset of HF is 69 years. 7,828 (54.6%) are male
and 6,506 (45.4%) are female. Next up we describe the two strategies we used
to learn patient embeddings from the EHR data:

Fig. 1. Cohort and feature selection
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Embeddings from Aggregated Data. In the first strategy we get the aggre-
gated medical concepts from the different dimensions (excluding demographics)
mentioned above. Since the dimensions diagnosis, procedures, and medication
are categorical, we just notice if they were present or not, while for the numeri-
cal dimensions such as vital signs and laboratory values we took the minimum,
maximum, and mean value a patient has during the observation period. Then
the data was corrected for biologically infeasible outliers, scaled (using a min-
max scaler) and finally the missing values were imputed using a simple mean
imputation. We experimented with different imputation strategies such as K-
Nearest Neighbour(K-NN), Multiple Imputation by Chained Equations(MICE)
etc., but the results didn’t seem to be much effected by the imputation strat-
egy. For the aggregated data we used two strategies to reduce the dimension of
the patient vector namely: Principal Component Analysis (PCA) and Uniform
Manifold Approximation and Projection (UMAP). Having a large number of
dimensions in the feature space can mean that the volume of that space is very
large which can dramatically harm the performance of the clustering techniques
to be applied later. This is usually known as “curse of dimensionality”. PCA,
one of the most popular dimension reduction technique, is used to compute the
orthogonal projection of the data onto a lower dimensional linear space, known
as the principal subspace, such that the variance of the projected data is max-
imized [4]. In contrast to PCA, UMAP is based on the topological mapping of
the high-dimensional dataset. UMAP is primarily known as a visualization tech-
nique for high-dimensional data, but can also be used for dimensional reduction
in general [11,18].

Embeddings from Sequential Data. In the second approach, a patient’s
embedding is learned from sequential data consisting of various medical events
ordered chronologically. After arranging the events of that patient a “sentence”
representing the patients journey is obtained. In order to encode the numerical
features as a word in a sentence they are categorized in two categories, high and
low, based on their value. In the next step each event (or “word” in the sentence)
is replaced by a embedding. The embedding of the events were learned using the
continuous bag of words (CBOW) model [12]. The sequence of embeddings were
then fed into a LSTM autoencoder to ultimately get a vector per patient. The
preprocessing of the sequence data and the LSTM autoencoder design is shown
in Fig. 2.

2.3 Clustering

After the embeddings are learned for each patient in our cohort, the final step
comes where we apply the clustering methods. We tried two different methods
here

– K-Means: the main goal is to find k-clusters with minimal variance for group-
ing n data points [16] . To find the optimal value of k, the elbow method was
used.



Subphenotyping Heart Failure Patients 223

(a) Data Preprocessing (b) LSTM Architecture

Fig. 2. (a) displays the Entire preprocessing pipeline of the sequential data (b) shows
the architecture of the LSTM Autoencoder.

– Agglomerative-Hierarchical: It is a “bottom up” approach, i.e. the algo-
rithm starts at the individual data points and further groups them together
hierarchically, resulting in a tree-like hierarchy, the so-called dendograms [14].

2.4 Evaluation

The resulting clusters were evaluated in different areas:

– Performance of the Cluster Algorithm: The clustering performance was
evaluated with the Silhouette Coefficient [17], the Calinski-Harabasz Index
[5] and the Davies-Bouldin Index [10].

– Characteristics of the Clusters: Insights such as the prevalence of different
diagnoses or medications within the different clusters were compared. These
insights can then be used to determine the characteristics of the clusters from
a medical perspective.

– Evaluation of Outcomes: Days in hospital as inpatient and the ejection
fraction measurement were compared between the different subgroups to see
if there is a significant difference. It should be noted, ejection fraction and
days in hospital were not used as input feature.

To determine if the difference between the different features and outcomes
were significant between the clusters, chi-square (for categorical features and
outcomes) and ANOVA (for numerical features and outcomes) tests were used.

3 Results

We have performed many different experiments with our clustering framework
described in the methods section. Table 1 lists some of the top results from the
two different embedding strategies and their corresponding evaluation metrics. In
general the best results from the embeddings based on the aggregation strategy
performed better than the embeddings based on the sequence strategy. UMAP
performed markedly better than PCA as a dimensionality reduction technique.
In the upcoming sections we take a deeper look into some of these clustering
results.
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Table 1. Metrics of the top performing clusters SC: Silhouette Coefficient (higher
is better), CH: Calinski-Harabasz Index (higher is better) and DB:Davies Bouldin Index
(lower is better).

Strategy Dimension reduction method Cluster method SC CH DB

Aggregated PCA Kmeans 0.1057 2136.8 2.2607

Aggregated PCA Hierarchical 0.0856 1766.5 2.4927

Aggregated UMAP Kmeans 0.5187 27517.3 0.7061

Aggregated UMAP Hierarchical 0.5084 26141.8 0.7273

Sequential LSTM-Autoencoder Kmeans 0.4604 19881.9 0.7665

Sequential LSTM-Autoencoder Hierachical 0.4159 17089.6 0.8347

3.1 Results from the Aggregated Data Strategy

UMAP and K-means. The overall best results that we observed, were
obtained using UMAP as dimension reduction method and k-means as the clus-
tering technique. The data was initially reduced to 70 dimensions and clustered
into 3 groups. We experimented with the dimension of the intermediate repre-
sentation and found 70 to be most optimal. Figure 3 (part 2) shows the scatter
plot of the 3 different clusters using a UMAP.

Fig. 3. Evaluation of the UMAP clusters 1: Distribution of days spent in hospital;
2: Scatter plot of clusters

In Table 2 the characteristics of the different clusters (list of features that
were differing between the clusters the most) are shown. The Fig. 3 (part 1)
shows the box plots of the hospitalization days per cluster. With a p-value of
2.79e-45 a significant difference in hospitalization rates among the clusters was
observed. Though no significant differences in terms of ejection fraction was
observed among the clusters. After investigating the clusters further the following
characteristics were observed:

Cluster 1: The 6216 patients within cluster 1 have an average onset age of 69
years. This cluster has the lowest incidence of the comorbidites. Only for the
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diagnosis of primary hypertension and atrial fibrillation cluster 1 has a higher
prevalence than cluster 2. Also for the cluster 1 beta blockers were prescribed
more often. Compared to the other clusters, patients here spend lower number of
days in the hospital. Hence, this can be described as the comparatively healthier
cluster.

Cluster 2: The 2657 patients in cluster 2 have the oldest onset age with an
average age of 72. Cluster 2 has the second highest values for all diagnoses
except atrial fibrillation and hypertension, where it has the lowest prevalence.
Patients in this cluster are most likely to have (72%) personal history of allergy
to medical agents. This may contribute to the fact that patients in this cluster
spend the second highest number of days in the hospital on average, 52 days.
Besides that also the low prevalence of prescribed beta-blockers stands out.

Cluster 3: The average HF onset age of the 5461 patients in Cluster 3 is 68 years.
Cluster 3 has the highest prevalence of comorbidites. The different comorbidities
lead to a higher rate of hospitalization, 64 days on average.

Table 2. Characteristics of the UMAP clusters

Feature Cluster 1 Cluster 2 Cluster 3

Onset Age 69 72 68

Male 55% 52% 56%

Female 45% 48% 44%

Patients 6216 2657 5461

Atrial fibrillation 0.222312045 0.10082769 0.257330177

Personal history of allergy to
medicinal agents

0.284559418 0.726862302 0.437807321

Stroke hemorrhagic 0.047049313 0.060948081 0.110362411

Metoprolol succinate (beta-blocker) 0.263217462 0.0413845 0.339464578

Essential (primary) hypertension 0.216168149 0.010158014 0.348752504

Chronic kidney disease 0.296523848 0.380737397 0.558550355

Depression 0.176556184 0.267870579 0.321981424

3.2 Results from the Sequence Data Strategy

LSTM Autoencoder and K-means. The best performing clustering results
from the experiments, where the sequence per patient was fed into the LSTM
autoencoder, was achieved with an LSTM autoencoder (with two encoder and
decoder layers of sizes 32 and 16 and the sigmoid activation function) in combi-
nation with the k-means clustering algorithm. Figure 4 (part 2) is showing the
scatter plot of the 3 resulting clusters in 2-dimension using a UMAP.

Among the different clusters no big differences were observed in terms of the
underlying features and are therefore not shown here. Figure 4 (part 1) shows
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Fig. 4. Evaluation of the sequential clusters 1: Distribution of days spent in
hospital; 2: Scatter plot of clusters

the box plots of the number of days spent by patients in hospital. No significant
difference was observed here as well. As there was no significant difference in
the features and in days spend in hospital, it was not possible to individually
describe the different clusters here.

4 Discussion

The main objective of this work was to identify subphenotypes of HF patients
using EHR data and an elaborate clustering framework. We managed to identify
three subphenotypes that showed a significant difference in terms of prevalence of
comorbidities and medications. We describe the significance of our work below.

4.1 Technical Significance

As a part of this work we developed a framework in python that manages to
cluster specific cohort of patients from EHR data using different dimensionality
reduction and clustering techniques. Due to it’s modular design additional meth-
ods of clustering or dimensionality reduction can be added here with very little
effort. Additionally the framework also allows to address the sequential nature
of the data with the help of a LSTM autoencoder. To the best of our knowledge,
our work is the first of it’s kind in comparing aggregated and sequential data
based approaches with EHR data for subphenotyping specific disease cohorts.
We also show the UMAP approach can potentially outperform other methods
like PCA for embedding high-dimensional EHR data.

4.2 Clinical Significance

To the best of our knowledge, our work is the first where we perform a retrospec-
tive data-driven subphenotyping of HF patients based on EHR data. Our work
shows, it is possible to detect meaningful subphenotypes for HF patients with
EHR data and unsupervised learning. We were able to clearly detect one cluster
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which had considerably higher number of comorbidites. We show the comor-
bidites can effect subsequent hospitalization rate. We also detected a cluster
which showed significantly higher rate of personal history of allergy to medicinal
agents. This group also showed a comparatively higher hospitalization rate com-
pared to the healthier subgroup. Whether the more days spend it hospital was
due to allergic reaction to medicinal agents needs to be investigated. Notably,
when compared to [1], who performed subphenotyping of HF patients based on
data from clinical trials, our clusters also differed in terms of incidence of diseases
such as atrial fibrillation.

4.3 Limitations and Future Work

The main limitation of our work is it based on data from only one health system.
We need to externally validate our models to see if similar clusters can be found
in other EHR systems as well. Also, as the information of death related to HF was
not available in our dataset we couldn’t examine if the clusters also had different
mortality rates. In future, we plan to integrate more modalities of data such as
clinical notes and genetic data to investigate if we can enrich our clustering
results with this added information.

5 Conclusion

In this work two different approaches were compared to identify subphenotypes of
HF patients based on the EHR data from MSHS. The first approach was based
on aggregating the medical concepts from the EHR data, and in the second
approach we represented the patients as a sequence of medical events. Various
dimensionality reduction and clustering techniques were employed to obtain the
subgroups of patients. In general the aggregated data based approach performed
better than the sequence data based approach. In our best results, we obtained
3 different clusters which varied significantly in terms of underlying medical
features, number of hospitalizations and disease severity. Our best results were
obtained with UMAP as a dimensionality reduction technique and k-means as
the clustering technique. Our framework can help better understand varying
subphenotypes in heterogeneous sub-populations and unlock patterns for EHR-
based research in the realm of personalized medicine. In future we want to verify
the various subgroups we found in the medical literature and with the support
of clinicians.
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Abstract. Parkinson’s disease is a neurodegenerative disease charac-
terised by heterogeneity of the sets of symptoms patients experience and
the trajectories of disease progression. The PPMI study includes patients’
symptoms explaining different aspects of patients’ life, i.e. motor, non-
motor, and autonomic symptoms. This paper proposes a multi-view clus-
tering approach for determining groups of Parkinson’s disease patients
from the PPMI study with distinct disease trajectories over 4 years.
The proposed multi-view clustering approach searches groups of patients
who share similar disease progression trajectories over multiple types of
symptoms. We detected two groups of patients with different disease
progression trajectories and significant differences in severity of motor,
non-motor, and autonomic symptoms. On the other hand, while we did
not detect any significant differences between the patients from the two
groups based on their demographics, medications treatment or their dis-
ease types, we identified over-sensitivity to bright light as a possible early
screening symptom for type of disease progression.

Keywords: Parkinson’s disease · Multi-view clustering · Disease
progression

1 Introduction

Parkinson’s disease is the second most common neurodegenerative disease after
Alzheimer’s disease. Patients who have Parkinson’s disease experience various
symptoms whose severity can significantly affect the quality of life of both the
patients and their families. Parkinson’s disease is incurable, and the patients are
provided only with symptomatic treatment. The treatment consists mainly of
prescribing antiparkinson medications designed to treat patients’ motor symp-
toms, which are the most characteristic symptoms of the Parkinson’s disease.

Efforts have been made in the scientific community to connect the variability
of symptoms to some underlying subtypes of Parkinson’s disease. The definition
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of actual subtypes of Parkinson’s disease would lead to a better understand-
ing of its underlying mechanisms. It could improve Parkison’s disease patients’
treatment and lead to a better design of clinical trials [3].

The commonly used subtype classification, conceptualising the heterogeneous
motor manifestations of early Parkinson’s disease, was proposed by Jankovic
et al. [6]. This is the division of PD patients into tremor dominant (TD), postu-
ral instability and gait difficulty (PIGD), and the indeterminate subtype (Inde-
terminate). Based on the analysis of data from the DATATOP trial [10], the
authors show that the patients classified into the TD and PIGD groups exhibit
differences in their ability to perform activities of daily living, as well as differ-
ences concerning key non-motor symptoms, supporting the existence of the TD
and PIGD clinical Parkinson’s disease subtypes. The classification of Parkinson’s
disease patients in the TD/PIGD subtypes can be derived from the assessment of
patients’ symptoms severity using the well-established scale MDS-UPDRS [9]1.
However, the classification into PIGD/TD subtypes is usually done only at the
beginning of the patient’s diagnosis. It does not offer an insight into how the
disease will progress, even though the classification of patients into TD/PIDG
can change as the disease progresses. The patient’s symptoms are affected by
both the disease’s natural progression and their symptomatic treatment [13].

The definition of consistent subtypes of Parkinson’s disease is still an open
issue and may contribute to better understanding of the disease. A consistent
subtype would include patients with similar symptoms and trajectories of disease
progression. In this work, we propose a novel multi-view clustering approach—
clustering of data from multiple sources [1]—to detect groups of Parkinson’s dis-
ease patients with similar trajectories of disease progression after four years of
their involvement in the PPMI2 study [7]. Our methodology addresses the hetero-
geneity of Parkinson’s disease by considering the patients’ motor, non-motor, and
autonomic symptoms. We cluster the patients into groups based on the changes
of symptoms severity that the patients have experienced at the beginning of
the study and four years later. Our methodology detects two groups of patients
with a different speed and severity of disease progression. A smaller group of
Parkinson’s disease patients experience more severe problems with their rigid-
ity, postural instability, leg agility after four years. At that time, these patients
also experience significantly worse motor experiences of daily living, non-motor
symptoms, and autonomic symptoms.

The paper is structured as follows. Section 2 presents the data used in the
analysis. Section 3 presents the proposed methodology and Sect. 4 outlines the
experimental results. The conclusions and plans for further work are presented
in Sect. 5.

1 MDS-UPDRS is Movement Disorder Society sponsored revision of the Unified
Parkinson’s Disease Rating Scale.

2 Parkinson’s Progression Markers Initiative, https://www.ppmi-info.org/.

https://www.ppmi-info.org/
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2 Data

In this paper, we use the data from the Parkinson’s Progression Markers Ini-
tiative (PPMI) data collection [7]. The PPMI data collection records data for
over 400 Parkinson’s disease patients involved in the study for up to 5 years.
During their involvement, the patients regularly (every 3–6 months) visit their
assigned clinicians to assess their symptoms. In this way, the clinicians monitor
the disease progression over time. The clinical data used in patient partitioning
was gathered using several standardised questionnaires, briefly described below.

– MDS-UPDRS (Movement Disorder Society-sponsored revision of Unified
Parkinson’s Disease Rating Scale) [4] is the most widely used, four-part ques-
tionnaire addressing ‘non-motor experiences of daily living’ (Part I, subpart
1 and subpart 2), ‘motor experiences of daily living’ (Part II), ‘motor exami-
nation’ (Part III), and ‘motor complications’ (Part IV). It consists of 65 ques-
tions, each addressing a particular symptom. Each question is anchored with
five responses that are linked to commonly accepted clinical terms, ranging
from 0 = normal (patient’s condition is normal, the symptom is not present)
to 4 = severe (symptom is present and severely affects the normal and inde-
pendent functioning of the patient); scores 1, 2, and 3 denote degrees of
intermediate symptom severity.

– SCOPA-AUT (Scales for Outcomes in Parkinson’s disease - Autonomic) [14]
is a specific scale for assessing autonomic dysfunction in Parkinson’s disease
patients.

In the context of multi-view clustering, patients’ data from the mentioned
questionnaires represent separate views (NUPDRS1, NUPDRS1P, NUPDRS2P,
NUPDRS3, SCOPA-AUT). Answers to the questions from each questionnaire
form the vectors of attribute values. All considered questions have ordered values,
where larger values suggest higher symptom severity and lower quality of life. In
this work, we look only at the severity of patients’ symptoms when they were
admitted to the study and at the patients’ 10th visit. We chose the 10th visit
as it shows the status of patients after a slightly longer period (4 years), and a
good portion (194 patients, 55 females) of the PPMI patients had records for
this visit.

In addition to the clinical data, in order to establish significant differences of
attribute values based on the assigned progression group, in the post-processing
we also used the patients’ demographics data, i.e. gender, years of education,
patient’s age at the time the patient was admitted to the PPMI study, patient’s
age when the first symptoms appeared, and the patient’s age when the diagnosis
was established. We also looked at the patients’ therapy with antiparkinson
medications data at the time of their admission to the PPMI study and at their
10th visit. We also report the statistical significance of the patients’ subtypes
(TD/PIGD) [6,9] at the start of the study and on the patients’ 10th visit.
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3 Multi-view Clustering Methodology

Our methodology for determining groups of Parkinson’s disease patients with
different disease progression trajectories consists of four steps, presented in Fig. 1.

Fig. 1. The overall multi-view clustering methodology for detecting groups of Parkin-
son’s disease patients with different trajectories of disease progression.

The first step is data preparation, where for each patient of the PPMI study
with records of symptoms at the start of the study (V1) and 10th visit (V10),
we calculate the difference of symptoms severity the patients had experienced
at V10 and V1. We calculate these differences for each view separately. The i-
th row of the j-th view represents the differences of the i-th patient’s symptoms
from the j-th view at V10 and V1.

In the second step, we perform multi-view clustering of the symptoms severity
data. The multi-view clustering approach consists of three key steps: select-
ing the best clustering for each step separately, performing multi-view feature
selection using the mvReliefF algorithm, and ensemble clustering of the best
selected clusters from individual views. More details of the used multi-view
clustering approach are provided below. The algorithm for multi-view clus-
tering will be presented in a forthcoming paper from the authors.

In the third step, we performed statistical tests (the Kolmogorov-Smirnov
test) to detect differences in the severity of symptoms for patients from the
detected clusters based on their values at baseline and V10. In addition to the
symptoms data used in the multi-view clustering, we also test differences in
demographic and medications data, as well as the patients’ assigned subtypes
at V1 and V10.

In the fourth step, we perform rule learning to determine descriptions of the
obtained clusters. The descriptive attributes for the rule learning algorithm
of choice are the attributes (symptoms) from the third step of the method-
ology that showed a significant difference between the patients assigned to
the obtained clusters. The cluster labels obtained from the second step of
our methodology are used as class labels in the classification rule learning
algorithm.
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Fig. 2. Outline of the used multi-view clustering approach.

The outline of the multi-view classification algorithm is presented in Fig. 2.
The methodology consists of six steps forming three key components. As the
quality of clustering is highly dependent on the quality of the selected features
and vice versa, the first two key components of the methodology are clustering
of individual views and multi-view feature selection. The third key component of
the multi-view clustering methodology is the ensemble clustering of the chosen
best clusters per view based on their alignment.

In step 1 of the methodology, we choose the best clustering for each view.
The decision is made based on an adaptation of the silhouette score [8]. In step
2, we record the pairwise cluster alignment using the adjusted rand index [5] and
record the alignments as a time point. The third step evaluates features from all
views using the mvReliefF approach. The mvReliefF algorithm is an adaptation
of the ReliefF algorithm. It determines the neighbourhood of close hits (examples
with the same class label) and close misses (examples with different class labels)
based on their cluster labels in pairs of views. This algorithm selects features
that are predictive of the cluster labels and coherent among the views. Based on
the determined feature importance, in step 4, we remove the worst feature, i.e.
the feature whose removal will lead to the biggest improvement of the alignment
between the cluster labels of individual views. Steps 1–4 are performed in a loop
until all views have only one remaining feature. In step 5, we select the time
point with the best alignment between cluster labels of views. Based on the
selected cluster labels from step 5, in step 6, we perform ensemble clustering
using Python package Cluster Ensembles [11].

4 Results

We applied our methodology to a dataset of 194 patients (55 females) from the
PPMI study who already made their 10th visit to the clinician. The patients’
average age on their first visit is 61.16 years (median value of 62 years), with the
oldest patient being 84 years old, while the youngest patient was 33 years. The
average duration of education of the involved patients is 15.83 years.
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Our methodology resulted in the partitioning of the patients into two groups.
Twenty patients were assigned to the first group, denoted as cluster 0, with the
rest 174 patients assigned to the second cluster i.e. cluster 1. The best clusters
were obtained after removing 5 features from the NUPDRS2P view, 24 features
from NUPDRS3, 10 features from SCOPA-AUT, 1 feature from NUPDRS1P,
and no features from NUPDRS1. Table 1 presents brief statistics of the qual-
ity of the obtained ensemble clustering on the respective view. The quality of
clusterings is determined using the silhouette score.

Table 1. Quality of the ensemble clustering of the selected subsets of symptoms using
the silhouette score. The subsets of symptoms are selected in the 5th step of the multi-
view clustering approach (see Fig. 2). The ensemble cluster quality is the quality of
ensemble clustering based on the selected feature subsets.

View Ensemble cluster quality

1 NUPDRS1 0.177

2 NUPDRS1P 0.140

3 NUPDRS2P 0.277

4 NUPDRS3 0.319

5 SCOPA-AUT 0.215

We used the Kolmogorov-Smirnov test to test the distribution equality of
symptoms between patients assigned to cluster 0 and cluster 1. For this pur-
pose, we used the symptoms from the multi-view clustering step, i.e. the symp-
toms from the views NUPDRS1, NUPDRS1P, NUPDRS2P, NUPDRS3, and
SCOPA-AUT and their respective sum attributes denoting the sum of patients’
symptoms severity. For each of these attributes, we constructed two versions,
the symptoms severity at the baseline, here denoted with the suffix V1 and the
symptom severity at V10, denoted with the suffix V10. From the motor symp-
toms of NUPDRS3, we also calculated more abstract symptoms, representing a
type of motor symptoms. Table 2 presents the newly derived attributes and their
underlying members. The value of the derived attributes is calculated either as
max or mean value of the severity of underlying symptoms (here denoted with
the suffixes max and mean. We are interested in potential differences of symp-
toms severity among patients assigned to either cluster 0 or cluster 1. Significant
differences at V1 can help early screening and division of patients based on their
expected disease progression. Differences at V10 will reveal potential trajectories
of the disease.

In addition to the clinical symptoms, in this post-processing step, we also
included patients’ demographic attributes (see Sect. 2), as well as data about the
patients’ antiparkinson medications treatment and their underlying subtypes at
V1 and V10. Table 3 presents the symptoms/attributes with significant differ-
ence between patients from cluster 0 and cluster 1 at the significance level 0.1.
Symptoms are ordered according to their p-value. Symptoms whose severity at
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Table 2. Hierarchy of derived motor symptoms. The value of the derived symptoms
was calculated as mean and max value of the severity of the respective questionnaire
symptoms. All questionnaire symptoms belong to the NUPDRS3 view.

Derived symptom Questionnaire symptoms

RIGIDITY NP3RIGN, NP3RIGRU, NP3RIGLU, PN3RIGRL,

NP3RIGLL

FTAPPING NP3FTAPR, NP3FTAPL

HAND MOVING NP3HMOVR, NP3HMOVL

PRONATION/SUPINATION NP3PRSPR, NP3PRSPL

TTAPPING NP3TTAPR, NP3TTAPL

LEG AGILITY NP3LGAGR, NP3LGAGL

TREMOR NP3PTRMR, NP3PTRML, NP3KTRMR,

NP3KTRML, NP3RTARU, NP3RTALU,

NP3RTARL, NP3RTALL, NP3RTALJ, NP3RTCON

POSTURAL TREMOR NP3PTRMR, NP3PTRML

KINETIC TREMOR NP3KTRMR, NP3KTRML

TREMOR AT REST NP3RTARU, NP3RTALU, NP3RTARL, NP3RTALL

the baseline is significantly different between patients from cluster 0, and cluster
1 are presented at the upper half of the table. For a more comprehensive pre-
sentation, we also present the description of the identified significant symptoms
and their respective views (questionnaires).

The results did not reveal any significant differences regarding the patients’
demographics or their treatment with antiparkinson medications. We detected
a significant difference in symptoms severity at V1 for the SCAU19 symptom
(over sensitivity to bright light) from the SCOPA-AUT questionnaire. As the
disease progresses, the patients assigned to cluster 0 experience more rapid and
harsh disease progression, as manifested by all types of symptoms: motor, non-
motor, and autonomic. Patients from cluster 0 experience significantly more
severe rigidity symptoms, freezing of gait, problems with their posture and pos-
tural instability, and consequently problems with their motor experiences of daily
living (dressing, personal hygiene, hobbies, swallowing, etc.).

To describe the underlying structure of the obtained ensemble clusters, we
used the ensemble cluster labels as class labels with the Ripper algorithm [2] for
classification rule learning (WEKA implementation). The descriptive features
were constructed by concatenating the resulting view subsets. This resulted in
one classification rule, describing the patients assigned to cluster 0 and a default
rule describing the remaining patients. The number of true positive (TP) exam-
ples covered by the first rule is 15, and the number of false positives (FP) is
2. The obtained clusters can be described based on the value of patients sum
of symptoms severity. Similarly to the results presented in [12], the patients
with the worst symptoms severity are those whose sum of severity of motor
symptoms NUPDRS3 SUM (NUPDRS3 SUM V10 is NUPDRS3 SUM at V10)
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Table 3. Statistics of statistically different symptoms of patients from cluster 0 and
cluster 1. The V1 suffix (upper part of the table) denotes symptoms with significant
difference in severity at V1, while the V10 suffix (bottom part of the table) denotes
symptoms with significant difference in severity at V10 (after 4 years). Symptoms are
ordered according to the p-value.

Symptom Description Questionnaire Mean value (STD) Mean value Mean value in p-value

cluster 0 (STD) cluster 1(STD)

SCAU19 V1 OVER SENSITIVITY TO
BRIGHT LIGHT

SCOPA-AUT 0.387 (0.619) 0.75 (0.786) 0.345 (0.586) 0.0609

NUPDRS2P SUM V10 Sum of NUPDRS2P
symptom severity

NUPDRS2P 10.876 (6.546) 19.750 (7.559) 9.856 (5.602) 0.0000

NP3PRSPL V10 PRONATION-SUPINATION
- LEFT HAND

NUPDRS3 1.000 (0.976) 2.250 (0.851) 0.856 (0.885) 0.0000

NP2DRES V10 DRESSING NUPDRS2P 0.918 (0.784) 1.900 (0.788) 0.805 (0.702) 0.0000

NP3HMOVL V10 HAND MOVEMENTS -
LEFT HAND

NUPDRS3 0.938 (0.931) 2.150 (0.813) 0.799 (0.840) 0.0000

NP2HYGN V10 HYGIENE NUPDRS2P 0.433 (0.574) 1.100 (0.788) 0.356 (0.492) 0.0001

NP3LGAGL V10 LEG AGILITY - LEFT LEG NUPDRS3 0.814 (0.868) 1.850 (0.875) 0.695 (0.786) 0.0001

NP2SALV V10 SALIVA + DROOLING NUPDRS2P 1.026 (1.176) 1.900 (1.021) 0.925 (1.153) 0.0006

SCAU11 V10 WEAK STREAM OF
URINE

SCOPA-AUT 0.686 (0.971) 1.200 (0.768) 0.626 (0.976) 0.0011

NP2HOBB V10 DOING HOBBIES AND
OTHER ACTIVITIES

NUPDRS2P 0.866 (0.871) 1.850 (1.040) 0.753 (0.777) 0.0012

NUPDRS1P SUM V10 Sum of NUPDRS1P
symptom severity

NUPDRS1P 6.964 (3.931) 10.450 (4.249) 6.563 (3.700) 0.0018

NP3PRSPR V10 PRONATION-SUPINATION
- RIGHT HAND

NUPDRS3 0.943 (0.889) 1.600 (1.046) 0.868 (0.840) 0.0025

NP1URIN V10 URINARY PROBLEMS NUPDRS1P 1.088 (0.943) 1.900 (1.119) 0.994 (0.877) 0.0027

SCAU2 V10 SALIVA DRIBBLED OUT
OF MOUTH

SCOPA-AUT 0.655 (0.741) 1.200 (0.696) 0.592 (0.721) 0.0029

SCAU18 V10 EXCESSIVE
PERSPIRATION DURING
THE NIGHT

SCOPA-AUT 0.320 (0.558) 0.750 (0.639) 0.270 (0.528) 0.0032

NP3TTAPR V10 TOE TAPPING - RIGHT
FOOT

NUPDRS3 1.170 (0.931) 1.900 (1.021) 1.086 (0.886) 0.0041

NP2RISE V10 GETTING OUT OF
BED CAR OR DEEP
CHAIR

NUPDRS2P 0.840 (0.795) 1.550 (0.999) 0.759 (0.729) 0.0047

NP3RISNG V10 ARISING FROM CHAIR NUPDRS3 0.299 (0.605) 1.000 (1.170) 0.218 (0.441) 0.0052

NP2SWAL V10 CHEWING AND
SWALLOWING

NUPDRS3 0.381 (0.674) 0.800 (0.696) 0.333 (0.657) 0.0055

NP3FTAPL V10 FINGER TAPPING LEFT
HAND

NUPDRS3 1.139 (0.980) 2.000 (0.973) 1.040 (0.933) 0.0075

SCAU19 V10 OVER SENSITIVITY TO
BRIGHT LIGHT

SCOPA-AUT 0.541 (0.756) 1.100 (0.968) 0.477 (0.703) 0.0086

SCAU21 V10 TROUBLE TOLERATING
HEAT

SCOPA-AUT 0.412 (0.709) 1.200 (1.196) 0.322 (0.569) 0.0092

NP3LGAGR V10 LEG AGILITY - RIGHT
LEG

NUPDRS3 0.727 (0.847) 1.500 (1.051) 0.638 (0.776) 0.0095

NP3RIGLL V10 RIGIDITY - LLE NUPDRS3 0.742 (0.867) 1.400 (1.095) 0.667 (0.807) 0.0098

NUPDRS1 SUM V10 Sum of NUPDRS1 symptom
severity

NUPDRS1 2.397 (2.641) 4.650 (3.787) 2.138 (2.357) 0.0105

SCAU15 V10 LIGHT-HEADED FOR
SOME TIME AFTER
STANDING UP

SCOPA-AUT 0.247 (0.499) 0.600 (0.598) 0.207 (0.472) 0.0116

NP1LTHD V10 LIGHTHEADEDNESS ON
STANDING

NUPDRS1P 0.505 (0.757) 1.200 (1.056) 0.425 (0.674) 0.0134

NP3HMOVR V10 HAND MOVEMENTS -
RIGHT HAND

NUPDRS3 0.918 (0.835) 1.550 (0.826) 0.845 (0.808) 0.0136

NP3RIGLU V10 RIGIDITY - LUE NUPDRS3 1.046 (0.889) 1.800 (0.834) 0.960 (0.856) 0.0176

NP2TURN V10 TURNING IN BED NUPDRS2P 0.619 (0.690) 1.350 (0.988) 0.534 (0.595) 0.0189

NP2EAT V10 EATING TASKS NUPDRS2P 0.696 (0.724) 1.300 (0.865) 0.626 (0.675) 0.0230

NP1DPRS V10 DEPRESSED MOODS NUPDRS1 0.438 (0.697) 0.900 (0.852) 0.385 (0.659) 0.0238

(continued)
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Table 3. (continued)

Symptom Description Questionnaire Mean value (STD) Mean value Mean value in p-value

cluster 0 (STD) cluster 1(STD)

SCAU17 V10 EXCESSIVE
PERSPIRATION DURING
THE DAY

SCOPA-AUT 0.314 (0.635) 0.850 (0.988) 0.253 (0.553) 0.0252

NP3SPCH V10 SPEECH NUPDRS3 0.722 (0.664) 1.300 (0.733) 0.655 (0.624) 0.0342

NP2WALK V10 WALKING AND BALANCE NUPDRS2P 0.768 (0.75) 1.450 (0.945) 0.690 (0.685) 0.0394

NP2FREZ V10 FREEZING NUPDRS2P 0.768 (0.75) 1.450 (0.945) 0.690 (0.685) 0.0394

SCAU1 V10 DIFFICULTY
SWALLOWING OR
CHOKING

SCOPA-AUT 0.361 (0.579) 0.900 (0.912) 0.299 (0.495) 0.0406

SCAU10 V10 AFTER PASSING URINE
BLADDER NOT
COMPLETELY EMPTY

SCOPA-AUT 0.680 (0.950) 1.050 (0.759) 0.638 (0.962) 0.0479

PN3RIGRL V10 RIGIDITY - RLE NUPDRS3 0.851 (0.866) 1.500 (0.946) 0.776 (0.827) 0.0498

NP3POSTR V10 POSTURE NUPDRS3 0.985 (0.890) 1.700 (0.979) 0.902 (0.844) 0.0540

NP3TTAPL V10 NUPDRS3 1.253 (0.999) 2.000 (0.858) 1.167 (0.980) 0.0563

NP1COG V10 COGNITIVE
IMPAIRMENT

NUPDRS1 0.660 (0.886) 1.300 (1.490) 0.586 (0.761) 0.0593

NP3RIGN V10 RIGIDITY - NECK NUPDRS3 0.943 (0.894) 1.600 (1.046) 0.868 (0.846) 0.0593

SCAU14 V10 LIGHT-HEADEDNESS
WHEN STANDING UP

SCOPA-AUT 0.433 (0.601) 0.800 (0.768) 0.391 (0.566) 0.0722

NP3PSTBL V10 POSTURAL STABILITY NUPDRS3 0.284 (0.806) 1.000 (1.451) 0.201 (0.654) 0.0768

NP1HALL V10 HALLUCINATIONS AND
PSYCHOSIS

NUPDRS1 0.180 (0.481) 0.600 (0.883) 0.132 (0.387) 0.0986

is greater or equal to 42. The severity of motor symptoms also influences the
patients’ motor experiences of daily living, as evident by NUPDRS2P SUM,
whose value is higher or equal to 17. Patients from cluster 0 experience more
rapid and severe disease progression, causing significant worsening of their motor
symptoms—mostly rigidity and postural instability and consequently worsening
of their motor experiences in daily living, as well as their non-motor and auto-
nomic symptoms.

Rule for cluster 0: (NUPDRS2P SUM V10 >= 17) and (NUPDRS3 SUM
V10 >= 42) → CE cluster = cluster 0, (TP: 15, FP: 2)

Default rule: → CE cluster = cluster 1 (TP: 179, FP: 7)

5 Conclusion

We proposed a multi-view clustering based methodology for determining groups
of Parkinson’s disease patients with different disease progression patterns. The
proposed methodology detected the best clustering for the available data based
on the clustering quality measure and performed multi-view feature selection to
improve the clustering. We used data from the PPMI study, partitioned accord-
ing to the difference in symptoms severity between their 10th visit and first visit.

The results revealed that a small group (20 patients) of patients differs from
others concerning disease progression speed and severity. In the period from
their first visit to their 10th visit, these patients have experienced significant
worsening of their motor symptoms—mostly rigidity and postural instability,
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and consequently worsening of their motor experiences in daily living, as well as
their non-motor and autonomic symptoms. There were no statistical differences
between patients from both clusters based on their demographics, antiparkinson
medications treatment, or Parkinson’s disease subtypes (TD/PIGD). However,
we were able to identify over-sensitivity to bright light at the first visit as a distin-
guishing symptom between patients involved in the identified clusters. Although
a further discussion with clinicians is needed, this symptom can pose a possibility
for screening patients at the time of their diagnosis and adapt their treatment
based on the expected disease progression.

In future work, we will examine the significance of bio-markers and image
data for the disease’s progression. A potential biomarker associated with different
trajectories of Parkinson’s disease progression can be utilised for early screening
of patients, prediction of disease course, and designing clinical trials addressing
the needs of patients with more severe disease progression. Our future research
will also investigate the point at which the trajectories of the two groups of
patients start to diverge. We plan to test our methodology and our conclusions
on other available data sets for Parkinson’s disease patients.
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Abstract. Sepsis is a heterogeneous disease. Clustering sepsis patients
into homogeneous subgroups with characteristic phenotypes may help
for studying the disease progression and for providing targeted thera-
pies. Existing clustering methods use many or all input variables whereas
clusters defined by few variables are preferred by clinicians investigating
subgroup treatment. To address this gap, we propose a soft F -statistic
loss that promotes disentangled clusters differentiating on a small subset
of features. Empirical and qualitative results demonstrate our method
excels at achieving the desired property against competing methods.

1 Introduction

Sepsis is defined by a physiologic malresponse to infection and often leads to
adverse clinical outcomes including organ failure and death. Recent sepsis tri-
als have targeted numerous inflammatory pathways, yet few new therapies have
become standard of care [6]. A recurring story is the identification of a drug, test,
or protocol first showing success in a trial then failure to replicate in subsequent
studies due to population heterogeneity [10,11]. Recent work has focused on
identifying sepsis phenotypes: clinically-measurable characteristics of patients
meeting Sepsis-3 criteria [9]. Seymour et al. found that sepsis subgroups may
share phenotypic characteristics and have recognizable pathways and propensi-
ties for the disease progression [9]. Previous studies used classical methods, e.g.,
consensus k-means clustering, to identify sepsis phenotypes [4,9]. Although the
resulting clusters differed on several attributes such as liver function tests, such
distinctions were not built into the algorithmic design objective. While cluster
means showed differences, the per-feature distributions overlapped considerably
across clusters. Furthermore, responses to Seymour et al. [9] argue for further
subgrouping based on feature collection postulated to more closely measure the
underlying process in disease progression [7]. Since standard clustering methods
summarize all of the separate processes, interpretations from the clusters has
limited use for understanding and treatment of the disease.
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We introduce a disentangled hyperspherical clustering (DHC) method with
soft F -statistic loss which: 1. Optimizes for inter-cluster difference and intra-
cluster similarity, aligning with the goal of creating homogeneous patient sub-
groups; 2. Encourages clusters to separate on limited embedding dimensions; 3.
Has the disentangling modularity property, i.e. one dimension of the embedding
corresponds to at most one dimension of the features. Therefore the embeddings
can be mapped back to a small subset of features, identifying phenotypic differ-
ences between clusters, a property arguably central to the advancement of sepsis
research. Code for our method can be found at DHC-repo.

Related Work. A seminal study on sepsis phenotyping used a consensus k-
means clustering method [9]. Several recent works on clustering extended k-
means with deep autoencoder (AE) because of its ability to model non-linear,
high dimensional structures in data. Deep embedded clustering (DEC) [12]
pretrained a denoising AE and refined a centroid-based clustering objective,
while Improved DEC (IDEC) [3] further employed an undercomplete AE to
preserve local structures. Deep clustering network (DCN) [13], on top of AE,
optimized a k-means-based loss on the embedded space. Hyperspherical clus-
tering (HC) [2], while also used an AE, enforced embeddings on a hypersphere
where cluster membership could be directly obtained. Our method builds upon
HC as its objective ensures that embeddings are learned for the direct purpose of
clustering.

Disentangled representation learning (DRL) assumes that observed data is
generated from a set of latent factors, and recovers these factors in embeddings.
Although [5] shows that disentanglement is hard to achieve without supervi-
sion, useful properties of embeddings have been proposed and generalized into
modularity, compactness, and explicitness [1,5,8]. We focus on modularity,
which is used in DRL when an one-to-one mapping relation between an embed-
ding dimension and a factor dimension is needed. Although we do not have latent
factors as in DRL, we want that each dimension of our embedding to correspond
to one feature, i.e. we want the modularity property but with respect to feature
(not latent) variables. Note we refer to this modified modularity as a disentan-
gling property but our setting is different from classic DRL. Inspired by the
F -statistic loss [8] that optimizes for modularity and class homogeneity using
limited dimensions, we derive a soft F -statistic loss promoting homogeneous and
disentangling embeddings useful to create clusters separating on limited features.

2 Method

DHC consists of a HC network for clustering and a soft F -statistics loss for
achieving disentangled clusters separated by limited features. We employ the
HC in [2] which builds upon an AE. During training, an input instance x ∈ Rm

is encoded into embedding z ∈ Rh and then decoded back into x̂ ∈ Rm. From
z a subnetwork learns clustering probability c ∈ Rk. The loss term for training
HC is defined as LHC . Full details of HC can be found in our Appendix.

https://github.com/Cheng-Cheng2/disentangled-hypersphere-cluster
https://github.com/Cheng-Cheng2/disentangled-hypersphere-cluster
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2.1 Soft F -statistic

Assume we have two classes (α, β) and embedding z where zk,i,j denotes instance
j of class i for dimension k. HC gives us probability ci,j of instance j to be
clustered as class i. The soft F -statistic based on [8] for dimension k of embedding
z with two class identities is:

sk = ñ

∑

i ni(z̄k,i − z̄k)2
∑

i,j(ci,jzk,i,j − z̄k,i)2
(1)

where z̄k,i = 1
ni

∑

j ci,jzk,i,j , z̄k = 1
nα+nβ

∑

i,j ci,jzk,i,j , nα =
∑

j cα,j , nβ =
∑

j cβ,j , and ñ = nα +nβ −2. Maximizing the clustering separation is equivalent
to maximizing the CDF of the F -distribution, which can be approximated by
the regularized incomplete beta function I as:

Φ(k, α, β) = Pr(S < sk|μk,α = μk,β , ñ) = I(
s

s + ñ
,
1
2
,
ñ

2
) (2)

For any class pair chosen from the overall class set C, we select a set Dα,β of top
k features with top cluster separations (CDFs). Phenotypic groups of patients
may differ on some characteristics yet remain the same on others. The joint loss
function to optimize over all class pairs among top features is:

LF = −
∑

k∈D

∑

α,β∈C

ln Φ(α, β, k) (3)

Total Loss. The total trainable loss is defined as Ltotal = LHC +λF LF .

2.2 Measurements

Modularity Score. Modularity measures how well that each embedding dimen-
sion could be mapped to one feature dimension. Soft F -statistic loss gives us
clusters separating on top k embedding dimensions, and we want to map them
to features for phenotyping. We extend the modularity score defined by [8]. Let
mij denote the mutual information between embedding dimension i and feature
dimension j. For each i, a template vector ti denotes the idea modularity case,
i.e. embedding dimension i encodes information of only one feature dimension:

ti,j =

{

mij if j = argmaxg(mig)
0 otherwise

, δi =

∑

j mij − tij

θ2i (N − 1)
(4)

where δi is the dimension-wise deviation from the idea template and N is the
number of features. Modularity is measured as the average of 1 − δi over all i.

Predictive-Ability-From-Few-FeaturesAnalysis.Recall the soft F -statistic
loss promotes cluster pairs to separate on k embedding dimensions, and the mod-
ularity property allows the mapping from each of the k embedding dimensions



Disentangled Hyperspherical Clustering 243

to one feature variable with which is has the highest mutual information. To fur-
ther evaluate how well these selected features predict cluster membership, termed
as predictive-ability-from-few-features property (PAFFF), we perform the follow-
ing analysis: for DHC, we train a multilayer perceptron (MLP) to predict cluster
membership based on the selected features for each cluster pair (train/test split is
80/20, see theAppendix for details).We calculate the averageAUCscore of the test
set across all cluster pairs. For each of the clustering methods under comparison,
a same number of input features are randomly selected to predict corresponding
clusters for 100 random runs, and the average AUC is calculated.

Unsupervised Clustering Metrics. We use silhouette coefficient score (SS)
with cosine similarity, Calinski-Harabasz Index (CHI) and Davies-Bouldin Index
(DBI) as our evaluation metrics. Detailed formula can be found at scikit-learn.

3 Experiments

Data. Data was collected under the National Institutes of Health-funded Sepsis
Endotyping in Emergency Care project , with 43,086 critical care patients meet-
ing Sepsis-3 criteria. A complete data description can be found in the Appendix.

Training Details. Our network architecture followed [2]. We chose top 10 (k)
dimensions in soft F-statistic, and 4 clusters to directly compare with the bench-
mark sepsis phenotypic clusters [9]. We compare with classic clustering meth-
ods including K-means++ (KM++), consensus K-means (CKM), Agglomera-
tive clustering (AG), and Gaussian Mixture Models Clustering (GMM) as well
as AE-based methods including DEC, IDEC, DCN and HC. Training details for
both DHC and the baselines can be found in the Appendix.

4 Results and Discussions

Table 1 records the clustering results. Note that for PAFFF below the dashed
line, DHC use features that are mapped back from the k distinguishing embed-
ding dimensions identified by the soft F -statistic. We could do the mapping
because DHC has a high modularity score of 0.95. Our DHC method outper-
forms all other algorithms in terms of SS, indicating good inter-cluster separation
and intra-cluster cohesion. DCN and CKM outperform us in terms of CHI and
DBI, and DBI could be low for us since we do not optimize for centroid. In
general, our method has competitive unsupervised clustering power as we per-
form relatively well across the three metrics. In PAFFF, DHC has the highest
AUC, meaning our limited features have the best predictive power for cluster
membership. This property encourages us to build our phenotypes from these
features, as clinicians may assess subgroup membership with only partial infor-
mation collected.

https://github.com/Cheng-Cheng2/disentangled-hypersphere-cluster
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
https://github.com/Cheng-Cheng2/disentangled-hypersphere-cluster
https://github.com/Cheng-Cheng2/disentangled-hypersphere-cluster
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Table 1. SS, CHI, and DBI (higher
SS, higher CHI, and lower DBI indi-
cates better clusters), and AUC from
PAFFF analysis. Above the dashed
line input features used in PAFFF are
selected at random, and below, DHC
use features mapped back from the
embedding dimensions.

Model SS CHI DBI AUC

AG 0.001 1204 3.70 0.82

GMM 0.011 329 7.37 0.82

DEC 0.011 372 5.46 0.85

IDEC 0.039 1034 5.62 0.60

DCN 0.081 2107 3.24 0.73

KM++ 0.080 1855 3.76 0.81

CKM 0.090 2140 3.30 0.81

HC 0.094 2024 3.39 0.84

DHC (ours) 0.095 2043 3.36 0.83

1-5 DHC (ours) 0.095 2043 3.36 0.88

Table 2. Cluster phenotypes. The number
next to the variable indicates the number of
other clusters on which this cluster differs.

Counts ratio Feature differences Cluster

description

C1 11086

(0.26)

Bilirubin 2, BUN 2,

ESR 3, PaO2 3,

Sodium 2,

Healthier,

low-risk group

C2 11181

(0.26)

Bilirubin 2, BUN 2,

HCO3 3, Chloride

2, Glucose 2, sBP 2,

Sodium 2

Acid-base

imbalance;

relative

hyponatremia

C3 10691

(0.25)

Bilirubin 2, BUN 2,

Glucose 2, Lactate

2, Sodium 2

Renal

dysfunction;

inflammatory;

low lactate

C4 10128

(0.23)

Bilirubin 2, BUN 2,

Chloride 2, GCS 2,

Glucose 2, sBP 2,

Sodium 2

Electrolyte

derangement;

advanced signs;

high mortality

Sepsis Phenotyping. Table 2 shows our cluster phenotypes. We compare our
phenotypes with the benchmark CKM phenotypes [9]. Both cluster indices are
sorted based on increasing death ratios. We observe that (Appendix Fig. 1): 1.
Our healthier, low-risk cluster 1 has the lowest median ESR compared to the rest
clusters, not observable in CKM. 2. Our cluster 2 with relative hyponatremia has
the lowest median sodium level compared to the rest, not observable in CKM. 3.
Our cluster 3 with low lactate has the lowest median lactate compared to the rest,
not observable in CKM. In general, although our phenotypes largely correspond
to the CKM results, the median of selected features separate more across clusters
in our method, revealing more distinct subgroup phenotypic difference.
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Abstract. The phenotyping process consists of selecting sets of patients
of special interest and identifying their key characteristics. Subgroup
Discovery (SD) is a suitable supervised approach for this task. In this
work, we have proposed a two step process with an efficient SD algo-
rithm (VLA4SD) for an exhaustive exploration of the search space with
very effective prunes based on equivalence classes. We use the Cover-
age and the Incremental Response Rate quality measures to evaluate
general and interesting subgroups. The suitability of our approach has
been tested by identifying phenotypes of patients in the MIMIC-III open
access database.

Keywords: Subgroup Discovery · Patient phenotype · Algorithm

1 Introduction

The phenotyping process consists of selecting sets of patients of special inter-
est and identifying their key characteristics [4]. Descriptive Machine Learning
techniques have proven to be useful as regards generating clinical hypotheses of
this nature. However, from a practical perspective, clinicians’ low level of confi-
dence in such techniques is a limiting factor and some researchers are, therefore,
currently, focusing on interpretability and patient traceability properties [2,3].

Subgroup Discovery (SD) methods are a suitable approach by which to tackle
phenotyping. SD methods are supervised methods that obtain descriptions of
subgroups of the population. These descriptions are simple explicit (i.e. legible
and interpretable) relations of variable-value of the dataset with respect to a
target variable of interest and a quality measure.

In this research, we propose a two step process for extracting phenotypes
using an efficient SD algorithm (VLA4SD) based on the equivalence classes
strategy. We study the suitability of our proposal as regards analyzing patients
infected with different Staphylococcus and Enterococcus microorganisms treated
with Vancomycin recorded in the MIMIC-III open access database [1]. We eval-
uate both the performance of the algorithm and the subgroups obtained with
the Incremental Response Rate quality measure.
c© Springer Nature Switzerland AG 2021
A. Tucker et al. (Eds.): AIME 2021, LNAI 12721, pp. 246–251, 2021.
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2 Methods

We first introduce the general definitions used in SD techniques. A selector e
is a 3-tuple of the form ‘<attribute name, operator, attribute value>’
which represents a property of a set of individuals in a dataset. A pattern p is
a sequence ‘[selector]+’ of non-repeated selectors that represents the charac-
teristics of a set of individuals in a dataset. A subgroup s is a 2-tuple of the form
‘<description, target variable>’ in which the description is a pattern and
the target variable is a selector. Given a subgroup s and a dataset D, a quality
measure q(s,D) ∈ R

+ is a function that quantifies how interesting s is according
to certain criteria in a dataset.

2.1 Algorithm Proposal

VLA4SD is an efficient algorithm for exhaustive exploration that uses the Equiv-
alence Classes [5] search strategy. In this approach, the key element is a data
structure denominated as the Vertical List (a.k.a. TID-List). A Vertical List vl
contains a pattern (vl.selectors), a list with the IDs of the dataset instances
covered by the pattern (vl.instances), and a quality (vl.quality). This strategy
has two advantages: the operations to refine the subgroups and compute their
quality are very efficient, and the algorithm to explore the equivalence classes is
easily parallelizable. The VLA4SD algorithm consists of two methods: the main
method (shown in Algorithm 1) and the search method (shown in Algorithm 2).

2.2 Subgroup Discovery Process for Phenotypes

A two step process for SD is proposed: (1) we use an exhaustive SD algorithm to
extract general subgroups, and (2) we post-process and evaluate the subgroups
obtained to select a set of subgroups with some properties. It is important to state
that our interests lay in large subgroups and, therefore, we chose the Coverage
quality measure since it focuses on the generality of the subgroups. In the second
step, we obtain a set of consistent patterns that cover different parts of the
dataset and to rank the subgroups according to their predictive value. To this
end, we firstly run a tenfold cross stratified evaluation with the full dataset and
only the subgroups present in all the folds are selected. For the ranking, we chose
the Incremental Response Rate (IRR) measure from the marketing and uplift
modeling field. As last step, we keep the most relevant and general subgroups
by removing the refinements of the subgroups whose IRR is equal or lower than
the one of its parent subgroup.

3 Experiments and Dataset

In order to allow a reproducible research, instead of using the private clinical
database of the SITSUS research project (www.um.es/sitsus), we analyzed a
clinical dataset generated from the MIMIC-III open access database [1]. The final

www.um.es/sitsus
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Algorithm 1. VLA4SD algorithm. Main method.
Input: D {dataset}, target {selector}, q {quality measure}, min threshold {R}
1: P := [ ] ; S := [ ] ; E := [ ]
2: Scan D in order to obtain the list of individual selectors (adding them to E)
3: For each selector e ∈ E , create a Vertical List vl, P.add(vl), and compute

e.quality := q(< [e], target >,D)
4: For each instance r ∈ D, compute r.quality :=

∑
selector e∈r e.quality

5: For each Vertical List vl ∈ P, compute vl.quality :=
∑

instance r∈vl r.quality
6: Sort P according to the quality of each vl ∈ P
7: Prune the Vertical Lists in P such that vl.quality < min threshold
8: Create an empty matrix M, where M[i, j] ∈ R (i, j selectors acting as index)
9: for each (vlx, vly) ∈ P, with x ≥ y do

10: Generate a new Vertical List vlxy such that:
vlxy.selectors := concatenate(vlx.selectors, vly.selectors)
vlxy.instances := vlx.instances ∩ vly.instances
vlxy.quality :=

∑
instance r∈vlxy

r.quality

11: M[last(vlx.selectors)][last(vly.selectors)] := vlxy.quality
12: end for
13: F := SEARCH(null,P,min threshold,M)
14: for each vl ∈ F do
15: S.add(s :=< [vl.selectors], target >) with quality vl.quality
16: end for
17: return S

Algorithm 2. VLA4SD algorithm. SEARCH method.
Input: vl {Vertical List}, P {list of Vertical Lists}, min threshold {R}, M {Matrix}
1: F := [ ]
2: for each Vertical List w ∈ P do
3: if w.quality ≥ min threshold then
4: F .add(w)
5: end if
6: if (w is not last in P) and (vl.quality+M[last(w.selectors)][last(w.selectors)] ≥

min threshold) then
7: V := [ ]
8: for each Vertical List z ∈ P, with z after w in P list do
9: if M[last(w.selectors)][last(z.selectors)] ≥ min threshold then

10: Generate a new Vertical List new vl such that:
11: new vl.selectors := w.selectors.add(last(z.selectors))
12: new vl.instances := w.instances ∩ z.instances
13: new vl.quality :=

∑
instance r∈new vl r.quality

14: V.add(new vl)
15: end if
16: end for
17: if V �= [ ] then
18: F := concatenate( F , SEARCH(w,V,min threshold,M) )
19: end if
20: end if
21: end for
22: return F
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Table 1. Set of relevant subgroups after post-processing.

# Subgroup description Size IRR

0 culture microorganism name = Enteroc. SP., specimen type=
SWAB

788 0,681

1 microorganism = Enteroc. SP., icu when culture = SICU 609 0,611

2 microorganism = Enteroc. SP., service when culture = SURG 696 0,507

3 microorganism = Enteroc. SP.,
days between admission and first ICU >0

623 0,458

4 admission location = Transfer from Hosp/Extram,
microorganism = Enteroc. SP.

424 0,441

5 microorganism = Enteroc. SP., patient age = Adult,
patient gender = M

495 0,434

6 microorganism = Enteroc. SP., exitus = N discharge location =
Rehab/Distinct Part Hospital

516 0,406

7 microorganism = Enteroc. SP., icu when culture = NO ICU,
patient age = Adult

395 0,400

8 microorganism = Enteroc. SP., service when culture = MED 571 0,393

9 microorganism = Enteroc. SP., exitus = N, patient age = Adult 687 0,364

mining view obtained had 9240 instances, 14 attributes and 129 selectors. By
setting as target ‘culture susceptibility = Resistant’ and the minimum threshold
0.1 for the Coverage quality measure, we obtained 1432 subgroups.

4 Results and Discussion

With the process defined, we make two contributions. In the first place, the
tenfold cross validation returns a set of consistent patterns, which is necessary
for a small or medium size database. In the second place, the IRR quality measure
focuses on the presence from the instances of the subgroup with the target
variable (i.e., bacterium resistant to vancomycin) and on the absence from the
instances without the target variable (i.e., bacterium sensitive to vancomycin).
That is, the IRR promotes in the ranking the subgroups with a balance between
positive predictive value and specificity.

The results obtained provided preliminary evidence that there are many
interesting features and values related to antibiotic resistance. The top-10 sub-
groups shown in Table 1 illustrate that in the subgroups with the best quality:
(1) only the microorganism ‘Enteroc. SP.’ appears, (2) only the hospital services
‘SURG’ and ‘MED’ appear, and (3) only include individuals in the surgical ICU
‘SICU’ and individuals that were not admitted in any ICU (‘NO ICU’).

Regarding the set of subgroups, the average number of selectors in the 1432
subgroups obtained is 3.5 and the average number of selectors in the top-10
subgroups is 2.4. These 10 subgroups have few descriptors and, together, cover
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Fig. 1. Runtime, number of prunes and number of subgroups.

a good part of the population with resistance to vancomycin (the 76,98%, i.e.
1676 out of 2177).

Regarding the efficiency of the VLA4SD we can see in Fig. 1 the runtime, the
number of prunes, and number of subgroups extracted using a coverage of 0.1
and 0.6 of the dataset for different dataset sizes.

5 Conclusions and Future Work

In this research, we propose a two step process based on Subgroup Discovery
(SD) to extract phenotypes in a clinical database. We proposed an efficient
exhaustive SD algorithm (VLA4SD) based on equivalence. In the experiments
we show that the prunes included in VLA4SD are very efficient. VLA4SD shows
a good execution time, and the preliminary results show a good scalability. How-
ever, a more comprehensive performance evaluation is required.

A contribution is the use the IRR as a quality measure that balances positive
predictive value and specificity to rank the subgroups. The results obtained with
the MIMIC-III database show some general and interesting subgroups related to
antibiotic resistance using the coverage and IRR quality measures.
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Abstract. Most approaches for predicting drug-drug interactions
(DDIs) have focused on text. We present the first work that uses multi-
ple drug structure data - images, string representations and relationship
representations. We exploit the recent advances in deep networks to inte-
grate these varied sources of inputs in predicting DDIs. Our empirical
evaluations clearly demonstrate the efficacy of combining heterogeneous
data in predicting DDIs.

1 Introduction

ADEs account for as many as one-third of hospital-related complications, affect
up to 2 million hospital stays annually, and prolong hospital stays by 2–5 d
[5]. We focus on a specific problem of drug-drug interactions (DDIs), which
are an important type of ADE and can potentially result in healthcare over-
load or even death. An ADE is characterized as a DDI when multiple medica-
tions are co-administered and cause an adverse effect on the patient. Predicting
and discovering drug-drug interactions (DDIs) is an important problem and has
been studied extensively both from medical and machine learning point of view.
Identifying DDIs is an important task during drug design and testing, and sev-
eral regulatory agencies require large controlled clinical trials before approval.
Beyond their expense and time-consuming nature, it is impossible to discover
all possible interactions during such clinical trials. This necessitates the need for
computational methods for DDI prediction.

Our goal is to predict DDIs in large drug databases by exploiting hetero-
geneous data types of the drugs and identifying patterns in drug interaction
behaviors. We take a fresh and novel perspective on DDI prediction by seam-
lessly combining heterogeneous data representations of the drug structures such
as images, string representations and relations with other proteins. While in
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Fig. 1. Overview of architecture for predicting DDIs using heterogeneous data types.

principle, multi-view learning methods such as co-training [1] can be used, these
methods assume that each view independently provides enough information for
classification while we assume that each of these data source essentially pro-
vides a weak prediction of DDI. While it is possible to directly combine the
data sources, standardization can be a major bottleneck. We take an embedding
based approach to achieve the combination.

We make the following contributions: (1) we combine heterogeneous data
types representing drug structures for DDI prediction. (2) we create embeddings
to build a DDI prediction engine that can be integrated into a drug database
seamlessly. (3) we show that using heterogeneous data types is more informative
than using homogeneous data types.

Related Work: Previous approaches to DDI prediction have employed ker-
nels on text data [11], multiple kernels on molecular properties [4], embeddings
on a single source data [10] or Siamese GCNs on images [2]. Our work is the
first generalization of these multiple methods where we consider multiple data
sources including images and combine them seamlessly through embeddings.

2 Embeddings Using Heterogeneous Data Sources

We consider 3 different types of data, (1) images of drug structures, (2) SMILES
(Simplified Molecular Input Line Entry System) strings [12] representation of
drug structures and (3) relational representation of various associations between
the drugs and proteins (target, transporter and enzymes). Figure 1 shows the
overall architecture of our approach. We now discuss the different components.

1. Drug Structure Image Embeddings: A discriminative approach for learn-
ing a similarity metric using a Siamese architecture [3] maps the input (pair
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of images in our case) into a target space. The intuition is that the dis-
tance between the mappings is minimized in the target space for similar pairs
of examples and maximized in case of dissimilar examples. We adapt the
Siamese architecture for the task of generating embeddings for each drug
image. It consists of two identical sub-networks i.e. networks having same
configuration with the same parameters and weights. Each sub-network takes
a gray-scale image of size 500×500×1 as input (we convert colored images to
gray-scale) and consists of 4 convolutional layers with number of filters as 64,
128, 128 and 256 respectively. The kernel size for each convolutional layer is
(9 × 9) and the activation function is relu. The relu is a non-linear activation
function is given as f(x) = max(0, x). Each convolutional layer is followed
by a max-pooling layer with pool size of (3 × 3) and a batch normalization
layer. After the convolutional layers, the sub-network has 3 fully connected
layers with 256, 128 and 100 neurons respectively. Each drug pair is used to
train the Siamese network and the learned parameters are used to generate
embeddings of dimension 100 × 1 for each drug image.

2. Relational Data Embeddings: DDIs can be considered as the char-
acterization of the relationships between the drugs and the various pro-
teins (enzymes, transporters etc.) using ADMET (absorption, distribution,
metabolism, excretion and toxicity) features. A natural representation for
such data is using first-order logic and the rules can then be induced. Using
the given facts and the +ve and -ve examples, we learn a relational regression
tree (RRT) where all the paths from the root to the leaves can be interpreted
as first-order rules. The obtained first-order rules are first partially grounded
with the query drug pairs and then completely grounded using the fact set.
The number of satisfied groundings for each drug pair are then counted to
obtain the final embeddings.

3. SMILES Strings Embeddings: SMILES strings represent the drug struc-
ture in form of a simple textual representation. We use the existing model
of SMILESVec [13] which divides the SMILES string into several interacting
sub-structures and then uses the word2vec method [8] to generate embed-
dings for these sub-structures. These embeddings are combined to generate
the final embedding of the drugs.

The obtained embeddings need to be aggregated to generate a lower level rep-
resentation. In the case of both image and SMILES strings embeddings (size
100 × 1), we hypothesize that more similar the structure of the drugs, higher
is the probability of their interaction. To capture this similarity notion between
both sets of embeddings, we use subtraction as the aggregation function to
obtain 2 sets of embeddings for the image and SMILES strings data. These 2
sets are then averaged to obtain a single set of embeddings of size 100 × 1.

Each relational embedding represents the counts of the satisfied groundings
of the query, in our case, Interacts(d1, d2) i.e. the interaction between pair of
drugs and is of the size 19×1 (19 is the number of first-order rules learned using
the relational regression trees). The relational embeddings are concatenated with
the combined embeddings obtained from the SMILES and image data to yield
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the final embedding size of 119×1 which can then be passes to a machine learning
classifier. We choose a neural network since it is a universal approximator, can
handle large number of features and also learns inherently aggregated latent
features in the hidden layers. The over all architecure is presented in Fig. 1.

3 Empirical Evaluation

We aim to answer the following research question: Does using multiple data
sources give an advantage over using a single data source? Data set(s): Our
image data set consists of images of 373 drugs of size 500 ×500× 3 downloaded
from the PubChem database1 and converted to a grayscale format of size 500×
500× 1. The images are then normalized by the maximum pixel value (i.e. 255).
The SMILES strings of these drugs are obtained from PubChem and DrugBank2.
For the relational data, we extract the different relations of the drugs with the
proteins from DrugBank and convert it to a relational format with number of
relations = 14 and the total number of facts = 5366. From the 373 drugs we
create a total of 67, 360 drug interaction pairs excluding the reciprocal pairs (i.e.
if drug d1 interacts with drug d2 then d2 interacts with d1 and are removed).
From the 67, 360 drug pairs we obtain 19936 drug pairs that interact and 47424
drug pairs that do not.

Baselines: 7 baselines are considered. Structural Similarity Index
(SSIM) is used for measuring perceptual similarity between images. Autoen-
coders are neural networks with an encoder and a decoder to extract features
and then restore original images. CASTER [6] convert frequent substrings of
SMILES strings to an embedded representation. The obtained latent features
are then converted to linear coefficients for a decoder and predictor. Siamese
Neural Network with and without STNs using contrastive loss. RDN-
Boost [9] takes predictions of RRT to compute residues, and updates it with a
new regression function fitted. MLN-Boost [7] boosts the undirected Markov
logic networks (MLNs) using an approximation of likelihood.

Results: We optimize the Siamese network using the Adam optimizer with a
learning rate of 5×10−5, obtained using line search. We use the publicly available
implementation3 of SMILESVec method with default parameters. To learn the
RRT, we use the publicly available software, BoostSRL4, with the “-noBoost”
parameter. For the classifier in our architecture we use a 4 hidden layer(s) neural
network with hidden layer sizes 1000, 500, 200 and 50 with relu activation units
and Adam optimizer. Table 1 shows the performance of our method.

To demonstrate the effectiveness of using heterogeneous data, we compare
with methods that use homogeneous data. To that effect, the first 4 baselines
consider the image data, CASTER uses the SMILES strings data and RDN-
Boost and MLN-Boost use the relational data. The results show that combining
1 https://pubchem.ncbi.nlm.nih.gov/.
2 https://www.drugbank.ca/.
3 https://github.com/hkmztrk/SMILESVecProteinRepresentation.
4 https://starling.utdallas.edu/software/boostsrl/.

https://pubchem.ncbi.nlm.nih.gov/
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https://github.com/hkmztrk/SMILESVecProteinRepresentation
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256 D. S. Dhami et al.

Table 1. Comparison of our method with baselines. The 1st 4 methods use images as
input, CASTER uses SMILES strings and the next 2 use relational data.

Methods Accuracy Recall Precision F1 score

SSIM 0.519 0.487 0.304 0.374

Autoencoder 0.354 0.911 0.303 0.454

Siamese Network 0.837 0.780 0.705 0.741

Siamese Network + STN 0.823 0.825 0.661 0.734

CASTER 0.821 0.663 0.736 0.698

RDN-BOOST 0.773 0.832 0.413 0.552

MLN-BOOST 0.767 0.653 0.540 0.592

Our Method (agg=avg) 0.877 0.769 0.805 0.787

Our Method (agg=sub) 0.884 0.781 0.818 0.799

Our Method (with STN) 0.881 0.779 0.811 0.794

embeddings from heterogeneous data sources clearly outperform the methods
using a single data source.

Conclusion: We considered the challenging task of predicting DDIs from multi-
ple sources. To this effect, we combined multiple data sources and presented an
architecture significantly outperforming strong baselines that learn from a single
type of data. More rigorous evaluation using larger data sets is an interesting
direction. Potentially identifying novel DDIs is an exciting future research. Allow-
ing for domain expert’s knowledge could significantly boost the performance of
the architecture and can be achieved by considering the knowledge as constraints
due to learning. Finally, understanding how it is possible to extract explanations
of these interactions from the embeddings is an interesting direction.

Acknowledgements. We gratefully acknowledge DARPA Minerva award FA9550-
19-1-0391. Any opinions, findings, and conclusion or recommendations expressed are
those of the authors and do not necessarily reflect the view of the AFOSR, DARPA or
the US government.
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Abstract. Central venous pressure (CVP) is the blood pressure in the
venae cavae, near the right atrium of the heart. This signal waveform is
commonly collected in clinical settings, and yet there has been limited
discussion of using this data for automatically detecting and monitor-
ing arrhythmia and other cardiac events. In this paper, we introduce
a signal processing and feature engineering pipeline for CVP waveform
analysis. Through a case study on pediatric junctional ectopic tachycar-
dia (JET), we show that our extracted CVP features reliably detect JET
with comparable results to the more commonly used electrocardiogram
(ECG) features. This machine learning pipeline can thus improve the
clinical diagnosis and ICU monitoring of arrhythmia. It can also cor-
roborate and complement the ECG-based diagnosis, especially when the
ECG measurements are unavailable or corrupted.

Keywords: Arrythmia detection · Central venous pressure ·
Junctional ectopic tachycardia · Physiological signal feature extraction

1 Background and Introduction

JET is one of the most common types of tachyarrhythmia seen during early
post-operative care [6] and is very dangerous and difficult to treat in an infant
[7]. Currently, there is no automated bedside JET detection method that is avail-
able to clinicians, often leading to delay in diagnosis and subsequent provision
of life-saving therapeutic interventions. Most of the current arrhythmia detec-
tion algorithms are based on electrocardiogram (ECG) waveform and result in
a staggering number (∼72-99%) of false alarms [4]. Also, the absence of the
P-wave of ECG is considered to be one of the primary morphological features of
JET onset, while current methods cannot robustly detect and measure P-wave,
which results in sub-optimal performance for ECG based classifiers.

Instead, the JET morphological features are more obvious for the CVP signal.
The characteristics and amplitude of the CVP waveform components can change
significantly with arrhythmia and tricuspid valve pathology [5,10]. Thus, CVP
c© Springer Nature Switzerland AG 2021
A. Tucker et al. (Eds.): AIME 2021, LNAI 12721, pp. 258–262, 2021.
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provides valuable clinical information for arrhythmia diagnosis and automatic
detection. Normal CVP waveform has 3 systolic components (c wave, x descent,
v wave) and 2 diastolic components (y descent, a wave). During JET, the charac-
teristics and amplitude of the CVP waveform components change significantly.
A tall a wave, termed a cannon a wave is observed [5,10]. Figure 1a presents
a processed and aligned median stack of CVP waveform. Upon JET onset, the
fusion of a and c wave leads to an obvious cannon a wave. Although this morpho-
logical difference has been used extensively in clinical diagnosis, there has not
been any published method of extracting CVP features for automatic arrhyth-
mia detection. The major challenge is that the CVP waveform is very easily
distorted by artifacts occurring through the water-filled, tubing transducer sys-
tem and by respiration-induced cyclic changes. These artifacts and signal noises
make CVP more difficult to analyze than the ECG signal. To solve this issue, we
have developed a robust pipeline of removing these artifacts and extracting use-
ful features to detect JET onset. We then compare the machine learning model
based on extracted CVP features with the one based on gold standard ECG
features [9,11].

(a) Cannon a wave during JET Onset (b) Measure a, c, v waves for a single cycle

Fig. 1. CVP cycle morphology and measurement (Color figure online)

2 Methods

CVP data is very challenging to analyze because it is noisy and contains many
artifacts, such as spikes and injection noise. We have developed an elaborate
pipeline for CVP data preprocessing, which includes frequency filtering, spike
removal, amplitude filter, median filtering, and dynamic alignment. Further
details of all procedures can be found in an extended version of this paper [12].
These steps are able to recover true CVP waveform from very noisy data to
facilitate reliable feature extraction.
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As demonstrated by clinical study [5,10] and Fig. 1a, the primary morpho-
logical feature of JET onset lies in the a peak. We propose the following fea-
tures extraction strategy to measure the characteristics of a peak and the overall
CVP cycle waveform. We use four features to characterize the CVP a peak. Peak
prominence measures how much a peak stands out from the surrounding baseline
of the signal. In other words, it is the vertical distance between the peak and
its lowest baseline (marked red in Fig. 1b). The peak height and width are the
yellow and red lines in Fig. 1b. The width is identified as the distance between
the detected endpoint in the peak, where the height is the distance from the
peak to the baseline identified by the endpoint. The width of different relative
heights can also be obtained. As shown in the graph, the green line represents
the peak width at the 50% level of the peak. The peak slope is calculated as
height/width.

Beyond features of the a wave, we introduce another 5 statistical features to
characterize the overall shape of the waveform: waveform mean value, variance,
and kurtosis, maximum value, and range. In Fig. 2, features in each boxplot
display a clear separation between the sinus and JET group. These clinical-
based features are able to characterize the morphological difference and provide
reliable JET onset detection [5,10].

Fig. 2. Selected CVP features comparison

3 Experiment and Results

The data contains 23.3 h of signal with 6.3 h of JET and 17 h of sinus for 8
patients. Throughout the data, there are 4 channels available for the ECG signal
and 2 channels for the CVP signal. We only select the channel that contains the
best-quality signal to conduct feature engineering and subsequent classification
experiment. We use a random forest model [1] with a maximum depth of 15
to classify JET vs sinus cardiac cycles from the 10 CVP features and 13 ECG
features.
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To demonstrate the effect of our proposed features, we compare them against
24 gold-standard ECG features that measure the temporal characteristics of the
ventricular depolarization waves (QRS complex) [9,11]. They include the fol-
lowing: QRS complex widths, QS width, PR width, Peak Heights (P, R, Q, S),
Peak Differences (PQ, RQ, RS), and normalized heart rate features, etc. These
are well-validated features characterizing ECG waveform, and they have also been
extensively utilized in ECG-based arrhythmia detectors [2,3,8,9].

We designed two experiments to demonstrate the effectiveness of the pro-
posed CVP features. The first experiment conducts within-patient training and
testing. The testing data and training data both come from the same patient
with a 30%–70% split. The second experiment conducts cross-patient training
and testing. In this experiment, the testing data comes from a single patient, and
the training data comes from every other patient in the dataset. For each exper-
iment, we report the sensitivity, specificity, and area under the curve (AUC) of
the random forest model trained with CVP features, ECG features, and CVP
+ ECG features combined respectively. Note that we report the average feature
importance of CVP and ECG features in the joint model in the extended version
of this paper [12] (Table 1).

In both experiments, the model relying on CVP features alone achieves com-
parable performance with the model relying on ECG features. The within-patient
experiment generally yields better performance than the cross-patient exper-
iment. The reason is that each patient has other underlying diseases, which
creates a morphological disparity in the CVP waveform. Despite the waveform
disparity, the performance of the model relying on CVP features still matches
the performance of the model relying on ECG features. As shown in the extended
version of this paper, CVP features have higher importance scores than the ECG
features in the joint model [12].

Table 1. Experiment result

Experiment Within-patient performance Cross-patient performance

Test patient: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

CVP features

Sensitivity 1 0.99 1 1 0.53 1 0.95 1 1 0.38 0.98 0 0.26 0.99 0.93 0

Specificity 1 0.91 0.98 1 0.99 1 1 1 1 0.99 0.2 0.28 0.83 0.99 0.7 1

AUC 1 0.99 0.99 1 0.94 0.99 0.98 1 0.99 0.95 0.24 0.07 0.5 0.99 0.95 0.99

ECG features

Sensitivity 1 1 1 1 0.79 0.98 0.98 1 1 0.17 0.89 0 0.3 0.97 0.93 0

Specificity 1 1 1 1 1 1 1 1 1 0.99 0.01 0.54 0.76 1 0.95 1

AUC 1 1 1 1 0.99 0.99 1 1 0.99 0.93 0.14 0.01 0.58 0.99 0.96 0.63

ECG + CVP

Sensitivity 1 1 0.98 1 0.86 0.98 0.94 0.99 1 0.24 0.9 0 0.32 0.97 0.94 0

Specificity 1 1 1 1 1 1 1 1 1 0.98 0.01 0.36 0.77 1 0.91 1

AUC 1 1 1 1 0.98 0f.99 0.99 1 1 0.91 0.2 0.01 0.6 0.99 0.96 0.61



262 X. Tan et al.

4 Conclusion

We have proposed a novel pipeline to process and extract features from Cen-
tral Venous Pressure with a case study on the automatic detection of junctional
ectopic tachycardia. The preprocessing pipeline and feature engineering pipeline
provide a solution to remove complex artifacts in the CVP waveform and extract
clinically valuable information. The within-patient and cross-patient experiments
demonstrate that the CVP signal is as reliable as the ECG signal in detecting
JET onset, and CVP features have higher importance scores than ECG features
in the joint model. Thus, the quality and performance of arrhythmia detectors
can be improved by incorporating CVP signals, and it can be particularly impor-
tant when ECG signals are unavailable or contain major artifacts.
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1554821, NSF NeuroNex-1707400, and NIH 1R01GM140468.
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Abstract. Introduction: Good quality and real-time epidemiological COVID-19
data are paramount to fight this pandemic through statistical/machine-learning
based decision-making support mechanisms.

Aims: Evaluate the resources available and used to gather COVID-19 epi-
demiological data by Portuguese health authorities from the onset of the pandemic
until December 2020. The analysis laid on two main topics: (a) work processes
at the Public Health Unit (PHU) level and (b) registry forms for epidemiological
reporting and control procedures. Recommendations on requirements to overcome
problems related to data integration and interoperability in order to build robust
decision-making support mechanisms will also be produced.

Methods: For topic (a), we revised the Portuguese Directorate-General of
Health (DGS) guidelines for data treatment. For topic (b), we analysed the forms
used during first and second waves, while comparing them with DGS metadata
provided to researchers.

Results: On topic (a), we detected the use of two complementary and non-
interoperable systems. Further, theworkflowdoes not seem to promote data quality
and facilitates the occurrence of communication problems between health profes-
sionals. On topic (b), we found 27 deleted questions, 6 new questions, 1 displaced
question, and 1 text modification between the 2 form versions.

Discussion: Both the workflow and data gathering methods are not the best
suited for the generation of good quality data. They do not effectively support
Public Health Professionals (PHP) nor provide the elements for posterior data
analysis. The use of data by decision-making support mechanisms demands a
careful planning of the data used to depict reality, and this condition is not met by
the currently used forms.

Keywords: Data quality · Healthcare processes · Policy making · Public health
surveillance ·Workflow management

1 Introduction

COVID-19 has brought unprecedented pressure upon health systems across the world.
After years of low investment, and of very little of it going to public health purposes (ca.
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0,16% of GDP for Portugal in 2017 [1]), virtually all countries on Earth faced an enor-
mous strain of their healthcare resources – infrastructural, technological, and human.
However, few resources were, and remain, as scarce as trustworthy patient informa-
tion. Overnight, and given the contagiousness and the fast spread of the disease, it was
necessary to find effective ways to ensure timely verification, signalization, and commu-
nication that someone had been infected with COVID-19, so that appropriate measures
could be taken.

COVID-19 is not only controlled by using all the precautionary measures we are
aware of; it is, first and foremost,managedbygathering, analysing, and acting on accurate
and reliable information [2–4]. The World Health Organization understands both roles
as part of the Essential Public Health Operations [5], namely EPHO 2 (Monitoring and
response to health hazards and emergencies) and EPHO 10 (Advancing public health
research to inform policy and practice).

In general, to fulfil these operations, Portugal has a national epidemiological surveil-
lance information system (SINAVE), in place since 2014, which dematerializes the
mandatory notification of communicable diseases [6].

Regarding COVID-19, SINAVE includes a notification form and an epidemiological
questionnaire for infection with SARS-CoV-2. As with other mandatory notifiable dis-
eases, any physician in contact with a confirmed case of COVID-19 is legally obliged to
notify the occurrence of transmissible diseases with mandatory reporting. The local pub-
lic health authorities, and their respective Local Public Health Unit, responsible for the
geographical area of the notified patient must then fill the epidemiological questionnaire,
amidst the implementation of preventive and control measures.

Hence, local public health professionals, working in Public Health Units, are one of
the firsts to come in contact with clinical data of COVID-19 cases and should ensure that
these data are confirmed and corrected. Valuable information, such as epidemiological,
should be added to the notification and epidemiological questionnaire forms.

If we wish to make sense of the potential wealth of data around COVID-19 we must
first understand how they are gathered. As such, our aim is to evaluate the resources
available and used to gather andmanage COVID-19 epidemiological data by Portuguese
health authorities from the onset of the pandemic until December 2020, focusing on
describing how data for COVID-19 is expected to be collected and managed by public
health professionals, including the questionnaires used for epidemiological surveillance.

2 Methods

This study was divided in two parts, namely (a) to study the work processes and (b) to
study the registry forms used to collect the data.

2.1 Work Processes

We searched all relevant norms and guidelines from the Portuguese Directorate-General
of Health, in order to shape an expected workflow for Public Health Units operating at
a local level regarding the management of COVID-19 cases. Our main concern was to
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include all references to SINAVE or other platforms referred, as well as to all mandatory
processes and professionals involved.

We then critically appraised this work method in light of the need for good quality
data for decision making in healthcare.

2.2 Registry Forms

In March 2020, SINAVE included an initial notification form and epidemiological ques-
tionnaire for infection with SARS-CoV-2, that replaced the previous version referring to
other coronaviruses, namely MERS-CoV. These forms were then updated in November
2020.We compare both versions with each other, searching for new insertions, deletions,
displacements, and text modifications in each question of both documents. Simultane-
ously, we critically analysed some of the forms’ fields regarding possible problems with
the data obtained using those fields.

In April 2020, the Portuguese Directorate-General of Health (DGS) made a dataset
updated weekly available for investigators upon request [7]. These data are, as informed
by DGS, collected through SINAVE forms. We compared the variables included with
the fields present in the forms. Results of this part were divided into three sections:
Notification Form, Epidemiological Questionnaire and Comparison with Metadata set.

3 Results

3.1 Work Processes

All individuals presenting in primary care or in an emergency room with cough, fever,
dyspnoea, anosmia or dysgeusia are considered suspect for infection with SARS-CoV-
2 [8, 9]. All suspected cases must undergo laboratory testing and the physician doing
the consultation must fill a notification form in SINAVE and introduce the patient in a
second national platform named TraceCOVID [8]. After notified, the jurisdiction of the
suspected case is transferred to the Public Health Unit (PHU) responsible for that geo-
graphical area. All SINAVE notifications must be answered, regardless of the laboratory
test result [10]. This process, even for negative results, involves the filling of manda-
tory fields both in the notification form and the epidemiological questionnaire. Access
to fill epidemiological questionnaire is limited as it is only available for Public Health
Authorities (PHA), unless otherwise justified. Public Health Authorities are physicians
with specialization in Public Health. Figure 1 represents the normal work processes in
a PHU after the notification of a suspected case of infection with SARS-CoV-2.

A patient is considered a confirmed case of COVID-19 when a laboratory test comes
back positive. Some confirmed cases can occur without the patient ever being suspected.
In this instance, the physician or the laboratory first in contact with the confirmed case
must notify the infection in SINAVE [8].

Then, local PHA, with the help of the professionals working in the local Public
Health Unit (PHU), contact the confirmed case for the Epidemiological Questionnaire,
identifying all contacts of the confirmed case. Those contacts must be introduced in
both SINAVE (in a contact list spreadsheet) by the PHA and TraceCOVID by any PHU
professional [11].
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A risk assessment for all contacts is ensued by PHA and PHU professionals after
this first contact, dividing by type of exposure in contacts with high-risk exposures and
contactswith low-risk exposures.All high and low risk contactsmust be informed of their
risk evaluation and given specific preventivemeasures. Thesemeasures include reducing
contacts for 14 days after exposure without need for isolation for low-risk exposures,
and 14-day quarantine and symptom monitoring for high-risk exposures. Additionally,
high risk individuals should be contacted daily or every other day by PHA or PHU
professionals, and this contact must be registered in TraceCOVID. PHA must emit a
Declaration of Prophylactic Isolation to all employed contacts or children of employed
parents, to be sent to the patient as justification for work or school absence. Also, if
deemed necessary by the PHA, which is in most cases of high-risk exposure, PHA
should prescribe a laboratory test for infection with SARS-CoV-2 [11]. The confirmed
case and all high-risk contacts must also be included in a nominal list to be sent to
security forces and services, responsible to ensure that quarantine is being complied
[12].

The European Centre for Disease Prevention and Control estimates that every epi-
demiological questionnaire takes between 45 min and 2 h, and a call to each contact
takes between 3.5 and 20 min, and that every case has between 7–20 contacts, unless a
lockdown is enforced, reducing that number to between 2–3 contacts [13]. This means
that each new case would take an estimated minimum of 52 min and a maximum of 8
h and 40 min to complete all contact tracing activities, excluding the additional time
dedicated to filling SINAVE and TraceCOVID forms and the daily or every other day
call to high-risk contacts of previous confirmed cases.

SINAVE 
Notification

Verifies test
results

Test is
negative

Test is
positive

Fill Epidemiological
Questionnaire (SINAVE)

Call low-risk contacts and
explain measures

Contact exposure risk
assessment

Call the confirmed case 
(Contact tracing)

Update TraceCOVID information
on high-risk contacts

Fill Epidemiological
Questionnaire (SINAVE)

Call high-risk contacts and
impose measures Emit Prophylatic Isolation

Declaration

Communicate people in isolation to
security forces and services

Fig. 1. Work processes in a Public Health Unit after notification of a suspected case of infection
with SARS-CoV-2. All activities performed by PHP.

3.2 Registry Forms

The main differences between March and November versions of the forms are sum-
marised in Table 1 and listed in Fig. 2. The variation in the number of fields was of –18
for the notification form and –9 for the epidemiological questionnaire.
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Table 1. Summary of modifications in registry forms.

Notification form Epidemiological questionnaire

Questions existing only in original
March form. Removed in November
update

19 8

Questions not existing in original
March form. Added to November
update

3 3

Question existing in both versions but
presented in different locations

1 -

Similar question in both versions, but
with slightly different texts

1 -

Total number of fields:

March 2020 (original version) 138 62

November 2020 (updated version) 120 53

Notification Form. The first noticeable change shows in the title of the document.
Where it previously read “Notification of Infection by new Coronavirus”, it now reads
“Notification of Infection by SARS-CoV-2/COVID-19” in the November 2020 version – a
clear statement on the purpose of this update. However, despite the expressed focus on
Covid-19, a field “Disease” showing later in the report presents 2 unchanged dropdown
options: i) “Infection by MERS-CoV”, which seems to be out of the scope expected from
the document’s title, and ii) “Infection by nCoV”, which despite being on scope of the
documents, uses an outdated designation for SARS-CoV-2.

At the November 2020’s update, the “Clinical Presentation” section had several
symptoms removed: Pneumonia; Acute Respiratory Distress Syndrome; Convulsions;
Pharyngeal exudate; Irritability/confusion; Abnormal pulmonary auscultation; Coma;
Tachycardia; Neurocognitive disorder (including seizure); and Absence of an alternative
diagnosis capable of fully explaining the disease. In replacement, new symptoms were
included in the report list: Anosmia (loss of smell); and Dysgeusia/ageusia (gustatory
dysfunction).

These changes reflect the reported list of symptoms recognized for Covid-19 by the
European Centre for Disease Prevention and Control [14].

In the same section, the In-patient Hospitalization segment had questions on in-
patient isolation removed. Additionally, a few listed symptoms have been removed as
well: Chronic neurological or neuromuscular disease;Chronic neurological disorder; and
PregnancyComplications, includingAcute renal failure, Heart failure, andConsumption
coagulopathy.

Regarding the filling of symptoms-related fields, all questions are answerable using a
drop list which reads “Yes”, “No” and “Unknown”. Since these fields are not mandatory,
the fields could be left empty or answered with “Unknown”, which would carry a myriad
of different possible interpretations.



270 D. Nogueira-Leite et al.

The “Clinical Manifestations” section has only two possible answers, besides
“Unknown” and “Not Applicable”: Moderate disease; and Severe disease.

The Portuguese Directorate-General of Health norms [8] state 4 levels of severity
– the two previously referred, and “Mild” and “Critical”, which are not selectable from
the list. Therefore, the updated list of symptoms does not include all the symptoms that
allow the physician to distinguish between the levels of disease severity.

In the “Laboratory Study” fields:

• A question was removed on whether a “biological sample was sent to the National
Institute of Health (INSA)”;

• A more specific question was added on whether the patient “has results of the labo-
ratory test for qualitative detection of the SARS-CoV-2 antigen”, including subfields
for “Result”, “Date of sample collection”, and “Date of laboratory result”;

• However, this new field regarding antigen testing has no option for not tested and
includes various options that are not explained in the form, such as “No, awaits testing”,
“No, awaits result” and “No, pending”.

No updates were made in “Place of Occurrence”, “Patient Identification” and
“Physician Identification” sections.

Our analysis identified a field which suffered a text modification while being kept at
the same location. Whereas the original version read “Lung X-ray with abnormalities”,
the updated version reads “Chest X-ray image with lesions compatible with SARS-CoV-2
infection”. In both cases, possible answers were the same: “Yes”/“No”/“Unknown”. This
text modification is worth of notice because it slightly alters the meaning of the question
and, consequently, of the answer as well.

As the update results in a similar question and at the same position in the report, we
cannot dismiss the possibility that the data codification for this field remained unchanged
in the November 2020’s update – an aspect that shall be taken in consideration for any
data analysis which includes this field conveying data points from both input versions.
Furthermore, the absence of a “Not Applicable” or “Did not undergoChest X-ray”makes
the interpretation of both “No” and “Unknown” answers difficult.

Furthermore, we noticed that the question on whether “the patient is a health profes-
sional” was displaced from its original location: whereas before it showed near the end
of the report (last question of the “Epidemiological Situation” segment), it now appears
in the beginning of the “Notification” section. This change to an earlier section of the
report highlights the Health Authority’s concern for the health condition of healthcare
workers, particularly frontline workers. This is also revealed by this caption being one
of the few that are mandatory to fill.

Along with this last field, the only other mandatory fields in the November 2020’s
update are “Date of diagnosis”, “In-patient hospitalization”, and “Laboratory test per-
formed”. Such low number of mandatory fields is certainly meant to obviate pressure in
the report-filling process carried out by physicians, in a pandemic scenario where infec-
tion cases are constantly rising. Unfortunately, it comes at a cost: a potentially massive
loss of data deemed dismissible by hectic professionals, that could otherwise provide
invaluable information for a better management of COVID-19 outbreaks.
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Epidemiological Questionnaire. As the previous document, the Epidemiological
Questionnaire had its title amended to reflect a higher focus on Covid-19 specifically:
from a previously broader designation “Epidemiological Questionnaire of Infection by
the new Coronavirus”, the updated title now reads “SARS-CoV-2/COVID-19”.

The new version underwent deletions of 3 types of fields, specifically:

1. Fields with reference to MERS infection:

a. “Recent stay (within 14 days before the onset of symptoms) in an area where
MERS-CoV/nCoV infection has been reported or known”

b. “Direct contact with dromedaries within 14 days before the onset of symptoms:
exposure to the dromedary camel or food consumption (rawmeat, unpasteurized
milk, other) in an area where MERS-CoV infection has been reported or MERS-
CoV in dromedaries is known”

2. Fields previously added in the beginning of Covid-19 outbreak:

a. “Visits or work at live animal markets in Wuhan, China, 14 days before onset of
symptoms”

b. “Visits or work in live animal markets, 14 days before the onset of symptoms”
c. “Contact with live animals, 14 days before the onset of symptoms”

3. Fields for unspecified coronaviruses:

a. “Were the 3 amplification reactions directed to three different regions of the viral
genome (gene E - 1st line screening test; RdRp gene (confirmatory test) and N
gene - additional confirmatory test) carried out”

b. “Were laboratory tests for pan-coronavirus carried out”

These deleted fields were not replaced by new ones. Notwithstanding, 3 new fields
were included in different locations of the questionnaire. Not only these new fields are
more specific forCovid-19, but also tackle relevantmaters for tracking andunderstanding
the spread of the infection:

• “[Patient is] Resident or worker in an institution with people in vulnerable situations
and where there is reported transmission of COVID-19”

• “Unprotected laboratory exposure to biological material infected with SARS-CoV-2”
• “[Patient] Presents imaging changes, which meet the imaging criteria”

Deletions and adding were the only noticeable modifications to the epidemiological
questionnaire. No displacements nor text modifications of previously existing questions
could be found between both versions of this document.

These reported changes refer to the “Epidemiological Enquiry” and “Conclusion”
sections of the questionnaire. Not surprisingly, no updates were made in “Place of
Occurrence”, “Patient Identification” and “Physician Identification” sections.
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The first fillable field in the Epidemiological Questionnaire reads “Diagnosis at the
date of discharge” and has no explanation to the type of answer wanted nor a list from
where to choose, which leaves the physician to wonder how to fill this optional field.

Figure 2 portrays a comparative analysis of the fields’ modifications between both
versions of each registry form.

Question existing only
in original March form. 
Removed in November 
update.

Non-existing question
in original March form. 
Added to November 
update.

Question existing in 
both versions, but
presented in different 
locations.

Similar question in
both versions, but with 
slightly different texts.

i) ii)
M arch 2020 Novem ber 2020
InquÈrito Epidem iolÛgico de InfeÁ„ o pelo CoronavÌrus InquÈrito Epidem iolÛgico de InfeÁ„ o pelo SARS-CoV-2/COVID-19

MORADA DE OCORR NCIA MORADA DE OCORR NCIA
PaÌs PaÌs
Concelho Concelho
Dist rito Dist rito
Freguesia Freguesia
Morada Morada
IDENTIFICA« √ O DO DOENTE IDENTIFICA« √ O DO DOENTE
Nom e Nom e
No Ident ificaÁ„ o CivÌl No Ident ificaÁ„ o CivÌl
No de Utente No de Utente
Sex o Sex o
Data nascim ento Data nascim ento
Idade Idade
Contacto Contacto
Naturalidade Naturalidade
Nacionalidade Nacionalidade
Morada Morada
PaÌs PaÌs
Concelho Concelho
Dist rito Dist rito
Freguesia Freguesia
IDENTIFICA« √ O DO M…DICO IDENTIFICA« √ O DO M…DICO
Nom e Nom e
CÈdula profissional CÈdula profissional
Autoridade de Sa˙ de Regional Autoridade de Sa˙ de Regional
Autoridade de Sa˙ de Local Autoridade de Sa˙ de Local
Inst ituiÁ„ o Inst ituiÁ„ o
INQU…RITO EPIDEMIOL” GICO INQU…RITO EPIDEMIOL” GICO
DiagnÛst ico ‡ data de alta? DiagnÛst ico ‡ data de alta?

Faleceu (devido ‡ doenÁa) Faleceu (devido ‡ doenÁa)
Faleceu Faleceu
Data de Ûbito Data de Ûbito

onde a infeÁ„ o pelo MERS-CoV/nCoV tenha sido reportada ou conhecida

Especificar local

Contacto prÛx im o (nos 14 dias antes do inÌcio dos sintom as) com  

a infeÁ„ o pelo MERS-CoV/nCoV tenha sido reportada ou conhecida

Contacto prÛx im o (nos 14 dias antes do inÌcio dos sintom as) com  

a infeÁ„ o pelo MERS-CoV/nCoV tenha sido reportada ou conhecida
ClassificaÁ„ o de caso do contacto prÛx im o ClassificaÁ„ o de caso do contacto prÛx im o
Tipo de relaÁ„ o com  o contacto Tipo de relaÁ„ o com  o contacto
Especificar o t ipo de contacto Especificar o t ipo de contacto

Residente ou t rabalhador num a inst ituiÁ„ o onde se encont rem  pessoas 

COVID-19
Se out ra inst ituiÁ„ o (especificar:)

Profissional de sa˙ de que prestou cuidados a doentes nos 14 dias 
antes do inÌcio de sintom as (m Èdicos, enferm eiros, estudantes, 

am bul‚ ncia, etc)

Profissional de sa˙ de que prestou cuidados a doentes nos 14 dias 
antes do inÌcio de sintom as (m Èdicos, enferm eiros, estudantes, 

am bul‚ ncia, etc)

Profissional de sa˙ de que tem  t rabalhado em  am bientes onde se 
prestam  cuidados a doentes com  infeÁı es agudas respiratÛrias graves

Profissional de sa˙ de que tem  t rabalhado em  am bientes onde se 
prestam  cuidados a doentes com  infeÁı es agudas respiratÛrias graves

Pessoa incluÌda em  cluster de doenÁa respiratÛria aguda nos 14 dias 
antes do inÌcio dos sintom as

Pessoa incluÌda em  cluster de doenÁa respiratÛria aguda nos 14 dias 
antes do inÌcio dos sintom as

MERS-CoV tenha sido reportada ou a circulaÁ„ o do MERS-CoV nos 

Visitas ou t rabalho em  m ercados de anim ais vivos em  Wuhan, China, 
nos 14 dias antes do inÌcio dos sintom as
Visitas ou t rabalho em  m ercados de anim ais vivos, nos 14 dias antes 
do inÌcio dos sintom as
Contacto com  anim ais vivos, nos 14 dias antes do inÌcio dos sintom as

Qual(is)?
Onde?
Data?
Trabalhou ou frequentou num a unidade de prestaÁ„ o de cuidados de 
sa˙ de, nos 14 dias antes do inÌcio dos sintom as, onde tenham  sido 
reportados casos de doentes com  infeÁ„ o por nCoV

Trabalhou ou frequentou num a unidade de prestaÁ„ o de cuidados de 
sa˙ de, nos 14 dias antes do inÌcio dos sintom as, onde tenham  sido 
reportados casos de doentes com  infeÁ„ o por nCoV

Onde? Onde?
Data? Data?

Ex posiÁ„ o laboratorial desprotegida a m aterial biolÛgico infetado com  
SARS-CoV-2

O caso faz parte de um  surto? O caso faz parte de um  surto?
Especificar o local onde decorre o surto Especificar o local onde decorre o surto
Se out ro (especificar:) Se out ro (especificar:)
Se local de t rabalho (especificar:) Se local de t rabalho (especificar:)
Medidas de Cont rolo Medidas de Cont rolo
Foram  efetuadas as 3 reaÁı es de am plificaÁ„ o dirigidas a t rÍ s 
diferentes regiı es do genom a viral (gene E - teste de screening de 1a 
linha; gene RdRp (teste confirm atÛrio) e gene N - teste confirm atÛrio 
adicional)?
Foram  efetuados testes laboratoriais para pan-coronavirus?
Qual o resultado?
CONCLUS√ O CONCLUS√ O
O caso considera-se im portado? O caso considera-se im portado?
Qual o paÌs? Qual o paÌs?
O Doente apresenta os sinais e sintom as que preenchem  os critÈrios 
clÌnicos para a doenÁa?

O Doente apresenta os sinais e sintom as que preenchem  os critÈrios 
clÌnicos para a doenÁa?

Apresenta ligaÁ„ o epidem iolÛgica, que preenchem  os critÈrios 
epidem iolÛgicos?

Apresenta ligaÁ„ o epidem iolÛgica, que preenchem  os critÈrios 
epidem iolÛgicos?
Apresenta alteraÁı es im agiolÛgicas, que preenchem  os critÈrios 
im agiolÛgicos?

Apresenta critÈrios laboratoriais para classificaÁ„ o de caso com o Apresenta critÈrios laboratoriais para classificaÁ„ o de caso com o
ClassificaÁ„ o do caso ClassificaÁ„ o do caso

M arch 2020 Novem ber 2020
Not if icaÁ„ o de InfeÁ„ o pelo CoronavÌrus Not if icaÁ„ o de InfeÁ„ o pelo SARS-CoV-2/COVID-19

MORADA DE OCORR NCIA MORADA DE OCORR NCIA
PaÌs PaÌs
Concelho Concelho
Dist rito Dist rito
Freguesia Freguesia
Morada Morada
IDENTIFICA« √ O DO DOENTE IDENTIFICA« √ O DO DOENTE
Nom e Nom e
No Ident ificaÁ„ o CivÌl No Ident ificaÁ„ o CivÌl
No de Utente No de Utente
Sex o Sex o
Data nascim ento Data nascim ento
Idade Idade
Contacto Contacto
Naturalidade Naturalidade
Nacionalidade Nacionalidade
Morada Morada
PaÌs PaÌs
Concelho Concelho
Dist rito Dist rito
Freguesia Freguesia
IDENTIFICA« √ O DO M…DICO IDENTIFICA« √ O DO M…DICO
Nom e Nom e
CÈdula profissional CÈdula profissional
Autoridade de Sa˙ de Regional Autoridade de Sa˙ de Regional
Autoridade de Sa˙ de Local Autoridade de Sa˙ de Local
Inst ituiÁ„ o Inst ituiÁ„ o
NOTIFICA« √ O NOTIFICA« √ O
SituaÁ„ o perante o em prego SituaÁ„ o perante o em prego
Se out ro (especificar:) Se out ro (especificar:)
Profiss„ o do utente Profiss„ o do utente

O doente È profissional de sa˙ de?
Especificar
Se out ro, especificar

O doente reside fora de Portugal? O doente reside fora de Portugal?
PaÌs de residÍ ncia PaÌs de residÍ ncia
Dist rito, cidade ou provÌncia (especificar:) Dist rito, cidade ou provÌncia (especificar:)
ApresentaÁ„ o clÌnica ApresentaÁ„ o clÌnica
DoenÁa DoenÁa
Se out ra, especificar
ApresentaÁ„ o da doenÁa ApresentaÁ„ o da doenÁa
HistÛria de febre ou calafrios HistÛria de febre ou calafrios
Tem peratura corporal? Tem peratura corporal?
Pneum onia
SÌndrom e da InsuficiÍ ncia RespiratÛria Aguda
Tosse seca ou produt iva Tosse seca ou produt iva
Dispneia Dispneia
Coriza Coriza
Odinofagia Odinofagia
Cefaleia Cefaleia
Dor abdom inal Dor abdom inal
Dor no peito Dor no peito
Art ralgia Art ralgia
Mialgias Mialgias
Out ra dor (especificar:) Out ra dor (especificar:)
Especificar: Especificar:
Na˙ seas/vÛm itos Na˙ seas/vÛm itos
Diarreia Diarreia
Convulsı es
Ex sudado farÌngeo
Irritabilidade/confus„ o

Anosm ia
Disgeusia ou ageusia

Fraqueza geral ou astenia Fraqueza geral ou astenia
AuscultaÁ„ o pulm onar anÛm ala
Radiografia pulm onar com  alteraÁı es

SARS-CoV-2
Com a
Taquicardia
Dist ˙ rbio neurocognit ivo (incluindo convuls„ o)
AusÍ ncia de diagnÛst ico alternat ivo suscet Ìvel de ex plicar cabalm ente a 
doenÁa
Sinais de pneum onia na autÛpsia Sinais de pneum onia na autÛpsia
Sinais de insuficiÍ ncia respiratÛria aguda na autÛpsia Sinais de insuficiÍ ncia respiratÛria aguda na autÛpsia
Se out ro (especificar:) Se out ro (especificar:)
ManifestaÁı es clÌnicas ManifestaÁı es clÌnicas
Data do inÌcio dos sintom as Data do inÌcio dos sintom as
Data do diagnÛst ico Data do diagnÛst ico
Internam ento Internam ento
Qual a inst ituiÁ„ o? Qual a inst ituiÁ„ o?
ServiÁo
Se out ro (especificar:) Se out ro (especificar:)
Data de internam ento Data de internam ento

Em  que condiÁı es?
Se em  out ras condiÁı es, especifique
Data de isolam ento
O doente encont ra-se em  suporte vent ilatÛrio? O doente encont ra-se em  suporte vent ilatÛrio?
Qual? Qual?
Data de alta Data de alta
O doente apresenta com orbilidades O doente apresenta com orbilidades
Neoplasia Neoplasia
Diabetes Diabetes
VIH/out ras im unodeficiÍ ncias VIH/out ras im unodeficiÍ ncias
DoenÁa neurolÛgica ou neurom uscular crÛnica
Asm a Asm a
DoenÁa pulm onar crÛnica DoenÁa pulm onar crÛnica

DoenÁas hem atolÛgicas crÛnicas DoenÁas hem atolÛgicas crÛnicas
DoenÁa renal crÛnica DoenÁa renal crÛnica
DeficiÍ ncia neurolÛgica crÛnica
Se out ra, qual? Se out ra, qual?

Idade gestacional Idade gestacional
Com plicaÁı es
InsuficiÍ ncia renal aguda
InsuficiÍ ncia cardÌaca
Coagulopat ia de consum o
Out ra (especificar)
SituaÁ„ o epidem iolÛgica SituaÁ„ o epidem iolÛgica
Viagens: Viagens:
Durante o perÌodo de incubaÁ„ o viajou dent ro do territÛrio portuguÍ s? Durante o perÌodo de incubaÁ„ o viajou dent ro do territÛrio portuguÍ s?
Localidade Localidade
Se m ais que um a localidade, especificar Se m ais que um a localidade, especificar
Durante o perÌodo de incubaÁ„ o esteve fora de Portugal? Durante o perÌodo de incubaÁ„ o esteve fora de Portugal?
Qual o paÌs? Qual o paÌs?
Dist rito, cidade ou provÌncia (especificar)
Datas da estadia Datas da estadia
Se m ais do que um  paÌs, especificar Se m ais do que um  paÌs, especificar
Datas da estadia Datas da estadia
Data de saÌda do paÌs ou paÌses Data de saÌda do paÌs ou paÌses
O diagnÛst ico foi efetuado aquando da ent rada em  Portugal? O diagnÛst ico foi efetuado aquando da ent rada em  Portugal?
Local (especificar:) Local (especificar:)
Data de ent rada em  Portugal? Data de ent rada em  Portugal?
Local? Local?
Tem  conhecim ento de casos/contactos com  sintom atologia 
sem elhante?

Tem  conhecim ento de casos/contactos com  sintom atologia 
sem elhante?

Especificar: Especificar:
O doente È profissional de sa˙ de?
Especificar
Estudo laboratorial Estudo laboratorial
Realizou ex am es laboratoriais Realizou ex am es laboratoriais

Qual a am ost ra biolÛgica Qual a am ost ra biolÛgica
Se out ro (especificar:) Se out ro (especificar:)
Data da colheita Data da colheita
Data do resultado laboratorial Data do resultado laboratorial

Qual a 1a am ost ra biolÛgica Qual a 1a am ost ra biolÛgica
Se out ro (especificar:) Se out ro (especificar:)
Data da 1a colheita Data da 1a colheita
Data do 1o resultado laboratorial Data do 1o resultado laboratorial
Qual a 2a am ost ra biolÛgica Qual a 2a am ost ra biolÛgica
Se out ro (especificar:) Se out ro (especificar:)
Data da 2a colheita Data da 2a colheita
Data do 2o resultado laboratorial Data do 2o resultado laboratorial
Qual a 3a am ost ra biolÛgica Qual a 3a am ost ra biolÛgica
Se out ro (especificar:) Se out ro (especificar:)
Data da 3a colheita Data da 3a colheita
Data do 3o resultado laboratorial Data do 3o resultado laboratorial
Foi enviada am ost ra biolÛgica ao INSA?

Tem  resultado do ex am e laboratorial de detecÁ„ o qualitat iva do 
ant igÈnio (Ag) SARS-CoV-2?
Resultado
Data da colheita (Ag)
Data do resultado laboratorial (Ag)

Contacto do MÈdico Not ificador (telefone e e-m ail) Contacto do MÈdico Not ificador (telefone e e-m ail)
ObservaÁı es (not ificaÁ„ o) ObservaÁı es (not ificaÁ„ o)

Fig. 2. Comparative analysis highlighting modifications between versions. Left-hand picture (i)
represents the Notification Form; right-hand picture (ii) represents the Epidemiological Question-
naire. Each picture is vertically divided: left-hand panes represent original versions, dated March
2020; right-hand panes represent updated versions, dated November 2020.

Comparison with Metadata Set. The metadata set from the Portuguese Directorate-
General of Health included 12 different variables.

Some of these variables are, to our best knowledge, collected in an automatic fashion
and are likely correct, namely age and gender. Probable place of infection, classified
in Portuguese NUTS 3 (municipalities) is collected through place of residence of the
confirmed case, which unlikely describes accurately themost probable place of infection
in all cases.

Other variables are likely the result of manual imputation on SINAVE forms. Admis-
sion to hospital and the respective date of hospitalisation are mandatory information to
include in a notification. Nevertheless, if a confirmed case is not hospitalised when diag-
nosed, the answer to this field would have to be corrected afterwards, through manual
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search of the patient electronic health records by local or regional PHA, as there is no
communication between these records and SINAVE.

Othermanual imputed variables include date of first positive laboratory result, date of
onset of disease, admission to intensive care unit, outcome of case, underlying conditions
and need for respiratory support, collected through the notification form. These variables
are, as previously discussed, notmandatory fields in the notification form, and if not filled
by the physician who diagnoses the patient can only be corrected through manual search
of the patient electronic health records by local or regional PHA, as with hospitalisation.

Costa-Santos 2020 [15] analysed the quality of the data of two requested datasets
(one in April and other in August), and found added and deleted variables. The most
important addition was date of diagnosis, which is a mandatory notification field and is
likely correct, as it is the base for contact tracing and risk assessment operated by PHA
and PHU professionals.

4 Discussion

4.1 Workflow Processes

The work processes described in the results section are likely to have been kept while
the number of cases was relatively low, which might have been the case in the first
wave of the pandemic in Portugal. For the first stage of the pandemic, however, the same
processesmay have been unsuited to handle the pressure resulting from the secondwave.
To allow for a comparison between stages, it took Portugal fromMarch 16 until October
19 (217 days) to reach the 100.000 cases milestone; from October 19 until November 13
(25 days) to reach the following 100.000 cases, amounting to 204.664 in that day [16].
This brutal increase in contagion numbers forced PHU to adapt.

ECDCadvised that in a situationwith a large number of cases it would have to be nec-
essary to reduce the intensity of interactions, replacing calling contacts with provision of
initial information through other means, such as text messages. In this extreme scenario,
only contacts reporting symptoms would receive follow-up phone calls [13]. This type
of adaptations, whilst achieving productivity gains, is likely to do so at the expense of
data quality and completeness, as the focus shifts from epidemiological surveillance to
fast contact tracing.

Additionally, in the Portuguese scene, the redundancy of informatic platforms and of
some processes (regarding the emission of a declaration per contact and the production
of lists to security forces and services) are unlikely to have made up for a system which
could effectively support PHU professionals in their contact tracing tasks, nor gather,
curate and store data of sound quality which could be used by local, regional and national
PHA to act on and tackle the pandemic.

Therefore, it is understandable that there was a need for various changes in the
described workflow processes. Most importantly, efforts towards the case notification
only after laboratory testing confirmation, the integration of the non-communicating
systems (SINAVE and TraceCOVID) and the automation of processes leading to the
emission of a declaration per contact and the production of lists to security forces and
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services should be prioritised. These changes would ensure that local PHA and PHUpro-
fessionals could, even with an almost immeasurable increase in the number of confirmed
cases, conciliate the primarymission of contact tracingwith an effective epidemiological
surveillance, leading to quality data supporting decision-making and investigation.

4.2 Registry Forms

The changes introduced in the registry forms likely increase the uncertainty around data
quality and adds difficulty to data integration. For instance, the changes in symptoms
observed in November 2020 make it plausible that symptoms not included as an option
in March forms were then underreported and that the opposite is also true. Therefore,
it is advisable to use caution when analysing data referring to symptoms obtained from
SINAVE datasets.

Even though this uncertainty is more likely to occur when a field or a possible answer
is deleted or a new one is added, changing the wording of a question without clear prior
guidelines and keeping the same answers forcefully leads to different interpretations
and, consequently, to answers with different meanings.

Additionally, we identified two problems with the forms as a whole: the lack of
mandatory filling and the lack of clear indication of expected answers in some fields.
A low number of mandatory fields, although meant to obviate pressure in the report-
filling process carried out by physicians, comes at a cost: a potentially massive loss
of data deemed dismissible, that could otherwise provide invaluable information. Both
endanger the gathering of precious epidemiological information and make machine
learning models harder to train, as it reduces the usable data for training and testing,
without a clear outlined strategy to handle missing data.

After carefully analysing the DGS metadata set and comparing with the registry
forms, there are some considerations that are worth noting. Firstly, the definition of
the probable place of infection as the place of residence of the confirmed case has the
potential to overlook important trends in infection starting in workplaces or related with
tourism, with a potential to overestimate the infection rate of certain municipalities and
underestimate in others, which directly affects decision-making.

Secondly, data regarding hospitalisation, as it is dependent on the need for admission
upon notification or posterior correction, is likely to be underreported in the datasets
assuming they are directly extracted from SINAVE.

Lastly, there is a risk of underreporting of other variables, namely date of first positive
laboratory result, date of onset of disease, admission to intensive care unit, outcome of
case, underlying conditions and need for respiratory support, mainly for two reasons:
they are collected through the notification form, which means that these fields must be
filled upon notification or await posterior correction; they are not mandatory fields.

Addressing all these concerns, or at least acknowledging them, is of paramount
importance when conducting an investigation or building decision-making tools.

Acknowledgments. This work has been done under the scope of - and funded by - the PhD
Program in Health Data Science of the Faculty of Medicine of the University of Porto, Portugal -
heads.med.up.pt.
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Abstract. The complexity of patient care is growing due to an ageing pop-
ulation. As chronic illnesses become more common, the incidence of multi-
morbidity increases. Generating disease management plans for multi-morbid
patients requires the integration of multiple evidence-based interventions, rep-
resented as clinical practice guidelines (CPGs), that are designed to treat a single
condition. Our previous work developed a mitigation framework called MitPlan
that represented the generation of treatment as a planning problem. The framework
used the Planning Domain Definition Language (PDDL) to represent clinical and
patient information needed to identify and mitigate adverse interactions resulting
from the concurrent application of multiple CPGs for a given patient encounter. In
this paper we describe MitPlan 2.0 that supports shared decision-making by iden-
tifying a treatment plan optimized according to patient preferences, treatment cost,
or perceived patient’s adherence to medication. It mitigates adverse interactions
using planning constructs, eliminating the need for procedural handling of adverse
interactions and as such provides flexible and comprehensive decision support at
the point of care. We demonstrate MitPlan 2.0’s extended capabilities using syn-
thetic scenarios approximating real-world clinical use cases and demonstrate its
new capabilities within the context of atrial fibrillation.

Keywords: Clinical practice guidelines ·Multi-morbidity · Planning

1 Introduction

Clinical practice guidelines (CPGs) are statements developed systematically from avail-
able evidence to assist practitioners in themanagement of a patient with a specific disease
and their application improves quality of care and patient outcomes [1]. Yet their adop-
tion in clinical practice is lacking and one of the major obstacles is the limited support
for complex patients suffering from multi-morbidity [2]. Disease management of these
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patients is multidimensional by nature, and apart from the clinical dimension needs to
consider care settings and patient preferences to maximize patient outcomes.

In this work, we present a significant expansion of our previous planning-based app-
roach to mitigation of adverse interactions between recommendations coming from dif-
ferent CPGs [3] that improves support for multi-morbid patient management by enrich-
ing the representation of patient and clinical information. This improvement allows us
to provide support for shared decision making by explicitly capturing the multidimen-
sional nature of treatment using amultivariate objective function customized to a specific
patient encounter. We demonstrate how our improved framework, called MitPlan 2.0,
builds upon and extends our previous work using both synthetic and clinical examples.
We highlight its use across clinical settings, position it within the context of relatedwork,
and describe future work to realize our goal of integrating MitPlan 2.0 into a clinical
decision support system used at the point of care.

2 MitPlan 2.0

In planning, a planner is given an initial state of the world, a set of desired goals, and
a set of planning actions to find a sequence of planning actions that are guaranteed
to generate a new state that satisfies the desired goal(s). Each planning action has a
set of parameters, preconditions that must be true for the action to be taken, and effects
resulting from its execution. These planning actions are also characterized by a duration,
conditional effects, and a cost.

The original version of MitPlan (which we refer to as MitPlan 1.0), described in
detail in [3], addressed the problem of mitigation by combining an algorithmic app-
roach with the use of a planner. MitPlan 1.0 accepted as input patient data, patient
preferences, the length of a planning horizon, and clinical goals and produced a safe
management plan (i.e., where all adverse interactions were addressed), executed within
the specified planning horizon. It detected adverse interactions using a combination of
revision predicates and revision actions in its domain and mitigated these adverse inter-
actions algorithmically and outside the planner. Specific to the revision operators in
the MitPlan 1.0, the planner would terminate having identified what actions needed to
be replaced/deleted/added to mitigate adverse interactions between different extended
Actionable Graphs (AGs) [3] representing CPGs. TheMitPlan 1.0 algorithmwould then
create a revised problem instance with new actions representing the required revisions
and the planner would be applied to this instance. The process would be repeated until
the management plan inferred by the planner required no further revisions. In addition to
disjointed algorithmic and planning requirements for generating management scenarios,
MitPlan 1.0 had very basic support for a single cost associated with the plan.

MitPlan 2.0 addresses these shortcomings by taking a fully planning-based approach,
bringing the process of mitigation into the planning space via a new encoding of the
planning problem in PDDL. We expand the extended AG to include the nodes derived
from the underlying CPG and add to it all nodes introduced by revision operators that
are possibly applicable to the AG. The extended AG encapsulates the contingencies
introduced by revision operators, making them available to the planner much like patient
preferences in MitPlan 1.0 [3].
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Revision operators come from knowledge repository (KR). The representation of
revision operators is flexible to include clinical actions found in many CPGs, clinical
actions for a specific CPGs, and a combination of both. When applied to a specific AG,
a revision operator is translated to a binary vector of length equal to the number of
nodes in the AG, where each vector element indicates if a node is part of an adverse
interaction addressed by the given revision operator. In this way a binary vector can
represent multiple revision operators each with different costs. An adverse interaction
is present only if a chosen path through the extended AG contains all the nodes flagged
in a binary vector (if only a subset of nodes are contained, the adverse interaction is
not present). If detected, the planner is forced to search for an alternate path in the AG,
avoiding the adverse interaction. The binary vectors are automatically created for each
planning problem instance, making their implementation scalable.

All nodes in the AG are associated with costs, and revision actions are designed
to be costlier than the actions they (potentially) revise. The planner prioritizes paths
through the AGs with no adverse interactions, finding a clinically feasible plan first and
foremost, even if such a plan is more expensive than one that is clinically infeasible. If a
path without executing a revision action does not exist, the planner chooses an alternate
path containing revision actions that mitigate the adverse interactions and reach the goal
nodes with no adverse interactions present. Because revision information is already built
into the extended AG, the planner can optimize over various alternative paths, selecting
the path associated with the lowest cost. As a simplification, MitPlan 2.0 implements
cost minimization however utilities and their maximization are easily supported.

A revision action may itself introduce new adverse interactions, resulting in second-
order adverse interactions. MitPlan 1.0 processed revisions sequentially and the plan
depended on the order of revisions applied. In contrast, MitPlan 2.0 optimizes over all
revision information in a single run and returns the optimal plan, if one exists, selecting
the order of revisions to optimize the defined objective function.

MitPlan 1.0 treated patient preferences (e.g., preferred way of drug administration)
as alternatives nodes in anAG [3] that are selected based on their dispreference costs (i.e.,
lower cost indicates a higher preference level). MitPlan 2.0 presents a natural extension
of this approach, by unifying patient preferences and revisions, and modelling both as
cost-based alternatives. At the same time, it considers more than one metric, each corre-
sponding to a certain dimension, when looking for an optimal path. MitPlan 2.0 employs
an objective function given as a weighted sum of selected cost metrics where weights
indicate the importance of specific metrics. Possible metrics include various clinical
(resources, specialists, capacity, etc.) and patient (financial, burden, preferences, adher-
ence, etc.) indicators, thus it is possible to specify objective functions for a wide range
of care settings (e.g., urban or rural), patient populations with unique attributes (e.g.,
health literacy, income, attitude towards treatment, etc.), and care planning approaches
(physician-, nurse-, and patient-centered).

The overview of MitPlan 2.0 is given in Fig. 1(a) and the pseudocode illustrating its
operation is given in Fig. 1(b). MitPlan 2.0 is invoked for a specific patient/physician
encounter and takes patient data, patient preferences, a planning horizon, and an objective
function as input. The objective function can be defined by both the physician and the
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patient in a shared decision-makingprocess to combine patient- and the provider-oriented
perspectives of management.

(a) General structure (b) Operations (pseudo-code)

Fig. 1. Overview of MitPlan 2.0

MitPlan 2.0 starts by retrieving from the KR extended AGs that represent CPGs
applied to manage conditions of the patient. It then identifies and retrieves from the KR
revision operators (ROs) that are applicable to AGs selected in the previous step (see [3]
for a more detailed explanation). Subsequently, it creates a planning problem in PDDL
based on extracted AGs and ROs and provided input (patient data and preferences,
planning horizon, and objective function). A planner solves the planning problem to
obtain an internal plan optimized according to the provided objective function. Some
of the actions in the internal plan are then filtered out as they represent implementation
details of the planner (e.g., reaching a goal node) and as such are not relevant for patient
management (e.g., performing a test, prescribing a drug). Themanagement plan is finally
presented to the physician and the patient.

MitPlan 2.0 significantly changed the management of revisions as stated above and
the algorithmic part is no longer needed.We note that clinical quality of the finalmanage-
ment plan depends on the completeness of the KR and the quality of available revision
operators. If the KR is incomplete and does not contain an operator(s) addressing a cer-
tain interaction, then the resulting plan may be clinically unsafe. Moreover, if the KR
contains a revision operator for a specific interaction that is not based on the most recent
evidence, then the obtained plan may be clinically sub-optimal even though it optimized
the objective function. The maintenance of the KR in knowledge driven CDSSs is an
important part of their life cycle [4]. While it is beyond the scope of this work, we
acknowledge it is critical for the clinical validity of MitPlan 2.0.

3 Illustrative Example

We illustrate the extensions introduced in MitPlan 2.0 through examples. We use syn-
thetically generated examples, grounded in real-world applications and vetted by the
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physician on our team, to highlight how the embedding of costs (Sect. 3.1) and the new
representation of revisions (Sect. 3.2) in the planning problem expands the capabilities
of the planning framework. We use a subset of actions from the Atrial Fibrillation (Afib)
CPG (Sect. 3.3) to show the exploration enabled by our new approach.

In each extended AG, Dx represents a context node (i.e., the disease that the AG
represents), Ax a clinical action, Tx a clinical test (decision), Vx a patient value, and Gx
a goal node representing the successful completion of treatment for the corresponding
disease. For the MitPlan 2.0 generated plans, each line lists the planning action taken,
the time step it is taken in at the start, and its duration at the end.

3.1 Cost Optimization

MitPlan 2.0 makes use of an objective function when finding a plan to satisfy all goals,
where satisfying all goals means reaching all the goal node in all AGs. In Fig. 2(a) we
illustrate the use of a simple objective function with a single cost metric (execution cost).
Notice in this example that depending on the values of V1 the planner may choose A2 or
A5. Suppose V1= 9 and V3= 1. While A5 is costlier than A2, choosing A2will cause an
adverse interaction and necessitate a revision. Because revisions are assigned a higher
execution cost than original actions in the AGs (i.e., cost(A7) < cost(newAction)), the
planner opts to traverse A5 and A6 to reach goal G1 to minimize the overall cost of the
plan. Figure 2(b) shows the generated plan.

(a) AGs and available revisions 

(b) Internal plan generated by MitPlan 2.0 

Fig. 2. Selection of minimum cost path
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3.2 Revision Application

We demonstrated in Sect. 3.1 how execution costs of an action and optimization come
into play when selecting actions. Here we build on that example to show how execution
costs are used to select and prioritize revisions when adverse interactions are present.
Consider the extended AG in Fig. 3(a) with patient values V1 = 7 and V3 = 3. In
this case, an adverse interaction is unavoidable and one of the two available revisions
must be taken. The two choices for replacing A7 are newAction, which costs 100 units,
and newAction2, which costs 50 units. Since newAction2 is less expensive, the planner
prioritizes newAction2, replacing A7 with it. The generated plan is shown in Fig. 3(b).
In MitPlan 1.0, the prioritization of revisions would have been done algorithmically and
outside the planning process by revising a problem instance and passing it to the planner.
Now the selection and application of revisions is embedded in the planner’s search for
an optimal plan.

(a) AGs and available revisions 

(b) Internal plan generated by MitPlan 2.0 

Fig. 3. Prioritization of revisions

We use the extended AG in Fig. 3(a) also to demonstrate how MitPlan 2.0 finds
an optimal plan when multiple revisions are required (the second revision operator
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changed to if A4 and A3 then replace A3 with newAction1 [cost = 100] for the sake
of this example). In this problem instance, the patient values for V1 and V2 fall within
the range [5 . . . 10] and V3 falls within the range [0 . . . 4] , thus necessitating both
revisions. Figure 4 shows the resulting plan that does just that. This case demonstrates
that MitPlan 2.0 can apply any number of revisions necessary to find an optimal plan
while tracking and accounting for any second-order effects from the applied revisions.
This is a significant improvement over MitPlan 1.0 where each revision was applied
individually by revising the problem instance and rerunning the planner.

Fig. 4. Internal plan generated by MitPlan 2.0 when multiple revisions are required

3.3 Clinical Illustrative Example

At the core of our mitigation framework is the incorporation of external knowledge for
mitigating adverse interactions not found in individual CPGs. By including revisions
within the planning space (example in Sect. 3.2), MitPlan 2.0 is able to keep track of the
application of these mitigating actions, their sequence of application, and their second-
order effects. When clinical mitigation strategies and their effects are embedded into the
planning process and considered within an objective function, the resulting management
plan is constructed by holistically considering the impact mitigation strategies have on
patient management. Iteratively mitigating adverse interactions, as done in the MitPlan
1.0 fails to account for second-order effects.

To demonstrate the power of using an objective function involvingmultiple metrices,
consider the subset of the Afib AG, generated from the CPG, shown in Fig. 5 (full AG
is presented in [3] and not reproduced here due to space limitations). In this example,
an Afib patient with CHA2SDS2-VASc score greater or equal to 1 can be prescribed
an anticoagulant such as Warfarin (WARF, dosage 5 mg daily) or one of the direct oral
anticoagulants (DOACs) such as Dabigatram (DABI, dosage 110 or 150mg twice daily).
For a CHA2SDS2-VASc score less than 1, they are prescribed low dose aspirin (ASP).

MitPlan 2.0 can consider financial cost, patient’s burden, or the “cost” of adherence,
amongst others, during planning to generate different management scenarios. Let’s first
consider each independently. Financial Cost: the annual cost of anticoagulation treat-
ment (at a dosagementioned above)withWarfarin is about $55USDandwithDabigatram
is about $1200USD. We therefore assign a financial cost of 55 to the WARF node and
1200 to the DABI node in the AG. When financial cost minimization is the optimization
goal, treatment with Warfarin is the returned option (see the plan in Fig. 6(a)).
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Fig. 5. Subset of the Afib AG from [3]

(a) Financial cost optimized plan

(b) Weighted cost optimized plan 

Fig. 6. Afib generated plans for various cost considerations

Patient’s Burden: A patient on Warfarin needs their international normalized ratio
(INR) value checked as a stand-in to standardize the results of the prothrombin time test.
Checking the INR value requires a blood test. When a patient is started on Warfarin,
this test needs to be done weekly. When their INR value stabilizes, the frequency of the
test falls between 2–4 weeks. Performing each blood test requires the patient to visit a
laboratory service, imposing an additional treatment burden. On the other hand, a patient
on Dabigatram (or any other DOAC) does not need a blood test to measure their INR
value and does not incur any additional treatment burden. Using MitPlan 2.0, we assign
a burden cost to WARF that is greater than the burden cost of DABI. When minimizing
the burden is the optimization goal, Dabigatram is the action returned by MitPlan 2.0.

Adherence Likelihood: It is well documented in literature [5], that Afib patients on
anticoagulation treatment poorly adhere to their prescribed medication. Considering
that a patient on Dabigatram only takes pills and does not need to get a blood test, their
only checkpoint for adherence is during an annual visit with their specialist. On the
other hand, a patient on Warfarin needs to have regular blood tests in order to measure
that their INR value is in the optimal range and any adjustment of medication dosage
requires a visit with a specialist. Consequently, adherence to treatment with Warfarin is
typically higher than treatment with Dabigatram due to regular consults with a specialist.
As such, MitPlan 2.0 assigns a lower adherence cost to Warfarin than to Dabigatram.
When the minimization of non-adherence is the desired goal, regardless of a patient’s
burden consideration, treatment with Warfarin is the returned option.
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Multiple Weighted Considerations: Typically, there aremultiple treatment options for
multimorbidity. The selection of a given option is made by a physician in consultation
with the patient. MitPlan 2.0 uses a complex objective function to represent multiple
dimensions such as a patient’s burden, financial cost or perceived medication adherence
and weighs each one differently based on the information gathered during the shared
decision-making process. These weights can be revised and adjusted to reflect changing
patient’s attitude and evolving clinical context. In Fig. 6(b) we show the plan where
minimizing a patient’s treatment burden is considered more important than both the
financial cost of a treatment and the perceived patient’s adherence using the multivariate
objective function 0.2 * cost + 0.6 * burden + 0.2 * nonadherence (all weights are
rescaled to the range [0, 1.0]). Note how this plan differs from the one in Fig. 6(a)
when only financial cost is considered. The ability to customize a multivariate objective
function to a specific patient and encounter represents a powerful tool supporting shared
decision-making.

4 Discussion and Future Work

MitPlan 2.0 fully encapsulates the mitigation problem within a planning context with a
unified approach to supporting preferences and revisions of CPGs’ recommendations,
simultaneously handling multiple revision operations, and optimizing across different
metrics. Using various costs associated with nodes in the extended AG,MitPlan 2.0 finds
management plans that are optimized according to a weighted multivariate objective
function. This approach supports the combination of clinical dimensions with different
treatment aspects such as financial cost, patient’s burden, patient’s perceived adherence
to treatment, or cost of clinical resources required for treating a patient.

There are other approaches to mitigation of adverse interactions among multiple
CPGs reported in the literature and below we briefly summarize the ones that are most
closely related to MitPlan 2.0. META-GLARE [6] considers temporal characteristics
of CPG actions during mitigation, employs goals to control the planning process, and
it has been extended to model physician preferences [7]. However, no different types
of preferences or costs are considered and there is no optimization over possible plans.
Jafarpour et al. [8] propose an ontology-based framework for integrating multiple CPGs
during execution time using policies. Some of these policies can optimize the use of
clinical resources but other types of costs or preferences are not considered and there is
no global optimization of generated plans.

A multi-agent planning (MAP) framework [9] is used to automatically generate sev-
eral candidate management plans, evaluate them according to predefined patient- and
institution-related metrics, and select the optimal one that minimizes the overall cost.
MAP requires a more complex computational framework with multiple agents, and it
assumes that secondary knowledge representing revision operators is embedded inCPGs.
This assumption makes it more difficult to maintain than MitPlan 2.0, which uses an
external knowledge repository for the revision operators. Finally, Kogan et al. [10] pro-
pose a goal-driven mitigation framework that uses standard representations (PROforma
and HL7 FHIR), relies on existing knowledge sources, operates on different levels of
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abstraction, and generates explanations for proposed mitigations. Yet, it does not con-
sider patient preferences and other costs to prioritize candidate plans as the final selection
of a management plan is made by the clinician.

We are pursuing several directions for future work. The use of hard and soft con-
straints, that is, constraints that must be satisfied in any solution (e.g., a hypertension
drug must be administered) and those that are optional (e.g., a blood test applied only if
lab resources are available), respectfully, will add an additional level of personalization.
We are also exploring how to generate management plans from a partial satisfaction
of a subset of defined goals. Finally, we are studying the use of a stochastic model of
mitigation. As the representational and functional complexity of the CPGs and in turn
the planning problem increases, it will be necessary to shift from a deterministic rep-
resentation towards one that supports probabilities tied to the execution of actions. In
the real-world, medication may not be taken by a patient or may not have the intended
effects, test results may be inconclusive or inaccurate, and future test results assumed
for the sake of planning could return unanticipated values.

Acknowledgements. WethankAndrewColes andAmandaColes for their clarifications regarding
PDDL and OPTIC and the reviewers for their helpful comments.
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Abstract. Systems that aim at supporting users on behavior change are expected
to implement strategies that can both motivate and gain the users’ trust, like
the use of human understandable justifications for system’s decisions. While
the literature has dedicated great effort on providing accurate system’s deci-
sions, less focus has been given on addressing the problem of explaining to the
user the reasons for a decision. This work presents a SPARQL-based reasoner
enabling explainability on systems thought for supporting users in following
healthy lifestyles. Our results demonstrate that users that received such infor-
mation were able to reduce unhealthy behaviors over time.

1 Introduction

Explainable Artificial Intelligence (XAI) [12] exploits the challenges of providing trans-
parent evidence for intelligent systems outcomes. XAI has gained visibility in recent
years given the increasing number of automated systems that raise questions such as
whether we can trust their decisions without any human interference. In fact, the ben-
efits that could be provided by AI systems are frequently limited by the lack of trans-
parency and understanding on the rationals behind their decisions. This lack of explain-
ability prevents the adoption of these systems in real world scenarios.

Explainability is a critical requirement for the healthcare domain [7]. AI systems
for health require human-understandable explanations that are aimed at increasing the
trust and consequent acceptance by their final users, i.e., physicians and patients. As
a matter of fact, an early research on expert systems has revealed that explaining the
system decisions to the physicians was considered the most desired feature for a medical
diagnostic system [10]. Health systems are required to be comprehensible [14] and, in
addition to its outcome (e.g. recommendation), provide symbols (e.g. words) that enable
the generation of user-driven explanations that help to understand the reasons behind
the system’s conclusion.

In this work, we provide a SPARQL-based reasoner to be integrated to systems
that aim at supporting users to follow health behaviors. The proposed reasoner identi-
fies violations in the user expected behavior and extracts the relevant information to be
used either with natural language or visualization models in the generation of human
c© Springer Nature Switzerland AG 2021
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understandable explanations. Our intention is to support the generation of explanations
that describe the expected behavior, relying on the user own data (violations) to jus-
tify why the system is presenting this information. To showcase the proposed app-
roach in action, we developed a mobile application that relies on the state-of-the-art
HeLiS ontology1 [6], which formalizes concepts related to diet and physical activity
for a healthy lifestyle.

2 Related Work

Rule-based and ontology-based systems have long supported digital health domains
like food [2], drug [13] and diagnostic or health treatment [1]. While these systems are
able to generate efficient recommendations, not many of them have addressed the chal-
lenge of justifying such recommendations. On the other hand, some approaches have
justified their outcomes and exploited explainability in different ways. An example is
the work of [11] that aims at personalizing the result of searches about health infor-
mation according to the needs and profile of the individual (specified in an ontology).
Their approach provides brief explanations that mention the individual’s own informa-
tion to justify why the resulting information is presented. Visualization techniques, like
the rainbow boxes used by [8], that provides decision support in antibiotic treatment,
are also used to support ontology based approaches on the generation of human under-
standable explanations. In some other works, like [4], that provided an ontology based
framework for risk assessment, semantic explainability is obtained through ontology
interpretation. That is, the approach is explainable in the sense that any user can navi-
gate the ontology for inspection. In [3], instead, benefits from semantic explainability to
provide semantic explanations that inform which elements (e.g. behavior, actions) may
cause undesired outcomes and, therefore, should be changed in the smoking cessation
domain.

Our work tackles the challenge of providing explanations that are not a mere
description of the inference process performed by the system. The strategy proposed
in this paper goes a step forward by translating the output of the designed SPARQL-
based reasoner into a natural language description of the undesired events detected by
the system. This way, we aim to reduce the barriers between the intelligent machin-
ery and both domain experts and users of the final applications in understanding why a
system inferred specific facts or provided specific suggestions.

3 The Reasoning-Based Explainable Approach

In this Section, we describe a SPARQL-based reasoner that exploits the HeLiS ontol-
ogy [6] in order to identify users’ behaviors that may lead to undesired situations.
Examples are dietary intakes that do not meet the rules of a healthy lifestyle defined by
domain experts. The detection of an inconsistency triggers the population of the knowl-
edge base with an individual of type Violation. Violations are aimed to support the
generation of explainable feedbacks to the user.

1 http://w3id.org/helis.

http://w3id.org/helis
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Fig. 1. The overall picture of the online reasoning process. (Color figure online)

The proposed SPARQL-based reasoner relies on the architecture implemented in
RDFpro [5]. RDFpro is a reasoner that provides out-of-the-box OWL 2 RL reason-
ing and supports the fixed point evaluation of INSERT... WHERE... SPARQL-like
entailment rules that leverage the full expressivity of SPARQL (e.g., GROUP BY aggre-
gation, negation via FILTER NOT EXISTS). RDFpro has been used for the follow-
ing reasons. First, through the architecture of RDFpro, it is possible to convert custom
methods into reasoning operations able to (i) perform mathematical calculations on
users’ data and (ii) exploit real-time data obtained from external sources, without the
need of storing this data in the knowledge repository. Second, this reasoner has been
reported as efficient and suitable for real-time scenarios [5].

In our approach, reasoning is first conducted offline by taking into account the static
part of the ontology (monitoring rules, food, nutrients, activities) with the aim of mate-
rializing the ontology deductive closure, based on OWL 2 RL and some additional
pre-processing rules that identify the most specific types of each individual defined in
the static part of the HeLiS ontology ABox. Whereas, online reasoning is triggered (i)
every time the user adds or modifies a data package in the knowledge base or (ii) at the
end of a specific timespan (e.g. end of the day) modeled as a HeLiS concept. The for-
mer triggers the real-time reasoning task that is responsible, mainly, for analyzing the
single data package provided by the user. The latter triggers the background reasoning
that is in charge of processing the data packages provided within the considered times-
pan. During online reasoning, the user data is merged with the closed ontology and the
deductive closure of the rules is computed. Resulting Violation individuals (if any)
and their RDF descriptions are then stored back in the knowledge base.

In Fig. 1, we illustrate the online stage of the reasoning process. The green path is
the first step to be carried out. Its role is to gather the rules to validate, according to what
triggered the reasoner. Two types of monitoring rules are specified: (i) event-based rules
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(EB-Rules) specify the interval of values that are accepted for a specific event related
to a specific monitored entity (e.g. maximum amount of meat that the individual can
consume in a single meal); (ii) timespan-based rules (TB-Rules) specify the interval of
values that are accepted for a specific timespan related to a specific monitored entity
(e.g. maximum amount of red meat that the individual can consume during a week).

The second step of the online reasoning (red path in Fig. 1) has as its role to gather
further rules that can be validated as semantically associated to the previous ones. The
SPARQL-based reasoner invokes a real-time or a background reasoning task. The first
step of the reasoning process is the collection of the monitoring rules to be validated.
This task is performed in two steps: (i) a group of rules (EB or TB-Rules) is collected
according to the event that triggered the reasoner; (ii) the upper-bound rules collector
task is executed aiming at extracting rules that can be validated even if they are not
directly linked with the activated reasoning. The rational behind this strategy is the early
generation of a negative feedback, i.e. before the end of a specific timespan (e.g. Day
isSubTimespanOf Week), avoiding that undesired situations get reported too late.

The third and last step (blue path in Fig. 1) has the role of generating, populating and
storing violations into the knowledge repository. The outcome of the inference activity
is a set of structured data packages that encapsulate the information about the detected
undesired behaviors, i.e., violations. Each data package corresponds to an instance of
the Violation concept and it is stored within the knowledge repository. The gen-
eration and the population of each instance of type Violation is performed in two
separated steps. First, the Violation is generated as result of the reasoning activity
and all information inferred by the SPARQL-based reasoner is stored into it. Second,
accessory information are integrated into the Violation instance to provide extra
details that can support the explanation of the detected violation. Examples of acces-
sory information are references to other concepts of the ontology or the number of times
that the specific rule has been violated. This way, each Violation instance is a self-
contained object that includes all information needed to generate a feedback for the user
and for statistics purposes.

Fig. 2. Variation of the (average) number of detected daily violations within the experiments
time span. The intervention group present a more effective decay of the violations. (Color figure
online)
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4 Evaluation

In this Section, we report our evaluation of the proposed reasoner. With the aim of
testing our approach in a real scenario, we developed a mobile application for moni-
toring food intake and physical activities. A template based sentence generator [9] was
integrated to deliver natural language sentences from violation instances. Our goal was
to measure the effectiveness of the explanations generated by our platform by observ-
ing the evolution of the number of violations generated. The system was used during
a period of seven weeks by 120 individuals inside our institution. We split the users
in two groups: (i) the intervention group (92 users) received the explainable messages
generated by using the template system; (ii) the control group (28 users) received only
canned text messages notifying when a rule was violated (e.g. ‘Today you had too much
(300 ml of maximum 200 ml) fruit juice’).

In Fig. 2, we show the variation in the number of daily violations for the two groups.
The blue and green lines represent the average number of violations for the intervention
and control group respectively. Whereas, the red and orange lines represent the relative
standard deviations. Rules are verified at the end of each day by analyzing the food
information provided by each user. The increasing trend of the gap between the blue
and green lines demonstrates the positive impact of the explanation sent to users when
an undesired event occurred. Indeed, we can observe a drop of 62.20% of the violations
for the intervention group with respect to a drop of 42.33% of the violations for the
control group. By considering the standard deviation lines, we can appreciate how both
lines remain contained within low bounds without the presence of outliers.

We are also interested in the time spent by our system to be effective. Figure 2 shows
us that the two groups tend to diverge at a certain point during the experiments time
span. We measure when the two groups start to diverge with a statistical significance.
We observed Table 1 reports this value along with the p-values and average number of
violations for both the intervention and control group.

Table 1. Starting point of the project time where the persuasion system takes effect with statistical
significance.

Starting day/week p-value Violations intervention group Violations control group

19th day 0.011 8.09± 2.88 9.82± 2.85

5 Conclusion

In this paper, we have employed SPARQL based reasoning to identify possible viola-
tions on a user’s expected behavior. This information is exploited to provide explana-
tions that justify system’s recommendations with the final aim of supporting behavior
change. To test our reasoner, we developed a mobile application to monitor food intake.
The application was tested by 120 users and our results show that users that received
explainable messages were able to reduce significantly the number of violations over
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time. We are aware that, in order to effectively support behavior change, further strate-
gies have to be taken into account such as persuasiveness and argumentation. These
aspects are out of scope of this work, but are already being exploited by us as part of
the Key to Health project. Future work includes the integration of our solution into a
conversational agent that, through a multi-turn dialogue, tries to understand the user
situation, being able to infer new knowledge from the answers given by the user and,
then, provides an explainable recommendation.
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Abstract. Cardiovascular diseases and heart failures in particular are
the main cause of non-communicable disease mortality in the world. Con-
stant patient monitoring enables better medical treatment as it allows
practitioners to react on time and provide the appropriate treatment.
Telemedicine can provide constant remote monitoring so patients can
stay in their homes, only requiring medical sensing equipment and net-
work connections. A limiting factor for telemedical centers is the amount
of patients that can be monitored simultaneously. We aim to increase this
amount by implementing a decision support system. This paper investi-
gates a machine learning model to estimate a risk score based on patient
vital parameters that allows sorting all cases every day to help practi-
tioners focus their limited capacities on the most severe cases. The model
we propose reaches an AUCROC of 0.84, whereas the baseline rule-based
model reaches an AUCROC of 0.73. Our results indicate that the usage of
deep learning to improve the efficiency of telemedical centers is feasible.
This way more patients could benefit from better health-care through
remote monitoring.

Keywords: Telemedicine · Decision Support System · Remote Patient
Monitoring · Machine Learning · Heart Failure

1 Introduction

According to the World Health Organization, cardiovascular diseases (CVDs)
are the main cause of a non-communicable disease mortality in the world [10].
It is important to detect a patient’s critical condition early to enable a timely
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intervention. One way to ensure this is to monitor patients remotely in their
homes from telemedical centers (TMCs). Modern technology makes it possible
to provide patients with monitoring services even in areas without comprehensive
medical infrastructures. In recent years, it was shown that telemedical interven-
tions reduce the mortality in patients with heart failures [1,4].

This paper is a part of the Telemed5000 project and follows our previous
work on clinical decision support systems for heart failure which was a part of
the Fontane project in collaboration with Charité, Berlin [3,6]. Our aim is to
scale up the TMC capacity to ensure that up to 5,000 patients will be cared for
in the future utilizing Artificial Intelligence (AI).

In this paper we describe the development and evaluation of a machine learn-
ing model for the prediction of the daily per-patient risk of being in a medically
critical condition. The patients are sorted by this estimated risk, enabling the
TMC to concentrate on the most severe cases. To accomplish this we use a
database with daily vital parameters from the TIM-HF 2 study [4].

2 Materials and Methods

In this research we used the Telemedical Interventional Management in Heart
Failure II (TIM-HF2) database, which was created by Charité, Berlin during
the Fontane project [4]. The trial has been conducted in Germany between 2013
and 2018. TIM-HF2 included 1,538 patients (773 usual care) whose stage of
heart failure is classed II or III according to the New York Health Association
(NYHA) classification. Additionally they were admitted to a hospital at most 12
months prior to the study due to heart failure and had a left ventricular ejection
fraction (LVEF) of < 45%. The dataset includes daily measurements performed
by the patients themselves using a weight scale, a blood pressure monitor, a pulse
oximeter, a small ECG device and a tablet-like device for the self-reporting of
their well-being. In total the unprocessed dataset consists of records from 763
patients out of which 100 died before the end of the study (66 within 7 days
after their last measurement). The database also contains clinical events like 387
endpoint-adjudicated hospitalizations and 4,329 interventions performed by the
TMC. Patients were asked to participate for one year.

We included the following features into the data: age, weight, blood pres-
sure, oxygen saturation, gender, diabetes, the NYHA class, several symptoms
and signs of heart failure (e.g. AV Block, LBBB), automatically extracted data
from ECG (heart rate, sinus rhythm, ventricular tachycardia, atrial fibrillation),
self-assessed state of health, weight difference (1, 3 and 8 days difference), social
variables (e.g. living alone, anxiety). The binary predictor variable is a union of
TMC’s intervention, hospitalization or death events. Missing values were linearly
imputed for up to 2 consecutive missing days, the rest got dropped. The positive
class forms only approximately 2% of the dataset, thus we oversampled obser-
vations from the minority class in the training set to balance the classes. The
dataset was split into three sets: train, validation, and test in a proportion 4:1:1
respectively. The distribution of samples and events per patient was preserved
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across all sets. Each patient was assigned to exactly one set. To evaluate model
performance we took the following metrics into consideration: Receiver Operat-
ing Characteristic (ROC) curve, area under ROC curve (AUCROC), Precision
- Recall curve, and area under PR curve (AUCPR).

We investigate different deep neural network (DNN) models and compare
them to a rule-based baseline. The rule-based model (RB) is based off the TIM-
HF 2 study [4]. The rules are heart related and consist of engineered features
and thresholds defined by an expert group at the Charité [5]. All DNN models
had an output layer with a sigmoid activation function, binary cross-entropy as
a loss function, and Adam as the optimization algorithm. We tested between 2
and 5 hidden layers with 5 to 150 neurons in each. Additionally we tested linear,
sigmoid, and ReLU activation functions, and dropout rates between 0 and 0.5.

3 Results

Figure 1a shows the ROC curves for the selected DNN and the rule-based model.
The DNN outperforms the rule-based model having better sensitivity at any
specificity and an AUCROC of 0.84 as compared to 0.73. Figure 1b shows the
Precision/Recall curve for both models. The DNN outperforms the rule-based
model in precision at any recall rates. The plots in Fig. 2 show the distributions
of the predicted risk-scores for both classes, as predicted by the DNN and rule-
based models. It can be seen that the DNN model performs better in detecting
events than the rule-based model, as there is a clearer cut between the distri-
butions. The final DNN model was trained for 453 epochs using a batch size of
4096, and a learning rate of 0.001. It has 3 hidden layers with 35, 20, and 35 neu-
rons respectively. All neurons in the hidden layers use ReLU as their activation
function and have dropout rates of 0.25, 0.15, and 0.3. The patient’s self assess-
ment, weight differences, pulse-rate, and complaints had the highest impact on
the models decision making.

(a) ROC Curves (b) PR Curves

Fig. 1. The figures show the (a) ROC curves and (b) PR curves for both the DNN and
the rule-based model. The dashed lines represent what performance a purely random
classifier would achieve.
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(a) Deep Neural Network (b) Rule-Based Model

Fig. 2. The depicted plots show the distribution of the predicted risk-scores in the test
set, separated by the true label.

4 Related Work

Decision Support Systems (DSSs) have been used in the medical field since the
seventies [8]. Seto et al. applied a rule-based model to monitor patients with heart
failure [7]. A rule-based model was implemented for the Fontane project, which
had to prioritize patients based on their daily vital parameters [4,6]. Groccia et
al. proposed a linear Support Vector Machine (SVM) model which predicts major
cardiovascular worsening events for patients with heart failure [2]. Stehlik et al.
studied the potential efficiency of noninvasive remote monitoring in predicting
heart failure re-hospitalizations [9]. Heinze et al. proposed a Hybrid AI model
as an improvement for the rule-based model in Fontane [3]. The hybrid model
consists of a Neural Network (NN) with one hidden layer and two rules which
were handcrafted by medical experts.

5 Conclusion

Based on the dataset of daily recordings of vital parameters, medical interven-
tions, hospitalizations and deaths we developed a machine learning model to
predict the risk of a patient requiring an intervention. We showed that our app-
roach outperforms the rule-based model used in the Fontane project. The DNN
may help a medical practitioner to provide valuable assessment to more critical
patients on time. To ensure that no patient is overseen, investigations in the
TMC could be scheduled in addition to the model’s sorting. This would reduce
the capacity for the model but ensures that each patient is going to be seen
within a defined time period (e.g. 14 days). In further research we will investi-
gate Recurrent Neural Networks (RNN), because of the time series nature of the
dataset. The model devised in this research is not patient specified but general-
ized among all patients. It can be assumed that there is some variance between
the patients which could be used to adapt the model to each patient individually
and thus boosting its performance.
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6. Polze, A., Tröger, P., Hentschel, U., Heinze, T.: A scalable, self-adaptive architec-
ture for remote patient monitoring. In: ISORCW 2010 (2010)

7. Seto, E., Leonard, K., Cafazzo, J., Barnsley, J., Masino, C., Ross, H.: Developing
healthcare rule-based expert systems: case study of a heart failure telemonitoring
system. Int. J. Med. Inf. 81 (2012)

8. Shortliffe, E.H., Davis, R., Axline, S.G., Buchanan, B.G., Green, C.C., Cohen,
S.N.: Computer-based consultations in clinical therapeutics: explanation and rule
acquisition capabilities of the mycin system. Comput. Biomed. Res. 8 (1975)

9. Stehlik, J., et al.: Continuous wearable monitoring analytics predict heart failure
hospitalization: the link-HF multicenter study. Circ. Heart Fail. 13 (2020)

10. WHO: World health statistics 2020: monitoring health for the sdgs, sustainable
development goals (2020)

https://doi.org/10.1007/978-3-642-21222-2_50
https://doi.org/10.1007/978-3-642-21222-2_50


CAncer PAtients Better Life Experience
(CAPABLE) First Proof-of-Concept

Demonstration

Enea Parimbelli1(B) , Matteo Gabetta2, Giordano Lanzola1 , Francesca Polce1,
Szymon Wilk3 , David Glasspool4, Alexandra Kogan5 , Roy Leizer5,
Vitali Gisko6, Nicole Veggiotti1, Silvia Panzarasa1, Rowdy de Groot7,

Manuel Ottaviano8 , Lucia Sacchi1 , Ronald Cornet7 , Mor Peleg5 ,
and Silvana Quaglini1

1 University of Pavia, Pavia, Italy
2 Biomeris s.r.l., Pavia, Italy

3 Poznan University of Technology, Poznan, Poland
4 Deontics Ltd., London, England
5 University of Haifa, Haifa, Israel
6 Bitsens JSC, Vilnius, Lithuania

7 AMC - Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
8 Universidad Politecnica de Madrid, UPM, Madrid, Spain

Abstract. The CAncer PAtient Better Life Experience (CAPABLE) project com-
bines the most advanced technologies for data and knowledge management with
a socio-psychological approach, to develop a coaching system for improving the
quality of life of cancer patients managed at home. The team includes complemen-
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involved in the project, addresses the ESMODiarrhea guideline. It revolves around
a prototypical fictional patient named Maria. Maria, 66, is affected by renal cell
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1 Introduction

After the primary intervention, most cancer patients are managed at home, facing long-
term treatments or sequelae, making the disease comparable to a chronic condition [1].
Despite their benefit, strong therapeutic regimens often cause toxicity, severely impairing
quality of life. Thismay decrease adherence to treatment, thus compromising therapeutic
efficacy. Also due to age-related multimorbidity, patients and their caregivers develop
emotional, educational and social needs [1].

In 2019, a consortium comprising 5 universities across Europe and Israel, 3 small-
medium enterprises, 1 large company, 2 hospitals and 1 patient association, was funded
by the EC Horizon 2020 tender on “Big data and artificial intelligence for monitoring
health status andquality of life after the cancer treatment”.As a result, theCAncerPAtient
Better Life Experience (CAPABLE)1 project started Jan 1st 2020, with the objective to
combine the most advanced technologies for data and knowledge management with a
sound socio-psychological approach in order to develop a coaching system for improving
the quality of life of cancer patientsmanaged at home.The project addressesEUpriorities
such as shifting care from hospitals to home to face scarcity of healthcare resources,
facilitating patients’ re-integration in the society and promoting an effective, novel cancer
care model for all EU citizens. The time is right to fully exploit Artificial Intelligence
(AI) and Big Data for cancer care and bring them to patients’ home. In this paper, we
present the first proof-of-concept (POC) of the CAPABLE system, developed during the
first 12 months of the project.

2 Methods

2.1 Consortium and Expertise

University of Pavia (UNIPV) is the project coordinator, with the “M. Stefanelli” Biomed-
ical Informatics Laboratory group. UNIPV is also home to the Centre for Health Tech-
nologies (CHT)2, and the European Centre for Law, Science and new Technologies
(ECLT)3, helping the consortium to tackle the medico-legal issues related to the appli-
cation of IT and AI in medicine. The project leverages a strong collaboration between
universities and SMEs. University of Haifa (UoH) has leading expertise in knowledge
representation for decision support and for data integration; in CAPABLE they are
focusing on representation and algorithms for a) planning conflict-free treatment plans
for multimorbidity patients and b) bridging the semantic gap between clinical abstrac-
tions and retrieval of raw data. Deontics ltd (DEON) developed a computer-interpretable
guideline (CIG) editor and enactment engine for the PROforma CIG formalism, adapt-
ing it to the project needs. AmsterdamMedical Center (AMC) has a wide experience on
standards for medical data representation while Biomeris s.r.l. (BIOM) integrates all the
data collected in CAPABLE exploiting their experience in data-warehousing. Poznan
University of Technology (PUT) is responsible for the patient coaching development

1 The CAPABLE project has received funding from the European Union’s Horizon 2020 research
programme under grant agreement No 875052. www.capable-project.eu.

2 cht.unipv.it.
3 www.unipv-lawtech.eu.

http://www.capable-project.eu
http://www.unipv-lawtech.eu
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while Bitsens JCV (BIT) provides the final user interfaces. The large company involved
is IBM, providing the necessary skills to exploit the latest developments in AI. Data
is collected in retrospective studies and in the CAPABLE prospective clinical stud-
ies by Istituti Clinico-Scientifici “Maugeri” (ICSM) and Netherlands Cancer Institute
(NKI), two leading hospitals for cancer treatment in Italy and the Netherlands. Asso-
ciazione Italiana Malati di Cancro AIMAC, an important patient association from Italy
networkedwith other associations and the European Patient Cancer Coalition contributes
to maintain a patient-centred approach along the whole project execution.

2.2 Iterative Development of the First POC and Its Components

The first POC was developed in the project, following an iterative development process
that started July 1st 2020, culminating in the production of deliverable 4.1 [2] in Dec
2020. Figure 1 highlights such a process and its sub-iterations. Details of the scope of
each iteration are provided in the following, along with the POC architecture.

Fig. 1. Iterative development process of CAPABLE first POC.

Table 1 presents the CAPABLE system components that are part of the 1st POC,
along with their main functionalities and responsible partner in the consortium. Figure 2
presents the scoped-down architecture of the 1st CAPABLE POC.

2.3 Data Model and FAIR Principles

The infrastructure is intended to be FAIR, i.e., findable, accessible, interoperable, and
reusable. This is realized by adhering to existing standards as much as possible, i.e.,
OMOP CDM as the persistence model for the data, and HL7 FHIR for inter-component
communication. This will be complemented by advertising metadata, including char-
acteristics of the stored data, used vocabularies, and characterization of the included
population [3].

2.4 AI

CAPABLE relies on diversified AI techniques, including knowledge- and data-driven
approaches to provide comprehensive decision support to both patients and clinicians
thoroughVirtual Coach and PhysicianDSS, respectively. It employs complexCIGs, with
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Table 1. CAPABLE first POC components.

Component (ABBR) Role Responsible partner It#

Data Platform (DP) Storing and providing
patient-level data

UNIPV It#1

Case Manager (CM) Managing events related to Data
Platform and providing
notifications to other
components

UNIPV It#1

Physician DSS (DSS) Providing guideline-based
decision support for clinicians
when managing cancer patients

DEON It#2

Knowledge-Data Ontology
Mapper (KDOM)

Using ontology mapping
classes to define clinical
abstractions in terms of raw
data and FHIR queries

UoH It#2

GoCom Multimorbidity
controller (GOCO)

Checking for possible adverse
interactions between clinical
tasks for multimorbid patients
and resolving them

UoH It#2

Virtual Coach (VC) Providing coaching support
combining clinical and
non-clinical recommendations
to cancer patients at home

PUT It#2

Deontics Engine (DE) Executing
computer-interpretable clinical
practice guidelines (CIGs)
defined using the PROforma
language

DEON It#2

Patient app Providing user interface for
patients

BIT It#3

Physician dashboard Providing user interface for
physicians

BIT It#3

physician- and patient-oriented components, represented in PROforma and executed by
DE to provide evidence-based recommendations. CAPABLE also includes two classes
of data-driven models – exploratory models and prediction models that are derived from
multi-modal data (clinical data, patient reported outcomes, readings from environmental
and wearable sensors). Exploratory models provide a concise summary of analyzed data
and will be used for indirect decision support through infographics and other visual
tools. Prediction models provide patient-specific recommendations, thus offering direct
decision support. They are further divided into population and personal models – the
former are derived from cohorts of patients suffering from the same type of cancer, while
the latter are constructed for individual patients.
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Fig. 2. General architecture of the CAPABLE system. Components and interactions that are
out-of-scope for the 1st POC have been grayed-out.

Current population models have been derived from available retrospective data pro-
vided by NKI and ICSM and they aim predicting the survival and response to treatment.
They will be further refined based on prospective data. Personalized models are aimed at
facilitating application of non-clinical lifestyle interventions (so called capsules), such
as breathing exercises, meditation or physical activity. Preliminary personal models have
been constructed from available retrospective benchmark data (e.g., WESAD [4]) and
will be further refined with CAPABLE prospective data.

3 Results

A recording of the POC demonstration was produced on December 9th 2020, reflecting
what was shown during the CAPABLE consortium meeting held on December 2nd.
Deliverable 4.1, focusing on the 1st POC is publicly available [2]. A second POC is
scheduled for project M18. Late-breaking results may be available to be presented live
at AIME2021 in June.

4 Conclusion

With itsAI-enabled components, CAPABLE ismore than a personalized tool for improv-
ing quality of life, but rather an advance for the AI in medicine research community.
This first POC is being extended by the project consortium and CAPABLE will start its
clinical studies, testing the system with real-world cancer patients, in Jan 2023.
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Abstract. Deep learning has great potential to assist with detecting and triaging
critical findings such as pneumoperitoneum on medical images. To be clinically
useful, the performance of this technology still needs to be validated for generaliz-
ability across different types of imaging systems. This retrospective study included
1,287 chest X-ray images of patientswho underwent initial chest radiography at 13
different hospitals between 2011 and 2019. State-of-the-art deep learning models
were trained on a subset of this dataset, and the automated classification perfor-
mance was evaluated on the rest of the dataset by measuring the AUC, sensitivity,
and specificity. All deep learning models performed well for identifying radio-
graphs with pneumoperitoneum, while DenseNet161 achieved the highest AUC
of 95.7%, Specificity of 89.9%, and Sensitivity of 91.6%. TheDenseNet161model
was able to accurately classify radiographs from different imaging systems (Accu-
racy of 90.8%), while it was trained on images captured from a specific imaging
system from a single institution. This result suggests the generalizability of our
model for learning salient features in chest X-ray images to detect pneumoperi-
toneum, independent of the imaging system. If verified in clinical settings, this
model could assist practitioners with the diagnosis and management of patients
with this urgent condition.

Keywords: Pneumoperitoneum · Deep learning · Chest X-ray · Sensitivity ·
Specificity

1 Introduction

In recent years, advances in deep learning have presented new opportunities to assist
and improve clinical diagnosis involving different medical imaging modalities such as
magnetic resonance imaging (MRI), X-ray, Ultrasound, computed tomography (CT),
and positron emission tomography (PET) [1–5]. Chest X-rays (CXR) are commonly
used as an important imaging tool to screen patients for a number of diseases. In recent
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studies, deep learning has provided end-to-end proof of concept for models achieving
radiologist-level performance in the detection of different clinical findings on CXRs [6,
7]. In doing so, deep learning has helped physicians to prioritize urgent medical cases
and focus their attention during clinical diagnosis.

Pneumoperitoneum is a critical clinical finding that requires immediate surgical
attention [8, 9]. Although abdominal radiographs and CT scans are standard modalities
for the detection of pneumoperitoneum, CXRs are often an initial exam that is ordered in
the emergency room setting. Therefore, pneumoperitoneum is often detected on initial
CXRs, before additional imaging, such asCT exams, are ordered. Free air in the abdomen
is most visible on CXRs of patients in the standing position. Because gas ascends to the
highest point in the abdomen, free air accumulates beneath the domes of the diaphragm in
the standing or upright position. Therefore, CXR is one of the most sensitive modalities
to detect pneumoperitoneum [10]. Solis et al. showed that performing abdominal CT
exams can delay surgery, without providing any measurable benefit over a CXR for the
diagnosis of pneumoperitoneum [11]. A few examples of positive pneumoperitoneum
CXR images are shown in Fig. 1.

Fig. 1. Four examples of pneumoperitoneum positive cases in chest X-ray images in our dataset.
The yellow arrow indicates the presence of Pneumoperitoneum. (Color figure online)

Despite the recent success of deep learning models in detecting disease on CXRs, it
has been found that these models can be highly sensitive to the types of systems used
for the training dataset. For instance, Marcus et al. [12] argued a deep learning model
trained on standard CXR images captured by a particular imaging system in a fixed
location may not perform as well on portable CXR images. This is because the trained
deep learning model has to deal with variabilities in patterns and characteristics found in
CXR images across different imaging systems, rather than variability and differences in
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chest anatomy and morphology intrinsic to the disease itself. In this study, we developed
state-of-the-art deep learning models to detect pneumoperitoneum on CXR images and
evaluated the sensitivity and specificity of these models on a diverse dataset assembled
from different types of X-ray imaging systems from various hospitals to demonstrate
the generalizability of our approach. The purpose of the deep learning tool is to assist
radiologist readers with prioritizing interpretations of the most urgent exams and help
them to reach a prompt, correct diagnosis.

2 Materials and Methods

2.1 Pneumoperitoneum Dataset and Expert Annotations

The pneumoperitoneum dataset consisted of 1,287 CXR images (from 1,124 patients)
and was collected using Montage (Montage Healthcare Solutions, Philadelphia, PA)
search functionality from the database of a tertiary academic hospital and several com-
munity hospitals serving rural populations between March 2011 and September 2019.
The inclusion and exclusion criteria for this study is demonstrated in Fig. 2. This dataset is
nearly balanced with 634 pneumoperitoneum positive cases and 673 pneumoperitoneum
negative cases. The pneumoperitoneum negative cases consist of both normal and other
conditions (such as pneumothorax, pneumonia, atelectasis, etc.). A brief description
of this dataset is presented in Table 1. All CXR images in this dataset were retrieved
in DICOM format. The resolution of CXR images in our dataset ranges from 1728 ×
1645 pixels to 4280 × 3520 pixels. All CXR images from the academic hospital were
taken with Philips imaging systems, whereas CXR images from other community hos-
pitals were taken with imaging systems from various manufacturers (Philips, Fujifilm,
Siemens, Kodak, Konica Minolta). Further details of the total number of CXR images
specified by the imaging system manufacturer are shown in Fig. 3.

Although several images from the same patient were included, they were not iden-
tical in terms of positioning and appearance. Since our goal in this study is to detect
pneumoperitoneum per exam, multiple images for a patient do not alter the findings.
Furthermore, we kept all the images from same patient in one partition (training, vali-
dation, testing). This dataset is nearly balanced, with 634 pneumoperitoneum positive
cases and 673 pneumoperitoneum negative cases.

We needed high-quality expert annotations indicating ground truth pneumoperi-
toneum labels (i.e., positive or negative) for each CXR image in our dataset to develop
and evaluate our model. The expert annotations in our study were generated by four radi-
ologists from the main academic hospital campus. To produce the ground truth labels,
the CXR images were equally divided among two radiologists for annotation. Then,
the other two radiologists independently reviewed all the ground truth labels generated
by the previous radiologists for accuracy. Any disagreements among annotators were
resolved by further review and discussion among all radiologists. We tested the con-
sistency of expert annotation between two radiologists on 177 randomly selected test
cases consisting of 45 positive and 132 negative cases. Out of 177 tested cases, there
was one on which the radiologists disagreed about the presence of pneumoperitoneum.
That case was negative for pneumoperitoneum, and the disagreement was resolved after
further discussion among the radiologists. Radiologist 1 has over 30 years of general
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radiology experience; Radiologist 2 has over 7 years of general radiology experience;
Radiologist 3 has 20 years of abdominal imaging experience; and Radiologist 4 is a
4th-year radiology resident.

Fig. 2. Details of inclusion and exclusion criteria of this study.

2.2 Training, Validation and Test Split

Our study has two objectives: 1) to train and evaluate the performance of common deep
learning architectures on our CXR image dataset for classification of pneumoperitoneum
status, and 2) to analyse the sensitivity and specificity of these models based on different
characteristics of the radiographs. Therefore, as shown in Table 1, we partitioned this
dataset into training, validation, and test datasets. For the training and validation datasets,
we only used the CXR images with the most common characteristics in the dataset, i.e.,
images taken by fixed X-ray machines at the main academic hospital (420 positive cases
and 465 negative cases: Fig. 4). The training dataset consisted of 750 CXR images
(375 positive and 375 negative), whereas the validation dataset consisted of 135 CXR
images (45 positive and 90 negative). The cases in the training and validation datasets
were randomly selected. In contrast, our test dataset consisted of 402 CXR images (214
positive and 188 negative) with images from different manufacturers and with both
fixed and portable characteristics. Therefore, our test dataset was suitable to perform
sensitivity and specificity analysis for the different deep learning models. Of note, in
our data split, we ensured that CXR images from the same patient stayed in the same
partition (training, validation, and testing datasets) to avoid any biases.
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Table 1. Characteristics of our dataset stratified by pneumoperitoneum positive and negative
cases.

Characteristic Full dataset Pneumoperitoneum
positive

Pneumoperitoneum
negative

No. of CXRs 1,287 634 653

Sex Male - 697
Female - 590

Male - 344
Female - 290

Male - 353
Female - 303

Age (standard
deviation)

Male - 61.44 ± 17.62
Female - 62.03 ±
17.96

Male - 61.06 ± 17.44
Female - 65.09 ±
16.04

Male - 61.82 ± 17.79
Female - 58.98 ±
19.89

Technique:
Anteroposterior (AP)/
Posteroanterior (PA)

AP - 554
PA - 733

AP - 251
PA – 383

AP - 304
PA - 429

Imaging system type Fixed - 969
Portable - 318

Fixed - 451
Portable - 183

Fixed - 518
Portable - 135

Institution/hospitals Academic hospital -
1,061
Others - 226

Academic hospital -
545
Others – 89

Academic hospital -
516
Others - 137

Imaging system
Manufacturer

Philips - 1,145
Others - 142

Philips - 576
Others – 58

Philips - 569
Others - 84

Fig. 3. Number of CXRs stratified in our dataset by their corresponding imaging system
manufacturer.
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Fig. 4. Dataset split into training, validation, and test datasets. CXR images, taken by fixed Philips
X-raymachines at the academic hospital, were used in the training and validation datasets, whereas
all CXR images from portable and other imaging system manufacturers were used in the test
dataset.

2.3 Deep Learning Methods

We utilized four different state-of-the-art deep learning architectures (ResNet50,
DenseNet161, InceptionV3, ResNeXt101) for the detection of pneumoperitoneum on
CXR images [13–16].We used pre-trainedmodels on the ImageNet dataset [17] for each
architecture to benefit from transfer learning in our training process. Utilizing transfer
learning is critical for the optimization of deep learning models on a limited number of
images, such as in our training dataset. In our training, we did not freeze any of the convo-
lutional layers to fine-tune the CNNweights for extraction of pneumoperitoneum-related
features.

The CXR images are resized according to the required input size of different deep
learning models, i.e., 299× 299 pixels for InceptionV3 and 224× 224 pixels for the rest
of themodels. All deep learningmodels were trained on a PyTorch framework [18] using
an NVIDIA Titan X graphics processing unit with 12 GB memory. We experimented
with different hyper-parameters such as learning rate, number of epochs, and data aug-
mentation options for each model to minimize both training and validation losses. For
the final models, we spent 100 epochs for training, which we found sufficient for the
convergence of our optimization process on the dataset. We also tried different learning
rates (1e−2 to 5e−4) for training the models in our study. Data-augmentation (horizon-
tal flip, vertical flip, and random rotations from −15° to 15° was performed on the fly
during training. In this training, we used binary cross-entropy as the loss function, a
stochastic gradient descent optimizer, a batch size of 64, and a momentum value of 0.9.
We reduced the learning rate by a factor of 0.1 after every 25 epochs. The final model
was selected based on minimum validation loss during training.
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3 Results

We evaluated the different deep learning models for the binary classification of pneu-
moperitoneum using our test dataset. In Table 2, we report sensitivity, specificity, accu-
racy, F1-score, and area under the receiver operating characteristic curve (AUC) as our
evaluation metrics. These metrics are considered reliable measures for assessing the
quality of machine learning models.

All deep learning models, particularly DenseNet161 and ResNeXt101, performed
well for the binary classification of pneumoperitoneum.DenseNet161 achieved the high-
est accuracy of 0.908, whereas ResNeXt101 (0.905), ResNet101 (0.902), and Incep-
tionV3 (0.883) performed slightly worse. For sensitivity, DenseNet161 (0.916) again
outperformed ResNet101, InceptionV3, and ResNeXt101 by a margin of 0.43, 0.75, and
0.51, respectively. On the contrary, DenseNet161 achieved the lowest score of 0.899
for specificity, whereas ResNeXt101 performed best in this category, with a score of
0.952. The AUC score is considered to be a stable performance metric for evaluating
machine learning approaches. ResNeXt101 andDenseNet161 achieved 0.951 and 0.957,
respectively, for AUC. The ROC curves for all deep learning models are shown in Fig. 5.

Table 2. The performance measures of various deep learning models for binary classification of
pneumoperitoneum.

Method Sensitivity Specificity Accuracy Precision F-1 Score AUC

InceptionV3 0.841 0.931 0.883 0.932 0.884 0.938

ResNet101 0.873 0.936 0.902 0.937 0.906 0.946

ResNeXt101 0.865 0.952 0.905 0.953 0.907 0.951

DenseNet161 0.916 0.899 0.908 0.911 0.913 0.957

3.1 Model Visualization and Error Analysis

Weused theGrad-CAMalgorithm [19], which uses pneumoperitoneum specific gradient
information flowing into the final convolutional layer of the DenseNet161 deep learning
model to mark the regions of interest on the CXR images that heavily influenced the
outcomes of our model. Examples of Grad-CAM activations on randomly selected true
positive cases of pneumoperitoneum are shown in Fig. 6. This visualization produces
localization maps of the regions of interest for CXR images and can provide an explana-
tion for the final diagnostic decisions of the deep learning models. The red coloring indi-
cates the most important regions for the ultimate decision of the model on CXR images.
We also applied the Grad-CAM algorithm on randomly selected false-positive cases of
pneumoperitoneum, which were incorrectly identified by our DenseNet161 model. We
found that false-positive cases, CXRswithout pneumoperitoneum, were most frequently
due to air in the stomach or small bowel below the left diaphragm, or lucency in the
lungs above the diaphragm, as shown in Fig. 6.
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Fig. 5. ROC curve for all deep learning models trained on test dataset.

3.2 Discussion

In this study, we used various common deep learning architectures to develop amodel for
binary classification of pneumoperitoneum on chest X-ray exams. Pneumoperitoneum,
also known as free air, is the abnormal presence of air in the peritoneal cavity. In
this experiment, we developed our deep learning models using training and valida-
tion datasets that only consisted of CXR images from Philips fixed imaging systems,
whereas, in the test dataset, we used CXR images from portable imaging systems or from
other imaging system manufacturers (Siemens, Kodak, etc.). Our experiment showed
that deep learning models trained on data from a fixed imaging system from a single
institution performed well on heterogeneous data from other institutions. Particularly,
our deep learning models in this study achieved a high specificity and sensitivity on our
diverse test dataset overall.

The Grad-CAM algorithm showed that our models accurately identify the correct
anatomic area and features on the CXR images for the detection of pneumoperitoneum.
Radiologists can generally identify and interpret the urgency of the findings based on
chart review of patients’ medical history. However, the goal of this deep learning app-
roach for pneumoperitoneum detection is to identify and triage possible urgent cases
for interpretation rather than replacing the need for radiologist interpretation. A major
application for our deep learning algorithm is to screen and triage all imaging with criti-
cal findings for expedited interpretation and patient care. Particularly, when the reading
list is long, such deep learning approaches can assist with prioritizing urgent exams,
especially when the finding is not tagged as STAT (immediate) priority. In addition,
when there are many other findings in chest X-rays, subtle pneumoperitoneum cases can
be missed. The proposed deep learning model can help radiologists by drawing attention
to those cases.

This Study has Several Limitations: First, our study would benefit from further val-
idation on a larger external test dataset and a prospective clinical trial, which we will
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Fig. 6. Examples of Grad-CAM Activation of true-positive (1 and 2) and false-positive (3 and 4)
cases by DenseNet161: left image of each case is original image whereas right image is activations
by Grad-CAMmethod. The red coloring indicates a highly weighted region of interest. In the top
true positive case (1), the pneumoperitoneum (free air) is beneath both the right and left diaphragm,
and the heatmap correctlymarks both sides. In the bottomcase (2), free air is only beneath under the
right diaphragm, and the heat map identifies it on the correct side.Whereas, the false positive cases
(3 and 4) in these examples are due to air in bowel below the left diaphragm in the upper images
and air in stomach below the left diaphragm in the lower images, without pneumoperitoneum in
either case. (Color figure online)

pursue as future work. Second, our pipeline is focused on distinguishing pneumoperi-
toneumnegative andpositive cases anddoes not recognize other urgent or critical findings
such as pneumothorax or pneumonia on chest X-rays, and such findings could require
patients to seek immediate medical or surgical attention. As future work, we plan to
include other urgent findings in the next version of our model and will evaluate it in a
multi-class classification setting. Finally, although we used Grad-CAM in this study to
visualize the regions of interest in our classification, we plan to develop and evaluate
a precise detection and a segmentation model to localize pneumoperitoneum on CXR
images.

4 Conclusion

In summary, this study evaluated the generalizability of deep learning models across
different image characteristics for the detection of pneumoperitoneum on CXR images.
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Our results showed that end-to-end deep learning models performed well in detecting
pneumoperitoneum on CXR images from different types of imaging systems at various
institutions. If clinically validated, this system could assist radiologists as a pre-screening
tool to help prioritize chest X-rays with emergent findings or offer a second opinion
for the presence of pneumoperitoneum on CXR images. For future study, we plan to
expand our training dataset to a large multi-institutional dataset to further improve the
performance of various deep learning models selected for this task. Also, we plan to
expand our test dataset and run prospective clinical trials for further validation of our
models. Finally, we plan to expand our study to include other imaging modalities, such
as CT scans, to assist with the detection of other urgent and critical findings detected on
radiology exams.
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Abstract. Hospital overloads and limited healthcare resources (ICU
beds, ventilators, etc.) are fundamental issues related to the outbreak
of the COVID-19 pandemic. Machine learning techniques can help the
hospitals to recognise in advance the patients at risk of death, and con-
sequently to allocate their resources in a more efficient way. In this paper
we present a tool based on Recurrent Neural Networks to predict the risk
of death for hospitalised patients with COVID-19. The features used in
our predictive models consist of demographics information, several lab-
oratory tests, and a score that indicates the severity of the pulmonary
damage observed by chest X-ray exams. The networks were trained and
tested using data of 2000 patients hospitalised in Lombardy, the region
most affected by COVID-19 in Italy. The experimental results show good
performance in solving the addressed task.

Keywords: COVID-19 · Recurrent Neural Networks · Clinical data

1 Introduction

Machine learning can offer powerful tools for fighting the spread of COVID-19,
which reached more than 100 million cases worldwide at January 2021 [8]. Since
March 2020, we have been working in collaboration with Spedali Civili di Brescia,
one of the hospitals that has been treating more COVID-19 patients in Italy, on
developing tools that support doctors in estimating in advance the prognosis of
hospitalised patients [11]. This information can be helpful to the hospital staff for
better managing limited resources such as ICU beds, ventilators and personnel.

Starting from the raw data of more than 2,000 patients, we designed a dataset
for representing the course of the disease of each patient during the hospitalisa-
tion. This dataset contains the status of each patient for each day of the first 20
days from the beginning of the hospitalisation. These data include demographic
information such as sex and age, several laboratory test results and a value that
measures the severity of the pulmonary condition using chest X-ray [7].
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For our task, we implemented an architecture based on Recurrent Neural Net-
works (RNNs) and Attention Mechanism. In order to find the best configuration,
we conducted a hyperparameter search with the explicit goal of minimising the
false negatives, i.e., those patients who are at high risk of death but the model
considers them not at risk. The optimised networks are evaluated in terms of F2-
Score (a metric strongly influenced by false negatives) and ROC-AUC, which is
a standard measurement for medical analyses. Our results are promising, obtain-
ing a score of 73.2% in terms of F2 and 81.4% in terms of ROC-AUC. In the
following, after a brief discussion of related work, we describe our datasets; then
we present our models and their experimental evaluation, and finally we give
conclusions and mention future work.

2 Related Work

The work of Bullock et al. [8] presents an overview of recent studies on the use
of Artificial Intelligence against COVID-19 for drug discovery and development,
testing and diagnosis (especially via X-Ray imaging), tracking and epidemiology,
and patient outcome prediction. Given the recency of the pandemic outbreak,
many of these studies are still preliminary works, without an in-depth description
of the developed techniques (often they are only pre-printed and not properly
peer-reviewed).

A first study about prognosis prediction is presented in [22]. The authors of
this work train a XGBoost model using lab tests, symptoms and some epidemio-
logical information for predicting the mortality risk at the 10th day after the lab
test findings. The work in [1] proposes a Feed-forward Neural Network model for
the mortality prediction that is trained and tested using data of approximately
400 patients in the United Kingdom. This study does not consider any lab test
performed during the hospitalisation, which is a major difference with our work;
instead it uses information obtained when a patient is admitted in hospital (such
as symptoms, demographics and smoking history). In [3], the authors investigate
the tasks of predicting mortality with no time constraints, or within either 14
days or 30 days after the diagnosis using the LASSO algorithm. In [11], we
described an approach based on ensemble of Decision Trees for estimating the
prognosis of COVID-19 patients at different times during their hospitalisation
using only demographic information and lab tests. In this work, starting from
the same raw data, we present a completely different dataset and use RNNs for
better monitoring the progression of the disease.

RNNs are widely used in healthcare and proved to be very effective in various
contexts including diagnosis and mortality prediction. RNNs with Gated Recur-
rent Units were used in [6] to analyse dead patients’ medical records in order to
predict the life expectancy to help doctors in end-of-life decision making. In [16],
a Long Short Term Memory (LSTM) neural network was trained over electronic
health records (EHR) to predict mortality in rare diseases cases. Nonetheless, to
the best to our knowledge, RNNs were used to predict the prognosis of COVID-
19 patients only in [9], which exploits RNNs and Convolutional Neural Networks
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for training a model using sequences of X-Ray images (which are not available in
our dataset), and predict the evolution of the observed lung pathology. Another
major difference with our work is that [9] does not consider any lab test.

3 Available Data

Our data derives from 2015 patients who were hospitalised in Spedali Civili di
Brescia from February to April 2020. For each of these patients, the specific
features that were made available to us are: age and sex, the values and dates of
several lab tests (i.e. PCR, LDH, Ferritin, Troponin-T, WBC, D-dimer, Fibrino-
gen, Lymphocites and Neutrophils), the scores (each one from 0 to 18), assigned
by the physicians, assessing the severity of the pulmonary conditions result-
ing from the X-ray exams [7], the values and dates of the throat-swab exams
for COVID-19, and the final outcome of the hospitalisation at the end of the
stay, which is the classification value of our application (i.e. in-hospital death or
released alive). We have no further information about symptoms, their timing,
comorbidities, generic health conditions, admission in ICU or clinical treatment.
In our cohort 18.4% of the patients are deceased and 81.6% were released or
transferred to a rehabilitation centre.

When applying machine learning to real-world data, there are some non-
trivial practical issues to deal with. In our case, one of such issues is that
the length of the hospitalisation period can sensibly differ from one patient
to another (from few days to two months). Subsequently, the number and the
frequency of performed lab tests and relative findings significantly varies among
the considered set of patients (from only three to hundreds). For many patients,
this results in a substatial presence of missing values, i.e. we are not able to fully
know the patients’ conditions at a given day. In fact, on average, lab tests PCR,
WBC, Lymphocites and Neutrophils are performed once every 2 days, LDH, Fer-
ritin and Fibrinogen once every 4 or 5 days, while RX, D-dimer and Troponin-T
once a week or even less frequently. If, for a given patient, a test is not performed
at a considered day, we store a missing value for the corresponding lab result.

Moreover, an examination of the data available for our cohort of patients
revealed that their prognostic risk is influenced by multiple factors. For instance,
the number of the patients currently hospitalised, which impacts on the availabil-
ity of ICU beds, and the increase of the clinical knowledge. Therefore, studying
the death rate over time, we discovered that for patients hospitalised during the
most critical weeks of the pandemic (February and March 2020) this value is
about twice than the value obtained during the period were the pandemic was
stabilising (April 2020). Similarly, also the average length of stay in the hospital
varies, from 14 days in April 2020 down to only 7 days in March 2020.

In machine learning, this variation of data distributions over time is known as
concept drift [10,20]. In a first attempt to deal with the observed concept drift,
we used a classical method, which consists of training the algorithm using only
a subset of samples depending on the data distribution that we are considering
[10,21], dividing our set of patients into two groups [11]. However, this has the



An Application of RNNs for Estimating the Prognosis of COVID-19 Patients 321

drawback of significantly reducing the data for training. Thus we decided to
follow a different approach, using the full dataset with an additional feature
that helps the learning algorithm to discriminate if a patient was hospitalised
during the most critical pandemic phase or not. This allows to exploit more
training data, achieving better performance. The new feature, called death rate,
intends to provide an indicator of the status of the pandemic emergency at a
given day (when the feature is evaluated), and it is defined as the average death
rate computed considering seven days preceding such a day. Specifically, the
death rate feature is the ratio of all the patients who died over all the patients
discharged (dead or alive) over the considered 7-days period.

4 Description of the Datasets

In order to apply Recurrent Neural Networks to our dataset, we have to design
a representation of the patients’ hospitalisation over time. This can be done by
building a matrix M [l, e] of real numbers for each of our patients, where l is
the length (number of days) of the hospitalisation and e is the number of the
considered features, i.e. the patient’s demographic information, the death rate
and all the lab tests available in our dataset. Therefore, in this representation
the value obtained for test j in the i-th day of hospitalisation is stored in M [i, j].
If test j has not been performed on that day, we indicate this missing value with
−1 (i.e., M [i, j] = −1). Considering a set of n patients, the input of our RNN is
a tensor with dimension n × l × e.

Given that the length of the hospitalisation can sensibly differ from one
patient to another, as explained in Sect. 3, we set l = 20 considering in this way
at most the first 20 days of hospitalisation for each patient. If a patient stays
in the hospital for less than 20 days, the remaining period is filled by vectors
of zero values with length e, called padding. The value of l is chosen taking into
account the learning problems related to RNNs. In fact, we need a sequence that
is long enough to allow the recurrent model to derive temporal dependencies and
to capture the evolution of the patients’ conditions over time. However, choosing
a value for l that is too large, as for example the longest hospitalisation in our
dataset (which is over 50 days), would require adding a considerable amount
of padding, and this would have a negative impact on the performance. As a
compromise, we chose l = 20 which is a value slightly higher than the average
length of stay in April 2020. We call this representation the Complete Dataset.

Unfortunately, the Complete Dataset is not appropriate for the purpose of
providing a prognosis estimation in advance. According to our data, more than
70% of considered patients stay in hospital for less than 20 days. Therefore, using
the previous data representation, for these patients the RNN would provide a
prediction considering their entire history (until the day of the release or eventual
decease). Thus, in order to build a model that can provide an estimation of the
prognosis in advance (with respect to the 20-days of hospital stay), we adopted a
“cutting strategy” to generate a variant of the dataset called the Cut Dataset.
Specifically, given a patient who is hospitalised for d days, our cutting strategy



322 M. Chiari et al.

is to consider only the tests performed in the first dp days of hospitalisation,
where dp = p ∗ d and p is a random fraction between 0.3 and 0.9. This fraction
is chosen randomly in order to simulate the clinical usage of our system. In
fact, our goal is to create a deep learning model that can be used for estimating
the prediction of a patient at almost every day (with enough data) during his
or her hospitalisation. Therefore, our system has to obtain good performance
analysing a patient during its first period (with p < 0.4) of hospitalisation, in
the middle (0.4 ≤ p ≤ 0.6) but also in the end (p > 0.6). With this strategy,
the days between dp and d are not provided to our model and they are replaced
by padding. If dp > l (which is unlikely in our dataset) only the first 20 days of
hospitalisation are considered.

The number of training instances is fundamental for the performance of
machine learning and deep learning systems. Given the relatively limited amount
of available data in our application, we have designed a method for the dataset
augmentation that consists in adding artificial instances obtained by varying the
those in the Complete Dataset as follows. Given a patient who is hospitalised for
d days, instead of applying the cutting strategy only once, it is applied r times,
obtaining several di

p with i ∈ [1, r]. In our case, we consider r = 3; we call this
representation the Augmented Dataset. With this technique, the available
data for a single patient are used multiple times in order to help the Recurrent
Neural Network to better learn how the disease progresses, what are the most
important lab tests, and how they are related with each other. It is important
to point out that this technique is applied only to the training and validation
sets. In fact, the trained models are finally evaluated on a test set where each
patient is represented only once and only considering the (lab and X-ray) tests
performed in the first dp days of the hospitalisation with a random probability
p between 30% and 90%. For all our datasets, the test set used for evaluating
our models consists of 20% of all patients randomly selected (with stratified
sampling). These patients are the same for all our datasets.

5 Recurrent Neural Network Model

A Recurrent Neural Network (RNN) is a neural network model for processing
sequential data. Gated Recurrent Unit (GRU) networks and Long Short Term
Memory Networks (LSTM) are two types of RNNs which deal with typical issues
of the standard version of RNNs, such as vanishing gradient and long term
dependencies, obtaining better performance than standard RNNs [17]. As shown
in [12], even though usually LSTMs are better than GRUs, the latter can achieve
better performance on smaller datasets.

5.1 Gated Recurrent Units and Attention Mechanism

Given x1, x2 . . . xl ∈ R
e representing the status (as a vector of demographic infor-

mation and lab test features) of a patient for l days of hospitalisation (padding
included), a GRU layer is formed by l cells. Each cell processes the t-th vector
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also taking into account the computation made by the previous cell (ht−1) using a
neural network layer with tanh activation function: nt = tanh(Wn[ht−1, xt]+bn).

While in RNN nt is simply passed to the next cell, in the GRU network we
have also the update gate zt, which is a layer with sigmoid activation function,
that decides which part of the information contained in nt and ht−1 has to be
preserved, and which part can be forgotten: zt = σ(Wz[ht−1, xt] + bz) where
Wz,Wn ∈ R

(n+e)×n are weight matrices, bz, bn ∈ R
n are bias vectors, and n

is an hyperparameter that corresponds to the number of neurons in the GRU
layer. The weight matrices and bias vectors are shared by all the cells. Finally,
the output of the GRU cell, ht is calculated as: ht = (1 − zt) ∗ nt + zt ∗ ht−1.

In most implementations, the GRU includes a further gate (the reset gate)
which has the possibility to erase some parts of ht−1.

The attention mechanism [5] takes each ht into consideration, and computes
a set of weights αi associated to the contribution of each day for the prognosis
estimation:

ut = tanh(Waht + ba), αt = softmax(vT ut) = exp(vT ut)/
∑n

k=1 exp(vT uk)

where Wa ∈ R
n×n, ba ∈ R

n and v ∈ R
n are trainable parameters of the attention

mechanism. Given that the weights αt are calculated using the softmax function,
it is guaranteed that each αt is between 0 and 1, and the sum of them is 1. The
attention mechanism outputs a final representation of the patient’s history, also
called the context vector, as the average of each ht weighted by αt.

Table 1. Hyperparameters space used for our Recurrent Neural Model search and
tuning. Scaler is set to MaxAbsScaler and the activation function is set to tanh.

Hyperparameter Type Interval

Total hidden units Integer [0, 150]

Layers Integer [1, 5]

Dropout rate Real [0, 0.6]

Recurrent dropout rate Real [0, 0.6]

Batch normalisation Categorical [True, False]

Activity regularisation Categorical [True, False]

Batch size Integer [32, 40, 48, 56, 64]

5.2 Loss Function and Tuning of the Hyperparameters

Typically, a feed-forward neural network is trained using a standard loss function
such as Log-Loss or Binary Cross Entropy. In our case these loss functions did
not provide adequate results, especially in terms of number of false negatives,
which are the most critical errors in our application context. As proposed in [19],
the F-measure can be used as loss function in order to improve the performances
in high unbalanced problems. Moreover, other works [13,14] use F -β losses with
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different β values in order to improve the performance specifically for unbalanced
and difficult tasks in the medical domain.

Therefore, for our ANN models, we adopted a loss function based on the F-2
score metric defined as follows: F -βloss = 1 − (1+β2)·Precision·Recall

β2∗Precision+Recall+ε , with β = 2,
and ε = 10−7 used to avoid zero-division errors.

Since the performance of a RNN is deeply influenced by its hyperparameters,
such as the number of neurons or the recurrent dropout, we performed a hyperpa-
rameter search to generate a highly-performing architecture. In order to optimise
the RNN architecture, we adopted the Bayesian-optimisation approach via the
Optuna framework [2] with 128 search iterations. The hyperparameters search
is performed using tenfold cross-validation on the training set of each dataset at
different days of hospitalisation. For each randomly selected combination Σ of
hyperparameter values:

1. The training set of each dataset is partitioned into k folds with k = 10.
2. For each fold of the cross validation, the performance of the algorithm using

Σ is evaluated in terms of F2-score.
3. The overall evaluation score of the k-fold cross validation for a configuration

Σ of the hyperparameters is computed by averaging the scores obtained for
each fold.

Finally, the hyperparameter configuration with the best overall score is
selected.

It is well known that the standardisation and scaling of input data can have a
huge impact on the stability and performance of Neural Networks [4,18]. There-
fore, we considered the scalers provided by the Scikit-Learn package and con-
ducted some preliminary experiments for finding the most suitable one for our
task, which is the MaxAbsScaler. In the same initial experiments, we have found
that GRU units have much better performance with respect to standard RNNs
or LSTM neural networks. We have also considered hyperparameters for the ini-
tialiser, number of layers, number of units (or neurons) for each layer, batch size,
dropout rates, Batch Normalisation and Activity Regularisation. The considered
ranges of values for these hyperparameters are shown in Table 1.

Finally, we used Adam [15] as optimiser with the default values for the param-
eters β1, β2 and ε, while the starting learning rate is set to 10−4.

Table 2. Hyperparameters for the tested RNN models. B.S. is the batch size, B.N.
stands for batch normalisation, Layers is the number of hidden layers, Act Reg is the
activity regularisation and Rec Dropout is the recurrent dropout rate. The dropout
rate was set very close to 0 by the optimizer for all the datasets.

Model Layers Neurons B.S. B.N. Act reg Rec dropout

Cut 2 66;34 32 False False 0.57;0.28

Attention 1 81 32 True True 0.26

Augmented 1 65 64 True False 0.49
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Table 3. Performance of our best RNN models in terms of F2-score, ROC-AUC score
and accuracy over the test sets.

Dataset F2-Score ROC-AUC Accuracy

Cut 66.81 74.33 64.55

Attention 68.13 75.8 66.93

Augmented 73.17 81.39 77.87

6 Experimental Results

In this section, we evaluate the performance of the RNN models over different
datasets. Our system is implemented using the Scikit-Learn library for Python,
and the experimental tests were conducted using an Intel(R) Xeon(R) Gold
6140M CPU @ 2.30 GHz. The performance of the models with the relative opti-
mised hyperparameters are evaluated using the test set in terms of both F2 and
ROC-AUC scores and Accuracy. First of all, we tested the performances using
a model trained on the Complete Dataset, that contains the whole history of
each patient. With this model we obtain a F2-score of 68.81% and a ROC-AUC
of 75.95%. However, since this model is trained and tested using all the avail-
able data for patients who stayed in hospital less than 20 days (more than 70%
of total patients), this model is not suitable to be used in an hospital, and we
consider it as a reference point for a comparison and evaluation of the perfor-
mance of the other models. Moreover, this model is tested on a different test set
which does not implement the cutting strategy, and for this reason it shouldn’t
be compared directly to the other models. We evaluated the following models:

– Cut model : a model trained on the Cut dataset. This Dataset implements the
cutting strategy that reduces the available data by cutting the length of stay
according to a random probability between 30% and 90%.

– Attention model : a model including the Attention Mechanism (Sect. 5.1) and
trained on the Cut Dataset.

– Augmented model : a model trained on the Augmented Dataset (the augmen-
tation procedure is described in Sect. 4) along with the cutting strategy.

In Table 2, we show the hyperparameters of each tested model. In Table 3 and in
Fig. 1 we show their results on the classification task for predicting the prognosis
of hospitalised patients. The performances obtained by the Cut model are slightly
worse compared to the ones obtained by the Complete model (66.81% F2-score
and 74.33% ROC-AUC). This was expected because, by applying the cutting
strategy to our dataset, we remove some of the exams data from the last days of
hospitalisation. On the other hand, through the application of the of the cutting
strategy we can simulate an average use case of our model where we want to
estimate the outcome of the patient some days in advance (w.r.t. the last days
of hospitalisation).

The Attention model performs better that the Cut model, although the
improvement is not very significant (68.13% F2-score and 75.8% ROC-AUC).
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Fig. 1. Receiving operating characteristic curve for the best cut, attention and aug-
mented models.

By using both the cutting strategy and the augmentation technique for our
dataset, we can significantly improve the performances of our model thanks to
the increased size of the training set: the Augmented model obtained a F2 score
of 73.17% and a ROC-AUC of 81.39%. These results outperform the Complete
model performances by more than 4 percentage points, which is impressive.

We also trained a model implementing the attention layer with the Aug-
mented Dataset, but its performance is not satisfactory. The resulting model
has 5 hidden layers, a high number of neurons per layer (121 on the first layer),
and the same recurrent dropout rate for each layer. The number of layers is
unusually high considering that most of the RNNs described in literature have
at most 2 recurrent layers. The poor model quality and inferior average perfor-
mances over the test set (65.55% of F2-score and 76.82% of ROC-AUC) led us
to conclude that this model has substantial overfitting issues.

In previous work [11], starting from the same raw data, we used ensembles
of Decision Trees (DT) for estimating the prognosis at different specific days
of the hospitalisation (either 2, 4, 6, 8, 10 days or the last day). We built a
different model for each considered day, obtaining performances between 68.4
and 76.5 in terms of F2-Score, and between 79.3 and 86.3 in terms of ROC-
AUC. However, these models cannot be directly compared with the RNN-based
approach here presented. In fact, while each DT-based model is specialised for
patients at certain specific day of hospitalization, using RNNs we generated a
single model that works considering hospitalisation periods of different length.
Furthermore, some of the features that we introduced in the datasets for the
DT-based models are automatically learned by our RNN models.

7 Conclusions and Future Work

We have presented a system for monitoring and evaluating the prognosis of
COVID-19 patients focusing on the mortality risk. We built our predictive system
using Recurrent Neural Networks trained using datasets engineered from lab
tests and X-ray data of more than 2000 patients in an hospital in Northern Italy
that was severely hit by COVID-19.

An experimental analysis shows that our best performing model achieves
good predictive results (F2-score 73% and ROC-AUC 81%). In particular, we
obtain the best results simulating a real use case of the system by a cutting
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strategy that reduces the available data to focus on earlier days of the hospital-
izations, and improving the predictive performances by a powerful technique for
dataset augmentation. Thanks to the dataset augmentation, the resulting model
outperforms even the model trained on the Complete Dataset.

We think that there is room to improve our results by considering additional
information about the patients that was not available to us, such as patient
comorbidities, clinical treatments and administered drugs. Moreover, usually
Recurrent Neural Network models require a large amount of data to achieve
high performances. Given the limited size of our dataset, our approach is very
promising. We intend to extend the dataset with more data by gathering more
recent data and patients hospitalised during the second wave of the pandemic.
This will further improve our results and validation of the proposed models.
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Abstract. People affected by diabetes are at a high risk of developing diabetic
nephropathy, which, in turn, is the leading cause of end-stage chronic kidney dis-
ease worldwide. Predicting the onset of renal complications as early as possible,
when kidney function is still intact, is of paramount importance for therapy selec-
tion due to existence of a class of antidiabetic agents (SGLT2 inhibitors) with
known nephroprotective properties.

In the presentwork,we study the anthropometric and laboratory data of 28,955
diabetic patients followed for a median of 6.6 years (IQR 4.7–7.8) by 14 Ital-
ian diabetes outpatient clinics. We develop a deep learning model, based on the
incorporation of variable-length longitudinal baseline data via recurrent layers,
to predict the onset of impaired kidney function (KDOQI stage ≥ 3). We adopt
a multi-label output-coding system to address the irregularity and sparsity in the
sampling of endpoints induced by the real-life structure of the data.

Using the cumulative/dynamic AUROC with respect to a variable prediction
horizon of 1 to 7 years, we compare the proposed model against the predictor
of imminent deterioration of kidney function used in clinical practice, i.e., the
estimated glomerular filtration rate (eGFR), and a set of year-specific logistic
regressions trained on a single baseline visit.

The proposed deep learning model generally outperforms both benchmarks,
especially in themedium-to-long term, with AUROC ranging from 0.841 to 0.895.
Supplementary analyses confirm the effective encoding of sequence data within
the network.

Keywords: Diabetes · Kidney disease · Predictive modelling · Recurrent neural
network · Routine clinical data

1 Introduction

People affected by diabetes, a chronic, incurable disease characterised by elevated blood
glucose concentration levels, often experience a broad range of macro- and micro-
vascular complications. Among the latter, diabetic nephropathy is the leading cause
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of end-stage chronic kidney disease (CKD) worldwide [1]. Indeed, it is estimated that
the prevalence of CKD among people with diabetes may be as high as double that in
the general population [2]. Key intervention targets include improvements in glycaemic
control, blood pressure, and lipid profile, which, combined with frequent monitoring via
routine check-ups, appropriate therapeutic choices, and positive lifestyle changes, have
been shown to delay the onset and slow the progression of diabetic nephropathy [3, 4].
Recently, a novel class of antidiabetic agents known as sodium-glucose cotransporter 2
inhibitors (SGLT2is) have demonstrated marked nephroprotective properties in diabetic
patients with pre-existing albuminuria or reduced estimated glomerular filtration rate
(eGFR) [5–8]. However, as a much greater number of diabetic patients with preserved
kidney function would need to be treated with SGLT2is to prevent even a single case
of nephropathy [5, 9], suboptimal resource allocation remains a concern, and there is
no clear indication for specific CKD-preventing therapies in subjects at non-immediate
risk.

In light of these considerations, it is apparent that early prediction of impaired renal
function is a crucial target with notable ramifications not only on individual quality of
life, but also on resource allocation with respect to the early identification of potential
candidates for innovative anti-CKD therapy. Recent research in this direction has high-
lighted that machine learning models based on routinely acquired real-world data have
a great potential as tools to aid in the prediction of future CKD [10, 11]. Oftentimes,
however, data collection objectives for clinical practice and model development do not
align. This is the case, e.g., of routine check-up visits, where different batteries of labo-
ratory tests are usually performed at a physician’s discretion, resulting, on the one hand,
in the potentially advantageous acquisition of additional longitudinal information, but,
on the other, in incomplete or sparsely sampled data points, which might render baseline
definition and outcome adjudication more difficult.

Taking into account this inherent divergence of purposes, in the present work, we
develop a deep learning model based on recurrent neural networks to predict the onset
of impaired renal function using the routine check-up data of 28,955 patients, acquired
in 14 Italian diabetes outpatient clinics. In doing so, we address two main challenges
related to model development with this type of data: 1) the incorporation of longitudinal
baseline data in the form of the sequence of anthropometric and laboratory information
collected during a series of past visits; and 2) the highly irregular sampling of endpoints
that is ill-suited to traditional methods.

2 Prediction Target and Study Population

2.1 Prediction Target: Impaired Kidney Function on the KDOQI Scale

The prediction target was the onset of impaired kidney function, i.e., stage ≥ 3 on the
Kidney Disease Outcomes Quality Initiative (KDOQI) scale [12]. As only stages ≥ 3
meet the criteria for CKD, we will refer to “CKD onset” and “impaired kidney function
onset” interchangeably. Operatively, in terms of outcomes, we distinguished between
subjects with preserved renal function, i.e., eGFR ≥ 60 (KDOQI stages 1 and 2) and
those with eGFR < 60 (KDOQI stages 3a, 3b, 4, and 5).
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2.2 Study Population and Dataset Split

The primary source for the present studywas amulti-centre database comprising the data
of 28,955 subjects treated at 14 diabetes outpatient clinics in the Veneto region between
1st January 2010 and 14th May 2019 (median observation time: 6.6 years; IQR 4.7–7.8).
For each subject, a number of routine check-up visits, recorded with an irregular (on
average, yearly) sampling rate, were available. At each visit, demographic, anthropo-
metric, and laboratory data were collected as part of the subjects’ regularly scheduled
monitoring sessions. The complete list of variables comprised sex, age, diabetes dura-
tion, body-mass index (BMI), systolic and diastolic blood pressures, fasting glucose,
glycated haemoglobin (HbA1c), total and HDL cholesterol levels, triglycerides, aspar-
tate transaminase (AST), alanine transaminase (ALT), creatinine, and eGFR for a total
of 15 variables (14 dynamic, 1 static). All subjects met the following inclusion criteria.

1. At least three visits with known eGFR (at least two to serve as a sequential input,
and at least one more to determine the output).

2. At least two consecutive visits with eGFR ≥ 60.
3. No evidence of CKD at database entry.

We split the total cohort of 28,955 patients into a training, validation, and test sets,
comprising, respectively, 80% (23,164), 10% (2,895), and 10% (2,896) of the subjects.

Table 1. Population characteristics. Continuous quantities are expressed as mean ± standard
deviation, other quantities as counts. BP: blood pressure.

Training Validation Test
Sample size 23,164 2,895 2,896
Male sex 13,913 1,747 1,754
Age (years) 66.3 ± 11.7 66.2 ± 11.6 66.4 ± 11.6
Diabetes duration (years) 9.4 ± 8.3 9.2 ± 8.2 9.5 ± 8.2
BMI (kg/m2) 29.5 ± 5.4 29.5 ± 5.2 29.5 ± 5.2
Systolic BP (mmHg) 140.1 ± 18.9 139.9 ± 19.1 140.2 ± 18.7
Diastolic BP (mmHg) 79.6 ± 9.8 79.5 ± 10.1 79.6 ± 10.0
Fasting glucose (mg/dL) 144.7 ± 45.3 144.4 ± 42.9 145.5 ± 45.6
HbA1c (%) 7.2 ± 1.2 7.2 ± 1.2 7.2 ± 1.2
Total cholesterol (mg/dL) 175.5 ± 38.4 177.0 ± 38.8 173.9 ± 37.7
HDL cholesterol (mg/dL) 52.6 ± 15.3 52.7 ± 14.9 51.9 ± 14.8
Triglycerides (mg/dL) 125.2 ± 71.0 125.7 ± 73.0 125.8 ± 72.0
AST (IU/L) 23.1 ± 12.7 23.1 ± 12.0 22.8 ± 11.0
ALT (IU/L) 24.9 ± 16.7 24.9 ± 15.5 25.0 ± 16.0
Creatinine (mg/dL) 0.8 ± 0.2 0.8 ± 0.2 0.8 ± 0.2
eGFR (mL/min/1.73m2) 86.1 ± 13.8 86.3 ± 13.6 86.1 ± 13.5
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We define the most recent visit in the baseline sequence, i.e., the latest one before the
start of the follow-up period, as the end-of-baseline (EOB) visit. The EOB visit is the one
that would be used for prediction in the absence of sequence data. Table 1 summarises
the characteristics of the study population at the EOB visit (see Sect. 3.1). The average
subject had a 60% chance of being male, was 66 years old, had had diabetes for 9 years,
a BMI of 29.5, a blood pressure of 140/80 mmHg, a fasting glucose of 145 mg/dL, and
an HbA1c of 7.2%. The average eGFR was 86.1 mL/min/1.73 m2.

Missing data were present (except for sex, age, and diabetes duration), but their
proportion was small, i.e., <3.5% at the EOB visit.

3 Methods

3.1 Input Data Preparation

The input data preparation process was guided by our stated objective of incorporating
longitudinal baseline data into the model development pipeline. In summary, we identi-
fied each patient via a multidimensional sequence of data corresponding to a variable-
length sequence of baseline routine check-ups, and a single static feature, i.e., sex. The
minimum number of baseline visits was 2, as per the inclusion criteria in Sect. 2.2,
thus avoiding the degenerate case of 1-visit sequences. The actual number was subject-
specific, i.e., between 2 and the minimum between: a) the number of available visits
minus one (at least one was needed for the outcome, as per inclusion criterion 1); b) the
number of consecutive outcome-free visits; and c) an arbitrary threshold of 6.

We formatted each subject’s baseline data according to model requirements (see
Sect. 3.3), thus obtaining a 14-variable × 6-visit padded matrix and a scalar value
(technically, a 1-dimensional vector) encoding the static sex variable. Missing data in
the matrix were set to “0” if they were, in fact, missing in the original dataset, whereas “-
1” was the masking indicator to distinguish between informative and padded portions of
the variable-length sequence. Additionally, to aid in data description and benchmarking,
we created a static version of the dataset comprising only each subject’s (unmodified)
EOB visit and the “sex” variable.

3.2 Output Coding

The irregular and relatively sparce sampling rate induced by the real-life configuration of
the data source prevented us from encoding outcome occurrence via the typical (event
indicator, censoring time) tuples used in survival analysis. Indeed, survival analysis
requires that exact information on outcome occurrence be known and that there be no
gaps in the observation of follow-up. On the contrary, here, outcome information was
only available via inspection of the eGFR values collected during each follow-up visit,
meaning that status changes between two visits were inherently unknowable, and so was
the exact time or reason for right censoring.

To overcome this limitation, we cast the problem of predicting impaired kidney
function at different prediction horizons as a multi-label classification problem with a
7-dimensional output. Each of the 7 elements of the outcome vector, say j, encoded the
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answer to the question “Was there evidence of CKD onset by the end of the j-th year?”
Hence, if an eGFR< 60 was recorded between the start of follow-up and the end of the
j-th yeah, the j-th element of the outcome vector was equal to 1; if there was evidence
of eGFR ≥ 60 after the end of the j-th year (but no evidence to the contrary before then)
the j-th element of the outcome vector was equal 0; in all other cases, patient status was
unknown and the j-th element was encoded as “NA” (note that this may happen both in
the “natural” case of right censoring and due to gaps in eGFR sampling).

Table 2 shows the absolute frequencies of patient status across the 7 time points.
We observe an expected, progressive inversion of the ratio between 1s and 0s as the
prediction horizon moves forward into the future: as time goes on, follow-up visits that
confirm undeteriorated renal function become rarer and rarer, whereas the number of
CKDonsets accumulates. Predictably, “NA” values start appearing immediately after the
start of follow-up, demonstrating the presence of subjects forwhomendpoint information
is temporarily unclear in addition to truly right-censored subjects.

Table 2. Outcome distribution at each prediction horizon (PH). 1: CKD onset within the year, 0:
reportedly CKD free at the end of the year, NA: unknown status (% of right censored).

PH
Training Validation Test

0 1 NA 0 1 NA 0 1 NA

1 year 20,228 1,004 1,932 (0%) 2,545 117 233 (0%) 2,532 125 239 (0%)

2 years 13,971 2,570 6,623 (83%) 1,763 301 831 (82%) 1,720 331 845 (83%)

3 years 9,337 3,521 10,306 (93%) 1,195 418 1,282 (93%) 1,134 457 1,305 (94%)

4 years 5,723 4,107 13,334 (97%) 730 494 1,671 (96%) 684 533 1,679 (98%)

5 years 3,258 4,451 15,455 (99%) 404 550 1,941 (98%) 376 561 1,959 (99%)

6 years 1,572 4,634 16,958 (99%) 184 581 2,130 (99%) 172 579 2,145 (99%)

7 years 410 4,734 18,020 (100%) 56 592 2,247 (100%) 31 592 2,273 (100%)

3.3 Model Architecture and Development

Using a typical train/validate/test scheme, we developed a deep learning model based
on the incorporation of longitudinal baseline data via a recurrent layer. Operatively, we
optimised the network’s weights on the training set, selected the best combination of
hyperparameters via the validation set, and evaluated performance on the previously
unseen test set. We carried out weight estimation via the ADAM optimiser with a fixed
learning rate of 0.0005 for a maximum of 100 epochs. The cost function was a modified
version of the binary cross-entropywhere “NA” labels did not contribute toweight update
via back-propagation (this is done, e.g., by artificially setting the missing prediction to
the currently predicted value, resulting in a null contribution to the gradient).

As shown in Fig. 1, the proposed neural network initially handles sequence data
via a recurrent layer, namely a gated recurrent unit (GRU) [13]. The objective, here, is
encoding the variable-length multi-dimensional sequence as a fixed-length vector that
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can be concatenated with the static “sex” variable. In this portion of the network, the
hyperparameters were the number of GRU units (16, 32, or 48), and the dropout fractions
related to the inputs and recurrent connections (possible values for both: 0, 0.05, 0.1, 0.2,
0.3, 0.5). The result of this dynamic-to-static encoding step is then concatenated with the
static “sex” variable and sent to a cascade of fully connected layers. The hyperparameters
at this stage were the number of post-concatenation, pre-output layers (2 or 3) and their
dimensions (valid combinations: {64, 32}, {48, 24}, {32, 16}, {16, 8}, {64, 32, 16}, {48,
24, 12}, {32, 16, 8}, {16, 8, 4}). The fully connected cascade ends on the 7-dimensional
output layer. Finally, to obtain a more robust scalar score for each prediction horizon,
we implemented a cumulative summation step such that each prediction at j years was
the sum of the first j output neurons.

Fig. 1. High level overview of the network’s architecture.

We carried out the hyperparameter selection phase in two steps. First, for each
hyperparameter combination, we selected the set of weights that minimised the binary
cross-entropy on the validation set, thus obtaining a set of 864 candidatemodels. Second,
we computed the cumulative/dynamic areas under the receiver-operating characteristic
curve (AUROC) [14] at 1 to 7 years on the validation set, and ranked all 864 candidates
according to their predictive ability at each prediction horizon. The final model was the
one with the minimum year-wise median rank.

3.4 Performance Evaluation and Secondary Analyses

In our primary performance analysis, we evaluated the discrimination power of the
proposed model on the unseen test set via our target metrics, i.e., the seven AUROCs
corresponding to the 1- to 7-year prediction horizons.

Our first secondary analysis was meant to challenge the hypothesis that the deep
learning model was effectively encoding the sequence of visits comprising the longitu-
dinal baseline. Hence, we measured the model’s prediction ability on a modified version
of the test set where we artificially inverted the order of the visits comprising each
subject’s longitudinal baseline.

In another secondary analysis, we compared the proposed model to a trivial model
returning the eGFR collected at the time of the EOB visit, the known predictor of
imminent renal function deterioration used in clinical practice [15].

In a third set of secondary analyses, we compared the proposed model with a battery
of year-specific logistic regressions trained with the full EOB visit as the input and with
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each year’s status (whenever available) as the output. The minority of missing values
was imputed via mean imputation.

In all analyses, we estimated 95% confidence intervals (CIs) via the DeLong
estimator [16], and assessed statistical significance at the 0.05 level.

4 Results

The hyperparameter selection process resulted in the identification of the optimal archi-
tecture as the one having 32 GRU units with standard and recurrent drop-out fractions
of 0.05 and 0.1, and three fully connected layers of sizes 16, 8, and 4.

As shown in the second column of Table 3, model performance was satisfactory
across the board (AUROC always > 0.84), and particularly promising in the medium
term, where it ranged from year 5’s 0.853 (CI: 0.828–0.878) to year 7’s 0.895 (CI:
0.852–0.937). The performance comparison with the artificially inverted version of the
test set (first secondary analysis) strongly suggests that the model’s good behaviour was
at least in part attributable to a fruitful encoding of temporal relationships between the
longitudinal baseline’s visits. This is apparent from the substantially (and significantly,
except at the 7-year mark) diminished performance of the model when confronted with
improperly ordered sequences (third column of Table 3). Had order been irrelevant, we
would have expected to see a negligible difference.

As expected, the proposed model always outperformed EOB eGFR in terms of dis-
crimination power. Interestingly, however, the AUROC difference at the 1-year mark
(0.15) was only nominally greater than 0, suggesting that eGFR alone might be a suffi-
ciently effective predictor of imminent deterioration in renal function, while additional
information should be collected for longer-term prediction.

The comparison with the battery of year-specific logistic regressions (third sec-
ondary analysis, fourth column of Table 3) also yielded encouraging results. Except at
the 1-year prediction horizon, the proposed model always outperformed logistic regres-
sion, and exhibited the most notable and statistically significant performance gains at
4, 5, and 6 years (respectively, AUROC 0.844 vs. 0.829, 0.853 vs. 0.830, and 0.874
vs. 0.839). Regrettably, despite the proposed model’s excellent AUROC of 0.895 (CI:
0.852–0.937), the 7-year comparison was underpowered and failed to detect statistically
significant differences. Overall, it appears that the inclusion of longitudinal baseline data,
possibly combined with increased model capacity and with the simultaneous learning
from different prediction horizons (via the proposed multi-label coding scheme), was
beneficial to long-term prediction. While, under the current experimental framework, it
is difficult to disentangle the contributions of these factors, it is notable that our deep
learning model, i.e., a single, one-size-fits-all model, was able to compete with and
generally outperform individual models specifically trained on the expected outcome
distributions observed at each prediction horizon (recall the inversion of the 1:0 ratio
shown in Table 2).
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Table 3. Cumulative dynamic AUROC on the test set (95% CIs). PH: prediction horizon; DL
inverted: deep learning model after sequence inversion. Statistical significance vs. deep learning
model marked with*

PH Deep learning DL inverted eGFR only Logistic regression

1 year 0.844 (0.815–0.874) 0.712 (0.672–0.751)* 0.829 (0.797–0.860) 0.858 (0.830–0.885)

2 years 0.841 (0.819–0.862) 0.693 (0.665–0.721)* 0.819 (0.796–0.843)* 0.834 (0.811–0.856)

3 years 0.841 (0.820–0.861) 0.701 (0.675–0.728)* 0.820 (0.798–0.842)* 0.838 (0.817–0.859)

4 years 0.844 (0.822–0.866) 0.735 (0.707–0.763)* 0.803 (0.778–0.827)* 0.829 (0.806–0.852)*

5 years 0.853 (0.828–0.878) 0.765 (0.733–0.797)* 0.797 (0.767–0.826)* 0.830 (0.803–0.856)*

6 years 0.874 (0.846–0.903) 0.832 (0.796–0.869)* 0.798 (0.760–0.836)* 0.839 (0.807–0.871)*

7 years 0.895 (0.852–0.937) 0.880 (0.817–0.943) 0.797 (0.724–0.871)* 0.882 (0.833–0.932)

5 Discussion and Conclusions

An early prediction of CKDonset in people affected by diabetes but whose renal function
is still satisfactory could be extremely useful in reconciliating therapeutic intervention
with patient needs and resource allocation constraints.Motivated by previously reported,
promising results obtainedusingmachine learning and real-world data [10], in the present
work we demonstrated the feasibility and potential benefit of developing a predictive
model of impaired kidney function (KDOQI stage 3) using deep learning to integrate
longitudinal information on routine check-ups. Thus, we obtained a well-performing
model that yielded AUROC values between 0.841 (1-year prediction horizon) and 0.895
(7-year prediction horizon), generally and often significantly outperforming the tested
benchmarks.

From amethodological perspective, our study showcases a fruitful approach to utilise
routine data whose natural format is suboptimal for traditional survival analysis or clas-
sification approaches. Indeed, at variance with most similar models [17, 18], which
attempt to recreate the clinical trial setting by predicting a well-behaved outcome via
one-shot baseline data, here, we embraced the longitudinal vocation of routine diabetes
check-ups by incorporating a sequence of past visits via a recurrent layer, and offset the
inconsistent sampling scheme of the CKD endpoint using a multi-label framework and
an opportunely modified cost function.

The main limitation of our study was the impossibility of disentangling the contri-
butions to performance improvement of 1) adding baseline sequence data (although we
showed that sequence order was effectively encoded by the model), 2) increasing model
capacity with respect to traditional techniques such as logistic regression, and 3) casting
the problem as amulti-label task. Future researchwill revolve around the systematic test-
ing of the proposed architecture (or variants thereof, e.g., using different recurrent units,
such as LSTMs [19]) against a stronger set of literature and custom-made benchmarks
to determine the key factors in achieving high discrimination ability.
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under the initiative “Departments of Excellence” (Law 232/2016).
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Abstract. In recent years, machine learning methods have been rapidly
implemented in the medical domain. However, current state-of-the-art
methods usually produce opaque, black-box models. To address the lack
of model transparency, substantial attention has been given to develop
interpretable machine learning methods. In the medical domain, coun-
terfactuals can provide example-based explanations for predictions, and
show practitioners the modifications required to change a prediction
from an undesired to a desired state. In this paper, we propose a coun-
terfactual explanation solution for predicting the survival of cardiovas-
cular ICU patients, by representing their electronic health record as a
sequence of medical events, and generating counterfactuals by adopting
and employing a text style-transfer technique. Experimental results on
the MIMIC-III dataset strongly suggest that text style-transfer methods
can be effectively adapted for the problem of counterfactual explanations
in healthcare applications and can achieve competitive performance in
terms of counterfactual validity, BLEU-4 and local outlier metrics.

Keywords: Counterfactual explanations · Survival prediction ·
Explainable models · Deep learning

1 Introduction

Machine learning models have recently demonstrated high utility and applica-
bility in the medical domain, and have been proven successful for various super-
vised and unsupervised learning tasks [8]. A contributing factor to this is the
availability of rich medical data sources, such as electronic healthcare records
(EHRs). For example, unstructured clinical notes have been employed in text
classification for classifying diagnosis codes [8], while laboratory tests and patient
demographic variables have been adopted to predicting daily sepsis, myocardial
infarction (MI), and vancomycin antibiotic administration [11].

Due to the temporal nature of EHR data, it is common to model clinical
events as event sequences so as to efficiently address prediction tasks, such
adverse drug event (ADE) detection [2], by applying sequence classification mod-
els [18]. Nonetheless, many machine learning algorithms produce models that are
often considered as black-boxes, inhibiting their use in application areas where
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transparency is important for trust and reliability [15], since it is often not
possible for practitioners to interpret and understand the predictions and the
inherent model structure if the model is opaque. Model interpretability is even
more important for critical application domains, such as healthcare, where such
models are used for medical decision making [20]. There are several types and
definitions of model interpretability (see [14]). In this paper, our focus is on coun-
terfactual explanations [14] for Intensive Care Unit (ICU) patients suffering from
cardiovascular disease. Counterfactuals refer to an example-based approach that
can provide actionability in order to change the minimum set of specific features
to achieve a desired outcome. For example, given a classifier and a test example
for which the classifier has predicted a particular class label, a counterfactual
is a modified version (e.g., a minimum-cost conversion) of that example so that
the classifier switches its decision to an alternative class label.

Example. Consider a classification model for predicting the survival of an ICU
patient. If for a given patient the model has a negative outcome (e.g., the patient
will die), it is critical for the medical practitioner to understand whether there
exists any set of treatment changes that if applied to the patient, it would lead
to a positive outcome. Figure 1 illustrates such counterfactual, recommending
the removal of “epinephrine” (orange colour) from the patient treatment and
the insertion (green colour) of “procainamide” and “amiodarone”.

Fig. 1. An example of a counterfactual, suggesting the removal (orange colour) of
“epinephrine” (orange colour) from the patient treatment and the insertion (green
colour) of “procainamide” and “amiodarone”. (Color figure online)

Related Work. Machine learning has been widely applied in predicting the
outcomes of ICU patients. Hsieh et al. [7] employ a fuzzy neural network model
for predicting the ICU survival of critically ill patients, while hybrid machine
learning approaches [1] have also been applied for the same problem. However,
none of these black-box methods is interpretable. Interpretable machine learning
techniques have been adopted by many researchers recently. Especially, inter-
pretable deep learning has drawn attention to different healthcare applications.
For example, Caicedo-Torres and Gutierrez [4] applied a convolutional neural
network (CNN) alongside coalitional game theory to produce interpretable visu-
alizations for ICU mortality prediction using the MIMIC dataset. Furthermore,
various types of medical events were investigated in addressing prediction prob-
lems in the healthcare domain. For instance, Esteban et al. [6] applied neural
networks on embeddings of medical events (e.g., ordered tests, lab results and
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diagnoses) in predicting sequences of clinical events. The concept of counterfac-
tuals was first presented by Wachter et al. [23] followed by several formulations
for different data domains and classifiers, such as Shapelet-based classifiers for
time series data [12] or variational auto-encoders for categorical and continuous
features as well as images [21]. However, there is a lack of counterfactual expla-
nation applications on event sequences, such as medical event sequences. Text
style-transfer has been widely studied in recent years. For example, the Delete-
Retrieve-Generate framework [13] explicitly disentangles content and style from
a given sentence using two RNN-based models for generating the desired output
text style. This model has also been extended to include an attention mechanism
with a Transformer [19]. Style-transfer has been successfully implemented in dif-
ferent application areas, such as transferring medical notes from the expert level
to the layman level or converting non-polite sentences to polite ones without
adjusting the original meaning [5]. However, so far the focus has been on textual
data and language applications. To the best of our knowledge, there has yet been
no formulation of counterfactuals for event sequences using text style-transfer
techniques, and specifically for the medical domain.

Contributions. In this paper, we formulate the problem of counterfactual
explanations for medical event sequences, and provide a solution that exploits
text style-transfer techniques. More concretely, our contributions include: (1)
a counterfactual explanations solution for sequential data that is based on text
style-transfer; (2) a baseline 1-NN solution for the same problem that shows com-
petitive performance; (3) an experimental evaluation of the proposed solutions
for the problem of predicting survival of ICU cardiovascular patients.

2 Counterfactual Explanations for Medical Sequences

We formulate the problem of counterfactual explanations for medical event
sequences, followed by a description of our two solutions.

2.1 Problem Formulation

Let E = {(x1, y1), ..., (xm, ym)} be an EHR dataset of m patients, with each
xi = e1, . . . , ed being a sequence of d medical events for patient i coupled with
a binary target class yi ∈ Y. We let Y define the set of possible class labels.
In this paper, we assume a binary classification problem (positive and negative
outcomes), i.e., Y = {‘+’,‘−’}. Each medical event ej can be either a medication
or a medical procedure code. Finally, f(·) defines an opaque classification model
(e.g., an LSTM). The problem studied in this paper is defined as follows.

Problem 1. Counterfactual Explanations for Medical Sequences. Given
a trained classifier f(·) and a medical event sequence x with f(x) = ‘−’, we want
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to define a function g(·) that identifies the changes needed to modify x into
another sequence x′ so as to convert a negative prediction into a positive one,
i.e.,

g : x → x′, s.t. f(x) = ‘−’ and f(x′) = ‘+’ ,

such that an objective function L(·) is optimized.
For example, given a classifier f trained on a set of EHRs of ICU patients, g

identifies the changes needed to be applied to an ICU patient x with an undesired
prediction ‘−’ (e.g., death) to a desired one ‘+’ (e.g., survival).

2.2 Style-Transfer Counterfactual Explanations

Our first solution to the Problem 1 is to the adoption and adaptation of the
Delete-Retrieve-Generate (DRG) framework, which was originally proposed for
text style-transfer by Li et al. [13]. In its original formulation, DRG consists
of three components, that correspond to the operations applied for generating
the counterfactuals: Delete, Retrieve, and Generate. Using these components, we
employ two different solutions (also in accordance to Li et al. [13]: (1) Delete-
Only (Algorithm 1 with r = False), which includes the Delete and Generate
components, (2) DeleteAndRetrieve (Algorithm 1 with r = True) containing
all three components. The details of each component are described below.

Delete. For this operation, we consider n-grams of medical events. In our imple-
mentation, an n-gram is a contiguous sequence of n medical events from a given
sample. Let Sy define a collection of event sequences sampled from E , such that
they all belong to class y. Given a target class y ∈ Y, we define the salience of
an n-gram u with respect to y by its relative frequency in Sy:

s(u, y) =
#(u, Sy) + λ

∑
y′∈Y,y′ �=y #(u, Sy′) + λ

, (1)

where λ is the smoothing parameter and #(u, Sy) stands for the frequency of
n-gram u in Sy. We consider u to be an attribute marker for class y if s(u, y) is
larger than a threshold γ. The main outcome of this operation is to delete a set
of attribute markers (n-grams) from an input sequence x. Let a(x, y) denote the
set of attribute markers for class y in a sample x and c(x, y) be the remaining
sequence of medical events after removing a(x, y) from sample x.

Retrieve. Our goal is to retrieve a set of attribute markers from xret of the
target class y′ based on the smallest sequence distance, i.e.,

xret = arg min
x∗∈Sy′

d(c(x, y), c(x∗, y′)), (2)

where d(·) is any distance metric. We instantiate d(·) as the TF-IDF weighted
overlap score between the input sequence and any other sequence in Sy′ [13].
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Algorithm 1: The DRG method for counterfactual explanation
Input : A sequence of medical events x and boolean r
Output: A modified sequence x′ with desired target class y′

1 if s(u, y) > γ then
2 Delete u from x
3 c(x, y) ← the remaining events

4 if r is True then
5 Retrieve xret using Eq. 2
6 e1 ← Encode(c(x, y), RNN1)

7 e2 ← Encode(a(xret, y
′), RNN2)

8 x′ ← Decode(e1 ⊕ e2, RNN3)

9 else
10 e1 ← Encode(c(x, y), RNN1)

11 x′ ← Decode(e1, RNN3)

Table 1. Description of the dataset used in the experiments.

Dataset No. samples

Training data (survive/die) 2,818/1,221

Validation data (survive/die) 200/200

Generate. We adopt the encoder-decoder structure, where RNN encodes a
sequence of events into a fixed-length representation and another RNN decoder
decodes the latent representations back into an output sequence of events. First,
the remaining sequence c(x, y) is embedded into a vector using the RNN1

encoder. In DeleteOnly, the concatenation of the final hidden state with a
learned embedding for the desired target y′ gets fed into the RNN3 decoder
to generate a new sample x′. DeleteAndRetrieve employs an additional RNN2

to encode the sequence of retrieved attribute markers a(xret, y
′) from Eq. 1. This

vector and the encoded embedding vector from the remaining sequence are con-
catenated into the decoder RNN3 to generate a new sample x′. In both cases,
x′ is the counterfactual for the original sample x.

The goal of DeleteOnly is to reconstruct the medical event sequences by
maximizing the following objective function: L(θ) =

∑

(x,y)∈S

log p(x | c(x, y), y; θ).

Similarly, DeleteAndRetrieve employs denoising to address the mismatch prob-
lem that a(x, y) and c(x, y) are originally from the same sequence when recon-
structing x. We apply noise to replace attribute marker a(x, y) with another
randomly selected attribute marker of the same target class y and edit it using
event-level edit distance of 1 with probability 0.1, denoted as a′(x, y). As such,
the objective of DeleteAndRetrieve is to maximize

L(θ) =
∑

(x,y)∈S

log p(x | c(x, y), a′(x, y); θ) . (3)
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2.3 Nearest Neighbour Counterfactual Explanations

As a baseline solution, we adopt a 1-NN approach (similar to the one presented
for time series counterfactuals [12]). The counterfactual x′ of x is defined as the
1-NN of x in the training examples of the opposite class. More formally,

x′ = arg min
x∗∈Sy′

L(x, x∗), (4)

where L(·) is the hamming distance (that is minimized), Sy′ represents the col-
lection of all desired outcome samples (y′ =‘+’ in this case). Given a 1-NN
classifier, Eq. 4 is guaranteed to return a valid counterfactual [12]. However, this
guarantee does not hold for other classification models, e.g. the LSTM model.

3 Experiments

We first present our experimental setup followed by our empirical investigation
and experimental results.

3.1 Experimental Setup

We evaluate the proposed methods on data extracted from the MIMIC-III
dataset [9], a collection of EHRs from over 40,000 ICU patients at the Beth
Israel Deaconess Medical Center, collected between 2001 and 2012. In this paper
we select drug events, medical procedures, and diagnosis codes, and represent
each patient as a historical sequence of events, limiting the selection to the last
12 months of patients visits. Moreover, to limit the scope our experiments, we
focus on patients that have been diagnosed with cardiovascular diseases (corre-
sponding to ICD-9 codes: 393–398, 410–414 and 420–429, representing chronic
rheumatic, ischemic and other forms of heart disease separately).

To limit the impact of high frequency drugs prescriptions (e.g., electrolytes
or paracetamol) and procedures, as well as very infrequent events, we filter the
patient history by removing any event that has an overall frequency of over 4.1%
or appears less than 6 times. Moreover, since our methods are agnostic to the
drug dosage, we remove any consecutive and identical drug events. We reduce
the impact of the skewed distribution of drug events by limiting the analysis to
patients with fewer than 50 but more than 3 drug events. Finally, we concatenate
the drug events and procedure events and pad shorter sequences with ∅ so that
all sequences have uniform length, and record the label of each patient as survive
or die. The number of positive (survive) and negative patients in the training
set is 2,818 and 1,221, respectively (see Table 1).

Implementation. We compute counterfactual explanations for a 2-layer bidi-
rectional LSTM model used for survival predictions. To improve model perfor-
mance, we employ early stopping to monitor the validation accuracy. The model
has one 128-dimensional embedding layer, 2 bidirectional LSTM layers with 64
hidden units, and one output layer with a sigmoid activation function. For the
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implementation of the DRG framework, we follow the implementation of the
method as proposed by Pryzant et al. [17]. In our approach, both DeleteOnly
and DeleteAndRetrieve are trained using the Adam optimizer with a mini-
batch size of 128 samples. For both methods we use one 128-dimensional embed-
ding layer and a bidirectional LSTM layer with 512 hidden units for both the
encoders and decoders. Furthermore, we set the dropout rate to 0.2, the learn-
ing rate to 0.0003, and each model is trained for 300 epochs. Additionally, in
Eq. 1 we set the threshold γ for filtering salience scores to 15, and the smoothing
parameter λ in Eq. 1 is set to 0.5.

Evaluation Metrics. We evaluate the quality of the counterfactuals using: the
fraction of valid counterfactuals (CFs), the local outlier factor, and the cumu-
lative 4-gram BLEU score. More concretely, valid CFs is defined as the fraction
of valid counterfactuals of the desired class [22]. The local outlier factor (LOF)
measures the closeness of the counterfactuals to the training data distribution
[3]. Finally, the BLEU score measures the fraction of common n-grams between
the counterfactual and the original sequence [16]. In our case, we employ the
cumulative 4-gram BLEU score (BLEU-4) to measure 1-gram through 4-gram
individual BLEU scores, taking the uniformly weighted mean as the final score.
Finally, we set the smoothing function to ε = 0.1 if there are no n-gram overlaps.

Fig. 2. Sentence-level BLEU-4 scores for the generated counterfactual explanations
compared to the original input, grouped by DeleteOnly, DeleteAndRetrieve, and 1-NN.

Table 2. Summary of evaluation metrics for the three approaches. The best score for
each metric is highlighted in bold.

Valid CFs LOF BLEU-4

DeleteOnly 0.5455 0.0364 0.1186

DeleteAndRetrieve 0.4909 0.0182 0.1237

1-NN 0.7818 0.0364 0.0662

3.2 Empirical Investigation

The LSTM model for survival prediction, obtained an accuracy of 64% on the
independent validation data (with a training error of 19%). Among the 400 val-
idation samples, 110 of them were predicted as negative. On those samples, we
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applied DeleteOnly, DeleteAndRetrieve and 1-NN to generate counterfactu-
als. Table 2 summarizes the empirical scores for the three methods. In Table 2,
we observe that DeleteOnly achieved a CF of 54.55%, while 1-NN received the
highest CF (78.18%) and DeleteAndRetrieve the lowest (49.09%). Similarly, the
LOF score for DeleteOnly, DeleteAndRetrieve, and 1-NN was 0.0364, 0.0182,
and 0.0364, respectively. In contrast, the reference LOF score on the validation
data was 0.075, suggesting that the number of unusual (i.e., novel) counterfac-
tuals was lower than the number of unusual samples in the validation data,
indicating that all methods generate trustworthy explanations.

The BLEU-4 scores of DeleteAndRetrieve (0.1237) and DeleteOnly
(0.1186) were higher than that of 1-NN (0.0662). As such, the generated coun-
terfactuals from these methods contain more event sequence overlaps than 1-NN.
Given the higher BLEU-4 score, one conclusion is that DeleteAndRetrieve and
DeleteOnly produce more compact explanations. Moreover, we performed a
detailed comparison concerning sentence-level BLEU-4 scores using histograms
for DeleteOnly, DeleteAndRetrieve and 1-NN individually. In Fig. 2, we observe
that 1-NN received sentence-level BLEU scores between 0 and 0.1 (only two of
them achieved 0.4). In comparison, DeleteOnly and DeleteAndRetrieve pro-
duced slightly more samples with scores ranging from 0.1 and 0.4, which indicates
that both methods can generate more sequentially relevant counterfactuals.

Finally, we investigated the differences between the original samples and the
counterfactuals in terms of total, drug event, and procedure counts. Figure 4
depicts a comparison of subtraction of these three event counts for Delete-
Only, DeleteAndRetrieve and 1-NN methods, respectively. The x-axis and y-
axis represent the subtraction of event counts and probability density of bin
counts separately.

Fig. 3. Examples of generated counterfactual explanations by each algorithm. Modi-
fied events are highlighted with different colours: orange suggests a deletion, green an
insertion, and yellow a substitution, while blue indicates an unchanged event. (Color
figure online).

It can be observed that DeleteOnly and DeleteAndRetrieve have a max-
imum of ≈60 modifications, compared to 1-NN with ≈30 modifications. Con-
versely, DeleteAndRetrieve has the the fewest procedure modifications (from
−5 to 3), while both DeleteOnly and 1-NN both have a broader range of pro-
cedure modifications. Considering drug events, the distribution differences are
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similar to the total event differences among the three methods. One reason for
this is the increased frequency of drug events in these patients.

Fig. 4. Histograms of event count differences between original samples and counterfac-
tual explanations, grouped by: total counts, drugs and procedure counts.

Example Counterfactuals. Figure 3 presents examples of generated counter-
factual explanations by DeleteOnly, DeleteAndRetrieve, and 1-NN. The first
is the original sequence which was predicted as having a negative outcome. The
other sequences represent, in order, valid counterfactual explanations produced
by DeleteOnly, DeleteAndRetrieve, and 1-NN. We highlight with blue colour
the events that remain unchanged, while orange indicates a deletion, green an
insertion, and yellow a replacement. We observe that the suggestions provided by
the counterfactuals involve the administration of additional heparin sodium (an
anticoagulant, blood thinner) as well as additional electrolytes (such as magne-
sium). This is in accordance with recent studies indicating that increased mor-
bidity and mortality among critically ill ICU patients is associated with fluid
and electrolyte imbalances [10]. Our preliminary investigation of these findings
suggests that the proposed counterfactuals hold some medical relevance, which
will be more thoroughly assessed by medical experts in our future work.

4 Conclusions

We proposed a counterfactual solution for medical event sequences that leverages
techniques from text style-transfer. Our approach achieves a reasonable frac-
tion of valid CFs in generating counterfactuals on medical sequence data, while
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outperforming an NN-based baseline in terms of BLEU-4 core. Moreover, our
approach produces LOF scores that are lower than the validation result, imply-
ing that all the generated counterfactuals are considered close to the original
samples. One limitation of our evaluation is that there were no humans involved
in the approach. For future work, we intend to extend to involve medical prac-
titioners into further assessing the medical relevance of the counterfactuals as
well as integrating expert knowledge directly into their construction procedure.
In addition, we plan to explore other counterfactual methods for an intensive
comparison. Besides, we aim to integrate other possible features of patients to
construct more meaningful event sequences in future experiments. For repro-
ducibility, the code is publicly available at our GitHub repository1.

Acknowledgments. This work was supported in part the EXTREMUM collaborative
project of the Digital Futures framework.
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Abstract. Deep learning based automated approaches mainly based
on convolution neural networks (CNN) has recently brought signifi-
cant attention to diagnose skin cancers (melanoma) from dermoscopic
images. However, learning efficient features from these models has been
challenging due to unavailability of ample amount of data. To address
this problem, in this paper, we propose an improved automated sys-
tem that derives visual features from a contemporary pre-trained deep
CNN model (MobileNet) to identify melanoma from dermoscopic images.
Further, skin lesion classification is performed using a set of classifiers.
The method introduces boundary localization and cropping that helps
in generating more relevant features. Our proposed method has been
validated on PH2 dataset for the classification of non-melanoma and
melanoma cases. The experimental results reveal that the suggested
approach obtained promising performance compared to state-of-the-art
methods.

Keywords: Skin cancer · Melanoma · CNN · Deep features

1 Introduction

Melanoma is the most deadly form of skin cancer and has risen rapidly across
the globe. Hence, early diagnosis of melanoma is of great significance for timely
treatment and healthy living. This disease unexpectedly causes signs on nor-
mal skin with a dark mole and an irregular border [1]. Figure 1 shows sample
dermoscopic images from melanoma and non-melanoma categories.

Several algorithms were already reported for the automatic diagnosis of
melanoma using dermoscopic images in the last few years. A comprehensive
analysis of different feature extraction and classification techniques studies over
the past decade have been presented in [2,3]. Most of the earlier automated
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Fig. 1. Sample dermoscopic images of skin lesion

approaches are based on manual hand-crafted feature engineering and classi-
fication. On the other side, deep learning (DL) based methods, in particular
convolution neural networks (CNN) facilitate automatic learning of hierarchi-
cal features directly from the images [4]. Artificial neural networks (ANN) were
employed in [5] for skin lesion classification. The method used in [6] explored a
CNN model for feature extraction. The VGG network based deep features with
different classifiers was explored in [7]. Recently, in [8], a classification system
based on sparse auto-encoder and SVM was introduced.

In general, DL algorithms learn effective features in the presence of an ample
amount of data. Nevertheless, most skin cancer datasets are of limited size.
Further, the features derived directly from original images in most of the existing
CNN models induce a weak visual representation of lesion regions. To address the
aforesaid issues, we propose an effective classification system for identification
of melanoma cases from the dermoscopic images in which a contemporary deep
CNN architecture pre-trained with a large dataset has been used to derive visual
features and the final classification has been performed by a set of classifiers.
Our contributions are two-fold: First, we extract effective features by using skin
lesion boundary localization and a deep CNN model. Second, we investigate the
potency of MobileNet and a set of classifiers over a publicly available dataset
that outperforms compare to other existing schemes.

2 Proposed Methodology

The structure of the proposed method is depicted in Fig. 2. Our proposed method
consists of three major phases: (1) boundary localization, (2) feature extraction,
and (3) classification.

Fig. 2. Proposed method architecture
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2.1 Boundary Localization

Dermoscopic images may be affected by noise because of electronic dermatoscope
and other event occurrences that influence the originality of images. Cropping
only salient region of images may reduce artifacts and noises present in the input
images and thereby, facilitating the extraction of valuable features. An example
of boundary localization of a sample dermoscopy image is depicted in Fig. 3.

Fig. 3. Illustration of boundary localization process

After performing boundary localization and cropping, images of different
dimensions have resulted. Therefore, image resizing has been performed in the
present study. Then, the normalization has been applied over the resultant
images that ensure each feature value within a uniform and limited range. More-
over, it establishes numerical stability in a CNN model.

2.2 Feature Extraction

CNNs have been found noteworthy in a wide range of image centric applications
and the features derived from these models have also been proved significant
in large scale image classification tasks. In our approach, we adopt MobileNet
[9] architecture which is pre-trained with ImageNet dataset to extract in-depth
visual features from the skin lesion. The concept of transfer learning has been
used as there is no sufficient amount of data available in the considered dataset
for training. MobileNet [9] is a simplified CNN system that utilizes depthwise
separable convolution to construct a compact deep convolution neural network
and offers an effective model for mobile and vision applications. We extract 1024
features from the global average pooling layer.

2.3 Classification

To perform the classification, SVM with linear kernel and linear discriminant
analysis (LDA) have been separately applied. The advantages of employing linear
classifiers are simplicity and computational attractiveness.

3 Experimental Setting and Results

3.1 Experimental Setting

1) Dataset: PH2 [10] dataset has been used to validate the proposed app-
roach, which includes 200 dermoscopy images of skin lesions: 80 normal nevi,
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80 atypical nevi and 40 melanoma cases. The samples were classified into two
groups, melanoma and non-melanoma, by combining the two forms of normal
and atypical nevi. The dataset has been randomly split into 70:30 ratio for
training and testing, respectively.

2) Implementation and evaluation measures: The goal of this study is to demon-
strate the benefit of boundary localization and extracted visual features from
skin images for accurate classification of melanoma. As a baseline feature
extraction method, MobileNet has been taken into consideration and for clas-
sification, SVM and LDA have been employed separately. We labeled these
methods as MobileNet+SVM and MobileNet+LDA, respectively. The param-
eters have been chosen empirically for each classifier. We implemented our
proposed method by using Keras and Scikit-learn libraries. We ran our exper-
iment on a system with 16 GB RAM and GeForce GTX 1050Ti GPU. The
performance metrics used for evaluation include accuracy (Acc), specificity
(Spec), precision (Pre), sensitivity (Sen) and F1-score (F1).

3.2 Experiments with Proposed Method

To confirm the feasibility of the proposed method, we thoroughly assessed its effi-
ciency on PH2 dataset by employing boundary localization, cropping, and image
normalization methods as described in Sect. 2. The performance of MobileNet
has been tested with SVM and LDA classifiers separately and the results with
and without preprocessing are tabulated in Table 1. Further, our method has
been assessed using 10-fold cross-validation strategy that achieved an accuracy
of 95.50% and 94.00% for SVM and LDA classifier respectively.

Table 1. Classification results of the proposed method

Classifier Input images Acc (%) Pre (%) Sen (%) Spec (%) F1 (%)

MobileNet + SVM With preprocessing 95.00 90.90 83.33 97.91 86.95

MobileNet + LDA 95.00 90.90 83.33 97.91 86.95

MobileNet + SVM Without preprocessing 85.00 66.66 50.00 93.75 54.14

MobileNet + LDA 91.66 100.00 58.33 100.00 73.68

3.3 Comparison with State-of-the-Art Methods

Table 2 summarizes the performance comparison of the proposed approach with
other automated melanoma classification methods on PH2 dataset. Our pro-
posed method achieved a higher accuracy of 95% and specificity of 97.91% when
compare to all other models. Compared to other existing studies, our method
included boundary localization, cropping of only interested regions of skin lesion,
and image normalization. The combined benefit of all these techniques prompted
to higher performance. The aforementioned results confirmed that the com-
bination of MobileNet based features and SVM/LDA classifier lead to better
performance.
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Table 2. Comparison with existing methods using PH2 dataset

Method Year Acc (%) Sen (%) Spec (%)

Joint Reverse Classification (JRC) [11] 2016 92.00 87.50 93.13

ANN [5] 2017 82.00 85.71 81.25

AlexNet [6] 2018 93.00 86.00 94.00

Bag Tree Ensemble Classifier [12] 2019 93.50 96.00 93.00

Autoencoder + SVM [8] 2020 94.00 90.00 66.66

MobileNet + SVM (Proposed) 95.00 83.33 97.91

MobileNet + LDA (Proposed) 95.00 83.33 97.91

4 Conclusion

In this paper, we proposed an improved classification system for melanoma
diagnosis in dermoscopic images. We introduced boundary localization of skin
lesions and cropped only the fascinating region. The resultant images were then
fed to MobileNet architecture for deriving a set of discriminative features. The
derived features were finally supplied to classifiers like SVM and LDA to perform
melanoma classification. The experimental results on the PH2 dataset indicated
that MobileNet with SVM and LDA classifiers obtained a higher performance
compared to the state-of-the-art methods. This method is hence highly effective
in identifying melanoma from skin cancer images. The future research directions
related to this study include the following: Introduction of more efficient classi-
fiers with different combinations of CNN models and development of ensemble
CNN models for further performance improvement. The performance of the pro-
posed method could be verified over large and diverse skin cancer datasets.
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Abstract. The cataract is an ocular diseasewhich requires early detection to avoid
reaching a higher severity level. However, a worldwide deficiency of ophthalmol-
ogists and medical imaging devices is registered, which prevents early cataract
detection. Our main objective is to propose a high performance method of cataract
grading with a lower computational processing to be suitable for mobile devices.
The main contribution consists in extracting features through a transfer-learned
and fine-tuned MobileNet-V2 model, and deducing the cataract grade using a
random forest classifier. The evaluation is conducted using a dataset of 590 fun-
dus images, where 91.43% sensitivity, 89.58% specificity, 90.68% accuracy and
92.75% precision are achieved. In addition, the method implemented into a smart-
phone requires an average execution time of 1.41 s. Themethod implementation as
an app into a smartphone associated to an optical lens for retina capturing, presents
a mobile-aided-grading system that facilitates diagnosing the cataract disease.

Keywords: Cataract · Deep learning ·MobileNet-V2 · Random forest ·M-health

1 Introduction

The cataract is an ocular diseasewhere the eye lens, initially transparent, becomes cloudy
due to protein accumulation [1, 2]. This pathology is the main cause for half of the blind
worldwide, where their number may achieve 40 million in 2025. It is always diagnosed
using the ophthalmoscopy technique where the blurriness of the retina components is
similar to the protein accumulation and hence to the cataract severity, where the mild,
moderate and severe grade are respectively shown in Fig. 1.

A higher difficulty has been noticed in recognizing cataract, despite that significantly
affects the life quality by imposing activity limits. Therefore, it is highly recommended
a periodical diagnosis to avoid achieving advanced stages [1–3]. However, worldwide
deficiencies of ophthalmologists and medical imaging devices are observed. Elsewhere,
the cataract affects a population that exceeds 50 yrs old, having a limited mobility.
Consequently, a delay of early cataract diagnosis is registered.
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Fig. 1. Retinal images of cataract grades. (a) Non-cataract. (b) Mild. (c) Moderate. (d) Severe

Actually, several lenses have been recently proposed which can be snapped onto
mobile devices to ensure capturing fundus images [5]. The provided fundus images
are easily readable and have an acceptable quality with respect to the ones captured by
classical ophthalmoscopy. For this purpose, ourmain idea is to suggest a novelmethod for
cataract grading. The challenge is to perform reliable grading from fundus images using
lower complexity processing to be suitable formobile devices. For such need,we perform
cataract grading through the MobileNet-V2 deep learning architecture associated to the
random forest classifier. The implementation of the method into a smartphone as an app
leads to a Mobile-Aided-Grading (MAG) system for the cataract disease. The paper is
organized as follows. Section 2 describes the propounded method for cataract grading.
The method evaluation is presented in Sect. 3. The implementation of the MAG system
is detailed in Sect. 4, followed by a conclusion in Sect. 5.

2 Novel Method for Cataract Grading

2.1 Preprocessing and Data Augmentation

The fundus images are resized to (224 × 224 × 3) as required for MobileNet-V2. In
addition, a cataract-affected fundus image appears with a blurred region with a different
contrast than the retina background. Furthermore, handheld capturing with a smartphone
leads to a light leakage, and so to a randomly increased contrast in image sections. To
resolve this problem, we apply the Contrast Limited Adaptive Histogram Equalization
(CLAHE) approach to enhance the fundus image contrast. Thereafter, amask is applied to
encompass the retina from its background. Elsewhere, we put forward data augmentation
where the fundus images are rotated, zoomed, shifted and flipped in both vertical and
horizontal direction [6]. Both preprocessing and data augmentation are depicted in the
black dotted squares of Fig. 2.

Fig. 2. Processing flowchart of the proposed cataract grading method
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2.2 Fine Tuning and Transfer Learning

The preprocessed image is provided to a MobileNet-V2 architecture to generate feature
map. This architecture is a convolutional neural network, which is composed of 17
bottleneck residual blocks followed by a global average pooling layer. The limited size
of images, as the case of cataract-affected fundus images, avoids converging the model
weight, thus not achieving higher performance grading. For this purpose, we adopt the
transfer learning method where a MobileNet-V2 model, trained with the “ImageNet”
dataset containing 1000 categories, is used in our method [7]. The initial classification
layer is replaced by a set of three layers. The first one consists in a fully connected dense
layer with the ReLU function where the feature map size is reduced to 256. The second
layer applies a dropout function to initiate the classification. The last one is a dense
layer with the Softmax function which provides a vector of probability features, where
the size is identified experimentally as mentioned in Sect. 3.2. To enhance the weight
convergence, we proceed to fine-tune the model, which allows updating its weights
during trainingwith a learning rate of 0.0001. In addition, the optimalweightwith respect
to accuracy is saved after each epoch, in order to accelerate the model convergence while
avoiding overfitting [7]. Training is done into 150 epochs using the “Adam” optimizer
and the “categorical-cross entropy” loss function.

2.3 Classification for Cataract Grading with Random Forest

Our goal is to achieve a higher performant classification even with a reduced dataset
size while having a lower complexity to be suitable for a mobile implementation. The
classifier retrieves a feature vector from the deep learning model, which is composed of
four probability values with respect to the four cataract grades. It is noticed that some
grades have a higher dependency with specific features, while other grades correspond
to a significant variation in a whole feature sub-set. To handle the feature correlation,
the Random Forest (RF) is used to ensure the classification into cataract grading. It
is considered as a set of decision trees where each one is formed by a feature subset,
randomly selected [19]. The RF has two main parameters, which are the number of trees
in the forest and the maximum depth of the trees. We perform an experimental study, as
detailed in Sect. 3.2, where the RF is employed with a varied depth to identify the one
achieving better detection performances.

3 Experimental Results

3.1 Dataset and Evaluation Metrics

Two public databases have recently uploaded in Kaggle which are the “Cataract Dataset”
and “Ocular Disease Recognition (ODiR)” respectively containing 100 and 293 fundus
images affected by different cataract stages. To guarantee a reliable evaluation, a dataset
of 590 fundus images is build which are split into 220 non-cataract, 65 mild stage,
145 moderate stage and 160 severe stage fundus images. The images of each grade are
randomly divided into five subsets where the three first ones are used for training, the
fourth is dedicated for validation, while the last is used for testing. The experimental
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evaluation is conducted by referring to four metrics which are sensibility (Sens), the
specificity (Spec), the accuracy (Acc) and the precision (Prec), respectively computed
as indicated in Eqs. (1–4).

Sens = TP

TP + FN
(1)

Spec = TN

TN + FP
(2)

Acc = TP + TN

TP + TN + FP + FN
(3)

Prec = TP

TP + FP
(4)

where TP, TN, FP and FN are respectively True Positive, True Negative, False Positive
and False Negative cataract-detected images.

3.2 Cataract Grading Performance

A first experimentation is performed where the size of feature vector is varied. It was
deduced that a vector of four feature allows achieving a better classification performance.
In a second experimentation, we conduct an experimentation of four different evalua-
tions, where the tree depth is varied from 1 to 4, which corresponds to the number of
probability features taken into account. The maximal number of trees is fixed to 300
in order to guarantee achieving better feature combinations. The metrics for the four
evaluations are illustrated in Table 1, where it is deduced that using a depth of 4 allows
achieving the highest performances.

Table 1. Performance of cataract grading

Arch. MobileNet-V2 MobileNet-V2 & Random Forest

Training parameters Size of feature vector Tree depth

4 8 12 1 2 3 4

Sens (%) 87.50 85.94 83.08 93.22 92.19 91.18 91.43

Spec (%) 77.78 74.07 75.47 78.57 79.63 86.00 89.58

Acc (%) 83.05 80.51 79.66 86.09 86.44 88.98 90.68

Prec (%) 82.35 79.71 80.60 82.09 84.29 89.86 92.75

Then, we evaluate our methods with respect to the existing ones by comparing the
whole accuracy and sensitivity and specificity of each grade, where the values are shown
in Table 2. We notice that our method achieves the highest accuracy and realizes better
sensitivity performances in the first, third and fourth grades.
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Table 2. Cataract grading performance of related methods

Methods of
cataract
grading

Non-cataract Mild Moderate Severe Acc

Sen Spec Sen Spec Sen Spec Sen Spec

Yang et al.
[4]

89.3 90.4 79.5 87.9 74.6 96.7 75.0 98.9 84.5

Cao et al.
[2]

93.53 95.44 82.17 93.83 73.27 94.55 89.66 97.37 85.98

Song et al.
[3]

- - - - - - - - - - - - - - - - 88.6

Zhou et al.
[1]

- - - - - - - - - - - - - - - - 89.23

Our method 97.73 93.48 61.54 80.00 89.66 86.67 93.75 93.75 90.68

4 Mobile-Aided-Grading System for Cataract Disease

The whole method is coded using the python language where MobileNet-V2 is imple-
mented using the “Keras” API. The cloud service “google Colab” is employed for train-
ing and testing the deep learning model which contains 2,257,984 parameters, where
2,223,872 are updated through fine tuning. To run theMobileNet-V2model into a smart-
phone, the “TFLiteConverter” class of the public “tf.lite” API is utilized to convert the
trained “TensorFlow”model into a “TensorFlowLite”model. Thewholemethod is coded
with the JAVA language and implemented as an android app. To employ the model, the
“TensorFlow Lite Task” library is implemented, which contains easy-to-use methods to
create apps using “TensorFlowLite” model. Then, the “TensorFlow Lite Android Sup-
port” library is used, which allows managing input data and interpreting the provided
output. Image processing and the RF classifier grading is performed using The “Open
Source Computer Vision (OpenCV)” library which is compiled through Android Native
Development Kit (NDK) [8].

Thewholemethod is run as an app into a “SamsungGalaxyA31” smartphone having
an octa-core processor (2 x 2 GHz & 6 × 1.95 GHz) and 4 Go RAM. To evaluate the
execution time, three fundus images are randomly selected from each grade, where the
average execution time of the whole method is about 1.41 s.

5 Conclusion

We have suggested a novel method for cataract grading, where the MobileNet-V2 archi-
tecture has been used for feature extraction, while the RF classifier has been performed
for grading. The experimental evaluation has proved that our proposed method can
achieve higher performance grading with respect to recent related work. In addition, the
lower complexity has allowed performing grading under 2 s when run on a smartphone.
Those grading and computational performances have resulted a MAG system for the
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cataract disease, where its mobility and lower cost boost the early cataract diagnosis. In
our future work, we aim to enhance the grading performance by extracting other features
that reflect the cataract disease. Subsequently, an ensemble learning principle can be put
forward to perform accurate grading. In addition, we will be interested in extending the
mobile system to detect other ocular pathologies such as the diabetic retinopathy and
the glaucoma.
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Abstract. B-cell epitopes play a key role in stimulating B-cells, trig-
gering the primary immune response which results in antibody produc-
tion as well as the establishment of long-term immunity in the form of
memory cells. Consequently, being able to accurately predict appropri-
ate linear B-cell epitope regions would pave the way for the development
of new protein-based vaccines. Knowing how much confidence there is
in a prediction is also essential for gaining clinicians’ trust in the tech-
nology. In this article, we propose a calibrated uncertainty estimation in
deep learning to approximate variational Bayesian inference using MC-
DropWeights to predict epitope regions using the data from the immune
epitope database. Having applied this onto SARS-CoV-2, it can more
reliably predict B-cell epitopes than standard methods. This will be able
to identify safe and effective vaccine candidates to combat Covid-19.

Keywords: Covid-19 · Vaccine development · Dropweights · Epitope
prediction · Deep learning · Uncertainty estimation · B-cell epitopes

1 Introduction

Adaptive immunity is orchestrated by lymphocytes. B-cells recognise antigens
using the membrane bound immunoglobulins, which are the B-cell receptors
(BCR). When antigens bind onto them, it results in a cascade of reactions,
which concludes in the proliferation of B-cells and differentiation into plasma
cells, that secrete antibodies, and memory B-cells. [1]. Immunological memory
is the ability of the immune system to respond more rapidly and effectively to
pathogens that have been encountered previously. With the COVD-19 pandemic,
safe and effective vaccines are very desirable in controlling the transmission of the
virus and thus limiting its effects on people, especially those who are vulnerable.
B-cell epitope prediction is necessary as identifying epitopes highlights potential
protein-based vaccine candidates.

B-cell epitopes are the sections of the antigen which interact with the BCR.
They are generally classified into two categories: linear and conformational. Lin-
ear epitopes consist of consecutive peptides in the antigen’s polypeptide chain
c© Springer Nature Switzerland AG 2021
A. Tucker et al. (Eds.): AIME 2021, LNAI 12721, pp. 361–366, 2021.
https://doi.org/10.1007/978-3-030-77211-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77211-6_41&domain=pdf
https://doi.org/10.1007/978-3-030-77211-6_41


362 B. Ghoshal et al.

that are on the exterior of the antigens i.e. solvent-exposed). Conformational
epitopes are solvent-exposed peptides that are discontinuous in the peptide
sequence. Although around 90% of epitopes are discontinuous, linear B-cell epi-
topes can be readily used as candidates for a vaccine [2].

Early models that attempted to predict linear epitopes were based on simple
characteristics. For instance, Hopp and Wood [3,4] considered the hydrophilic
nature of some peptides and used it to make calculations, assuming that
hydrophilic regions were mainly on the antigen surface and thus acted as epi-
topes. However, later research [5] showed that the proportions of hydrophilic
and hydrophobic residues on protein surfaces are similar. Other characteristics,
such as polypeptide flexibility, surface accessibility and β-turn tendencies have
also been used. However, Blythe and Flower [6] showed that in the prediction
of B-cell epitopes there is no correlation between the propensity profile and the
presence of linear epitopes when qualities, or propensity scales, of amino acids
are analysed. As a result, machine-learning based methods are used instead.
These algorithms are trained to distinguish B-cell epitopes from residues that
are not epitopes. Currently, a popular method is using BepiPred [2].

Quantifying uncertainty in the prediction of B-cell epitope of the protein
SARS-CoV-2 regions can provide a measure for a model’s confidence in its pre-
diction. Providing an uncertainty measure could also improve subsequent steps
in design and development of vaccines, providing clinicians an estimate on the
likelihood of success, if a certain epitope were to be selected as a vaccine candi-
date. Bayesian Neural Networks (BNNs) provide a natural and principled way
of modelling uncertainty in deep learning [7–11]. BNNs can be approximated
by incorporating dropweights into the neural network to capture uncertainty in
deep learning [12–14].

In this paper we present a natural way to quantify uncertainty in B-cell
epitope prediction using Bayesian Neural Networks (BNNs) with dropweights,
by decomposing predictive uncertainty into two parts: aleatoric and epistemic
uncertainty. In order to produce suitable vaccines, various possible epitopes are
considered and tested for efficacy and safety. We demonstrate that the proposed
epitope prediction achieves better prediction accuracy compared with the exist-
ing method BepiPred2.0, by implementing it in the experiments on the immune
epitope database (IEDB), a public database of immune epitopes [15]. We also
demonstrate that the estimated uncertainty provides a better and more useful
insight for epitope prediction.

2 Cost-Sensitive Calibrated Uncertainty

A Bayesian Neural Network (BNN) is a neural network with a prior distribution
on its weights, which is robust to over-fitting (i.e. regularisation). Bayesian deci-
sion theory is a framework for making optimal decisions under uncertainty based
on maximising expected utility over a model posterior. Exact inference is ana-
lytically intractable, and hence Variational Bayesian Inference (VBI) has been
applied instead to approximate inference. While performing the inference, it cal-
ibrates the posterior approximation to maximise the expected utility including
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maximising the accuracy [14,16]. We leveraged a plug-in estimate of entropy and
Jackknife resampling method to calculate bias-corrected uncertainty [13]. This
approach addresses the issues with overconfidence and providing well-calibrated
quantification of predictive uncertainty, giving us a way to model “when the
machine does not know”.

3 Experiment

We have used the publicly available dataset provided from The Immune Epitope
Database (IEDB) and UniProt [15]. This contains two data files:

– B-Cell: The number of records is 14387 for all combinations of 14362 peptides
and 757 proteins.

– SARS: The number of records is 520.

Datasets consists of information of protein and peptide: parent protein ID,
parent protein sequence, start position of peptide, end position of peptide, pep-
tide sequence, Isoelectric point, Aromaticity, Stability, Chou and Fasman β-turn
prediction, Emini surface accessibility scale, Kolaskar and Tongaonkar antigenic-
ity scale, and Parker hydrophilicity. Each peptide has a different sequence and
is part of the parent protein sequence. Parameters have been correlated with
the location of continuous epitopes. We use sequence length instead of sequence
data for prediction.

4 Experimental Results

4.1 Model Performance

On average, Variational Bayesian Inference (VBI) improves the prediction accu-
racy of epitope regions [17]. The Confusion Matrices in Fig. 1 summarise the
prediction accuracy of our implemented models.

4.2 Distribution of Uncertainty Estimates

We measured the aleatoric uncertainty and epistemic uncertainty associated with
the predictive probabilities of the VBI by keeping dropweights on during test
time. Figure 2 shows Kernel Density Estimation with a Gaussian Kernel is used
to plot the output posterior distributions for all of the test data, grouped by
correct and incorrect predictions.

4.3 The Contribution of Uncertainty Thresholds in Predictive
Probabilities

We altered the uncertainty threshold (UT) in the range [0, 1], then computed
and plotted the predictive accuracy of the evaluation metrics as in Fig. 3. As the
uncertainty in data increases, the predictive accuracy decreases. Analysis shows
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(a) Accuracy: 82% (b) Accuracy: 85%

Fig. 1. Confusion matrix.

(a) Aleatoric uncertainty (b) Epistemic uncertainty

Fig. 2. The Posterior Distribution of normalised aleatoric (a) and epistemic (b) uncer-
tainty values of the correct (green) and incorrect (red) class predictions. It shows that
model uncertainty is higher for incorrect predictions. Therefore, it stands to reason to
refer the uncertain samples to experts to improve the overall performance of the col-
laborative efforts of man and machine in prediction. Kernel density estimation with a
Gaussian Kernel is used to plot the output posterior distributions. (Color figure online)

that the epistemic uncertainty threshold has a very little impact on predictive
accuracy, whereas aleatoric uncertainty has a significant impact on the predictive
accuracy. Therefore, unless the quality of B-cell processing data improves at the
time of preparation, it is very likely that accuracy of results will not be sufficient,
which may limit the efficacy of subsequent vaccine candidates. However, the
aleatoric uncertainty may also provide an insight on the relative success rates of
selected epitopes, if they were to be tested as vaccine candidates.
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Fig. 3. Predictive accuracy (%) for
different values of the uncertainty
threshold.

By accurately predicting B-cell epitopes,
we can acutely determine the parts of the
antigen that interact with B-cell receptors.
Consequently, antibodies specific to the epi-
topes are synthesised by effector B-cells,
which confer primary immune response. Fol-
lowing the primary immune response, some
B-cells differentiate into memory B-cells.
Memory is not dependent on repeated expo-
sure to infection, and is established by pop-
ulations of the memory cells, that persist
regardless of the presence of antigens. Upon
re-exposure to the same antigen, a sec-
ondary immune response will occur. The activation of memory B-cells is similar
to that of näıve B-cells; however, it is more efficient. BCR of memory B-cells have
a greater affinity to the antigens, so memory B-cells are stimulated more effi-
ciently. Furthermore, memory B-cells can act as antigen-presenting cells for the
activation of naive helper T cells, removing the need for these T cells to be acti-
vated by dendritic cells. Proliferation of memory B-cells results in plasma cells
that have a greater affinity and are of diverse types. As a result, the secondary
immune response is more successful in overcoming the pathogen. Inducing a sec-
ondary immune response is thus desired and is the overall aim of vaccines [18],
especially for SARS-CoV-2.

5 Conclusion and Future Work

We demonstrated that SARS-CoV-2 B-cell epitope prediction with uncer-
tainty information from Bayesian Neural Networks approximated using MC-
dropweights provide a more accurate and reliable method than currently used
methods and so can be harnessed to be able to identify potential vaccine can-
didates more successfully. Further research would include the extension of the
ideas above to represent better uncertainty estimates in mRNA sequence anal-
ysis to identify potential mRNA sequences in the SARS-CoV-2 genome which
would serve as suitable candidates for mRNA-based vaccines.
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Abstract. Although deep learning techniques have obtained remarkable
results in clinical text analysis, the delicacy of this application domain
requires also that these models can be easily understood by the hospital
staff. The attention mechanism, which assigns numerical weights rep-
resenting the contribution of each word to the predictive task, can be
exploited for identifying the textual evidence the prediction is based on.
In this paper, we investigate the explainability of an attention-based clas-
sification model for radiology reports collected from an Italian hospital.
The identified explanations are compared with a set of manual annota-
tions made by the domain experts in order to analyze the usefulness of
the attention mechanism in our context.

1 Introduction and Background

Hospitals collect a huge amount of clinical narrative texts containing very signifi-
cant information that can be used to improve the efficacy and quality of patients
care. While Natural Language Processing and Deep Learning techniques have
been proved to be very effective for extracting information from clinical texts, the
use of such information in the clinical environment requires also an explanation.
Highlighting the most important part of the text which explains the decision
made by the model can assure the physicians that the system is not biased and
is correct also from a medical point of view.

Our previous work regarding the analysis of radiology reports relied on the
annotation of relevant snippets and on machine learning techniques [2]. A deep
learning based system, which exploits also a higher number of reports, was intro-
duced in [6] and greatly improved our results. This system is based on Long Short
Term Neural Networks, which are particularly suited for processing sequential
data like natural language sentences, and on the Attention Mechanism [1], which
computes a weight for each word representing its contribution in the addressed
task. Although in some works the weights are visualized highlighting the words
with the highest weights and presenting them as the explanation of the inner
c© Springer Nature Switzerland AG 2021
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working of the model [5], there is much debate around the capability of the
attention weights to provide an effective explanation.

In particular, in the works of Jain et al. [4] and Serrano and Smith [7], the
authors show how it is possible to generate two different or even counterfactual
explanations that nonetheless yield to the same prediction, undermining the use
of attention weights for understanding the behaviour of a model. However, their
claims are criticized in [9], where an alternative way to build an adversary dis-
tribution of the attention weights that alters the predictive results is provided,
confirming the usefulness of the attention mechanism for the explanation. More-
over, the authors of [3] point out that, while counter-examples can undermine
the interpretability of the attention mechanism in general, for specific models
and tasks an attention-based explanation can be useful in practice.

In this paper, we focus on the interpretability of a deep learning model for the
classification of radiology reports of an Italian hospital (Spedali Civili di Brescia).
We extract the attention weights and evaluate its behaviour with respect to the
characteristics of the document. The identified explanations for the classification
are compared with a set of manual annotations made by the domain experts in
order to analyze the effectiveness of the attention mechanism in our context.

2 Classification of Radiology Reports

Our training set consists of 5,752 classified computed tomography reports, focus-
ing on the chest and on the lung region. These reports were collected dur-
ing the activity of the radiology departments of Spedali Civili di Brescia and
anonymized. Given that a radiology exam can analyze several body parts and
describe them in different sections, a custom algorithm extracts the introduction,
the section regarding the chest and, eventually, the conclusions.

We analyse our reports according to two aspects: Exam Type (First Exam
or Follow-Up) and Result (Suspect or Negative), which focuses on the possibility
of the patient having a neoplastic lesion.

In the pre-processing phase we divide our reports in sentences and tokens (i.e.
single words). Each word in our corpus is represented with a vector of length
200. These vectors are obtained by applying the Word2vec algorithm, using as
training data our corpus of reports plus over 9,000 unclassified reports. More
details for the pre-processing phase are showed in [6]. We train two models (one
for Exam Type and one for Result) composed of: a bidirectional LSTM layer
that processes the input sequence; an attention mechanism that weights the
influence of the words for the classification task, and produces the document
representation; an output layer that provides the classification and that is
formed by a single neuron with sigmoid activation.

Our two classification models are evaluated using a test set consisting of
almost 400 reports, which were labelled and manually annotated by the physi-
cians [2]. For the Exam Type, the achieved performance is very high, with both
accuracy and F-Score above 94%. Good performance are obtained also for the
Suspect Level, with 75.3 in terms of accuracy and 73.9 in terms of F-Score. The
main issues for this task are mainly due to differences of the distribution of the
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training data and the test data. For example, while the training data are made
by over 65% of the Negative reports, in the test set Negative reports are only
19% of the total. Moreover, we conjecture that some cases can be evaluated
differently depending on personal judgments of the physicians. A more detailed
analysis of the performance of our models and a deeper discussion of the main
issues related to these tasks are available in [6].

3 Analysis of the Attention Mechanism

For the classification models introduced in Sect. 2, we extract the attention
weights αi with i ∈ [1, n] where n is the length of the document. Given that
the sum of all the attention weights is equal to 1, and therefore the weights
value is influenced by n, in order to facilitate the comparison of reports with
different length, we normalize the attention weights between 0 and 1 through
the min-max normalization.

The work by Vashishth et al. [8] introduced the concept of the attention
mechanism as a gating unit. Analysing our attention models, we find a similar
behaviour, where the text is mainly separated into (i) the important part, which
has a normalized weight very close to 1, and (ii) the not important part, with
a weight close to 0. Considering the average μw of the normalized weights for
each sentence in our test set, we can group our sentences into three categories:
important sentences, with μw > 0.75; intermediate sentences, with 0.4 ≤
μw ≤ 0.75; and not important sentences, with μw < 0.4. We found that our
Suspect Model recognizes 56.5% of the sentences as important, 29.1% as non
important, and the 14.4% as intermediate. A further analysis showed that most
of the intermediate sentences are formed by a small subset of words (between 3
and 5, typically for describing a lesion with its characteristics) that have a high
weight, while the remaining words that have small weights. The same can be
said for the Exam Type Model that, however, considers non important a higher
percentage of sentences (44%). Another considerable aspect is that the attention
has the tendency to operate on entire sentences or complex expressions and not
on single words.

This behaviour of the attention mechanism can be seen as a sort of selection
process of the most relevant sentences in the document. Figure 1a shows how the
report length influences the selection process in long reports (over 120 words,
which is the median length of the reports in our dataset, in yellow) and short
reports (under 120 words, in purple). In particuòar , the attention mechanism
selects fewer sentences for the longer reports. The selection process can be very
important in terms of interpretation of our system. In fact, when a report is
long, it is very useful if only the most important parts are highlighted, because
this saves time to the physicians who have to read it focusing their attention on
what is most relevant. On the other hand, if the report is short, each sentence
may contain relevant information and therefore it should be read in its entirety.

In the following, we evaluate how well the attention mechanism behaves in
detecting the most important parts of a report. In particular we concentrate our
analysis on the Suspect Model, which identifies potential neoplastic patients. To
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Fig. 1. (a) Fraction of reports over or under 120 words (on the y-axis) with respect
to the percentage of important sentences (on the x-axis) according to the attention
mechanism. (b) Not Important, Intermediate and Important sentences according to
the attention mechanism. In orange, the sentences which contain at least one manual
annotation, in the blue the ones without any annotation. (Color figure online)

do so, we compare the sentences highlighted by the attention mechanism to the
manual annotations made by the physicians on our test set.

First of all, we point out that we could not use the manual annotations as
they are, but had to first elaborate them. In fact, while the attention mechanism
has the tendency to highlight entire sentences, a manual annotation consists of
only 4 words on average. Therefore, a direct comparison is not possible. How-
ever, in our previous work [6], we found out that often manual annotations do
not contain all the valuable information; for example, in the expression nodule
of 4mm with irregular and spiculed margins, the annotation includes only the
words nodule of 4mm without the description of the margins, which could be
very important. Moreover, we observed that often in the same sentence there
is more than one annotation. In order to cope with these issues, we consider a
sentence relevant according to the manual annotators when it contains at least
one manual annotation. We then compare such sentences with the important
ones selected by the attention mechanism. As shown in Fig. 1b, 80.2% of the
manual annotations are contained in the sentences considered important by the
attention mechanism, which are 56% of all the sentences in our corpus; 10.8% are
contained in the intermediate ones, which are 14%; and only 8.9% are contained
in the not important ones, which are almost 30%. The larger fraction of the
orange part in the last column with respect to the other two columns, suggests
a strong correlation between what is highlighted by the attention and what is
important according to the physicians (indicated by the manual annotations).

We conducted a further analysis to understand why some annotated sentences
were not identified as important by the attention mechanism. While some of
them are simply errors made by the model, the others can be grouped into the
following three classes:

1. Annotations in negative sentences, consisting of expressions that exclude
the presence of a concept, like for example no secondary lesions.

2. Adenopathies and lymph nodes, which, although important for evaluat-
ing the conditions of the patient, are not directly connected only to neoplastic
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lesions, and are present in both Suspect and Negative reports. Therefore, it is
understandable that the attention mechanism does not rely on these concepts.

3. Rare expressions. In some reports, very important expressions like outcome
of radiotherapy or conclusive remarks on the patient’s conditions are anno-
tated. However, these cases are very rare in our training set, and they are not
entirely captured by the attention mechanism.

As shown in Fig. 1b, the attention mechanism highlights many more sentences
than the manual annotators. In fact, the blue part of the last column in the
histogram corresponds to more than 2,000 sentences that are considered relevant
only by the attention mechanism. This discrepancy can be due to the fact that,
especially for the shorter reports, the attention mechanism has the tendency
to include a large portion of the text. On the other hand, we remind that the
manual annotations often do not include all the important aspects in the reports
[6], due to the fact that the manual annotation process is a demanding task even
for the domain experts.

4 Conclusions

We have investigated the behaviour of the attention mechanism in the context of
a classification task for radiology reports written in Italian using deep learning
techniques. Our analysis confirms that the attention mechanism works as a gat-
ing unit [8], and that it often highlights entire sentences instead of single words.
We have then compared the explanation provided by the attention mechanism
highlighting the most relevant parts of the text, and the most important sen-
tences according to the manual annotators, showing that there is a significant
correlation between them. This result confirms that the attention mechanism
can provide a useful tool for the interpretability of a deep learning model.
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Abstract. Melanoma is one of the most severe skin cancer types due
to its high mortality rate, which can achieve 70%. An early diagnosis
of the disease is crucial as it increases the ten-year survival rate up to
97%. The segmentation of skin lesions is one of the essential steps of the
diagnosis process for accurate melanoma detection. However, even for
specialist doctors, segmenting these lesions is costly and challenging due
to the wide variety of stains, which can have irregular edges, different
dimensions, and colors, and due to the high amounts of exams to ana-
lyze. This paper aims to compare encoder-decoder architectures based
on popular convolutional neural networks to segmentation dermoscopic
images in order to assist in the automatic diagnosis process.

Keywords: Melanoma · Fully convolutional network · U-net

1 Introduction

Skin Cancer is the most common type of cancer, accounting for one in every
three cases worldwide [6]. Can be divided into two main groups: melanoma and
non-melanoma. Although melanoma accounts for just 22% of cases [3], it is by
far the most dangerous because it is more likely to grow and spread. The latest
statistics available in the world show that cases have been rising each year at
an alarming rate. In the United States, it is estimated that the number of new
melanoma cases diagnosed in 2021 will increase by 5.8%, with 106,110 new cases
of melanoma being diagnosed resulting in about 7,000 deaths [10].

One of the non-invasive ways of such diagnosis is through dermoscopy, which
consists of a medical expert examining dermoscopic skin lesion images. How-
ever, even for specialist doctors, segmenting these lesions is costly and difficult
due to the wide variety of stains that sometimes have irregular edges, different
dimensions, and colors. Therefore, studies have been carried out to automatically
target these injuries to assist medical professionals.
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In recent years, Convolutional Neural Networks (CNNs) have emerged as
one of the most powerful tools in image processing showing promising results in
multiple domains, including medical image analysis [8].

This work aims to evaluate multiple encoder-decoder deep neural network
architectures for automatic segmentation of skin lesions. The main goals of
this paper can be summarized as follows: (1) employ some of the most popular
deep CNN architectures extensively used in the computer vision community for
semantic image segmentation on dermoscopic images of skin lesions (2) evaluate
the performance of different deep CNN models in pixel-wise image labeling. (3)
Identify a high-performance CNN model from state of the art metrics and speed
points of view so it can be effectively used in many real-life automatic image
segmentation to assist in skin cancer diagnosis.

2 Proposed Methodology

This section describes the proposed methodology used for developing the work
for the analysis of the segmentation models. Topics will also explain the encoder-
decoder architectures implemented and the analysis metrics employed. Figure 1
shows the sequence of steps in the methodology of this work.

Fig. 1. Proposed methodology

The first step was resizing the images which initially range from 576 × 768
and 6748 × 4499 pixels to 256 × 256 pixels. CIELAB color space was used. Each
input channel was then normalized to the range [0, 1].

Four different encoder-decoder models were trained and evaluated: Unet,
FPN, PSPNet, and Linknet.

Unet is a fully convolutional network modified and extended so that it should
work with very few training images and yield more precise segmentations [8]. It is
composed of two parts. The first part is feature extraction, and the second part is
upsampling, where upsampling operators replace pooling operators. These layers
increase the resolution of the output. For better localization, features from the
contracting path are combined with the upsampled output.

Figure 2 shows the evaluated U-net model’s architecture. It contains the ini-
tial fully convolution layer with 32 filters, followed by mobile inverted bottleneck
MBConv [9] convolutional blocks inherent to Efficientnetb1. Each decoder block
consists of upsample, concatenate, conv, BN, ReLU. Conv is the convolutional
layer, BN is the batch normalization layer, upsample the upsampling layer, and
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Fig. 2. Schematic architecture of the proposed U-Net for lesion segmentation.

ReLU the activation function. At the final layer, a final 1 × 1 convolution is
used to map each 16-component feature vector to the desired number of classes
and sigmoid activation. The yellow block Conv8 in Fig. 1 consists of MBConv,
conv, BN, ReLU6 to connect the encoder and decoder paths.

Linknet [4], PSPNet [11] and FPN [7] are variations of fully convolutional
networks, similar to U-NET, that are also evaluated in this work in order to
compare with U-NET.

For all segmentation models, transfer learning was used by using models pre-
trained on the ImageNet dataset. Taking advantage of data from the first set to
extract information that may be useful when learning or even when directly mak-
ing predictions in the second setting [2], the objective of using transfer learning
was to decrease the training time and also result in lower generalization error.

Extensive experiments were performed using various pre-trained networks:
ResNet, VGG, EfficientNet, DenseNet, Inception, MobileNet, SeNet, SE-
ResNeXt, ResNeXt.

A combination of dice loss (DCL) and binary focal loss (BFL) was used for
the loss function and defined as L = DCL + BFL.

The obtained segmentation results are evaluated with Mean thresholded Jac-
card index (threshold = 0.65) and mean Dice Coefficient were the metrics used
to evaluate each model’s output to the ground truth image.

3 Results

In this work, we used the dataset provided by ISIC archive which obtained 4000
skin lesion images: 3000 benign lesions and 1000 malignant lesions. It was used
50% of those images for training and the other images to evaluate.

First we perform an estimation of backbones for feature extraction, resulting
that EfficientNetb1 has the best result with 76.1% of Jaccard index, followed by
Se-ResNeXt101 and EfficientNetb3.

Experiments conducted on the acquired ISIC database are depicted in Table 1
revealing that The Unet-based model achieved the highest metrics values. PSP-
Net resulted in the worst performance out of all models tested, and that may be
due to PSPNet lacking skip connections directly from the encoder to decoder,
thus losing spatial information after successive convolutional layers. Also, the
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ratio of the melanoma and benign lesions among outputs under 65% of Dice
value, which are considered unsatisfactory results are depicted. Considering the
main objective of assisting in diagnosing melanoma, the lower the proportion
of melanoma lesions considered to be poor, the more reliable the method. Our
methods didn’t employ heavy augmentation on the dataset neither ensemble to
obtain a fair evaluation of each model in comparison with other methods in
literature. Figure 3 presents some case qualitative results of the study.

Table 1. Obtained results and comparison of different methods on literature. Also,
last two columns presents the amount of images under 65% Dice index threshold.

Author Method Jaccard (%) Dice (%) Melanoma (%) Benign (%)

Author PSPNet 74.26 82.92 22.5 77.5

FPN 78.3 86.43 42.8 57.1

Linknet 78.3 86.2 31.4 68.5

Unet 78.48 86.64 33.3 66.6

Yuan et al. [5] Unet-VGG16 77.2 –

Amin et al. [1] VGG-16 85.0 82.0

Fig. 3. Examples of each model’s segmentation output. The first row represents a good
output for all methods. The second row represents a medium outcome, and the third-
row a bad output. The first column is the original RGB image. The second column
shows the ground truth mask. The third column contains the FPN output, the fourth
column the Linknet output, the fifth column the PSPNet output, and the sixth column
the Unet output.

4 Conclusion

We trained and evaluated four CNN models for the segmentation of skin lesions
in dermoscopic images: Unet, Linknet, FPN and PSPNet. Our results showed
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that CNN architectures with direct skip connections from the encoder to decoder
path present better outcomes for the task of skin lesion segmentation. The best
model evaluated, Unet with pre-trained Efficientnetb1 had encouraging results
and low errors for the segmentation of melanoma proving to be reliable for
medical usage. For future work, we would like to implement more complex CNNs
presenting a broader evaluation with dispersion measures.
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Abstract. COVID-19 originally started in Wuhan city in China. The disease
rapidly became a worldwide pandemic, causing a respiratory illness with symp-
toms such as coughing, fever, and in more severe cases difficulty in breathing.
With the current testing processes, it is very difficult and sometimes impossible
to manage and provide the necessary treatment to suspected patients since the
number of the infected is rapidly increasing. Hence, the availability of an artificial
intelligent driven system can be an assistive tool to provide accurate diagnosis
using radiology imaging techniques. In this paper, we put forward a new deep
learning architecture, which integrates the Nested Residual Connections (NRCs)
in a DarkCovidNet model, called DarkCovidNet-NRC, in order to classify chest
images and to detect COVID-19 cases. The proposed architecture is validated with
the K-fold cross-validation technique on X-ray and CT chest datasets separately
and then combined. The experimental results reveal that the suggested model per-
forms very well in the medical classification task and it competes with the state
of the art in multiple performance metrics by respectively achieving an accuracy
and precision of 0.9609 and 0.978 on the combined dataset.

Keywords: COVID-19 · Deep learning · Classification · Combined
heterogeneous chest images

1 Introduction

Since December 2019, one of the most life-threatening viruses has appeared. COVID-19
has caused a devastating effect on both daily life and public health. Thousands of lives are
taken daily around the world. Unfortunately, there is no effective treatment to eliminate
the virus, and so far, the vaccine has not given reassuring results. Several approaches
and applications have been presented, implementing advanced artificial intelligence and
medical resources, to diagnose the virus in its first stages [1, 2]. Many studies have been
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proposed for the detection of COVID-19 by using machine learning algorithms like ran-
dom forests, genetic algorithms, and Artificial Neural Networks (ANNs) [3–5]. ANNs
have gained researchers’ interest, in recent years, for its good performance to become
the best solution for classification tasks. Particularly, Deep Learning (DL) approaches
are widely used for successful classification. It has enabled the automatic extraction of
complex data features at high levels of abstraction. The last approaches of DL, which
are also characterized by their large number of hidden layers in their networks, pro-
vide the most efficient solutions to problems caused by massive calculations and allow
machines to learn and predict object classes with more accuracy [6, 7]. Many research
papers have contributed to solving the detection of the COVID-19 pandemic by using
DL architectures as a solution [5, 8]. In [5], the authors put forward an advanced model
for COVID-19 detection, named DarkCovidNet. This model was designed to provide
accurate binary (COVID, non-COVID) and triple classification (COVID, non-COVID,
Pneumonia) through X-ray images. The used dataset consisted of 500 healthy cases and
500 pneumonia ones. The DarkCovidNet architecture comprised 17 convolution layers.
A Batch Normalization (BN) layer was adopted after every convolution layer in order
to normalize each layer output. The implementation of DarkCovidNet achieved 98.08%
on binary classification and 87.02% in triple classification after 100 epochs of training.
In [8], an end-to-end system for COVID-19 and pneumonia infection detection was pro-
pounded. Both X-ray for COVID-19 detection and CT images for pneumonia detection,
collected from different publicly available resources, were considered to evaluate the
model. The Inception Recurrent Residual Neural Network (IRRCNN) was suggested
for the detection of COVID-19, and the NABLA-N network model was used for the
identification and segmentation of the infected regions. The IRRCNN architecture was
composed of an input layer, five inception recurrent residual units, a global average pool-
ing layer and a softmax output layer. The implemented NABLA-N network architecture
was based on a U-Net template that contained two nested U-Nets inside it. The detection
model showed around 84.67% testing accuracy fromX-ray images and 98.78% accuracy
in CT-images. All these studies used many DL approaches to COVID-19 detection, but
they also utilized either the X-ray or CT datasets. In order to improve the performance of
COVID-19 detection, we firstly combine the heterogeneous X-ray and CT chest datasets
into a large one, and secondly, we investigate the most adequate DL architectures that
combine the advantages of the best approaches and techniques in the literature in order
to boost pre-processing and feature extraction suitable for heterogeneous images. In
this context, we put forward a novel DL model, called DarkCovidNet-NRC, which inte-
grates the Nested Residual Connections (NRCs) in the DarkCovidNet model. This paper
is organized as follows: Sect. 2 describes the proposed DL model that will improve the
performance of COVID-19 detection. Section 3 describes the heterogeneous dataset used
for the experiment and the used implementation software environment, and it discusses
the obtained implementation results. The last section concludes and gives some future
perspectives of this work.

2 DarkCovidNet-NRC DL Architecture

In this paper, we investigate the most adequate DL architectures to come up with a better
performing model. The proposed model, named DarkCovidNet-NRC, is a combination
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between the DarkCovidNet architecture and the NRC blocks, which are composed of
nested residual blocks (residual blocks within a residual block). In fact, as described
in [5], the DarkCovidNet model can achieve good accuracy as it provides efficient
feature-map extraction through its convolution layers. The integration of residual blocks
with skip-connections in the DarkCovidNet architecture can also make this model more
robust and expandable and it can reduce the chances of overfitting, thus achieving a
better performance of COVID-19 classification. The DarkCovidNet-NRC architecture
is depicted in Fig. 1. It contains two single Dark Net (DN) blocks which each one
contains one convolutional layer followed by BN and PReLU operations. Furthermore,
the suggested architecture integrates four NRC blocks each one is a residual block
composed of one DN block and two successive nested residual blocks. Moreover, this
block provides a skip-connection from the first DN block to the output of the second
nested residual block. Finally, a PReLU activation function is applied at the end of this
block. The DarkCovidNet-NRC architecture ends by one DN block, a flattening layer
and a softmax layer that produces the outputs. In the first six blocks, the channel size
of convolutions increases twice. This size decreases to 2 in the last DN block, which is
equal to number of targeted classes (COVID, non-COVID).

Fig. 1. DarkCovidNet-NRC architecture

3 Experiments and Results

In order to implement the suggested DL model for the COVI-19 detection, we first
describe the used dataset, set up the need for software and hardware environments and
present and discuss the implementation results.

3.1 Dataset

We use an open dataset, named “Extensive COVID-19 X-ray, and the CT Chest Images
Dataset” published on 12/06/2020 byWalid El-Shafai and Fathi Abd El-Samie [9]. This
open dataset has been collected from multiple sources and augmented with different
techniques to end up containing over 17,599 annotated samples of COVID images and
non-COVID ones. The X-ray dataset contains 5,500 images of non-COVID and 4,044
images of COVID, and the CT images are divided into 2,628 non-COVID images and
5,427 COVID ones.
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3.2 Experiment Settings

TheDL architectures are developed using Python language andKeras library. The exper-
iments are achieved with the hardware implementation of an AMD R5 3600 @3.6 GHz
CPU, a GTX 1060 6 GB GPU, and 16 GB of RAM. For training and validation, we
preprocessed the images by dividing them by 255. The adaptive moment estimation
(Adam) optimizer is used for weight parameter learning. We also use a learning rate of
0.001. The number of epochs to train is set to 50 while an early stopping is implemented
if the model does not improve for 20 epochs. The batch size is set to 32. All these
hyper-parameters are fixed to ensure the convergence of the network.

3.3 Results and Discussion

The implementation has been done to show the effectiveness of the proposed architec-
tures for the detection of COVID-19 cases. The training method will be a categorical
classification that implements the K-Fold cross validation technique with K= 5. In this
section, we present and discuss the implementation results. At the end, a comparison
with the state of art is done.

Implementation Results. The training process is done on three different 5-fold cross
validation sessions. The first session is applied only on the X-ray dataset. The second
session includes only the CT dataset, and in the final session we use the combination
of X-ray and CT datasets. Table 1 presents the average of the 5-fold cross validation
sessions of accuracy, precision, recall and F1-Score. The results from this table indicate
that our model achieves better results on the mixed session, which proves the capability
of our model in classifying combined heterogeneous X-ray and CT chest images. The
accuracy and precision can respectively achieve 0.9609 and 0.9780 on the combined
dataset using the proposed DL architecture.

Table 1. Performance measures of DarkCovidNet-NRC architecture of the three sessions

Datasets Accuracy Precision Recall F1-score

X-ray 0.9521 0.9680 0.9078 0.9359

CT 0.9562 0.9724 0.9122 0.9403

Mixed (X-ray, CT) 0.9609 0.9780 0.9024 0.9358

Discussion and Comparison with State of the Art. We implement other architec-
tures recently and successfully used in the literature for the COVID-19 detection in
order to compare and locate our model. Table 2 shows the average of the 5-fold cross
validation of accuracy, precision, recall and F1-Score using DarkCovidNet, Mobilenet-
v2 and VGG19 architectures validated on a mixed dataset. We note that the proposed
model can compete and outperform the other models in accuracy and precision metrics.
This shows that this model has a great capability of classifying COVID-19 images. The
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proposed architecture permits designing better DarkCovidNet architecture in integrat-
ing the NRC blocks, which enables feature reusability and facilitates the propagation of
information for better classification performances.

Table 2. Summary of state-of-the-art results

DL architecture Accuracy Precision Recall F1-Score

DarkCovidNet [5] 0.9551 0.9549 0.9553 0.9551

Mobilenet-v2 0.9222 0.9068 0.8679 0.8869

VGG19 0.8722 0.8471 0.8762 0.8614

DarkCovidNet-NRC 0.9609 0.9780 0.9024 0.9386

4 Conclusion and Perspectives

In this paper, we have introduced a novel DL architecture, DarkCovidNet-NRC, which
integrates the NRC in DarkCovidNet model. Indeed, we have used a large dataset for the
implementation of the K-fold cross-validation technique on X-ray and CT chest datasets
separately and then combined. The implementation results of DarkCovidNet-NRC have
improved the performance of the detection of COVID-19 in many metrics using the
combined heterogeneous datasets. We note that the new architecture competes with the
state of the art and outperforms the literature in some metrics. In the future, we will
improve this architecture to realize the classification of many classes related to lung
diseases. Furthermore, we can use this model to classify other diseases.
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Abstract. The use of artificial intelligence (AI) for analysis of electro-
cardiogram (ECG) data has recently gained much interest in the AI and
medical communities. The discussed models have shown to be able to
deliver high diagnostic sensitivity and specificity for detection of var-
ious cardiac diseases including rhythm disorders and ischemic events.
However, the experiments leading to these results are often difficult to
reproduce outside of the original experimental setup and researchers who
want to externally validate such results or use them as starting points for
new experiments are forced to develop their own models from scratch. We
therefore propose a software environment that enables to build, train and
evaluate AI models for ECG classification in a reproducible manner and
offers sharing of experiment configurations among researchers. The envi-
ronment further provides simple connection of publicly available data
sources of validated ECG recordings. It offers various validation tech-
niques such as bootstrapping and cross-validation. A proof of concept is
given for a deep learning model consisting of a convolutional neural net-
work for the classification of acute myocardial infarction based on ECG
data.

Keywords: Experiment · Environment · Reproducibility ·
Electrocardiogram · Keras

1 Introduction

The electrocardiogram (ECG) is a widely used diagnostic tool in cardiology
providing comprehensive information about heart activity in a non-invasive way.
Artificial intelligence (AI) based models have shown to leverage these information
and to deliver results comparable to that of human interpreters, as we have shown
in a recent meta-analysis [3] and previous research [4]. Practical applications of
such models in wearable devices have demonstrated advances for early detection
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of atrial fibrillation [1]. Development of AI models for analysis of ECG recordings
has therefore gained much interest among researchers.

However, published results are often hard to reproduce outside of the original
experimental setup, as source code is often not made available. This urges other
researchers to start from scratch, leading to slightly different implementations,
often yielding differing results from that originally published. Although some
researchers share code and provide software environments for training of neural
networks, these environments often do not support full reproducibility. We argue,
that for this, the complete experiment setup (including data splits, data prepro-
cessing steps, model architecture, training parameters, evaluation, and metric
calculation) needs to be publicly available in form of configurations containing
fully controllable parameters that, if left unchanged, will always deliver identi-
cal results. We therefore propose a software environment that enables to build,
train and evaluate AI models for ECG classification in a reproducible manner
and offers sharing of experiment configurations among researchers.

This paper is structured as follows: In Sect. 2, we describe the essential parts
and processes of the environment that are necessary to define, train and evaluate
your models. In Sect. 3, we demonstrate the usage of the environment at a use
case using publicly available data from PTB-XL [5] and building an ECG based
convolutional neural network for classification of myocardial infarction.

2 Components

2.1 Configuration

The parameter configuration of each conducted experiment should be fully trans-
parent and controllable. Therefore, our environment works with central config-
uration files in INI format to configure the process chain from preprocessing to
evaluation. This central configuration contains all parameters that are necessary
to load, preprocess and split data, as well as to build, compile and train the
model, and finally to evaluate its results. Experiment configurations can easily
be copied to variate parameters in the course of experiment series. Furthermore,
such configurations can be shared among researchers and results can easily be
reproduced. Experiment configurations are structured into sections, grouping
parameters by tasks, e.g. parameters for data preprocessing and those needed
to build the model. A detailed description of all parameters is provided in the
github repository (see Code Availability at the end of this paper).

2.2 Data Sources and Snapshots

The environment integrates access to PTB-XL [5] and other PhysioNet [2]
databases through the waveform database (WFDB) API. Reproducibility of
experiments requires version control. PhysioNet databases are versioned by
default, but other data sources may not. Our environment therefore provides
snapshot creation to save local, versioned working copies of the database con-
tents (see Fig. 1). These snapshots are used as unified representations for further



386 N. Gumpfer et al.

data processing. Snapshots contain records consisting of ECG data that may
be enriched with additional clinical parameters that further describe its medical
context (e.g. age and sex of patient, diagnoses). Users can also use local files as
data source. Currently, CSV files and HL7-formatted XML files are supported.
Additional clinical parameters can be provided in JSON format.

Fig. 1. Process overview. Snapshots are created from data sources and contain ECGs
and clinical parameters. Data preprocessing is performed on snapshots, producing a
dataset. The dataset is split into training, validation and test records. The model is
compiled and records are loaded from the dataset for training and evaluation.

2.3 Data Preprocessing and Splitting

Preprocessing steps are performed on the snapshot. ECGs require preprocessing,
including optional lead selection and value scaling. Clinical parameters need to be
validated, cleaned, normalized, and transformed into one-hot-encodings before
they can serve as input or label. These steps are controlled by rules defined in
a metadata file in JSON format. This file is data source-specific and describes
valid values or ranges for each parameter, as well as imputation and replacement
rules, and specifies how one-hot encodings are performed. Based on these rules,
the preprocessing becomes fully controllable and settings can easily be shared.
Resulting from the preprocessing, all records are combined to a ready-to-use
dataset in PICKLED format. Depending on the validation method chosen for
the experiment, different data splits are necessary, e.g. k-fold cross-validation
requires k different splits into training and validation records. To be able to reuse
and share how the records were split, the environment persists these splits as
JSON files. The following validation and split methods are currently supported
by the environment: ratio-based split, k-fold cross-validation, n-bootstrapping,
and repeated versions of each type. In case of repetitions, the training is repeated
with a different weight initialization of the neural network, but with the same
splits. Besides splitting into training and validation records, an additional test
set can be held back in advance. The record IDs of the test set are then persisted
to an additional split file. Stratification based on one target variable is possible.
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2.4 Experiment Conduction

The conduction of an experiment involves data loading, model building, compi-
lation, and training. At first, the prepared dataset is loaded and optional sub-
sampling is applied. Subsampling increases the number of training samples and
normalises their length. Model construction is based on model shells which inflate
to their final shape through parameters specified in the experiment configuration.
Model shells define a general model structure without specific layer numbers or
options. Users can create their own model shells based on the prototype provided
with the environment.

2.5 Experiment Evaluation

Performance metrics are logged during training for each epoch. When subsam-
pling is used, the calculation of these metrics is performed on subsample and
sample level. In the first case, the confusion matrix is generated based on all
subsamples, each treated like a single record. In the second case, the predictions
for all subsamples of one original sample are first averaged before the confu-
sion matrix is generated. Based on the confusion matrix, relevant metrics can be
calculated, e.g. sensitivity, specificity, area under receiver-operator characteristic
curve (AUC), diagnostic odds ratio, F1-score, Youden’s J-statistic, and accuracy.
The metrics are calculated target class-specific, as defined in the experiment con-
figuration. The best-performing models with respect to the target metric speci-
fied in the experiment configuration are selected. For k-fold cross-validation, this
yields k models, and n models for n-bootstrapping. Sensitivity and specificity
thresholds can be defined to filter results. Filtered results, mean metrics, his-
tograms and boxplots for each metric, classification table, and receiver-operating
characteristic curves can be exported to PDF and XLSX formats.

3 Proof of Concept

As proof of concept we use a simple convolutional architecture to classify
ECGs with myocardial infarction and healthy controls from PTB-XL [5]
and evaluate the performance based on bootstrapping (n = 100). The script
download ptbxl.sh creates a snapshot from PTB-XL. A configuration file
experiments/ptbxl poc.ini contains necessary general hyperparameters (e.g.
optimizer, learning rate, loss function) and model-specific parameters (e.g. num-
ber of layers, number of neurons). To link all process steps, snapshot and dataset
name, metadata file, and splits are defined as well. Further, required metrics
and thresholds for evaluation are listed. We only use a subset (I-AVF) of 12
leads. In preparation for the experiment, the data is preprocessed via python3
preprocessing runner.py -e ptbxl poc. Based on the resulting dataset, 100
different bootstrapping splits are generated via python3 split runner.py -e
ptbxl poc. The training is then started via python3 experiment runner.py
-e ptbxl poc. After training, the evaluation is performed automatically.
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The achieved performance metrics for AUC, sensitivity and specificity are
0.96 ± 0.01, 79.49 ± 3.35%, 98.54 ± 0.42%, respectively. All files related to the
proof of concept can be found in the github repository (see Code Availability).

4 Conclusion and Future Work

The proposed environment enables researchers to share experiment configura-
tions as well as intermediate results such as datasets. This enables research
groups to exchange their data and configurations more easily and to mutu-
ally reproduce results. With this environment, we aim to support faster and
more densely connected research. The presented concept is currently limited
to AI models for ECG classification, but can be extended to other time-series
based settings, and with some effort also to image-based concepts. Beside general
improvements, we plan to extend the environment by methods for explainability
and a graphical user-interface.

Code Availability
The code for the environment presented in this work is available from github at
https://github.com/nilsgumpfer/experiment-environment-ecg-ai.
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Abstract. Counterfactual examples can be used to explain a specific
clinical prediction from a deep learning model by identifying what kind
of feature changes would produce a different result, i.e. flipping the pre-
diction’s classification. On-going research seeks to refine the metrics for
discovering counterfactual examples, given a specific input to a deep
learning model. Our work enhances this by using feature importance to
reveal how much individual feature changes in the counterfactual exam-
ple contribute to flipping the prediction’s classification, compared with
the original. Our approach does not depend on the specific metrics used
for generating the counterfactual examples, so it is general. It can be
used either to gain further insight when the counterfactual examples
have already been generated or to influence the generation of the coun-
terfactual examples. We illustrate this novel approach with a healthcare
example.

Keywords: Explainability · Deep learning · Counterfactual examples

1 Introduction

Clinical predictions based on Machine Learning (ML) are having an increasingly
profound impact on the safety and quality of healthcare services [10], e.g. by
recommending treatments. Our focus in this paper is on using explainability for
ML-based systems to assist a clinician in achieving a desired healthcare goal.

Much work on explainability for ML-based models focuses on feature impor-
tance explanations, which score or rank the input features, conveying the relative
importance of each input feature to the model output (or prediction) [7]. How-
ever, this does not help model users to understand what they should do in order
to achieve a desired goal. More recently, Wachter et al. [12] introduced counter-
factual explainability which produces counterfactual examples that identify what
changes in inputs to the ML model would be needed to reverse (or “flip”) the
ML model prediction. In this paper, we are interested in identifying changes in
ML model inputs or patient conditions, that would enable a clinician to achieve
a desired goal for a given patient.
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The counterfactual examples should be close to the initial inputs to the model
as smaller changes from the initial inputs are more likely to be achievable. Thus
the approach should measure how far the predicted outcome of the counterfac-
tual is from the desired outcome and the distance from the counterfactual to the
initial input. When there are many features, searching for counterfactuals which
combine changes in multiple inputs is computationally expensive, so it is nec-
essary to find efficient solutions and to make simplifying assumptions, e.g. that
the effects of small changes in inputs are additive in order to flip the prediction.

In some situations, it is desirable to provide a set of diverse counterfactuals,
e.g. alternative changes in treatment, so that a user can choose which one to
implement [5]. Our work builds on this idea and seeks to provide more insight into
the different counterfactual examples. Specifically, our work enhances the value
of counterfactual explanations for deep learning classifiers by revealing how much
each input feature change in the counterfactual example contributes to flipping
the decision. This novel combination of diverse counterfactual explanations and
feature importance gives insight that enables users to choose which alternative
to implement – thus making the ML models more actionable.

2 Background

Counterfactual explanations have been studied in philosophy and psychology and
the work of Kahneman and Tversky in the 1970s and 1980s [4] presages many
aspects of counterfactuals now addressed in ML. The introduction of counterfac-
tual explanations for ML is more recent [12] but there is already some evidence
that users prefer counterfactuals over feature importance methods [1].

Counterfactual explanations were formalised by Wachter et al. [12]. Gener-
ally, given an input x, an ML classifier f , and a distance metric d, a counter-
factual explanation x′ which produces the desired output y can be generated by
solving the optimisation problem:

x′ = argmin{yloss(f(x′), y) + d(x, x′)} (1)

where yloss “pushes” the counterfactual x′ towards a different classification
than the initial input x, and the second term keeps the counterfactual x′ close
to the initial input x. There are four desirable properties for identifying good
counterfactuals [7]. First, they should achieve the desired outcome as closely as
possible, which is related to the first term in Eq. 1. Second, the counterfactuals
should be as close as possible to the original instance, which is related to the
second term in Eq. 1, i.e. the distance measure. Third, the counterfactuals should
be sparse, i.e. an ideal counterfactual needs to change only a small number
of features from the original instance. Fourth, it is desirable to have diverse
counterfactuals. On-going research seeks to incorporate these properties in the
loss function and optimisation methods. An overview of existing counterfactual
explanation methods for ML is provided by Verma et al. [11].
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3 Method

Our method combines feature importance with counterfactuals. Specifically, it
uses DeepLIFT (Deep Learning Important FeaTures) [9] to assign a contribution
score to each feature that changed in a counterfactual example. This can help
users to understand how much individual feature changes in the counterfactual
example contribute to flipping of the prediction’s classification compared with
the original instance. Where diverse counterfactual examples are available, the
feature importance can help to choose between them.

DeepLIFT is an additive feature attribution method, developed specifically
for use with deep neural networks (NNs). DeepLIFT compares the activation
of each neuron for the input features of interest to its “reference activation”
and attributes to each input a contribution score according to the difference.
The “reference activation” is a user-defined reference input representing a back-
ground value. In order to enhance the value of counterfactual explanations, we
assign a contribution score to each feature that changed in the counterfactual
examples using DeepLIFT where the initial or original input features provides
the “reference activation”1.

We chose DeepLIFT because it compares the counterfactual examples to the
initial instance and assigns the contribution scores according to the difference
in the predictions. In addition, it considers both positive and negative contribu-
tions of features, hence identifying the sign of dependencies between the input
features and the output. Further, the contribution score is generated by a single
backwards pass through the NN so the scores can be generated efficiently.

If there are many features in the counterfactual example that have a very
low contribution score, e.g. less than 1%, then that example might be discarded.
This facilitates the identification of sparse counterfactual examples which is par-
ticularly important when choosing between diverse counterfactuals (see Sect. 2).

4 Clinical Example

In Intensive Care Units (ICUs), mechanical ventilation is a common intervention
that consumes a significant proportion of ICU resources [13]. It is of critical
importance to determine the right time to wean the patient from mechanical
support. However, assessing a patient’s readiness for weaning is a complex clinical
task and it is potentially beneficial to use ML to assist clinicians [6]. Our example
uses Convolutional NN (CNN) based on the MIMIC-III data set [3] to predict
readiness for weaning in the next hour. 25 patient features are included in the
model as shown in Table 1. The predicted outcome is the probability of weaning
readiness in the next hour with 0.5 as the threshold (0 means wean; 1 means
continue). The CNN architecture and details of this example can be found in [2].

We illustrate our method with a patient’s record at a particular time as the
original instance to generate the counterfactual examples using DiCE (Diverse
1 The contribution score for the features that didn’t change in the counterfactual

examples is zero, due to the way DeepLIFT works.
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Table 1. Counterfactual examples for a given original instance with contribution scores
(shown in blue and in parentheses)

Features Original instance Counterfactual examples

1 2 3 4

Admit type Emergency — — — —

Ethnicity White — — — —

Gender Female — — — —

Age 78.2 — — — —

Admission weight 86.5 — — — —

Heart rate 119 — — — —

Respiratory rate 24 21.9 (≤ 0.01) — 24.1 (≤ 0.01) 21.7 (≤ 0.01)

SpO2 98 — — 96 (≤ 0.01) —

Inspired O2 fraction 100 — — — —

PEEP set 10 1.1 (−0.23) 9.2 (≤ 0.01) 2 (−0.2) 5.1 (−0.12)

Mean airway pressure 14 — 15.2 (≤ 0.01) — 14.8 (≤ 0.01)

Tidal volume (observed) 541 — 540.1 (≤ 0.01) 541.9 (≤ 0.01) 541.9 (≤ 0.01)

PH (arterial) 7.46 — 7.49 (≤ 0.01) — —

Respiratory rate(Spont) 0 — 13.1 (−0.06) — —

Richmond-RAS scale −1 — 0 (−0.32) — 2 (−0.37)

Peak Insp. pressure 21 — — — —

O2 flow 5 — 7.3 (−0.01) — 2.4 (0.02)

Plateau pressure 19 — — — —

Arterial O2 pressure 124 123.6 (≤ 0.01) 123.6 (≤ 0.01) 123.6 (≤ 0.01) 124.3 (≤ 0.01)

Arterial CO2 Pressure 33 — — — —

Blood pressure (systolic) 101 — — — —

Blood pressure (diastolic) 65 — — — —

Blood pressure (mean) 76 — — — —

Spontaneous breathing trials 0 1 (−0.06) 1 (−0.06) 1 (−0.07) —

Ventilator mode 18 9 (−0.38) 1 (−0.44) 1 (−0.52) —

Predicted outcome 0.93 0.27 0.04 0.14 0.46

Counterfactual Explanation) [8]. DiCE can generate multiple diverse counterfac-
tuals and works for any differentiable model. Thus it is widely applicable given
the characteristics of commonly used deep learning methods. Four counterfactu-
als are shown in Table 1 along with the original instance, where “—” means the
feature in the counterfactuals is not changed from the original instance. In order
to enhance the value of the counterfactual examples, each changed feature in the
counterfactuals is assigned with a contribution score (shown in parentheses and
in blue) to gain insight into how much it contributes to flipping the prediction.
For example, in Example 1, the sum of contribution score from changing PEEP
set, Spontaneous breathing trials, and Ventilator Mode is 0.67, which is the dif-
ference between the original prediction and the new prediction. The changes
of Respiratory Rate and Arterial O2 pressure in the counterfactual Example 1
contribute less than 1% each, which is negligible.

The benefit of adding the contribution score in the counterfactual examples
is twofold. First, it can help the user to choose which example to implement.
In our four counterfactual examples, Example 1 is attractive as it avoids a lot
of unnecessary changes which make little contribution by comparison with the
others, especially Example 2. Also, it helps the users to prioritise the changes
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with high contribution scores. Second, it can also help to generate sparse coun-
terfactuals through post filtering. For example, we can add constraints that if
the contribution score in the counterfactuals is less than 1%, then the feature
is left unchanged. In counterfactual Example 4, when the features Respiratory
Rate and Arterial O2 pressure are kept the same as the original input, the new
prediction score is the same as the counterfactual Example 4 to two decimal
places. Thus, this will improve the sparsity of the counterfactual.

5 Conclusion

We have introduced a novel method to enhance the value of counterfactual expla-
nations by revealing how much individual feature changes in the counterfactual
example(s) contribute to flipping the prediction’s classification. Our method uses
DeepLIFT to generate contribution scores for the features in the counterfactual
examples. We illustrated the method to show how it can help in choosing between
diverse counterfactuals generated by DiCE, potentially enabling identification of
sparse counterfactuals to implement, i.e. making the counterfactual more readily
actionable. Although we have used a specific healthcare example and DiCE for
producing the counterfactual examples to illustrate the method, we believe it
is general as it does not depend on the specific metrics used for generating the
counterfactual examples. Future work will include exploration of further exam-
ples and more extensive assessment of the method in a clinical setting.
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Abstract. The constant evolution of Medical Subject Headings (MeSH)
vocabulary and specifically the changes in its descriptors brings forth a
number of issues that need automation. The main one being that changed
descriptors often lack proper ground truth articles. Therefore, the learn-
ing models which demand strong supervision are not directly applicable,
settling the predictions on such changes not a straightforward task. The
importance of this problem is also enforced by its multi-label nature and
the fine-grained character of the examined class-descriptors, factors that
demand a lot of human resources. In this work, we alleviate these issues
through retrieving insights from a source of information about those
descriptors present in MeSH in order to create a weakly-labeled train set.
Furthermore, we exploit short-text information per article, implementing
an averaging transformation on the corresponding sentence embeddings,
applying a similarity mechanism for assigning weak-labels to our format-
ted data set, thus we named our approach WeakMeSH. The benefits of
applying the proposed end-to-end approach are examined on a large-scale
subset of the BioASQ 2018 data set consisting of 900 thousand instances,
investigating two separate groups of MeSH changes: brand new and com-
plex changes. Our performance tested on BioASQ 2020 data set against
several other approaches that can either distill weak information on their
own or apply alternative transformations against the proposed one was
proven highly competitive.

Keywords: Weakly supervised learning · MeSH indexing ·
Multiple-instance learning · Sentence and word embeddings · Similarity
threshold tuning

1 Introduction

MEDLINE contains more than 26 million citations to journal articles related
mainly to biomedicine and more generally to life sciences. A key property of
MEDLINE is that articles are indexed with an average of 13 out of the more
than 28,000 descriptors of the Medical Subject Headings (MeSH)1 thesaurus.
1 https://www.nlm.nih.gov/mesh/meshhome.html.
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This enables semantic search and retrieval of articles. However, it comes at a
significant cost in time and money, as indexing is mainly a manual process con-
ducted by human experts. Therefore a lot of research has been devoted towards
methods and tools for supporting indexers in accomplishing their task faster and
better [3,9,12,17], with the BioASQ challenge being an important driving force
of this progress [1].

MeSH is not set in stone. On the contrary, it changes all the time, in accor-
dance with the evolution of our biomedical knowledge. Yearly MeSH updates
include the introduction of new MeSH descriptors, the withdrawal of existing
ones, updates in the hierarchical structure of existing descriptors and even more
subtle changes involving the concepts and terms that are associated with the
descriptors [17]. This paper focuses on the new MeSH descriptors that arise each
year and the challenge they introduce to supervised machine learning models,
due to the lack of training examples.

To address this challenge we propose a novel approach for obtaining weak
supervision, called WeakMeSH, that: i) takes advantage of label provenance
knowledge that is available within the meta-data of MeSH in order to focus
on the most relevant MeSH articles for each new descriptor, ii) employs a multi-
instance representation for these articles by considering state-of-the-art embed-
dings for each sentence of their abstract, and iii) weakly labels these articles
based on the maximum similarity of each descriptor across all sentences of their
abstract, thresholded by an unsupervised component.

In addition, we contribute a real-world multi-instance multi-label benchmark
data set with new labels suitable for experimentation with weakly supervised
(WSL), as well as zero-shot (ZSL) learning methods. The majority of such exist-
ing methods use data sets, where new labels are constructed by removing the
ground truth of existing labels and/or concern easily separable classes compared
to the existing ones [18]. Such artificial data sets are often aligned with core
assumptions of the corresponding proposed methods. This is far from the actual
real-world case of MEDLINE that we contribute here, where new descriptors of
a naturally evolving thesaurus are not easily separable from existing ones.

To deal with this benchmark we pair our weak labeling approach with simple
multi-instance (average of the sentences embeddings of the article) and multi-
label (binary relevance) transformations. Experimental results against state-of-
the-art weakly supervised methods for text classification are promising. Our
approach, data set and experiments are available online2.

The rest of this paper is organized as follows. Section 2 provides a notation of
the tackled problem and summarizes some recently demonstrated state-of-the-
art WSL works. Next, we discuss the separate stages of our proposed method,
while Sect. 4 reveals information about the exploited data set. The experimental
procedure and the produced results are placed in Sect. 5, before we conclude and
propose some future directions in Sect. 6.

2 https://github.com/intelligence-csd-auth-gr/WeakMeSH.

https://github.com/intelligence-csd-auth-gr/WeakMeSH
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2 Related Work

To the best of our knowledge not much research has been conducted about how
the yearly changes in MeSH affect existing article annotations. One such work is
[2], where 14 different versions of MeSH thesaurus were used to annotate 5000
random articles and then those annotations were used to calculate the difference
between the indexing of articles for any 2 successive years. Their findings suggest
that changes in MeSH versions have a big impact in article indexing even if
the changes in MeSH are minor ones, setting the problem of biomedical article
annotation as a very challenging one.

Three distinct categories of WSL are discussed in [19]: Incomplete, inexact
and inaccurate supervision. The first one concerns situations where there are
many unlabeled data, but not enough labeled data to train a good model. The
second one concerns situations where the supervised information is inexact, as in
the case of having a label for a bag of instances, instead of a single instance. The
last one concerns situations where noisy information is present in the feature
and/or target space. Our examined problem can be categorized as a hybrid
one between the last two categories. This is due to the fact that we treat each
MEDLINE article as a bag of separate sentences to obtain our weakly-labels
based on a stochastic process that may inject noise on the target space.

Focusing on the WSL literature concerning textual data, we distinguish two
different manners of tackling this kind of learning: i) extrapolate the semantic
meaning of classes into the Label space (Y ) for creating new instances, ii) learn a
predictive function between the input space (X ) and Y, based on noisy training
examples, that can still generalize well on unseen data. We point out the most
recent related approaches.

Exploitation of seed words is the most popular strategy regarding the first
of the aforementioned categories. This external knowledge source, which may be
provided by users without necessarily much expertise, is usually directly available
and can trigger weak supervision over unlabeled documents. The main ambition
here is the augmentation of the instances that are related to each label due to
the scarcity of available training instances. A dataless approach based on self-
training, seed words occurrence and bayesian models was proposed in [6], while a
more recent work that employs self-training based on DNNs is found in [7]. That
approach, called WeST Class (Weakly Supervised Text Classification), exploits
label descriptors, class-related keywords or beforehand labeled documents for fit-
ting a class-distribution model. These models facilitate the generation of pseudo
documents over which the DNNs – either convolutional or recurrent variants –
are trained before the assignment of probabilistic labels to the unknown test set
takes placed on a transductive fashion. Both of these works have been applied
to data sets with limited labels (2, 4, 10 or 20) which are mainly relevant to
news articles (contain labels like politics, sports etc.). Seed-guided solutions
seem effective for easily discriminated entities, but this does not always hold
on coarse-grained label spaces such as MeSH.

The second category consists of methods that try to learn a mapping func-
tion under the existence of noisy instances. Snuba [16] assumes that a small set
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of labeled data is provided, together with a large set of unlabeled data. It itera-
tively labels the unlabeled data probabilistically using multiple simple classifiers
trained from the labeled data. These classifiers consider different small subsets of
the features (typically less than 4) and are based on standard algorithms (deci-
sion stump, logistic regression, k nearest neighbors). A multi-instance approach
for predicting aspect ratings in reviews was presented in [13]. Each review was
represented as a bag of sentences. The key idea in this approach is to represent
each bag as a weighted average of the representations of the sentences. A regu-
larized regression model is used to jointly learn these weights together with the
parameters for predicting the ratings of a review aspect from the weighted aver-
age of the sentences. Cost-sensitive classifiers were employed in [4], in the sense
of learning accurate models under the existence of weakly annotated instances.
The latter process is based on the decisions of a committee of learning functions
or algorithms from which the relative costs are generated by an unsupervised
method.

3 Obtaining Weak Supervision with WeakMeSH

With each yearly update of MeSH, a number of new descriptors get introduced.
In some cases, such as when a supplementary concept record (SCR) of MeSH is
being promoted to a MeSH descriptor, existing MEDLINE articles get automat-
ically re-indexed with these descriptors. In other cases however, new descriptors
come without ground truth annotations and we cannot use supervised machine
learning algorithms.

To address this issue, we introduce WeakMeSH, an approach to obtain
weak labels for such new descriptors. Our approach takes as input a data set of
biomedical abstracts from MEDLINE and a set of new MeSH descriptors, for
which there is no ground truth annotation in the data set. WeakMeSH weakly
labels biomedical articles in two stages: i) candidate labels generation based
on descriptor provenance knowledge, ii) label filtering based on multi-instance
semantic similarity.

3.1 Candidate Labels Generation

For each biomedical article, each of the new descriptors is theoretically a can-
didate for weak labeling. Typically, a measure of semantic similarity between
the article and the descriptors is employed for assigning the weak labels [3].
We also do this in the second stage of WeakMeSH. However, given the com-
plex hierarchically organized biomedical knowledge of MeSH, we employ a novel
knowledge-based first stage that considers a subset of the new descriptors, based
on provenance information found in the meta-data of MeSH [11]. This informa-
tion points to existing descriptors that were associated with the meaning of a
new descriptor in the past. In particular, we consider the following two fields in
the records of new MeSH descriptors:
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– Previous Indexing (PI), refers to one or more older descriptors used for index-
ing articles that could be relevant to the new descriptor in previous years.
Being indexed with a PI is a necessary, but not sufficient, condition for an
article to be considered relevant to the new descriptor. Note also that this
field is not present in every new descriptor.

– Public Mesh Note (PMN), refers to an old descriptor that is related in some
way to the newly introduced one. This can be through a parent-child relation
in the MeSH tree hierarchy, the novel descriptor previously being a SCR for
the old one or by having similar meanings. The presence of this field in a new
descriptor, signifies that it was already present inside the MeSH vocabulary,
but not as a descriptor.

As an example, existing descriptors Sexuality and Reproductive Health could be
hosting the meaning of the new descriptor Sexual Health that was introduced in
2018, with the former being a PI and the latter a PMN of Sexual Health3.

For each biomedical article, we consider as candidate weak labels those new
descriptors, whose PI(s) or PMN appear in the ground truth annotations of the
article.

3.2 Multi-instance Semantic Similarity

Since each article is not always related to its PI(s) and PMN, assigning every
candidate weak label to that article would introduce a lot of label noise. To
deal with this issue, the second stage of WeakMeSH considers the semantic
similarity of each article, with each candidate weak label.

In particular, we employ BioBERT [5], a variant of the BERT language model
fine-tuned on biomedical data with state-of-the-art results in several downstream
tasks. BioBERT produces embedding vectors in R768 for both words and sen-
tences. We obtain a word or sentence embedding for each new descriptor, depend-
ing on the number of words it contains. For the articles, we follow a multi-
instance paradigm, treating the abstract of each article as a bag of sentences
and obtaining one embedding per sentence. Multi-instance representations are
particularly useful for multi-label data [20], as in our case, since each sentence
may be associated with a different descriptor.

Given the multi-instance representation of the abstract of an article as a
set of sentences S, along with a set of candidate weak labels C, WeakMeSH
computes the cosine similarity between the embeddings of each sentence s ∈ S
and the embedding of each candidate label c ∈ C. For each candidate label c ∈ C
we take the maximum of the computed similarities across all sentences in S. A
candidate label is then considered as weak label if this maximum similarity is
above a threshold, t. Equation 1 shows formally the final set of weak labels.

{c ∈ C : max
s∈S

cosine (BioBERT (c), BioBERT (s)) > t} (1)

3 https://meshb.nlm.nih.gov/record/ui?ui=D000074384.

https://meshb.nlm.nih.gov/record/ui?ui=D000074384
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The requirement of a similarity threshold is considered as a weak point for
end-to-end AI tools. Arbitrarily set thresholds are usually provided by human
users or estimated through applying cross-validation procedures. None of these
approaches are acceptable in our case, due to the typically large number of new
descriptors and the shortage of ground truth instances.

To avoid this, we use a novel approach based on Gaussian Mixture Models
(GMMs) [14], in order to automatically calculate a separate threshold t for each
new descriptor. We first compute the maximum similarity of the embedding of
each new descriptor with the embeddings of the sentences of each one of the
articles that were indexed with at least one of its PIs or PMN. We assume that
these maximum similarities are coming from two populations, one for relevant
and one for irrelevant articles with respect to the descriptor. We therefore fit a
GMM with two components on the distribution of these maximum similarities.
Finally we take as threshold the average of the two means of the corresponding
sub-populations (see bottom right part of Fig. 1).

3.3 Multi-instance Multi-label Learning from Weak Supervision

After obtaining weak labels for the articles, we proceed with a simple trans-
formation of the multi-instance article representation to a single-instance one.
In particular, we represent each of the articles with a vector in R768 computed
through the average of the BioBERT embeddings of its sentences. Using this
representation strategy we can then employ any standard multi-label learning
algorithm to learn a model that will be able to predict the new descriptors in new
articles. Figure 1 depicts the overall architecture of such an approach building
upon WeakMeSH to obtain weak labels.

Fig. 1. Distillation of input and label space by WeakMeSH for creating weakly labeled
instances
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4 A Real-World Benchmark for Weakly Supervised
Learning

The data set that we contribute and use in our experiments comes from the
BioASQ challenge4, more specifically the BioASQ 2018 and BioASQ 2020 data
sets, with the former being used for training and a part of the latter for test-
ing. These data sets contain articles published up to their corresponding year.
Furthermore they use the MeSH vocabulary of the same year. The reason for
choosing the 2018 and 2020 data sets instead of the 2018 and 2019 ones, is that
many of the new descriptors introduced in 2019 are not present in the BioASQ
2019 data set and thus we would not be able to fully assess our method’s accu-
racy.

Since our method focused on novel descriptors that are not automatically
indexed in existing articles, we had to single out those specific ones from the list
of all new descriptors between the aforementioned years. To do so, we searched
for new descriptors that appear as labels on articles present in BioASQ 2020
that are absent in BioASQ 2018. In total, 450 novel descriptors were found. Out
of them, 399 are completely new ones, while the rest 51 are produced by some
type of complex change. This means that the participant labels of the former
subset appear for the first time in the MeSH 2019 or MeSH 2020 vocabulary,
whereas the corresponding labels of the latter subset were previously a part of
the vocabulary, but not as descriptors. For computational simplicity, we decided
to focus on the top 100 most frequent new descriptors on the test set, since
their appearances sum up to 44,938 out of the 57,582 of all appearances (78%),
leaving us with 88 that appeared for the first time into the last variant of MeSH
(brand new), and 12 who became descriptors by a more complicated procedure
(complex change).

After an appropriate discarding stage, where we only keep the descriptors
that have at least one PI or PMN, we were left with 62 final descriptors used for
our experiments. All the removed labels belong to the brand new group, since
the PMN field is always available for the labels in the complex change group.
Using the PI(s) and PMN for each one of the 62 new descriptors we singled
out articles labeled with at least one of them (previous host data set). The final
data set consisted of 900,000 labeled articles from BioASQ 2018. For the test
set, we found 32,908 articles from the BioASQ 2020 version labeled with at least
one of the 62 new descriptors. Furthermore, our test set is imbalanced – since
the individual frequency of several labels is quite scarce – putting additional
obstacles towards accurate predictions.

5 Experimental Setup and Results

This Section discusses the experiments we performed to evaluate our proposed
method along with the produced results. We compare these results with those

4 http://bioasq.org/.

http://bioasq.org/.
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of two state-of-the-art approaches for WSL, namely WeST [7] and WMIR [13],
as well as a related ZSL method introduced in our previous work [10]. Note that
one domain-independent zero-shot learning method called EZSL [15] was also
implemented, as well as a variation of our method that completely disregards
the information about PI and PMN, but the results they yielded were very
low and as such won’t be shown here. Similar behavior was recorded by Snuba
[16], whose demand of accurate train data prevent it from achieving competitive
performance. We also used two more strategies for representing our training data
that can be directly compared to our own representation.

1. Prime: Each article is represented as the BioBERT embedding of its
abstract’s sentence(s) with the maximum similarity to each examined descrip-
tor(s). This way the most salient part of a text segment is selected to repre-
sent the total entity. A similar competitor was used in [13]. More than one
instances may occur during this stage from distilling each abstract, or even
none depending on the number of sentences that pass the t mentioned during
the weakly-labeling stage. When drawing a decision for an unknown instance
with this approach, the final prediction is the combination of the predictions
for each one of its sentences that surpass an arbitrarily defined confidence
threshold (Conf ).

2. Extended Prime: Each article is represented into the R1536 space, concate-
nating two BioBERT Embeddings. The first is found as in Prime, while the
second corresponds to the averaged embedding transformation of the remain-
ing sentences per abstract. The training and predicting procedure takes place
as previously.

Any probabilistic classifier can be combined with the proposed method,
Prime and Extended Prime. The information about those probabilities is then
used to measure the confidence of the predictions and extract the final deci-
sions. It is worth noting we only show the best results produced by the Logistic
Regression (LogReg) among some linear and bayesian classifiers that were exam-
ined concerning all the three of them. For the two last approaches, the best
results were achieved for Conf = 0.70.

For dealing with the multi-label nature of our data set, we decided to use
the well known problem transformation method called Binary Relevance. The
reason for this choice is twofold. First the simplicity of the method along with its
ease of use made it an adequate choice for our approach. Seeing that our main
goal is to propose a method for finding possible relevant train examples for new
MeSH descriptors in older articles, along with ways of representing the large
abstracts without convoluting the information present in them and not delve
too deep on how these examples will be used for training. Second we wanted to
showcase that even a simple multi-label classification approach trained on our
produced weakly-labeled train set, can still compete with other more complex
state-of-the-art approaches.

We also discuss here some implementation details of the rest compared algo-
rithms. For WeST Class, the authors had 2 sets of parameters in their original
paper, with 3 different modes for obtaining weakly labeled examples. For the
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above reason we only show the produced results for the best included combina-
tion (parameters setting: ‘agnews’, input mode: ‘label’, model: ‘CNN’). In case of
WMIR, we tried to adjust the included hyperparameters for avoiding over/under-
fitting phenomena, training one model per label providing the weakly-labeled
data set that was created from the proposed approach. We also balanced the
training data set per label boosting its performance.

The macro averaged F1 score of all methods participating in our experiments
can be found in Table 1. As we can see our method clearly outperforms the other
approaches as far as predictive ability goes. This can be attributed to the fact
that by using provenance knowledge about the new descriptors we reduce the
inherent noise of the collected train data set. This fact, in combination with the
averaged embedding approach that aggregates equivalently each abstract’s sen-
tence, let us to represent all the relevant information of the article efficiently. In
contrast, WeST class creates weakly-labeled examples based solely on the test
set, thus ignoring information like PI and PMN which is present inside the previ-
ous host data set. This leads to a smaller number of train examples which proves
to be inefficient in cases with a large amount of different labels such as our own.
In case of WMIR, they chose to represent each article as the weighted sum of its
sentences with the weights being assigned based on a regression problem solved
for each bag of sentences and the bag’s weakly assigned label. This approach is
inherently single-label thus when applied to a multi-label problem it can lead to
a large amount of ‘noisy’ weights thus reducing overall performance. Moreover,
one main point of this work was to be interpretable, which seems to sacrifice
some of its predictive ability when faced with complex Label spaces. The per-
formance of Extended Prime recorded a slight improvement over Prime, though
needing more computational resources. In total, the strategy of WeakMeSH to
average each bag of sentences for handling the weakly-annotated input instances
seems to bridge the gap between train and test sets.

Table 1. Comparison results based on F1-Score (Macro) performance metric

Approach Macro-averaged F1 score

All Brand new Complex change

WeakMeSH 0.532 0.501 0.14

Extended prime 0.452 0.439 0.115

Prime 0.444 0.433 0.12

WeST class [7] 0.322 0.307 0.091

ZSLbioSentMax [10] 0.303 0.294 0.093

WMIR [13] 0.26 0.258 0.078

We should mention that since out of the 62 descriptors only 11 of them were
“complex change” ones, the number of instances in our test set with them as
labels was pretty small compared to the “brand new” subset. As a result we
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cannot draw definite conclusions on each method’s performance concerning that
subset.

6 Conclusions and Next Steps

We investigated the use of weakly-supervised learning for MeSH indexing, where
finding ground truth data for emerging descriptors is not always feasible. To that
end we proposed the use of explicit provenance information to aid in detecting
possible relevant data for each new descriptor from past MEDLINE articles.
We also presented a semantic similarity-based approach for measuring the relat-
edness of the detected data with their relevant novel descriptors and assign
weak labels. This approach treats each MeSH article as a bag of sentences and
measures the similarity for each of them separately, before averaging these sen-
tences in order to represent each article inside our weakly-labeled training set.
For facilitating our experiments, we sampled a large-scale data set that satisfies
the conditions which accompany a real-world multi-instance multi-label problem
with an evolutionary behavior. This is included in our repository, providing thus
a benchmark data set to AI and ML communities. The produced results show
that our approach outperforms similar weakly-supervised learning methods that
do not make use of provenance information as well as approaches that use the
same weakly-labeled training set we created but represent the data differently.

Of course, this work does not come without limitations. The underlying rela-
tionship between labels are not exploited for reduction of noisy annotations, as
well as other hierarchical information that categorize each label on an initial
fine-level. Therefore, the computation of anchors/prototypes per separate label
indicator for reducing the effect of the noise of the weakly annotated instances
should be examined as future work [8].
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Abstract. Medical knowledge graphs (KGs) constructed from Elec-
tronic Medical Records (EMR) contain abundant information about
patients and medical entities. The utilization of KG embedding models
on these data has proven to be efficient for different medical tasks. How-
ever, existing models do not properly incorporate patient demographics
and most of them ignore the probabilistic features of the medical KG. In
this paper, we propose DARLING (Demographic Aware pRobabiListic
medIcal kNowledge embeddinG), a demographic-aware medical KG
embedding framework that explicitly incorporates demographics in the
medical entities space by associating patient demographics with a corre-
sponding hyperplane. Our framework leverages the probabilistic features
within the medical entities for learning their representations through
demographic guidance. We evaluate DARLING through link prediction
for treatments and medicines, on a medical KG constructed from EMR
data, and illustrate its superior performance compared to existing KG
embedding models.

Keywords: Demographics · Probabilistic medical knowledge graph ·
Knowledge graph embedding · Electronic medical records

1 Introduction

In recent years, knowledge graphs (KGs) have been established for medical assis-
tance as the underlying core component of clinical decision support systems
(CDSSs) [16,21] and self-diagnostic symptom checkers [14]. Those KGs are often
extracted from sources such as Electronic Medical Records (EMR) and store clin-
ical information into a set of triples for representing medical entities as nodes
and relations as the edges between them. Medical KG-based applications have
been reported in different scenarios, such as treatment recommendations [3],
medicine recommendations [7], and drug-to-drug similarity measurements [2].
Those applications usually are performed through a link prediction process and
can be divided into two steps: 1) learn embeddings of medical entities and rela-
tions, 2) make predictions/recommendations according to these embeddings.
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Several approaches rely on medical KG embeddings for recommendation
tasks, work from Gong et al. [7] proposed a medicine recommendation framework
that embeds medical entities such as diseases, medicines, patients, and their cor-
responding relations into a shared lower dimensional space. The authors use the
embeddings to decompose the task into a link prediction process while consider-
ing the patient’s diagnosis and adverse drug reactions. Chen et al. [3] proposed
a framework operating on medical KG for thyroid treatment recommendation
with cold start based on TransD [10] and network embeddings with a hierarchical
structure.

While recent research [2,3,7,12] employs traditional KG embedding methods
[1,10,13,18] as a first step for representing patients and medical entities, it lacks
the consideration of demographic meta-data. However, such information is very
advantageous and even necessary for medical tasks. Several works [9,17,20] have
investigated and shown the importance and development of demographics in
different medical tasks and challenges. Considering this, we argue that incorpo-
rating demographics as part of medical KGs allows us to retain patients’ generic
information and construct more accurate representations for medical entities.

Hence, in this paper, we propose DARLING (Demographic Aware pRobabi-
Listic medIcal kNowledge embeddinG) – the first demographic-aware medi-
cal KG embedding framework that explicitly incorporates demographics in the
medical entities space by associating patient demographics with a correspond-
ing hyperplane. Our framework leverages probabilistic features within medical
entities for learning their representations through demographic guidance. We
evaluate DARLING on link prediction for treatments and medicines, where it
achieves improved results compared to multiple existing KG embedding models
on standard metrics. Furthermore, for evaluation purposes, we construct a medi-
cal KG from the MIMIC-III [11] data, which comprises medical elements relating
to patient admissions, such as demographics, disease diagnosis, treatment proce-
dures, etc. The medical KG contains diseases, treatments and medicines, where
our construction method automatically links all extracted entities with existing
biomedical knowledge graphs, including ICD-9 [15] ontology and DrugBank [19].
With our work we make the following key contributions to the state of the art:

– We propose DARLING, the first demographic-aware framework for learning
probabilistic medical KG embeddings.

– We provide a method to construct a medical KG with demographics meta-
data that links all extracted entities with existing biomedical knowledge
graphs.

– We demonstrate DARLING’s effectiveness through extensive experiments
and show its superior performance via link prediction on treatments and
medicines. We also illustrate the sensitivity of different demographic cate-
gories in our framework.

To facilitate reproducibility and reuse our framework implementation, alongside
the medical knowledge graph construction method, the results are also publicly
available1.
1 https://github.com/AynurGuluzade/DARLING.

https://github.com/AynurGuluzade/DARLING
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The rest of the paper is structured as follows: Section 2 summarises the
related work and Sect. 3 presents the proposed DARLING framework. Section 4
describes the experiments, including the experimental setup and the evaluation.
Finally, we conclude in Sect. 5.

2 Related Work

Our work lies at the intersection of medical KG embeddings and graph-based
embedding approaches that employ patient demographics. In this section, we
describe previous efforts and refer to different approaches.

Current efforts on knowledge graphs have concentrated on automatic knowl-
edge base completion and population. Multiple KGs [5,6] have been constructed
from vast volumes of medical databases over the last years. Medical KGs con-
tain medical facts of medicines and diseases and provide a pathway for medical
discovery and applications, such as effective treatment and medicine recommen-
dation. Unfortunately, such medical KGs suffer from severe data incompleteness
problems, which impedes their application in clinical medicine. Celebi et al. [2]
proposed a KG embedding approach for drug-to-drug interaction prediction in
a realistic scenario. Hettige et al. [8] proposed an EMR embedding framework
that introduces a graph-based data structure to capture visit-code associations
in an attributed bipartite graph and the temporal sequencing visits through a
point process. Moreover, Choi et al. [4] proposed another approach that learns
the representations for both medical codes and visits from large datasets. Both
works [4,8] consider patient demographics on medical codes; however, they only
focus on visit-code embeddings and do not directly harness medical KG embed-
dings or any medical task. Hence, specific medical information is insufficiently
tailored. To the best of our knowledge, none of the existing approaches employs
demographics as an essential factor for medical KG embeddings.

3 DARLING

This section presents a detailed description of DARLING (Fig. 1). In this work,
we use a boldface lower-case letter x to denote a vector, ‖x‖p to represent its lp
norm and d for the embedding dimension. Please refer to the appendix2 for the
background of our framework, detailed experiment results, etc.

3.1 Probabilistic Medical Knowledge Graph with Demographics

A KG can be denoted as a set of triples K ⊆ E × R × E where E and R are
the set of entities and relations respectively. More precisely, the KG comprises
triples (h, r, t) ∈ K in which h, t ∈ E represent a triples’ respective head and
tail entities and r ∈ R represents its relation. The direction of a relationship
indicates the roles of the entities, i.e., head or tail entity. In our scenario, we
2 https://github.com/AynurGuluzade/DARLING/blob/main/paper/Appendix.pdf.

https://github.com/AynurGuluzade/DARLING/blob/main/paper/Appendix.pdf
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Fig. 1. The medical triple (Tuberculosis (TB), Disease-Medicine, Isoniazid) is valid for
both demographic sets c1 and c2. h(c1), r(c1) and t(c1) are the projections of the triple
onto the demographic hyperplane c1. As we can observe, the hyperplanes encode demo-
graphic information such as gender, age group, and ethnic group. DARLING learns
demographic-aware representations of medical entities and relations by minimizing the
translational distance ‖hc + rc − tc‖2 based on the triple probability score.

consider medical entities, extracted from EMR data, such as disease diagnosis,
treatment procedures, and medicines; therefore E ⊆ D ∪ P ∪ M, where D is the
set of diagnosis, P is the set of procedures and M is the set of medicines. In
particular, we construct triples with h ∈ D and t ∈ P ∪ M. Hence, our medical
KG is denoted as K ⊆ D × R × P ∪ M.

We incorporate patient demographic meta-data such as gender, age group
and ethnic group, by adding a new demographic dimension to the KG triples.
We define the demographic set as C ⊆ G × A × T , where G is the set of genders,
A the set of age groups and T the set of ethnic groups. Our medical KG contains
quadruples (h, r, t, c) ∈ K where c ∈ C is a demographic set for which the corre-
sponding medical triple (h, r, t) holds. We aim to incorporate the demographic
meta-fact c directly into our learning algorithm, to learn demographic-aware
embeddings of the KG elements.

Moreover, inspired by [12], we strengthen each quadruple (h, r, t, c) existence
by introducing a statistical probability that indicates how likely is the particu-
lar triple (h, r, t) to appear with the demographic set c. Specifically, we asso-
ciate each quadruple with the probability p(h, r, t, c) which is calculated as,
p(h, r, t, c) = N(h,r,t,c)/Nh, where N(h,r,t,c) is the number of EMR admissions
that the quadruple (h, r, t, c) was extracted, while Nh is the number of admis-
sions that contain the medical entity h. In contrast to [12], our probability value
is calculated by considering also the demographic set c and not only the triple
(h, r, t).
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3.2 Demographic-Guided Translation

DARLING operates as an interaction model f : D × R × P ∪ M → R that com-
putes a real-value score representing a medical KG quadruple’s plausibility, given
the embeddings for the entities, relations, and demographic sets. In our approach,
we want the medical entity to have a distributed representation associated with
different demographic sets. We achieve that by representing a demographic set
as a hyperplane i.e., we will have |C| number of different hyperplanes repre-
sented by normal vectors w1,w2, . . . ,w|C|, where |C| denotes the total number
of demographic sets. Therefore, we attempt to segregate the space into different
demographic zones with the help of the hyperplanes. In this way, medical triples
valid with demographic set c are projected onto the demographic-specific hyper-
plane wc ∈ R

d, where their translational distance (in our case similar to [1]) is
minimized. Figure 1 illustrates an example where the medical triple (h, r, t) is
valid for both demographic sets c1 and c2. Hence it is projected onto the hyper-
planes corresponding to those demographic sets. Using the triple embeddings
h, r, t ∈ R

d, the projected representations on wc are computed as:

hc = h − w�
c hwc, rc = r − w�

c rwc, tc = t − w�
c twc, (1)

where hc, rc, tc ∈ R
d. Consequently, we expect that a positive triple, valid with

demographic set c, will have the mapping as hc + rc ≈ tc. Accordingly, our
scoring function is defined as:

fc(h, r, t) = ‖hc + rc − tc‖p, (2)

where p ∈ {1, 2} is a hyper-parameter. Alongside the entity and relation embed-
dings, we also learn {wc}|C|

c=1 for each demographic set c. Furthermore, by pro-
jecting the triple onto its demographic hyperplane, we incorporate demographic
knowledge into the entity and relation embeddings, i.e., the same distributed
representation will have a different role in different demographic sets.

3.3 Optimization Through Probability Score

DARLING employs a margin-based pairwise ranking loss to differentiate between
correct/positive and incorrect/negative triples. The negative triples are obtained
by corrupting the positive one; thus, the pairs often share common head or tail
entities and relations. Formally, we aim to minimize the following loss function:

L =
∑

c∈[C]

∑

x∈D+
c

∑

y∈D−
c

max(0, gc(x) − gc(y) + γ), (3)

with respect to the entity, relation and demographic set vectors. D+
c is the set

of valid triples with demographic set c, the negative triples are drawn from the
set D−

c , and γ is a margin separating correct and incorrect triples.
Unlike existing approaches that employ pairwise ranking loss, DARLING

does not directly use the score function fc(h, r, t). Instead, we utilize probability
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Fig. 2. Overview of our Medical KG construction process.

values p for estimating the scores for optimization. First, we introduce a mapping
function or probability score function fp that allows us to map each quadruple
probability value p(h, r, t, c) into a score. This function is defined as:

fp(h, r, t, c) = λ ln p(h, r, t, c)−1, (4)

where λ is a scaling factor. To avoid a 0 denominator for negative quadruples, we
introduce a constant probability value εn > 0. Furthermore, we set a minimum
probability value for positive quadruples as εp, where εp > εn. Second, we define
the function gc() as the absolute difference of the probability score fp and the
score function fc. Formally, this is described as:

gc(h, r, t) = |fp(h, r, t, c) − fc(h, r, t)|. (5)

In this way, the DARLING optimization process allows us to learn represen-
tations that would satisfy each quadruple probability value. Specifically, the
quadruple entities with a high probability value will have representations closer
in space compared to those with a low probability.

4 Experiments

4.1 Datasets and Medical Knowledge Graph Construction

We perform experiments on a real EMR dataset – MIMIC-III [11], and two
biomedical knowledge graphs, DrugBank [19] and the ICD-9 [15] ontology.
MIMIC III (Medical Information Mart for Intensive Care) comprises information
related to patients admitted to critical care units at a large tertiary care hos-
pital. The dataset contains distinct information about 46, 520 patients, 58, 976
admissions, and 1, 517, 702 prescription records associated with 6, 985 diagnosis,
2, 032 procedures and 4, 525 medicines. For our work, we extract patient demo-
graphics, disease diagnosis, treatment procedures, and medicines. We link the
extracted medicines to DrugBank, which is a bioinformatics resource that con-
sists of medicine-related entities. The DrugBank KG contains 8, 054 medicines,
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Table 1. Results on link prediction for treatments and medicines.

Task Disease-Treatment Disease-Medicine

Methods Mean rank Hits@3 Hits@10 Mean rank Hits@3 Hits@10

TransE [1] 73.94 15.71% 47.40% 27.04 15.89% 54.33%
TransH [18] 75.56 16.51% 48.60% 27.71 16.23% 55.46%
TransR [13] 115.12 12.64% 30.34% 45.74 14.33% 39.16%
TransD [10] 84.66 17.34% 47.64% 33.51 15.97% 55.76%
PrTransE [12] 69.69 16.29% 47.21% 27.51 15.45% 54.80%
PrTransH [12] 69.01 16.89% 47.25% 26.71 16.14% 55.73%

DARLING (ours) 64.65 22.71% 52.19% 22.86 26.90% 61.73%

4, 038 other related entities (e.g., protein or drug targets) and 21 relationships.
Moreover, we link extracted diseases and treatments with ICD-9 ontology (Inter-
national Classification of Diseases, Ninth Revision) which contains 13, 000 inter-
national standard codes of diagnosis and procedures. We connect MIMIC-III,
DrugBank, and the ICD-9 ontology by constructing the medical KG (c.f. Fig. 2).

4.2 Models for Comparison

For evaluating the performance of our framework, we compare against the fol-
lowing methods: TransE [1] is a simple but effective translation-based model.
A major advantage of TransE is its computational efficiency, which enables its
use for large-scale KGs. TransH [18] is an extension of TransE where each rela-
tion is represented by a hyperplane. Our proposed framework, DARLING also
adjusts TransE in a similar way by treating the demographic sets as hyper-
planes. TransR [13] explicitly considers entities and relations as different objects
and therefore represents them in different vector spaces. TransD [10] is similar
to TransR, however, instead of performing the same relation-specific projec-
tion for all entity embeddings, entity-relation-specific projection matrices are
constructed. PrTransE & PrTransH [12] are extensions of TransE and TransH,
which introduce triple probabilities. Our optimization via probability score was
inspired by this work, however, our approach differs considerably in multiple
aspects.

4.3 Results

We apply the following frequently used metrics to summarize the overall perfor-
mance: 1) Mean rank (MR): which represents the average rank of the test triples,
where smaller values indicate better performance. 2) Hits@K: which denotes the
ratio of the test triples that have been ranked among the top-k triples, where
larger values indicate better performance. We report results for k = {3, 10}.

Table 1 illustrates the results for treatment and medicine prediction from
our constructed medical KG. As indicated, DARLING outperforms all other
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Fig. 3. DARLING results based on different demographic combinations with and with-
out probability score.

traditional KG embedding approaches on both mean rank and Hits@K. More
precisely, for Hits@3 and Hits@10, our framework has an absolute difference of
at least 5 points from the baselines, while for Hits@3 on medicine prediction,
this difference is increased to 10 absolute points. DARLING also has lower mean
rank compared to all other baselines. The improved performance arises from
DARLING’s ability to generate more accurate embeddings of the medical enti-
ties. The demographic-based hyperplanes that our framework produces allow it
to categorize diseases, treatments and medicines into “subspaces” where it learns
their embeddings. Furthermore, the quadruple probability score provides some
weighting for the distance between the entities. In contrast, all the baselines
project the medical entities in one or two spaces (since the number of relations
is two). As demonstrated by our results, this is not sufficient to represent all
entities accurately.

4.4 Demographic and Probability Score Sensitivity

We perform experiments to identify the demographic and probability score sen-
sitivity of our framework. In particular, we aim to recognize which demographic
category (gender, age group, ethnic group) is more effective and whether the
probability score impacts our results. To do so, we adjust DARLING to construct
hyperplanes with all demographics individually and with all possible combina-
tions. At the same time, we run the framework by including and excluding the
probability scores.
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Figure 3 illustrates the results of this experiment for mean rank and Hits@10.
Regarding the demographics, we obtain that “Age group” is the most prominent
one since the results are better compared to “Gender” and “Ethnic group”. We
find this accurate since most diseases are highly correlated with patient age.
Furthermore, we observe that with “Ethnic group” we obtain better results than
with “Gender”. When joining the categories “Age group + Ethnic group (A+E)”
performs better than “Gender + Age group (G+A)” and “Gender + Ethnic group
(G+E)”. It is worth mentioning that even when employing one demographic cat-
egory together with the probability score, we still acquire better results than any
of the baseline methods. We obtain the highest possible results when we utilise
all three demographic categories, as we also do for DARLING. Moreover, the
results indicate a higher performance by 1–3 points when using the probability
score.

5 Conclusions

In this article, we focus on medical knowledge graph embeddings of electronic
medical records. We provide a demographic-aware embedding framework that
explicitly incorporates demographics in the medical entities’ space by associat-
ing patient demographics (gender, age, ethnicity) with a corresponding hyper-
plane. Our framework leverages probabilistic features of entities for learning
their embeddings through demographic guidance. Furthermore, for evaluating
our approach, we present a method to construct a medical KG from EMR data
and automatically link all extracted entities with existing biomedical knowledge
graphs (ICD-9 and DrugBank). We empirically show that our model achieves the
best results in link prediction for treatments and medicines, compared to other
traditional KG embedding approaches. Moreover, we perform a demographic
sensitivity experiment and discover that age is the demographic category that
significantly affects our high results. We also show the importance of probability
score in our framework. For future work, we intend to employ our framework as
an embedding method for existing medical recommendation systems.
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Abstract. This article deals with the symptom checker MedVir which
is modeled on the reasoning of an emergency physician. His reasoning
is very particular because he often has no knowledge of the patient and
he doesn’t have much time to evaluate the situation. He needs to make
decisions rapidly based on diagnostic hypotheses and an estimation of
the severity of the patient’s condition. We present a ten step model of the
reasoning of an emergency physician by a four layer network composed
with what we call a “neuronal entity” and a question prioritization algo-
rithm which checks the most important questions. This “neuronal entity”
generalizes the neuron concept but differs from those usually used in
machine learning. Visualization by graphs displays all the characteristics
of each neuron and each synapse thickness corresponds to the argumen-
tative strength of a question. Hence, these graphs could be very useful
in the training of physicians and health professionals.

Keywords: Medical reasoning · Symptom checker · Decision under
uncertainty · Neural network · Differential diagnosis

1 Introduction

Symptom checkers are online applications whose goals are both to help doctors to
obtain diagnoses hypothesis and to give patients tools to check their own symp-
toms and to self-triage remotely. A symptom checker first assesses the patient
by asking a limited series of questions in order to avoid patients filling in a long
symptom questionnaire. Finally the diagnosis process outputs a list of potential
diseases that the patient may have. The design goal of a symptom checker is
then to achieve high diagnosis accuracy when only a limited number of symp-
toms inquiries can be made. Many online symptom checkers have been developed
such as Babylonhealth, WebMD, Mayo Clinic, ADA, infermedika, IBM watson,
Isabel. Recently, a large number of web-based COVID-19 symptom checkers and
chatbots have been developed but with highly varying conclusions [13].
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In previous works expert systems have been widely applied in the medical
domain of diagnosis due to their ability to construct explanations for their lines
of reasoning [2,3,9,16]. However, expert systems have many weaknesses that
include lack of common sense knowledge, narrow focus and restricted knowledge,
inability to respond creatively to unusual situations and difficulty in adapting to
changing environment [8,15]. In order to improve accuracy of symptom checking
while also making a limited number of inquiries, medical expert systems based
on fuzzy logic were recently proposed in order to cope with uncertainty and
imprecision of patient testimony and medical data [1,4,6]. In the domain of
mental health Mohmmadi et al. have designed a web-based system for diagnosing
depression [12]. Das et al. developed a web based medical system for diagnosing
disease using fuzzy logic and intuitionistic fuzzy logic [5]. Ochab proposed an
expert system to support an early prediction of the Bronchopulmonary Dysplasia
in extremely premature infants [14]. Methods based on machine learning such as
Bayesian inference or decision trees were also used to perform diagnoses but their
weakness lies in the use of approximated scheme and often result in compromised
accuracy [11]. Recently new approaches based on machine learning methods
allowed to improve diagnosis accuracy. We can mention the interesting work
of Kao et al. [10] which employ a hierarchical reinforcement learning scheme
including contextual information.

The aim of this paper is to present the physician reasoning model used by
the symptom checker MedVir based on fuzzy logic in the context of emergency
medicine. The originality of MedVir (https://medvir.fr) is based on its design.
The doctors who designed it are all emergency physicians (Drs Etienne, Chau-
mont, Welhoff, Jeannerod). In 1987, a minitel service was available to the French
public (3615 Ecran santé), then www.docteurclic.com on the Internet, which have
since carried out 450,000 teleconsultations. The collection of patient language
and the study of doctors questionnaires made it possible to model the thought
of the emergency doctors. The construction stages were as follows: creation of
a glossary of symptoms (13,000 words and expressions obtained from 1 million
requests) creation of an ontology of symptoms, selection of diagnoses covering
80% of common pathologies from Evidence Based Medicine (EBM), address-
ing all specialties, all age groups, and covering all patient symptoms (headache,
fever, vomiting, etc.). All the documentation collected manually over several
years by the design physicians was carried out on recognized French and inter-
national knowledge bases (medline, Cochrane, learned societies,. . . ), and allowed
the constitution of each present diagnosis.

This paper deals with all the reasoning stages as well as a visualization of
this reasoning model via a four-layer graph which describes clinical information
that helps physicians in their diagnostic tasks. Each layer is composed of what
we call a “neuronal entity”, a concept which generalizes the concept of neuron
but which differs from that usually considered in machine learning.

The rest of the paper is organized as follows. In Sect. 2 we present the reason-
ing model of a physician in the context of emergency medicine. In this section we
introduce the neuronal entity concept used in the previous model, we detail the

https://medvir.fr
www.docteurclic.com


420 L. Etienne et al.

question prioritization algorithm and the scenario management. Graphs obtained
by sql queries that allow to list the most relevant questions are presented in
Sect. 3. Finally, we present our concluding remarks and perspectives.

2 Reasoning Model of an Emergency Physician

An emergency doctor is only faced with a limited number of diagnoses. Its exer-
cise (in regulation over the telephone or in intervention) is particular: no knowl-
edge of the patient or his medical data, uncertain answers from the patient, need
for rapid decision-making based on diagnostic hypotheses and an estimate of the
severity of the patient’s condition. (Ex: burns when urinating generally have a
medium severity, but if they are accompanied by chills, the severity becomes
important because it raises fear of pyelonephritis and not simple cystitis).

Preliminary remarks concerning the patient’s complaint and the doctor’s
reasoning. Anyone is able to determine which symptom bothers them the most
or which worries them the most. In front of a set of symptoms (urinary disorders,
fever, pain in the back for example), the doctor always asks what is the symptom
which led the patient to consult (for example pain in the back). This is the
main symptom. If the patient is unconscious or cannot speak this in itself is a
symptom. The other symptoms expressed by the patient in addition to the main
symptom are accompanying signs, and it often happens that the doctor reasons
from a main symptom that is not the one chosen by the patient (urinary disorders
for example). Although he has changed his main symptom as the starting point
for his reasoning, the doctor keeps in mind the other accompanying signs. It is
thanks to this prioritization that the doctor, in a minimum of questions (and
therefore in a minimum of time which is an urgent need) can consider the most
probable diagnostic hypotheses. It is this particularity of emergency medicine
that the symptôm checker MedVir has taken into account.

The steps in physician reasoning are summarized in the sequence below.

1. Collection of the patient’s complaint,
2. Determination of symptoms
3. Selection of the main symptom
4. Identification of possible symptoms related to the main symptom,
5. Determining for each symptom of the elements that characterize it (group

of questions)
6. Rapid exploration of gravity and hypotheses diagnostics from vital questions

allowing to rule out a life-threatening emergency,
7. Refining the severity of questions and diagnostic hypotheses with major and

minor questions
8. Differential diagnosis
9. Diagnostic hypotheses and final severity

10. Decision

Each of these stages includes elements of uncertainty which are: the meaning
of the words used, the difficulty sometimes in selecting the main symptom, the
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interpretation of the complaint by the doctor, the questioning which is neces-
sarily operator-dependent, the absence of clinical examination and additional
examinations (medical regulation), with however the need to make a differential
diagnosis, simply with questions. A symptom checker is subject to exactly these
constraints. The doctor’s reasoning is therefore logical and standardized, with
decision making under uncertainty.

The Fig. 1 presents the modeling of the reasoning of an emergency physician
in 10 steps.

Steps 1 to 6 included determine in a minimum of questions determined by the
question prioritization algorithm (QPA), detailed in Sect. 2.2, the most serious
diagnoses (Ex: pyelonephritis) as well as the most serious frequent (eg cystitis).
In steps 7 to 9 the QPA algorithm checks that diagnoses have not been forgotten
by means of so-called refinement questions. Decision-making is carried out in
step 10.

The organization of this set constitutes an informational network with 4
layers (Fig. 1): 835 diagnoses [D], 206 symptoms [S], 66 question groups [G], and
4583 questions/sub questions [Q]).

Fig. 1. Reasoning model in emergency medicine

The detailed description of the model is given below:

– NLP (Natural Language Processing) analyzes the patient’s verbatim (the
complaint) [P] which, along with age, sex, prior to onset of signs and geolo-
cation, constitutes the input data. He compares this verbatim (Ex: “it burns
me while urinating, I feel a bit of a bug today, and I shiver”) to the basis of
synonymy of MedVir, which makes it possible to isolate the symptoms [S] of
the patient (urinary disorder, fever and chills).

– The patient is invited to select among these symptoms [S] the main symptom
[MS] (the one that bothers him or that worries him the most, i.e., chills).



422 L. Etienne et al.

– The [MS] lists all possible diagnostics [D] where it is present. For each diag-
nosis i considered (Ex: sepsis, flu, pyelonephritis, etc.) and at any time of
the examination, the weight of the Synapse [SynNiv1] is calculated W1i =
W1ip + W1in for each symptom selected by the patient ([MS] (chills) + all
[S](fever, urinary disorder)). This W1i weight is normalized to a W1iN weight
such as W1iN = W1i

Σn
i=1W1i

. (Ex: If for the pyelonephritis diagnosis the total
sum of all its constitutive symptoms is 100, and the sum of the W1i of all the
symptoms described by the patient is 15, the degree of belief in pyelonephritis
at this time of l questioning is 15%).

– Each diagnosis i includes risk factors (history, recent or old events, etc.) which
each have a weight W2i = W2ip +W2in. The elements selected by the patient
by checking the boxes which correspond to him are added to the weight W1i

(Ex: if the patient has had a history of pyelonephritis, which adds a weight
of 4, the degree of belief is then increased to 19 % (15 + 4 = 19/100).

– A single link connects the second layer to the groups of questions [G] which
make up the third layer of [EN].

– The three steps 6, 7 and 8 are handled by the prioritization algorithm, which
decides the order of the questions asked. Each question and sub-question
[Q] constitutes the fourth layer of [EN]. The positive W3p and negative W3n

weights are calculated in the synapse [SynNiv2] in order to carry out the dif-
ferential diagnosis and to limit the number of probable diagnostic hypotheses
(Ex: cystitis, pyelonephritis, prostatitis).

– 9. The diagnoses [D] are displayed with their degree of belief and their final
severity level [Gf]. Note that the severity level is calculated even if MedVir
did not suspect a diagnosis.

– 10. The decision is taken according to i) the degree of belief in the most serious
diagnosis while respecting threshold levels (e.g.: pyelonephritis 30%); ii) the
maximum severity of the most serious diagnosis (4/5 for pyelonephritis); iii)
the severity of the symptoms reflecting the patient’s most serious condition
(fever between 40◦ and 41 ◦C).

2.1 The Neuronal Entity Concept

In order to model (Fig. 1) the emergency doctor reasoning we introduce the
notion of “neuronal entity” which is an extension of the concept of neuron
and which includes both numerical data (synaptic weights), but also criteria
for belonging to classes defined in the database (symptom, characteristics of
the symptom, diagnosis), a semantic meaning (type of word, synonymy, med-
ical specialty), a link with the reality of the human body (body area, organs,
functions, human activities, etc.), and the populations by age group to which
this entity belongs (Ex: the word burn while urinating is a complaint related to
the urinary disorder symptom located in the lower abdomen, belonging to uri-
nary function, to the organs bladder, urethra, ureter, kidney, etc., affecting all
populations except infants, felt as pain, belonging to the urology specialty, etc.)
Each of the elements D, S, G, Q of the reasoning model therefore constitutes an
“neuronal entity” [EN] which has a mixed numerical function for the calculation
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of the synaptic weight and semantic for the definition of each entity. Each [EN]
is linked to the others [EN] by logical links from Evidence Based Medicine.

Stimulation of [EN] is performed by the patient who selects the symptom
or who answered the question. This stimulation of the [EN] brings a positive
weight and a negative weight in Questions Prioritization Algorithm [QPA]. These
respective weight was directly correlated with scientific data for each diagnosis
(incidence and prevalence for each age group) recovered in EBM (Cochrane,
Medline, learned societies, etc.). The positive weight increases the diagnostic
belief (positive diagnosis) (Ex: If the EBM in 85% of adults who experienced
pyelonephritis had backache, the weight Wp of the symptom backache in the
pyelonephritis diagnosis and for this population is 8.5). The negative weight
reduces this belief or invalidate this diagnosis (differential diagnosis). (Ex: If in
EBM 100% of adults who experienced pyelonephritis had fever, absence of fever
totally invalid diagnosis of pyelonephritis in this population. Similarly, if 40%
of adults do not have. Presented chills, the weight Wn of the symptom shivers
down pyelonephritis diagnosis is –4).

There are currently 6,687 neural entities linked by a total of 379,602 different
digital synapses.

2.2 Questions Priorization Algorithm [QPA]

Fig. 2. Questions priorization algorithm

In the first layer, the main symptom is determined by the patient. The patient
checks off the symptoms he wants. Two routes are possible:
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1. Pathway for checked symptoms: For any checked symptom, the QPA suggests
symptoms belonging to diagnoses whose prevalence is greater than threshold
1 (high prevalence diagnosis). For each of these diagnoses, the Level 1 Synapse
calculates, at this time t of the questioning, the degree of belief of each. In the
2nd layer, only diagnoses whose degree of belief is greater than threshold 2
(diagnosis of which the degree of belief is high) will be retained. In the 3rd and
4th layer, the questions corresponding to the checked symptoms belonging to
the diagnoses selected in the 2nd layer are displayed. The patient checks off
the questions that suit him. The level 2 Synapse then calculates the degree
of belief of the diagnoses at this time t of the questioning and selects the
diagnoses whose degree of belief is greater than threshold 3 (diagnoses of
average degree of belief). Additional questions are then asked to which the
patient answers. The system then checks through a feedback loop all the
other diagnoses whose degree of belief is less than threshold 3. The severity is
calculated at this instant t of the questioning and the final result is displayed
(degree of belief of the final diagnoses selected as well as the final gravity).

2. Pathway for unchecked symptoms: For any checked symptom, the QPA sug-
gests symptoms belonging to diagnoses whose prevalence is greater than
threshold 4 (diagnosis of average prevalence). For each of these diagnoses,
the Level 1 Synapse calculates, at this point in the questioning, each per-
son’s degree of belief. In the 2nd layer, only diagnoses whose degree of belief
is greater than threshold 5 (diagnosis of which the degree of belief is high)
and whose prevalence is greater than threshold 6 (average prevalence) will
be retained. In the 3rd and 4th layer, the questions corresponding to the
checked symptoms belonging to the diagnoses selected in the 2nd layer are
displayed. The patient checks off the questions that suit him. The Level 2
Synapse then calculates the degree of belief of the diagnoses at that time t
of the questioning and directly calculates the final severity. The final result is
displayed (degree of belief of the final diagnoses retained as well as the final
severity. The thresholds are determined according to the human perception
of the probabilities [7].

2.3 Scenario Management

Learning works from the return hospital diagnosis. Any user patient or healthcare
professional using MedVir will generate a scenario [Sc] consisting of the answers
given to the questions asked. When the patient is discharged, the hospital sends
a diagnostic feedback to MedVir using the ICD11 (International Classification of
Diseases). Either the diagnosis corresponds with that of MedVir and the scenario
is stored and validated with its initial percentage obtained by the interrogation;
either it does not match, and supervised learning can improve questions, ask
more, or remove some. All scenarios (selected neural entities and value of each
synapse) are stored in the database. Statistical monitoring by a Khi2 test will
make it possible to know after how many scenarios for a so-called closed diagno-
sis (using only its original data) can be considered to have sufficient elements to
be considered reliable. This closed diagnostic is then opened, and all the correct
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diagnostic returns are stored there in an automatic, unsupervised manner. The
new data then replaces the old ones and the system therefore learns automati-
cally in an unsupervised way. Each new scenario then increments all the synapses
that were called upon during the interrogation.

3 Visualisation by Graphs

The graphs are obtained by simply querying the database using sql queries. The
graph in Fig. 3 represents all the diagnoses [D] considered by MedVir in urology.
In the center are the [EN] of the diagnostics (1st layer). Around (2nd layer) are
the [EN] of the symptoms. These two types of [EN] are linked together by Level
1 Synapses. Around (3rd layer) is the layer of question groups [D], each of which
is linked to the layer of [S] by a link which is not numerical but semantic (the
meaning of the question asked). Finally the 4th layer is that of questions/sub-
questions [Q]. We have the ability to filter the diagnoses (one or more) that we
are looking for. For example pyelonephritis in the Fig. 4.

Fig. 3. Urology graph

3.1 Pyelonephritis Graph

Zooming in on this graph displays all the characteristics of each neuron and
each synapse. The thickness of the synapses corresponds to the argumentative
strength of a question (see below). Zooming in on the urology graph displays
all the characteristics of each neuronal entity [D], [S] [G] and [Q]. The SynNiv1
synapse is located between the diagnosis [D] (here pyelonephritis) and the symp-
toms [S] which characterize it. The synapse between each symptom [S] and the
question group [G] is not numerical but semantic in nature. Finally, the SynNiv2
synapse is located between the group [G] and the questions [Q] attached to each
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Fig. 4. Pyelonephritis graph

symptom [S]. Any question asked has an “argumentative force” visualized in the
graphs by the thickness of the synapse.

The graph makes it possible to show all the constituent elements of each
diagnosis and to display, thanks to the thickness of the synapses, the essential
questions to ask in order to have the maximum probability with a minimum of
questions. This can be done for one or more diagnoses.

Conversely, it is possible to start from a single starting symptom, display all
the diagnostic hypotheses and have the list of the most relevant questions to
reach the highest probabilities in a minimum of questions. This function is very
useful for emergency physicians who have little time, which is a great source
of uncertainty and errors. Such a tool is of immense use in suspicion of rare
diseases that a doctor may have intuition of without knowing exactly the signs
that constitute it. The utility is also for medical education to students and for
continuing medical education.

4 Conclusion and Perspectives

In this paper a ten step model of an emergency physician reasoning has been
presented. This model is attained by a four layer network composed of neuronal
entities and a question prioritization algorithm. An experiment carried out in
2012 at the Lariboisière hospital in Paris in prof. Plaisance service showed on
397 patients that simple questioning by MedVir was 100% reliable with regard to
the assessment of severity, and allowed in 87% of cases to suspect the diagnosis
made subsequently by the hospital after clinical examination and additional
examinations. A larger-scale study will be developed with the innovation unit
of APHP (Assistance Publique Hôpitaux de Paris), the results of which will
be available in the last quarter of 2021. In addition, this 4-layer model will
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be supplemented by a 6-layer system intended to provide a pathophysiological
explanation of each symptom in the context of each diagnosis at all times during
the interrogation, of great utility for the training of medical students.
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Abstract. This paper studies the effect of the order of depth of mention on nested
named entity recognition (NER) models. NER is an essential task in the extrac-
tion of biomedical information, and nested entities are common since medical
concepts can assemble to form larger entities. Conventional NER systems only
predict disjointed entities. Thus, iterative models for nested NER use multiple
predictions to enumerate all entities, imposing a predefined order from largest to
smallest or smallest to largest. We design an order-agnostic iterative model and a
procedure to choose a custom order during training and prediction. We propose a
modification of the Transformer architecture to take into account the entities pre-
dicted in the previous steps. We provide a set of experiments to study the model’s
capabilities and the effects of the order on performance. Finally, we show that the
smallest to largest order gives the best results.

Keywords: Named entity recognition · Biomedical · Nested entities

1 Introduction

Biomedical concept recognition is a classical and essential task of natural language pro-
cessing for biomedical applications [11], aiming to extract information such as symp-
toms, treatments, proteins, genes, dates, and durations from free text. Classic methods
assume that entities are disjoint and formulate the problem as a sequence segmenta-
tion task, using word tagging schemes. However, in a real-world scenario, entities can
compose or overlap, thus breaking the assumption that they are disjoint. For example, a
temporal event “after anesthesia” contains the nested treatment entity “anesthesia.”

A class of methods deals with this problem of nested named entity recognition with
a cascade of flat (non-nested) named entity recognition layers for different depths, i.e.,
predict the entities at a given depth iteratively predicting large entities or short entities
first. The predictions of a given depth are used as additional input for the next prediction.
We can argue whether the depth order matters during the training of such a model: is it
easier for the model to predict large entities first and look inside its previous predictions
c© Springer Nature Switzerland AG 2021
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Fig. 1. (a) modified Transformer conditioned on the tags of the previously observed entities after
layer Ltag - adapted from [15]; (b) Global model prediction diagram

for smaller ones, or predict small entities and compose them to build larger ones? To
answer this question, we design an order-agnostic auto-regressive model based on the
Transformer encoder architecture and a procedure to let it choose a custom order.

This work was originally designed to address Task 3 of the DEFT 2020 evalua-
tion campaign (in French), and we further evaluated it on the classical GENIA dataset
(in English). This DEFT tasks deals with the detection of named entities in texts describ-
ing clinical cases [3]. More details about the challenge are presented in [1], in which we
describe our 3 official submissions. To our knowledge, our work is the first to evaluate a
nested biomedical NER system in French, which constitutes an additional contribution,
as resources for languages other than English are very scarce [10]. More details about
our work can be found at https://arxiv.org/abs/2104.01037.

2 Method

2.1 Model

Our model is an auto-regressive encoder-only Transformer [15] taking as input a
sequence of words and a list of entity mentions already extracted (empty list at the first
iteration) and predicts a list of new mentions. The entities predicted at each iteration do
not overlap, but all the entities predicted at the end of the prediction may overlap.

We handle entities in the form of tags assigned to each token with the conventional
BIO or BIOUL formats by embedding each tag into a vector space and summing the
embeddings of different tags at the same position. The sentences are tokenized and
represented with a Transformer model. The output of the Transformer are fed into a
linear CRF predicting flat entities (Fig. 1a). At each iteration, the model receives the
tags predicted at the previous iterations (Fig. 1b).

https://arxiv.org/abs/2104.01037
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2.2 Greedy Order Training

We proceed in several steps and predict only non-overlapping entities at each run. How-
ever, several permutations, or valid prediction paths, lead to the same list of entities.
For example, the model could predict the smallest entity first and use that information
to detect the large one, or the other way around. Models like [4] choose a strategy in
advance (smaller mentions first, for example), but the risk is not to take advantage of all
the inter-dependencies that make some mentions easier to find when others are known.

Another solution is to choose the order of extraction leading to the model’s best
performance, measured in F-measure. A greedy strategy is applied to select, among
the non-overlapping combinations of mentions not observed in a batch, the closest to
the mentions predicted in terms of F1 overlap. Intuitively, this means that a combina-
tion that is easier for the model to predict is preferred. During training, to simulate an
extraction in progress, we randomly select in each sentence a subset of the entities and
label them as already predicted entities.

2.3 Model Parameters

We initialize the Transformer with CamemBERT [9] weights for DEFT and BioBERT
[7] for GENIA. We use a dropout of 0.25, we optimize the parameters by backpropa-
gation with Adam [6], over 40 epochs for DEFT and 10 epochs for GENIA. We use a
linear decay learning rate schedule with a 10% warmup and two initial learning rates:
4 ·10−5 for the Transformer and 9 ·10−3 for other parameters. We insert the tag embed-
dings at layer Ltag = 6 for BERT base and 19 for BERT large.

3 Experiments and Discussions

3.1 Datasets

We conduct experiments on the DEFT [1] and GENIA [5] datasets, which present texts
with different languages and different types and depths of entities. We perform splits
following [2] for GENIA and keep 10% of the training data as a validation set for DEFT.

3.2 Baselines

We compare our results against a simple flat NER model composed of a Transformer
and a CRF that can only predict non-nested mentions. Since a choice is required during
training as to which mentions should be predicted, we evaluate three modes: we only
recover the shortest mention in a nested group, or the largest, or let the model decide
greedily. We also compare our model against the state-of-the-art models on GENIA and
the other participants’ models on DEFT.
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Table 1. Model performance on DEFT and GENIA datasets

GENIA DEFT 3.1 DEFT 3.2 DEFT

P R F1 P F F1 P R F1 F1

Ju et al. [4] 0.785 0.713 0.747

Wang and Lu [16] 0.770 0.733 0.751

Sohrab and Miwa [13] 0.932 0.642 0.771

Lin et al. [8] 0.758 0.739 0.748

Shibuya and Hovy [12] 0.763 0.747 0.755

[14], BERT+Flair 0.783

[17], BERT+Flair 0.803 0.783 0.793

HESGE, BERT large 0.702 0.624 0.660 0.788 0.725 0.755

Median DEFT 0.456 0.615

Flat short entities, BERT base 0.793 0.698 0.742 0.609 0.228 0.332 0.757 0.669 0.710 0.623

Flat large entities, BERT base 0.815 0.707 0.757 0.609 0.608 0.609 0.722 0.315 0.439 0.509

Flat greedy, BERT base 0.814 0.710 0.758 0.608 0.348 0.443 0.785 0.605 0.683 0.620

(our) greedy, BERT base 0.812 0.721 0.764 0.626 0.609 0.618 0.762 0.742 0.751 0.713

(our) large→short, BERT base 0.802 0.718 0.758 0.626 0.606 0.616 0.741 0.747 0.744 0.708

(our) short→large, BERT base 0.803 0.734 0.767 0.611 0.619 0.615 0.756 0.745 0.751 0.712

(our) short→large, BERT large 0.793 0.745 0.768 0.661 0.660 0.660 0.781 0.776 0.778 0.745

3.3 Results

On the DEFT task 3.1, our model obtains the best F1 result of 0.66. On the DEFT
task 3.2, the same model obtains a F1 of 0.778. Flat NER models lose between 10 and
20 points in F1, due to the large number of nested mentions.

On the GENIA dataset, our best model reaches 0.768 F1 with BioBERT large. We
hypothesize that our method ranks lower on the latter dataset because it only uses BERT
instead of BERT and other word features, and that the insertion of tags directly in
BERT architecture may lead to loose some of the pretrained model abilities. We can
also observe that flat NER is competitive with iterative models, which can be explained
by the low ratio of nested mentions in the dataset.

We study the effect that forced prediction order during training has on model perfor-
mance. We compared three prediction modes: top to bottom, bottom to top, and greedy
decoding. In the top to bottom mode, given a previously predicted entity at depth D, we
force the model to predict a named entity located at depth D+1. In the bottom to top
mode, we use the inverse depth as training order. Finally, in greedy decoding mode, we
let the model choose the mentions by selecting those closest to its prediction.

We can observe that the short-to-large training order obtains the highest perfor-
mance on both GENIA and DEFT validation splits. The large-to-short depth training
order obtains the lowest accuracy. We hypothesize that learning to detect the smallest,
and often easier, entities first leads the model to learn how to compose new entities
from small entities. On the other hand, learning to predict large, and often more dif-
ficult, mentions first, must lead the model to overfit on these large mentions and fail
to recover smaller nested mentions when the largest ones are wrongly predicted. The
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greedy training reaches an intermediate performance, so we conclude that a learned
prediction order is suboptimal.

4 Conclusion

This paper proposes an architecture to perform named entity recognition based on iter-
ative predictions and dynamic mention matching during training. We also provided
insights into the model behavior and showed that training depth mention order impacts
performance on auto-regressive layered named entity recognition models, and short-to-
large order obtains the best results.
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Abstract. Neuralmodels that use context-dependency in the learned text are com-
putationally expensive. We compare the effectiveness (predictive performance)
and efficiency (computational effort) of a context-independent Phrase Skip-Gram
(PSG) model and a contextualized Hierarchical Attention Network (HAN) model
for early prediction of lung cancer using free-text patient files from Dutch pri-
mary care physicians. The performance of PSG (AUROC 0.74 (0.69–0.79)) was
comparable to HAN (AUROC 0.73 (0.68–0.78)); it achieved better calibration;
had much less parameters (301 versus> 300k) and much faster (36 versus 460 s).
This demonstrates an important case in which the complex contextualized neural
models were not required.

Keywords: Prediction models · Deep learning ·Word embeddings · N-Grams ·
Phrase skip-gram · Cancer · Primary care

1 Introduction

As not much progress has been made during the last decades in early detection of cancer
we need a new approach. Improvement in early detection of cancer might come from
new, so far unknown, cues that might be present in the patient’s consultation notes. This
information is not readily accessible for processing, but recent developments in natural
language processing (NLP) provide ways to learn representations of free-text to capture
relevant semantics allowing their use as predictors in prediction models.

The aim of this study is to compare the effectiveness (predictive performance) and
efficiency (computational effort) of the context-independent model Phrase Skip-Gram
[1] and the contextualizedmodel Hierarchical Attention Network [2] for early prediction
of lung cancer with Dutch free-text from primary care patient files.
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2 Materials and Methods

Population. The Amsterdam UMC primary care HAG-net database contained at the
time data of six primary care practices with over 100,000 historical patients. Per con-
sultation visit the primary care physician (PCP) writes four types (S, O, A, and P) of
free-text notes in Dutch for Subjective [reason for encounter and symptoms], Objective
[signs or findings], Analysis [diagnosis] and Plan [actions]. Patients over 30 years old
that had historical data were included. Lung cancer was identified by the ICPC code
R84 (Bronchus/lung malignancy). For each patient, we included two years of data. For
patients diagnosed with lung cancer, this period was from two years prior up to one
month before the diagnosis (in order to reduce suspicion bias). For patients without an
R84 diagnosis, we use the same period (two years data with one month offset), but up to
their last visit. Patients that did not visit the PCP in the selected two years were excluded,
as they have no input data.

Data Extraction. We de-identified the notes with a modified version of DEDUCE [3],
then noteswere tokenized intowords, andwhite spaceswere stripped.A tokenwas added
to indicate the type of note (S, O, A, or P). We applied skip-gram pre-training [4] and
phrase detection to concatenate multiple tokens. Data was randomly split into a stratified
60-20-20% training/validation/test sets. Performance was assessed by the Brier score,
AUROC,AUPRC, and calibration curves. Confidence intervals and statistical differences
were obtainedwith percentile bootstrappingwith 2,000 repetitions. Computational effort
wasmeasured by the number of trainable parameters, and CPU time on inference.Model
selection was based on the AUROC on the validation set.

Learning Algorithms. We implemented PSG by extending the publicly available code
from gensim1 to work with n-grams where n > 2. We computed PSG from bi-grams up
to 5-grams to find the best size of phrases given performance. Patient’s notes were repre-
sented as a bag-of-n-grams (i.e., words and phrases) with frozen pre-trained embeddings,
and the average of the embeddings was used to compute a final patient representation
for a linear prediction layer (see Fig. 1a). For PSG we performed manual tuning. For
our implementation of HAN (see Fig. 1b), the first set of layers represents words in a
patient note, and the second layer represents a sequence of such notes for the final patient
representation. The encoders use bidirectional Gated Recurrent Unit (BiGRU) [5]. The
HAN hyper-parameters were optimized with Botorch [6] (parameter values are reported
in supplementary Table 1). We used a class weighting strategy, inversely proportional
to the class’s occurrence rate in the training set, to deal with class imbalance, and recal-
ibrated the predicted probabilities accordingly. We used a desktop computer with an
Intel® Xeon® W-2175 CPU @ 2.50 GHz (14 cores), 64 GB RAM and an NVIDIA
Quadro P4000 GPU with 8 GB memory.

Supplementary materials are available on https://osf.io/7uks8/.

1 https://radimrehurek.com/gensim/models/phrases.html
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3 Results

We included 58,169 patients older than 30 years of which 450 (0.77%) were diag-
nosed with lung cancer. The majority of the population (68%) was between 30 and
60 years old. Lung cancer patients had more visit notes (84) than patients without lung
cancer (59). Supplementary Table 2 shows descriptive statistics of the study popula-
tion. Table 1a shows the predictive performances of 3-grams PSG and HAN on the test
set. (For n = 3, PSG performance on the validation set was highest; see Supplementary
Table 3). No statistically significant differencesweremeasured between PSG andHAN’s
performance.

Fig. 1. (a) Architecture of the Phrase Skip-Gram model. (b) Architecture of the Hierarchical
Attention Network model. A patient has consultation notes [C], [T] is a SOAP section, and [W]
denotes words or phrases.

Table 1. Predictive performance (a) and computational effort statistics (b) of 3-grams Phrase
Skip-Gram and Hierarchical Attention Network on the test set.

Model PSG HAN

(a) Performance

AUROC (95% CI) 0.742 (0.690 − 0.788) 0.730 (0.679 − 0.775)

AUPRC (95% CI) 0.020 (0.014 − 0.028) 0.021 (0.014 − 0.033)

Brier (95% CI) 0.008 (0.006 − 0.009) 0.008 (0.006 − 0.009)

(b) Effort

Trainable parameters 301 316,954

Frozen parameters 88,644,900 53,606,700

Test patient encoding time (s) 36.01 N/A

Test inference time (s) 0.382 460

Test inference total time (s) 36.39 460
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Table 1b shows the computational effort for 3-grams PSG and HAN in terms of
number of parameters and required inference time. Inference time was split into patient
encoding (only done by PSG and only required once) and prediction. HAN needs to
estimate 1,000 times as many parameters as PSG, and PSG (36 s) was over ten times
faster than HAN (460 s).

Figure 2a shows the ROC curves of the 3-grams PSG and HAN on the test set.
Figure 2b shows the calibration curves of PSG andHANmodels. PSG is better calibrated
than HAN. The predictions from HAN are overconfident. Brier scores for the PSG were
0.0077 (95% CI: 0.0062–0.0092) and for HAN is 0.0077 (95% CI: 0.0062–0.0093),
which are comparable to the Brier score of a model predicting the mean probability.

Fig. 2. (a) ROC curves and (b) calibration curves of the models.

4 Conclusions

Our study shows that in our context of oncological prediction models that use primary
care free text, simpler context-independent neural models are a viable alternative to
the prevailing more complex contextualized neural models. We observed that the PSG
achieves similar predictive performance in terms of overall performance, discrimination
and calibration to the HAN but at a fraction of the computational effort. The training
effort difference between PSG and HAN is even greater than the inference effort, but not
reported as they ran on different hardware (CPU vs GPU). Particularities of the data that
may explain these results are: the notes are typically quite short; there are not many notes
per patient, the lung cancer patients tend to have many notes; and the language style of
the PCP resembles shorthand and contains many typographical errors and abbreviations.

In related work, Gao et al. [7] use an HAN with word embeddings for the sequential
representation of cancer pathology reports in the context of predicting the primary site
of a tumor. As for neural models for text representation, Agibetove et al. [8] compared
a simple word representation model based on bag-of-n-grams to a complex sequential
model (recurrent neural networks) for classifying sentences on biomedical papers. Like
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in our work, they observed that the simple representation model achieves a comparable
performance to the sequential models with faster training times.

Our work has limitations. Both coding and timing of registration of the diagnoses in
primary care is variable, which potentially leads to considering the wrong moments of
diagnosis in our study and as we did not use validated diagnosis some patients might be
erroneously classified as having lung cancer. We did not include temporal information
(dates, order) of the consultations, nor did we include objective measurements like
laboratory investigations.. We used bootstrapping to obtain the distribution of AUC
differences, but validation was restricted to one random test set. The PSG is effective
and efficient for clinical prediction but produces context-independent representations,
which conflates the different meanings of a word into one vector, and it ignores the
sequential nature of events in free-text.

As for future work, our predictionmodel can be improved by taking temporal aspects
of the visits into account. Data from multiple centers can increase model performance
and enable external validation. Choices for different offsets and patient history horizons
may impact model performance.

But, irrespective of the mentioned limitations, an important implication of the study
is that free-text prediction analyses can be run by institutions on local computational
infrastructure as they may not have access to high performance computing infrastructure
which have high operating costs, may not be used for confidential data and have limited
accessibility for non-technical users.
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Abstract. Predictive text can speed up authoring of everyday tasks,
such as writing an SMS or a URL. When deployed in a clinical setting, it
can enable practitioners to compile diagnostic text reports in a speedier
manner, hence allowing them to be more time-efficient when examining
patients. The language used by medical practitioners when authoring
clinical reports is, however, far from common, not only between practi-
tioners but also between medical units. In this paper, we demonstrate
this clinical language variation, by showing that a model trained on texts
written by some physicians may not work for predicting the text of oth-
ers. We use a dataset created out of the clinical notes of 17 caregivers
to show that language models trained on the notes of each caregiver
outperform the ones trained with texts from several ones.

Keywords: Language modeling · Predictive medical text

1 Introduction

The benefits of predictive text have been highlighted in many studies and apply
to a wide range of everyday tasks and problems, one of which is producing
predictive medical text in a clinical setting [8]. The main objective of predictive
text is to generate the next block of text in an online and interactive manner,
with block typically referring to a text chunk of various granularity, such as
characters (or keystrokes), words, or sentences [3]. For the case of medical text,
this problem is also referred to as predictive medical text [8].

In this paper, we highlight the benefits of predictive medical text, especially
under extenuating circumstances of time pressure when hospitals are flooded
with incoming patients, such as during a pandemic. In such situations the prob-
ability of errors when writing a clinical report (e.g., a discharge or any diagnostic
report) increases due to lack of time or tiredness. It has been recently demon-
strated that using an RNN-based language model built on clinical text [8] can
achieve promising predictive performance in terms of accuracy. Nonetheless, the
language used by medical practitioners when authoring clinical reports is far
from common, not only between practitioners but also between medical units.
Our paper pinpoints this clinical language variation by demonstrating that a
c© Springer Nature Switzerland AG 2021
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Fig. 1. Excerpt from the notes of a caregiver, where highlighted words have been
suggested by a neural clinical predictive keyboard.

model trained on clinical text written by a particular group of physicians (e.g.,
of a specific medical unit) may not work for predicting the text of another group
(Fig. 1).

Statistical language modeling, applied to clinical notes, leads to substantial
keystroke reductions, and hence saving typing time for the clinician [2,11]. Neural
language models, which outperform their statistical predecessors [1], lead to
even greater time improvements [8]. The advantages of applying neural language
modeling to medicine are still under investigation, and span from simple spelling
correction in clinical notes [7,10] to predicting viral mutations related to SARS-
CoV-2 [4]. In this work we focus on next word prediction in a medical setting,
following the work of [8,9]. Neural predictive text is improved when structured
information from electronic health data is used, such as the gender and the age of
the patient [9]. Moreover, neural predictive text outperforms statistical solutions
when applied to medical text, while there are benefits for clinicians even if only
the most frequent words are used for prediction by the neural model [8].

Contributions. We focus on two weaknesses in the literature on predictive med-
ical text. First, the potential of clinical predictive text is disregarded, introducing
medical errors. The impact of a language mistake in a clinical report depends on
the nature of the term. If the term is medical it could lead to wrong medication
or treatment. Second, no work to date has explored the effect of customising
the language model to the authoring physician. Hence, we build on these two
directions, by (1) benchmarking the use of Long-short Term Memory (LSTM)
[5] networks for next word prediction during the generation of clinical text, (2)
assessing the proposed model in terms of word and medical accuracy, (3) show-
ing that the exploitation of author-specific clinical text for building customized
models per caregiver can lead to significant improvements in terms of predictive
performance compared to using models trained on the whole corpus.

2 Empirical Evaluation

We present our empirical evaluation on caregiver specific datasets in terms of
word accuracy and medical F1. We first provide a description of the used dataset
followed by our experimental setup and results.

Datasets. We used the notes of the caregivers (CGs) from the (MIMIC-III)
[6] database of 38,597 adult patients admitted between 2001–2008 to critical
care units at Beth Israel Deaconess Medical Center in Boston, Massachusetts.
The database comprises 1,912 CGs plus one with missing ID, with less than 150
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Fig. 2. Accuracy of each LSTM, trained per caregiver (CG; x axis). Blue bars (b) and
the diagonal (a) refer to prediction of the next word in texts of the same CG. The
accuracy of an LSTM trained on texts of all CGs, as in [8], is shown in orange (b). In
green (b), it is trained on texts of all but the CG in question (cross validation; CV).
(Color figure online)

of them having more than 1,000 notes each. We ranked the CGs based on the
number of notes and kept the top 100. We filtered out notes with less than ten
sentences and CGs who had less than 2,000 or more than 10,000 notes. We also
filtered out CGs who had less than 2,000 word types overall. This resulted in 17
CGs each with 26 sentences per note on average (max: 136).1 We sampled 10
sentences per note using 1,000 notes for training and 10 notes for testing. The
train/test sentences per CG were concatenated, leading to 17 datasets, one per
CG. We will refer to this dataset as mimic-cg.

Evaluation Measures. We employed word accuracy [8] and F1 combined with
a confusion set of 2,061 medical terms (Harvard lexicon).2

Models. We trained an LSTM [5] on texts of all caregivers. This is similar to
the work of [8], where models disregarded author information, hence, this is our
baseline, referred to as pav20. In order to investigate whether caregivers could
benefit from Customized language models, we trained 17 LSTMs, one per care-
giver (lstm@cg). Each model was trained on the same number of sentences
as pav20 with the same parameters. Following the work of [8,9], we used 50
dimensions for all hidden representations. We used a vocabulary of the 5,000
most frequent words; a context window of 5 preceding words; uniformly ini-
tialized word embeddings of 200 dimensions; a single-layer feed-forward neural
network of 100 dimensions and a relu activation before the softmax; Adam
optimization and categorical cross entropy; batch size 128; 10% validation split;
early stopping of 100 epochs with patience of 3 epochs and validation accuracy
monitoring. In a second line of experiments, we employed leave-one-out cross
validation. We created one more model per caregiver by training an LSTM on
1 Sentence splitting was performed with NLTK’s Punkt sentence tokeniser.
2 https://www.health.harvard.edu/a-through-c.
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(a) Medical (b) Stopwords

Fig. 3. CF1 using a medical (a) and a stopwords (b) confusion set. Blue bars correspond
to predictive medical text produced by lstm@cg trained on the notes of the tested
caregiver. Orange bars indicate the ones trained on notes from all caregivers. Dummy
caregiver IDs are shown on the x axis. (Color figure online)

texts of all caregivers but the one in question resulting in 17 more models and 35
overall (referred to as lstm@cv), which are compared to our baseline (pav20).

Results. Each of the lstm@cg models was assessed on each of the mimic-cg
evaluation datasets (see Fig. 2a). Excluding a pair of caregivers (with dummy IDs
3 and 10), the rest perform well only to their own notes. This is reasonable given
that CGs employ a different medical language defined by the patients they treat
and their conditions, among other aspects. Our models consistently outperform
pav20 (trained disregarding author information). This is observed in Fig. 2b,
where the blue bars (Customized models) are always higher than the orange
bars (pav20). Note that pav20 is trained on notes of all CGs, including the one
the model is being tested. When these are removed (shown in green bars), pav20
performs much worse. In Fig. 3a we present the F1c score by using a medical
confusion set (Harvard lexicon; see Sect. 2) for all Customized models (one per
CG) and the baseline model of [8]. In Fig. 3b we present the F1c score by using
a confusion set of stopwords.3 That is, we evaluate all the language models as
for their predictions on stopwords instead of medical terms.

Customization. As regards medical language, i.e., the one used by caregivers,
Customized models trained only on texts of the caregiver in question are advanta-
geous. Not only next word prediction is improved in general, as shown in Fig. 2b
and Fig. 3b, but Customized models also lead to safer medical use (Fig. 3a), com-
pared to baseline models that are trained on standard corpora (e.g., disregarding
the ID of the author). However, we also note that the Customized models only
perform well when they are applied on notes of the same caregiver (see Fig. 2a).
Despite the fact that each Customized model generalises well when texts of the
same caregiver are examined (the diagonal of the heatmap), typically all models
fail when they are assessed on texts of other caregivers.

3 We used Punkt from NLTK (https://www.nltk.org/).

https://www.nltk.org/


442 J. Pavlopoulos and P. Papapetrou

Applicability. The final important finding of this work is that for more than
half of the caregivers {0, 1, 2, 6, 7, 8, 11, 12, 13, 14, 15} the respective F1c is lower
than 50%. In other words, even a neural language model that is Customized to a
specific caregiver cannot ensure that a wrong medical word will not be predicted.
What this means, however, is that a predictive keyboard is not always applicable
to medical language (i.e., to assist a caregiver) without a cost. Deployment should
be made under the light of this observation and it is likely that not all caregivers
can benefit as easily from the use of a predictive keyboard.

3 Conclusion

In this paper, we highlight the need for customized predictive medical keyboard
and provide a caregiver-specific solution using an LSTM model trained on clin-
ical text produced by each caregiver. Our proposed model achieves substantial
improvement compared to a recently proposed baseline solution in terms of word
accuracy and medical F1 score. Directions for future work include the integration
of biomedical, pre-trained word embeddings; assessing Transformer-based solu-
tions; better tokenisation and sentence splitting during the text pre-processing
step; and applying a manual evaluation of the solution by involving medical
practitioners and qualitatively analysing the kinds of errors that are generated.
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Abstract. Cancer is one of the leading causes of mortality worldwide and as
populations age, the burden is growing. Treating increasing numbers of patients
enables us to gather detailed medical records. Databases with exhaustive, high
quality structured data are thus an essential resource for cancer researchers and
provide invaluable information to clinicians whenever they need to treat their
patients. In addition, these databases fuel our data strategy as the cornerstone of our
digital healthcare ecosystem and they provide crucial support for the development
of Artificial Intelligence-related projects. Feeding such databases and registries
requires manual curation to ensure their quality over time. Finding alternatives
to manual structuration is essential because around 80% of the relevant clinical
information is contained in open text and it is costly to maintain teams of curators
given the growing volumes of data generated every year. In this article we describe
an Artificial Intelligence system developed at Institut Curie, capable of structuring
clinical features from unstructured Electronic Health Records. Our system allows
us to structure clinical data with reduced manual labor and with accuracy compa-
rable to that of expert clinicians, empowering our data ecosystem and improving
the support we can give to clinicians and researchers.

Keywords: Data mining · NLP ·Machine learning · Healthcare · Structuration

1 Introduction

The global cancer incidence is estimated at 19.3 million cases and 10 million deaths
worldwide in 2020 [1]. In the current digitalmedicine era, petabytes of data are generated
every year. Looking after our patients generates data in multiple formats; genomic data,
various types of medical images, structured clinical data, written health records, etc.
Extracting and analyzing valuable insights from all these data and producing clean,
retrospective databases with exhaustive data is a major challenge.

Medical practices change over time. Health data is produced for patient care and is
usually not suitable for a straightforward usage in a research context. From a longitudinal
research point of view, this is a critical issue, because the data quality level is insufficient.
Our experience shows that most data have to be manually extracted and curated before it
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can be used and analyzed. With the growing amounts of health data collected in various
systems, computational approaches can come to the rescue.

In this contribution, we discuss the Champollion project: a pipeline to automatically
structure data from our Electronic Health Records (EHR) usingMachine Learning (ML)
methods. As data processing technologies evolve, new powerful opportunities are avail-
able for extracting and structuring data. The great potential of this tool is enhanced given
that in our experience around 80% of the key clinical information is contained in the
text of health records. This data structuration has a major contribution in several fields
such as the assistance to the screening of clinical trials, the early detection of errors in
the medical records or the creation of databases for research purposes.

2 Methods

At the turn of the century, organizations such as our hospital initiated the migration
towards digital health records. Today, our healthcare information system includes over
16 million documents related to individual medical records. Our aim is to extract data
from original text automatically, mainly clinical features from EHRs. The rationale is to
be able to recover new insights from EHRs whenever we need new data for a specific
project. ML approaches are of particular interest because there is no need to take care
of the specific lexicon used in the medical field, the diverse text formatting or the vast
data heterogeneity. The purpose of our computational models is to imitate clinicians’
expertise reading and interpreting medical records.

Building a generic artificial intelligence algorithm (AI) capable of extracting any
number of clinical features from any kind of text is out of scope. The optimal strategy is
to build and train multiple classifier models separately. Each model having the unique
objective of mining one specific set of data. This divide-and-conquer strategy allows
us to train one model for each clinical feature. Extracting data and inferring essential
medical information are some of the challenges faced by Natural Language Processing
(NLP), with quality in the process of the uttermost importance for research and clinical
studies.

Both rule-based and ML algorithms have been implemented and refined over time.
Building these algorithms is a particularly difficult task when dealing with medical
records. These documents do not follow common syntactic structures and common
typographies. Word variation is common, not only synonyms but also misspellings.
Report structures are highly variable, particularly those derived from scanned docu-
ments. Medical vocabulary is rich with numerous spelling variations; many ambiguous
acronyms are often used. Chronological order is critical, most sentences are context-
dependent and the context needs to be handled for each identified concept (negative
form, hypothesis, medical history). Physicians’ reports are not often easily related to
standard international terminologies. In extreme cases, some sentences might mean
different things depending on the doctor’s specialization or scale classification used.

Instead of working on the whole corpus of text, our models work with single sen-
tences matching one or more keywords. Our implementation can be seen as a sequential
chain of processes. We start defining a single structuration project for a given clini-
cal feature. We then create a database of manually annotated sentences related to that
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feature. This database is then used to train an ML Classifier which learns from our clin-
icians’ expertise. The classifier is finally used to extract the clinical feature from the
whole corpus of text. The complete automatic structuration pipeline is shown in Fig. 1.
In order to annotate sentences, we have used the Doccano open source text annotation
tool [2]. Slight modifications of the source code have allowed us to create an appealing
graphical user interface that can be used by doctors and clinicians to annotate sentences.
TheDoccano interface is connected to our EHR databases so that the annotation process
and the subsequent models training are completely automatic.

Fig. 1. General overview of the Champollion pipeline. A project is defined by a list of keywords
and a list of labels. A random sample of sentences is extracted from the whole corpus of Electronic
Health Records (EHR) and stored in a database. Aweb user interface enables clinicians to annotate
sentences manually using a set of labels previously defined. Annotated sentences are stored in
another database and used as a Training Dataset to optimize classifier models. Trained models are
then used on the whole corpus of text to classify new sentences and store clinical features in a
clinical database. Finally, extracted features can be compared and validated with other databases
when available.

2.1 Project Definition

The first step of our automatic structuration process is to define a specific project for a
given clinical feature. This is arguably the most critical step; in our experience structura-
tion quality drops when projects are ill-defined. Examples of projects are: classification
of inflammatory/non-inflammatory cancer, finding hormone receptors’ status (positive,
negative) or assessing the pathologic staging of breast cancer (scored from 0 to IV). A
project is defined by a set of labels and a list of keywords.

Keywords. A collection of words and/or regular expressions that are used to extract
sentences from the whole corpus of text. They have to be exhaustive in order to classify
all the existing sentences which are somewhat related to the clinical feature in question.
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Labels. Every sentence is classified by a unique label. Thus, the list of labels has to be
complete and exhaustive, including a label for uninformative sentences.

2.2 Sentences Annotation – Training Datasets

Once a project is defined, the next step is to build a dataset of annotated sentences
that will be used to train a classifier model. Our strategy is to use the already defined
list of keywords to extract 5,000 random sentences from the whole corpus of medical
records and storing them in a database. Clinicians then use an ergonomic user interface
to annotate some of these sentences.

2.3 Training Machine Learning Classifiers

A classifier model is composed of two elements; a vectorizer and an ML algorithm. The
vectorizer transforms string sentences into mathematical vectors that are subsequently
digested by the algorithm. Depending on the project, some vectorizers will be more
appropriate than others. ML algorithms output a single label given an input vector. We
have collected a list of the best performing Machine Learning classifiers known in the
literature (Linear Regressors, SVMs, Decision Trees, Neural Nets, AdaBoost, etc.) and
we have created several algorithms exploring each of their internal hyperparameters.
The different combinations between vectorizers and algorithms yield an exhaustive list
of classifier models. After Training The Models, We Evaluate Their Performance Using
10-Fold Cross Validation, Based On The Annotated Sentences Of The Project. The
best performing model will be retained and used to classify the whole EHR corpus and
structure the corresponding clinical features.

2.4 Automatic Structuration of Data

For any given project, we use the previously defined list of keywords to extract exhaus-
tively all the matching sentences from the whole corpus of health records. The corre-
sponding classifier model (trained in previous steps) classifies each sentence separately
and each sentence is tagged with a single label. Since each sentence belongs to a par-
ticular health record with a specific date, we can then compile all the results for any
given patient in a timeline and infer the true value of the clinical feature. Automatically
extracted clinical features are structured in a secure MySQL database and are made
available to Institut Curie’s clinicians and researchers for analysis.

2.5 External Validation

For some projects we have databases with already structured data for all the patients
or a sub-cohort of them. For example, estrogen/progesterone status has been manually
structured in our databases since the year 2017.We have set up some automatic validation
reports assessing the quality of the automatic extraction, which helps us tomanually fine-
tune some projects (adding/removing keywords or labels). Manually curated validation
databases are a very valuable resource to fine-tune our projects and models.
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3 Results and Conclusions

The quality and performance of the classifiers depend on several factors, such as the
complexity of the project, the number of labels or the amount of annotated sentences. In
Table 1 we show the score of four different projects we have in production. The score is
measured as the percentage of correct classifications. Overall, the performance is quite
high. Other projects in development show similar promising results.

Table 1. Evaluation of performance of Machine Learning Classifiers.

Project Labels # annotated sentences Score

Inflammatory cancer

The objective is to assess
whether a particular tumor is
inflammatory or not

Yes, No, n/a 1846 95%

Genetic mutations

Mutation status of a given a set
of genes whose mutations (or
absence thereof) are known to
impact the evolution of the
tumor

Mutated,
Not mutated, n/a

1031 93%

PD-L1 immunohistochemistry

Percentage of colored tumor
cells

A percentage in the text,
n/a

508 97%

Performance status

Described using the Zubrod
scale [3]

Score 0–4, n/a 480 98%

In summary, written health records are gold mines in terms of data. We have built
a tool capable of imitating clinicians’ classification procedures in order to extract data
around any given clinical feature. When clinicians and algorithms are comparable in
accuracy, computers have the advantage of speed. This tool allows us to structure clean
data that can then be queried and evaluated by clinicians and researchers alike.
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Abstract. In health-care, medical errors are quantified. Among them,
wrong dose prescriptions occur. Drug dose titration (DT) is the process
by which dosage is progressively adjusted to the patient till a steady
dose is reached. Depending on the clinical disease, drug, and patient, dose
titration can follow different procedures. Once modeled, these procedures
can serve for clinical homogenization, standardization, decision support
and retrospective analysis. Here, we propose a language to model dose
titration procedures. The language was used to formalize single-drug
titration of chronic and acute cases, and perform retrospective analysis
of the drug titration processes on 1,000 cases treated with Bisoprolol and
2,430 cases treated with Ramipril, in order to identify different types of
drug titration deviations from standard DT methods.

Keywords: Drug dose titration · Medication errors · Knowledge
representation · Evidence-based medicine.

1 Introduction

Only in the US, 7,000 to 9,000 people die due to medication errors and hundreds
of thousands of additional medication errors occur with milder consequences [19].
Furthermore, drug-related problems such as adverse drug events, adverse drug
reactions, and medication errors represent a major issue leading to hospitaliza-
tion, especially in adult and elderly patients [1].

This accounts for $40 billion per year to correct the effect on the health of
these patients. Among these errors, improper doses refer to overdoses (33%),
underdoses (16%), or extra doses and dose omissions (16%) [5]. The WHO iden-
tifies health care professionals as one of the factors of wrong dose prescriptions
and suggests the use of automated information systems such as computerized
provider order entry (CPOE) with decision support as a potential solution to
the problem [14]. This appreciation is observed in several recent studies such
as [5] or [6]. However, these studies are made on punctual prescriptions and not
on a gradual process of dose adjustment.
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Dose titration (DT) is the process of adjusting the dose of a medication for
the maximum benefit of the patient causing no adverse effects [13]. This optimal
dose is called steady dose. A cautious approach to DT consists on starting with
a low dose and progressively increasing the dose till the steady dose is reached,
an adverse effect is observed, or the maximum recommended dose is reached.

Even though other dosing regimens are available, such as response-guided
titration, still DT is being predominantly used [18]. Several studies covering
different medical domains are investigating DT regimens [4,7,9,10] as well as
proposing patient specific drug regimen models [11,12,20]. For example, Landry
et al. [9] studied the efficacy and tolerance of DT vs other dosing methods, such
as the age-based method and the fixed dose method in psychiatric treatments.
In order to reduce the risk of over- or under-dosing, the method predominantly
used and recommended is DT [9].

Modelling DT and developing tools which are based on these models could
contribute to homogenize the DT processes, to generate DT standards, to iden-
tify and quantify prescription errors for clinical quality analysis, and for DT
benchmark. On the other hand, having clinical data on concrete DT processes
would allow us to determine the clinical evidence associated with the DT mod-
els. Additionally, once validated, DT models could be integrated with other more
general clinical practice models [15] for a better medical care.

Literature review detected a lack of computerised methods for modelling DT.
Following our previous work [8], here (in Sect. 2) we propose a way of construc-
tively modelling DT procedures and confronting retrospective data about real
prescriptions with the models obtained, in order to detect anomalous DT actions.
We focus on the titration of one drug and formalize three approaches to DT:
single-drug DT as the basic iteration of dose increments till the steady dose is
reached [13], chronic single-drug DT or continued DT for long-term care involv-
ing periodic reassessment of the dose, and acute single-drug DT or finite DT for
short-term care involving a given number of encounters for dose reconsideration.

DT models are useful tools to identify some common medical errors [2,19]
concerning incorrect dose prescriptions, incorrect duration of DT processes, and
wrong reassessment times. In order to confirm this utility, in Sect. 3, we include
the results obtained after the application of the single-drug DT model to detect
medical errors in the titration procedures described in two synthesized data
sets. Synthesizing clinical data is a common practice when real-world data is
not available or difficult to obtain [3], and it brings several benefits to real-
world data processing [16,21]: accessibility, cost-efficiency, test efficiency, patient
privacy protection, completeness, benchmarking, and validation. We adapted
the software in [16] to synthesize 1,000 and 2,430 patient DT processes on the
bisoprolol and ramipril drugs for a technical validation of the DT models and
also to demonstrate the benefits of DT models in the detection of abnormal DT
actions.
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2 A 3-Step Modelling of Drug Dose Titration Procedures

Our analysis of DT publications (e.g., [4,7,9–13,20]) concluded with the identi-
fication of five basic formal components that can be combined to model multiple
titration procedures, which on their turn, can be combined to form more com-
plex meta-models, which describe real clinical behaviors such as single DT of
chronic and acute patients, among others. We used a formalism that is similar
to the ones that can be found in multiple languages to represent clinical practice
guidelines to allow the easy adaptation of our methods to these languages.

2.1 Basic Components

We have identified seven basic functional components for DT formalization (see
Fig. 1). Two of them, begin and end, are used to determine the points where
the DT procedure starts and finishes, respectively. Five additional components
are basic formal DT components used to describe the DT flow: inquire which
is used to determine consultation points where some clinical information should
be obtained (e.g., asking whether the patient is pregnant or not), fork which is
used to define alternative (or different) DT procedures depending on the clinical
characteristics of the patient (e.g., determine among alternative treatments or
deciding whether a treatment has to come to an end or not). Action is used to
state drug-dose prescription orders. Four types of such prescriptions are possible:
INIT to assign initial dose, INC to increase the current dose, MAX to assign
maximum dose, and NULL to cancel a drug treatment. Delay is another basic
component to define min-max time delays. Delays are used, for example, to allow
a drug to take effect after administration or to define when the dose should be
reconsidered. Join is used to make two or more DT procedures to converge in a
single common DT flow, for example, go back to a regular dose when a patient
leaves a critical situation that required higher doses.

Fig. 1. Basic elements in the definition of DT procedures.

2.2 Basic Procedures

Components in the previous section are combined to describe basic DT pro-
cedures. These procedures are the basic blocks used to formalize standard DT
procedures such as single-drug DT, chronic single-drug DT, or acute single-drug
DT, which will be introduced in Sect. 2.3.

In this work, we leverage four basic DT procedures: initiate treatment, basic
DT, cancel treatment, and delay. These are represented in Figs. 2 and 3.
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Initiate Treatment. Figure 2a describes the basic steps to initiate a drug
treatment. In terms of DT, it consists of assigning an initial dosage (INIT) of
a given drug d, if a clinical condition c is observed, and then wait between a
and b time. If the clinical condition c is not observed, do-nothing (i.e., keep the
current dose steady) is the treatment initiated. This procedure can be adjusted
in terms of the parameters a, b, c, d, and INIT. For instance, (a, b, c, d, INIT) =
(2w, 4w, HT, bisoprolol, 5 mg) would describe the initiation of a treatment of
hypertension (HT) with bisoprolol 5 mg, whose effect is expected to be observed
after 2 to 4 weeks.

Fig. 2. Initiate treatment and basic DT procedures. Parameters: a, b, c, d, INIT,
INC, and MAX stand for min-max time delay after DT adjustment, condition for this
drug treatment, drug name, and initial, increment and maximum dose for this drug,
respectively.

Basic DT. Figure 2b formalizes the DT loop involved in determining a patient’s
steady dose. That is to say, while clinical condition c is observed (e.g., unstable
high blood pressure), and the maximum dose (MAX) of the selected drug d (e.g.,
bisoprolol) is not reached, the dose is increased (INC) and a time in the range
[a, b] is left before checking whether the steady dose has been reached or not.
The loop is finished either if the clinical condition c is not observed (i.e., the
dose reached the expected effect) or the maximum dose MAX is reached (i.e.,
the drug was unable to solve the health problem). This basic procedure can be
adjusted in terms of the parameters a, b, c, d, INC, and MAX.

Fig. 3. Cancel treatment and delay DT procedures. Parameters: a, b, c, d, and NULL
stand for a min-max time delay, the condition for drug treatment, drug’s name, and
zero-dose drug treatment, respectively.

Cancel Treatment. Under specific circumstances, the administration of one
drug must come to an end. Figure 3a represents this process. Therefore, if the
clinical condition c that justifies the treatment with drug d is not observed,
the drug administration is cancelled (i.e., the dose is made null). For safety
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reasons, if condition c persists, cancel treatment is forced to have no effect.
However, if it was required, other implementations of this procedure, such as
forcing dose cancellation either if c is satisfied or not, or introducing a time
delay after cancellation could be done. Here, the cancel treatment procedure is
adjusted in terms of the parameters c and d. NULL dose is equivalent to zero
dose.

Delay. Although time delays are part of some of the previous basic DT pro-
cedures, an independent delay procedure is required, for instance, to define the
time for future follow-up actions to reconsider patient’s treatment. Figure 3b
represents this process. The procedure depends only on the parameters a and b,
as minimum and maximum delay times.

2.3 Meta-models

In [8], we introduced the eTTD language, a way to formalize procedural knowl-
edge in medicine by means of extended time-transition diagrams. Here, we use
eTTD as a meta-model language to describe drug DT tasks by combining the
basic procedures introduced in Sect. 2.2. Although many other DT tasks can be
defined with this formalism, this paper is focused on the description of three
essential titration tasks: single-drug DT, chronic single-drug DT, and acute
single-drug DT. See the corresponding eTTDs in Fig. 4.

Fig. 4. Meta-models for single-drug, chronic single-drug, and acute single-drug DTs.
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Single-Drug DT. Dose titration of one-drug treatment consists of two sequen-
tial steps in which the first one starts the treatment with an initial dose, and the
second one iterates dose increments until the steady dose is found. In Fig. 4a,
this behavior has three possible states: admission in which the patient is previous
to drug assignment, initial treatment in which the patient is receiving the initial
dose of the selected drug (e.g., 5 mg of bisoprolol once a day), and optimal one-
drug treatment when the patient has reached the steady dose. Note that actions
in the edges correspond to basic procedures in Sect. 2.2, once the corresponding
parameters are instantiated.

Chronic Single-Drug DT. The treatment of chronic conditions such as hyper-
tension (HT) or chronic heart failure (HF) implies a long-term DT in which
steady dose has to be reconsidered from time to time. Figure 4b formalizes this
procedure with an eTTD in which the optimal one-drug treatment state of the
patient has to be considered after a time delay and the treatment (i.e., the correct
dose) reassessed.

Acute Single-Drug DT. Acute cases require the application of a drug for
a short-term period (usually days or weeks). In these cases, reassessment of
the dose is done a specific number of times. Figure 4c accomplishes this with
NUM VISITS, a counter that starts with the first visit (INIT = 1), is incre-
mented in each reassessment (INC = 1) and concludes with the total number of
n visits (MAX = n).

3 Clinical Practice Supervision with DT Models

The single-drug DT model in Fig. 4a uses the two diagrams described in Fig. 2
to formalize a DT procedure in which the dose is progressively increased until
the patient condition is controlled (i.e., steady dose), or the maximum dose is
reached. This model can be used to detect some of the errors reported in [2,19]
concerning incorrect doses (e.g., overdose or underdose) and incorrect durations
(e.g., premature stop or prolonged treatment). Moreover, it can be used to check
for incorrect adjustments of dose and wrong time delays.

– Incorrect dose: The DT model defines clear indications on the initial dose and
the allowed increments. Any deviation from these values is a clinical decision
that contradicts the model.

– Incorrect duration: An incorrect duration is observed when the DT process is
either stopped or prolonged unjustifiably. The single-drug DT model in Fig. 4a
states that the only acceptable causes to stop DT are that the patient reaches
the steady dose (i.e., the clinical condition is under control) or the maximum
dose (i.e., it was impossible to control the patient with the use of this drug).
Any other discharge represents an unjustified cessation of titration. Similarly,
DT is incorrectly continued if it does not stop when the patient reaches either
the steady or the maximum doses.
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– Incorrect dose adjustment: In this study, DT actions correspond to dose incre-
ments. An incorrect dose increment corresponds to episodes where the patient
condition is stabilized and the clinical order is to keep increasing the dose.

– Wrong time delay: The DT model determines two delays, one that is produced
when the patient receives the initial dose, and another one when doses are
incremented. Delays are formalized as time intervals. Any clinical action that
does not respect these intervals should be considered as a wrong time delay
order.

The ability to detect such DT errors by the introduced models is analyzed in
two case studies: (1) Bisoprolol dose titration1 and (2) Ramipril dose titration2.

Bisoprolol is a beta blocker commonly used for heart diseases such as hyper-
tension (HT) or heart failure (HF). Bisoprolol DT procedure is formalized in
Fig. 5. The recommended doses are as follows. Initial dose: 5 mg orally once a
day (od). Dose titration: If desired response is not achieved, may increase the
dose to 10 mg, then 20 mg if necessary. Maximum dose: 20 mg per day.

Ramipril is an ACE inhibitor medication used to treat HT, HF, and diabetic
kidney disease (DKD). Recommended doses are: Initial 2.5 mg od, increment:
5 mg od, and max: 10 mg od.

DT revision of both drugs is recommended every 2 to 4 weeks.

Fig. 5. Bisoprolol DT model.

The software in [16] was adapted to synthesize data about DT clinical pro-
cesses. For Bisoprolol, DT processes corresponding to 1,000 patients with HT
were generated. For Ramipril, 2,430 HF cases were synthesized. These data sets
are made available at http://banzai-deim.urv.cat/repositories/Data/titration/.
Table 1 shows some descriptive information on these data sets.

In both data sets, the average number of DT actions per case is almost two,
with some patients having long DT processes involving up to 10 DT actions
(Max. column) which could drive to overdose. The NCD column shows the num-
ber of patients whose DT finished before the clinical cause for medication was
under control (i.e. the patient still had uncontrolled HT or HF, respectively).
These represent 11.9% of HT cases and 12.8% of HF cases. The table also shows

1 https://www.drugs.com/dosage/bisoprolol.html.
2 https://www.drugs.com/dosage/ramipril.html.

http://banzai-deim.urv.cat/repositories/Data/titration/
https://www.drugs.com/dosage/bisoprolol.html
https://www.drugs.com/dosage/ramipril.html
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Table 1. Description of data sets in terms of the number of patients (N), number of
episodes of care (N-eoc), average and maximum number of DT encounters per patient
(Avg., Max.), number of patients discharged ill (NCD or not controlled discharges),
and number of patients discharged with maximum dose (MDD or maximum dosage
discharged).

DRUG N N-eoc Avg. Max. NCD MDD

Bisoprolol 1,000 1926 1.9260 10 119 120

Ramipril 2,430 4613 1.8984 10 767 311

(MDD column) the number of discharged cases with overdose: 12% of the cases
finished the DT process with Bisoprolol doses above 20 mg, the maximum dose,
and 12.8% of the cases ended with Ramipril overdoses.

When the single-drug DT eTTD for bisoprolol in Fig. 5 (and the correspond-
ing eTTD for ramipril) are confronted to the respective data sets, they are able
to detect the DT deviations that are quantified in Table 2.

Table 2. Quantification of DT errors: ID-init (incorrect dose: INIT), ID-inc (incorrect
dose: INC), ID-max (incorrect dose: MAX), IDu-stop (incorrect duration: premature
stop), IDu-cont (incorrect duration: prolonged treatment), IDA (incorrect dose adjust-
ment), WTD (wrong time delay).

DRUG ID-init ID-inc ID-max IDu-stop IDu-cont IDA WTD

Bisoprolol 33 530 253 102 98 96 55

Ramipril 252 1506 341 644 637 533 364

Thirty three (or 3.3%) of the HT cases started with an incorrect initial dose,
as well as 9.9% of the HF cases (ID-init column). We also detected 530 and 1,506
cases with wrong dose increments or increments which are different from the
recommendations. And registered 253 DT moments in which some HT patient
was overdosed, regardless whether this situation was corrected afterwards or
not, and 341 maximum dose overshoots in the HF cases. In column IDu-stop,
the number of incorrect premature DT stops are given (i.e., number of cases
whose DT process is finished with the clinical condition uncontrolled and still
room to increase the dose). The incorrectly prolonged treatments is quantified in
column IDu-cont. These are the cases for which the DT process continues even
if the medical problem is under control or there is no margin for DT. Column
IDA contains the number of times that a patient clinical condition is solved
but the physician prescribes a dose increment, with respective percentages 9.6%
and 21.93% of the total cases. And column WTD counts the number of times a
patient DT is reassessed after a time that is not in the range determined by the
official DT model, which in our case is between 2 and 4 weeks.
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4 Conclusions

Numerous studies indicate the extent of drug-related problems and its conse-
quences for the society, especially influencing older and comorbid patients [1].
There is a need for tools to validate DT process to prevent medication errors.

We propose a versatile DT process representation language that can be used
to model multiple DT strategies, whereby here three among them were presented:
single-drug DT, chronic single-drug DT, and acute single-drug DT. These models
can be used to detect wrong DT actions in clinical databases. Presented case
studies show the capacity of these models to detect incorrect dose prescriptions,
incorrect DT process durations, incorrect dose readjustments, as well as wrong
DT time delays. Therefore proposed methodology could be of much interest in
the detection of medication errors.

Our future work provisions building other DT models such as models for
alternative drug treatments and multi-drug treatments. Furthermore, side-effects
and intolerances will be incorporated in the DT modelling [8]. The system will
be retrospectively and prospectively tested on real-world data from the Commu-
nity Healthcare Center Maribor, Slovenia. Since the major risk factors associated
with drug-related problems are old age, polypharmacy and comorbidities [1], we
will give a special emphasis on complex patient treatments due to the comor-
bidities [17].
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Abstract. International Classification of Disease (ICD) coding proce-
dure which refers to tagging medical notes with diagnosis codes has been
shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is
likely to cause many errors. Moreover, training skilled coders also requires
time and human resources. Therefore, automating the ICD code determi-
nation process is an important task. With the advancement of artificial
intelligence theory and computational hardware, machine learning app-
roach has emerged as a suitable solution to automate this process. In this
project, we apply a transformer-based architecture to capture the inter-
dependence among the tokens of a document and then use a code-wise
attention mechanism to learn code-specific representations of the entire
document. Finally, they are fed to separate dense layers for correspond-
ing code prediction. Furthermore, to handle the imbalance in the code
frequency of clinical datasets, we employ a label distribution aware mar-
gin (LDAM) loss function. The experimental results on the MIMIC-III
dataset show that our proposed model outperforms other baselines by a
significant margin. In particular, our best setting achieves a micro-AUC
score of 0.923 compared to 0.868 of bidirectional recurrent neural net-
works. We also show that by using the code-wise attention mechanism,
the model can provide more insights about its prediction, and thus it
can support clinicians to make reliable decisions. Our code is available
online (https://github.com/biplob1ly/TransICD).

Keywords: ICD · Multi-label classification · Transformer-based model

1 Introduction

The International Classification of Diseases (ICD) is a health care classifica-
tion system maintained by the World Health Organization (WHO) [23], that
provides a unique code for each disease, symptom, sign and so on. Over 100
countries around the world use ICD codes and in the United States alone, the
healthcare coding market is a billion-dollar industry [7]. In manual ICD cod-
ing, professional coders use patients’ clinical records representing diagnoses and
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procedures performed during patients’ visits to assign codes. While it serves pur-
poses including billing, reimbursement and epidemiological studies, the task is
expensive, time-consuming and error-prone. Fortunately, the advent of machine
learning approaches has paved the way for automatic ICD coding. Figure 1 illus-
trates an example of such ICD coding process where the coding model takes
clinical text as input and outputs predicted ICD codes. It also shows that the
model puts attention to subtext (highlighted in red) that is relevant to a disease,
e.g. ‘gastrointestinal bleeding’ is related to the disease Acute posthemorrhagic
anemia’ (ICD-9 code: 586).

However, the task poses a couple of challenges. First, with more than 15,000
codes in ICD-9, it is a multi-label classification problem of high dimensional label
space. Second, the majority of the codes are associated with rare diseases and
hence, used infrequently, resulting in an imbalance in the dataset. Third, clinical
records are noisy, lengthy and contain a large amount of medical vocabulary.

Previous well-known models [16,19] employed methods such as CNNs,
LSTMs to automate ICD coding. However, CNNs and LSTMs have a weak-
ness to encode the long sequence of discharge summaries (average token count
before preprocessing ≈1500). On the other hand, a self-attention based trans-
former [21] model processes a sequence as a whole and thus can avoid long term
dependency issue of LSTMs. Unfortunately, most pre-trained transformer mod-
els such as off-the-shelf BERTs [1,6,11] have a limitation of a smaller sequence
length and the usual ones [6] experience a lot of out-of-vocabulary (OOV) words
in representing clinical text. Training a transformer encoder with a pre-trained
CBOW (Continuous Bag Of Words) [15] embedding of clinical tokens can mit-
igate both the problem of limited sequence length and OOV words. With this
intuition, in this work, we present an end-to-end deep-learning model for ICD
coding. Here are our contributions:

– We propose an ICD coding model that utilizes transformer encoder to obtain
contextual representation of tokens in a clinical note. Aggregating those repre-
sentations, we employ the structured self-attention mechanism [13] to extract
label-specific hidden representations of an entire note.

– To address the long-tailed distribution of ICD codes, we apply a label dis-
tribution aware margin (LDAM) [4] loss function. For evaluation, we make a
comparative analysis of our model with the well-known models on the bench-
mark MIMIC-III dataset [8].

– Finally, we present a case study to demonstrate visualizable attention to
label-specific subtext indicating interpretability of our coding process.

2 Related Works

The study of automatic ICD coding can be traced back to the late 1990s [10,12].
Last two decades have seen quite a good number of ICD coding models with
various approaches from both feature-based classical machine learning and deep
learning technique. Most of these studies addressed the task as a multi-label
classification problem.

Larkey and Croft [10] adopted an ensemble of K-nearest neighbors, rele-
vance feedback and Bayesian independence to identify ICD code of a discharge
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Fig. 1. The framework of the proposed ICD coding model. The model takes clinical
text as input and passes it through embedding layer, transformer encoding layer, label
attention layer and finally through dense layer to predict corresponding codes. (Color
figure online)

summary. Both de Lima et al. [12] and Perotte et al. [17] proposed hierarchi-
cal models to capture the hierarchical relationship of ICD codes. However, the
former study uses cosine similarity between the discharge summaries while the
latter one employs SVM for prediction.

In the last few years, different variations of neural networks have been applied
to this task. Ayyar et al. [2] and Shi et al. [19] utilized word and character level
LSTM (C-LSTM-Att) respectively to capture the long-distance relationships
within a clinical text. Mullenbach [16] employed the baseline models such as
Logistic Regression (LR), CNN [9], Bi-GRU [5] on the MIMIC datasets for ICD
coding and presented a convolutional attention network (CAML) that achieved a
state of the art results. In another work [3], the authors introduced a hierarchical
attention as part of a GRU-architecture that provides interpretability. Wang et
al. put forward a label embedding attentive model (LEAM) [22] that encodes
labels (i.e. codes) and words in the same representational space and uses cosine
similarity between them for label prediction. However, being motivated by the
recent success of transformer-based models [1,6,11], in our ICD coding task, we
train one such encoder from scratch to circumvent sequence length limitation
and learn better token representation.

3 Dataset

MIMIC-III [8] is one of the benchmark datasets that provides ICU medical
records and is widely used in ICD coding prediction. Each record of it includes
a discharge summary describing diagnoses and procedures that took place dur-
ing a patient’s stay and is labeled with a set of ICD-9 codes by professional
coders. Following previous works [16], we prepare two common settings of the
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dataset: MIMIC-III full and MIMIC-III 50. In total, the MIMIC-III full setting
contains 52,726 sets of discharge summaries and 8,929 unique codes. 6,918 of the
codes are diagnosis codes and the rest 2,011 are procedure codes. Only 1.84%
of the diagnosis codes are assigned to more than 1000 discharge summaries, and
the majority (87.5%) of the ICD codes are tagged on to less than 100 notes,
indicating an extremely long-tail of distribution.

Hence, we choose the MIMIC-III 50 setting which consists of the 50 most
frequent ICD codes with 11,368 set of discharge summaries. The dataset is split
into train, validation and test set by patient ID so that the test or validation
set does not contain any patient data already seen in the training set. Table 1
provides the summary of the dataset.

Table 1. The statistics for the data samples of the 50 most frequent ICD-9 codes in
MIMIC-III dataset after preprocessing.

Split # Samples
# Unique

Codes
# Mean
Tokens

# Mean
Codes

# Stdev of
Code freq

Train 8,066 50 922 5.69 577.89

Validation 1,573 50 1,115 5.88 121.01

Test 1,729 50 1,133 6.03 136.93

Preprocessing. For each discharge summary sample, we lowercase and tokenize
the text, remove punctuations, numbers, English stopwords, and any token with
less than three characters. After that, we stem them with Snowball stemmer and
replace any remaining digits with character ‘n’ which converts tokens such as
‘350 mg’ to ‘nnnmg’. From the resulting distribution of token count per record, we
observe that more than 98% of the discharge summaries are bound within 2500
tokens. So we use 2500 as the maximum length of token sequence for training.
We exploit word2vec CBOW method [15] to obtain word embeddings of size,
de = 128 by training the entire discharge summary set. Finally, we extract a
vocabulary of 123916 tokens from training set and augment it with ‘PAD’ and
‘UNK’ token for padding and out of vocabulary words respectively.

4 Methods

4.1 Problem Formulation

Since each discharge summary sample can have multiple ICD codes associated
with it, we approach the code prediction task as a multi-label classification prob-
lem. Given a clinical record with token sequence, W = [w1, w2, ..., wn], our objec-
tive is to determine y

l∈L
∈ {0, 1} where L is the set of labels i.e. ICD-9 codes.
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4.2 Transformer Based Label Attention Model

We leverage the concept of multi-headed self-attention, popularly known as
transformer, to encode the tokens of the clinical notes. Figure 1 illustrates the
overall architecture of our model. The following subsections describe the model
framework in detail.

Embedding Layer. Considering an input clinical note, W = [w1, w2, . . . , wn]T ,
where wi is the vocabulary index of the i-th word and n is the maximum possible
length, we map them to the pre-trained embeddings (Sect. 3). This provides
us with a matrix representation of the document, E = [e1, e2, . . . , en]T where
ei ∈ R

de is the word embedding vector for the i-th word.

Transformer Encoder Layer. The word embeddings, E ∈ R
n×de of a clinical

note is fed into a transformer encoder which employs multi-headed self attention
mechanism [21] to the sequence as a whole and provides us with contextual word
representations, H ∈ R

n×dh . Mathematically:

H = TransformerEncoder(E) (1)

where H = [h1,h2, . . . ,hn]T .

Code-Specific Attention Model. Being a multi-label classification task, it
demands further processing of the encoded representation, H ∈ R

n×dh to pro-
duce a code-wise representation. To this end, we apply a structured self-attention
mechanism on H. First, the attention weights, al ∈ R

n corresponding to tokens
of a note for label l is computed by:

al = Softmax (tanh(HU)vl) (2)

cl = HTal (3)

where U ∈ R
dh×da and vl ∈ R

da are trainable parameters and da is a hyper
parameter. Next, we multiply the contextual representation H and the attention
scores al to produce a fixed length code-specific document representation cl for
each label l ∈ L (Eq. 3). Intuitively, cl ∈ R

dh encodes information sensitive to
label l. Finally, we concatenate this attended document representation cl for all
labels to obtain C = [c1, c2, . . . , cL]T ∈ R

L×dh

Multi-label Classification. To compute the probability for label l, we feed
the corresponding label-wise document representation cl to a single layer fully
connected network with a one node in the output layer followed by a sigmoid
activation function (Eq. 4). Having the probability score, We use a threshold of
0.5 to predict the binary output ∈ {0, 1}. For training, we adopt multi-label
binary cross-entropy as loss function (Eq. 5).

ŷl = σ(Zcl + b) (4)

LBCE(y, ŷ) = −
L∑

l=1

[yl log(ŷl) + (1 − yl) log(1 − ŷl)] (5)
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To address the long-tailed distribution of ICD codes in the dataset, following
previous work of Song et al. [20], we employ label-distribution-aware margin
(LDAM) [4], where the probability score is computed by Eq. 6.

ŷm
l = σ(Zcl + b − 1(yl = 1)Δl) (6)

LLDAM = LBCE(y, ŷm) (7)

where function 1(.) is 1 if yl = 1. Δl = C

n
1/4
l

and C is a constant and nl is the

total count of training notes having l as true label. Finally, we obtain LDAM
loss using Eq. 7.

5 Training Details

A search for optimal hyper-parameter leads us to the following setting of values:
{Encoder layer: 2, Attention head: 8, Epochs: 30, Learning rate: 0.001, Dropout
rate: 0.1}. We also set da = 2∗de and C = 3. We train the models on an NVIDIA
Tesla P100 (Pascal). In our best setting, each epoch takes around 168 s.

6 Evaluation

To evaluate our model, we utilize commonly used metrics such as micro-averaged
and macro-averaged area under the ROC curve (AUC) and F1 score. As spec-
ified by Manning et al. [14], macro-averaged values are computed by averaging
metrics calculated per label. On the other hand, micro-averaged values are com-
puted considering each pair (document, code) as a separate prediction. The
macro-averaged values are usually low in this task as they put more emphasis
on infrequent label prediction. We also include precision at k (P@k) which com-
putes the fraction of the true labels that are present in our top-k predictions.
As the average number of codes per note is around 5.8, we choose k = 5 for
evaluation.

6.1 Results

Table 2 provides a comparison of our proposed ICD coding model to the previ-
ous methods on the top-50 frequent ICD codes of the MIMIC-III dataset. The
scores are in percentage and are measured on the held-out test set with the
aforementioned hyperparameter setting (Sect. 5). We ran our model five times
and use different random seeds in each run to initialize the model parameters.
We present the means and standard deviations of these five runs as our final
result of the proposed TransICD model. The low standard deviations indicate
that our model consistently performs well, and thus it is stable.

Our proposed TransICD model produced the highest scores on micro-F1,
macro-AUC, and micro-AUC, whereas the result in macro-F1 and precision@5
are comparable to the corresponding best score. Table 2 also shows that we
achieved a substantial improvement from all the baselines including the recurrent
networks (Bi-GRU, C-LSTM-Att) and convolutional models (CNN, CAML).
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Table 2. Test set results (in %) of the proposed models on the MIMIC-III 50 dataset.
Models marked with * are ours and values with boldface are the best in the corre-
sponding column.

Models
AUC F1

P@5
Macro Micro Macro Micro

Logistic Regression (LR) 82.9 86.4 47.7 53.3 54.6

Bi-GRU 82.8 86.8 48.4 54.9 59.1

C-MemNN [18] 83.3 - - - 42.0

C-LSTM-Att [19] - 90.0 - 53.2 -

CNN [9] 87.6 90.7 57.6 62.5 62.0

CAML [16] 87.5 90.9 53.2 61.4 60.9

LEAM [22] 88.1 91.2 54.0 61.9 61.2

*Transformer 85.2 88.9 47.8 56.3 56.5

*Transformer + Attention 88.2 91.1 49.4 59.3 59.6

*TransICD(Transformer +
Attention + LLDAM )

89.4± 0.1 92.3± 0.1 56.2± 0.4 64.4± 0.3 61.7± 0.3

In fact, our basic transformer model (without attention) that simply uses mean
pooling over the encoded token vectors for document representation outperforms
logistic regression (LR) by at least 2.3% in macro-AUC, 2.5% in micro-AUC,
0.1% in macro-F1, 3.0% in micro-F1, and 1.9% in precision@5. We believe this
is due to the transformer encoder’s superior ability to capture the long-term
dependency of the tokens in contrast to that of recurrent units or hand-crafted
feature extraction.

With code-wise attention and LDAM loss, our best setting TransICD exceeds
the strong baseline LEAM [22] in macro-AUC by 1.3%, in micro-AUC by 1.1%,
in macro-F1 by 2.2%, in micro-F1 by 2.5% and in precision@5 by 0.5%. In
macro-F1, our model takes a back seat only to CNN [9]. The overall low scores
in this metric also signify that the models struggle in predicting rare codes.
The precision@5 of our model indicates that out of 5 predictions with the top
probabilities, on average 61.9% i.e. 3.085 are correct. The score is relatively
higher than most of the other baselines except CNN.

Comparing previous models, we observe that logistic regression (LR), being
a conventional machine learning model, performs worse than all other neural
networks. Further inspection reveals that the attention-based models result in
a significant improvement over the normal ones of the same kind. For instance,
CAML outperforms the regular CNN.

Ablation Study. The contribution of different components of our model can be
recognized from the bottom three rows of Table 2. First, we notice a substantial
drop in every metric when label-distribution aware margin (LDAM) loss is not
adopted. In another way, LDAM improves the performance in AUC by (macro-
1.2%, micro-1.2%), F1 by (macro-6.8%, micro-5.1%), and precision@5 by 2.1%.
This clearly demonstrates that LDAM loss played a powerful role to counter the
imbalanced frequency of the labels. Moreover, instead of the label attention, if
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we simply use mean pooling of the token representations from our transformer
encoder to encode the entire document, we end up having the same hidden vec-
tor for all the labels. This further hurts the performance of the model. Putting
differently, extending basic transformer model with code-wise attention increases
AUC score by (macro-3.0%, micro-2.2%), F1 score by (macro-1.9%, micro-3%),
and precision@5 by 3.1%. This corroborates that extraction of code-specific rep-
resentation of a document does improve the corresponding label prediction.

6.2 Distribution of Scores

Fig. 2. AUC and F1 scores across the top-50 frequent ICD-9 codes of MIMIC-III
dataset

Our model achieves higher AUC scores for many ICD codes. Specifically, for 90%
of the codes, our model attains an AUC higher than 0.8 and for 56% of them, we
have an AUC higher than 0.9. On the other side, an AUC score lower than 0.7 is
seen for only 4% of the codes. We notice that some of the low scoring ICD codes
such as V15.82, 305.1, 276.1 are also the least frequent ones in the training
set. Another observation shows misclassification among closely related codes.
For instance, Tobacco use disorder (ICD: 305.1) and Arterial catheterization
(ICD: 38.91) are seen to be very frequently mislabeled as History of tobacco
use (ICD: V15.82) and Venous catheterization, not elsewhere classified (ICD:
38.93) respectively. Above all, most frequent wrongly classified codes such as
401.9, 96.04 are also found to be the dominant ones in the training set indicating
a bias towards them. A naive random oversampling of the dataset can be a way
to get rid of such bias. Analyzing F1 scores, we find a relatively smaller number
of the codes (10%) having F1 score greater than 0.8. We present the individual
AUC and F1 score of the most frequent 50 codes in Fig. 2.

6.3 Visualization

For high-stakes prediction applications such as healthcare, there has been an
increasing demand to explain the prediction of a model in a way that humans
can understand. Although an automated model is set to reduce human labor,
being able to observe which parts of a text are contributing to the final prediction



TransICD 477

Fig. 3. Visualization of the model attending on an excerpt from a discharge summary
for label- (a) Urinary tract infection (ICD: 599.0) and (b) Single internal mammary-
coronary artery bypass (ICD: 36.15). Darker color indicates higher attention.

provides reliability and transparency. In Fig. 3, we provide such visualization of
our code-wise attention model where an excerpt of a note is highlighted with
attention scores corresponding to two different labels.

Figure Subsect. 6.3 shows that for disease Urinary tract infection (ICD:
599.0), our model successfully puts high attention to the closely related words-
‘urinary tract infection’. However, the model ignores the same words while pre-
dicting for label Single internal mammary-coronary artery bypass (ICD: 36.15)
as illustrated in Figure Subsect. 6.3 because they are not relevant for the latter
label. On the other hand, being associated with the latter label, ‘coronary artery’
is seen to gain more attention in Figure Subsect. 6.3, although the same bi-gram
is not attended for the former label in Figure Subsect. 6.3.

All these suggest that the reasoning of our model is highly correlated to the
features that a human would have looked for while tagging a note with ICD
codes. Consequently, we believe, this model would help clinicians in the ICD
coding process with higher reliability and transparency.

7 Conclusion

The study proposes a transformer-based deep learning method to predict ICD
codes from discharge summaries representing diagnoses and procedures con-
ducted during patients’ stay in hospital. We adopt LDAM loss to counter the
imbalanced dataset and employ a code-wise attention mechanism for more accu-
rate multi-label predictions. Our visualization report illustrates that the model
attends to the relevant features and hence provides evidence for reliability. For
future work, we will focus on a larger dataset containing more or even all the
ICD codes.
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Abstract. Low-prior targets are common among many important clin-
ical events, which introduces the challenge of having enough data to
support learning of their predictive models. Many prior works have
addressed this problem by first building a general patient-state repre-
sentation model, and then adapting it to a new low-prior prediction
target. In this schema, there is potential for the predictive performance
to be hindered by the misalignment between the general patient-state
model and the target task. To overcome this challenge, we propose a new
method that simultaneously optimizes a shared model through multi-
task learning of both the low-prior supervised target and general pur-
pose patient-state representation (GPSR). More specifically, our method
improves prediction performance of a low-prior task by jointly optimizing
a shared model that combines the loss of the target event and a broad
range of generic clinical events. We study the approach in the context of
Recurrent Neural Networks (RNNs). Through extensive experiments on
multiple clinical event targets using MIMIC-III [8] data, we show that
the inclusion of general patient-state representation tasks during model
training improves the prediction of individual low-prior targets.

Keywords: Simultaneous learning · Low-prior events · General
patient-state representation · Weighted loss · LSTM · RNN

1 Introduction

Across machine learning domains, many important events are difficult to pre-
dict because of their low-prior probability. This situation is frequent in clinical
event prediction, where severe events and interventions are both uncommon and
imperative to foresee. To some degree, low-priors are a constraint of the task
definition. For example, the prediction of first sepsis onset will have at most one
positive instance per a patient hospitalization, and therefore it is constrained by
design. Additionally, in temporal modeling this prior is further reduced by the
frequency (e.g. predict every two hours) and time horizon of prediction.
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Previous machine learning works have utilized general patient-state repre-
sentations (GPSRs) [4,12,14,17,18] or transfer learning [5] as methods to deal
with low-prior events. However, in both cases, there is a potential for predictive
performance to be hindered by the misalignment of the general purpose model
and the low-prior target. For example, in GPSR learning, it is possible that the
extracted representation features obfuscate the signals from the raw inputs that
are highly important for accurately predicting a septic patient.

In order to improve the prediction performance of low-prior clinical events,
we propose a new method that simultaneously trains a shared model that can
support both low-prior target prediction and general patient-state representation
tasks. Accordingly, the parameters of the model are optimized through a two-
component loss function. To better tune the model to the desired low-prior
clinical task, a weight parameter is used to adjust the influence between the
low-prior target and GPSR. Thus, a GPSR is learned jointly to aid a specific
prediction target instead of being used as an upstream step to accommodate it.
We explore our method in the context of recurrent neural networks (RNNs) with
long short-term memory cells (LSTM). LSTMs have been used to define both a
GPSR models for clinical sequences [11,14], as well as, a model for predicting
single events from past clinical sequences [22].

We explore the benefits of our simultaneous learning method experimentally
using clinical data derived from the MIMIC-III database [8] predicting three
low-prior events: 72 h mortality, 6 h sepsis onset, and 2 h norepinephrine admin-
istration. These targets have priors that range from 0.0013 to 0.0109. The GPSR
component of the LSTM model is defined as a broad range of clinical lab and vital
sign events that are one-hot encoded to normal and abnormal values. Through
extensive experiments we show that simultaneously optimizing the GPSR and
the low-prior prediction task leads to models with improved prediction perfor-
mance as measured by the area under the precision-recall curve (AUPRC). In
addition, two ablation studies reducing the event priors and samples in the train-
ing data demonstrate the robustness of our approach.

2 Related Work

General Patient-State Representation Learning. General patient-state
representations are often desirable for their ability to compress complex data
into a lower dimensional representation with the goal of accurately representing
the signals that are inherent to the patient-state. General patient-state represen-
tation models include a wide range of standard matrix factorization approaches
and modern neural architectures models. Examples of GPSR models include
Singular Value Decomposition (SVD) [15], autoencoder architectures [17,18],
recurrent neural network models [4,11,12], attention mechanisms [2], and com-
posites of the previously mentioned paradigms [14]. For example, the authors
of DeepPatient used a denoising autoencoder (AE) to learn a patient represen-
tation over time windows of clinical observations and applied it predict patient
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diseases. The concept of autoencoding has further been applied in the space of
sequence models, such as LSTMs [4,12,14].

Task Specific Model Learning. Task specific model learning optimizes
parameters based only on a supervised target(s). Models are trained using a
supervised loss. Especially suitable for this purpose, are autoregressive models
that provide an end-to-end framework for defining the model, inputs, outputs,
and target task loss. LSTMs applied to clinical tasks have been found to provide
strong predictive performance, such as predicting chronic kidney injury [22].

Simultaneous GPSR and Tasks-Specific Learning. Simultaneous learning
of two different task paradigms has been explored in the space of topic models.
Supervised Latent Dirichlet Allocation (sLDA) combines the objective function
of the expectation of a token belonging to a topic with a supervised task to guide
topic learning [1]. In prediction focused sLDA (pf-sLDA) [19], the authors used
weighting to examine the balance between topic and supervised tasks. In our
work, we take a similar approach to pf-sLDA by jointly modeling a supervised
task with a general patient representation. In contrast to the work of Ren et al.,
we solely focus on the performance of the supervised task, and use the general
patient representation as support to improve prediction performance.

3 Methodology

3.1 Model Definition

Our objective is to learn a model f : X → Y that can predict a future target
event Y from past observations X. Since past observations grow in time, X
is often replaced with a fixed length summary vector S. A summary vector
can be developed from a number of different strategies, such as using feature
templates that featurize time-series of all clinical variables defining X [6,7] or by
compressing observations to a low-dimensional space using SVD [15]. RNNs have
had success with learning clinical targets by segmenting past observations X to
the current time, t, into sequences of observations X1,X2, . . . , Xt. A summary
state is then defined as St representing the hidden state of the RNN. In this

Fig. 1. The shared low-prior clinical prediction task and GPSR task architecture. LL
in the model architecture stands for linear layer.
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work, we consider an RNN model with Long Short-Term Memory units [3] to
represent the predictive model f .

Since learning a model f for a low-prior target is sensitive to the training
data size, we propose to aid its learning with a GPSR model. A GPSR model
is not tailored to cover one specific prediction task, instead it tries to represent
the overall data sequences and their characteristics. In this work, we consider an
LSTM-based model of GPSRs. This GPSR is defined to predict future clinical
observations based on the past events, g : X1,X2, . . . , Xt → Xt+1. Each one-hot
encoded generic clinical task in Xt+1 can be represented as a set of multi-class
targets R = (r1, r2, ..., rd), where each clinical event, ri, is a set of discretized
class values for that clinical event, ri = (c1, c2, ..., cm). The reason for choosing
a GPSR LSTM-based model is that it can be aligned with the LSTM event
prediction model f . Briefly, the GPSR LSTM model can be summarized in terms
of a state, St, similarly to the LSTM model of the model f , but instead of just
one target event, it predicts a broad range of clinical events.

The key idea of our approach is to have f and g share a set of parameters
to learn both tasks simultaneously. More specifically, f and g can be defined on
the same summary state, St, and thus can be redefined to f ′ : St → Yt and
g′ : St → Xt+1. The summary state can further be defined as a function of
the current input and past state, m : Xt, St−1 → St. In our model a shared
embedding layer, emb(St), is applied to the summary state St before prediction
outputs are computed. The emb(St) layer is a linear layer with a rectified linear
unit (ReLU) activation. Thus the current state can be computed from Eq. 1,
which is a function of the shared architecture between the low-prior target and
the GPSR. The sigmoid of the dot product between the target weight vector, ay,
and St are computed to get the low-prior prediction, Eq. 2. Similarly, the next-
step patient representation can be computed from the sigmoid of the state vector
St being multiplied to the GPSR weight matrix, AX , Eq. 3. Figure 1 graphically
depicts the described model definition.

St = m(Xt, St−1) (1)

ŷt = f ′(St) = σ(ayemb(St)) (2)

X̂t+1 = g′(St) = σ(emb(St)AX) (3)

Further, the errors of the prediction target and GPSR tasks can be computed
using cross entropy in Eqs. 4 and 5. Equation 5 computes the error for each GPSR
task, r, in X.

erry(ŷt, yt) = −[yt log(ŷt) + (1 − yt) log(1 − ŷt)] (4)

errrX(X̂r
t+1,X

r
t+1) = −Σr

cX
r,c
t+1 log(X̂r,c

t+1) (5)

3.2 Optimizing Weighted Simultaneous Learning Loss

Similar to Ren et al. [19], weighting is applied to control the parameter learn-
ing, weights and LSTM gates, influence between the two objectives, f ′ and g′.
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The loss function, Eq. 6, uses a hyperparameter, p, to weight the errors between
the low-prior target and the GPSR tasks. Setting p = 1 results in a low-prior
event only driven model, and conversely, p = 0 will yield parameter updates
based only on the GPSR tasks. For optimizing model weights, Adaptive moment
with decoupled weight decay was used (AdamW) [13].

l(Xt+1) = p(erry(ŷt, yt)) + (1 − p)
ΣR

r errrX(X̂r
t+1,X

r
t+1)

|R| (6)

4 Experiments

4.1 Simultaneous Model Architectures

In this paper, two simultaneous model architectures are proposed. A third was
trained/evaluated, but excluded from the results due to it’s similar performance
to Evt+GPSR model. They each use the same base architecture shown in
Fig. 1, but the latter model extends the network with additional layers that are
task specific. The proposed models are the following:

– Low-Prior Event Target and GPSR (Evt+GPSR) (Fig. 1)
– Low-Prior Event with Linear Layer and GPSR with Multi-task Linear Layer

(EvtLL+GPSR-MTLL) (Fig. 2d)

4.2 Baseline Model Architectures

Three baseline models are used to compare with the proposed simultaneous
models. The same general model structure given in Fig. 1 is used for each with
some modifications to their respective prediction objective.

– Supervised model (RNN Spv.) low-prior task-specific model (Fig. 2a)
– RNN Embedding is a GPSR model that is trained to forecast the generic

clinical events. The supervised target is then learned using a single linear layer
based on the features learned from the embedding model. For the experiments,
this model is trained to each prediction time horizon to align with the low-
prior prediction targets (Fig. 2b).

– RNN Residual uses the learned RNN Embedding model with additional
residual layers. The learned embedding layer continues to be optimized during
supervised training to allow for additional tuning to the target. The residual
layers attempt to learn the low-prior target signal from raw inputs that were
not captured in the GPSR embedding model (Fig. 2c).

Thus, RNN Spv. is equivalent to Evt+GPSR if the loss weight value is set
equal to 1.0, p = 1, where only the supervised low-prior task influences parameter
learning. Likewise, the other baselines utilize GPSR learning in a sequential
fashion where the target is not simultaneously considered with the GPSR tasks.
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Fig. 2. Figures 2a, 2b, and 2c are the baseline prediction models, RNN Spv., RNN
Embedding, and RNN Residual. Likewise, Fig. 2d is the proposed model with an
extended structure, RNN EvtLL+GPSR-MTLL

4.3 Low-Prior Targets

Experiments were conducted using MIMIC-III’s [8] electronic healthcare record
data set. The data set included ICU patients of 18 years of age and older with an
inpatient time that exceeds both 24 h and the prediction horizon. Target statis-
tics can be found in Table 1. The prediction time horizons for mortality, sepsis,
and intravenous (IV) norepinephrine were 72, 6, and 2 h, respectively. The sep-
aration time between each instance in a sequence is the same as the prediction
horizon except for the mortality task, which uses 24 h sequence intervals. Sepsis
prediction targets were generated based on Physionet’s competition [20]. The
IV Norepinephrine task is a prediction of a new medication administration. A
patient may have multiple administrations in a single hospital stay, and to deter-
mine a new delivery, the half-life of the medication was compared to statistics
of subsequent drug time intervals. Given the short half-life of 2.5 min [21] and
the distribution of subsequent administration intervals, a holdout period of 2 h
after drug delivery is applied before predictions may resume (i.e. during drug
administration, prediction is suspended).

Table 1. Data set statistics for each low-prior event.

Data Sets

Mortality Norepinephrine Sepsis

Adms # Pos # Neg Prior Adms # Pos # Neg Prior Adms # Pos # Neg Prior

Train 8803 700 82,797 0.0084 11, 694 948 1,156,503 0.0008 11,694 506 384,097 0.0013

Valid 2363 214 18,544 0.0114 3, 141 370 248,929 0.0013 3141 140 90,687 0.0015

Test 4850 425 38,626 0.0109 6, 535 750 589,720 0.0013 6,535 287 189,092 0.0015
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4.4 Inputs and GPSR Tasks

The inputs for each task are 191 lab and vital sign observations that are
discretized to a one-hot encoding of normal/abnormal or normal/abnormal
low/abnormal high. This discretization is based on a knowledge base of normal
ranges that were compiled from [9,10,16]. A last value carry forward (LVCF)
method is applied for each observation relative to the prediction point, and in
the event no prior observation exists, the encoding positions for that observation
remain zero.

The generic clinical tasks for the GPSR were 189 of the 191 laboratory and
vital sign observations. Two observations were excluded as a task because their
presence by definition is abnormal. A LVCF was also used for the target classes,
and in the event that no value exists, a normal class is imputed. For this paper,
the time horizons of the generic clinical tasks aligned with the respective predic-
tion target time. For example the 6 h sepsis target had GPSR tasks of 6 h time
horizons too. This was done for all models that utilized generic clinical tasks for
their GPSR.

4.5 Model Training and Selection

Since AUPRC is the primary metric for evaluating low-prior event performance,
AUROC was used to determine early stopping to avoid biasing model selection
on a single evaluation metric. All models were trained over a number of epochs
with early stopping based on validation AUROC. Dropout was applied for the
linear layers. For each model architecture the same set of layer sizes were explored
along with regularization parameters on the supervised output parameters over
multiple iterations. For example, both RNN Spv. and Evt+GPSR explored
the same set of layer configurations. The best performing average validation
AUROC determined the model hyperparameters. The GPSR embedding model
was trained with early stopping based on the tolerance of the validation loss.

4.6 Weighted Loss Selection

Initially, each proposed model structure hyperparameters (e.g. layer sizes) were
selected based on AUROC validation performance with a weighted loss of 0.9,
p = 0.9. After selecting structure hyperparameters, p was iterated over to find
the best loss weight according to the validation AUROC. Figure 3 demonstrates
this search, and Table 2 show the selected p for each model and target.
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Fig. 3. Loss weighting search
results for mortality validation set
AUROC.

Table 2. Best loss weighting results for all targets
based on the validation set AUROC.

5 Results and Discussion

Since we are interested in increasing the performance of low-prior event predic-
tion, the area under the precision-recall curve (AUPRC) is the primary metric
used for evaluation. AUROC is also important to ensure that the overall pre-
dictive performance is not being heavily sacrificed for better low-prior event
prediction, and thus there are additional plots to demonstrate the AUROC per-
formance. Each model is compared under three different conditions (i) average
performance, (ii) average performance with a reduced prior likelihood of the
positive class, and (iii) average performance over a reduced sample size.

5.1 Predictive Performance

Figure 4a, shows an improvement in AUPRC performance over the candidate
models when compared to the baselines and the prior likelihood. This perfor-
mance increase is particularly notable in the prediction of IV Norepinephrine.
Figure 5a demonstrates that the proposed simultaneous learning models are
maintaining a competitive if not stronger AUROC performance compared to the
baselines. Based on the results for these three tasks, learning a GPSR simulta-
neously with a low-prior event provides a competitive to an improved prediction
performance. Further, this suggests that low-prior clinical events benefit from
the additional signal learning of generic clinical tasks.

5.2 Reduction of Prior Likelihood

By reducing the prior likelihood of each event, the models can be examined as
the low-prior prediction target becomes increasingly more challenging to discern.
The prior likelihoods of both the training and validation sets were reduced, while
the test set remained at the same likelihood. This was performed for 7 iterations
of randomly selected positive sequences for each model, and the selections were
held constant across models to give a fair comparison. Additionally, the proposed



Simultaneous Low-Prior Event and GPSR Learning 487

(a)

(b)

Fig. 4. Figure 4a the average test set AUPRC performance of each proposed and
baseline model with a dashed line indicating the test set prior. Figure 4b (left)the
average test set AUPRC when reducing the train/valid prior, and (right) the average
test set AUPRC when reducing train/valid samples.

models’ loss weight, p, was held constant, but hypothetically a more optimal p
could have been rendered from this prior reduction.

In Fig. 4b(left), there is a strong AUPRC performance for the majority of pre-
diction events and prior reductions over the two proposed simultaneous learn-
ing models. Particularly for norepinephrine and mortality prediction, there is
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(a) (b)

Fig. 5. Figure 5b the average test set AUROC performance with reduced prior (left)
and samples (right).

little decrease in AUPRC performance from 100% of the prior to 60%. In addi-
tion, the AUPRC for the mortality simultaneous models at 20% of the prior is
about as strong as the baseline models at 100%. This performance holds for the
EvtLL+GPSR-MTLL sepsis prediction task where it too maintains a lead on the
baseline model performances. Additionally, based on the AUROC Fig. 5b(left),
the AUPRC performance does not come with a sacrifice to AUROC. This sug-
gests that the simultaneous learning of low-prior events and general clinical tasks
provides support to the prediction of low-prior events even under increasingly
sparse conditions.

5.3 Reduction of Sample Size

Sample size reduction provides insight to whether each model is able to be pre-
dictive given a more sparse data set. Similar to prior reduction, the iterations
of sequence samples are held constant across models to give a fair comparison.
The embedding and residual models were given a potential advantage since the
GPSR models were not sample reduced.

In Fig. 4b(right), the simultaneous learning models again show strong
AUPRC performance. The proposed models on two out of three of the low-
prior events have near consistent AUPRC performance up to 40% of the sample
size. In addition, the AUROC performance shown in Fig. 5b(right) for the two
proposed models maintains a competitive edge over the baselines. Therefore,
simultaneous learning of a GPSR to improve low-prior event prediction main-
tains a competitive edge in a reduced sample data set.

6 Conclusion

Based on the results for these three clinical targets, weighted simultaneous learn-
ing of a low-prior event and GPSR improves the prediction of the low-prior
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task. This prediction improvement is sustained throughout the ablation studies,
reduced prior and sample size. This suggests that the predictive signal from fore-
casting generic clinical tasks provides additional support to the low-prior event,
and this predictive benefit can be further capitalized when the low-prior target
is simultaneously optimized with the patient representation.

Acknowledgment. The work presented was supported by NIH grant R01GM088224.
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necessarily represent the official views of NIH.
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Abstract. Cancer patients experience many symptoms throughout
their cancer treatment and sometimes suffer from lasting effects post-
treatment. Patient-Reported Outcome (PRO) surveys provide a means
for monitoring the patient’s symptoms during and after treatment.
Symptom cluster (SC) research seeks to understand these symptoms
and their relationships to define new treatment and disease management
methods to improve patient’s quality of life. This paper introduces asso-
ciation rule mining (ARM) as a novel alternative for identifying symptom
clusters. We compare the results to prior research and find that while
some of the SCs are similar, ARM uncovers more nuanced relationships
between symptoms such as anchor symptoms that serve as connections
between interference and cancer-specific symptoms.

Keywords: Association rule mining · Symptom clusters · PRO

1 Introduction

Cancer patients experience a range of symptoms during and after treatment [1–
3]. Research on these symptoms, their prevalence, relationships, and progression
can improve disease prognosis and inform the appropriate treatment [4,5]. Symp-
tom cluster (SC) research aims to identify co-occurring symptoms (e.g., pain,
fatigue, dry mouth) and to understand the underlying mechanisms that drive
these clusters [6]. This research is facilitated by increasingly available Patient-
Reported Outcome (PRO) data, collected via questionnaires, that allows patients
to rate the occurrence and severity of their symptoms.

The M.D. Anderson Symptom Inventory (MDASI) [7], and its head-and-neck
(HN) cancer module [8], are short, validated questionnaires that patients record
each visit. Three key groups comprise the 28 MDASI-HN survey questions: 13
core items for common symptoms to all cancers, nine items specific to HN, and
six items regarding symptom interference with daily activity. Patients rate their
symptoms using a 0–10 scale, from “not present” to “as bad as you can imagine”
c© Springer Nature Switzerland AG 2021
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(core and HN), respectively from “did not interfere” to “interfered completely”
(interference). Preliminary SCs in the MDASI-HN data have been identified
using factor and cluster analysis [9,10].

This paper introduces association rule mining (ARM) [11] as an alternative
for identifying symptom clusters. To the best of our knowledge, this is the first
ARM application in the SC domain. This work’s main contribution is to offer
an alternative methodology for defining new and interesting relationships for SC
research using PRO data. We model each PRO response as a patient transaction
and process PROs during and after treatment to identify acute and late symptom
clusters, respectively. We furthermore model the severity of the symptoms. We
present a graph-based visualization for the most significant association rules to
identify symptom clusters for both acute and late stages. Finally, we evaluate
this methodology on a real HN cancer patient dataset.

2 Modeling Symptom Clusters with ARM

The ARM approach can use any PRO; in this work, we focus on the MDASI-
HN questionnaire. The M.D. Anderson Symptom Inventory (MDASI) is a multi-
symptom patient-reported outcome measure to assess both the severity of cancer
symptoms and symptom interference with daily life. Table 1 shows a sample of
the symptoms described in the MDASI-HN survey and the short symptom labels
used to refer to the MDASI-HN symptoms to improve readability.

ARM has two steps: the first one is to identify frequent item-sets (FIS) from
the data, and the second is to generate the association rules from the FIS. The
Apriori algorithm identifies the frequent items in the data set using a set of core
metrics. Support is a measure of absolute frequency, i.e., the fraction of sets
that contain items A and B. Confidence (A → B) is a measure of correlative
frequency. It tells us how often the items A and B occur together, given the
number times A occurs. Lift indicates the strength of a rule over the random
occurrence of A and B. The higher the lift, the more significant the association.
A lift greater than 1.0 implies that the relationship between the antecedent and
the consequent is more significant than expected if the two were independent.
With a lift of 1.0, we can say that the relationships appear as expected and are
not significantly associated. For example, with the rule {fatigue} → {drowsy}
with 50% support, and 80% confidence we could say that these two symptoms

Table 1. The 28 MDASI-HN symptoms organized into 3 symptom categories

Category Symptom labels

Common cancer Pain, fatigue, nausea, sleep, distress, SOB, memory, appetite,
drowsy, drymouth, sad, vomit

Head & Neck Numb, mucus, swallow, choke, voice, skin, constipation, taste,
mucositis, teeth

Interference General activity, mood, work, enjoy, relations, walking, enjoy
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are experienced together by 50% of the patients, and “if a patient experiences
fatigue, they are 80% likely to experience drowsiness’.’

Since symptom severity is non-binary data, we generate two categories for
each symptom and use the labels low and severe to distinguish them. For one
questionnaire, symptoms with a rating greater than 0 are considered occurring
symptoms. A symptom is low if the patient rated its severity less than five
and severe otherwise. The data models the transactions with one unique PRO
for each patient, and the two items being “bought” together, indicating low or
severe, are concurrent symptoms. We consider symptom clusters at two different
time points. Acute symptoms refer to symptoms experienced during treatment
(about six weeks from the start of treatment). For late symptoms, patients survey
the PROs up to 18-months post-treatment. Symptoms with missing scores (NaN)
were replaced with 0 s. Patients with no PRO recorded during the acute or late
phases were not included in the time frame analysis.

3 Experimental Results

The dataset used for these experiments consists of MDASI-HN responses for a
cohort of 823 patients. The patient surveys were broken into acute and late time
points with two items per symptom (low and severe) used to capture the severity
of the symptoms. A total of 643 patients had at least one acute PRO, and 745
patients had at least one late PRO. Figure 1 shows the symptom’s overall support
for low and severe symptoms during the acute and late time frames. As shown,
in the acute stage, many patients experienced both low and severe symptoms
during treatment. In contrast, symptoms experienced in the late stage have a
lower severity than during the acute phase. We used minimum support of 20%
for both the acute and late as it is the minimum cutoff between both stages for
consistency in our analysis of each.

Fig. 1. Symptom Severity in the (a) acute and (b) late stages. Acute: > half of
patients experience low severity symptoms, while a sizable 20% experience severe symp-
toms. Late: patients experience mostly low rated symptoms with highest prevalence in
fatigue, drymouth, swallow, and taste.
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Table 2. Top association rules for acute and late symptoms. Top five rules for
each stage with the highest lift. The symptom’s subscripts l and s stand for low and
severe ratings, respectively.

Acute Stage

antecendent consequent confidence lift

{pains, tastes} {mucositiss} .85 2.82

{mucuss, tastes} {swallows} .77 2.71

{swallows, tastes} {mucuss} .89 2.70

{mucuss, tastes} {drymouths} .75 2.64

{drowsyl} {fatiguel} .76 2.19

Late Stage

antecendent consequent confidence lift

{general activityl} {workl} .79 2.96

{enjoyl} {moodl} .75 2.84

{fatiguel, swallowl} {painl} .77 2.35

{painl, fatiguel} {swallowl} .80 2.28

{drowsyl} {fatiguel} .83 2.19

Fig. 2. Symptoms Association Rule Graph. The graph encoding shows the top
20 association rules for (a) acute and (b) late symptoms. In the acute state there is
a large cluster of severe symptoms. In the late stage, drowsy and fatigue appear to
be anchor symptoms connecting a cluster of interference symptoms with a cluster of
cancer symptoms.

Table 2 shows the top 5 association rules with the highest lift for the acute and
late stages. The top rule for the acute stage involves pain, taste, and mucosi-
tis. While this association is clinically valid, since mucositis presents as small
painful oral ulcers in patients, it notably could interfere with oral functions like
taste. Other studies have shown pain to cluster more closely to fatigue than
mucositis [10,12]. For late symptoms, the top three rules include interference
symptoms rated with low severity. The acute symptoms showed that HN-related
and common cancer symptoms were more prevalent than in late-stage analysis.
Notably, rules involving drowsy and fatigue with low severity are among the top
rules for both the acute and late stages. Previous studies have also supported
the association between these two symptoms, drowsy and fatigue, as a symptom
cluster [9,10]. Caution is advised when interpreting ARM relationships, as rules
are not indicating causality but rather the probability of co-occurrence. To help
visualize the symptom clusters, we adopt a graph representation for association
rules [13]. Figure 2 shows the top 20 association rules sorted by lift for acute
and late symptoms. The circles encode rules with size and color representing
the support and lift metrics. The blue rectangles encode symptoms. An arrow
pointing towards a circle means that the associated symptom is an antecedent
for the association rule. If the arrow points towards a symptom, that symptom
is the consequent for the association rule.
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For acute symptoms, two clusters are consistent with previously reported
clusters for HN cancer [10]. For late symptoms, there are four identifiable clus-
ters. Interestingly, drowsy and fatigue seem to be anchor symptoms between
interference and HN-related symptoms, a relationship that more traditional
approaches for symptom cluster research cannot capture. Furthermore, we found
that pain is associated with both mucositis and fatigue. These findings high-
light that symptoms could appear in different clusters with the ARM algorithm,
providing a more accurate model for the complex relationships between symp-
toms. In contrast, highly occurring symptoms would cluster together earlier when
symptoms are partitioned into clusters, as in hierarchical clustering.

4 Conclusion

We introduce association rule mining as a powerful approach to identify patient
symptom clusters and uncover interesting relationships between symptoms. Our
approach models PRO data as transactions, visualizes the most significant asso-
ciation rules in symptom clusters, and captures the severity of symptoms in
both acute and late stages. When applied to PRO data from head and neck can-
cer patients, this approach correctly identified higher symptom prevalence and
severity during treatment and a gradual decrease after treatment. The new acute
symptom clusters found include severely rated HN-related and common cancer
symptoms. The late symptom clusters found include more interference symptoms
and low severity symptoms. Our analysis identifies new anchor symptom clusters
that connect interference and HN-related symptoms, offering new opportunities
for targeted interventions that could positively affect cancer patients’ quality of
life while supporting previously identified SCs. In the future, we plan to include
clinical variables such as staging, dose, and organs at risk [14,15] into the ARM
analysis to determine whether patient characteristics are related to individual
symptoms or symptoms clusters.
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Abstract. Qualitative influence statements are often provided a priori
to guide learning; we answer a challenging reverse task and automatically
extract them from a learned probabilistic model. We apply our Qualita-
tive Knowledge Extraction method toward early prediction of gestational
diabetes on clinical study data. Our empirical results demonstrate that
the extracted rules are both interpretable and valid.

1 Introduction

The nuMoM2b (Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-
to-Be) study [3] aims to identify early warning signs of adverse pregnancy out-
comes, design interventions, and assist with decision-making. Since 2010, eight
research sites in the United States followed up with women throughout their
pregnancies—collecting routine clinical information, exercise data, and food they
ate. Using this data, we consider learning to explain the relationship between
gestational diabetes mellitus (GDM) and some common risk factors.

A common way to employ knowledge in machine learning and AI is via the
use of qualitative relationships that express how changes in a (subset of) fea-
ture(s)/risk factor(s) affect the target. These rules were mainly used as “induc-
tive bias” apriori to learning since they are both intuitive and natural in many
domains. We address the challenging “reverse task”. Can we extract these rules
from data? To this effect, in the context of nuMoM2b, we propose a two step
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process. First we learn a joint probability distribution over all the variables
including the target (GDM). In the second step, the constraints are extracted
by reasoning over this joint probability distribution. We demonstrate in our
experiments that such an approach yields rules that are both intuitive and valid
(as validated by our clinical expert Dr. David Haas). We first explain these
constraints before outlining our approach and presenting our learned rules.

2 Extracting Qualitative Influences

A qualitative influence (QI) statement outlines how a change in one or more
factor(s) would influence another factor [8]. We focus on two types of QI:
Monotonicity and Synergy [1,5,9]. Monotonicity represents a direct relationship
between two variables: “As BMI increases, neck circumference increases” indi-
cates that the probability of greater neck circumference increases with increase
in BMI. Specifically, a monotonic influence (MI) of variable X on variable Y ,
denoted by XM+

≺ Y (or its inverse XM−
≺ Y ), indicates that higher values of X

stochastically result in higher (or lower) values of Y . Synergy represents inter-
actions among influences. Two variables synergistically influence a third if their
joint influence is greater than their separate, statistically independent influences.
Synergy can capture influences like “Increase in BMI increases the risk of high
blood pressure in patients with family history of hypertension more than patients
without family history.” Formally, a synergistic influence (SI) of two variables A
and B on variable Y , denoted by A,BS+

≺ Y , indicates that increasing the value of
A has greater effect on Y for higher value of B than the lower value of B. Both A
and B should necessarily have same monotonic relationship with Y .1 Similarly,
a sub-synergistic influence (sub-SI), denoted by A,BS−

≺ Y , indicates that while
A and B have increasing monotonic influence on Y , the joint influence is lesser
than their separate, statistically independent influence.

2.1 Proposed Approach

Given: A data set D consisting of examples in the form of risk factors X and
binary target Y (in this case: GDM).

To Do: Learn a set of QIs that explain the effect of X on Y .

We use Xa to denote the ath variable in the feature set X. xi
a denotes a

particular value of variable Xa and |Xa| denotes the number of discrete values
Xa takes. We assume that the joint distribution (P ) over the set of random
variables X is known (we learn this joint distribution in our empirical evaluation

1 Without loss of generality, assume the variables in synergistic relation have mono-
tonically increasing impact.
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using a causal learning algorithm). For brevity, we restrict the description of
our method to extracting positive MIs and SIs, ≺M+ and ≺S+. The degree of
monotonic influence, δa, of Xa ∈ X on Y is defined as

δa = I(Ca>0) ·
∑

j

∑

j′>j

∑

k

P (Y ≤ k|Xa = xj
a) − P (Y ≤ k|Xa = xj′

a )
|Xa| (1)

where,

Ca =
∏

j

∏

j′>j

∏

k

max(P (Y ≤ k|Xa = xj
a) − P (Y ≤ k|Xa = xj′

a ) + εm, 0) (2)

For monotonicity to hold, we require P (Y ≤ k|Xa = xj
a) + εm ≥ P (Y ≤

k|Xa = xj′
a ) for all pairs of configurations of Xa, (j, j′) with j′ > j at any given

threshold value k. Here the monotonic slack εm allows violating a constraint
within a chosen margin. The degree of MI, δa, in Eq. 1 measures the cumulative
difference in the probability that the target variable Y is less than a threshold
k given Xa at two different values xj

a and xj′
a .

We extend the concept of degree of MI to SI by conditioning on a pair of
variables instead of a single variable. First, consider the difference in the effect
of changing Xa from xi

a to xi′
a on Y under the context of two different values of

Xb (xj
b and xj′

b ). We define this as

φi,i′,j,j′
a,b =

∑

k

P (Y ≤ k|Xa = xi
a,Xb = xj

b) − P (Y ≤ k|Xa = xi′
a ,Xb = xj

b)−

P (Y ≤ k|Xa = xi
a,Xb = xj′

b ) + P (Y ≤ k|Xa = xi′
a ,Xb = xj′

b )

For synergy to hold, we require φi,i′,j,j′
a,b + εs to be non-negative for all i′ > i

and j′ > j. Where εs is the synergistic slack. We define the degree of synergistic
influence, δa,b, of variables Xa ∈ X and Xb ∈ X on Y ∈ X as the cumulative
difference in degrees of context specific influence of Xa on Y in the context of
Xb. It is given by

δa,b = I(Ca,b>0) ·
∑

i

∑

i′>i

∑

j

∑

j′>j

φi,i′,j,j′
a,b

|Xa| · |Xb| (3)

where,
Ca,b =

∏

i

∏

i′>i

∏

j

∏

j′>j

max(φi,i′,j,j′
a,b + εs, 0) (4)
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Algorithm 1: QuaKE
input : P, Y,X , εm, εs, Tm, Ts

output: Rules R
initialize: R ← ∅
for a ← 0 to (|X | − 1) do

compute δa using Eq. 1
if δa ≥ Tm then

R ← (XM+
a≺ Y ) ∪ R

for b ← a + 1 to (|X | − 1) do
compute δa,b using Eq. 3
if δa,b ≥ Ts then

R ← (Xa, Xb
S+
≺ Y ) ∪ R

// Decreasing cases

return R

We employ both definitions to learn
QIs in Algorithm 1, Qualitative
Knowledge Extraction (QuaKE). The
algorithm assumes the existence of
a joint distribution [6] over ordi-
nal features, which we learn using
a causal probabilistic learning algo-
rithm (PC) [2,7]. We chose PC algo-
rithm to verify our hypothesis that
the use of a causal model will yield
causally interpretable qualitative rela-
tionships. We calculate the degree of
MI of every variable Xa ∈ X on
Y and SI of every pair of variables
Xa,Xb ∈ X on Y . The MI rules
XM+

a≺ Y are extracted if their corresponding degree of MI δa are above a pre-
defined threshold Tm. Similarly, the synergistic rules Xa,Xb

S+
≺ Y are extracted

if their corresponding degree of SI δa,b are above a pre-defined threshold Ts.

3 Learning Qualitative Influences for GDM Modeling

The nuMoM2b study tracked pregnancies of 10, 037 women near 8 sites in the
United States. We excluded 817 cases where women were already diagnosed
with diabetes; and we evaluate our proposed method for extracting QIs using
8 features2 of the remaining 9, 220 women. 7 features had inherent ordering of
categories whereas Race had no obvious ordering. We use an ordering based on
previous studies [4] on the effect of Race on GDM .

We pose and answer the following questions: (Q1) Does QuaKE extract high-
quality rules that align with background knowledge in this domain? (Q2) Does
QuaKE help uncover QI statements in cases where prior knowledge is uncertain?

We compare learned rules with those from our clinical expert, Dr. Haas. W.r.t
GDM, these could either be increasing, decreasing, no effect, or unknown. Since
Algorithm 1 assumes a complete joint distribution P is available, we consider
two factorizations of P . The first learns a causal model [2] and the other (base-
line) estimates the probabilities directly from data. Alternative baselines might
have included rules extracted from decision trees, rule mining, or Bayesian rule
learning—but each induce conjunctive rules of the form (x1∧x2∧...∧xn) =⇒ y,
making their exact connection to the QI statements tenuous.

All rules are presented in Table 1. The “Prior” knowledge refers to the rules
provided by our expert. We compare these to the rules extracted by QuaKE and
baseline (Data Alone). QuaKE’s precision compared to expert advice is 0.923±0;
whereas the precision of our unstructured baseline is 0.636±0. Precision of each

2 Refer to the supplementary material for details on the data and features: https://
starling.utdallas.edu/papers/QuaKE/.

https://starling.utdallas.edu/papers/QuaKE/
https://starling.utdallas.edu/papers/QuaKE/
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Table 1. Comparision of QI from prior knowledge (PK), QuaKE and Data Alone.
�/✗ represents that this relationship does/not exist respectively while ? represents
unknown influence. The three groups of rows show: (1) MI, (2) SI, and (3) sub-SI. Colors

highlight rules recovered by QuaKE and show (a.) coherent with the PK and baseline

(b.) contradicting the baseline (c.) coherent with baseline but contradicts the PK .

Rule Prior Knowledge QuaKE Data Alone

BMIM+
≺ GDM � � �

AgeM+
≺ GDM � � �

RaceM+
≺ GDM � � ✗

EducationM+
≺ GDM � � ✗

GravidityM+
≺ GDM � � ✗

Smoked3monthsM+
≺ GDM � ✗ ✗

SmokedEverM+
≺ GDM � ✗ ✗

Age, BMIS+
≺ GDM � � �

Age, Smoked3monthsS+
≺ GDM � � �

BMI, SmokedEverS+
≺ GDM � � �

Education, Smoked3monthsS+
≺ GDM ? � �

BMI, GravidityS+
≺ GDM � � ✗

BMI, Smoked3monthsS+
≺ GDM � ✗ �

Age, SmokedEverS+
≺ GDM � ✗ ✗

BMI, EducationS+
≺ GDM ✗ � �

Education, SmokedEverS+
≺ GDM ? ✗ ✗

Age, EducationS−
≺ GDM � � �

BMI, Smoked3monthsS−
≺ GDM ✗ � ✗

Age, SmokedEverS−
≺ GDM ✗ ✗ �

BMI, GravidityS−
≺ GDM ✗ ✗ �

Gravidity, SmokedEverS−
≺ GDM ✗ ✗ �

Education, SmokedEverS−
≺ GDM ? ✗ �

Age, GravidityS−
≺ GDM � ✗ ✗

method was consistent across five stratified cross validation folds. This affirms
Q1: QuaKE can extract high-quality rules aligning with prior knowledge.

Since we have formalized degree of the QIs in Eqs. 1 and 3, we can ana-
lyze rules that were highly uncertain according to the prior knowledge. Two
of the synergistic relations involving smoking and education had an unknown
effect with relation to GDM. Education, Smoked3monthsS+

≺ GDM was a high-
confidence rule extracted by QuaKE and the baseline. We speculate that this
could be either due to the high correlation between Education and Age, or
related to an unobserved relationship between education and socioeconomic sta-
tus. Note that both these results are especially interesting since we found only
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a weak monotonic relationship between smoking and GDM more generally. We
use this to answer Q2: our approach can identify potentially interesting cases
where prior knowledge is uncertain.

Discussion and Conclusion: We considered the problem of learning inter-
pretable and explainable qualitative rules for modeling GDM. To this effect, we
learned a causal (probabilistic) model and recovered the knowledge by applying
the rules. Our results indicate that most of our rules are in line with the prior
knowledge of our expert and some interesting influence relationships appear that
are worth investigating. Incorporating richer domain knowledge, automatically
refining the rules, identifying broader relationships and scaling to larger feature
sets are interesting future research directions.
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