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Preface

The book is developed to help understanding and studying various aspects associated
with complex systems. The readers will find several new mathematical methods,
mathematical models and computational techniques having significance and rele-
vance in studying complex systems. The book consists of 16 chapters and they are
organized as follows.

Chapter “On the Diffusion with Decaying Time-Dependent Diffusivity: Formula-
tions andApproximate Solutions Pertinent toDiffusion inConcretes” aims to develop
constitutivenonsingular functional relationshipsof time-dependentdiffusivitiesperti-
nent tochloridesdiffusion inconcrete, inparticular. It obtainedapproximated integral-
balance solutions (Dirichlet problems) with singular and nonsingular diffusivities to
allow minimization of the regression parameters recovered from experimental data
and physically more adequate concept to diffusion avoiding the missing causality in
the Fickian model applied in modelling of chloride ingress in concretes.

Chapter “Laminar Convection of Power-Law Fluids in Differentially Heated
Closed Region: CFD Analysis” aims to analyse characteristics of heat transfer of
non-Newtonian fluids in a natural convection application. It studied a 2D square
domain containing power-law fluid whose horizontal walls follow adiabatic condi-
tion through insulation whereas the vertical walls are differentially heated isother-
mally. Various parameters viz. Nusselt number, dimensionless vertical velocity and
dimensionless temperature have been evaluated to examine the effect of power-law
index on heat and mass transfer for different values of Rayleigh number. It further
analysed the influence of power-law index and Bingham number on the heat transfer
characteristics and proposed the best onewith high heat transfer capability for natural
convection application. The results obtained are also compared in terms of Nusselt
number, velocity and temperature with the help of TECPLOT and ANSYS.

Chapter “Mathematical Perspective of Hodgkin-Huxley Model and Bifurcation
Analysis” proposes a modified Hodgkin-Huxley model by considering the higher
power (5 and 6) of K activation in potassium ionic currents and studied the compara-
tive behaviour of three models. It observed that the modified Hodgkin-Huxley model
with a higher power of potassium activation reached resting state sooner and gains the
stability (after oscillatory) at high external current, and that the qualitative behaviour
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of the modified model (with the higher exponential power) is different as there is
shifting of Hopf bifurcation points in comparison with the original Hodgkin-Huxley
model. Moreover, a larger periodic region is observed in most of the parameter phase
spaces (external current I versus parameters) except against the Na conductance and
Na potential. The modified Hodgkin-Huxley model which determines that higher
power of K activation is found to be more significant for action potential in neurons.

Chapter “Mathematical Analysis of Two Unequal Collinear Cracks in a Piezo-
Electro-Magnetic Media” deals with the problem of two unequal collinear
semi-permeable cracks in a piezo-electro-magnetic media and addresses it math-
ematically using a complex variable technique. It modelled the problem mathe-
matically as a non-homogeneous Riemann-Hilbert problem in terms of unknown
complex potential functions. The solutions to the fracture parameters have been
obtained in explicit forms by solving the Hilbert problem. A numerical case
study has also been included for poled BaTiO3 - CoFe2O4 ceramic cracked
plate to show the effect of volume fractions and inter-crack distance on fracture
parameters.

Chapter “Advanced Analysis of Local Fractional Calculus Applied to the Rice
Theory in Fractal Fracture Mechanics” aims to include recent results for the analysis
of local fractional calculus. It introduced and reviewed the local fractional derivative
and the local fractional integral in the fractional (real and complex) sets, the series
and transforms involving the Mittag-Leffler function defined on Cantor sets. The
uniqueness of the solutions of the local fractional differential and integral equations
and the local fractional inequalities has been considered in detail. The local fractional
vector calculus has been applied further to describe the Rice theory in fractal fracture
mechanics.

Chapter “General Fractional Calculus with Nonsingular Kernels: New Prospec-
tive on Viscoelasticity” considers the general fractional derivatives in the different
kernel functions, such as Mittag-Lefller, Wiman and Prabhakar functions to model
the viscoelastic behaviours in the real materials. It investigated the basic formulas of
the fractional calculus in the kernels of the power, Mittag-Lefller, Wiman and Prab-
hakar functions, and discussed the applications for the general fractional calculus
in viscoelasticity. As examples, the Maxwell and Voigt models with the general
fractional derivatives have been considered to represent the complexity of the real
materials.

Chapter “Group Dynamical Systems on C*-Algebras Generated by Countable-
Infinitely Many Semicircular Elements” aims to characterize starting from a C*-
probability space generated bymutually free, countable-infinitely many semicircular
elements, the free distributional data induced by the semicircular elements by joint
free moments. It then constructed a certain group acting on the C*-probability space
and studied under a corresponding group dynamical system. From the dynamics,
the crossed product C*-algebra is further constructed from the system, and the free
probability on it is considered.
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Chapter “Lie Group Theory for Nonlinear Fractional K(m, n) Type Equation
with Variable Coefficients” aims to investigate the analytical solution of fractional
order K(m, n) type equation with variable coefficient which is an extended type of
KdV equations into a genuinely nonlinear dispersion regime. It obtained the Lie point
symmetries for this type of time fractional partial differential equations by using the
Lie symmetry analysis. It further presented the corresponding reduced fractional
differential equations corresponding to the time-fractional K(m, n) type equation.

Chapter “Generalized Rayleigh Wave Propagation in Heterogeneous Substratum
Over Homogeneous Half-Space Under Gravity” considers the propagation of
Rayleigh waves in an incompressible heterogeneous medium with a general vari-
ation of rigidity; resting over another incompressible homogeneous half-space under
the effect of gravity. Instead of using Whittaker’s function, the expansion formula
proposed by Newland’s has been used to solve the equation of motion for better
result in the incompressible half space. The velocity equations have been calculated
and presented the results in figures. It observed that except for linear and quadratic
variation of rigidity, the relation between the phase velocity of Rayleigh wave and the
gravity being directly proportional to each other, and the phase velocity of Rayleigh
wave in absence of gravity is smaller than the presence of gravity in all cases except
linear and quadratic variation in rigidity.

Chapter “On Defining Trigonometric Box Spline-Like Surface on Type-I Trian-
gulation” aims to define a trigonometric box spline surface on type-I triangulation
by introducing a new non-stationary subdivision scheme. The limit surface obtained
by the repeated application of this new scheme to an initial regular triangular mesh
is a trigonometric box spline-like surface. Besides, having a algorithm, the limit
surface is compactly supported, satisfies the convex hull property and is uniformly
continuous. It also illustrated the performance of the scheme with some examples.

Chapter “Mathematical Modelling for Perishable Product Supply Chain Under
Inflation and Variable Lead Time” presents an inventory model for deteriorating
items under a real time situation in which the lead time varies with time. It developed
a mathematical model for finding the total cost and order quantity in a finite planning
horizon containing m number of cycles. The effects of inflation of currency, short-
ages and lead time along with the effect of information technology on lead time have
been considered. It also obtained certain special cases for complete backlogging and
instantaneous deterioration. The study has been illustrated for the error function as
demand function. Further, it studied the effect of different parameters like deteriora-
tion rate and backlogging parameter on the order quantity and the total supply chain
cost. Data and sensitivity analysis have been included in the chapter.

Chapter “Mexican Hat Wavelet Transform and Its Applications” discusses a
unique method to time-frequency analysis which gives a centralized way to represent
discrete and continuous time-frequency. It considered the Mexican hat wavelet
to define the Mexican hat wavelet transform. Further, the theory of Mexican hat
wavelet transform has been implemented to obtain the Mexican hat wavelet Stieltjes
transform of a bounded variation function. It also included some properties of
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Mexican hat wavelet Stieltjes transforms. Further, a standard method has been intro-
duced for representing functions of class B(m, n), and an integral transform has been
constructedwith the help of the Fourier summation kernel. The construction provided
a way to present some conditions that are necessary and sufficient for a function of
class B(m, n) to beMexican hat wavelet andMexican hat wavelet Stieltjes transform.

Chapter “Fractal Fractional Derivative Operator Method on MCF-7 Cell Line
Dynamics” considers the dynamics modelling breast cancer known as MCF-7 cell
line bymeans of a system of ordinary differential equations. The dynamics have been
extended to a system of fractal fractional partial differential equations. The well-
posed, physiological level and stability conditions for the system of fractal fractional
partial differential equations dynamics have been established. Since the extended
dynamics are not solvable analytically, a fractal fractional numerical method has
been derived, implemented and the results have been presented with respect to the
derived stability conditions.

Chapter “The Exponentiated Half Logistic-Topp-Leone-G Power Series Class
of Distributions: Model, Properties and Applications” aims to develop a new class
of distributions, namely, the exponentiated half logistic-Topp-Leone-G power series
class of distributions. It presented some special classes in the proposed distribu-
tion. Structural properties have also been derived including moments, entropy and
maximum likelihood estimates. Further, it conducted a simulation study to evaluate
the consistency of the maximum likelihood estimates, and presented two real data
examples to illustrate the usefulness of the new class of distributions.

Chapter “Fixed Points of Multivalued (α∗ − φ)-Contractions and Metric Trans-
forms” considers the concept of existence of fixed point sets ofmultivaluedmappings
of metric spaces in connection with metric transforms. It considered (α-φ) contrac-
tions, multivalued (α∗-φ) contractions, (ε−φ) uniform local multivalued contraction
and generalized multivalued (α∗-φ) contractions. It aims to extend some fixed point
results for multivalued contractions to the case multivalued (α∗-φ) contractions.
Further, it used the metrics which are sequentially (D1), strong semi sequentially
(D2) and semi sequentially (D) equivalent to the Hausdorffmetric (H) on closed and
bounded subsets (CB(Y)) to obtain more general fixed point results. It also presented
some examples to support some findings.

Chapter “Approximation of Signals Via Different Summability Means
with Effects of Gibbs Phenomenon” aims to investigate the notions of the deferred
Cesàro, deferred Nörlund and their product summability means of the Fourier series.
It estimated the degree of approximation of signal functions belonging to a gener-
alized Lipschitz class by using these notions, and also established some new funda-
mental approximation theorems in classical sense. Further, it studied the statistical
versions of these notions, and demonstrated some Korovkin-type approximation
results for trigonometric test functions over a Banach space. It presented some exam-
ples demonstrating that the statistical versions of approximation results are stronger
than the classical versions. Finally, as regard to the convergence of the Fourier series,
the effect of the Gibbs phenomenon has been presented via the proposed means.
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On the Diffusion with Decaying
Time-Dependent Diffusivity:
Formulations and Approximate Solutions
Pertinent to Diffusion in Concretes

Jordan Hristov

Abstract Constitutive non-singular functional relationship of time-dependent
diffusivities pertinent to chlorides diffusion in concrete, in particular, have been
conceived. Approximated integral-balance solutions (Dirichlet problems) with sin-
gular and non-singular diffusivities have been developed. The approximate solutions
developed allow minimization of the regression parameters that should be recovered
from experimental data and physically more adequate concept to diffusion avoiding
the missing causality in the Fickian model widely applied in modelling of chloride
ingress in concretes.

Keywords Diffusion · Chlorides · Concrete · Time-dependent diffusivity ·
Subdiffusion · Approximate solutions

1 Introduction

The problems of transient diffusions with non-constant diffusivities dependent on
the time, spatial coordinate or concentration form a broad and challenging area of
research. There is no need to refer here to anyworks butwe have to stress the attention
that escaping from the Fickian formulation of the diffusion model we immediately
enter in a forest of problemswith a variety of solutions. The solution approach applied
to a certain non-linear diffusion problem depends mainly on two principle issues:

(i) The nature of the non-linearity, and
(ii) The imagination of the modeler applying suitable solution method.
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2 J. Hristov

Last but not least, it is important to recall that in mathematical modelling the solution
of a given model is not the sole task, since calculations without physical interpreta-
tions of the results do not have much contributions to knowledge.

After these introductory words we like to stress the attention on a problem emerg-
ing in many situations when water containing some aggressive substances diffuses
(penetrates) into buildingmaterials. The problemdiscussed in the sequel can be found
in many articles related to life behaviour of concretes and concrete-based materials
exposed to a variety of aqueous solutions (waters) with aggressive chloride ions (in
marine waters, for example). Thus, let us see what is the diffusion problem solved
and analyzed in this study.

1.1 General Assumptions

The penetration of aggressive substances into concretes provokes corrosion of steel
rebars and changes in the cement matrices. Commonly fresh concretes are tested
about 28 days (maturity days) [1–12], a time period chosen from practical reasons
due to numerous observations [13–16]. The simplest suggestion dominating in the
literature is that the chloride (the most aggressive penetrant into concretes) diffuses
in accordance with the Fick’s law [17, 18]

j = −D
∂C

∂x
(1)

However there are many facts allowing to revise this assumption because:

• Concretes are too heterogeneous as structures consisting aggregates and cement
matrices with voids and defects, and therefore the diffusion coefficients should
be, at least spatially dependent, or time-dependent due to existing traps (voids in
matrices or cracks at micro or macro levels). That is

D = D0 f (x, t) (2)

• The capillarity structures of the concretes changes with the maturity and affect the
diffusion coefficient: at constant temperature the diffusion coefficients should be
time-dependent.

• There are also situations where the diffusivities of aggressive ions (chloride) are
concentration dependent [21], but time-dependence is the dominating case.

The too complex nature of the aggressive diffusion of ions into concretes casts
doubts [13–16] about application of the simplest relationship between the flux and
gradient (1). If the continuity equation

∂C

∂t
= −∂ j

∂x
(3)



On the Diffusion with Decaying Time-Dependent Diffusivity … 3

and the general assumption of spatially independent but time-dependent diffusivity
is applied we get

∂C (x, t)

∂t
= D (t)

∂2C (x, t)

∂x2
(4)

and with common Dirichlet boundary condition

C (0, t) = C0, ,C (x, 0) = 0, C (x → ∞, t) = 0 (5)

The conditions (5) take into account that when a concrete sample is under aggres-
sive attack of ions they come from an infinite bath (i.e., for example, a concrete
block in marine water) with practically unchangeable concentration. Moreover, due
to the extremely slow diffusion process the model (4)–(5) considers a semi-infinite
medium.

1.2 Common Approaches in Modelling and Solutions

1.2.1 Linearization

The model (4)–(5) is the dominating in the literature [1–15]. The suggestion that
the diffusion coefficient is time-dependent makes the Eq. (4) non-Fickian and as we
will see further in this work, the behavior of the diffusion process reveals anomalous
subdiffusion character.

A simple way to linearize (4) is to apply the Kirchhoff-type transform [17]

I (t) =
t∫

0

D (z)dz = D0

t∫

0

f (z)dz (6)

which transforms (4) into a classical diffusion equation

∂C (x, I )

∂ I
= D0

∂2C (x, I )

∂x2
(7)

allowing to apply the classical solution [17, 18]

C (x, t) = Cinitial + (Csat − Cinitial) er f

[
x

2
√
D0 I (t)

]
(8)

The transform (6) was slightly modified here, introducing the functional relation-
ship (2) in the form D = D0 f (t) where D0 is the diffusion coefficient of Fickian
diffusion. This was especially done in order to preserve the correctness of (7) and
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(8) since as it is well-known that in such a case the Boltzmann similarity variable
η = x/

√
D0t defines the length scale L = √

D0t . Thus, in the linearized equation
the new length scale is L I = √

D0 I and the corresponding similarity variable is
ηI = x√

D0 I (t)
. Further, this approach needs the time-dependent function f (t) to be

preliminary known (adequately selected), easily integrable, and the most important
point is to allow easy backward transform from the solution in terms of I (t) to a
solution expressed in terms of the physical time t .

The same approach was used by Yeih et al. [9]. Very instructive text how this
method should be applied step-by-step is provided in the article of Weitsman [19].
The method is widely applied (see further in the text) and the book of Poulsen and
Mejlbro (Chap. 2 of [20]) presents it as almost standard approach.

To close these comments, an average diffusion coefficient Dav defined by
[17, 18, 28, 29]

Dav = 1

t

t∫

0

D (z)dz (9)

was used for simplification of the solution. Since the integral defining I (t) (6)
physically means the area between the axis of the time t and the curve describ-
ing the time evolution of D (t), this approach requires correct measurements and
post-experimental treatments of many samples; but this will lead to different results
as the concrete compositions and experimental conditions change.With this approach
the solution is straightforward and similar to (8) [17, 18]

C (x, t) = Cinitial + (Csat − Cinitial) er f

[
x

2
√
Davt

]
(10)

1.2.2 Fractional Modelling Approach

Despite the dominating modelling of chloride diffusion by the Fick’s model with
a time-dependent diffusion coefficient an alternative approach, which corresponds,
from a physical basis, to the results obtained with power-law diffusion coefficient
(see Sect. 3.1 and the corresponding solutions in Sect. 5.1), is the application of
time-fractional sub-diffusion model [30, 31], namely

∂αC(x, t)

∂tα
= Dα

∂2C(x, t)

∂x2
(11)

Here Dα with dimension [m2/sα] is the diffusion coefficient, while the time
fractional Caputo derivative of order 0 < α < 1 represents the time-shift between
chloride flux ja penetrating the concrete and its gradient (see Sect. 6).

Following the same idea, Chen et al. [30], applied the model (11) with variable
(time-dependent) fractional order α(t) using the Caputo formulation of fractional
derivative [32], namely
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∂α(t)

∂α(t)
= 1

�(n − α(t))

t∫

0

1

(t − z)α(t)+1−n

d f (z)

dz
dz, n − 1 < α(t) ≤ 1 (12)

where the variable-order fractional parameter is defined as a function of time t [33]

α(t) = α0 + q
1

Tmax
, α0 = 0.6 (13)

In the context of this chapter, in (13) Tmax should equal the time of concrete
maturation, denoted here is t0 (see the sequel); q is a proportional parameter with
dimensions

[
time−1

]
.

Fractionalmodelswill be considered further in this chapter but thiswill be a natural
consequence of the outcomes of the integral-balance solutions with time-dependent
diffusivity (power-law functional relationship) (Sects. 3.1 and 5.1) and non-singular
D(t) (Sects. 5.2 and 5.3). Readers interested in solutions of time-fractional diffusion
equations with time-dependent diffusivities may find detailed information elsewhere
[34–38].

2 Motivation of This Study

The main idea of this study is to apply the integral-balance method (see Sect. 4.2) to
diffusion equation with time-dependent diffusivity (power-law) and alternative func-
tional forms which do not exhibit singularities (unbounded) at t = 0. The method
suggested is approximate and does not need initial transformation of the diffu-
sion coefficient and linearization (as commented above). Moreover, the solutions
are straightforward for the power-law relationship (solved here as a comparative
example) and the new suggested time-dependent diffusivities which are bounded at
t = 0.

Moreover, we will see that the results of these approximate solutions exhibit
subdiffusive behaviours so it is challenging to find how the corresponding time-
fractional diffusion model could be build (Sect. 6), as well as to discuss the causality
of the original model (4) and time-fractional one.

2.1 Aim and Chapter Organization

2.1.1 Aim

Briefly, the particular aims of this study can be outlined as:

• A brief overview of the existing functional relationships about D(t) and their
analysis.
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• New non-singular definitions (35) and (36) of time-dependent diffusivities.
• Analytical solutions of diffusion equation in three cases of time-dependent (decay-
ing) diffusivities (the singular paper-law (14)) and non-singular formulations, and
analyses of their applicabilities thereof.

• Numerical experiments with the approximate solutions developed.
• Analysis of the subdiffusive behaviour of the approximate solutions and related
alternative model constructions with time-fractional derivatives.

2.1.2 Text Organization

The sequel of this chapter is organized as follows: A brief overview of the exist-
ing function relationships of D(t) is performed in Sect. 3. Section 4 presents two
new forms of non-singular power-law relationship about D(t) (Sect. 4.1); Sect. 4.2
presents the principle integration techniques used of the integral-balance method.
Section 5 presents approximate solutions in three cases: with a singular power-law
relationship known the literature (Sect. 5.1) and two solutions with newly defined
non-singular power-law D(t) (Sects. 5.2 and 5.3). Numerical experiments with the
obtained approximate solutions are presented in Sect. 5.4. The outcomes of the
approach in modelling with the non-singular D(t) are summarized in Sect. 6 relating
them to fractional in time diffusion models. The chapter is closed by Sect. 7 where
briefly the main results are outlined.

3 Existing Functional Relationships of D(t): A Brief
Overview

The continuous change and refinement in the concrete structure during the matur-
ing stage 0 < t < t0 involves several mechanisms of mechanical, rheological and
chemical natures acting simultaneously, that finally at macroscopic level results in
time-decaying of the chloride diffusivity [1–12, 43].

3.1 Singular (Power-Law) Time Dependence of D(t)

3.1.1 Simple Power-Law D(t)

Generally, the power-law relationship of the time-dependent diffusion coefficient
is a consequence of application of the Fickian diffusion model to chloride pene-
tration in concretes and the attempts to adjust the data to the simplified analytical
solution [39]. This process of chloride perpetration into concrete is divided into two
stages [39]
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(i) Maturation stage of 28 days, denoted here as reference time t0, and
(ii) Diffusion beyond the maturation stage where the diffusion coefficient should be

constant (time-independent).

In the fist stage we have

D1(t) =
(
t

t0

)k
, −1 < k < 0 (14)

This functional relationship is unbounded at t = 0 and causes problems in cal-
culations. For example, making a formalistic solution of (4)–(5) with D1(t) it was
shown in [12] that the solution is

C(x, t) = C0

[
1 − er f

(
x

2
√
D1(t)t

)]
(15)

This is generally incorrect because introducing the Boltzmann similarity variable
η = x/

√
D0t and D = D0 = const we can obtain solutions as either (8) or (9) but

not (15); this is easy to check by transforming (4) in terms of η = x/
√
D0t when

D(t) is defined by (14).
As reported by Wu et al. [39–41] the chloride diffusion is modeled by (14) in two

forms
In the first stage for t < t0 (Maturation stage)

Dmat (t) = Dref

(
t

t0

)−k

(16)

In the second stage for t > t0

Dmat (t) = Dref

(
tR
t0

)−k

(17)

where Dref is taken at the beginning of the test lasting 200 days. (corresponds here
to the symbol D0). Moreover, the time tR is taken 30 years, when it is assumed that

the diffusion coefficient is constant. Since the ratio
(
tR
t0

)
is constant, we may accept

that the time dependence of the diffusivity ends at t0.
As to the exponent in the power-law relationship, in accordancewith theAmerican

Life 365 [40–42, 42] the value of k is assumed equal to 0.34 which corresponds to
the value used in the earlier study of Mangat and Molloy [2] (see also comments in
[39–41]). The tests and modelling approach of Stanish and Thomas [5] revealed that
the value of k varied from 0.259 up to 0.565 (similar range 0.32–0.60 was reported
by Nokken et al. [6]) and from 0.32 to 0.79 for fly ash based concrete). In addition
from [7] (based on the results in [8]) the value of k varies in the range 0.71–0.84.
The experiments of Audenaert et al. [11] revealed a range of 0.22–0.43. Hence in the
dominating cases 0 < k < 1 even though in some cases values in the range 1.0–1.5
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were determined by data fitting [2]. Despite this, hereafter this study will consider
cases with power-law time-dependent diffusivity when 0 < k < 1.

In general, the power-law form of the diffusion coefficient in disordered medium
follows from the short time asymptotics [44]

D(t)

D0
→ 1 − A0 (D0t)

1/2 + B0(D0t) + O(D0t)
3/2 (18)

and
D(t)

D0
→ α + β

t
+ γ

t3/2
+ · · · (19)

where the coefficients α,β and γ are assumed to depend on the detailed geometry
of porous medium. This functional relationship is thought to be universal [44] but
unbounded for t = 0. Despite this, the attempts to fit experimental data by the Fickian
model (4) defined by different physical methods [45–48] (and the references therein)
led to common use of the relationship (14) [1–12, 43]. As example , the plots in Fig.1
show how the power-law varies when the exponent k is in the range 0 < k < 1.

Some modifications of the simple power-law are defined, with constant or time-
dependent boundary condition, for example:

Fig. 1 Power-law D/D0 = (t/t0)−k for different values of the exponent k
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• Mangat and Molloy [2]

DM(t) = D0

1 − m

(
t

t0

)−m

, C0 = C(0, t) = const. (20)

• Costa and Appleton [4]

Da = DR

(
tR
t

)m
, DR = D∞, ,C(x = 0, t) = C0t

nc (21)

where D∞ corresponds to the end of the diffusion test.
• Pack et al. [23]

Da(t) = DR

1 − m

(
tR
t

)m
, C(x = 0, t) = C0 [ln(βt + 1)] + kp (22)

3.1.2 Composite Power-Law D(t)

The research reports encompass wide range of type of concretes (different com-
positions and technologies of production) and mild or severe conditions in waters
containing aggressive ions, mainly chlorides. The data fitting resulted in different
relationships, of power-law type but with composite structures. We briefly present
them in order to show what is the realistic background in the modelling with time-
dependent diffusivities, and mainly to emphasis on the fact that such relationships
may fit experimental data in some particular cases, but do not contribute to model
build-up.

• Petcherdchoo [7]

Da = DR

1 − m

[(
1 + tI

tE

)1−m

−
(
tI
tE

)1−m
]
tR
tg
tE , C(x = 0, t) = C0

√
t (23)

where tg is the time to exposure to chlorides; DR is the diffusion coefficient at the
reference time tR

• Stanish and Thomas [5]

Da = DR

1 − m
tmR

(
t1−m − t1−m

I

t − tI

)
, C0 = C(0, t) = const. (24)

where tI time of first exposure to chlorides.
• Maheswaran and Sanjayan [22]

Da(t) = Dg

1 − m

[(
tR
t

)m
− tR

t

]
, C(c = 0, t) = C01 − exp(−nmt) (25)
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• Note: We can see all these functional relationships contain too many regression
parameters such as C0, m, np,nc, nm , w, etc, as well no unified symbols allow-
ing direct comparison of the functional relationships of suggested D(t) exist.
Moreover, the common idea is to convert the initial equation with suggested func-
tional relationship of D(t) to a diffusion equationwith Dirichlet or time-dependent
boundary conditions. But, we have to mention, that all theses regression param-
eters come from fittings of experimental data with solutions of the classical dif-
fusion equation; and then adjusting what functional relationship would fit better
the data points (see the book of Poulsen and Mejlbro [20]). Moreover, with too
many regression parameters, as mentioned at the beginning of this point, some-
times it appears that they are interrelated; too many regression parameters is not
the adequate approach in approximation of experimental data.

3.2 Non-singular Forms of D(t)

3.2.1 Non-singular D(t) of Power-Law Type

Taking into account the singularity of the power-law (14) at t = 0, Wang and Fu [12]
(see also Yang et al. ([24]) suggested an alternative functional relationship

DWF (t) = D0

(
t0

1 + t0

)w

(26)

where w = 0.473 and D0 = 4.44 × 10−12 m2/s for chloride ions disillusion in
concrete.

The function of DWF (t) can be presented in a more convenient for the present
analysis form, namely

DWF (t) = D0

(
1

1 + t
t0

)w

= D0

(
1 + t

t0

)−w

(27)

This function is bounded at t = 0, since DWF (t = 0) = 1 and goes to zero as
t → ∞, but at t = t0 we have DWF (t = t0) = (1/2)w = (1/2)0.473 ≈ 0.720 (see
Fig. 2).

The integration of the time-varying diffusivity with respect to the exposure time
(i.e. the linearization approach) defines

T =
t∫

0

(
t0

z + t0

)n
dz ⇒ D(t) = D0

dT

dt
(28)
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Fig. 2 Non-singular
power-law of Wang and Fu

where

dz = tn0
1 − n

[(
1 + t0

t

)1−n

−
(
t0
t

)1−n
]
t1−n = F(t) (29)

This allows the governing equation to be converted to

∂Ĉ(x, T )

∂T
= D0

∂Ĉ(x, T )

∂x2
(30)

with a boundary condition at x0 as a time-varying function Ĉ0 = Ĉ(x, T ). This allows
to apply the Duhamel theorem and obtain a solution with respect Ĉ(x, T ) as (we
skip here details of the solution available elsewhere [24])

C(x, t) = (C0 − C∞)er f
x

2
√
D0F(t)

+ C0, C∞ = C(x, t = 0) (31)

To some extent the transformation (29) coincides with definition of Petcherdchoo
[7] of an averaged diffusion coefficient (see Eq. (23) in a slightly modified form

Da = tn0
1 − n

[(
1 + t0

t

)1−n
−
(
t0
t

)1−n
](

t0
t

)n
(32)

and resulting in a solution
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C(x, t) = C0

[
er f c

(
x

2
√
Dat

)]
+ k

√
t

[
exp

(
− x2

4D0t

)
−
(

x
√

π

2
√
D0t

)
erfc

(
x

2
√
D0t

)]

(33)

Therefore, despite the non-singular formulation (26) the approach is to apply
all existing knowledge from the analytical solutions of heat conduction [25] and
diffusion [26] as it was already demonstrated in Sect. 1.2.1.

3.2.2 Non-singular D(t) of Exponential Type

Sun et al. [27] considering chloride diffusion in concrete suggested a time-dependent
diffusion coefficient

Dsun = (1 − φ0)

[
1 − exp

(
−aD

t

t0

)]
(34)

with t0 = 730 days and aD (depending on chloride concentration) in the range 0.177–
1.509, and φ0 is the initial porosity of concrete. This is a function of D(t) bounded
at t = 0, but the solution is only numerical [27].

4 New Forms of D(t) and Method of Approximate Solutions

Now, after the analysis of the existing situation in modelling of time-dependent
diffusivities related to chloride ions ingress in concrete, the present study suggests two
simple non-singular power-law functional relationships of D(t) with two principle
goals:

• Themain reason is the simplicity and reduction of the number of regression param-
eters that should be recovered from experimental data. Furthermore, a principle
issue is to remove the singularity widely spreading in the existing models of D(t)
and suggest bounded relationships at t = 0 (Sect. 4.1).

• Last but not least, the approximate solutions developed by the integral-balance
method (Sect. 4.2) avoids the non-causality of the classical diffusion equation used
in all studies commented in the preceding sections; its concept of finite penetration
depth is physically based correction of the infinite speed of the parabolic diffusion
equation.
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4.1 New Non-singular Forms of D(t)

As it follows from the preceding sections the diffusivity changes in time till the point
t0 and for t > 0 it is assumed constant (denoted here as D∞). Two alternative forms
of time-dependent diffusion coefficient are suggested in this study, namely

D2 (t) = D0

[
1 −
(
t

t0

)p]
, 0 < p < 1, 0 ≤ t ≤ t0 (35)

D3 (t) = D0

(
t0 − t

t0

)m
= D0

(
1 − t

t0

)m
, 0 < m < 1, 0 ≤ t ≤ t0 (36)

Both functions are bounded at t = 0 and go to zero at t = t0. This formulation is
not in conflict with aforementioned fact about D∞ = const. �= 0. A simple vertical
shift of the origin of the ordinate in the representation of D(t)/D0 = f (t) as a
function of time moves the zero at D∞. Hence, in this co-ordinate system at t = t0
the diffusivity becomes zero and the diffusion process ceases (actually ceases the
diffusion with the time-dependent diffusivity).

Moreover, at it will be shown in the sequel (the sections devoted to the solution)
the depth of the diffusant penetration zone, ameasurable value in experiments, allows
to establish the values of the exponents p and m. Simulations with (35) and (36) for
different values of p and m are shown in Fig. 3. The plots indicate that the function
(35) always generates concave profiles, while (36) generates concave profiles for
m > 1 and convex curves for 0 < m < 1.

Both functions are distinct (Fig. 4a) or close to each other (Fig. 4b) depending
of the selections of the exponents p and m. Actually, the condition both curves to
coincide leads to the following equation (with argument X = t/t0)

(
1 − X p

) = (1 − X)m, 0 ≤ X ≤ 1, 0 < p < 1, m > 1 (37)

Fig. 3 Non-singular functions of decaying diffusivity for various values of the exponents p and
m: a D2(t); b D3(t) used in this study
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Fig. 4 Non-singular functions D2(t) and D3(t) used in this study: a Distinct behaviour; b Close
behaviour

which has two trivial solutions: X1 = 0 and X2 = 1. Therefore, despite the different
behaviours the relationships (35) and (36) satisfy the conditions at the boundaries of
the interval 0 < X = t/t0 < 1.

4.2 Integral-Balance Method

The present chapter addresses approximate solutions of the problem represented
by (4)–(5), developed by the integral-balance method in two basic versions: Heat-
balance integral method (HBIM) [49, 50] and the Double Integration Method (DIM)
[51, 52, 57]. These methods have been commonly applied to diffusion problems
(heat and mass) with constant [50], power-law (concentration-dependent) diffusiv-
ities (with local [53] and non-local (fractional) derivatives [54]) as well as to time-
fractional [55] and space-fractional diffusion problems [56].

The principle assumption of the integral-balance method is the concept of a finite
penetration depth of the diffusion substance into the medium. This is actually a
physically based correction of the infinite speed of all parabolic models and indirect
application of the principle of the causality (see Sect. 6 and the point Sect. 6.3).
Mathematically, this concept replaces the last boundary condition in (5) by

C(δ, t) = ∂

∂x
C(δ, t) = 0 (38)

Thus, the concept defines a front δ(t) separating the medium into two zones:
disturbed zone with C(x, t) > 0 for 0 ≤ x ≤ δ(t) and undisturbed zone (x > δ(t))
where the medium is virgin with C(x, t) = C(x, t = 0).

The second condition in (38) means that no diffusion occurs across the front line,
while the first one lead to sharp crossing behaviour of the profile (solution) with
the coordinate axis. The Integral-balance approach requires the concentration profile
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to satisfy the boundary conditions imposed at x = 0 and x = δ irrespective of its
functional relationships to the spatial coordinate x and the time t .

Details of basic integration techniques of the integral-balance method used in this
study are briefly presented next.

4.2.1 HBIM Integration Technique

Integrating (4) over the penetration depth (from 0 to δ) we get

δ∫

0

∂C(x, t)

∂t
dx =

δ∫

0

∂

∂x

(
D(t)

∂C(x, t)

∂x

)
dx (39)

δ∫

0

∂C(x, t)

∂t
dx = D(t)

∂C(x, t)

∂x

∣∣∣∣
δ

− D(t)
∂C(x, t)

∂x

∣∣∣∣
x=0

(40)

and therefore applying the Leibniz rule we get

d

dt

δ∫

0

C(x, t)dx = −D(t)
∂C(x, t)

∂x

∣∣∣∣
x=0

(41)

The relation (41) is the basic equationof theHeat-balance Integralmethod (HBIM)
[49, 50]. Physically it means that the time variation of the accumulated in themedium
substance (the integral of C(t) over the diffusion layer 0 ≤< x ≤< δ) is controlled
by the mass flux at the boundary x = 0 (the right-hand side of (41)).

Then, replacing C(x, t) by an assumed profile Ca(x, t) with respect to the spatial
co-ordinate (polynomial or exponential [49, 50]) in both sides of (40) the integration
yields an ordinary differential equation about δ. The main deficiency of HBIM is
that the right-side of (40) contains the gradient (∂C(x, t)/∂x)x=0 which has to be
expressed through the assumed profile.

4.2.2 DIM Integration Technique

The first step of the DIM [53, 55] is the integration from 0 to x (which differs from
the classical approach [57, 58]) and the result is

x∫

0

∂C

∂t
dx = D(t)

∂C

∂x

∣∣∣∣
x

− D(t)
∂C

∂x

∣∣∣∣
x=0

(42)
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Further, representing the integration in left side of (40) as
δ∫
0
f (•)dx =

x∫
0
f (•)dx

+
δ∫
x
f (•)dx and then subtracting (42) from (40) we get an integral relation in the

zone at the vicinity of the front δ, namely

δ∫

x

∂C

∂t
dx = −D0(t)

∂C

∂x

∣∣∣∣
x

(43)

The integration of (43) from 0 to δ yields

δ∫

0

δ∫

x

∂C

∂t
dx = D(t)C(0, t) (44)

The expression (44) is the principle equation of the Double Integration Method
(DIM) in case of exponential diffusivity [53, 55].

4.2.3 Assumed Profile

The solutions envisage application of an assumed parabolic profile with unspecified
exponent [50, 52, 58], i.e.

Ca (x, t) = C0

(
1 − x

δ

)n
(45)

With this profile we have Ca (0, t) = 1 and Ca (δ, t) = 0 , i.e. it satisfies the
boundary conditions imposed by the finite penetration depth concept, for any value
of the exponent n. The integral-balance method suggests replacement of C (x, t) by
Ca (x, t) in the integral relation (40) or (44) thus developing an equation about δ (t)
as it is demonstrated next.

5 Approximate Solutions of (4) with Different D(t)

This section is devoted to approximate (integral-balance) solutions of the diffusion
Eq. (4) with three forms of of time-decaying diffusivity: D1(t) represented by (14),
D2(t) and D3(t) expressed by (35) and (36), receptively.
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5.1 Solutions with D1(t)

Denoting τ1 = t/t0 we get the following form of Eq. (4), by change of the variables
only with respect to the time t , that is

∂u

t0∂τ1
= D0

(
t

t0

)k ∂2u

∂x2
(46)

∂u

∂τ1
= (D0t0) τ k

1
∂2u

∂x2
⇒ ∂u

∂τ1
= Deτ

k
1
∂2u

∂x2
(47)

The apparent coefficient De in (47) can be easily defined from De = D0t0 and its
dimension should is

[
m2
]
since the equation is dimensionless with respect the time

only.

5.1.1 HBIM Solution

The HBIM technique applied to (47) yields

δ∫

0

∂u

∂τ1
dx =

δ∫

0

Deτ
k
1
∂2u

∂x2
dx (48)

d

dt

δ∫

0

u (x, t) dx = −Deτ
k
1
∂u (0, t)

∂x
(49)

Now, replacing C (x, t) by Ca = C0(1 − x/δ)n in (49) , precisely assuming for
simplicity C0 = 1, we get

d

dτ1

δ

n + 1
= Deτ

−k
1

n

δ
(50)

d

dτ1
δ2 = Deτ

−k
1 2n (n + 1) (51)

For t = 0 , the physical condition is δ (t = 0) = δ (τ1 = 0) = 0.

δ2 = Deτ
1−k
1 2n (n + 1) (52)

Thus, δ1(HBIM) can be expressed as

δ1(HBIM) =
√
Deτ

1−k
1

√
2n (n + 1)

1 − k
(53)
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or in terms of the physical time t we have

δ1(HBIM) (t0) = √D0t0

√(
t

t0

)1−k√2n (n + 1)

1 − k
(54)

The fact that δ is a physical quantity with a dimension of length, the condition
δ > 0 requires 1 − k > 0. This is automatically satisfied because by definition−1 <

k < 0 and therefore always we have 1 < 1 − k < 2 for example with k = −0.5 we
have 1 − k = 1.5.

As a consequence related to the further calculations in this work we have
0 < (1 − k)/2. From (53) and more obvious from (54) we can see that the time
evolution of the diffusion front does not follows the Fickian square-root model, but

exhibits a subdiffusion behaviour because δ1(HBIM) ≡ τ
1−k
2

1 and δ1(HBIM) (t) ≡ t
1−k
2 .

For instance, with k = −0.5, used as example earlier, we have δ1(HBIM) (t) ≡ t0.75.
Moreover, since at t = t0 we have t/t0 = 1 we can see directly that the front attains
the value

δ1(HBIM) (t0) = √D0t0

√
2n (n + 1)

1 − k
(55)

Hence, the approximate solution developed by HBIM is

C1(HBIM) =

⎛
⎜⎜⎝1 − x

√
D0t0

√(
t
t0

)1−k√
2n(n+1)
1−k

⎞
⎟⎟⎠

n

(56)

5.1.2 DIM Solution with D1(t)

With DIM we have

δ∫

0

⎛
⎝

x∫

0

∂u

∂τ1
dx

⎞
⎠dx =

δ∫

0

⎛
⎝

x∫

0

Deτ
−k
1

∂2u

∂x2
dx

⎞
⎠dx (57)

Replacing C (x, t) by Ca/C0 = (1 − x/δ)n in (57) and after the integration we
get the following equation

d

dτ1

δ

(n + 1) (n + 2)
= Deτ

−k
1 (58)

d

dτ2
δ2 = Deτ

−k
1 (n + 1) (n + 2) (59)
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With the physical condition δ (t = 0) = δ (τ1 = 0) = 0 the result is

δ2 = Deτ
1−k
1

(n + 1) (n + 2)

1 − k
(60)

δ1(DIM) =
√
Deτ

1−k
1

√
(n + 1) (n + 2)

1 − k
(61)

In terms of the physical time t the penetration depth δ1(DIM) can be expressed as

δ1(DIM) (t0) = √D0t0

√(
t

t0

)1−k√
(n + 1) (n + 2)

1 − k
(62)

or as

δ1(DIM) (t0) = √D0t

√
t0

(
t

t0

)1−k√
(n + 1) (n + 2)

1 − k
(63)

The scaled penetration depth is

δ1(DIM) (t0)√
D0t0

=
√(

t

t0

)1−k√
(n + 1) (n + 2)

1 − k
(64)

At t = t0

δ1(DIM) (t0) = √D0t0

√
(n + 1) (n + 2)

1 − k
(65)

δ1(DIM) (t0)√
D0t0

=
√

(n + 1) (n + 2)

1 − k
(66)

Since the penetration depth is a physically defined distance we have the condi-
tion δ ≥ 0, as mentioned in previous point. The result is the same as developed with
HBIM, i.e. the front exhibits a subdiffusion behavior, and the only difference appears
in the numerical coefficients depending on the exponent n. Moreover, in both solu-
tions (53)–(54) and (61)–(62) we can see that the penetration depth is controlled
by the value of the denominator

√
1 − k and bearing on mind that k < 0 we have

1 − k > 1. Therefore, the increase in |k| reduces the length of the penetration zone,
and vice versa.

To complete this section and comments on the resultswehave to stress the attention
that subdiffusion behavior is direct consequence of the power-law coefficient chosen.
In both solutions we may see that the length scale can be defined in two different
ways:
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• By
√
D0t as in the Fickian diffusion with a dimension [m]

• By
√
D0t1−k as in the sub-diffusion processes with a dimension [mα], where

0 < α = (1 − k)/2 < 1.

In the first case,we may use a modified length scale
√
D0t0 (bearing in mind that

the dimension of
√
D0t0 is length), and then the scaled penetration depth can be

presented as

δ1(DIM) (t0)√
D0t0

=
√(

t

t0

)1−k√
(n + 1) (n + 2)

1 − k
(67)

And at t = t0 (see (65)) we have

δ1(DIM) (t0)√
D0t0

=
√

(n + 1) (n + 2)

1 − k
(68)

Consequently, the approximate solution is

C1(DIM) (t0) =

⎛
⎜⎜⎝1 − x

√
D0t0

√(
t
t0

)1−k√
(n+1)(n+2)

1−k

⎞
⎟⎟⎠

n

(69)

5.2 Solutions with D2(t)

Denoting τ2 = t/t0 we get the following forms of Eq. (4)

∂C

t0∂τ2
= D (τ2)

∂2C

∂x2
(70)

∂C

∂τ2
= (D0t0)

(
1 − τ

p
2

) ∂2C

∂x2
(71)

∂C

∂τ2
= De

(
1 − τ

p
2

) ∂2C

∂x2
, De = D0t0 (72)

5.2.1 HBIM Solution with D2(t)

The HBIM technique applied to (72) yields

δ∫

0

∂C

∂τ2
dx =

δ∫

0

Deτ
p
2

∂2C

∂x2
dx (73)
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d

dτ2

δ∫

0

u (x, t) dx = −De
(
1 − τ

p
2

) ∂u (0, t)

∂x
(74)

Now, replacing C (x, t) by Ca = C0(1 − x/δ)n in (74) and assuming for simplic-
ity C0 = 1 (Dirichlet problem) we get

d

dτ2

δ

n + 1
= De

(
1 − τ

p
2

) n
δ

(75)

d

dτ2
δ2 = De

(
1 − τ

p
2

)
2n (n + 1) (76)

For t = 0 , the physical condition is δ (t = 0) = δ (τ2 = 1) = 0. Hence, the
integration of (76) results in

δ2 = De

(
τ2 − τ

p+1
2

p + 1

)
2n (n + 1) (77)

In terms of the physical time t we get

δ2(HBIM) = √D0t0

√√√√
(
t

t0
−
(
t

t0

)p+1 1

p + 1

)√
2n(n + 1) (78)

And, with the length scale
√
D0t0 the dimensionless form is

δ2(HBIM)√
D0t0

=
√√√√
(
t

t0
−
(
t

t0

)p+1 1

p + 1

)√
2n(n + 1) (79)

Further, at t = t0 we have

δ2(HBIM) (t0) = √D0t0

√(
1 − 1

p + 1

)√
2n(n + 1) (80)

Hence, the scaled front depth at t = t0 is (see (79))

δ2(HBIM) (t0)√
D0t0

=
√(

1 − 1

p + 1

)√
2n(n + 1) (81)

Therefore , the approximate solution is
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C2(HBIM) =

⎛
⎜⎜⎜⎜⎝1 − x

√
D0t0

√(
t
t0

−
(

t
t0

)p+1
1

p+1

)√
2n(n + 1)

⎞
⎟⎟⎟⎟⎠

n

(82)

C2(HBIM) =
(
1 − η0√

F2(τ , p)NHBIM

)n
, NHBIM = 2n(n + 1) (83)

We can see that two dimensionless functions control the solutions : (i) η0 =
x/

√
D0t0, that is the classical Boltzmann variable at time t = t0, but actually this a

dimensionless distance; (ii) the time-dependent function F2 =
(

t
t0

−
(

t
t0

)p+1
1

p+1

)
.

5.2.2 DIM Solution with D2(t)

Applying the DIM we get

δ∫

0

⎛
⎝

x∫

0

∂C

∂τ2
dx

⎞
⎠dx =

δ∫

0

⎛
⎝

x∫

0

Deτ
p
2

∂2C

∂x2
dx

⎞
⎠dx (84)

Replacing C (x, t) by C = C0(1 − x/δ)n in (84) an after the integration we get
the following equation

d

dτ2

δ

(n + 1) (n + 2)
= De

(
1 − τ

p
2

)
(85)

d

dτ2
δ2 = De

(
1 − τ

p
2

)
(n + 1) (n + 2) (86)

With the physical condition is δ (t = 0) = δ (τ2 = 1) = 0 the result is

δ2 = Deτ2

(
1 − τ

p
2

p + 1

)
(n + 1) (n + 2) (87)

δ2(DIM) =
√√√√De

(
τ2 − τ

p+1
2

p + 1

)√
(n + 1)(n + 2) (88)

In terms of the physical time t we can expressed δ2(DIM) as



On the Diffusion with Decaying Time-Dependent Diffusivity … 23

δ2(DIM) = √D0t0

√√√√
(
t

t0
−
(
t

t0

)p+1 1

p + 1

)√
(n + 1)(n + 2) (89)

At t = t0 we have

δ2(DIM) (t0) = √D0t0

√(
1 − 1

p + 1

)√
(n + 1)(n + 2) (90)

Thus, the result is the same as in the solution with HBIM, with only difference
emerging in the numerical term dependent on the values of n and p. Thus, the scaled
front at t = t0 is

δ2(DIM) (t0)√
D0t0

=
√(

1 − 1

p + 1

)√
(n + 1)(n + 2) (91)

Hence, the approximate solution is

C2(DIM) =

⎛
⎜⎜⎜⎜⎝1 − x

√
D0t0

√(
t
t0

−
(

t
t0

)p+1
1

p+1

)√
(n + 1)(n + 2)

⎞
⎟⎟⎟⎟⎠

n

(92)

or in dimensionless form as

C2(DIM) =
(
1 − η0√

F2(τ , p)NDIM

)n
, NDIM = (n + 1)(n + 2) (93)

Again, two dimensionless functions control the solutions: η0 = x/
√
D0t0 and

the time-dependent function F2 =
(

t
t0

−
(

t
t0

)p+1
1

p+1

)
which is not affected by the

integration technique.
In both solutions the denominators depend on p + 1. Taking into account that

−1 < p < 0 actually we have the same behaviour as in the case of the power-law
coefficient where the denominator is controlled by 1 − k.

5.3 Solutions with D3(t)

Denoting τ3 = t/t0 we have D(τ3) = (1 − τ3)
m and Eq. (4) can be presented as
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∂C

t0∂τ3
= D0t0 (1 − τ3)

m ∂2C

∂x2
(94)

5.3.1 HBIM Solution with D3(t)

The HBIM technique applied to (94) yields

δ∫

0

∂C

t0∂τ3
dx =

δ∫

0

D0t0 (1 − τ3)
m ∂2C

∂x2
dx (95)

d

dτ3

δ∫

0

Cdx = −D0t0 (1 − τ3)
m ∂C (0, t)

∂x
(96)

WithCa = C0(1 − x/δ)n andC0 = 1 satisfying the boundary conditions we have

1

2 (n + 1)

dδ2

dτ3
= −nD0t0 (1 − τ3)

m (97)

δ2 = −D0t0
2n (n + 1)

m + 1
(1 − τ3)

m+1 + P3 (98)

In terms of the physical time t the penetration depth is

δ2 = −D0t0
2n (n + 1)

m + 1

(
1 − t

t0

)m+1

+ P3 (99)

For t = 0 , the physical condition is δ (t = 0) = δ (τ3 = 1) = 0. Hence, the
integration constant

P3 is defined as P3 = D0t0
2n(n+1)
m+1 . Further, we get

δ2 = −D0t0

[
1 −
(
1 − t

t0

)m+1
]
2n(n + 1)

m + 1
(100)

δ3HBIM (t) = √D0t0

√√√√
[
1 −
(
1 − t

t0

)m+1
]√

2n (n + 1)

m + 1
(101)

In scaled version we have

δ3HBIM (t)√
D0t0

=
√√√√
[
1 −
(
1 − t

t0

)m+1
]√

2n (n + 1)

m + 1
(102)
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At t = t0 we have

δ3HBIM (t0) = √D0t0

√
2n (n + 1)

m + 1
(103)

or in a scaled form as

δ3HBIM (t0)√
D0t0

=
√
2n (n + 1)

m + 1
(104)

Finally, the approximate solution is

C3HBIM (t) =

⎛
⎜⎜⎜⎜⎝1 − x

√
D0t00

√[
1 −
(
1 − t

t0

)m+1
]√

2n(n+1)
m+1

⎞
⎟⎟⎟⎟⎠

n

(105)

or in terms of dimensionless functions as

C3HBIM (t) =
(
1 − η0√

F3NHBIM(n,m)

)n
, NHBIM(n,m) = 2n(n + 1)

m + 1
(106)

where F3 = 1 −
(
1 − t

t0

)m+1
.

5.3.2 DIM Solution with D3(t)

Applying the DIM we get

δ∫

0

⎛
⎝

x∫

0

∂u

∂τ3
dx

⎞
⎠dx = −

δ∫

0

⎛
⎝

x∫

0

Deτ
m
3

∂2u

∂x2
dx

⎞
⎠dx (107)

δ∫

0

⎛
⎝

x∫

0

∂u

∂τ3
dx

⎞
⎠dx = −Deτ

m
3 u (0, t) (108)

Replacing C (x, t) in (3–6b) by Ca = C0(1 − x/δ)n and C0 = 1 we get

1

(n + 1) (n + 2)

dδ2

dτ3
= −Deτ

m
3 (109)
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δ2 = −Deτ
m+1
3

(n + 1) (n + 2)

m + 1
+ P2 (110)

The initial condition δ (t = 0) = δ (τ3 = 1) = 0 defines P2 = [De (n + 1)
(n + 2)] /(m + 1) . Hence, in terms of the physical time t the penetration depth
can be expressed as

δ3DIM (t) = √D0t0

√√√√
[
1 −
(
1 − t

t0

)m+1
]√

(n + 1) (n + 2)

m + 1
(111)

or

δ3DIM (t)√
D0t0

=
√√√√
[
1 −
(
1 − t

t0

)m+1
]√

(n + 1) (n + 2)

m + 1
(112)

At t = t0 we have

δ3DIM (t) = √D0t0

√
(n + 1) (n + 2)

m + 1
(113)

or
δ3DIM (t)√

D0t0
=
√

(n + 1) (n + 2)

m + 1
(114)

Thus, the approximate solution is

C3DIM (t) =

⎛
⎜⎜⎜⎜⎝1 − x

√
D0t0

√[
1 −
(
1 − t

t0

)m+1
]√

(n+1)(n+2)
m+1

⎞
⎟⎟⎟⎟⎠

n

(115)

or simply in terms of dimensionless functions as

C3DIM (t) =
(
1 − η0√

F3(τ ,m)NDIM(n,m)

)n
, NDIM(n,m) = (n + 1)(n + 2)

m + 1
(116)

and F3 = 1 −
(
1 − t

t0

)m+1
.
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Fig. 5 Subdiffusion behaviour of the fronts (solutions) with non-singular diffusivities D2(t) a and
D3(t) b used in this study

5.4 Numerical Experiments with the Approximate Solutions

Let now see what is the behaviour of the solutions approximating the diffusion
penetration depths and the the concentration profiles thereof.

5.4.1 Penetration Depths

We start with penetration depths since their time-dependencies strongly indicate
what type of diffusion process is modelled: Normal diffusion as it follows from the
acceptance of the second Fick’s law or the behaviour is subdiffusive?

The solutions developed with the simple form of D(t) as a singular power-law
D1(t) = (t/t0)

−k revealed that δ1 ≡ t
1−k
2 , where 1 ≤ 1 − k ≤ 2, i.e the behaviour

is subdiffusive. Similarly the solution with the newly proposed D2(t) reveals that
δ1 ≡ t

1+p
2 (where 0 ≤ 1 + p ≤ 2), that is the behaviour is subdiffusive. For the case

when D3(t) is used it is hard to see directly from the solutions about δ3(t) what is
time-dependent behaviour. To check this there is a simple way: to plot δ1(t), δ2(t) and
δ3(t) against the time t togetherwith theGaussian front (normal diffusionpropagating
with a speed proportional to

√
t . For the sake of simplicity, this test is performed

with n = 2 as exponent of the assumed profile. The plots in Fig. 5 strongly indicate
that the front propagation with D2(t) and D3(t) exhibits subdivision behaviour.

In case of D2(t) the subdivision behaviour is strong. However, in the case of D3(t)
the lines are too close to the Gaussian line

√
t but with increase in m this difference

increases. Close to t/t0 = 1 and small values of m this subdiffusive behaviour is
violated. Therefore, based on the numerical experiments performed here with D3(t),
subdiffusive behaviour (the real diffusion mechanism in concretes) can be obtained
with m ≥ 0.3.
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Fig. 6 Approximate profiles (DIM solutions) in depth of the medium at different times (different
values of the dimensionless time τ = t/t0. Case of D2(t) with a stipulated exponent of the profile
n = 3 and m = 0.3. The space coordinate is dimensionless presented by η0 = x/

√
D0t0. The ver-

tical arrows with labels δ show the points where the profiles end, thus denoting the lengths of the
penetration depths

5.4.2 Approximate Profiles with Stipulated Exponents

The plots in Figs. 6 and 7a, at different times (different τ = t/t0), clearly demonstrate
the concept of the penetration depth: with increase in time the front goes deeper and
deeper into the medium. Moreover, here η0 easily shows the dimensionless depths
of the diffusion layer.

The three-dimensional profiles in Figs. 7 and 8b actually show the samebehaviour;
the penetration depths can be easily seen in the plane C, η0.

5.5 Comparative Study with Non-singular D(t) From
Literature Sources

Let us now compare the results of the approximate integral-balance method when
the two non-singular forms of D (t) commended in Sect. 3.2.1 to the ones developed
in this work: (i) The non-singular power-law of Wang and Fu [12] and (ii) The
non-singular exponential diffusivity of Sun et al. [27].

• Non-singular power-law of Wang and Fu [12]

With DWF (t) [12] defined by Eq. (26) the application of DIM yields
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Fig. 7 3D profiles (DIM solutions) in case of D2(t) with a stipulated exponent of the profile as a
function of the similarity variable η0 and the dimensionless time τ = t/t0 a Case with p = 0.1 and
n = 2 b Case with p = 0.5 and n = 3

Fig. 8 Approximate profiles (DIM solutions) in case of D3(t) with a stipulated exponent of the
profile n = 3 and m = 0.3: a Two-dimensional profiles in depth of the medium at different times
(different values of the dimensionless time τ = t/t0) b 3D profile as a function of the similarity
variable η0 and the dimensionless time τ = t/t0; Note: In Fig. 8a the vertical arrows with labels δ
show the points where the profiles end, thus denoting the lengths of the penetration depths

1

(n + 1) (n + 2)

d

dt
δ2 = D0

(
1 + t

t0

)−w

C0 (0, t) (117)

With C0 (0, t) = 1 as in the preceding solutions, and the condition δ (t = 0) = 0,
from the integration of (117) we have
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δ2 = D0

[
tw0 (t + t0)1−w

1 − w

]
N ⇒ δ (t) =

√√√√D0

[
tw0 (t + t0)1−w

1 − w

]
N , N = (n + 1) (n + 2)

(118)
and in a scaled form as

δ (t)√
D0t

=
√

tw0
t1−w

√(
1 + t0

t

)1−w
√

N

1 − w
(119)

or
δ (t)√
D0t0

=
√

(t + t0)
1−w

t2−w
0

√
N

1 − w
(120)

Hence, the scaled penetration depth is a growing in time function (more obvious
from (118)). Moreover, the important result now is that it scales as δ (t) ≡ t

1−w
2 , thus

exhibiting a subdiffusive behavior of propagation. The plots in Fig. 8a confirm this
result since all plots of δSun(DIM) are below the Gaussian line of normal diffusion
when δ ≡ √

t .
For t = t0 we have

δDIM (t = t0) = √D0t0
(
2

1−w
2

)√ N

1 − w
(121)

or in a scaled version as

δDIM (t = t0)√
D0t0

=
(
2

1−w
2

)√ N

1 − w
(122)

For w = 0.5 as illustrative example and n = 2 we get δDIM (t=t0)√
D0t0

=(
21.25
)√

6 ≈ 5.825

• Non-singular exponential time-dependent D (t) of Sun et al. [27]

With DSun(t) (34) and DIM we get

1

(n + 1) (n + 2)

d

dt
δ2 = D0 (1 − φ0)

[
1 − exp

(
−aD

t

t0

)]
(123)

Since (1 − φ0) is a dimensionless constant for a given concrete sample, we may
denote for the sake of simplicity De = D0 (1 − φ0). Then the integration in (123)
yields

δ2

N
= De

[
t − t0

aD

(
1 − e−aD

t
t0

)]
⇒ δ = √Det

√
1 − 1

aD

t0
t

(
1 − e−aD

t
t0

)
(124)
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In a more convenient form for scaling of the front time propagation we have

δ = √Det0

√[
t

t0
− 1

aD

(
1 − exp(−aD

t

t0
)

)]′

0 ≤ t

t0
≤ 1 (125)

For t = t0

δ (t = t0) = √Det0

√
1 − 1

aD
(1 − e−aD ) (126)

or in scaled forms as

δ√
Det0

=
√
1 − 1

aD

t0
t

(
1 − e−aD

t
t0

)
(127)

Alternatively (from (125))

δ√
D0t0

=
√[

t

t0
− 1

aD

(
1 − exp(−aD

t

t0
)

)]′

0 ≤ t

t0
≤ 1 (128)

and
δ (t = t0)√

Det0
=
√
1 − 1

aD
(1 − e−aD ) (129)

The results (127) and (128) do not give a direct answer what type of propagation
behaviour of the front is: subdiffusive, normal diffusion or superdiffusion ? There is
no need of cumbersome equations or function approximating the time dependence
of δ(t) because it is much more easier to see what is its behaviour in comparison to
Gaussian time scaling proportional to

√
t . The plots in Fig. 9 show definitively that

the behaviour is subdiffusive since all plots with aD ∈ [0.177 − 1.509] (the range
reported by Sun et al. [27]) are below the Gaussian line of normal diffusion where
δ ≡ √

t .

5.6 Solution Optimization

The previous examples with approximate solutions were carried out with stipulated
exponents of the assumed profile (i.e. n = 2 and n = 3) only with the idea to demon-
strate their behaviors. Now the question is about the accuracy of the approximate
solutions. We do not refer to the transformation mentioned at the beginning of this
chapter which led to classical solutions in terms of the error function. The main rea-
son for this is that the classical diffusion equation is not causal, precisely the speed of
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Fig. 9 Time scaling of the front prolongations related to the solutions with non-singular D(t) of
Wang and Fu [12] and Sun et al. [27]: a The front behaviour (DIM Solution) with non-singular
power-law D(t) (26). The curve with w = 0.473 corresponds to the study in [12]; b The front
behaviour (DIM Solution) with non-singular exponential D(t) [27]. The curve with aD = 1.509
corresponds to highest value used in (34)

the solution is infinite, and actually these solutions cannot be accepted as exact thus
allowing estimating the accuracy of the approximate solutions from the deviations
from them.

Now, recall that the integral-balance method leads to solutions which satisfy its
integral-balance relations (of HBIM or of DIM) but not the original model equation
(4). Therefore, if we replace the function Ca (x, t) in the original model (4), then the
residual function will not be zero, namely

R (x, t) = ∂Ca (x, t)

∂t
− D (t)

∂2Ca (x, t)

∂x2
�= 0 (130)

With the assumed profile used in this work, we have

∂

∂t
Ca (x, t) = n

(
1 − x

δ

)n−1
(−x)

1

δ2
dδ

dt
(131)

∂2

∂x2
Ca (x, t) = n (n − 1)

δ2

(
1 − x

δ

)n−2
(132)

Then, the residual function can be expressed as

R (x, t) = n
(
1 − x

δ

)n−1
(−x)

1

δ2
dδ

dt
− D (t)

n (n − 1)

δ2

(
1 − x

δ

)n−2
(133)

Simple recasting of (133) yields
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R (x, t) = 1

δ2

[
n
(
1 − x

δ

)n−1 (− x

δ

)(
δ
dδ

dt

)
− D (t) n (n − 1)

(
1 − x

δ

)n−2
]

(134)
Now, we have to see what is the expression of the time-dependent term δ dδ

dt . In
details we have

δ
dδ

dt
=
(√

D0t0
√
F

√
N
)(√

D0t0
√
N
1

2

1√
F

dF

dt

)
= 1

2
D0t0N

dF

dt
(135)

Replacing in (134) and using D2 (t) with corresponding function F2 we get

δ
dδ

dt
= 1

2
D0t0N

dF2

dt
= 1

2
D0N

[
1 −
(
t

t0

)p]
(136)

The time-dependent part of (136) coincides with the definition of D (t) = D2 (t).
There is nothing strange in this fact, since the function F2 (t) is a result of integration
of D2 (t) with respect to the time t (the same is in the cases of D1 (t) and D3 (t)
since this comes from the technology of the integral method- the derivation of the
equation about the penetration depth).

Now, the residual function can be presented as a product of two terms: time-
dependent function and time independent function depending only on the exponent
n and the dimensionless space coordinate z = x/δ, namely

R (z, t) = 1

δ2

[
1 −
(

t

t0

)p]

︸ ︷︷ ︸
fR (t)

D0t0

[
n(1 − z)n−1 (−z) 1

2 N − n (n − 1) (1 − z)n−2

N

]
, 0 ≤ z = x

δ
≤ 1

(137)

With the dimensionless variable z = x/δ we transform the moving boundary
domain of the diffusion layer (0 ≤ x ≤ δ (t)) into a fixed boundary domain 0 ≤ z ≤
1, a step that will facilitate us in the next calculations. The time-dependent term in
(137) is

fR(t) = 1

δ2

[
1 −
(
t

t0

)p]
=
[
1 −
(
t

t0

)p] 1(
t
t0

) [
1 −
(

t
t0

)p
1

p+1

] (138)

With 0 < p < 1 this function decays faster down to zero at t/t0 = 1 but exhibits
a singular behavior at t/t0 = 0 and weak dependence on the parameter p, as it is
shown in Fig. 10. Hence, since the residual function is decaying rapidly in time, the
main problem in the optimization is to minimize the term dependent only on the
exponent n, namely
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Fig. 10 Behaviour of the
time-dependent term of the
residual function fR(t) as a
function of τ = t/t0: Case
with D(t) = D2(t) for three
values of the parameter p.
Inset: Enlarged sections of
the plots demonstrating
almost equal decaying
behaviours in time

R (z, n) ≈
[
n(1 − z)n−1 (−z) 1

2N − n (n − 1) (1 − z)n−2

N

]
(139)

With NHBIM = 2n(n + 1), for example, we have

RHBIM (z, n) ≈ 1

t

[
n(1 − z)n−1 (−z) n(n + 1) − n (n − 1) (1 − z)n−2

2n(n + 1)

]
(140)

The integration over the diffusion layer of the squared residual function yields the
mean squared error of approximation, namely

E =
1∫

0

[RHBIM (z, t)]

2

dz ≈ 1

t2

1∫

0

[rHBI M (z, n)]

2

dz (141)

Here we have to remember the comments just after Eq. (136), about the relation-
ships between the functions D(t) and F (t). Therefore the function that should be
optimized with respect to n in (137), as well as in (140) and in (141), is the same as in
the case with when the diffusion equation has a constant (time-independent) diffusiv-
ity. This is almost classical case in integral-balance solutions of diffusion equations,
studied by Myers [52, 58]; where it was determined that the optimal values for the
case of Dirichlet problems are : nopt (HBIM) ≈ 2.233 and nopt (DIM) ≈ 2.219 .

Here we skip the calculations related to the cases with D1(t) and D3 (t) but the
reader can easy check that the result will be the same. Plots of approximate solutions
with the optimal values of n are shown in Figs. 11 and 12.
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Fig. 11 Two-dimensional profiles with optimal exponents clearly demonstrating the concept of
final penetration depth: DIM solutions with D2(t)

Fig. 12 Two-dimensional profiles with optimal exponents clearly demonstrating the concept of
final penetration depth: HBIM solutions with D3(t)

6 Outcomes of the Approximate Solutions

At the end, after the performed approximate solutions of themainmodels of chlorides
diffusion in concretes we stress the attention on two principle problems formulated
as

• First of all, we have to sort out the results obtained and see what actually we can
say about themodelling approach when the diffusion coefficient is time-dependent
(decaying in time). In this context we should detect from where the subdiffusive
character of the solutions comes from, and are there alternative approaches leading
to similar results?

• Second, we should detect where the causality principle in the models discussed is
obeyed and where not.
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To find answers to these problems we first have to present briefly the principle of
causality. This will facilitate the following analyzes in Sects. 6.2 and 6.3.

6.1 Causality of Dynamic Models: Basic Principles

Here we touch a basic principle in construction of dynamic models, i.e the causality.
This term was briefly mentioned several times in the preceding texts, but now, before
continuing further in the analysis, we have to define some underlying rules.

Following the analysis of Mittelstaedt and Weingartner [59] in all applied cases
the causal relation satisfies the chronological condition (i.e. the time-shift between
cause and effect), that is no closed time curves exist and always the cause precedes
the effect. Themain outcome of this condition is that only a dynamical law describing
a time evolution of a certain physical system is a causal relation. As mentioned by
Mittelstaedt and Weingartner [59] (p. 219) under physical realistic situations, the
causality of the realistic solutions and the chronological conditions are equivalent.

Actually, the basic problem engaging the attention in this chapter is the causality
concept and wewill formulate some generalized conditions related to it, among them
[60]:

• Primitive causality: The effect cannot precede the cause. In such situations the
cause and the effects should be correctly defined.

• Relativistic causality: No signal can propagate with velocity greater than the
speed of the light in the vacuum. It could be considered as a macroscopic causality
condition.

However, the primitive causality condition is more fundamental and general than
the relativistic causality condition.

The causality principle implies that some functions describing transients in
dynamical problems should obey some properties: to vanish over a range of val-
ues of its arguments (see further about the causality of the relaxation functions used
in the memory integrals).

If we consider a physical system with a time-dependent input (cause) x(t) and
the corresponding output (effect) y(t), and satisfying the following conditions [60].

C1: Linearity. That is, it obeys the superposition principle in its simple version
implying that the output is a linear functional of the input

y (t) =
∞∫

−∞
g (t, τ )x (τ ) dτ (142)

where y (t) , g (t) and x (t) may represent distributions.

C2: Time-translation invariance. The system is time-translation invariant if the
input is shifted (forward or backward) by some time interval τ and x (t + τ ) cor-
responds to y (t + τ ). In this case the function g (t, τ ) should depend only on the
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difference of the arguments, that is g (t, τ ) = g (t − τ ) and the linear functional can
be expressed as

y (t) =
∞∫

−∞
g (t − τ )x (τ ) dτ = g (t) ∗ x (t) (143)

Condition C2 means that the relation (143) is a convolution between the input
(cause) x (t) and the output (effect) y (t) and the correlation function (named also
memory or kernel) allows to model the time-shift, i.e. that output at time y (t) cor-
respond to an earlier moment of the input x (t − τ )

C3: Primitive causality condition. The input cannot precede the output. Therefore,
the input x (t) vanishes for t < T ( T is the moment when the input is applied) that
means that the same is valid for y (t), meaning without loss of generality that T can
be assumed as zero. As consequence, we obtain that g (τ ) = 0 if τ < 0, that is g (τ )

should be a causal function. Moreover, this is equivalent to setting the lower terminal
in the (142) and (143) equal to zero.

Now, we can turn on model problems and analyzes of the approximate solutions
developed.

6.2 Subdiffusion Front Propagation: Two Formal
Explanations

To answer the first question, formulated at the beginning of this section, we present
two standpoints about the subdiffusive character of the solutions. Considering the
front subdiffusive time evolutions we may interpret formally the results obtained
using two existing examples:

(i) Integer-order diffusion model with a power-law coefficient corresponding to
Brownian fractional diffusion, and

(ii) Anomalous diffusion, precisely subdiffusion modelled by fractional in time
derivatives.

These two explanations allow to see what really can be extracted from the original
models of chlorides diffusion in concretes and to see alternatives based on fractional
calculus.

6.2.1 Brownian Motion Diffusion Point of View

The results of the approximate solutions strongly indicate that the diffusion has
a subdiffusive character. Referring to Henry at al. [61] the easiest way to model
anomalous subdiffusion is to construct the diffusion equation with a time-dependent
coefficient, that is
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∂C

∂t
= D0

(
αtα−1

) ∂2C

∂x2
(144)

with a Gaussian solution

C(x, t) = 1

2
√

πD0tα
exp

(
− x2

4D0tα

)
(145)

and the mean square displacement is
〈
x2
〉 = 2D0tα.

The solution (145) describes a probability density function of non-Markovian
process due to the power-law diffusivity. Now, recall, that such type of result inter-
pretation in the studies on chlorides diffusion in concretes (see all comments in
Introduction and commented references) is completely missing. Despite the different
functional relationships of D(t) used in the literature and the two new formulations
conceived here, we may generalize that they are also of a power-law type. Trying
to relate the results to the time-fractional diffusion we may say that the power-law
diffusivity in (refeq:Out-Sub-1) can be represented as a time-fractional derivative of
a constant [61]

D(t) =RL D1−α
t [�(α)D0] (146)

where RL D1−α
t is a Riemann-Liouville derivative of order γ = 1 − α More close to

this situation is the definition of D1(t) = (t/t0)
−k , where taking into account (146)

it should be k = 1 − α or α = 1 − k.

RL Dγ
t = 1

�(1 − γ)

d

dt

t∫

0

Do
1

(t − z)γ−1 dz ⇒ 1

�(α)

d

dt

t∫

0

D0
1

(t − z)α
dz = d

dt

[
Iα
t D0
]
(147)

where Iα
t = 1

�(α)

t∫
0
D0

1
(t−z)α dz, denoted also as D

−α
t is the Riemann-Liouville frac-

tional integral of order 0 < α < 1.
However, we have to mention here, the constitutive equation of the Fick’s first

law j = −D (∂C/∂x) relates the cause (the gradient) and effect (the flux) but does
not satisfy the primitive causality and the time-translation invariance conditions.
As a consequence, the resulting parabolic diffusion equation with or without time-
dependent coefficient is not causal, thus providing solutions with infinite speeds. The
integral-valance solutions fix this problem to greater extent (see point Sect. 6.3).

Further, at a glance, despite the previous comments, it is hard to say that the
diffusion model (144) as well as the main model studied here (4) are causal since
they are parabolic models. Actually the model (144) describes a fractional Brownian
motion diffusion process which can be also modelled by an evolution Eq. [61]

y(t) = y0 + D−α
t [FG(t)] (148)
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showing the position of a walker at time t starting the motions at y0. Here FG(t) is
Gaussian withe noise with correlation F(t)F(s) = δD(t − s), where δD is the Dirac
Delta function.

Moreover, in the context of the following analyzes, Eq. (148) may be presented
as [61]

[y(t) − y0] = 1

�(α)

t∫

0

FG(z)

(t − z)α
dz = D−α

t [FG(z)] (149)

where the right-hand side of (149) is a Riemann-Liouville integral of order
0 < α < 1.

Here, we can see that causality principles in (149) are satisfied, since there is a
time-shift between the reaction [y(t) − y0] and FG(t) and a cause (driving force)
assured by the memory integral (conditionC2); and the linearity (conditionC1), too.
Moreover, in all fractional (convolution) operators the primitive causality condition
C3 is satisfied since the memory kernels are causal functions.

6.2.2 Power-Law Waiting Time Approach

Concretes are non-nonhomogenous media which so far are not considered as objects
of anomalous diffusion from the side of serious physical analysis. The two articles
[30, 31] are only attempts applying formally fractional diffusion models, but fortu-
nately fit well experimental data. Therefore, we may suggest that CTRW theory as
adequate in such cases and consider the fractional diffusion in terms of the Riemann-
Liouville fractional derivative [61, 62] (see the definition in Eq. (147)) as a suitable
modelling approach.

With the non-Markovian Pareto waiting time-density [61] �(t) = α τα

t1+α , t ∈
[τ ,∞] and 0 < α < 1 the cumulative distribution is a power-law 1 − (τ/t)α.

In such a case the fractional subdiffusion equation can be presented as [61]

∂C

∂t
= Dα

[
0D

1−α
t

∂C2

∂x2

]
(150)

In the right-hand side of (150) a Riemann-Liouville fractional derivative of order
1 − α assures the causality. To be clearer, this is eq. 5b developed in [62]. It may
be phenomenologically defined from a flux with a memory (causal flux-gradient
relationship) (which may be considered as a part of the fading memory approach-see
the last paragraph of this point section) defined as

j (x, t) = −Dα

[
0D

1−α
t

∂C

∂x

]
, 0 < α < 1 (151)
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where Dα is a fractional diffusivity with a dimension m2/sα. This is a causal con-
stitutive equation satisfying both the linearity and the time-translation invariance
conditions.

Then, applying the continuity Eq. (3) we get (150).

∂C

∂t
= Dα

[
0D

1−α
t

∂C

∂x

]
(152)

Applying to both sides of (152) the operator Dα−1
t and remembering the index

law DγDβ = Dγ+β we get the more known form of the time-fractional diffusion
equation

RL Dα
t C(x, t) = Dα

∂2C(x, t)

∂x2
(153)

which a causal equation in contrast to its integer-order counterpart (because the
constitutive equation eq:Out-Sub-8 is causal).

The result coincides with the model (11) only formally, because (11) uses the
Caputo derivative. However, this is a formal approach and as it was mentioned by
Hilfer [62] Eqs. (11) and (152) (and Eq. (153), too) are not equivalent. In the context
of the causality of the diffusion models we refer to the integral form of Eq. (152) and
Eq. (153), namely

C(x, t) = C(t=0)δD(x) + Dα
1

�(α)

t∫

0

(t − z)α−1 ∂C(x, z)

∂z
dz

= C(t=0)δD(x) + Dα I
α
t

[
∂C(x, t)

∂x

]
(154)

where the initial condition C(x, t = 0) = C(t=0)δD(x) is incorporated [62]. This is
a good example where all conditions of the causality principle are satisfied, plus
the superposition principle. Actually, this construction matches the fading memory
concept [63–66, 68] for simple materials [67] (simple materials are media where the
flux is proportional to the gradient, as in Fick and Fourier laws, and no higher spatial
derivatives are needed).

6.3 Finite Penetration Depth and Finite Speed of the Front

Now, let us focus the attention on the basic concept of the integral-balance method.
The finite penetration depth actually corrects the non-causal behaviour of the
parabolic diffusion equation applying the relativistic causality principle. That is, the
disturbance caused by the boundary conditions should propagate into the medium
with a finite speed: that is the finite speed of the solution results in a finite penetra-
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tion zone of the diffusant into the medium. The finite speed of the front motion for
t > 0, except the singularity at t = 0, obtained by the internal-balance solutions of all
examples solved here, satisfies these conditions. With this we end the discussion on
the causality of the diffusion models used to model chlorides ingress into concretes,
but the problem is open and too much has to be done on modelling approaches in
this field.

7 Final Comments

The chapter presented a new approach to the diffusion models with time-dependent
diffusivities used in modelling of chlorides ingress into fresh concretes. The solution
approach used avoids initial linearization and the straightforward techniques of the
integral balance method allow easily to establish the subdiffusion character of the
process, a fact not recognized so far in themodelling studies devoted to this important
for the building materials problem. The fact that the diffusion process is subdiffusive
directly leads to applications of fractional in time models, which comparing to the
integer-order versions demonstrated in this chapter, contain lesser parameters that
should be established from experimental data. Unfortunately, fractional calculus
modelling of aggressive chlorides (or other aggressive substances) in concretes is
practically undeveloped, except the two studies mentioned in this text.

Last but not least, the causality principle and the requirement all his conditions
to be satisfied are highly demanded in construction of diffusion models in complex
media such as concretes. This is themodelling point of viewwhich has direct practical
impact when data interpretations should be done, even though for practically oriented
engineers this is not so important; we can see the non-causal models with time-
dependent diffusivity is widely used, without any question about its correctness,
because the Fickian model is the most popular and common accepted as granted for
any diffusion problems to be solved. However, the diffusion of chlorides in concretes
is not Fickian and all variations in the formulation of the time-dependent diffusivity
are actually attempts to fit the non-Fickian behaviour when the ad hoc chosen model
is taken from the popular textbooks.

The results reported in this chapter are not only on the application of the integral-
balance method to the more widely used diffusion models related to life behaviour
of concretes. They emphasis on correctness of the model build-up, the causality
principle and what actually is the type of the diffusion process in concrete. The
answers are straightforward: (i) The model based on the Fickian diffusion with time-
depended diffusivity is not-causal; (ii) Moreover, the diffusion is not Fickian that
provides new ideas how the correct modelling should be done. Toomuch, we believe,
has to be done in this direction.
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Laminar Convection of Power-Law
Fluids in Differentially Heated Closed
Region: CFD Analysis

Bhuvnesh Sharma, Sunil Kumar, and Carlo Cattani

Abstract In this manuscript, the characteristics of heat transfer of non-Newtonian
fluids in a natural convection application is analyzed. A 2D square domain containing
power-law fluid is studied whose horizontal walls follow adiabatic condition through
insulation whereas the vertical walls are differentially heated isothermally. The pro-
vided temperature difference drives the convection current. Various parameters like
Nusselt number, dimensionless vertical velocity and dimensionless temperature are
evaluated to examine the effect of power-law index on heat and mass transfer for
different values of Rayleigh number varying between 103 and 106. The influence of
power-law index andBinghamnumber on the heat transfer characteristics is analyzed
and the best one with high heat transfer capability is proposed for natural convection
application.The results thus obtained are compared on the basis of Nusselt number,
velocity and temperature with the help of TECPLOT and ANSYS.
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cp Specific heat at constant pressure (J/kg K)
g Gravitational acceleration (m/s2)
h Heat transfer coefficient (W/m2K )
k Thermal conductivity (W/m K)
Nu Mean Nusselt number
Ra Rayleigh number
Bn Bingham number
Pr Prandtl number
L Length and height of enclosure (m)
T Temperature
U, V Dimensionless horizontal and vertical velocity
u, v Velocity in x and y direction respectively (m/s)
ρ Density (Kg/m3)

Greek Symbols

α Thermal diffusivity (m2/s)
β Coefficient of thermal expansion (1/K)
γ Shear rate (1/s)
μ Plastic viscosity (Ns/m2)
μyield Yield viscosity (Ns/m2)
φ General primitive variable
�T Difference between hot and cold wall temperatures i.e. TH − TC (K)
τ Shear stress (N/m2)
τy Yield stress (N/m2)

Subscripts

C Cold wall
H Hot wall
re f Refernce value
wall Wall value
e f f Effective value

1 Introduction

Natural convection is common in both nature and technical devices which is due to
the variation in density with temperature. Even though this is a simple case of natural
convection in the square enclosure it has various engineering applications such as in
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heating, preserving canned foods and in cooling of electronic components. Most of
the cooling processes involve natural convection only. Because of it’s simple geom-
etry and its applications this analysis is concentrated on this square enclosure where
horizontalwalls follow adiabatic condition through insulationwhile the verticalwalls
aremaintained at different temperatures isothermally as in the case [1]. Previous stud-
ies regarding to Newtonian fluids are available in literature [2–4]. While Bejan et al.
[5] insulated the vertical walls and maintained the horizontal walls at different tem-
peratures. The present work analyzes the case where the vertical walls aremaintained
at different temperatures and this difference of temperatures drives the convection
current as specified by de Vahl Davies et al. [2]. Even though this described model
for Newtonian fluids has been investigated by several researchers but the research
regarding to non-Newtonian fluids is limited due to their complex behavior. Lamsaadi
has demonstrated the influence of power-law index [6] and shallow enclosures [7]
on the temperature distribution where two vertical walls are considered as constant
heat flux boundary conditions rather than constant temperature. Barth and Carey [8]
usedmore complexGeneralizedNewtonian fluid (GNF)models to investigate the 3D
model of the same problem and experimental limitations are justified in [9]. Osman
et al. [1] analyzed the natural convection in an enclosure filled with Bingham fluid
with different Rayleigh numbers and came to know that increasing Bingham number
decreases Nu values irrespective of the Rayleigh number considered. Also observed
that Nu rises with increasing Prandtl number (Pr) for Newtonian fluids as well as
non-Newtonian fluids at low Bingham number.

In this present research, the outcomes of [1] are carried on to illustrate the effect
of power-law fluids on temperature and velocity distribution with Rayleigh number
ranging from 103 to 106. The square cavity of dimension L filled with Bingham
plastic, Pseudoplastic and Dilatant fluids is analyzed for heat transfer characteristics
and comparedwithNewtonian fluid results. The viscosity does not remain constant in
non-Newtonian fluids. Therefore the relation between tangential stress and velocity
gradient or shear rate for non-Newtonian fluids is specified as follows which is
presented in Fig. 1.

τ = τy + kγn, (1)

where τ, n, γ, k and τy denote the shear stress, power-law index, shear rate, flow
consistency index and preliminary or yield stress respectively. For Dilatant and Pseu-
doplastic fluids the preliminary stress τy is zero and for Bingham plastic fluids there
exists a preliminary stress. The analysis is being carried out for different Rayleigh
number (Ra) values varying from 103 to 106 at Prandtl number (Pr) = 7. The
Rayleigh, Prandtl, Bingham and Nusselt numbers are presented as follows:

Ra = ρ2cpgβ�T L3

μk
(2)

Pr = μcp
k

. (3)
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Bn = τy

μ

√
L

gβ�T
(4)

Nu = hL

k
(5)

where hot and cold wall reference temperatures are considered as TC and TH respec-
tively. However, for modeling Bingham Plastic fluid Bi-viscosity model is employed
which is described in [10]. The constant plastic viscosity is replaced by effective
viscosity expressed as μe f f = τy

γ
+ μ.

However, the present research assumes that yielded stress and plastic viscosity
do not depend on the temperature for the benifit of easiness and dearth of a suitable
method for the inclusion of temperature dependent properties. Even though it is not a
perfect approach it seems to be a reasonable approximation as the results are in good
agreement with preceding investigations on Bingham fluids [11–14]. In addition
to this, experimental data [15] for a yield stress system “Carbopo” indicates that
the yield stress is constant with respect to temperature and the plastic viscosity is
reducing slightly with in the temperature range of 0–90 ◦C. For modeling Dilatant
and Pseudoplastic fluids non-Newtonian power law is considered whose equation is
specified below.

η = kγn−1. (6)

Fig. 1 Shear stress versus
Shear rate for different types
of Non-Newtonian fluids
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This manuscript models the all three non-Newtonian fluids and analyze for heat
and mass transfer characteristics in the chosen domain. A comparative study is made
between non-Newtonian and Newtonian fluids and analyze the heat dissipation phe-
nomena so obtain highest rate of heat transfer for free convection applications.

2 Numerical Method

The fluid flow postulates the fundamental laws which are established using conserva-
tion of mass, energy and momentum. These equations of conservation are evaluated
to investigate the fluid flow and heat transfer problems with the help of ANSYS
Fluent 18.2. This software utilize central differential scheme and upwind scheme
of the second order for diffusive and convective terms respectively. In this analy-
sis, Boussinesq approximation is employed to model the effect of buoyancy forces
in the flow field without altering the density. This approximation is valid only for
low temperature difference. SIMPLE algorithm is employed to couple velocity and
pressure as it accelerates the convergence using fewer resources. The convergence
criteria between two consecutive iterations is set to be relative deviation less than
1e − 6 for energy equation and less than 1e − 4 for other variables.

2.1 Governing Equations

The conservation differential equations for chosen fluid are specified below.

Continuity Equation : ∂ux

∂xx
= 0, (7)

Momentum Equation : ρuy
∂ux

∂xy
= − ∂ p

∂xx
+ ρgδx2β(T − TC) + ∂τxy

∂xy
(8)

Energy Equation : ρuycp
∂T

∂xy
= ∂

∂xy
(k

∂T

∂xy
) (9)

Where the right side temperature at wall (TC) is considered as (Tre f ) to compute
the buoyancy termρgδx2β(T − TC) inEq. (8) specifiedbyBoussinesq approximation
following several previous studies [2–5, 14].

The Bingham fluid is modeled using bi-viscosity model specified in [10] where
properties of fluid are considered independent from temperature. The equations
employed for modeling Bingham fluid are specified as

τ = μy γ̇ for γ̇ ≤ τy

μy
(10)
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Fig. 2 Appropriate
boundary conditions of
enclosure

τ = τy + μ

[
γ̇ − τy

μy

]
for γ̇ ≤ τy

μy
(11)

The μy is considered 1000 times of μ that estimates the acceptable Bingham
model as specified in [10]. In the present work, the ratio of the yielded viscosity (μy)
and plastic viscosity (μ) is considered as 10000 for better prediction of the effect of
Binghamfluid on heat andmass transfer. The defaultHerschel-Bulkleymodel present
in ANSYS Fluent is used for specifying properties of Bingham fluid. After solving
for Bingham fluid the available Non-Newtonian power-law is employed to model
both pseudoplastic and dilatant fluids. The relation describing the non-Newtonian
power-law is specified in Eq. (6).

2.2 Boundary Conditions

The domain that is to be simulated is shown in Fig. 2 in which the left vertical
wall is kept at higher temperature than the right wall temperature and other two
horizontal walls are insulated. In addition to this, all the boundaries are assumed to
be having non-penetrating and no-slip conditions. The right wall is specified to have
significantly lower temperature (i.e. T (x = 0) = TC) and the left wall is specified to
have higher temperature (i.e. T (x = L) = TH ). Top and bottom walls are specified
with insulating boundary condition i.e. (∂T/∂y)y=0 = 0 and (∂T/∂y)y=L = 0. In
order to obtain the Velocity in x and y direction (u, v), density and temperature
(ρ, T ) at each grid point over the entire domain the governing equations (1 energy +
1 continuity + 2 momentum) are solved numerically by ANSYS Fluent.
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Table 1 Grid independence study of the present domain of with Newtonian, Bingham plastic
(Bn = 0.5), Pseudo plastic (n = 0.7) and dilatant fluids (n = 1.5) of Pr = 7

Fluid type Nu Vmax

M1 M2 M3 M4 M1 M2 M3 M4

Newtonian φ 4.78465 4.7359 4.71826 4.71507 71.5621 72.6246 73.4261 73.4512

�φ – 0.04875 0.01764 0.00319 – 1.0625 0.8015 0.0251
�φ
φi

% – 1.0189 0.3725 0.0676 – 1.1847 1.1036 0.0342

Bingham plastic φ 6.0189 5.369 5.6627 5.6545 95.843 96.758 97.3168 97.3695

�φ – 0.182 0.1742 0.0082 – 0.915 0.5588 0.0527
�φ
φi

% – 4.4331 1.8959 0.0721 – 2.7409 0.83 0.2858

Pseudo-plastic φ 6.0189 5.369 5.6627 5.6545 95.843 96.758 97.3168 97.3695

�φ – 0.182 0.1742 0.0082 – 0.915 0.5588 0.0527
�φ
φi

% – 3.0238 2.9845 0.1448 – 0.9547 0.5775 0.0542

Dilatant φ 4.5139 4.1503 3.9948 3.97505 56.2473 57.2671 57.7153 57.7437

�φ – 0.3636 0.1555 0.01975 – 1.0198 0.4482 0.0284
�φ
φi

% – 8.0551 3.7467 0.4944 – 1.8131 0.7826 0.0492

2.3 Grid Dependency

To obtain grid independent solution, mesh dependency on the solution is tested by
considering four different types of meshes M1 (30 × 30), M2 (60 × 60), M3 (120
× 20), M4 (240 × 240). Two solution variables (i.e. (Nu) and Vmax ) are considered
for testing grid dependency. Numerical simulation is carried out for each type of
mesh with same boundary conditions applied. The results obtained are tabulated and
shown in Table 1. Note that each mesh has an inflation layer along the four walls for
better accuracy.

From above table, we observe that the values of Nu obtained from meshes M3
and M4 are very close when compared to other cases and also the percentage change
(

�φ
φi

) in the values obtained is less than 1% for meshes M3 and M4. Also in the case
of maximum vertical velocity (Vmax ) the percentage change in the values obtained
from meshes M3 and M4 is less than 1%. Even though the number of divisions for
mesh M4 is double that of M3 the percentage change in solution variables is less
than 1%. Considering the computational efficiency and accuracy the mesh M4 is
considered as an optimal mesh to solve the problem. All the results specified in this
paper are obtained using mesh M4.

2.4 Benchmark Comparison

The evaluated results of Newtonian fluid with Ra varying from 106 to 104 and
Pr = 0.71 are verified with the benchmark results specified in [2]. The comparison
between the present simulations and benchmark results are tabulated in Table 2.
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Fig. 3 Nusselt number variation with respect to vertical distance of the hot wall at Pr = 0.7

By observing Table 2 we observe that the results are obtained from the present
simulations that are very close to the benchmark results [2]. Themaximumpercentage
error between evaluated and benchmark values [2] is less than 2%. In addition to this,
the simulation results of Bingham fluid with Bn = 0.5 and Pr = 7 are compared
with the results specified by Osman Turan [1]. The comparison is plotted as a graph
and summarized in Fig. 3. No remarkable deviations are found and the results are
obtained in satisfactory limits.

The domain is simulated with Bingham fluid of Bn values that varies from 0 to
Bnmax where Bnmax is the Bingham number for Nu = 1. The solution is not affected
by further increase in (Bn) because conduction is merely reason for heat dissipation.
Along with Bingham fluid, the domain is simulated with shear-thinning fluid and
shear-thickening fluid. The obtained results thus are analyzed and conclusion is
drawn for better heat transfer phenomenon.

3 Discussion and Computational Results

3.1 The Effects of Rayleigh Number

The Nusselt number (Nu) varies with normalized vertical distance (y/L) for all
types of fluids (i.e. Newtonian, Bingham plastic, Pseudo plastic and Dilatant) at
different Ra values varying from 103 to 106 with Pr = 7 is presented in Fig. 4. It
can be observed that out of all fluids Pseudoplastic has the highest Nu values and
the Bingham plastic has the lowest Nu values irrespective of Rayleigh number (Ra)

considered. Also,the Dilatant fluid has a lower Nu values when compared to the
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Table 2 Comparison of present simulation results with the Benchmark results [2] using Newtonian
fluid of Pr = 0.71

Particulars Proposed work [2]

Ra = 103 Nu 1.112 1.118

Numax 1.507 1.505

Umax 3.64 3.649

Vmax 3.685 3.697

Ra = 104 Nu 2.232 2.243

Numax 3.543 3.528

Umax 15.91 16.178

Vmax 19.517 19.617

Ra = 105 Nu 4.518 4.519

Numax 7.757 7.717

Umax 34.715 34.73

Vmax 68.617 68.59

Ra = 106 Nu 8.833 8.8

Numax 17.781 17.925

Umax 64.974 64.63

Vmax 219.104 219.36

Newtonian fluid at a specific value of Ra. With the increment in the value of Ra, the
Nu increases for all types of fluids and in all the cases Pseudoplastic has the highest
Nu values and Bingham plastic has the lowest Nu values.

Along with these results, it is always beneficiary to have a look at the variation of
θ and V in preceding to define the performance of non-Newtonian fluids in natural
convection application. The variation of θ with the horizontal mid-plane for all fluids
is depicted in Fig. 5. For Ra = 103 we can observe that the temperature diffusion is
almost linear due to weak buoyancy forces and dominant viscous forces present in
the closed region. The heat dissipation is majorly caused by conduction the reason of
dominant viscous forces but buoyancy forces convert the heat transfer mode through
convection as Ra increases. For a better understanding of this concept, in Fig. 6
the variation of V with the horizontal mid-plane is presented. As the heat transfer
through convection is proportional to the vertical velocity we observe that Nu is
maximum when V is maximum.

By analyzing the Figs. 4 and 6, we conclude that the V increases as Ra increases.
For particular Rayleigh number the vertical velocity V ismaximum for Pseudoplastic
fluid and minimum for Dilatant fluid. Non–inearity in θ increases as Ra increases
because of buoyancy forces. The strengthening of buoyancy-driven flow is shown in
Fig. 7a, b in which the temperature and stream function contours are presented for
Newtonian fluid at different Rayleigh numbers. By observing them one can clearly
confirm that with increasing Ra number the curvature of isotherms is increasing,
this proves the concept of increment of buoyancy force with increasing Ra. The
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Fig. 4 Nusselt number varies with respect to vertical length of hot wall for Pr = 7 with a Ra =
1000 b Ra = 10000 c Ra = 100000 d Ra = 1000000

isotherms are linear for small Ra due to conduction dominated heat flow taking
place in the squared region.

3.2 Bingham Fluids

The Nu varies with respect to Bn that is depicted in Fig. 8 with the different values
Ra (103 to 106). Pr is kept constant 7.0, this value seems to be pragmatic for
incompressible fluids as described by [1]. we analyze in Fig. 8 that Nu decreases
as Bn increases then it settles down to unity finally. This type of behavior is valid
with earlier studies [14]. It is important to know that Nu becomes unity when heat
transfers only by conduction because of suppression of buoyancy forces by viscous
forces.

This concept can be validated by observing Fig. 9 where the effect of Bn on the
variation of θ and V with the horizontal mid-plane are presented for Ra = 10000
and 1000000. Figure 9 reveals that V becomes zero and the profile of θ becomes
linear for extensive values of Bn. Figure 10 presents the comparison of isotherm
contours for different values of Bn. Accordingly the isotherms becomes linear and
tends to be a straight line as Bn increases.
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Fig. 5 Temperature (θ) varies along the horizontal mid plane at Pr = 7 with a Ra = 1000 b
Ra = 10000 c Ra = 100000 d Ra = 1000000

It is evident from Fig. 9, the temperature profile becomes vertical and linear
component of velocity that becomes zero for large values of Bn (i.e. Bn > Bnmax ).
This behavior of Bingham fluid can be better explained with the comparison of
contours of isotherms by varying Bn for Ra = 10000 and 1000000 which are shown
inFig. 10. From this, it is evidentwith the increment inBinghamnumber, the variation
of isotherms becomes linear and even the higher values of Bn makes the isotherms
as straight lines (i.e. Pure conduction case). This clearly shows that, with increasing
Bn values the buoyancy effects are dominated by viscous effects resulted that, no
powerful flow is induced in the closed area. Both Figs. 9 and 10 concludes that heat
transfer due to convection in the domain decreases as Bn increases and moreover,
the behavior of fluid tend to be solid as Bn > Bnmax . The isotherms persist parallel
to wall same as the conduction problems in solids in the absence of fluid flow. This
is because of the pure conduction taking place and this phenomena is reflected by
Nu = 1 in Fig. 8. As Ra increases the buoyancy force strengthens. The Bingham
number Bn at which Nusselt number approaches unity is called as critical Bingham
number (Bnmax ).
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Fig. 6 Vertical velocity (V ) variation along horizontal mid plane at Pr = 7 for a Ra = 1000 b
Ra = 10000 c Ra = 100000 d Ra = 1000000

3.3 Pseudo Plastic Fluid

The Nu varies with respect to n of a Pseudoplastic fluid with having Ra = 106

and Pr = 7.0 is shown in Fig. 11. It is clear that Nu increases as n decreases.
Decreasing n reduces the viscous forces inside the enclosure. This reduced viscous
forces strengthens the buoyancy effect and makes the fluid to flow more rapidly
inside the enclosure thereby increasing the convective heat transfer rate. By reason
of this increased convective heat transfer the Nu is increasing. These results can be
validated by observing Fig. 12 in which the effect of n on the variation of V and θ
through horizontal mid-planes are specified for Ra = 104 and 106.

Figure 12 revels that the increment in vertical velocity component (V ) decreases
the power-law index, it proves the concept of strengthening of buoyancy forces.
Along with the velocity variation, one can observe the increase in curvature of the
dimensionless temperature (θ) because of the increased convective heat transfer rate.
This effect is more dominant for high Rayleigh number flows since the buoyancy
effect increases with an increase in Ra as shown in Fig. 6. This can be confirmed by
observing Fig. 12 where the increase in velocity for n = 0.5 is high in the case of
Ra = 106 than that of 104 . The Nusselt number depends upon the vertical velocity,
the increasment in Nusselt number for Ra = 106 than that of 104. In Fig. 12 the line
with n = 1 represents the Newtonian fluid results which observe that the Pseudo-
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Fig. 7 Contours for Newtonian fluid at Pr = 7 for a Dimensionless stream function (ψ/α) and b
Dimensionless temperature (θ)
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Fig. 8 The interrelation between Nu and Bn for different values of Ra numbers at Pr = 7

Fig. 9 Temperature and velocity profile with the horizontal mid-plane for various Bn number for
Ra = 104 and 106 at Pr = 7
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Fig. 10 Contours of dimensionless temperature (θ) with varying Bn at Pr = 7 for a Ra = 106 b
Ra = 104

Fig. 11 Nusselt number varies along normalized vertical length of hot wall for distinct values of n
with Ra = 10000 and 1000000 at Pr = 7

plastic fluid has more heat transfer capability than the Newtonian fluid because of
the reduced viscous forces.
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Fig. 12 Vertical velocity profile and temperature through horizontal mid-plane for distinct values
of n in case of Ra = 104 and 106 at Pr = 7

3.4 Dilatant Fluids

Figure 13 presents the Nu variation with respect to n of a Dilatant fluid having
(Ra) = 106 and Pr = 7.0. It is clear that Nu decreases as n increases. This is due to
the increased viscous forces with increasing n. The increased viscous forces suppress
the buoyancy effect thereby decreasing the convective heat transfer rate. This results
can be validated by observing Fig. 14 in which the effect of n on the variation of θ
and V through horizontal mid-planes are specified for Ra = 104 and 106.

Figure 14 shows that V decreases as the value of n increases. This proves the
concept of reduction in buoyancy effect. Along with the velocity variation, it is clear
that the curvature of θ decreases as n increases. The temperature profile becomes
linear for increased n due to the reduced convective heat transfer.

From Fig. 14 one can observe that the decrease in V for n = 2 is high in the
case of Ra = 106 than that of 104. The Nusselt number depends upon the vertical
velocity, the decrement in Nusselt number for Ra = 106 is more than that of 104. In
Fig. 14, n = 1 represents the Newtonian fluid and one can observe that the Dilatant
fluid has low heat transfer capability than Newtonian fluid.
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Fig. 13 Nusselt number variation with vertical length of hot wall for distinct values of n with
Ra = 104 and 106 at Pr = 7

Fig. 14 Temperature and vertical velocity profile through horizontal mid-plane for various values
of n with Ra = 104 and 106 at Pr = 7
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4 Conclusions

The heat transfer characteristics of power-law fluids in a 2D squared domain along-
with the two vertical walls kept at distinct temperature have been investigated. The
effect of Ra on momentum and heat transport for different power-law fluids has
been evaluated. We noted that Nu increases as Ra increases for both power-law
and Newtonian fluids. However the Nu obtained encase of Pseudo plastic fluids are
larger than values obtained for other fluids irrespective of Ra considered. Whereas
among all the fluids the values of Nu obtained are lower in class of Bingham fluids
at considered Ra.

In course of Bingham fluids, Nu is found to be decreasing as Bingham number is
increasing and further increment inBinghamnumber (Bn > Bnmax ), Nu approaches
unity by means of Nu = 1 as the heat is being transferred only due to conduction
because of dominant viscous forces.

For Dilatant fluids, Nu is decreasing as the value of n is increasing. This is due
to the weakening of buoyancy forces with respect to n. For Pseudo plastic fluids,
Nu is increasing as the n is decreasing. This is due to the strengthening of buoyancy
effects. The relative strengths of viscous, buoyancy forces and the influence of n on
momentum and heat transport are investigated.

It is important to notice that in thisworkyielded stress (τy) andplastic viscosity (μ)

are considered to be independent of temperature in the ease and better understanding.
Even though if the properties with the temperature-dependency are considered for
the analysis there will not be any noticeable changes in the present results but it is
always beneficiary to include temperature-dependent properties in order to obtain
the quantitative results.
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Mathematical Perspective
of Hodgkin-Huxley Model
and Bifurcation Analysis

Avinita Gautam and Anupam Priyadarshi

Abstract Hodgkin-Huxley model (HH model) qualitatively describes the genera-
tion of the action potential of squid giant axons. The resting state or oscillatory
phase state of the membrane potential (voltage) in the HH model depends mainly on
applied stimulus (external currents) to neurons. The firing of the action potential in
neurons depends upon the depolarization or repolarization of ions. The probability
of channel gates (to be open or close) determines the movement of ions across the
cell membrane. The term of K+ ionic currents (related to several activation gates)
in external current contains exponential power 4 in HH model in which we propose
a modified HH model by considering the higher power (5 and 6) of K activation
in potassium ionic currents and studied the behavior of all three models compara-
tively. The modifiedHHmodel with a higher power of potassium activation reached
resting-state sooner and gains stability (after oscillatory) at a high external current.
The qualitative behavior of the modified model (with the higher exponential power)
is different as there is a shifting of Hopf bifurcation points in comparison with the
original HH model. Moreover, a larger periodic region was observed in most of the
parameter phase spaces (external current I versus parameters) except against the Na
conductance andNa potential. ThemodifiedHHmodelwhich determines that higher
power of K activation is more significant for action potential in neurons.
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1 Neurological Backgrounds

Neuroscience is a branch of biology in which the structure of nervous systems is
studied and deals with configuration and chemical processes during the function
of the interaction of neurons [1]. The brain is a complicated network of neurons
which transmits the information for the functioning of other parts and is remained
active continuously (Fig. 1), even in the absence of functions of other body parts.
The central nervous system (brain and spinal) and peripheral nervous system (nerves
which are made of individual neurons) are two major parts of the nervous systems
[1, 2]. Neurons transmit electrochemical signals to communicate within the body [3]
and have different structures as compared to other cells such as red cells (i.e. cannot
be reproduced) [1, 2].

1.1 How Does Neuron Work?

Nerves are made up of individual neurons, which consist of dendrites, soma, axon,
and synapses (Fig. 2) [1]. Dendrites are the small tree-like structure, which accepts
information from another cell and passes on to the cell body [3]. The cell body (soma)
controls and regulates the functions of the cell and it is a part of the neuron having a
roughly rounded shape that contains the nucleus, mitochondria, and other organelles

Fig. 1 The most important
and complex part of the
human body is “Brain”
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Fig. 2 A single neuron
having a complex structure
and able to transmit
electrochemical signals to
communicate within the
human body

[1, 2]. An axon is a long slim projection of a nerve cell that transmits information
from the cell body to other neurons, muscles, or glands for functioning or movement
of other body parts [3]. Neurons have been classified into three parts:

Neurons

Afferent neuron 
(Whole  body)

Interneuron
(Brain/Spinal cord)

Efferent neuron
(Whole  body)

The sensory signal from receptors (vision, touch, hearing, etc.,) to the central
nervous system in the body is transmitted by afferent neurons [1]. Signals are trans-
mitted with the help of efferent or motor neurons from the central nervous system to
effectors in the body such as muscles and glands for the functioning of body parts
[1, 2]. Interneuron is an intermediate between afferent and efferent neurons which
helps them to communicate with each other [1]. Afferent and efferent neurons are
found throughout the body which is responsible for the functioning of body parts,
whereas interneuron is found only in the brain and spinal cord [1].

1.2 How Does a Neuron Fire?

There is no movement in the body parts due to the non-transmission of signals from
receptors to neurons (at rest). In this resting state, negative charges are more inside
the cell relative to the positive charges outside the cell which allows certain ions to
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Fig. 3 a Structure of channel gates- 3 Na channel activation gates, 4 K channel activation gates,
and 1 Na channel inactivation gate, and b Opening and closing of the gate in which α(alpha) and
β (beta) represents the rate at which gates are close and open

pass across the cell while it prevents other ions from moving into the cell membrane
[1]. Sodium ions (Na + ) and potassium ion (K + ) cannot easily pass through
the membrane; however, potassium ions are free to cross the membrane through
ion channels [1]. The negative ions inside the cell are unable to cross the barrier.
Therefore, the movement of ions in the cell membrane is dependent on the opening
and closing of the gate (Fig. 3).

When an impulse is received by dendrites and transmitted to the cell body then
neurons become stimulated. Once, this impulse is sent out from the cell body thenNa
channels open and Na+ ions surge into the cell [4, 5]. Once the membrane potential
reaches a certain threshold value, an action potential will fire and an electrical signal
is sent down to the axon [6]. The action potential is created by the movement of
Na+ and K+ ions through the membrane [1]. Action potential follows the all-or-none
law that is either it does fire or not [7] and hence no partial occurrence of the action
potential. After firing an action potential, neurons go to the refractory period, which
means no other action potential will occur during the refractory period [1]. Neurons
return to its resting potential when the K channels reopen and sodium channels
closed. After this process, another action potential may occur.

1.3 How Neurons Communicate?

The connections between cells are known as synapses in which neurotransmitters are
discharged by the neurons to communicate with each other [1, 2]. Neurotransmitters
are the chemicals discharged by the neurons into synapses to communicate with each
other [2]. It means there is a transmission of an electrical signal within neurons and
transmission of chemical signals between neurons (Fig. 4).

Alan Hodgkin [8] started his research on neuron response in 1935 and 1939
(collaboration with Huxley) to work on squid giant fiber, their collaborative research
works (original HH model) has been published in 1949 [8, 9]. Due to the large
diameter of the Squid giant axon, Huxley and Hodgkin preferred to experiment on
thisSquidgiant axonwhich resulted in a successful experiment. The studyofHodgkin
and Huxley is based on “How a nerve impulse travels along an axon?” and the speed
of impulse depends on the diameter of the axon. In general, all living cells have a
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Fig. 4 Neurons communicate by passing a signal between each other and these transmission results
as a function of body parts

membrane that separates inside and outside of the cell. The membrane potential [10]
is the potential difference created in the cell while resting potential is the potential
at rest [11]. Hodgkin and Huxley used the Voltage Clamp Experiment for the study
of neuron responses in which an electrode is inserted in an axon without disturbing
it to measure the potential differences [12–14]. In this experiment, the membrane
potential (constant) and the ionic current (time-dependent) are independent of the
position on the axon. Many authors like Carl Craver believe that HH has knowledge
about ions channels only and they have emphasized the whole study around that
point and have not introduced the specific reason for the selection of variables in the
mathematical model [15].

In this manuscript, we have explored the higher power of the potassium activation
gate variable and observed the dynamics which has been shown in the last three
sections. We have established a background in neuroscience to connect the mech-
anism of the Hodgkin-Huxley model and its mathematical description. Time series
analysis and bifurcation analysis have been performed to understand the dynamics
of the behavior of neurons. These techniques will provide a visual approach for an
easy understanding of how neurons become active from resting-state and again how
it returns to the resting state after firing an action potential. Also, this study will help
to think about the assumptions of the HH model.

2 Hodgkin and Huxley Model (HH Model)

Hodgkin and Huxley have contributed their major efforts for the transmission of
nerve impulse in neural modeling. This model describes the ionic current in form of
Na and K ions. When the neuron is stimulated then the membrane potential changes



70 A. Gautam and A. Priyadarshi

and causes the opening and closing of channels gates. Voltage-clamped experiment
was the basis for thismodel. TheHodgkin-Huxleymodel described how ionic current
initiate and propagate in axon by the following set of equations as follows [16]:

CdV
/
dT = I − [gKn4(V − VK ) + gNam

3h(V − VNa) + gL(V − VL)]
dn

/
dt = αn(V )(1− n) − βn(V )n

dm
/
dt = αm(V )(1− m) − βm(V )m

dh
/
dt = αh(V )(1− h) − βh(V )h

(1)

where

αm = 0.1(V + 40)/(1− exp(−(V + 40)/10))

βm = 4 exp(−(V + 65)/20)

αh = 0.07 exp(−(V + 65)/20)

βh = 1/(1+ exp(−(V + 35)/10))

αn = 0.01(V + 55)/(1− exp(−(V + 55)/10))

βn = 0.125 exp(−(V + 65)/80)

(2)

In the HH model (1), V n, m, and h are treated as variables for membrane
potential, the potential for sodium, potential for potassium, and potential for
leakage current respectively, and c = 1µF/cm2 is the capacitance of membrane.
VNa ,VK and Vl are the reversible potentials of sodium (VNa = 50mV), potas-
sium (VK = −77mV), and leakage channels (Vl = −54.4mV) respectively.
gNa ,gK and gL are the maximum conductance of the membrane for the sodium
(gNa = 120 mS/cm2), potassium (gK = 36 mS/cm2), and leakage currents
(gL = 0.3 mS/cm2). αn, αm, αh, βn, βm andβh are the rate constants (used in the
above Eq. (2)) calculated experimentally (Table 1) [17]. HH had given the overall

Table 1 Description of Variables and parameters used in the HH Model

Variable and parameters Representations Units

V, VNa, VK and VL Membrane potential, the potential for sodium (Na),
potassium(K), and leakage current respectively

mV

C Membrane capacitance μF/cm2

I External current μA
/
cm2

n, m, and h Potassium activation, Sodium activation, and Sodium
inactivation

–

gNa, gK and gL Ionic conductance through sodium, potassium, and
leakage current

mS/cm2

αn, αm andαh Rate constants –

βn, βm andβh Rate constants –

T Time ms
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structure of the cell membrane and the process of the firing of the action poten-
tial [15]. They have used the experimentally fitted values but have not given any
descriptive reason for how changes in conductance occur.

HH model is four-dimensional and has complex behavior. Several two-
dimensional models depict similar characteristics as given by the HH model. There
are two-dimensional models such as the Morris-Lecar model, FitzHugh-Nagumo
(FHN) model, and Hindmarsh–Rose model which are quite easier to study the
behavior of neurons [10]. This study is based on the HH model and its mathematical
equations.

3 Review of HH Model:

The neuron’s characteristics are the most influential factor for determining the
neuron’s response to external electrical stimulations [18]. The stable equilibriums
and limit cycles are the most frequent dynamical behavior exhibited by the neuron’s
response system. At constant (or unvarying) external current, a single spike of action
potential has the following two responses of neurons: (i) the resting potential state
and (ii) the oscillatory (periodic) state [10]. The display of irregular behavior by
electric excitable cell model [19] and the electrical excitation of squid giant axons
are extensively studied by Hodgkin-Huxley models or modified Hodgkin-Huxley
models which are assumed to be a prototype for excitable cell models [20]. Temper-
ature (control parameter in the HH model) may affect the neural activity [21] and
variations in it may exhibit chaotic behavior [21, 22]. Global structure of bifurca-
tion (Hopf bifurcation, Saddle-node, Period Doubling, Homoclinic bifurcations) is
investigated over thewide range of parameters through non-linear dynamics [23–32].

The dynamics of single-neuron and circuits involved in neural information
processing is observed through bifurcations [33, 34]. As the resting potential corre-
sponds to a stable solution in the HH model while periodic firing corresponds to
the periodic solution which is often characterized by the existence of Hopf bifur-
cation [23]. The shifting of Hopf bifurcation in such non-linear dynamical models
may be possible by changing parameter, this drives us to investigate the shifting of
Hopf bifurcation in the HH model by changing the exponent in the expression of
potassium ionic current. The individual contributions of K+, Na+, and leakage ionic
currents resulted in the total amount of current flow that accounts for the aggregation
of other ionic fluxes such as the chloride and bicarbonate ions through the excited
membrane in the HH model [31, 35]. The membrane currents depend on both the
capacitance of the plasma membrane and resistance of the ion channels [36, 37]. As
there are four activation gates for potassium ions in the HH model, the potassium
activation (n) in the external current is mostly studied for n4as (gKn4(V-VK)) due
to the complexity of the HH model [30, 38]. There is no valid reason for selecting
activation and inactivation variables components. They had chosen the data for math-
ematical convenience. Even though they had studied for the 4th exponential power
of activation of potassium [15] but higher exponential power (5 or 6) of potassium
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activation may be used to observe the dynamics more clearly [10]. In the present
manuscript, for external current, the proportion of the open channels is considered
by function n5 or n6 instead of n4 in the HH model, and the qualitative behavior
of the modified HH model is comparatively studied. The results (one-parameter or
two parameters bifurcation analysis) are compared and influential parameters are
recognized based on the sensitive dependence of the external current and periodic
region in the parameter spaces.

4 Modified HH Models

In theHHmodel, the conductance change during the depolarizing step of the voltage
clamp experiment had a sigmoidal shape while it had an exponential shape during
the repolarizing step. HH model has first-order reactions for the individual channel
gates which produce exponential curves, the sigmoidal curves found due to the occur-
rence of several first-order reactions simultaneously (co-operative process) i.e., the
channels contained several gates, all of which had to be open simultaneously for the
channel itself to be open but for the channel to shut, it is enough to shut only one
gate. Based on the shape of the experimentally-measured sigmoidal curve Hodgkin-
Huxley suggested that four would be the best estimate of independent gates within
the K channel and with a similar analysis of conductance curve shapes for Na, three
activation gates and one inactivation gate (Fig. 3).

The dynamics of neuron’s responses (resting-state or oscillatory state) may be
explored by assuming higher power (5 or 6) of potassium activation (n) in potassium
ionic currents [10]. The expression containing potassiumactivation (n)with exponent
power 4 [gKn4(V–VK)], is replaced by exponent powers 5 and 6 which is biologically
feasible [7]. Keeping other variables and parameters identical and introducing K
activations as ([gKn4(V–VK)], [gKn5(V–VK)] and [gKn6(V–VK)]), the expressions
of external current (I) in HH model (1) are modified as:

I = CdV
/
dT + gKn

4(V − VK ) + gNam
3h(V − VNa) + gL(V − VL) (3)

I = CdV
/
dT + gKn

5(V − VK ) + gNam
3h(V − VNa) + gL(V − VL) (4)

I = CdV
/
dT + gKn

6(V − VK ) + gNam
3h(V − VNa) + gL(V − VL) (5)

The following parameters are used to observe the global structure of the dynamics
of the HH model with the above external current (I) for the model cases (3)–(5):

para i = 0, VNa = 50, VK = − 77, Vl = − 54.4, gNa = 120, gK = 36, gl = 0.3, c = 1
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We have tried to investigate the patterns and behaviors after modifying the model
mathematically. This comparative study will help us to understand the differences
with the help of numerical simulations.

5 Comparative Studies of Modified HH Models

5.1 Stability Analysis

The proposed modified HH model Eq. (1) with three cases (3)–(5) have mathe-
matically very complex expressions and they produced an intractable expression of
non-trivial equilibrium points. Let E1 = (V1,m1, h1, n1), E2 = (V2,m2, h2, n2)
and E3 = (V3,m3, h3, n3) be the existed non-trivial equilibrium points for model
cases (3)–(5) respectively which have been obtained by equating the Eq. (1) equals
to zero for the corresponding three cases (3)–(3). The stability of equilibrium points
E1, E2 and E3 depends upon the eigenvalues of the corresponding Jacobian matrix.
The Jacobian matrix can be obtained after linearization of the system (1) around the
equilibrium points E1, E2 and E3:

dVi

dt
= gi11Vi + gi12mi + gi13hi + gi14ni

dmi

dt
= gi21Vi + gi22mi

dhi
dt

= gi31Vi + gi33hi

dni
dt

= gi41Vi + gi44ni

(6)

where i = 1, 2 and 3 and

g111 = −gNam3h + gKn4 + gL
C

, g112 = −3gNam2h(V − VNa)

C
,

g113 = −gNam3(V − VNa)

C
, g114 = −4gKn3(V − VK )

C
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g121 = (21m exp( − v/18 − 65/18))/9 + (m − 1)/(10(exp( − v − 40)/10 − 1))

+ (exp( − v − 40)(v/10 + 4)(m − 1))/(10(exp( − v − 40)/10 − 1)2)

g122 = (v/10 + 4)/(exp( − v − 40)/10 − 1) − 4 exp( − v/18 − 65/18), g123 = 0, g124 = 0

g131 = (7 exp( − v/20 − 13/4)(h − 1))/2000 − (h exp(−v − 35))/(10(exp(−v − 35)/10+ 1)2)

g132 = 0

g133 = − (7 exp( − v/20 − 13/4))/100 − 1/(exp( − v − 35)/10 + 1), g134 = 0

g141 = (3n exp( − v/80 − 13/16))/2000 + (n − 1)/(100(exp( − v − 55)/10 − 1))

+ (exp( − v − 55) (v/100 + 11/20)(n − 1))/(10(exp( − v − 55)/10 − 1)2)

g142 = 0, g143 = 0, g144 = (v/100 + 11/20)/(exp( − v − 55)/10 − 1)

− (3 exp( − v/80 − 13/16))/25

g211 = −gNam3h + gKn5 + gL
C

, g212 = −3gNam2h(V − VNa)

C
,

g213 = −gNam3(V − VNa)

C
, g214 = −5gKn4(V − VK )

C
g221 = (2m exp( − v/18 − 65/18))/9 + (m − 1)/(10(exp( − v − 40)/10 − 1))

+ (exp( − v − 40)(v/10 + 4)(m − 1))/(10(exp( − v − 40)/10 − 1)2)

g222 = (v/10 + 4)/(exp( − v − 40)/10 − 1) − 4 exp( − v/18 − 65/18), g223 = 0, g224 = 0

g231 = (7 exp( − v/20 − 13/4)(h − 1))/2000 − (h exp(−v − 35))/(10(exp(−v − 35)/10+ 1)2),

g232 = 0

g233 = − (7 exp( − v/20 − 13/4))/100 − 1/(exp( − v − 35)/10 + 1), g234 = 0

g241 = (3n exp( − v/80 − 13/16))/2000 + (n − 1)/(100(exp( − v − 55)/10 − 1))

+ (exp( − v − 55) (v/100 + 11/20)(n − 1))/(10(exp( − v − 55)/10 − 1)2),

g242 = 0, g243 = 0,

g244 = (v/100 + 11/20)/(exp( − v − 55)/10 − 1) − (3 exp( − v/80 − 13/16))/25

g311 = −gNam4h + gKn6 + gL
C

, g312 = −3gNam2h(V − VNa)

C
,

g313 = −gNam3(V − VNa)

C
, g314 = −6gKn5(V − VK )

C
g321 = (2m exp( − v/18 − 65/18))/9 + (m − 1)/(10(exp( − v − 40)/10 − 1))

+ (exp( − v − 40)(v/10 + 4)(m − 1))/(10(exp( − v − 40)/10 − 1)2)

g322 = (v/10 + 4)/(exp( − v − 40)/10 − 1) − 4 exp( − v/18 − 65/18), g323 = 0, g324 = 0

g331 = (7 exp( − v/20 − 13/4)(h − 1))/2000 − (h exp(−v − 35))/(10(exp(−v − 35)/10+ 1)2)

g332 = 0g333 = − (7 exp( − v/20 − 13/4))/100 − 1/(exp( − v − 35)/10 + 1)

g334 = 0

g341 = (3n exp( − v/80 − 13/16))/2000 + (n − 1)/(100(exp( − v − 55)/10 − 1))

+ (exp( − v − 55) (v/100 + 11/20)(n − 1))/(10(exp( − v − 55)/10 − 1)2), g342 = 0, g343 = 0

g344 = (v/100 + 11/20)/(exp( − v − 55)/10 − 1) − (3 exp( − v/80 − 13/16))/25
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The Jacobian matrix JEi around the equilibrium point Ei :

JEi =

⎡

⎢⎢
⎣

gi11 gi12 gi13 gi14
gi21 gi22 gi23 gi24
gi31 gi32 gi33 gi34
gi41 gi42 gi43 gi44

⎤

⎥⎥
⎦

from which the characteristic equation has been obtained as:

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0 (7)

where,

a1 = −(gi11 + gi22 + gi33 + gi44)

a2 = gi11(g
i
22 + gi33 + gi44) + gi22(g

i
33 + gi44) + gi33g

i
44 − gi12g

i
21 − gi13g

i
31 − gi14g

i
41

a3 = gi12g
i
21(g

i
33 + gi44) + gi13g

i
31(g

i
22 + gi44) + gi14g

i
41(g

i
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Using the Rourth-Hurwitz Criterion equilibrium points are stable under the
following conditions:

a1, a2, a3 > 0, a1 a2 > a3, and a1 a2 a3 > a23 + a21a
2
4 (8)

Otherwise, the equilibrium points are unstable if the above conditions are not
satisfied.

5.2 Comparative Study of Time Series Analysis

Time series analysis is a very helpful technique to understand the dynamics of
the model over time. Here in this study different external current values, I =
50,120,154,156 µA/cm2, with the time evolution of the membrane potential (V ) are
depicted in Fig. 5. At low external current values periodic behavior (grey shaded
region) for all models (3)–(5) is observed but as external current increases, the
membrane potential in the model (3) reached a steady-state sooner than the models
(4) and (5).
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Fig. 5 Time series for model cases (3)-(5) with [gKn4(V–VK)], [gKn5(V–VK)] and [gKn6(V–VK)]
at external currents I = 50, 120, 154 and 156 µA/cm2 is drawn (black shaded represents transient
oscillatory while orange its resting state)

To understand the impact of external currents (I) on other ion channel gated
variables (sodium activation (n) solid lines, potassium activation (m) dotted and
sodium inactivation (h) dash-dotted lines) for all three cases (3)–(5) time series is
drawn in Fig. 6 and qualitative behavior is described in Table 2.

It has been observed from the Fig. 6a that for the lower value of current, model (3)
shows period behavior for all three gated variables (sodium activation (n) solid lines,

Fig. 6 Comparative study of time series (for m, n and h) for three model cases [gKn4(V–VK)],
[gKn5(V–VK)] and [gKn6(V–VK)] at different values of external current at I = 50, 120, 154 and
156 µA/cm2
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potassium activation (m) dotted, and sodium inactivation (h) dash-dotted lines). But
as the current values increased to 154 µA/cm2 its behavior changes from periodic to
a stable state. In the case of model (4) and model (5), periodic behavior changes to
a stable state for the current values, I = 154 and 120 µA/cm2 respectively as shown
in Fig. 6a, b.

5.3 Comparative Study of One-Parameter Bifurcation

Based on the time series findings (variations in neuron response i.e. resting or peri-
odic), it is essential to observe the dynamical behavior over the parameter range
I = (0–200) µA/cm2 (Fig. 7). For the model case (3), the stability curve, Hopf-
bifurcations (sub-critical or super-critical), limit cycles (stable or unstable) are
explained in the diagram Fig. 7 for a better understanding.

The voltage fluctuations against the external current are drawn in Fig. 7 (stable
equilibrium curve (red), unstable equilibrium (black), unstable limit cycles (blue
vacant circles), stable limit cycles (green filled circled). The unstable limit cycles
(blue circles) emanate from the subcritical-Hopf bifurcation point (I = 9.779
µA/cm2) and undergo flip bifurcation to produce stable limit cycles (green circles).
At a higher external current value (I = 154.5 µA/cm2) a supercritical-Hopf bifurca-
tion occurs emanating stable limit cycles. Voltage is at resting state for low external
currents (0 –9.7) µA/cm2nnwhile it is periodic for the external current (9.8~154.5)
µA/cm2. The voltage reached its resting state on very high (or very low) external
current (I) in theHHmodel while on the low external current it is an oscillatory state.

Similar qualitative behavior over external currents (0–200) µA/cm2 is obtained
for all three cases (3)–(5) in Fig. 8 and Table 3. Similar bifurcations analysis is carried

Fig. 7 One parameter bifurcation diagram for membrane potential (V) against external current (I)
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Model (1)  
[ gKn4 (V-VK)]

Model (2) 
 [gKn5 (V-VK)] 

Model (3) 
[gKn6 (V-VK)] 

Fig. 8 One-parameter bifurcation diagrams for all variables of the model cases (3) to the case (5)
have been drawn. Variation in membrane potential (V), Na activation (m), potassium activation (n)
sodium inactivation (h) has been shown in row 1, 2, and 3 respectively

out for all three cases (3)–(5), the one-parameter bifurcation diagrams (Fig. 8), and
two-parameter bifurcation diagrams (Fig. 10) are drawn with continuous varying
external currents (I = 0–200 µA/cm2). The qualitative behaviors of all three model
cases (3)–(5) are summarized in Table 3 below.

The external current enhances membrane potential (V ), Na activation (m), and
K activation (n) while it suppresses K inactivation (h). The periodic solution for
the model case (3) occurred for a bigger range of external currents (9.779~154.5)
µA/cm2 compared to the case (4) (0~131.7) µA/cm2 and the case (5) (0~103.4)
µA/cm2 (Table 3). This shows that how neuron behaves during communication and
action potential produced by the neurons. A neuron can fire spikes periodically as in
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Table 3 Dynamic of variables for current values I (in µA/cm2)

Variables Behavior Case (3) n4 Case (4) n5 Case (5) n6

Membrane potential (V) Stable I < 9.779&I > 154.5 I > 131.7 I > 103.4

Periodic 9.779 < I <154.5 0 < I < 131.7 0 <I < 103.4

Sodium activation (m) Stable I < 9.779&I >154.5 I > 131.7 I >103.4

Periodic 9.779 < I < 54.5 0 < I < 131.7 0 < I <103.4

Potassium activation (m) Stable I < 9.779&I > 154.5 I > 131.7 I > 103.4

Periodic 9.779 <I < 154.5 0 <I < 131.7 0 < I < 103.4

Sodium inactivation (m) Stable I < 9.779&I >154.5 I > 131.7 I > 103.4

Periodic 9.779 < I < 154.5 0 < I < 131.7 0 < I < 103.4

case of high amplitude limit cycles. However, the weak perturbation may reduce the
spike of neurons to stable states. With a higher external current, the amplitude of the
spike decreases to zero which is said to be a refractory state.

It can be observed that the bifurcation points shift towards left for models (4) and
(5) as compared tomodel (3).Membrane potential increases for models (4) and (5) as
the current value increases. If themembrane potential curves have been considered for
different current values, then it has been found that the shape of membrane potential
curve changes slightly to S-shaped for models (4) and (5). Similar S-shaped patterns
have been observed in the case of Na activation (m), potassium activation (n) for
models (4) and (5). But for (h) sodium inactivation it has been found that the gated
variable (h) decreases sharply for models (4) and (5).

5.4 Comparative Study of Two-Parameter Bifurcation

Two-parameter bifurcation analysis helps us to understand the influence of parame-
ters and the relationships among the parameters. Any perturbation against the param-
eter can be examined and show graphically. Figure 10 shows the comparative graphs
to understand the regions of periodic and stable states. The neuron responses as
resting (grey shaded region) or periodic state (black shaded region) for all three
cases (3)–(5) has been exhibited in two-parameter bifurcation diagrams in which the
stable and periodic regions in two-parameter phase spaces (I, gK), (I, gL), (I, gNa), (I,
VK),(I, VL) and (I, VNa) are drawn (Fig. 9). The periodic region in parameter space
(I, gK) is larger for the model case (5) (assuming n6)) than model case (4) (assuming
n5) and model case (3) (assuming n4). Similar qualitative behavior (larger periodic
region) is found in other three-parameter phase spaces (I, gL), (I, VK), and (I, VL)
whereas the smaller periodic region is observed in parameter phase spaces (I, gNa)
and (I, VNa).

This understanding will help reader to explore more about the dynamics of the
HH model mathematically. Since the work of Hodgkin and Huxley were based on
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Model 1 [gKn4 (V-VK)] Model 2 [gKn5 (V-VK)] Model 3 [gKn6 (V-VK)]

Fig. 9 Two-parameter bifurcation diagrams of ionic conductance for potassium against external
current (row1), ionic conductance for leakage ion against external current (row2), ionic conductance
for sodium against external current (row 3), the potential for potassium against external current (row
4), the potential for leakage ion against external current (row 5) and potential for sodium against
external current (row 6) has been drawn
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experiments and assumed data for calculations. Butmathematically it can be explored
more for better understanding and to look into the loopholes of Hodgkin and Huxley
studies.

6 Results

In this manuscript, the external current has been applied to study the impacts of
depolarizing stimulus to neurons when the exponential power of the potassium acti-
vation (n) is assumed to be 5 or 6 (as hinted by [8]). Keeping all other parameters
and expression of the variables unchanged, the mathematical models are derived and
analyzed based on the exponential power (4, 5 and 6) of the potassium activation (n)
in external currents. The extensive numerical simulation suggests that in the modi-
fied HH model, the threshold voltage which is responsible for the firing of action
potential occurred at a low applied external current. The result is quite significant
as the low external current may cause the firing of the action potential in neurons.
The larger periodic domain in the case of VK versus I and VL vs. I has been obtained
in a modified HH model which is an advantage in comparison with the HH model.
The shifting of Hopf bifurcation has been observed in a modified HH model which
stimulus the neuron firing. One-parameter and two-parameter bifurcation analysis
of the present study suggests that in the modified HH model with high power of
potassium activation that.

i. the resting states reached sooner in the case of models (4) and (5)
ii. shifting of Hopf bifurcation to lower values of externally applied current in

case of models (4) and (5)
iii. the larger periodic region is possible in two-parameter phase spacewith external

currents vs. parameters (K conductance, leakage conductance,K potential, and
leakage potential) however smaller periodic region is also observed in external
current vs. Na conductance and Na potential.

The observations are robust as various combinations of parameters also exhibit
the same qualitative behavior. By using a higher exponent in the modifiedHHmodel,
the periodic firing can be obtained at a low externally applied current as compared to
the original HH model. The co-dimension two-parameter bifurcation suggests that
a larger domain of periodic region (which refers to periodic firing) in the modified
HH model. The proposed model gives the flexibility to choose the assumptions of
higher power of potassium activation to generate neuron firing at low external applied
current.
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7 Discussions

In Hodgkin-Huxley’s voltage clamp experiment, based on the number of indepen-
dent channel gates (active or inactive) and the experimental data (approximated by
sigmoidal function) the exponential power (4) for the potassium activation (n) in
external current has been suggested. Later on, several modified HH model has been
proposed which produced mathematical results of modified HH model based on
different terms inclusion or modifications. In the HH model, the conductance of
leakage ions remains constant which is responsible for resting potential. But the
other two channels (K and Na) depend on potential and are responsible for action
potential in neurons. An action potential occurs when sodium channel gates open
during depolarization. Depolarization increases the probability of activation gates
and decreases the probability of the inactivation gate. There several types of research
that contradict theHHmodel. Since it describes the propagation of an impulse in the
form of an electrical signal, even the whole setup was considered an electrical circuit
with membrane potential as a capacitor. It suggests that the model is dissipative.
But the HH model fails to brief about the mechanical changes and also about the
energy. There is no theory about the experiments and justifications. But the findings
of Hodgkin and Huxley was a revolution for neuroscience as well as mathematical
modeling in the year 1952. Even in this century, the HH model is very important for
basic understanding as well as deep study. This manuscript is based on mathematical
modeling which includes a set of ordinary differential equations motivated by the
work of Hodgkin and Huxley. This is an idea towards the findings of loopholes and
limitations of the HH model for a better understanding of nerve conduction.

Further, the robustness of the results of mathematically modified HH models will
certainly attract the researcher for further investigation or more experiments on the
neuron’s behavior.
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Mathematical Analysis of Two Unequal
Collinear Cracks in a
Piezo-Electro-Magnetic Media

Kamlesh Jangid

Abstract In this chapter, we begin our work of studying two unequal collinear
semi-permeable cracks in a magneto-electro-elastic media. We employ the Stroh’s
formalism and complex variable technique to solve the physical problem. We derive
the closed form analytic solutions for various fracture parameters, and study the
effect of volume fraction and inter-crack distance on these parameters.

Keywords Complex variable · Intensity factor · Piezo-electro-magnetic ceramic ·
Riemann-Hilbert problem · Semi-permeable cracks

1 Introduction

Piezo-electro-magnetic/Magneto-electro-elastic (MEE) composite materials are
widely used in magnetic field probes, acoustic, medical ultrasonic imaging,
hydrophones, electronic packaging, electromagnetic sensors, actuators and transduc-
ers etc., due to their multi-field-coupled effects. MEE ceramics are brittle in nature
and have low fracture toughness. The presence of defects such as cracks, voids leads
to the premature failure of thesematerials undermechanical/electrical/magnetic load-
ings. Thus fracture study becomes essential for such materials to predict structural
integrity and to advance the design of MEE devices.

This chapter reviews extensive work that has been done to better understand the
mechanics of MEE materials in the presence of defects such as cracks. As compared
to piezoelectric or anisotropic cases, relatively limited work has been done so far
in MEE fracture analysis. A large number of publications for a single crack in a
MEE materials are available in the literature [1–6]. Further, few work related to
multiple cracks in MEE media is available in the literature, also it deserves noting

K. Jangid (B)
Department of HEAS (Mathematics), Rajasthan Technical University, Kota 324010, India

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Singh et al. (eds.), Methods of Mathematical Modelling and Computation
for Complex Systems, Studies in Systems, Decision and Control 373,
https://doi.org/10.1007/978-3-030-77169-0_4

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77169-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-77169-0_4


88 K. Jangid

that problems of collinear cracks have been a typical and active topic in fracture
mechanics. With the application of MEE ceramics, the collinear-crack problems in
them have drawn the attention of many researchers [7–9]. The static and dynamic
problems of two collinear interfacial cracks in MEE composites [10–13] have been
solved by Zhou and colleagues by using the Schmidt method. Exact solutions for
anti-plane collinear cracks in a MEE strip or layer have been derived by Wang
et al. [14], Wang and Mai [15], and Singh et al. [16] under different conditions.
Most, recently Jangid and Bharagva [17] has derived an analytical solution for two
collinear semi-permeable cracks inMEEmedia using Stroh’s formalism and complex
variable technique.

The main objective of this chapter is to show the effect of volume fraction, inter-
crack distance and prescribed loadings on the collinear semi-permeable cracks. For
this, the problem of two unequal collinear semipermeable cracks weakening a MEE
media is studied. Only in-plane electro-magnetic and mechanical loading conditions
are considered. The problem is formulated employing Stroh’s formalism and solved
using a complex variable technique (see Sects. 4 and 5). Closed form analytical
expressions are derived for various fracture parameters (see Sect. 6).

2 Basic Equations for Piezoelectromagnetic Media

The fundamental equations and the boundary conditions for linear piezo-electro-
magnetic media are defined as below:

• Constitutive Equations

σi j = Ci jksεks − esi j Es − hsi j Hs, (1)

Di = ekisεks + κis Es + βis Hs, (2)

Bi = hiksεks + βis Es + γis Hs . (3)

• Kinematic Equations

εi j = 1

2
(ui, j + u j,i ), Ei = φ,i , Hi = ϕ,i . (4)

• Equilibrium Equations

Equilibrium equations for stresses, electric displacements andmagnetic inductions
in the absence of body forces, free electric charges and freemagnetic currents,may,
respectively, be written as

σi j, j = 0, Di,i = 0 and Bi,i = 0, (5)

where σi j , εi j , Di , Ei , Bi and Hi denote the components of the stress, strain, elec-
tric displacement, electric field, magnetic induction and magnetic field, respectively;
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Ci jks , eiks , hiks and βis denote the elastic, piezoelectric, piezo-magnetic and elec-
tromagnetic constants; κis and γis denote the dielectric permittivities and magnetic
permeabilities, respectively. Comma denotes partial differentiation with respect to
argument following it; φ is the electric potential; and ϕ is the magnetic potential;
where i, j, k and s = 1, 2, 3.

2.1 Crack Face Boundary Conditions

In the literature, mainly three crack face boundary conditions for MEE ceramics are
available. These are represented mathematically as:

• Impermeable boundary conditions (proposed by Deeg [18])
The crack faces are assumed to be traction-free, electrically and magnetically
impermeable

σi j n j = 0; D+
2 = D−

2 = 0 and B+
2 = B−

2 = 0; (6)

• Permeable boundary conditions (proposed by Parton [19])
In this case, crack is traction-free and does not obstruct any electric field from
conduction

σi j n j = 0; φ+ = φ−; ϕ+ = ϕ−; D+
2 = D−

2 �= 0 and B+
2 = B−

2 �= 0; (7)

• Semi-permeable boundary conditions
This condition, gives a more realistic boundary condition for a open cracks, its
modification are proposed by Hao and Shen [20] for piezoelectric solids. These
assumption establishes that medium between the crack surfaces partially conducts
the electric and magnetic fields and can be expressed as

σi j n j = 0; D+
2 = D−

2 = Dc
2 = −κc

�φ(x1)

�u(x1)
and B+

2 = B−
2 = Bc

2 = −γc
�ϕ(x1)

�u(x1)
,

(8)

where superscripts+ and− represent, respective, values on the upper and lower crack
surfaces, considering crack along x1-axis; κc = κrκo(κo = 8.85 × 10−12F/m), κr

is electric permittivity and γc = γrγo(γo = 1.26 × 10−6Ns2/C2), γr is magnetic
permeability of the medium between the crack faces, respectively; �φ, �ϕ and �u
are the jumps of electric potential,magnetic potential and crack openingdisplacement
across the crack, respectively.
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3 Fundamental Formulation and Solution Methodology

According to Stroh’s formulation [21] the general solution satisfying Eqs. (1)–
(5) may be written as (solution methodology is recapitulated from Jangid and
Bhargava [17])

u,1 = AF(z) + AF(z), (9)

�,1 = BF(z) + BF(z), (10)

where, A = (a1, a2, a3, a4, a5), B = (b1,b2,b3,b4,b5), u = [u1, u2, u3,φ,ϕ]T ,
F(z)= df(z)

dz
, f(zα)= [ f1(z1), f2(z2), f3(z3), f4(z4), f5(z5)]T and zα = x1 + pαx2,

where pα is a non-real root of

|W + p(R + RT ) + p2Q| = 0. (11)

The matrices W, R and Q are given by

W =
⎡
⎣
C1 jk1 e1 j1 h1 j1
eT1k1 −κ11 −β11

hT
1k1 −β11 −γ11

⎤
⎦ ,R =

⎡
⎣
C1 jk1 e2 j1 h2 j1
eT1k2 −κ12 −β12

hT
1k2 −β12 −γ12

⎤
⎦ ,

Q =
⎡
⎣
C2 jk2 e2 j2 h2 j2
eT2k2 −κ22 −β22

hT
2k2 −β22 −γ22

⎤
⎦ , j, k = 1, 2, 3. (12)

The column vectors of matrix B = (b1,b2,b3,b4,b5) are related to the column
vectors of matrix A = (a1, a2, a3, a4, a5) in the following form

bk = (RT + pkQ)ak, k = 1, 2, 3, 4, 5

and � is the generalized stress function such that

œ2 = [σ2 j , D2, B2]T = �,1, œ1 = [σ1 j , D1, B1]T = −�,2. (13)

4 Statement of the Problem

An infinite transversely isotropic piezo-electro-magnetic 2D domain is considered
for the analysis in the ox1x2-plane. Two unequal collinear cracks L1 and L2 are
taken along the x-axis occupying the intervals [d, c] and [b, a], respectively. The
traction free crack face and semipermeable boundary condition are taken for the
analysis. The remote boundary of the plate is prescribed in-plane mechanical load
σ∞
22 , electric displacement D∞

2 , andmagnetic induction B∞
2 . The entire configuration
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Fig. 1 Schematic representation of the problem

is schematically presented in Fig. 1. The physical boundary conditions stated above
may be written as

(i) σ+
2 j = σ−

2 j = 0, D2 = Dc, B2 = Bc on L =
2⋃
1

Li

(ii) σ22 = σ∞
22 , D2 = D∞

2 , B2 = B∞
2 for |x2| → ∞

(iii) u+
j = u−

j , σ+
2 j = σ−

2 j , D+
2 = D−

2 , B+
2 = B−

2 , φ+ = φ−, ϕ+ = ϕ− for |x1| <

d, c < |x1| < b, |x1| > a
(iv) �+

,1 = �−
,1 = −V, V = [ 0 σ∞

22 0 D∞
2 B∞

2 ]T for d < |x1| < c, b < |x1| < a.

where Dc and Bc are the electric andmagnetic fluxes through the crack regions (d, c)
and (b, a), which can be determined with the help of the Eq. (8).

5 Solution of the Problem

The continuity of �,1(x1) on the whole real axis implies that

[BF(x1) − BF(x1)]+ − [BF(x1) − BF(x1)]− = 0. (14)

According to Muskhelishvil [22] its solution may be written as
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BF(z) = BF(z) = h(z)(say) (15)

Boundary condition (iv) together with Eqs. (10, 15) yield following vector Hilbert
problem

h+(x1) + h−(x1) = V0 − V, V0 = [0, 0, 0, Dc, Bc]T on L (16)

Introducing a new complex function vector�(z) = [�1(z),�2(z),�3(z),�4(z),
�5(z)]T as

�(z) = HRBF(z).

Which using Eq. (15) gives the relation

h(z) = ��(z), (17)

where � = [HR]−1, HR = 2ReY, Y = iAB−1.
Consequently Eq. (16) may be written in component form for �2(z),�4(z) and

�5(z), yield following scalar Hilbert problems

�22[�+
2 (x1) + �−

2 (x1)] + �24[�+
4 (x1) + �−

4 (x1)] + �25[�+
5 (x1) + �−

5 (x1)] = −σ∞
22 , (18)

�42[�+
2 (x1) + �−

2 (x1)] + �44[�+
4 (x1) + �−

4 (x1)] + �45[�+
5 (x1) + �−

5 (x1)] = Dc − D∞
2 ,

(19)
�52[�+

2 (x1) + �−
2 (x1)] + �54[�+

4 (x1) + �−
4 (x1)] + �55[�+

5 (x1) + �−
5 (x1)] = Bc − B∞

2 .

(20)

The solution of above Hilbert problems written using According to Muskhel-
ishvil [22] as

�2(z) = �1

2�
{

P1(z)

(a11a22 − a12a21)X1(z)
− 1

}
, (21)

�4(z) = �2

2�
{
1 − P1(z)

(a11a22 − a12a21)X1(z)

}
, (22)

�5(z) = �3

2�
{
1 − P1(z)

(a11a22 − a12a21)X1(z)

}
. (23)

where X1(z), P1(z) etc. are given in “Appendix A”.
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6 Applications

In this section, closed form analytical expressions are derived for crack opening
displacement (COD), crack opening potential drop (COPD), crack opening induc-
tion drop (COID), stress intensity factor (SIF), electric displacement intensity factor
(EDIF) and magnetic induction intensity factor (MIIF).

6.1 Crack Opening Displacement (COD)

The jump displacement vector �u,1 may be given as

i�u,1 = �+(x1) − �−(x1). (24)

Taking the second component of the above equation, we get

�u2,1(x1) = −i[�+
2 (x1) − �−

2 (x1)]. (25)

Substituting value of �2(z) from Eq. (21) and integrating one obtains

�u2(x1) = �1

(a11a22 − a12a21)� {C0S3 + C1S4 + C2S5} , on d < |x1| < c (26)

�u2(x1) = −�1

(a11a22 − a12a21)� {C0S6 + C1S7 + C2S8} , on b < |x1| < a (27)

where the symbol � indicates the difference between the values on the upper and
lower crack surfaces and S3, S4 etc. are given in “Appendix B”.

6.2 Crack Opening Potential Drop (COPD)

Comparing the fourth component from Eq. (24) and using the value of �4(x1) from
Eq. (22) and integrating one obtains the COP drop, �φ(x1), between the two faces
of the crack as

�u4(x1) = −�2

(a11a22 − a12a21)� {C0S3 + C1S4 + C2S5} , on d < |x1| < c (28)

�u4(x1) = �2

(a11a22 − a12a21)� {C0S6 + C1S7 + C2S8} , on b < |x1| < a. (29)
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6.3 Crack Opening Induction Drop (COID)

Comparing the fifth component from Eq. (24) and using the value of �5(x1) from
Eq. (23) and integrating one obtains the COI drop, �ϕ(x1), between the two faces
of the crack as

�u5(x1) = −�3

(a11a22 − a12a21)� {C0S3 + C1S4 + C2S5} , on d < |x1| < c (30)

�u5(x1) = �3

(a11a22 − a12a21)� {C0S6 + C1S7 + C2S8} , on b < |x1| < a. (31)

The values of electric and magnetic fluxes, Dc and Bc, respectively, are obtained
by substituting the required values from Eqs. (26), (28), (30) into Eq. (8) simplifying
and solving the system of non-linear equations

m1D
c2 + Dc(m4σ

∞
22 − m1D

∞
2 − m5B

∞
2 + m2κc) + BcDcm5 + Bcm3κc

= −κc(m1σ
∞
22 − m2D

∞
2 − m3B

∞
2 ),

(32)

m5B
c2 + Bc(m4σ

∞
22 − m1D

∞
2 − m5B

∞
2 + m6γc) + BcDcm1 + Dcm3γc

= −γc(m5σ
∞
22 − m3D

∞
2 − m6B

∞
2 ),

(33)

where,

m1 = �42�55 − �45�52, m2 = �22�55 − �25�52, m3 = �25�42 − �22�45,

m4 = �44�55 − �45�54, m5 = �25�44 − �24�45, m6 = �22�44 − �24�42.

6.4 Stress Intensity Factor (SIF)

Open mode stress intensity factor KI at the crack tips x1 = d, c, b, and a is obtained
using following formulae
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KI (d) = lim
x1→d−

√
2π(d − x1)σ22(x1), (34)

KI (c) = lim
x1→c+

√
2π(x1 − c)σ22(x1), (35)

KI (b) = lim
x1→b−

√
2π(b − x1)σ22(x1), (36)

KI (a) = lim
x1→a+

√
2π(x1 − a)σ22(x1). (37)

Substituting σ22(x1) obtained from Eqs. (10), (15), (17) and (20) into above equa-
tions and simplifying we obtain

KI (d) = −√
2π (�25�3 + �24�2 − �22�1)

�(a11a22 − a12a21)

{
C0d2 + C1d + C2√

(a − d)(b − d)(c − d)

}
, (38)

KI (c) =
√
2π (�25�3 + �24�2 − �22�1)

�(a11a22 − a12a21)

{
C0c2 + C1c + C2√

(a − c)(b − c)(c − d)

}
, (39)

KI (b) =
√
2π (�25�3 + �24�2 − �22�1)

�(a11a22 − a12a21)

{
C0b2 + C1b + C2√

(a − b)(b − c)(b − d)

}
, (40)

KI (a) = −√
2π (�25�3 + �24�2 − �22�1)

�(a11a22 − a12a21)

{
C0a2 + C1a + C2√

(a − b)(a − c)(a − d)

}
. (41)

6.5 Electric Displacement Intensity Factor (EDIF)

Similarly, Open mode EDIF, KIV , at the crack tips x1 = d, c, b, and a may be obtain
as

KIV (d) = −√
2π (�45�3 + �44�2 − �42�1)

�(a11a22 − a12a21)

{
C0d2 + C1d + C2√

(a − d)(b − d)(c − d)

}
,

(42)

KIV (c) =
√
2π (�45�3 + �44�2 − �42�1)

�(a11a22 − a12a21)

{
C0c2 + C1c + C2√

(a − c)(b − c)(c − d)

}
, (43)

KIV (b) =
√
2π (�45�3 + �44�2 − �42�1)

�(a11a22 − a12a21)

{
C0b2 + C1b + C2√

(a − b)(b − c)(b − d)

}
, (44)

KIV (a) = −√
2π (�45�3 + �44�2 − �42�1)

�(a11a22 − a12a21)

{
C0a2 + C1a + C2√

(a − b)(a − c)(a − d)

}
.

(45)
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6.6 Magnetic Induction Intensity Factor (MIIF)

Analogously, MIIF, KV , at the crack tips x1 = d, c, b, and a may be obtain as

KV (d) = −√
2π (�55�3 + �54�2 − �52�1)

�(a11a22 − a12a21)

{
C0d2 + C1d + C2√

(a − d)(b − d)(c − d)

}
,

(46)

KV (c) =
√
2π (�55�3 + �54�2 − �52�1)

�(a11a22 − a12a21)

{
C0c2 + C1c + C2√

(a − c)(b − c)(c − d)

}
, (47)

KV (b) =
√
2π (�55�3 + �54�2 − �52�1)

�(a11a22 − a12a21)

{
C0b2 + C1b + C2√

(a − b)(b − c)(b − d)

}
, (48)

KV (a) = −√
2π (�55�3 + �54�2 − �52�1)

�(a11a22 − a12a21)

{
C0a2 + C1a + C2√

(a − b)(a − c)(a − d)

}
.

(49)

7 Case Study

In this section, the effect of inter-crack distance and volume fraction are shown on
the intensity factors (discussed in Sect. 5).

Piezo-electro-magnetic composite BaTiO3-CoFe2O4 is selected for numerical
case study considering BaTiO3 as inclusion and CoFe2O4 as matrix. The volume
fraction of the inclusion is denoted by V f . The proportion of the two phases can be
varied by adjusting the volume fraction of inclusion and the matrix. The elastic con-
stants, dielectric permittivities and magnetic permeabilities, as well as piezoelectric
and piezo-magnetic constants, are obtained by fraction rule {taken from Wang and
Mai [23]}

κc
is = V f .κ

i
is + (1 − V f ).κ

m
is (50)

where the superscripts c, i and m represent composite, inclusion and matrix, respec-
tively. κis denotes the dielectric permittivities.

We assume the crack faces as semi-permeable (κr = γr = 1). And the length of
bigger crack, L1, smaller crack, L2, prescribed mechanical load, electric displace-
ment and magnetic induction are 2a01(= 5 mm), 2a02(= 4 mm), σ∞

22 = 5 MPa,
D∞

2 = 2(e33/c33)σ∞
22 and B∞

2 = 2(h33/c33)σ∞
22 , respectively, till otherwise speci-

fied. Material constants for BaTiO3-CoFe2O4 for different volume fraction are given
in Table1, taken from Zhong [24].
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Table 1 Material constants for BaT iO3 − CoFe2O4 for different volume fraction

Material constants V f (0.25) V f (0.50) V f (0.75)

c11(109 N/m2) 245 215 186

c12(109 N/m2) 145 125 115

c13(109 N/m2) 144 112 90

c33(109 N/m2) 235 210 181

c44(109 N/m2) 46 50 51

e31(C/m2) –1.5 –2.8 –3.8

e33(C/m2) 4.2 8.7 13.2

e15(C/m2) 0.0 0.2 0.3

h31(N/Am) 380 220 90

h33(N/Am) 475 290 135

h15(N/Am) 335 180 75

κ11(10−9 C2/Nm2) 0.1 0.25 0.5

κ33(10−9 C2/Nm2) 3.2 6.3 9.4

γ11(10−6 Ns2/C2) –3.55 –2.00 –0.90

γ33(10−6 Ns2/C2) 1.2 0.8 0.45

β11(10−9 Ns/VC) 3.1 5.3 6.8

β33(10−9 Ns/VC) 2350 2750 1800

7.1 Effect of Inter-Crack Distance

Figure 2a, b show the variation of stress intensity factors (SIFs) versus normalized
inter-crack distance for different volume fractions. It may be seen, that due to the
mutual interactions of two cracks, the SIFs at the crack tips are increased as the
inter-crack distance decreases. Also it may be seen, that SIF at the inner crack tips (at
x1 = c and x1 = b) is higher as compare to that at the outer crack tips (at x1 = d and
x1 = a), which implies that the cracks will open more at the inner tips as compared
to that at outer tips. Moreover, KI stabilizes for d0/a02 ≥ 3. Also, SIF is decreased
as the volume fraction increases. Similarly, Figs. 3 and 4 show the variations of EDIF
and MIIF versus inter-crack distance for different volume fractions.

7.2 Effect of Crack Length

Effect of crack length a02 on stress intensity factor (SIF), KI , for different volume
fractions is shown in Fig. 5. It may be seen from the figure that at the interior and
exterior tips of the longer crack, KI increases at both the tips as the crack length is
increased. Increase in KI at interior tip is more steep vis-a-vis than at exterior tip.
The similar variation is observed at the interior and exterior tips of the shorter crack.
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Fig. 2 Effect of normalized inter-crack distance d0/a02 on SIF for different volume fractions
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Fig. 3 Effect of normalized inter-crack distance d0/a02 on EDIF for different volume fractions

It is to be noted that for half length of the crack equal to 2.5 mm (i.e., the length of
the both cracks is equal), the curves for KI at the interior tips of both cracks and
exterior tips of the cracks become equal. Figures 6 and 7 show the same variations
for EDIF and MIIF, respectively.
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Fig. 4 Effect of normalized inter-crack distance d0/a02 on MIIF for different volume fractions
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Fig. 5 Effect of crack length a02 on SIF for different volume fractions
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Fig. 6 Effect of crack length a02 on EDIF for different volume fractions
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Fig. 7 Effect of crack length a02 on MIIF for different volume fractions

8 Conclusions

Considering the aforementioned analytical and numerical studies done on the pro-
posed model, the following points are concluded.

(i) A complex variable and Stroh’s formalism technique is successfully applied
to study the two unequal collinear semi-permeable cracks in a piezo-electro-
magnetic media.

(ii) The closed form analytic expressions are derived for the COD, COPD, COID,
SIF, EDIF and the MIIF for the proposed model.

(iii) Two non-linear equations are derived, to obtain the electric displacement and
magnetic induction inside the crack gap media.

(iv) The effect of volume fraction is observed on the intensity factors(IFs). All the
IFs are decreased with the increase in the volume fraction.

(v) The effect of the inter-crack distance is observed on the IFs. All the IFs are
increased with the decrease in the inter-crack distance.

(vi) The effect of crack length is observed on the IFs. All the IFs are increased with
the increase in the crack length.
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Appendix (A)

X1(z) = √
(z − a)(z − b)(z − c)(z − d), P1(z) = C0z2 + C1(z) + C2;

� = �22(�44�55 − �45�54) − �24(�42�55 − �45�52) + �25(�42�54 − �44�52);
�1 = −σ∞

22(�44�55 − �45�54) − (Dc − D∞
2 )(�24�55 − �25�54) + (Bc − B∞

2 )

(�25�44 − �24�45);
�2 = σ∞

22(�42�55 − �45�52) + (Dc − D∞
2 )(�22�55 − �25�52) + (Bc − B∞

2 )

(�25�42 − �22�45);
�3 = σ∞

22(�44�52 − �42�54) + (Dc − D∞
2 )(�24�52 − �22�54) + (Bc − B∞

2 )

(�22�44 − �24�42);
C0 = a11a22 − a12a21, C1 = a20a12 − a10a22, C2 = a21a10 − a11a20,

k2 = (a − b)(c − d)

(a − c)(b − d)
;

g = 2√
(a − c)(b − d)

, α2 = d − c

a − c
, β2 = a − b

a − c
, a11 = g[aF(k) + (d − a)�(α2, k)];

a12 = gF(k), a21 = g[cF(k) + (b − c)�(β2, k)], a22 = gF(k);
a10 = g

[
a2F(k) + 2a(d − a)�(α2, k) + (d − a)2V2

] ;
a20 = g

[
c2F(k) + 2c(b − c)�(β2, k) + (b − c)2V3

] ;
V2 = 1

2(α2 − 1)(k2 − α2)

{
α2E(k) + (k2 − α2)F(k) + (2α2k2 + 2α2 − α4 − 3k2)�(α2, k)

} ;

V3 = 1

2(β2 − 1)(k2 − β2)

{
β2E(k) + (k2 − β2)F(k) + (2β2k2 + 2β2 − β4 − 3k2)�(β2, k)

} ;
where F(k), E(K ) and �(α2, k) are the complete elliptic integrals of the first,
second and third kind, respectively.

Appendix (B)

α2
1 = a

d
α2, β2

1 = c

b
β2, ν = sin−1

√
(a − c)(y − d)

(d − c)(a − y)
, ψ = sin−1

√
(a − c)(y − b)

(a − b)(y − c)
;

S1 = α2E(ν, k) + (k2 − α2)F(ν, k) + (2α2k2 + 2α2 − α4 − 3k2)�(ν,α2, k) − α4snucnudnu

1 − α2sn2u
;

where snu, cnu and dnu are the Jacobian elliptic functions.

S2 = β2E(ψ, k) + (k2 − β2)F(ψ, k) + (2β2k2 + 2β2 − β4 − 3k2)�(ψ,β2, k) − β4snucnudnu

1 − β2sn2u
;

S3 = d2g
α4
1

α4

{
F(ν, k) + 2(α2 − α2

1)

α2
1

�(ν,α2, k) + (α2 − α2
1)

2

2α4
1(α

2 − 1)(k2 − α2)
S1

}
;

S4 = dg
α2
1

α2

{
F(ν, k) + α2 − α2

1

α2
1

�(ν,α2, k)

}
, S5 = gF(ν, k);
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S6 = b2g
β4
1

β4

{
F(ψ, k) + 2(β2 − β2

1)

β2
1

�(ψ,β2, k) + (β2 − β2
1)

2

2β4
1(β

2 − 1)(k2 − β2)
S2

}
;

S7 = bg
β2
1

β2

{
F(ψ, k) + β2 − β2

1

β2
1

�(ψ,β2, k)

}
, S8 = gF(ψ, k);

where F(, k), E(, k) and �(, k) are the incomplete elliptic integrals of first, second
and third kinds, respectively.
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1 Introduction

The theory of fractional calculus (FC) has successfully been utilized to describe
the fractal problems in engineering practices [1–4]. The important examples are the
fractal Fokker-Planck equations [5] and fractal description of stress and strain in
elasticity [6–8]. There are several alternative approaches for handling the complex
and fractal behaviors in nature [9–12].

The theory of the local fractional calculus (LFC) is a mathematical tool for han-
dling the non-differentiable problems under the consideration of the complex and
fractal behaviors of the real-world problems [13–19]. The local fractional derivative
(LFD) and the local fractional integral (LFI) were used to present the approaches
for describing the fractal phenomena in mathematical physics (see [20–23]). For
the details of the applications of the LFC, we see as follows: the LFC to model the
shallow water surfaces [24, 25], LC-electric circuit [26–28], local fractional partial
differential equations (PDEs) [29–32], local fractional ordinary differential equations
(ODEs) [33, 34], and so on. The special inequalities via LFI, such as the Ostrowski
type [35], Steffensen type [36, 37], and Pompeiu type [38] inequalities for the LFIs
and other inequalities were considered (see [39–49]).

The local fractional integral transforms via LFC were proposed in [9, 10, 50]
and developed in [12, 16]. The local fractional Fourier type integral transform was
investigated in [51–54]. The local fractional Laplace type integral transform was
investigated in [54–61]. These integral transforms were applied to find the non-
differentiable solutions for the local fractional PDEs (see [12, 62]). From the func-
tional analysis point of view, the uniqueness of the solutions of the local fractional
ODE and local fractional integral equations were considered in [9, 10] for the first
time. The existence and uniqueness of the solutions of some local fractional abstract
differential equations were presented in [63]. The existence and uniqueness of solu-
tions for local fractional differential equations and its applications were reported in
[9, 10, 62, 64]. The local fractional vector calculus and applications in the fractal
heat conduction problems were presented in [2, 11].

The main aim of this chapter is to investigate the properties of the LFC, the series
and transforms involving theMittag-Leffler function defined on Cantor sets, analysis
of the local fractional differential and integral equations, local fractional inequalities
and local fractional vector calculus, and to present the applications of the extended
version of the Rice theory in fractal fracture mechanics.

The structure of the chapter is as follows. In Sect. 2, the theory of the LFD and
LFI in the fractional (real and complex) sets is presented. In Sect. 3, the analysis of
the local fractional differential and integral equations is derived. In Sect. 4, the local
fractional inequalities are discussed in detail. In Sect. 5, the series and transforms
involving the Mittag-Leffler function defined on Cantor sets are reported. In Sect. 6,
the local fractional vector calculus and its application in fractal fracture mechanics
are considered in detail. Finally, the conclusions are given in Sect. 7.
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2 The LFD and LFI in the Fractional Real and Complex
Sets

In this section, we introduce the LFC of the real and complex variables and consider
α as the fractal dimension in the chapter.

LetN,R andC be sets of the natural numbers, real numbers and complex numbers.
Let Nα, Rα and C

α be the fractional sets of the natural numbers, real numbers
and complex numbers (For more details of the notations of the fractional sets, see
[9–11, 35, 36, 38, 40–42, 44–49]).

Definition 1 The complex number defined on the fractal set Cα is given as follows
[9–13]:

zα = xα + iαyα (x, y ∈ R) (1)

and its conjugate by

zα = xα − iαyα (zα ∈ C
α, x, y ∈ R), (2)

with its fractional modulus defined as follows [9–13]:

∣
∣zα

∣
∣ = |zα| =

√

zα · zα =
√

x2α + y2α. (3)

The complex number defined on the fractal set Cα is represented in the form:

zα = � (zα) + iα I m (zα) = xα = xα + iαyα,

where � (zα) = xα is the purely real part and I m (zα) = yα is the purely imaginary
part, which can be expressed as follows [9–13]:

zα = xα + iαyα =
√

x2α + y2α (cosα (xα) + iα sinα (xα)) ,

with

cosα (xα) = xα

√

x2α + y2α
,

sinα (xα) = yα

√

x2α + y2α
,

where

cosα (zα) :=
∞

∑

k=0

(−1)k z2αk

� (1 + 2αk)
, (4)
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sinα (zα) :=
∞

∑

k=0

(−1)k z
(

2k+1
)

α

� [1 + α (2k + 1)]
. (5)

Definition 2 The complex Mittag-Leffler function on the fractal set Cα is defined
as follows (see [9–13]; see also [65]):

Eα (zα) :=
∞

∑

k=0

zαk

� (1 + kα)
, (6)

where zα ∈ C
α, which leads to the formulation in the form given by [9–13]

zα

= xα + iαyα

= √

x2α + y2α (cosα (xα) + iα sinα (xα))

= √

x2α + y2α Eα (iαzα) ,

where
Eα (iαzα) := cosα (zα) + iα sinα (zα) . (7)

2.1 The LFD and LFI in the Fractional Real Set

Definition 3 A function f (x) is said to be local fractional continuous at x = x0 if
for each ε > 0 there exists for δ > 0 such that (see [9–13, 35, 36, 38, 40–42, 44–49])

| f (x) − f (x0)| < εα, (8)

whenever 0 < |x − x0| < δ.
It is to say that

lim
x→x0

f (x) = f (x0) . (9)

If f (x) is local fractional continuous in the domain I = (a, b), then we write it
as [22–30]

f (x) ∈ Hα (a, b) . (10)

Definition 4 Let f (x) ∈ Hα (a, b). The LFD of the function f (x) of order αat
x = x0, denoted as f (α) (x0) or

dα f (x)

dxα

∣
∣
x=x0 , is defined as follows (see [9–13]):

D(α) f (x) = f (α) (x0) = dα f (x)

dxα

∣
∣
x=x0 = lim

x→x0

�α ( f (x) − f (x0))

(x − x0)
α , (11)

where
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�α ( f (x) − f (x0)) ∼= � (1 + α)� ( f (x) − f (x0)) .

Let
f (x) , g (x) ∈ Hα (a, b) .

The properties of the LFD are presented as follows [9–13]:

(1)
dα

dxα
( f (x) ± g (x)) = dα f (x)

dxα
± dαg (x)

dxα
;

(2)
dα ( f (x) g (x))

dxα
= g (x)

dα f (x)

dxα
+ f (x)

dαg (x)

dxα
;

(3)
dα

dxα

(
f (x)

g (x)

)

= 1

g (x)2

(

g (x)
dα f (x)

dxα
+ f (x)

dαg (x)

dxα

)

,

where g (x) �= 0;
(4)

dα (h f (x))

dxα
= h

dα f (x)

dxα
,

where h is a constant;
(5) If y (x) = ( f ◦ u) (x), where u (x) = g (x), then we have

dαy (x)

dxα
= f (α) (g (x))

(

g(1) (x)
)α

.

The LFDs of the elementary functions defined on fractal sets are given as follows
[9–13]:

(1)
dα

dxα

xkα

�(1 + kα)
= x (k−1)α

�(1 + (k − 1)α)
;

(2)
dα Eα (xα)

dxα
= Eα (xα) ;

(3)
dα Eα (kxα)

dxα
= k Eα (kxα) ,

where k is a constant.
(4)

dα sinα (xα)

dxα
= cosα (xα) ;
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(5)
dα cosα (xα)

dxα
= − sinα (xα) .

Theorem 1 (The mean value theorem for the LFD) If f (x) ∈ Hα [a, b] , then there
exists a point x0 ∈ (a, b) such that (see [9–13])

f (b) − f (a) = f (α) (x0)
(b − a)α

� (1 + α)
.

Definition 5 Let f (x) ∈ Hα [a, b]. The LFI of the function f (x) of order α (0 <

α � 1) is defined as follows (see [9–13]):

a I (α)
b f (x) = 1

� (1 + α)

b∫

a

f (x) (dx)α = 1

� (1 + α)
lim

�xk→0

N−1
∑

k=0

f (xk) (�xk)
α,

where �xk = xk+1 − xk with

x0 = a < x1 < · · · < xN−1 < xN = b.

Let f (x) , g (x) ∈ Hα (a, b). The properties of the LFI are presented as follows
[9–13]:

(1)
a I (α)

b ( f (x) ± g (x)) = a I (α)
b f (x) ± a I (α)

b g (x) ;

(2)
a I (α)

b (h f (x)) = ha I (α)
b f (x) ,

where h is a constant.

The LFIs of the elementary functions defined on fractal sets are given as follows
[9–13]:

(1)

1

� (1 + α)

b∫

a

Eα (xα) (dx)α = Eα (bα) − Eα (aα) ;

(2)

1

� (1 + α)

b∫

a

xkα

� (1 + kα)
(dx)α = a(k+1)α

� (1 + (k + 1)α)
− b(k+1)α

� (1 + (k + 1) α)
;
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(3)

1

� (1 + α)

b∫

a

sinα (xα) (dx)α = cosα (aα) − cosα (bα) ;

(4)

1

� (1 + α)

b∫

a

cosα (xα) (dx)α = sinα (bα) − sinα (aα)

Theorem 2 (The mean value theorem for the LFI) If f (x) ∈ Hα [a, b], then there
exists a point ξ ∈ (a, b) such that [9–13]

a I (α)
b f (x) = f (ξ)

(b − a)α

� (α + 1)
.

Theorem 3 If f (x) ∈ Hα [a, b], then there exists a point ξ ∈ (a, b) such that [9–13]

f (b) − f (a) = f (α) (ξ) (b − a)α

� (1 + α)
.

Theorem 4 Suppose that f (x) ∈ Hα [a, b], then there is a function [9–13]

�(x) = a I (α)
x f (x) ,

such that it has the LFD,

dα�(x)

dxα
= f (x) , a � x � b.

Theorem 5 (The LFI is anti-differentiation) If f (x) = g(α) (x) ∈ Cα [a, b], then we
have [9–13]

a I (α)
b f (x) = g (b) − g (a) .

Theorem 6 (The LFI by parts) If f (α) (x) , g(α) (x) ∈ Cα [a, b] , then [9–13]

a I (α)
b f (t) g(α) (t) = [ f (t) g (t)]ba − a I (α)

b f (α) (t) g (t) .

Theorem 7 (The local fractional Taylor’ theorem) Suppose that f ((k+1)α) (x) ∈
Cα (a, b) for k = 0, 1, ..., n, then [9–13]

f (x) =
n

∑

k=0

f (kα) (x0)

� (1 + kα)
(x − x0)

kα + f ((n+1)α) (ξ)

� (1 + (n + 1) α)
(x − x0)

(n+1)α
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with a < x0 < ξ < x < b and ∀x ∈ (a, b) , where f ((k+1)α) (x) =
k+1t imes

︷ ︸︸ ︷

D(α)
x ...D(α)

x f (x).

2.2 The LFD and LFI in the Fractional Complex Set

Let the complex function f (z) be defined in a neighborhood of a point z0.

Definition 6 The LFD of f (z) at the point z0, denoted by z0 Dα
z f (z), dα

dzα f (z)
∣
∣
z=z0

or f (α) (z0), is defined as follows [9–11]:

z0 Dα
z f (z) =: lim

z→z0

�α f (z)

(z − z0)
α , 0 < α � 1, (12)

where
�α f (z) = � (1 + α) [ f (z) − f (z0)] .

If this limit exists, then the function f (z) is said to be local fractional analytic at
z0.

If this limit exists for all z0in a region ℵα ∈ C
α, then the function f (z) is said to

be local fractional analytic in a region ℵα ∈ C
α.

Let f (z) and g (z) be local fractional analytic functions. Then there is as follows
[9–11]:

(1)
dα ( f (z) ± g (z))

dzα
= dα f (z)

dzα
± dαg (z)

dzα
;

(2)
dα ( f (z) g (z))

dzα
= g (z)

dα f (z)

dzα
+ f (z)

dαg (z)

dzα
;

(3)
dα

dzα

(
f (z)

g (z)

)

= 1

g (z)2

(

g (z)
dα f (z)

dzα
+ f (z)

dαg (z)

dzα

)

where g (z) �= 0;
(4)

dα (h f (z))

dzα
= h

dα f (z)

dzα

where h is a constant.

Definition 7 Let f (z) be defined, single-valued and local fractional continuous in
a region ℵα ∈ Cα. The LFI of the complex function f (z) along the contour C in
ℵα ∈ C

α from point z p to point zq is defined as follows (see [9–11]):



Advanced Analysis of Local Fractional Calculus Applied … 113

I α
C f (z) = 1

� (1 + α)
lim

�z→0

n−1
∑

i=0

f (zi ) (�z)α = 1

� (1 + α)

∫

C

f (z) (dz)α, (13)

where �zi = zi − zi−1, z0 = z p , zn = zq and i ∈ N.

Our main theorems for the LFC of the complex variables are presented below.

Theorem 8 If the contour C have the end points z p and zq with the orientation z p

to zq , then we have [9–11]

1

� (1 + α)

∫

C

f (z) (dz)α = F
(

zq
) − F

(

z p
)

(14)

where the function f (z) has the primitive F (z) on the contour C.

Theorem 9 Let the function f (z) be a primitive on C, where C is a simple closed
contour. Then we have [9–11]

1

� (1 + α)

∮

C

f (z) (dz)α = 0 (15)

Theorem 10 If f (z) is local fractional analytic on C1 , C2 and between them, and
the contours C1 and C2 have same end points, then we have [9–11]

1

� (1 + α)

∫

C1

f (z) (dz)α = 1

� (1 + α)

∫

C2

f (z) (dz)α (16)

Theorem 11 If the closed contours C1 and C2 are such that C2 lies inside C1, then
we have [9–11]

1

� (1 + α)

∫

C1

f (z) (dz)α = 1

� (1 + α)

∫

C2

f (z) (dz)α, (17)

where f (z) is local fractional analytic on C1 , C2 and between them.

Theorem 12 If f (z) is local fractional analytic within and on a simple closed
contour C and z0 is any point interior to the contour C, then we have [9–11]

1

(2π)α iα
· 1

� (1 + α)

∮

C

f (z)

(z − z0)
α (dz)α = f (z0) (18)

Theorem 13 If f (z) is local fractional analytic within and on a simple closed
contour C and z0 is any point interior to the contour C, then we have [9–11]
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1

(2π)α iα
· 1

� (1 + α)

∮

C

f (z)

(z − z0)
(n+1)α (dz)α = f (nα) (z0) . (19)

Theorem 14 If f (z) is local fractional analytic within and on a simple closed
contour C and z0 is any point interior to the contour C, then we have [9–11]

1

(2π)α
· 1

� (1 + α)

∮

C

(dz)α

(z − z0)
α = iα (20)

Theorem 15 If f (z) is local fractional analytic within and on a simple closed
contour C and z0 is any point interior to the contour C, then we have [9–11]

1

� (1 + α)

∮

C

(dz)α

(z − z0)
nα = 0, (21)

where n > 1.

Definition 8 Let f (z) = ϕ (z) / (z − z0)
nα andϕ (z) �= 0, whereϕ (z) is local frac-

tional analytic everywhere in a region including z = z0. There are given as follows
[9–11]:

(1) If n is a positive integer, then f (z) has an isolated singularity at z = z0, the point
is called as a pole of order n, where n is a positive integer.

(2) If n = 1, the pole is often called a simple pole;
(3) if n = 2, it is called as a double pole.

Theorem 16 If f (z) has a pole of order n at z = z0 but is local fractional ana-
lytic at every other point inside and on a contour C with the center at the point
z0, then (z − z0)

nα f (z) is local fractional analytic at all points inside and on
the contour C and has a local fractional Laurent type series about z = z0 so that

f (z) =
∞∑

i=−∞
ak (z − z0)

kα, 0 < α � 1 where [9–11]

ak = 1

(2π)α
· 1

iα
· 1

� (1 + α)

∮

C

f (z)

(z − z0)
(k+1)α (dz)α (22)

for the contour C : |z − z0|α � Rα.

Theorem 17 If f (z) is local fractional analytic within and on the boundary C of a
region ℵα ∈ C

α except at a number of poles a within R, then (see [9–11])

1

(2π)α iα� (1 + α)

∮

C

f (z) (dz)α = Res
z=z0

f (z) = a−1. (23)

where Res
z=z0

f (z) = a−1 is the residue of the function f (z).
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3 Analysis of the Local Fractional Differential and Integral
Equations

Here, in this section, we introduce the local fractional continuity, convergence, and
completeness in a generalized metric space (For the notations of the fractional sets,
we used them in [9–12]).

Definition 9 Ametric space on a fractal set E is a map ρα : E × E → R
α such that,

for all xα, yα, zα ∈ E , the following rules hold true (see [9–12]):

(1) ρα (xα, yα) ≥ 0 with the equality ρα (xα, yα) = 0 if xα = yα;
(2) ρα (xα, yα) = ρα (yα, xα);
(3) ρα (xα, zα) � ρα (xα, yα) + ρα (yα, zα). The pair (E, ρα) is a generalized met-

ric space in the fractal space with the fractal dimension α.

Let E is a generalized metric space and aα, bα, cα ∈ E . Then we have

|ρα (aα, bα) − ρα (bα, cα)| � ρα (aα, cα) . (24)

Definition 10 Suppose that X and Y are generalized metric spaces and f is a map-
ping of X into Y . If, for each ε > 0, there exists δ > 0 such that

ρα ( f (a) , f (x)) < εα,

whenever xα ∈ X and ρ (a, x) < δ, then f is said to be local fractional continuous
at the point aα ∈ X , which is noted as follows [9–11]:

lim
x→a

f (x) = f (a) . (25)

Definition 11 Let X be a generalized metric space. A sequence
{

xα
n

}∞
n=1 in a gen-

eralized metric space X is called a Cauchy sequence if, for each ε > 0, there exists
a positive integer N such that (see [9–11])

ρα

(

xα
m, xα

n

)

< εα, (26)

whenever m, n � N . This is equivalent to the requirement that

lim
m,n→∞ ρα

(

xα
m, xα

n

) = 0. (27)

Definition 12 Let X be a generalized metric space. If each Cauchy sequence in the
space X converges in X , the generalized metric space X is complete (see [9–11]).

We notice that Rα
n and C

α
n are complete.

Definition 13 (X, ρα) is a generalized metric space and T : X → X , if there exists
a number β ∈ (0, 1) such that [9–11]
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ρα (T (xα) , T (yα)) � βαρα (xα, yα) (28)

for all xα, yα ∈ X .
We say that T is a contraction mapping on the generalized metric space X .

Definition 14 (see [9–11]) Let (X, ρα) be a generalized metric space. If xα ∈ X and
T xα = xα, then we say that xα is a fixed point of T .

Theorem 18 (see [9–11]) Let X be a generalized metric space. A convergent
sequence in the fractal space X may have more than one limit in X.

Theorem 19 (Contraction Mapping Theorem) (see [9–11]) A contraction mapping
T defined on the complete generalized metric space (X, ρα) has a unique fixed point.

Theorem 20 (Generalized Contraction Mapping Theorem) (see [9–11]) Let T :
X → X be a map on the complete metric space (X, ρα). Then, for some m � 1,
T m is a contraction and

ρα

(

T m (xα) , T m (xα)
)

� βαρα (xα, yα) (29)

for all xα, yα ∈ X.

3.1 The Uniqueness of the Solutions of the Local Fractional
Differential Equations

In this subsection, we discuss the uniqueness of the solutions of the local fractional
differential equations.

Theorem 21 Suppose that x0 ∈ [a, b] and y0 ∈ R
α, F : [a, b] × R

α
1 → R

α
1 is local

fractional continuous. For all x ∈ [a, b], there is a continuous condition given as
(see [9–11, 64])

|F (x, y1) − F (x, y2)| � kα |y1 − y2|α . (30)

where 1 > k > 0 and 1 � α > 0.
Then the following local fractional differential equation:

dαy

dxα
= F (x, y) (31)

subject to the initial condition y0 = y (x0) has a unique solution in the space
Cα [a, b].

Proof We consider the map T : Cα [a, b] → Cα [a, b] defined as
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T f (x) = y0 + 1

� (1 + α)

x∫

x0

F (t, f (t)) (dt)α.

We claim that for all n,

∣
∣T n f1 (x) − T n f2 (x)

∣
∣ � knα |x − x0|nα

� (1 + nα)
ρα ( f1, f2) .

The proof is by the induction on n.
The case n = 0 is trivial (and n = 1 is already done).
The induction step is as follows:

∣
∣T n+1 f1 (x) − T n+1 f2 (x)

∣
∣

=
∣
∣
∣
∣
∣

1
�(1+α)

x∫

x0

F (t, T n f1 (x)) − F (t, T n f2 (x)) (dt)α
∣
∣
∣
∣
∣

�
∣
∣
∣
∣
∣

1
�(1+α)

x∫

x0

kα |F (t, T n f1 (x)) − F (t, T n f2 (x))| (dt)α
∣
∣
∣
∣
∣

�
∣
∣
∣
∣
∣

1
�(1+α)

x∫

x0

k(n+1)α|x−x0|nα

�(1+nα)
ρα ( f1, f2) (dt)α

∣
∣
∣
∣
∣

�
∣
∣
∣
∣
∣

1
�(1+α)

x∫

x0

k(n+1)α |x−x0|nα

�(1+nα)
ρα ( f1, f2) (dt)α

∣
∣
∣
∣
∣

� k(n+1)α |x−x0|(n+1)α

�(1+(n+1)α)
ρα ( f1, f2)

� k(n+1)α |b−a|(n+1)α

�(1+(n+1)α)
ρα ( f1, f2) .

We have

k(n+1)α |b − a|(n+1)α

� (1 + (n + 1) α)
ρα ( f1, f2) → 0

as n → 0.
If n is sufficiently large, we have

0 < k(n+1)α |b − a|(n+1)α

� (1 + (n + 1) α)
< 1

such that T n is a contraction on the space Cα [a, b].
Hence, T has a unique fixed point in the space Cα [a, b], which gives a unique

solution to the local fractional differential equation.

Example 1 The local fractional differential equation

dα f (x)

dxα
+ f (x) = 0,
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Fig. 1 The plot of the
solution of the local
fractional differential
equation when α = ln 2/ ln 3
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has the unique solution given as f (x) = Eα (−xα), where f (0) = 1, and its graph
is shown in Fig. 1.

3.2 The Uniqueness of the Solutions of the Local Fractional
Integral Equations

In this subsection, we discuss the uniqueness of the solutions of the local fractional
integral equations.

Theorem 22 Let Cα [a, b] = {x (t) : x (t) be local fractional continuous on the
interval [a, b]. The metric on the space Cα [a, b] is defined as (see [9–11])

ρα (x, y) = {max |x (t) − y (t)| : t ∈ [a, b] , x, y ∈ Cα [a, b]} . (32)

Let us consider that the local fractional integral equation

f (x) = λα

� (1 + α)

x∫

a

F (x, y) f (y) (dy)α + ϕ (x) , (33)

has a unique solution in Cα [a, b], where λα ∈ R
α, ϕ ∈ Cα [a, b] and F (x, y) ∈

Cα [a, b] × Cα [a, b].

Proof We define T : Cα [a, b] → Cα [a, b] by

T f (x) = λα

� (1 + α)

x∫

a

F (x, y) f (y) (dy)α + ϕ (x) .
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Let f1, f2 ∈ Cα [a, b]. Then

ρα (T f1, T f2)
= max

x∈[a,b]
|T f1 − T f2|

= max
x∈[a,b]

∣
∣
∣
∣

λα

�(1+α)

x∫

a
F (x, y) ( f1 (y) − f2 (y)) (dy)α

∣
∣
∣
∣

� |λ|α M
�(1+α)

[

max
x∈[a,b]

| f1 (x) − f2 (x)|
] ∣

∣
∣
∣

x∫

a
(dy)α

∣
∣
∣
∣

� |λ|α Mρα( f1, f2)
�(1+α)

∣
∣
∣
∣

x∫

a
(dy)α

∣
∣
∣
∣

= |λ|α Mρα( f1, f2)
�(1+α)

|x − a|α
� |λ|α M |b−a|α

�(1+α)
ρα ( f1, f2)

where M = max � {|F (x, y)| : x, y ∈ [a, b]}.
We claim that for all n,

ρα
(

T n f1, T n f2
)

� |λ|nα Mn |x − a|nα

� (1 + nα)
ρα ( f1, f2) � |λ|nα Mn |b − a|nα

� (1 + nα)
ρα ( f1, f2).

The induction step is as follows:

ρα

(

T n+1 f1, T n+1 f2
) = max

x∈[a,b]

∣
∣T n+1 f1 − T n+1 f2

∣
∣

= max
x∈[a,b]

∣
∣
∣
∣

λα

�(1+α)

x∫

a
F (x, y) (T n f1 (y) − T n f2 (y)) (dy)α

∣
∣
∣
∣

� |λ|(n+1)α Mn+1

�(1+nα)

[

max
x∈[a,b]

| f1 (x) − f2 (x)|
] ∣

∣
∣
∣

1
�(1+α)

x∫

a
(x − a)nα (dy)α

∣
∣
∣
∣

� |λ|(n+1)α Mn+1ρα( f1, f2)
�(1+(n+1)α)

|x − a|(n+1)α

� |λ|(n+1)α Mn+1|b−a|(n+1)α

�(1+(n+1)α)
ρα ( f1, f2) .

For each λα ∈ R
α, there exists N ∈ N such that

0 <
|λ|nα Mn |b − a|nα

� (1 + nα)
ρα ( f1, f2) < 1,

where n > N .
It is to say that T n is a contraction mapping and has a unique fixed point f .
Thus, f provides the unique local fractional continuous solution to the local

fractional integral equation.

Example 2 The local fractional integral equation

f (x) − λ

� (1 + α)

x∫

0

f (x) (dx)α = 1,
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Fig. 2 The plot of the
solution of the local
fractional integral equation
when λ = 2 and
α = ln 2/ ln 3
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has the unique solution given as f (x) = Eα (λxα) and its graph is shown in Fig. 2.

4 Local Fractional Inequalities

In this chapter, we present the inequalities within local fractional integral, such as
the Hölder type, Cauchy-Schwarz type and Minkowski type inequalities.

Let E be a fractal set.
The Hölder type, Cauchy-Schwarz type and Minkowski type inequalities in the

fractal finite series are presented as follows:

Theorem 23 (GeneralizedHölder type inequality) (see [9–11])Let
∣
∣xα

i

∣
∣ > 0,

∣
∣yα

i

∣
∣ >

0, p > 0, q > 0, i ∈ N and 1/p + 1/q = 1. Then we have

n
∑

i=1

∣
∣xα

i

∣
∣
∣
∣yα

i

∣
∣ �

(
n

∑

i=1

∣
∣xα

i

∣
∣

p

) 1
p

+
(

n
∑

i=1

∣
∣yα

i

∣
∣
q

) 1
q

, (34)

where p > 1, q > 1 and 0 < α � 1.

Theorem 24 (Generalized Cauchy-Schwarz type inequality) (see [9–11])
Let

∣
∣xα

i

∣
∣ > 0,

∣
∣yα

i

∣
∣ > 0 and i ∈ N. Then we have

n
∑

i=1

∣
∣xα

i

∣
∣
∣
∣yα

i

∣
∣ �

(
n

∑

i=1

∣
∣xα

i

∣
∣
2

) 1
2

+
(

n
∑

i=1

∣
∣yα

i

∣
∣
2

) 1
2

. (35)

Theorem 25 (Generalized Minkowski type inequality) (see [9–11])
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(
n

∑

i=1

∣
∣xα

i − yα
i

∣
∣

p

) 1
p

�
(

n
∑

i=1

∣
∣xα

i

∣
∣

p

) 1
p

+
(

n
∑

i=1

∣
∣yα

i

∣
∣

p

) 1
p

, (36)

where p > 1 and 0 < α � 1.

For the linear space of bounded infinite sequences, denoted as E = l p,α, the gen-
eralized normed linear space on E is defined by (see [9–11]):

‖xα‖p,α =:
( ∞

∑

i=1

∣
∣xα

i

∣
∣

p

) 1
p

< ∞, (37)

where 1 � p < ∞.

Theorem 26 (The infinite version of the generalized Minkowski type inequal-
ity) The infinite version of generalized Minkowski type inequality can be write as
[9–11]:

( ∞
∑

i=1

∣
∣xα

i − yα
i

∣
∣

p

) 1
p

�
( ∞

∑

i=1

∣
∣xα

i

∣
∣

p

) 1
p

+
( ∞

∑

i=1

∣
∣yα

i

∣
∣

p

) 1
p

,

where ∞ > p � 1 and 0 < α � 1.

Let E = L p,α [a, b]. Then the normed space with the p−norm is given as
([9–11]):

‖ f ‖p,α =:
⎛

⎝
1

� (1 + α)

b∫

a

| f (t)|p (dt)α

⎞

⎠

1
p

< ∞, (38)

where 0 < α � 1 and ∞ > p � 1.
The following rules hold ([9–11]):

1. If ‖ f ‖1,α = 0, then f (x) = 0;
2. ‖ag‖1,α = |a|α ‖ f ‖1,α ;
3. ‖ f + g‖1,α � ‖ f ‖1,α + ‖g‖1,α .

Theorem 27 (The integral formof the generalizedHölder type inequality)Let f, g ∈
L p,α [R] , 1 � p < ∞. Then (see [9–11])

‖ f g‖1,α � ‖ f ‖p,α ‖g‖q,α , (39)

where p � 1, q � 1 and 1/q + 1/p = 1.

Theorem 28 (The integral form of the generalized Minkowski type inequality) Let
f, g ∈ L p,α [R] , 1 � p < ∞. Then (see [9–11])

‖ f + g‖p,α � ‖ f ‖p,α + ‖g‖p,α . (40)
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For more details of the Hölder type, Cauchy-Schwarz type and Minkowski type
inequalities, which are defined on the fractal domain, see [9–11].

5 The Series and Transforms Involving the Mittag-Leffler
Function Defined on Cantor Sets

In this section, we consider the concepts and theorems of the series and transforms
involving the Mittag-Leffler function defined on Cantor sets.

5.1 The Fourier Type Series Via the Mittag-Leffler Function
Defined On Cantor Sets

In this subsection, we introduce the concepts and theorems of the series involving
the Mittag-Leffler function defined on Cantor sets.

Definition 15 Let f (x) be 2π-periodic. For n ∈ Z, the complexMittag-Leffler form
of the local fractional Fourier type series of f (x) involving the Mittag-Leffler func-
tion defined on Cantor sets is defined as follows (see [9–11, 13])

f (x) ∼
∞

∑

k=−∞
Cn Eα (iα (nx)α), (41)

where the Fourier coefficients are represented as follows (see [9–11, 13]):

Cn = 1

(2π)α

π∫

−π

f (x) Eα (−iα (nx)α) (dx)α. (42)

Theorem 29 Suppose that f (x) is 2π-periodic, bounded and local fractional inte-
gral on [−π,π]. Then, the local fractional series of the function f (x) involving the
Mittag-Leffler function defined on Cantor sets converges to f (x) at x ∈ [−π,π],
and (see [9–11, 13])

f (x + 0) + f (x − 0)

2
=

∞
∑

k=−∞
Cn Eα (iα (nx)α), (43)

where the Fourier type coefficients are expressed by
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Cn = 1

(2π)α

π∫

−π

f (x) Eα (παiα (nx)α) (dx)α. (44)

Definition 16 Let f (x) be 2l-periodic. For n ∈ Z, the complex generalizedMittag-
Leffler form of the local fractional Fourier type series of the function f (x) involving
the Mittag-Leffler function defined on Cantor sets is defined as follows
(see [9–11, 13]):

f (x) ∼
∞

∑

k=−∞
Cn Eα

(
παiα (nx)α

lα

)

, (45)

where the Fourier type coefficients are given by

Cn = 1

(2l)α

l∫

−l

f (x) Eα

(−παiα (nx)α

lα

)

(dx)α. (46)

Theorem 30 Suppose that f (x) is 2l-periodic, bounded and local fractional inte-
gral on [−l, l]. Then, the local fractional series of the function f (x) involving the
Mittag-Leffler function defined on Cantor sets converges to f (x) at x ∈ [−l, l], and
(see [9–11, 13])

f (x + 0) + f (x − 0)

2
=

∞
∑

k=−∞
Cn Eα

(
παiα (nx)α

lα

)

, (47)

where the Fourier type coefficients are represented as

Cn = 1

(2l)α

l∫

−l

f (x) Eα

(−παiα (nx)α

lα

)

(dx)α. (48)

5.2 The Fourier Type Transform Via Mittag-Leffler Function
Defined on Cantor Sets

In this subsection, we introduce the concepts and theorems of the Fourier type trans-
form involving the Mittag-Leffler function defined on Cantor sets.

Definition 17 The local fractional Fourier type transform of the function f (x)

involving the Mittag-Leffler function defined on Cantor sets is defined as follows
(see [9–11, 13]):
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Fα { f (x)} = f F,α
ω (ω) := 1

� (1 + α)

∞∫

−∞
Eα (−iαωαxα) f (x) (dx)α,

whenever the latter integral converges. The sufficient condition for convergence is
given by (see [9–11, 13])

∣
∣
∣
∣
∣
∣

1

� (1 + α)

∞∫

−∞
f (x) Eα

(−iαωαxα)

(dx)α

∣
∣
∣
∣
∣
∣

� 1

� (1 + α)

∞∫

−∞
| f (x)| (dx)α = ‖ f ‖1,α < ∞,

which can be written as f ∈ L1,α [R]. If f ∈ L1,α [R], then local fractional Fourier
type transform of the function f (x) exists. Moreover, the inverse local fractional
Fourier type transform involving the Mittag-Leffler function defined on Cantor sets
is defined as follows (see [9–11, 13]):

f (x) = F−1
α

(

f F,α
ω (ω)

) := 1

(2π)α

∞∫

−∞
Eα (iαωαxα) f F,α

ω (ω) (dω)α,

whenever the latter integral converges.

Definition 18 The local fractional convolution of the functions f1 (x) and f2 (x) is
defined as follows (see [9–11, 13]):

f1 (x) ∗ f2 (x) = 1

� (1 + α)

∞∫

−∞
f1 (t) f2 (x − t) (dt)α.

There are the equalities as follows (see [9–11, 13]):

f1 (x) ∗ f2 (x) = f2 (x) ∗ f1 (x) ,

f1 (x) ∗ ( f2 (x) + f3 (x)) = f1 (x) ∗ f2 (x) + f1 (x) ∗ f3 (x) .

The theorems for the local fractional Fourier type transform are presented as follows
(see [9–11, 13]):

Let f, f1, f2 ∈ L1,α [R], Fα { f (x)} = f F,α
ω (ω), Fα { f1 (x)} = f F,α

ω,1 (ω) and Fα

{ f2 (x)} = f F,α
ω,2 (ω). Then, we have the following:

(1) Fα { f1 (x) + f2 (x)} = Fα { f1 (x)} + Fα { f2 (x)};
(2) Fα { f1 (x) ∗ f2 (x)} = f F,α

ω,1 (ω) f F,α
ω,2 (ω);

(3) Fα

{

f (α) (x)
} = iαωα Fα { f (x)}, where lim|x |→∞

f (x) = 0;

(4) Fα

{

−∞ I (α)
x f (x)

} = Fα { f (x)} / (iαωα), where lim
x→∞ −∞ I (α)

x f (x) → 0.
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6 Local Fractional Vector Calculus with an Application
in Fractal Fracture Mechanics

In this chapter, we introduce the theory of the local fractional vector calculus and
present an application to the Rice theory in the fractal fracture mechanics.

6.1 Local Fractional Vector Calculus

In this subsection, we introduce the basic theory and theorems of the local fractional
vector calculus.

Definition 19 For 1 > α > 0, the local fractional line integral of the function
u (xP , yP , zP) along a fractal line lα is defined as follows (see [2, 11]):

∫

l(α)

u (xP , yP , zP) · dl(α) = lim
N→∞

N
∑

P=1

u (xP , yP , zP) · �l(α)
P (49)

where the elements of line �l(α)
P are so required that all

∣
∣�lαP

∣
∣ → 0 as N → ∞ and

β = 2α.

Definition 20 For γ = 3
2β = 3α, 1 > α > 0, the local fractional surface integral of

u (rP) is defined as follows (see [2, 11]):

∫∫

u (rP) dS(β) = lim
N→∞

N
∑

P=1

u (rP) nP�S(β)

P , (50)

where dS(β) are N elements of area with a unit normal local fractional vector nP ,
�S(β)

P → 0 as N → ∞.

Definition 21 For γ = 3
2β = 3α, 1 > α > 0, the local fractional volume integral of

the function u (rP) is defined as follows (see [2, 11]):

∫∫∫

u (rP) dV (γ) = lim
N→∞

N
∑

P=1

u (rP) �V (γ)

P , (51)

where �V (γ)

P are the elements of the volume �V (γ)

P → 0 as N → ∞.

Basic operators of the local fractional vector integrals are as follows (see [2, 11]):

∫

l(α)

(u1 + u2) · dl(α) =
∫

l(α)

u1 · dl(α) +
∫

l(α)

u2 · dl(α),
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∫

l(α)

u · dl(α) =
∫

l(α)
1

u · dl(α) +
∫

l(α)
2

u · dl(α),

∫ ∫

S(β)

(u1 + u2) · dS(β) =
∫ ∫

S(β)

u1 · dS(β) +
∫ ∫

S(β)

u2 · dS(β),

∫ ∫

S(β)

u · dS(β) =
∫ ∫

S(β)
1

u · dS(β) +
∫ ∫

S(β)
2

u · dS(β),

∫∫∫

V (γ)

(u1 + u2) · dV (γ) =
∫∫∫

V (γ)

u1 · dV (γ) +
∫∫∫

V (γ)

u2 · dV (γ),

∫∫∫

V (γ)

(u1 + u2) · dV (γ) =
∫∫∫

V (γ)
1

u · dV (γ) +
∫∫∫

V (γ)
2

u · dV (γ),

where l(α) = l(α)
1 + l(α)

2 , S(β) = S(β)
1 + S(β)

2 and V (γ) = V (γ)
1 + V (γ)

2 .

Definition 22 For

γ = 3

2
β = 3α, 1 > α > 0,

the local fractional gradient of the scale functionϕ is defined as follows (see [2, 11]):

∇αϕ = lim
dV (γ)→0

⎛

⎝
1

dV (γ)

∫∫

©
S(β)

ϕdS(β)

⎞

⎠ = ∂αϕ

∂xα
1

eα
1 + ∂αϕ

∂xα
2

eα
2 + ∂αϕ

∂xα
3

eα
3 , (52)

where V (γ) is a small fractal volume enclosing P , S(β) is its bounding fractal surface,
and ∇α is a local fractional Hamilton operator.

Definition 23 For γ = 3
2β = 3α, 1 > α > 0, the local fractional divergence of the

vector function u is defined by (see [2, 11])

∇α • u = lim
dV (γ)→0

⎛

⎝
1

dV (γ)

∫∫

©
S(2α)

u • dS(β)

⎞

⎠ = ∂αu1

∂xα
1

+ ∂αu2

∂xα
2

+ ∂αu3

∂xα
3

, (53)

where
u = u1eα

1 + u2eα
2 + u3eα

3 .

Definition 24 For γ = 3
2β = 3α, 1 > α > 0, the local fractional curl of the vector

function u is defined by (see [2, 11]):
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∇α × u = lim
d S(β)→0

(

1
d S(β)

∮

l(α)

u · dl(α)

)

nP

=
(

∂αu3
∂xα

2
− ∂αu2

∂xα
3

)

eα
1 +

(
∂αu1
∂xα

3
− ∂αu3

∂xα
1

)

eα
2 +

(
∂αu2
∂xα

1
− ∂αu1

∂xα
2

)

eα
3 ,

(54)

where
u = u1eα

1 + u2eα
2 + u3eα

3 .

Theorem 31 (Local fractional Gauss theorem) For γ = 3
2β = 3α, 1 > α > 0, the

local fractional Gauss theorem of the fractal vector field states that (see [2, 11])

∫∫∫

V (γ)

∇α · udV (γ) =
∫∫

©
S(β)

u · dS(β). (55)

Theorem 32 (Local fractional Stokes’ theorem) For β = 2α, 1 > α > 0, the local
fractional Stokes’ theorem of the fractal field states that (see [2, 11])

∮

l(α)

u · dlα =
∫ ∫

S(β)

(∇α × u) · dS(β).

For more details of the local fractional vector calculus, see [2, 11].

6.2 An Application to Rice Theory in Fractal Mechanics

Let us consider the work of the traction in fractal boundary, the elastic energy in
fractal medium and the fractal losing energy be

W1 =
∫ ∫

S(β)

p · udS(β), W2 = −
∫∫∫

V (γ)

wdV (γ)

and

W3 =
∫

l(α)

D · dl(α),

respectively, where p is the traction in the fractal boundary, u is the fractal displace-
ment,w is the fractal elastic energy density, and D is the fractal losing energy in unit
fractal line.

The energy in fractal medium can be written as

W=
∫

l(α)

pi ui dl(α) −
∫ ∫

S(β)

wdS(β), (56)
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where pi and ui are components of both traction in the fractal boundary and the
fractal displacement.

Consider the fractal losing energy and finding the LFD, we give

∂αW

∂tα
= ∂α

∂tα

∫

l(α)

pi ui dl(α) − ∂α

∂tα

∫ ∫

S(β)

wdS(β) − ∂α D

∂tα
. (57)

With the use of

∂α

∂tα

∫

l(α)

pi ui dl(α) =
∫

l(α)

pi
∂αui

∂tα
dl(α) =

∫

l(α)

pi
∂αui

∂aα

(
∂a

∂t

)α

dl(α),

∂α

∂tα

∫ ∫

S(β)

wdS(β) =
∫ ∫

S(β)

∂αw

∂tα
dS(β) =

∫ ∫

S(β)

∂αw

∂aα

(
∂a

∂t

)α

dS(β),

∂α D

∂tα
= ∂α D

∂aα

(
∂a

∂t

)α

,

where a is the length of crack, we obtain from Eq. (25) that

∂αW
∂tα

= ∫

l(α)

pi
∂αui
∂aα

(
∂a
∂t

)α
dl(α) − ∫∫

S(β)

∂αw
∂aα

(
∂a
∂t

)α
dS(β) − ∂α D

∂aα

(
∂a
∂t

)α

= (
∂a
∂t

)α

(

∫

l(α)

pi
∂αui
∂aα dl(α) − ∫∫

S(β)

∂αw
∂aα dS(β) − ∂α D

∂aα

)

.

(58)

When ∂αW/∂tα = 0, we have from Eq. (26) that

∫

l(α)

pi
∂αui

∂aα
dl(α) −

∫ ∫

S(β)

∂αw

∂aα
dS(β) − ∂α D

∂aα
= 0. (59)

The J-integral in fractal medium is defined as

Jα = ∂α D

∂aα
.

From Eq. (27), we obtain that

Jα =
∫

l(α)

pi
∂αui

∂aα
dl(α) −

∫ ∫

S(β)

∂αw

∂aα
dS(β). (60)

As an extended version of the Rice’s theory, we give that
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∂αW

∂tα
≥ 0. (61)

From Eq. (29), there are two cases:
Case 1. When the crack tip is super-static, there is ∂αW/∂tα > 0;
Case 2. When the crack tip is sub-static, there is ∂αW/∂tα = 0.
When the crack length has is greater and the horizontal coordinate value is smaller,

there is relationship of both increment of crack length and increment of horizontal
coordinate value given as

(dx)α = − (da)α (62)

which leads to

Jα =
∫

l(α)

pi
∂αui

∂aα
dl(α) −

∫ ∫

S(β)

∂αw

∂aα
dS(β) =

∫

l(α)

w (dy)α dl(α) −
∫

l(α)

pi
∂αui

∂aα
dl(α).

(63)
By using the traction on the fractal boundary given as

P = N · œ, (64)

we have
(dx)α = (N1) · dl(α), (dy)α = N2dl(α), (65)

where

N1 = (dx)α
√

(dx)α + (dy)α
, N2 = − (dy)α

√

(dx)α + (dy)α
. (66)

Suppose thatw = ∫ εi j

0 σi j d
(

εi j
)α
,whereσi j = ∂αw/∂

(

εi j
)α

andεi j = ∂αui /∂xα
j ,

we have

∫

l(α)

w (dy)α dl(α) =
∫ ∫

S(β)

∂αw

∂xα
dS(β) =

∫ ∫

S(β)

σi j
∂αεi j

∂xα
dS(β) =

∮

l(α)

σi j N j
∂αui

∂xα
dl(α),

(67)
which leads to

Jα =
∮

l(α)

(

σi j N j − pi
) ∂αui

∂xα
dl(α) = 0, (68)

where l(α) is the closed circle.
The result states the crack tip is always super-static or sub-static in the real materi-

als and the two cases always take place in the real crack progression in the differential
fractal dimension of the material surface (see [11, 12] and the cited references).
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7 Conclusion

In the present work, we introduce the analysis of the LFC for the first time. The
concepts and properties of the LFD and LFI in the fractional (real and complex)
sets and of the series and transforms involving the Mittag-Leffler function defined
on Cantor sets were investigated in detail. The uniqueness of the solutions of the
local fractional differential and integral equations and local fractional inequalities
were also discussed. The local fractional vector calculus were used to describe the
extended version of the Rice theory in fractal fracture mechanics with aid of the LFC
operator. The results are accurate and efficient for handling a family of the fractal
problems by using the local fractional differential and integral equations from the
functional analysis point of view.
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General Fractional Calculus
with Nonsingular Kernels: New
Prospective on Viscoelasticity

Xiao-Jun Yang, Feng Gao, and Yang Ju

Abstract In the chapter, the general fractional derivatives in the different kernel
functions, such as Mittag-Lefller, Wiman and Prabhakar functions are considered
to model the viscoelastic behaviors in the real materials. We investigate the basic
formulas of the fractional calculus (FC) in the kernels of the power, Mittag-Lefller,
Wiman and Prabhakar functions. We discuss the applications for the general frac-
tional calculus (GFC) in viscoelasticity. As the examples, the Maxwell and Voigt
models with the general fractional derivatives (GFD) are considered to represent the
complexity of the real materials.

Keywords Mittag-Lefller function · Wiman function · Prabhakar function ·
General fractional derivative · General fractional integral · General fractional
calculus · Viscoelasticity

1 Introduction

Fractional calculus (FC) within the singular power-law kernel in the Riemann–Liou-
ville and Liouville-Caputo types (see [1–9]) has been the increasing interests for
scientists and engineers to represent themathematicalmodels in areas of a greatmany
of the applications in engineering practices, such as the electric circuit [10], control
theory [11], physics [12], mechanics [13], heat transfer [14], mathematical economy
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and finance (see [15, 16]), complex population dynamics [17], mathematical biology
[18] and many others (see [20] and the cited references therein).

From mathematical and physical point of view, there may exist some of the
new prospective of the applications of the operators involving the special functions
and power-law functions to linear viscoelasticity (see [21–33]). With the use of the
Nutting’s observation [28], the laws of deformation with the operators involving the
Riemann–Liouville [23, 24], Liouville-Caputo [25] and Caputo-Fabrizio [28] types,
local FD [29], general FDs [30], and others [31–33] were reported in detail. The
hereditary elastic rheological models, represented as the Volterra integral equation,
were reported in [20, 21, 33]. The Maxwell and Voigt models involving the different
fractional and fractal operators were proposed in [20, 21, 28–36].

Nowadays, there may exist the new unsolved problems including the Nutting
equation [37] and anomalous Nutting equation in the real materials, such as rock
and mining rock. Motivated by the above ideas, the brief targets of the chapter are
to investigate the general fractional derivatives (GFDs) and the general fractional
integrals (GFIs) with the nonsingular power-law kernel to describe the real material
with the power-law phenomena by using the general fractional-order Maxwell and
Voigt models.

The structure of the present chapter is suggested as follows. InSect. 2,we introduce
the FC and GFC operators with the power-law kernel. In Sect. 3, we investigate the
recent applications of the GFDs to the general fractional-order viscoelasticity in the
real materials. Finally, the conclusion is given in Sect. 4.

2 Mathematical Tools

In order to discuss the GFC, we introduce the special functions and the FC operator
of the Riemann–Liouville and Liouville-Caputo types in this section.Meanwhile, we
present the recent results on the GFC operators in the kernels of the special functions.
Finally, the Laplace transforms of the FC and GFC operators are considered in detail
(see [38–51]).

2.1 The Special Functions with Power Law

LetC,R,R+
0 ,N andN0 be the sets of complex numbers, real numbers, non-negative

real numbers, positive integers and N0 = {0} ∪ N, respectively.
The Mittag–Leffler function, introduced by Swedish mathematician Gosta

Mittag–Leffler in 1903, is defined as [47]:

Eν(η) =
∞∑

κ=0

ηκ

�(κν + 1)
, (1)
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where η, ν ∈ C, �(ν) ∈ R
+
0 , κ ∈ N, and �(·) is the familiar Gamma function [3].

As first extension of the Mittag–Leffler function, the extended Mittag–Leffler
function, structured by Wiman in 1905, is defined as [48]:

Eν,υ(η) =
∞∑

κ=0

ηκ

�(κν + υ)
, (2)

where η, ν, υ ∈ C, �(ν),�(υ) ∈ R
+
0 , and κ ∈ N.

As further extension of the Mittag–Leffler function, the extended Mittag–Leffler
function, introduced by Prabhakar in 1971, is given as [49]:

Eφ
ν,υ(η) =

∞∑

κ=0

(φ)κ

�(κν + υ)

ηκ

�(κ + 1)
, (3)

where η, ν, υ, φ ∈ C,�(ν),�(υ),�(φ) ∈ R
+
0 , κ ∈ N, and the familiar Pochhammer

symbol is expressed as [50]:

(φ)κ =
⎧
⎨

⎩

1, κ = 0,

�(φ + κ)

�(φ)
, κ ∈ N.

(4)

For λ ∈ C, the Laplace transforms of the functions with power law are given as
[38, 40, 49]:

L

[
t−ν

�(1 − ν)

]
= sν, (5)

L

[
tν

�(1 + ν)

]
= s−ν, (6)

L
[
tυ−1Eφ

ν,υ(λtν)
] = 1

sυ(1 − λs−ν)ϕ
, (7)

L
[
tυ−1Eν,υ(λtν)

] = 1

sυ(1 − λs−ν)
, (8)

L
[
Eν(λt

ν)
] = 1

1 − λs−ν
, (9a)

L[δ(t)] = 1, (9b)

where δ(t) is the Dirac delta (see [38]) and the Laplace transform is defined as [38]:
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L[�(t)] = �(s) :=
∞∫

0

e−st�(t)dt . (9c)

2.2 GFC in a Kernel Function

The GFD of the Riemann–Liouville type is defined as [38, 40, 41, 45, 46]:

(
DRL

(�)
)
(τ ) =

d

dθ

τ∫

a

�(τ − t)(t)dt
(
τ ∈ R

+
0

)
, (10)

where  ∈ AC
(
R

+
0

)
, and �(τ) is the kernel function.

The GFD of the Liouville-Caputo type is defined as [38, 40, 41, 45, 46]:

(
DLC

(�)
)
(θ) =

τ∫

0

�(τ − t)(1)(t)dt
(
τ ∈ R

+
0

)
, (11)

where (1)(τ ) = d(τ)/dτ , (1) ∈ Lloc
1

(
R

+
0

)
, and �(τ) is the kernel function.

The relationship between Eqs. (11) and (10) is given as [40, 41]:

(
DC

(�)
)
(τ ) =

(
DRL

(�)
)
(τ ) − �(τ)(0). (12)

2.3 FC Within the Singular Power-Law Kernel

With the use of the kernel �(τ) = τ−ν/�(1 − ν), the Riemann–Liouville FD of the
function (τ) of order (0 < ν < 1) is given by [1, 2, 4, 5]:

(
RL
0 D(ν)

τ 
)
(τ ) =

1

�(1 − ν)

d

dτ

τ∫

0

(t)

(τ − t)ν
dt (τ > 0). (13)

where ∈ AC
(
R

+
0

)
, and theLiouville-Caputo FDof the function(τ) by [1, 2, 4–9]
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(
C
0 D

(ν)
τ 

)
(τ ) =

1

�(1 − ν)

τ∫

0

(1)(t)

(τ − t)ν
dt (τ > 0), (14)

where (1)(τ ) = d(τ)/dτ and (1) ∈ Lloc
1

(
R

+
0

)
.

The relationship between Eqs. (13) and (14) is given as [2]:

(
RL
0 D(ν)

τ 
)
(τ ) =

(
C
0 D

(ν)
τ 

)
(τ ) + τ−ν

�(1 − ν)
(0). (15)

Suppose that N is the set of positive integers, m ∈ N and m − 1 < ν < m.
Equations (13) and (14) yield [2, 4, 7, 8]:

(
RL
0 D(ν)

τ 
)
(τ ) =

1

�(m − ν)

dm

dτm

τ∫

0

(t)

(τ − t)m−ν−1 dt (τ > 0), (16)

(
RL
0 D(ν)

τ 
)
(τ ) =

1

�(m − ν)

τ∫

0

(m)(t)

(τ − t)m−ν−1 dt (τ > 0), (17)

respectively.
The Laplace transforms of the FC operators in the nonsingular power-law kernel

are given as [2]:

L
[(

RLT
0 D(ν)

τ 
)
(τ )

] = sν(s), (18a)

(
0I

(ν)
t �

)
(τ ) = 1

�(ν)

τ∫

0

�(t)

(τ − t)1−ν
dt . (18b)

The inverse operator (the Riemann–Liouville fractional integral) is given as [2]:

(
0I

(ν)
t �

)
(τ ) = 1

�(ν)

τ∫

0

�(t)

(τ − t)1−ν
dt . (19)

The Laplace transforms of the GFC operators in the nonsingular power-law kernel
are given as [2]:

(
RL
0 D(ν)

τ 
)
(t) = sν(s),

(
LC
0 D(ν)

τ �
)
(t) = sν−1(s�(s) − �(0)),
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where (s) is the Laplace transform of the function (s).
The properties of the GFD in the nonsingular power-law kernel are given as [2]:

(
RL
a D(ν)

τ (1 + 2)
)
(τ ) =

(
RL
a D(ν)

τ 1
)
(τ ) +

(
RL
a D(ν)

τ 2
)
(τ ),

RL
a D(ν)

τ 1 = (τ − a)−ν

�(1 − ν)
,

LC
a D(ν)

τ 1 = 0,

(
LC
a D(ν)

τ (1 + 2)
)
(τ ) =

(
LC
a D(ν)

τ 1
)
(τ ) +

(
LC
a D(ν)

τ 2
)
(τ ).

Remark 1 Liouville derived the fractional derivative formula (see [4]).

C
0 D

(ν)
∞ (τ) = 1

(−1)ν�(ν)

∞∫

0

(m)(τ + t)tν−1dt,

and the formula (see [4])

h

τ∫

0

(τ − t)−
1
2 (1)(t)dt = m(τ ),

where h = 1/
√
2g is the constant, though not quite rigorously from themodern point

of view.
So nine introduced the following fractional derivative given as (see [6])

C
a D

(ν)
τ (τ) = 1

�(p − ν + 1)

τ∫

a

(τ − t)p−ν(1)(t)dt, Re(n) < ν < Re(n + 1).

Caputo and Smit and De Vries introduced the fractional derivative in the form
(see [7, 8])

C
a D

(ν)
τ (θ) = 1

�(n − ν)

τ∫

a

1

(τ − t)ν
(n)(t)dt .

In 1968, Dzhrbashyan and Nersesyan introduced the fractional derivative (see[9])

C
0 D

(ν)
∞ (θ) = 1

�(n − ν)

∞∫

0

1

(τ − t)n−ν
(n)(t)dt .
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Theorem 1 (see [49]).

Let τ ∈ R
+
0 , ν ∈ (0,1), � ∈ L

(
R

+
0

)
and �(1) ∈ Lloc

1

(
R

+
0

)
. Then, there is an Abel

integral of the form

1

�(ν)

τ∫

0

�(t)

(τ − t)1−ν
dt = �(τ), (20a)

with the solution given as

�(t) = 1

�(1 + ν)

τ∫

0

(τ − t)ν�(1)(t)dt +
τ ν

�(1 + ν)
�(0), (20b)

where �(τ = 0) = �(0).

2.4 GFC with the Nonsingular Power-Law Kernel

When the kernel in Eq. (1) is given as�(τ) = τ ν/�(1 + ν), the Riemann–Liouville-
type GFD of the function (τ) of order (0 < ν < 1) in the nonsingular power-law
kernel is defined as [21, 38]

(
RLT
0 D(ν)

τ 
)
(τ ) =

1

�(1 + ν)

d

dθ

τ∫

0

(τ − t)ν(t)dt (τ > 0), (21)

where  ∈ AC
(
R

+
0

)
, and the Liouville-Caputo-type GFD of the function (τ) of

order (0 < ν < 1) in the nonsingular power-law kernel as [21, 38]

(
CT
0 D(ν)

τ 
)
(τ ) =

1

�(1 + ν)

τ∫

0

(τ − t)ν(1)(t)dt (τ > 0), (22)

where (1)(τ ) = d(τ)/dτ and (1) ∈ Lloc
1

(
R

+
0

)
.

The relationship between Eq. (21) and Eq. (22) is presented as [21, 38]:

(
RLT
0 D(ν)

τ 
)
(τ ) =

(
CT
0 D(ν)

τ 
)
(τ ) + θν(0)

�(1 + ν)
. (23)

Similarly, for m − 1 < ν < m, Eqs. (23) and (24) yield:
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(
RLT
0 D(ν)

τ 
)
(τ ) =

1

�(m + ν)

dm

dτm

τ∫

0

(τ − t)m−ν−1(t)dt (τ > 0), (24)

(
CT
0 D(ν)

τ 
)
(τ ) =

1

�(m + ν)

τ∫

0

(τ − t)m−ν−1(m)(t)dt (τ > 0). (25)

The Laplace transforms of Eqs. (21) and (22) are presented as follows [21, 38]:

L
[(

RLT
0 D(ν)

τ 
)
(τ )

] = 1

sν
(s), (26)

L
[(

CT
0 D(ν)

τ 
)
(τ )

] = 1

s1 + ν
(s(s) − (0)). (27)

Its inverse operator ( the general fractional integral) is defined as [21, 38]:

(
L
a I

(ν)
τ �

)
(τ ) =

1

�(−ν)

τ∫

a

1

(τ − t)1 + ν
�(t)dt . (28)

The Laplace transforms of the GFC operators in the nonsingular power-law kernel
are given as [21, 38]:

(
RL
0 D(ν)

τ 
)
(t) = sν(s),

(
LC
0 D(ν)

τ �
)
(t) = sν−1(s�(s) − �(0)).

The properties of the GFD in the nonsingular power-law kernel are given as [21,
38]:

(
RL
a D(ν)

τ (1 + 2)
)
(τ ) =

(
RL
a D(ν)

τ 1
)
(τ ) +

(
RL
a D(ν)

τ 2
)
(τ ),

RL
a D(ν)

τ 1 =
(τ − a)−ν

�(1 − ν)
,

LC
a D(ν)

τ 1 = 0,

(
LC
a D(ν)

τ (1 + 2)
)
(τ ) =

(
LC
a D(ν)

τ 1
)
(τ ) +

(
LC
a D(ν)

τ 2
)
(τ ).

Theorem 2 (see [21, 38]).

Let τ ∈ R
+
0 , v ∈ (0, 1),� ∈ L

(
R

+
0

)
and �(1) ∈ Lloc

1

(
R

+
0

)
. Then, there is an Abel

type integral
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1

�(−ν)

τ∫

0

�(t)

(τ − t)1 + ν
dt = �(τ), (29a)

with the solution given
as

�(t) = 1

�(1 − ν)

τ∫

0

(τ − t)−ν�(1)(t)dt +
τ−ν

�(1 − ν)
�(0), (29b)

where �(τ = 0) = �(0).

2.5 GFC with the Nonsingular Mittag–Leffler Function
Kernel

When the kernel in Eq. (1) is given as: �(τ) = Eν(−τ ν), the GFD of Riemann–
Liouville type in the kernel of the Mittag–Leffler function is defined by [21, 38,
41]:

(
RLT
a D(ν)

τ 
)
(τ ) =

d

dτ

τ∫

a

Eν(−(τ − t)ν)(t)dt (τ > a), (30)

where  ∈ AC
(
R

+
0

)
, and the GFD of the Liouville-Caputo type in the kernel of the

Mittag–Leffler function by [21, 38, 41]:

(
CT
a D(ν)

τ 
)
(τ ) =

τ∫

a

Eν(−(τ − t)ν)(1)(t)dt (τ > a), (31)

where (1)(τ ) = d(τ)
/
dτ and (1) ∈ Lloc

1

(
R

+
0

)
.

The relationship between Eqs. (30) and (31) becomes [21, 38, 41]:

(
CT
0 D(ν)

τ 
)
(τ ) =

(
RLT
0 D(ν)

τ 
)
(τ ) − Eν(τ

ν)(0). (32)

Similarly, for m − 1 < ν < m, Eqs. (13) and (14) yield:

(
RLT
a D(ν)

τ 
)
(τ ) =

dm

dτm

τ∫

a

Eν(−(τ − t)ν)(t)dt (τ > 0), (33)
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(
CT
a D(ν)

τ 
)
(τ ) =

τ∫

a

Eν(−(τ − t)ν)(m)(t)dt (τ > 0). (34)

Its inverse operator (the general fractional integral) is defined as

(
0I

(v)
t �

)
(τ ) = �(τ) − 1

�(ν)

τ∫

0

�(t)

(τ − t)1−ν
dt

Remark 2 Hille and Tamarlcin proposed the Abel type integral equation of the
second kind (see [50]).

�(τ) − τ

�(ν)

x∫

0

�(t)

(τ − t)1−ν
dt = (τ), 0 < α < 1,

with the solution given as

�(τ) = d

dτ

τ∫

0

Eν

[
λ(τ − t)ν

]
(t)dt .

Hille introduced the following fractional differential operator (see [51])

(
RLT
a D(ν)

τ 
)
(τ ) = λ

d

dτ

τ∫

0

Eν

[
λ(t − x)ν

]
f (t)dt .

Atangana and Baleanu introduced the general fractional derivative with the
Mittag–Leffler function involving the normalization parameter (see [43])

(
CT
a D(ν)

τ 
)
(τ ) = �(ν)

1 − ν

τ∫

a

Eν

(
− ν

1 − ν
(τ − t)ν

)
(1)(t)dt,

where �(ν) is the normalization parameter.
The Laplace transforms of the GFC operators in the nonsingular Mittag–Leffler

kernel are given as [21, 38, 41]:

(
RL
0 D(ν)

τ 
)
(t) =

(
1 − s−ν

)−1
(s),

(
LC
0 D(ν)

τ �
)
(t) = s−1

(
1 − s−ν

)−1
(s�(s) − �(0)).
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The properties of the GFD in the nonsingular Mittag–Leffler kernel are given as
[21, 38, 41]:,

(
RL
α D(v)

τ (1 + 2)
)
(τ ) = (

RL
α D(v)

τ 1
)
(τ ) + (

RL
α D(v)

τ 2
)
(τ ),

RL
a D(ν)

τ 1 = Eν(−τ ν),

LC
α D(v)

τ 1 = 0,

(
LC
α D(v)

τ (1 + 2)
)
(τ ) = (

LC
α D(v)

τ 1
)
(τ ) + (

LC
α D(v)

τ 2
)
(τ ).

2.6 GFC with the Nonsingular Wiman Kernel

When the kernel inEq. (1) is given as:�(τ) = τυ−1Eν,υ(−τ ν), theGFDofRiemann–
Liouville type in the kernel of the Wiman function is defined by [21, 38, 41]:

(
RLT
a D(ν)

τ 
)
(τ ) =

d

dτ

τ∫

a

(τ − t)υ−1Eν,υ(−(τ − t)ν)�(t)dt (τ > a), (35)

where  ∈ AC
(
R

+
0

)
, and the GFD of the Liouville-Caputo type in the kernel of the

Wiman function by:

(
C
Eν,υ (−)D

(ν)
a �

)
(τ ) =

τ∫

a

(τ − t)υ−1Eν,υ(−(τ − t)ν)�(1)(t)dt (τ > a), (36)

where (1)(τ ) = d(τ)
/
dτ and (1) ∈ Lloc

1

(
R

+
0

)
.

The relationship between Eqs. (35) and (36) is [21, 38, 41]:

(
CT
a D(ν)

τ 
)
(τ ) =

(
RLT
a D(ν)

τ 
)
(τ ) − τυ−1Eν,υ(−τ ν)�(0). (37)

Similarly, for m − 1 < ν < m, Eqs. (13) and (14) yield:

(
RLT
a D(ν)

τ 
)
(τ ) =

dm

dτm

τ∫

a

(τ − t)υ−1Eν,υ(−(τ − t)ν)�(t)dt (τ > 0), (38)
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(
CT
a D(ν)

τ 
)
(τ ) =

τ∫

a

(τ − t)υ−1Eν,υ(−(τ − t)ν)(m)(t)dt (τ > 0). (39)

Its inverse operator (the general fractional integral) is defined as [21, 38, 41]

(
0I

(v)
t �

)
(τ ) =

τ∫

0

(τ − t)−υE−1
ν,1−υ(−(τ − t)ν)�(t)dt

The Laplace transforms of the GFC operators in the nonsingular Wiman kernel
are given as [21, 38, 41]:

(
RL
0 D(ν)

τ 
)
(t) = s1−υ

(
1 + s−ν

)−1
(s),

(
LC
0 D(ν)

τ �
)
(t) = s−υ

(
1 + s−ν

)−1
(s�(s) − �(0)).

The properties of the GFD in the nonsingular Wiman kernel are given as [21, 38,
41]:

(
LC
α D(v)

τ (1 + 2)
)
(τ ) = (

LC
α D(v)

τ 1
)
(τ ) + (

LC
α D(v)

τ 2
)
(τ ).

RL
a D(ν)

τ 1 = τυ−1Eν,υ(−τ ν),

LC
α D(v)

τ 1 = 0,

(
LC
α D(v)

τ (1 + 2)
)
(τ ) = (

LC
α D(v)

τ 1
)
(τ ) + (

LC
α D(v)

τ 2
)
(τ ).

2.7 GFC with the Nonsingular Prabhakar Kernel

When the kernel inEq. (1) is given as:�(τ) = τυ−1Eφ
ν,υ(−τ ν), theGFDofRiemann–

Liouville type in the kernel of the Prabhakar function is defined as [21, 38, 41]:

(
RLT
a D(ν)

τ 
)
(τ ) =

d

dτ

τ∫

a

(τ − t)υ−1Eφ
ν,υ(−(τ − t)ν)�(t)dt (τ > a), (40)

where  ∈ AC
(
R

+
0

)
, and the GFD of the Liouville-Caputo type in the kernel of the

Prabhakar function as [21, 38, 41]:
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(
C
Eν,υ (−)D

(ν)
a �

)
(τ ) =

τ∫

a

(τ − t)υ−1Eφ
ν,υ(−(τ − t)ν)�(1)(t)dt (τ > a), (41)

where (1)(τ ) = d(τ)
/
dτ and (1) ∈ Lloc

1

(
R

+
0

)
.

The relationship between Eqs. (40) and (41) is [21, 38, 41]:

(
CT
a D(ν)

τ 
)
(τ ) =

(
RLT
a D(ν)

τ 
)
(τ ) − τυ−1Eφ

ν,υ(−τ ν)�(0). (42)

Similarly, for m − 1 < ν < m, Eqs. (13) and (14) yield:

(
RLT
a D(ν)

τ 
)
(τ ) =

dm

dτm

τ∫

a

(τ − t)υ−1Eφ
ν,υ(−(τ − t)ν)�(t)dt (τ > 0), (43)

(
CT
a D(ν)

τ 
)
(τ ) =

τ∫

a

(τ − t)υ−1Eφ
ν,υ(−(τ − t)ν)(m)(t)dt (τ > 0). (44)

Its inverse operator (the general fractional integral) is defined
as [[21, 38, 41]]

(
0I

(v)
t �

)
(τ ) =

τ∫

0

(τ − t)−υE−φ
ν,1−υ(−(τ − t)ν)�(t)dt

Remark 3 Kilbas, Saigo and Saxena introduced the following general fractional
derivative (see [42]).

(
RLT
a D(ν)

τ 
)
(τ ) =

dm

dτm

τ∫

a

(τ − t)μ+m−β−1Eφ
ν,μ+m−β(λ(τ − t)ν)(t)dt,

which is called the Kilbas-Saigo-Saxena GFD.
The Laplace transforms of the GFC operators in the nonsingular Prabhakar kernel

are given as [21, 38, 41]:

(
RL
0 D(ν)

τ 
)
(t) = s1−υ

(
1 + s−ν

)−φ
(s),

(
LC
0 D(ν)

τ �
)
(t) = s−υ

(
1 + s−ν

)−φ
(s�(s) − �(0)).

The properties of the GFD in the nonsingular Prabhakar kernel are given as [21,
38, 41]:



148 X.-J. Yang et al.

(
RL
α D(v)

τ (1 + 2)
)
(τ ) = (

RL
α D(v)

τ 1
)
(τ ) + (

RL
α D(v)

τ 2
)
(τ ),

RL
a D(ν)

τ 1 = τυ−1Eφ
ν,υ(−τ ν),

∣∣LC
α D(v)

τ 1 = 0,

(
LC
α D(v)

τ (1 + 2)
)
(τ ) = (

LC
α D(v)

τ 1
)
(τ ) + (

LC
α D(v)

τ 2
)
(τ ).

3 The Rheological Models with GFCs Involving
the Nonsingular Kernels

3.1 Complex Phenomena in Viscoelasticity

The stress–strain-time relation with the positive-parametric Mittag–Leffler function
can be written as

σν(τ ) = MEν(−τ ν)εν(0). (45)

where σν(τ ) is stress, εν(0) is the initial strain, τ is time and M is the material
constant.

There are

Eν(−τ ν) ∝ τ−ν, (46)

Eν,1(−τ ν) ∝ τ−ν, (47)

E1
ν,1(−τ ν) ∝ τ−ν, (48)

which, after taking the Laplace transform, leads to

σν(s) = Mεν(0)s
−1

(
1 + s−ν

)−1 ∝ Mεν(0)�(1 − ν)sν . (49)

The phenomena in rheological behaviors are called
as the Nutting behaviors in the real materials.

In another hand, there may exist the stress–strain-time relation with the positive-
parametric Mittag–Leffler function can be written as

σν(τ ) = MEν

(−τ−ν
)
εν(0). (50)
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Fig. 1 The spring element

whereσv(τ ) is stress, εv(0) is the initial strain, τ is time andM is thematerial constant.
There are

Eν

(−τ−ν
) ∝ τ ν, (51)

Eν,1
(−τ−ν

) ∝ τ ν, (52)

E1
ν,1

(−τ−ν
) ∝ τ ν, (53)

The phenomena in rheological behaviors are called as the anomalous Nutting
behaviors in the real materials.

3.2 The Viscoelastic Elements with GFDs

3.2.1 The Spring Element

Model 1

As shown in Fig. 1, the spring element follows the Hooke’s law given as [20, 21]

σν(τ ) = Hεν(τ ), (54)

where H is the Young’s modulus of the material.

3.2.2 The Viscoelastic Elements

As shown in Fig. 2, the viscoelastic elements with the FD and GFDs were presented
to describe the viscoelastic behaviors in the real materials.

Fig. 2 The viscoelastic
element
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Model 2

The viscoelastic element with the FD in the singular power-law kernel is given as
[20, 21]:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (55)

where K is the coefficient of viscosity.

Model 3

Theviscoelastic elementwith theGFD in the singular power-lawkernel is represented
in the form:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (56)

where K is the coefficient of viscosity.

Model 4

The viscoelastic element with the GFD in the kernel of the Mittag–Leffler function
is can be expressed as:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (57)

where K is the coefficient of viscosity.

Model 5

The viscoelastic element with the GFD in the kernel of the Wiman functions is
represented as:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (58)

where K is the coefficient of viscosity.

Model 6

The viscoelastic element with the GFD in the kernel of the Prabhakar functions is
represented in the form:

σν(τ ) = K
(
LC
0 D(ν)

t εν

)
(τ ). (59)

where K is the coefficient of viscosity.
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The creep and relaxation representations are given through the equations of the
Volterra type:

εν(τ ) = σν(0)Jν(τ ) +
τ∫

0

Jν(τ − t)
(
CT
0 D(ν)

t σν

)
(t)dt (60)

and

σν(τ ) = εν(0)Gν(τ ) +
τ∫

0

Gν(τ − t)
(
CT
0 D(ν)

t εν

)
(t)dt, (61)

where the creep compliance and relaxation modulus are given by: Jν(τ ) =
εν(τ )/σν(0) and Gν(τ ) = σν(τ )/εν(0), respectively.

3.3 The Maxwell Models with GFDs

As shown in Fig. 3, theMaxwellmodels with theGFDs and FD consists of aHookean
element and a general fractional-order Newtonian element in series.

The constitutive equation of the Maxwell model with GFDs can be written as

(
CT
0 D(ν)

τ εν

)
(τ ) = σν(τ )

K
+ 1

H

(
CT
0 D(ν)

τ σν

)
(τ ).

Case 1

The creep compliance of the Maxwell model with the FD in the singular power-law
kernel can be written as [20, 21]

Jν(τ ) =
1

K

τ ν

�(1 + ν)
+ 2

H
,

and the relaxation modulus of the Maxwell model with the FD in the singular power-
law kernel is given as [20, 21]

Fig. 3 The Maxwell model
via FD and GFDs
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Gν(τ ) = 2Kτ−νEν

(
−K

H
tν

)
.

Case 2

The creep compliance of theMaxwell model with the GFD in the nonsingular power-
law kernel is

Jν(τ ) =
1

K

τ−ν

�(1 − ν)
+ 2

H
,

and the relaxation modulus of the Maxwell model with the GFD in the nonsingular
power-law kernel can be given as

Gν(τ ) = 2Kτ νEν,1 + ν

(
−K

H
tν

)
.

Case 3

The creep compliance of the Maxwell model with GFD in the kernel of the Mittag–
Leffler function can be written as

Jν(τ ) =
1

K
+ 2

H
+ 1

K

τ ν

�(1 + ν)
,

and the relaxation modulus of the Maxwell model with general fractional derivative
in the kernel of the Mittag–Leffler function becomes

Gν(τ ) = K

H + K
Eν

(
− H

H + K
τ ν

)
.

Case 4

The creep compliance of the Maxwell model with general fractional derivative in the
kernel of the Wiman function can be represented in the form:

Jν(τ ) = 1

K

(
τ 1−υ

�(2 − υ)
+ τ 1−υ+ν

�(2 − υ + ν)
+ K

H

)
,

and the relaxation modulus of the Maxwell model with the GFD in the kernel of the
Wiman function is

Gν(τ ) = KEν,ν

(
−

(
K

H
+ 1

)
τ ν

)
.
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Case 5

The creep compliance of the Maxwell model with the GFD in the kernel of the
Prabhakar function can be expressed as

Jν(τ ) = 1

K

(
τ 1−υE−φ

ν,υ (−τ ν) + 2

H

)
,

and the relaxation modulus of the Maxwell model with the GFD in the kernel of the
Prabhakar function is

Gν(τ ) = 2K
∞∑

n=0

(
−K

H

)n

τ (n−1)(2−υ)E (1−n)φ

ν,(n−1)(2−υ)+1(−τ ν).

3.4 The Voigt Models with GFDs

As shown in Fig. 4, the Voigt models with the GFDs and FD consists of a Hookean
element and a general fractional-order Newtonian element in parallel.

The constitutive equation of the Voigt model can be written as

σν(τ ) = Hεν(τ ) + K
(
RLT
0 D(v)

τ εv
)
(τ ).

Case 1

The creep compliance of the Voigt model with the FD in the singular power-law
kernel can be written as [20, 21]

Jν(τ ) =
1

H

(
1 − Eν

(
−K

H
τ ν

))
,

Fig. 4 The Voigt model via FD and GFDs
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and the relaxation modulus of the Voigt model with the FD in the singular power-law
kernel is given as [20, 21]

Gν(τ ) = H + K
τ−ν

�(1 − ν)
.

Case 2

The creep compliance of the Voigt model with the GFD in the nonsingular power-law
kernel is represented as

Jν(τ ) =
1

H
Eν

(
−K

H
τ ν

)
,

and the relaxation modulus of the Voigt model with the GFD in the nonsingular
power-law kernel can be given as

Gν(τ ) = H + K
τ ν

�(1 + ν)
.

Case 3

The creep compliance of the Voigt model with the GFD in the kernel of the Mittag–
Leffler function is

Jν(τ ) =
1

H + K

(
Eν

(
− H

H + K
τ ν

)
+ Eν,ν + 1

(
− H

H + K
τ ν

))
,

and the relaxation modulus of the Voigt model with the GFD in the kernel of the
Mittag–Leffler function is given as

Gν(τ ) = H + KEν(−τ ν).

Case 4

The creep compliance of the Voigt model with the GFD in the kernel of the Wiman
function is expressed by

Jν(τ ) = τ 1−υ

�(2 − υ)
+ τ 1+ν−υ

�(2 + ν − υ)
+ 2K

H
,

and the relaxation modulus of the Voigt model with the GFD in the kernel of the
Wiman function can be written as
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Gν(τ ) = 2H

K
Eν,ν

(
−

(
K

H
+ 1

)
τ ν

)
.

Case 5

The creep compliance of the Voigt model with the GFD in the kernel of the Prabhakar
function is

Jν(τ ) =
1

H

( ∞∑

n=0

(
−K

H

)−n

τ n(1−υ)E−nφ

ν,n(1−υ)+1(−τ ν)

+ K

H

∞∑

n=0

(
−K

H

)n

τ (n−1)(2−υ)E (1−n)φ

ν,(n−1)(2−υ)+1(−τ ν)

)
,

and the relaxation modulus of the Voigt model with the GFD in the kernel of the
Prabhakar function is given as

Gν(τ ) = H + Kτυ−1Eφ
ν,υ(−τ ν).

For more details of the applications of the GFC operators to the viscoelastic
behaviors, see [20, 21].

4 Conclusion

In the present work, we investigated the basic formulations of the FC and GFC
operators with the special functions with the power law. The Laplace transforms of
the GFDs and GFIs formulations were discussed in detail. The anomalous Nutting
behaviors in the real materials can be proposed for the first time. The applications
of the GFC operators to the viscoelastic behaviors can be represented in the use of
the complexity of the real materials. The Maxwell and Voigt models with the GFDs
in the nonsingular kernels were obtained with the help of the Laplace transforms of
the special functions. The results can be explained the complex phenomenon in the
mining-rock materials.
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Group Dynamical Systems
on C∗-Algebras Generated by Countable
Infinitely Many Semicircular Elements

Ilwoo Cho

Abstract In this paper, starting from a C∗-probability spaceXϕ generated by mutu-
ally free, countable-infinitely many semicircular elements {sn}∞n=1, the free distribu-
tional data on Xϕ are characterized by joint free moments of {sn}∞n=1; and then, a
certain group λ acting on Xϕ is constructed-and-studied under a group dynamical
system� ofλ. From the dynamics, the crossed productC∗-algebraX� is constructed,
and the free probability onX� is considered in terms of that onXϕ. In particular, the
free-distributional data of generating operators of X� are studied, and they illustrate
how semicircularity works under our group-action.

Keywords Free probability · Semicircular elements · Free-isomorphisms ·
Groups · Group dynamical systems · Crossed product algebras

1991 Mathematics Subject Classification 46L10, 46L54, 47L55

1 Introduction

The main purposes of this paper are (i) to consider a C∗-probability space Xϕ =
(X, ϕ) , where X is a C∗-algebra generated by a set X = {sn}∞n=1 of mutually free,
|N| -many semicircular elements xn’s, (ii) to characterize the free-distributional data
on Xϕ, (iii) to define a group λ acting on Xϕ, preserving the free probability on Xϕ,

and the corresponding group C∗-probability space (�, τ ) of the group C∗-algebra�

of λ, and the canonical trace τ on �, (iv) to investigate a group dynamical system,

� = (λ, � ⊗C X, α) ,
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where ⊗C is the tensor product of C∗-algebras, (v) to study the corresponding
crossed product C∗-algebra,

X� = (� ⊗C X) ×α λ,

generated by the dynamical system � of (iv), and (vi) to study the free probability on
X� by investigating how a such dynamical system affects the semicircularity onXϕ.

1.1 Background

Not only in operator algebra theory, but also in statistical quantum physics, semi-
circular elements play major roles (e.g., [1, 2, 5–8, 10–12, 20, 21, 29, 30]). The
(classical, or free) distributions of semicircular elements arewell-known in functional
analysis; they are called the semicircular law. In particular, operators satisfying the
semicircular law have been studied, and well-characterized in the language of free
probability theory (e.g., [1, 17, 18, 21, 28–30]).

As one can see in the (free) central limit theorem(s), e.g., see [2, 17, 19, 28–
30], the semicircular law is roughly understood to be the noncommutative-algebraic
version of the classicalGaussian distribution. In combinatorial approaches (e.g., [17,
22, 23]), the free distributions of semicircular elements are universally characterized
by the Catalan numbers cn ,

cn = 1

n + 1

(
2n
n

)
= (2n)!

n!(n + 1)! , (1)

for all n ∈N0 =N∪ {0}. i.e., the semicircular law is characterized by the free-moment
sequence,

(
ωnc n

2

)∞
n=1

= (0, c1, 0, c2, 0, c3, ...) , (2)

with

ωn =
{
1 if n is even
0 if n is odd,

for all n ∈ N, where {ck}∞k=1 in (2) are the Catalan numbers (1).

1.2 Motivation

Recently, it is shown that, from the analysis on p-adic number fields, semicircular
elements are canonically constructed (e.g., [5, 12]). It provides other connections
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between operator algebra and quantum physics (e.g., [26, 27]). Motivated by [5,
12], semicircular elements are well-generated, as Banach-space operators (e.g., [13,
14]), acting on aC∗-algebra containing |Z|-many orthogonal projections (e.g., [6–8,
10, 11]) different from earlier works.

Independently, characterizations, and estimations of joint free distributions of
mutually free, multi semicircular elements are introduced in [9] (See Sects. 3 and
4 below). These results would characterize the free-distributional data on our C∗-
probability space Xϕ.

1.3 Overview

The main results of this paper show that: (I) the free probability on Xϕ is character-
ized by the joint free moments of generating, mutually free, |N|-many semicircular
elements, in Sects. 3 and 4; (II) the C∗-algebra X is not only ∗ -isomorphic to the
C∗-algebraS generated by mutually free, |Z|-many semicircular elements {sn}n∈Z ,
but also, free-isomorphic to S in the sense that the free probability onX is preserved
to be that on S, in Sect. 5; (III) there are well-defined ∗-isomorphisms on S (and
hence, on X), preserving the free probability onS, and these ∗ -isomorphisms gen-
erate a well-defined group λ and the corresponding group C∗-algebra � acting on
S, in Sect. 6; (IV) the group λ of (III) induces a well-defined group C∗-dynamical
system �, and the corresponding crossed product C∗-algebra X�, in Sect. 7; and
(V) the free probability on X� is considered, and the free-distributional data of the
generating operators of X� are fully characterized in Sect. 8.

2 Preliminaries

In this section, we briefly introduce concepts and notations used in text.

2.1 Free Probability

For more about free probability, e.g., see [3, 15–17, 28–30]. Free probability is a
noncommutative operator-algebraic version of classical measure theory and statisti-
cal analysis (implying probability theory and statistics). Free probability is not only
a major branch of operator algebra theory (e.g., [9, 17, 20–22, 28, 29]), but also an
interesting application in many related fields (e.g., [4–8, 10–12, 24, 25]).

In this paper, we use combinatorial approach of Speicher (e.g., [17, 22, 23]).
Without introducing detailed definitions, or combinatorial backgrounds, the (joint)
free moments and (joint) free cumulants are considered, and the (free-probabilistic)
free product is used in text without precise introduction.
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As usual in free probability theory, a mathematical pair (B, ψ) would be called a
free ∗-probability space, if B is a (topological, or pure-algebraic noncommutative)
∗-algebra (over C ), and ψ is a (bounded, resp., unbounded) linear function on B.

2.2 Semicircularity

Let (A, ϕ) be a topological ∗-probability space ( C∗-probability space, or
W ∗-probability space, or Banach ∗ -probability space, etc.), consisting of a topo-
logical ∗-algebra A (C∗-algebra, resp., W ∗-algebra, resp., Banach ∗-algebra, etc.),
and a bounded linear functional ϕ on A. Operators a ∈ A are called free random
variables, if one regards a as elements of (A, ϕ).

As in operator theory (e.g., [14]), a free random variable a ∈ (A, ϕ) is said to
be self-adjoint, if a is self-adjoint in A as an operator, i.e., a∗ = a, where a∗ is the
adjoint of a. Note that the free distribution of a self-adjoint free random variable a
is characterized by

the free-moment sequence
(
ϕ(an)

)∞
n=1 , (3)

and

the free-cumulant sequence (kn(a, ..., a))∞n=1 ,

by [17, 21], where k•(.) is the free cumulant on A in terms of ϕ, under the Möbius
inversion of [17, 21].

Definition 1 A self-adjoint free random variable x ∈ (A, ϕ) is semicircular, if

ϕ(xn) = ωnc n
2
, for all n ∈ N, (4)

where ωn are in the sense of (2), and ck are the k-th Catalan numbers (1) for all k ∈
N0.

By the Möbius inversion, a self-adjoint free random variable x is semicircular in
(A, ϕ), if and only if

kn (x, ..., x) = δn,2 (5)

for all n ∈ N, where δ is the Kronecker delta.
Since free-moment sequence (ϕ(xn))∞n=1, and the free-cumulant sequence

(kn(x, . . . , x))∞
n=1 provide equivalent free-distributional data of x in (A, ϕ) (e.g.,

[17, 21, 22]), one can use the definition (4) and the characterization (5) alternatively
as the semicircularity, by (3).
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i.e., the semicircular law is characterized by the free-moment sequence,

(0, c1, 0, c2, 0, c3, 0, c4, ...) , (6)

or, by the free-cumulant sequence,

(0, 1, 0, 0, 0, 0, . . .), (7)

by (4) and (5), respectively.
By definition, even though

xl ∈ (Al ,ϕl), for l = 1, 2,

are distinct semicircular elements in (possibly different) topological ∗-probability
spaces, their free distributions are identical, by (6) and (7).

3 Catalan Numbers

In this section, we introduce some results known in [9], used in our later works. For
k ∈ N0, let ck be the k-th Catalan number,

ck = 1

k + 1

(
2k
k

)
= (2k)!

k!(k + 1)! .

Lemma 1 Let k1 > k2 in N0. Then there exists a quantity βk1>k2 in the set R+ of all
positive real numbers, such that

ck1 = βk1>k2ck2 . (8)

In particular,

βk1>k2 = 2k1−k2

(
2k2 + 1

k1 + 1

)(
k1−k2−1

�
l=1

(
2 − 1

(k1 + 1) − l

))
(9)

in R
+, with axiomatization:

0
�
l=1

(
2 − 1

(k1 + 1) − l

)
= 1.

Proof If k1 > k2 in N0, then
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ck1

ck2

=
(

(2k1)!
(k1)!(k1 + 1)!

)(
(k2)!(k2 + 1)!

(2k2)!
)

=
(

(2k1)!
(2k2)!

)(
(k2)!
(k1)!

)(
(k2 + 1)!
(k1 + 1)!

)

= (2(k1)2(k1 − 1)2(k1 − 2) . . . 2(k2 + 1)) ((2k1 − 1)(2k1 − 3) . . . (2k2 + 1))

(k1 + 1)(k2 + 1) (k1(k1 − 1) . . . (k2 + 2))2

= 2k1−k2

(
1

k1 + 1

)(
2k1 − 1

k1

)(
2k1 − 3

k1 − 1

)
· · ·

(
2k2 + 3

k2 + 2

)
(2k2 + 1) .

Therefore, one obtains that

ck1

ck2

= βk1>k2 ⇐⇒ ck1 = βk1>k2ck2 ,

where βk1>k2 is in the sense of (9). Therefore, the relation (8) holds. �

By (8), it is not hard to check that if k1 > k2 in N0, then

ck1ck2 = ck2ck1 = βk1>k2ck2 , (10)

where βk1>k2 is in the sense of (9).

Theorem 1 Let k1 > k2 > · · · > kN in N0, for some N ∈ N \ {1}, and take kl -th
Catalan numbers ckl , for all l = 1, …, N . Now, take nl -many ckl ’s, for all l = 1, …,

N , and hence, choose
(

s = ∑N
l=1 nl

)
-many total Catalan numbers with repetition.

For convenience, let’s denote these totally s-many Catalan numbers by

c j1 , c j2 , . . . , c js .

Then, for every permutation α of the symmetric group SX over X = { j1, …, js},
we have that

s
�
l=1

cα( jl ) =
(

N−1
�
i=1

β
�i

l=1nl

ki >ki+1

)(
c
�N

l=1nl

kN

)
, (11)

with

βki >ki+1 = 2ki −ki+1

(
2ki+1 + 1

ki + 1

)(
ki −ki+1−1

�
l=1

(
2 − 1

(ki + 1) − l

))
,

for all i = 1, …, N − 1.

Proof Under hypothesis, for every permutation α of the symmetric group SX over
X = { j1, …, js}, one has that
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s
�
l=1

cα( jl ) = N
�
l=1

cnl
kl

= cn1
k1

cn2
k2

...cnN
kN

= (
βk1>k2ck2

)n1 cn2
k2

cn3
k3

· · · cnN
kN

by (8)

= βn1
k1>k2

cn1+n2
k2

cn3
k3

· · · cnN
kN

= βn1
k1>k2

(
βn1+n2

k2>k3
cn1+n2

k3

)
cn3

k3
cn4

k4
· · · cnN

kN

by (8)

= · · ·
=
(
βn1

k1>k2
βn1+n2

k2>k3
· · · β

n1+n2+···+nN−1
kN−1>kN

)
cn1+n2+···+nN−1+nN

kN
,

where βki >ki+1 are in the sense of (9), for all i = 1, …, N − 1. So, the relation (11)
holds. �

4 Free Distributions of Multi Semicircular Elements

In this section, we consider free distributions of mutually free, multi semicircular
elements in a C∗-probability space (A, ϕ). Without loss of generality, readers can
regard (A, ϕ) as an any topological ∗-probability space (W ∗-probability space, or a
Banach ∗-probability space, etc.).

Let (A, ϕ) be a fixed C∗-probability space, and suppose there are N -many semi-
circular elements x1, …, xN in (A, ϕ), for N ∈ N. Assume further that they are
free from each other in (A, ϕ). By the self-adjointness of x1, …, xN in A, the free
distribution, say

ρ
denote= ρx1,...,xN , (12)

of them are characterized by thejoint free-moments,

∞∪
n=1

(
∪

(i1,...,in)∈{1,...,N }n

{
ϕ
(
xi1 xi2 ...xin

)})
(12′)

(e.g., [17, 22, 23]). More precisely, the free distribution ρ of (12), is characterized
by the free-moments

N∪
l=1

{
ϕ(xn

l )
}∞

n=1 , (13)

and the “mixed” free-moments,
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∞∪
s=2

{
ϕ
(
xn1

i1
xn2

i2
...xns

is

) ∣∣∣∣ (i1, . . . , is) ∈ {1, . . . , N }s

are mixed in {1, . . . , N }
}

, (14)

by (12)′.
With help of the results of Sect. 3, we characterize the free distribution ρ of (12),

by considering (13) and (14).

4.1 Free-Distributional Data (13) of ρ

Let ρ = ρx1,...,xN be the free distribution (12) of fixed N -many mutually free semi-
circular elements x1, …, xN of (A, ϕ), characterized by the free-distributional data
(12)′. The free-distributional data (13) are determined by the semicircularity (4), or
(5), under the universality (6), respectively, (7).

Corollary 1 The free-distributional data (13) of the free distribution ρ of (12) are
characterized by the computations,

ϕ
(
xn

l

) = ωnc n
2
, for all n ∈ N, (15)

for all l = 1, …, N .

Proof The formula (15) is proven by (4) and (6), since x1, …, xN are
semicircular. �

4.2 Free-Distributional Data (14) of ρ

Throughout this section, for any s ∈ N \ {1}, we fix an s-tuple Is ,

Is
denote= (i1, . . . , is) ∈ {1, . . . , N }s, (16)

which is mixed in {1,…, N }, in the sense that there exists at least one entry ik0 of Is,

satisfying ik0 
= ik, for some k 
= k0 in {1, …, s}.
For example,

I8 = (1, 1, 3, 2, 4, 2, 2, 1),

is a mixed 8-tuple in {1, 2, 3, 4, 5}8.
From the sequence Is of (16), define a set,

[Is] = {i1, i2, . . . , is}, (17)

without considering repetition. For instance, if I8 is as above, then
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[I8] = {i1, i2, . . . , i8},

with

i1 = i2 = i8 = 1,

i4 = i6 = i7 = 2,

i3 = 3, and i5 = 4.

without considering repetition; for example, we regard all 1’s in I8 as different ele-
ments i1, i2 and i8 in [I8].

Then from the set [Is] of (17), one can define a “noncrossing” partition π(Is ) in
the noncrossing-partition lattice NC ([Is]) (e.g., [17, 21, 22]), such that (i)

∀V = (
i j1 , i j2 , ..., i j|V |

) ∈ π(Is ), (18)

⇐⇒

∃k ∈ {1, . . . , N }, s.t., i j1 = i j2 = · · · = i j|V | = k,

(ii) such a partition π(Is ) of (i) is “maximal” satisfying (18), under the partial
ordering on NC ([Is]) (e.g., see [17, 21, 22]), and (iii) the first block of π(Is ) must
be the maximal block starting from the first entry i1 of Is .

For example, if I8 and [I8] are as above, then there exists a noncrossing partition

π(I8) = {(i1, i2, i8), (i3), (i4, i6, i7), (i5)}
= {(1, 1, 1), (3), (2, 2, 2), (4)},

in NC([I8]), satisfying the conditions (i), (ii) and (iii).

Example 1 Let I10 = (1, 1, 2, 2, 1, 1, 2, 2, 3, 3). Then the noncrossing partition
π(I10) of (18) is

π(I10) = {(i1, i2, i5, i6), (i3, i4), (i7, i8), (i9, i10)},

where

i1 = i2 = i5 = i6 = 1,

i3 = i4 = i7 = i8 = 2,

and

i9 = i10 = 3.

Note that we cannot have the block (i3, i4, i7, i8) in π(I10) because of a crossing
with (i1, i2, i5, i6).

Now, suppose π(Is ) ∈ NC ([Is]) is the noncrossing partition (18), and let
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π(Is ) = {U1, . . . , Ut },

where t ≤ s and Uk ∈ π(Is ) are the blocks of (ii), satisfying the conditions (i) and
(iii), for k = 1, …, t. For the above π(I8),

π(I8) = {U1, U2, U3, U4},

with

U1 = {i1, i2, i8}, U2 = {i3},
U3 = {i4, i6, i7}, U4 = {i5}.

Then the partition π(Is ) is regarded as the joint partition,

π(Is ) = 1|U1| ∨ 1|U2| ∨ ... ∨ 1|Ut |, (19)

where 1|Uk | are the maximal elements, the one-block partitions {Uk}, of NC (Uk),
for all k = 1, …, t.

Let Is be in the sense of (16), and let xi1 ,…, xis be the corresponding semicircular
elements of (A, ϕ) induced by Is, without considering repetition in the set {x1, …,
xN }. Define a free random variable X [Is] by

X [Is] de f= s
�
l=1

xil ∈ (A,ϕ). (20)

If X [Is] is in the sense of (20), then

ϕ (X [Is]) =
∑

π∈NC([Is ])
kπ

by the Möbius inversion of [17], where

kπ = �
V ∈π

kV

with

kV = k|V |
(

xik1
, ..., xik|V |

)
,

whenever V = (ik1 , …, ik|V |), where |V | is the cardinality of V in π, and hence, it
goes to

= ∑
π∈NC([Is ]), π≤π(Is )

kπ

by the mutual-freeness of x1, …, xN in (A, ϕ) (e.g., [17, 22])
= ∑

(θ1,...,θt )∈NC(U1)×···×NC(Ut )

kθ1∨···∨θt
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by (19)

=
∑

(θ1,...,θt )∈NC2(U1)×···×NC2(Ut )

kθ1∨···∨θt

=
∑

(θ1,...,θt )∈NC2(U1)×···×NC2(Ut )

(
t
�
l=1

kθl

)
, (21)

by the semicircularity (5) of xi1 , …, xis in (A, ϕ), where NC2(X) is the subset of
the noncrossing-partition lattice NC(X),

NC2(X) = {π ∈ NC(X) : ∀V ∈ π, |V | = 2}, (22)

over countable finite sets X.

By (21) and (22), it is not difficult to check that, if there exists at least one k0 ∈
{1, …, t}, such that

∣∣Uk0

∣∣ is odd in N, or, equivalently, if n is odd, then

ϕ (X [Is]) = 0,

where X [Is] is the free random variable (20) of (A, ϕ).
So, the formula (21) is non-zero, only if

|Uk | ∈ 2N, for all k = 1, . . . , t, (23)

where 2N = {2n : n ∈ N}.
Moreover, if the condition (23) is satisfied, then the summands kθ1∨···∨θt of (21)

satisfy that

kθ1∨···∨θt = �
V ∈θ1∨···∨θt

kV = �
V ∈θ1∨···∨θt

(
t
�
i=1

1#(θi )

)
= 1, (24)

by the semicircularity (5), where #(θi ) are the number of blocks of θi , for all i = 1,
…, t. Therefore, if the condition (23) holds, then

ϕ (X [Is]) = ∑
(θ1,...,θt )∈NC2([U1])×···×NC2([Ut ])

1

= |NC2 (U1) × · · · × NC2 (Ut )| ,
(25)

by (21) and (24), where |Y | mean the cardinalities of sets Y.

Lemma 2 Let Is be an s-tuple (16), and let X [Is] = s
�
l=1

xil be the corresponding free

random variable (20) of (A, ϕ). If
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π(Is ) = 1|U1| ∨ · · · ∨ 1|Ut |,

in the sense of (18) and (19), then

ϕ (X [Is]) =

⎧⎪⎪⎨
⎪⎪⎩

t
�
i=1

c |Ui |
2

if |Uk | ∈ 2N,

for all k = 1, . . . , t

0 otherwise.

(26)

Proof Under hypothesis,

ϕ (X [Is]) =

⎧⎪⎨
⎪⎩

|NC2 (U1) × · · · × NC2 (Ut )
if |Uk | ∈ 2N,

for all k = 1, . . . , t

0 otherwise,

by (16).
Note that if the condition (23) is satisfied, then

|NC2 (Uk)| =
∣∣∣∣NC

( |Uk |
2

)∣∣∣∣ , (27)

for all k = 1, …, t (e.g., see [17, 22, 23]).
So, the formula (25) goes to

ϕ (X [Is]) =

⎧⎪⎨
⎪⎩
∣∣NC

(U1
2

) × · · · × NC
(Ut

2

)∣∣ if |Uk | ∈ 2N,

for all k = 1, . . . , t

0 otherwise,

by (27)

=

⎧⎪⎨
⎪⎩

t
�
l=1

c |Ul |
2

if |Ul | ∈ 2N,

for all l = 1, . . . , t

0 otherwise,

(28)

because |NC(X)| = c|X |, for all finite sets X (e.g., [17, 22, 23]). Therefore, the
formula (26) holds by (28). �

By the above combinatorial result, one obtains the following analytic result, char-
acterizing (14).

Theorem 2 Let Is be in the sense of (16), and X [Is], the corresponding free random
variable (20) of (A, ϕ), and assume that

π(Is ) = {U1, . . . , Ut },
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satisfies (18) and (19). Also, let

k ′
l = |Ul |

2
∈ R

+, for all l = 1, . . . , t,

and suppose there exist “mutually-distinct” k ′
j1
, …, k ′

jr
among {k ′

1, …, k ′
t }, where r

≤ t, and assume that there are n jl -many such k jl ’s, for l = 1, …, r, satisfying

r∑
l=1

n jl (2k jl ) = s.

Assume further that there is a permutation α of the symmetric group SX over X
= {k ′

j1
, …, k ′

jr
}, satisfying

k j1 > k j2 > · · · > k jr in R
+,

where

k jl = α
(
k ′

jl

) ∈ R
+, for all l = 1, . . . , r,

Then

ϕ (X [Is]) =

⎧⎪⎪⎨
⎪⎪⎩

(
r−1
�
i=1

β
�i

l=1n jl
k ji >k ji+1

)(
c
�N

l=1n jl
k jr

)
if k j1 , . . . , k jr ∈ N

0 otherwise

(29)

with

βk ji >k ji+1
= 2k ji −k ji+1

(
2k ji+1 + 1

k ji + 1

)(
k ji −k ji+1−1

�
l=1

(
2 − 1

(k ji + 1) − l

))
,

for all i = 1, …, r − 1.

Proof Under hypothesis, one has

ϕ (X [Is]) =

⎧⎪⎨
⎪⎩

t
�
l=1

ck ′
l

if k ′
l ∈ N,

for all l = 1, . . . , t

0 otherwise

by (26)
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=

⎧⎪⎪⎨
⎪⎪⎩

r
�
l=1

c
n jl
k jl

if k jl = α
(

k ′
jl

)
∈ N,

for all l = 1, . . . , r

0 otherwise

by assumptions

=
⎧⎨
⎩
(

r−1
�
i=1

β
�i

l=1n jl
k ji >k ji+1

)(
c
�r

l=1n jl
k jr

)
respectively,

0

by (11), where

βk ji >k ji+1
= 2k ji −k ji+1

(
2k ji+1 + 1

k ji + 1

)(
k ji −k ji+1−1

�
l=1

(
2 − 1

(k ji + 1) − l

))
,

for all i = 1, …, r − 1. Therefore, the free-distributional data (29) holds. �

The above formula (29) characterizes the free-distributional data (14) of our free
distribution ρ = ρx1,...,xs of (12 in (A, ϕ).

Example 2 Let x1, x2, x3, x4 be fixed mutually free semicircular elements of (A,

ϕ), and let

W = x2
1 x4

2 x2
1 x2

3 ∈ (A,ϕ)

induced by {x1, x2, x3, x4}. Then one can take

IW = (1, 1, 2, 2, 2, 2, 1, 1, 3, 3)
let= (i1, . . . , i10),

and

π(IW ) = {(i1, i2, i7, i8), (i3, i4, i5, i6), (i9, i10)},

with U1 = {i1, i2, i7, i8} = {1, 1, 1, 1}, having k ′
1 = |U1|

2 = 2,
U2 = {i3, i4, i5, i6} = {2, 2, 2, 2}, having k ′

2 = |U2|
2 = 2,

and U3 = {i7, i8} = {3, 3}, having k ′
3 = |U3|

2 = 1.
Therefore, one can take

k1 = 2 > 1 = k2, and hence, r = 2,

and

n1 = 2, and n2 = 1,
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since there are two 2’s (represented by k ′
1 and k ′

2), and there is only one 1 (represented
by k ′

3).
Therefore, we have

ϕ(W ) =
(
2−1
�
i=1

β
�i

l=1ni

ki >ki+1

)(
c
�N

l=1nl

kr

)
= βn1

k1>k2
cn1+n2

k2

= (
β2
2>1

)
c2+1
1

=
(
22−1

(
2·1+1
2+1

) (
2 − 1

(k1+1)−l

)0)2 (
2!
1!2!

)3
= 4,

by (29).

4.3 The Joint Free Distribution ρx1,...,xN

By Sects. 4.1 and 4.2, the free distribution ρ = ρx1,...,xN of (12) is determined by the
free-distributional data of (15), characterizing the free moments (13), and those of
(29), characterizingmixed freemoments (14) of themutually free, multi semicircular
elements x1, …, xN .

5 A C∗-Probability Space (X,ϕ) Generated by |N|-Many
Semicircular Elements

In this section, we consider a structure theorem of aC∗-algebraX generated bymutu-
ally free, |N|-many semicircular elements {xn}∞n=1. Let (A, ϕ) be a C∗ -probability
space. Assume that it contains a family X = {sn}∞n=1 of mutually free semicircular
elements sn’s. i.e., by [17, 22, 23], all mixed free cumulants of {sn}∞n=1 vanish with
respect to ϕ. For notational convenience, we re-index the family

{sn}∞n=1 = {s1, s2, s3, . . .}

to

{xn}∞n=0 = {x0, x1, x2, . . .},

without loss of generality, by assigning sn to xn−1, for all n ∈ N.
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5.1 Free-Homomorphisms

Let (A1, ϕ1) and (A2, ϕ2) be C∗-probability spaces. The C∗-probability space (A1,

ϕ1) is said to be free-homomorphic to the C∗-probability space (A2, ϕ2), if there
exists a ∗-homomorphism �: A1 → A2, such that

ϕ2 (�(a)) = ϕ1(a), for all a ∈ (A1,ϕ1).

In such a case, the ∗-homomorphism� is called a free-homomorphism from (A1,

ϕ1) to (A2, ϕ2). We write this free-homomorphic relation by

(A1,ϕ1)
free-homo⊆ (A2ϕ2). (30)

Definition 2 Suppose (A1, ϕ1)
free-homo⊆ (A2, ϕ2) in the sense of (30), via a free-

homomorphism � : A1 → A2. If this free-homomorphism � is a ∗-isomorphism
from A1 onto A2, then it is called a free-isomorphism. In this case, (A1, ϕ1) is said
to be free-isomorphic to (A2, ϕ2), or (A1, ϕ1) and (A2, ϕ2) are free-isomorphic.
This free-isomorphic relation is denoted by

(A1,ϕ1)
free-iso= (A2,ϕ2). (31)

By the definitions (30) and (31), if twoC∗-probability spaces are free-isomorphic,
then they are regarded as the same C∗-probability space.

5.2 A C∗-Probability Space (X, ϕ |X)

Let (A, ϕ) be a fixed C∗-probability space containing a family X = {xn}∞n=0, con-
sisting of mutually free semicircular elements xn’s, for n ∈ N0. Construct the C∗-
subalgebra X = C∗ (X) of A, generated by the family X, where C∗(Y ) are the
C∗-subalgebras of A generated by subsets,

Y ∪ Y ∗ ∪ {1A}of A,with Y ∗ = {y∗ ∈ A : y ∈ A}.

Then one can obtain a canonical C∗-probabilistic sub-structure,

Xϕ
denote= (X, ϕ = ϕ |X) , (32)

in (A, ϕ).

Now, let (B, ψ) be a C∗-probability space, containing a family S = {sn}n∈Z of
mutually free |Z| -many semicircular elements, and let
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Sψ
denote= (S, ψ = ψ |S) (33)

be the corresponding C∗-probabilistic sub-structure of (B, ψ), as in (32), where
S = C∗ (S) is the C∗-subalgebra of B generated by the family S.

Remark 1 Such a topological ∗-probability space S of (33) is well-determined
naturally (e.g., [5, 12]), or artificially (e.g., [6–8, 10, 11]).

Consider the following structure theorem of the C∗-algebra X in (A, ϕ).

Proposition 1 Let X be the C∗-subalgebra C∗(X) in (A, ϕ). Then

X
∗-iso=

n∈N0

C∗({xn}) ∗-iso= C∗
(

�
n∈N0

{xn}
)

, (34)

in (A, ϕ), where “
∗-iso= ” means “being ∗ -isomorphic.”

Here, the free product (�) in the first ∗-isomorphic relation of (34) is the free-
probability-theoretic free product of [17, 22, 28, 30], and the free product (�) in the
second ∗-isomorphic relation of (34) is the pure-algebraic free product generating
noncommutative free words in X = ∪

n∈N0

{xn}.

Proof LetX= C∗(X) be the C∗-subalgebra of A. Then, by the assumption that X is
a free family consisting of mutually free semicircular elements {xn}n∈N0 in (A, ϕ),

one can get that

X
de f= C∗(X) = C∗ ({xn}n∈N0

) ∗-iso= �
n∈N0

C∗({xn}). (35)

Therefore, the first ∗-isomorphic relation of (34) holds by (35). i.e., all elements
T ofX are the limits of linear combinations of free “reduced” words (under operator
multiplication on A) in X by [17, 22, 23, 30].

So, if we consider all noncommutative free words in the family X = {xn}n∈N0 ,

then they have their unique operator forms in X, which are the free reduced words
up to operator multiplication inherited from that on A, by (35). It shows that the
second ∗ -isomorphic relation of (34) holds, too. �

The above proposition provides a structure theorem of X in (A, ϕ). So, by (34),
one can understand the C∗-probability space Xϕ of (32) as an independent free-
probabilistic structure,

Xϕ =
(

�
n∈N0

C∗ ({xn}) , �
n∈N0

ϕ |C∗({xn})
)

. (36)

From below, we regardsXϕ of (32) and (36) as identical free-probabilistic objects.
Under similar arguments, one can get the following structure theorem of the C∗-

probability space Sψ of (33)
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Proposition 2 Let Sψ be the C∗-probability space (33) in (B, ψ). Then

Sψ =
(

�
j∈Z

C∗ ({s j }
)
, �

j∈Z
ψ |C∗({s j })

)
. (37)

Proof Similar to the proof of (34), the C∗-subalgebraS = C∗ (S) of B satisfies that

S
∗-iso= �

j∈Z
C∗({s j }) ∗-iso= C∗

(
�

j∈Z
{s j }

)
,

in (B, ψ),whereC∗(Z), here, mean theC∗-subalgebra of B generated by the subsets
Z ∪ Z∗ of B. Therefore, like in (34), the free-probabilistic structure (37) for the C∗-
probability space Sψ of (33) holds. �

To find a free-isomorphic relation between Xϕ and Sψ, we regard them as the
free-product C∗-probability spaces (36) and (37), respectively.

First, let’s define a bijective function g : N0 → Z. To do that we partition N0 and
Z as follows:

N0 = {0} � (2N) � (2N − 1), (38)

and (38)

Z = (−N) � {0} � N,

where � is the disjoint union, and

2N = {2n : n ∈ N}, 2N − 1 = {2n − 1 : n ∈ N},

and

−N = {−n : n ∈ N}.

From the partition (38), define a function g : N0 → Z by

g(n) =
⎧⎨
⎩
0 if n = 0(

n+1
2

)
if n ∈ 2N − 1

− n
2 if n ∈ 2N,

(39)

in Z, for all n ∈ N0. For instance,

g(0) = 0, g(1) = 1, g(2) = −1,

and
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g(3) = 2, g(4) = −2,

etc.
Then the function g of (39) is a well-defined bijection. By this bijection g, one

can construct a bijection

G : X → S, (40)

by (40)

G(xn) = sg(n), for all n ∈ N0.

where X and S are the generating free families of X of (32), and S of (33), respec-
tively.

Since g is a bijection from N0 onto Z, the function G of (40) is a bijection from
the generator set X of X onto the generator set S ofS. Therefore, one can define the
corresponding “multiplicative” linear transformation,

� : X → S, (41)

satisfying

� (xn) = G(xn) = sg(n) ∈ S,∀xn ∈ X,

and �(1A) = 1B, where G is in the bijection (40).
More precisely, for an alternating N -tuple (n1, …, nN ) ∈ N

N
0 , satisfying

n1 
= n2, n2 
= n3, . . . , nN−1 
= nN in N,

if one has a free reduced word T = N
�
l=1

xkl
nl

∈ Xϕ, where xn1 , …, xnN ∈ X, for k1, …,

kN ∈ N, for N ∈ N, then

�(T ) = �

(
N
�
l=1

xkl
nl

)
= N

�
l=1

�
(
xkl

nl

)

by the multiplicativity of �

= N
�
l=1

(
�(xnl )

)kl

by the multiplicativity of �
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= N
�
l=1

skl
g(nl )

, (42)

in Sψ, by (41).
Since (n1, …, nN ) is an alternating N -tuple of NN

0 , the N -tuple

(g(n1), ..., g(nN )) ∈ Z
N

is an alternating N -tuple in Z, too, by the bijectivity (39) and (40).
Thus, the formula (42) shows that the images�(T )∈Sψ of all free reducedwords

T ∈ Xϕ with their lengths-N become free reduced words with the same lengths-N .

i.e., the multiplicative linear transformation � of (41) preserves the free structures
of Xϕ to those ofSψ. Also, it is not hard to check that the bijectivity of the function
G of (40) guarantees the bijectivity and boundedness of � by (34) and (37), because
of the freeness-preserving property (42).

Lemma 3 Let � : X → S be the multiplicative linear transformation (41). Then it
is a ∗-isomorphism. i.e.,

X
∗-iso= S. (43)

Proof By the discussions in the very aboveparagraphs, themorphism� is a bijective,
bounded, freeness-preserving, multiplicative linear transformation. Remark again
that all elements of X (or, ofS) are the limits of linear combinations of free reduced
words in X (resp., in S) by (34) (resp., by (37)).

Observe that, for any xn ∈ X ⊂ X, and t ∈ C,

�
(
(t xn)

∗) = �
(
t xn

)

since x∗
n = xn, by the semicircularity on the generator set X of X

= t�(xn) = tsg(n) = ts∗
g(n)

since s∗
g(n) = sg(n), by the semicircularity on the generator set S of S

= (
tsg(n)

)∗ = (�(t xn))
∗ ,

in S.

Therefore, by (34), (37), and (42),

�
(
T ∗) = (�(T ))∗ inS, (44)

for all T ∈ X.
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Therefore, the morphism � of (41) is a ∗-isomorphism from X onto S by (44).
Equivalently, the ∗-isomorphic relation (43) holds. �

By the above lemma, we obtain the following free-isomorphic relation.

Theorem 3 LetXϕ andSψ be the C∗-probability spaces (36) and (37), respectively.
If ϕ(1A) = ψ(1B) in C, then

Xϕ
free-iso= Sψ. (45)

Proof By (43), there exists a ∗-isomorphism � of (41) from X onto S. By the
assumption that ϕ(1A) = ψ(1B), one has

ψ(1B) = ψ (�(1A)) = ϕ(1A)inC.

So, by (34) and (37), it suffices to show that the ∗-isomorphism � preserves the
free distributions of generators of Xϕ to those of generators of Sψ.

Let xn ∈ X ⊂ Xϕ. Then

ψ
(
(�(xn))

k
) = ψ

(
sk

g(n)

) =
(
ωkc k

2

)
= ϕ

(
xk

n

)
,

for all k ∈ N, by the semicircularity (4 of X ∪ S.

It shows that � preserves the free probability on Xϕ to that on Sψ, by (15) and
(29). i.e., it is a free-isomorphism. Therefore, two C∗-probability space Xϕ and Sψ

are free-isomorphic. �

The above free-isomorphic relation (45) illustrates that the study of free proba-
bility on Xϕ is to study that on Sψ. So, one can use the known results from [6–8,
11].

Assumption and Notation From below, we will identify Xϕ andSψ as the same
C∗-probability space, and denote it by Xϕ. �

5.3 Free-Distributional Data onXϕ

Let Xϕ = (X, ϕ) be the C∗-probability space (37) identified with (36), with its free-
generator set X = {x j } j∈Z of mutually free, |Z|-many semicircular elements x j ’s (by
(45)).

Theorem 4 Let Is = (i1, …, is) be an arbitrary s-tuple in Z
s, for s ∈ N, like in

(16), and let π(Is ) ∈ NC ({i1, . . . , is}) be in the sense of (19) for Is . If X [Is] be a free
random variable of Xϕ, in the sense of (20). If ϕ (X [Is]) 
= 0, then there exist r ≤ s
in N, and il1 , …, ilr ∈ {i1, …, is}, such that
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kl1 > kl2 > · · · > klr in N0,

and

n1, n2, . . . , nr ∈ N,

such that

r∑
l=1

nl (2kl) = sin N,

and

ϕ (X [Is]) =
(

r−1
�
i=1

β
�i

l=1ni

kli >kli+1

)(
c
�r

l=1nl

kr

)
, (46)

with

βkli >kli+1
= 2kli −kli+1

(
2kli+1 + 1

kli + 1

)(
kli −kli+1−1

�
u=1

(
2 − 1

(kli + 1) − u

))
,

for all i = 1, …, r − 1.

Proof The free-distributional data (46) onXϕ are obtained by (15), (29) and (45). In
particular, if i1 = i2 = ...= is inZ, then the free-distributional data (46) is determined
by (15); meanwhile, if there exists at least one ik0 ∈ {i1, …, is}, such that ik0 
= ik in
Z, for some k ∈ {1, …, s}, then the free-distributional data (46) is characterized by
(29). �

The above theorem characterizes the general free-distributional data on Xϕ,

because all elements of Xϕ are the limits of linear combinations of free reduced
words in X = {x j } j∈Z, by (36), (37) and (45).

6 Free-Isomorphisms on Xϕ

Throughout this section, we let Xϕ be the C∗ -probability space (37) generated by
a free semicircular family X = {x j } j∈Z in the sense that: X is a free family whose
mutually free elements are all semicircular.
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6.1 Shifts on Z

Define bijections h+ and h− on the set Z of all integers by

h+( j) = j + 1, and h−( j) = j = 1, (47)

for all j ∈ Z.

Remark 2 Remark that, by (47), there are bijections h′+ and h′−,

h′
± = g−1 ◦ h± ◦ gon N0, (47′)

where g is the bijection (39) fromN0 ontoZ. Thus, the existence of the bijections h±
of (47 on Z guarantees the existence of bijections h′± on N0. From below, we focus
on h± of (47).

Then one can define the bijections h(n)
± on Z, by

h(n)
±

de f= h± ◦ h± ◦ ....... ◦ h±︸ ︷︷ ︸
n-times

, (48)

for all n ∈ N0, with axiomatization:

h(0)
± = the identity map idZon Z,

where (◦) is the functional composition.
By (47) and (48), it is easy to check that

h(n)
± ( j) = j ± n, for all n ∈ N0.

Definition 3 We call the bijections h(n)
± of (48), the n-(±)-shifts on Z, for all n ∈

N0.

6.2 Integer Shifts on Xϕ

Let h(n)
± be the n-(±)-shifts (48) on Z. In this section, we construct ∗-isomorphisms

on Xϕ from the shifts h(n)
± . For convenience, let

N
±
0

denote= {±} × N0.

For (e, k) ∈ N
±
0 , define a multiplicative linear transformation λk

e acting on Xϕ by
the morphism satisfying
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λk
e

(
x j
) = x jek, for all x j ∈ X ⊂ Xϕ, (49)

where

jek =
{

j + k if e = +
j − k if e = −,

in Z.

By the multiplicativity (49) of the morphism λk
e , if T = N

�
l=1

xnl
jl
is a free reduced

words of Xϕ with its length-N , then

λk
e (T ) = N

�
l=1

λk
e

(
x jl

)nl = N
�
l=1

xnl
jl ek, (50)

in Xϕ.

Remark that, if ( j1, …, jN ) ∈ Z
N is alternating, then

( j1ek, ..., jN ek) ∈ Z
N

is alternating, too, by the bijectivity of h(k)
± , for all k ∈ N0.

So, the formula (50) demonstrates that λk
e assign free reduced words to free

reduced words with same lengths in Xϕ, for all (e, k) ∈ N
±
0 .

Note that, for any t ∈ C, and x j ∈ X ⊂ X,

λk
e

((
t x j

)∗) = t x jek = t x∗
jek = (

λk
e(t x j )

)∗
,

implying that

λk
e

(
T ∗) = (

λk
e(T )

)∗
, for all T ∈ Xϕ, (51)

in Xϕ, by (37).

Theorem 5 Let λk
e be a multiplicative linear transformation (49) on Xϕ, for (e, k)

∈ N
±
0 . Then it is a free-isomorphism on Xϕ.

Proof By (51), the morphism λk
e of (49) is a well-defined ∗-homomorphism on Xϕ.

And, by the bijectivity of the k-(e)-shift h(k)
e on Z, the restriction λk

e |X is a bijection
on the free-generator set X of Xϕ. Thus, by (50) and (37), it is bijective, and hence,
it is a ∗-isomorphism on Xϕ.

Observe now that

ϕ
((

λk
e(x j )

)n
)

= ϕ
(
xn

jek

) = ωnc n
2

= ϕ
(
xn

j

)
, (52)

for all n ∈ N, for all x j ∈ X.

Therefore, for all s-tuple Is ∈ Z
s,
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ϕ (X [Is]) = ϕ
(
λk

e (X [Is])
)
in Xϕ,

by (52) and (46), where X [Is] are in the sense of (46). It guarantees that

ϕ (T ) = ϕ
(
λk

e(T )
)
, for all T ∈ Xϕ,

in Xϕ, by (37). Therefore, this ∗-isomorphism λk
e preserves the free probability on

Xϕ to that on Xϕ, i.e., it is a free-isomorphism. �

Let Aut
(
Xϕ

)
be the automorphism group of Xϕ,

Aut
(
Xϕ

) de f=
⎛
⎝
⎧⎨
⎩α

∣∣∣∣∣∣
α is a

∗-isomorphism
on Xϕ

⎫⎬
⎭ , ·

⎞
⎠ ,

where (·) is the product (or composition) on ∗-isomorphisms.
Define now a subset λ of Aut

(
Xϕ

)
by

λ = {λk
e : (e, k) ∈ N

±
0 }, (53)

where λk
e are the free-isomorphisms (49) on Xϕ.

Theorem 6 The subset λ of (53) is an abelian subgroup of Aut (Xϕ).

Proof Let λk1
e1 , λk2

e2 ∈ λ. Then

λk1
e1λ

k2
e2 = λ

|e1k1e2k2|
sgn(e1k1e2k2)

in λ,

where sgn is the sign map on Z,

sgn( j) =
{+ if j ≥ 0

− if j < 0,

for all j ∈ Z, and |.| is the absolute value on Z. Therefore, the algebraic structure
(λ, ·) is well-defined in Aut

(
Xϕ

)
.

One can check that(
λk1

e1λ
k2
e2

)
λk3

e3 = λ
|e1k1e2k2|
sgn(e1k1e2k2)

λk3
e3

= λ
||e1k1e2k2|e3k3|
sgn(e1k1e2k2e3k3)

= λ
|e1k1|e2k2e3k3||
sgn(e1k1e2k2e3k3)

= λk1
e1

(
λk2

e2λ
k3
e3

)
,

in λ. Observe now that the subset λ contains

λ0
e = 1Xϕ

, the identity map on X,

by (47) and (49), satisfying
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1Xϕ
· λk

e = λk
e = λk

e · 1Xϕ
on Xϕ,

for all (e, k) ∈ N
±
0 .

Note that, for any (e, k) ∈ N
±
0 ,

λk
eλ

k
−e = λ0

sgn(0) = 1Xϕ
= λk

−eλ
k
e, in λ.

It shows that every element λk
e ∈ λ has its unique (·)-inverse λk−e, i.e.,

(
λk

e

)−1 = λk
−e, in λ,

where y−1 mean the group-inverses of y. So, the pair (λ, ·) is a subgroup of Aut (Xϕ).

It is not difficult to check that

λk1
e1λ

k2
e2 = λ

|e1k1e2k2|
sgn(e1k1e2k2)

= λ
|e2k2e1k1|
sgn(e2k2e1k1)

= λk2
e2λ

k1
e1 ,

in λ. Therefore, the subgroup (λ, ·) is commutative in Aut
(
Xϕ

)
. �

The above theorem shows that the setλ of (53) is an abelian group.More precisely,
we have the following structure theorem of λ.

Theorem 7 Let λ
denote= (λ, ·) be the abelian subgroup of Aut (Xϕ). Then

λ
Group= (Z,+), (54)

where “
Group= ” means “being group-isomorphic.”

Proof Let λ be the subgroup (53) of Aut (Xϕ). Define a map 	 : Z → λ by

	( j) = λ
| j |
sgn( j), including	(0) = 1Xϕ

.

Then it is a well-defined bijection from Z onto λ, because

j �−→ (sgn( j), | j |)

is bijective from Z onto N
±
0 ; and it satisfies that

	( j1 + j2) = λ
| j1+ j2|
sgn( j1+ j2)

= λ
| j1|
sgn( j1)

λ
| j2|
sgn( j2)

= 	( j1)	( j2),

in λ, for all j1, j2 ∈ Z.

Therefore, the group-isomorphic relation (54) holds. �

The above theorem characterizes the abelian group λ as an infinite cyclic abelian
group in Aut (Xϕ).
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By definition, there is a natural action θ of the groupλ acting on ourC∗-probability
space Xϕ;

θ
(
λk

e

)
(T ) = λk

e(T ), for all T ∈ Xϕ. (55)

Definition 4 The abelian group λ of (53), acting on Xϕ via the natural group-action
θ of (55), is called the integer-shift group on Xϕ.

6.3 Free-Isomorphic Relations onXϕ

In this section, we consider how the integer-shift group λ of (53) affects the free
probability on Xϕ, under the group-action θ of (55).

Theorem 8 Let λ be the integer-shift group, and let θ be the group-action (55) of λ
acting on Xϕ. Then the free probability on Xϕ is preserved by θ. i.e.,

ϕ
(
θ
(
λk

e

)
(T )

) = ϕ (T ) , for all T ∈ Xϕ, (56)

for all λk
e ∈ λ.

Proof By (55), for any T ∈ Xϕ,

θ
(
λk

e

)
(T ) = λk

e(T )in Xϕ.

And all integer-shifts λk
e ∈ λ are free-isomorphisms on Xϕ, by (52). Therefore,

for any T ∈ Xϕ,

ϕ
(
θ
(
λk

e

)
(T )

) = ϕ
(
λk

e(T )
) = ϕ(T ).

Therefore, the action θ of λ preserves the free probability on Xϕ. �

The above theorem characterizes how the integer-shift group λ preserves the free
probability on Xϕ.

Notation From below, we denote the images θ
(
λk

e

)
(T ) ∈ Xϕ of T ∈ Xϕ simply

by λk
e(T ), for all λk

e ∈ λ. �

7 A Group Dynamical System (λ,�X,α)

Let λ ⊂ Aut (Xϕ) be the integer-shift group (53) acting on the C∗-algebra Xϕ gen-
erated by the free family {x j } j∈Z of semicircular elements x j ’s (via the action θ of
(55)).
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Remark that, by (54), the integer-shift group λ is a discrete group. From this
discrete group λ, define the Hilbert space,

Hλ
de f= l2 (λ) , (57)

the l2-space generated by all non-trivial group elements λk
e 
= 1Xϕ

∈ λ. i.e., if h is a
vector of Hλ, then

h =
∑
g∈λ

tgξg,with tg ∈ C,

satisfying

< h, h >2=
∑
g∈λ

∣∣tg

∣∣2 < ∞,

where |.| is the modulus on C, and where <,>2 is the inner product on Hλ,

〈∑
g∈λ

tgξg,
∑
i∈λ

siξi

〉

2

de f=
∑
g∈λ

tgsg.

Then this separable Hilbert space Hλ has its orthonormal basis,

B = {ξg : g ∈ λ× = λ \ {1Xϕ
}},

satisfying

〈
ξg1 , ξg2

〉
2 = δg1,g2 ,∀g1, g2 ∈ λ×,

and

∥∥ξg

∥∥
2 =

√〈
ξg, ξg

〉
2 = 1,∀g ∈ λ×.

Also, if we consider the subset

B1 = B ∪ {ξ1Xϕ
}of Hλ,

then

ξg1ξg2 = ξg1g2 in B1, for all g1, g2 ∈ λ,

implying that
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ξgξg−1 = ξgg−1 = ξ1Xϕ
= ξg−1g = ξg−1ξg,

in B1, for all g ∈ λ.

This l2-Hilbert space Hλ of (57) is called the group Hilbert space of λ. Consider
the operator algebra B(Hλ), consisting of all bounded operators on Hλ.Bydefinition,
group elements g of λ act as multiplication operators Mg on Hλ, i.e.,

Mg (h) = ξgh, for all h ∈ Hλ. (58)

i.e., on the group Hilbert space Hλ, there is the group-action M of λ such that

M(g) = Mg ∈ B(Hλ), for all g ∈ λ, (59)

by (58). Equivalently, the pair (Hλ, m) forms a Hilbert-space representation of λ,

called the group representation of λ.

Definition 5 Let (Hλ, M) be the group representation of the integer-shift group λ,

consisting of the group Hilbert space Hλ of (57), and the group-action M of (59).
Define the C∗-subalgebra � of the operator algebra B(Hλ) by the C∗-algebra

�
de f= C∗

M(λ) = C∗ (M(λ)) (60)

in B(Hλ). Then the C∗-algebra � is called the group C∗-algebra of λ induced by
(Hλ, M).

By definition, every element T of � has its expression,

T =
∑
g∈λ

tg Mg,with tg ∈ C,

where
∑

is the infinite (or, the limit of finite) sum(s) under the operator–norm-
topology inherited from that for B(Hλ). Note that the C∗-algebra � of (60) is
equipped with the canonical trace τ on �, defined by

τ

⎛
⎝∑

g∈λ

tg Mg

⎞
⎠ = t1Xϕ

. (61)

Indeed, the linear functional τ on the group C∗-algebra � is a well-defined trace
satisfying

τ (a1a2) = τ (a2a1), for all a1, a2 ∈ �,

by (61).
Naturally, the pair (�, τ ) forms a “unital” C∗ -probability space satisfying
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τ (1�) = τ
(

M1Xϕ

)
= 1,

where 1� = M1Xϕ
is the unity of �.

Definition 6 The unital C∗-probability space (�, τ ) is called the canonical group
C∗-probability space of λ.

Let X be the given C∗-algebra generated by the free semicircular family {x j } j∈Z.
Remark that, since X is a C∗-algebra, there exists a well-determined
GNS-representation (HX, β) ofX, byGelfand-Naimak-Segal, where HX is a Hilbert
space where X acts, and β is the corresponding GNS-representation (or algebra-
action) of X acting on HX. From below, let’s fix the GNS-Hilbert space HX satis-
fying X ⊂ B(HX), where B(HX) is the operator algebra consisting of all bounded
operators on HX.

Remark 3 Recall that our C∗-probability space Xϕ is originally introduced to be a
C∗-probabilistic sub-structure of a C∗-probability space (A, ϕ). This C∗-algebra A
is understood as a C∗-subalgebra of an operator algebra B(H), whereH is a Hilbert
space that A acts on. So, the GNS-Hilbert space HX is Hilbert-space-homomorphic
to H, as a subspace. However, since we understand Xϕ as an independent C∗-
probabilistic structure (37), we here focus on the GNS-Hilbert space HX.

For the group Hilbert space Hλ of our integer-shift group λ and the GNS-Hilbert
space HX of the C∗ -probability space Xϕ, define the tensor product Hilbert space
H by

H
def= Hλ ⊗ HX, (62)

where ⊗ is the tensor product of Hilbert spaces.
Then the tensor product C∗-algebras

�X
denote= � ⊗C X (63)

acts on the Hilbert space H of (62), where ⊗C is the tensor product of C∗-algebras.
i.e., the C∗-algebra �X of (63) is a C∗-subalgebra of the operator algebra B(H).

7.1 A Group C∗-Dynamical System � = (λ,�X,α)

Let Mg ∈ � be multiplication operators (58) on the group Hilbert space Hλ of (57)
with their symbols g ∈ λ.

Notation and Assumption 1 (in short,NA 1) Frombelow, if there are no confusion,
then we denote Mλk

e
∈ � simply by λk

e, for all λk
e ∈ λ ⊂ �. Under this simplified

notation, all elements Y of � are expressed by
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Y =
∑
g∈λ

tg Mg
denote=

∑
g∈λ

tgg, in �, (64)

by (60). �
Define now a group-action α of λ acting on the tensor product C∗-algebra �X of
(63) by a morphism satisfying

α
(
λk

e

) (
λl

f ⊗ T
) = λk

eλ
l
f ⊗ T, (65)

for all λk
e ∈ λ, and for all λl

f ⊗ T ∈ �X, with λl
f ∈ λ ⊂ �, and T ∈ Xϕ.

Observe now that
α
(
λk1

e1λ
k2
e2

) (
λl

f ⊗ T
)

= α
(
λ

|e1k1e2k2|
sig(e1k1e2k2)

) (
λl

f ⊗ T
)

by (53)

= λ
|e1k1e2k2|
sgn(e1k1e2k2)

λl
f ⊗ T

by (65)

= λk1
e1λ

k2
e2λ

l
f ⊗ T = λk1

e1

(
λk2

e2λ
l
f

)
⊗ T

= α
(
λk1

e1

) (
λk2

e2λ
l
f ⊗ T

)

= α
(
λk1

e1

) (
α
(
λk2

e2

) (
λl

f ⊗ T
))

= (
α
(
λk1

e1

)
α
(
λk2

e2

)) (
λl

f ⊗ T
)

,

for all λl
f ⊗ T ∈ �, with λl

f ∈ λ ⊂ �, and T ∈ Xϕ. So, by (60) and (63),

α
(
λk1

e1λ
k2
e2

) = (
α
(
λk1

e1

)) (
α
(
λk2

e2

))
on �X, (66)

for λkl
el

∈ λ, for all l = 1, 2.
Also, one has

α
((

λk
e

)−1
) (

λl
f ⊗ T

)
= α

(
λk−e

) (
λl

f ⊗ T
)

= λk−eλ
l
f ⊗ T = (

α
(
λk

e

))∗ (
λl

f ⊗ T
)

,

on the Hilbert space H of (61), for all λk
e ∈ λ and λl

f ⊗ T ∈ �X, implying that

α
((

λk
e

)−1
)

= α
(
λk

e

)∗
,∀λk

e ∈ λ. (67)

Therefore, by (66) and (67), the morphism α of (65) is indeed a well-defined
group-action of λ acting on �X .

Proposition 3 Let � = (λ, �X, α) be a mathematical triple consisting of the
integer-shift group λ, the tensor product C∗-algebra �X of (63), and the group-
action α of (65). Then � is a well-defined group C∗-dynamical system.



190 I. Cho

Proof It suffices to show that α is a well-defined group-action of λ acting on �X,

but, by (66) and (67), it is. �

So, we obtain a well-defined group C∗-dynamical system,

� = (λ,�X,α) (68)

of the integer-shift group λ acting on �X via the group-action α.

Let

G =
∑
λk

e∈λ

tλk
e
λk

e ∈ �, and T = N
�
l=1

xnl
jl

∈ Xϕ,

under NA 1 (See (64)), where the N -tuple ( j1, ..., jN ) is alternating in Z, and n1,

…, nN ∈ N, and let

Y = G ⊗ T ∈ �X. (69)

By assumption, the tensor factor T of the operator Y of (69) is a free reduced
word of Xϕ with its length-N , by (34), (37) and (45).

For any λk0
e0 ∈ λ,

α
(
λk0

e0

)
(Y ) = λk0

e0 G ⊗ T =
(∑

λk
e∈λ

t k
e λk0

e0λ
k
e

)
⊗ T

by (65), where t k
e

denote= tλk
e
in C

=
(∑

λk
e∈λ

t k
e λ

|e0k0ek|
sgn(e0k0ek)

)
⊗ T

= ∑
λk

e∈λ

t k
e

((
λ

|e0k0ek|
sgn(e0k0ek)

)
⊗ T

)

=
∑
λk

e∈λ

t k
e

((
λ

|e0k0ek|
sgn(e0k0ek)

)
⊗
(

N
�
l=1

xnl
jl

))
, (70)

in �X, whenever Y ∈ �X is in the sense of (69).
The above formula (70) shows that, to consider the images of the action α of λ

in �X, it is sufficient to consider the images of λk
e ⊗ T ∈ �X, where T are the free

reduced words.
For the dynamical system � of (68), one can define the corresponding crossed

product C∗-algebra

X�
de f= �X ×α λ, (71)

by the C∗-algebra generated by �X and {α (g)}g∈λ , satisfying the α- relation:
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(
W1, λk1

e1

) (
W2, λk2

e2

) = ((
α
(
λk2

e1λ
k2
e2

)
W1

)
W2, λk1

e1λ
k2
e2

)
, (72)

and

(
W, λk

e

)∗ = (
α
(
λk

−e

) (
W ∗) , λk

−e

)
,

under NA 1, for all (e1, k1), (e2, k2), (e, k) ∈ N
±
0 , and W1, W2, W ∈ �X.

Definition 7 Let X� = �X ×α λ be the crossed product C∗-algebra (71) under the
α -relation (72), induced by the groupC∗-dynamical system� = (λ, �X, α) of (68).
Then it is called the �-dynamical (C∗-)algebra of the integer-shift group λ (on Xϕ).

7.2 The �-Dynamical Algebra X� of λ

Let X� = �X ×α λ be the �-dynamical algebra (71) of the integer-shift group
λ induced by the group C∗-dynamical system � of (7.1.5). Now, we construct the
tensor product C∗-algebra

�2X
de f= �X ⊗C �. (73)

As a C∗-subalgebra of �2X of (73), define the “conditional” tensor product C∗-
algebra

X�′ de f= �X ⊗α �, (74)

by the C∗-algebra satisfying the α-conditions:

(
W1 ⊗α λk1

e1

) (
W2 ⊗α λk2

e2

) = (
α
(
λk1

e1λ
k2
e2

)
(W1)

)
W2 ⊗α λk1

e1λ
k2
e2 , (75)

and

(
W ⊗α λk

e

)∗ = (
α
(
λk

−e

)
(W )

) ⊗α λk
−e,

under NA 1, for all W1, W2, W ∈ �X, and λk1
e1 , λk2

e2 , λk
e ∈ λ ⊂ �.

Theorem 9 Let X� be the �-dynamical algebra of the integer-shift group λ, and
let X�′ be the conditional tensor product C∗-algebra (74) satisfying the α-condition
(75), as a C∗-subalgebra of �2X in the sense of (73). Then

X�
∗-iso= X�′. (76)

Proof First, note that, by the definition (74), the conditional tensor product C∗-
algebra X�′ is generated by the generators,
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(
λk1

e1 ⊗ x j
) ⊗ λk2

e2 ,

for (e1, k1), (e2, k2) ∈ N
±
0 , and x j ∈ X.

Define a linear transformation 
 : X� → X�′ by the generator-preserving mor-
phism,



((

λk1
e1 ⊗ x j , λk2

e2

)) = (
λk1

e1 ⊗ x j
) ⊗α λk2

e2 . (77)

It is not difficult to check that themorphism
 is injective and bounded.Moreover,
for any

T ′ = (
λk

e ⊗ x j
) ⊗α

⎛
⎝∑

g∈λ

tgg

⎞
⎠ =

∑
g∈λ

tg
((

λk
e ⊗ x j

) ⊗α g
)

in X�′, there exists a unique

T =
∑
g∈λ

tg
(
λk

e ⊗ x j , g
)
in X�,

such that 
(T ) = T ′, by the linearity of 
, implying that 
 is surjective, too.
So, the linear morphism 
 of (77) is a bounded, bijective linear transformation

from X� onto X�′. Consider now that



((

λk1
e1 ⊗ x j , λk2

e2

) (
λk3

e3 ⊗ xi , λk4
e4

))
= 


(
λk2

e2λ
k4
e4λ

k1
e1λ

k3
e3 ⊗ x j xi , λk2

e2λ
k4
e4

)
by (72)

= (
λk2

e2λ
k4
e4λ

k1
e1λ

k3
e3 ⊗ x j xi

) ⊗α λk2
e2λ

k4
e4

by (77)

= (
(λk1

e1 ⊗ x j ) ⊗α λk2
e2

) (
(λk3

e3 ⊗ xi ) ⊗α λk4
e4

)
by (75)

= 

(
λk1

e1 ⊗ x j , λk2
e2

)


(
λk3

e3 ⊗ xi , λk4
e4

)
. (78)

By (78), the morphism 
 is multiplicative from X� to X�′, i.e.,


(T1T2) = 
(T1)
(T2) in X�′, (78′)

for all T1, T2 ∈ X�.

Furthermore, one can have that



((

λk1
e1 ⊗ x j , λk2

e2

)∗) = 

((

λk2−e2λ
k1
e1 ⊗ x j

)
, λk2−e2

)
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by (72)

=
(
λk2−e2λ

k1
e1 ⊗ x j

)
⊗α λk2−e2 = (

(λk1
e1 ⊗ x j ) ⊗α λk2

e2

)∗
by (75)

= 

((

λk1
e1 ⊗ x j , λk2

e2

))∗
. (79)

By (79), the morphism 
 is adjoint-preserving in the sense that



(
T ∗) = (
(T ))∗ in X�′, (79′)

for all T ∈ X�.

By (78)′, and (79)′, the morphism 
 is a ∗-homomorphism.
Therefore, 
 is a well-defined ∗-isomorphism from X� onto X�′, equivalently,

the C∗-algebras X� and X�′ are ∗-isomorphic. �

By the isomorphism theorem (76), the C∗-algebrasX� andX�′ are ∗-isomorphic
C∗-algebras. So, from below, one can regard our �-dynamical algebra X� as the
conditional tensor product C∗-algebra X�′ of (74) satisfying the α-condition (75).

Notation and Assumption 2 (in short, NA 2) In the following text, we understand
X� as X�′ (if needed), and we denote X�′ by X� as an identical C∗-algebra. �

8 Free Probability on X�

Let � = (λ, �X, α) be the group C∗-dynamical system (68) of the integer-shift
group λ acting on the C∗-algebra �X of (63) via the group-action α of (65), and
X� = �X ×α λ be the �-dynamical algebra (71) of λ satisfying the α-relation (72),
which is identified with the conditional tensor product C∗-algebra�X⊗α � of (74),
by (76).

8.1 Free Probability on �Xϕ = (
�X, τϕ

)

Let � be the group C∗-algebra of λ. Then the tensor product C∗-algebra �X of (63)
induces the C∗ -probabilistic structure with a linear functional τϕ on �X satisfying
that

τϕ (G ⊗ T ) = ϕ (G(T )) (80)

for all G ∈ �, T ∈ X.
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By (80), each generating operator λk
e ⊗ xn

j of �X, for λk
e ∈ λ ⊂ �, x j ∈ X ⊂ Xϕ,

and n ∈ N, satisfies that

τϕ

(
λk

e ⊗ xn
j

)
= ϕ

(
λk

e(xn
j )
)

= ϕ
(

xn
jek

)
= ωnc n

2
,

(81)

by (46).
By (80) and (81), we obtain a well-defined C∗-probability space,

�Xϕ
denote= (

�X, τϕ

)
. (82)

Now, let

u(e,k)
j

de f= λk
e ⊗ x j , for (e, k) ∈ N

±
0 , j ∈ Z, (83)

be a generating free random variable of the C∗-probability space �Xϕ of (82). Then

(
u(e,k)

j

)n = (
λk

e

)n ⊗ xn
j

= λ
|n(ek)|
sgn(n(ek)) ⊗ xn

j = λnk
e ⊗ xn

j ,

because

sgn (n(ek)) = sgn (ekek...ek) = sgn(e),

and

|n(ek)| = |ekek...ek| = |nk| = nk,

in Z. i.e.,

(
u(e,k)

j

)n = (
λk

e ⊗ x j
)n = λnk

e ⊗ xn
j , (84)

in �Xϕ, for all n ∈ N.

Theorem 10 Let u(e,k)
j ∈ �Xϕ be in the sense of (83). Then the free distribution of

u(e,k)
j is characterized by the following joint free moments of u(e,k)

j and u(−e,k)
j ;

τϕ

((
u(e,k)

j

)n) = τϕ

((
u(−e,k)

j

)n) = ωnc n
2
, (85)

and
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τϕ

(
n
�
l=1

u(el ,kl )
j

)
= ϕ

(
xn

j f l

) = ωnc n
2
,

with

f = sgn

(
n∑

l=1

elkl

)
, and l =

∣∣∣∣∣
n∑

l=1

elkl

∣∣∣∣∣ ,

for all n ∈ N, where (el , kl) ∈ {(e, k), (−e, k)}, for l = 1, …, n.

Proof Let u(e,k)
j be a generating free random variable (83) of �Xϕ. Then

(
u(e,k)

j

)∗ = (
λk

e

)∗ ⊗ x∗
j = λk

−e ⊗ x j = u(−e,k)
j ,

in �Xϕ.

Since u(e,k)
j is not self-adjoint in �X, in general, the free distribution of it is

characterized by the “joint” free moments of u(e,k)
j , those of u(−e,k)

j , and their joinr
free moments.

First of all, one can obtain that

τϕ

((
u(e,k)

j

)n) = τϕ

(
λnk

e ⊗ xn
j

)
= ϕ

(
λnk

e (xn
j )
)

= ϕ
(

xn
je(nk)

)
= ωnc n

2
,

for all n ∈ N, by (84) and the semicircularity of x je(nk) ∈ X in Xϕ. Similarly,

τϕ

((
u(−e,k)

j

)n) = τϕ

(
λnk−e ⊗ xn

j

)
= ϕ

(
λnk−e(xn

j )
)

= ϕ
(

xn
j−e(nk)

)
= ωnc n

2
,

for all n ∈ N, by the semicircularity of x j−e(nk) ∈ X in Xϕ.

Now, consider that, for (el , kl) ∈ {(e, k), (−e, k)}, for l = 1, …, n,

U = n
�
l=1

u(el ,kl )
j =

(
n
�
l=1

λkl
el

)
⊗ xn

j = λ
|�n

l=1el kl|
sgn(�n

l=1el kl)
⊗ xn

j

in �Xϕ, and hence,

τϕ (U ) = ϕ
(
λl

f (xn
j )
) = ϕ

(
xn

j f l

) = ωnc n
2
,

where
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f = sgn

(
n∑

l=1

elkl

)
, and l =

∣∣∣∣∣
n∑

l=1

elkl

∣∣∣∣∣ .

Therefore, the free-distributional data (85) holds on �Xϕ. �

The above theorem characterizes the free-distributional data of generating free
random variables of �Xϕ, with help of (46). It shows that the free distributions of
such free random variables are depending on the semicircular law, by (4) and (85).
As a special case, the following corollary is obtained.

Corollary 2 Let u(e,0)
j = 1Xϕ

⊗ x j be a free random variable (83) of �Xϕ. Then it
is semicircular in �Xϕ. i.e.,

u(e,0)
j is semicircular in �Xϕ. (86)

Proof Let u(e,0)
j be as above in �Xϕ. Then it is self-adjoint in �X, since

(
u(e,0)

j

)∗ = 1∗
Xϕ

⊗ x∗
j = u(e,0)

j .

So, the free distribution of it is characterized by the free moments,

(
τϕ

((
u(e,0)

j

)n))∞
n=1

,

and

τϕ

((
u(e,0)

j

)n) = ϕ
(
xn

j

) = ωnc n
2
,

for all n ∈ N, by (85). Thus, the statement (86) holds true. �

It is interesting that there do exist free random variables s of a certain C∗-
probability space (X, τX), such that: (i) s is not self-adjoint in X, and (ii)

τX(sn) = τX
(
(s∗)n

) = τX

(
n
�
l=1

sl

)
= ωnc n

2
,

where

(s1, ..., sn) ∈ {s, s∗}n,

for all n ∈ N. i.e., even though s is not self-adjoint in (X, τX), the free distribution of
s (and that of s∗) is followed by the semicircular law. Indeed, the free-distributional
data (85) guarantees the existence of such free random variables.



Group Dynamical Systems on C∗-Algebras Generated … 197

8.2 Free-Distributional Data on X�

Let X� be the �-dynamical algebra (71) or (74) of the integer-shift group λ acting
on �X via the group-action α. For convenience, we let

X� = �X ⊗α �,

by (76).
As in Sect. 8.1, since a tensor-factor �X of X� has its free-probabilistic structure

(82), and the other tensor-factor � has its canonical free-probabilistic structure (61),
one can consider the free probability on our �-dynamical algebra X�.

Define a linear functional τ 0
ϕ on X� by the linear morphism satisfying that

τ 0
ϕ ((G ⊗ T ) ⊗α K ) = τϕ (τ (K )(G ⊗ T )) , (87)

for all G ⊗ T ∈ �X and K ∈ �, where τ is the canonical trace (61) on �, and τϕ is
the linear functional (80) on �X.

By (80) and (87), we have i

τ 0
ϕ ((G ⊗ T ) ⊗α K ) = τ (K )ϕ (G(T )) .

Definition 8 LetX� be the�-dynamical algebra ofλ, and τ 0
ϕ be the linear functional

(87) on X�. Then the C∗-probability space,

X�0
denote= (

X�, τ 0
ϕ

)
(88)

is called the �-dynamical C∗-probability space (induced by λ acting on Xϕ).

Now, let

U ( f,l)
j,(e,k) = u(e,k)

j ⊗α λl
f = (

λk
e ⊗ x j

) ⊗α λl
f , (89)

for (e, k), ( f, l) ∈ N
±
0 , and j ∈ Z. Then, such an operator U ( f,l)

j,(e,k) is a generating
operator of X�, by (76).

Observe that
(

U ( f,l)
j,(e,k)

)n = (
(λk

e ⊗ x j ) ⊗α λl
f

)n

= (
(λk

e ⊗ x j ) ⊗α λl
f

)2 (
(λk

e ⊗ x j ) ⊗α λl
f

)n−2

=
(((

λl
f

)2
λk

e ⊗ x j

)
⊗α

(
λl

f

)2) (
(λk

e ⊗ x j ) ⊗α λl
f

)n−2

by (75) (or (72))
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=
((

λ
|2( f l)|
sgn(2( f l))λ

k
e ⊗ x2

j

)
⊗α λ

|2( f l)|
sgn(2 f l)

) (
(λk

e ⊗ x j ) ⊗α λl
f

)n−2

= (((
λ2l

f λk
e

) ⊗ x2
j

) ⊗α λ2l
f

) (
(λk

e ⊗ x j ) ⊗α λl
f

)n−2

since f l f l = f (2l) in Z, i.e.,

sgn (2( f l)) = f, and |2( f l)| = |2l| = 2l,

for all ( f, l) ∈ N
±
0 , and hence, it goes to

((
λ2l

f λk
e ⊗ x2

j

) ⊗α λ2l
f

)
· ((λk

e ⊗ x j ) ⊗α λl
f

) (
(λk

e ⊗ x j ) ⊗α λl
f

)n−3

((
λ3l

f λk
e ⊗ x3

j

) ⊗α λ3l
f

) (
(λk

e ⊗ x j ) ⊗α λl
f

)n−3

= · · ·
= ((

λnl
f λk

e

) ⊗ xn
j

) ⊗α λnl
f

=
(
λ

| f (nl)ek|
sgn( f (nl)ek) ⊗ xn

j

)
⊗α λnl

f , (90)

in X�, for all n ∈ N.

Therefore, by (87) and (90), we obtain that if

U ( f,l)
j,(e,k) = u(e,k)

j ⊗α λl
f ∈ X�0

is a generating free random variable (89), then

τ 0
ϕ

((
U ( f,l)

j,(e,k)

)n) = τ 0
ϕ

((
λ

| f (nl)ek|
sgn( f (nl)ek) ⊗ xn

j

)
⊗α λnl

f

)

by (90)

= τ
(
λnl

f

)
ϕ
(
λk

e

(
xn

j

))
where

k = | f (nl)ek| , and e = sgn ( f (nl)ek) ,

then it goes to

= δλnl
f , 1Xϕ

ϕ
(
xn

jek

) = δλnl
f , 1Xϕ

(
ωnc n

2

)
, (91)

by (61), for all n ∈ N, where δ is the Kronecker delta.

Lemma 4 Let U ( f,l)
j,(e,k) be a generating free random variable (89) of the �-dynamical

C∗-probability space X�0 of (88). Then



Group Dynamical Systems on C∗-Algebras Generated … 199

τ 0
ϕ

((
U ( f,l)

j,(e,k)

)n) = δλl
f , 1Xϕ

(
ωnc n

2

)

= τ 0
ϕ

(((
U ( f,l)

j,(e,k)

)∗)n
)

,

(92)

for all n ∈ N.

Proof The first equality of (92) is proven by (91). Indeed,

δλnl
f , 1Xϕ

= δλl
f , 1Xϕ

in {0, 1},

by (54), i.e.,

λl
f 
= 1Xϕ

⇐⇒ λnl
f 
= 1Xϕ

, for all n ∈ N,

in λ ⊂ �. Therefore, the formula (91) implies the first equality of (92).
Observe now that

(
U ( f,l)

j,(e,k)

)∗ =
(
(λk

e ⊗ x j ) ⊗α λl
f

)∗

=
(
λl

− f λ
k
e ⊗ x j

)
⊗α λl

− f

=
(
λ

|ek− f l|
sgn(ek− f l) ⊗ x j

)
⊗α λl

− f ,

in X�, by (75) (or (72)). So, one can get that

((
U ( f,l)

j,(e,k)

)∗)n
=
(
λnl

− f λ
|ek− f l|
sgn(ek− f l) ⊗ xn

j

)
⊗ λnl

− f ,

in X�0, for all n ∈ N, by (90). And hence,

τ 0
ϕ

(((
U ( f,l0

j,(e,k)

)∗)n
)

= δλnl
− f , 1Xϕ

(
ωnc n

2

)
, (93)

for all n ∈ N. But

δλnl
− f , 1Xϕ

= δλnl
f , 1Xϕ

= δλl
f , 1Xϕ

in{0, 1},

by (54). Indeed,

λl
f 
= 1Xϕ

⇐⇒ (
λl

f

)∗ 
= (
1Xϕ

)∗ = 1Xϕ

in λ ⊂ �.

Therefore, the second equality of (92) holds by (93). �
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The above lemma provides the free-momental information of U ( f,l)
j,(e,k), and those

of the adjoint
(

U ( f,l)
j,(e,k)

)∗
in X�0, by (92). Note that, by the proof of (92), one has

that

(
U ( f,l)

j,(e,k)

)∗ = U (− f,l)
j,(sgn(ek− f l), |ek− f l|)in X�0, (94)

in the sense of (89).
Let’s now consider the mixed free moments of them, to fully characterize the joint

free moments of U ( f,l)
j,(e,k) in X�0.

Notation and Assumption 3 (in shift, NA 3) Let U ( f,l)
j,(e,k) ∈ X�0 be in the sense of

(89).

Then

e∗ denote= sgn (ek − f l) in {±1},

and

k∗ denote= |ek − f l| in N0.

Then the adjoint
(

U ( f,l)
j,(e,k)

)∗
of (94) is identified with

(
U ( f,l)

j,(e,k)

)∗ = U (− f,l)
j,(e∗,k∗)in X�0.

Also, for convenience, let’s denote

U1 = U ( f,l)
j,(e,k)and U2 = U (− f,l)

j,(e∗,k∗).

�
Let U1 and U2 be in the sense of NA 3 in X�0, and take a “mixed” N -tuple

J = (i1, . . . , iN ) ∈ {1, 2}N , for N ∈ N \ {1},

i.e., there exists at least one ik0 , for k0 ∈ {1, …, N }, such that ik0 
= ik, for some
k ∈ {1, …, N }.

For the above mixed N -tuple J, construct a free random variable WJ ,

WJ = N
�
l=1

Uil ∈ X�0. (95)

It is not hard to check that neither
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J = (1, 2, 1, 2, . . . , 1, 2),

nor

J = (2, 1, 2, 1, . . . , 2, 1),

if and only if

τ 0
ϕ (WJ ) = 0,

by the very definition (87) of our linear functional τ 0
ϕ, because

τ
(
(λl

f λ
l
− f )....(λ

l
f λ

l
− f )

)
= τ

(
1Xϕ

) = 1

= τ
(
(λl

− f λ
l
− f )...(λ

l
− f λ

l
− f )

)
,

and 0, otherwise, on �, by (61).

Lemma 5 Let J = (i1, …, iN ) be a mixed N-tuple of {1, 2}, and let WJ be the
corresponding free random variable (95) of X�0 under NA 3. Then

τ 0
ϕ (WJ ) = 0,

if and only if neither

J = (1, 2, 1, 2, . . . , 1, 2), (96)

nor

J = (2, 1, 2, 1, . . . , 2, 1).

Proof The proof is done by the discussions in the very above paragraph. �

By (96), to consider the “non-zero” mixed free moments of U1 and U2 (under NA
3) is to compute τ 0

ϕ (WJ ), where

J = (1, 2, 1, 2, ..., 1, 2)

or

J = (2, 1, 2, 1, . . . , 2, 1)

is an N -tuples.
First, assume that
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J = (1, 2, 1, 2, . . . , 1, 2),

and WJ be the corresponding free random variable (95) of X�0. Then there exists
(eJ , kJ ) ∈ N

±
0 , such that

WJ = U1U2U1U2...U1U2

=
(
λkJ

eJ
⊗ x N

j

)
⊗α 1Xϕ

,

(97)

by the induction on the following computation (98) below:

U1U2 =
(

U ( f,l)
j,(e,k)

) (
U (− f,l)

j,(e∗,k∗)

)

= (
u j,(e,k) ⊗α λl

f

) (
u(e∗,k∗)

j ⊗α λl
− f

)

= ((
λl

f λ
l
− f λ

k
e ⊗ x j

) (
λk∗

e∗ ⊗ x j
)) ⊗α

(
λl

f λ
l
− f

)
= ((

1Xϕ
λk

e ⊗ x j
) (

λk∗
e∗ ⊗ x j

)) ⊗α 1Xϕ

= (
λk

eλ
k∗
e∗ ⊗ x2

j

) ⊗α 1Xϕ

=
(
λ

|eke∗k∗|
sgn(eke∗k∗) ⊗ x2

j

)
⊗α 1Xϕ

, (98)

with

eke∗k∗ = ekek − f l = 2(ek) − f l,

in Z.

By (97), one can realize that

τ 0
ϕ (WJ ) = τ

(
1Xϕ

)
ϕ
(
x N

jeJ kJ

) = ωN c N
2

= c N
2
, (99)

because N is the length |J | of J, which is even in N.

Similarly, if J = (2, 1, 2, 1, …, 2, 1), then

τ 0
ϕ (WJ ) = c N

2
. (99′)

Lemma 6 Suppose either

J = (1, 2, 1, 2, . . . , 1, 2),

or

J = (2, 1, 2, 1, . . . , 2, 1),



Group Dynamical Systems on C∗-Algebras Generated … 203

and let WJ be the corresponding free random variable (95) of X�0 under NA 3.
Then

τ 0
ϕ (WJ ) = c |J |

2
, (100)

where |J | is the length of the finite sequence J.

Proof The proof of the free-distributional data (100) is done by (99) and (99)′. �

By the above three lemmas, we obtain the following free-probabilistic information
on X�0.

Theorem 11 Let U1 = U ( f,l)
j,(e,k) be a generating free random variable of the �-

dynamical C∗-probability space X�0, and let U2 = U ∗
1 ∈ X�0. Then the free dis-

tribution of U1 (or that of U2) is characterized by the following joint free-moment
computations:

τ 0
ϕ

(
U n

1

) = δλl
f , 1Xϕ

(
ωnc n

2

) = τ 0
ϕ

(
U n

2

)
, (101)

for all n ∈ N, and if J is a mixed N-tuple (i1, …, iN ) of {1, 2}, then

τ 0
ϕ

(
N
�
l=1

Uil

)
=

⎧⎪⎨
⎪⎩

c N
2

if either J = (1, 2, 1, 2, . . . , 1, 2),

or J = (2, 1, 2, 1, . . . , 2, 1)

0 otherwise,

(102)

for all N ∈ N \ {1}.
Proof Since a given generating free random variable U1 is not self-adjoint in X�0,

the free distribution of U1 (or that of U ∗
1 = U2) is characterized by the joint free

moments of U1 and U2. But the free moments
(
τ 0
ϕ

(
U n

i

))∞
n=1

is obtained by (92), for
all i = 1, 2; and the mixed free moments of U1 and U2 are computed in (96) and
(100).

Therefore, the free-moment formula (101) is proven by (92), and the mixed-free-
momental data (102) is shown by (96) and (100). �

The above theorem fully characterizes the free-distributional information of gen-
erating free random variables of our �-dynamical C∗-probability space X�0, by
(101) and (102).

Also, the free distributions of the generating operators U ( f,l)
j,(e,k) illustrates how the

group-action α of λ affects the free probability on the C∗-probability space �Xϕ,
under dynamics.
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Lie Group Theory for Nonlinear
Fractional K(m, n) Type Equation
with Variable Coefficients

H. Jafari, N. Kadkhoda, and Dumitru Baleanu

Abstract We investigated the analytical solution of fractional order K(m, n) type
equation with variable coefficient which is an extended type of KdV equations into
a genuinely nonlinear dispersion regime. By using the Lie symmetry analysis, we
obtain the Lie point symmetries for this type of time-fractional partial differential
equations (PDE). Also we present the corresponding reduced fractional differential
equations (FDEs) corresponding to the time-fractional K(m, n) type equation.

Keywords Fractional differential equation · Lie symmetry analysis method ·
Reduced equation · Fractional order k(m, n) type equation.
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1 Introduction

Most problems in engineering, biology, applied mathematics and physics might be
better modeled by using ordinary/partial differential equations with fractional (arbi-
trary) order. The method of group analysis for ordinary/partial differential equations,
originally advocated by the Norwegianmathematician Sophus Lie during 1870s. The
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tangent structural equations under transformation groups is the fundamental idea of
symmetry analysis. Numerous methods developed to solve differential equations
based on Lie symmetry analysis.

In last few decades,many researcher studied different class of the fractional partial
differential equations (FPDEs). These equations arise in various branches of sciences
such as physics, biology, viscoelastic materials, electrochemistry, signal processing,
fluid mechanics [1, 14, 19, 26, 28, 33]. Integrals and derivatives are of any order in
the fractional calculus [19, 26]. In the recent years, finding exact solutions of FDEs
has gained much attention.

Many researchers have presented various techniques and methods for obtaining
the numerical and analytical solutions of FDEs, such as separating variables method
[7], variational iteration method [11], fractional complex transform [12], operational
matrices [16], first integral method [21], and so on. In many years ago, there are
many articles to obtain the analytical solutions of nonlinear PDE using Lie group
theory. It is important to know, however, that few of them involve FDEs [5, 9, 15,
18, 20, 31, 32]. Furthermore, already few articles done in symmetries of variable
coefficients FDEs such as [10, 22]. Our purpose is to study the time-fractional K(m,
n) equation:

∂αu

∂tα
+ ζ(um)x + g(t)(un)xxx = 0, t > 0, 0 < α ≤ 1, (1)

or equivalently

Dα
t u + ζ(um)x + g(t)(un)xxx = 0, t > 0, 0 < α ≤ 1. (2)

here m and n �= 0 are arbitrary constants, ζ = ±1 and g(t) is an arbitrary nonva-
nishing function of the variable t . This equation for α = 1 and also with constant
coefficients for 0 < α < 1 has been discussed in [6, 30].

In the follow, we study the above equation with m = 2, n = 3. Equation (1) is
called the K(m, n) equation, when ζ = g(t) = 1. Rosenau introduced this equation
in 1998 [27, 34] which is described the process of interpretation the role nonlinear
dispersion in the formation of structures in liquid drops.

This article is organized as follows. In the next section, it is given the analysis
of Lie symmetry group for a FPDE. Then in Sect. 3, using Lie group, the Lie point
symmetries of Eq. (1) are obtained. In Sect. 4, we perform Lie group on the Eq. (1)
for obtaining invariant solutions and reduced fractional ODEs. Conclusions are given
in the Sect. 5.

2 Lie Symmetry Analysis Method for FPDEs

According to the importance of FPDEs in mathematics and physics, finding the exact
solutions for these equations is very important. Although nonlinear FPDEs are diffi-
cult to solve, but many papers have been presented by scientists. Studying differential
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equations using the fundamental method of the Lie symmetries are interesting for
many researchers. In the past century, many researchers have studied in the field of
the Lie groups. Some of them are Baumann [2], Bluman [3], Ibragimov [13], Olver
[24], Ovsiannikov [25]. In this section, finding infinitesimal functions of FPDEs are
given. Let us consider the below form of FPDEs:

Dα
t u = F(x, t, u, u(1), . . .), α > 0. (3)

where Dα
t fractional derivative in the sense ofRiemann-Liouville [15] and u is depend

to x, t :

Dα
t u =

⎧
⎨

⎩

∂mu
∂tm ; α = m ∈ N ,

1
�(m−α)

∂m

∂tm
∫ t
0

u(τ,x)
(t−τ)α+1−m dτ ; m − 1 < α < m, m ∈ N .

(4)

Similar discussion of PDEs[4, 24], we can write

Dα
t̄ ū = Dα

t u + ε[η(α)
t (t, x, u, u(1), u(α), . . .)] + o(ε2). (5)

In view of by the prolongation formula, for η
(α)
t we have [9]

η
(α)
t = Dα

t (η) + ξxDα
t (ux ) − Dα

t (ξxux ) + Dα
t (Dt (ξt )u) − Dα+1

t (ξt u) + ξt D
α+1
t u,

(6)
and the total derivative operator Dt is defined by

Dt = ∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ utt

∂

∂ut
+ uxxt

∂

∂uxx
+ · · · . (7)

Simplifying (6) using the Leibnitz formula [29]

Dα
t [ f (t)g(t)] =

∞∑

n=0

(−1)n−1α�(n − α)

�(1 − α)�(n + 1)
Dα−n

t f (t)Dn
t g(t), α > 0, (8)

we can write [17]:

η
(α)
t = ∂αη

∂tα
+ (ηu − αDt (ξt ))

∂αu

∂tα
− u

∂αηu

∂tα
+

∞∑

m=1

[(
α

m

)
∂m(ηu)

∂tm

−
(

α

m + 1

)

Dm+1
t (ξt )

]

Dα−m
t (u) −

∞∑

m=1

(
α

m

)

Dα−m
t (ux )D

m
t (ξx ). (9)

To obtain coefficients of X , we must have:

X (α)[Dα
t u − F(t, x, u, u(1), . . .)]Dα

t u=F(t,x,u(1),...)
= 0, (10)
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where

X (α) = ξx (t, x, u)
∂

∂x
+ ξt (t, x, u)

∂

∂t
+ η(t, x, u)

∂

∂u
+ η

(1)
i (t, x, u, u(1))

∂

∂ui
+ · · ·

+ η
(k)
i1i2...,ik

(t, x, u, u(1), . . . u(k))
∂

∂ui1i2...,ik
+ η

(α)
t (t, x, u, . . . , u(α),...)

∂

∂u(α)
t

. (11)

Using these relations, we obtain the Lie symmetries.

3 Fractional Lie Symmetries for Time-Fractional K(m, n)

Here, we obtain the infinitesimal generator of the time-fractional K(m, n) equation

∂αu

∂tα
+ (um)x + g(t)(un)xxx = 0, t > 0, 0 < α ≤ 1. (12)

Theorem 1 Lie symmetries for Eq. (12), which those are solutions of determin-
ing equations depend on the selection of the function g(t) for 0 < α < 1, m − 1 −
n, 3m − n − 2, −3n + m − 1, α(m + 1) − m + 1, α(m + 2) − 2m + 2 �= 0, are

Case 1: g(t) be an non-vanishing arbitrary function.
In this case, the infinitesimal generator is given by

X1.1 = ∂

∂x
. (13)

Proof The one-parameter Lie group of transformations in x, t, u with ε as the group
parameter are given

t∗ = t + εξt (t, x, u) + O(ε2),

x∗ = x + εξx (t, x, u) + O(ε2),

u∗ = u + εηu(t, x, u) + O(ε2),

the Lie algebra of K(m, n) equation (Eq. (12)) is spanned by vector fields

X = ξx (t, x, u)
∂

∂x
+ ξt (t, x, u)

∂

∂t
+ ηu(x, t, u)

∂

∂u
, (14)

where

ξx = dx∗

dε
|
ε=0 , ξt = dt∗

dε
|
ε=0 , ηu = du∗

dε
|
ε=0 . (15)
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Applying the X (α) to (12), leads

X (α)

[
∂αu

∂tα
+ (um)x + g(t)(un)xxx

]

∂αu
∂tα +(um )x+g(t)(un)xxx=0

= 0. (16)

Expanding the (16), we obtain the following overdetermined system of linear partial
differential equations:

un−3α g (t) n2
∂

∂t
ξt (x, t, u) + ηu (x, t, u) g (t) un−4n3 + ξt (x, t, u)

(
d

dt
g (t)

)

un−3n2

−3

(
∂

∂x
ξx (x, t, u)

)

g (t) un−3n2 + 2

(
∂

∂u
ηu (x, t, u)

)

un−3g (t) n2 − 3 un−3α g (t) n
∂

∂t
ξt (x, t, u)

−6 ηu (x, t, u) g (t) un−4n2 − 3 ξt (x, t, u)

(
d

dt
g (t)

)

un−3n + 9

(
∂

∂x
ξx (x, t, u)

)

g (t) un−3n

−6

(
∂

∂u
ηu (x, t, u)

)

un−3g (t) n + 2 un−3
(

∂

∂t
ξt (x, t, u)

)

g (t) α + 3 g (t)

(
∂2

∂u2
ηu (x, t, u)

)

un−2n

−6 g (t)

(
∂2

∂x∂u
ξx (x, t, u)

)

un−2n + 11 ηu (x, t, u) g (t) un−4n + 2 ξt (x, t, u)

(
d

dt
g (t)

)

un−3

−6

(
∂

∂x
ξx (x, t, u)

)

g (t) un−3 + 4

(
∂

∂u
ηu (x, t, u)

)

un−3g (t) − 3 g (t)

(
∂2

∂u2
ηu (x, t, u)

)

un−2

+6 g (t)

(
∂2

∂x∂u
ξx (x, t, u)

)

un−2 + un−1
(

∂3

∂u3
ηu (x, t, u)

)

g (t) − 3 un−1
(

∂3

∂x∂u2
ξx (x, t, u)

)

g (t)

−6 ηu (x, t, u) g (t) un−4 = 0,

3 un−3
(

∂

∂u
ξx (x, t, u)

)

n2 − 9 un−3
(

∂

∂u
ξx (x, t, u)

)

n + 3 un−2
(

∂2

∂u2
ξx (x, t, u)

)

n

+6 un−3 ∂

∂u
ξx (x, t, u) − 3 un−2 ∂2

∂u2
ξx (x, t, u) + un−1 ∂3

∂u3
ξx (x, t, u) = 0,

ηu (x, t, u) g (t) un−3n2 + un−2α g (t) n
∂

∂t
ξt (x, t, u) − 3 ηu (x, t, u) g (t) un−3n

+ξt (x, t, u)

(
d

dt
g (t)

)

un−2n − 3

(
∂

∂x
ξx (x, t, u)

)

g (t) un−2n +
(

∂

∂u
ηu (x, t, u)

)

un−2g (t) n

−un−2
(

∂

∂t
ξt (x, t, u)

)

g (t) α + 2 ηu (x, t, u) g (t) un−3 − ξt (x, t, u)

(
d

dt
g (t)

)

un−2

+3

(
∂

∂x
ξx (x, t, u)

)

g (t) un−2 −
(

∂

∂u
ηu (x, t, u)

)

un−2g (t) + un−1

(
∂2

∂u2
ηu (x, t, u)

)

g (t)

−3 un−1

(
∂2

∂x∂u
ξx (x, t, u)

)

g (t) = 0,
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3

(
∂

∂x
ηu (x, t, u)

)

g (t) un−3n3 − 9

(
∂

∂x
ηu (x, t, u)

)

g (t) un−3n2 + 6

(
∂

∂x
ηu (x, t, u)

)

g (t) un−3n + 6 g (t)

(
∂2

∂x∂u
ηu (x, t, u)

)

un−2n2 − 6 g (t)

(
∂2

∂x∂u
ηu (x, t, u)

)

un−2n

−3 g (t)

(
∂2

∂x2
ξx (x, t, u)

)

un−2n2 + 3 g (t)

(
∂2

∂x2
ξx (x, t, u)

)

un−2n + 3 g (t) un−1n

∂3

∂x∂u2
ηu (x, t, u) − 3 g (t) un−1n

∂3

∂x2∂u
ξx (x, t, u) −

(
∂

∂u
ξx (x, t, u)

)

um−1m = 0,

un−3
(

∂

∂u
ξt (x, t, u)

)

α n2 − 3 un−3
(

∂

∂u
ξt (x, t, u)

)

α n − 3 un−3
(

∂

∂u
ξt (x, t, u)

)

n2

+2 un−3
(

∂

∂u
ξt (x, t, u)

)

α + 9 un−3
(

∂

∂u
ξt (x, t, u)

)

n − 3 un−2
(

∂2

∂u2
ξt (x, t, u)

)

n

−6 un−3 ∂

∂u
ξt (x, t, u) + 3 un−2 ∂2

∂u2
ξt (x, t, u) − un−1 ∂3

∂u3
ξt (x, t, u) = 0,

um−1αm
∂

∂t
ξt (x, t, u) + 3 g (t)

(
∂2

∂x2
ηu (x, t, u)

)

un−2n2 − 3 g (t)

(
∂2

∂x2
ηu (x, t, u)

)

un−2n

+3 g (t) un−1n
∂3

∂x2∂u
ηu (x, t, u) − g (t) un−1n

∂3

∂x3
ξx (x, t, u) + ηu (x, t, u) um−2m2

−ηu (x, t, u) um−2m −
(

∂

∂x
ξx (x, t, u)

)

um−1m = 0,

un−3
(

∂

∂x
ξt (x, t, u)

)

n2 − 3 un−3
(

∂

∂x
ξt (x, t, u)

)

n + 2 un−2
(

∂2

∂x∂u
ξt (x, t, u)

)

n

+2 un−3 ∂

∂x
ξt (x, t, u) − 2 un−2 ∂2

∂x∂u
ξt (x, t, u) + un−1 ∂3

∂x∂u2
ξt (x, t, u) = 0,

−
(

∂

∂u
ξt (x, t, u)

)

um−1m + um−1αm
∂

∂u
ξt (x, t, u) − 3 g (t)

(
∂2

∂x2
ξt (x, t, u)

)

un−2n2

+3 g (t)

(
∂2

∂x2
ξt (x, t, u)

)

un−2n − 3 g (t) un−1n
∂3

∂x2∂u
ξt (x, t, u) = 0,

un−2
(

∂

∂u
ξt (x, t, u)

)

α n − un−2
(

∂

∂u
ξt (x, t, u)

)

α − 2 un−2
(

∂

∂u
ξt (x, t, u)

)

n

+2 un−2 ∂

∂u
ξt (x, t, u) − un−1 ∂2

∂u2
ξt (x, t, u) = 0,

ηu (x, t, u) g (t) un−2n + un−1
(

∂

∂t
ξt (x, t, u)

)

g (t) α − ηu (x, t, u) g (t) un−2

+un−1
(

d

dt
g (t)

)

ξt (x, t, u) − 3 un−1
(

∂

∂x
ξx (x, t, u)

)

g (t) = 0,

un−2
(

∂

∂x
ηu (x, t, u)

)

n − un−2 ∂

∂x
ηu (x, t, u) + un−1 ∂2

∂x∂u
ηu (x, t, u)
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−un−1 ∂2

∂x2
ξx (x, t, u) = 0,

∂3

∂u3
ξt (x, t, u) = 0,

∂3

∂u∂t2
ξt (x, t, u) = 0,

−α
∂3

∂t3
ξt (x, t, u) + 3

∂3

∂u∂t2
ηu (x, t, u) + 2

∂3

∂t3
ξt = 0,

∂3

∂u2∂t
ξt (x, t, u) = 0,

2 un−2
(

∂

∂u
ξx (x, t, u)

)

n − 2 un−2 ∂

∂u
ξx (x, t, u) + un−1 ∂2

∂u2
ξx (x, t, u) = 0,

un−2
(

∂

∂x
ξt (x, t, u)

)

n − un−2 ∂

∂x
ξt (x, t, u) + un−1 ∂2

∂x∂u
ξt (x, t, u) = 0,

g (t) n

(

un−2
(

∂

∂x
ξt (x, t, u)

)

n − un−2 ∂

∂x
ξt (x, t, u) + un−1 ∂2

∂x∂u
ξt (x, t, u)

)

= 0,

2 un−2
(

∂

∂u
ξt (x, t, u)

)

n − 2 un−2 ∂

∂u
ξt (x, t, u) + un−1 ∂2

∂u2
ξt (x, t, u) = 0,

α
∂2

∂t2
ξt (x, t, u) − 2

∂2

∂u∂t
ηu (x, t, u) − ∂2

∂t2
ξt (x, t, u) = 0,

∂2

∂u∂t
ξt (x, t, u) 0,

g (t) un−1n
∂3

∂x3
ξt (x, t, u) +

(
∂

∂x
ξt (x, t, u)

)

um−1m = 0, g (t) un−1n
∂

∂u
ξt (x, t, u) = 0,

∂2

∂u2
ξx (x, t, u) = 0,

∂2

∂t2
ξx (x, t, u) = 0,

∂2

∂u2
ξt (x, t, u) = 0,

∂2

∂u∂t
ξx (x, t, u) = 0,

∂2

∂u∂t
ξt (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

g (t) un−1n
∂2

∂x2
ξt (x, t, u) = 0,

g (t) un−1n
∂

∂u
ξx (x, t, u) = 0, g (t) un−1n

∂

∂u
ξx (x, t, u) = 0,

g (t) un−1n
∂

∂x
ξt (x, t, u) = 0,

g (t) un−1n
∂

∂u
ξt (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

∂

∂t
ξx (x, t, u) = 0,

∂2

∂u2
ηu (x, t, u) = 0.

Solving this obtained system using the Maple, we obtain

ξx (x, t, u) = C1, ξt (x, t, u) = 0, ηu (x, t, u) = 0,

therefore, we have the following infinitesimal generator:

X1.1 = ∂

∂x
.
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For mentioned g(t) as follows, we have additional symmetries.

Case 2: g(t) = ktb.
For this case, we have the following infinitesimal generators:

X2.1 = ∂

∂x
, X2.2 = (3mt − (n + 2)t)

∂

∂t
+ (−2αu + bu)

∂

∂u

+(xα(m − n) + xb(m − 1))
∂

∂x
. (17)

Case 3: g(t) = k.
In this case, the infinitesimal generators are as follows

X3.1 = ∂

∂x
, X3.2 = (3mt − (n + 2)t)

∂

∂t
− 2αu

∂

∂u
+ (xα(m − n))

∂

∂x
. (18)

Case 4: g(t) = kebt .
In this case, the infinitesimal generators are as follows

X4.1 = ∂

∂x
, X4.2 = xb(m − 1))

∂

∂x
+ ub

∂

∂u
. (19)

4 Fractional Lie Symmetries for Time-Fractional K(2, 3)

Now, we obtain the infinitesimal generator of the time-fractional K(2, 3) equation

∂αu

∂tα
+ (u2)x + g(t)(u3)xxx = 0, t > 0, 0 < α < 1. (20)

Theorem 2 Lie symmetries for Eq. (20), which those are solutions of determining
equations depend on the selection of the function g(t), are

Case 1: 0 < α < 1, α �= 1
2 , 1

3 , k, b �= 0.

Case 1.1: g(t) be an non-vanishing arbitrary function.
In this case, the infinitesimal generator is given by

X1.1 = ∂

∂x
. (21)

For mentioned g(t) as follows, we have additional symmetries.
Case 1.2: g(t) = ktb.

For this case, we have
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X1.2.1 = ∂

∂x
, X1.2.2 = −t

∂

∂t
+ (α − b)x

∂

∂x
+ (2α − b)u

∂

∂u
. (22)

Case 1.3: g(t) = k.
In this case, the infinitesimal generators are as follows

X1.3.1 = ∂

∂x
, X1.3.2 = αx

∂

∂x
− t

∂

∂t
+ 2αu

∂

∂u
. (23)

Case 2: α = 1
2 , k, b �= 0.

For α = 1
2 , functions of g(t) can be obtained as follows

g(t) = kebt , ktb, k.

Case 2.1: g(t) = kebt .
In this case, the infinitesimal generator is given by

X2.1 = ∂

∂x
. (24)

Case 2.2: g(t) = ktb.
The infinitesimal generators in this case are

X2.2.1 = ∂

∂x
, X2.2.2 = (2b − 1)x

∂

∂x
+ 2t

∂

∂t
+ 2(b − 1)u

∂

∂u
. (25)

Case 2.3: g(t) = k.
We obtain the infinitesimal generators as follows

X2.3.1 = ∂

∂x
, X2.3.2 = x

∂

∂x
− 2t

∂

∂t
+ 2u

∂

∂u
. (26)

Case 3: α = 1
3 , k, b �= 0.

For α = 1
3 , functions of g(t) can be obtained as follows

g(t) = k(t − b)
2
3 , k(t2 − b)

1
3 , kebt , ktb, k.

Case 3.1: g(t) = k(t − b)
2
3 , k(t2 − b)

1
3 , kebt .

In these cases, the infinitesimal generator is given by

X3.1 = ∂

∂x
. (27)

Case 3.2: g(t) = ktb.
The infinitesimal generators in this case are
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X3.2.1 = ∂

∂x
, X3.2.2 = (3b − 1)x

∂

∂x
+ 3t

∂

∂t
+ (3b − 2)u

∂

∂u
. (28)

Case 3.3: g(t) = k.
In this case, we obtain the infinitesimal generators as follows

X3.3.1 = ∂

∂x
, X3.3.2 = −3t

∂

∂t
+ x

∂

∂x
+ 2u

∂

∂u
. (29)

Proof The one-parameter Lie group of transformations in x, t, u with ε as the group
parameter are given

t∗ = t + εξt (t, x, u) + O(ε2),

x∗ = x + εξx (t, x, u) + O(ε2),

u∗ = u + εηu(t, x, u) + O(ε2),

the Lie algebra of K(2, 3) equation (Eq. (20)) is spanned by vector fields

X = ξx (t, x, u)
∂

∂x
+ ξt (t, x, u)

∂

∂t
+ ηu(x, t, u)

∂

∂u
, (30)

where

ξx = dx∗

dε
|
ε=0 , ξt = dt∗

dε
|
ε=0 , ηu = du∗

dε
|
ε=0 . (31)

Applying the X (α) to (20), leads

X (α)

[
∂αu

∂tα
+ (u2)x + g(t)(u3)xxx

]

∂αu
∂tα +(u2)x+g(t)(u3)xxx=0

= 0. (32)

Expanding the (32), and solving this obtained set using the Maple, we can distin-
guish all selections of the function g(t). Finally, the Lie point symmetries for (20)
can be obtained as follow.

• If 0 < α < 1, α �= 1
2 , 1

3 , k, b �= 0, and g(t) be an arbitrary nonvanishing function
then we have:

ξx = c1, ξt = 0, ηu = 0.

Thus, the infinitesimal generator is given by

X1 = ∂

∂x
.

• If 0 < α < 1, α �= 1
2 , 1

3 , k, b �= 0, and g(t) = k then we have:
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ξx = c1 + c2αx, ξt = −c2t, ηu = 2c2αu.

Therefore, the infinitesimal generators are given by

X1 = ∂

∂x
, X2 = αx

∂

∂x
− t

∂

∂t
+ 2αu

∂

∂u
.

• If 0 < α < 1, α �= 1
2 , 1

3 , k, b �= 0, and g(t) = ktb.
Applying the X (α) to (20) with g(t) = ktb, leads

X (α)

[
∂αu

∂tα
+ (u2)x + ktb(u3)xxx

]

∂αu
∂tα +(u2)x+ktb(u3)xxx=0

= 0. (33)

Expanding the (33), we obtain the following overdetermined system of linear
partial differential equations:

(
∂3

∂u3
ηu (x, t, u)

)

tbu2 − 3

(
∂3

∂x∂u2
ξx (x, t, u)

)

tbu2 + 2 tb−1ξt (x, t, u) b

+6

(
∂2

∂u2
ηu (x, t, u)

)

tbu − 12

(
∂2

∂x∂u
ξx (x, t, u)

)

tbu + 2

(
∂

∂t
ξt (x, t, u)

)

tbα

+4

(
∂

∂u
ηu (x, t, u)

)

tb − 6

(
∂

∂x
ξx (x, t, u)

)

tb = 0,

2 tb−1ξt (x, t, u) bu +
(

∂2

∂u2
ηu (x, t, u)

)

tbu2 − 3

(
∂2

∂x∂u
ξx (x, t, u)

)

tbu2

+2

(
∂

∂t
ξt (x, t, u)

)

tbα u + 2

(
∂

∂u
ηu (x, t, u)

)

tbu − 6

(
∂

∂x
ξx (x, t, u)

)

tbu

+2 ηu (x, t, u) tb = 0,
∂2

∂u2
ηu (x, t, u) = 0,

∂

∂t
ξx (x, t, u) = 0,

−2

(
∂

∂u
ξx (x, t, u)

)

u + 36 ktbu
∂2

∂x∂u
ηu (x, t, u) − 18 ktbu

∂2

∂x2
ξx (x, t, u)

+9 ktbu2
∂3

∂x∂u2
ηu (x, t, u) − 9 ktbu2

∂3

∂x2∂u
ξx (x, t, u) + 18

(
∂

∂x
ηu (x, t, u)

)

ktb = 0,

−α
∂3

∂t3
ξt (x, t, u) + 3

∂3

∂u∂t2
ηu (x, t, u) + 2

∂3

∂t3
ξt (x, t, u) = 0,

(
∂3

∂u3
ξt (x, t, u)

)

u2 + 6

(
∂2

∂u2
ξt (x, t, u)

)

u − 2 α
∂

∂u
ξt (x, t, u) + 6

∂

∂u
ξt (x, t, u) = 0,

2 ηu (x, t, u) − 2

(
∂

∂x
ξx (x, t, u)

)

u + 18 ktbu
∂2

∂x2
ηu (x, t, u) − 3 ktbu2

∂3

∂x3
ξx (x, t, u)

+9 ktbu2
∂3

∂x2∂u
ηu (x, t, u) + 2 α u

∂

∂t
ξt (x, t, u) = 0,

9

2

(
∂3

∂x2∂u
ξt (x, t, u)

)

tbku + 9

(
∂2

∂x2
ξt (x, t, u)

)

tbk − α
∂

∂u
ξt (x, t, u) + ∂

∂u
ξt (x, t, u) = 0,

∂3

∂u3
ξt (x, t, u) = 0,

∂3

∂u2∂t
ξt (x, t, u) = 0,

∂3

∂u∂t2
ξt (x, t, u) = 0,

∂2

∂u2
ξt (x, t, u) = 0,

tb−1ξt (x, t, u) bu +
(

∂

∂t
ξt (x, t, u)

)

tbα u − 3

(
∂

∂x
ξx (x, t, u)

)

tbu + 2 ηu (x, t, u) tb = 0,
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(
∂3

∂u3
ξx (x, t, u)

)

u2 + 6

(
∂2

∂u2
ξx (x, t, u)

)

u + 6
∂

∂u
ξx (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

(
∂3

∂x∂u2
ξt (x, t, u)

)

u2 + 4

(
∂2

∂x∂u
ξt (x, t, u)

)

u + 2
∂

∂x
ξt (x, t, u) = 0,

∂

∂x
ξt (x, t, u) = 0,

(
∂2

∂x∂u
ηu (x, t, u)

)

u −
(

∂2

∂x2
ξx (x, t, u)

)

u + 2
∂

∂x
ηu (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

(
∂2

∂u2
ξt (x, t, u)

)

u − 2 α
∂

∂u
ξt (x, t, u) + 4

∂

∂u
ξt (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

∂2

∂u∂t
ξt (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

∂2

∂u2
ξx (x, t, u) = 0,

∂2

∂t2
ξx (x, t, u) = 0,

(
∂2

∂u2
ξx (x, t, u)

)

u + 4
∂

∂u
ξx (x, t, u) = 0,

(
∂2

∂x∂u
ξt (x, t, u)

)

u + 2
∂

∂x
ξt (x, t, u) = 0,

(
∂2

∂x∂u
ξt (x, t, u)

)

u + 2
∂

∂x
ξt (x, t, u) = 0,

(
∂2

∂u2
ξt (x, t, u)

)

u + 4
∂

∂u
ξt (x, t, u) = 0,

3

(
∂3

∂x3
ξt (x, t, u)

)

tbku + 2
∂

∂x
ξt (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

∂2

∂u∂t
ξx (x, t, u) = 0,

∂2

∂u∂t
ξt (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

∂2

∂x2
ξt (x, t, u) = 0,

−α
∂2

∂t2
ξt (x, t, u) + 2

∂2

∂u∂t
ηu (x, t, u) + ∂2

∂t2
ξt (x, t, u) = 0,

∂2

∂u2
ξt (x, t, u) = 0.

Solving this obtained system using the Maple, we obtain:

ξx = c1 + c2(α − b)x, ξt = −c2t, ηu = c2(2α − b)u.

So, the infinitesimal generators are

X1 = ∂

∂x
, X2 = (α − b)x

∂

∂x
− t

∂

∂t
+ (2α − b)u

∂

∂u
.

The proof for α = 1
2 , 1

3 are similar. Therefore, proof is completed.

5 Reduced Equations and Invariant Solution of Eq. (20)

Our purpose for Eq. (20) is to reduce it the coordinates (x, t, u) using invariants (r, z)
to a new coordinates[23].
Let us consider

X = ξt (t, x, u)
∂

∂t
+ ξx (t, x, u)

∂

∂x
+ ηu(t, x, u)

∂

∂u
,

as a Lie point symmetry of the time-fractional K(2, 3) equation

∂αu

∂tα
+ (u2)x + g(t)(u3)xxx = 0, 0 < α < 1, t > 0.
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We use two invariants z = ψ(x, t) and r = ϕ(x, t)which are linearly independent
in the characteristic equations

dt

ξt (t, x, u)
= dx

ξx (t, x, u)
= du

ηu(t, x, u)
,

for obtaining the invariant solutions. After that, we assume one of those invariants is
depend to another,

z = h(r), (34)

thenwe solve (34) for u. Finally, substituting u inEq. (20) for the unknown function h,
a fractional ODE can be obtained. Now, we obtain corresponding reduced equations,
invariants and group invariant solutions of equation (20) for different cases of g(t)
and α as follows.

Case1:

• Case 1.1: 0 < α < 1,α �= 1
2 , 1

3 and g(t) is a nonvanishing arbitrary function.

• Case 1.2: α = 1
2 , g(t) = {k, ktb, kebt }

• Case 1.3: α = 1
3 , g(t) = {k, ktb, kebt , k(t − b)

2
3 , k(t2 − b)

1
3 }

In these cases, according to the infinitesimal generator X = ∂
∂x , the similarity vari-

ables using the method of characteristics are as follows:

z = u, r = t, (35)

and a solution is
z = h(r) ⇒ u = h(t). (36)

By substituting (36) into Eq. (20) we find the h(r). Thus h(r) must be satisfied:

dαh(t)

dtα
= 0. (37)

Then by solving the above equation by the Laplace transform[26], we have

h(t) = κtα−1

�(α)
, κ is a constant. (38)

Case2:

• Case 2.1: α �= 1
2 ,

1
3 , g(t) = ktb.

In this case

X1.2.2 = −t
∂

∂t
+ (α − b)x

∂

∂x
+ (2α − b)u

∂

∂u
, (39)

so the similarity variables for this Lie point symmetry using the method of char-
acteristics are as follows:
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r = t x
1

α−b , z = ux
b−2α
α−b , (40)

because

−dt

t
= dx

(α − b)x
⇒ − ln t + ln r = 1

α − b
ln x ⇒ 1

α − b
ln x + ln t = ln r ⇒ r = t x

1
α−b ,

dx

(α − b)x
= du

(2α − b)u
⇒ 2α − b

α − b
ln x + ln z = ln u ⇒ ln z = ln u + ln(x

b−2α
α−b ) ⇒

z = u x
b−2α
α−b .

And a solution for Eq. (20) is

z = h(r) ⇒ u = x
b−2α
b−α h(t x

1
α−b ). (41)

We substitute (41) into Eq. (20) to find the f (r) and f (r) must be satisfied in the
fractional ODE as follows:

(b − α)3
∂αh

∂rα
− 2(b − α)2rh(r)h′(r) + 18(−1 + 2b − 5α)kr2+bh(r)h′(r)2

−18kr3+bh(r)h′(r)h′′(r) + 3(2b3 − 17b2α + 46bα2 − 40α3)krbh(r)3

−6kr3+bh′(r)3 + (2b3 − 8b2α + 10bα2 − 4α3)h(r)2 − 3(11b2 + 15α + 74α2

−2b(29α + 3) + 1)kr1+bh′(r)h(r)2 + 9(−1 + 2b − 5α)kr2+bh′′(r)h(r)2

−3kr3+bh′′′(r)h(r)2 = 0.

where α �= 1
2 ,

1
3 .

• Case 2.2: α �= 1
2 ,

1
3 , g(t) = k.

For this case we have

X1.3.2 = αx
∂

∂x
− t

∂

∂t
+ 2αu

∂

∂u
, (42)

so the similarity variables for this Lie point symmetry using the method of char-
acteristics are as follows:

r = t x
1
α , z = ux−2, (43)

because

dx

αx
= −dt

t
⇒ 1

α
ln x = − ln t + ln r ⇒ ln r = ln(t x

1
α ) ⇒ r = t x

1
α ,

dx

αx
= du

2αu
⇒ 2 ln x + ln z = ln u ⇒ ln z = ln u − ln(x2) = ln u + ln(x−2) ⇒ z = ux−2.

And a solution for (20) is
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z = h(r) ⇒ u = x2 h(t x
1
α ). (44)

Again we substitute (44) into Eq. (20) to obtain the f (r). So h(r) must satisfy in
the fractional ODE as follows:

α3 ∂αh

∂rα
+ 2α2rh(r)h′(r) + 18(5α + 1)kr2h(r)h′(r)2

+18kr3h(r)h′(r)h′′(r) + 120kα3h(r)3 + 6kr3 h′(r)3 + 4α3 h(r)2

+3(74α2 + 15α + 1)krh(r)2 h′(r) + 9(5α + 1)kr2h(r)2 h′′(r)
+3kr3h(r)2 h′′′(r) = 0.

where α �= 1
2 ,

1
3 .

Case3:

• Case 3.1: α = 1
2 , g(t) = ktb.

For this case we have

X2.2.2 = (2b − 1)x
∂

∂x
+ 2t

∂

∂t
+ 2(b − 1)u

∂

∂u
, (45)

so the similarity variables for this Lie point symmetry using the method of char-
acteristics are as follows:

r = t x
2

1−2b , z = ux
2b−2
1−2b , (46)

because

dx

(2b − 1)x
= dt

2t
⇒ 2

2b − 1
ln x + ln r = ln t ⇒ ln r = ln t − 2

2b − 1
ln x ⇒ ln r = ln(t x

2
1−2b )

⇒ r = t x
2

1−2b ,

dx

(2b − 1)x
= du

2(b − 1)u
⇒ 2(b − 1)

2b − 1
ln x + ln z = ln u ⇒ ln z = ln u − 2(b − 1)

2b − 1
ln x

⇒ z = ux
2b−2
1−2b .

And in view of (36), a solution for (20) is

u = x
2−2b
1−2b h

(
t x

2
1−2b

)
. (47)

We substitute (51) into Eq. (20) to obtain h(r). After that h(r) must be satisfied
in the FDE as follows:
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(2b − 1)3

4

∂αh

∂rα
− (1 − 2b)2rh(r)h′(r) + 18(4b − 7)kr2+bh(r)h′(r)2

−36kr3+bh(r)h′(r)h′′(r) + 3(4b3 − 17b2 + 23b − 10)krbh(r)3

−12kr3+bh′(r)3 + (4b3 − 8b2 + 5b − 1)h(r)2 − 6(11b2 − 35b + 27)kr1+bh′(r)h(r)2

+9(4b − 7)kr2+bh′′(r)h(r)2 − 6kr3+bh′′′(r)h(r)2 = 0.

where α = 1
2 .

• Case 3.2: α = 1
2 , g(t) = k.

For this case we have

X2.3.2 = x
∂

∂x
− 2t

∂

∂t
+ 2u

∂

∂u
, (48)

Applying the X ( 1
2 ) to (20) with g(t) = k and α = 1

2 , leads

X ( 1
2 )

[
∂

1
2 u

∂t
1
2

+ (u2)x + k(u3)xxx

]

∂
1
2 u

∂t
1
2

+(u2)x+k(u3)xxx=0

= 0. (49)

Expanding the (49), we obtain the following overdetermined system of linear
partial differential equations:

−
(

∂3

∂u3
ηu (x, t, u)

)

u2 + 3

(
∂3

∂x∂u2
ξx (x, t, u)

)

u2 − 6

(
∂2

∂u2
ηu (x, t, u)

)

u

+12

(
∂2

∂x∂u
ξx (x, t, u)

)

u + 6
∂

∂x
ξx (x, t, u) − 4

∂

∂u
ηu (x, t, u) − ∂

∂t
ξt (x, t, u) = 0,

3

8

∂3

∂t3
ξt (x, t, u) + 3

4

∂3

∂u∂t2
ηu (x, t, u) = 0,

∂3

∂u3
ξt (x, t, u) = 0,

18

(
∂

∂x
ηu (x, t, u)

)

k − 2

(
∂

∂u
ξx (x, t, u)

)

u + 36 ku
∂2

∂x∂u
ηu (x, t, u)

−18 ku
∂2

∂x2
ξx (x, t, u) + 9 ku2

∂3

∂x∂u2
ηu (x, t, u) − 9 ku2

∂3

∂x2∂u
ξx (x, t, u) = 0,

2 ηu (x, t, u) − 2

(
∂

∂x
ξx (x, t, u)

)

u + 18 ku
∂2

∂x2
ηu (x, t, u) + 9 ku2

∂3

∂x2∂u
ηu (x, t, u)

−3 ku2
∂3

∂x3
ξx (x, t, u) +

(
∂

∂t
ξt (x, t, u)

)

u = 0,
∂3

∂u2∂t
ξt (x, t, u) = 0,

−
(

∂2

∂u2
ηu (x, t, u)

)

u2 + 3

(
∂2

∂x∂u
ξx (x, t, u)

)

u2 + 6

(
∂

∂x
ξx (x, t, u)

)

u

−2

(
∂

∂u
ηu (x, t, u)

)

u −
(

∂

∂t
ξt (x, t, u)

)

u − 2 ηu (x, t, u) = 0,
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(
∂3

∂u3
ξt (x, t, u)

)

u2 + 6

(
∂2

∂u2
ξt (x, t, u)

)

u + 5
∂

∂u
ξt (x, t, u) = 0,

9

(
∂3

∂x2∂u
ξt (x, t, u)

)

ku + 18

(
∂2

∂x2
ξt (x, t, u)

)

k + ∂

∂u
ξt (x, t, u) = 0,

− 1

4

∂2

∂t2
ξt (x, t, u) − ∂2

∂u∂t
ηu (x, t, u) = 0,

∂3

∂u∂t2
ξt (x, t, u) = 0,

∂2

∂u∂t
ξt (x, t, u) = 0,

∂2

∂u2
ξt (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

(
∂3

∂x∂u2
ξt (x, t, u)

)

u2 + 4

(
∂2

∂x∂u
ξt (x, t, u)

)

u + 2
∂

∂x
ξt (x, t, u) = 0,

(
∂3

∂u3
ξx (x, t, u)

)

u2 + 6

(
∂2

∂u2
ξx (x, t, u)

)

u + 6
∂

∂u
ξx (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

(
∂2

∂x∂u
ηu (x, t, u)

)

u −
(

∂2

∂x2
ξx (x, t, u)

)

u + 2
∂

∂x
ηu (x, t, u) = 0,

∂

∂t
ξx (x, t, u) = 0,

(
∂2

∂u2
ξt (x, t, u)

)

u + 3
∂

∂u
ξt (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

6

(
∂

∂x
ξx (x, t, u)

)

u −
(

∂

∂t
ξt (x, t, u)

)

u − 4 ηu (x, t, u) = 0,
∂

∂x
ξt (x, t, u) = 0,

∂2

∂u2
ξx (x, t, u) = 0,

∂2

∂t2
ξx (x, t, u) = 0,

∂2

∂u2
ξt (x, t, u) = 0,

∂2

∂x2
ξt (x, t, u) = 0,

3

(
∂3

∂x3
ξt (x, t, u)

)

ku + 2
∂

∂x
ξt (x, t, u) = 0,

∂2

∂u∂t
ξx (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

∂2

∂u∂t
ξt (x, t, u) = 0,

(
∂2

∂u2
ξx (x, t, u)

)

u + 4
∂

∂u
ξx (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

(
∂2

∂x∂u
ξt (x, t, u)

)

u + 2
∂

∂x
ξt (x, t, u) = 0,

∂

∂u
ξt (x, t, u) = 0,

(
∂2

∂x∂u
ξt (x, t, u)

)

u + 2
∂

∂x
ξt (x, t, u) = 0,

∂

∂u
ξx (x, t, u) = 0,

∂2

∂u2
ηu (x, t, u) = 0,

(
∂2

∂u2
ξt (x, t, u)

)

u + 4
∂

∂u
ξt (x, t, u) = 0,

Solving this obtained system, the infinitesimal generator can be obtained as fol-
lows:

X = x
∂

∂x
− 2t

∂

∂t
+ 2u

∂

∂u
.

So the similarity variables for this Lie point symmetry using the method of char-
acteristics are as follows:

r = t x2, z = ux−2, (50)

because
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dx

x
= −dt

2t
⇒ −2 ln x + ln r = ln t ⇒ ln r = ln(t x2) ⇒ r = t x2,

dx

x
= du

2u
⇒ 2 ln x + ln z = ln u ⇒ ln z = ln u − 2 ln x ⇒ z = ux−2.

And in view of (36), a solution for (20) is

u = x2 h
(
t x2

)
. (51)

To obtain f (r), we substitute (51) into Eq. (20). Then f (r) must satisfy in the
fractional ODE as follows:

1

4

∂α f

∂rα
+ 30k f (r)3 + 12kr3 f ′(r)3 + r f (r) f ′(r) + 126kr2 f (r) f ′(r)2

+36kr3 f (r) f ′(r) f ′′(r) + f (r)2 + 162kr f ′(r) f (r)2 + 63kr2 f (r)2 f ′′(r)
+6kr3 f (r)2 f ′′′(r) = 0.

where α = 1
2 .

Case4:

• Case 4.1: α = 1
3 , g(t) = ktb.

For this case we have

X3.2.2 = (3b − 1)x
∂

∂x
+ 3t

∂

∂t
+ (3b − 2)u

∂

∂u
, (52)

so the similarity variables for this Lie point symmetry using the method of char-
acteristics are as follows:

r = t x
3

1−3b , z = ux
3b−2
1−3b , (53)

because

dx

(3b − 1)x
= dt

3t
⇒ 3

3b − 1
ln x + ln r = ln t ⇒ ln r = ln t − 3

3b − 1
ln x ⇒ ln r = ln(t x

3
1−3b )

⇒ r = t x
3

1−3b ,

dx

(3b − 1)x
= du

(3b − 2)u
⇒ 3b − 2

3b − 1
ln x + ln z = ln u ⇒ ln z = ln u − 3b − 2

3b − 1
ln x

⇒ z = ux
3b−2
1−3b .

And a solution to our equation is

z = h(r) ⇒ u = x
2−3b
1−3b h

(
t x

3
1−3b

)
. (54)
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We substitute (54) into Eq. (20) to determine the h(r). Then h(r) must satisfy in
the fractional ODE as follows:

(3b − 1)3
∂αh

∂rα
− 6(1 − 3b)2rh(r)h′(r) + 324(3b − 4)kr2+bh(r)h′(r)2

−486kr3+bh(r)h′(r)h′′(r) + 3(54b3 − 153b2 + 138b − 40)krbh(r)3

−162kr3+bh′(r)3 + (54b3 − 72b2 + 30b − 4)h(r)2 − 9(99b2 − 228b + 128)kr1+bh′(r)h(r)2

+162(3b − 4)kr2+bh′′(r)h(r)2 − 81kr3+bh′′′(r)h(r)2 = 0.

where α = 1
3 .

• Case 4.2: α = 1
3 , g(t) = k.

For this case we have

X3.3.2 = x
∂

∂x
− 3t

∂

∂t
+ 2u

∂

∂u
, (55)

so the similarity variables for this Lie point symmetry using the method of char-
acteristics are as follows:

r = t x3, z = ux−2, (56)

because

dx

x
= −dt

3t
⇒ −3 ln x + ln r = ln t ⇒ ln r = ln t + 3 ln x ⇒ ln r = ln(t x3)

⇒ r = t x3,
dx

x
= du

2u
⇒ 2 ln x + ln z = ln u ⇒ ln z = ln u − 2 ln x ⇒ z = ux−2.

And a solution to our equation is

z = h(r) ⇒ u = x2 h
(
t x3

)
. (57)

We substitute (57) into Eq. (20) to determine the h(r). Then h(r) must satisfy in the
fractional ODE as follows:

∂αh

∂rα
+ 120kh(r)3 + 162kr3h′(r)3 + 6rh(r)h′(r) + 1296kr2h(r)h′(r)2

+486kr3h(r)h′(r)h′′(r) + 4h(r)2 + 1152krh′(r)h(r)2 + 648kr2h(r)2h′′(r)
+81kr3h(r)2 h′′′(r) = 0.

where α = 1
3 .
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6 Conclusion

In the present study, we investigated the efficiency of the classical Lie symmetry
group analysis to the fractional differential equations. The fractional Lie symmetries
method is considered for application to the time-fractional K(m, n) equation with
variable coefficients with Riemann-Liouville derivative. Also, we reduced this time-
fractional equation into a nonlinear ODE of fractional order. For this propose, the
Lie group method and the symmetry properties have been investigated for the gov-
erning equations. They have been used to reduce the given FPDE to a corresponding
nonlinear ODE of fractional order which might be solved easily.
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Generalized Rayleigh Wave Propagation
in Heterogeneous Substratum Over
Homogeneous Half-Space Under Gravity

Pulak Patra, Asit Kumar Gupta, and Santimoy Kundu

Abstract The present work considering the propagation of Rayleigh waves in an
incompressible heterogeneous medium with a general variation of rigidity; resting
over another incompressible homogeneous half-space under the effect of gravity.
Instead of usingWhittaker’s function, the expansion formula proposed byNewland’s
has been used to solve the equation of motion for better result in the incompressible
half space. Newland’s method gives better results for shallow depth. The velocity
equations have been calculated and the results shown in the figures. The study may
reveal the fact that, except for linear and quadratic variation of rigidity, the relation
between the phase velocity of Rayleigh wave and the gravity being directly propor-
tional to each other. The phase velocity of Rayleigh wave in absence of gravity is
smaller than the presence of gravity in all cases except linear and quadratic variation
in rigidity.

Keywords Rayleigh wave · Incompressible substratum · Biot’s gravity
parameter · Newland’s method · Propagation of waves

1 Introduction

Study of surface waves are always interesting for researcher due to its practical
applicability in various fields of Seismology, Geology etc. Basically in coastal belt
area, the effect of surface waves shown its characteristics in different manner. In
fact most of the time this unknown effect being one of the major reason for the
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destructiveness. Hence, the authors are mainly focused on the coastal security issues
in this work.

If we had turned the page of history, we found that around 18th century a famous
physicist Lord Rayleigh first observed such surface waves (viz.- RayleighWave) dur-
ing earthquake. Interestingly he was not just made an observations, but also analysed
it in details and published some interesting facts in the formof an scientific article [23]
which ends with a fundamental differences in the characteristics of half space and an
infinite medium. Lamb [19] was the first who introduced the propagation of Rayleigh
waves in a half-space and concluded that the deformations produced by it are much
greater than other associated compressional and shear waves. Thus Rayleigh waves
play a vital role in the transmission of seismic disturbances at the surface of the earth
during an earthquakes. In this consequent it does not need to mention the importance
of it to the researcher, seismologists or geologists. After Lamb [19] a good number of
literatures being available at different books written by Achenbach [1] or Ewing [14]
or Cowin et al. [10] or Akbarov [2]; related to the propagation of Rayleigh waves in
homogeneous and non-homogeneous medium in presence of one or more superficial
layer(s).Most of the study regarding Rayleigh waves are considered the asymptotic
expansion ofWhittaker functions [27], but the expansions are only valid for the large
depths and unable to concludes the result properly in case of shallow depths. So
on this note, authors are considering Newland’s method [21] to study the present
paper in incompressible heterogeneous medium with shear modulus μ = μ0(1 +
bz)m . The effect of gravity on Rayleigh waves in a half space was considered by
Dey et al. [13] and ended with some interesting results regarding the propagation of
the wave; whereas Dey et al. [12] studies the propagation of the wave in incompress-
ible medium and concluded with the variation of velocities during propagation at the
saidmedium. In recent past Burlak et al. [9] study the nature of thewaves in a two lay-
ered ocean-earth model and concluded its characteristics on such situation. Novikiva
et al. [22] in his work investigates the nature of the wave in sedimentary layer and
Abd-Alla et al. [4] was studied the influence of the initial stress and rotation of these
wave fronts; interestingly both the mentioned work [4, 22] was done under the effect
of gravity for its practicability. Kakar [18] in very recent made an observation on
the effect of gravity and non-homogeneity on the Rayleigh waves in case of higher
order elastic-viscoelastic half spaces and concluded with some interesting results.
Akbarov et al. [3] studied the propagation of waves in layered media. Applicability
of Rayleigh waves in different coastal areas are studied by Chen et al. [7], Hu et al.
[15, 16] and Suzuki et al. [24] etc.

As it was already declared that; in this present paper the authors are considering
the propagation of Rayleigh waves in an incompressible heterogeneousmediumwith
general variation of rigidity lying over another incompressible homogeneous half
space under the effect of gravity with general variation of rigidity and the authors
are reveals the fact that the phase velocity of Rayleigh wave at the said medium
under the assumed condition is proportional with the values of gravity except for
the linear and quadratic variation of rigidity. In fact the authors are mainly focused
on the applicability of the surface wave in coastal safety issues and the authors are
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Fig. 1 Geometry of the problem

believed, it will be definitely help to develop a new safety model which might help
to increase the safety of coastal areas.

2 Formulation of the Problem

Authors are considered an incompressible layer of thickness H with shear modulus
of rigidity μ = μ0(1 + bz)m and density ρ = ρ0 lying over another incompressible
half-space under the initial hydro static stress due to the effect of gravity field.
Considering the rigidity and density of the half-space asμ1 andρ1 respectively. Taken
z as the vertical distance from the origin situated at the interface of the incompressible
medium and the half-space, and the downward direction of z being taken as positive
(Fig. 1).

Assuming that the wave propagates along x-axis with phase velocity c and wave-
length of 2π/K and u,w be the displacement components along the x and z directions
respectively at a point (x, y, z) at any time .For smooth calculation considering that
apart from the factor eik(x−ct), u and w are functions of z only.
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2.1 Equations of Motion and Solution for Upper Layer

The equation of vibratory motion in two dimensions for the upper layer are

∂

∂x

(
λ� + 2μ

∂u

∂x

)
+ ∂

∂z

{
μ

(
∂u

∂z
+ ∂w

∂x

)}
= ρ0

∂2u

∂t2
(1)

∂

∂x

{
μ

(
∂u

∂z
+ ∂w

∂x

)}
+ ∂

∂z

(
λ� + 2μ

∂w

∂z

)
= ρ0

∂2w

∂t2
(2)

where, λ and μ are the Lame’s Constant.
Since the medium is incompressible then the value of dilation (�) takes the value

as

� =
(

∂u

∂x
+ ∂w

∂z

)
= 0

⇒ ∇2φ = 0

(3)

with the following relations

u =
(

∂φ

∂x
+ ∂χ

∂z

)

w =
(

∂φ

∂z
− ∂χ

∂x

) (4)

where, φ is the scalar potential and χ is the vector potential.
Since the shear modulus for the upper layer being μ = μ0(1 + bz)m , with the

incompressible condition � = 0, and together with

lim
λ→∞,�→ 0

λ� → −P1

(where P1 is the hydrostatic stress). The Eqs. (1) and (2) becomes

∂

∂x

[
− P1 + 2bmμ0

(
1 + bz

)m−1
w + ρ0c

2K 2φ
]

+ ∂

∂z

[
μ

(∇2χ
) + ρ0c

2K 2χ
]

= 0
(5)

∂

∂z

[
− P1 + 2bmμ0

(
1 + bz

)m−1
w + ρ0c

2K 2φ
]

− ∂

∂x

[
μ

(∇2χ
) + ρ0c

2K 2χ
]

= 0
(6)

combining Eqs. (5) and (6) which are satisfies-
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P1 = 2μ0bm
(
1 + bz

)m−1
w + ρ0c

2K 2φ (7)

and
μ

(
∇2χ

)
= −ρ0c

2K 2χ (8)

together with
∇2φ = 0 (9)

where ∇2 ≡ ∂2

∂x2 + ∂2

∂z2 .
Without ambiguity, considering the initial solutions as-

φ = φ(z) cos K (x − ct) and χ = χ(z) sin K (x − ct)
then the Eqs. (8) and (9) becomes,respectively-

d2χ

dz2
+ k2

[
ρ0c2

μ0(1 + bz)m
− 1

]
χ(z) = 0 (10)

and
d2φ

dz2
− k2φ = 0 (11)

Instead of solving the above equations by Whittaker functions; authors are
attempting to solve it directly by help of Newland’s method [21] as follows-
assuming (1 + bz) = Z , the Eq. (10) becomes-

d2χ

dZ2
−

(
K

b

)2(
1 − ρ0c2

μ0Zm

)
χ = 0 (12)

now, from Eq. (12) it can be expanding into the series solution in power of
(

K
b

)2
as-

χ(Z) = χ0(Z) +
(
K

b

)2

χ1(Z) +
(
K

b

)4

χ2(Z)+

· · · +
(
K

b

)2n

χn(Z) + · · ·
(13)

using (Eq. 13) on (Eq. 12) it gives-
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[
χ

′′
0 (Z) +

(
K

b

)2

χ
′′
1 (Z) +

(
K

b

)4

χ
′′
2 (Z) + · · ·

+
(
K

b

)2n+2

χ
′′
n+1(Z) + · · ·

]
=

(
K

b

)2(
1 − ρ0c2

μ0Zm

)

[
χ0(Z) +

(
K

b

)2

χ1(Z) +
(
K

b

)4

χ2(Z) + · · ·

+
(
K

b

)2n

χn(Z) + · · ·
]

(14)

From both sides of Eq. (14), which gives-

χ
′′
0 (Z) = 0

χ
′′
1 (Z) =

(
1 − ρ0c2

μ0Zm

)
χ0(Z)

χ
′′
2 (Z) =

(
1 − ρ0c2

μ0Zm

)
χ1(Z)

.....................................

.....................................

χ
′′
n+1(Z) =

(
1 − ρ0c2

μ0Zm

)
χn(Z)

(15)

Thus it is quite clear that if Eq. (15) and the resulting series (Eq. 13) both converges
and involves two arbitrary constants, it is a valid solution and interestingly most
general solution of Eq. (10).

Thus for converging Eq. (13),it should be

χ
′
n(1) = χn(1) = 0 (16)

again from Eq. (15) it gives

χ
′
0(Z) = A2

b
(17)

and

χ0(Z) = A1 + A2

b
(Z − 1) (18)

From the linearity of equation (Eq. 12) by using Eq. (13) with the help of equation
(18) one may write

χ(Z) = A1χ
(1) + A2χ

(2) (19)
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where,

χ(1) =
{
χ

(1)
0 +

(
K
b

)2
χ

(1)
1 +

(
K
b

)4
χ

(1)
2 + · · ·

}
and

χ(2) =
{
χ

(2)
0 +

(
K
b

)2
χ

(2)
1 +

(
K
b

)4
χ

(2)
2 + · · ·

}
Again considering,

χ
(1)
0 = 1

χ
(2)
0 = z = Z − 1

b

(20)

Now from Eq. (15) the value of χ1 may be obtained as

χ1(Z) =
Z∫
1

{
ζ∫
1

(
1 − ρ0c2

μ0tm

)
χ0(t)dt

}
dζ

to evaluate the above integral authors are considering different values ofm as follows-

Case-I: When m = 1
χ1(Z) = A1

[
1
2 (Z − 1)2 − ρ0c

2

μ0

{
Z log Z − (Z − 1)

}]
+ A2

b

[
1
6 (Z − 1)3 + ρ0c

2

μ0

{
Z log Z + 1

2 − Z2
2

}]

and the solution of χ(1) and χ(2) becomes

χ(1) = 1 +
(
K

b

)2[
1

2
(Z − 1)2 − ρ0c2

μ0
(Z log Z − Z + 1)

]
(21)

χ(2) = (Z − 1) +
(
K

b

)2[
1

6
(Z − 1)3 + ρ0c2

μ0

(
Z log Z − Z2

2
+ 1

2

)]
(22)

Case-II: When m = 2

χ1(Z) = A1

[
1
2 (Z − 1)2 + ρ0c2

μ0

{
log Z − (Z − 1)

}]
+ A2

b

[
1
6 (Z − 1)3 − ρ0c2

μ0{
(Z + 1) log Z + 2(1 − Z)

}]

and the solution of χ(1) and χ(2) becomes

χ(1) = 1 +
(
K

b

)2[
1

2
(Z − 1)2 + ρ0c2

μ0
(log Z − Z + 1)

]
(23)

χ(2) = (Z − 1) +
(
K

b

)2[
1

6
(Z − 1)3 − ρ0c2

μ0{
(Z + 1) log Z + 2(1 − Z)

}] (24)

Case-III: When m = 3

χ1(Z) = A1

[
1
2 (Z − 1)2 + ρ0c2

μ0

{
1 − Z

2 − 1
2Z

}]
+ A2

b

[
1
6 (Z − 1)3 + ρ0c2

μ0

{
log Z +
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1
2Z − Z

2

}]

and the solution of χ(1) and χ(2) becomes

χ(1) = 1 +
(
K

b

)2[
1

2
(Z − 1)2 + ρ0c2

μ0

(
1 − Z

2
− 1

2Z

)]
(25)

χ(2) = (Z − 1) +
(
K

b

)2[
1

6
(Z − 1)3 + ρ0c2

μ0

{
log Z

+ 1

2Z
− Z

2

}] (26)

Case-IV: For any value of m other than m �= 1, m �= 2 and m �= 3

χ1(Z) = A1

[
1
2 (Z − 1)2 + ρ0c2

μ0

1
(1−m)

{
(Z − 1) + 1

(2−m)

(
1 − 1

Zm−2

)}]
+

A2
b

[
1
6 (Z − 1)3 + ρ0c2

μ0

1
(2−m)

{
(Z − 1) + 1

(3−m)

(
1 − 1

Zm−3

)}
+ ρ0c2

μ0

1
(1−m)

{
(1 − Z) +

1
(2−m)

(
1

Zm−2 − 1

)}]

and the solution of χ(1) and χ(2) becomes

χ(1) = 1 +
(
K

b

)2[
1

2
(Z − 1)2 + ρ0c2

μ0

1

(1 − m){
(Z − 1) + 1

(2 − m)

(
1 − 1

Zm−2

)}] (27)

χ(2) = (Z − 1) +
(
K

b

)2[
1

6
(Z − 1)3 + ρ0c2

μ0

1

(2 − m){
(Z − 1) + 1

(3 − m)

(
1 − 1

Zm−3

)}

+ρ0c2

μ0

1

(1 − m)

{
(1 − Z) + 1

(2 − m)

(
1

Zm−2
− 1

)}]
(28)

Then the solution for the upper layer can be considered as

φ =
(
P cosh Kz + Q sinh Kz

)
cos K (x − ct)

χ =
(
A1χ

(1)(Z) + A2χ
(2)(Z)

)
sin K (x − ct)

(29)
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where χ(1) and χ(2) have the values given by the Eq. (21) to Eq. (28) for different
values of m.

So, The displacement components at the inhomogeneous upper layer become as-

u =
[

− K
(
P cosh Kz + Q sinh Kz

)
+

(
A1

∂

∂z
χ(1)(Z)

+A2
∂

∂z
χ(2)(Z)

)]
sin K (x − ct)

(30)

w =
[
K

(
P sinh Kz + Q cosh Kz

)
− K

(
A1χ

(1)(Z)

+A2χ
(2)(Z)

)]
cos K (x − ct)

(31)

and the stress components of the upper layer become as-

σxz = 2K

[
− μ

∂φ

∂z
+ K

(
μ − εμ0

2

)
χ

]
sin K (x − ct) (32)

σzz = 2

[
K 2φ

(
μ − εμ0

2

)
− μ0bm

(
1 + bz

)m−1 ∂φ

∂z

+μ0bm
(
1 + bz

)m−1
Kχ − μK

∂χ

∂z

]
cos K (x − ct)

(33)

where ε = ρ0c2

μ0

2.2 Equations of Motion and Solution for Half Space

Since the authors are considered that the half space being incompressible, so the
equations of motion being

∂s11
∂x

+ ∂s12
∂z

+ ρ1ωg − ∂s

∂z
exz = ρ1

∂2u

∂t2

∂s12
∂x

+ ∂s22
∂z

− ∂s

∂z
ezz = ρ1

∂2w

∂t2

(34)

where, exz = 1
2

(
∂w
∂x + ∂u

∂z

)
, ω = 1

2

(
∂w
∂x − ∂u

∂z

)
and ezz = ∂w

∂z

Then, from Eq. (34) it can be re-write as
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∂

∂x
(s11 + ρ1gw) + ∂s12

∂z
= ρ1

∂2u

∂t2

∂s12
∂x

+ ∂

∂z

(
s22 + ρ1gw

)
= ρ1

∂2w

∂t2

(35)

Now introducing the fictitious stresses as-

s11 + ρ1gw = s
′
11, s22 + ρ1gw = s

′
22, s12 = s

′
12 (36)

then the Eq. (35) may be written as-

∂s
′
11

∂x
+ ∂s

′
12

∂z
= ρ1

∂2u

∂t2

∂s
′
12

∂x
+ ∂s

′
22

∂z
= ρ1

∂2w

∂t2

(37)

Now according to M. A. Biot [5] , the stress-strain relation for incompressible
material were as follows-

s11 − s = 2μ1exx , s22 − s = 2μ1ezz, s12 = 2μ1exz (38)

using the relation (Eq. 36) in (Eq. 38) , it can be changes into

s
′
11 − s

′ = 2μ1exx

s
′
22 − s

′ = 2μ1ezz

s
′
12 = 2μ1exz

(39)

and

s
′ = 1

2
(s

′
11 + s

′
22) = s + ρ1gw (40)

For changing the strain components in terms of displacement components, substi-
tuting the relation (Eq. 39) into theEq. (37) and utilizing the incompressible condition
(Eq. 3), which gives-

∂s
′

∂x
+ μ1∇2u = ρ1

∂2u

∂t2

∂s
′

∂z
+ μ1∇2w = ρ1

∂2w

∂t2

(41)

The incompressibility condition is satisfied by-

u = −∂φ

∂z
, w = ∂φ

∂x
(42)
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Using relation (Eq. 42) in Eq. (41) and eliminating s
′
, gives-

μ1

[
∂4φ

∂x4
+ 2

∂4φ

∂x2∂z2
+ ∂4φ

∂z4

]
= ρ1

∂2

∂t2

[
∂2φ

∂x2
+ ∂2φ

∂z2

]
(43)

Considering the solution as φ = η(z) sin K (x − ct), from the Eq. (43) which
gives-

η
′′′′ − K 2η

′′(
1 + β2

)
+ K 4ηβ2 = 0 (44)

where, β2 =
(
1 − ρ1c2

μ1

)
Therefore the solution of equation (Eq. 44), where it is important that as z →

∞,η → 0 can be written as

η =
(
A3e−Kz + A4e−βKz

)
and hence,

φ =
(
A3e

−Kz + A4e
−βKz

)
sin K (x − ct) (45)

Therefore,
u = K

(
A3e

−Kz + βA4e
−βKz

)
sin K (x − ct) (46)

w = K
(
A3e

−Kz + A4e
−βKz

)
cos K (x − ct) (47)

According to Biot [5] the stress components for the half space become-

σxz = −μ1K
2
[
2A3e

−Kz + A4

(
1 + β2

)
e−Kβz

]
sin K (x − ct)

(48)

σzz = μ1K
2

[
A3

{(
1 − β2

)
− ρ1g

μ1K
− 2

}
e−Kz

−A4

(
2β + ρ1g

μ1K

)
e−Kβz

]
cos K (x − ct)

(49)

3 Boundary Conditions

On the basis of geometry for the problem, authors are defined the boundary conditions
into two sets as-
(i) the displacement components and stress components are continuous at z = 0; i.e.
u, w, σxz and σzz are continuous at z = 0 or
(u)1 = (u)2 at z = 0
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(w)1 = (w)2 at z = 0
(σxz)1 = (σxz)2 at z = 0
(σzz)1 = (σzz)2 at z = 0
and
(ii) the stress components should be vanish at z = −H ; i.e. σxz and σzz are vanish at
z = −H or
(σxz)1 = 0 at z = −H
(σzz)1 = 0 at z = −H
Check (Fig. 1) for better understanding.

Using set (i) it gives-

− K P + A2b − A3K − A4Kβ = 0 (50)

Q − A1 − A3 − A4 = 0 (51)

− Q + A1

(
1 − ε

2

)
+ A3

μ1

μ0
+ A4

μ1

2μ0

(
1 + β2

)
= 0 (52)

P

[
K

(
1 − ε

2

)]
− Q(bm) + A1(bm) − A2b

−A3

[
μ1K

2μ0

{
(1 − β2) − ρ1g

μ1K
− 2

}]

+A4

[
μ1K

2μ0

(
2β + ρ1g

μ1K

)]
= 0

(53)

and using set (ii) it gives-

P sinh(−K H) + Q cosh(−K H) −
(
1 − εμ0

2μ2

)
[
A1χ

(1)(Z) + A2χ
(2)(Z)

]
z=−H

= 0

(54)

P

[
K cosh(Kz)

(
μ − εμ0

2

)
− μ0bm(1 + bz)m−1 sinh(Kz)

]
z=−H

+Q

[
K sinh(Kz)

(
μ − εμ0

2

)
− μ0bm(1 + bz)m−1 cosh(Kz)

]
z=−H

+A1

[
μ0bm(1 + bz)m−1χ(1)(Z) − μ

∂

∂z
χ(1)(Z)

]
z=−H

+A2

[
μ0bm(1 + bz)m−1χ(2)(Z) − μ

∂

∂z
χ(2)(Z)

]
z=−H

= 0

(55)
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where, μ2 = μ0(1 − bH)m .
From the Eqs. (50), (51), (52) and (53) the relationship between P, Q, A1, A2

may be obtained as
1

2
εP = a1A3 + b1A4

1

2
εQ = a2A3 + b2A4

1

2
εA1 = a3A3 + b3A4

1

2
εA2 = a4A3 + b4A4

(56)

where,
a1 = 1

K

{
mba3
ε/2 − mba2

ε/2 + μ1K
2μ0

+ β2μ1K
2μ0

+ G μ1K
2μ0

− K
}
,asG = ρ1g

μ1K
is theBiot’s grav-

ity parameter
a2 = ε

2 + a3
a3 = μ1

μ0
− 1

a4 = 1
b

(
a1K + K ε

2

)

b1 = 1
K

{
bmb3
ε/2 − bmb2

ε/2 + Kβ + β
μ1K
μ0

+ G μ1K
2μ0

− Kβε
}

b2 = ε
2 + b3

b3 = μ1

2μ0
+ β2μ1

2μ0
− 1

b4 = 1
b

(
b1K + Kβε

2

)
Again, from the Eqs. (54) and (55) assuming-
c1 = sinh(−K H)

c2 = cosh(−K H)

c3 =
[

−
(
1 − εμ0

2μ2

)
χ(1)(Z)

]
z=−H

c4 =
[

−
(
1 − εμ0

2μ2

)
χ(2)(Z)

]
z=−H

d1 =
[
K

(
μ − εμ0

2

)
cosh(Kz) − μ0bm(1 + bz)m−1 sinh(Kz)

]
z=−H

d2 =
[
K

(
μ − εμ0

2

)
sinh(Kz) − μ0bm(1 + bz)m−1 cosh(Kz)

]
z=−H

d3 =
[
μ0bm(1 + bz)m−1χ(1)(Z) − μ ∂

∂zχ
(1)(Z)

]
z=−H

d4 =
[
μ0bm(1 + bz)m−1χ(2)(Z) − μ ∂

∂zχ
(2)(Z)

]
z=−H

Therefore the Eqs. (54) and (55) gives,

Pc1 + Qc2 + A1c3 + A2c4 = 0

Pd1 + Qd2 + A1d3 + A2d4 = 0
(57)
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The consistency of Eqs. (56) and (57) for a non-trivial solution of A3 and A4

implies that (Details calculation is available in Appendix)

4∑
i=1

aici

4∑
j=1

b jd j =
4∑

k=1

akdk

4∑
l=1

blcl (58)

This is the velocity equation for the Rayleigh wave propagation in the assumed
medium.

3.1 Particular Cases

To check the validity of the result authors are considering two particular cases and
used them in the final dispersion equation as follows.

3.1.1 Case-I

Authors are first cross verified the result in absence of substratum i.e. H → 0 , then
equation (Eq.58) reduces to

⇒
(
2 − c2

c2s

)2 − ρ1g
μ1K

(
c2

c2s

)
= 4

√
1 − c2

c2s
where, cs =

√
μ1

ρ1
,

The above equation is the well known Rayleigh wave equation for an incompress-
ible medium under gravity [5].

3.1.2 Case-II

Secondly authors are considered the result in absence of substratum and gravity field
i.e. H → 0 and G → 0 , which shows the equation (Eq.58) reduces to

⇒
(
2 − c2

c2s

)2 = 4
√
1 − c2

c2s
where, cs =

√
μ1

ρ1
,

In fact this equation is sameas of theRayleighwave equation for an incompressible
medium.

4 Results and Discussions

The velocity of Rayleigh waves being calculated from the final dispersion Eq. (58)
for different values of m starting from 0 to 4 and observed the nature of the phase
velocities for different values of 2π/K H in presence and absence of gravity. The
parametric relations are shown in Table1 for better understanding. The results are
being presented at figure section for different values of the parameter m. As the
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authors are basically tried to understood the nature of the wave in respect of chang-
ing values for the unknown parameter, they are considered the values from 0 and
increasing it by 0.5 unit to identify the nature in prominent way. In all the cases
authors are considering 3 curves for different values of the Biot’s gravity parameters
G = 0, 0.4, 0.6 respectively but for the fixed values of rigidity and elasticity ratios
of two layers i.e. ρ1

ρ0
= 1.2 and μ1

μ0
= 1.6 along with the value of bH = 0.5.

For the value of m = 0 , the figure (Fig. 2) being clearly indicating that for the
assumed layers the velocity of the Rayleigh waves in presence of gravity is more
than that of the in absence of gravity.

Similarly for m = 0.5, the figure (Fig. 3) also shown the same result as for the
value of m = 0 i.e. in the assumed conditions the velocity for Rayleigh waves in
presence of gravity is more than in case of it’s absence.

In fact when the authors are gone through the other values of m i.e. for 1.5, 2.5,
3, 3.5 and 4, the figures (Figs. 5, 7, 8, 9 and 10 ) are shown the same results, i.e.
the velocity of Rayleigh wave has a variation in presence and in absence of the
gravitational force.

On the other hand for the values of m = 1 and m = 2 ,i.e. in case of linearity
and quadratic variation of m the observations shows opposite result (Figs. 4 and 6)
as of the previous cases that is the velocity of Rayleigh wave in presence of gravity
is smaller than the absence of gravity at the assumed layer and half space. These
clearly indicates a new observations in respect of the work.

Another important observations authors are observed that for the assumed layer
and in all the values of the parameter m; as 2π/K increases velocity of the wave
increases.

5 Conclusion

From the above study authors are reveals the following fact regarding the propagation
of Rayleigh waves in the heterogeneous substratum over homogeneous half-space
under gravity as-

• The phase velocity ofRayleighwaves in an incompressible heterogeneousmedium
over an incompressible gravitating half space is increasing as gravity being
increased for almost all variation of m except linearity and quadratic variation.

• The phase velocity of Rayleigh wave in absence of gravity is smaller than the
presence of gravity in all cases except linear and quadratic variation in rigidity.

• For linearity and quadratic variation of m, the study reveals different fact that is,
as the gravity being increased the phase velocity of the wave become decreased.

• Relation with phase velocity and the depth of the substratum being directly pro-
portional to each other i.e. as depth increases velocity of the Rayleigh wave also
increases.

In future any researcher can work with the large values of the parameter m , to
obtained various observations. Use of Newland’s method for shallow depth in this
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article reveals various unknown fact which researcher may be used for other surface
waves for its better understanding.

Table for Calculation

Table 1 Parametric values for the figures

Figure no. Curve no. G m ρ1
ρ0

μ1
μ0

bH

Figure 2 1 0

2 0.4 0 1.2 1.6 0.5

3 0.6

Figure 3 1 0

2 0.4 0.5 1.2 1.6 0.5

3 0.6

Figure 4 1 0

2 0.4 1 1.2 1.6 0.5

3 0.6

Figure 5 1 0

2 0.4 1.5 1.2 1.6 0.5

3 0.6

Figure 6 1 0

2 0.4 2 1.2 1.6 0.5

3 0.6

Figure 7 1 0

2 0.4 2.5 1.2 1.6 0.5

3 0.6

Figure 8 1 0

2 0.4 3 1.2 1.6 0.5

3 0.6

Figure 9 1 0

2 0.4 3.5 1.2 1.6 0.5

3 0.6

Figure 10 1 0

2 0.4 4 1.2 1.6 0.5

3 0.6
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Graphical Representation of the Results
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Fig. 2 Rayleigh wave dispersion for m = 0
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Fig. 3 Rayleigh wave dispersion for m = 0.5
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Fig. 4 Rayleigh wave dispersion for m = 1
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Fig. 5 Rayleigh wave dispersion for m = 1.5
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Fig. 6 Rayleigh wave dispersion for m = 2
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Fig. 7 Rayleigh wave dispersion for m = 2.5
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Fig. 8 Rayleigh wave dispersion for m = 3
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Fig. 9 Rayleigh wave dispersion for m = 3.5
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Fig. 10 Rayleigh wave dispersion for m = 4
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Appendix

From the Eqs. (56) and (57) the coefficient determinant will be-

Let � =

∣∣∣∣∣∣∣∣∣∣∣∣

1
2ε 0 0 0 −a1 −b1
0 1

2ε 0 0 −a2 −b2
0 0 1

2ε 0 −a3 −b3
0 0 0 1

2ε −a4 −b4
c1 c2 c3 c4 0 0
d1 d2 d3 d4 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Expanding the determinant in terms of 1st row, we get,

1
2ε

∣∣∣∣∣∣∣

1
2 ε 0 0 −a2 −b2
0 1

2 ε 0 −a3 −b3
0 0 1

2 ε −a4 −b4
c2 c3 c4 0 0
d2 d3 d4 0 0

∣∣∣∣∣∣∣
− a1

∣∣∣∣∣∣∣
0 1

2 ε 0 0 −b2
0 0 1

2 ε 0 −b3
0 0 0 1

2 ε −b4
c1 c2 c3 c4 0
d1 d2 d3 d4 0

∣∣∣∣∣∣∣
+ b1

∣∣∣∣∣∣∣
0 1

2 ε 0 0 −a2
0 0 1

2 ε 0 −a3
0 0 0 1

2 ε −a4
c1 c2 c3 c4 0
d1 d2 d3 d4 0

∣∣∣∣∣∣∣
= 0
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Now consider,

�1 =

∣∣∣∣∣∣∣∣∣∣

1
2ε 0 0 −a2 −b2
0 1

2ε 0 −a3 −b3
0 0 1

2ε −a4 −b4
c2 c3 c4 0 0
d2 d3 d4 0 0

∣∣∣∣∣∣∣∣∣∣
,

�2 =

∣∣∣∣∣∣∣∣∣∣

0 1
2ε 0 0 −b2

0 0 1
2ε 0 −b3

0 0 0 1
2ε −b4

c1 c2 c3 c4 0
d1 d2 d3 d4 0

∣∣∣∣∣∣∣∣∣∣
,

�3 =

∣∣∣∣∣∣∣∣∣∣

0 1
2ε 0 0 −a2

0 0 1
2ε 0 −a3

0 0 0 1
2ε −a4

c1 c2 c3 c4 0
d1 d2 d3 d4 0

∣∣∣∣∣∣∣∣∣∣
Now from �1 expanding in terms of 1st row, we get-

�1 = 1
2ε

∣∣∣∣∣∣
1
2 ε 0 −a3 −b3
0 1

2 ε −a4 −b4
c3 c4 0 0
d3 d4 0 0

∣∣∣∣∣∣ + a2

∣∣∣∣∣∣
0 1

2 ε 0 −b3
0 0 1

2 ε −b4
c2 c3 c4 0
d2 d3 d4 0

∣∣∣∣∣∣ − b2

∣∣∣∣∣∣
0 1

2 ε 0 −a3
0 0 1

2 ε −a4
c2 c3 c4 0
d2 d3 d4 0

∣∣∣∣∣∣
Again expanding in term of 4th column for each components of the determinant

we get-

�1 = 1
2εb3

∣∣∣∣∣∣
0 1

2ε −a4
c3 c4 0
d3 d4 0

∣∣∣∣∣∣ − 1
2εb4

∣∣∣∣∣∣
1
2ε 0 −a3
c3 c4 0
d3 d4 0

∣∣∣∣∣∣ + a2b3

∣∣∣∣∣∣
0 0 1

2ε

c2 c3 c4
d2 d3 d4

∣∣∣∣∣∣
− a2b4

∣∣∣∣∣∣
0 1

2ε 0
c2 c3 c4
d2 d3 d4

∣∣∣∣∣∣ − b2a3

∣∣∣∣∣∣
0 0 1

2ε

c2 c3 c4
d2 d3 d4

∣∣∣∣∣∣ + b2a4

∣∣∣∣∣∣
0 1

2ε 0
c2 c3 c4
d2 d3 d4

∣∣∣∣∣∣
Simplify the above expression we will get-

�1 = 1
2 ε[(c3d4 − c4d3)(a3b4 − a4b3) + (c2d3 − d2c3)(a2b3 − a3b2) + (c2d4 − d2c4)(a2b4 − a4b2)]

Similarly if we simplified the �2 and �3 we get the following expressions:

�2 = ε2

4 [−b4(c1d4 − d1c4) − b3(c1d3 − d1c3) − b2(c1d2 − d1c2)] and
�3 = ε2

4 [−a3(c1d3 − d1c3) − a4(c1d4 − d1c4) − a2(c1d2 − d1c2)]
Now using these values of �1,�2and�3 in the value of � and simplifying for

few steps we get the (Eq. 58) i.e.
∑4

i=1 aici
∑4

j=1 b jd j = ∑4
k=1 akdk

∑4
l=1 blcl .
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On Defining Trigonometric Box
Spline-Like Surface on Type-I
Triangulation

Hrushikesh Jena and Mahendra Kumar Jena

Abstract Usually, a polynomial box spline surface is defined with the help of dis-
tributions, convolutions, Fourier transforms and recurrence relations. A better alter-
native to define the box spline surface is by subdivision method. In this paper, a
trigonometric box spline surface on type-I triangulation is defined by introducing
a new non-stationary subdivision scheme. This new subdivision scheme takes help
of the previously defined non-stationary subdivision scheme in (Jena et al., A non-
stationary subdivision scheme for generalizing trigonometric spline surfaces to arbi-
trary meshes, Computer Aided Geom. Design, 20, (2003), 61–77). The limit surface
obtained by the repeated application of this new scheme to an initial regular trian-
gular mesh, is a trigonometric box spline like surface. This can be considered as an
initial attempt to define the trigonometric box spline surfaces by subdivision process.
Besides, having a nice algorithm, the limit surface is compactly supported, satisfies
the convex hull property and is uniformly continuous. We illustrate the performance
of this scheme with some examples.

Keywords Type-I triangulation · Trigonometric box spline · Non-stationary
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1 Introduction

Subdivision is a very popular geometric modeling tool. Subdivision algorithms are
widely used in Computer Graphics andComputer AidedGeometric Design (CAGD),
due to their efficiency, flexibility and simplicity [1]. The subdivision schemes [2–15]
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use some iterative algorithms to produce smooth curves and surfaces from an initial
set of control points which are called as refinement rules. Initially, a control mesh is
given. From this a new refined control mesh is generated by applying a subdivision
scheme once. So, by repeated application of that subdivision scheme, a sequence of
control meshes is obtained which converges to a smooth limit surface. In general,
subdivision schemes can be categorized into two types: interpolating schemes and
approximating schemes. In interpolating schemes, the initial control vertices are
preserved in each levels of iteration whereas in approximating schemes, one obtains
different vertices in different iteartion levels. Approximating schemes yield smoother
curves with higher order continuity, comparable to interpolating schemes [16]. The
scheme proposed in this article is an approximating scheme. A subdivision scheme
is called a stationary subdivision scheme, if the set of subdivision masks remains
the same in all levels of iteration. If it varies from one level to another level, then
the subdivision scheme is called a non-stationary subdivision scheme. This paper
is based on a binary non-stationary scheme. Some popular subdivision schemes for
curve modeling are [2, 6, 11, 13–15] and the references therein. Similarly, some
useful tensor product subdivision schemes for surface modeling can be found in
[7, 10, 12]. In [7], a non-stationary variant of Doo-Sabin scheme [3] has been
proposed. The subdivision scheme in [10] has been constructed by the authors by
taking the tensor product of a three point curve scheme. In [12], the authors have
proposed a nine-tic B-spline subdivision scheme which reduces the execution time
needed for the computation of the subdivision process. There are so many research
works can also be found on the applications and analysis of subdivision schemes [17–
20]. Recently in [18], the authors have analyzed some geometric properties like
curvature of limit curve, monotonicity preservation, convexity preservation etc. by
considering a particular interpolating subdivision scheme.

One of the important categories of splines are trigonometric splines and they play
an important role in shape designing and geometric modeling [21, 22]. They were
first introduced by Schoenberg [23]. One way to express them is by linear combi-
nations of trigonometric B-splines. Another way to study them is by non-stationary
subdivision algorithm [6]. Normally, standard CAD geometries are represented in
terms of tensor product B-splines and their rational version NURBS [24]. Tensor
product representation is very efficient for computations but fails to deal with com-
plicated shapes modeling and also in doing local mesh refinements. On the other
hand, splines over the triangulations overcome such disadvantages. Box splines are
attractive alternatives which combine several disadvantages from tensor product B-
splines and splines over triangulations [25]. One of the important advantages of box
splines is that they can handle more complex domains better than the corresponding
tensor product counterparts. Box splines can be constructed by the help of convo-
lutions, Fourier transforms, recurrence relations and subdivision schemes [26–28].
However, so far, the construction trigonometric box spline functions has not gained
much attention. So we have taken an attempt to construct trigonometric box spline
with the help of a non-stationary subdivision scheme.

Comparing to other meshes, triangular meshes are much more flexible to be
adapted to regular topology or arbitrary topology. The main motivation of our work
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comes from the paper [7], where tensor product bi-quadratic spline surfaces are
constructed over arbitrary topology. It has proposed a non-stationary subdivision
scheme which is a tensor product scheme. But, in this article also we propose a
non-stationary subdivision scheme by considering a special case of the subdivision
algorithm for arbitrary topology defined in [7]. If the subdivision algorithm and
connectivity rule of [7] are applied to an initial type-I triangular control mesh, a
number of extraordinary vertices are produced. But in this work, after applying our
subdivision algorithm to that initial mesh we again apply an intermediate averaging
rule followed by a different connectivity rule. As a result, after each iteration of this
new scheme, we always get a regular type-I triangular mesh. Thus, we get a limit
surface which is free of extraordinary points. Since, box splines defined over triangu-
lations are free of extraordinary points, this supports our attempt. The limit surfaces
which are obtained by the application of our scheme are trigonometric box spline-
like surfaces. Although, we can’t directly call these as box splines, but these are bell
shaped and satisfy several characteristics like compact support property, partition
of unity and convex hull property. Also, we have shown that our new subdivision
scheme converges and the limit surfaces produced by this scheme are continuous.
The application of this scheme is illustrated with some example.

The paper is structured as follows. In Sect. 2, we briefly review the non-stationary
scheme defined in [7]. Next, in Sect. 3, we describe the construction of our new
non-stationary subdivision scheme which generates surfaces from an initial mesh of
type-I triangulation. In Sect. 4, we give the convergence analysis of our proposed
subdivision scheme. Here, it is emphasized that the convergence of our subdivision
scheme is of the same order as that of [7]. In Sect. 5, we provide some examples
which show the performance of our scheme over regular triangular meshes. Finally,
we give a conclusion in Sect. 6.

2 Trigonometric Spline Surface on Arbitrary Topology

In this section, we briefly describe the subdivision scheme presented in [7] which
produces trigonometric spline surfaces over arbitrary topological meshes. Let X (0)

be an initial control mesh with finite number of vertices and faces. LetF0 be a face of
X (0) made up of n number of ordered vertices V1, V2, . . . , Vn . Then by implementing
the subdivision scheme of [7], a set of new vertices associated to the face F0 are
obtained. Indeed, these new vertices are the linear combinations of the old vertices
Vi s as given in the following subdivision rule.

ai = 1

4
(P + Ei−1 + Ei + F), i = 1, 2, . . . n, (1)

where

Ei = 1

2
sec h sec2(h/2) (Vi + Vi+1), P = sec2(h/2) Vi ,
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and

F = 1

n
sec2 h sec2(h/2)

n∑

i=1

Vi .

Here all the indices of the vertices are taken modulo n and h (0 < h ≤ π
3 ) is the mesh

size which also controls the shape of the surface. By simplifying (1), it is obtained
that

ai = α(n, 1) Vi + β(n, 1) (Vi−1 + Vi+1) + γ(n, 1) (Vi+2 + · · · + Vi+n−2), (2)

where for k ≥ 1,

γ(n, k) = 1

4n
sec2(h/2k ) sec2(h/2k−1), β(n, k) = γ(n, k) + 1

8
sec2(h/2k ) sec(h/2k−1),

and α(n, k) = γ(n, k) + 1

4
sec2(h/2k ) (1 + sec(h/2k−1)). (3)

After getting these new vertices, the Doo-Sabin’s connectivity rule [3] is applied and
by this a new control mesh X (1) is obtained which is called as first iteration control
mesh. By denoting S1 as the subdivision operator, this whole subdivision process
is represented by X (1) = S1X (0). Similarly, X (2) is obtained from X (1) by applying
the subdivision operator S2, where α(n, 1), β(n, 1) and γ(n, 1) are replaced by
α(n, 2), β(n, 2) and γ(n, 2), respectively. Proceeding further, in general, X (k+1) is
obtained from X (k) by applying the subdivision operator Sk+1 as follows:

X (k+1) = Sk+1X (k) = Sk+1Sk . . .S1X (0) = S(k+1)X (0), (4)

where Sk+1 is associated with α(n, k + 1), β(n, k + 1) and γ(n, k + 1), respec-
tively. The connectivity rule used in [7] produces a new face of n vertices from an
old face of n vertices; a new face of n vertices from an old interior vertex of valence
n and new quadrilateral from an old interior edge. After each iteration, we get more
and more number of quadrilaterals but the number of non-quadrilaterals remains
fixed. So it also results in the decrement of the face size. However, the interior non-
quadrilateral faces become surrounded by layers of quadrilaterals. As a result, the
layers of quadrilaterals converge to a tensor product bi-quadratic spline surface and
the non-quadrilateral faces shrink to extraordinary points. We illustrate (4) by pro-
viding a figure (see Fig. 1), where we have taken the initial value of h = 0.25. The
initial control mesh X (0) and first iteration control mesh S(1)X (0) are given in (a)
and (b) in Fig. 1, respectively. Similarly, second and third iteration control meshes,
S(2)X (0) and S(3)X (0) are given in (c) and (d) in Fig. 1, respectively.

In the next section, we derive a new non-stationary subdivision scheme for type-I
triangulation meshes which are regular i.e. the meshes which are free from extraor-
dinary points.
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Fig. 1 a Initial control mesh
X (0). b First iteration control
mesh S(1)X (0). c Second
iteration control mesh
S(2)X (0). d Third iteration
control mesh S(3)X (0)

3 Construction of the New Non-stationary Subdivision
Scheme

In this section, we construct a new non-stationary subdivision scheme which is dif-
ferent from the scheme of [7].

3.1 Construction of the Scheme

To construct our new scheme, we choose a type-I triangular mesh. Let X (0) be
such an initial control mesh which contains six triangular faces. These are joined as
shown in Fig. 2. If we apply the subdivision scheme of [7] once to X (0), we get a
new control mesh which contains six triangular faces and one hexagonal face. Thus,
repeated application of this subdivision scheme to X (0) leads to the formation of a
limit surface with 7 extraordinary points.

But in the case of our new subdivision scheme, we only apply the subdivision
algorithm described in Eq. (2) but not the connectivity rule. By applying this subdi-
vision algorithm with n = 3 (since all faces are triangular) to one of the triangular
faces of X (0) we get three new points (intermediate points). For example, the face
{P1,P2,P3} gives new intermediate points q1, q7 and q8 near the vertices P1, P2 and
P3, respectively (see Fig. 3). Similarly, other triangular faces also generate three new
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Fig. 2 Initial Control mesh X (0)

Fig. 3 X (0) along with 18 intermediate points (q1 − q18)

points each. In total, we get 18 new control points (q1 − q18) which are shown in the
Fig. 3.

Out of the eighteen points, six intermediate points (q1 − q6) are associated with
the central vertex point P1. These points are calculated as follows:

qi = α(3, 1)P1 + β(3, 1)(Pi+1 + Pi+2), i = 1, 2, . . . 6, (P8 = P2). (5)
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Similarly, the remaining 12 points (q7 − q18) are associated to other vertex points
and these are computed as follows:

q7 = α(3, 1)P2 + β(3, 1)(P3 + P1), q8 = α(3, 1)P3 + β(3, 1)(P1 + P2),

q9 = α(3, 1)P3 + β(3, 1)(P4 + P1), q10 = α(3, 1)P4 + β(3, 1)(P1 + P3),

q11 = α(3, 1)P4 + β(3, 1)(P5 + P1), q12 = α(3, 1)P5 + β(3, 1)(P1 + P4),

q13 = α(3, 1)P5 + β(3, 1)(P6 + P1), q14 = α(3, 1)P6 + β(3, 1)(P1 + P5),

q15 = α(3, 1)P6 + β(3, 1)(P7 + P1), q16 = α(3, 1)P7 + β(3, 1)(P1 + P6),

q17 = α(3, 1)P7 + β(3, 1)(P2 + P1), and q18 = α(3, 1)P2 + β(3, 1)(P1 + P7) (6)

where,

γ(3, 1) = 1

12
sec2(h/2) sec2 h, β(3, 1) = γ(3, 1) + 1

8
sec2(h/2) sec h = 2 + 3 cos h

24 cos2(h/2) cos2 h
,

and α(3, 1) = γ(3, 1) + 1

4
sec2(h/2) (1 + sec h) = 1 + 3 cos h + 3 cos2 h

12 cos2(h/2) cos2 h
. (7)

These are obtained by simply replacing n = 3 and k = 1 in (3). We take the help
of the points q1 to q18 to develop our scheme. Taking P1 to P7 as initial control points,
the first iteration control points Q̃1 to Q̃7 are obtained by the following averaging
rule. In the first iteration control mesh Q̃1 is the corresponding central vertex point,
which is computed by,

Q̃1 = 1

6

6∑

i=1

qi = ã1P1 + ã2(P2 + · · · + P7). (8)

Similarly, other first level control points are calculated as follows:

Q̃2 =
1
2 (q1 + q6) + 1

2 (q7 + q18)

2
= b̃1(P1 + P2) + b̃2(P7 + P3),

and in similar fashion,

Q̃3 = b̃1(P1 + P3) + b̃2(P2 + P4), Q̃4 = b̃1(P1 + P4) + b̃2(P3 + P5),

Q̃5 = b̃1(P1 + P5) + b̃2(P4 + P6), Q̃6 = b̃1(P1 + P6) + b̃2(P5 + P7),

and Q̃7 = b̃1(P1 + P7) + b̃2(P6 + P2), (9)

where, the weights are ã1 = 1+3 cos h+3 cos2 h
12 cos2(h/2) cos2 h , ã2 = 2+3 cos h

72 cos2(h/2) cos2 h ,

b̃1 = 4+9 cos h+6 cos2 h
48 cos2(h/2) cos2 h and b̃2 = 2+3 cos h

48 cos2(h/2) cos2 h .

Note that here
ã1 + 6ã2 = cos2(h/2)

cos2 h ,

and 2b̃1 + 2b̃2 = cos2(h/2)
cos2 h .
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Fig. 4 Old control points P1 to P7 and new control points Q1 to Q7

Since, this sum is not unity, we normalize it by dividing the factor cos2(h/2)
cos2 h to

each weights. In this process, we get a new set of modified weights as follows:

a1 = ã1/(
cos2(h/2)
cos2 h ), a2 = ã2/(

cos2(h/2)
cos2 h ),

b1 = b̃1/(
cos2(h/2)
cos2 h ) and b2 = b̃2/(

cos2(h/2)
cos2 h ).

So, a1 + 6a2 = 1, and 2b1 + 2b2 = 1. Now, we get our normalized non-

stationary subdivision scheme. In this scheme, for given X (0) as the initial control
mesh and the first iteration control points Q1 to Q7 as follows:

Q1 = 1

6

6∑

i=1

qi = a1P1 + a2(P2 + · · · + P7),

Q2 = b1(P1 + P2) + b2(P7 + P3), Q3 = b1(P1 + P3) + b2(P2 + P4),

Q4 = b1(P1 + P4) + b2(P3 + P5), Q5 = b1(P1 + P5) + b2(P4 + P6),

Q6 = b1(P1 + P6) + b2(P5 + P7), Q7 = b1(P1 + P7) + b2(P6 + P2). (10)

We categorize the newly obtained control points as vertex points (for e.g. Q1) and
edge points (for e.g. Q2–Q7). Each triangular face contains a vertex point and two
edge points (see Fig. 4). For example, the face {P1,P2,P3} contains the new vertex
point Q1 and edge points Q2 and Q3.

Connectivity Rule: We follow the following connectivity rule. In each triangular
face we join:
(i) vertex points to edge points.
and (ii) edge points to edge points.



On Defining Trigonometric Box Spline-Like Surface on Type-I Triangulation 261

For example, in the face {P1,P2,P3} join Q1 to Q2, Q2 to Q3 and Q3 to Q1. After this
connectivity rule, we get a new control mesh X (1).

3.2 Regular Subdivision Rules

LetX (k) be the kth-level control mesh containing the set of vertices p(k) := {pki , i ∈
Z
2} and X (k+1) be the (k + 1)th-level control mesh given by the set of vertices

p(k+1) := {pk+1
i , i ∈ Z

2}. X (k+1) is obtained from X (k) by the following refinement
rules:

pk+1
i =

∑

j∈Z2

a(k)
i−2j p

k
j , i ∈ Z

2. (11)

From (11), the finite set of coefficients are collected in kth-level subdivision mask

a(k) := {a(k)
i, j , (i, j) ∈ Z

2}, (12)

and the kth-level subdivision symbol is given by

a(k)(z1, z2) =
∑

(i, j)∈Z2

a(k)
i, j z

i
1z

j
2, (z1, z2) ∈ (C \ {0})2. (13)

Specifically, in our scheme

a(k) = {a(k)
i, j , −2 ≤ i, j ≤ 2} =

⎡

⎢⎢⎢⎢⎢⎣

0 0 w
(k)
1 w

(k)
3 w

(k)
1

0 w
(k)
3 w

(k)
2 w

(k)
2 w

(k)
3

w
(k)
1 w

(k)
2 w

(k)
0 w

(k)
2 w

(k)
1

w
(k)
3 w

(k)
2 w

(k)
2 w

(k)
3 0

w
(k)
1 w

(k)
3 w

(k)
1 0 0

⎤

⎥⎥⎥⎥⎥⎦
.

Here the non-stationary subdivisionmasksw(k)
0 ,w(k)

1 ,w(k)
2 andw

(k)
3 are theweights

a1, a2, b1 and b2, respectively, in which h is replaced by h
2k .

Furthermore, the kth-level subdivision symbol associatedwith our scheme is given
by

a(k)(z1, z2) = 1

144 z21z
2
2

(w
(k)
1 (1 + z21 + z22 + z41z

2
2 + z21z

4
2 + z41z

4
2)

+ w
(k)
3 (z1 + z2 + z31z2 + z41z

3
2 + z1z

3
2 + z31z

4
2)

+ w
(k)
2 (z1z2 + z21z2 + z1z

2
2 + z31z

2
2 + z21z

3
2 + z31z

3
2) + w

(k)
0 z21z

2
2).

(14)
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However, this Laurent polynomial is not factorizable. But it satisfies the following
necessary condition for convergence.

a(k)(−1, 1) = a(k)(1,−1) = a(k)(−1,−1) = 0, a(k)(1, 1) = 4. (15)

Applying this subdivision algorithm and then the connectivity rule repeatedly, we
get a limit surface.

In matrix form this subdivision scheme is written as

X (k+1) = Mk+1X (k), k = 0, 1, 2, . . . , (16)

where Mk+1 is the (k + 1)th-level subdivision matrix which is given by

Mk+1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(k)
0 w

(k)
1 w

(k)
1 w

(k)
1 w

(k)
1 w

(k)
1 w

(k)
1

w
(k)
2 w

(k)
2 w

(k)
3 0 0 0 w

(k)
3

w
(k)
2 w

(k)
3 w

(k)
2 w

(k)
3 0 0 0

w
(k)
2 0 w

(k)
3 w

(k)
2 w

(k)
3 0 0

w
(k)
2 0 0 w

(k)
3 w

(k)
2 w

(k)
3 0

w
(k)
2 0 0 0 w

(k)
3 w

(k)
2 w

(k)
3

w
(k)
2 w

(k)
3 0 0 0 w

(k)
3 w

(k)
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

The matrix Mk+1 has a simpler form:

Mk+1 :=
[
a b
b′ C

]
,

where a = w
(k)
0 ,

b = [
w

(k)
1 w

(k)
1 w

(k)
1 w

(k)
1 w

(k)
1 w

(k)
1

]
,

b′ = [
w

(k)
2 w

(k)
2 w

(k)
2 w

(k)
2 w

(k)
2 w

(k)
2

]T
,

and C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

w
(k)
2 w

(k)
3 0 0 0 w

(k)
3

w
(k)
3 w

(k)
2 w

(k)
3 0 0 0

0 w
(k)
3 w

(k)
2 w

(k)
3 0 0

0 0 w
(k)
3 w

(k)
2 w

(k)
3 0

0 0 0 w
(k)
3 w

(k)
2 w

(k)
3

w
(k)
3 0 0 0 w

(k)
3 w

(k)
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

which is a circulant matrix of order 6 × 6.
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3.3 Subdivision Surface

Let the initial controlmeshY0 be given by the Fig. 5 inwhich p00,0 = 1 and rest control
points have values 0. We apply our subdivision scheme (subdivision algorithm +
connectivity rule) toY0 a number of times to get a limit surface. For example, applying
the subdivision scheme once to the initial control mesh Y0 we get the control mesh
Y1, which is shown in Fig. 6. Similarly, applying the subdivision scheme three times
to Y0 we get the control mesh Y3 which is shown in Fig. 7. Here we have taken the
initial value of h = 1. It satisfies the convex hull property which is shown in the
Fig. 8. The limit surface is bell shaped and has finite support. Here, we notice that the
subsequent surfaces that we are getting are in fact box spline-like surfaces although
these are not actually box splines.

Fig. 5 Initial control mesh Y0 where p00,0 = 1

Fig. 6 The first iteration control mesh Y1
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Fig. 7 The third iteration control mesh Y3

Fig. 8 The convex hull property of the limit surface (here Y3)

4 Convergence Analysis

In this section, we present the convergence analysis [7, 20, 27] of our non-stationary
subdivision scheme.

The kth-level subdivision symbol of our scheme (14) satisfies

a(k)(1, 1) = 4, a(k)(1,−1) = a(k)(−1, 1) = a(k)(−1,−1) = 0. (18)

This is the necessary condition for the convergence of a bivariate scheme (see [27]).
However, to describe the sufficient part of the convergence analysis, we follow a
different theoretical approach. From (16),
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X (k+1) = Mk+1X (k)

= Mk+1MkX (k−1)

= Mk+1Mk . . . M1X (0) =: M (k+1)X (0). (19)

We need the (k + 1)th-level non-normalized subdivision matrix Nk+1, which is
the subdivision matrix without normalization (where w

(k)
0 = ã1, w

(k)
1 = ã2, w

(k)
2 =

b̃1, and w
(k)
3 = b̃2, and h is replaced by h/2k). For the study of the convergence, we

also need the stationary matrix M , which is obtained from Mk by putting h = 0. Let
Sk+1 := Mk+1 − M . It is observed that entries of the matrix Nk+1 are non-negative
and non-increasingwith k. The sumof all the entries in each rowof Nk+1 is

cos2(h/2k+1)

cos2(h/2k ) ,
and each entry of Nk+1 is greater than the corresponding entry of M . Overall, the
non-normalized subdivision matrix Nk+1 has a similar behavior like Mk+1 in [7]. In
our case, the sequence of subdivision matrices satisfy the following theorems which
can be proved identically as described in [7].

For a 7 × 1 column vector x the norm of x is defined as

‖x‖ = max
1≤k≤7

|xk |.

Theorem 1 The stationary matrix M and the non-stationary matrix sequence
{M (k), k ∈ N} satisfy the following:
(i) ‖Mx‖ ≤ ‖x‖,
(ii) ‖Mkx‖ ≤ ‖x‖, ∀ k ∈ N.
(iii) ‖M (k)x‖ ≤ ‖x‖, ∀ k ∈ N.

Theorem 2 The non-normalized non-stationary matrices {Nk, k ∈ N} satisfy the
following: ‖Nkx‖ ≤ cos2(h/2k )

cos2(h/2k−1)
‖x‖ and ‖Nk‖ = cos2(h/2k )

cos2(h/2k−1)
.

Theorem 3 ‖Skx‖ ≤ C(h)

4k ‖x‖, ∀ k, where C(h) = 6h2

cos2 h .

Proof Note that
‖Skx‖ = ‖Mkx − Mx‖.

Applying triangle inequality we get,

‖Skx‖ ≤ ‖(Mk − Nk)x‖ + ‖Nkx − Mx‖.

Since Mk is the normalized version of Nk ,

‖Skx‖ ≤ ‖
(
cos2(h/2k−1)

cos2(h/2k)

)
Nk − Nk‖‖x‖ + ‖x‖ max

1≤ j≤N

(
cos2(h/2k)

cos2(h/2k−1)
− 1

)

≤ (‖Nk‖|cos
2(h/2k−1)

cos2(h/2k)
− 1| + | cos2(h/2k)

cos2(h/2k−1)
− 1|)‖x‖.
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By Theorem 2,

‖Skx‖ ≤ 2 | cos2(h/2k)

cos2(h/2k−1)
− 1|‖x‖

= |2(cos(h/2k) + cos(h/2k−1))(cos(h/2k) − cos(h/2k−1))

cos2(h/2k−1)
|‖x‖

≤ 2

cos2 h
.2.2. sin((

h

2k
+ h

2k−1
)/2).| sin(( h

2k
+ h

2k−1
)/2)|

≤ 8

cos2 h
. sin(

3h

2k+1
). sin(

h

2k+1
)

≤ 8

cos2 h
.
3h

2k+1
.

h

2k+1

= 6h2

cos2 h
.
1

4k

= C(h)

4k
.

With the above results in our hand, we now ready to show the convergence of our
subdivision scheme.

Theorem 4 The sequence of control meshes {X (k), k ∈ N ∪ {0}} converges to a
limit surface and the limit surface is continuous.

Proof We first take a 7 × 3 column vector x in order to analyze the convergence of
the matrix sequence {M (k)x}. However, without loss of generality, we can study the
convergence of {M (k)x}, where x is a 7 × 1 column vector. Observe that

‖(M (k+1) − Mk+1)x‖ = ‖(Mk+1M
(k) − MMk)x‖

= ‖((M + Sk+1)M
(k) − MMk)x‖

= ‖(MM (k) − MMk + Sk+1M
(k))x‖.

Now applying triangle inequality law, this produces

‖(M (k+1) − Mk+1)x‖ ≤ ‖M(M (k) − Mk)x‖ + ‖Sk+1M
(k)x‖. (20)

By Theorems 1 and 3, the above inequation implies

‖(M (k+1) − Mk+1)x‖ ≤ ‖(M (k) − Mk)x‖ + C(h)

4k+1
‖x‖. (21)

Let εk = ‖(M (k) − Mk)x‖. Then by (21)

εk+1 ≤ εk + C(h)

4k+1
‖x‖,
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which implies

|εk+1 − εk | ≤ C(h)

4k+1
‖x‖. (22)

Now, for m ≥ k + 1

‖εm − εk‖ ≤ ‖εm − εm−1‖ + ‖εm−1 − εm−2‖ + · · · + ‖εk+1 − εk‖
≤ C(h)‖x‖

(
1

4m
+ 1

4m+1
+ · · · + 1

4k+1

)

= C(h)‖x‖
(

1

4m−k−1
+ 1

4m−k−2
+ · · · + 1

4
+ 1

)
1

4k+1

= C(h)‖x‖
4k+1

1

1 − 1
4

= C(h)‖x‖ 1

3.4k
.

For given ε > 0, we can find N such that 1
4k < ε, for every k > N . Therefore,

|εm − εk | ≤ C(h)

3
‖x‖ε, whenever m, k > N . (23)

This implies the sequence {εk} is Cauchy in R and hence converges.
Let εk → e. Then εk = e + o(1). This implies

‖(M (k) − Mk)x‖ = e + o(1).

Therefore,
(M (k)x − Mkx) → E + �(1),

where E is a fixed 7 × 3 matrix and �(1) → 0. Since {Mkx} converges, say to Y,
we have

X (k) = M (k)x → Y + E + �(1).

This proves the theorem. �

In the above theoremY is the limit surface of the associated stationary subdivision
scheme. The surface Y + E (see Fig. 7) is the limit surface of the non-stationary
subdivision scheme which lies in the convex hull of initial mesh (see Fig. 8).
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Fig. 9 Initial control mesh
X (0) consisting of twenty
eight vertices

5 Application of the Proposed Scheme

In this section,wedescribe the applicationof our proposednon-stationary subdivision
scheme. For this, we provide two examples of regular meshes below. we have used
MATLAB software for the implementation of our proposed subdivision scheme.

Example 1 In first example, we take a regular (i.e. made of vertices of valence 6
only) initial control mesh X (0) (see Fig. 9) which consists of twenty eight vertices of
coordinates

[(X (0))1]i, j = cos(pi−1) cos(q j−1), [(X (0))2]i, j = cos(pi−1)

sin(q j−1), [(X (0))3]i, j = sin(pi−1),

where 1 ≤ j ≤ 7, 1 ≤ i ≤ 4, pk = − π
2 + k π

3 , k = 0, 1, 2, 3 and ql = l π
3 , l = 0, 1,

2, 3, 4, 5, 6. pk and ql are equally spaced values with step size π
3 .

However, this initial control mesh consists of only fourteen distinct points and
the vertices are apparently of valence 5, while they have actual valence 6 due to the
poles that aremultiple vertices having coordinates (0, 0,−1) and (0, 0, 1). Since the
subdivision methods are blind to the topological identification so they are virtually
applied to this mesh with twenty eight vertices. By the repeated application of our
non-stationary subdivision scheme this initial regular control mesh converges to a
smooth limit surface.We have shown the surfaces obtained after first iteration, second
iteration, third iteration and fourth iteration respectively, in Fig. 10. For this we have
taken h = π

4 .
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Fig. 10 Subsequent iteration surfaces X (1), X (2), X (3) and X (4) are shown starting from left top
to right bottom, respectively

Example 2 In second example, we consider a NURBS surface. Generally many
NURBS patches are joined to form a surface model. The NURBS is either a torus,
a disk or a tube. Here we study the case of a torus. In its initial control mesh, we
take, for e.g., 4 points in the minor circle direction and 8 points in the major circle
direction. So it consists of thirty two number of vertices of coordinates

[(X (0))1]i, j = (R + r cos(pi−1)) cos(q j−1),

[(X (0))2]i, j = (R + r cos(pi−1)) sin(q j−1),

[(X (0))3]i, j = r sin(pi−1),

where1 ≤ i ≤ 4, 1 ≤ j ≤ 8, pk = πk
2 , k = 0, 1, 2, 3, andql = πl

2 , l = 0, 1, 2, 3, 4,
5, 6, 7. Suppose we choose r = 1 and R = 1.8, as the radii of minor and major cir-
cles, respectively. This initial control mesh (see Fig. 11) is regular i.e. all the vertices
are of valence 6.
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Fig. 11 Initial mesh of a
torus, X (0)

Fig. 12 First iteration mesh
X (1)

Fig. 13 Second iteration
mesh X (2)
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Fig. 14 Fourth iteration
mesh X (4)

If we refine this initial mesh by our non-stationary scheme then we obtain com-
paratively smoother surface in each iteration level. The surfaces obtained after first,
second and fourth iterations are displayed in Figs. 12, 13 and 14, respectively.

In the above two examples, one can notice that the subsequent surfaces obtained
by successive refinements by our scheme are continuous at the joints. Sometimes
after the deformation of NURBS surfaces, the cracks appear at the joints, which
is not happening here. Our scheme also possesses some important properties such
as compact support, affine invariance, smoothness and simplicity which are also
properties of NURBS.

6 Conclusion

In this paper, a newnon-stationary subdivision schemehas been derived.More specif-
ically, this is a triangular subdivision scheme for regular meshes. We have described
the application of this subdivision scheme over type-I triangulation. Moreover, the
limit surfaces are trigonometric box spline-like surfaces. These are well shaped,
compactly supported and satisfying convex hull property. Actually, polynomial box
splines are well-defined through subdivision schemes whereas the trigonometric box
splines are not. So we have taken an initial attempt to define trigonometric box
splines with the help of a non-stationary subdivision scheme and we have become
partially successful. For this we have used trigonometric polynomials as the sub-
division masks. Although, the Laurent polynomial associated with this subdivision
scheme is not factorizable but it is satisfying the necessary conditions for conver-
gence. However, we have shown the convergence of this scheme by a different theo-
retical approach. Eventually, we have taken two examples to show the visual perfor-
mance of our scheme. Since our scheme is only applicable to regular meshes, extend-
ing this to ameshwith arbitrary topology is an immediate requirement. Currently, this
scheme is not capable to be implemented on any complex arbitrary geometries since
there is a chance of presence of extraordinary vertices. After affine combinations of
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the masks with a little modifications, the associated symbol will be factorizable and
the modified subdivision scheme can be applied to any complex arbitrary topologi-
cal meshes. More works are needed to address these which are under observations
currently.
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Mathematical Modelling for Perishable
Product Supply Chain Under Inflation
and Variable Lead Time

Ritu Agarwal and Chandrakumar M. Badole

Abstract This study presents an inventory model for deteriorating items under a
real time situation where the lead time varies with time. A mathematical model
has been developed for finding the total cost and order quantity in a finite planning
horizon containing m number of cycles. The effects of the inflation of currency,
shortages and lead time along with the information technology on the lead time
have been considered. Special cases for the complete backlogging and instantaneous
deterioration have been obtained. Demand rate is a arbitrary log-concave function of
time. The study has been illustrated for the error function as demand function. The
effect of different parameters like deterioration rate and backlogging parameter is
studied on the order quantity and the total supply chain cost for this function. Data
and sensitivity analysis is carried out using MATLAB software.

Keywords Perishable product supply chain · Planning horizon · Lead time ·
Shortages · Inflation

1 Introduction

Supply of any commodity products with desired quality, cost and lead time is already
very difficult due to globalization and high level of competition in the market. It
becomes even more difficult for the perishable products due to the short shelf life and
changing customer demand. Uncertain nature of demand gives rise to the conditions
of either excess inventory or stock out scenario. Both these situations are barriers to
the survival of supply chains [25]. The supply chains need to compete with growing
variety of products, short delivery time, higher cycle service level, high quality, and
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lower cost. Perishability imposes an intense pressure on managers to manage the
supply of products in a timely manner. It adds an additional cost of disposal of
outdated items, leading to out-of-stock situations and also loss of customer faith, if
not managed effectively. The product becomes obsolete, if it is not getting consumed
within its shelf life. In India about 32% of the fruits and vegetable products go
waste due to obsolescence [28]. This waste is large and expensive for both supply
chains as well as to the society. The management of optimum amount of perishable
inventory is another challenge to satisfy customers.While higher amount of inventory
leads to the obsolescence, stock outs can have serious impact on the reputation of a
firm. Further, the customer, market fragmentation and specialization causes a rapid
increase in the product demand variation [28]. However, the totalmarket volume does
not necessarily rise as fast as the number of products that are being offered. This leads
to a decreased in volumeper product type.Other sources of demandvariations include
seasonality of production,weather conditions, and biological nature of products. This
results in input variation and unpredictability. Thus, it can create a big problem for
the retailers in the terms of satisfying customer demand.

Modern industrial companies are operating in a fast changingworld.We are under-
stressed by global competition, control worldwide sourcing and dynamic markets
oversee geographically distributed production facilities and aim to produce excel-
lent products and high-quality customer service [16]. As a result, corporations have
made enormous efforts to streamline their internal business processes. Fundamental
changes are required in the role and form of supply chains and the way in which
they innovate and conduct business and research. Efforts have also been made to
recognize and improve key product value chain activities and massive investments
have beenmade in new information and communication channels within the business
such as data warehouse or enterprise resource planning (ERP) systems [31]. Properly
designed supply chains would help industries to relieve their difficulties to a certain
extent if the supply cabins are adequately implemented.

Supply chain management (SCM) is characterized as the integration of key end-
user business processes by suppliers that supply goods, services and information
and add value to customers and stakeholders [24]. The concept of SCM has evolved
around the customer focused corporate vision, which drives changes throughout a
firm’s internal and external linkages and then captures the cluster of inter-functional
and inter-organizational integration and coordination [36]. However, as a new way
of conducting business, firms have also begun to realize the strategic importance of
planning, controlling, and designing supply chains with an objective to enhance the
operational efficiency, responsiveness, and profitability of the firms and its supply
chain partners. The only way to achieve the objective of SCM is to develop and
implement appropriate mathematical models in right directions [26].
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2 Literature Review

The research on the Perishable Product Supply Chain (PPSC) dates back to 1950.
But even today in the age of technological advancement, the challenges for PPSCs
are multiplying day by day. The important early research contributors in this area
were Ghare and Shrader [15], Covert and Philip [12] and Shah [32], who modelled
economic order quantity for perishable inventory. Chew et al. [10] have developed
an inventory model with deterministic yet linearly changing demand rate, constant
deterioration rate and limited horizon of planning.

Whereas, to allow shortages, Sachan [30] expanded the model of Dave and Patel,
Datta and Pal [13] have presented anEconomicOrderQuantity (EOQ)model consid-
ering variables such as deterioration and power demand pattern. Research work on
models of deteriorating items, time-varying demand and shortages continues with
a great dynamism and provides new dimensions for studies on supply chains (see,
e.g. Benkherouf [3] and Hariga [17]). The common feature of all the above papers
is that they shortages have been allowed while unsatisfied demand is completely
backlogged [33].

The trend has altered in the early twentieth century, and scientists are inclined to
model pricing strategies. To account for inventory loss due to obsolescence, the idea
of dynamic pricing was implemented. In this approach, the scientists recommend
that product prices are lowered as long as the shelf life, product quality is degraded
every day (see, e.g. Dye et al. [14] and Chew et al. [10]). This approach was useful
in boosting product demand and improving income generation that could have been
lost in spoilage, as well as loss of business goodwill. Further, today’s customers
are very weary of the product quality. They prefer to buy a product which is “last
in first out (LIFO)” over the one that has been in the shelf for long time [11]. In
such situations, the inventory loss can only be reduced by managing and maintaining
adequate quantity of perishable product. In order to do so, we need an information
tracking system that can provide the information on remaining product life and
movement of inventory in the supply chain.

A perishable product gets spoiled and its useful life reduces if not handled properly
during transportation. If the reduced life information of items is not updated, an
outdated item may get delivered to the customer. In such a case, there may be an
additional cost of replacement of item and also loss of goodwill of company. Such
spoilage could be reduced significantly if we can automate inventory management
system by using RFID technology for product identification, while it moves through
the supply chain [34]. RFID system can track the items in real time without product
movement, scanning or human involvement. Using active RFID tags, it is possible
to update information on it dynamically. RFID system gives a complete visibility of
product movement in the supply chain [39]. This may help to make early decisions
about inventory control in case there is any interruption in the supply. It partially
or completely eliminates time and effort required for counting while loading, and
unloading the items. This results into reduction of total lead-time for arrival of an
order [22].
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RFID technology can increase a company’s efficiency and provide financial bene-
fits to both companies and consumers. However, RFID, like any newly implemented
technology, presents management with issues of new system threats and decisions
about incorporating adequate controls over the new technology [19]. On the other
hand, application fields and opportunities are vast. The key driver is that even in
largely distributed, more stochastic than deterministic business environments, adap-
tive organizations and enterprises must react to demands quickly, else a competitor
will take the business. Therefore, they must reduce waste and improve efficiency at
all fronts. The most important aspect of this strategy is to know exactly what quantity
of products they have in stock, exactly where these products are, and in what condi-
tion [29]. Furthermore,major distributors dealingwith complex, global supply chains
must be able to trace their shipments in detail, for security, safety, quality degradation
or any other reasons. The improved information accuracy through RFID application
will allow companies to substantially reduce out-of-stocks and back orders. They are
also likely to find themselves with higher overall average inventory. This suggests
remarkable improvement opportunity, namely that companies can potentially reduce
reorder quantities and target inventory levels without hurting customer service levels.

Over the past decades, there has been a notable amount of contribution by various
researchers in the area of perishable product supply chains. Their works specif-
ically have focused towards developing optimal order quantity policies, dynamic
pricing, and inventory management policies. However, prior researchers’ works
towards studying the impact and implementation of newer technologies like RFID in
supply chain of perishable products are still at very preliminary stage. Because of the
complexity, much of the existing literature available on short life products focus on
the order quantity as a decision variable and do not incorporate lead time into their
ordering policy decisions [27]. Lead time can be controlled by incorporating newer
technology like RFID in the supply chain system. RFID can drastically reduce the
lead time leading to reduced order quantity and reduced uncertainty butwith an added
extra cost of RFID which is termed here as crashing cost. Overall it is observed that
RFID can make pronounced impact on reduction of lead time and minimize uncer-
tainties in supply chain decisions [22, 29]. However, prior researchers have assumed
a zero lead-time while modeling the inventory management for perishable products
supply chain [33, 38]. Interestingly, impact of RFID on perishable product supply
chain under realistic situation (like non-zero lead time) has not been adequately
considered by earlier researchers.

Inflation has become an integral part of the world economy since the 1970s power
crisis, and large inflation rates were not unusual in many countries. Chen [9]. For
example, the annual inflation rate in China between 1993 and 1995 was roughly 17%
on average. In most existing models, however, the effect of inflation and the time
value of money are not explicitly considered as parameters. The attention towards the
decreasing value of money credits to Buzacott [6], who initiated a pioneer research
in this direction. He developed an economic order quantity (EOQ) model with infla-
tion subject to various types of pricing policies. Chandra and Bahner [8] researched
the effects of time discounting and inflation on the order-level system with short-
ages decision variables and the economic lot-size system with a finite replenishment
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rate. Bose et al. [5], Hariga [18] and Hou [20] have suggested two of the most
general models combining the effects of inflation and the time value of money.
These models assume the deterioration rate is a constant over time, demand rate is
time-proportional, and shortages are allowed. Yang [39] suggested two warehouse
models in which the impact of inflation on perishable products was studied consid-
ering partial backlogging. Hsich and Dye [21] has modelled the pricing and EOQ
considering the effect of inflation with partial backlogging which prove that inflation
affects price and order quantity adversely. However Jen-Ming Chen [9] in his model,
assumed that the demand rate was time-proportionate and shortages were allowed
while the effects of inflation and the time value of money were taken into account.

3 Research Gap

One of the major draw-back of the research cited above is that non consideration of
realistic situations that pertains at every node of supply chain. Almost researchers
have considered the condition of zero lead time while formulation of model. Another
fact was observed that research in this area of perishable product supply chain lacks
in consideration of importance of information technology in PPSCs. The research
in this area is still in preliminary stage and needs to design and develop the sophis-
ticated models on utilization of newer information technologies to overcome day
to day supply chain problems [2]. Information at all stages of supply chain plays a
very vital role in reducing bull whip effect and improving the decision capabilities in
right direction [1]. Most of the problems in the supply chain results because of inad-
equate information regarding point of scale (PoS) data at different nodes of supply
chains [35]. The lead time and its variability impose tremendous problems in supply
chains and can be controlled using the information technology. The incorporation
of adequate information technology can reduce lead time that is a requirement of
every supply chains [23]. Nevertheless the effect of inflation of money have not been
focussed to the depth as it was required.

In this paper efforts have been made to answer few of the research questions: does
information technology helps resolving real time problems of supply chain; does
inflation of money affects the overall performance of SCM; does consideration of
real time situations in modelling SCM helps make it more effective and responsive?

The most realistic situations have been considered in this work such as variable
lead time, deterioration rate, effect of inflation and varying demand that pertain at
every supply chain nodes. And also the effect of inflation of money is considered
while formulating the total cost. The remaining of the paper is organized in the
following manner. Section 1 describes RFID framework how it helps in acquiring
point of scale data at every node of supply chain. Section 2 describes the framework
and model development. Section 3 presents results and discussion. The conclusions
and future scope have been presented in the Sect. 4.
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Fig. 1 RFID based architecture of supply chain of perishable product

1. Proposed RFID Based Supply Chain Architecture

For better understanding of the impact of RFID on supply chain, RFID based supply
chain architecture is proposed as shown in Fig. 1 by the second author in his doctoral
thesis [7]. It describes howmaterial and information flow throughout the supply chain
using RFID database. All the stages are interconnected to each other using RFID
database; hence any stage can avail all pertinent information about demand, order
quantity, age and quality of product, delay and order status at any stage. Thus, the
point of sale (PoS) data can be used for planning and strategically decisionmaking. It
will eventually reduce the uncertainty in demand at every stage of the supply chain.
The reduced uncertainty leads to better management of inventory, reduced order
quantity, reduced (optimum) safety stock in supply chain, reduced shrinkage thereby
leading to the reduction of overall cost. Using RFID sensors the quality of the product
can be judged and the remaining available shelf life of product can be determined.
This allows managers to formulate newer pricing strategies based on the lifecycle
information, which will help minimize the loss due to obsolescence. Furthermore, it
also provides a good data to implement an appropriate sales and marketing strategy
(such as FIFO or LIFO) based on the nature and purchasing habits of the customers.

In order to quantify the impact of RFID on perishable product supply chain
management, a mathematical model is developed and presented in the following
section.

4 The Model Framework

In this section, we present the mathematical model of the problem with all the
assumptions and notations.
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A. Assumption

• A finite planning horizon is considered that consists of m number replenishment
cycles. Formulation is carried out per cycle basis.

• Cycle starts with replenishment and ends with negative inventory due shortage.
So at the start of cycle, inventory is maximum.

• The product has some initial freshness value and it starts deteriorating after certain
time td after replenishment (Wu et al. [37]). Hence for the period of t0 to td there is
no deterioration and inventory varies as a function of demand. After td , inventory
varies as cumulative effect of deterioration and demand.

• Replenishment is considered instantaneous.
• The finite lead time Tl �= 0 is considered.
• The deterioration rate θ is considered as constant per unit time (0 ≤ θ ≤ 1) as

the product is maintained under the same set of conditions. The time td at which
deterioration starts is function of θ.

• The demand is continuous log concave function of time f (t) such that f ‘(t) �= 0.
• The unsatisfied demands are backlogged partially with the rate exp (-αt) where t

is the time between start of shortage till the next replenishment and α > 0 is the
cost dependent parameter.

• Information system do not have (except cold chains) impact on deterioration rate
of perishable product and deterioration continues.

B. Notations Used

I Inventory at any instant
θ Rate of deterioration
f (t) Demand rate, which is log concave function of time
α Backlogging parameter
A Fixed set-up replenishment cost
Cq Additional replenishment cost paid per unit of order quantity
Ch Inventory holding cost per unit
Cd Deterioration cost per unit of deteriorated item
Cs Backlogging cost per unit of backlogged inventory
Co Opportunity or lost sale cost per unit.
Cc Crashing cost per unit.
L Lead time = T − tr, the time lapse between the reorder point and the

replenishment point
Imax Maximum inventory level at the start of cycle
Is Safety inventory level at reorder point
R r-i = net discount rate of inflation is constant
H Planning Horizon
Q Lot size
T Replenishment cycle
m Number of replenishments during the planning horizon = H/T
k (0 < k < 1) Shortage parameter, a fraction of the scheduling period determined

for which there are no shortages
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Tj = jT The total time that is elapsed up to and including the jth replenishment
cycle, j = 1, 2, …, m

where, T0 = 0, T1 = T and Tm = H

td log(1/ θ), Time of freshness of product, till this time there
is no deterioration.

tr Time of placing the order, reorder point.
tj =(j+k)T Time at which the inventory level in the jth replenishment

cycle drops to zero.
Tj+1-tj Period of shortage.
p = tr/t1, 0 ≤ p ≤ 1 as a fraction of t1.

The period forwhich there is no shortage in each interval [jT, (j+ 1)T] is a fraction
of the scheduling period determined by the shortage parameter ‘k’ (0 < k < 1) and
is (j + k)T for the interval [jT, (j + 1)T]. Shortages occur at time tj = (j + k)T and
accumulated until time t = (j + 1)T, j = 0,1, 2, …, m before they are backordered.
If k → 1, the interval [jT, (j + 1)T] has no shortage at all (Fig. 2).

When θ is high, i.e. item is highly perishable, it starts deteriorating just after
entering in the supply chain and hence td is low and vice versa. E.g. Mushroom being
highly perishable td is small for it, while for a product like apple td is comparatively
high. Thus, for highly perishable items, td = 0 and θ = 1 and for non-perishing
items, θ → 0 and td → ∞. We define, td = log

(
1
θ

)
as this function satisfies both

Fig. 2 Variation of inventory with respect to time
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the boundary conditions. Proportionality constant can also be multiplied in case it is
required. In the current work, it has been considered unity.

With this data base the inventory variation according to the demand and perisha-
bility effect, graph is plotted as in Fig. 1. In Fig. 1 the inventory variation is divided
in three regions which are: t0 to td , td to t1 and t1 to T. Inventory for all three regions
is formulated first and then total cost per cycle is found out.

The mathematical formulation of the problem is as under.

C. Mathematical formulation.

Let us define inventory level I(t) at any time t as follows:

I(t) =

⎧
⎪⎨

⎪⎩

I1(t), T0 ≤ t ≤ td
I2(t), td ≤ t ≤ t1
I3(t), t1 ≤ t ≤ T

(1)

where, I(T0) = Imax and I(t1) = 0.

Case (i) T0 ≤ t ≤ td : The items start perishing after time td . Before that, we assume
that the product is fresh. Therefore, the rate of change of inventory will depend on
the demand.

dI1(t)

dt
= −f (t), I1(T0) = Imax (2)

Thus, the inventory I1(t) is given by.

I1(t) = Imax −
t∫

T0

f (u)du, T0 ≤ t ≤ td (3)

Observe that, the inventory level is decreasing with time.
Present value of the inventory carried under inflation during T0 ≤ t ≤ td is given

by.

Ch

td∫

T0

e−RtI1(t)dt = Ch

td∫

T0

e−Rt

⎛

⎝Imax −
t∫

T0

f (u)du

⎞

⎠dt

= Ch

⎧
⎨

⎩
Imax
R

(e−RT0 − e−Rtd ) −
td∫

T0

e−Ru − e−Rtd

R
f (u)du

⎫
⎬

⎭

(4)

Case (ii) td ≤ t ≤ t1: During this period, perishability also comes into effect with
demand. Therefore, the rate of change of inventory is given by.
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dI2(t)

dt
+ θ I2(t) = −f (t), I2(t1) = 0 (5)

Thus, the inventory I2(t) is given by.

I2(t) =
t1∫

t

eθ(u−t)f (u)du, td ≤ t ≤ t1 (6)

Present value of inventory carried under inflation during td ≤ t ≤ t1 is given by.

t1∫

td

e−RtI2(t)dt = Ch

t1∫

td

⎛

⎝e−(θ+R) t

t1∫

t

eθ uf (u)du

⎞

⎠dt

= Ch

θ + R

t1∫

td

(
e(u−td )θ−Rtd − e−Ru

)
f (u)du (7)

Also, the present value of deteriorated items is given by.

Cd
θ

θ + R

t1∫

td

(
e(u−td )θ−Rtd − e−Ru

)
f (u)du (8)

Considering the continuity of I(t) at td , i.e. I1(td ) = I2(td ), we get.

Imax =
td∫

T0

f (u)du +
t1∫

td

(
e(u−td )θ

)
f (u)du (9)

Case (iii) t1 ≤ t ≤ T : During this period, inventory goes negative and the unsatisfied
demand is backlogged partially with the rate exp(−α(T − t)). Therefore, the rate of
change of inventory is given by.

dI3(t)

dt
= −e−α(T−t)f (t), I3(t1) = 0 (10)

The amount of backlogged inventory I3(t) is given by.

I3(t) =
t∫

t1

e−α(T−u)f (u)du, t1 ≤ t ≤ T (11)

Therefore the amount of shortage inventory is inventory backlogged.
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The present value of backlogging cost during t1 ≤ t ≤ T is given by.

Cs

T∫

t1

e−RtI3(t)dt = Cs

T∫

t1

e−Rt

⎛

⎝
t∫

t1

e−α(T−u)f (u)du

⎞

⎠dt

= Cs

T∫

t1

e−α(T−u)

(
e−Ru − e−RT

R

)
f (u)du (12)

The amount of lost sales is the difference of the demand arising and the demand
backlogged during t1 ≤ t ≤ t2. Mathematically,

Lost Sales =
T∫

t1

f (u)du −
T∫

t1

e−α(T−u)f (u)du =
T∫

t1

(
1 − e−α(T−u)

)
f (u)du (13)

Present value of lost sales = Co

T∫

t1

e−Ru
(
1 − e−α(T−u)

)
f (u)du.

Lot Size: First replenishment lot size Q1 = Imax +
T∫

t1

e−α(T−u)f (u)du. Second, third,

…, mth lot size is.

Qm = (Imax + S)m =
tdm∫

(m−1)T

f (u)du +
(m+k−1)T∫

tdm

(
e(u−tdm )θ

)
f (u)du

+
mT∫

(m+k−1)T

(T − u)e−α(T−u)f (u)du

=
⎡

⎣
td∫

T0

f (u)du +
kT∫

td

(
e(u−td )θ − 1

)
f (u)du +

T∫

kT

e−α(T−u)f (u)du

⎤

⎦ = Q1 (14)

Since f (t) is periodic with period T and tdm = td + (m-1)T.

Lead Time: The lead time Tl = T– tr where td < tr < t1. Total crashing cost depends
on the inventorymaximum and safety inventory Is during tr < t < T. Higher the safety
inventory, lower the value of tr and hence lower the crashing cost. As the point of
zero inventory (t = t1) moves towards replenishment point (t = T ), the lead time
decreases and crashing cost increases.

Since reorder point depends on the duration of shortages in the cycle, we here
define reorder point tr as a fraction of t1:
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tr = p × t1 = p × k × H

m
, 0 ≤ p ≤ 1

Safety inventory Is at time tr is given by

Is =
t1∫

tr

eθ(u−tr)f (u)du (15)

Present value of crashing cost is.

Cc(Imax − Is) = Cc

⎧
⎨

⎩

td∫

T0

f (u)du +
t1∫

td

(
e(u−td )θ

)
f (u)du −

t1∫

tr

eθ(u−t)f (u)du

⎫
⎬

⎭
(16)

Total cost function for one cycle

Now, we have all necessary quantities to formulate the total inventory cost function
for one cycle:

TRC = Lot size×(Additional replenishment cost paid per unit of ordered item) +Holding
cost +Deterioration cost +Backlogging cost +Opportunity cost + Crashing cost +Fixed
setup replenishment cost

=
⎛

⎜
⎝Ch

⎧
⎪⎨

⎪⎩

Imax
R

(e−RT0 − e−Rtd ) −
td∫

T0

e−Ru − e−Rtd

R
f (u)du

⎫
⎪⎬

⎪⎭
+ Ch

θ + R

t1∫

td

(
e(u−td )θ−Rtd − e−Ru

)
f (u)du

⎞

⎟
⎠

+Cd
θ

θ + R

t1∫

td

(
e(u−td )θ−Rtd − e−Ru

)
f (u)du + Cs

T∫

t1

e−α(T−u)
(
e−Ru − e−RT

R

)
f (u)du

+Cq e
−RT

⎛

⎝Imax +
T∫

t1

e−α(T−u)f (u)du

⎞

⎠+ Co

T∫

t1

e−Ru
(
1 − e−α(T−u)

)
f (u)du

+Cce
−RT (Imax − Is) + Ae−RT

Rearranging the terms, we obtain the present worth of the total cost during cycle
[T0, T] is given by:

TRC =
(
Ch

(e−RT0 − e−Rtd )

R
+ cq e

−RT
)
⎧
⎪⎨

⎪⎩

td∫

T0

f (u)du +
t1∫

td

(
e(u−td )θ − 1

)
f (u)du

⎫
⎪⎬

⎪⎭

− Ch

td∫

T0

e−Ru − e−Rtd

R
f (u)du +

(
Ch + Cd θ

θ + R

) t1∫

td

(
eθu−(θ+R)td − e−Ru

)
f (u)du

+ Cce
−R(T−tr )

⎛

⎝
t1∫

tr

(
e(u−tr )θ − 1

)
f (u)du

⎞

⎠+ Ae−RT



Mathematical Modelling for Perishable Product Supply Chain Under Inflation … 287

+
T∫

t1

{
Coe

−Ru + e−α(T−u)
(
e−Ru − e−RT

R
Cs − Coe

−Ru + Cq e
−RT − Cc(T − u)e−R(T−tr )

)}
f (u)du

Writing T0 = 0, T = H/m and t1 = kH/m = kT, (0 < k < 1),

TRC(m, k) =
(
Ch

(1 − e−Rtd )

R
+ cqe

−RH/m
)
⎧
⎪⎨

⎪⎩

td∫

0

f (u)du +
kH/m∫

td

(
e(u−td )θ − 1

)
f (u)du

⎫
⎪⎬

⎪⎭

− Ch

td∫

0

e−Ru − e−Rtd

R
f (u)du +

(
Ch + Cd θ

θ + R

) kH/m∫

td

(
eθu−(θ+R)td − e−Ru

)
f (u)du

+ Cce
−R

(
H
m −tr

)
⎛

⎜
⎝

kH/m∫

tr

(
e(u−tr )θ − 1

)
f (u)du

⎞

⎟
⎠+ Ae−RH/m

+
H/m∫

kH/m

{
C−Ru
o + e

−α
(
H
m −u

)(
e−Ru − e−RH/m

R
Cs − Coe

−Ru + Cqe
−RH/m − Cc(T − u)e−R( H

m −tr )
)}

f (u)du

The present value of the total cost of system over a planning horizon H is.

TC(m, k) =
m−1∑

j=0

TRC(m, k) e−jTR = TRC(m, k)

(
1 − e−RH

1 − e−RH/m

)
,whereT = H/m.

The present value of total cost TC(m, k) is a function of discrete variable m and
continuous variable k, the shortage parameter.

D. Special Cases.

(i) Model when technology is implemented to the full extent ( T → t1 or
k → 1).
When technology is implemented to the full extent, the time of replen-
ishment tends to the time where physical inventory becomes zero. That
indicates that the system is updated in such fashion that the replenish-
ment lot is available as the inventory of earlier cycle reaches to zero and
there is no shortage in the system. In this case, total cost for one cycle
reduces to

TRC(m) =
(
Ch

(1 − e−Rtd )

R
+ Cq e

−RH/m
)
⎧
⎨

⎩

td∫

0

f (u)du +
H/m∫

td

(
e(u−td )θ − 1

)
f (u)du

⎫
⎬

⎭

− Ch

td∫

0

e−Ru − eRtd

R
f (u)du +

(
Ch + Cd θ

θ + R

) H/m∫

td

(
eθu−(θ+R)td − e−Ru

)
f (u)du

+ Cce
−R

(
H
m −tr

)
⎛

⎝
H/m∫

tr

(
e(u−tr )θ − 1

)
f (u)du

⎞

⎠+ Ae−RH/m
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(ii) Model with complete backlogging
If we set the parameter α = 0, we revert to the model with complete
backlogging of the unsatisfied demand. For this special case, the total
relevant cost for one cycle is given by

TRC(m, k) =
(
Ch

(1 − e−Rtd )

R
+ cq e

−RH/m
)
⎧
⎪⎨

⎪⎩

td∫

0

f (u)du +
kH/m∫

td

(
e(u−td )θ − 1

)
f (u)du

⎫
⎪⎬

⎪⎭

− Ch

td∫

0

e−Ru − eRtd

R
f (u)du +

(
Ch + Cd θ

θ + R

) kH/m∫

td

(
eθu−(θ+R)td − e−Ru

)
f (u)du

+ Cce
−R( H

m −tr )

⎛

⎜
⎝

kH/m∫

tr

(
e(u−tr )θ − 1

)
f (u)du

⎞

⎟
⎠+ Ae−RH/m

+
H/m∫

kH/m

{(
e−Ru − e−RH/m

R
Cs + Cq e

−RH/m − Cc(T − u)e−R( H
m −tr )

)}
f (u)du.

In this model, the decision maker has some flexibility to choose a suit-
able value of α ranging from 0 to almost any desired rate of partial
backlogging, which fits better in realistic situations.

(iii) Model with instantaneous deterioration and complete backlogging
If td → t0 (i.e. θ → 0) and α = 0 in the proposed model, we can obtain
the corresponding inventory model for the instantaneous deterioration.
In this case, the total relevant cost for one cycle is given by

TRC(m, k) =
(
Ch

R

) kH/m∫

0

(
1 − e−Ru

)
f (u)du + Ae−RH/m

+
H/m∫

kH/m

{(
e−Ru − e−RH/m

R
Cs + Cq e

−RH/m − Cc(T − u)e−R( H
m −tr )

)}
f (u)du.

(iv) Model with instantaneous deterioration and full RFID
implementation
If td → t0 (i.e. θ → 0) and α → ∞ in the proposed model, we can obtain
the corresponding inventory model for the instantaneous deterioration
without shortages. In this case, the total relevant cost for one cycle is
given by

TRC(m, k) =
(
Ch

R

) kH/m∫

td

(
1 − e−Ru

)
f (u)du + Ae−RH/m
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+ Co

H/m∫

kH/m

e−Ruf (u)du.

5 Result and Discussion

For analysis, the demand rate function is considered as f (t) = exp
(
− t2

2

)
, a log-

concave function of time, so that demand at any time t is F(t) = √
π
2 erf

(
t√
2

)
. The

graph of the above function is drawn for one cycle using MATLAB programming
which is as shown in the Fig. 3.

It is to be understood that, the consideration of this demand rate function for
this research work, suits the realistic situation that persists at the retail outlet for
the perishable product. The demand rate decreasing concavely which is true for
perishable product which is replenished every day and its shelf life decreases day by
day. And as the shelf life of product ends i.e. the product approaches to obsolescence,
the demand for the product also approaches to zero. The cumulative demand is the
demand of the product till that time.

Hence the inventory level at any time t is given by

I(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Imax −
√

π

2
erf

(
t√
2

)
, 0 ≤ t ≤ td

√
π

2
exp

(
θ2

2
− θ t

){
erf

(
t1 − θ√

2

)
+ erf

(
θ − t√

2

)}
, td ≤ t ≤ t1

√
π

2
exp

(
α2

2
+ 3α

){
erf

(
α + t1√

2

)
− erf

(
α + t√

2

)}
, t1 ≤ t ≤ t2

(17)

Therefore,Maximum initial inventory, Imax =
td∫

T0

f (u)du +
t1∫

td

(
e(u−td )θ

)
f (u)du

(18)

From Eq. (2.11), the maximum shortage inventory (t = T ) can be obtained for as

S =
T∫

kT

e−α(T−u)f (u)du =
√

π

2
exp

(
α2

2
− αT

){
erf

(
α − T√

2

)
− erf

(
α − kT√

2

)}
(19)

Using Eq. (2.15), we get safety inventory as
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Is =
t1∫

tr

eθ(u−tr)f (u)du =
√

π

2
exp

(
θ2

2
− θ tr

){
erf

(
t1 − θ√

2

)
+ erf

(
θ − tr√

2

)}

(20)

and order quantity is given by Q = Imax + S.
With this formulation the inventory variation function was programmed using

Matlab and the graphs obtained are shown in the Fig. 4. It is seen the inventory
variation graph (tri-colour) resembles the theoretical graph shown in the Fig. 2. This
justifies the accuracy and correctness of our mathematical frame work and model
formulation.

In order to validate the model, we considered various cost of supply chain of a
perishable product as considered by early researchers [14] as Ch = 0.5; Cd = 5 andCo

= 0.5. Furthermore, to suit our framework, we assumed the values for other param-
eters as: θ = 0.5; α = 0.8; td = 0.67; t1 = 1.5, A = 10; Cc = 1.5; Cq =
0.2 and Cs = 3.5 with the notations used in the framework. The variables θ and α

are the decision variables and each of them influences the managerial decision. This
clearly indicates that the model can be applied to all range of perishable products
equally ranging from highly perishable to the least perishable product, in addition
to the varying decision level of backlogging. The simulation was carried out using
MATLAB platform and is presented as under (Table 1).

Effect of decrease in period of shortage (i.e. k → 1) on the Total Cost

In the Fig. 4, the effect of varying ‘k’ on different costs of perishable product supply
chain is shown. It is observed that the holding cost is increasing as the value of k
increase from lowest value to the highest value i.e. from point of zero inventories
to the point of replenishment. This happens because, as t1 reaches to T, physical
inventory lasts for longer time in the cycle leading to the raise in holding cost. For
the same cost it is also inferred that the rate of increase in holding cost reduces as the

Fig. 3 Graphical presentation of aDemand function and demand rate b Inventory level and demand
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Fig. 4 A closer look in the change in different costs w.r.to k (Theta = 0.5)

Table 1 Effect of k on various costs and order quantity (Theta = 0.5, alpha = 0.8, m = 10, H =
30, p = 0.6)

k Q HC QC DC CC OC BC TC

0.10 30.61 0.375 0.945 0.16 0.104 0.355 1.164 17.3

0.15 24.9 0.348 0.769 0.06 0.136 0.295 1.019 14.643

0.20 20.29 0.334 0.626 0.008 0.171 0.24 0.876 12.577

0.25 16.66 0.332 0.514 0.003 0.208 0.191 0.738 11.084

0.30 13.9 0.342 0.429 0.038 0.249 0.149 0.609 10.121

0.35 11.87 0.36 0.366 0.105 0.291 0.113 0.491 9.624

0.40 10.42 0.385 0.322 0.196 0.334 0.084 0.385 9.512

0.45 9.44 0.414 0.291 0.303 0.376 0.06 0.294 9.701

0.50 8.8 0.445 0.272 0.417 0.418 0.042 0.218 10.106

0.55 8.42 0.475 0.26 0.53 0.458 0.029 0.157 10.649

0.60 8.21 0.505 0.253 0.638 0.496 0.019 0.108 11.262

0.65 8.11 0.531 0.25 0.736 0.531 0.012 0.071 11.891

0.70 8.09 0.555 0.25 0.822 0.563 0.007 0.045 12.497

0.75 8.1 0.574 0.25 0.894 0.592 0.004 0.026 13.051

0.80 8.13 0.591 0.251 0.953 0.617 0.002 0.014 13.538

0.85 8.16 0.603 0.252 1.000 0.639 0.001 0.006 13.953

0.90 8.2 0.613 0.253 1.036 0.658 0.000 0.002 14.295

0.95 8.23 0.621 0.254 1.063 0.674 0.000 0.000 14.571

1.00 8.25 0.626 0.255 1.083 0.687 0.000 0.000 14.788
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value of k increases. This is true due to the reduced effect of inflation as time span
reduced from t1 to T.

Next, as k increases from lower value to the higher value, the Imax is seen
increasing. This leads to increase in deteriorated items proportionately. As deterio-
rated items increases reorder quantity and hence the ordering cost increases. Back-
logging cost is seen decreasing fast up to certain value of k and then remains constant.
This is because in the beginning of cycle more and more orders will be backlogged
as a result of exponentially decreasing backlogging than at the end of cycle and the
rate of backlogging decreases as k approaches 1, i.e. t1 tends to T. In other words
backlogging is more effective when the shortage period is more.

Opportunity cost is seen simply decreasing as the effect of reduced lost sales.
As inventory lasts for longer time, shortages are reduced and the demand arise is
satisfied from the available inventory leading to the reduced opportunity cost.

Effect of perishability on Total Cost

In Fig. 4, the deterioration cost is observed to be increasing with the increase in value
of ‘k’ (or t1 is tending to t2). This is because longer the time inventory present in
cycle, more itemswill get deteriorated and the deterioration cost will be higher. Same
thing happens here, as inventory lasts for longer time as t1 reaches to t2, more and
more inventory gets deteriorated and cost increases. Even though it is true but finally
deterioration cost will be affected by value of theta as explained mathematically in
Eq. (8). In Fig. 5b, the cumulative effect of all the costs involved on total cost is seen
that as k increases the total cost decreases to certain minimum value of k and then
starts increasing as value of k increases. The deterioration rate has found pronounced
effect on total cost. It can be seen from Fig. 5a, as theta increases the total cost also
seen increasing at higher rate, however for lower value of theta (Fig. 5b) total cost
is decreasing. For reduced value of theta, minima is seen shifting to right side mean
towards higher value of k.

Crashing cost and reorder point

Figure 6 illustrates effect of k on crashing cost. When reorder point reaches too
close to the cycle time (i.e. k → 1), crashing cost increases to a maximum. Crashing
cost account for the reduction of lead time due to incorporation of better technology
and facilities, which reduces the amount of safety inventory. Better the technology
incorporated, higher would be the crashing cost and lower would be the lead time.
For higher values of p, reorder point is moving towards the cycle time for fixed value
of k leading to rise in the crashing cost and consequently reduction in lead time.

Effect of number of replenishments on the Total Cost

Figure 7 explains the effect of number of replenishments m on the total cost. It is
observed that as the value of m increases the total cost is increasing drastically. This
is because of increased fixed setup replenishment cost. It is also observed that for
higher value of m the point of minima of total cost is shifting to right that is towards
higher value of k. This may due to the cumulative effect of reduction in backlogging
and opportunity cost dominates the effect or raise in ordering cost.
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Fig. 5 Effect of aPerishability on total cost bkonvarious costswith different values of perishability
parameter theta

Major paper contribution

The major contributions of this research work are summarized below:

• An exhaustive literature review of modelling-based and supporting research
papers was conducted. And the surveyed literature is analysed chronologically
according to the stages of development of supply chain of perishable product
which reflects the research gap in scm of perishable products.

• Development of RFID-interfaced perishable product supply chain diagram to
understand the potential benefits of RFID in a supply chain.
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Fig. 6 Effect of reorder point on Total Cost

Fig. 7 Effect of the number of replenishments (m) and point of zero inventory (kT) on the Total
Cost

• Development of amathematicalmodel for perishable product supply chain consid-
ering the most realistic conditions prevailing at any node of supply chain. The
developed model was used for calculating the order quantity, shortage, maximum
cycle inventory and the total cost for all members of supply chain. The peculiarity
of this model is that it can be used to calculate the total cost for many sets of
conditions as explained above.

• Cost effectiveness of RFID in perishable product supply chain indicates that the
incorporation of newer technologies reduces the overall cost of supply chain. This
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widens the scope of making better decisions and hence improving the efficiency
and service level of supply chain.

• The capability of dealing with the effect of stock outs and backlogging in
perishable product supply chain are explored in detail.

• The utilization of RFID as a newer and promising technology in supply chain is
promoted to form an information hub that will facilitate better decisions in supply
chain and will be helpful in reducing the bullwhip effect.

• Apart from other variables, the effect of inflation of money on total cost consid-
ered in this research paper adds its own importance in the field of supply chain
management of perishable products.

5.1 Future Scope and Limitations of the Research Work

Although the current study presents an approach to understand the potential benefits
of RFID for improving all major problems into a single framework, the enormity
of the task itself renders the framework with many shortcomings that leaves a lot
of scope for future research. The existing format as well as the capabilities of the
framework can be significantly improved if the current researchwork is appropriately
extended. The following future research directions have been proposed:

• This study considers a single product for modelling and calculations; however,
the findings can be extended for multiple products consideration.

• The proposed framework can be extended to consider gradual replenishment
and the results may be verified using the findings of the current study wherein
instantaneous replenishment has been considered.

• The proposed work can also be extended to consider different demand functions
like increasing or linear log concave and the results may be compared with those
of the current study.

This work can be extended to consider the actual cost of RFID infrastructure and
cost analysis may be conducted.

6 Conclusion

This model is proposed to see the cumulative effect of money inflation rate and
technological advancements on perishable product supply chain. This work adds
new value in this research area as results achieved are positive in terms of total cost
of supply chain. The model may provide a road map and an opportunity for decision
making to those planning to incorporate newer information technologies in their
organization. Also the situations considered while developing the framework widens
the scope of implementing real facts that pertains at different nodes of supply chain.
The strength of this model lies in consideration of varying lead time, perishability
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effect, log-concave demand function, effect of information technology, shortages and
also the rate of inflation all together.

For no inflation, we obtain themodel studied by Badole [7] in his thesis. Further, if
crashing cost is not considered, themodel studied by Skouri et al. [33] follows, which
further reduces to the model studied by Bhunia andMaiti [4] where backlogging rate
is taken zero. Also these authors have considered the demand function f(t) to be linear
only.

There is tremendous scope for research in this field of supply chainmanagement as
research on incorporation of technologies and its cost effectiveness is in the prelimi-
nary stage. This research can be continued considering probabilistic demand function
which would be more realistic. Also, the results can be improved and optimized by
using different evolutionary tools.
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Mexican Hat Wavelet Transform and Its
Applications

Abhishek Singh, Aparna Rawat, and Nikhila Raghuthaman

Abstract In this chapter, we discuss a unique method to time-frequency analysis
which gives a centralized way to represent discrete and continuous time-frequency.
This serves as a straightforward way to include all possible (countable) discrete and
continuous time scales in one model. We consider the Mexican hat wavelet which is
one of the basic wavelet functions formulated by the second derivative of Gaussian
function to define the Mexican hat wavelet transform (MHWT). Further, the theory
of MHWT is implemented to obtain the Mexican hat wavelet Stieltjes transform
(MHWST) of a bounded variation function. Some convenient properties ofMHWST
are also presented. Further, a standardmethod is introduced for representing functions
of class B(m, n). Besides, an integral transform is constructed with the help of the
Fourier summation kernel. This construction results in a flexible way to present
some conditions that are necessary and sufficient for a function of class B(m, n) to
be Mexican hat wavelet and MHWST.

Keywords Weierstrass transform · Wavelet transform · Mexican hat wavelet
transform (MHWT) · Numerical methods for wavelets

Mathematics Subject Classification (2010) 46F12 · 42C40 · 44A15 · 65T60

1 Introduction

Wavelets are a new advancement in different fields of pure mathematics and applied
sciences. The theory of wavelet analysis developed from the Fourier analysis of
fractional calculus. The relationship between Fourier andwavelet transform has been
used to investigate many properties of the wavelet transform like Parseval relation
and reconstructional formula. Also, the L2-theory of Fourier transform has been used
to obtain inversion formula for the wavelet transform. In [16], the wavelet transform
is represented as a double Fourier transform to obtain PaleyWienerSchwartz type
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theorem for the wavelet transform. Using this representation many properties of the
wavelet transform can be derived from those of the Fourier transform in R

2.
The theory of wavelet transform in L p-spaces (1 ≤ p < ∞) is formulated by

exploiting the theory of classical and distributional Fourier and Hilbert transforms.
For the past two decades, the wavelet transform is rising as an important mathemat-
ical tool and has contributed significantly to signal analysis. The primary reason is
the representation of time-dependent functions in a time-frequency plane and also
identifying frequency in the temporary or spatial domain. Hence, the wavelet trans-
form acts as a time and frequency localization operator. In particular, wavelets can
adjust on long and short time intervals to achieve low and high-frequency compo-
nents which would help to enhance the analysis of signals with localized impulses
and oscillations. In a way, wavelets have a window that naturally modifies to provide
a relevant resolution. Wavelet transform uses a function called the mother wavelet.
This function has zero mean as it distinctly decays in an oscillatory fashion. The
performance of various physical and biological processes can be explained by using
fractional-order models. Recently, through a new technique, the EEG signal can be
modeled accurately, by using wavelet support vector machines and using wavelet
kernel functions such as Mexican hat wavelet and Morlet wavelet. The parameters
retrieved from modeling are then utilized for analysis and classification of signals
through vector machines (SVM).

In signal analysis mostly the information regarding the signal is transmitted by
irregular structures and temporary events. In themedical field, the edge feature fusion
is a significant part ofmedical image processing.Wavelet transform is used to develop
different techniques of image fusion. Lifting wavelet transform domain, which is a
multiresolution analysis, permits the identification of fuse image features at differ-
ent scales and orientations. It produces large coefficients near edges, thus reveal-
ing salient information. Also, it is used for the formation of the second generation
wavelets.

In the medical field, the broadcast of medical data poses many chances of threat
that can rigorously alter its integrity, authenticity, and confidentiality. Hence a med-
ical watermarking scheme was required to dodge prompting attention and prevent
an unintended recipient to reach [21]. This needs utmost care when embedding
additional data is done because the additional data must not modify the image qual-
ity. Confidentiality, authentication, integrity, and availability are important security
requirements with Electronic Patient Record (EPR) data exchange through open
channels. All of that can be achieved by applying suitable watermarks. The general
watermarking method needs to keep factors like imperceptibility, robustness, capac-
ity, and security reasonably very high. The image watermarking methods are based
on two domainmethods: Spatial domainmethod and Transform domainmethod. The
latter is established on the wavelet transform. The primary benefits of the wavelet
transform domain for watermarking applications are multi-resolution representation,
space-frequency localization, adaptability, multi-scale analysis, and linear complex-
ity. Further, the wavelet transform also allows localized watermarking of the image.

New representations of the wavelet transform and its relation with the Hilbert
transform, fractional integral operators, andWatson transformwas exploited to derive
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certain boundedness results, approximation results, and some general Parseval for-
mulae for the wavelet transform [11]. Some of the results are even extended to distri-
butions. These relations enhance the concept of the wavelet transform to give a better
way for additional research and applications. For instance, the Hilbert transform has
applications in signal processing, aerofoil problems, high energy physics, dispersion
relations, and others. Therefore, using the aforesaid relation the wavelet transform
can also be applied to tackle all such problems. In [17], Pathak and Singh expanded
the theory of Dziubanski and Hernandez and investigated wavelets of infraexponen-
tial decay whose Fourier transforms have compact support. Further, they developed
the theory of wavelet transform on the ultradistribution theory of Beurling andBjorck
which involved wavelets of infraexponential decay.

Wavelets are generated by one single function, calledmotherwavelet. Thewavelet
transform at a particular translation and dilation represents how well the original
signal scaled and translated by the mother wavelet. So, a mother wavelet can be
visualized as a windowing function [8]. There is an inverse relationship between the
wavelet scales and frequency, such that a smaller scale corresponds to a compressed
wavelet, which is high in frequency, while larger scales correspond to a stretched
wavelet, denoting lower frequency.

By translation and dilation of the mother wavelet ψ ∈ L2(R), the wavelet ψb,a(t)
is given by

ψb,a(t) = (
√
a)−1ψ

(
t − b

a

)
, b, t ∈ R, a > 0. (1)

The continuous wavelet transform of a square integrable function f , with respect
to ψb,a(t), is given by

W (b, a) =
∫
R

f (t)ψb,a(t) dt (2)

and its inversion is as follows

2

Cψ

∞∫
0

⎡
⎣

∞∫
−∞

(
√
a)−1W (b, a)ψ

(
z − b

a

)
db

⎤
⎦ da

a2
= f (z), z ∈ R, (3)

where

Cψ

2
=

∞∫
0

|ψ̂(u)|2
|u| du =

∞∫
0

|ψ̂(−u)|2
|u| du < ∞ [2, p. 64].

Recently among many authors, the researches carried out by Pathak [11, 13–16]
explored possible applications of distribution spaces in the study of wavelet and inte-
gral transforms.The studyof thewavelet transformof distribution, ultra-distributions,
and tempered distributions have expanded the applications of the wavelet transform.
Pilipovi et al. founded some results of wavelet transform on Gelfand-Shilov type
spaces and dual spaces and described the global and local behaviour of the wavelet
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transform of ultra-differentiable functions. These theories help to provide applica-
tions in several physical and engineering problems [5, 12, 23].

Mexican hat wavelet (Fig. 1), is considered as an even wavelet and is obtained by
differentiating the Gaussian function twice:

ψ(t) = exp

(−t2

2

)
(1 − t2) = − d2

dt2
exp

(−t2

2

)
. (4)

Therefore,

ψb,a(t) = −a3/2D2
t exp

(
− (b − t)2

2a2

)
,

(
Dt = d

dt

)
. (5)

Thus (2) can be written as:

W (b, a) = −a3/2
∫
R

f (t) D2
t exp

(
− (b − t)2

2a2

)
dt, a > 0. (6)

Then, with some conditions on f , we get

W (b, a) = −a3/2
∫
R

f (2)(t) exp

(
− (b − t)2

2a2

)
dt, a > 0. (7)

From the above two equations it follows that the MHWT can also be considered
as the Weierstrass transform of

(
d
dt

)2
f (t). Hence, various properties of MHWT can

be obtained from those of the Weierstrass transform [10]. We define the generalized
MHWT by

W (b, a) = −a3/2
〈
f (t), D2

t exp

(
− (b − t)2

2a2

)〉
,

α

γ
< Re b <

β

γ
. (8)

W (b, a) turns out to be an analytic function for α
γ
< Re b <

β
γ
.

A function k(b, a) defined by [10]

k(b, a) = 1√
2πa

exp

(−b2

2a

)
, (9)

where a ∈ (0,∞) and b ∈ R. Clearly,

D2
t k(b − t, a2) = 1√

2πa
D2

t

(
exp

(
− (b − t)2

2a2

))
. (10)

Hence by (5),
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ψb,a(t) = −√
2πa

5
2 D2

t k(b − t, a2). (11)

The MHWT of a function f (t) is given by

W f (b, a) = a3/2
∫
R

exp

(
− (t − b)2

2a2

)
f (2)(t)dt. (12)

In particular, the definition of MHWT can be extended to complex values of b
whenever necessary. In [19], asymptotic properties of MHWT are discussed for an
appropriate testing function spaceWγ

α,β on the real lineRwhich is a generalization of
the Zemanian space. Further, the asymptotic behaviour of the distributional MHWT
was obtained and a real inversion formula was derived by constructing a structural
formula. Also, the tauberian result related to the transform is discussed. Pathak
and Singh in [15] studied convolution theory in K ′{Mp} space and obtained some
boundedness result for the wavelet transform. They derived Calderóns formula in
distribution sense as an application of the wavelet transform and used it to obtain
an inversion formula for the wavelet transform of generalized functions. Further
in [18], the authors studied the mutation phase by joining the BBO algorithm and
the MHWT. The MHWT results in a reduction of the mean error and improves
investigation and premature convergence. Secondly, they introduced the BMDDSF
framework (BBO-Mexican hat wavelet-dragonfly dynamic scheduling framework)
for the dynamic scheduling of tasks in the cloud computing environment. The benefit
of working with the MHWT is the efficiency of the short term signal analysis. The
introduction of this set of wavelet leads to productive analysis that may find use
in a wide range of fields. Also, it provides a unified framework for representing
time-dependent functions in a time-frequency plane including local frequency data.

Wavelet transform has been generalized toWavelet Stieltjes transform of bounded
variation function in [1]. This approach for time-frequency localization provides a
unified framework to analyze both continuous and discrete-time signals in the same
way as the distribution function allows a unified treatment of discrete and continuous
cases. Let us begin with the definition of function of bounded variation.

Definition 1 Let

BV (1, 2) =
⎧⎨
⎩F |F : R → R, F(·) =

·∫
−∞

f (t)dt +
∑
s≤·

ρ(s),

f ∈ L1(R) ∩ L2(R), ρ ∈ l1 ∩ l2
}
,

where summation convention is summed over countable discontinuities of F [1].

Note that any function F in BV (1, 2) is of bounded first variation, where the integral
part is absolutely continuous component of F and the sumpart is the jump component
of F .
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Fig. 1 Mexican hat wavelet

Definition 2 For F ∈ BV (1, 2), define

‖F‖1 :=
∫
R

| f (t)|dt +
∑

−∞<s<∞
|ρ(s)| (13)

and

‖F‖2 :=
⎡
⎣∫

R

| f (t)|2dt +
∑

−∞<s<∞
|ρ(s)|2

⎤
⎦

1/2

. (14)

In fact, ‖ · ‖1 and ‖ · ‖2 are norms on BV (1, 2).

The MHWST of F with kernel ψb,a is given by

WFS(b, a) = a3/2
∫
R

exp

(
− (t − b)2

2a2

)
dF (2)(t), (15)

such that for all b = σ + iω, the integrals (12) and (15) converges.
We shall now assume that f (t) is Lebesgue integrable in every finite interval

and that F(t) is a function of bounded variation. Stieltjes transform has important
applications in the theory of moments, queuing, orthogonal polynomials, and in
mathematical physics as they are a representing class for finite measures.

The region of convergence for the MHWT is an interval where b = σ + iω, then
we have a vertical strip for convergence [22]. Moreover, every MHWT which con-
verges for m < σ < n is also holomorphic in m < Re(b) < n. The representation
theory for Laplace transform was obtained by Cooper [3]. In this chapter, we present
representation theories for the MHWT and MHWST in connection with the integral
transform [20]:



Mexican Hat Wavelet Transform and Its Applications 305

f (2)λ (t,σ) = 1√
2πa

(
a−5/2

√
2π

)∫
R

k1(ω,λ)exp

(
(b − t)2

2a2

)
W f (b, a)dω

= 1

2πa7/2

∫
R

k1(ω,λ)exp

(
(b − t)2

2a2

)
W f (b, a)dω, (16)

where m < σ < n and k1(ω,λ) is a Fourier summation kernel satisfying the follow-
ing conditions:
The Fourier transform of k1(ω,λ) denoted by K (t,λ) exists and k1(ω,λ) is regular,
given by

k1(ω,λ) = 1√
2π

∫
R

exp (iωt) K (t,λ)dt (17)

and ∫
R

|K (t,λ)|dt ≤ M ′, (18)

where M ′ is a constant and independent of λ [3].

Lemma 1 If (18) holds, then the set of transformations Tλ defined by

(Tλh)(σ) =
∫
R

K

(
σ − ω

2
,λ

)
h(ω)dω,

forms a bounded set of transformations from L p(R) (1 ≤ p < ∞) to itself.

Definition 3 A function W f (b, a) defined on (m, n) is said to be in class A if it is
extended analytically into the complex plane satisfying

(i) W f (b, a) is holomorphic in the strip m < x < n,

(ii) W f (b, a) = O

(
exp

(
ω2

2a2

))
, |ω| → ∞, (b = σ + iω), m < σ < n.

Definition 4 A function W f (b, a) defined on (m, n) is said to be in class B if it is
extended analytically into the complex plane satisfying

(i) W f (b, a) is holomorphic in the strip m < x < n,

(ii) W f (b, a) = o

(
exp

(
ω2

2a2

))
, |ω| → ∞, (b = σ + iω), m < σ < n.
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2 Necessary Conditions for Mexican Hat Wavelet and
MHWST

Theorem 1 If W f (b, a) = a3/2
∫
R

exp

(
− (t − b)2

2a2

)
f (2)(t) dt, with

f (2)(t)exp

(−(t − σ)2

2a2

)
∈ L p(R), 1 < p ≤ 2, m < σ < n and if for

each λ > 0, k1(ω,λ) ∈ L p(R) then we have, W f (b, a) ∈ B(m, n) and

‖exp
(−(t − σ)2

2a2

)
f (2)λ (t,σ)‖p ≤ M, (1 < p ≤ 2) (19)

where M is independent of λ.

Proof As W f (b, a) exists and belongs to B(m, n) for all m < σ < n, we show that
(19) is satisfied. Consider

f (2)λ (t,σ) = 1

2πa7/2

∫
R

k1(ω,λ)exp

(
(b − t)2

2a2

)
W f (b, a)dω

= 1

2πa2

∫
R

k1(ω,λ)exp

(
(σ − t + iω)2

2a2

)
dω

×
∫
R

exp

(−(u − σ − iω)2

2a2

)
f (2)(u)du

= 1√
2πa2

exp

(
(t − σ)2

2a2

)
1√
2π

∫
R

k1(ω,λ)exp

(−(t − u)iω

a2

)
dω

×
∫
R

exp

(−(u − σ)2

2a2

)
f (2)(u)du

= 1√
2πa2

exp

(
(t − σ)2

2a2

)∫
R

K

(
t − u

a2
,λ

)
exp

(−(u − σ)2

2a2

)
f (2)(u)du,

(20)
where the interchange of the order of integration is justified by Fubini’s theorem.
Therefore, by Lemma 1

‖exp
(−(t − σ)2

2a2

)
f (2)λ (t,σ)‖p ≤ M.
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Hence the proof is complete. �

Theorem 2 If WF S(b, a) = a3/2
∫
R

exp

(
− (t − b)2

2a2

)
dF (2)(t) with

∫
R

exp

(−(t − σ)2

2a2

)
|dF (2)(t)| < ∞, (m < σ < n) (21)

and if k1(ω,λ) ∈ L1(R) for each λ > 0, then WF S(b, a) ∈ A(m, n) and

‖exp
(−(t − σ)2

2a2

)
f (2)λ (t,σ)‖1 ≤ M.

Proof Let WFS(b, a) exists for all m < σ < n and WFS(b, a) ∈ A(m, n), then

f (2)λ (t,σ) = 1

2πa7/2

∫
R

k1(ω,λ)exp

(
(b − t)2

2a2

)
WFS(b, a)dω

= 1

2πa2

∫
R

k1(ω,λ)exp

(
(σ − t + iω)2

2a2

)
dω

×
∫
R

exp

(−(u − σ − iω)2

2a2

)
dF (2)(u)

= 1√
2πa2

exp

(
(t − σ)2

2a2

)
1√
2π

∫
R

k1(ω,λ)exp

(−(t − u)iω

a2

)
dω

×
∫
R

exp

(−(u − σ)2

2a2

)
dF (2)(u)

= 1√
2πa2

exp

(
(t − σ)2

2a2

)∫
R

K

(
t − u

a2
,λ

)
exp

(−(u − σ)2

2a2

)
dF (2)(u),

where the interchange of the order of integration is justified by Fubini’s theorem.
Therefore, by using Lemma 1, we have

‖exp
(−(t − σ)2

2a2

)
f (2)λ (t,σ)‖1 ≤ M.

This completes the proof of the theorem. �
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3 Sufficient Conditions for Mexican Hat Wavelet and
MHWST

Theorem 3 If W f (b, a) ∈ B(m, n), with ‖exp
(−(t − σ)2

2a2

)
f (2)λ (t,σ)‖p ≤ M

and k1(ω,λ)exp

(−(ω)2

2a2

)
W f (b, a) ∈ L1(R), wherek1(ω,λ) → 1asλ → ∞

uniformly in ω for every finite interval, then there exist a function f such that

for

(
exp

(−(σ − t)2

2a2

)
f (2)(t)

)
∈ L p(R), 1 < p ≤ 2, σ ∈ (m, n), we have

W f (b, a) = a
3
2

∞∫
−∞

exp

(−(b − t)2

2a2

)
f (2)(t)dt.

Proof Let σ0 ∈ (m, n), then by Theorem 1, the family of functions

{
exp

(−(σ0 − t)2

2a2

)
f (2)λ (t,σ0)

}

is bounded in L p(R). As defined in [22], there exists a subsequence {λk}∞k=1 with
limk→0 λk = ∞ and for a function f (t,σ0), we have

exp

(−(σ0 − t)2

2a2

)
f (2)(t,σ0) ∈ L p(R)

such that

lim
k→∞

1√
2πa

∫
R

exp

(−(σ0 − t)2

2a2

)
f (2)λk

(t,σ0)φ(t)dt

= 1√
2πa

∫
R

exp

(−(σ0 − t)2

2a2

)
f (2)(t,σ0)φ(t)dt (22)

for all φ ∈ L p′ ∩ L1, whose Fourier transforms ϕ are in L p. Thus,
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1√
2πa

∫
R

exp

(
−(σ0 − t)2

2a2

)
f (2)λk

(t,σ0)φ(t)dt = 1√
2πa

∫
R

exp

(
−(σ0 − t)2

2a2

)
φ(t)dt

×
⎧⎨
⎩

1

2πa7/2

∫
R

k1(ω,λk)exp

(
(σ0 − t + iω)2

2a2

)
W f (σ0 + iω, a)dω

⎫⎬
⎭

= 1

2πa9/2

∫
R

exp

(−ω2

2a2

)
exp

(
iσ0ω

a2

)
k1(ω,λk)W f (σ0 + iω, a)dω

×
⎧⎨
⎩

1√
2π

∫
R

φ(t)exp

(−i tω

a2

)
dt

⎫⎬
⎭

= 1

2πa9/2

∫
R

exp

(−ω2

2a2

)
exp

(
iσ0ω

a2

)
k1(ω,λk)W f (σ0 + iω, a)ϕ

( ω

a2

)
dω

= 1

2πa5/2

∫
R

exp

(−ω2a2

2

)
exp (iσ0ω) k1(ωa

2,λk)W f (σ0 + iωa2, a)ϕ(ω)dω.

Now the functions

exp

(−ω2a2

2

)
exp (iσ0ω) k1(ωa

2,λk)W f (σ0 + iωa2, a) (23)

are the Fourier transforms of exp

(−(σ0 − t)2

2a2

)
f (2)λk

(t,σ0).

This family of functions is bounded in L p. Therefore by [7], the family (23) is
bounded in L p′

. By theweak compactness of the L p′
-space, there exists a subsequence{

λk j

}∞
j=1

with lim j→∞ λk j = ∞ such that for any h ∈ L p, we have

lim
j→∞

∫
R

exp

(−ω2a2

2

)
exp (iωσ0) k1(ωa

2,λk j )W f (σ0 + iωa2, a)h(ω)dω

=
∫
R

exp

(−ω2a2

2

)
exp (iωσ0)W f (σ0 + iωa2, a)h(ω)dω,

where exp

(−ω2a2

2

)
exp (iωσ0)W f (σ0+iωa2 , a) is the limiting point of

exp

(−ω2a2

2

)
exp (iωσ0) k1(ωa

2,λk j )W f (σ0+iωa2 , a). Also, the functions
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φ ∈ L p′ ∩ L1 are dense in L p′
, so that h(ω) = 1

2πa5/2
ϕ(ω).

Therefore,

lim
j→∞

1√
2πa

∫
R

√
2πa5/2exp

(−(σ0 − t)2

2a2

)
f (2)λk j

(t,σ0)φ(t)dt

= 1

2πa5/2

∫
R

√
2πa5/2ϕ(ω)exp

(−ω2a2

2

)
exp (iωσ0)W f (σ0 + iωa2, a)dω.

Now using [4], and the fact that the functions (23) are the Fourier transforms

of

(
exp

(−(σ0 − t)2

2a2

)
f (2)λk

(t,σ0)

)
, we obtain

1√
2πa3/2

exp

(−ω2a2

2

)
exp (iσ0ω)W f (σ0 + iωa2, a)

= 1√
2π

∫
R

exp (iωt) exp

(−(σ0 − t)2

2a2

)
f (2)(t,σ0)dt.

Hence, we have

W f (σ0 + iωa2, a) = a3/2
∫
R

exp

(−(σ0 − t + iωa2)2

2a2

)
f (2)(t,σ0)dt

i.e.,

W f (σ0 + iω, a) = a3/2
∫
R

exp

(−(σ0 + iω − t)2

2a2

)
f (2)(t,σ0)dt.

Now we show that the function f (2)(t,σ0) is independent of σ0 ∈ (m, n). Since

W f (b, a) ∈ B(m, n), therefore, W f (b, a)exp

(
(b − t)2

2a2

)
is holomorphic for m <

Re(b) < n. Hence, usingCauchy’s integral theorem form < σ0 ≤ Re(b) ≤ σ1 < n,
we have ∫

C

W f (b, a)exp

(
(b − t)2

2a2

)
db = 0,

where the contour C is determined by the vertices σ0 + iT, σ1 + iT withm < σ0 <

σ1 < n. Therefore,
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0 =
⎧⎨
⎩

σ0+iT∫
σ0−iT

+
σ1+iT∫

σ0+iT

+
σ1−iT∫

σ1+iT

+
σ0−iT∫

σ1−iT

⎫⎬
⎭W f (b, a)exp

(
(b − t)2

2a2

)
db

= I1 + I2 + I3 + I4

and as T → ∞, the integral |I2| → ∞ and |I4| → ∞. It follows that

∫
R

[
W f (σ0 + iω, a)exp

(
(σ0 + iω − t)2

2a2

)

− W (σ1 + iω, a)exp

(
(σ1 + iω − t)2

2a2

)]
dω = 0. (24)

Now by the regularity of k1(ω,λ), hypotheses and (24)

lim
λ→∞

∫
R

k1(ω,λ)exp

(
(σ0 + iω − t)2

2a2

)
W f (σ0 + iω, a)dω

= lim
λ→∞

∫
R

k1(ω,λ)exp

(
(σ1 + iω − t)2

2a2

)
W f (σ1 + iω, a)dω.

From the uniqueness of the weak limit

f (2)(t,σ0) = f (2)(t,σ1) = f (2)(t).

Hence by (24),

W f (σ + iω, a) = a
3
2

∞∫
−∞

exp

(−(t − σ − iω)2

2a2

)
f (2)(t)dt.

This completes the proof of the theorem. �

Theorem 4 If WF S(b, a) ∈ A(m, n), ‖exp
(−(t − b)2

2a2

)
f (2)λ (t, b)‖1≤ M is satis-

fied and k1(ω,λ)exp

(−ω2

2a2

)
WFS(b, a) ∈ L1(R) where k1(ω,λ) → 1 as λ → ∞,

uniformly in ω for any finite interval, then there exists a function F

with
∫
R

exp

(−(σ − t)2

2a2

)
‖dF (2)(t)‖ < ∞, ∀σ ∈ (m, n)
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such that WF S(b, a) = a3/2
∫
R
exp

(−(t − b)2

2a2

)
dF (2)(t).

Proof By hypotheses, f (2)λ (t,σ) is well defined ∀σ ∈ (m, n). Let

F (2)
λ (t,σ) ≡

t∫
0

f (2)λ (u,σ)du,

then for arbitrary finite interval [l1, l2] and fixed σ0 ∈ (m, n)

l2∫
l1

|dFλ
(2)(t,σ0)| ≤

l2∫
l1

| f (2)λ (t,σ0)|dt

≤ max
l1<t<l2

exp

(
(σ0 − t)2

2a2

) l2∫
l1

exp

(−(σ0 − u)2

2a2

)
| f (2)λ (u,σ0)|du,

uniformly in λ. Thus {Fλ(t,σ0)} is of uniformly bounded variation in [l1, l2] and

|F (2)
λ (l1,σ0)| ≤

l1∫
0

| f (2)λ (u,σ0)|du

≤ max
0<t<l1

exp

(
(σ0 − t)2

2a2

) l1∫
0

exp

(−(σ0 − u)2

2a2

)
| f (2)λ (u,σ0)|du < ∞.

Hence by [22], there exists an increasing unbounded sequence λk and a function
F(t,σ0) of bounded variation in l1 ≤ t ≤ l2 such that

lim
k→∞ F (2)

λk
(t,σ0) = F (2)(t,σ0). (25)

Moreover, by [22], for any continuous function g(t) in [l1, l2],

lim
k→∞

l2∫
l1

g(t)dF (2)
λk

(t,σ0) =
l2∫

l1

g(t)dF (2)(t,σ0).

Hence, in particular for g(t) = exp

(−(σ0 − t)2

2a2

)
, we have
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l2∫
l1

exp

(−(σ0 − t)2

2a2

)
|dF (2)(t,σ0)|

≤ limk→∞

l2∫
l1

exp

(−(σ0 − t)2

2a2

)
|dF (2)

λk
(t,σ0)|

≤ limk→∞

∫
R

exp

(−(σ0 − t)2

2a2

)
| f (2)λ (t,σ0)|dt < ∞.

Now, by (25)

F (2)(t,σ0) = lim
k→∞

t∫
0

f (2)λk
(u,σ0)du (26)

= lim
k→∞

1

2πa7/2

t∫
0

du
∫
R

k1(ω,λ)exp

(
(σ0 + iω − u)2

2a2

)
WFS(b0 + iω, a)dω

= lim
k→∞

1

2πa7/2

∫
R

k1(ω,λk)WFS(σ0 + iω, a)dω

t∫
0

exp

(
(σ0 + iω − u)2

2a2

)
du,

where the interchange of order of integration is justified by Fubini’s theorem.

It remains to show that F(t,σ0) is independent of σ0 ∈ (m, n). Since WFS(b, a) ∈
A(m, n),

WFS(b, a)

t∫
0

exp

(
(b − u)2

2a2

)
du

is holomorphic in the strip a < Re(b) < b, then by [9, Theorem 1], we obtain

∫
R

⎧⎨
⎩WFS(σ0 + iω, a)

⎡
⎣

t∫
0

exp

(
(σ0 + iω)2

2a2

)
du

⎤
⎦

−WFS(σ1 + iω, a)

⎡
⎣

t∫
0

exp

(
(σ1 + iω − u)2

2a2

)
du

⎤
⎦
⎫⎬
⎭ dω = 0,

where m < σ0 < σ1 < n. By the regularity of k1(ω,λ) and the fact that k1(ω,λ)

WFS(σ + iω, a)exp

(−ω2

2a2

)
∈ L1(R), it follows from (26) that
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F (2)(t,σ0) = F (2)(t,σ1) = F (2)(t).

Now, let H(t) be a continuous function in [−T, T ] and zero outside the interval.
If h denotes the Fourier transform of H , then

1√
2πa

∫
R

H(t)exp

(−(σ − t)2

2a2

)
f (2)λk

(t, b)dt

= 1√
2πa

∫
R

H(t)exp

(−(σ − t)2

2a2

)
dF (2)

λk
(t, b)

= 1

2πa9/2

(
1√
2πa

)∫
R

H(t)exp

(−(σ − t)2

2a2

)
dt

×
∫
R

k1(ω,λk)exp

(
(b − t)2

2a2

)
WFS(b, a)dω

= 1

2πa9/2

∫
R

k1(ω,λk)exp

(
2iωσ − ω2

2a2

)
WFS(b, a)dω

× 1√
2π

∫
R

H(t)exp

(−iωt

a2

)
dt

= 1

2πa9/2

∫
R

k1(ω,λk)exp

(
iωσ

a2

)
exp

(−ω2

2a2

)
WFS(b, a)h

( ω

a2

)
dω

= 1

2πa5/2

∫
R

k1(ωa
2,λk)exp (iωσ)WFS(σ + iωa2, a)h(ω)dω.

Therefore, k1(ωa
2,λk)exp

(
iωa2b

)
exp

(−ω2a2

2

)
WFS(b + iωa2, a) is the

Fourier transform of

(−(σ − t)2

2a2

)
f (2)λk

(t, b). Thus,

a−3/2

√
2π

k1(ω
2,λk)exp

(
iωa2b

)
exp

(−ω2a2

2

)
WFS(b + iωa2, a)

= 1√
2π

∫
R

exp (iωt) exp

(−(b − t)2

2a2

)
f (2)λk

(t, b)dt.
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Therefore, we have

WF S(σ + iωa2, a) = a3/2
∫
R

exp

( −1

2a2

{
(t − b)2 + 2ibω − ω2 − 2i tω

})
dF (2)

k (t, b).

Let k → ∞, then a change of variable yields

WFS(b, a) = a3/2
∫
R

exp

(−(t − σ − iω)2

2a2

)
dF (2)(t)

which is the required result. �

Conclusion

The principles of wavelet analysis are similar to those of Fourier analysis and any
application using the Fourier transform can be formulated using wavelets to provide
more accurate data. The wavelet transform is considered to have one of the most
appropriate wavelet basis functions which have many applications in time-frequency
signal analysis. In the same way, the MHWT also has an obvious local feature in the
frequency domain. As the Mexican hat wavelet is formulated by Gaussian function,
it satisfies the Gaussian decays in both space and frequency, which indicates that it
can also extract information in a space-frequency window. Moreover, the Mexican
hat wavelet acts as a smooth function and is more beneficial in signal extraction.
Therefore, it is used in extracting the feature parameters of ECG. In contrast to any
otherwavelet, theMexican hat wavelets emanated from the continuouswavelet trans-
form, are symmetrical and give an exact time-frequency analysis of input functions.
Therefore Mexican hat wavelet has been thought to be the most suitable mother
wavelet function. In [6], the Mexican hat wavelet and its transforms are analyzed
from a Fourier perspective, to obtain an explicit expression in the Fourier domain.
In the Fourier domain, the Mexican hat wavelet acts as the product of the Laplace-
Beltrami operator and the heat kernel. It is, therefore, a scaled differential operator
continuously dilated through heat diffusion. Zhou et al. has implemented theMHWT
in modeling earthquake accelerogram records in the form of a scalogram where the
coefficients of the continuous MHWT is used to describe the signal energy in the
time-scale domain [23]. Here we used the theory of MHWT to define the MHWST
of bounded variation function which can analyze both continuous and discrete-time
signals. This relation helps to broaden the application scope of the transform. Further,
we developed some necessary and sufficient conditions for representing functions
as MHWT and MHWST. The MHWT is derived from the heat kernel by taking the
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negative first-order derivative with respect to time and has localization in space and
frequency. Therefore, it provides numerous applications in space-frequency analysis,
solutions for differential and integro-differential equations, and other digital modu-
lation. Moreover, these results can be extended to obtain an analytic solution of the
hyperbolic heat conduction problem, mixed boundary value problems, approxima-
tion theory, mathematical modeling, and computation.
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Fractal Fractional Derivative Operator
Method on MCF-7 Cell Line Dynamics

Kolade M. Owolabi, Albert Shikongo, and Abdon Atangana

Abstract In this chapter, the dynamics modeling breast cancer known as MCF-7
cell line by means of a system of ordinary differential equations are considered. The
dynamics are extended to a system of fractal fractional partial differential equations.
The well-posed, physiological level, and stability conditions for the system of fractal
fractional partial differential equations dynamics are established as well. Since the
extended dynamics are not solvable analytically, a novel fractal fractional numerical
method is derived, implemented and the results are presented with respect to the
derived stability conditions.

Keywords Breast cancer · MCF-7 cell line · Fractal fractional operator ·
Well-posed · Stability analysis · Numerical method

1 Introduction

When normal cells divide in an orderly way, normal cells die when they are worn out
or damaged and then new cells take over. Cancer occurs when normal cells start to
grow out of control, which implies that cancer cells crowd out normal cells, resulting
in problems in a part of a body where the crowding out has occurred. If the part of
a body where cancer has started is a breast, then the cancer is referred to as breast
cancer. Breast cancer cells usually form as a tumor that can often be seen through
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an x-ray or felt as a lump. However, breast cancer include ductal carcinoma in situ,
invasive ductal carcinoma, inflammatory breast cancer, and metastatic and/or stage
4 breast cancer. In this study, the focus is on metastatic and/or stage 4 breast cancer
that occurs almost entirely in women even though men can get breast cancer too. The
metastatic and/or stage 4 breast cancer is also knownasMCF-7, commonly diagnosed
in women worldwide. The MCF-7 is a breast cancer cell line isolated in 1970 from
a 69year old Caucasian woman. Hence, MCF-7 is an acronym of Michigan Cancer
Foundation-7, referring to the institute in Detroit where the cell line was established
in 1973 by Herbert Soule and co-workers. Thus, this chapter, follows the wonderful
study carried out in [46], that MCF-7 is a serious threat to human breast. Therefore,
the recent studies carried out in order to treat this deadly infection are as follow.

Parush in [41] mentioned that in oncology, hyperthermia is understood as a
planned, controlled technique of heating cancerous changes in order to destroy or
to stop their cells growth, whereas in clinical practice, hyperthermia is used in com-
bination with radiotherapy, chemotherapy, or immunological therapy. Furthermore,
they stated that during the hyperthermia, the affected tissue is typically exposed to
a temperature in the range of (40–45) ◦C, with the exception of thermoablation in
which the temperatures reach much higher values. They further explained that ther-
moablation is a process characterized by the use of high temperatures up to 90 ◦C, in
which the electrode using the radio frequency is inserted into the central area of the
tumor whereas, interstitial thermoablation is used to treat, among others, breast and
brain cancer. Thus, they noted that the therapy is consisting of inducing coagulation
necrosis in an area that is heated to very high temperatures. Therefore, based on
their above understanding they designed the dynamics coupled with thermo-electric
model, in which the electric field is described by means of the Laplace equation and
Pennes equation. Henceforth, coupling occurs at the level of the additional source
function in the Pennes equation. They were able to present that temperature field
obtained through their dynamics enable them to determine the Arrhenius integral as
a determinant of the destruction of biological tissue. Similar studies can be traced in
[24].

The study that deals with the mathematical model of breast cancer at the initial
growth stage known as ductal carcinoma in situ is considered in [15], in which a
computational approach is developed based on an iterative procedure, space march-
ing and mollification methods. Their stability and convergence results support the
efficiency and ability of the proposed numerical approach.

In [47] the stability analysis of a mixed immunotherapy and chemotherapy of
tumors’ model, presented an indicator of the host’s ability to fight a cancer of the
tumor-free equilibrium are obtained. Their studies present that the immune system
is able to control a small tumor, and the host’s ability to fight a cancer depends on
individual variation. Their numerical method based on the continuation technique
for one-parameter bifurcation analysis with periodically pulsed therapies provided a
good approximation of the maximum tumor burden as a function of the dosage. Wei
in [47] was able to deduce the treatment failure through the numerical simulation of
chemotherapy-induced lymphocyte. Hence, theywere able to determined an efficient
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and safe combination of dosages for combined chemotherapy and immunotherapy
treatment.

Wei in [46] derived the dynamics for metastatic and/or stage 4 breast cancer, in
which the parameter values and functional forms are justified by experimental and
clinical data. Since, MCF-7 cell line is the most common in vitro dynamic used for
experiments on humanbreast cancer, then the dynamics in [46] govern theMCF-7 cell
growth with interaction among tumor cells, estradiol, natural killer cells, cytotoxic
T lymphocytes (CTLs) or CD8+ T cells, and white blood cells (WBCs), which are
denoted by T , E, N , L ,C in that order. Thus, Wei in [46] was able to deduced the
dynamics in the form of a system of ordinary differential equations (ODEs) as

dX
dt

= F with X0 = Xc, (1)

where,

X = [T , N , L ,C ]′ and F = [F1, F2, F3, F4]′,

in which,

F1 = (a + IT E (T , E)
(
1 − T

K

)− IT N (T , N ) − IT L(T , L),

F2 = eC − f N − p2NT + INT (T , N ),

F3 =
(
p4LN + p5 I

a4+I L
) (

1 − L
KL

)
T

a5+T − dL ,

F4 = α − βC ,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(2)

with the initial conditions,

Xc = [T (0) = Tc, N (0) = Nc, L(0) = Lc, C(0) = Cc]′, Tc ≥ 0, Nc ≥ 0, Lc ≥ 0,Cc ≥ 0.

In thefirst equation in (2),a, K , IT E (T , E), IT N (T , N ), IT L(T , L), INT (T , N )

denote the intrinsic growth rate, carrying capacity of the tumor cells, stimulation of
the proliferation ofMCF-7 cells by estradiol, tumor lysis by natural killer cells, tumor
lysis by cytotoxic T lymphocytes, the process of recruitment of natural killer cells in
the presence of tumor cells. Consequently, Wei in [46] experimentally deduced the
functional response terms

IT E (T , E), IT N (T , N ), IT L(T , L), INT (T , N ),

as

IT E (T , E) = cET 2

1 + α1E + β1T 2
, IT N (T , N ) = p1T N 2

1 + α2T + β2N 2
,

IT L(T , L) = p6T 2L

1 + α6T 2 + β6L
, INT (T , N ) = p3NT

1 + α2T + β2N 2
,
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where, E = Ẽ(t − nτ ) denotes the blood content of estradiol [48] for t ∈ [n, (n +
1)τ ], τ = 29, n ∈ N, in which c, p j , ( j = 1, 3, 6), denote growth rate of the inter-
actions of estradiol with WBCs cells, growth rate of the interactions of WBCs
with natural killers, growth rate of the interactions of WBCs with lymphocytes,
α j , ( j = 1, 2, 6) denote the birth rates of estradiol, WBCs and β j , ( j = 1, 2, 6)
denote the death rates of WBCs, natural killers and lymphocytes, respectively. In
[46] it is mentioned that the growth rate of the natural killer cells depends on the
concentration of WBCs, thus, in the second equation in Eq. (2) the parameter e
denotes the growth rate of lymphocytes due to the presence of the functional response
INT (T , N ), the parameter f denotes the rate of exhaustion of the natural killers due
to significant reduction in perforin and granzymes B content and p2 denotes the rate
of inactivation of natural killers cells after some encounters with tumour cells. The
third equation present the fact that mature lymphocytes cells increases progressively
during young life and then remains relatively constant during their adulthood and the
term T

a5+T presents the phenomenon that lymphocytes are activated in the presence
of tumor cells and undergo apoptosis at the end of immune response, d denotes the
rate of the lymphocytes that did not make it to the adulthood. The last equation in
(2) denotes the constant growth rate α and their linear death rate β.

The first aim in this chapter is to extend the dynamics in Eq. (1) to a system of
fractal fractional parabolic differential equations (FFPDEs) in the Caputo sense [1,
2] as

CFF Dμ,κ
a,t (X(t)) − D 1

2

[
C Dμ

a,xX + C Dμ
b,xX

] = F with X0 = Xc,μ,κ ∈ (0, 1), (3)

on (x, t) ∈ � × (0,∞), with no-flux boundary conditions, where, 0 ≤ a < b ∈ Z
+,

CFF Dμ,κ
0,t denotes fractal fractional derivative with respect to time (t) in the Caputo

sense, C Dμ
a,x ,

C Dμ
b,x denote a left-side and right-side Caputo fractional derivatives

with respect to space x [11, 44], the initial conditions are as in Eq. (1). The sys-
tem of FFPDEs in Eq. (3) has the spatial effects of the involved cells denoted by
D = [DT ,DN ,DL ,DC ]′. Fractal fractional derivative is a natural extension of an
fractional derivative. Consequently fractional derivative is an extension of ordinary
derivative, where integrals and derivatives are defined for arbitrary orders. Thus,
excellent literature on the application of fractional derivative to model a range of
real-life phenomena can be traced in [3, 5–9, 17, 28, 30–39], and references therein.
However, very little has been done in the direction of fractal fractional derivative on
real-life phenomena. These few application of fractal fractional on real life phenom-
ena are highlighted below.

A novel operator known as fractal-fractional in the sense of Caputo derivative for
banking data is considered in [19]. Their comparative analysis of rural and commer-
cial banks data of Indonesia for the years 2004 to 2014 through some reasonable set
of parameters for both the data present the best fitting to the data, for their well-posed
dynamics.

Chen et al., in [12] developed a fractal derivative model of anomalous diffusion
and the fundamental solution of the fractal derivative equation for their model. They
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mentioned that their new dynamics characterizes a clear power law as compared to
the corresponding fractional derivative dynamics.

The second aim in this chapter is to derive a novel well-posed numerical method
for the dynamics in Eq. (3). In most cases the dynamics such as the ones in Eq. (3)
are solved by means of quadrature numerical methods [10], which in turn require
extensive process to reach to the final presentation of the solution. However, the
novel numerical method is easy and at the same time enables us to combine integer
solution with the non-integer solution. Thus, it suffices to refer readers to [1, 12, 19].
The rest of the chapter is organized as follows. Section 2 deals with the mathematical
analysis of the system of FFPDEs, whereas in Sect. 3 deals with the derivation and
implemention of the well-posed fractal fractional operator numerical method and
present the results in Sect. 4. Section5 concludes the chapter.

2 Mathematical Analysis of the Models

In this section, the dynamics in Eq. (3) are analyzed, first by establishing the con-
tinuously dependency of unique solution on the data, physiological levels, equilib-
rium point(s) and asymptotic stability condition(s) of equilibrium point of the of the
dynamics.

2.1 Preliminaries

In view of the equation in (3), it can be seen that the left-side fractal fractional
derivative in the Caputo sense of order μ with respect to time t is

CFF Dμ,κ
a,t (X(t)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
�(1−α)

t∫

a
(t − τ )n−μ−1 d

dτκ (X(τ ))dτ ,

= t1−κ

κ�(1−μ)

t∫

0
(t − τ )−μẊ(τ )dτ , if μ,κ ∈ (0, 1),

Ẋ, if μ = κ = 1,

(4)

where,

d

dτκ
(X(τ )) = lim

t→τ

X(t) − X(τ )

tκ − τκ
.

Similarly, for n − 1 < α ≤ n, n ∈ N ≤ 2 (in this case) on [a, b], the left-side
Caputo fractional operator is
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C Dμ
a,xX(x, t) =

⎧
⎨

⎩

1
�(n−μ)

x∫

a
(x − ϕ)n−μ−1 ∂n

∂ϕn X(ϕ, t)dϕ, if n − 1 < μ < n,

∂n

∂ϕn X(ϕ, t), if μ = n,

(5)

and the right-side Caputo fractional operator is

C Dμ
x,bX(x, t) =

⎧
⎪⎨

⎪⎩

(−1)n

�(n−μ)

b∫

x
(ϕ − x)n−μ−1 ∂n

∂ϕn X(ϕ, t)dϕ, if n − 1 < μ < n,

(−1)n ∂n

∂ϕn X(ϕ, t)dϕ, if μ = n.

(6)

Let

R(�) =
{
X(x, t)

∣∣∣
∣
d2

dx2
X ∈ C2

1 (�̄) and
d

dx
X ∈ C(�̄)

}
, (7)

where, �̄ = [0, T ] × [a, b] for some T ∈ N < ∞. In view of [21], the hypothesis
below follow.

Lemma 1 If a function f ∈ C1[0, T ] attains its maximum over the interval [0, T ]
at a point τ = t0 ∈ (0, T ], then

0 ≤ FF Dμ,κ
a,t0 f (t0),∀μ,κ ∈ (0, 1]. (8)

Lemma 2 Let f ∈ C2([a, b]), such that it attains its maximum over the interval
[a, b] at a point x0 ∈ [a, b] and f ′(x0) ≥ 0. Then

C Dβ
a,x0 f (x0) := [

C Dμ
a,x0 f (x0) + C Dμ

b,x0
f (x0)

] ≤ 0,∀β ∈ (0, 2). (9)

Lemma 3 Let f ∈ C2([a, b]), such that it attains its maximum over the interval
[a, b] at a point x0 ∈ [a, b] and f ′(b) ≤ 0. Then

C Dβ
a,x0 f (x0) ≤ 0,∀β ∈ (0, 2]. (10)

Proof The prove is guaranteed by the definition. �
Theorem 1 LetX ∈ R(�) denotes the solution for the system of FFPDEs in Eq. (3)
in�, in which d

dxX|x=a ≥ 0 and d
dxX|x=b ≤ 0. Then eitherX(x, t) ≤ 0,∀(x, t) ∈ �̄,

or X attains its positive maximum on the bottom or back-side parts of the sides
S = {[a, b] × {a} ∪ {a} × [a, T ] ∪ {b} × [a, T ]} of the boundary of the domain �.

Proof Let a point (x0, t0) exists for x0 ∈ (a, b) and t0 ∈ (0, T ] such that

X(x0, t0) ≥
{
0, max

a≤x≤b
X(0), 0, 0

}
= M ≥ 0.

Let ε = X(x0, t0) − M > 0, such that
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z(x, t) = X(x, t) + ε(T − t)

2T
,∀(x, t) ∈ �̄,

which is equivalent to

z(x, t) ≤ X(x, t) + ε

2
,∀(x, t) ∈ �̄.

Thus,

z(x0, t0) ≥ X(x0, t0) = ε + M ≥ 1

2
ε + z(x, t),∀(x, t) ∈ S,

implies that z cannot attains its maximum on S. Hence, let (x1, t1) denotes the max-
imum point of z over �̄, such that x1 ∈ (a, b), t1 ∈ (a, T ] and

z(x1, t1) ≥ z(x0, t0) ≥ ε + M > ε.

In view of Lemma 1 and Lemma 3 one obtains

CFF Dμ,κ
a,t w|(x1,t1) > 0,

[
C Dμ

a,xw|(x1,t1) + C Dμ
b,xw|(x1,t1)

] ≤ 0, ∀μ,κ ∈ (0, 1). (11)

Applying the properties of the fractal fractional derivative operator in the Caputo
sense to z, one obtains

P(Dt )X = P(Dt )z + ε

2T

(
t (1−μ)(1−κ)

κ�(2 − μ)
+

m∑

i=1

	i
t (1−μ)((1−κ))

κ�(2 − μ)

)

,

where, 	i ≥ 0 and i = 1, 2, . . . ,m ∈ N. Therefore, in view of the system in Eq. (3)
one finds that
(
P(Dt )X − D 1

2

[
C Dμ

a,xX + C Dμ
b,xX

]
− F

)
|(x1,t1) = P(Dt )z

+ 1

2T
ε

⎛

⎝ t(1−μ)(1−κ)
1
κ�(2 − α)

+
m∑

i=1

	i
t(1−μ)(1−κ)
1
κ�(2 − α)

⎞

⎠

− F
(
z(x1, t1) − ε

(T − t1)

2T

)

≥ ε
1

2T

⎛

⎝ t(1−μ)(1−κ)
1
κ�(2 − α)

+
m∑

i=1

	i
t(1−μ)(1−κ)
1
κ�(2 − α)

⎞

⎠

− εF
(
1 − T − t1

2T

)
> 0,

which is a contradiction. �
Theorem 2 Let X ∈ R(�) denotes the solution for one component of the sys-
tem of FFPDEs in Eq. (3) in �, in which d

dxX|x=a ≥ 0 and d
dxX|x=b ≤ 0. Then



326 K. M. Owolabi et al.

either X(x, t) ≤ 0,∀(x, t) ∈ �̄, or X attains its positive minimum on the bottom
or back-side parts of the sides S = {[a, b] × {a} ∪ {a} × [a, T ] ∪ {b} × [a, T ]} S of
the boundary of the domain �.

Proof The prove to this theorem is similar to the prove of Theorem 1. �

2.2 Uniqueness and Continuous Dependence of the Solution

Bymeans of the maximum principle andminimum principle, the following theorems
hold.

Theorem 3 Let X denotes a classical solution to the system in Eq. (3), F ∈ C(�̄),
d
dxX|x=a = 0 and d

dxX|x=b = 0. Then,

‖X‖C(�̄) ≤ max{M0,M1,M2} + 2T α

�(1 + α)
M, (12)

where, M0 = ‖X(0)‖C(�̄), M1 = ‖Ẋ(a, t)‖,M2 = ‖Ẋ1(b, t)‖, and M = ‖F‖C(�̄).

Proof The prove follows directly from the Neumann boundary conditions and the
fact that the source term for the system in Eq. (3) is identically zero. �

Theorem 4 Let d
dxX|x=a = 0 and d

dxX|x=b = 0. Then the system inEq. (3) possesses
at most one classical solution. This solution, if it exists, it continuously depends on
the data associated the system in Eq. (3) in the sense that if

‖F − F̃‖ ≤ ε, ‖X(0) − X̃(0)‖C(�̄) ≤ ε0, ‖Ẋ(a, t) − ˜̇X(a, t)‖ ≤ ε1, ‖Ẋ(b, t) − ˜̇X(b, t)‖ ≤ ε2,

then

‖X − X̃‖C(�̄) ≤ max{ε, ε0, ε1, ε2} + 2T α

�(1 + α)
ε,

holds.

Before the establishment of the equilibrium point(s) for the dynamics in Eq. (3), the
physiological level of the extended dynamics in Eq. (3) is established and it coincides
with the physiological level reported in [46].
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2.3 Physiological Level for the Dynamics

When the dynamics in (3) is cancer free, then the following theorem holds.

Theorem 5 The physiological level of the system of coupled FFPDEs in Eq. (3) is

(N , L ,C ) =
(
N 2
c

f
+ (Cc + α)

β
,
Lc

d
,
(Cc + α)

β

)
.

Proof Since at the physiological level, the system of coupled FFPDEs in Eq. (3)
reduces to,

∂N
∂t − DN

∂2N
∂x2 = eC − f N ,

∂L
∂t − DL

∂2L
∂x2 = −dL ,

∂C
∂t − DC

∂2C
∂x2 = α − βC ,

⎫
⎪⎪⎬

⎪⎪⎭
(13)

then, let C̃ (x, s) = L{C (x, s)}(s). Applying the Laplace transform [18] to the last
equation in equation in (13) one obtains

sC̃ (x, s) − Cc = DC
d2C̃ (x, s)

dx2
+ α − βC̃ (x, s),

⇒ DC
d2C̃ (x, s)

dx2
− (β + s)C̃ (x, s) = −Cc − α. (14)

Equation in Eq. (14) is a nonhomogeneous, linear second order ordinary differ-
ential equation (ODE) [18]. Applying the method of variation of parameters [18] to
the ODE in Eq. (14), one finds

P1(x, s) =
x∫
exp(−(β + s)z)(Cc + α)

W (u1, u2)
dz, P2(x, s) = −

x∫
exp((β + s)z)(Cc + α)

W (u1, u2)
dz,(15)

where, P1, P2 denote some arbitrary parameters, u1 = exp((β + s)x), u2 =
exp(−(β + s)x) and W (u1, u2) denote the Wronskian of u1, u2 [18]. Thus, from
Eq. (15), one easily obtains

P1(x, s) = (Cc + α)

2(β + s)2
exp(−(β + s)x), P2(x, s) = (Cc + α)

2(β + s)2
exp((β + s)x). (16)

Hence, the solution to the ODE in Eq. (14) is

C̃ (x, s) = k1 exp((β + s)x) + k2 exp(−(β + s)x) + (Cc + α)

(β + s)2
, (17)
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where k1, k2, are constants to be determined. Imposing the no flux boundary condi-
tions to the solution in Eq. (17), one obtains

0 = k1(β + s) − k2(β + s),⇒ k1 = k2 = 0, (18)

Hence, the solution in Eq. (17) becomes

C̃ (x, s) = (Cc + α)

(β + s)2
, (19)

Applying the inverse Laplace transform to equation in Eq. (19) one finds that

C (x, t) = L−1

{
(Cc + α)

(β + s)2

}
, (20)

in which,

(Cc + α)

(β + s)2
= A

β + s
+ Bs

β + s
, (21)

where A, B, are constants to be determine as follows.

Cc + α = βA + s A + βBs + Bs2,⇒ A = (Cc + α)

β
and B = 0. (22)

Thus, equation in (20) becomes

C (x, t) = (Cc + α)

β
L−1

{
1

β + s

}
= (Cc + α)

β
exp(−βt). (23)

Similarly, for the second equation in Eq. (15), one can easily show that

L(x, t) = Lc

d
exp(−dt), (24)

and using the same techniques, one deduced from equation in Eq. (19) that, the first
equation in Eq. (13) is

Ñ (x, s) = k1 exp(( f + s)x) + k2 exp(−( f + s)x) + Nc

( f + s)2
+ e

(Cc + α)

(β + s)2
, (25)

which, yields

N (x, s) = L−1
{

Nc

( f + s)2
+ e

(Cc + α)

(β + s)2

}
= N 2

c

f
exp(− f t) + (Cc + α)

β
exp(−βt). (26)
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Therefore, the physiological level for of coupled FFPDEs in Eq. (3) is at

(N , L ,C ) =
(
N2
c
f

exp(− f t) + (Cc + α)

β
exp(−βt),

Lc
d

exp(−dt),
(Cc + α)

β
exp(−βt)

)

, (27)

which is equivalent to

(N , L ,C ) =
(
N 2
c

f
+ (Cc + α)

β
,
Lc

d
,
(Cc + α)

β

)
, (28)

as t → ∞, which concludes the prove. �

2.4 Asymptotic Stability Conditions for the Dynamics

At the steady state the dynamics in Eq. (3) becomes,

− D 1

2

[
C
a D

μ
xX + C

x D
μ
bX
] = F, (29)

which is equivalent to

−DT

[
C
a Dμ

x T +C
x Dμ

bT
]

2 =
(
T a + cET 2

1+α1E+β1T 2

) (
1 − T

K

)− p1T N2

1+α2T +β2N2 − p6T 2L
1+α6T 2+β6L

,

−DN

[
C
a Dμ

x N+C
x D

μ
b N
]

2 = eC − f N − p2NT + p3NT

1+α3T +β3N2 ,

−DL

[
C
a Dμ

x L+C
x Dμ

b L
]

2 =
(
p4LN + p5 I

a4+I L
) (

1 − L
KL

)
T

a5+T − dL ,

−DC

[
C
a Dμ

x C +C
x Dμ

b C
]

2 = α − βC .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Theorem 6 The system in Eq. (29) is

(i) asymptotic stable at a tumor free equilibrium point if

∣
∣∣∣DL

(
a

K
− p1 N̄ 2

(1 + β2 N̄ 2)
− DT

)
( f + DN )

∣
∣∣∣ < 1. (30)

(ii) asymptotic stable at a tumour equilibrium if

cE + β2cE N̄ 2 + α2Ka + α1α2EKa + β1 p1 N̄
2K 2 > α2cK E,

Ka + α1EKa + β2 N̄
2Ka + α1β2E N̄ 2Ka > cK E + β2cK E N̄ 2,

p1 N̄
2K 2 + α1 p1 N̄

2K 2E > Ka + α1EKa + β2 N̄
2Ka + α1β2E N̄ 2Ka + a.

Proof (i): Solving the system in Eq. (29) one obtains the tumor free equilibrium
point
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(T̄ , N̄ , L̄, C̄ )1 = (0,
eα

f β
, 0,

α

β
). (31)

Linearizing the system in Eq. (29) at the equilibrium point (T̄ , N̄ , L̄, C̄ ), one finds
the non-zero entries of the Jacobian matrix as

Jμ(1, 1) = a
K + (2acE ¯T )(1+α1E+β1 ¯T 2)−(acE ¯T 2)(2β1 ¯T )

(1+α1E+β1 ¯T 2)2

− (3cE ¯T 2)(1+α1E+β1 ¯T 2)−(2β1 ¯T )(cE ¯T 3)

(1+α1E+β1 ¯T 2)2

− (p1 N̄2)(1+α1 ¯T +β2 N̄2)−(p1 ¯T N̄2)(α2)

(1+α1 ¯T +β2 N̄2)2

− (2p6 ¯T L̄)(1+α6 ¯T 2+β6 L̄)−(p6 ¯T 2L)(2α6)

(1+α6 ¯T 2+β6 L̄)2
− DT ,

Jμ(1, 2) = − (2p1 ¯T N̄ )(1+α1 ¯T +β2 N̄2)−(p1 ¯T N̄2)(α2)

(1+α1 ¯T +β2 N̄2)2
,

Jμ(1, 3) = − (p6 ¯T 2)(1+α6 ¯T 2+β6 L̄)−(p6 ¯T 2 L̄)(β6)

(1+α6 ¯T 2+β6 L̄)2
,

Jμ(2, 1) = −p2 N̄ + (p3 N̄ )(1+α3 ¯T +β3 N̄2)−(p3 N̄ ¯T )(α3)

(1+α3 ¯T +β3 N̄2)2
,

Jμ(2, 2) = − f − p2T̄ + (p3 ¯T )(1+α3 ¯T +β3 N̄2)−(p3 N̄ ¯T )(2β3 N̄ )

(1+α3 ¯T +β3 N̄2)2
− DN , Jμ(2, 3) = e,

Jμ(3, 1) =
(
p4LN + p5 I L̄

a4+I

) (
1 − L̄

KL

)
(α5+ ¯T )− ¯T

(α5+ ¯T )2
,

Jμ(3, 3) =
(

p5 I
(α4+I ) − p4LN

KL
− 2p5 I L̄

KL (α4+I )

) ( ¯T
α5+ ¯T

)
− DL , Jμ(4, 4) = −β − DC .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

Evaluating the Jacobian matrix in (32) at the equilibrium point in Eq. (31), then the
non-zero entries of the Jacobian matrix are

Jμ(1, 1) = a
K − p1 N̄2

(1+β2 N̄2)
− DT , Jμ(2, 1) = −p2 N̄ + p3 N̄

(1+β3 N̄2)
, Jμ(2, 2) = − f − DN ,

Jμ(2, 3) = e, Jμ(3, 1) = p4LN , Jμ(3, 3) = −DL , Jμ(4, 4) = −β − DC .

⎫
⎪⎬

⎪⎭
(33)

Hence, the results follows easily from

|Jμ(1, 1)Jμ(2, 2)Jμ(3, 3)| < 1.

�

Proof (ii): At tumour equilibrium point one finds that

a + cK ET̄ + α2T̄
2cK E + β2cK ET̄ N̄2 − cET̄ 2 − α2cET̄

3 − β2cET̄
2 N̄2 − T̄ Ka

−α1ET̄ Ka − β1T̄
3Ka − α2T̄

2Ka − α1α2ET̄
2Ka − α2β1T̄

4Ka − β2 N̄
2T̄ Ka

−α1β2E N̄2T̄ Ka − β1β2T̄
3 N̄2Ka − p1 N̄

2K 2 − α1 p1 N̄
2K 2E − β1 p1 N̄

2K 2T̄ 2 = 0. (34)

Rearranging equation in (34), one obtains a quartic polynomial

γT̄ 4 + ζT̄ 3 + 	T̄ 2 + �T̄ + ψ = 0,
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which is equivalent to

T̄ 4 + ζ

γ
T̄ 3 + 	

γ
T̄ 2 + �

γ
T̄ + ψ

γ
= 0, (35)

where,

γ = −α2β1Ka, ζ = −(β1β2 N̄
2Ka + β1Ka + α2cE),

	 = (α2cK E − cE − β2cE N̄ 2 − α2Ka − α1α2EKa − β1 p1 N̄
2K 2),

� = (cK E + β2cK E N̄ 2 − Ka − α1EKa − β2 N̄
2Ka − α1β2E N̄ 2Ka),

ψ = −p1 N̄
2K 2 − α1 p1 N̄

2K 2E + a.

The polynomial in Eq. (35) is stable [45] if

ζ

γ
> 0,

	

γ
> 0, 0 <

�

γ
<

ψ

γ
, (36)

which concludes the prove. �

The stability conditions in Theorem 6 imply that the system of coupled FFPDEs
in Eq. (3) converges to the physiological level in Theorem 5.

3 Construction of the Fractal Fractional Operator
Numerical Method

In this section, the novel well-posed numerical method for discretising the fractal
fractional and/or integer derivatives operators, such as the system of FFPDEs in
Eq. (3) is derived. This method is based on the method known as the matrix strip
approach [43]. Thus, discretizing the interval [a, T ] through the points

0 = a = t0 < t1 < t2 < · · · < T = t f ,

where, the step-size �t = t j+1 − t j = T/St , for j = 0, 1, . . . , St and St ∈ Z
+. On

the left hand side of Eq. (3), the fractal fractional derivative CFF Dα,κ
a,t (X) in the

Caputo sense is approximated by the backward finite difference operator as

CFF Dμ,κ
a,t f (X) := 1

�(1 − μ)

t f∫

a

(t f − τ )−μ d

dtκ
Xdτ = t1−κ

f

κ�(1 − μ)

t f∫

a

(t f − τ )−μX′(τ )dτ ,

= t1−κ
f

κ�(1 − μ)

St∑

j=1

t f∫

a

(t f − τ )−μ

(
X j − X j−1

(�t)
+ O2(�t)

)
dτ . (37)
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Let St = 1, 2, 3. Then, respectively, one obtains

CFF Dμ,κ
a,t1(X)

∣
∣∣∣
t=t1

= t1−κ
1

κ�(1 − μ)

(
X1 − X0

(�t)

) t1∫

a

(t1 − τ )−μdτ ,

= t1−κ
1

κ�(1 − μ)

(
X1 − X0

(�t)

)
(t1 − τ )1−μ

1 − μ

∣∣
∣∣

t1

a

,

= t1−κ
1

κ(�t)μ

(
X1 − X0

(1 − μ)�(1 − μ)

)
= t1−κ

1

κ(�t)μ
(−1)1

(
μ

1

)
X(1−0),

CFF Dμ,κ
a,t2(X)

∣∣∣∣
t=t2

= t1−κ
1

κ(�t)μ
(−1)1

(
μ

1

)
X(1−0) + t1−κ

2

κ(�t)μ
(−1)2

(
μ

2

)
X(2−1),

CFF Dμ,κ
a,t2(X)

∣∣∣∣
t=t3

= t1−κ
1

κ(�t)μ
(−1)1

(
μ

1

)
X(1−0) + t1−κ

2

κ(�t)μ
(−1)2

(
μ

2

)
X(2−1)

+ t1−κ
3

κ(�t)μ
(−1)3

(
μ

3

)
X(3−2). (38)

Neglecting the error terms inEq. (37), it follows fromequation in (38) that equation
in (37) is equivalent to

CFF Dμ,κ
a,t f (X) = t1−κ

f

κ(�t)μ

k∑

j=0

(−1) j
(

μ

j

)
Xk− j , (39)

where, k = 1, 2, · · · , St , which is equivalent to

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

t1−κ
f

κ(�t)μ ∇μ
−(X)(t0)

t1−κ
f

κ(�t)μ ∇μ
−(X)(t1)

t1−κ
f

κ(�t)μ ∇μ
−(X)(t2)
...

t1−κ
f

κ(�t)μ ∇μ
−(X)(tSt−1)

t1−κ
f

κ(�t)μ ∇μ
−(X)(tSt )

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

= t1−κ
f

κ(�t)μ
B

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

(X)0
(X)1
(X)2

...

(X)St−1

(X)St

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

, (40)

where,
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B =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

ω
(μ)

0 0 0 0 · · · 0
ω

(μ)

1 ω
(μ)

0 0 0 · · · 0
. . .

. . .
. . .

. . . · · · · · ·
ω

(μ)

St−1

. . . ω
(μ)

2 ω
(μ)

1 ω
(μ)

0 0

ω
(μ)

St
ω

(μ)

St−1

. . . ω
(μ)

2 ω
(μ)

1 ω
(μ)

0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

and ω
(μ)

j = (−1) j
(

μ
j

)
, j = 0, 1, · · · , St .

Applying similar approach to discretize the spatial interval [a, b] through the
points

0 = a = x0 < x1 < x2 < · · · < xSx = b = x f ,

where, the step-size �x = xi+1 − xi = x f /Sx , i = 0, 1, . . . , Sx , the spatial frac-
tional derivative operator [26, 27, 43] is approximated by the sum 1

2

[
C Dμ

a,xX+
C Dμ

b,xX
]
of the two fractional operators, namely backward and forward finite dif-

ference operators as

⎡

⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎣

1
hμ (∇μ

+ + ∇μ
−)X(t0)

1
hμ (∇μ

+ + ∇μ
−)X(t1)

1
hμ (∇μ

+ + ∇μ
−)X(t2)

.

.

.
1
hμ (∇μ

+ + ∇μ
−)X(tSt−1 )

1
hμ (∇μ

+ + ∇μ
−)X(tSt )

⎤

⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎦

= 1

hβ

⎡

⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

ω
(β)
0 ω

(β)
1 ω

(β)
2 ω

(β)
3 · · · ω

(β)
m

ω
(β)
1 ω

(β)
0 ω

(β)
1 ω

(β)
2 · · · ω

(β)
m−1

ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1 · · · ω

(β)
m−2

. . .
. . .

. . .
. . . · · · · · ·

ω
(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0 ω

(β)
1

ω
(β)
m ω

(β)
m−1

. . . ω
(β)
2 ω

(β)
1 ω

(β)
0

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

(X)0
(X)1
(X)2

.

.

.

(X)St−2

(X)St−1

(X)St

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

Therefore, following the derivations in [42] and the references therein, one obtains
a well-posed discrete system of linear FFPDEs as

[
(B1)

(μ)
t f ×t f ⊗ Ix f ×x f − DT It f ×t f ⊗ (B1)

(β)
x f ×x f

]
(X1)t f ,x f = (F1)t f ,x f ,[

(B2)
(μ)
t f ×t f ⊗ Ix f ×x f − DN It f ×t f ⊗ (B2)

(β)
x f ×x f

]
(X2)t f ,x f = (F2)t f ,x f ,[

(B3)
(μ)
t f ×t f ⊗ Ix f ×x f − DLIt f ×t f ⊗ (B3)

(β)
x f ×x f

]
(X3)t f ,x f = (F3)t f ,x f ,[

(B4)
(μ)
t f ×t f ⊗ Ix f ×x f − DC It f ×t f ⊗ (B4)

(β)
x f ×x f

]
(X4)t f ,x f = (F4)t f ,x f ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(41)

on which the auxiliary initial conditions [43] are imposed

(E1)t f ,x f (x, t) = (X1)t f ,x f (x, t) − (X1)t f ,x f (x, 0),
(E2)t f ,x f (x, t) = (X2)t f ,x f (x, t) − (X2)t f ,x f (x, 0),
(E3)t f ,x f (x, t) = (X2)t f ,x f (x, t) − (X3)t f ,x f (x, 0),
(E4)t f ,x f (x, t) = (X4)t f ,x f (x, t) − (X4)t f ,x f (x, 0),

⎫
⎪⎪⎬

⎪⎪⎭
(42)

due to the possibility of non-zero initial conditions
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(X1)t f ,x f (x, 0), (X2)t f ,x f (x, 0), (X3)t f ,x f (x, 0), (X4)t f ,x f (x, 0).

However, the Caputo derivative for the auxiliary functions

(E1)t f ,x f (x, t), (E2)t f ,x f (x, t), (E3)t f ,x f (x, t), (E4)t f ,x f (x, t),

given in Eq. (42) are zero [22, 23], which in turn implies that initial and boundary
conditions for the well-posed system of linear discrete FFPDEs in Eq. (41) are zero.

4 Numerical Results and Discussions

Based on the derived stability condition and in view of the numerical simulation
and discussion in [46], in this section, it suffices to let an initial tumour bur-
den to be T (0) = 10 × 107 and weaken initial immune surveillance to N (0) =
106, L(0) = 106, C(0) = 0.0 from which we see that the CTLs have not been acti-
vated yet. Our experiment is for ten days, the spatial distributions of the involved cells
are [DT ,DN ,DL ,DC ]′ = [1 × 10−4, 1 × 10−4, 10−4, 1 × 10−4]′, and the adjusted
parameter values are presented in Table1 due to the requirements of stability con-
ditions in Theorem 6. In Fig. 1, the results for μ = κ = 1 and β = 2 are presented,
whereas for other values of μ = 0.1,κ = 0.06,β = 2 and μ = 0.07,κ = 0.5,β =
1.8 the results are presented in Figs. 2 and 3, respectively.

In Fig. 1, all the cells grow linearly to their respective capacity. However the
immune surveillance maintain control over the tumour cells throughout the exper-
iment. In Fig. 2, all the cells grow steadily to their respective capacity, with the
immune surveillance maintaining control over the tumour cells till eventually the
immune surveillance eliminate the tumour cells. The profiles in Fig. 3 are similar to
those in Fig. 2.

Table 1 Parameter values [46]

a = 19 × 107 β = 6.3 × 10−3 α = 1.6 × 103 c = 10.93 × 106 f = 0.0693

LN = 2.3 × 108 e = 5 × 105 d = 0.41 β1 = 0.000041 β2 = 5.4 × 10−2

β6 = 4343 I = 2.3 × 10−11 α1 = 0.0507 α2 = 7 × 106 α3 = 1.6 × 10−5

α5 = 1000 α6 = 10 p1 = 30.9 × 10−3 p2 = 3.42 × 10−6 p3 = 2.87 × 102

p5 = 4.14 × 10−3 p6 = 2.04 × 10−2 K = 2 × 109 KL = 8 × 108 β3 = 10−2

α4 = 2.3 × 10−11 p4 = 2
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Fig. 1 Numerical solution for the dynamics in Eq. (41) presenting the spatial distributions of: a
MCF-7 tumor cells b NK cells c CTL cells and d WBC cells

5 Conclusion

In this study, our main aim in this chapter, is to present the solution for the extended
dynamics in Eq. (3) with respect to the derived asymptotic stability conditions in
Theorem6. Thus, in consideration of the numerical simulation and discussion in [46],
we have weakened the initial effects of natural killer cells, cytotoxic T lymphocytes
(CTLs) or CD8+ T cells, and white blood cells (WBCs) and strengthened the initial
burden of tumour cells in a host in an effort to capture the full strength of tumour
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Fig. 2 Numerical solution for the dynamics in Eq. (41) presenting the spatial distributions of: a
MCF-7 tumor cells b NK cells c CTL cells and d WBC cells

cells. These enable us to deal with the challenged posed by the tumour cells even
though we have slightly reduced the value of the parameter related for the killing of
cytotoxic T lymphocytes (CTLs) or CD8+ T cells. In view of the asymptotic stability
conditions, one can easily see that rather then considering each cells with respect to
an experiment as it is the case in [46], one rather consider the asymptotic stability
conditions of a given dynamics. Thus, the stability conditions should then be tied to
the clinical findings to enables one to obtain more informative and relevant results
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Fig. 3 Numerical solution for the dynamics in Eq. (41) presenting the spatial distributions of: a
MCF-7 tumor cells b NK cells c CTL cells and d WBC cells

for all. Nevertheless, we also see that the numerical method’s results based on the
fractal fractional derivatives outperforms the results for the standard finite difference
method (FDM). Hence, in this chapter, we believe that we have achieved our main
objectives. Our future goal is to extend the study to higher dimensional spaces.
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Abstract We develop a new class of distributions, namely, the exponentiated
half logistic-Topp-Leone-G power series (EHL-TL-GPS) class of distributions. We
present some special classes in the proposed distribution. Structural properties were
also derived including moments, entropy and maximum likelihood estimates. We
conducted a simulation study to evaluate the consistency of the maximum likeli-
hood estimates. We also present two real data examples to illustrate the applicability
of the new class of distributions. The proposed model performs better than several
non-nested models on selected data sets.
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1 Introduction

Classical distributions have a limited range of behavior when it comes to modeling
lifetime data.Modifications of thewell-known distributions are highly recommended
to gain flexibility. Numerous generalizations of classical distributions are available
in the literature. For instance, the exponentiated Kumaraswamy-G family by Silva
et al. [40], the modified odd Weibull family of distributions by Chesneau and El
Achi [13], the Nadarajah-Haghighi Topp-Leone-G family by Reyad et al. [34], the
Kumaraswamy Odd Lindley-G by Chipepa et al. [16], new Weibull-X family by
Ahmad et al. [2], Kumaraswamy Marshall-Olkin family by Alizadeh et al. [4], the
Topp-Leone-Marshall-Olkin-G family by Chipepa et al. [14], the exponentiated gen-
eralized (EG) family by Cordeiro et al. [20], Weibull-G by Bourguignon et al. [10],
the odd exponentiated half-logistic-G family of distributions by Afify et al. [1], to
mention a few.

Cordeiro et al. [18] developed the type I half-logistic-G (TIHL-G) family of
distributions with cumulative distribution function (cdf) defined by

F(x;λ, ξ) =
−ln(1−G(x; ξ))∫

0

2λe−λt

(1 + e−λt )2
dt

= 1 − [
1 − G(x; ξ)

]λ
1 + [

1 − G(x; ξ)
]λ ,

for λ > 0. The half-logistic transformation was applied to several well-known dis-
tributions, for instance, Anwar and Zahoor [6] introduced the half-logistic-Lomax
distribution for lifetimedatamodeling,Anwar andBibi [5] developed the half-logistic
generalized Weibull distribution, Chipepa et al. [15] introduced the odd generalized
half logistic Weibull-G family of distributions, Muhammad and Yahaya [30] studied
the half logistic-Poisson distribution, to mention a few.

Furthermore, Al-Shomrani et al. [7] proposed the Topp-Leone generated family
of distributions with the cdf and probability density function (pdf) given by

FT L−G(x; b, ξ) =
[
1 − G

2
(x; ξ)

]b
,

and

fT L−G(x; b, ξ) = 2b
[
1 − G

2
(x; ξ)

]b−1
G(x; ξ)g(x; ξ),

respectively, for b > 0 and parameter vector ξ. Some generalizations of the Topp-
Leone-G family of distributions include the Topp-Leone-Marshall-Olkin-G family
by Chipepa et al. [15], Type II power Topp-Leone generated family by Bantan et al.
[8], Topp-Leone-Weibull by Rezaei et al. [33], Topp-Leone generalized exponential
by Sangsanit and Bodhisuwan [36].
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In this paper, we develop a new power series distribution, namely the exponenti-
ated half logistic-Topp-Leone-G power series (EHL-TL-GPS) class of distributions.
We are motivated by the desirable properties exhibited by the generalizations of both
the half logistic-G and the Topp-Leone-G distributions. We are also motivated by the
wide acceptability of power series distributions in the field of finance and actuarial
science. We hope the new proposed model will receive attention from researchers in
other areas ofmedicine, engineering, science, environmental science, and economics.

The cdf and pdf of the exponentiated half logistic-Topp-Leone-G (EHL-TL-G,
Oluyede et al. [31]) distribution are given by

F(x; b,β, ξ) =

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β

(1)

and

f (x; b,β, ξ) = 4βbg(x; ξ)[1 − G
2
(x; ξ)]βb−1G(x; ξ)

[1 + (1 − [1 − G
2
(x; ξ)]b)]β+1

, (2)

respectively, for b,β > 0 and ξ is the parameter vector from the baseline distribution.
Let N be a zero truncated discrete randomvariable having a power series distribution,
whose probability mass function (pmf) is given by

P(N = n) = anθn

C(θ)
, n = 1, 2, 3, . . . , (3)

whereC(θ) = ∑∞
n=1 anθ

n is finite, θ > 0 and {an}n≥1 a sequenceof positive real num-
bers. The power series family of distributions includes binomial, Poisson, geometric
and logarithmic distributions [26]. Several generalized distributions proposed in the
literature involving the power series include a new generalized Lindley-Weibull class
of distributions byMakubate et al. [27], the exponentiated power generalizedWeibull
power series family of distributions by Aldahlan [3], Weibull-power series distribu-
tions by Morais and Barreto-Souza [28], complementary exponential power series
by Flores et al. [23], complementary extended Weibull-power series by Cordeiro
and Silva [19], Burr XII power series by Silva and Cordeiro [39], extended Weibull-
power series (EWPS) distribution by Silva et al. [38], the Burr-Weibull power series
class of distributions by Oluyede et al. [29].

The rest of the paper is organized as follows: In Sect. 2, we present the new
model and some of the statistical properties. We present some special cases of the
proposed class of distributions in Sect. 3. A simulation study is presented in Sect. 4
and applications in Sect. 5 followed by concluding remarks.
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2 The Model, Sub-Classes and Properties

In this section, we present the new model, some statistical properties which include
expansionof the density function, hazard rate function, quantile function, sub-classes,
moments, conditionalmoments andmaximum likelihood estimation ofmodel param-
eters.

2.1 The Model

Let X1, X2, . . . , XN be N identically and independently distributed (iid) random
variables following the EHL-TL-G distribution. Let X(1) = min(X1, X2, . . . , XN ),

then the cdf of X(1)|N = n is given by

FX(1)|N=n(x; b, θ, ξ) = 1 −

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

n

, (4)

for b, θ > 0, n ≥ 1 and parameter vector ξ. The exponentiated half logistic-Topp-
Leone-G power series (EHL-TL-GPS) class of distributions denoted by EHL-TL-
GPS(b, β, θ, ξ) is defined by the marginal distribution of X(1), that is,

FX(1) (x) = 1 −
C

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)
, (5)

for b, β, θ, x > 0 and parameter vector ξ. The pdf is given by

fX(1) (x) = 4βθbg(x; ξ)[1 − G
2
(x; ξ)]βb−1G(x; ξ)

[1 + (1 − [1 − G
2
(x; ξ)]b)]β+1

C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)
.

(6)

The hazard rate function (hrf) is given by
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Table 1 Special families of the EHL-TL-GPS distribution

Distribution C(θ) an cdf

EHL-TL-G
poisson

eθ − 1 (n!)−1 1-

exp

⎛
⎜⎝θ

⎛
⎜⎝1−

⎡
⎣

[
1−G2

(x;ξ)
]b

1+
(
1−

[
1−G2

(x;ξ)
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠−1

exp(θ)−1

EHL-TL-G
geometric

θ(1 − θ)−1 1 1-

(1−θ)

⎛
⎜⎝1−

⎡
⎣

[
1−G2

(x;ξ)
]b

1+
(
1−

[
1−G2

(x;ξ)
]b)

⎤
⎦

β
⎞
⎟⎠

⎛
⎜⎝1−θ

⎛
⎜⎝1−

⎡
⎣

[
1−G2

(x;ξ)
]b

1+
(
1−

[
1−G2

(x;ξ)
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

EHL-TL-G
logarithmic

− log(1 − θ) n−1 1-

log

⎛
⎜⎝1−θ

⎛
⎜⎝1−

⎡
⎣

[
1−G2

(x;ξ)
]b

1+
(
1−

[
1−G2

(x;ξ)
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

log(1−θ)

EHL-TL-G
binomial

(1 + θ)m − 1
(m
n

)
1-⎛
⎜⎝1+θ

⎛
⎜⎝1−

⎡
⎣

[
1−G2

(x;ξ)
]b

1+
(
1−

[
1−G2

(x;ξ)
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

m

−1

(1+θ)m−1

hF (x) =

4βθbg(x;ξ)[1−G
2
(x;ξ)]βb−1G(x;ξ)

[1+(1−[1−G
2
(x;ξ)]b)]β+1

C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

. (7)

Table1 below present the special families of EHL-TL-GPS distribution when
C(θ) is specified in Eq. (5).

2.2 Quantile Function

LetXbe a randomvariablewith cdf defined byEq. (5). The quantile function QX(1) (u)

is defined by FX(1) (QX(1) (u)) = u, 0 ≤ u ≤ 1. Note that

1 −
C

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)
= u,
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so that

C

⎛
⎜⎜⎝θ

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

⎞
⎟⎟⎠ = C(θ) (1 − u) .

This is equivalent to

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b) =
(
1 − C−1 (C(θ) (1 − u))

θ

) 1
β

,

that is,

2

1 − G
2
(x; ξ)

= 1 +
(
1 − C−1 (C(θ) (1 − u))

θ

) −1
β

.

The expression further simplifies to

G(x; ξ) = 1 −
⎛
⎝1 − 2

(
1 +

(
1 − C−1 (C(θ) (1 − u))

θ

) −1
β

)−1
⎞
⎠

1
2

.

Therefore, we obtain the quantile values from the EH-TL-GPS class of distribu-
tions by solving the non-linear equation

QX(1) (u) = G−1

⎡
⎢⎣1 −

⎛
⎝1 − 2

(
1 +

(
1 − C−1 (C(θ) (1 − u))

θ

) −1
β

)−1
⎞
⎠

1
2

⎤
⎥⎦ (8)

using Newton Raphson method with the aid of statistical software such as R, MAT-
LAB and SAS.

2.3 Expansion of Density

Expansion of the density function of the EHL-TL-GPS class of distributions is pre-
sented in this sub-section. Equation (6) can be written as
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fEHL−T L−GPS(x) =
∞∑
n=1

nanθn

C(θ)

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

n−1

× 4βbg(x; ξ)[1 − G
2
(x; ξ)]βb−1G(x; ξ)

[1 + (1 − [1 − G
2
(x; ξ)]b)]β+1

.

Using the generalized binomial expansion

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

n−1

=
∞∑
j=0

(
n − 1

j

)
(−1) j

×
[
1 − G

2
(x; ξ)

]βbj

(
1 +

(
1 −

[
1 − G

2
(x; ξ)

]b))β j
,

we write the pdf of the EHL-TL-GPS class of distributions as

fEHL−T L−GPS(x) =
∞∑
j=0

∞∑
n=1

(
n − 1

j

)
(−1) j

nanθn

C(θ)
4bβ

[
1 − G

2
(x; ξ)

]βb( j+1)−1

×
(
1 +

(
1 −

[
1 − G

2
(x; ξ)

]b))−(β( j+1)+1)

G(x; ξ)g(x; ξ).

Furthermore, applying the generalized binomial expansion

(
1 +

(
1 −

[
1 − G

2
(x; ξ)

]b))−(β( j+1)+1)

=
∞∑
k=0

Γ (β( j + 1) + 1 + k)

Γ (β( j + 1) + 1)k! (−1)k

×
[
1 −

[
1 − G

2
(x; ξ)

]b]k

=
∞∑

k,q=0

Γ (β( j + 1) + 1 + k)

Γ (β( j + 1) + 1)k!
(
k

q

)

× (−1)k+q
[
1 − G

2
(x; ξ)

]bq
,

we further get
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fEHL−T L−GPS(x) =
∞∑

j,k,q=0

∞∑
n=1

(
n − 1

j

)
nanθn

C(θ)
4bβ

[
1 − G

2
(x; ξ)

]βb( j+1)+bq−1

× Γ (β( j + 1) + 1 + k)

Γ (β( j + 1) + 1)k!
(
k

q

)
(−1) j+k+qG(x; ξ)g(x; ξ)

=
∞∑

j,k,q,p=0

∞∑
n=1

(
n − 1

j

)
(−1) j+k+q+p nanθ

n

C(θ)
4bβ

(
k

q

)

×
(

βb( j + 1) + bq − 1

p

)
Γ (β( j + 1) + 1 + k)

Γ (β( j + 1) + 1)k! G
2p+1

(x; ξ)g(x; ξ).

Also, by applying the generalized binomial series expansion

G
2p+1

(x; ξ) = (1 − G(x; ξ))2p+1 =
∞∑

m=0

(
2p + 1

m

)
(−1)m (G(x; ξ))m ,

the pdf of the EHL-TL-GPS class of distributions simplifies to

fEHL−T L−GPS(x) =
∞∑

j,k,q,p,m=0

∞∑
n=1

(
n − 1

j

)
(−1) j+k+q+p+m nanθn

C(θ)
4bβ

×
(

βb( j + 1) + bq − 1

p

)
Γ (β( j + 1) + 1 + k)

Γ (β( j + 1) + 1)k!
(
k

q

)(
2p + 1

m

)

× (G(x; ξ))m g(x; ξ)

=
∞∑

j,k,q,p,m=0

∞∑
n=1

(
n − 1

j

)
(−1) j+k+q+p+m nanθn

C(θ)
4bβ

×
(

βb( j + 1) + bq − 1

p

)
Γ (β( j + 1) + 1 + k)

Γ (β( j + 1) + 1)k!
(
k

q

)(
2p + 1

m

)

×
(
m + 1

m + 1

)
(G(x; ξ))m g(x; ξ)

=
∞∑

m=0

Umgm(x; ξ), (9)

where gm(x; ξ) = (m + 1) (G(x; ξ))m g(x; ξ) is the exponentiated-G (Exp-G) dis-
tribution with power parameter m and

Um =
∞∑

j,k,q,p=0

∞∑
n=1

(
n − 1

j

)
(−1) j+k+q+p+m nanθn

C(θ)
4bβ

(
βb( j + 1) + bq − 1

p

)

× Γ (β( j + 1) + 1 + k)

Γ (β( j + 1) + 1)k!
(
k

q

)(
2p + 1

m

)
1

m + 1
. (10)
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Thus, the pdf of EHL-TL-GPS class of distributions can be written as an infinite
linear combination of Exponentiated-G (Exp-G) distribution.

2.4 Moments and Generating Function

If X follows the EHL-TL-GPS distribution and Y ∼ Exp − G(m). Then using equa-
tion (9) the r th rawmoment,μ′

r of the EHL-TL-GPS class of distributions is obtained
as

μ′
r = E(Xr ) =

∞∫

−∞
xr f (x)dx

=
∞∑

m=0

UmE(Y r ),

where Um is given by Eq. (10). The moment generating function (MGF) M(t) =
E(et X ) is given by:

MX (t) =
∞∑

m=0

UmMY (t),

where MY (t) is the mgf of Y and Um is given by Eq. (10).

2.5 Conditional Moments

The r th conditional moments of the EHL-TL-GPS class of distributions is given by

E(Xr |X ≥ t) = 1

F(a; b,β, θ, ξ)

∞∫

t

xr f (x; b,β, θ, ξ)dx

= 1

F(a; b,β, θ, ξ)

∞∑
m=0

UmE
(
Y r I{Yr≥t}

)
, (11)

where
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E
(
Y r I{Yr≥t}

) =
∞∫

t

yrgm (y; ξ)dy

= m

1∫

G(u;ξ)
[QG(u; ξ)]r umdu, (12)

for b,β, θ > 0, and parameter vector ξ.

2.6 Mean Deviation, Lorenz and Bonferroni Curves

The mean deviation about the mean and mean deviation about the median as well
as Lorenz and Bonferroni curves for the EHL-TL-GPS class of distributions are
presented in this subsection.

2.6.1 Mean Deviations

The mean deviation about the mean D(μ) and the mean deviation about the median
D(M), are defined as

D(μ) = ∫∞
0 |x − μ| fEHL−T L−GPS(x)dx, D(M) = ∫∞

0 |x − M | fEHL−T L−GPS(x)dx ,
respectively, where μ = E(X) and M = Median(X) = F−1( 12 ) is the median of
FEHL−T L−GPS . However, the following relationships can be used to evaluate the
measures D(μ) and D(M):

D(μ) = 2μFEHL−T L−GPS(μ) − 2μ + 2
∞∑

m=0

UmE
(
Y I{Y≥μ}

)
,

and

D(M) = −μ + 2
∞∑

m=0

UmE
(
Ym I{Ym≥M}

)

where E
(
Y I{Y≥M}

)
is given by (12) with r = 1 and M in place of t.

2.6.2 Lorenz and Bonferroni Curves

In this subsection, we present the Lorenz and Bonferroni curves for EHL-TL-GPS
distribution. Lorenz and Bonferroni curves have several applications in different
fields such as medicine, income and poverty, reliability, and insurance. Lorenz and
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Bonferroni curves are given by

L((p)) = 1

μ

∞∑
m=0

Um

q∫

0

xgm(x; ξ)dx, and B(p) = 1

pμ

∞∑
m=0

Um

q∫

0

xgm(x; ξ)dx,

(13)
respectively, where

∫ q
0 xgm(x; ξ)dx, is the first incomplete moment of Exp-G dis-

tribution and Um is given in Eq. (10).

2.7 Order Statistics and Rényi Entropy

In this section, we present the distribution of the kth order statistic and Rényi entropy.

2.7.1 Distribution of Order Statistics

Le X1, X2, . . . , Xn be a random sample from EHL-TL-GPS class of distributions
and suppose X1:n < X2:n, . . . < Xn:n denote the corresponding order statistics. The
pdf of the kth order statistic is given by

fk:n(x) = n!
(k − 1)!(n − k)!

n−k∑
l=0

(
n − k

l

)
(−1)l f (x) [F(x)]k+l−1 . (14)

Using Eqs. (5) and (6), we write

f (x) [F(x)]k+l−1 =
∞∑
n=1

nanθn

C(θ)

⎛
⎜⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β
⎞
⎟⎟⎟⎠

n−1

× 4βbg(x; ξ)[1 − G
2
(x; ξ)]βb−1G(x; ξ)

[1 + (1 − [1 − G
2
(x; ξ)]b)]β+1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −

C

⎛
⎜⎜⎝θ

⎛
⎜⎜⎝1 −

⎡
⎢⎣

[
1−G2

(x;ξ)
]b

1+
(
1−

[
1−G2

(x;ξ)
]b)

⎤
⎥⎦

β
⎞
⎟⎟⎠

⎞
⎟⎟⎠

C(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k+l−1

.

Using the generalized binomial expansion
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −

C

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

k+l−1

=
∞∑
p=0

(
k + l − 1

p

)
(−1)p

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

and the power series raised to a positive integer (see Gradshyten and Ryzhik [24] for
details)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

p

=
∞∑
z=0

dz,pθz

Cz(θ)

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

z

,

where dz,p = (zb0)−1∑z
h=1[p(h + 1) − z]bhdz−h,p and d0,p = bp

0 , we get

f (x) [F(x)]k+l−1 =
∞∑

p,z=0

∞∑
n=1

(−1)p
nanθn

Cz+1(θ)

4βbg(x; ξ)[1 − G
2
(x; ξ)]βb−1G(x; ξ)

[1 + (1 − [1 − G
2
(x; ξ)]b)]β+1

×
(
k + l − 1

p

)
⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

z+n−1

.

Considering the following generalized binomial series expansions

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

z+n−1

=
∞∑
q=0

(−1)q
(
z + n − 1

q

)

× [1 − G
2
(x; ξ)]bβq

(1 + (1 − [1 − G
2
(x; ξ)]b))βq

,

(1 + (1 − [1 − G
2
(x; ξ)]b))−(β(q+1)+1) =

∞∑
j,i=0

(−1) j+i Γ (β(q + 1) + 1 + j)

Γ (β(q + 1) + 1) j !
(
j

i

)
[1 − G

2
(x; ξ)]bi ,
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[1 − G
2
(x; ξ)]b(βq+β+i)−1 =

∞∑
s=0

(−1)s
(
b(βq + β + i) − 1

s

)
G

2s
(x; ξ),

and

G
2s+1

(x; ξ) =
∞∑

m=0

(−1)m
(
2s + 1

m

)
Gm(x; ξ),

yields

f (x) [F(x)]k+l−1 =
∞∑

p,z,q, j,i,s,m=0

∞∑
n=1

nanθn

Cz+1(θ)
(−1)p+q+ j+i+s+m4βbdz,p

(
k + l − 1

p

)

× Γ (β(q + 1) + 1 + j)

Γ (β(q + 1) + 1) j !
(
j

i

)(
b(βq + β + i) − 1

s

)(
2s + 1

m

)

×
(
z + n − 1

q

)
g(x; ξ)Gm(x; ξ).

Therefore, the distribution of the kth order statistics from EHL-TL-GPS class of
distributions is given by

fk:n(x) = n!4βb
(k − 1)!(n − k)!

∞∑
p,z,q, j,i,s,m=0

∞∑
n=1

n−k∑
l=0

(
n − k

l

)
nanθn

Cz+1(θ)

(
z + n − 1

q

)

× (−1)p+q+ j+i+s+mdz,p

(
k + l − 1

p

)
Γ (β(q + 1) + 1 + j)

Γ (β(q + 1) + 1) j !
(
j

i

)

×
(
b(βq + β + i) − 1

s

)(
2s + 1

m

)(
m + 1

m + 1

)
g(x; ξ)Gm(x; ξ)

×
∞∑

m=0

U ∗
mgm(x; ξ), (15)

where gm(x; ξ) = (m + 1)g(x; ξ)Gm(x; ξ) is an Exp-Gwith power parameterm and
the linear component
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U ∗
m = n!4βb

(k − 1)!(n − k)!
∞∑

p,z,q, j,i,s=0

∞∑
n=1

n−k∑
l=0

(
n − k

l

)
nanθn

Cz+1(θ)

(
z + n − 1

q

)

× (−1)p+q+ j+i+s+mdz,p

(
k + l − 1

p

)
Γ (β(q + 1) + 1 + j)

Γ (β(q + 1) + 1) j !
(
j

i

)

×
(
b(βq + β + i) − 1

s

)(
2s + 1

m

)(
1

m + 1

)
. (16)

The t th moment of the distribution of the kth order statistic from EHL-TL-GPS
class of distributions can be readily obtained from Eq. (15).

2.7.2 Rényi Entropy

In this subsection, Rényi entropy for EHL-TL-GPS class of distributions is derived.
An entropy is a measure of uncertainty or variation of a random variable. Rényi
entropy [35] is a generalization of Shannon entropy [37]. Rényi entropy is defined
by

IR(v) = 1

1 − v
log

(∫ ∞

0
[ fEHL−T L−GPS (x; b,β, θ, ξ)]vdx

)
, v �= 1, v > 0. (17)

Note that

[ fEHL−T L−GPS (x; b,β, θ, ξ)]v = (4βθb)νgν(x; ξ)[1 − G
2
(x; ξ)](βb−1)νG(x; ξ)

[1 + (1 − [1 − G
2
(x; ξ)]b)](β+1)ν

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ν

.

Also, note that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(x;ξ)

]b

1+
(
1−

[
1−G

2
(x;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ν

=

⎛
⎜⎜⎜⎝bn

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

n−1⎞
⎟⎟⎟⎠

ν
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where bn = ∑∞
n=1

anθn−1

C(θ)
. Applying the power series raised to a positive integer (see

Gradshyten and Ryzhik [24] p. 17, for details), we get

[ fEHL−T L−GPS (x; b,β, θ, ξ)]v = (4βθb)νgν(x; ξ)[1 − G
2
(x; ξ)](βb−1)νG(x; ξ)

[1 + (1 − [1 − G
2
(x; ξ)]b)](β+1)ν

× dz,νb
z
n

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

(n−1)z

where dz,ν = (zb0)−1∑z
h=1[ν(h + 1) − z]bhdz−h,ν and d0,ν = bν

0 . Considering the
following generalized binomial series expansions

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(x; ξ)

]b

1 +
(
1 −

[
1 − G

2
(x; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

(n−1)z

=
∞∑
p=0

(−1)p
[1 − G

2
(x; ξ)]bβ p

(1 + (1 − [1 − G
2
(x; ξ)]b))β p

×
(

(n − 1)z

p

)
,

(1 + (1 − [1 − G
2
(x; ξ)]b))−(β(p+ν)+ν) =

∞∑
j,i=0

(−1) j+i Γ (β(p + ν) + ν + j)

Γ (β(p + ν) + ν) j !
(
j

i

)
[1 − G

2
(x; ξ)]bi ,

[1 − G
2
(x; ξ)]b(β p+βν+i)−ν =

∞∑
s=0

(−1)s
(
b(β p + βν + i) − ν

s

)
G

2s
(x; ξ),

and

G
2s+ν

(x; ξ) =
∞∑

m=0

(−1)m
(
2s + ν

m

)
Gm(x; ξ),

yields

[ fEHL−T L−GPS (x; b,β, θ, ξ)]v =
∞∑

z,p, j,i,s,m=0

(4βθb)νbzndz,ν (−1)p+ j+i+s+m
(

(n − 1)z

p

)

× Γ (β(p + ν) + ν + j)

Γ (β(p + ν) + ν) j !
(
j

i

)(
b(β p + βν + i) − ν

s

)

×
(
2s + ν

m

)
gν (x; ξ)Gm(x; ξ).

Therefore, Rényi entropy for EHL-TL-GPS class of distributions is given by
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IR(v) = 1

1 − v
log

( ∞∑
m=0

u∗e(1−ν)IREG

)
, (18)

where IREG = ∫∞
0 [(1 + m/ν)g(x; ξ)Gm/ν]νdx is Rényi entropy for an Exp-G dis-

tribution with power parameter m/ν and

u∗ =
∞∑

z,p, j,i,s=0

(4βθb)νbzndz,ν(−1)p+ j+i+s+m
(

(n − 1)z

p

)
Γ (β(p + ν) + ν + j)

Γ (β(p + ν) + ν) j !
(
j

i

)

×
(
b(β p + βν + i) − ν

s

)(
2s + ν

m

)
1

(1 + m/ν)ν
. (19)

Consequently, Rényi entropy for EHL-TL-GPS class of distributions can be
obtained from Reényi entropy of the Exp-G distribution.

2.8 Maximum Likelihood Estimation

We obtain the maximum likelihood estimates of the parameters of the EHL-TL-GPS
class of distributions in this section. Let Xi ∼ EHL − T L − GPS(b,β, θ, ξ) and
Δ = (b,β, θ, ξ)T be the parameter vector. The log-likelihood � = �(Δ) based on a
random sample of size n is given by

�(Δ) = n ln (4βθb) + (βb − 1)
n∑

i=1

ln
[
1 − G

2
(xi ; ξ)

]
+

n∑
i=1

ln
(
G(xi ; ξ)

)+
n∑

i=1

ln (g(xi ; ξ))

− n ln (C(θ)) +
n∑

i=1

ln

⎛
⎜⎜⎝C ′

⎛
⎜⎜⎝θ

⎛
⎜⎜⎝1 −

⎡
⎢⎢⎣

[
1 − G

2
(xi ; ξ)

]b

1 +
(
1 −

[
1 − G

2
(xi ; ξ)

]b)
⎤
⎥⎥⎦

β⎞
⎟⎟⎠

⎞
⎟⎟⎠

⎞
⎟⎟⎠

− (β + 1)
n∑

i=1

ln
(
1 + (1 − [1 − G

2
(xi ; ξ)]b)

)
.

The elements of the score vector are given by

∂�

∂β
= n

β
+ b

n∑
i=1

ln
[
1 − G

2
(xi ; ξ)

]
−

n∑
i=1

θ

⎛
⎜⎝C ′′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

⎛
⎜⎝C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

×

⎡
⎢⎢⎣

[
1 − G

2
(xi ; ξ)

]b

1 +
(
1 −

[
1 − G

2
(xi ; ξ)

]b)
⎤
⎥⎥⎦

β

ln

⎛
⎜⎜⎝

⎡
⎢⎢⎣

[
1 − G

2
(xi ; ξ)

]b

1 +
(
1 −

[
1 − G

2
(xi ; ξ)

]b)
⎤
⎥⎥⎦

⎞
⎟⎟⎠

−
n∑

i=1

ln
(
1 + (1 − [1 − G

2
(xi ; ξ)]b)

)
,



The Exponentiated Half Logistic-Topp-Leone-G Power Series … 357

∂�

∂b
= n

b
+ β

n∑
i=1

ln
[
1 − G

2
(xi ; ξ)

]
+
[ n∑

i=1

βθ

⎛
⎜⎝C ′′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

⎛
⎜⎝C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

×
2

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β−1 [
1 − G

2
(xi ; ξ)

]b
ln
[
1 − G

2
(xi ; ξ)

]

[
1 +

(
1 −

[
1 − G

2
(xi ; ξ)

]b)]2
]

+ (β + 1)
n∑

i=1

[
1 − G

2
(xi ; ξ)

]b
ln
[
1 − G

2
(xi ; ξ)

]
(
1 + (1 − [1 − G

2
(xi ; ξ)]b)

) ,

∂�

∂θ
= n

θ
− nC ′(θ)

C(θ)
+

n∑
i=1

⎛
⎜⎝C ′′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠
⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠

⎛
⎜⎝C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠
⎞
⎟⎠

,

and

∂�

∂ξk
= −(βb − 1)

n∑
i=1

2G(xi ; ξ) ∂G(xi ;ξ)
∂ξk[

1 − G
2
(xi ; ξ)

] +
n∑

i=1

∂G(xi ;ξ)
∂ξk(

G(xi ; ξ)
) +

n∑
i=1

∂g(xi ;ξ)
∂ξk

g(xi ; ξ)

+
n∑

i=1

C ′′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−G

2
(xi ;ξ)

]b

1+
(
1−

[
1−G

2
(xi ;ξ)

]b)
⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

θβ

⎡
⎢⎢⎣

[
1 − G

2
(xi ; ξ)

]b

1 +
(
1 −

[
1 − G

2
(xi ; ξ)

]b)
⎤
⎥⎥⎦

β−1

×
4b
[
1 − G

2
(xi ; ξ)

]b−1
G(xi ; ξ) ∂G(xi ;ξ)

∂ξk[
1 +

(
1 −

[
1 − G

2
(xi ; ξ)

]b)]2 + (β + 1)
n∑

i=1

2b
[
1 − G

2
(xi ; ξ)

]b−1
G(xi ; ξ) ∂G(xi ;ξ)

∂ξk(
1 + (1 − [1 − G

2
(xi ; ξ)]b)

) .

Themaximum likelihood estimates of the parameters, denoted by �̂ is obtained by
solving the nonlinear equation ( ∂�n

∂β , ∂�n
∂b , ∂�n

∂θ , ∂�n
∂ξk

)T = 0, using a numerical method such
as Newton-Raphson procedure. The multivariate normal distribution Nq+3(0, J (�̂)−1),
where the mean vector 0 = (0, 0, 0, 0)T and J (�̂)−1 is the observed Fisher information
matrix evaluated at �̂, can be used to construct confidence intervals and confidence
regions for the individual model parameters and for the survival and hazard rate
functions.
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3 Some Special Classes of the EHL-TL-GPS Class of
Distributions

In this section, special classes of EHL-TL-GPS class of distributions are presented
by specifying the baseline cdf G(x; ξ) and pdf g(x; ξ) in Eqs. (5) and (6).

3.1 Exponentiated Half Logistic Topp-Leone-Log-Logistic
Power Series (EHL-TL-LLoGPS) Class of Distributions

If the baseline cdf and pdf are given by G(x;λ) = 1 − (
1 + xλ

)−1 and g(x;λ) = λxλ−1

(
1 + xλ

)−2, for λ > 0, and x > 0, then the cdf and pdf of the EHL-TL-LLoG power
series class of distributions are given by

FEHL−T L−LLoGPS(x) = 1 −
C

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)
(20)

and

fEHL−T L−LLoGPS(x) = 4βθbλxλ−1
(
1 + xλ

)−2 [1 − (
1 + xλ

)−2]βb−1
(
1 + xλ

)−1

[1 + (1 − [1 − (
1 + xλ

)−2]b)]β+1

×
C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)
, (21)

respectively for β, b, θ, λ and x > 0. The hrf is given by

hEHL−T L−LLoGPS(x) = 4βθbλxλ−1
(
1 + xλ

)−2 [1 − (
1 + xλ

)−2]βb−1
(
1 + xλ

)−1

[1 + (1 − [1 − (
1 + xλ

)−2]b)]β+1

×
C ′

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

C(θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

. (22)
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3.1.1 Exponentiated Half Logistic-Topp-Leone-Log-Logistic Poisson
(EHL-TL-LLoGP) Distribution

The cdf and pdf of EHL-TL-LLoGP distribution are given by

FEHL−T L−LLoGP (x) = 1 −
exp

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠− 1

exp(θ) − 1

and

fEHL−T L−LLoGP (x) = 4βθbλxλ−1(1 + xλ)−3[1 − (
1 + xλ

)−2]βb−1

[1 + (1 − [1 − (
1 + xλ

)−2]b)]β+1

×
exp

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

exp(θ) − 1
,

respectively, for β, b, θ, λ and x > 0. The hrf is given by

hEHL−T L−LLoGP (x) = 4βθbλxλ−1(1 + xλ)−3[1 − (
1 + xλ

)−2]βb−1

[1 + (1 − [1 − (
1 + xλ

)−2]b)]β+1

×
exp

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

exp(θ) − 1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠− 1

exp(θ) − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

,

for β, b, θ, λ and x > 0.

Figure1 shows the pdfs of the EHL-TL-LLoGP distribution. The pdf can take
various shapes that include almost symmetric, reverse-J, left, or right-skewed. Fur-
thermore, the hazard rate functions (hrfs) for theEHL-TL-LLoGPdistribution exhibit
increasing, decreasing, reverse-J, bathtub, and upside bathtub shapes.

3.1.2 Exponentiated Half Logistic-Topp-Leone-Log-Logistic Geometric
(EHL-TL-LLoGG) Distribution

The cdf and pdf of EHL-TL-LLoGG distribution are given by
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Fig. 1 Plots of the pdf and hrf for the EHL-TL-LLoGP distribution

FEHL−T L−LLoGG (x) = 1 −
(1 − θ)

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

⎛
⎜⎝1 − θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ)

−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

and

fEHL−T L−LLoGG (x) = 4βθbλxλ−1(1 + xλ)−3[1 − (
1 + xλ

)−2]βb−1

[1 + (1 − [1 − (
1 + xλ

)−2]b)]β+1

×

⎛
⎜⎝1 − θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

−2

θ(1 − θ)−1 ,

respectively, for β, b, θ, λ and x > 0. The hrf is given by

hEHL−T L−LLoGG (x) = 4βθbλxλ−1(1 + xλ)−3[1 − (
1 + xλ

)−2]βb−1

[1 + (1 − [1 − (
1 + xλ

)−2]b)]β+1

×

⎛
⎜⎝1 − θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

−2

θ(1 − θ)−1

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − θ)

⎛
⎜⎝θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ

)−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

⎛
⎜⎝1 − θ

⎛
⎜⎝1 −

⎡
⎣

[
1−(1+xλ)

−2
]b

1+
(
1−

[
1−(1+xλ)

−2
]b)

⎤
⎦

β
⎞
⎟⎠
⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

.
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Fig. 2 Plots of the pdf and hrf for the EHL-TL-LLoGG distribution

Figure2 shows the pdfs of the EHL-TL-LLoGGdistribution. The pdf can take var-
ious shapes that include almost symmetric, reverse-J, left, or right-skewed. Further-
more, the hrfs for the EHL-TL-LLoGG distribution exhibit increasing, decreasing,
reverse-J, bathtub, and upside bathtub shapes.

3.2 Exponentiated Half Logistic-Topp-Leone-Weibull Power
Series (EHL-TL-WPS) Class of Distributions

Suppose the cdf and pdf of theWeibull distribution are given by G(x; a) = 1 − exp (−xa),
for x ≥ 0, a > 0 and g(x; a) = axa−1 exp (−xa), for a > 0, and x > 0, then, the cdf and pdf of
the EHL-TL-WPS class of distributions are given by

FEHL−T L−WPS(x) = 1 −
C

⎛
⎝θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

C(θ)
(23)

and

fEHL−T L−WPS(x) = 4βθbaxa−1 exp (−xa) [1 − exp (−2xa)]βb−1 exp (−xa)

[1 + (1 − [1 − exp (−2xa)]b)]β+1

×
C ′
⎛
⎝θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

C(θ)
,

respectively, for b, β, θ, a > 0 and x > 0. The hrf is given by

hEHL−T L−WPS(x) = 4βθbaxa−1 exp (−xa) [1 − exp (−2xa)]βb−1 exp (−xa)

[1 + (1 − [1 − exp (−2xa)]b)]β+1
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×
C ′
⎛
⎝θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

C(θ)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

C

⎛
⎝θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

C(θ)

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

. (24)

3.2.1 Exponentiated Half Logistic-Topp-Leone-Weibull Poisson
(EHL-TL-WP) Distribution

The cdf and pdf of EHL-TL-WP distribution are given by

FEHL−T L−WP (x) = 1 −
exp

⎛
⎝θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠− 1

exp(θ) − 1

and

fEHL−T L−WP (x) = 4βθbaxa−1 exp (−xa) [1 − exp (−2xa)]βb−1 exp (−xa)

[1 + (1 − [1 − exp (−2xa)]b)]β+1

×
exp

⎛
⎝θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

exp(θ) − 1
,

respectively, for b, β, θ, a > 0 and x > 0. The corresponding hrf is given by

hEHL−T L−WP (x) = 4βθbaxa−1 exp (−xa) [1 − exp (−2xa)]βb−1 exp (−xa)

[1 + (1 − [1 − exp (−2xa)]b)]β+1

×
exp

⎛
⎝θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

exp(θ) − 1

×

⎛
⎜⎜⎜⎜⎜⎜⎝

exp

⎛
⎝θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠− 1

exp(θ) − 1

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

.

Figure3 shows the pdfs of the EHL-TL-WP distribution. The pdf can take various
shapes that include almost symmetric, reverse-J, left, or right-skewed. Furthermore,
the hrfs for the EHL-TL-WP distribution exhibit increasing, decreasing, reverse-J,
bathtub, and upside bathtub shapes.
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Fig. 3 Plots of the pdf and hrf for the EHL-TL-WP distribution

3.2.2 Exponentiated Half Logistic-Topp-Leone-Weibull Geometric
(EHL-TL-WG) Distribution

The cdf, pdf and hazard rate function of EHL-TL-WG distribution are given by

FEHL−T L−WG (x) = 1 −
(1 − θ)

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠

⎛
⎝1 − θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

,

fEHL−T L−WG (x) = 4βθbaxa−1 exp (−xa) [1 − exp (−2xa)]βb−1 exp (−xa)

[1 + (1 − [1 − exp (−2xa)]b)]β+1

×

⎛
⎝1 − θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

−2

θ(1 − θ)−1

and

hEHL−T L−WG (x) = 4βθbaxa−1 exp (−xa) [1 − exp (−2xa)]βb−1 exp (−xa)

[1 + (1 − [1 − exp (−2xa)]b)]β+1

×

⎛
⎝1 − θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

−2

θ(1 − θ)−1

×

⎛
⎜⎜⎜⎜⎜⎜⎝
1 −

(1 − θ)

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠

⎛
⎝1 − θ

⎛
⎝1 −

[
[1−exp(−2xa )]b

1+
(
1−[1−exp(−2xa )]b

)
]β
⎞
⎠
⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

.

for b, β, a > 0, 0 < θ < 1, and x > 0.
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Fig. 4 Plots of the pdf and hrf for the EHL-TL-WG distribution

Figure4 shows the pdfs of the EHL-TL-WG distribution. The pdf can take various
shapes that include almost symmetric, reverse-J, left, or right-skewed. Furthermore,
the hrfs for the EHL-TL-WG distribution exhibits increasing, decreasing, reverse-J
and uni-modal shapes.

4 Simulation Study

In this section, a simulation study was conducted to assess consistency of the max-
imum likelihood estimators. We considered the EHL-TL-LLoGP distribution. We
simulated for the sample sizes n= 60, 120, 240, 480, 960 and 1920, for N=1000
for each sample. We estimate the mean, root mean square error (RMSE), and aver-
age bias. We consider simulations for the following sets of initial parameters val-
ues (I: b = 1.0, θ = 0.05,λ = 1.0,β = 0.9), (II: b = 1.0, θ = 0.05,λ = 0.8,β = 0.9), (III: b = 1.0, θ =
0.05, λ = 1.5, β = 0.9), (IV: b = 1.0, θ = 0.3,λ = 2.0,β = 1.0), (V: b = 1.2, θ = 0.3,λ = 1.2,β = 0.9)
and (VI: b = 1.2, θ = 0.3,λ = 1.2,β = 1.1). If the model performs better, we except the
mean to approximate the true parameter values, the RMSE, and bias to decay toward
zero for an increase in sample size. From the results in Table2, the mean values
approximate the true parameter values, RMSE and bias decay towards zero for all
the parameter values.

5 Applications

In this section, we present real data examples to demonstrate the usefulness of the
exponentiated half logistic-Topp-Leone-log-logistic Poisson (EHL-TL-LLoGP) dis-
tribution.We compared the EHL-TL-LLoGP distribution to several non-nested mod-
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els.We useR software to estimatemodel parameters and standard errors.We assessed
model performance using -2loglikelihood (-2 log L), Akaike Information Criterion
(AIC), Consistent Akaike Information Criterion (AICC), Bayesian Information Cri-
terion (BIC), Cramer-von-Mises (W ∗), and Andersen-Darling (A∗) (see Chen and Bal-
akrishnan [12] for details), Kolmogorov-Smirnov (K-S) statistic (and its p-value).

Tables3 and 4 shows model parameters estimates (standard errors in parentheses)
and several goodness-of-fit statistics. We also provide fitted densities and probability
plots (as described by Chambers et al. [11]) to demonstrate how well our model fits
the selected data sets.

The non-nested models considered in this paper are the Kumaraswamy odd
Lindley-Log logistic (KOL-LLoG) by Chipepa et al. [16], beta generalized Lind-
ley (BGL) by Oluyede and Yang [32], beta-Weibull (BW) by Cordeiro et al. [21],
Kumaraswamy-Weibull (KwW) by Cordeiro et al. [22] and Topp-Leone-Weibull-
Lomax (TL-WLx) by Jamal et al. [25]. The pdfs of the non-nested models are as
follows:

fK OL−LLoG (x; a, b,λ, c) = ab

[
λ2

(1 + λ)

cxc−1

(1 + xc)−1 exp

{
−λ

1 − (1 + xc)−1

(1 + xc)−1

}]

×
[
1 − λ + (1 + xc)−1

(1 + λ)(1 + xc)−1 exp

{
−λ

(1 − (1 + xc)−1)

(1 + xc)−1

}]a−1

×
(
1 −

[
1 − λ + (1 + xc)−1

(1 + λ)(1 + xc)−1 exp

{
−λ

(1 − (1 + xc)−1)

(1 + xc)−1

}]a)b−1

,

for a, b,λ, c > 0,

fBW (x; a, b,α,β) = βαβ

B(a, b)
xβ−1e−b(αx)β (1 − e−(αx)β )a−1,

for a, b,α,β > 0,

fKwW (x; a, b,α,β) = abαβxβ−1e−(αx)β (1 − e−(αx)β )a−1(1 − (1 − e−(αx)β )a)b−1,

for a, b,α,β > 0,

fT L−WLx (x; a, b,α, θ) = 2θαab(1 + bx)aα−1(1 − (1 + bx)−a)α−1

× exp

(
−2

(
1 − (1 + bx)−a

(1 + bx)−a

))

×
[
1 − exp

(
−2

(
1 − (1 + bx)−a

(1 + bx)−a

))]θ−1

,

for a, b,α, θ > 0, and

gBGL (x;α,λ, a, b) = αλ2(1 + x) exp(−λx)

B(a, b)(1 + λ)

[
1 − 1 + λ + λx

1 + λ
exp(−λx)

]aα−1
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Fig. 5 Fitted pdfs and probability plots for guinea pigs survial times data set

×
[
1 −

[
1 − 1 + λ + λx

1 + λ

]α]b−1
, (25)

for α,λ, a, b > 0.

5.1 Guinea Pigs Survival Times Data

The data set was first analyzed by Bjerkedal [9] and represents the survival times of
guinea pigs injected with different doses of tubercle bacilli. The observations are:
12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58,
58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83,
84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175,
211, 233, 258, 258, 263, 297, 341, 341, 376.

The estimated variance-covariance matrix is given by

⎡
⎢⎢⎣

0.7863 −3.9651 0.0636 0.2575
−3.9651 32.0654 −0.3951 −1.7126
0.0636 −0.3951 0.0056 0.0233
0.2575 −1.7126 0.0233 0.0985

⎤
⎥⎥⎦

and the 95% confidence intervals for the model parameters are given by b ∈
[2.6957 ± 1.7381], θ ∈ [9.9133 ± 11.0988], λ ∈ [0.3852 ± 0.1475] and
β ∈ [19.9365 ± 0.6153].

Based on the values of the goodness-of-fit statistics A∗, W ∗, K-S and the p-value
of the K-S statistic as shown in Table 3, we conclude that the EHL-TL-LLoGPmodel
performs better than the non-nested models considered in this paper. Figure5 shows
the fitted densities and probability plots for the EHL-TL-LLoGP model. We observe
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the flexibility enjoyed in data fitting from the EHL-TL-LLoGP model compared to
the non-nested models.

5.2 Skin Folds Data

The data set was reported by Cook and Weisberg [17] and consists of 12 variables
from 100 female and 102 male Australian athletes. We apply the EHL-TL-LLoGP
distribution to the sum of skin folds for the 100 female athletes. The observations
are 33.8, 36.8, 38.2, 41.1, 41.6, 42.3, 43.5, 43.5, 46.1, 46.2, 46.3, 47.5, 47.6, 48.4,
49.0, 49.9, 50.0, 52.5, 52.6, 54.6, 54.6, 55.6, 56.8, 57.9, 58.9, 59.4, 61.9, 62.6, 62.9,
65.1, 67.0, 68.3, 68.9, 69.9, 70.0, 71.3, 71.6, 73.9, 74.7, 74.9, 75.1, 75.2, 76.2, 76.8,
77.0, 80.1, 80.3, 80.3, 80.3, 80.6, 83.0, 87.2, 88.2, 89.0, 90.2, 90.4, 91.0, 91.2, 95.4,
96.8, 97.2, 97.9, 98.0, 98.1, 98.3, 98.5, 99.8, 99.9, 101.1, 102.8, 102.8, 103.6, 103.6,
104.6, 106.9, 109.0, 109.1, 109.5, 109.6, 110.2, 110.7, 111.1, 113.5, 114.0, 115.9,
117.8, 122.1, 123.6, 125.9, 126.4, 126.4, 131.9, 136.3, 143.5, 148.9, 156.6, 156.6,
171.1, 181.7, 200.8.

The estimated variance-covariance matrix is given by

⎡
⎢⎢⎣
0.2746 0.0065 0.0129 0.0183
0.0065 0.0002 0.0003 0.0004
0.0129 0.0003 0.0006 0.0008
0.0183 0.0004 0.0008 0.0012

⎤
⎥⎥⎦

and the 95% confidence intervals for the model parameters are given by b ∈
[2.6665 ± 1.0272], θ ∈ [43.6656 ± 0.0247], λ ∈ [0.4212 ± 0.0488] and
β ∈ [43.2601 ± 0.0686].

Based on the values of the goodness-of-fit statistics A∗, W ∗, K-S and the p-value
of the K-S statistic as shown in Table 4, we conclude that the EHL-TL-LLoGPmodel
performs better than the non-nested models considered in this paper. Figures6 shows
the fitted densities and probability plots for the EHL-TL-LLoGP model. We observe
the flexibility enjoyed in data fitting from the EHL-TL-LLoGP model compared to
the non-nested models.

6 Concluding Remarks

We develop a new and large class of distributions, namely, the exponentiated half
logistic-Topp-Leone-G power series (EHL-TL-GPS) class of distributions. Expan-
sion of the EHL-TL-GPS pdf shows that the distribution can be expressed as an
infinite linear combination of the Exp-G densities. This property is handy in the
derivation of other statistical properties of the EHL-TL-GPS class of distributions.
We present some special classes in the new proposed distribution. From the special
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Fig. 6 Fitted pdfs and probability plots for run off data set

cases presented, we observe that the new class of distributions applies to heavy tailed,
left or right-skewed data sets and various forms of kurtosis. Structural propertieswere
also derived including moments, distribution of order statistics, Rényi entropy, and
maximum likelihood estimates. We conducted a simulation study to evaluate the
consistency of the maximum likelihood estimates. Based on the simulation study
results, we conclude that the new proposed model produce consistent results. We
also applied the EHL-TL-LLoGP distribution to two heavy tailed real data examples
to illustrate the usefulness of the new class of distributions. The EHL-TL-LLoGP
model performs better than several non-nested models on the selected data sets.
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Fixed Points of Multivalued
(α∗ − φ)-Contractions and Metric
Transforms

Basit Ali, Talat Nazir, and Nozara Sundus

Abstract The functions when composed with metrics yield another metric, are
known as metric preserving functions in the literature. A particular case of met-
ric preserving functions are metric transforms. Metric transform is a function
I : [0,∞) → R which is strictly increasing and concave with I (0) = 0. There are
metric preserving functions which are not metric transforms. In this chapter, we con-
sider the concept of existence of fixed point sets of multivalued mappings of metric
spaces in connection with metric transforms. In this context, we consider (α − φ)

contractions, multivalued (α∗ − φ) contractions, (ε − φ) uniform local multivalued
contraction and generalized multivalued (α∗ − φ) contractions. Our purpose is to
extend some fixed point results for multivalued contractions to the case multivalued
(α∗ − φ) contractions. Further, we used the metrics which are sequentially, strong
semi sequentially and semi sequentially equivalent to the Hausdorff metric on col-
lection of non-empty, closed and bounded subsets to obtain more general fixed point
results.Weobtain important fixed point results in the literature as the corollaries of the
main theorem in this paper. We present some examples to manifest the applicability,
usefulness and generality of our conclusions.

Keywords Metric space · Metric transforms · Sequentially equivalent distances ·
Strong semi sequentially equivalent distances · Semi sequentially equivalent
distances · Multivalued (α∗ − φ) contractions · (ε − φ) uniform local multivalued
contraction · Multivalued mapping · Fixed point
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1 Introduction and Preliminaries

Metric transforms and metric preserving functions are the generalized functions in
metric spaces. Blumenthal [5] introduced the concept of metric transform, the notion
ofmetric preserving functions was addressed byWilson [34] in 1935. These concepts
were investigated in detail by many authors (compare: [9–16, 25–27, 32, 33]).

Fixed point theory has always been a very important area of exploration because of
its wide span of applications inmathematics and also in different branches of science.
The first astonishing theorem in fixed point theory is Banach contraction principle by
Banach [6], that relay on iterated function sequences that converges to unique fixed
point. In 1969, Banach contraction principle was extended for multivalued mappings
in metric spaces by Nadler [31]. He proved the Banach’s [6] and Edelstein’s [17]
results for set-valued mappings. Many authors [1–4, 7, 8, 17–24, 29] generalized
the Banach contraction principle in one to many directions.

Kirk andShahzad [21] gave the proofs of fixed point theorems formetric transform
by assuming local radial contractions. They proved some fixed point results for set
valued mappings too. They defined a new extended metric than Hausdorff metric
H that is sequentially equivalent metric D1 which was sequentially equivalent to
Hausdorff metric, and presented some fixed point results for sequentially equivalent
metric.

Many authors extended the Banach’s contraction condition for single valued as
well as for multivalued mappings. As Samet et al. [30] studied (α − ψ) contraction
for single valued mappings and Asl et al. [3] gave more generalized contraction
which was (α∗ − ψ) contraction for multivauled mappings.

For a metric space (Y, d) , we have following notions:

• CB (Y ) = {C : C �= ∅ closed and bounded subset of Y } .

• 2Y = {C : C �= ∅ compact subset of Y } .

• Cl (Y ) = {C : C �= ∅ is the closed subset of Y } .

• The functions � represent the class of metric transforms.

Let for metric space (Y, d), forU, V ∈ CB (Y ), the Hausdorff metric betweenU
and V is defined as

H (U, V ) = max {ρ (U, V ) , ρ (V,U )} ,

where
ρ (U, V ) = sup

y∈U
d (y, V ) , ρ (V,U ) = sup

y∈V
d (y,U ) .

Definition 1 ([31]) A mapping I : Y → CB (Y ) is a multivauled contraction map-
ping if there is a constant 0 < r < 1 such that

H (I y, I z) ≤ rd (y, z)

where y, z ∈ Y.
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Nadler [31] proved the following fixed point result for multivauled mappings in
complete metric space.

Theorem 2 ([31] Let for a complete metric space (Y, d), if the mapping I : Y →
CB (Y ) satisfies for some r ∈ (0, 1) such as

H (I y, I z) ≤ rd (y, z)

where y, z ∈ Y, then there is a point y ∈ Y such that y ∈ I y.

Kirk and Shahzad replaced Hausdroff metric H with sequentially equivalent met-
ric D1 on CB (Y ) in [21] and generalized Nadler’s Theorem 2.

Definition 3 ([21]) The metric D1 is said to be sequentially equivalent to Hausdorff
metric H if for U ∈ CB (Y ) and

{
Up

} ⊂ CB (Y ) , we have

lim
p→∞ D1

(
Up,U

) = 0 if and only if lim
p→∞ H

(
Up,U

) = 0.

Theorem 4 ([21]) Let for a complete metric space (Y, d). Suppose I : Y → CB (Y )

satisfies,

(1) there is a constant r ∈ (0, 1) such as

D1 (I y, I z) ≤ rd (y, z)

for every y, z ∈ Y ,
(2) if y ∈ Y and z ∈ I y

d (z, I z) ≤ D1 (I z, I y) .

Then I has a fixed point.

We extend sequentially equivalent metric to semi sequentially equivalent metric,
it is defined as below.

Definition 5 The metric D is semi sequentially equivalent to Hausdorff metric H if
for U ∈ CB (Y ) and

{
Up

} ⊂ CB (Y ) , we have

lim
p→∞ D

(
Up,U

) = 0 implies lim
p→∞ H

(
Up,U

) = 0.

Following is the definition of strong semi sequentially equivalent metric, which
is stronger than semi sequentially equivalent metric.

Definition 6 The metric D2 is strong semi sequentially equivalent metric to Haus-
dorff metric H if for U ∈ CB (Y ) and

{
Up

} ⊂ CB (Y )

H
(
Up,U

) ≤ D2
(
Up,U

)
.
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Samet et al. [30] studied new class of functions �, these are the class of nonde-
creasing functions which are defined as following,

� =
⎧
⎨

⎩
φ : [0,∞) → [0,∞) :

∞∑

p=1

φp (I ) < ∞, for each I > 0

⎫
⎬

⎭

where φp is p-th iterate of φ.

Assume for a metric space (Y, d) , for mappings I : Y → Y and α : Y × Y →
[0,+∞) , the mapping I is said to be α-admissible if for all y, z ∈ Y ,

α (y, z) ≥ 1 implies α (I y, I z) ≥ 1.

Samet et al. [30] define (α − φ) contraction condition for single valuedmappings.

Definition 7 ([30]) Let for a metric space (Y, d), the mapping I : Y → Y be an
(α − φ) contractive mapping if there are two functions α : Y × Y → [0,∞) and
φ ∈ � is satisfying

α (y, z) d (I y, I z) ≤ φ (d (y, z))

for all y, z ∈ Y.

Samet et al. [30] proved following result by using (α − φ) contraction for point
valued mappings for getting fixed point.

Theorem 8 ([30])Let for a completemetric space (Y, d) , if themapping I : Y → Y
satisfies,

(i) α (y, z) d (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) I is α-admissible,
(iii) there is y0 ∈ Y such as α (y0, I y0) ≥ 1,
(iv) either (a) I is continuous or (b) if

{
yp

}
is a sequence in Y such asα

(
yp, yp+1

) ≥
1 for all p further yp → y ∈ Y as p → +∞, then α

(
yp, y

) ≥ 1 for all p.

Then I has a fixed point.

Following notions were given by Hasanzade et al. [3].

• Assume for a metric space (Y, d), the mapping I : Y → 2Y . Define

α∗ (I y, I z) = inf {α (m, n) : m ∈ I y, n ∈ I z} .

• For functions I : Y → CB (Y ) and α : Y × Y → [0,∞) we say that I is α∗-
admissible, if α (y, z) ≥ 1 implies α∗ (I y, I z) ≥ 1.

Hasanzade et al. [3] generalized (α − φ) contraction condition for multivauled
mappings and define (α∗ − φ) contraction condition.
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Definition 9 ([3]) Let for ametric space (Y, d), amapping I : Y → CB (Y ) is called
an (α∗ − φ) contractive mapping if there are two functionsα : Y × Y → [0,∞) and
φ ∈ � such that

α∗ (I y, I z) H (I y, I z) ≤ φ (d (y, z))

for all y, z ∈ Y.

Hasanzade et al. [3] used (α∗ − φ) contraction for multivauled mappings for
getting fixed point as given below.

Theorem 10 ([3]) Let for a complete metric space (Y, d) , α : Y × Y → [0,∞) be
a function, φ ∈ �, if mapping I : Y → Cl(Y ) satisfying,

(i) α∗ (I y, I z) H (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) I is α∗-admissible,
(iii) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(iv) if

{
yp

}
is a sequence in Y such as α

(
yp, yp+1

) ≥ 1 for all p and yp → y, then
α

(
yp, y

) ≥ 1 for all p,

Then I has a fixed point.

Definition 11 ([31]) A metric space (Y, d) is said to be ε-chainable (where ε > 0
is fixed) if and only if l,m ∈ Y there is an ε-chain from l to m, that is, a finite set of
points y0, y1, . . . yp ∈ Y such that y0 = l, yp = m, and

d (yi−1, yi ) < ε

for all i = 1, 2, . . . n.

Definition 12 ([31]) A mapping I : Y → CB (Y ) is said to be an (ε, r)-uniform
local multivauled contraction (where ε > 0 and r ∈ (0, 1) if

d (y, z) < ε ⇒ H (I y, I z) ≤ rd (y, z) .

The concept of (ε, c) uniform local multivauled contraction was given by Nadler
[31]. Kirk and Shahzad generalized this concept in terms of metric transforms as
follows.

Theorem 13 ([21]) Let for a metric space (Y, d), there is metric transform ψ ∈ �

and constant r ∈ (0, 1) , if the mapping I : Y → CB (Y ) satisfies,

(a) for every y, z ∈ Y
ψ (H (I y, I z)) ≤ rd (y, z) ,

(b) for t > 0 sufficiently small,there exists c ∈ (0, 1) such that

r t ≤ ψ (ct) .
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Then for sufficiently small ε > 0, I is an (ε, c) uniform local multivauled con-
traction on (Y, d) .

Following is Nadler’s result [31] for (ε, r) uniform local contractive multivauled
mapping for finding the fixed point.

Theorem 14 ([31]) Let for a ε-chainable complete metric space (Y, d). If the map-
ping I : Y → 2Y is an (ε, r) uniform local contractive multivauled, then I has a
fixed point.

In [21] Theorems 13 and 14 are gathered to get the following result.

Theorem 15 ([21]) Assume for ε-chainable, connected and complete metric space
(Y, d). If mapping I : Y → 2Y is an (ε, r) uniform local contractive multivauled,
then I has a fixed point.

Proof For any ε > 0 a connected complete metric space is ε-chainable. �

Pathak and Shahzad [28] defined a newmetric H+ which is an example of ametric
on CB (Y ) , moreover this metric is metrically equivalent to Hausdorff metric.

Metric H+ is defined as, for U, V ∈ CB (Y ) , we have

H+ (U, V ) = 1

2
(ρ (U, V ) + ρ (V,U )) .

It can be easily seen that H+ is metrically equivalent to the Hausdorff metric:

1

2
H (U, V ) ≤ H+ (U, V ) ≤ H (U, V ) .

Following is the definition of H+ contraction given in [28].

Definition 16 ([28]) Amultivauled mapping I : Y → CB (Y ) is an H+ contraction
if

(1) there is r ∈ (0, 1) in such a way

H+ (I y, I z) ≤ rd (y, z)

for every y, z ∈ Y
(2) for every y ∈ Y and z ∈ I y,

d (z, I z) ≤ H+ (I y, I z) .
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2 Extensions by Using Multivalued (α∗ − φ) Contractions

In this section, we are going to extend the results related to multivauled mappings,
which are discussed in [21], by using (α∗ − φ) contractions. Examples are used
to verify our extension. Some of the result related corollaries are also discussed
here. Moreover, we consider sequentially equivalent metric, strong semi sequentially
equivalent, and semi sequentially equivalent metrics, which are more general metrics
than Hausdorff metric. Further, we will define (ε − φ) uniform local multivauled
contraction on metric transform, by using this we get some fixed point results.

Let we move on our main result:
Kirk and Shahzad used sequentially equivalent metric in [21] for finding fixed

point, moreover they used simple contraction condition to verify their result. We
generalize this result (Theorem 4) by using (α∗ − φ) contraction, for this purpose
we consider metrics D (semi sequentially equivalent), D2 (strong semi sequentially
equivalent) and D1 (sequentially equivalent).

Theorem 17 Let (Y, d) be a complete metric space and D (semi sequentially
equivalent to Hausdorff metric) be any metric on CB (Y ). Suppose the mapping
I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) D (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) If y ∈ Y and z ∈ I y
d (z, I z) ≤ D (I z, I y) ,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1.
(v) Either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p ∈ N or (b) I is upper hemi
continuous.

Then I has a fixed point y.

Proof By condition (iii) and (iv) there is y0 ∈ Y and y1 ∈ I y0 such as

α (y0, y1) ≥ 1 ⇒ α∗ (I y0, I y1) ≥ 1.

If y1 = y0 then y0 = y1 ∈ I y0 that is y0 ∈ I y0, which gives y0 is fixed point of I.
Proof is completed. So assume y0 �= y1, By condition (i) and (ii)

d (y1, I y1) ≤ D (I y1, I y0) = D (I y0, I y1) .

If d (y1, I y1) = 0 then y1 ∈ I y1 implies that y1 is a fixed point of I so the proof
is completed. Now consider that d (y1, I y1) > 0. Given q1 > 1, so there is y2 ∈ I y1
such as

0 < d (y1, I y1) ≤ d (y1, y2) < q1d (y1, I y1) .
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That is

0 < d (y1, y2) < q1d (y1, I y1) ≤ q1D (I y0, I y1)

≤ q1α∗ (I y0, I y1) D (I y0, I y1)

≤ q1φ (d (y0, y1)) .

Hence
d (y1, y2) < q1φ (d (y0, y1)) . (1)

If y2 = y1 then we have done, so consider that y2 �= y1. As I is α∗-admissible so

α (y1, y2) ≥ α∗ (I y0, I y1) ≥ 1.

Now put b◦ = d (y0, y1) , then from (1)

d (y1, y2) < q1φ (b◦)

since φ is strictly increasing,

φ (d (y1, y2)) < φ (q1φ (b◦)) .

Put

q2 = φ (q1φ (b◦))
φ (d (y1, y2))

> 1.

Given q2 > 1 and
0 < d (y2, I y2) ≤ D (I y1, I y2) .

If y2 = y3 then nothing to prove. Let y2 �= y3. Then for q2 > 1 there is y3 ∈ I y2
such as 0 < d (y2, y3) and

d (y2, y3) < q2d (y2, I y2) ≤ q2D (I y1, I y2)

≤ q2α∗ (I y1, I y2) D (I y1, I y2)

≤ q2φ (d (y1, y2)) ≤ φ (q1φ (b◦))
φ (d (y1, y2))

.φ (d (y1, y2))

≤ φ (q1φ (b◦)) .

It is clear that y3 �= y2,

α (y2, y3) ≥ α∗ (I y2, I y3) ≥ 1,

and since φ is strictly increasing so

φd (y2, y3) < φ2 (qφ (b◦)) .
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Now put

q3 = φ2 (qφ (b◦))
φ (d (y2, y3))

.

For given q3 > 1, we obtain

0 < d (y3, I y3) ≤ D (I y3, I y4)

for q3 > 1 there exists y4 ∈ I y3 such that

0 < d (y3, y4) < q3d (y3, I y3)

≤ q3α (I y2, I y3) D (I y2, I y3)

≤ q3φ (d (y2, y3)) ≤ φ2 (q1φ (b◦))
φ (d (y2, y3))

φ (d (y2, y3))

≤ φ2 (q1φ (b◦)) .

Resuming in this way, we obtain a sequence
{
yp

}
in Y such that yp ∈ I yp−1, and

yp �= yp−1, α
(
yp, yp+1

) ≥ 1 and

d
(
yp, yp+1

) ≤ φp−1 (q1φ (b◦))

for all p. As φ ∈ �, so
∑∞

i=1 φi (l) < ∞ for all l > 0, hence for any ε > 0 there
exists n1 ∈ N such as

∞∑

i=p+1

φi−1(q1φ (b◦)) < ε

for all p ≥ n1. Now for each q > p using triangular inequality

d
(
yp, yq

) ≤ d
(
yp, yp+1

) + d
(
yp+1, yp+2

) + . . . + d
(
yq−1, yq

)

≤ φp−1 (q1φ (b◦)) + φp (q1φ (b◦)) + · · · + φq−2 (q1φ (b◦))

=
q−1∑

i=p

φi−1 (q1φ (b◦)) ≤
∞∑

i=p

φi−1 (q1φ (b◦)) < ε

for all p ≥ n1. Hence for any given ε > 0 there is n1 ∈ N such as

d
(
yp, yq

) =
∞∑

i=p+1

φi−1 (qφ (b◦)) < ε

for all p, q ≥ n1. This implies
{
yp

}
is a Cauchy sequence., consequently yp con-

verges to some y in Y as Y is complete. Now assume (a) holds in (V). As
α

(
yp, yp+1

) ≥ 1 and yp → y so p → ∞, so α
(
yp, y

) ≥ 1 for all p ∈ N ∪ {0}.
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As I is α∗-admissible so α∗
(
I yp, I y

) ≥ 1 so by (i) we have

D
(
I yp, I y

) ≤ α∗
(
I yp, I y

)
D

(
I yp, I y

)

≤ φ
(
d

(
yp, y

))

this implies
lim
p→∞ D

(
I yp, I y

) ≤ lim
p→∞ φ

(
d

(
yp, y

))
.

That is lim p→∞ D
(
I yp, I y

) = 0 because φ is continuous at 0. As D is semi
sequentially equivalent to H so

lim
p→∞ H

(
I yp, I y

) = 0.

Consequently, we obtain

lim
p→∞ d

(
yp, I y

) ≤ lim
p→∞ H

(
I yp, I y

) = 0

implies
d (y, I y) = lim

p→∞ d
(
yp, I y

) = 0.

Hence y ∈ I y. As lim p→∞ yp = y, and yp+1 ∈ I
(
yp

)
, so by upper hemi conti-

nuity, y ∈ I y. �

It is observed that semi sequentially equivalent metric D is weaker condition than
D1 sequentially equivalent metric and strong sequentially equivalent metric D2.

Following are the corollaries which are obtained from Theorem 17.

Corollary 18 Let for a complete metric space (Y, d), sequentially equivalent metric
D1 on CB (Y ). Suppose the mapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) D1 (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) If y ∈ Y and z ∈ I y
d (z, I z) ≤ D1 (I z, I y) ,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(v) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p ∈ N or (b) I is upper
hemi continuous.
Then I has a fixed point.

Corollary 19 Let for a complete metric space (Y, d), and D2 (strong semi sequen-
tially equivalent) be any metric on CB (Y ). Suppose the mapping I : Y → CB (Y )

satisfies,
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(i) α∗ (I y, I z) D2 (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) If y ∈ Y and z ∈ I y
d (z, I z) ≤ D2 (I z, I y) ,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(v) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p ∈ N or (b) I is upper
hemi continuous.
Then I has a fixed point.

Corollary 20 Let for a complete metric space (Y, d), if mapping I : Y → Y satis-
fies,

(i) α (y, z) d (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) I is α-admissible,
(iii) there is y0 ∈ Y such as α (y0, I y0) ≥ 1,
(iv) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p ∈ N or (b) I is continu-
ous.

Then I has a fixed point.

Proof If I : Y → CB (Y ) in Theorem 17 is replaced by I : Y → Y, we get the
desired result. �

Corollary 21 Let for a complete metric space (Y, d), α : Y × Y → [0,∞) be a
function, φ ∈ �, if the mapping I : Y → Cl(Y ) satisfies,

(i) α∗ (I y, I z) H (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) I is α∗-admissible,
(iii) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(iv) assume that if

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p and
yp → y, then α

(
yp, y

) ≥ 1 for all p.
Then I has a fixed point.

Proof If D = H in Theorem 17, then result follows. �

Remark 22 For Corollary 21 we can consider Cl (Y ) instead of CB (Y ) .

Corollary 23 Let for a complete metric space (Y, d), and let D1(sequentially equiv-
alent metric) be any metric on CB (Y ) . If mapping I : Y → CB (Y ) satisfies,

1. there is constant r ∈ (0, 1) such that

D1 (I y, I z) ≤ rd (y, z)

for every y, z ∈ Y ,
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2. for y ∈ Y and z ∈ I y
d (z, I z) ≤ D1 (I z, I y) .

Then I has a fixed point.

Proof For α∗ (I y, I z) = 1 and φ (b◦) = rb◦ in Theorem 17, we obtain the required
result. �

Following example is used to verify Theorem 17.

Example 24 Let Y = {y1, y2, y3, y4} . Define the mapping d : Y × Y → R
+ as

d (y3, y4) = d (y2, y4) = 6,

d (y2, y3) = d (y1, y4) = 9,

d (y1, y2) = d (y1, y3) = 5,

d (y, y) = 0 and d (y, y◦) = d (y◦, y)

for all y, y◦ ∈ Y. Clearly (Y, d) is a complete metric space Define a mapping I :
Y → CB (Y ) by

I y =
{ {y1} if y = y1, y2, y3,

{y2} if y = y4,

Define α : Y × Y → R
+ by α

(
yi , y j

) = 1 for all i, j ∈ {1, 2, 3, 4} . If we set

φ (b◦) = 8

9
b◦

for I ∈ R
+, then φ ∈ �. Now we check the contraction condition of Theorem 17:

This condition holds for any y, z ∈ {y1, y2, y3} as

H (I y, I z) = 0 ≤ φ (d (y, z)) = 8

9
d (y, z) .

If y = y1 and z = y4 then

H (I y1, I y4) = 5 ≤ φ (d (y1, y4)) < φ (9) = 8.

When y ∈ {y2, y3} , and z = y4.

H (I y, I y4) = d (y1, y2) = 5 ≤ φ (d (y, z)) ≤ φ (6) = 48

9
.

As α (y, z) ≥ 1 implies α∗ (I y, I z) ≥ 1 so I is α∗-admissible. Note that even-
tually constant sequences are the only convergent sequences in (Y, d), hence the
condition in Theorems 17 is satisfied, so I has a fixed point.
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Kirk and Shahzad [21] provided the single valued version of Theorem 4, after
generalizing it we get the following result.

Theorem 25 Let for a complete metric space (Y, d), ρ (sequentially equivalent to
the d) be any metric on Y. Suppose I : Y → Y satisfies,

(i) α (y, z) ρ (I y, I z) ≤ φ (d (y, z)) for every y, z ∈ Y,

(ii) if y ∈ Y
d

(
I y, I 2y

) ≤ ρ
(
I y, I 2y

)
, (2)

(iii) either (a)
{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p ∈ N or (b) I is continu-
ous.

Then I has a fixed point.

Proof Condition (i) and (ii) implies

d
(
I y, I 2y

) ≤ ρ
(
I y, I 2y

) ≤ α (y, z) ρ
(
I y, I 2y

) ≤ φ (d (y, I y))

this implies
d

(
I y, I 2y

) ≤ φ (d (y, I y))

Let y0 ∈ Y be any arbitrary point of Y, define

y1 = I y0, y2 = I y1, . . . yp = I yp−1.

That is
yp = I yp−1 = I

(
I
(
yp−2

)) = I 2
(
yp−2

) = · · · I p (y0) .

If yp = yp+1 then yp is a fixed point. Let yp �= yp+1 for any p ∈ N .

d
(
yp, yp+1

) = d
(
I yp−1, I

2yp−1
) ≤ φ

(
d

(
yp−1, I yp−1

))

≤ φ
(
d

(
yp−1, yp

)) ≤ φ2
(
d

(
yp−2, yp−1

))

...

≤ φp (d (y0, y1)) .

Now for each q > p, we have

d
(
yp, yq

) ≤
q−1∑

i=p

d (yi , yi+1) ≤
q−1∑

i=p

φi−1d (y0, y1) .

For any ε > 0 there is n1 such that
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∞∑

i=p+1

d (yi , yi+1) < ε

for all p ≥ n1. Now by using triangular inequality for all p, q ≥ n1

d
(
yp, yq

) ≤ d
(
yp, yp+1

) + d
(
yp+1, yp+2

) + · · · d (
yq−1, yq

)

=
q−1∑

i=p

d (yi , yi+1) ≤
q−1∑

i=p

φi−1 (d (y0, y1))

≤
∞∑

i=p

φi−1 (d (y0, y1)) .

For all ε > 0 there exists n1 such that

d
(
yp, yq

) =
∞∑

i=p+1

φi−1 (d (y0, y1)) < ε

for all p, q ≥ n1. As
∑∞

i=1 φi < ∞, so this implies
{
yp

}
is a Cauchy sequence. so

yp → y as p → ∞. If either
(a) As α

(
yp, y

) ≥ 1 for all p, now using the triangular inequality

d (I y, y) ≤ d
(
I y, I yp

) + d
(
yp+1, y

)

≤ α
(
yp, y

)
d

(
I yp, I y

) + d
(
yp+1, y

)

≤ φ
(
d

(
yp, y

)) + d
(
yp+1, y

)
.

Letting p → ∞, as φ is continuous at I = 0, we get d (I y, y) = 0, which implies
y = I y. So I has a fixed point. Or
(b) As

{
yp

}
is Cauchy sequence. in complete metric space (Y, d) , so there is y ∈ Y

such as yp → y as p → ∞.As I is continuous, it follows that yp+1 = I yp converges
to I y as p → ∞. By uniqueness of limit, we get y = I y. That is y is a fixed point
of I. �

Kirk and Shahzad [21] define (ε, c) uniform local multivauled contraction. We
generalize this definition as follows.

Definition 26 Amapping I : Y → CB (Y ) is an (ε − φ) uniform local multivauled
contraction, where ε > 0 and α : Y × Y → [0,∞) and φ ∈ �,

if d (y, z) < ε, then α∗ (I y, I z) H (I y, I z) ≤ φ (d (y, z)) .

Following result is generalized form of [21, Theorem 3.4].

Theorem 27 Let for a metric space (Y, d), suppose there is a metric transform
ψ ∈ �, if mapping I : Y → CB (Y ) satisfies,
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1. for each y, z ∈ Y

ψ (α∗ (I y, I z) H (I y, I z)) ≤ φ (d (y, z)) ,

2. there exists υ ∈ �, such as for l > 0 sufficiently small

φ (l) ≤ ψ (υ(l)) .

Then for ε > 0 sufficiently small, I is an (ε − υ) uniform local multivauled con-
traction on (Y, d) .

Proof Let y, z ∈ Y by condition (1) and (2)

ψ (α∗ (I y, I z) H (I y, I z)) ≤ φ (d (y, z))

and
φ (d (y, z)) ≤ ψ (υ (d (y, z))) .

Then
ψ (α∗ (I y, I z) H (I y, I z)) ≤ ψ (υ (d (y, z)))

as φ is strictly increasing so we get

α∗ (I y, I z) H (I y, I z) ≤ υ (d (y, z)) .

So I is an (ε − υ) uniform local multivauled contraction on (Y, d) . �
Corollary 28 Let for a metric space (Y, d), there is a metric transform ψ ∈ �, and
r ∈ (0, 1) if the mapping I : Y → CB (Y ) satisfies,

1. for each y, z ∈ Y
ψ (H (I y, I z)) ≤ rd (y, z) ,

2. for l > 0 sufficiently small, there exists c ∈ (0, 1) such that

rl ≤ ψ (cl) .

Then for sufficiently small l > 0, I is an (ε, c) uniform local multivauled con-
traction on (Y, d) .

Proof In Theorem 13 for υ (t) = r t and α (y, z) = 1 for some r ∈ (0, 1) , we get
the required result. �

By using the above Corollary 28 and Theorem 14 we get the result as follows.

Corollary 29 Let (Y, d) be a ε-chainable, connected and complete metric space
Then I has a fixed point.

Proof For any ε > 0 a connected metric space is ε-chainable. �
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3 Generalized (α∗ − φ) Multivalued Contractions

In this section, we generalized the fixed point results concerning multivauled map-
pings by using generalized (α∗ − φ) contraction. We extend some theorems which
are proved in previous section. The extended results are verified through examples.
We prove some other fixed point results, by using them some of the corollaries will
be obtained which are exist in literature.

FollowingTheorem30 is extended formofTheorem17 formetric D (semi sequen-
tially equivalent Hausdorff metric). In this result we will use (α∗ − φ) contraction
condition for generalized metric M´(y, z) instead of d (y, z) . Where,

M´(y, z) = max

{
d (y, z) , d (y, I y) ,

d (y, z) d (z, I z)

1 + d (y, z)

}
.

Theorem 30 Let for a complete metric space (Y, d), D be semi sequentially equiv-
alent metric on CB (Y ) . If the mapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) D (I y, I z) ≤ φ
(M´(y, z)

)
, for every y, z ∈ Y,

(ii) If y ∈ Y and z ∈ I y
d (z, I z) ≤ D (I z, I y) ,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(v) either

• {
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further yp →
y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p,
or

• I is upper hemi continuous.

Then I has a fixed point y.

Proof By condition (iii) and (iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1
which implies α∗ (I y0, I y1) ≥ 1. If y1 = y0 then y0 = y1 ∈ I y0 that is y0 ∈ I y0,
which implies y0 is fixed point of I. Proof is completed. So assume y0 �= y1, then
by using condition (i) and (ii)

d (y1, I y1) ≤ D (I y1, I y0) ≤ α∗ (I y0, I y1) D (I y0, I y1) ≤ φ
(
M´(y0, y1)

)

If d (y1, I y1) = 0 then y1 ∈ I y1 implies that y1 is a fixed point of I and the proof
is finished. So assume that d (y1, I y1) > 0 and
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0 < d (y1, I y1) ≤ φ
(
M´(y0, y1)

)

= φ

(
max

{
d (y0, y1) , d (y0, I y0) ,

d (y0, y1) d (y1, I y1)

1 + d (y0, y1)

})

≤ φ (max {d (y0, y1) , d (y1, I y1)}) .

That is
0 < d (y1, I y1) ≤ φ (max {d (y0, y1) , d (y1, I y1)}) .

If max {d (y0, y1) , d (y1, I y1)} = d (y1, I y1) then we have that

0 < d (y1, I y1) ≤ φ (d (y1, I y1)) .

As d (y1, I y1) > 0 and φ ∈ � and φ (l) < l,

0 < d (y1, I y1) < d (y1, I y1)

gives a contradiction. Hence

0 < d (y1, I y1) ≤ φ (d (y0, y1)) .

We may choose y2 ∈ I y1 and q1 > 1 such that

0 < d (y1, I y1) ≤ d (y1, y2) < q1d (y1, I y1) .

Thus

0 < d (y1, y2) < q1d (y1, I y1) ≤ q1φ (d (y0, y1)) = q1φ (b◦)

where b◦ = d (y0, y1). Note that y2 �= y1 and α (y1, y2) ≥ α∗ (I y0, I y1) ≥ 1. Thus
α (y1, y2) ≥ 1 and hence α∗ (I y1, I y2) ≥ 1. As φ ∈ �,

φ (d (y1, y2)) < φ (q1φ (b◦)) .

If we set

q2 = φ (q1φ (b◦))
φ (d (y1, y2))

,

then q2 > 1. Now if y2 ∈ I y2 then proof is finished. Let y2 /∈ I y2 then by similar
process we obtain

0 < d (y2, I y2) ≤ φ (d (y1, y2))

and y3 ∈ I y2 such that

0 < d (y2, y3) < q2d (y2, I y2) ≤ q2φ (d (y1, y2)) = φ (q1φ (b◦)) . (3)
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Note that y3 �= y2,
α (y2, y3) ≥ α∗ (I y1, I y2) ≥ 1.

Thus α (y2, y3) ≥ 1 implies that α∗ (I y2, I y3) ≥ 1. By 3 we have

φ (d (y2, y3)) < φ2 (q1 (φ (b◦))) .

If

q3 = φ2 (q1φ (b◦))
φ (d (y2, y3))

,

then q3 > 1. Now if y3 ∈ I y3, then the proof is finished. Let y3 /∈ I y3. Resuming in
this way, we get a sequence

{
yp

}
in Y and it satisfies yp+1 ∈ I yp, yp+1 �= yp and

α
(
yp+1, yp+2

) ≥ 1, such that

0 < d
(
yp+1, I yp+1

) ≤ φ
(
d

(
yp, yp+1

))

which gives
0 < d

(
yp+1, yp+2

) ≤ φp (q1φ (b◦)) .

Now we prove that
{
yp

}
is Cauchy sequence. in Y. Now for each q > p, we have

d
(
yp, yq

) ≤
q−1∑

i=p

d (yi , yi+1) ≤
q−1∑

i=p

φi−1 (q1φ (b◦)) < ∞.

As φ ∈ � for any ε > 0 there exists n1 such that
∑∞

i=p+1 d (yi , yi+1) < ε for all
p ≥ n1. Now by using triangular inequality

d
(
yp, yq

) ≤ d
(
yp, yp+1

) + d
(
yp+1, yp+2

) + . . . d
(
yq−1, yq

)

=
q−1∑

i=p

d (yi , yi+1) ≤
q−1∑

i=p

φi−1 (q1φ (b◦))

≤
∞∑

i=p

φi−1 (q1φ (b◦))

for all p, q ≥ n1. Now for all ε > 0 there is n1 such that

d
(
yp, yq

) =
∞∑

i=p+1

φi−1 (q1φ (b◦)) < ε for all p, q ≥ n1.

As
∑∞

i=1 φi < ∞, so this implies
{
yp

}
is a Cauchy sequence. so yp converges

to y. As α
(
yp, yp+1

) ≥ 1 and yp → y so α
(
yp, y

) ≥ 1 for all p ∈ N . As I is α∗-
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admissible so α∗
(
I yp, I y

) ≥ 1 so by (i)

D
(
I yp, I y

) ≤ α∗
(
I yp, I y

)
D

(
I yp, I y

)

≤ φ
(
M´(yp, y

))

= φ

(

max

{

d
(
yp, y

)
, d

(
yp, I yp

)
,
d

(
yp, I yp

)
d (y, I y)

1 + d
(
yp, y

)

})

≤ φ

(

max

{

d
(
yp, y

)
, d

(
yp, yp+1

)
,
d

(
yp, yp+1

)
d (y, I y)

1 + d
(
yp, y

)

})

.

On taking limit as p tends to ∞, we have

lim
p→∞ D

(
I yp, I y

) ≤ lim
p→∞ φ

(

max

{

d
(
yp, y

)
, d

(
yp, yp+1

)
,
d

(
yp, yp+1

)
d (y, I y)

1 + d
(
yp, y

)

})

.

That is lim p→∞ D
(
I yp, I y

) = 0 asφ is continuous at 0. As D is semi sequentially
equivalent to H so

lim
p→∞ H

(
I yp, I y

) = 0.

Consequently, we obtain

lim
p→∞ d

(
yp, I y

) ≤ lim
p→∞ H

(
I yp, I y

) = 0

implies
d (y, I y) = lim

p→∞ d
(
yp, I y

) = 0.

Hence y ∈ I y. As lim p→∞ yp = y, and yp+1 ∈ I
(
yp

)
, so by upper hemi conti-

nuity, y ∈ I y. �

By using Theorem 30 the following Corollary can be obtained.

Corollary 31 Let for a complete metric space (Y, d) and D1 be sequentially equiv-
alent metric on CB (Y ) . If the mapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) D1 (I y, I z) ≤ φ
(M´(y, z)

)
, for every y, z ∈ Y,

(ii) if y ∈ Y and z ∈ I y
d (z, I z) ≤ D1 (I z, I y) ,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(v) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p, or (b) I is upper hemi
continuous.
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Then I has a fixed point y.

Corollary 32 Let for a complete metric space (Y, d), D2 be strong semi sequentially
equivalent metric on CB (Y ) . If the mapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) D2 (I y, I z) ≤ φ
(M´(y, z)

)
, for every y, z ∈ Y,

(ii) If y ∈ Y and z ∈ I y
d (z, I z) ≤ D2 (I z, I y) ,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(v) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p, or (b) I is upper hemi
continuous.

Then I has a fixed point y.

Corollary 33 Assume for a complete metric space (Y, d) , and D be semi sequen-
tially equivalent metric on CB (Y ). If the mapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) D (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) If y ∈ Y and z ∈ I y
d (z, I z) ≤ D (I z, I y) ,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(v) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p ∈ N or (b) I is upper
hemi continuous.

Then I has a fixed point y.

Proof If we putM (y, z) = d (y, z) in Theorem 30 we obtain the required result. �

Definition 34 Let for a metric space (Y, d), the mapping I : Y → CB (Y ) is a mul-
tivauled (α∗ − φ) generalized contractive mapping with two functions α : Y × Y →
[0,∞) and φ ∈ � such as

α∗ (I y, I z) H (I y, I z) ≤ φ (M (y, z))

for all y, z ∈ Y. Where H is the Hausdorff metric and

M (y, z) = max

⎧
⎨

⎩

d (y, z) , d (y, I y) , d (z, I z) ,
d (y, I z) + d (z, I y)

2
,
d (y, I y) d (z, I z)

1 + d (y, z)

⎫
⎬

⎭
.

Hassanzade et al. [3] proved fixed point result for Hausdorff metric by using
(α∗ − φ) contraction. Following Theorem is extended form of that result.
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Theorem 35 Let for a complete metric space (Y, d), and H be any Hausdorff metric
on CB (Y ) . If the mapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) H (I y, I z) ≤ φ (M (y, z)) , for every y, z ∈ Y,

(ii) I is α∗-admissible,
(iii) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(iv) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p,
or (b) I is upper hemi continuous.

Then I has a fixed point y.

Proof By condition (iii) and (iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1
which implies α∗ (I y0, I y1) ≥ 1. If y1 = y0 then y0 = y1 ∈ I y0 that is y0 ∈ I y0.
Which implies y0 is fixed point of I hence proof is completed. So assume y0 �= y1,
then by using condition (i) we get

d (y1, I y1) ≤ H (I y1, I y0)

≤ α∗ (I y0, I y1) H (I y0, I y1)

≤ φ (M (y0, y1)) .

If d (y1, I y1) = 0 then y1 ∈ I y1 implies that y1 is a fixed point of I and the proof is
done. So consider that d (y1, I y1) > 0 and

d (y1, I y1) ≤ φ (M (y0, y1))

= φ

⎛

⎜⎜⎜
⎝
max

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d (y0, y1) , d (y0, I y0) ,

d (y1, I y1) ,
d (y0, I y1) + d (y1, y1)

2
,

d (y0, y1) d (y1, I y1)

1 + d (y0, y1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎞

⎟⎟⎟
⎠

≤ φ

(

max

{
d (y0, y1) , d (y1, I y1) ,
d (y0, I y1)

2
, d (y1, I y1)

})

≤ φ

(

max

{
d (y0, y1) , d (y1, I y1) ,
d (y0, y1) + d (y1, I y1)

2

})

≤ φ (max {d (y0, y1) , d (y1, I y1)}) .

That is
0 < d (y1, I y1) ≤ φ (max {d (y0, y1) , d (y1, I y1)}) .

If
max {d (y0, y1) , d (y1, I y1)} = d (y1, I y1)

then we have that
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0 < d (y1, I y1) ≤ φ (d (y1, I y1)) .

As d (y1, I y1) > 0 and φ ∈ � and φ (t) < t,

0 < d (y1, I y1) < d (y1, I y1)

gives a contradiction. Hence

0 < d (y1, I y1) ≤ φ (d (y0, y1)) .

We may choose y2 ∈ I y1 and q1 > 1 such that

0 < d (y1, I y1) ≤ d (y1, y2) < q1d (y1, I y1) .

Thus

0 < d (y1, y2) < q1d (y1, I y1)

≤ q1φ (d (y0, y1)) = q1φ (b◦)

where b◦ = d (y0, y1). Note that y2 �= y1 and α (y1, y2) ≥ α∗ (I y0, I y1) ≥ 1. Thus
α (y1, y2) ≥ 1 and hence α∗ (I y1, I y2) ≥ 1. As φ ∈ �,

φ (d (y1, y2)) < φ (q1φ (b◦)) .

If we set

q2 = φ (q1φ (b◦))
φ (d (y1, y2))

,

then q2 > 1. Now if y2 ∈ I y2 then proof is finished. Let y2 /∈ I y2 then by similar
process we obtain

0 < d (y2, I y2) ≤ φ (d (y1, y2))

and y3 ∈ I y2 such that

0 < d (y2, y3) < q2d (y2, I y2) (4)

≤ q2φ (d (y1, y2)) = φ (q1φ (b◦)) .

Note that y3 �= y2,
α (y2, y3) ≥ α∗ (I y1, I y2) ≥ 1.

Thus α (y2, y3) ≥ 1 implies that α∗ (I y2, I y3) ≥ 1. By (4) we have

φ (d (y2, y3)) < φ2 (q1 (φ (b◦))) .
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If

q3 = φ2 (q1φ (b◦))
φ (d (y2, y3))

,

then q3 > 1. Now if y3 ∈ I y3, then the proof is finished. Let y3 /∈ I y3. Resuming in
this way, we get a sequence

{
yp

}
in Y and satisfies

yp+1 ∈ I yp, yp+1 �= yp, α
(
yp+1, yp+2

) ≥ 1,

0 < d
(
yp+1, I yp+1

) ≤ φ
(
d

(
yp, yp+1

))

which gives
0 < d

(
yp+1, yp+2

) ≤ φp (q1φ (b◦)) .

Now we prove that
{
yp

}
is Cauchy sequence. in Y.Now for each q > p,we have

d
(
yp, yq

) ≤
q−1∑

i=p

d (yi , yi+1)

≤
q−1∑

i=p

φi−1 (q1φ (b◦)) < ∞.

As φ ∈ � for any ε > 0 there exists N1 such that

∞∑

i=p+1

d (yi , yi+1) < ε

for all p ≥ N1. Now by using triangular inequality

d
(
yp, yq

) ≤ d
(
yp, yp+1

) + d
(
yp+1, yp+2

) + . . . d
(
yq−1, yq

)

=
q−1∑

i=p

d (yi , yi+1) ≤
q−1∑

i=p

φi−1 (q1φ (b◦))

≤
∞∑

i=p

φi−1 (q1φ (b◦))

for all p, q ≥ N1. Now for all ε > 0 there exists N1 such that

d
(
yp, yq

) =
∞∑

i=p+1

φi−1 (q1φ (b◦)) < ε
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for all p, q ≥ N1.As
∑∞

i=1 φi < ∞, so this implies
{
yp

}
is a Cauchy sequence. so yp

converges to y.Nowwewant to show that y is a fixed point of I.Asα
(
yp, yp+1

) ≥ 1
and yp → y as n → ∞, so by given condition, α

(
yp, y

) ≥ 1 for all p ∈ N . As I is
α∗-admissible so α∗

(
I yp, I y

) ≥ 1. We have

d
(
yp+1, I y

) ≤ H
(
I yp, I y

) ≤ α∗
(
I yp, I y

)
H

(
I yp, I y

)

≤ φ
(M (

yp, y
))

= φ

⎛

⎜⎜⎜⎜
⎝
max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
(
yp, y

)
, d

(
yp, I yp

)
,

d (y, I y) ,
d

(
yp, I y

) + d
(
y, I yp

)

2
,

d
(
yp, I yp

)
d (y, I y)

1 + d
(
yp, y

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎞

⎟⎟⎟⎟
⎠

≤ φ

⎛

⎜⎜⎜⎜
⎝
max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d
(
yp, y

)
, d

(
yp, yp+1

)
,

d (y, I y) ,
d

(
yp, I y

) + d
(
y, yp+1

)

2
,

d
(
yp, yp+1

)
d (y, I y)

1 + d
(
yp, y

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎞

⎟⎟⎟⎟
⎠

.

On taking limit we get

d (y, I y) ≤ φ (d (y, I y))

implies that y ∈ I y. As lim p→∞ yp = y, and yp+1 ∈ I
(
yp

)
, so by upper hemi con-

tinuity, y ∈ I y. �

Following is the example which is satisfying all the conditions of Theorem 35.

Example 36 Let Y = {y1, y2, y3, y4, y5} .Define the mapping d : Y × Y → R
+ by

d (y2, y5) = d (y3, y4) = d (y3, y5) = d (y2, y4) = 6,

d (y2, y3) = d (y1, y4) = d (y1, y5) = 9,

d (y1, y2) = d (y1, y3) = 5,

d (y4, y5) = 1,

d (y, y) = 0 and d (y, y◦) = d (y◦, y)

for all y, z ∈ Y.Clearly (Y, d) is a complete metric space. Define amapping I : Y →
CB (Y ) by

I y =
⎧
⎨

⎩

{y1} if y = y1, y2, y3,
{y2} if y = y4,
{y3} if y = y5.

Define α : Y × Y → R
+ by α

(
yi , y j

) = 1 for all i, j ∈ {1, 2, 3, 4, 5} . If we set
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φ (t) = 8

9
t

for t ∈ R
+, then φ ∈ �. I is α∗-admissible. Note that

α∗ (I y, I z) H (I y, I z) ≤ φ (M (y, z))

where

M (y, z) = max

⎧
⎨

⎩

d (y, z) , d (y, I y) , d (z, I z) ,
d (y, I z) + d (z, I y)

2
,
d (y, I y) d (z, I z)

1 + d (y, z)

⎫
⎬

⎭
.

This condition holds for any y, z ∈ {y1, y2, y3} as

H (I y, I z) = 0 ≤ φ (M (y, z)) = 8

9
d (y, z) .

Now consider the remaining cases:
If y = y1 and z ∈ {y4, y5} then

H (I y1, I z) = 5 ≤ φ (M (y1, z))

= φ

⎛

⎝max

⎧
⎨

⎩

d (y1, z) , d (y1, I y1) , d (y4, I z) ,
d (y1, I z) + d (z, I y1)

2
,
d (y1, I y1) d (z, I z)

1 + d (y1, z)

⎫
⎬

⎭

⎞

⎠

= φ (9) = 8

9
× 9 = 8.

When x = y2 and y = y4 then

H (I y, I z) = d (y1, y2) = 5 ≤ φ (M (y2, y4))

= φ

⎛

⎝max

⎧
⎨

⎩

d (y, z) , d (x, I x) , d (y4, I y4) ,
d (x, I y4) + d (y4, I x)

2
,
d (x, I y2) d (x, I x)

1 + d (y2, x)

⎫
⎬

⎭

⎞

⎠

= φ (6) = 48

9
.

When y = y2 and z = y5 then
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H (I y2, I y5) = d (y1, y3) = 5 ≤ φ (M (y2, y5))

= φ

⎛

⎝max

⎧
⎨

⎩

d (y2, y5) , d (y2, I y2) , d (y5, y3) ,
d (y2, I y5) + d (y5, I y2)

2
,
d (y2, I y2) d (y5, I y5)

1 + d (y2, y5)

⎫
⎬

⎭

⎞

⎠

= φ

⎛

⎝max

⎧
⎨

⎩

d (y2, y5) , d (y2, y1) , d (y5, y3) ,
d (y2, y3) + d (y5, y1)

2
,
d (y2, y1) d (y5, y3)

1 + d (y2, y5)

⎫
⎬

⎭

⎞

⎠

= φ

(
max

{
6, 5, 6,

9 + 9

2
,
5 × 6

1 + 6

})
= φ (9) = 8.

Now for y = y3 and z = y4 then

H (I y3, I y4) = d (y1, y2) = 5 ≤ φ (M (y3, y4))

= φ

⎛

⎝max

⎧
⎨

⎩

d (y3, y4) , d (y3, I y3) , d (y4, I y4) ,
d (y3, I y4) + d (y4, I y3)

2
,
d (y3, I y3) d (y4, I y4)

1 + d (y3, y4)

⎫
⎬

⎭

⎞

⎠

= φ

⎛

⎝max

⎧
⎨

⎩

d (y3, y4) , d (y3, y1) , d (y4, y2) ,
d (y3, y2) + d (y4, y1)

2
,
d (y3, y1) d (y4, y2)

1 + d (y3, y4)

⎫
⎬

⎭

⎞

⎠

= φ

(
max

{
6, 5, 6,

9 + 9

2
,
5 × 6

1 + 6

})
= φ (9) = 8.

When x = y3 and y = y5.

H (I y3, I y5) = d (y1, y3) = 5 ≤ φ (M (y3, y5))

= φ

⎛

⎝max

⎧
⎨

⎩

d (y3, y5) , d (y3, I y3) , d (y5, I y5) ,
d (y3, I y5) + d (y, I y5)

2
,
d (y3, I y3) d (y5, I y5)

1 + d (y3, y5)

⎫
⎬

⎭

⎞

⎠

= φ

⎛

⎝max

⎧
⎨

⎩

d (y3, y5) , d (y3, y1) , d (y5, y3) ,
d (y3, y3) + d (y5, y3)

2
,
d (y3, y1) d (y5, y3)

1 + d (y3, y5)

⎫
⎬

⎭

⎞

⎠

= φ

(
max

{
6, 5, 6,

0 + 6

2
,
5 × 6

1 + 6

})
= φ (6) = 8

9
× 6 = 48

9
.

When y = y4 and z = y5.
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H (I y4, I y5) = d (y2, y3) = 9

= φ

⎛

⎝max

⎧
⎨

⎩

d (y4, y5) , d (y4, I y4) , d (y5, I y5) ,
d (y4, I y5) + d (y5, I y4)

2
,
d (y4, I y4) d (y5, I y5)

1 + d (y4, y5)

⎫
⎬

⎭

⎞

⎠

= φ

⎛

⎝max

⎧
⎨

⎩

d (y4, y5) , d (y4, y2) , d (y5, y3) ,
d (y4, y3) + d (y5, y2)

2
,
d (y4, y2) d (y5, y3)

1 + d (y4, y5)

⎫
⎬

⎭

⎞

⎠

= φ

(
max

{
1, 6, 6,

6 + 6

2
,
6 × 6

1 + 1

})
= φ (18) = 16.

The sequenceswhich are constant or eventually constantwill be happen in discrete
metric spaces. So we deduce that all the conditions of Theorem 17 is satisfied so I
has a fixed.

Remark 37 By using Example 36 it can be easily seen that Theorem 35 is the
generalization of Theorem 17 because if we use this example for Theorem 17 then
contraction condition for y = y4 and z = y5 will not be satisfied.

Corollary 38 Let for a complete metric space (Y, d), α : Y × Y → [0,∞) be a
function, φ ∈ �. If the mapping I : Y → Cl(Y ) satisfies,

(i) α∗ (I y, I z) H (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) I is α∗-admissible,
(iii) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1.
(iv) Assume that if

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p and
yp → y, then α

(
yp, y

) ≥ 1 for all p.
Then I has a fixed point.

Proof IfM (y, z) = d (y, z) and in Theorem 35 we get the required result. �

Corollary 39 Let for a complete metric space (Y, d),if the mapping I : Y → Y
satisfies,

(i) α (y, z) d (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,

(ii) I is α-admissible,
(iii) there is y0 ∈ Y such as α (y0, I y0) ≥ 1,
(iv) I is continuous.

Then I has a fixed point, that is, there exists y ∈ Y such that I y = y.

Proof By using point valued analogous of Theorem 35 and using M (y, z) =
d (y, z) we find the required result. �

Corollary 40 Let for a complete metric space (Y, d), if the mapping I : Y → Y
satisfies,

(i) α (y, z) d (I y, I z) ≤ φ (d (y, z)) , for every y, z ∈ Y,
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(ii) I is α-admissible,
(iii) there is y0 ∈ Y such as α (y0, I y0) ≥ 1,
(iv) if

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further yp →
y ∈ Y as p → +∞, then α

(
yp, y

) ≥ 1 for all p.

Then I has a fixed point, that is, there exists y ∈ Y such that I y = y.

Proof Byusingpoint valued analogous inTheorem35andusingM (y, z) = d (y, z)
we find the required result. �

Now we extend Theorem 30 by using more general metric M (y, z) instead of
M´(y, z) with a new metric D2 which is strong semi sequentially equivalent to
Hausdorff.

Theorem 41 Let (Y, d) be a complete metric space and D2 be strong sequentially
equivalent toHausdorff metric onCB (Y ) . If themapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) D2 (I y, I z) ≤ φ (M (y, z)) , for every y, z ∈ Y,

(ii) for y ∈ Y and z ∈ I y
d (z, I z) ≤ D2 (I z, I y) ,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(v) if H

(
Mp, M

) ≤ D2
(
Mp, M

)
,

(vi) either (a)
{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p, or (b) I is upper hemi
continuous.

Then I has a fixed point y.

Proof By condition (iii) and (iv) there is y0 ∈ Y and y1 ∈ I y0 such as

α (y0, y1) ≥ 1 ⇒ α∗ (I y0, I y1) ≥ 1.

If y1 = y0 then y0 = y1 ∈ I y0 that is y0 ∈ I y0. Which implies y0 is fixed point of
I. Proof is completed. So assume y0 �= y1, then by using condition (i) and (ii)

d (y1, I y1) ≤ D (I y1, I y0) ≤ α∗ (I y0, I y1) D (I y0, I y1) ≤ φ (M (y0, y1))

If d (y1, I y1) = 0 then y1 ∈ I y1 implies that y1 is a fixed point of I and the proof
is done. So assume that d (y1, I y1) > 0
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0 < d (y1, I y1) ≤ φ (M (y0, y1))

= φ

⎛

⎝max

⎧
⎨

⎩

d (y0, y1) , d (y0, I y0) , d (y1, I y1) ,
d (y0, I y1) + d (y1, y1)

2
,
d (y0, y1) d (y1, I y1)

1 + d (y0, y1)

⎫
⎬

⎭

⎞

⎠

≤ φ

(
max

{
d (y0, y1) , d (y1, I y1) ,

d (y0, I y1)

2
, d (y1, I y1)

})

≤ φ

(
max

{
d (y0, y1) , d (y1, I y1) ,

d (y0, y1) + d (y1, I y1)

2

})

≤ φ (max {d (y0, y1) , d (y1, I y1)}) .

That is

0 < d (y1, I y1) ≤ φ (max {d (y0, y1) , d (y1, I y1)}) .

If max {d (y0, y1) , d (y1, I y1)} = d (y1, I y1) then we have that

0 < d (y1, I y1) ≤ φ (d (y1, I y1)) .

As d (y1, I y1) > 0 and φ ∈ � and φ (t) < t,

0 < d (y1, I y1) < d (y1, I y1)

gives a contradiction. Hence

0 < d (y1, I y1) ≤ φ (d (y0, y1)) .

We may take y2 ∈ I y1 and q1 > 1 such that

0 < d (y1, I y1) ≤ d (y1, y2) < q1d (y1, I y1) .

Thus

0 < d (y1, y2) < q1d (y1, I y1) ≤ q1φ (d (y0, y1)) = q1φ (b◦)

where d (y0, y1) = b◦. Note that y2 �= y1 and α (y1, y2) ≥ α∗ (I y0, I y1) ≥ 1. Thus
α (y1, y2) ≥ 1 and hence α∗ (I y1, I y2) ≥ 1. As φ ∈ �,

φ (d (y1, y2)) < φ (q1φ (b◦)) .

If we set

q2 = φ (q1φ (b◦))
φ (d (y1, y2))

,
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then q2 > 1. Now if y2 ∈ I y2 then proof is finished. Let y2 /∈ I y2 then by similar
process we obtain

0 < d (y2, I y2) ≤ φ (d (y1, y2))

and y3 ∈ I y2 such that

0 < d (y2, y3) < q2d (y2, I y2) ≤ q2φ (d (y1, y2)) = φ (q1φ (b◦)) . (5)

Note that y3 �= y2,
α (y2, y3) ≥ α∗ (I y1, I y2) ≥ 1.

Thus α (y2, y3) ≥ 1 implies that α∗ (I y2, I y3) ≥ 1. By 5 we have

φ (d (y2, y3)) < φ2 (q1 (φ (b◦))) . (6)

If

q3 = φ2 (q1φ (b◦))
φ (d (y2, y3))

,

then q3 > 1. Now if y3 ∈ I y3, then the proof is finished. Let y3 /∈ I y3. Resuming in
this way, we get a sequence

{
yp

}
in Y and it satisfies yp+1 ∈ I yp, yp+1 �= yp,

α
(
yp+1, yp+2

) ≥ 1,

0 < d
(
yp+1, I yp+1

) ≤ φ
(
d

(
yp, yp+1

))

which gives
0 < d

(
yp+1, yp+2

) ≤ φp (q1φ (b◦))

Now we prove that
{
yp

}
is Cauchy sequence. in Y. Now for each q > p, we have

d
(
yp, yq

) ≤
q−1∑

i=p

d (yi , yi+1) ≤
q−1∑

i=p

φi−1 (q1φ (b◦)) < ∞.

As φ ∈ � for any ε > 0 there exists n1 such that
∑∞

i=p+1 d (yi , yi+1) < ε for all
p, q ≥ n1. Now by using triangular inequality
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d
(
yp, yq

) ≤ d
(
yp, yp+1

) + d
(
yp+1, yp+2

) + . . . d
(
yq−1, yq

)

=
q−1∑

i=p

d (yi , yi+1) ≤
q−1∑

i=p

φi−1 (q1φ (b◦))

≤
∞∑

i=p

φi−1 (q1φ (b◦))

for all p, q ≥ n1. Now for all ε > 0 there exists n1 such that

d
(
yp, yq

) =
∞∑

i=p+1

φi−1 (qφ (b◦)) < ε for all p, q ≥ n1.

As
∑∞

i=1 φi < ∞, so this implies
{
yp

}
is a Cauchy sequence. so yp converges

to y. As α
(
yp, yp+1

) ≥ 1 and yp → y so α
(
yp, y

) ≥ 1 for all p ∈ N . As I is α∗
admissible so α∗

(
I yp, I y

) ≥ 1 so by using condition (i) and (v) we have

d
(
yp+1, I y

) ≤ H
(
I yp, I y

) ≤ D
(
I yp, I y

) ≤ α∗
(
I yp, I y

)
D

(
I yp, I y

)

≤ φ
(
M

(
yp, y

))

= φ

⎛

⎝max

⎧
⎨

⎩

d
(
yp, y

)
, d

(
yp, I yp

)
, d (y, I y) ,

d
(
yp, I y

) + d
(
y, I yp

)

2
,
d

(
yp, I yp

)
d (y, I y)

1 + d
(
yp, y

)

⎫
⎬

⎭

⎞

⎠

≤ φ

⎛

⎝max

⎧
⎨

⎩

d
(
yp, y

)
, d

(
yp, yp+1

)
, d (y, I y) ,

d
(
yp, I y

) + d
(
y, yp+1

)

2
,
d

(
yp, yp+1

)
d (y, I y)

1 + d
(
yp, y

)

⎫
⎬

⎭

⎞

⎠ .

On taking limit as n tends to ∞ on both sides of above inequality, we have

d (y, I y) ≤ φ (d (y, I y)) < d (y, I y)

a contradiction. Consequently y ∈ I y. �

Definition 42 Let for a metric space (Y, d), the mapping I : Y → CB (Y ) is an
(α∗ − φ) generalized contractive mapping on metrically equivalent Hausdorff space
with two functions as α : Y × Y → [0,∞) and φ ∈ � such that

α∗ (I y, I z) H+ (I y, I z) ≤ φ (N (y, z))

for all y, z ∈ Y. Where H+ is metrically equivalent to Hausdorff metric and
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N (y, y◦) = max

⎧
⎪⎪⎨

⎪⎪⎩

d (y, y◦) , d (y, I y) ,
d (y◦, I y◦)

2
,

d (y, I y◦) + d (y◦, I y)
2

,
d (y, I y) d (y◦, I y◦)

1 + d (y, y◦)

⎫
⎪⎪⎬

⎪⎪⎭

Theorem 43 Let for a complete metric space (Y, d), H+ be metrically equivalent
to Hausdorff metric on CB (Y ) . If the mapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) H+ (I y, I z) ≤ φ (N (y, z)) , for every y, z ∈ Y,

(iii) I is α∗-admissible,
(iv) there is y0 ∈ Y and y1 ∈ I y0 such as α (y0, y1) ≥ 1,
(v) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → z ∈ Y as p → ∞, then α

(
yp, z

) ≥ 1 for all p,

or (b) I is upper hemi continuous.

Then I has a fixed point.

Proof By condition (iii) and (iv) there is y0 ∈ Y and y1 ∈ I y0 such asα (y0, y1) ≥ 1
which implies α∗ (I y0, I y1) ≥ 1. If y1 = y0 then y0 = y1 ∈ I y0 that is y0 ∈ I y0.
Which implies y0 is fixed point of I. Proof is completed. So assume y0 �= y1, then
by using condition (i) we get

d (y1, I y1) ≤ H+ (I y1, I y0)

≤ α∗ (I y0, I y1) H
+ (I y0, I y1)

≤ φ (N (y0, y1)) .

If d (y1, I y1) = 0 then y1 ∈ I y1 implies that y1 is a fixed point of I and the proof
is done. Assume that d (y1, I y1) > 0

0 < d (y1, I y1) ≤ φ (N (y0, y1))

= φ

⎛

⎜
⎝max

⎧
⎪⎨

⎪⎩

d (y0, y1) , d (y0, I y0) ,
d (y1, I y1)

2
,

d (y0, I y1) + d (y1, y1)

2
,
d (y0, y1) d (y1, I y1)

1 + d (y0, y1)

⎫
⎪⎬

⎪⎭

⎞

⎟
⎠

≤ φ

(
max

{
d (y0, y1) ,

d (y1, I y1)

2
,
d (y0, I y1)

2
, d (y1, I y1)

})

≤ φ

(
max

{
d (y0, y1) ,

d (y1, I y1)

2
,
d (y0, y1) + d (y1, I y1)

2

})

≤ φ

(
max

{
d (y0, y1) ,

d (y1, I y1)

2

})
.

That is

0 < d (y1, I y1) ≤ φ

(
max

{
d (y0, y1) ,

d (y1, I y1)

2

})
.
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If

max

{
d (y0, y1) ,

d (y1, I y1)

2

}
= d (y1, I y1)

2

then we have that

0 < d (y1, I y1) ≤ φ

(
d (y1, I y1)

2

)
.

As d (y1, I y1) > 0 and φ ∈ � and φ (t) < t,

0 < d (y1, I y1) <
d (y1, I y1)

2

gives a contradiction. Hence

0 < d (y1, I y1) ≤ φ (d (y0, y1)) .

We may choose y2 ∈ I y1 and q1 > 1 such that

0 < d (y1, I y1) ≤ d (y1, y2) < q1d (y1, I y1) .

Thus

0 < d (y1, y2) < q1d (y1, I y1)

≤ q1φ (d (y0, y1)) = q1φ (b◦)

where b◦ = d (y0, y1). Note that y2 �= y1 and

α (y1, y2) ≥ α∗ (I y0, I y1) ≥ 1.

Thus α (y1, y2) ≥ 1 and hence α∗ (I y1, I y2) ≥ 1. As φ ∈ �,

φ (d (y1, y2)) < φ (q1φ (b◦)) .

If we set

q2 = φ (q1φ (b◦))
φ (d (y1, y2))

then q2 > 1. Now if y2 ∈ I y2 then proof is finished. Let y2 /∈ I y2 then by similar
process we obtain

0 < d (y2, I y2) ≤ φ (d (y1, y2))

and y3 ∈ I y2 such that
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0 < d (y2, y3) < q2d (y2, I y2) (7)

≤ q2φ (d (y1, y2)) = φ (q1φ (b◦)) .

Note that y3 �= y2,
α (y2, y3) ≥ α∗ (I y1, I y2) ≥ 1.

Thus α (y2, y3) ≥ 1 implies that α∗ (I y2, I y3) ≥ 1. By 7 we have

φ (d (y2, y3)) < φ2 (q1 (φ (b◦))) . (8)

If

q3 = φ2 (q1φ (b◦))
φ (d (y2, y3))

,

then q3 > 1. Now if y3 ∈ I y3, then the proof is finished. Let y3 /∈ I y3. Resuming in
this way, we get a sequence

{
yp

}
in Y and it satisfies yp+1 ∈ I yp as yp+1 �= yp, and

α
(
yp+1, yp+2

) ≥ 1,

0 < d
(
yp+1, I yp+1

) ≤ φ
(
d

(
yp, yp+1

))

which gives
0 < d

(
yp+1, yp+2

) ≤ φn (q1φ (b◦)) .

Now we prove that
{
yp

}
is Cauchy sequence. in Y. Now for each q > p, we have

d
(
yp, yq

) ≤
q−1∑

j=p

d
(
y j , y j+1

) ≤
q−1∑

j=p

φ j−1 (q1φ (b◦)) < ∞.

As φ ∈ � for any ε > 0 there exists N1 such as
∑∞

j=p+1 d
(
y j , y j+1

)
< ε for all

p ≥ N1. Now by using triangular inequality

d
(
yp, yq

) ≤ d
(
yp, yp+1

) + d
(
yp+1, yp+2

) + . . . d
(
yq−1, yq

)

=
q−1∑

j=p

d
(
y j , y j+1

) ≤
q−1∑

j=p

φ j−1 (q1φ (b◦))

≤
∞∑

j=p

φ j−1 (q1φ (b◦))

for all p, q ≥ N1, now for all ε > 0 there exists N1 such as,

d
(
yp, yq

) =
∞∑

j=p+1

φ j−1 (q1φ (b◦)) < ε
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for all p, q ≥ N1.As
∑∞

j=1 φ j < ∞, so this implies
{
yp

}
is aCauchy sequence. so yp

converges to z.Nowwewant to show that z is a fixed point of I.Asα
(
yp, yp+1

) ≥ 1
and yp → z as p → ∞, so by given condition, α

(
yp, z

) ≥ 1 for all p ∈ N . As I is
α∗-admissible so α∗

(
I yp, I z

) ≥ 1. Now we have

d
(
yp+1, I z

) ≤ H
(
I yp, I z

) ≤ 2H+ (
I yp, I z

)

≤ 2φ
(N (

yp, z
))

= 2φ

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩

d
(
yp, z

)
, d

(
yp, I yp

)
,
d (z, I z)

2
,

d
(
yp, I z

) + d
(
z, I yp

)

2
,
d

(
yp, I yp

)
d (z, I z)

1 + d
(
yp, z

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

≤ 2φ

⎛

⎜⎜
⎝max

⎧
⎪⎪⎨

⎪⎪⎩

d
(
yp, z

)
, d

(
yp, yp+1

)
,
d (z, I z)

2
,

d
(
yp, I z

) + d
(
z, yp+1

)

2
,
d

(
yp, yp+1

)
d (z, I z)

1 + d
(
yp, z

)

⎫
⎪⎪⎬

⎪⎪⎭

⎞

⎟⎟
⎠

On taking limit as p → ∞ on both sides of above inequality, we have

d (z, I z) ≤ 2φ

(
d (z, I z)

2

)

< 2
d (z, I z)

2
= d (z, I z)

a contradiction so implies that z ∈ I z. As lim p→∞ yp = z, and yp+1 ∈ I
(
yp

)
, so

by upper hemi continuity, z ∈ I z. �

Corollary 44 Let for a complete metric space (Y, d), H be any Hausdorff metric
on CB (Y ) . If mapping I : Y → CB (Y ) satisfies,

(i) α∗ (I y, I z) H (I y, I z) ≤ φ (N (y, z)) ,

(ii) I is α∗-admissible,
(iii) there exists y0 ∈ Y and y1 ∈ I y0 s.t α (y0, y1) ≥ 1,
(iv) either (a)

{
yp

}
is a sequence in Y such that α

(
yp, yp+1

) ≥ 1 for all p, further
yp → y ∈ Y as p → ∞, then α

(
yp, y

) ≥ 1 for all p, or (b) I is upper hemi
continuous.

Then I has a fixed point.

Proof Using condition
H+ (M, N ) ≤ H (M, N )

in Theorem 43 we get the required result. �
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Approximation of Signals Via Different
Summability Means with Effects
of Gibbs Phenomenon

Bidu Bhusan Jena, Susanta Kumar Paikray, and Hemen Dutta

Abstract The paper aims to investigate the notions of the deferred Cesàro, deferred
Nörlund and their product summability means of the Fourier series. We estimated
the degree of approximation of signal functions belonging to a generalized Lipschitz
class by using these notions, and also established some new fundamental approxi-
mation theorems in classical sense. Moreover, we introduced the statistical versions
of these notions, and demonstrated some Korovkin-type approximation results for
trigonometric test functions over a Banach space. Furthermore, in view of our pro-
posedmeans, we presented some examples demonstrating that the statistical versions
of approximation results are stronger than the classical versions. Finally, as regards
to the convergence of the Fourier series, the effect of the Gibbs phenomenon has
been presented via our proposed means.

Keywords Statistical convergence · Statistical deferred Nörlund summability ·
Positive linear operators; Sequences of real variables; Banach space ·
Korovkin-type approximation theorems
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The theory of classical approximation is an extraordinarily wide field covering dif-
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mentioned in [16], the L p space in general; however, the L2 and L1 spaces are specif-
ically assumed as inherent part of the theory of signal functions. It is well-known that
the classical approximation theory has started from the well established Weierstrass
approximation theory. These approximations have found their wide applications
in signal analysis (see [15]), in general and specifically in digital signal process-
ing system. Investigation on signals (or time) has many significant aspects as they
pass on data (or characteristics) of some phenomenon. The engineers and scientists
use the properties of Fourier approximation for outlining digital filters and signals.
Particularly, Psarakis and Moustakides [16] exhibited another L2 based technique
for outlining the finite impulse response digital filters and got comparing optimum
approximations having enhanced execution. Recently, Diger et al. [5], and Mittal
and Singh [10] have obtained numerous nice results on the theory of approximation
utilizing Nörlund and Riesz means of summability techniques with monotonicity on
the rows of the corresponding matrix T (a digital filter) by using Cesàro mean of
summability method presented earlier by Armitage and Maddox (see [2]).

Moreover, the notion of statistical convergence was initially studied by two emi-
nent mathematicians Fast [6] and Steinhaus [20]. Recently, statistical approximation
(or statistical convergence) has been an active research area because it is stronger
than the classical approximation (or classical convergence) and such a result with
its several applications are discussed in the various fields of pure and applied math-
ematics such as Fourier Analysis, Number Theory and Approximation Theory etc.
For more details, see [3, 8, 18, 19].

Let f (x) ∈ L p[0, 2π ] (p � 1) be a 2π periodic signal function and its Fourier
series is given by

f (x) = a0
2

+
∞∑

μ=1

(aμ cosμx + bμ sinμx) =
∑

ψμ(x). (1)

Let sn( f ) be the nth partial sum of the series (1), given by

sn( f ) = a0
2

+
n∑

μ=1

(aμ cosμx + bμ sinμx). (2)

Now, the integral modulus of continuity of f is defined by

ωp( f ; δ) = sup
0<|h|�δ

⎧
⎨

⎩
1

2π

2π∫

0

| f (x + h) − f (x)|pdx
⎫
⎬

⎭

1
p

. (3)

If
ωp( f ; δ) = O(δα) (0 < α � 1)

then
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f ∈ Lip(α, p) (p � 1).

Furthermore, if p → ∞, Lip(α, p) class reduces to the Lip(α) class.
Recalling here the L p-norm ‖.‖L p , we have

‖ f ‖L p =
⎧
⎨

⎩
1

2π

2π∫

0

| f (x)|pdx
⎫
⎬

⎭

1
p

(
∵ f ∈ L p; p � 1

)

and the L∞- norm of a function f over R is defined by,

‖ f ‖L∞ = sup{| f (x)| : x ∈ R}.

The degree of approximation of a function f overR by a trigonometric polynomial
(tn) of degree n under the supremum norm ‖.‖L∞ is defined by Zygmund (see [22])
and is given by,

‖tn − f ‖L∞ = sup{|tn − f (x)| : x ∈ R}

and the error (En) of a function f ∈ L p out of the approximation is defined by

En = min
n

‖tn − f ‖L p .

Now we recall, the formula of Abel’s transformation of the following form

n∑

k=m

ukvk =
n−1∑

k=m

Uk(vk − vk+1) −Um−1vm +Unvn (0 � m < n), (4)

where
Uk = u0 + u1 + · · · + uk (k � 0; U−1 = 0).

If vm, vm+1, . . . , vn are non-negative and non-increasing, the left hand side of (4)
does not exceed ∣∣∣∣∣2vm max

m−1�k�n
Uk

∣∣∣∣∣ .

Moreover,

∣∣∣∣∣

n∑

k=m

ukvk

∣∣∣∣∣ = max |Uk |
{

n−1∑

k=m

(vk − vk+1) − vm + vn

}

= 2vm max |Uk |.
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Next recalling themonotonicity, a non-negative sequence (cn) is almost monoton-
ically decreasing (resp. increasing) if there exists a constant K = K(cm), depending
on the sequence (cm) only, such that,

cn � Kcm (resp. cn � Kcm).

A non-negative sequence (cn) which is either almost increasing sequence (AIS) or
almost decreasing sequence (ADS) is called an almost monotone sequence (AMS).

2 Definitions and Motivation

Let (μn)n∈N and (ξn)n∈N be strictly increasing sequences of positive integers such
that (μn) < (ξn) and (ξn) = ∞ as n → ∞.

Now we define the deferred Cesàro (DC) summability mean for the sequence of
partial sum of the Fourier series as

Ln( f ) = 1

(ξn) − (μn)

ξn∑

v=μn+1

sv( f ), (5)

where (sv) is the nth partial sum of the Fourier series. Also, it is regular under the
usual conditions (see [1]).Moreover, for (μn) = 0 and (ξn) = n,Ln( f )mean reduces
to the Cesàro (C, 1) summability mean of order 1.

Definition 1 Let (μn) and (ξn) be strictly increasing sequences of positive inte-
gers. A Fourier series

∑
ψμ(x) is statistically deferred Cesàro (DC) summable to a

function s(x) if, for every ε > 0,

{m : m ∈ N and |Lm( f ) − s(x)| � ε}

has zero natural density, that is,

lim
n→∞

1

n
|{m : m � n and |Lm( f ) − s(x)| � ε}| = 0.

In this case, we write
statDCLn( f ) = s(x).

Next, we define the deferred Nörlund (DN) summability mean for the sequence
of partial sum of the Fourier series as

L∗∗
n ( f ) = 1

Pn

ξn∑

v=μn+1

pξn−vsv(x) (6)
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where

Pn =
ξn∑

v=μn+1

pv.

Definition 2 Let (μn) and (ξn) be strictly increasing sequences of positive integers
and let (pn) be a positive real sequence. A Fourier series

∑
ψμ(x) is statistically

deferred Nörlund (DN) summable to a function s(x) if, for every ε > 0,

{m : m � n and |L∗∗
m ( f ) − s(x)| � ε}

has zero natural density, that is,

lim
n→∞

1

n
|{m : m � n and |L∗∗

m ( f ) − s(x)| � ε}| = 0.

In this case, we write
statDNL

∗∗
n ( f ) = s(x).

Subsequently, we define the deferred Cesàro (DC) and deferred Nörlund (DN)
product summability (DCN) mean for the sequence of partial sum of the Fourier
series of the form

T∗
n( f ) = 1

(ξn − μn)

ξn∑

v=μn+1

L∗∗
kn( f )

= 1

(ξn − μn)

ξn∑

v=μn+1

⎡

⎣ 1

Pn

ξn∑

v=μn+1

pξn−vsv(x)

⎤

⎦

= 1

(ξn − μn)

ξn∑

v=μn+1

aξn ,v

(
∵ aξn ,v = 0 ∀ ξn > v

)
. (7)

Definition 3 Let (μn) and (ξn) be strictly increasing sequences of positive integers
and let (pn) be a positive real sequence. A Fourier series

∑
ψμ(x) is statistically

deferred Cesàro and deferred Nörlund (DCN) product summable to a function s(x)
if, for every ε > 0,

{m : m � n and |T∗
m( f ) − s(x)| � ε}

has zero natural density, that is,

lim
n→∞

1

n
|{m : m � n and |T∗

m( f ) − s(x)| � ε}| = 0.

In this case, we write
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statDCNT
∗
n( f ) = s(x).

Many researchers like, Parida et al. [11, 12], Pradhan et al. [13, 14] and a few
others used different summabilitymeans to determine the degree of approximation of
trigonometric polynomials. Recently, Deger et al. [5] and Mittal and Singh [10] used
themore general Cesàro summabilitymean (Cλ) (see,Armitage andMaddox [2]) and
established a result on the approximation of signals by trigonometric polynomials in
L p- norm. Very recently, Jena et al. [7] proved an approximation result via general
matrix summmability mean under the effect of the Gibbs Phenomenon.

Motivated essentially by the above-mentioned investigations and results, we esti-
mate the degree of approximation of signal functions belonging to the generalized
Lipschitz class based on deferredCesàro, deferredNörlund and their product summa-
bility means of the Fourier series, and accordingly we prove some new fundamental
approximation theorems. Moreover, based on our proposed means, we also present
the statistical versions of Korovkin-type approximation results for trigonometric test
functions of the sequences of positive linear operators over a Banach space, and
demonstrate that our statistical versions of approximation results are stronger than
the classical versions of approximation theorems. Finally, as regards to the conver-
gence of the Fourier series, the effect of the Gibbs Phenomenon has been discussed
here via our proposed means. In particular, the graphs of nth partial sum and Ln( f ),
L∗∗
n ( f ) and T∗

n( f ) means of the Fourier series are plotted by using the Matlab and
are compared to support the proposed investigation.

3 Classical Approximation Theorems

Now we prove the following classical approximation theorems based upon our pro-
posed means.

Theorem 1 If f ∈ Lip(α, p) and (pn) is positive, and also let (μn) and (ξn) be
strictly increasing sequences of positive integers and suppose if one the following
conditions hold:

(i) p > 1, α ∈ (0, 1) and (pn) is ADS;
(ii) p > 1, α ∈ (0, 1), (pn) is ADS and (ξn + 1)pξn = O(Pξn ),

then

‖L∗∗
n ( f ) − f ‖L p = O

(
1

(ξn)α

)
,

where L∗∗
n ( f ) is the DN mean.

Theorem 2 If f ∈ Lip(α, p) and let (μn)n∈N and (ξn)n∈N be strictly increasing
sequences of positive integers and the following condition holds:
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p > 1, α ∈ (0, 1) and (ξ)n + 1) = O(1),

then

‖Ln( f ) − f ‖L p = O

(
1

(ξn)α

)
,

where Ln( f ) is the DC mean.

Theorem 3 Let f ∈ Lip(α, p), (0 < α < 1). If the conditions,

ξn−1∑

v=μn+1

|
vaξn ,v| = O

(
1

ξn

)

and
(ξn + 1)aξn ,ξn = O(1)

hold true, then

‖T∗
n( f ) − f ‖L p = O

(
1

(ξn)1+α

)
,

where T∗
n( f ) is the DCN product mean.

Each of the following Lemmas will be needed in our present work.

Lemma 1 (see [17]) If f ∈ Lip(α, p), for α ∈ (0, 1] and p > 1, then

‖sn( f ) − f ‖L p = O

(
1

nα

)
. (8)

Lemma 2 (see [17]) If f ∈ Lip(α, p), α ∈ (0, 1), then

‖Ln( f ) − f ‖L p = O

(
1

nα

)
. (9)

Lemma 3 If f ∈ Lip(α, p), α ∈ (0, 1), and (pn) is AIS (resp. ADS), and suppose

(ξn + 1)pξn = O(Pξn ),

then
ξn∑

v=μn+1

v−α pξn−k = O(ξn)
−αPξn

holds.
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Proof Let (pn) be AIS and let (ξn + 1)pξn = O(Pξn ) holds, then

ξn∑

v=μn+1

v−α pξn−k =
r∑

v=μn+1

v−α pξn−k +
ξn∑

v=r+1

v−α pξn−k

� Kpξn−r

r∑

v=μn+1

v−α + (r + 1)−α

ξn∑

v=r+1

pξn−k

� Kpξn−r

ξn∑

v=μn+1

v−α + (r + 1)−α

ξn∑

v=μn

pξn−k

� Kpξn−r (ξn)
1−α + O(ξn)

−αPξn

= O(ξn)
−αPξn .

Similarly, in other hand we immediately get, if f ∈ Lip(α, p), α ∈ (0, 1), and
(pn) is ADS, and suppose that

(ξn + 1)pξn = O(Pξn ),

then
ξn∑

v=μn+1

v−α pξn−k = O(ξn)
−αPξn

holds. �

Proof of Theorem 1 Initially, wewish to prove under conditions (i) and (ii) together,
we have

L∗∗
n ( f ) − f = 1

Pξn

ξn∑

v=μn+1

pξn−v{sv(x) − f (x)}. (10)

Next, in view of Lemmas 1 and 3, we have

‖L∗∗
n ( f ) − f ‖L p � 1

Pξn

ξn∑

v=μn+1

pξn−v‖sv(x) − f (x)‖L p

= 1

Pξn

ξn∑

v=μn+1

pξn−v‖sv(x) − f (x)‖L p

= 1

Pξn

ξn∑

v=μn+1

pξn−v(v
−α)

= O(ξn)
−α.
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This completes the proof of Theorem. �
Proof of Theorem 2 The proof of the Theorem 2 is similar to the proof of Theorem
1. We, therefore, choose to skip the details involved. �
Proof of Theorem 3 Using the given conditions we have,

T∗
n( f ) − f = 1

ξn − μn

ξn∑

v=μn+1

aξn ,v(sv( f ) − f )

= 1

ξn − μn

ξn−1∑

v=μn+1

(aξn ,v − aξn ,v+1)

·
ξn∑

j=μn+1

(s j ( f ) − f ) + aξn ,ξn

ξn∑

v=μn+1

(sv( f ) − f )

= 1

ξn − μn

ξn−1∑

v=μn+1

aξn ,v − aξn ,v+1)(v + 1)

· (Ln( f ) − f ) + aξn ,ξn (1 + ξn)(Ln( f ) − f ).

‖T∗
n( f ) − f ‖L p � 1

ξn − μn

ξn−1∑

v=μn+1

(aξn ,v − aξn ,v+1)(v + 1)

· ‖Ln( f ) − f ‖L p + aξn ,ξn (1 + ξn)‖Ln( f ) − f ‖L p

� 1

ξn − μn

ξn−1∑

v=μn+1

|aξn ,v − aξn ,v+1|(1 + v)1−α

+ aξn ,ξn (1 + ξn)
1−α (∵ Lemma 2)

� (1 + ξn)

(1 + ξn)1+α

⎛

⎝
ξn−1∑

v=μn+1

|aξn ,v − aξn ,v+1| + aξn ,ξn

⎞

⎠

= O

(
1

(ξn)1+α

)
.

This establishes the theorem. �
Next, we establish the following corollary in view of the consequence of the

Theorem 3.

Corollary 1 If p → ∞ and 0 < α < 1, then the generalized Lip(α, p) class
reduces to the class Lip(α), and the degree of approximation of the function f
belongs to the Lip(α)-class is given by



422 B. B. Jena et al.

‖T∗
n( f ) − f ‖L∞ = O

(
1

ξα
n

)
.

Proof For p → ∞ and 0 < α < 1, we have

‖T∗
n( f ) − f ‖L∞ = sup

{∣∣T∗
n( f ) − f

∣∣ : 0 � x � 2π
}

= O

(
1

(ξn)α

)
.

This establishes the corollary. �

4 Statistical Korovkin-Type Approximation Results

TheKorovkin-type theorems are very useful in the convergence analysis in which the
approximation of functions is considered by certain sequences of functions, that is,
the continuous functions are approximated by polynomials. Now various researchers
developed these concepts by different settings such as measurable convergence, sta-
tistical convergence, probability convergence, lacunary convergence, ideal conver-
gence and so on. For current research works in this direction, see [4, 18, 19, 21].

In fact, here we demonstrate some new Korovkin-type approximation results via
our proposed statistical summability means.

Let C2π (R) be the space of all 2π -periodic real-valued continuous functions
defined on R and suppose that L : C2π (R) → C2π (R) be a linear operator.

We say that the operator L is a sequence of positive linear operator provided that

L( f ; x) � 0 whenever f � 0, f ∈ C2π (R).

It is also known that C2π (R) is a Banach space. For f ∈ C2π (R), the norm of the
function f , denoted by ‖ f ‖, is given by

‖ f ‖2π = sup
x∈[0,2π]

| f (x)|.

Nowwefirst propose the following result by using the notion of statistical deferred
Cesàro summability mean.

Result 1 Let
Lm : C2π (R) → C2π (R)

be a sequence of positive linear operators. Then, for all f ∈ C2π (R),

statDC lim
m→∞ ‖Lm( f ; x) − f (x)‖2π = 0 (11)



Approximation of Signals Via Different Summability Means … 423

if and only if

statDC lim
m→∞ ‖Lm(1; x) − 1‖2π = 0, (12)

statDC lim
m→∞ ‖Lm(cos x; x) − cos x‖2π = 0 (13)

and

statDC lim
m→∞ ‖Lm(sin x; x) − sin x‖2π = 0. (14)

We present below an illustrative example (see Example 1 below) for the sequences
of positive linear operators that does not satisfy our classical version of the result,
that is, approximation Theorem 2; but it satisfies our statistical version of the result
(approximation Result 1). Consequently, our Result 1 is a stronger approach than
our usual approximation theorem.

We recall here the Fejér convolution operators, let f ∈ C2π (R) and also let the
Fourier series of f at t = x be given by the Eq. (1) with its nth partial sum is given
by (2), and the deferred Cesàro mean of ( fn(x)) is already mentioned in (5), that is,

Ln( f ; x) = 1

ξn − μn

ξn∑

v=μn+1

sv( f ; x).

Furthermore, if μn = 0 and ξn = n, by simple calculation, we obtain

L∗
n( f ; x) = 1

2π

π∫

−π

f (t)
1

n + 1

n∑

v=0

sin
[

(2v+1)(x−t)
2

]

sin
[

(x−t)
2

] dt

= 1

2π

π∫

−π

f (t)
1

n + 1

n∑

v=0

sin2
[

(n+1)(x−t)
2

]

sin2
[

(x−t)
2

] dt

= 1

2π

π∫

−π

f (t)φn(x − t)dt,

where

φn(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sin2
[

(n+1)(x−t)
2

]

(n + 1) sin2
[

(x−t)
2

] (x is a multiple of 2π)

n + 1 (x is not a multiple of 2π).
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The sequence {φn(x) : n ∈ N} is a positive kernel which is known as the Fejér
kernel and the corresponding operators L∗

n( f ; x) are called the Fejér convolution
operators.

Next, we use the Fejér convolution operators in connection with Example 1 (given
below).

Example 1 Let Lm : C2π (R) → C2π (R) be defined by

Lm( f ; x) = [1 + xm]L∗
n( f ; x) ( f ∈ C2π (R), (15)

where (xm) is a sequence of the form; for m is odd

xm =
{
1 (m = j2; j ∈ N)

0 (otherwise).
(16)

and also, for m is even

xm =
{

−1 (m = j2; j ∈ N)

0 (otherwise).
(17)

Here, for am = 2m and bm = 4m, the sequence (xm) is not summable in classical
sense. However, it is statistically deferred Cesàro summable to 0. It is easily observed
that

Lm(1; x) = [1 + xm]1 = 1 + xm,

Lm(cos s; x) = [1 + xm]m − 1

m
cos x

and

Lm(sin s; x) = [1 + xm]m − 1

m
sin x,

so that we have

statDC lim
m→∞ ‖Lm(1; x) − 1‖2π = 0,

statDC lim
m→∞ ‖Lm(cos x; x) − cos x‖2π = 0

and

statDC lim
m→∞ ‖Lm(sin x; x) − sin x‖2π = 0,
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that is, the sequence Lm( f ; x) satisfies the conditions (12) to (14). Therefore, by
Result 1, we have

statDC lim
m→∞ ‖Lm( f ; x) − f ‖2π = 0.

Hence, (xm) is statistically deferred Cesàro summable, but it is not classically
summable, so we conclude that our classical version of the result (approximation
Theorem 2) is not valid for the operators defined by (15); whereas our statistical
version, that is, approximation Result 1 still works for the operators defined by (15).

Next, we propose the following result by using the notion of the statistical deferred
Nörlund summability mean with associated example.

Result 2 Let
L′
m : C2π (R) → C2π (R)

be a sequence of positive linear operators. Then, for all f ∈ C2π (R),

statDN lim
m→∞ ‖L′

m( f ; x) − f (x)‖2π = 0 (18)

if and only if

statDN lim
m→∞ ‖L′

m(1; x) − 1‖2π = 0, (19)

statDN lim
m→∞ ‖L′

m(cos x; x) − cos x‖2π = 0 (20)

and

statDN lim
m→∞ ‖L′

m(sin x; x) − sin x‖2π = 0. (21)

Example 2 Let L′
m : C2π (R) → C2π (R) be defined by

L′
m( f ; x) = [1 + x ′

m]L∗
n( f ; x) ( f ∈ C2π (R), (22)

where (xm) is a sequence defined by; for m is odd

x ′
m =

{
m + 1 (m = j2; j ∈ N)

0 (otherwise).
(23)

and also, for m is even

x ′
m =

{
−m (m = j2; j ∈ N)

0 (otherwise).
(24)



426 B. B. Jena et al.

Here, am = 2m and bm = 4m, the sequence (x ′
m) is not classically summable in

deferred Nörlund sense; however, it is statistically deferred Nörlund summable to 0.
It is easily observed that

L′
m(1; x) = [1 + x ′

m]1 = 1 + x ′
m,

L′
m(cos s; x) = [1 + x ′

m]m − 1

m
cos x

and

L′
m(sin s; x) = [1 + x ′

m]m − 1

m
sin x,

so that we have

statDN lim
m→∞ ‖L′

m(1; x) − 1‖2π = 0,

statDN lim
m→∞ ‖L′

m(cos x; x) − cos x‖2π = 0

and

statDN lim
m→∞ ‖L′

m(sin x; x) − sin x‖2π = 0,

that is, the sequence L′
m( f ; x) satisfies the conditions (19) to (21). Therefore, by

Result 2, we have

statDN lim
m→∞ ‖L′

m( f ; x) − f ‖2π = 0.

Hence, it is statistically deferred Nörlund summable; but it is not classically
summable, so we conclude that our classical part of the approximation result, that
is, Theorem 1 is not valid for the operators defined by (22); whereas our statistical
part of approximation Result, that is, 2 still works for the operators defined by (22).

Finally, we now propose the following result by using the notion of the statistically
product DCN (that is, deferred Cesàro and deferred Nörlund product) summability
mean with an illustrated example.

Result 3 Let
L′′
m : C2π (R) → C2π (R)

be a sequence of positive linear operators. Then, for all f ∈ C2π (R),

statDCN lim
m→∞ ‖L′′

m( f ; x) − f (x)‖2π = 0 (25)
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if and only if

statDCN lim
m→∞ ‖L′′

m(1; x) − 1‖2π = 0, (26)

statDCN lim
m→∞ ‖L′′

m(cos x; x) − cos x‖2π = 0 (27)

and

statDCN lim
m→∞ ‖L′′

m(sin x; x) − sin x‖2π = 0. (28)

Example 3 Let L′′
m : C2π (R) → C2π (R) be defined by

L′′
m( f ; x) = [1 + x ′′

m]L∗
n( f ; x) ( f ∈ C2π (R), (29)

where (x ′′
m) is a sequence defined as; for m is odd

x ′′
m =

{
m+1
2 (m = j2; j ∈ N)

0 (otherwise).
(30)

and also, for m is even

x ′′
m =

{−m
2 (m = j2; j ∈ N)

0 (otherwise).
(31)

Here, am = 2m and bm = 4m, the sequence (x ′′
m) is not classically summable in

DCN product sense. However, it is statistically DCN product summable to 0. It is
easily observed that

L′′
m(1; x) = [1 + x ′′

m]1 = 1 + x ′′
m,

L′′
m(cos s; x) = [1 + x ′′

m]m − 1

m
cos x

and

L′′
m(sin s; x) = [1 + x ′′

m]m − 1

m
sin x,

so that we have

statDCN lim
m→∞ ‖L′′

m(1; x) − 1‖2π = 0,

statDCN lim
m→∞ ‖L′′

m(cos x; x) − cos x‖2π = 0
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and

statDCN lim
m→∞ ‖L′′

m(sin x; x) − sin x‖2π = 0,

that is, the sequence L′′
m( f ; x) satisfies the conditions (26) to (28). Therefore, by

Result 3, we have

statDCN lim
m→∞ ‖L′′

m( f ; x) − f ‖2π = 0.

Hence, it is statistically DCN product summable; but it is not classically DCN
product summable, so we conclude that our classical part of approximation Theorem
3 is not valid for the operators defined by (29); whereas our statistical part of DCN
product approximation Result 3 still works for the operators defined by (29).

5 Effects of Gibbs Phenomenon

As regards to the effects of the Gibbs Phenomenon in the following example, we
will see how the Cesàro mean Ln( f ), Nörlund mean L∗∗

n ( f ) and the DCN product
T∗
n( f ) means of the partial sums of Fourier series of a 2π periodic signal is better

behaved than the sequence of partial sums sn(x) itself.
Consider

f (x) =
⎧
⎨

⎩

−1 (−π � x < 0)

1 (0 � x < π),

be periodic with period 2π . Clearly, it is an odd function. So its Fourier series is
given by

f (x) =
∞∑

n=1

bn sin nx,

bn = 2

π

π∫

0

f (x) sin nx = 2

π

(
1 − (−1)n

n

)
.

Thus, the Fourier series of f is,

f (x) = 2

π

∞∑

n=1

1 − (−1)n

n
sin nx, x ∈ [−π, π ]. (32)
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The nth partial sum sn(x) of the Fourier series (32) is given by

sn(x) = 4

π

(
sin x + 1

3
sin 3x + · · · + 1

n
sin nx

)
(33)

and the deferred Cesàro mean is

Ln( f ) = 1

(n + 1)

n∑

k=0

sk( f ). (34)

Next, the deferred Nörlund mean is

L∗∗
n ( f ) = 2

(n + 1)(n + 2)

n∑

k=0

(n − k + 1)sk( f ). (35)

Finally, the DCN product mean T∗
n( f ) is given by

T∗
n( f ) = 2

(n + 1)2(n + 2)

n∑

k=0

(n − k + 1)sk( f ). (36)

Now the graphs for the signals, namely graph for nth partial sum sn(x), deferred
CesàroLn( f ), deferred NörlundL∗∗

n ( f ) and finally for the DCN product sumT∗
n( f )

are plotted in the following figures.
According to Gibbs Phenomenon, in the neighborhood of discontinuity, the con-

vergence of Fourier series is not uniform and the sequence of partial sum is over
estimated the signal by 18%, that is, in the neighborhood of discontinuity overshoots
in the peaks of partial sum sn(x) are noticed closure of the line passing through the
point of discontinuity as n- increases.

6 Concluding Remarks and Observations

In the last section of our investigation, we demonstrate different remarks and obser-
vations relating the several outcomes which we have presented here.

Remark 1 The product transforms T∗
n( f ) of the present form plays an important

role as a double digital filter in signal theory as well as the theory of Machines in
Mechanical Engineering (see [9]).

Remark 2 From Theorem 3, as 1 + α � α, α ∈ (0, 1), so it gives still sharper esti-
mates. Thus, as regards to convergence of f (x), the product summability T∗

n( f )
gives better estimate than the individuals.

Remark 3 Let (xm)m∈N be a real sequence given in Example 1. Then, since



430 B. B. Jena et al.

statDC lim
m→∞ xm = 0

we have

statDC lim
m→∞ ‖Lm( fi ; x) − fi (x)‖2π = 0 (i = 0, 1, 2). (37)

Thus, by Result 1, we can write

statDC lim
m→∞ ‖Lm( f ; x) − f (x)‖2π = 0, (38)

where
f0(x) = 1, f1(x) = cos x and f2(x) = sin x .

As we know, (xm) is not DC summable in the ordinary sense, thus, the associated
approximation theorem does not work here for the operators defined by (15). Hence,
this application clearly indicates that our Result 1 is a non-trivial generalization of
the classical Theorem 2.

Remark 4 Let (x ′
m)m∈N be a real sequence given in Example 2. Then, since

statDN lim
m→∞ x ′

m = 0

we have

statDN lim
m→∞ ‖L′

m( fi ; x) − fi (x)‖2π = 0. (39)

Thus, by Result 2, we can write

statDN lim
m→∞ ‖L′

m( f ; x) − f (x)‖2π = 0, (i = 0, 1, 2), (40)

where
f0(x) = 1, f1(x) = cos x and f2(x) = sin x .

As we know, (x ′
m) is not classically summable in deferred Nörlund the sense, thus,

the associated deferred Nörlund classical approximation theorem does not work here
for the operators defined by (22). Hence, this application clearly indicates that our
Result 2 is a non-trivial generalization of the classical Theorem 1.

Remark 5 Let (x ′′
m)m∈N be a real sequence given in Example 3. Then, since

statDCN lim
m→∞ x ′′

m = 0

we have
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Fig. 1 The signals f (x) =
blue, sn(x) = red, Ln( f ) =
black, L∗∗

n ( f ) = green,
T∗
n( f ) = yellow; for n = 5
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Fig. 2 The signals f (x) =
blue, sn(x) = red, Ln( f ) =
black, L∗∗

n ( f ) = green,
T∗
n( f ) = yellow; for n = 10
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statDCN lim
m→∞ ‖L′′

m( fi ; x) − fi (x)‖2π = 0. (41)

Thus, by Result 3, we can write

statDCN lim
m→∞ ‖L′′

m( f ; x) − f (x)‖2π = 0, (i = 0, 1, 2), (42)

where
f0(x) = 1, f1(x) = cos x and f2(x) = sin x .

As we know, (x ′′
m) is not DCN product summable in the ordinary sense, thus, the

associated classical approximation theorem does not work here for the operators
defined by (29). Hence, this application clearly indicates that our Result 3 is a non-
trivial generalization of the classical Theorem 3.

Remark 6 From the above Figs. 1 and 2, we observe that Ln( f ), L∗∗
n ( f ) and T∗

n( f )
converges quickly to f (x) than the sequence of partial sum sn in the interval [−π, π ].
We further notice that in the neighborhood of discontinuity, that is, in the neighbor-
hood of −π, 0 and π, the graphs of s5 and s10 show overshoots in peaks and move
closer to the line passing through the points of discontinuity as n increases, but in
the graphs of Ln( f ), L∗∗

n ( f ) and T∗
n( f ) at n = 5 and 10, the peaks become flatter.
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Clearly, the DCN product summability mean of the Fourier series of f overshoots
the Gibbs Phenomenon and shows the smoothing effect of the method. Thus, Ln( f ),
L∗∗
n ( f ) and T∗

n( f ) are better approximates than sn(x), and the DCN product T∗
n( f )

summability is better behaved than the individuals sn(x),Ln( f ) andL∗∗
n ( f ) summa-

bility methods.
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