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Abstract In this chapter, we begin our work of studying two unequal collinear
semi-permeable cracks in a magneto-electro-elastic media. We employ the Stroh’s
formalism and complex variable technique to solve the physical problem. We derive
the closed form analytic solutions for various fracture parameters, and study the
effect of volume fraction and inter-crack distance on these parameters.
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1 Introduction

Piezo-electro-magnetic/Magneto-electro-elastic (MEE) composite materials are
widely used in magnetic field probes, acoustic, medical ultrasonic imaging,
hydrophones, electronic packaging, electromagnetic sensors, actuators and transduc-
ers etc., due to their multi-field-coupled effects. MEE ceramics are brittle in nature
and have low fracture toughness. The presence of defects such as cracks, voids leads
to the premature failure of thesematerials undermechanical/electrical/magnetic load-
ings. Thus fracture study becomes essential for such materials to predict structural
integrity and to advance the design of MEE devices.

This chapter reviews extensive work that has been done to better understand the
mechanics of MEE materials in the presence of defects such as cracks. As compared
to piezoelectric or anisotropic cases, relatively limited work has been done so far
in MEE fracture analysis. A large number of publications for a single crack in a
MEE materials are available in the literature [1–6]. Further, few work related to
multiple cracks in MEE media is available in the literature, also it deserves noting
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that problems of collinear cracks have been a typical and active topic in fracture
mechanics. With the application of MEE ceramics, the collinear-crack problems in
them have drawn the attention of many researchers [7–9]. The static and dynamic
problems of two collinear interfacial cracks in MEE composites [10–13] have been
solved by Zhou and colleagues by using the Schmidt method. Exact solutions for
anti-plane collinear cracks in a MEE strip or layer have been derived by Wang
et al. [14], Wang and Mai [15], and Singh et al. [16] under different conditions.
Most, recently Jangid and Bharagva [17] has derived an analytical solution for two
collinear semi-permeable cracks inMEEmedia using Stroh’s formalism and complex
variable technique.

The main objective of this chapter is to show the effect of volume fraction, inter-
crack distance and prescribed loadings on the collinear semi-permeable cracks. For
this, the problem of two unequal collinear semipermeable cracks weakening a MEE
media is studied. Only in-plane electro-magnetic and mechanical loading conditions
are considered. The problem is formulated employing Stroh’s formalism and solved
using a complex variable technique (see Sects. 4 and 5). Closed form analytical
expressions are derived for various fracture parameters (see Sect. 6).

2 Basic Equations for Piezoelectromagnetic Media

The fundamental equations and the boundary conditions for linear piezo-electro-
magnetic media are defined as below:

• Constitutive Equations

σi j = Ci jksεks − esi j Es − hsi j Hs, (1)

Di = ekisεks + κis Es + βis Hs, (2)

Bi = hiksεks + βis Es + γis Hs . (3)

• Kinematic Equations

εi j = 1

2
(ui, j + u j,i ), Ei = φ,i , Hi = ϕ,i . (4)

• Equilibrium Equations

Equilibrium equations for stresses, electric displacements andmagnetic inductions
in the absence of body forces, free electric charges and freemagnetic currents,may,
respectively, be written as

σi j, j = 0, Di,i = 0 and Bi,i = 0, (5)

where σi j , εi j , Di , Ei , Bi and Hi denote the components of the stress, strain, elec-
tric displacement, electric field, magnetic induction and magnetic field, respectively;
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Ci jks , eiks , hiks and βis denote the elastic, piezoelectric, piezo-magnetic and elec-
tromagnetic constants; κis and γis denote the dielectric permittivities and magnetic
permeabilities, respectively. Comma denotes partial differentiation with respect to
argument following it; φ is the electric potential; and ϕ is the magnetic potential;
where i, j, k and s = 1, 2, 3.

2.1 Crack Face Boundary Conditions

In the literature, mainly three crack face boundary conditions for MEE ceramics are
available. These are represented mathematically as:

• Impermeable boundary conditions (proposed by Deeg [18])
The crack faces are assumed to be traction-free, electrically and magnetically
impermeable

σi j n j = 0; D+
2 = D−

2 = 0 and B+
2 = B−

2 = 0; (6)

• Permeable boundary conditions (proposed by Parton [19])
In this case, crack is traction-free and does not obstruct any electric field from
conduction

σi j n j = 0; φ+ = φ−; ϕ+ = ϕ−; D+
2 = D−

2 �= 0 and B+
2 = B−

2 �= 0; (7)

• Semi-permeable boundary conditions
This condition, gives a more realistic boundary condition for a open cracks, its
modification are proposed by Hao and Shen [20] for piezoelectric solids. These
assumption establishes that medium between the crack surfaces partially conducts
the electric and magnetic fields and can be expressed as

σi j n j = 0; D+
2 = D−

2 = Dc
2 = −κc

�φ(x1)

�u(x1)
and B+

2 = B−
2 = Bc

2 = −γc
�ϕ(x1)

�u(x1)
,

(8)

where superscripts+ and− represent, respective, values on the upper and lower crack
surfaces, considering crack along x1-axis; κc = κrκo(κo = 8.85 × 10−12F/m), κr

is electric permittivity and γc = γrγo(γo = 1.26 × 10−6Ns2/C2), γr is magnetic
permeability of the medium between the crack faces, respectively; �φ, �ϕ and �u
are the jumps of electric potential,magnetic potential and crack openingdisplacement
across the crack, respectively.
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3 Fundamental Formulation and Solution Methodology

According to Stroh’s formulation [21] the general solution satisfying Eqs. (1)–
(5) may be written as (solution methodology is recapitulated from Jangid and
Bhargava [17])

u,1 = AF(z) + AF(z), (9)

�,1 = BF(z) + BF(z), (10)

where, A = (a1, a2, a3, a4, a5), B = (b1,b2,b3,b4,b5), u = [u1, u2, u3,φ,ϕ]T ,
F(z)= df(z)

dz
, f(zα)= [ f1(z1), f2(z2), f3(z3), f4(z4), f5(z5)]T and zα = x1 + pαx2,

where pα is a non-real root of

|W + p(R + RT ) + p2Q| = 0. (11)

The matrices W, R and Q are given by

W =
⎡
⎣
C1 jk1 e1 j1 h1 j1
eT1k1 −κ11 −β11

hT
1k1 −β11 −γ11

⎤
⎦ ,R =

⎡
⎣
C1 jk1 e2 j1 h2 j1
eT1k2 −κ12 −β12

hT
1k2 −β12 −γ12

⎤
⎦ ,

Q =
⎡
⎣
C2 jk2 e2 j2 h2 j2
eT2k2 −κ22 −β22

hT
2k2 −β22 −γ22

⎤
⎦ , j, k = 1, 2, 3. (12)

The column vectors of matrix B = (b1,b2,b3,b4,b5) are related to the column
vectors of matrix A = (a1, a2, a3, a4, a5) in the following form

bk = (RT + pkQ)ak, k = 1, 2, 3, 4, 5

and � is the generalized stress function such that

œ2 = [σ2 j , D2, B2]T = �,1, œ1 = [σ1 j , D1, B1]T = −�,2. (13)

4 Statement of the Problem

An infinite transversely isotropic piezo-electro-magnetic 2D domain is considered
for the analysis in the ox1x2-plane. Two unequal collinear cracks L1 and L2 are
taken along the x-axis occupying the intervals [d, c] and [b, a], respectively. The
traction free crack face and semipermeable boundary condition are taken for the
analysis. The remote boundary of the plate is prescribed in-plane mechanical load
σ∞
22 , electric displacement D∞

2 , andmagnetic induction B∞
2 . The entire configuration
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Fig. 1 Schematic representation of the problem

is schematically presented in Fig. 1. The physical boundary conditions stated above
may be written as

(i) σ+
2 j = σ−

2 j = 0, D2 = Dc, B2 = Bc on L =
2⋃
1

Li

(ii) σ22 = σ∞
22 , D2 = D∞

2 , B2 = B∞
2 for |x2| → ∞

(iii) u+
j = u−

j , σ+
2 j = σ−

2 j , D+
2 = D−

2 , B+
2 = B−

2 , φ+ = φ−, ϕ+ = ϕ− for |x1| <

d, c < |x1| < b, |x1| > a
(iv) �+

,1 = �−
,1 = −V, V = [ 0 σ∞

22 0 D∞
2 B∞

2 ]T for d < |x1| < c, b < |x1| < a.

where Dc and Bc are the electric andmagnetic fluxes through the crack regions (d, c)
and (b, a), which can be determined with the help of the Eq. (8).

5 Solution of the Problem

The continuity of �,1(x1) on the whole real axis implies that

[BF(x1) − BF(x1)]+ − [BF(x1) − BF(x1)]− = 0. (14)

According to Muskhelishvil [22] its solution may be written as
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BF(z) = BF(z) = h(z)(say) (15)

Boundary condition (iv) together with Eqs. (10, 15) yield following vector Hilbert
problem

h+(x1) + h−(x1) = V0 − V, V0 = [0, 0, 0, Dc, Bc]T on L (16)

Introducing a new complex function vector�(z) = [�1(z),�2(z),�3(z),�4(z),
�5(z)]T as

�(z) = HRBF(z).

Which using Eq. (15) gives the relation

h(z) = ��(z), (17)

where � = [HR]−1, HR = 2ReY, Y = iAB−1.
Consequently Eq. (16) may be written in component form for �2(z),�4(z) and

�5(z), yield following scalar Hilbert problems

�22[�+
2 (x1) + �−

2 (x1)] + �24[�+
4 (x1) + �−

4 (x1)] + �25[�+
5 (x1) + �−

5 (x1)] = −σ∞
22 , (18)

�42[�+
2 (x1) + �−

2 (x1)] + �44[�+
4 (x1) + �−

4 (x1)] + �45[�+
5 (x1) + �−

5 (x1)] = Dc − D∞
2 ,

(19)
�52[�+

2 (x1) + �−
2 (x1)] + �54[�+

4 (x1) + �−
4 (x1)] + �55[�+

5 (x1) + �−
5 (x1)] = Bc − B∞

2 .

(20)

The solution of above Hilbert problems written using According to Muskhel-
ishvil [22] as

�2(z) = �1

2�
{

P1(z)

(a11a22 − a12a21)X1(z)
− 1

}
, (21)

�4(z) = �2

2�
{
1 − P1(z)

(a11a22 − a12a21)X1(z)

}
, (22)

�5(z) = �3

2�
{
1 − P1(z)

(a11a22 − a12a21)X1(z)

}
. (23)

where X1(z), P1(z) etc. are given in “Appendix A”.
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6 Applications

In this section, closed form analytical expressions are derived for crack opening
displacement (COD), crack opening potential drop (COPD), crack opening induc-
tion drop (COID), stress intensity factor (SIF), electric displacement intensity factor
(EDIF) and magnetic induction intensity factor (MIIF).

6.1 Crack Opening Displacement (COD)

The jump displacement vector �u,1 may be given as

i�u,1 = �+(x1) − �−(x1). (24)

Taking the second component of the above equation, we get

�u2,1(x1) = −i[�+
2 (x1) − �−

2 (x1)]. (25)

Substituting value of �2(z) from Eq. (21) and integrating one obtains

�u2(x1) = �1

(a11a22 − a12a21)� {C0S3 + C1S4 + C2S5} , on d < |x1| < c (26)

�u2(x1) = −�1

(a11a22 − a12a21)� {C0S6 + C1S7 + C2S8} , on b < |x1| < a (27)

where the symbol � indicates the difference between the values on the upper and
lower crack surfaces and S3, S4 etc. are given in “Appendix B”.

6.2 Crack Opening Potential Drop (COPD)

Comparing the fourth component from Eq. (24) and using the value of �4(x1) from
Eq. (22) and integrating one obtains the COP drop, �φ(x1), between the two faces
of the crack as

�u4(x1) = −�2

(a11a22 − a12a21)� {C0S3 + C1S4 + C2S5} , on d < |x1| < c (28)

�u4(x1) = �2

(a11a22 − a12a21)� {C0S6 + C1S7 + C2S8} , on b < |x1| < a. (29)
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6.3 Crack Opening Induction Drop (COID)

Comparing the fifth component from Eq. (24) and using the value of �5(x1) from
Eq. (23) and integrating one obtains the COI drop, �ϕ(x1), between the two faces
of the crack as

�u5(x1) = −�3

(a11a22 − a12a21)� {C0S3 + C1S4 + C2S5} , on d < |x1| < c (30)

�u5(x1) = �3

(a11a22 − a12a21)� {C0S6 + C1S7 + C2S8} , on b < |x1| < a. (31)

The values of electric and magnetic fluxes, Dc and Bc, respectively, are obtained
by substituting the required values from Eqs. (26), (28), (30) into Eq. (8) simplifying
and solving the system of non-linear equations

m1D
c2 + Dc(m4σ

∞
22 − m1D

∞
2 − m5B

∞
2 + m2κc) + BcDcm5 + Bcm3κc

= −κc(m1σ
∞
22 − m2D

∞
2 − m3B

∞
2 ),

(32)

m5B
c2 + Bc(m4σ

∞
22 − m1D

∞
2 − m5B

∞
2 + m6γc) + BcDcm1 + Dcm3γc

= −γc(m5σ
∞
22 − m3D

∞
2 − m6B

∞
2 ),

(33)

where,

m1 = �42�55 − �45�52, m2 = �22�55 − �25�52, m3 = �25�42 − �22�45,

m4 = �44�55 − �45�54, m5 = �25�44 − �24�45, m6 = �22�44 − �24�42.

6.4 Stress Intensity Factor (SIF)

Open mode stress intensity factor KI at the crack tips x1 = d, c, b, and a is obtained
using following formulae
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KI (d) = lim
x1→d−

√
2π(d − x1)σ22(x1), (34)

KI (c) = lim
x1→c+

√
2π(x1 − c)σ22(x1), (35)

KI (b) = lim
x1→b−

√
2π(b − x1)σ22(x1), (36)

KI (a) = lim
x1→a+

√
2π(x1 − a)σ22(x1). (37)

Substituting σ22(x1) obtained from Eqs. (10), (15), (17) and (20) into above equa-
tions and simplifying we obtain

KI (d) = −√
2π (�25�3 + �24�2 − �22�1)

�(a11a22 − a12a21)

{
C0d2 + C1d + C2√

(a − d)(b − d)(c − d)

}
, (38)

KI (c) =
√
2π (�25�3 + �24�2 − �22�1)

�(a11a22 − a12a21)

{
C0c2 + C1c + C2√

(a − c)(b − c)(c − d)

}
, (39)

KI (b) =
√
2π (�25�3 + �24�2 − �22�1)

�(a11a22 − a12a21)

{
C0b2 + C1b + C2√

(a − b)(b − c)(b − d)

}
, (40)

KI (a) = −√
2π (�25�3 + �24�2 − �22�1)

�(a11a22 − a12a21)

{
C0a2 + C1a + C2√

(a − b)(a − c)(a − d)

}
. (41)

6.5 Electric Displacement Intensity Factor (EDIF)

Similarly, Open mode EDIF, KIV , at the crack tips x1 = d, c, b, and a may be obtain
as

KIV (d) = −√
2π (�45�3 + �44�2 − �42�1)

�(a11a22 − a12a21)

{
C0d2 + C1d + C2√

(a − d)(b − d)(c − d)

}
,

(42)

KIV (c) =
√
2π (�45�3 + �44�2 − �42�1)

�(a11a22 − a12a21)

{
C0c2 + C1c + C2√

(a − c)(b − c)(c − d)

}
, (43)

KIV (b) =
√
2π (�45�3 + �44�2 − �42�1)

�(a11a22 − a12a21)

{
C0b2 + C1b + C2√

(a − b)(b − c)(b − d)

}
, (44)

KIV (a) = −√
2π (�45�3 + �44�2 − �42�1)

�(a11a22 − a12a21)

{
C0a2 + C1a + C2√

(a − b)(a − c)(a − d)

}
.

(45)



96 K. Jangid

6.6 Magnetic Induction Intensity Factor (MIIF)

Analogously, MIIF, KV , at the crack tips x1 = d, c, b, and a may be obtain as

KV (d) = −√
2π (�55�3 + �54�2 − �52�1)

�(a11a22 − a12a21)

{
C0d2 + C1d + C2√

(a − d)(b − d)(c − d)

}
,

(46)

KV (c) =
√
2π (�55�3 + �54�2 − �52�1)

�(a11a22 − a12a21)

{
C0c2 + C1c + C2√

(a − c)(b − c)(c − d)

}
, (47)

KV (b) =
√
2π (�55�3 + �54�2 − �52�1)

�(a11a22 − a12a21)

{
C0b2 + C1b + C2√

(a − b)(b − c)(b − d)

}
, (48)

KV (a) = −√
2π (�55�3 + �54�2 − �52�1)

�(a11a22 − a12a21)

{
C0a2 + C1a + C2√

(a − b)(a − c)(a − d)

}
.

(49)

7 Case Study

In this section, the effect of inter-crack distance and volume fraction are shown on
the intensity factors (discussed in Sect. 5).

Piezo-electro-magnetic composite BaTiO3-CoFe2O4 is selected for numerical
case study considering BaTiO3 as inclusion and CoFe2O4 as matrix. The volume
fraction of the inclusion is denoted by V f . The proportion of the two phases can be
varied by adjusting the volume fraction of inclusion and the matrix. The elastic con-
stants, dielectric permittivities and magnetic permeabilities, as well as piezoelectric
and piezo-magnetic constants, are obtained by fraction rule {taken from Wang and
Mai [23]}

κc
is = V f .κ

i
is + (1 − V f ).κ

m
is (50)

where the superscripts c, i and m represent composite, inclusion and matrix, respec-
tively. κis denotes the dielectric permittivities.

We assume the crack faces as semi-permeable (κr = γr = 1). And the length of
bigger crack, L1, smaller crack, L2, prescribed mechanical load, electric displace-
ment and magnetic induction are 2a01(= 5 mm), 2a02(= 4 mm), σ∞

22 = 5 MPa,
D∞

2 = 2(e33/c33)σ∞
22 and B∞

2 = 2(h33/c33)σ∞
22 , respectively, till otherwise speci-

fied. Material constants for BaTiO3-CoFe2O4 for different volume fraction are given
in Table1, taken from Zhong [24].



Mathematical Analysis of Two Unequal Collinear Cracks … 97

Table 1 Material constants for BaT iO3 − CoFe2O4 for different volume fraction

Material constants V f (0.25) V f (0.50) V f (0.75)

c11(109 N/m2) 245 215 186

c12(109 N/m2) 145 125 115

c13(109 N/m2) 144 112 90

c33(109 N/m2) 235 210 181

c44(109 N/m2) 46 50 51

e31(C/m2) –1.5 –2.8 –3.8

e33(C/m2) 4.2 8.7 13.2

e15(C/m2) 0.0 0.2 0.3

h31(N/Am) 380 220 90

h33(N/Am) 475 290 135

h15(N/Am) 335 180 75

κ11(10−9 C2/Nm2) 0.1 0.25 0.5

κ33(10−9 C2/Nm2) 3.2 6.3 9.4

γ11(10−6 Ns2/C2) –3.55 –2.00 –0.90

γ33(10−6 Ns2/C2) 1.2 0.8 0.45

β11(10−9 Ns/VC) 3.1 5.3 6.8

β33(10−9 Ns/VC) 2350 2750 1800

7.1 Effect of Inter-Crack Distance

Figure 2a, b show the variation of stress intensity factors (SIFs) versus normalized
inter-crack distance for different volume fractions. It may be seen, that due to the
mutual interactions of two cracks, the SIFs at the crack tips are increased as the
inter-crack distance decreases. Also it may be seen, that SIF at the inner crack tips (at
x1 = c and x1 = b) is higher as compare to that at the outer crack tips (at x1 = d and
x1 = a), which implies that the cracks will open more at the inner tips as compared
to that at outer tips. Moreover, KI stabilizes for d0/a02 ≥ 3. Also, SIF is decreased
as the volume fraction increases. Similarly, Figs. 3 and 4 show the variations of EDIF
and MIIF versus inter-crack distance for different volume fractions.

7.2 Effect of Crack Length

Effect of crack length a02 on stress intensity factor (SIF), KI , for different volume
fractions is shown in Fig. 5. It may be seen from the figure that at the interior and
exterior tips of the longer crack, KI increases at both the tips as the crack length is
increased. Increase in KI at interior tip is more steep vis-a-vis than at exterior tip.
The similar variation is observed at the interior and exterior tips of the shorter crack.
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Fig. 2 Effect of normalized inter-crack distance d0/a02 on SIF for different volume fractions
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Fig. 3 Effect of normalized inter-crack distance d0/a02 on EDIF for different volume fractions

It is to be noted that for half length of the crack equal to 2.5 mm (i.e., the length of
the both cracks is equal), the curves for KI at the interior tips of both cracks and
exterior tips of the cracks become equal. Figures 6 and 7 show the same variations
for EDIF and MIIF, respectively.
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Fig. 4 Effect of normalized inter-crack distance d0/a02 on MIIF for different volume fractions

0 2 4

x 10−3

0

2

4

6

8
x 105

a02 (m)

K
I (N

m
 −

3/
2 )

0 2 4

x 10−3

0

1

2

3

4

5

6

7
x 105

a02 (m)

K
I (N

m
 −

3/
2 )

0 2 4

x 10−3

0

1

2

3

4

5

6
x 105

a02 (m)

K
I (N

m
 −

3/
2 )

tip d
tip c
tip b
tip a

tip d
tip c
tip b
tip a

tip d
tip c
tip b
tip a

V
f
 = 0.5 V

f
 = 0.75V

f
 = 0.25

Fig. 5 Effect of crack length a02 on SIF for different volume fractions

1 2 3 4

x 10−3

1

1.5

2

2.5

3

3.5
x 10−4

a02 (m)

K
IV

 (C
m

 −
3/

2 )

1 2 3 4

x 10−3

1

1.5

2

2.5

3

3.5

4
x 10−6

a
02

 (m)

K
IV

 (C
m

 −
3/

2 )

1 2 3 4

x 10−3

2

3

4

5

6
x 10−6

a
02

 (m)

K
IV

 (C
m

 −
3/

2 )

tip d
tip c
tip b
tip a

tip d
tip c
tip b
tip a

tip d
tip c
tip b
tip a

V
f
 = 0.5V

f
 = 0.25 V

f
 = 0.75

Fig. 6 Effect of crack length a02 on EDIF for different volume fractions



100 K. Jangid

0 2 4

x 10−3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−3

a
02

 (m)

K
V

 (N
/A

m
1/

2 )

0 2 4

x 10−3

0

0.5

1

1.5

2

2.5

3
x 10−3

a
02

 (m)

K
V

 (N
/A

m
1/

2 )

0 2 4

x 10−3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

a
02

 (m)

K
V

 (N
/A

m
1/

2 )

tip d
tip c
tip b
tip a

tip d
tip c
tip b
tip a

tip d
tip c
tip b
tip a

V
f
 = 0.25 V

f
 = 0.5 V

f
 = 0.75
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8 Conclusions

Considering the aforementioned analytical and numerical studies done on the pro-
posed model, the following points are concluded.

(i) A complex variable and Stroh’s formalism technique is successfully applied
to study the two unequal collinear semi-permeable cracks in a piezo-electro-
magnetic media.

(ii) The closed form analytic expressions are derived for the COD, COPD, COID,
SIF, EDIF and the MIIF for the proposed model.

(iii) Two non-linear equations are derived, to obtain the electric displacement and
magnetic induction inside the crack gap media.

(iv) The effect of volume fraction is observed on the intensity factors(IFs). All the
IFs are decreased with the increase in the volume fraction.

(v) The effect of the inter-crack distance is observed on the IFs. All the IFs are
increased with the decrease in the inter-crack distance.

(vi) The effect of crack length is observed on the IFs. All the IFs are increased with
the increase in the crack length.
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Appendix (A)

X1(z) = √
(z − a)(z − b)(z − c)(z − d), P1(z) = C0z2 + C1(z) + C2;

� = �22(�44�55 − �45�54) − �24(�42�55 − �45�52) + �25(�42�54 − �44�52);
�1 = −σ∞

22(�44�55 − �45�54) − (Dc − D∞
2 )(�24�55 − �25�54) + (Bc − B∞

2 )

(�25�44 − �24�45);
�2 = σ∞

22(�42�55 − �45�52) + (Dc − D∞
2 )(�22�55 − �25�52) + (Bc − B∞

2 )

(�25�42 − �22�45);
�3 = σ∞

22(�44�52 − �42�54) + (Dc − D∞
2 )(�24�52 − �22�54) + (Bc − B∞

2 )

(�22�44 − �24�42);
C0 = a11a22 − a12a21, C1 = a20a12 − a10a22, C2 = a21a10 − a11a20,

k2 = (a − b)(c − d)

(a − c)(b − d)
;

g = 2√
(a − c)(b − d)

, α2 = d − c

a − c
, β2 = a − b

a − c
, a11 = g[aF(k) + (d − a)�(α2, k)];

a12 = gF(k), a21 = g[cF(k) + (b − c)�(β2, k)], a22 = gF(k);
a10 = g

[
a2F(k) + 2a(d − a)�(α2, k) + (d − a)2V2

] ;
a20 = g

[
c2F(k) + 2c(b − c)�(β2, k) + (b − c)2V3

] ;
V2 = 1

2(α2 − 1)(k2 − α2)

{
α2E(k) + (k2 − α2)F(k) + (2α2k2 + 2α2 − α4 − 3k2)�(α2, k)

} ;

V3 = 1

2(β2 − 1)(k2 − β2)

{
β2E(k) + (k2 − β2)F(k) + (2β2k2 + 2β2 − β4 − 3k2)�(β2, k)

} ;
where F(k), E(K ) and �(α2, k) are the complete elliptic integrals of the first,
second and third kind, respectively.

Appendix (B)

α2
1 = a

d
α2, β2

1 = c

b
β2, ν = sin−1

√
(a − c)(y − d)

(d − c)(a − y)
, ψ = sin−1

√
(a − c)(y − b)

(a − b)(y − c)
;

S1 = α2E(ν, k) + (k2 − α2)F(ν, k) + (2α2k2 + 2α2 − α4 − 3k2)�(ν,α2, k) − α4snucnudnu

1 − α2sn2u
;

where snu, cnu and dnu are the Jacobian elliptic functions.

S2 = β2E(ψ, k) + (k2 − β2)F(ψ, k) + (2β2k2 + 2β2 − β4 − 3k2)�(ψ,β2, k) − β4snucnudnu

1 − β2sn2u
;

S3 = d2g
α4
1

α4

{
F(ν, k) + 2(α2 − α2

1)

α2
1

�(ν,α2, k) + (α2 − α2
1)

2

2α4
1(α

2 − 1)(k2 − α2)
S1

}
;

S4 = dg
α2
1

α2

{
F(ν, k) + α2 − α2

1

α2
1

�(ν,α2, k)

}
, S5 = gF(ν, k);
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S6 = b2g
β4
1

β4

{
F(ψ, k) + 2(β2 − β2

1)

β2
1

�(ψ,β2, k) + (β2 − β2
1)

2

2β4
1(β

2 − 1)(k2 − β2)
S2

}
;

S7 = bg
β2
1

β2

{
F(ψ, k) + β2 − β2

1

β2
1

�(ψ,β2, k)

}
, S8 = gF(ψ, k);

where F(, k), E(, k) and �(, k) are the incomplete elliptic integrals of first, second
and third kinds, respectively.
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