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Abstract In the chapter, the general fractional derivatives in the different kernel
functions, such as Mittag-Lefller, Wiman and Prabhakar functions are considered
to model the viscoelastic behaviors in the real materials. We investigate the basic
formulas of the fractional calculus (FC) in the kernels of the power, Mittag-Lefller,
Wiman and Prabhakar functions. We discuss the applications for the general frac-
tional calculus (GFC) in viscoelasticity. As the examples, the Maxwell and Voigt
models with the general fractional derivatives (GFD) are considered to represent the
complexity of the real materials.

Keywords Mittag-Lefller function · Wiman function · Prabhakar function ·
General fractional derivative · General fractional integral · General fractional
calculus · Viscoelasticity

1 Introduction

Fractional calculus (FC) within the singular power-law kernel in the Riemann–Liou-
ville and Liouville-Caputo types (see [1–9]) has been the increasing interests for
scientists and engineers to represent themathematicalmodels in areas of a greatmany
of the applications in engineering practices, such as the electric circuit [10], control
theory [11], physics [12], mechanics [13], heat transfer [14], mathematical economy
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and finance (see [15, 16]), complex population dynamics [17], mathematical biology
[18] and many others (see [20] and the cited references therein).

From mathematical and physical point of view, there may exist some of the
new prospective of the applications of the operators involving the special functions
and power-law functions to linear viscoelasticity (see [21–33]). With the use of the
Nutting’s observation [28], the laws of deformation with the operators involving the
Riemann–Liouville [23, 24], Liouville-Caputo [25] and Caputo-Fabrizio [28] types,
local FD [29], general FDs [30], and others [31–33] were reported in detail. The
hereditary elastic rheological models, represented as the Volterra integral equation,
were reported in [20, 21, 33]. The Maxwell and Voigt models involving the different
fractional and fractal operators were proposed in [20, 21, 28–36].

Nowadays, there may exist the new unsolved problems including the Nutting
equation [37] and anomalous Nutting equation in the real materials, such as rock
and mining rock. Motivated by the above ideas, the brief targets of the chapter are
to investigate the general fractional derivatives (GFDs) and the general fractional
integrals (GFIs) with the nonsingular power-law kernel to describe the real material
with the power-law phenomena by using the general fractional-order Maxwell and
Voigt models.

The structure of the present chapter is suggested as follows. InSect. 2,we introduce
the FC and GFC operators with the power-law kernel. In Sect. 3, we investigate the
recent applications of the GFDs to the general fractional-order viscoelasticity in the
real materials. Finally, the conclusion is given in Sect. 4.

2 Mathematical Tools

In order to discuss the GFC, we introduce the special functions and the FC operator
of the Riemann–Liouville and Liouville-Caputo types in this section.Meanwhile, we
present the recent results on the GFC operators in the kernels of the special functions.
Finally, the Laplace transforms of the FC and GFC operators are considered in detail
(see [38–51]).

2.1 The Special Functions with Power Law

LetC,R,R+
0 ,N andN0 be the sets of complex numbers, real numbers, non-negative

real numbers, positive integers and N0 = {0} ∪ N, respectively.
The Mittag–Leffler function, introduced by Swedish mathematician Gosta

Mittag–Leffler in 1903, is defined as [47]:

Eν(η) =
∞∑

κ=0

ηκ

�(κν + 1)
, (1)
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where η, ν ∈ C, �(ν) ∈ R
+
0 , κ ∈ N, and �(·) is the familiar Gamma function [3].

As first extension of the Mittag–Leffler function, the extended Mittag–Leffler
function, structured by Wiman in 1905, is defined as [48]:

Eν,υ(η) =
∞∑

κ=0

ηκ

�(κν + υ)
, (2)

where η, ν, υ ∈ C, �(ν),�(υ) ∈ R
+
0 , and κ ∈ N.

As further extension of the Mittag–Leffler function, the extended Mittag–Leffler
function, introduced by Prabhakar in 1971, is given as [49]:

Eφ
ν,υ(η) =

∞∑

κ=0

(φ)κ

�(κν + υ)

ηκ

�(κ + 1)
, (3)

where η, ν, υ, φ ∈ C,�(ν),�(υ),�(φ) ∈ R
+
0 , κ ∈ N, and the familiar Pochhammer

symbol is expressed as [50]:

(φ)κ =
⎧
⎨

⎩

1, κ = 0,

�(φ + κ)

�(φ)
, κ ∈ N.

(4)

For λ ∈ C, the Laplace transforms of the functions with power law are given as
[38, 40, 49]:

L

[
t−ν

�(1 − ν)

]
= sν, (5)

L

[
tν

�(1 + ν)

]
= s−ν, (6)

L
[
tυ−1Eφ

ν,υ(λtν)
] = 1

sυ(1 − λs−ν)ϕ
, (7)

L
[
tυ−1Eν,υ(λtν)

] = 1

sυ(1 − λs−ν)
, (8)

L
[
Eν(λt

ν)
] = 1

1 − λs−ν
, (9a)

L[δ(t)] = 1, (9b)

where δ(t) is the Dirac delta (see [38]) and the Laplace transform is defined as [38]:



138 X.-J. Yang et al.

L[�(t)] = �(s) :=
∞∫

0

e−st�(t)dt . (9c)

2.2 GFC in a Kernel Function

The GFD of the Riemann–Liouville type is defined as [38, 40, 41, 45, 46]:

(
DRL

(�)

)
(τ ) =

d

dθ

τ∫

a

�(τ − t)
(t)dt
(
τ ∈ R

+
0

)
, (10)

where 
 ∈ AC
(
R

+
0

)
, and �(τ) is the kernel function.

The GFD of the Liouville-Caputo type is defined as [38, 40, 41, 45, 46]:

(
DLC

(�)

)
(θ) =

τ∫

0

�(τ − t)
(1)(t)dt
(
τ ∈ R

+
0

)
, (11)

where 
(1)(τ ) = d
(τ)/dτ , 
(1) ∈ Lloc
1

(
R

+
0

)
, and �(τ) is the kernel function.

The relationship between Eqs. (11) and (10) is given as [40, 41]:

(
DC

(�)

)
(τ ) =

(
DRL

(�)

)
(τ ) − �(τ)
(0). (12)

2.3 FC Within the Singular Power-Law Kernel

With the use of the kernel �(τ) = τ−ν/�(1 − ν), the Riemann–Liouville FD of the
function 
(τ) of order (0 < ν < 1) is given by [1, 2, 4, 5]:

(
RL
0 D(ν)

τ 

)
(τ ) =

1

�(1 − ν)

d

dτ

τ∫

0


(t)

(τ − t)ν
dt (τ > 0). (13)

where
 ∈ AC
(
R

+
0

)
, and theLiouville-Caputo FDof the function
(τ) by [1, 2, 4–9]
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(
C
0 D

(ν)
τ 


)
(τ ) =

1

�(1 − ν)

τ∫

0


(1)(t)

(τ − t)ν
dt (τ > 0), (14)

where 
(1)(τ ) = d
(τ)/dτ and 
(1) ∈ Lloc
1

(
R

+
0

)
.

The relationship between Eqs. (13) and (14) is given as [2]:

(
RL
0 D(ν)

τ 

)
(τ ) =

(
C
0 D

(ν)
τ 


)
(τ ) + τ−ν

�(1 − ν)

(0). (15)

Suppose that N is the set of positive integers, m ∈ N and m − 1 < ν < m.
Equations (13) and (14) yield [2, 4, 7, 8]:

(
RL
0 D(ν)

τ 

)
(τ ) =

1

�(m − ν)

dm

dτm

τ∫

0


(t)

(τ − t)m−ν−1 dt (τ > 0), (16)

(
RL
0 D(ν)

τ 

)
(τ ) =

1

�(m − ν)

τ∫

0


(m)(t)

(τ − t)m−ν−1 dt (τ > 0), (17)

respectively.
The Laplace transforms of the FC operators in the nonsingular power-law kernel

are given as [2]:

L
[(

RLT
0 D(ν)

τ 

)
(τ )

] = sν
(s), (18a)

(
0I

(ν)
t �

)
(τ ) = 1

�(ν)

τ∫

0

�(t)

(τ − t)1−ν
dt . (18b)

The inverse operator (the Riemann–Liouville fractional integral) is given as [2]:

(
0I

(ν)
t �

)
(τ ) = 1

�(ν)

τ∫

0

�(t)

(τ − t)1−ν
dt . (19)

The Laplace transforms of the GFC operators in the nonsingular power-law kernel
are given as [2]:

(
RL
0 D(ν)

τ 

)
(t) = sν
(s),

(
LC
0 D(ν)

τ �
)
(t) = sν−1(s�(s) − �(0)),
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where 
(s) is the Laplace transform of the function 
(s).
The properties of the GFD in the nonsingular power-law kernel are given as [2]:

(
RL
a D(ν)

τ (
1 + 
2)
)
(τ ) =

(
RL
a D(ν)

τ 
1
)
(τ ) +

(
RL
a D(ν)

τ 
2
)
(τ ),

RL
a D(ν)

τ 1 = (τ − a)−ν

�(1 − ν)
,

LC
a D(ν)

τ 1 = 0,

(
LC
a D(ν)

τ (
1 + 
2)
)
(τ ) =

(
LC
a D(ν)

τ 
1
)
(τ ) +

(
LC
a D(ν)

τ 
2
)
(τ ).

Remark 1 Liouville derived the fractional derivative formula (see [4]).

C
0 D

(ν)
∞ 
(τ) = 1

(−1)ν�(ν)

∞∫

0


(m)(τ + t)tν−1dt,

and the formula (see [4])

h

τ∫

0

(τ − t)−
1
2 
(1)(t)dt = m(τ ),

where h = 1/
√
2g is the constant, though not quite rigorously from themodern point

of view.
So nine introduced the following fractional derivative given as (see [6])

C
a D

(ν)
τ 
(τ) = 1

�(p − ν + 1)

τ∫

a

(τ − t)p−ν
(1)(t)dt, Re(n) < ν < Re(n + 1).

Caputo and Smit and De Vries introduced the fractional derivative in the form
(see [7, 8])

C
a D

(ν)
τ 
(θ) = 1

�(n − ν)

τ∫

a

1

(τ − t)ν

(n)(t)dt .

In 1968, Dzhrbashyan and Nersesyan introduced the fractional derivative (see[9])

C
0 D

(ν)
∞ 
(θ) = 1

�(n − ν)

∞∫

0

1

(τ − t)n−ν

(n)(t)dt .
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Theorem 1 (see [49]).

Let τ ∈ R
+
0 , ν ∈ (0,1), � ∈ L

(
R

+
0

)
and �(1) ∈ Lloc

1

(
R

+
0

)
. Then, there is an Abel

integral of the form

1

�(ν)

τ∫

0

�(t)

(τ − t)1−ν
dt = �(τ), (20a)

with the solution given as

�(t) = 1

�(1 + ν)

τ∫

0

(τ − t)ν�(1)(t)dt +
τ ν

�(1 + ν)
�(0), (20b)

where �(τ = 0) = �(0).

2.4 GFC with the Nonsingular Power-Law Kernel

When the kernel in Eq. (1) is given as�(τ) = τ ν/�(1 + ν), the Riemann–Liouville-
type GFD of the function 
(τ) of order (0 < ν < 1) in the nonsingular power-law
kernel is defined as [21, 38]

(
RLT
0 D(ν)

τ 

)
(τ ) =

1

�(1 + ν)

d

dθ

τ∫

0

(τ − t)ν
(t)dt (τ > 0), (21)

where 
 ∈ AC
(
R

+
0

)
, and the Liouville-Caputo-type GFD of the function 
(τ) of

order (0 < ν < 1) in the nonsingular power-law kernel as [21, 38]

(
CT
0 D(ν)

τ 

)
(τ ) =

1

�(1 + ν)

τ∫

0

(τ − t)ν
(1)(t)dt (τ > 0), (22)

where 
(1)(τ ) = d
(τ)/dτ and 
(1) ∈ Lloc
1

(
R

+
0

)
.

The relationship between Eq. (21) and Eq. (22) is presented as [21, 38]:

(
RLT
0 D(ν)

τ 

)
(τ ) =

(
CT
0 D(ν)

τ 

)
(τ ) + θν
(0)

�(1 + ν)
. (23)

Similarly, for m − 1 < ν < m, Eqs. (23) and (24) yield:
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(
RLT
0 D(ν)

τ 

)
(τ ) =

1

�(m + ν)

dm

dτm

τ∫

0

(τ − t)m−ν−1
(t)dt (τ > 0), (24)

(
CT
0 D(ν)

τ 

)
(τ ) =

1

�(m + ν)

τ∫

0

(τ − t)m−ν−1
(m)(t)dt (τ > 0). (25)

The Laplace transforms of Eqs. (21) and (22) are presented as follows [21, 38]:

L
[(

RLT
0 D(ν)

τ 

)
(τ )

] = 1

sν

(s), (26)

L
[(

CT
0 D(ν)

τ 

)
(τ )

] = 1

s1 + ν
(s
(s) − 
(0)). (27)

Its inverse operator ( the general fractional integral) is defined as [21, 38]:

(
L
a I

(ν)
τ �

)
(τ ) =

1

�(−ν)

τ∫

a

1

(τ − t)1 + ν
�(t)dt . (28)

The Laplace transforms of the GFC operators in the nonsingular power-law kernel
are given as [21, 38]:

(
RL
0 D(ν)

τ 

)
(t) = sν
(s),

(
LC
0 D(ν)

τ �
)
(t) = sν−1(s�(s) − �(0)).

The properties of the GFD in the nonsingular power-law kernel are given as [21,
38]:

(
RL
a D(ν)

τ (
1 + 
2)
)
(τ ) =

(
RL
a D(ν)

τ 
1
)
(τ ) +

(
RL
a D(ν)

τ 
2
)
(τ ),

RL
a D(ν)

τ 1 =
(τ − a)−ν

�(1 − ν)
,

LC
a D(ν)

τ 1 = 0,

(
LC
a D(ν)

τ (
1 + 
2)
)
(τ ) =

(
LC
a D(ν)

τ 
1
)
(τ ) +

(
LC
a D(ν)

τ 
2
)
(τ ).

Theorem 2 (see [21, 38]).

Let τ ∈ R
+
0 , v ∈ (0, 1),� ∈ L

(
R

+
0

)
and �(1) ∈ Lloc

1

(
R

+
0

)
. Then, there is an Abel

type integral
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1

�(−ν)

τ∫

0

�(t)

(τ − t)1 + ν
dt = �(τ), (29a)

with the solution given
as

�(t) = 1

�(1 − ν)

τ∫

0

(τ − t)−ν�(1)(t)dt +
τ−ν

�(1 − ν)
�(0), (29b)

where �(τ = 0) = �(0).

2.5 GFC with the Nonsingular Mittag–Leffler Function
Kernel

When the kernel in Eq. (1) is given as: �(τ) = Eν(−τ ν), the GFD of Riemann–
Liouville type in the kernel of the Mittag–Leffler function is defined by [21, 38,
41]:

(
RLT
a D(ν)

τ 

)
(τ ) =

d

dτ

τ∫

a

Eν(−(τ − t)ν)
(t)dt (τ > a), (30)

where 
 ∈ AC
(
R

+
0

)
, and the GFD of the Liouville-Caputo type in the kernel of the

Mittag–Leffler function by [21, 38, 41]:

(
CT
a D(ν)

τ 

)
(τ ) =

τ∫

a

Eν(−(τ − t)ν)
(1)(t)dt (τ > a), (31)

where 
(1)(τ ) = d
(τ)
/
dτ and 
(1) ∈ Lloc

1

(
R

+
0

)
.

The relationship between Eqs. (30) and (31) becomes [21, 38, 41]:

(
CT
0 D(ν)

τ 

)
(τ ) =

(
RLT
0 D(ν)

τ 

)
(τ ) − Eν(τ

ν)
(0). (32)

Similarly, for m − 1 < ν < m, Eqs. (13) and (14) yield:

(
RLT
a D(ν)

τ 

)
(τ ) =

dm

dτm

τ∫

a

Eν(−(τ − t)ν)
(t)dt (τ > 0), (33)
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(
CT
a D(ν)

τ 

)
(τ ) =

τ∫

a

Eν(−(τ − t)ν)
(m)(t)dt (τ > 0). (34)

Its inverse operator (the general fractional integral) is defined as

(
0I

(v)
t �

)
(τ ) = �(τ) − 1

�(ν)

τ∫

0

�(t)

(τ − t)1−ν
dt

Remark 2 Hille and Tamarlcin proposed the Abel type integral equation of the
second kind (see [50]).

�(τ) − τ

�(ν)

x∫

0

�(t)

(τ − t)1−ν
dt = 
(τ), 0 < α < 1,

with the solution given as

�(τ) = d

dτ

τ∫

0

Eν

[
λ(τ − t)ν

]

(t)dt .

Hille introduced the following fractional differential operator (see [51])

(
RLT
a D(ν)

τ 

)
(τ ) = λ

d

dτ

τ∫

0

Eν

[
λ(t − x)ν

]
f (t)dt .

Atangana and Baleanu introduced the general fractional derivative with the
Mittag–Leffler function involving the normalization parameter (see [43])

(
CT
a D(ν)

τ 

)
(τ ) = �(ν)

1 − ν

τ∫

a

Eν

(
− ν

1 − ν
(τ − t)ν

)

(1)(t)dt,

where �(ν) is the normalization parameter.
The Laplace transforms of the GFC operators in the nonsingular Mittag–Leffler

kernel are given as [21, 38, 41]:

(
RL
0 D(ν)

τ 

)
(t) =

(
1 − s−ν

)−1

(s),

(
LC
0 D(ν)

τ �
)
(t) = s−1

(
1 − s−ν

)−1
(s�(s) − �(0)).



General Fractional Calculus with Nonsingular Kernels … 145

The properties of the GFD in the nonsingular Mittag–Leffler kernel are given as
[21, 38, 41]:,

(
RL
α D(v)

τ (
1 + 
2)
)
(τ ) = (

RL
α D(v)

τ 
1
)
(τ ) + (

RL
α D(v)

τ 
2
)
(τ ),

RL
a D(ν)

τ 1 = Eν(−τ ν),

LC
α D(v)

τ 1 = 0,

(
LC
α D(v)

τ (
1 + 
2)
)
(τ ) = (

LC
α D(v)

τ 
1
)
(τ ) + (

LC
α D(v)

τ 
2
)
(τ ).

2.6 GFC with the Nonsingular Wiman Kernel

When the kernel inEq. (1) is given as:�(τ) = τυ−1Eν,υ(−τ ν), theGFDofRiemann–
Liouville type in the kernel of the Wiman function is defined by [21, 38, 41]:

(
RLT
a D(ν)

τ 

)
(τ ) =

d

dτ

τ∫

a

(τ − t)υ−1Eν,υ(−(τ − t)ν)�(t)dt (τ > a), (35)

where 
 ∈ AC
(
R

+
0

)
, and the GFD of the Liouville-Caputo type in the kernel of the

Wiman function by:

(
C
Eν,υ (−)D

(ν)
a �

)
(τ ) =

τ∫

a

(τ − t)υ−1Eν,υ(−(τ − t)ν)�(1)(t)dt (τ > a), (36)

where 
(1)(τ ) = d
(τ)
/
dτ and 
(1) ∈ Lloc

1

(
R

+
0

)
.

The relationship between Eqs. (35) and (36) is [21, 38, 41]:

(
CT
a D(ν)

τ 

)
(τ ) =

(
RLT
a D(ν)

τ 

)
(τ ) − τυ−1Eν,υ(−τ ν)�(0). (37)

Similarly, for m − 1 < ν < m, Eqs. (13) and (14) yield:

(
RLT
a D(ν)

τ 

)
(τ ) =

dm

dτm

τ∫

a

(τ − t)υ−1Eν,υ(−(τ − t)ν)�(t)dt (τ > 0), (38)
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(
CT
a D(ν)

τ 

)
(τ ) =

τ∫

a

(τ − t)υ−1Eν,υ(−(τ − t)ν)
(m)(t)dt (τ > 0). (39)

Its inverse operator (the general fractional integral) is defined as [21, 38, 41]

(
0I

(v)
t �

)
(τ ) =

τ∫

0

(τ − t)−υE−1
ν,1−υ(−(τ − t)ν)�(t)dt

The Laplace transforms of the GFC operators in the nonsingular Wiman kernel
are given as [21, 38, 41]:

(
RL
0 D(ν)

τ 

)
(t) = s1−υ

(
1 + s−ν

)−1

(s),

(
LC
0 D(ν)

τ �
)
(t) = s−υ

(
1 + s−ν

)−1
(s�(s) − �(0)).

The properties of the GFD in the nonsingular Wiman kernel are given as [21, 38,
41]:

(
LC
α D(v)

τ (
1 + 
2)
)
(τ ) = (

LC
α D(v)

τ 
1
)
(τ ) + (

LC
α D(v)

τ 
2
)
(τ ).

RL
a D(ν)

τ 1 = τυ−1Eν,υ(−τ ν),

LC
α D(v)

τ 1 = 0,

(
LC
α D(v)

τ (
1 + 
2)
)
(τ ) = (

LC
α D(v)

τ 
1
)
(τ ) + (

LC
α D(v)

τ 
2
)
(τ ).

2.7 GFC with the Nonsingular Prabhakar Kernel

When the kernel inEq. (1) is given as:�(τ) = τυ−1Eφ
ν,υ(−τ ν), theGFDofRiemann–

Liouville type in the kernel of the Prabhakar function is defined as [21, 38, 41]:

(
RLT
a D(ν)

τ 

)
(τ ) =

d

dτ

τ∫

a

(τ − t)υ−1Eφ
ν,υ(−(τ − t)ν)�(t)dt (τ > a), (40)

where 
 ∈ AC
(
R

+
0

)
, and the GFD of the Liouville-Caputo type in the kernel of the

Prabhakar function as [21, 38, 41]:
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(
C
Eν,υ (−)D

(ν)
a �

)
(τ ) =

τ∫

a

(τ − t)υ−1Eφ
ν,υ(−(τ − t)ν)�(1)(t)dt (τ > a), (41)

where 
(1)(τ ) = d
(τ)
/
dτ and 
(1) ∈ Lloc

1

(
R

+
0

)
.

The relationship between Eqs. (40) and (41) is [21, 38, 41]:

(
CT
a D(ν)

τ 

)
(τ ) =

(
RLT
a D(ν)

τ 

)
(τ ) − τυ−1Eφ

ν,υ(−τ ν)�(0). (42)

Similarly, for m − 1 < ν < m, Eqs. (13) and (14) yield:

(
RLT
a D(ν)

τ 

)
(τ ) =

dm

dτm

τ∫

a

(τ − t)υ−1Eφ
ν,υ(−(τ − t)ν)�(t)dt (τ > 0), (43)

(
CT
a D(ν)

τ 

)
(τ ) =

τ∫

a

(τ − t)υ−1Eφ
ν,υ(−(τ − t)ν)
(m)(t)dt (τ > 0). (44)

Its inverse operator (the general fractional integral) is defined
as [[21, 38, 41]]

(
0I

(v)
t �

)
(τ ) =

τ∫

0

(τ − t)−υE−φ
ν,1−υ(−(τ − t)ν)�(t)dt

Remark 3 Kilbas, Saigo and Saxena introduced the following general fractional
derivative (see [42]).

(
RLT
a D(ν)

τ 

)
(τ ) =

dm

dτm

τ∫

a

(τ − t)μ+m−β−1Eφ
ν,μ+m−β(λ(τ − t)ν)
(t)dt,

which is called the Kilbas-Saigo-Saxena GFD.
The Laplace transforms of the GFC operators in the nonsingular Prabhakar kernel

are given as [21, 38, 41]:

(
RL
0 D(ν)

τ 

)
(t) = s1−υ

(
1 + s−ν

)−φ

(s),

(
LC
0 D(ν)

τ �
)
(t) = s−υ

(
1 + s−ν

)−φ
(s�(s) − �(0)).

The properties of the GFD in the nonsingular Prabhakar kernel are given as [21,
38, 41]:



148 X.-J. Yang et al.

(
RL
α D(v)

τ (
1 + 
2)
)
(τ ) = (

RL
α D(v)

τ 
1
)
(τ ) + (

RL
α D(v)

τ 
2
)
(τ ),

RL
a D(ν)

τ 1 = τυ−1Eφ
ν,υ(−τ ν),

∣∣LC
α D(v)

τ 1 = 0,

(
LC
α D(v)

τ (
1 + 
2)
)
(τ ) = (

LC
α D(v)

τ 
1
)
(τ ) + (

LC
α D(v)

τ 
2
)
(τ ).

3 The Rheological Models with GFCs Involving
the Nonsingular Kernels

3.1 Complex Phenomena in Viscoelasticity

The stress–strain-time relation with the positive-parametric Mittag–Leffler function
can be written as

σν(τ ) = MEν(−τ ν)εν(0). (45)

where σν(τ ) is stress, εν(0) is the initial strain, τ is time and M is the material
constant.

There are

Eν(−τ ν) ∝ τ−ν, (46)

Eν,1(−τ ν) ∝ τ−ν, (47)

E1
ν,1(−τ ν) ∝ τ−ν, (48)

which, after taking the Laplace transform, leads to

σν(s) = Mεν(0)s
−1

(
1 + s−ν

)−1 ∝ Mεν(0)�(1 − ν)sν . (49)

The phenomena in rheological behaviors are called
as the Nutting behaviors in the real materials.

In another hand, there may exist the stress–strain-time relation with the positive-
parametric Mittag–Leffler function can be written as

σν(τ ) = MEν

(−τ−ν
)
εν(0). (50)
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Fig. 1 The spring element

whereσv(τ ) is stress, εv(0) is the initial strain, τ is time andM is thematerial constant.
There are

Eν

(−τ−ν
) ∝ τ ν, (51)

Eν,1
(−τ−ν

) ∝ τ ν, (52)

E1
ν,1

(−τ−ν
) ∝ τ ν, (53)

The phenomena in rheological behaviors are called as the anomalous Nutting
behaviors in the real materials.

3.2 The Viscoelastic Elements with GFDs

3.2.1 The Spring Element

Model 1

As shown in Fig. 1, the spring element follows the Hooke’s law given as [20, 21]

σν(τ ) = Hεν(τ ), (54)

where H is the Young’s modulus of the material.

3.2.2 The Viscoelastic Elements

As shown in Fig. 2, the viscoelastic elements with the FD and GFDs were presented
to describe the viscoelastic behaviors in the real materials.

Fig. 2 The viscoelastic
element
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Model 2

The viscoelastic element with the FD in the singular power-law kernel is given as
[20, 21]:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (55)

where K is the coefficient of viscosity.

Model 3

Theviscoelastic elementwith theGFD in the singular power-lawkernel is represented
in the form:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (56)

where K is the coefficient of viscosity.

Model 4

The viscoelastic element with the GFD in the kernel of the Mittag–Leffler function
is can be expressed as:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (57)

where K is the coefficient of viscosity.

Model 5

The viscoelastic element with the GFD in the kernel of the Wiman functions is
represented as:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (58)

where K is the coefficient of viscosity.

Model 6

The viscoelastic element with the GFD in the kernel of the Prabhakar functions is
represented in the form:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (59)

where K is the coefficient of viscosity.
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The creep and relaxation representations are given through the equations of the
Volterra type:

εν(τ ) = σν(0)Jν(τ ) +
τ∫

0

Jν(τ − t)
(
CT
0 D(ν)

t σν

)
(t)dt (60)

and

σν(τ ) = εν(0)Gν(τ ) +
τ∫

0

Gν(τ − t)
(
CT
0 D(ν)

t εν

)
(t)dt, (61)

where the creep compliance and relaxation modulus are given by: Jν(τ ) =
εν(τ )/σν(0) and Gν(τ ) = σν(τ )/εν(0), respectively.

3.3 The Maxwell Models with GFDs

As shown in Fig. 3, theMaxwellmodels with theGFDs and FD consists of aHookean
element and a general fractional-order Newtonian element in series.

The constitutive equation of the Maxwell model with GFDs can be written as

(
CT
0 D(ν)

τ εν

)
(τ ) = σν(τ )

K
+ 1

H

(
CT
0 D(ν)

τ σν

)
(τ ).

Case 1

The creep compliance of the Maxwell model with the FD in the singular power-law
kernel can be written as [20, 21]

Jν(τ ) =
1

K

τ ν

�(1 + ν)
+ 2

H
,

and the relaxation modulus of the Maxwell model with the FD in the singular power-
law kernel is given as [20, 21]

Fig. 3 The Maxwell model
via FD and GFDs
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Gν(τ ) = 2Kτ−νEν

(
−K

H
tν

)
.

Case 2

The creep compliance of theMaxwell model with the GFD in the nonsingular power-
law kernel is

Jν(τ ) =
1

K

τ−ν

�(1 − ν)
+ 2

H
,

and the relaxation modulus of the Maxwell model with the GFD in the nonsingular
power-law kernel can be given as

Gν(τ ) = 2Kτ νEν,1 + ν

(
−K

H
tν

)
.

Case 3

The creep compliance of the Maxwell model with GFD in the kernel of the Mittag–
Leffler function can be written as

Jν(τ ) =
1

K
+ 2

H
+ 1

K

τ ν

�(1 + ν)
,

and the relaxation modulus of the Maxwell model with general fractional derivative
in the kernel of the Mittag–Leffler function becomes

Gν(τ ) = K

H + K
Eν

(
− H

H + K
τ ν

)
.

Case 4

The creep compliance of the Maxwell model with general fractional derivative in the
kernel of the Wiman function can be represented in the form:

Jν(τ ) = 1

K

(
τ 1−υ

�(2 − υ)
+ τ 1−υ+ν

�(2 − υ + ν)
+ K

H

)
,

and the relaxation modulus of the Maxwell model with the GFD in the kernel of the
Wiman function is

Gν(τ ) = KEν,ν

(
−

(
K

H
+ 1

)
τ ν

)
.
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Case 5

The creep compliance of the Maxwell model with the GFD in the kernel of the
Prabhakar function can be expressed as

Jν(τ ) = 1

K

(
τ 1−υE−φ

ν,υ (−τ ν) + 2

H

)
,

and the relaxation modulus of the Maxwell model with the GFD in the kernel of the
Prabhakar function is

Gν(τ ) = 2K
∞∑

n=0

(
−K

H

)n

τ (n−1)(2−υ)E (1−n)φ

ν,(n−1)(2−υ)+1(−τ ν).

3.4 The Voigt Models with GFDs

As shown in Fig. 4, the Voigt models with the GFDs and FD consists of a Hookean
element and a general fractional-order Newtonian element in parallel.

The constitutive equation of the Voigt model can be written as

σν(τ ) = Hεν(τ ) + K
(
RLT
0 D(v)

τ εv
)
(τ ).

Case 1

The creep compliance of the Voigt model with the FD in the singular power-law
kernel can be written as [20, 21]

Jν(τ ) =
1

H

(
1 − Eν

(
−K

H
τ ν

))
,

Fig. 4 The Voigt model via FD and GFDs
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and the relaxation modulus of the Voigt model with the FD in the singular power-law
kernel is given as [20, 21]

Gν(τ ) = H + K
τ−ν

�(1 − ν)
.

Case 2

The creep compliance of the Voigt model with the GFD in the nonsingular power-law
kernel is represented as

Jν(τ ) =
1

H
Eν

(
−K

H
τ ν

)
,

and the relaxation modulus of the Voigt model with the GFD in the nonsingular
power-law kernel can be given as

Gν(τ ) = H + K
τ ν

�(1 + ν)
.

Case 3

The creep compliance of the Voigt model with the GFD in the kernel of the Mittag–
Leffler function is

Jν(τ ) =
1

H + K

(
Eν

(
− H

H + K
τ ν

)
+ Eν,ν + 1

(
− H

H + K
τ ν

))
,

and the relaxation modulus of the Voigt model with the GFD in the kernel of the
Mittag–Leffler function is given as

Gν(τ ) = H + KEν(−τ ν).

Case 4

The creep compliance of the Voigt model with the GFD in the kernel of the Wiman
function is expressed by

Jν(τ ) = τ 1−υ

�(2 − υ)
+ τ 1+ν−υ

�(2 + ν − υ)
+ 2K

H
,

and the relaxation modulus of the Voigt model with the GFD in the kernel of the
Wiman function can be written as
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Gν(τ ) = 2H

K
Eν,ν

(
−

(
K

H
+ 1

)
τ ν

)
.

Case 5

The creep compliance of the Voigt model with the GFD in the kernel of the Prabhakar
function is

Jν(τ ) =
1

H

( ∞∑

n=0

(
−K

H

)−n

τ n(1−υ)E−nφ

ν,n(1−υ)+1(−τ ν)

+ K

H

∞∑

n=0

(
−K

H

)n

τ (n−1)(2−υ)E (1−n)φ

ν,(n−1)(2−υ)+1(−τ ν)

)
,

and the relaxation modulus of the Voigt model with the GFD in the kernel of the
Prabhakar function is given as

Gν(τ ) = H + Kτυ−1Eφ
ν,υ(−τ ν).

For more details of the applications of the GFC operators to the viscoelastic
behaviors, see [20, 21].

4 Conclusion

In the present work, we investigated the basic formulations of the FC and GFC
operators with the special functions with the power law. The Laplace transforms of
the GFDs and GFIs formulations were discussed in detail. The anomalous Nutting
behaviors in the real materials can be proposed for the first time. The applications
of the GFC operators to the viscoelastic behaviors can be represented in the use of
the complexity of the real materials. The Maxwell and Voigt models with the GFDs
in the nonsingular kernels were obtained with the help of the Laplace transforms of
the special functions. The results can be explained the complex phenomenon in the
mining-rock materials.
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